WO2015060137A1 - On-board control device - Google Patents

On-board control device Download PDF

Info

Publication number
WO2015060137A1
WO2015060137A1 PCT/JP2014/077123 JP2014077123W WO2015060137A1 WO 2015060137 A1 WO2015060137 A1 WO 2015060137A1 JP 2014077123 W JP2014077123 W JP 2014077123W WO 2015060137 A1 WO2015060137 A1 WO 2015060137A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
engine
pinion gear
vehicle
pinion
Prior art date
Application number
PCT/JP2014/077123
Other languages
French (fr)
Japanese (ja)
Inventor
義秋 長澤
堀 俊雄
大西 浩二
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2015543790A priority Critical patent/JP6132931B2/en
Publication of WO2015060137A1 publication Critical patent/WO2015060137A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0851Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0851Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear
    • F02N11/0855Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear during engine shutdown or after engine stop before start command, e.g. pre-engagement of pinion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/087Details of the switching means in starting circuits, e.g. relays or electronic switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/10Safety devices
    • F02N11/101Safety devices for preventing engine starter actuation or engagement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/04Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears
    • F02N15/06Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement
    • F02N15/068Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement starter drive being actuated by muscular force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/048Information about pinion speed, both translational or rotational speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a vehicle-mounted control device, and more particularly to a vehicle control device equipped with an idle stop system.
  • An example of a fuel efficiency improvement measure for idling stop is to stop the internal combustion engine by shutting off the fuel supply to the internal combustion engine when the vehicle speed falls below a predetermined vehicle speed while braking to stop the vehicle.
  • fuel consumption can be further reduced and fuel consumption can be improved compared to an idle stop system in which fuel supply is stopped after the vehicle has completely stopped (vehicle speed 0 km / h). I can do it.
  • a coast stop and will be described as a kind of control included in the idle stop.
  • Patent Document 1 two solenoids can be driven with two signals so that the starter pinion gear push-out operation and the starter motor can be driven independently, and when a change of mind request is received, A method is disclosed in which the pinion gear is rotated in advance to reduce the rotational difference from the inertialy rotating ring gear to create an easy-to-engage situation, and then the pinion gear is pushed out and engaged.
  • the engine rotation area that can be restarted in response to a change mind request can be expanded even while the engine is rotating inertially. Time lag) can be reduced.
  • Patent Document 2 discloses a structure that absorbs a collision sound of a gear by bending a spring when the pinion gear comes into contact with the ring gear.
  • the present invention has been made in view of such problems, and an object thereof is to realize an in-vehicle control device capable of detecting a reduction in meshing performance between a starter pinion gear and an engine ring gear. It is in.
  • an in-vehicle control device of the present invention includes a rotating shaft, a motor that rotates the rotating shaft, a pinion gear that transmits the rotational force of the rotating shaft to an engine ring gear, the rotating shaft, and the pinion gear.
  • In-vehicle control that controls a starter that includes a pinion shift mechanism that engages the pinion gear and the ring gear, and issues a meshing instruction to the pinion shift mechanism during the engine speed reduction period
  • the operating state of the engine is acquired or estimated, and a state in which the engine speed does not increase is detected based on the operating state of the engine after the meshing instruction to the pinion shift mechanism.
  • the present invention even when an abnormality occurs in the function of the starter and the engagement performance between the pinion gear and the ring gear decreases, it is possible to detect a decrease in the engagement performance, and thus notify the driver of the abnormality. Further failure occurrence can be suppressed by encouraging repairs or performing predetermined fail-safe control with a limited idle stop function.
  • FIG. 1 is a system configuration example of an idle stop vehicle according to the present invention. It is a functional block diagram of the vehicle-mounted control apparatus of this invention. It is a control flowchart with a pre-mesh function. It is a control flowchart without a pre-mesh function. It is the other system configuration example of the idle stop vehicle of this invention. It is a block diagram of the pinion shift mechanism part of a starter. It is a functional block diagram of the vehicle-mounted control apparatus of this invention. It is a control flowchart. It is a control flowchart including failure diagnosis of a starter function. It is a flowchart of a failure diagnosis. It is a failure diagnosis time chart of the starter function of the present invention. It is a failure diagnosis time chart using a sensor.
  • FIG. 1 is an overall configuration diagram of a vehicle equipped with a vehicle start control device of the present invention.
  • the vehicle includes a multi-cylinder engine (internal combustion engine main body) 1, an idle stop starter system 10, and an ECU (on-vehicle controller) 21.
  • the engine 1 ignites the fuel injected from the fuel injection valve 15 by the ignition coil 14a and the ignition plug 14b to obtain an explosive force, and rotates the crankshaft 1a.
  • a signal plate 3 engraved with a predetermined pattern for detecting a crank angle signal is attached to one of the crankshafts 1a of the engine 1, and a ring gear 2 integrated with a drive plate for transmitting driving force to the transmission is attached to the other. It has been.
  • a crank angle sensor 36 for detecting the unevenness of the pattern and outputting a pulse signal is attached. Based on the pulse signal output from the crank angle sensor 36, the ECU 21 calculates the rotational speed of the engine 1 (engine rotational speed).
  • the pinion gear 4 is a gear that can mesh with the ring gear 2 and is provided on the pinion shaft (rotating shaft) 8 of the starter motor 7 through the one-way clutch 4a so as to be movable in the axial direction.
  • the starter solenoid 5 is an electric actuator for moving the pinion gear 4 in the axial direction of the pinion shaft 8 via the pinion transfer lever 6.
  • the starter motor 7 is a motor for cranking the engine 1 via the ring gear 2 and starting it as will be described later.
  • the pinion gear sensor 38 is a sensor for detecting the rotational speed of the pinion shaft 8.
  • the starter solenoid 5 moves the pinion gear 4 to the right in the drawing, that is, the ring gear 2 side via the pinion transfer lever 6, so that the pinion gear 4 meshes with the ring gear 2.
  • a transmission 16 is connected to the crankshaft 1a via a drive plate integrated with the ring gear 2.
  • the transmission 16 transmits the rotational driving force generated by the engine 1 to the road surface via the drive shaft 17 and the tire 18.
  • a vehicle speed sensor 33 that detects a rotation pulse of the output shaft is attached to the transmission 16.
  • the ECU 21 calculates a vehicle speed value by performing conversion using a predetermined coefficient based on an output signal from the vehicle speed sensor 33.
  • the present invention is not limited to this.
  • the engine control ECU and the starter control ECU may be configured separately, and the detection values from the pinion gear sensor 38, the crank angle sensor 36, the vehicle speed sensor 33, and the like may be shared and controlled via a network.
  • FIG. 2 is a diagram showing various input signals such as sensors for inputting the system configuration of the ECU 21 and various output signals output from the ECU 21 to a control device or the like.
  • An input circuit 224 of the ECU 21 is sucked into an accelerator opening sensor 30 that detects the amount of depression of an accelerator pedal (not shown), a throttle opening sensor 31 that detects an opening amount of a throttle valve (not shown), and a cylinder of the engine 1.
  • An airflow sensor 32 for measuring the amount of intake air to be detected, a vehicle speed sensor 33 for detecting the traveling speed of the vehicle, a brake switch 34 for detecting an operation of a foot brake (not shown), ignition of the engine 1, calculation of injection timing, and cylinder determination.
  • a cam angle sensor 35 for detecting the cam angle signal and the crank angle signal, a crank angle sensor 36, and a pinion gear sensor 38 for detecting the rotational speed of the pinion shaft 8 are connected.
  • the output circuit 226 is connected to the ignition coil 14a, the fuel injection valve 15, and the semiconductor switching element 13.
  • the ignition coil 14a generates an ignition signal output from the output circuit 226 based on the ignition timing calculated from the signals of the cam angle sensor 35 and the crank angle sensor 36 based on a predetermined algorithm read out from the ROM 241 by the arithmetic processing unit 223.
  • high voltage power is supplied to the spark plug 14b in order to ignite the air-fuel mixture in the cylinder by the ignition coil 14a.
  • the fuel injection valve 15 receives a valve opening signal output for a predetermined time at a predetermined timing via the output circuit 226, the fuel injection valve 15 injects fuel.
  • the ECU 21 calculates the amount of fuel injected by the fuel injection valve 15 from the amount of intake air measured by the airflow sensor 32 and determines the valve opening time.
  • the switching element 13 When the switching element 13 receives the PWM drive signal output via the output circuit 226, the switching element 13 drives the starter solenoid 5 and the starter motor 7, respectively.
  • the switching element 13 a drives the starter solenoid 5, and the switching element 13 b drives the starter motor 7.
  • the ECU 21 outputs a PWM drive signal via the output circuit 226 when receiving a drive request to the starter body 9.
  • FIG. 3 shows a case where the rotational speed synchronous pre-mesh control is performed in which the rotational speed of the engine 1 and the rotational speed of the pinion gear 4 are synchronized during idle stop and the engine 1 is stopped while the pinion gear 4 is engaged with the ring gear 2. It is an example of a flowchart. The processing of the operation shown in this control flowchart is repeatedly executed by the arithmetic processing unit 223.
  • Each input condition is executed when the idle stop permission condition is satisfied.
  • step 103 when the judgment condition becomes a predetermined value A (for example, the engine speed is 600 rpm) or less, the routine proceeds to step 104, where the pinion pre-rotation operation is performed. That is, the starter motor 7 is energized, the pinion gear rotation number calculated from the pinion gear sensor 38 is increased to a predetermined value, and the energization is stopped.
  • a predetermined value A for example, the engine speed is 600 rpm
  • step 105 the process advances to step 106 to execute the pinion gear transfer, that is, the energization of the starter solenoid 5 is started, and the rotating pinion gear 4 is pinned to the ring gear 2.
  • pre-mesh state is established in which the transfer lever 6 is engaged.
  • pre-mesh condition for example, “the difference between the engine speed 30 ms predicted from the engine speed and the actual speed of the pinion gear 4 is within ⁇ 100 rpm” can be mentioned.
  • step 107 If it is determined in step 107 that there is no so-called change-of-mind request from the driver, for example, that his / her foot is released from a brake pedal (not shown), the process proceeds to step 108 and the pre-mesh state is maintained. Then, the engine 1 is completely stopped, and the process proceeds to step 109 and waits until a restart request is received.
  • Step 111 the starter motor 7 is energized, fuel injection is restarted, and the internal combustion engine is restarted.
  • step 110 determines whether or not the predicted rotation speed of the engine 1 is in the normal rotation range. If the predicted engine speed is in the normal rotation range, the process proceeds to step 111, and a drive command is issued to the starter. When the predicted engine speed is in the reverse rotation range, the process waits until the predicted engine speed enters the normal rotation range. As a result of the determination in step 110, it is possible to prevent the engine 1 from being cranked in the region where the engine 1 is rotating without being over the compression top dead center immediately before stopping, so that the semiconductor element 13 and the starter motor 7 are overloaded and damaged. It is possible to avoid doing this.
  • step 112 it is determined whether or not the engine speed is equal to or greater than a predetermined value C (for example, the engine speed is 500 rpm). Proceeding to 113, the drive of the starter body 9 is turned off.
  • a predetermined value C for example, the engine speed is 500 rpm.
  • FIG. 4 shows a flowchart when the pre-mesh operation is omitted in the above process and simplified. If it is determined in step 203 that there is a change of mind request from the driver, and if the engine speed at that time is equal to or greater than a predetermined value A (for example, the engine speed is 500 rpm), the engine rotates by inertia. In order to make the differential rotation with the ring gear 2 being small, in step 208, only the starter motor 7 is energized in advance to cause the pinion gear 4 to pre-rotate. The control in step 208 is executed regardless of whether there is a change of mind request.
  • a predetermined value A for example, the engine speed is 500 rpm
  • the rotation of the starter motor 7 is stopped without causing the pinion gear 4 to be engaged with the ring gear 2. May be.
  • the starter is driven in step 210 It is turned on, the pinion gear 4 is jumped into the ring gear 2, the starter motor 7 is driven, and the engine 1 is cranked.
  • step 211 it is determined whether or not the engine speed is equal to or higher than a predetermined value C (for example, the engine speed is 500 rpm). Proceeding to 212, the drive of the starter body 9 is turned OFF.
  • a predetermined value C for example, the engine speed is 500 rpm.
  • 3 and 4 are implemented by a system including a starter and a control device that can independently control the jumping-in operation of the pinion gear 4 of the starter and the driving operation of the starter motor 7 by two drive signals, respectively.
  • the biting performance can be improved by performing the biting in a situation where the difference in rotational speed between the pinion gear 4 and the ring gear 2 is small.
  • Fig. 5 shows an example of a system corresponding to the change of mind with a simpler configuration than the system described in Figs.
  • FIG. 5 shows that the idle stop starter system 10 shown in FIG. 1 has a simple configuration, and the pinion gear 4 can be engaged with the ring gear 2 during the period when the engine 1 is rotating by inertia.
  • a start control device replaced with a starter body 9 capable of performing
  • the starter body 9 includes a motor contact 11 that opens and closes power supply to the starter motor 7 and a starter solenoid 5 that drives the pinion transfer lever 6, and a one-way clutch 4 a and a pinion gear 4 that are connected to the pinion shaft 8 of the starter motor 7. Yes.
  • the pinion gear 4 and the one-way clutch 4a are integrally structured and pushed out to the ring gear 2 by the pinion transfer lever 6, but the starter of FIG. 5 has a separate structure.
  • a vertical groove spline shaft 43 is fixed to the one-way clutch 4a, and a pinion gear 4 provided with a vertical groove spline on the inside for securing a certain clearance with the spline is described above.
  • the shaft 43 is movable in the axial direction.
  • the pinion gear 4 is pressed by the spring 44 in the right direction in the drawing, that is, in the ring gear 2 side, and stopped while being pressed against the stopper 45.
  • a damper mechanism is connected to the link 42a via a spring 44 between the movable core 42 and the pinion transfer lever 6. And may be connected to the pinion transfer lever 6.
  • the contact of the starter relay 41 is closed and power is supplied to the starter solenoid 5.
  • the starter solenoid 5 is an electromagnetic solenoid. When a current flows through the coil, an electromagnetic force acts on the movable iron core 42 to attract the pinion transfer lever 6 to the left side in the figure and close the motor contact 11 when a certain stroke is reached. To power the motor and rotate the pinion gear.
  • the spring 44 is bent to produce the same effect.
  • other elastic bodies such as a rubber material or other structures that generate a repulsive force may be employed instead of the spring.
  • FIG. 7 is a diagram showing various input signals such as sensors for inputting the system configuration of the ECU 21 of the starting system shown in FIG. 5 and various output signals output from the ECU 21 to a control device or the like.
  • FIG. 8 is a control flowchart when performing from the idle stop to the restart in the starting system shown in FIG. The processing of the operation shown in this control flowchart is repeatedly executed by the ECU 21.
  • step 303 it is determined that there is a change of mind request from the driver, and in step 306, the predicted rotational speed of the engine 1, which is a guideline of the jumpable range of the pinion gear 4, is within a predetermined range B5 to B6 (for example, 30 ms later). If the engine speed is within 0 to 180 rpm), the starter drive is turned on in step 307, the pinion gear 4 is jumped into the ring gear 2 to drive the motor, and the engine 1 is cranked.
  • step 308 it is determined whether or not the engine speed is equal to or greater than a predetermined value C (for example, the engine speed is 500 rpm). If the engine speed is equal to or greater than the predetermined value C, the process proceeds to step 309 and the starter body 9 is driven. Set to OFF.
  • a predetermined value C for example, the engine speed is 500 rpm.
  • step 303 If there is no change of mind request in step 303, the process proceeds to step 304, and the engine is stopped and is in a standby state. If a restart request is received in step 305, the process proceeds to step 307 and the starter is driven to restart. It is.
  • the rotation difference from the ring gear increases due to insufficient rotation or excessive rotation due to poor pinion pre-rotation operation.
  • the failure in the pre-rotation operation may be caused by, for example, the failure of the pinion gear sensor 38 and the ECU 21 not being able to recognize the rotation speed of the pinion gear 4.
  • the slide mechanism of the pinion gear 4 is fixed when foreign matter is caught or the vehicle is left standing for a long period of time and the spring 44 is not bent, or the spring 44 is broken or the spring 44 is deteriorated.
  • An abnormality such as a drop in repulsive force can be considered. If the spring 44 becomes abnormal as described above, the repulsive force of the spring cannot be obtained, and even if the phase of the pinion gear 4 and the ring gear 2 is in the meshable position, it cannot be instantaneously engaged, so that end face slip occurs. Therefore, the biting performance will be reduced.
  • a starter failure diagnosis is performed to detect a decrease in starter biting performance.
  • the deterioration of the idle stop function can be minimized by performing predetermined processing such as notification to the driver and fail-safe control, and deterioration of fuel consumption due to the failure can be prevented.
  • FIG. 9 is a flowchart when the starter function diagnosis is added to the operation flowchart of FIG. 8 in the system of FIG. 5, and is an example in which the starter function diagnosis control is added in step 310 after the starter driving is turned on in step 307. Similarly, in the operation flowcharts of FIGS. 3 and 4, the diagnosis is executed after the starter drive is turned on. Note that the process of step 310 may be performed each time the process of FIG. 9 is executed, or the execution frequency and timing may be appropriately changed according to the driving state of the vehicle.
  • FIG. 10 is a flowchart illustrating the function diagnosis control in step 310.
  • step 401 As a condition for executing the diagnosis, when a change of mind request is received in step 401 and the starter operates in step 402, abnormality determination is performed in step 403 based on the engine operating state such as engine rotation information.
  • the processing in step 403 will be described later with reference to FIG. If the starter function is diagnosed as normal in steps 403 and 404, the diagnostic control is terminated.
  • step 405 the number of times diagnosed as abnormal is counted up. Thereby, misdiagnosis can be suppressed.
  • the fail-safe control in step 408 and the control at the time of temporary failure in step 410 are switched based on the number of times of diagnosis NG.
  • the process of step 410 is to notify the driver of an abnormality by a warning light or the like
  • step 408 is to switch the fail-safe control depending on the degree of failure as a process of both the restriction of the idle stop function and the abnormality notification to the driver.
  • FIG. 11 shows an example of a time chart for determining the abnormality of the starter function described in step 403 of FIG.
  • a description will be given of means for performing the determination under the following condition (1) as a condition for determining the abnormality of the starter function.
  • (1) After a change of mind request, the start speed of the starter motor 7 is detected.
  • the engine speed after a predetermined time T1 (for example, 200 ms) from the starter ON command is detected, and the value is less than the predetermined value D (for example, 300 rpm). Be.
  • T1 for example, 200 ms
  • D for example, 300 rpm
  • the starter ON command referred to here is an energization start timing (for example, step 111 in FIG. 3) of the starter motor 7 after the pinion shift command (energization start to the starter solenoid 5) timing.
  • the motor energization start timing or the pinion shift command timing which can be detected by detecting the battery voltage drop amount can be set.
  • the pinion shift command timing itself can be used as a starting point. In this case, since the pinion gear 4 is transferred and the motor energizing contact is closed and the motor is driven, a time difference of 10 or more ms is generated. If the detection window of the engine speed is set short, the detection accuracy of the end face slip can be improved.
  • the predetermined value D for example, it may be set to a value corresponding to the cranking rotation speed when the starter motor 7 cranks the engine 1.
  • the starter function when the starter function is normal, the engine speed does not increase to a value corresponding to the cranking speed even when the time for successful meshing has elapsed, and a state in which the pinion gear 4 and the ring gear 2 are not meshed occurs. Can be judged.
  • the predetermined value D may be set to a value between the rotational speed corresponding to the first explosion of the engine 1 and the rotational speed corresponding to the complete explosion.
  • the inclination of the rotational speed may be used for the determination, and it may be determined that the state in which the pinion gear 4 and the ring gear 2 are not engaged with each other is caused by the fact that the rotational speed does not change suddenly after the first explosion of the engine 1.
  • the failure since the failure is determined by a simple determination method using the existing rotation sensor signal, the failure can be detected without complicated logic and cost increase.
  • Other conditions for determining the abnormality of the starter function include the following means (2) to (4).
  • a predetermined time T1 for example, 200 ms
  • the engine speed at the predetermined crank angle phase F for example, compression top dead center 0 degree
  • the predetermined range D1 to D2 for example, 100 to 300 rpm. thing.
  • the predetermined crank angle phase can be determined by looking at other phases, but since the angular acceleration at the compression top dead center is the lowest, it is possible to obtain a stable rotational speed and perform determination with higher accuracy. it can.
  • the failure since the failure is determined by a simple determination method using the existing rotation sensor signal, the failure can be detected without complicated logic and cost increase.
  • crank angular velocity can be calculated from the interval of signals detected by the ion current sensor or the combustion pressure sensor and used for the determination.
  • the amount of movement of the pinion gear is detected or estimated, and the detected or estimated amount of movement has elapsed for a predetermined time. Do not reach the travel distance when fully bitten.
  • FIG. 12 illustrates an example in which the amount of movement of the pinion gear is estimated based on the outputs of the strain sensor and the sound sensor.
  • the failure since the failure is determined by detecting or estimating the movement amount of the pinion gear by the sensor, the failure can be detected more reliably as compared with the methods (1) to (3).
  • step 405 in FIG. 10 the number of times that the abnormality is diagnosed in step 405 in FIG. 10 is counted up.
  • step 406 the number of times that an abnormality is diagnosed is determined in step 406, and if it is equal to or greater than a predetermined value E, the abnormality is determined in step 407, and fail-safe control is performed in step 408.
  • step 406 when the number of times diagnosed as abnormal in step 406 is less than the predetermined value E, it is determined in step 409 that there is a temporary failure, and in step 410, control at the time of temporary failure is performed.
  • the abnormal state may be determined. For example, a state in which the rotation speed of the engine 1 does not increase due to the starter motor 7 not rotating, the starter motor 7 rotating early, or the wear or loss of the ring gear 2 or the pinion gear 4 is detected.
  • the battery voltage drop may be monitored to detect that the motor is rotating regardless of the starter ON command, that the motor is rotating with no load, or the like. Further, it is conceivable to detect disconnection or the like of the peripheral circuit of the semiconductor switching element 13 or to confirm the coincidence between the output of the pinion gear sensor 38 and the starter ON command. When these misdiagnosis modes are applicable, they are excluded from the contents of the failure diagnosis shown in FIG. 10 and another fail-safe control is performed.
  • the push-out condition of the pinion gear 4 may be varied to make it easier to detect a state where the gears are not engaged with each other.
  • the predicted engine speed range in step 209 may be temporarily set high. This is because the higher the number of revolutions of the engine 1, the more conspicuous the gears do not mesh with each other.
  • controls (1) to (6) are executed as specific examples of the fail-safe control in step 408 and the control at the time of temporary failure in step 410 in FIG.
  • the failure details are stored in the start control device, and the indicator in the meter panel is turned on or blinked to notify the driver of the abnormality.
  • the starter is not used except for the initial start by the driver's key operation or the restart after the engine 1 is completely stopped. Wear and the like can be prevented.
  • the idle stop after the engine 1 is completely stopped can be executed, so that deterioration of fuel consumption can be suppressed.
  • the timing at which the pinion gear 4 is bitten is delayed by, for example, several tens of ms because the biting permission rotational speed is low, but the rotational speed of the engine 1 is decreasing. Therefore, the deterioration of fuel consumption can be suppressed while ensuring the restart response.
  • a plurality of these failsafe controls may be executed simultaneously, or the failsafe controls may be switched in stages according to the degree of failure. For example, if it is determined in step 409 in FIG. 10 that there is a temporary failure, the control in (4) or (5) is executed in step 410 to continue the coast stop in a state where some functions are limited. If it is determined in step 407 that the abnormality has been confirmed, the idle stop during the period when the engine 1 is rotating is limited, and only the idle stop after the engine 1 is completely stopped is performed. Then, the control (2) or (3) is executed.
  • the determination of the degree of failure is not limited to the determination based on the number of diagnosis NGs described in step 406 in FIG. For example, as the abnormality in the starter function becomes more prominent, the time required for the pinion gear 4 and the ring gear 2 to be engaged increases. Therefore, the degree of decrease in the engagement performance may be determined based on this time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 An objective of the present invention is to provide, in a vehicle equipped with an idle stop system, a system wherein failures are detected in the meshing function of a pinion gear of a starter when a change-of-mind is implemented, and when such a failure is detected, idol stop control is restricted and starter drive control is switched, preventing problems that can occur during failures, and suppressing the deterioration of fuel consumption. A failsafe function is provided in this idle stop system that can mesh the pinion gear and perform a restart even during inertial rotation of the engine, the failsafe function determining faults in the starter function from changes in the engine rotation information when a starter is being driven, and switching, on the basis of the results of the determination, the drive method of the starter and the idle stop control.

Description

車載制御装置In-vehicle control device
 本発明は車載制御装置に関し、特にアイドルストップシステムを備えた車両の制御装置に関する。 The present invention relates to a vehicle-mounted control device, and more particularly to a vehicle control device equipped with an idle stop system.
 アイドルストップシステムを備えた車両においては、その運転中に、内燃機関の自動停止条件が成立した時に、燃料供給を遮断することにより内燃機関を停止し、運転者の操作又は車両の要求により、内燃機関の再始動条件が成立した時に、速やかに内燃機関を始動し発進する技術が実用化されている。このようなアイドルストップシステムを備えた車両においては、車両の運転状態に基づいた様々な判定方法によりアイドルストップを実行するか否かの判断を行い、アイドルストップを実行する時間を増やすことによって燃費を向上する工夫をしている。 In a vehicle equipped with an idle stop system, when the automatic stop condition of the internal combustion engine is satisfied during the operation, the internal combustion engine is stopped by shutting off the fuel supply. A technique for quickly starting and starting an internal combustion engine when an engine restart condition is satisfied has been put into practical use. In a vehicle equipped with such an idle stop system, it is determined whether to perform idle stop by various determination methods based on the driving state of the vehicle, and fuel consumption is improved by increasing the time for executing idle stop. I am trying to improve.
 アイドルストップの燃費向上策の一例としては、車両を停止するためにブレーキをかけながら減速している途中で、所定車速以下となった時に内燃機関への燃料供給を遮断して内燃機関を停止する制御がある。このような制御を行うことにより、車両が完全停止(車速0km/h)してから燃料供給を停止するアイドルストップシステムと比較して、更に燃料の消費量を抑えられ、燃費の向上を期待することが出来る。以降このような制御をコーストストップと呼び、アイドルストップに含まれる制御の一種として以降説明する。 An example of a fuel efficiency improvement measure for idling stop is to stop the internal combustion engine by shutting off the fuel supply to the internal combustion engine when the vehicle speed falls below a predetermined vehicle speed while braking to stop the vehicle. There is control. By performing such control, fuel consumption can be further reduced and fuel consumption can be improved compared to an idle stop system in which fuel supply is stopped after the vehicle has completely stopped (vehicle speed 0 km / h). I can do it. Hereinafter, such control is referred to as a coast stop and will be described as a kind of control included in the idle stop.
 一般的に、アイドルストップを実行し、その後エンジンが完全に停止している状態で運転者や制御システム側から再始動要求を受けた場合は、運転者の手動操作による通常の初回始動のようにスタータで駆動してエンジンをクランキングし、再始動を行う。しかし、アイドルストップが実行され燃料カットが行われた直後、エンジンが惰性で回転している状態において、再始動の要求を受けた場合は一般的なピニオンギヤ飛び込み式のスタータでは、エンジンが完全に停止してからでないとクランキングを行えないため、再始動要求と再始動実行のタイミングに時間差が生じて、交差点等での再発進でドライバーへ違和感とともに不安を与える。以降、前記のようにアイドルストップが実行され燃料カットが行われた直後のエンジンが惰性で回転している状態において、再始動の要求を与える操作をチェンジ・オブ・マインドと呼ぶこととする。 Generally, when an idle stop is performed and then a restart request is received from the driver or the control system while the engine is completely stopped, the normal initial start by the driver's manual operation is performed. Drive with a starter to crank the engine and restart. However, immediately after the idling stop is performed and the fuel cut is performed, when the engine is rotating inertially and the restart is requested, the engine is completely stopped with a general pinion gear dive starter After that, cranking cannot be performed, so there is a time difference between the restart request and the restart execution timing, and the driver restarts at an intersection or the like, giving the driver a sense of discomfort and anxiety. Hereinafter, in the state where the engine immediately after the idling stop is performed and the fuel cut is performed as described above is rotating by inertia, an operation for giving a restart request is referred to as a change of mind.
 ここで、チェンジ・オブ・マインド要求からエンジンの再始動実行までの時間差を解消するため、エンジンが惰性で回転している最中に、無理矢理スタータモータを回転駆動すると、スタータのピニオンギヤをエンジンのリングギヤへ噛み合わせる際に、ギヤの端面同士で滑って噛み込むことができない、または噛み込みまでに時間がかかる、所謂ギヤ同士の端面滑りという状態に陥る恐れがある。端面滑りが起きるとギヤの異常磨耗や異音が発生し、耐久性および商品性を著しく低下させる不具合が発生する。 Here, in order to eliminate the time difference from the change of mind request to the engine restart execution, if the starter motor is forcibly rotated while the engine is rotating by inertia, the starter pinion gear is turned into the engine ring gear. When the gears are meshed with each other, there is a risk of falling into a so-called end-slip state between the gears, in which the gears cannot slide and bite each other or take a long time to bite. When end face slip occurs, abnormal wear and abnormal noise of the gear occur, resulting in a problem that the durability and merchantability are significantly reduced.
 エンジンが惰性で回転している最中に、端面滑りを発生させないようにスタータのピニオンギヤをエンジンのリングギヤに噛み込ませて再始動させる方法として、スタータの駆動方法や回路構成を変更することが特許文献1により開示されている。 As a method of restarting the engine by engaging the starter pinion gear in the ring gear of the engine so that end face slip does not occur while the engine is rotating due to inertia, changing the starter drive method and circuit configuration is patented It is disclosed by reference 1.
 例えば特許文献1では、スタータのピニオンギヤの押し出し動作とスタータモータの駆動を独立して行えるように、2つのソレノイドを2系統の信号で駆動できる構成とし、チェンジ・オブ・マインド要求を受けた時に、予めピニオンギヤを回転させて、惰性回転しているリングギヤとの回転差を小さくして噛み込み易い状況を作り出してからピニオンギヤを押し出して噛み込ませる方法が開示されている。特許文献1開示の技術によれば、エンジンが惰性で回転している最中でも、チェンジマインド要求を受けて再始動を行うことが出来るエンジン回転領域を拡大することができるので、ドライバーへの違和感(タイムラグ)を低減することができる。 For example, in Patent Document 1, two solenoids can be driven with two signals so that the starter pinion gear push-out operation and the starter motor can be driven independently, and when a change of mind request is received, A method is disclosed in which the pinion gear is rotated in advance to reduce the rotational difference from the inertialy rotating ring gear to create an easy-to-engage situation, and then the pinion gear is pushed out and engaged. According to the technology disclosed in Patent Document 1, the engine rotation area that can be restarted in response to a change mind request can be expanded even while the engine is rotating inertially. Time lag) can be reduced.
 また一般的に、特許文献2では、ピニオンギヤがリングギヤに当接した時にスプリングを撓ませてギヤの衝突音を吸収する構造が開示されている。 In general, Patent Document 2 discloses a structure that absorbs a collision sound of a gear by bending a spring when the pinion gear comes into contact with the ring gear.
特許第4214401号公報Japanese Patent No. 4214401 特許第3749461号公報Japanese Patent No. 3749461
 特許文献1記載の技術では、例えばピニオンギヤとリングギヤいずれかについての回転数取得値に異常が生じたときや、モータの駆動回路に異常が生じたときなどに、ギヤ同士の回転差を小さくすることができず噛み込み性能が低下する。また特許文献2記載のスタータの惰性回転中のリングギヤとピニオンギヤとの噛み込み制御への適用を検討しても、ギヤ同士の衝突音を緩和するためのスプリング構造に破損や固着などの異常が生じた場合に、同様に噛み込み性能が低下する。このような状態で、エンジンが惰性回転している期間にピニオンギヤとリングギヤとの噛み合い制御がなされると、ギヤ同士の端面滑りや異音、ギヤの異常磨耗などの不具合が発生してしまう。しかしながら、特許文献のいずれもこのような状態を検出することができない。 In the technique described in Patent Document 1, for example, when an abnormality occurs in the rotational speed acquisition value for either the pinion gear or the ring gear, or when an abnormality occurs in the motor drive circuit, the rotation difference between the gears is reduced. Can not be bitten and the biting performance is reduced. Further, even if the application of the starter described in Patent Document 2 to the control of the engagement between the ring gear and the pinion gear during inertial rotation is studied, abnormalities such as breakage and sticking occur in the spring structure for reducing the collision noise between the gears. In this case, the biting performance similarly decreases. In such a state, when the meshing control between the pinion gear and the ring gear is performed during the inertial rotation of the engine, problems such as end face slippage and abnormal noise between the gears and abnormal gear wear occur. However, none of the patent documents can detect such a state.
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、スタータのピニオンギヤとエンジンのリングギヤとの噛み合い性能の低下を検出することが可能な車載制御装置を実現することにある。 The present invention has been made in view of such problems, and an object thereof is to realize an in-vehicle control device capable of detecting a reduction in meshing performance between a starter pinion gear and an engine ring gear. It is in.
 上記課題を解決するため本発明の車載制御装置は、回転軸と、前記回転軸を回転させるモータと、エンジンのリングギヤに前記回転軸の回転力を伝達するピニオンギヤと、前記回転軸と前記ピニオンギヤとを前記リングギヤ側へ移動させ、前記ピニオンギヤと前記リングギヤとを噛み合わせるピニオンシフト機構と、を備える始動装置を制御し、前記エンジンの回転数降下期間中に前記ピニオンシフト機構へ噛み合い指示を行う車載制御装置において、前記エンジンの運転状態を取得または推定し、前記ピニオンシフト機構への噛み合い指示後の前記エンジンの運転状態に基づき、前記エンジンの回転数が上昇しない状態を検出することを特徴とする。 In order to solve the above problems, an in-vehicle control device of the present invention includes a rotating shaft, a motor that rotates the rotating shaft, a pinion gear that transmits the rotational force of the rotating shaft to an engine ring gear, the rotating shaft, and the pinion gear. In-vehicle control that controls a starter that includes a pinion shift mechanism that engages the pinion gear and the ring gear, and issues a meshing instruction to the pinion shift mechanism during the engine speed reduction period In the apparatus, the operating state of the engine is acquired or estimated, and a state in which the engine speed does not increase is detected based on the operating state of the engine after the meshing instruction to the pinion shift mechanism.
 本発明によれば、スタータの機能に異常が発生してピニオンギヤとリングギヤとの噛み込み性能が低下した場合でも噛み合い性能の低下を検出することが可能となり、ひいては運転者へ異常の通知を行って修理を促したり、アイドルストップ機能を制限した所定のフェールセーフ制御を行うことでさらなる不具合発生を抑制することができる。 According to the present invention, even when an abnormality occurs in the function of the starter and the engagement performance between the pinion gear and the ring gear decreases, it is possible to detect a decrease in the engagement performance, and thus notify the driver of the abnormality. Further failure occurrence can be suppressed by encouraging repairs or performing predetermined fail-safe control with a limited idle stop function.
本発明のアイドルストップ車両のシステム構成例である。1 is a system configuration example of an idle stop vehicle according to the present invention. 本発明の車載制御装置の機能ブロック図である。It is a functional block diagram of the vehicle-mounted control apparatus of this invention. プリメッシュ機能有りの制御フローチャートである。It is a control flowchart with a pre-mesh function. プリメッシュ機能無しの制御フローチャートである。It is a control flowchart without a pre-mesh function. 本発明のアイドルストップ車両の他のシステム構成例である。It is the other system configuration example of the idle stop vehicle of this invention. スタータのピニオンシフト機構部の構成図である。It is a block diagram of the pinion shift mechanism part of a starter. 本発明の車載制御装置の機能ブロック図である。It is a functional block diagram of the vehicle-mounted control apparatus of this invention. 制御フローチャートである。It is a control flowchart. スタータ機能の故障診断を含む制御フローチャートである。It is a control flowchart including failure diagnosis of a starter function. 故障診断のフローチャートである。It is a flowchart of a failure diagnosis. 本発明のスタータ機能の故障診断タイムチャートである。It is a failure diagnosis time chart of the starter function of the present invention. センサを用いた故障診断タイムチャートである。It is a failure diagnosis time chart using a sensor.
 図1~12を参照して、本発明による車両の始動制御装置の実施の形態を説明する。 Embodiments of a vehicle start control device according to the present invention will be described with reference to FIGS.
 図1は、本発明の車両の始動制御装置を搭載した車両の全体構成図である。なお、図1では、本発明による車両の始動制御装置に関する説明に係る部分を主に記載して、他の部分の記載を省略している。この車両は、多気筒のエンジン(内燃機関本体)1とアイドルストップスタータシステム10と、ECU(車載制御装置)21とを備えている。 FIG. 1 is an overall configuration diagram of a vehicle equipped with a vehicle start control device of the present invention. In FIG. 1, the part relating to the description of the vehicle start control device according to the present invention is mainly described, and the other parts are omitted. The vehicle includes a multi-cylinder engine (internal combustion engine main body) 1, an idle stop starter system 10, and an ECU (on-vehicle controller) 21.
 エンジン1は燃料噴射弁15から噴射した燃料を、点火コイル14a、点火プラグ14bにより着火させて爆発力を得て、クランク軸1aを回転させる。 The engine 1 ignites the fuel injected from the fuel injection valve 15 by the ignition coil 14a and the ignition plug 14b to obtain an explosive force, and rotates the crankshaft 1a.
 エンジン1のクランク軸1aの一方には、クランク角信号を検出するために既定のパターンを刻んだ信号プレート3ともう一方には、トランスミッションへ駆動力を伝達するドライブプレートと一体のリングギヤ2が取り付けられている。 A signal plate 3 engraved with a predetermined pattern for detecting a crank angle signal is attached to one of the crankshafts 1a of the engine 1, and a ring gear 2 integrated with a drive plate for transmitting driving force to the transmission is attached to the other. It has been.
 信号プレート3の近傍には、そのパターンの凸凹を検出してパルス信号を出力するクランク角センサ36が取り付けられている。クランク角センサ36から出力されるパルス信号に基づいて、ECU21はエンジン1の回転数(エンジン回転数)を算出する。 In the vicinity of the signal plate 3, a crank angle sensor 36 for detecting the unevenness of the pattern and outputting a pulse signal is attached. Based on the pulse signal output from the crank angle sensor 36, the ECU 21 calculates the rotational speed of the engine 1 (engine rotational speed).
 アイドルストップスタータシステム10は、ピニオンギヤ押し出し式のスタータ本体(始動装置)9と、半導体スイッチング素子13とを備えており、ECU21によって制御されている。なお、半導体スイッチング素子13は、ON、OFF信号で動作する機械式のマグネットスイッチに置き換えてもよい。スタータ本体9は、半導体スイッチング素子13により駆動されるスタータソレノイド5と、ピニオン移送レバー6と、ピニオンギヤ4、ワンウェイクラッチ4a、ピニオンギヤセンサ38と、スタータモータ7とを備えている。 The idle stop starter system 10 includes a starter body (starter) 9 of a pinion gear extrusion type and a semiconductor switching element 13 and is controlled by the ECU 21. The semiconductor switching element 13 may be replaced with a mechanical magnet switch that operates with an ON / OFF signal. The starter body 9 includes a starter solenoid 5 driven by a semiconductor switching element 13, a pinion transfer lever 6, a pinion gear 4, a one-way clutch 4 a, a pinion gear sensor 38, and a starter motor 7.
 ピニオンギヤ4は、リングギヤ2と噛合可能なギヤであり、ワンウェイクラッチ4aを介してスタータモータ7のピニオン軸(回転軸)8に軸方向に移動可能に設けられている。スタータソレノイド5は、ピニオン移送レバー6を介してピニオンギヤ4をピニオン軸8の軸方向に移動させるための電動アクチュエータである。スタータモータ7は、後述するようにエンジン1をリングギヤ2を介してクランキングさせ、始動するためのモータである。ピニオンギヤセンサ38は、ピニオン軸8の回転速度を検出するためのセンサである。 The pinion gear 4 is a gear that can mesh with the ring gear 2 and is provided on the pinion shaft (rotating shaft) 8 of the starter motor 7 through the one-way clutch 4a so as to be movable in the axial direction. The starter solenoid 5 is an electric actuator for moving the pinion gear 4 in the axial direction of the pinion shaft 8 via the pinion transfer lever 6. The starter motor 7 is a motor for cranking the engine 1 via the ring gear 2 and starting it as will be described later. The pinion gear sensor 38 is a sensor for detecting the rotational speed of the pinion shaft 8.
 ECU21のピニオン移送指令、すなわちピニオンギヤ4とリングギヤ2の噛み合い指示がピニオン移送アクチュエータ駆動用の半導体スイッチング素子13aのゲート端子に入力されると、バッテリ12の電力がスタータソレノイド5へ供給される。これによりスタータソレノイド5がピニオン移送レバー6を介してピニオンギヤ4を図示右方向、すなわちリングギヤ2側へ移動させるので、ピニオンギヤ4はリングギヤ2と噛合する。 When the pinion transfer command of the ECU 21, that is, the meshing instruction of the pinion gear 4 and the ring gear 2 is input to the gate terminal of the semiconductor switching element 13 a for driving the pinion transfer actuator, the power of the battery 12 is supplied to the starter solenoid 5. As a result, the starter solenoid 5 moves the pinion gear 4 to the right in the drawing, that is, the ring gear 2 side via the pinion transfer lever 6, so that the pinion gear 4 meshes with the ring gear 2.
 ECU21からのモータ駆動指令がスタータモータ駆動用の半導体スイッチング素子13bのゲート端子に入力されると、バッテリ12の電力がスタータモータ7へ供給される。これにより、スタータモータ7がピニオンギヤ4およびリングギヤ2を介してクランク軸1aを回転させてエンジン1をクランキングする。 When the motor drive command from the ECU 21 is input to the gate terminal of the semiconductor switching element 13b for driving the starter motor, the power of the battery 12 is supplied to the starter motor 7. As a result, the starter motor 7 rotates the crankshaft 1 a via the pinion gear 4 and the ring gear 2 to crank the engine 1.
 なお、クランク軸1aにはリングギヤ2と一体化したドライブプレートを介してトランスミッション16が接続されている。トランスミッション16は、ドライブシャフト17およびタイヤ18を介してエンジン1で発生する回転駆動力を路面に伝える。また、トランスミッション16には、その出力軸の回転パルスを検知する車速センサ33が取り付けられている。ECU21は、車速センサ33からの出力信号に基づき、所定の係数で変換することにより車速値を算出する。 Note that a transmission 16 is connected to the crankshaft 1a via a drive plate integrated with the ring gear 2. The transmission 16 transmits the rotational driving force generated by the engine 1 to the road surface via the drive shaft 17 and the tire 18. In addition, a vehicle speed sensor 33 that detects a rotation pulse of the output shaft is attached to the transmission 16. The ECU 21 calculates a vehicle speed value by performing conversion using a predetermined coefficient based on an output signal from the vehicle speed sensor 33.
 本実施例では、ECU21がエンジン1とアイドルストップスタータシステム10とを双方制御する例を説明するが、これに限られない。エンジン制御用ECUとスタータ制御用ECUとを別体で構成し、ネットワークを介してピニオンギヤセンサ38やクランク角センサ36、車速センサ33等からの検出値を共有して分散制御するようにしてよい。 In this embodiment, an example in which the ECU 21 controls both the engine 1 and the idle stop starter system 10 will be described, but the present invention is not limited to this. The engine control ECU and the starter control ECU may be configured separately, and the detection values from the pinion gear sensor 38, the crank angle sensor 36, the vehicle speed sensor 33, and the like may be shared and controlled via a network.
 図2は、ECU21のシステム構成を入力するセンサ等の各種の入力信号、および、ECU21から制御機器等に出力する各種の出力信号とともに示す図である。 FIG. 2 is a diagram showing various input signals such as sensors for inputting the system configuration of the ECU 21 and various output signals output from the ECU 21 to a control device or the like.
 ECU21の入力回路224には、不図示のアクセルペダルの踏み込み量を検知するアクセル開度センサ30、不図示のスロットルバルブの開き量を検知するスロットル開度センサ31、エンジン1のシリンダ内へ吸入される吸入空気量を計測するエアフロセンサ32、車両の走行速度を検出する車速センサ33、不図示のフットブレーキの操作を検知するブレーキスイッチ34、エンジン1の点火、噴射タイミングの算出や気筒判定に用いるカム角信号とクランク角信号を検出するカム角センサ35とクランク角センサ36、ピニオン軸8の回転速度を検出するピニオンギヤセンサ38が接続されている。 出力回路226には、点火コイル14aと、燃料噴射弁15と、半導体スイッチング素子13とが接続されている。点火コイル14aは、カム角センサ35、クランク角センサ36の信号から、演算処理装置223がROM241から読み出した所定のアルゴリズムに基づいて算出した点火タイミングに基づいて出力回路226から出力される点火信号を受信すると、点火コイル14aでシリンダ内の混合気に点火するために、点火プラグ14bへ高電圧の電力を供給する。燃料噴射弁15は、出力回路226を介して所定のタイミングで所定時間出力される開弁信号を受信すると、燃料を噴射する。なお、ECU21は、エアフロセンサ32で計量された吸入空気量から燃料噴射弁15で噴射する燃料量を算出し開弁時間を決定する。 An input circuit 224 of the ECU 21 is sucked into an accelerator opening sensor 30 that detects the amount of depression of an accelerator pedal (not shown), a throttle opening sensor 31 that detects an opening amount of a throttle valve (not shown), and a cylinder of the engine 1. An airflow sensor 32 for measuring the amount of intake air to be detected, a vehicle speed sensor 33 for detecting the traveling speed of the vehicle, a brake switch 34 for detecting an operation of a foot brake (not shown), ignition of the engine 1, calculation of injection timing, and cylinder determination. A cam angle sensor 35 for detecting the cam angle signal and the crank angle signal, a crank angle sensor 36, and a pinion gear sensor 38 for detecting the rotational speed of the pinion shaft 8 are connected. The output circuit 226 is connected to the ignition coil 14a, the fuel injection valve 15, and the semiconductor switching element 13. The ignition coil 14a generates an ignition signal output from the output circuit 226 based on the ignition timing calculated from the signals of the cam angle sensor 35 and the crank angle sensor 36 based on a predetermined algorithm read out from the ROM 241 by the arithmetic processing unit 223. Upon reception, high voltage power is supplied to the spark plug 14b in order to ignite the air-fuel mixture in the cylinder by the ignition coil 14a. When the fuel injection valve 15 receives a valve opening signal output for a predetermined time at a predetermined timing via the output circuit 226, the fuel injection valve 15 injects fuel. The ECU 21 calculates the amount of fuel injected by the fuel injection valve 15 from the amount of intake air measured by the airflow sensor 32 and determines the valve opening time.
 スイッチング素子13は、出力回路226を介して出力されるPWM駆動信号を受信すると、スタータソレノイド5、スタータモータ7をそれぞれ駆動する。スイッチング素子13aはスタータソレノイド5を駆動し、スイッチング素子13bはスタータモータ7を駆動する。なお、ECU21は、スタータ本体9への駆動要求を受けると出力回路226を介してPWM駆動信号を出力する。 When the switching element 13 receives the PWM drive signal output via the output circuit 226, the switching element 13 drives the starter solenoid 5 and the starter motor 7, respectively. The switching element 13 a drives the starter solenoid 5, and the switching element 13 b drives the starter motor 7. The ECU 21 outputs a PWM drive signal via the output circuit 226 when receiving a drive request to the starter body 9.
 図3は、アイドルストップ時にエンジン1の回転数とピニオンギヤ4の回転数とを同期して、ピニオンギヤ4をリングギヤ2へ噛み込ませながらエンジン1を停止する回転数同期式プリメッシュ制御を行う際のフローチャートの一例である。この制御フローチャートで示した動作の処理は、演算処理装置223にて繰り返し実行される。 FIG. 3 shows a case where the rotational speed synchronous pre-mesh control is performed in which the rotational speed of the engine 1 and the rotational speed of the pinion gear 4 are synchronized during idle stop and the engine 1 is stopped while the pinion gear 4 is engaged with the ring gear 2. It is an example of a flowchart. The processing of the operation shown in this control flowchart is repeatedly executed by the arithmetic processing unit 223.
 一般的なアイドルストップは、例えば車両が停止(車速=0km/h)状態で、スロットル開度が全閉でエンジン1が無負荷運転にある時、ステップ101で、車速センサ33やブレーキスイッチ34などの各入力条件がアイドルストップ許可条件を満たすと実行される。また、車両が減速中にアイドルストップを行うコーストストップは、前記「車両が停止(車速=0km/h)状態」に代わり、例えば「車速条件が13km/h以下で、かつ不図示のブレーキペダルが踏み込まれていること」が挙げられる。アイドルストップ条件、またはコーストストップ条件を満たすと、ステップ102で、燃料噴射弁15の駆動を停止して、エンジン1の燃料供給の遮断(燃料カット)を行う。 A general idle stop is, for example, when the vehicle is stopped (vehicle speed = 0 km / h), the throttle opening is fully closed, and the engine 1 is in a no-load operation, in step 101, the vehicle speed sensor 33, the brake switch 34, etc. Each input condition is executed when the idle stop permission condition is satisfied. In addition, the coast stop that performs an idle stop while the vehicle is decelerating is replaced with the “vehicle is stopped (vehicle speed = 0 km / h) state”, for example, “the vehicle speed condition is 13 km / h or less, and a brake pedal (not shown) It is said that it has been stepped on. If the idle stop condition or the coast stop condition is satisfied, in step 102, the drive of the fuel injection valve 15 is stopped, and the fuel supply of the engine 1 is cut off (fuel cut).
 上述した燃料カット動作により、エンジン回転数は徐々に低下して、ステップ103で、判定条件の所定値A(たとえばエンジン回転数が600rpm)以下となった時には、ステップ104に進み、ピニオン予回転動作、即ちスタータモータ7へ通電し、ピニオンギヤセンサ38から算出されるピニオンギヤ回転数を所定値まで上昇させて、通電を停止する動作を行う。 Due to the fuel cut operation described above, the engine speed gradually decreases, and in step 103, when the judgment condition becomes a predetermined value A (for example, the engine speed is 600 rpm) or less, the routine proceeds to step 104, where the pinion pre-rotation operation is performed. That is, the starter motor 7 is energized, the pinion gear rotation number calculated from the pinion gear sensor 38 is increased to a predetermined value, and the energization is stopped.
 この場合、上記のピニオン予回転動作は無負荷で回転するため、通電停止後ピニオンギヤ回転数は惰性によって時間とともに徐々に低下する。一方、エンジン回転数は吸入→圧縮→膨張→排気を繰り返して脈動しながら低下するので、クランク角センサ36から算出されるエンジン回転数と、ピニオン予回転動作によって徐々に低下しているピニオンギヤ回転数とが同期するタイミングを予測し、ステップ105で、プリメッシュ条件が成立した時、ステップ106に進みピニオンギヤ移送を実行、即ちスタータソレノイド5への通電を開始し、回転するピニオンギヤ4をリングギヤ2へピニオン移送レバー6を介して噛み込ませる、いわゆるプリメッシュ状態とする。なお、プリメッシュ条件としては、たとえば、「エンジン回転数から予測される30ms後のエンジン回転数と、実際のピニオンギヤ4の回転数との差が±100rpm以内であること」が挙げられる。 In this case, since the above-described pinion pre-rotation operation rotates with no load, the pinion gear rotation speed gradually decreases with time due to inertia after stopping energization. On the other hand, since the engine speed decreases while pulsating by repeating suction → compression → expansion → exhaust, the engine speed calculated from the crank angle sensor 36 and the pinion gear speed that gradually decreases due to the pinion pre-rotation operation. When the pre-mesh condition is satisfied in step 105, the process advances to step 106 to execute the pinion gear transfer, that is, the energization of the starter solenoid 5 is started, and the rotating pinion gear 4 is pinned to the ring gear 2. A so-called pre-mesh state is established in which the transfer lever 6 is engaged. As the pre-mesh condition, for example, “the difference between the engine speed 30 ms predicted from the engine speed and the actual speed of the pinion gear 4 is within ± 100 rpm” can be mentioned.
 ステップ107で、例えば不図示のブレーキペダルから足が離れるなどの運転者からの再始動要求、いわゆるチェンジ・オブ・マインドが無いと判定された場合は、ステップ108に進み、上記プリメッシュ状態のまま、エンジン1を完全停止させて、ステップ109に進み、再始動要求を受けるまで待機する。 If it is determined in step 107 that there is no so-called change-of-mind request from the driver, for example, that his / her foot is released from a brake pedal (not shown), the process proceeds to step 108 and the pre-mesh state is maintained. Then, the engine 1 is completely stopped, and the process proceeds to step 109 and waits until a restart request is received.
 ステップ109の待機状態において、運転者の操作などにより、再始動要求を受けた時には、ステップ111に進み、スタータモータ7へ通電し、燃料噴射を再開させて内燃機関を再始動させる。 In the standby state of Step 109, when a restart request is received due to the driver's operation or the like, the process proceeds to Step 111, the starter motor 7 is energized, fuel injection is restarted, and the internal combustion engine is restarted.
 また、ステップ107において、運転者からのチェンジ・オブ・マインド要求が有りと判定された場合には、ステップ110に進み、エンジン1の予測回転数が正転域であるか否かを判定する。エンジンの予測回転数が正転域である場合には、ステップ111に進み、スタータへの駆動指令を行う。エンジンの予測回転数が逆転域の場合には、エンジンの予測回転数が正転域に入るまで待機する。ステップ110の判定によって、エンジン1が停止直前で圧縮上死点を越えられずに逆転している領域でクランキングすることを防止できるので、半導体素子13、スタータモータ7が過負荷となって損傷することを回避することが可能である。 If it is determined in step 107 that there is a change of mind request from the driver, the process proceeds to step 110 to determine whether or not the predicted rotation speed of the engine 1 is in the normal rotation range. If the predicted engine speed is in the normal rotation range, the process proceeds to step 111, and a drive command is issued to the starter. When the predicted engine speed is in the reverse rotation range, the process waits until the predicted engine speed enters the normal rotation range. As a result of the determination in step 110, it is possible to prevent the engine 1 from being cranked in the region where the engine 1 is rotating without being over the compression top dead center immediately before stopping, so that the semiconductor element 13 and the starter motor 7 are overloaded and damaged. It is possible to avoid doing this.
 その後、ステップ112へ進み、エンジン回転数が所定値C(たとえばエンジン回転数が500rpm)以上か否かを判定して、所定値C以上の場合はエンジン1の始動が完了したものとみなし、ステップ113に進み、スタータ本体9の駆動をOFFとする。 Thereafter, the routine proceeds to step 112, where it is determined whether or not the engine speed is equal to or greater than a predetermined value C (for example, the engine speed is 500 rpm). Proceeding to 113, the drive of the starter body 9 is turned off.
 以上のように、ピニオンギヤ4とリングギヤ2との回転数同期式のプリメッシュ動作を行うことにより、次回再始動時には、ピニオンギヤ4をリングギヤ2へ噛み込ませる動作が不要となるので、再始動要求を受けてからエンジン1が完爆に至るまでの始動時間を短縮できるとともにピニオンギヤ4をリングギヤ2へ噛み込ませる際の騒音を低減できる。 As described above, by performing the rotational speed synchronous pre-mesh operation of the pinion gear 4 and the ring gear 2, the operation of causing the pinion gear 4 to be engaged with the ring gear 2 is not required at the next restart, so a restart request is issued. The starting time from when the engine 1 is received until the engine 1 reaches the complete explosion can be shortened, and noise when the pinion gear 4 is engaged with the ring gear 2 can be reduced.
 また、前記の行程でプリメッシュ動作を省いて簡略化した場合のフローチャートを図4に示す。ステップ203で運転者からのチェンジ・オブ・マインド要求が有りと判定され、ステップ204でその時のエンジン回転数が所定値A(たとえばエンジン回転数が500rpm)以上である場合には、惰性で回転しているリングギヤ2との差回転を小さい状態とするため、ステップ208で予めスタータモータ7にのみ通電させてピニオンギヤ4を予回転させる。なお、ステップ208の制御は、チェンジ・オブ・マインド要求の有無に関わらず実行し、チェンジ・オブ・マインド要求が無い場合にピニオンギヤ4をリングギヤ2へ噛み込ませることなくスタータモータ7の回転を停止してもよい。その後、ステップ209でピニオンギヤ4の飛び込み可能範囲の目安であるエンジン1の予測回転数が所定範囲B3~B4(たとえば30ms後のエンジン回転数が0~300rpm)内であれば、ステップ210でスタータ駆動ONし、ピニオンギヤ4をリングギヤ2へ飛び込ませてスタータモータ7を駆動し、エンジン1をクランキングする。 FIG. 4 shows a flowchart when the pre-mesh operation is omitted in the above process and simplified. If it is determined in step 203 that there is a change of mind request from the driver, and if the engine speed at that time is equal to or greater than a predetermined value A (for example, the engine speed is 500 rpm), the engine rotates by inertia. In order to make the differential rotation with the ring gear 2 being small, in step 208, only the starter motor 7 is energized in advance to cause the pinion gear 4 to pre-rotate. The control in step 208 is executed regardless of whether there is a change of mind request. When there is no change of mind request, the rotation of the starter motor 7 is stopped without causing the pinion gear 4 to be engaged with the ring gear 2. May be. After that, if the predicted rotational speed of the engine 1 that is the standard of the jumpable range of the pinion gear 4 is within a predetermined range B3 to B4 (for example, the engine rotational speed after 30 ms is 0 to 300 rpm) in step 209, the starter is driven in step 210 It is turned on, the pinion gear 4 is jumped into the ring gear 2, the starter motor 7 is driven, and the engine 1 is cranked.
 その後、ステップ211へ進み、エンジン回転数が所定値C(たとえばエンジン回転数が500rpm)以上か否かを判定して、所定値C以上の場合はエンジン1の始動が完了したものとみなし、ステップ212へ進み、スタータ本体9の駆動をOFFとする。 Thereafter, the process proceeds to step 211, where it is determined whether or not the engine speed is equal to or higher than a predetermined value C (for example, the engine speed is 500 rpm). Proceeding to 212, the drive of the starter body 9 is turned OFF.
 以上が図1のアイドルストップシステムで、プリメッシュ動作を伴わない場合のアイドルストップから再始動までの動作である。 The above is the operation from the idle stop to the restart without the pre-mesh operation in the idle stop system of FIG.
 図3、図4はともに、スタータのピニオンギヤ4の飛び込み動作とスタータモータ7の駆動動作を、それぞれ2系統の駆動信号で独立して制御することが可能なスタータ、および制御装置を備えるシステムによる実施の一形態であり、ピニオンギヤ4とリングギヤ2の回転数差が小さい状況で噛み込みを行うようにすることで、噛み込み性能を向上することができる。これにより、アイドルストップ直後のエンジン1が惰性で回転している期間にリングギヤへピニオンギヤを噛み込ませることを実現可能で、その状態から再始動を行うチェンジ・オブ・マインドに対応している。 3 and 4 are implemented by a system including a starter and a control device that can independently control the jumping-in operation of the pinion gear 4 of the starter and the driving operation of the starter motor 7 by two drive signals, respectively. The biting performance can be improved by performing the biting in a situation where the difference in rotational speed between the pinion gear 4 and the ring gear 2 is small. As a result, it is possible to cause the pinion gear to be engaged with the ring gear during the period in which the engine 1 immediately after idle stop is rotating by inertia, and this corresponds to a change of mind that restarts from that state.
 図3,4で説明したシステムに対して、よりシンプルな構成でチェンジ・オブ・マインドに対応するシステムの例を図5に示す。 Fig. 5 shows an example of a system corresponding to the change of mind with a simpler configuration than the system described in Figs.
 図5は、図1のアイドルストップスタータシステム10をシンプルな構成でエンジン1が惰性で回転している期間にリングギヤ2へピニオンギヤ4を噛み込ませることができ、チェンジ・オブ・マインドに対応することが可能なスタータ本体9に置き換えた始動制御装置の例である。スタータ本体9は、スタータモータ7への給電を開閉するモータ接点11およびピニオン移送レバー6を駆動するスタータソレノイド5と、スタータモータ7のピニオン軸8にはワンウェイクラッチ4a、ピニオンギヤ4とが接続されている。 FIG. 5 shows that the idle stop starter system 10 shown in FIG. 1 has a simple configuration, and the pinion gear 4 can be engaged with the ring gear 2 during the period when the engine 1 is rotating by inertia. This is an example of a start control device replaced with a starter body 9 capable of performing The starter body 9 includes a motor contact 11 that opens and closes power supply to the starter motor 7 and a starter solenoid 5 that drives the pinion transfer lever 6, and a one-way clutch 4 a and a pinion gear 4 that are connected to the pinion shaft 8 of the starter motor 7. Yes.
 従来のスタータはピニオンギヤ4とワンウェイクラッチ4aは一体構造でピニオン移送レバー6によってリングギヤ2へ押し出されるが、図5のスタータは別体構造としている。詳しくは図6(a)に示すようにワンウェイクラッチ4aに縦溝のスプラインシャフト43が固定され、前記スプラインと一定のクリアランスを確保して勘合する縦溝スプラインを内側に設けたピニオンギヤ4が、前記シャフト43上を軸方向に移動できる構造としている。 In the conventional starter, the pinion gear 4 and the one-way clutch 4a are integrally structured and pushed out to the ring gear 2 by the pinion transfer lever 6, but the starter of FIG. 5 has a separate structure. Specifically, as shown in FIG. 6 (a), a vertical groove spline shaft 43 is fixed to the one-way clutch 4a, and a pinion gear 4 provided with a vertical groove spline on the inside for securing a certain clearance with the spline is described above. The shaft 43 is movable in the axial direction.
 ピニオンギヤ4はスプリング44によって図中右方向、すなわちリングギヤ2側に押され、ストッパー45に押し付けられた状態で停止している。 The pinion gear 4 is pressed by the spring 44 in the right direction in the drawing, that is, in the ring gear 2 side, and stopped while being pressed against the stopper 45.
 また、図6(a)の構造の代替案として、図6(b)に示すように、可動鉄心42とピニオン移送レバー6の間にスプリング44を介してリンク42aと接続するようにしてダンパー機構を構成しピニオン移送レバー6と接続してもよい。 Further, as an alternative to the structure of FIG. 6A, as shown in FIG. 6B, a damper mechanism is connected to the link 42a via a spring 44 between the movable core 42 and the pinion transfer lever 6. And may be connected to the pinion transfer lever 6.
 以上のように構成されたシステムで、チェンジ・オブ・マインドによる再始動要求を受けて、ECU21からスタータ駆動指令が出るとスタータリレー41の接点が閉じてスタータソレノイド5へ給電される。スタータソレノイド5は電磁式ソレノイドで、コイルに電流が流れると可動鉄心42に電磁力が作用し、ピニオン移送レバー6を図中左側へ吸引するとともに、一定のストロークに達した時にモータ接点11を閉じてモータへ給電しピニオンギヤを回転させる。 In the system configured as described above, when a starter drive command is issued from the ECU 21 in response to a restart request from the change of mind, the contact of the starter relay 41 is closed and power is supplied to the starter solenoid 5. The starter solenoid 5 is an electromagnetic solenoid. When a current flows through the coil, an electromagnetic force acts on the movable iron core 42 to attract the pinion transfer lever 6 to the left side in the figure and close the motor contact 11 when a certain stroke is reached. To power the motor and rotate the pinion gear.
 図6(b)の構成では、ピニオン移送レバー6が吸引されるとピニオンギヤユニット4bがリングギヤ2側へ押し出され、ピニオンギヤ4がリングギヤ2に当接した時にスプリング44が一瞬たわむ際の反発力を利用して、素早く噛み込みを完了させることが可能となる。すなわち、ピニオン移送レバー6の移動速度よりも、スプリング44の反発力によるピニオンギヤ4の移動速度の方が速く、スプリング44の反発力を利用することで、ピニオンギヤ4とリングギヤ2の位相が噛み合い可能位置となった時、瞬時に噛み込むことができる。 6B, when the pinion transfer lever 6 is sucked, the pinion gear unit 4b is pushed out to the ring gear 2 side, and when the pinion gear 4 comes into contact with the ring gear 2, the repulsive force when the spring 44 is bent for a moment is used. Thus, the biting can be completed quickly. That is, the moving speed of the pinion gear 4 due to the repulsive force of the spring 44 is faster than the moving speed of the pinion transfer lever 6, and the phase of the pinion gear 4 and the ring gear 2 can be engaged with each other by using the repulsive force of the spring 44. When it becomes, you can bite instantly.
 同様に、図6(b)に示す構成では、スプリング44がたわんで同様の効果を生み出す。なお、ピニオン移送レバー6の移動速度よりも早くピニオンギヤ4を移動可能であれば、スプリングではなく、ゴム材料等他の弾性体や、反発力を生じさせる他の構造を採用してもよい。 この動作を利用することにより、従来の標準的な1系統の駆動信号で制御するスタータの置き換えで、アイドルストップ直後の惰性で回転しているリングギヤへの噛み込みが可能となるため、最小限の変更とシンプルな構成でギヤ同士の噛み込み性能を向上できる。 Similarly, in the configuration shown in FIG. 6B, the spring 44 is bent to produce the same effect. In addition, as long as the pinion gear 4 can be moved faster than the moving speed of the pinion transfer lever 6, other elastic bodies such as a rubber material or other structures that generate a repulsive force may be employed instead of the spring. By using this operation, it is possible to engage the ring gear rotating with inertia immediately after the idle stop by replacing the conventional starter controlled by a single standard drive signal. The change and simple configuration can improve the biting performance between gears.
 図7は図5に示す始動システムのECU21のシステム構成を入力するセンサ等の各種の入力信号、および、ECU21から制御機器等に出力する各種の出力信号とともに示す図である。 FIG. 7 is a diagram showing various input signals such as sensors for inputting the system configuration of the ECU 21 of the starting system shown in FIG. 5 and various output signals output from the ECU 21 to a control device or the like.
 図2で示したシステム構成との違いは、出力回路226に接続されているスタータリレー41とスタータ本体9の部分で、1系統の駆動信号でスタータを駆動する点である。 2 is that the starter relay 41 and the starter body 9 connected to the output circuit 226 drive the starter with a single drive signal.
 図8は図5に示す始動システムで、アイドルストップから再始動までを行う際の制御フローチャートである。この制御フローチャートで示した動作の処理は、ECU21にて繰り返し実行される。 FIG. 8 is a control flowchart when performing from the idle stop to the restart in the starting system shown in FIG. The processing of the operation shown in this control flowchart is repeatedly executed by the ECU 21.
 ステップ301で車速センサ33やブレーキスイッチ34などの各入力条件がアイドルストップ許可条件を満たすとステップ302で燃料カット処理が実行される。その後ステップ303で運転者からのチェンジ・オブ・マインド要求が有りと判定され、ステップ306でピニオンギヤ4の飛び込み可能範囲の目安であるエンジン1の予測回転数が所定範囲B5~B6(たとえば30ms後のエンジン回転数が0~180rpm)内であれば、ステップ307でスタータ駆動ONし、ピニオンギヤ4をリングギヤ2へ飛び込ませてモータを駆動し、エンジン1をクランキングする。 When the input conditions such as the vehicle speed sensor 33 and the brake switch 34 satisfy the idle stop permission condition in step 301, the fuel cut process is executed in step 302. Thereafter, in step 303, it is determined that there is a change of mind request from the driver, and in step 306, the predicted rotational speed of the engine 1, which is a guideline of the jumpable range of the pinion gear 4, is within a predetermined range B5 to B6 (for example, 30 ms later). If the engine speed is within 0 to 180 rpm), the starter drive is turned on in step 307, the pinion gear 4 is jumped into the ring gear 2 to drive the motor, and the engine 1 is cranked.
 その後、ステップ308へ進み、エンジン回転数が所定値C(たとえばエンジン回転数が500rpm)以上か否かを判定して、所定値C以上の場合は、ステップ309へ進み、スタータ本体9の駆動をOFFとする。 Thereafter, the process proceeds to step 308, where it is determined whether or not the engine speed is equal to or greater than a predetermined value C (for example, the engine speed is 500 rpm). If the engine speed is equal to or greater than the predetermined value C, the process proceeds to step 309 and the starter body 9 is driven. Set to OFF.
 ステップ303でチェンジ・オブ・マインド要求が無い場合は、ステップ304へ進みエンジン停止で待機状態となり、ステップ305で再始動要求を受けた場合はステップ307へ進みスタータを駆動して再始動を行う流れである。 If there is no change of mind request in step 303, the process proceeds to step 304, and the engine is stopped and is in a standby state. If a restart request is received in step 305, the process proceeds to step 307 and the starter is driven to restart. It is.
 なお、図1で説明したスタータのピニオンギヤ4の飛び込み動作とスタータモータ7の駆動動作を、それぞれ2系統の駆動信号で独立して制御することが可能なシステムにおいて、図6で説明したような、弾性体の反発力により噛み込み性能を向上させる構造をさらに組み合わせてもよい。 In the system in which the jumping-in operation of the starter pinion gear 4 and the driving operation of the starter motor 7 described in FIG. 1 can be independently controlled by two drive signals, respectively, as described in FIG. You may further combine the structure which improves biting performance by the repulsive force of an elastic body.
 ここで、図1、図5等でこれまで説明したアイドルストップシステムで、回転しているリングギヤ2へピニオンギヤ4を噛み込ませようとする場面において、スタータに異常が発生してリングギヤへの噛み込み性能が低下した状態になると、ピニオンギヤとリングギヤの当接時にギヤ同士が滑り、噛み込み完了までの時間が長くなる、破壊的な摩擦音が発生する、ギヤが異常磨耗するなどの不具合現象が発生する。 Here, in the idle stop system described so far with reference to FIGS. 1 and 5, etc., when the pinion gear 4 is to be engaged with the rotating ring gear 2, an abnormality occurs in the starter and the ring gear is engaged. When the performance deteriorates, the gears slip when the pinion gear and the ring gear come into contact with each other, and it takes a long time to complete the engagement, a destructive friction noise occurs, or the gear wears abnormally. .
 スタータに発生する異常の内容としては、図1のシステムの場合、ピニオン予回転動作の不良によって回転不足、または回転過多となってリングギヤとの回転差が大きくなるなどが考えられる。予回転動作の不良は、例えばピニオンギヤセンサ38が故障し、ECU21がピニオンギヤ4の回転数を認識できない、といった原因により生じ得る。 As the contents of the abnormality that occurs in the starter, in the case of the system of FIG. 1, it is conceivable that the rotation difference from the ring gear increases due to insufficient rotation or excessive rotation due to poor pinion pre-rotation operation. The failure in the pre-rotation operation may be caused by, for example, the failure of the pinion gear sensor 38 and the ECU 21 not being able to recognize the rotation speed of the pinion gear 4.
 また図5のシステムの場合は、ピニオンギヤ4のスライド機構が、異物の噛み込みや車両の長期間放置等で固着しスプリング44がたわまなくなる、またはスプリング44が折損する、スプリング44が劣化して反発力が落ちる、などの異常が考えられる。前記のようにスプリング44が異常となると、スプリングの反発力が得られなくなり、ピニオンギヤ4とリングギヤ2の位相が噛み合い可能位置となっても瞬時に噛み込むことが出来なくなるので、端面滑りが発生して噛み込み性能が低下することになる。 In the case of the system shown in FIG. 5, the slide mechanism of the pinion gear 4 is fixed when foreign matter is caught or the vehicle is left standing for a long period of time and the spring 44 is not bent, or the spring 44 is broken or the spring 44 is deteriorated. An abnormality such as a drop in repulsive force can be considered. If the spring 44 becomes abnormal as described above, the repulsive force of the spring cannot be obtained, and even if the phase of the pinion gear 4 and the ring gear 2 is in the meshable position, it cannot be instantaneously engaged, so that end face slip occurs. Therefore, the biting performance will be reduced.
 そこで本実施形態では、スタータの故障診断を行い、スタータの噛み込み性能の低下を検出する。故障と判断された場合には、運転者への通知やフェールセーフ制御といった所定の処理を行うことによりアイドルストップ機能の低下を最小限に抑えて、故障による燃費悪化を防止できる。 Therefore, in this embodiment, a starter failure diagnosis is performed to detect a decrease in starter biting performance. When it is determined that there is a failure, the deterioration of the idle stop function can be minimized by performing predetermined processing such as notification to the driver and fail-safe control, and deterioration of fuel consumption due to the failure can be prevented.
 図9は、図5のシステムの動作フローチャート図8にスタータの機能診断を追加した場合のフローチャートであり、ステップ307でスタータ駆動ONした後にステップ310でスタータの機能診断制御を追加した例であり、図1のシステムの動作フローチャート図3、図4においても同様にスタータ駆動ONした後に診断実行する流れとなる。なお、ステップ310の処理は、図9の処理を実行する毎に行っても良いし、実行頻度や時期を車両の運転状態に応じて適宜変更してもよい。 FIG. 9 is a flowchart when the starter function diagnosis is added to the operation flowchart of FIG. 8 in the system of FIG. 5, and is an example in which the starter function diagnosis control is added in step 310 after the starter driving is turned on in step 307. Similarly, in the operation flowcharts of FIGS. 3 and 4, the diagnosis is executed after the starter drive is turned on. Note that the process of step 310 may be performed each time the process of FIG. 9 is executed, or the execution frequency and timing may be appropriately changed according to the driving state of the vehicle.
 図10はステップ310の機能診断制御をフローチャートで図示した内容である。 FIG. 10 is a flowchart illustrating the function diagnosis control in step 310.
 診断を実行する条件としては、ステップ401でチェンジ・オブ・マインド要求を受けて、ステップ402でスタータが動作した時に、ステップ403でエンジン回転情報等のエンジン運転状態を基に異常判定を行う。ステップ403の処理は図11を用いて後述する。ステップ403、404でスタータ機能が正常と診断された場合は、診断制御を終了する。 As a condition for executing the diagnosis, when a change of mind request is received in step 401 and the starter operates in step 402, abnormality determination is performed in step 403 based on the engine operating state such as engine rotation information. The processing in step 403 will be described later with reference to FIG. If the starter function is diagnosed as normal in steps 403 and 404, the diagnostic control is terminated.
 ステップ405では、診断により異常と診断された回数をカウントアップする。これにより、誤診断を抑制することができる。ステップ406では、診断NG回数の回数に基づき、ステップ408のフェールセーフ制御とステップ410の仮故障時の制御とを切り替える。ステップ410の処理としては、警告灯などによる運転者への異常通知、ステップ408はアイドルストップ機能の制限と運転者への異常通知双方の処理などとして故障の程度に応じてフェールセーフ制御を切り替えることが考えられるが、これに限られない。 In step 405, the number of times diagnosed as abnormal is counted up. Thereby, misdiagnosis can be suppressed. In step 406, the fail-safe control in step 408 and the control at the time of temporary failure in step 410 are switched based on the number of times of diagnosis NG. The process of step 410 is to notify the driver of an abnormality by a warning light or the like, and step 408 is to switch the fail-safe control depending on the degree of failure as a process of both the restriction of the idle stop function and the abnormality notification to the driver. However, it is not limited to this.
 図11に図10のステップ403で述べたスタータ機能の異常判定のタイムチャートの一例を示す。まず、スタータ機能の異常判定の条件として以下条件(1)条件で判定を行う手段について説明する。
(1)チェンジ・オブ・マインド要求後、スタータモータ7の通電開始タイミングスタータON指令から所定時間T1(例えば200ms)経過後のエンジン回転数を検知し、その値が所定値D(例えば300rpm)未満であること。
FIG. 11 shows an example of a time chart for determining the abnormality of the starter function described in step 403 of FIG. First, a description will be given of means for performing the determination under the following condition (1) as a condition for determining the abnormality of the starter function.
(1) After a change of mind request, the start speed of the starter motor 7 is detected. The engine speed after a predetermined time T1 (for example, 200 ms) from the starter ON command is detected, and the value is less than the predetermined value D (for example, 300 rpm). Be.
 ここでいうスタータON指令とは、図1に示すシステムではピニオンシフト指令(スタータソレノイド5への通電開始)タイミングより後のスタータモータ7の通電開始タイミング(例えば、図3のステップ111)を、図5に示すシステムではバッテリ電圧降下量を検知して知ることができるモータ通電開始タイミング、またはピニオンシフト指令タイミングとすることができる。 In the system shown in FIG. 1, the starter ON command referred to here is an energization start timing (for example, step 111 in FIG. 3) of the starter motor 7 after the pinion shift command (energization start to the starter solenoid 5) timing. In the system shown in FIG. 5, the motor energization start timing or the pinion shift command timing which can be detected by detecting the battery voltage drop amount can be set.
 また、ピニオンシフト指令タイミング自体を起点とすることもでき、この場合ピニオンギヤ4が移送されてモータ通電用接点が閉じてモータを駆動するまでに十数msの時間差が生じるため、時間差を考慮してエンジン回転数の検知ウインドウを短く設定すると端面滑りの検知精度を向上することができる。 Also, the pinion shift command timing itself can be used as a starting point. In this case, since the pinion gear 4 is transferred and the motor energizing contact is closed and the motor is driven, a time difference of 10 or more ms is generated. If the detection window of the engine speed is set short, the detection accuracy of the end face slip can be improved.
 所定値Dの設定方法としては、例えばスタータモータ7がエンジン1をクランキングを行う際のクランキング回転数相当の値に設定するとよい。これにより、スタータ機能正常時であれば噛み合いが成功する時間が経過してもエンジン回転数がクランキング回転数に相当する値まで上昇しないことをもって、ピニオンギヤ4とリングギヤ2が噛み合わない状態が生じていると判断できる。また、所定値Dをエンジン1の初爆相当の回転数と完爆相当の回転数との間の値に設定してもよい。また、回転数の傾きを判定に使用し、エンジン1の初爆以降回転数が急変しないことをもってピニオンギヤ4とリングギヤ2が噛み合わない状態が生じていると判断してもよい。 As a method for setting the predetermined value D, for example, it may be set to a value corresponding to the cranking rotation speed when the starter motor 7 cranks the engine 1. As a result, when the starter function is normal, the engine speed does not increase to a value corresponding to the cranking speed even when the time for successful meshing has elapsed, and a state in which the pinion gear 4 and the ring gear 2 are not meshed occurs. Can be judged. Further, the predetermined value D may be set to a value between the rotational speed corresponding to the first explosion of the engine 1 and the rotational speed corresponding to the complete explosion. Further, the inclination of the rotational speed may be used for the determination, and it may be determined that the state in which the pinion gear 4 and the ring gear 2 are not engaged with each other is caused by the fact that the rotational speed does not change suddenly after the first explosion of the engine 1.
 この判定条件によれば、既存の回転センサ信号で簡素な判定方法で故障を判定するので、複雑なロジックやコストアップなしに故障を検出することができる。 According to this determination condition, since the failure is determined by a simple determination method using the existing rotation sensor signal, the failure can be detected without complicated logic and cost increase.
 なお、スタータ機能の異常判定の条件としては、他に以下(2)~(4)のような手段がある。
(2) スタータON指令から所定時間T1(例えば200ms)経過後、所定クランク角位相F(例えば圧縮上死点0度)でのエンジン回転数が所定範囲D1~D2(例えば100rpm~300rpm)にないこと。
Other conditions for determining the abnormality of the starter function include the following means (2) to (4).
(2) After a predetermined time T1 (for example, 200 ms) has elapsed from the starter ON command, the engine speed at the predetermined crank angle phase F (for example, compression top dead center 0 degree) is not within the predetermined range D1 to D2 (for example, 100 to 300 rpm). thing.
 前記の所定クランク角位相は他の位相をみても判定することができるが、圧縮上死点における角加速度が最も低くなるので、安定した回転数を得られ、より高い精度の判定を行うことができる。 The predetermined crank angle phase can be determined by looking at other phases, but since the angular acceleration at the compression top dead center is the lowest, it is possible to obtain a stable rotational speed and perform determination with higher accuracy. it can.
 また、端面滑りが生じている期間はギヤ同士の摩擦により、リングギヤが減速される作用が働くので、エンジンの回転低下傾きは緩くなる傾向にあるため、圧縮行程の位相におけるエンジン回転数の傾きを判定に使用することが可能である。 In addition, since the ring gear is decelerated due to the friction between the gears during the period when the end face slip occurs, the engine rotation decrease inclination tends to become gentle, so the inclination of the engine speed in the phase of the compression stroke is reduced. It can be used for determination.
 この判定条件によれば、既存の回転センサ信号で簡素な判定方法で故障を判定するので、複雑なロジックやコストアップなしに故障を検出することができる。 According to this determination condition, since the failure is determined by a simple determination method using the existing rotation sensor signal, the failure can be detected without complicated logic and cost increase.
 なお、一例としてエンジン回転数をパラメータとして判定を行う例を説明したが、代替方法としてエンジン1筒内燃焼状態に基づくイオン電流、燃焼圧力の変化を検知して判定することも可能である。すなわち、イオン電流センサ、または燃焼圧力センサで検知した信号の間隔などからクランク角速度を算出し判定に使用することができる。 In addition, although the example which performs determination using an engine speed as a parameter was demonstrated as an example, it is also possible to detect and determine the change of the ionic current and combustion pressure based on an engine 1 cylinder combustion state as an alternative method. That is, the crank angular velocity can be calculated from the interval of signals detected by the ion current sensor or the combustion pressure sensor and used for the determination.
 (3) チェンジ・オブ・マインド動作時のスタータ作動指令からピニオンギヤがリングギヤへの噛み込みを成功した時のエンジン回転挙動を時間単位、あるいはクランク角単位で記憶しておき、その記憶してあるエンジン回転挙動と現在のエンジン回転挙動とを比較して、回転数の乖離が所定値以上であること。 (3) The engine rotation behavior when the pinion gear successfully engages the ring gear from the starter operation command at the time of change of mind operation is memorized in time unit or crank angle unit, and the stored engine Comparing the rotational behavior with the current engine rotational behavior, the difference in rotational speed should be greater than or equal to a predetermined value.
 この判定条件によれば、既存の回転センサ信号を利用して精密に故障を判定するので、コストアップなしで精度の高い故障診断を行うことができる。 According to this determination condition, since the failure is accurately determined using the existing rotation sensor signal, a highly accurate failure diagnosis can be performed without increasing the cost.
 (4) ピニオンストロークセンサ、ひずみセンサ、音センサ、位置スイッチなどの新規に追加した物理センサを用いて、ピニオンギヤの移動量を検知、または推定し、前記検知、または推定した移動量が所定時間経過しても完全噛み込みした時の移動量まで到達しないこと。 (4) Using a newly added physical sensor such as a pinion stroke sensor, a strain sensor, a sound sensor, or a position switch, the amount of movement of the pinion gear is detected or estimated, and the detected or estimated amount of movement has elapsed for a predetermined time. Do not reach the travel distance when fully bitten.
 図12に前記のひずみセンサ、および音センサの出力でピニオンギヤの移動量を推定する例を図示する。ピニオンギヤの移送指令でピニオンギヤが移動し、リングギヤに当接したタイミングでセンサ出力のピークが現れ、当接位置を知ることができる。その後ギヤの端面同士が滑りながら噛み込み可能な状態となるまで当接位置に留まる。その後、ギヤ同士が噛み合うと再度移動し始め、最終的に完全噛み合い位置まで移動する。 FIG. 12 illustrates an example in which the amount of movement of the pinion gear is estimated based on the outputs of the strain sensor and the sound sensor. When the pinion gear moves in response to the pinion gear transfer command and comes into contact with the ring gear, a sensor output peak appears and the contact position can be known. After that, it stays in the contact position until the end surfaces of the gears are in a state where they can bite while sliding. After that, when the gears mesh with each other, the gear starts to move again, and finally moves to the complete meshing position.
 この判定条件によれば、ピニオンギヤの移動量をセンサにより検知、または推定して故障を判定するので、(1)~(3)の方法と比較してより確実に故障を検出することができる。 According to this determination condition, since the failure is determined by detecting or estimating the movement amount of the pinion gear by the sensor, the failure can be detected more reliably as compared with the methods (1) to (3).
 上記方法で異常と判定された場合は、図10のステップ405で異常と診断された回数をカウントアップする。次にステップ406で異常と診断された回数を判定し、所定値E以上となった場合はステップ407で異常確定し、ステップ408でフェールセーフ制御をする。 If it is determined that there is an abnormality by the above method, the number of times that the abnormality is diagnosed in step 405 in FIG. 10 is counted up. Next, the number of times that an abnormality is diagnosed is determined in step 406, and if it is equal to or greater than a predetermined value E, the abnormality is determined in step 407, and fail-safe control is performed in step 408.
 また、ステップ406で異常と診断された回数が所定値E未満の場合はステップ409で仮故障と判定し、ステップ410で仮故障時の制御を行うこととする。 In addition, when the number of times diagnosed as abnormal in step 406 is less than the predetermined value E, it is determined in step 409 that there is a temporary failure, and in step 410, control at the time of temporary failure is performed.
 上記異常判定に加えて、さらに別の要因によりエンジン1の回転数等が上昇しないことを判定し、異常状態の切り分けを行ってもよい。例えば、スタータモータ7が回らない、スタータモータ7が早くから回る、リングギヤ2やピニオンギヤ4の磨耗、欠損により、エンジン1の回転数が上昇しない状態が検出されるため、誤診断モードとして切り分ける。その方法としては、例えばバッテリ電圧の降下を監視して、スタータON指令とは関連なくモータが回転する、無負荷で回転している、等を検出してよい。また、半導体スイッチング素子13周辺回路の断線等を検出する、ピニオンギヤセンサ38の出力とスタータON指令との一致を確認する等が考えられる。これらの誤診断モードに該当する場合は、図10に示す故障診断の内容から除外し、別のフェールセーフ制御を行う。 In addition to the above-described abnormality determination, it may be determined that the rotation speed of the engine 1 does not increase due to another factor, and the abnormal state may be determined. For example, a state in which the rotation speed of the engine 1 does not increase due to the starter motor 7 not rotating, the starter motor 7 rotating early, or the wear or loss of the ring gear 2 or the pinion gear 4 is detected. As the method, for example, the battery voltage drop may be monitored to detect that the motor is rotating regardless of the starter ON command, that the motor is rotating with no load, or the like. Further, it is conceivable to detect disconnection or the like of the peripheral circuit of the semiconductor switching element 13 or to confirm the coincidence between the output of the pinion gear sensor 38 and the starter ON command. When these misdiagnosis modes are applicable, they are excluded from the contents of the failure diagnosis shown in FIG. 10 and another fail-safe control is performed.
 また、ステップ310の機能診断を実行する際には、ピニオンギヤ4の押し出し条件を可変して、よりギヤ同士が噛み合わない状態を検出し易くしても良い。例えば、ステップ209のエンジン予測回転数範囲を一時的に高く設定するなどして良い。エンジン1の回転数が高回転なほど、ギヤ同士が噛み合わない状態が顕著に現れるからである。 Further, when executing the function diagnosis in step 310, the push-out condition of the pinion gear 4 may be varied to make it easier to detect a state where the gears are not engaged with each other. For example, the predicted engine speed range in step 209 may be temporarily set high. This is because the higher the number of revolutions of the engine 1, the more conspicuous the gears do not mesh with each other.
 以上説明したとおり、本実施の形態によれば、ピニオンギヤ4とリングギヤ2との噛み込み性能が低下した場合でも噛み合い性能の低下を検出することが可能となり、ひいては運転者へ異常の通知を行って修理を促したり、アイドルストップ機能を制限した所定のフェールセーフ制御を行うことでさらなる不具合発生を抑制することができる。 As described above, according to the present embodiment, it is possible to detect a decrease in the meshing performance even when the meshing performance between the pinion gear 4 and the ring gear 2 is reduced, and thus notify the driver of the abnormality. Further failure occurrence can be suppressed by encouraging repairs or performing predetermined fail-safe control with a limited idle stop function.
 続いて、スタータの噛み合い性能低下を検出したときのフェールセーフ制御の実施例について説明する。実施例1と共通する部分については説明を省略し、実施例1と異なる部分を中心に説明を行う。 Next, an example of fail-safe control when a decrease in starter meshing performance is detected will be described. Description of parts common to the first embodiment will be omitted, and description will be made focusing on parts different from the first embodiment.
 本実施形態では、図10ステップ408のフェールセーフ制御、およびステップ410の仮故障時の制御の具体例として、例えば下記(1)~(6)の制御を実行する。 In the present embodiment, for example, the following controls (1) to (6) are executed as specific examples of the fail-safe control in step 408 and the control at the time of temporary failure in step 410 in FIG.
 (1) アイドルストップを禁止する。 (1) Idle stop is prohibited.
 (2) 車両の減速走行中にアイドルストップを行うコーストストップを禁止する。 (2) Prohibit coast stop, which performs idle stop while the vehicle is decelerating.
 (3) チェンジ・オブ・マインドによる再始動を禁止し、エンジンが完全に停止してから再始動を実行する。 (3) Prohibit restart by the change of mind, and execute the restart after the engine is completely stopped.
 (4) チェンジ・オブ・マインドによるスタータの噛み込み指令を許可するエンジン回転数の設定範囲を変更する。例えば、機能正常時は-50~200r/minで許可していたものを、機能低下時は0~100r/minとする。 (4) Change the setting range of the engine speed that permits the starter biting command by the change of mind. For example, what is permitted at -50 to 200 r / min when the function is normal is set to 0 to 100 r / min when the function is lowered.
 (5) 実施例1のように、図1の半導体スイッチング素子13を備えるシステムでは、ピニオンギヤがリングギヤ4へ当接した際にモータへの通電電流を制限することによってピニオンギヤ4の回転上昇を抑制し、ギヤ同士が滑らないように噛み込ませる。 (5) In the system including the semiconductor switching element 13 of FIG. 1 as in the first embodiment, when the pinion gear comes into contact with the ring gear 4, the energization current to the motor is limited to suppress the rotation increase of the pinion gear 4. , So that the gears do not slip.
 (6)始動制御装置へ故障内容を記憶するとともに、メーターパネル内のインジケータを点灯、または点滅させてドライバーへ異常を告知する。 (6) The failure details are stored in the start control device, and the indicator in the meter panel is turned on or blinked to notify the driver of the abnormality.
 上記(1)、(2)のフェールセーフ制御によれば、ドライバーのキー操作による初回始動や、エンジン1が完全停止した後の再始動以外ではスタータを使用しないため、端面滑りの発生によるギヤの磨耗等を防止することができる。 According to the fail-safe control (1) and (2) above, the starter is not used except for the initial start by the driver's key operation or the restart after the engine 1 is completely stopped. Wear and the like can be prevented.
 上記(3)のフェールセーフ制御によれば、エンジン1が完全停止してからのアイドルストップは実行できるので燃費の悪化を抑えることができる。 According to the fail-safe control (3) above, the idle stop after the engine 1 is completely stopped can be executed, so that deterioration of fuel consumption can be suppressed.
 上記(4)のフェールセーフ制御によれば、噛み込み許可回転数が低くなるためにピニオンギヤ4を噛み込ませるタイミングが例えば数十ms遅くなるものの、エンジン1の回転数が低下している期間中のアイドルストップを実行できるので、再始動の応答性を確保しつつ燃費の悪化を抑えることができる。 According to the fail-safe control of (4) above, the timing at which the pinion gear 4 is bitten is delayed by, for example, several tens of ms because the biting permission rotational speed is low, but the rotational speed of the engine 1 is decreasing. Therefore, the deterioration of fuel consumption can be suppressed while ensuring the restart response.
 上記(5)のフェールセーフ制御によれば、半導体スイッチング素子13の電流制御を変更することで初期のピニオン回転の上昇を抑えて端面滑りを防止でき、エンジン1の回転数が低下している期間中のアイドルストップを実行できるので、再始動の応答性を確保しつつ燃費の悪化を抑えることができる。 According to the fail-safe control of (5) above, by changing the current control of the semiconductor switching element 13, it is possible to suppress the initial pinion rotation and prevent end face slipping, and the period during which the rotational speed of the engine 1 is decreasing Since the idling stop can be executed, deterioration of fuel consumption can be suppressed while ensuring responsiveness of restart.
 上記(6)のフェールセーフ制御によれば、故障であることをドライバーへ知らせて点検・整備を促すことができるので、故障したままの車両を長時間、または長距離使用することを防止することができる。 According to the fail-safe control of (6) above, it is possible to notify the driver that there is a failure and encourage inspection and maintenance, thus preventing the vehicle that has been damaged from being used for a long time or over a long distance. Can do.
 また、これらのフェールセーフ制御を複数同時に実行したり、故障の程度に応じて段階的にフェールセーフ制御を切り替えても良い。例えば、図10のステップ409において仮故障と判定した場合には、一部機能を制限した状態でコーストストップを継続するべくステップ410では上記(4)または(5)の制御を実行する。ステップ407において異常確定と判定した場合には、エンジン1の回転数が低下している期間中のアイドルストップを制限して、エンジン1が完全停止してからのアイドルストップのみを行うようにステップ408では上記(2)または(3)の制御を実行する。 Further, a plurality of these failsafe controls may be executed simultaneously, or the failsafe controls may be switched in stages according to the degree of failure. For example, if it is determined in step 409 in FIG. 10 that there is a temporary failure, the control in (4) or (5) is executed in step 410 to continue the coast stop in a state where some functions are limited. If it is determined in step 407 that the abnormality has been confirmed, the idle stop during the period when the engine 1 is rotating is limited, and only the idle stop after the engine 1 is completely stopped is performed. Then, the control (2) or (3) is executed.
 また、故障の程度の判定については、図10のステップ406で説明したような診断NG回数に基づく判定に限られない。例えば、スタータ機能の異常がより顕著なほど、ピニオンギヤ4とリングギヤ2との噛み込みに要する時間が増加するため、この時間により噛み合い性能の低下度合いを判定してもよい。 Further, the determination of the degree of failure is not limited to the determination based on the number of diagnosis NGs described in step 406 in FIG. For example, as the abnormality in the starter function becomes more prominent, the time required for the pinion gear 4 and the ring gear 2 to be engaged increases. Therefore, the degree of decrease in the engagement performance may be determined based on this time.
 以上、詳述した本実施形態によれば、以下の優れた効果が得られる。 As described above, according to the embodiment described in detail, the following excellent effects can be obtained.
 アイドルストップシステムを搭載した車両において、チェンジ・オブ・マインド操作時にスタータの機能に異常が発生してリングギヤとの噛み込み性能が低下した場合でも、フェールセーフによって制御の切り替えを行うことにより、ドライバーへ異常の通知を行うことができ、またアイドルストップの一部機能を制限した状態でアイドルストップを実行することが可能であるため、アイドルストップを完全に禁止した場合と比較して燃費の悪化を防止することができる。 For vehicles equipped with an idle stop system, even if the starter function malfunctions during a change-of-mind operation and the meshing performance with the ring gear is reduced, the control is switched by fail-safe to the driver. Abnormality notification can be performed, and it is possible to execute idle stop with a limited function of idle stop, preventing deterioration of fuel consumption compared to when prohibiting idle stop completely can do.
1   エンジン
1a      クランクシャフト
2   リングギヤ
3      クランク角信号プレート
4   ピニオンギヤ
4a      ワンウェイクラッチ
4b      ピニオンギヤユニット
5   スタータソレノイド
6   ピニオン移送レバー
7   スタータモータ
8   ピニオン軸
9   スタータ本体
10      アイドルストップスタータシステム
11      モータ接点
12  バッテリ
14a 点火コイル
14b 点火プラグ
15  燃料噴射弁
16   トランスミッション
17   ドライブシャフト
18   タイヤ 
21  ECU(コントロールユニット、制御装置)
33   車速センサ
36  クランク角センサ
38  ピニオンギヤセンサ
41      スタータリレー
42      可動鉄心
42a      リンク
43      スプラインシャフト
44      スプリング
45      ストッパー
1 Engine 1a Crankshaft 2 Ring gear 3 Crank angle signal plate 4 Pinion gear 4a One-way clutch 4b Pinion gear unit 5 Starter solenoid 6 Pinion transfer lever 7 Starter motor 8 Pinion shaft 9 Starter body 10 Idle stop starter system 11 Motor contact 12 Battery 14a Ignition coil 14b Spark plug 15 Fuel injection valve 16 Transmission 17 Drive shaft 18 Tire
21 ECU (control unit, control device)
33 Vehicle speed sensor 36 Crank angle sensor 38 Pinion gear sensor 41 Starter relay 42 Movable iron core 42a Link 43 Spline shaft 44 Spring 45 Stopper

Claims (16)

  1. 回転軸と、
    前記回転軸を回転させるモータと、
    エンジンのリングギヤに前記回転軸の回転力を伝達するピニオンギヤと、
    前記回転軸と前記ピニオンギヤとを前記リングギヤ側へ移動させ、
    前記ピニオンギヤと前記リングギヤとを噛み合わせるピニオンシフト機構と、
    を備える始動装置を制御し、
    前記エンジンの回転数降下期間中に前記ピニオンシフト機構へ噛み合い指示を行う車載制御装置において、
    前記ピニオンシフト機構への噛み合い指示後に前記モータを通電制御しているときの前記エンジンの運転状態に基づき、
    前記エンジンの回転数が上昇しない状態を検出することを特徴とする車載制御装置。
    A rotation axis;
    A motor for rotating the rotating shaft;
    A pinion gear for transmitting the rotational force of the rotary shaft to the ring gear of the engine;
    Moving the rotating shaft and the pinion gear toward the ring gear;
    A pinion shift mechanism for meshing the pinion gear and the ring gear;
    A starting device comprising:
    In the vehicle-mounted control device that issues a meshing instruction to the pinion shift mechanism during the engine speed reduction period,
    Based on the operating state of the engine when the motor is energized after the meshing instruction to the pinion shift mechanism,
    A vehicle-mounted control device that detects a state in which the engine speed does not increase.
  2. 請求項1記載の車載制御装置において、
    前記始動装置は、前記ピニオンギヤと前記リングギヤとが接触したときに撓んで前記ピニオンギヤを相対移動させ、前記リングギヤ側へ付勢する弾性体を備え、
    前記車載制御装置は、前記ピニオンシフト機構への噛み合い指示後の前記エンジンの運転状態に基づき、前記ピニオンギヤと前記リングギヤとが噛み合わない状態、前記ピニオンギヤが相対移動出来ない固着状態、または前記弾性体の異常状態の少なくとも一つを検出し、フェールセーフ制御を行うことを特徴とする車載制御装置。
    The in-vehicle control device according to claim 1,
    The starting device includes an elastic body that bends when the pinion gear and the ring gear come into contact with each other and moves the pinion gear relative to each other, and biases the pinion gear toward the ring gear.
    The vehicle-mounted control device is based on the operating state of the engine after the meshing instruction to the pinion shift mechanism, the pinion gear and the ring gear are not meshed with each other, the pinion gear cannot be relatively moved, or the elastic body A vehicle-mounted control device that detects at least one of abnormal states and performs fail-safe control.
  3. 請求項2記載の車載制御装置において、
    前記ピニオンギヤは前記回転軸の軸方向に相対移動可能であり、
    前記弾性体は前記回転軸の軸方向の前記リングギヤ側へ前記ピニオンギヤを付勢することを特徴とする車載制御装置。
    The in-vehicle control device according to claim 2,
    The pinion gear is relatively movable in the axial direction of the rotary shaft;
    The vehicle-mounted control device, wherein the elastic body biases the pinion gear toward the ring gear in the axial direction of the rotating shaft.
  4. 請求項2に記載の車載制御装置において、
    前記車載制御装置は、前記モータへの通電開始または前記ピニオンシフト機構への噛み合い指示から所定時間経過しても前記エンジンの回転数が前記モータの回転数相当にならない場合に、前記ピニオンギヤが相対移動出来ない固着状態、または前記弾性体の異常が発生したと判断することを特徴とする車載制御装置。
    The in-vehicle control device according to claim 2,
    The in-vehicle controller controls the relative movement of the pinion gear when the rotational speed of the engine does not correspond to the rotational speed of the motor even after a predetermined time has elapsed from the start of energization to the motor or the meshing instruction to the pinion shift mechanism. A vehicle-mounted control device, characterized in that it is determined that an inadequate fixing state or an abnormality of the elastic body has occurred.
  5. 請求項2記載の車載制御装置において、
    前記車載制御装置は、前記モータへの通電開始または前記ピニオンシフト機構への噛み合い指示から所定時間経過後、所定クランク角位相での前記エンジンの回転数が所定範囲にない場合に前記ピニオンギヤが相対移動出来ない固着状態、または前記弾性体の異常が発生したと判断することを特徴とする車載制御装置。
    The in-vehicle control device according to claim 2,
    The in-vehicle control device moves the pinion gear relatively when the rotational speed of the engine at a predetermined crank angle phase is not within a predetermined range after a predetermined time has elapsed from the start of energization to the motor or the meshing instruction to the pinion shift mechanism. A vehicle-mounted control device, characterized in that it is determined that an inadequate fixing state or an abnormality of the elastic body has occurred.
  6. 請求項2記載の車載制御装置において、
    前記車載制御装置は、前記エンジンの回転数降下期間中に前記ピニオンギヤと前記リングギヤとの噛み込みが成功したときのエンジン回転数挙動を予め記憶し、記憶されたエンジン回転数挙動と前記ピニオンシフト機構への噛み合い指示後の前記エンジンの回転数挙動とを比較して前記ピニオンギヤが相対移動出来ない固着状態、または前記弾性体の異常を検出することを特徴とする車載制御装置。
    The in-vehicle control device according to claim 2,
    The in-vehicle control device stores in advance the engine speed behavior when the pinion gear and the ring gear are successfully engaged during the engine speed reduction period, and the stored engine speed behavior and the pinion shift mechanism A vehicle-mounted control device that detects a fixed state in which the pinion gear cannot move relative to each other or an abnormality of the elastic body by comparing with a rotational speed behavior of the engine after a meshing instruction is made.
  7. 請求項2記載の車載制御装置において、
    前記始動装置は、前記ピニオンギヤの移動量を検出するセンサを備え、
    前記車載制御装置は、前記センサの検出値に基づき、前記ピニオンギヤが相対移動出来ない固着状態、または前記弾性体の異常を検出することを特徴とする車載制御装置。
    The in-vehicle control device according to claim 2,
    The starting device includes a sensor that detects a movement amount of the pinion gear;
    The vehicle-mounted control device detects a fixed state in which the pinion gear cannot be moved relative to each other or an abnormality of the elastic body based on a detection value of the sensor.
  8. 請求項2記載の車載制御装置において、
    前記車載制御装置は、前記エンジンの始動が完了するまでの期間に複数回前記ピニオンギヤと前記リングギヤとが噛み合わない状態を検出し、所定回数以上前記ピニオンギヤと前記リングギヤとが噛み合わない状態を検出したときに前記ピニオンギヤが相対移動出来ない固着状態、または前記弾性体の異常が発生したと判断することを特徴とする車載制御装置。
    The in-vehicle control device according to claim 2,
    The in-vehicle control device detects a state where the pinion gear and the ring gear do not mesh a plurality of times during a period until the start of the engine is completed, and detects a state where the pinion gear and the ring gear do not mesh more than a predetermined number of times It is determined that the pinion gear is in a fixed state where the pinion gear cannot relatively move, or that an abnormality of the elastic body has occurred.
  9. 請求項2記載の車載制御装置において、
    前記車載制御装置は、所定の自動停止条件が成立したときに前記エンジンを自動停止するアイドルストップ機能を備え、
    前記フェールセーフ制御は、前記アイドルストップ機能による前記エンジンの自動停止禁止であることを特徴とする車載制御装置。
    The in-vehicle control device according to claim 2,
    The in-vehicle control device includes an idle stop function for automatically stopping the engine when a predetermined automatic stop condition is satisfied,
    The vehicle-mounted control device according to claim 1, wherein the fail-safe control is an automatic stop prohibition of the engine by the idle stop function.
  10. 請求項9記載の車載制御装置において、
    前記アイドルストップ機能による前記エンジンの自動停止は、車両が走行状態にあるときの自動停止を含み、
    前記フェールセーフ制御は、車両が走行状態にあるときの自動停止の禁止であることを特徴とする車載制御装置。
    The in-vehicle control device according to claim 9,
    The automatic stop of the engine by the idle stop function includes an automatic stop when the vehicle is in a running state,
    The vehicle-mounted control device, wherein the fail-safe control is prohibition of automatic stop when the vehicle is in a traveling state.
  11. 請求項2記載の車載制御装置において、
    前記車載制御装置は、所定の自動停止条件が成立したときに前記エンジンを自動停止するアイドルストップ機能と、前記エンジンの自動停止条件が成立してから前記エンジンが停止するまでの間に、再始動要求に応じて前記エンジンを再始動する再始動機能と、を備え、
    前記フェールセーフ制御は、前記エンジンの自動停止条件が成立してから前記エンジンが停止するまでの間の前記エンジンの始動禁止であることを特徴とする車載制御装置。
    The in-vehicle control device according to claim 2,
    The in-vehicle control device includes an idle stop function for automatically stopping the engine when a predetermined automatic stop condition is satisfied, and a restart between the satisfaction of the engine automatic stop condition and the stop of the engine. A restart function for restarting the engine on demand,
    The vehicle-mounted control device according to claim 1, wherein the fail-safe control is a starting prohibition of the engine from when the automatic engine stop condition is satisfied until the engine stops.
  12. 請求項2記載の車載制御装置において、
    前記車載制御装置は、所定の自動停止条件が成立したときに前記エンジンを自動停止するアイドルストップ機能を備え、
    前記車載制御装置は、前記エンジン回転数が所定の設定範囲内のときに前記ピニオンシフト機構への噛み合い指示を行い、
    前記フェールセーフ制御は、前記設定範囲の変更であることを特徴とする車載制御装置。
    The in-vehicle control device according to claim 2,
    The in-vehicle control device includes an idle stop function for automatically stopping the engine when a predetermined automatic stop condition is satisfied,
    The in-vehicle control device performs a meshing instruction to the pinion shift mechanism when the engine speed is within a predetermined setting range,
    The vehicle-mounted control device, wherein the fail-safe control is a change of the setting range.
  13. 請求項2記載の車載制御装置において、
    前記フェールセーフ制御は、前記ピニオンギヤが前記リングギヤへ当接した後の前記モータへの通電電流の制限であることを特徴とする車載制御装置。
    The in-vehicle control device according to claim 2,
    The on-vehicle control device according to claim 1, wherein the fail-safe control is a restriction of an energization current to the motor after the pinion gear comes into contact with the ring gear.
  14. 請求項2記載の車載制御装置において、
    前記フェールセーフ制御は、前記ピニオンギヤと前記リングギヤとの噛み合い性能低下の度合いに基づき、複数処理の切り替えまたは組み合わせを行うことを特徴とする車載制御装置。
    The in-vehicle control device according to claim 2,
    The in-vehicle control device characterized in that the fail-safe control performs switching or combination of a plurality of processes based on a degree of reduction in meshing performance between the pinion gear and the ring gear.
  15. 請求項2記載の車載制御装置において、前記車載制御装置は前記エンジンの運転状態を車載ネットワークを介して外部から取得することを特徴とする車載制御装置。 The in-vehicle control device according to claim 2, wherein the in-vehicle control device acquires an operation state of the engine from outside via an in-vehicle network.
  16. 回転軸と、
    前記回転軸を回転させるモータと、
    エンジンのリングギヤに前記回転軸の回転力を伝達するピニオンギヤと、
    前記回転軸と前記ピニオンギヤとを前記リングギヤ側へ移動させ、前記ピニオンギヤと前記リングギヤとを噛み合わせるピニオンシフト機構と、
    前記ピニオンギヤと前記リングギヤとが接触したときに撓んで前記ピニオンギヤを相対移動させ、前記リングギヤ側へ付勢する弾性体と、を備える始動装置を制御し、
    前記エンジンの回転数降下期間中に前記ピニオンシフト機構へ噛み合い指示を行う始動装置の制御方法において、
    前記ピニオンシフト機構への噛み合い指示後の前記エンジンの運転状態に基づき、前記ピニオンギヤと前記リングギヤとが噛み合わない状態、前記ピニオンギヤが相対移動出来ない固着状態、または前記弾性体の異常状態の少なくとも一つを検出し、フェールセーフ制御を行うことを特徴とする始動装置の制御方法。
    A rotation axis;
    A motor for rotating the rotating shaft;
    A pinion gear for transmitting the rotational force of the rotary shaft to the ring gear of the engine;
    A pinion shift mechanism that moves the rotating shaft and the pinion gear to the ring gear side, and meshes the pinion gear and the ring gear;
    Controlling a starting device comprising: an elastic body that bends when the pinion gear and the ring gear come into contact with each other and moves the pinion gear relative to each other and urges the pinion gear toward the ring gear;
    In the control method of the starting device for instructing meshing to the pinion shift mechanism during the engine speed reduction period,
    At least one of a state in which the pinion gear and the ring gear do not mesh with each other, a fixed state in which the pinion gear cannot relatively move, or an abnormal state of the elastic body based on the operating state of the engine after the meshing instruction to the pinion shift mechanism And a fail-safe control.
PCT/JP2014/077123 2013-10-23 2014-10-10 On-board control device WO2015060137A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015543790A JP6132931B2 (en) 2013-10-23 2014-10-10 In-vehicle control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-219734 2013-10-23
JP2013219734 2013-10-23

Publications (1)

Publication Number Publication Date
WO2015060137A1 true WO2015060137A1 (en) 2015-04-30

Family

ID=52992738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077123 WO2015060137A1 (en) 2013-10-23 2014-10-10 On-board control device

Country Status (2)

Country Link
JP (1) JP6132931B2 (en)
WO (1) WO2015060137A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194605A1 (en) * 2015-06-03 2016-12-08 日立オートモティブシステムズ株式会社 Engine starter device for vehicles
WO2017013693A1 (en) * 2015-07-23 2017-01-26 日産自動車株式会社 Engine control method and vehicle drive control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102463466B1 (en) * 2018-07-31 2022-11-04 현대자동차주식회사 Method for Engine Start Control Based on Fail Safe Logic and Vehicle thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236533A (en) * 2008-09-02 2010-10-21 Denso Corp Automatic stop/start control device for engine
JP2011149298A (en) * 2010-01-20 2011-08-04 Denso Corp Control device for automatically stopping/starting engine
JP2012023813A (en) * 2010-07-12 2012-02-02 Hitachi Automotive Systems Ltd Failure diagnostic device for vehicle
JP2012512982A (en) * 2008-12-19 2012-06-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for an internal combustion engine start-stop device in a motor vehicle
JP2012180794A (en) * 2011-03-02 2012-09-20 Denso Corp Engine start control device
JP2013057325A (en) * 2012-12-26 2013-03-28 Denso Corp Starter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5573227B2 (en) * 2010-03-01 2014-08-20 株式会社デンソー Starter control device
JP5338845B2 (en) * 2011-04-22 2013-11-13 株式会社デンソー Abnormality detection device for starter controller

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236533A (en) * 2008-09-02 2010-10-21 Denso Corp Automatic stop/start control device for engine
JP2012512982A (en) * 2008-12-19 2012-06-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for an internal combustion engine start-stop device in a motor vehicle
JP2011149298A (en) * 2010-01-20 2011-08-04 Denso Corp Control device for automatically stopping/starting engine
JP2012023813A (en) * 2010-07-12 2012-02-02 Hitachi Automotive Systems Ltd Failure diagnostic device for vehicle
JP2012180794A (en) * 2011-03-02 2012-09-20 Denso Corp Engine start control device
JP2013057325A (en) * 2012-12-26 2013-03-28 Denso Corp Starter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194605A1 (en) * 2015-06-03 2016-12-08 日立オートモティブシステムズ株式会社 Engine starter device for vehicles
WO2017013693A1 (en) * 2015-07-23 2017-01-26 日産自動車株式会社 Engine control method and vehicle drive control device
JPWO2017013693A1 (en) * 2015-07-23 2018-06-07 日産自動車株式会社 ENGINE CONTROL METHOD AND VEHICLE TRAVEL CONTROL DEVICE

Also Published As

Publication number Publication date
JPWO2015060137A1 (en) 2017-03-09
JP6132931B2 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
US8504279B2 (en) Engine automatic stop and restart apparatus
US9074573B2 (en) System for cranking internal combustion engine by engagement of pinion with ring gear
CN105909395B (en) Method for controlling stop and start of engine
US9567965B2 (en) Intelligent idle stop and go control device and method thereof
US8892340B2 (en) Engine controller and engine control method
JP5188627B2 (en) Engine starter
US7908074B2 (en) Abnormality detecting device of vehicle
WO2014156320A1 (en) Onboard controller
US20110172900A1 (en) Controller for Idle Stop System
US20140350827A1 (en) Restarting device of internal combustion engine
US20170268444A1 (en) Controller for vehicle and control method for vehicle
CN103216372A (en) Engine starting device and engine starting method
JP5413325B2 (en) Engine stop / start control device
JP6132931B2 (en) In-vehicle control device
WO2014054471A1 (en) Engine starting device and starting method
JP5056836B2 (en) Engine automatic stop / start control device
WO2013021812A1 (en) Engine starting device and engine starting method
JP5548102B2 (en) Vehicle control device
US20160115931A1 (en) Engine automatic stop/restart device
WO2016194605A1 (en) Engine starter device for vehicles
JP6233234B2 (en) Engine control device
US20140000541A1 (en) Control device and control method for starter, and vehicle
JP5554436B1 (en) Engine starter
JP5949531B2 (en) Vehicle start control device
JP6409393B2 (en) Engine rotation behavior prediction device and engine start device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015543790

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855982

Country of ref document: EP

Kind code of ref document: A1