WO2015059941A1 - Blast machining method and blast machining device - Google Patents

Blast machining method and blast machining device Download PDF

Info

Publication number
WO2015059941A1
WO2015059941A1 PCT/JP2014/058044 JP2014058044W WO2015059941A1 WO 2015059941 A1 WO2015059941 A1 WO 2015059941A1 JP 2014058044 W JP2014058044 W JP 2014058044W WO 2015059941 A1 WO2015059941 A1 WO 2015059941A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
abrasive
compressed gas
blast nozzle
blasting
Prior art date
Application number
PCT/JP2014/058044
Other languages
French (fr)
Japanese (ja)
Inventor
間瀬 恵二
克幸 佐久間
Original Assignee
株式会社不二製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社不二製作所 filed Critical 株式会社不二製作所
Priority to US15/028,464 priority Critical patent/US20160236323A1/en
Priority to JP2015543757A priority patent/JP6452615B2/en
Priority to CN201480056785.2A priority patent/CN105636745B/en
Priority to EP14855828.1A priority patent/EP3061567B1/en
Priority to PCT/JP2014/074515 priority patent/WO2015060043A1/en
Priority to KR1020167012506A priority patent/KR101847316B1/en
Publication of WO2015059941A1 publication Critical patent/WO2015059941A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/02Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/02Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials
    • B24C5/04Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0007Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0007Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier
    • B24C7/0015Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier with control of feed parameters, e.g. feed rate of abrasive material or carrier

Definitions

  • the present invention relates to a blasting method for injecting an abrasive together with a compressed gas to perform cutting of a workpiece, surface polishing, deburring, coating film removal, and the like, and a blasting apparatus used for the blasting method.
  • Blasting which processes the workpiece using the cutting force exerted when the abrasive material injected with the compressed gas collides with the workpiece, includes cutting, surface polishing, surface polishing, deburring, and coating. Widely used in various applications such as removal of membranes and removal of dirt such as rust.
  • abrasives are more likely to adhere to workpieces and cabinet inner walls due to static electricity.
  • the adhered abrasive is difficult to remove completely by air blow or the like, and it is necessary to provide a cleaning process for removing the abrasive adhered to the workpiece after blasting. It is also a factor.
  • Electrode needles are easily soiled, require frequent maintenance, and static electricity remains where the abrasive is peeled off due to charge removal (neutralization) with the abrasive adhered to the object to be treated.
  • corona discharge is performed to generate ions, it can be an ignition source in dust explosions and the like, so the ion generator is structurally unsuitable for use in blasting equipment.
  • Japanese Patent No. 3846842 Japanese Unexamined Patent Publication No. 2011-237378 Japanese Unexamined Patent Publication No. 2006-297568
  • Patent Document 3 is a method in which a large amount of water of 160 to 200 cc / min is injected (Patent Document 3, Table 1 [2] [3] ], A kind of wet blasting method generally called “wet blasting” or “liquid honing”.
  • wet blasting has a lower processing amount (cutting speed) than dry blasting, and the conditions such as abrasive material used, particle size, and injection pressure are the same. In some cases, the amount of machining (cutting amount) decreases to about 1/7 to 1/14 in wet blasting compared to dry blasting.
  • FIGS. 23 and 24 show the measurement of the difference in coverage between dry blasting and wet blasting.
  • Both dry and wet abrasives are alumina-based abrasives ("Fuji Random WA” manufactured by Fuji Seisakusho). # 1000) and a 150 mm square glass plate was processed at an injection pressure of 0.3 MPa.
  • FIG. 23 shows a change in processing time until the coverage becomes 100% with respect to a change in the distance between the tip of the blast nozzle and the workpiece (nozzle distance), and FIG. 24 shows a coverage with respect to a change in the particle size of the abrasive.
  • the change in the processing time is displayed, and it can be seen that the processing time for obtaining 100% coverage is longer in wet blasting than in dry blasting under any conditions. .
  • cover is the ratio of the total indentation area to the processing area expressed in%, and the amount of processing can be predicted by the size of the coverage. Therefore, from FIG. 23 and FIG. Then, it turns out that it is inferior in the amount of processing (cutting speed) compared with dry blasting.
  • the blasting method described in Patent Document 1 described above increases the humidity in the cabinet, which is the work space, by adding moisture to the compressed gas that injects the abrasive. This prevents the generation of static electricity and the adhesion of abrasives to the workpiece surface and cabinet inner surface due to static electricity.
  • Patent Document 1 does not include a detailed description of the water addition method, but when water is added to the compressed air flowing in the compressed air introduction pipe, such a malfunction due to clogging does not occur.
  • Patent Document 2 it is necessary to add water to the compressed gas in the form of water vapor by a method such as ultrasonic wave or heating, and thus has a function to turn water into water vapor. It is necessary to provide a moisture providing mechanism separately, which makes the apparatus configuration complicated and expensive.
  • Patent Documents 1 and 2 Although moisture is added to the compressed gas before being introduced into the blast nozzle, the moisture is added in the state of water vapor (gas). The fluid ejected from the nozzle does not contain “liquid”. Therefore, the inventions described in Patent Documents 1 and 2 are maintained to be “dry” blasting even by adding water.
  • Patent Documents 1 and 2 can perform processing without wetting the surface of the workpiece, and can be applied to a workpiece that dislikes contact with water. There is an advantage that the processing amount (cutting speed) is larger than blast processing.
  • Patent Documents 1 and 2 maintain dry blasting, and thus maintain a large machining amount (high cutting speed) compared to wet blasting, while maintaining static electricity.
  • it is necessary to adopt a special device configuration and to perform complicated control.
  • the inventors of the present invention have conducted intensive research aimed at realizing a blasting process capable of preventing the generation of static electricity without sacrificing the processing amount. It is possible to suppress the generation of static electricity by performing atomization just before the nozzle outlet and limiting the amount of water added to a predetermined range that is significantly smaller than that of known wet blasting. Rather, it was found that the machining amount can be greatly improved.
  • An object of the present invention is to provide a blasting method and a blasting apparatus that can not only prevent the occurrence of the above-described problem but also improve the processing amount (cutting speed) in comparison with dry blasting as well as conventional wet blasting.
  • the blasting method of the present invention comprises: In a blasting method for injecting an abrasive together with a compressed gas through a blast nozzle 8 to a workpiece, A liquid such as water is introduced into the blast nozzle 8, and the liquid is made to collide with the compressed gas flowing through the blast nozzle 8 or the compressed gas ejected from the blast nozzle to atomize the atomized liquid. Spraying with the compressed gas and abrasive, The amount of the liquid introduced into the blast nozzle 8 is set to 0.06 cc / min to 150 cc / min (claim 1).
  • the above liquids include so-called “water” such as tap water, pure water, purified water, alkaline ionized water, scale remover added for the purpose of removing scale of pure water and hard water, marking of processed parts, etc. It may contain paints, fluorescent paints, etc. added for the purpose.
  • the blasting apparatus 1 of the present invention used for the blasting method described above is: In a blasting apparatus 1 for injecting a compressed gas flow supplied from a compressed gas supply source (not shown) from a blast nozzle 8 as a mixed fluid with an abrasive, One end of the blast nozzle 8 can communicate with a liquid supply source (not shown), and the other end is opened in the flow path of the compressed gas in the blast nozzle 8 or in the injection port of the blast nozzle 8.
  • a liquid introduction path 88 is provided for causing the liquid introduced from the liquid supply source to collide with a compressed gas flow flowing through the blast nozzle 8 or a compressed gas flow injected from the blast nozzle 8 to be atomized,
  • a flow rate control means such as a flow rate adjusting valve 7 or a pump is provided between the liquid introduction path 88 and the liquid supply source (Claim 2).
  • the blast nozzle 8 includes a nozzle 82 in the jet direction of the jet 83 communicating with the compressed gas supply source, and an abrasive that communicates with the abrasive supply source between the jet 83 and the nozzle 82.
  • Type blast nozzle The other end (tip 88 a) of the liquid introduction path 88 can be configured to open in a compressed gas flow path 86 provided in the jet 83 or at a position in front of the jet port of the jet 83 (invention). 3).
  • the liquid introduction path 88 is formed by a pipe line that is concentrically inserted into the compressed gas flow path 86 provided in the jet 83. It is good also as a structure which opened the said other end (front-end
  • the blasting apparatus 1 having the above-described configuration may be provided with a liquid constant supply means such as a pump for supplying a constant amount of the liquid from the liquid supply source to the liquid introduction path 88 (Claim 5).
  • a liquid constant supply means such as a pump for supplying a constant amount of the liquid from the liquid supply source to the liquid introduction path 88 (Claim 5).
  • a liquid such as water collides with the compressed gas flowing through the blast nozzle 8 or the compressed gas injected from the blast nozzle 8, and the amount of liquid introduced into the blast nozzle is 0.06 to 150 cc / min. Therefore, the atomized liquid is reduced between the blast nozzle 8 and the workpiece W due to a pressure drop when sprayed by the blast nozzle 8 and heat generated when the abrasive material collides with the workpiece W. In this space, or in the surface of the workpiece W, the water rapidly evaporates to become water vapor, so that the humidity in the processing chamber 21 can be increased and the generation of static electricity can be prevented.
  • the workpiece W is not wetted, or even if the workpiece is wetted, the degree of wetting is less than that of known wet blasting.
  • the blasting method can be applied to workpieces and the like that dislike contact with water by adjusting the water supply conditions, and there is no need to add new steps such as washing and drying after processing.
  • the effect of improving the processing amount (cutting speed) more than that obtained by the known dry blasting method is first mentioned. Prevents abrasive material from sticking to the surface, reduces consumption of abrasive material, improves cutting speed, removal efficiency of coating film, burrs, etc., reduces the elongation and warpage of the workpiece, reduces the temperature rise of the workpiece We were able to obtain new effects beyond expectations, such as reducing the burning of the product.
  • wet blasting is one of the reasons why the machining amount (cutting speed) is lower than dry blasting. It is considered that water sprayed with the abrasive forms a water film on the surface of the workpiece, and this water film absorbs the collision energy of the abrasive that tries to collide with the surface of the workpiece. It is done.
  • the degree of wetting is less than that of known wet blasting, it is possible to maintain the same collision energy as dry blasting, and as a result, a large amount of processing can be maintained even by liquid injection.
  • the increase in the surface temperature of the workpiece is suppressed by the above-described spray cooling, and the processing is performed in a state where the surface hardness of the workpiece is maintained. It is considered that the amount of machining (cutting speed) was also improved.
  • the above-described configuration of an existing dry blasting apparatus is replaced with the above-described blast nozzle 8 that enables liquid injection, and liquid is supplied to the blast nozzle 8.
  • This can be realized by a relatively simple structural change such as addition of a flow rate control means such as a flow rate adjusting valve 7 or a pump for controlling the liquid supply source to be performed and the liquid supply amount to the blast nozzle 8.
  • a pipe inserted concentrically into the compressed gas flow path 86 provided in the jet 83 of the blast nozzle 8 is used as the liquid introduction path 88, and the other end (tip 88a) of the pipe 88 is connected to the jet 83.
  • a liquid such as a pump is used. It is not necessary to provide a means for supplying the liquid, and since the introduction and stop of the liquid are performed in conjunction with the start and stop of the introduction of the compressed gas to the blast nozzle 8, the supply of the liquid is performed. There is no need to provide a separate means for starting and stopping, and the existing equipment can be used by replacing only the jet 83 of the blast nozzle 8.
  • a configuration may be adopted in which a constant supply means such as a pump for supplying the liquid from the liquid supply source to the liquid introduction path 88 is provided.
  • a constant supply means such as a pump for supplying the liquid from the liquid supply source to the liquid introduction path 88 is provided.
  • the design of the liquid introduction position with respect to the blast nozzle 8 may be adopted. As the degree of freedom increases, the liquid can be supplied more stably and reliably.
  • Explanatory drawing which shows the example of 1 structure of the blast processing apparatus of this invention.
  • Explanatory drawing of the liquid introduction position with respect to a blast nozzle (suction type).
  • Explanatory drawing of the liquid introduction position with respect to a blast nozzle (direct pressure type).
  • the graph which showed the change (urethane rubber board) of the processing amount with respect to the change of water supply amount is analyzed by the change of water supply amount.
  • the graph which showed the change of the amount of processing (aluminum board) with respect to the change of the amount of water supply.
  • the graph which showed the change of the amount of processing (stainless steel board) with respect to the change of the amount of water supply.
  • FIG. 1 shows a configuration example of the blast processing device 1 of the present invention.
  • the blast processing apparatus 1 includes a compressed gas supply source (not shown), an abrasive tank 3 as an abrasive supply source, and a compressed gas introduced from the compressed gas supply source and the abrasive.
  • a blast nozzle 8 is provided for merging and injecting abrasives from the tank 3.
  • a blast nozzle is introduced by introducing compressed gas from a compressed gas supply source, in this embodiment, compressed air.
  • 8 is configured as a so-called “suction type” blasting device in which the abrasive material from the abrasive material tank 3 is sucked by the negative pressure generated in the air 8, merged with the compressed gas flow, and injected to the workpiece W. Yes.
  • the above-mentioned abrasive tank 3 that is a cyclone and a dust collector 5 that sucks the inside of the abrasive tank 3 are provided, and the exhaust fan 6 provided in the dust collector 5 is operated to suck the inside of the abrasive tank 3 that is a cyclone.
  • the sprayed abrasive is introduced into the abrasive tank 3 through the abrasive recovery pipe 91 together with the cutting powder and the like, and the abrasive tank 3
  • the reusable abrasive is collected at the bottom of the abrasive tank 3 by the wind sorting inside, and the crushed abrasive and dust are sucked into the dust collector 5 and removed. It is configured, so that it can be recycled abrasive.
  • the basic configuration of the blast processing apparatus 1 is not limited to the circulation type configuration in which the abrasive is circulated in this way.
  • the blast processing apparatus 1 is a single-use disposable batch without reusing the used abrasive.
  • the configuration provided for the wind separation of the dust such as cutting powder and the abrasive is omitted, and the abrasive after use in the processing chamber 21 by the dust collector 5 is omitted. Or dust may be removed and collected together.
  • the blasting apparatus is described as being configured as a suction type.
  • a direct pressure type blasting apparatus that introduces and injects both compressed gas and abrasive in a pressurized tank into a blast nozzle.
  • the present invention can be applied, and various structures employed in known blasting apparatuses can be adopted as the basic configuration of the blasting apparatus.
  • liquid in this embodiment, water is introduced into the blast nozzle 8 described above, and this water is collided with a compressed gas flow flowing in the blast nozzle 8 to have an average particle diameter of 1 mm.
  • the atomized liquid is preferably atomized to 300 ⁇ m or less, more preferably 100 ⁇ m or less, and the atomized liquid is mixed into the compressed gas immediately before being injected to the workpiece W.
  • the atomized liquid can be sprayed together with the abrasive.
  • the blasting apparatus 1 of the present invention supplies the liquid (water) to the blast nozzle 8 described above so that the atomized liquid can be mixed into the compressed gas injected toward the workpiece W.
  • a liquid supply source (not shown) is provided, a liquid introduction path 88 for introducing water supplied from the liquid supply source into the blast nozzle 8 is provided in the blast nozzle 8, and the liquid supply source described above is further provided.
  • a flow rate control means including a flow rate adjusting valve 7 and a pump is provided in a pipe line communicating between the liquid introduction path 88 of the blast nozzle 8.
  • FIG. 2 shows a configuration example of the blast nozzle 8 provided in the blast processing apparatus 1 of the present invention.
  • the blast nozzle 8 shown in FIG. 2 has a basic structure provided in an existing suction type blast nozzle, and is constituted by a body 81 constituting a main body portion of the blast nozzle 8, a nozzle 82 attached to the body 81, and a jet 83. Has been.
  • the body 81 has a substantially cylindrical container shape formed in communication with the abrasive material introduction port 84 for introducing the abrasive material supplied from the abrasive material tank 3 which is a supply source of the abrasive material.
  • the abrasive introduction chamber 85 is provided inside.
  • the nozzle 82 attached to the body 81 has a conical inner surface 82a constricted in a conical shape.
  • an abrasive formed in the body 81 is provided.
  • the introduction chamber 85 and the flow path in the nozzle provided with the conical inner surface 82a are configured to communicate with each other.
  • a jet 83 is attached to the rear end side of the body 81 so that the tip is directed toward the center of the conical inner surface 82a of the nozzle 82.
  • a compressed gas is supplied from a compressed gas supply source (not shown)
  • the abrasive material from the abrasive material tank 3 is sucked into the abrasive material introduction chamber 85 by the negative pressure generated by the jet gas compressed by the jet 83, and this abrasive material joins the compressed gas ejected from the jet 83.
  • the point that it can be injected from the tip of the nozzle 82 has the same configuration as the known suction type blast nozzle 8.
  • the liquid from the liquid supply source (not shown) is supplied so that the liquid can be atomized and sprayed as described above.
  • a liquid introduction path 88 for introduction into the blast nozzle 8 is provided, and a distal end 88a of the liquid introduction path 88 is provided with a compressed gas flow path provided in the blast nozzle 8, for example, a compressed gas provided in the jet 83.
  • the high-speed compressed gas flow that flows through the blast nozzle 8 or the high-speed compressed gas that is jetted from the blast nozzle 8 is opened in front of the discharge port of the jet 83 or in front of the discharge port of the jet 83 and further at the injection port of the blast nozzle.
  • the liquid ejected from the tip 88a of the liquid introduction path 88 is made to collide with the high-speed compressed gas flow and atomize, so that the liquid can be atomized more suitably.
  • the mesh material used in the present invention is not particularly limited.
  • the mesh material is formed as a whole by knitting a wire made of metal or resin into a mesh shape, or by forming fine holes in a plate. Various things can be used.
  • the conduit that becomes the liquid introduction channel 88 is concentrically disposed in the compressed gas channel 86 formed in the jet 83, and the inner wall of the compressed gas channel 86 and the liquid
  • the compressed gas is allowed to flow between the outer walls of the introduction path 88, the tip 88 a of the liquid introduction path 88 is opened at the same position as the opening of the jet 83, and the liquid discharged from the tip 88 a of the liquid introduction path 88 is removed.
  • It is atomized by colliding with a high-speed, high-pressure compressed gas flow that flows on the outer periphery.
  • the liquid is sucked from the tip 88a of the liquid introduction path 88 due to the negative pressure generated in the abrasive introduction chamber 85, and merges with the compressed gas flow. Therefore, the liquid is supplied in the blast nozzle 8 without providing a liquid fixed quantity supply device such as a pump for supplying the liquid from a liquid supply source (not shown) such as a liquid tank into the blast nozzle 8.
  • a liquid fixed quantity supply device such as a pump for supplying the liquid from a liquid supply source (not shown) such as a liquid tank into the blast nozzle 8.
  • the introduction of liquid from the liquid supply source automatically starts and stops in conjunction with the start and stop of the introduction of compressed gas to the blast nozzle 8. No dripping or the like due to forgetting to stop.
  • the configuration in which the liquid collides with the compressed gas flow is not limited to the configuration shown in FIG. 2, and various known gas blast type two-fluid nozzle (atomizer) configurations are applied to the jet 83 configuration.
  • the liquid introduction into the blast nozzle may be performed by using a liquid metering means such as a pump instead of the configuration using the negative pressure in the abrasive introduction chamber as described above. It is good also as what is performed by providing in the inside of the tank which is or in piping between a liquid supply source and a blast nozzle.
  • the liquid supply position for the blast nozzle 8 may be different from the position shown in FIG. 2, and as an example of the liquid introduction position for the suction type blast nozzle, as shown in FIG. 8 is formed in the outer periphery of the front end of the jet 83, and the liquid introduction path 88 is formed.
  • the space is opened in the forward direction of the jet 83, and the liquid is introduced into the liquid introduction path 88.
  • the liquid thus injected may be sprayed so as to wrap around the outer periphery of the compressed gas injected from the jet 83 so that the liquid collides with a high-speed, high-pressure compressed gas flow to be refined.
  • the tip 88a of the liquid introduction path 88 is opened at the position where the abrasive introduction chamber 85 and the blast nozzle 8 are formed, and the liquid introduction path 88 is generated by the negative pressure generated by the compressed gas flow. It may be configured to cause the liquid in the cylinder to be sucked and collide with the compressed gas flow flowing in the blast nozzle 8 or the compressed gas flow injected from the blast nozzle 8, or the compressed gas formed in the jet 83
  • the liquid of the liquid supply source may be quantitatively supplied by a pump into the compressed gas flow path formed in the flow path or the nozzle 82, and the liquid introduction described with reference to FIGS. Instead of the position, or together with the liquid introduction position described with reference to FIGS. 2 and 5, the liquid may be introduced from any one or a plurality of positions of the liquid introduction position shown in FIG.
  • the liquid introduction position for the direct pressure type blast nozzle is generated when the tip 88a of the liquid introduction path 88 is opened at the position where the injection port of the blast nozzle 8 is formed and the compressed gas is injected.
  • the liquid in the liquid introduction path 88 may be sucked by a negative pressure to collide with the compressed gas ejected from the blast nozzle 8, or a jet 83 ′ provided in the blast nozzle body 81 ′.
  • the leading end 88a of the liquid introduction path 88 is opened in a compressed gas passage formed in the nozzle 82 ′ attached to the tip of the blast nozzle 8 or the inside of the blast nozzle 8 to pump the liquid from the liquid supply source. May be introduced into the blast nozzle 88, and the liquid can be introduced through any one of these or a plurality of locations.
  • a flow rate control means for controlling the flow rate of the liquid introduced into the liquid introduction pipe 88 is provided in the pipe line extending from the liquid supply source to the liquid introduction path 88, and the amount of liquid introduced into the blast nozzle 8. Can be adjusted.
  • the flow rate adjusting valve 7 is provided as a flow rate control means in the pipe between the liquid introduction path 88 having the tip 88a opened at the position where the negative pressure is generated and the liquid supply source.
  • the flow rate adjusting valve 7 has an opening that can be adjusted in eight steps.
  • a valve that can adjust the opening steplessly may be used to adjust the flow rate of the liquid.
  • Various valves can be used if possible.
  • a pump is provided as the above-described flow rate control means between the liquid introduction path 88 having the tip 88a opened at a position other than the position where the negative pressure is generated and the liquid supply source.
  • the amount of liquid supplied to the blast nozzle 8 can be controlled by controlling the rotation speed.
  • a configuration in which a pump is provided between the liquid introduction path 88 and the liquid supply source may be employed.
  • a flow rate adjusting valve may be provided on the secondary side of the pump so that the flow rate of the liquid introduced into the blast nozzle 8 is adjusted.
  • the liquid introduction path 88 can be communicated with a water supply intake (faucet) so that the water supply can be used as a liquid supply source.
  • a water supply intake for introducing the liquid into the liquid introduction path 88 using the feed water pressure, the above-described installation of the pump can be omitted.
  • the abrasive is supplied into the abrasive tank 3 as an abrasive supply source, and a liquid tank (not shown) as a liquid supply source is filled with a liquid such as water.
  • a liquid tank (not shown) as a liquid supply source is filled with a liquid such as water.
  • the abrasive tank 3 is illustrated with respect to the blast nozzle 8.
  • the introduction of compressed gas from the compressed gas supply source is started.
  • the gas in the abrasive material introduction chamber 85 is sucked into the nozzle 82 by such a compressed gas flow, and as a result, the pressure in the abrasive material introduction chamber 85 becomes negative and the abrasive material introduction port 84 is opened. Then, the abrasive from the abrasive tank 3 is introduced into the abrasive introduction chamber 85, and this negative pressure sucks out the liquid in the liquid introduction path 88 from the tip 88a of the liquid introduction path 88, and the sucked liquid.
  • a suitable abrasive injection amount is 2 g / min to 20 kg / min.
  • the amount of liquid introduced into the blast nozzle 8 is relatively 0.06 cc to 150 cc / min. Since the amount of the liquid is small and the liquid sprayed together with the abrasive is atomized by the collision with the high-speed compressed gas flowing in the blast nozzle 8 and sprayed from the blast nozzle 8, the liquid is sprayed from the blast nozzle 8.
  • the sprayed liquid is combined with the blast nozzle 8 and the workpiece W in combination with a sudden drop in the pressure of the compressed gas and the surface of the workpiece being heated due to the collision with the abrasive.
  • the space evaporates in the space or the surface of the workpiece W, and a large amount of heat of vaporization is taken from the space and the surface of the workpiece W.
  • the elongation and warpage that reduce the dimensional stability of the product are also considered to be caused by the difference in elongation due to the temperature rise of the work piece and the front and back surfaces.
  • the principle is unknown, but the recovered abrasive is less cracked or chipped than the conventional blasting performed without spraying the liquid, and the wear rate of the abrasive is reduced. It has been confirmed that it can also be reduced.
  • the blasting method of the present invention can effectively prevent the occurrence of sparks caused by static electricity during processing, and can eliminate the damage and loss of products such as products, especially electronic parts. It was also possible to eliminate the damage to the electrodes provided in the product.
  • the blasting method of the present invention not only has the effect of preventing the generation of static electricity, but also improves the processing amount, improves the removal efficiency of the coating film and burrs, and improves the surface roughness in comparison with general dry blasting. Effects such as prevention of discoloration due to deterioration and scoring, prevention of sticking of abrasives that become contaminants during coating and plating after blasting, prevention of warpage and elongation of workpieces that reduce dimensional stability of the product, etc. It was possible to obtain an excellent effect that cannot be predicted from the prior art.
  • both dry blasting (comparative example) and blasting of the present invention are performed using a suction type blasting apparatus (see FIG. 1 for an outline of the structure) and liquid (
  • the blast nozzle is provided with the liquid introduction path 88 in the compressed gas flow path 86 of the jet 83 as described with reference to FIG.
  • either one having a chamber that becomes a liquid introduction path 88 on the outer periphery of the tip of the jet 83 is used, while dry blasting (comparative example) 2 and FIG.
  • Nylon beads (NB) # 0303 (average particle size 300 ⁇ m) manufactured by Fuji Seisakusho were used as the abrasive, and the abrasive was sprayed at a nozzle distance of 160 mm, an injection pressure of 0.3 MPa, and an injection time of 40 minutes. .
  • the processing is performed by attaching the blast nozzle described with reference to FIG. 2 to the circulation type blast processing apparatus having the structure shown in FIG. 1 and installing the flow rate adjusting valve 7 for adjusting the amount of water introduced into the blast nozzle 8. It gradually opens from the closed state to increase the amount of water supply, changes in the charge amount of the acrylic plate (measuring instrument: using 3M 709STATICORSENSOR), changes in temperature and humidity in the processing chamber, and The state was observed. The measurement results are shown in Table 1.
  • the amount of charge can be reduced by 40% or more just by supplying a small amount of water of 0.06 cc / min with respect to the amount of charge in dry blasting performed with no water supply with the flow control valve 7 fully closed. It has been confirmed that high static electricity prevention effects can be obtained even by spraying a relatively small amount of water.
  • the blasted cabinet has an abrasive material all over the surface of the workpiece, the inner wall of the cabinet, the surface of the rubber hose and blast nozzle, etc.
  • the abrasive was adhered due to static electricity. could not be confirmed.
  • the measurement was performed on a test piece made of the material shown in Table 2 below, using an injection distance of 120 mm, an abrasive material of alumina abrasive (“Fuji Random A # 60” manufactured by Fuji Seisakusho, and an injection pressure of 0.4 MPa). Then, machining was performed under the conditions shown in Table 2, and the weight of the test piece before and after machining was measured, and the weight loss was determined as the cutting amount.
  • the increase in the amount of cutting increases as the amount of water supplied increases, but when the amount of cutting increases to some extent, the increase in water supply leveled off without further increase.
  • the increase in the processing amount is 1.5 times or more when using zircon grid (FZG-60), and 1.3 to 1.4 times when using alumina abrasive (“Fuji Random A # 60” manufactured by Fuji Seisakusho). It was confirmed that a significant increase in the processing amount was obtained.
  • the Al mass concentration ratio indicates the ratio to the Al mass concentration with no water supply.
  • the injection is performed by a continuous injection method (abrasive circulating type blasting apparatus shown in FIG. 1), and the weight of the abrasive put into the abrasive tank of the blasting apparatus at the beginning of measurement and the recovered abrasive The weight of each was measured, and the weight of the decrease was evaluated as the consumption.
  • a continuous injection method abrasive circulating type blasting apparatus shown in FIG. 1
  • the blasting time is 45 minutes, and the amount of water introduced in the blasting method of the present invention is 6 cc / min.
  • Table 19 shows the measurement results of the abrasive consumption
  • FIG. 20 shows the state of the abrasive particles after use.
  • the abrasive after use in the dry blasting method is compared with the abrasive after performing the blasting method of the present invention. However, it was confirmed that the crushing progressed faster and the particle size was smaller.
  • the temperature is measured by attaching a thermocouple thermometer to the back of the copper plate and making the temperature change readable. Using the blast nozzle shown in FIG. The highest temperature displayed during the injection of the abrasive was used as the measured value. Table 20 shows the measurement results.
  • the coating film peeling of the resin product made from PC uses a blast nozzle as shown in FIG. 2 to apply a high-purity alumina abrasive (“Fuji Random WA WA # 600” manufactured by Fuji Seisakusho) to a processing pressure of 0.4 MPa and a nozzle distance. Injecting at 70 mm, processing was performed with a water supply amount of 5 cc / min in the method (Example) of the present invention, and with no water supply in the comparative example.
  • PPS polyphenylene sunfide resin products are deburred using the blast nozzle shown in Fig. 2, using nylon beads ("FNB -0303" manufactured by Fuji Seisakusho) with a working pressure of 0.4 MPa and a nozzle distance. Injection was performed at 20 to 30 mm, and processing was performed with a water supply amount of 3 cc / min in the method of the present invention (Example), and with no water supply in the comparative example.
  • FIG. 21 The result of measuring the surface roughness of the PC product after peeling the coating film is shown in FIG. 21, and the result of measuring the surface roughness of the PPS product after deburring is shown in FIG.
  • the resin product treated by the method of the present invention is a resin product of a comparative example performed in a dry process [FIG. 21B and FIG. It can be seen that the surface roughness is less than that of (B)], and it is considered from this result that the dry blasting process was greatly deformed by softening due to heat generation.
  • the surface of the resin product treated by dry blasting turned dark due to scorching, whereas the resin product processed by the method of the present invention confirmed the occurrence of such scoring. In view of this, it was confirmed that the method of the present invention suitably prevented heat generation of the workpiece.
  • the peeling of the coating film which took 11 to 12 seconds is shortened to 6 to 7 seconds in the method of the present invention.
  • the blasting process of the present invention is performed, the removal efficiency of the coating film is reduced. It was confirmed that improvement of
  • the difference is that in dry blasting, the surface temperature of the workpiece rises, and the coating film and burrs soften to absorb the impact when the abrasive material collides, making peeling and removal difficult.
  • the surface of the workpiece is cooled, so that the softening of the coating film and burrs is suppressed, and the coating film and burrs are kept hard (and therefore brittle). It is thought that this is because peeling and removal are easily performed due to the collision.
  • the processing pressure is 0.3MPa and 0.5MPa
  • the processing time is 20 seconds
  • the water supply amount is changed
  • the arc height value (curved height of the test piece) is measured. evaluated. Table 21 shows the measurement results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

Provided is a blast machining method in which static electricity-preventing effects coexist with processed volume-increasing effects. A liquid such as water is introduced in relatively small volumes of 0.06 cc/min - 150 cc/min to a blast nozzle (8) provided in a blast machining device. The introduced liquid is atomized by causing the liquid to collide with a high speed compressed gas stream flowing inside the blast nozzle (8) or a high speed compressed gas stream jetted from the blast nozzle (8). The atomized liquid is jetted towards the workpiece (W) along with the compressed gas and an abrasive. As a result of the jetted liquid evaporating easily because the liquid is atomized and jetted in this manner and the volume of liquid supplied is relatively small, humidity inside the work chamber increases and generation of static electricity is limited. Additionally, the workpiece is cooled by vaporization heat being consumed during evaporation and absorption of the impact energy of the abrasive that occurs as a result of the softening of the workpiece surface due to heat generated by collision with the abrasive is limited and processed volume (cut volume) is improved.

Description

ブラスト加工方法及びブラスト加工装置Blasting method and blasting apparatus
 本発明は,圧縮気体と共に研磨材を噴射し,被加工物の切削,表面研磨,バリ取り,塗膜落とし等を行うブラスト加工方法,及び,該ブラスト加工方法に使用するブラスト加工装置に関する。 The present invention relates to a blasting method for injecting an abrasive together with a compressed gas to perform cutting of a workpiece, surface polishing, deburring, coating film removal, and the like, and a blasting apparatus used for the blasting method.
 圧縮気体と共に噴射された研磨材が被加工物への衝突時に発揮する切削力を利用して被加工物の加工を行うブラスト加工は,切削加工,表面研磨,表面の梨地化,バリ取り,塗膜の除去や錆等の汚れ落とし等,各種の用途で広く使用されている。 Blasting, which processes the workpiece using the cutting force exerted when the abrasive material injected with the compressed gas collides with the workpiece, includes cutting, surface polishing, surface polishing, deburring, and coating. Widely used in various applications such as removal of membranes and removal of dirt such as rust.
 このようなブラスト加工において,圧縮気体と共に研磨材を被加工物に噴射すると,被加工物との衝突時の摩擦,あるいは,作業空間であるキャビネット内壁との衝突による摩擦により静電気が発生し,噴射された研磨材や,被加工物が切削されて生じた切削粉等が,被加工物やキャビネットの内壁,その他,研磨材の循環系を構成するダクト,サイクロン,研磨材タンク等の内壁に付着してしまい,その結果,研磨材の回収や供給を円滑に行うことができなくなる。 In such blasting, when abrasive material is injected together with compressed gas onto the work piece, static electricity is generated due to the friction caused by the collision with the work piece or the inner wall of the cabinet as the work space. Abrasive material or cutting powder generated by cutting the workpiece adheres to the inner wall of the workpiece, cabinet, and other inner walls of ducts, cyclones, abrasive tanks, etc. that constitute the abrasive circulation system As a result, the abrasive cannot be collected and supplied smoothly.
 特にブラスト加工による微細加工への要求が高まるにつれて,使用する研磨材の微細化が進んだ結果,研磨材は静電気によってより一層,被加工物やキャビネット内壁等に付着し易くなっていると共に,一旦付着した研磨材は,エアブロー等によっては完全に除去することが困難で,ブラスト加工後に被加工物に付着した研磨材を除去するための洗浄工程を設ける必要が生じる等,生産性を低下させる一因ともなっている。 In particular, as the demand for microfabrication by blasting increases, the use of abrasives has increased, and as a result, abrasives are more likely to adhere to workpieces and cabinet inner walls due to static electricity. The adhered abrasive is difficult to remove completely by air blow or the like, and it is necessary to provide a cleaning process for removing the abrasive adhered to the workpiece after blasting. It is also a factor.
 このような静電気による研磨材の付着を防止するためには,ブラスト加工装置に電圧印加式除電器(「イオン発生器」:ionizer)を装備することも考えられる。 In order to prevent such adhesion of abrasives due to static electricity, it is conceivable to equip the blasting device with a voltage application type static eliminator (“ion generator”).
 しかし,このような高価な装置を装備すれば,ブラスト加工装置の価格を押し上げることとなり市場における価格競争力を失うことになるだけでなく,イオンを発生させるためにイオン発生器に設けられている電極針は汚れ易く,頻繁なメンテナンスが必要となると共に,研磨材が被処理対象等に付着した状態で除電(中和)するために研磨材が剥がれた所には静電気が残る。 However, if equipped with such an expensive device, not only will it increase the price of the blasting machine and lose price competitiveness in the market, but it is also installed in the ion generator to generate ions Electrode needles are easily soiled, require frequent maintenance, and static electricity remains where the abrasive is peeled off due to charge removal (neutralization) with the abrasive adhered to the object to be treated.
 更に,イオンの発生のためコロナ放電を行うため,粉塵爆発等における発火源と成り得ることから,イオン発生器は構造的にブラスト加工装置に使用するに適していない。 Furthermore, since corona discharge is performed to generate ions, it can be an ignition source in dust explosions and the like, so the ion generator is structurally unsuitable for use in blasting equipment.
 そのため,このような静電気による問題を解消するために,作業空間や研磨材の循環経路内に水分を与えることで静電気を除去することも提案されている。 Therefore, in order to solve such problems caused by static electricity, it has been proposed to remove static electricity by applying moisture to the working space and the circulation path of the abrasive.
 このような方法の一例として,加湿手段によって水分が与えられた圧縮気体を研磨材噴射用のノズルに導入することで研磨材の循環系内における湿度を調整して静電気の発生を防止することが提案されている(特許文献1[0011]欄,図2参照)。 As an example of such a method, by introducing a compressed gas that has been given moisture by a humidifying means to an abrasive jet nozzle, the humidity in the circulating system of the abrasive is adjusted to prevent the generation of static electricity. It has been proposed (see Patent Document 1 [0011] column, FIG. 2).
 また,このようにして研磨材噴射用のノズルに導入する圧縮気体に対する水分の供給を,超音波ヒータや加熱を利用して水蒸気の形態で行うことも提案されている(特許文献2[0026]欄)。 It has also been proposed to supply moisture to the compressed gas introduced into the abrasive jet nozzle in this way in the form of water vapor using an ultrasonic heater or heating (Patent Document 2 [0026]). Column).
 なお,粉塵の発生防止を目的とした湿式のブラスト加工に使用されるブラストノズルとして,内部に形成された室内において,圧縮気体と研磨材(メディア)及び水を重量比において略等量で混合して,気,液,固体(研磨材)の三相流を噴射するブラストノズルも提案されている(特許文献3,[0006],図1,図2,表1[3]参照)。 As a blast nozzle used for wet blasting for the purpose of preventing the generation of dust, compressed gas, abrasive (media) and water are mixed in approximately equal amounts by weight in a chamber formed inside. A blast nozzle that injects a three-phase flow of gas, liquid, and solid (abrasive material) has also been proposed (see Patent Document 3, [0006], FIG. 1, FIG. 2, and Table 1 [3]).
日本国特許第3846842号公報Japanese Patent No. 3846842 日本国特開2011-237378号公報Japanese Unexamined Patent Publication No. 2011-237378 日本国特開2006-297568号公報Japanese Unexamined Patent Publication No. 2006-297568
 以上で説明した従来技術のうち,特許文献3に記載のノズルを使用したブラスト加工方法は,160~200cc/minという大量の水を噴射するもので(特許文献3,表1[2][3]参照),一般に「ウェットブラスト」あるいは「液体ホーニング」と呼ばれる,湿式のブラスト加工方法の一種である。 Among the conventional techniques described above, the blasting method using the nozzle described in Patent Document 3 is a method in which a large amount of water of 160 to 200 cc / min is injected (Patent Document 3, Table 1 [2] [3] ], A kind of wet blasting method generally called “wet blasting” or “liquid honing”.
 このような湿式のブラスト加工方法で被加工物の加工を行う場合には,被加工物の表面は噴射された水によって濡れることとなるために,静電気の発生を低減することができる。 When the workpiece is processed by such a wet blasting method, the surface of the workpiece is wetted by the sprayed water, so that generation of static electricity can be reduced.
 しかし,このような湿式のブラスト加工方法で被加工物の加工を行う場合,被加工物の表面は確実に濡れることとなるために,錆びやすい材質の被加工物等,水との接触を嫌う被加工物に対し適用できず,また,加工後に被加工物の洗浄や乾燥工程が必要となる場合があり,これらの作業が生産性を低下させる一因となる。 However, when a workpiece is processed by such a wet blasting method, the surface of the workpiece is surely wetted. It cannot be applied to the work piece, and there is a case where the work piece needs to be washed or dried after the work, and these operations contribute to a decrease in productivity.
 また,このように大量の水と共に研磨材を噴射する湿式のブラスト加工方法では,研磨材と共に噴射される水の存在によって被加工物の表面に研磨材が衝突する際の衝突エネルギーが吸収されてしまうことから,乾式のブラスト加工に比較して湿式のブラスト加工は加工量(切削速度)が低下するものとなっており,使用する研磨材の材質や粒径,噴射圧力等の条件が同一である場合,乾式によるブラスト加工に比較して,湿式のブラスト加工では加工量(切削量)が1/7~1/14程度に低下する。 In addition, in such a wet blasting method in which the abrasive is sprayed with a large amount of water, the collision energy when the abrasive collides with the surface of the workpiece is absorbed by the presence of water sprayed with the abrasive. Therefore, wet blasting has a lower processing amount (cutting speed) than dry blasting, and the conditions such as abrasive material used, particle size, and injection pressure are the same. In some cases, the amount of machining (cutting amount) decreases to about 1/7 to 1/14 in wet blasting compared to dry blasting.
 一例として,図23及び図24は,乾式のブラスト加工と湿式のブラスト加工におけるカバレージの相違を測定したもので,乾式,湿式共に研磨材としてアルミナ系研磨材(不二製作所製「フジランダムWA」♯1000)を使用し,0.3MPaの噴射圧力で150mm角のガラス板に対し加工を行ったものである。 As an example, FIGS. 23 and 24 show the measurement of the difference in coverage between dry blasting and wet blasting. Both dry and wet abrasives are alumina-based abrasives ("Fuji Random WA" manufactured by Fuji Seisakusho). # 1000) and a 150 mm square glass plate was processed at an injection pressure of 0.3 MPa.
 図23はブラストノズルの先端と被加工物間の距離(ノズル距離)の変化に対するカバレージ100%と成る迄の処理時間の変化,図24は,研磨材の粒径の変化に対するカバレージ100%となる迄の処理時間の変化をそれぞれ表示したものであり,いずれの条件においても乾式のブラスト加工に比較して湿式のブラスト加工では,カバレージ100%を得るための加工時間が長くなっていることが判る。 FIG. 23 shows a change in processing time until the coverage becomes 100% with respect to a change in the distance between the tip of the blast nozzle and the workpiece (nozzle distance), and FIG. 24 shows a coverage with respect to a change in the particle size of the abrasive. The change in the processing time is displayed, and it can be seen that the processing time for obtaining 100% coverage is longer in wet blasting than in dry blasting under any conditions. .
 ここで,「カバレージ」とは,加工面積に対する総圧痕面積の比を%で表示したもので,カバレージの大小によって,加工量の大小を予測できることから,図23及び図24からも,湿式のブラストでは乾式ブラストに比較して加工量(切削速度)で劣ることが判る。 Here, “coverage” is the ratio of the total indentation area to the processing area expressed in%, and the amount of processing can be predicted by the size of the coverage. Therefore, from FIG. 23 and FIG. Then, it turns out that it is inferior in the amount of processing (cutting speed) compared with dry blasting.
 以上の通りである湿式ブラスト加工に対し,前述した特許文献1に記載のブラスト加工方法では,研磨材を噴射する圧縮気体に水分を添加することで,作業空間であるキャビネット内の湿度を上昇させ,これにより静電気の発生,及び静電気による被加工物表面やキャビネット内面に対する研磨材の付着を防止している。 In contrast to wet blasting as described above, the blasting method described in Patent Document 1 described above increases the humidity in the cabinet, which is the work space, by adding moisture to the compressed gas that injects the abrasive. This prevents the generation of static electricity and the adhesion of abrasives to the workpiece surface and cabinet inner surface due to static electricity.
 しかし,特許文献1に記載のブラスト加工装置において,水の添加は圧縮空気供給源とブラストノズル間に設けられた圧縮空気の供給配管内を流れる圧縮空気に対し行うものとなっており,この圧縮空気供給配管を流れる圧縮空気は,ブラストノズル内の細径の流路内を流れる圧縮空気に比較して流速が遅いため,圧縮空気導入管内に液体の状態で水を導入しても,この水は,圧縮空気流との衝突によって噴霧等されることなく液体の状態でブラストノズル内に導入されることとなり,研磨材を凝集させる等してブラストノズルの目詰まりを発生させてしまい,ブラスト加工装置が正常に動作しなくなる。 However, in the blast processing apparatus described in Patent Document 1, water is added to the compressed air flowing in the compressed air supply pipe provided between the compressed air supply source and the blast nozzle. The compressed air flowing through the air supply pipe has a slower flow velocity than the compressed air flowing through the small diameter flow path in the blast nozzle. Therefore, even if water is introduced into the compressed air introduction pipe, Is introduced into the blast nozzle in a liquid state without being sprayed due to collision with the compressed air flow, causing clogging of the blast nozzle by agglomerating the abrasive and causing blast processing. The device will not work properly.
 従って,特許文献1には水の添加方法に関する詳しい説明の記載はないが,圧縮空気導入管内を流れる圧縮空気に対し水を添加する場合には,このような目詰まりによる動作不良が生じないよう,特許文献2に記載されているように,水を超音波や加熱等の方法で水蒸気の状態として圧縮気体に添加することが必要で,このように水を水蒸気にするための機能を備えた水分付与機構を別途設ける必要があり,装置構成が複雑となると共に,高価となる。 Therefore, Patent Document 1 does not include a detailed description of the water addition method, but when water is added to the compressed air flowing in the compressed air introduction pipe, such a malfunction due to clogging does not occur. As described in Patent Document 2, it is necessary to add water to the compressed gas in the form of water vapor by a method such as ultrasonic wave or heating, and thus has a function to turn water into water vapor. It is necessary to provide a moisture providing mechanism separately, which makes the apparatus configuration complicated and expensive.
 なお,このように特許文献1,2に記載の方法では,ブラストノズルに導入される前の圧縮気体に対し水分を添加するものの,水分の添加を水蒸気(気体)の状態で行うことから,ブラストノズルより噴射される流体は「液体」を含まず,従って,特許文献1,2に記載の発明は水の添加によっても「乾式」のブラスト加工であることが維持される。 As described above, in the methods described in Patent Documents 1 and 2, although moisture is added to the compressed gas before being introduced into the blast nozzle, the moisture is added in the state of water vapor (gas). The fluid ejected from the nozzle does not contain “liquid”. Therefore, the inventions described in Patent Documents 1 and 2 are maintained to be “dry” blasting even by adding water.
 そのため,特許文献1,2に記載の方法では,被加工物の表面を濡らさずに加工を行うことができ,水との接触を嫌う被加工物に対しても適用可能であると共に,湿式のブラスト加工に比較して加工量(切削速度)が大きいというメリットがある。 Therefore, the methods described in Patent Documents 1 and 2 can perform processing without wetting the surface of the workpiece, and can be applied to a workpiece that dislikes contact with water. There is an advantage that the processing amount (cutting speed) is larger than blast processing.
 しかし,特許文献1,2に記載のブラスト加工方法において,供給する水の量が少なく,加工室内を十分に加湿することができなければ静電気の発生を十分に防止することができなくなる一方,飽和水蒸気量を超える水を供給すれば,作業空間内で結露して被加工物の表面やキャビネットの内壁を濡らすこととなり,静電気の発生は防止できるものの,乾式のブラスト加工としてのメリットが失われる。 However, in the blasting methods described in Patent Documents 1 and 2, if the amount of water to be supplied is small and the processing chamber cannot be sufficiently humidified, the generation of static electricity cannot be sufficiently prevented, but saturation occurs. Supplying water that exceeds the amount of water vapor will cause condensation in the work space and wet the surface of the workpiece or the inner wall of the cabinet, preventing the generation of static electricity but losing the benefits of dry blasting.
 そのため,特許文献1に記載のブラスト加工方法では,加工室内の湿度を検知し,必要な水分量を算出して水分の供給を行うものとしており,制御が極めて複雑であるために,装置構成も複雑で高価となる。 Therefore, in the blasting method described in Patent Document 1, the humidity in the processing chamber is detected, the necessary amount of moisture is calculated and moisture is supplied, and the control is extremely complicated. Complicated and expensive.
 以上で説明したように,特許文献1,2に記載の発明では,乾式のブラスト加工を維持し,従って,湿式のブラスト加工に比較して大加工量(高切削速度)を維持しつつ,静電気の発生防止という課題を解消することができるものとなっているが,そのためには,特別な装置構成の採用と,複雑な制御が必要となる。 As described above, the inventions described in Patent Documents 1 and 2 maintain dry blasting, and thus maintain a large machining amount (high cutting speed) compared to wet blasting, while maintaining static electricity. However, in order to do so, it is necessary to adopt a special device configuration and to perform complicated control.
 一方,特許文献3に記載されているように,湿式のブラスト加工では,比較的簡単な装置構成によって,複雑な制御を伴うことなく静電気の発生を大幅に低減することができるものの,被加工物を濡らしてしまうために,加工後の洗浄や乾燥が必要となり,これらの工程の追加が生産性を低下させるだけでなく,湿式のブラスト加工では,乾式のブラスト加工に比較して加工量(切削速度)の大幅な低下が生じるため,この点でも加工性や生産性が大きく劣るものとなっており,いずれの方法を採用する場合においても一長一短がある。 On the other hand, as described in Patent Document 3, in wet blasting, the generation of static electricity can be greatly reduced without complicated control by a relatively simple device configuration, but the workpiece In addition to reducing the productivity, the addition of these processes not only reduces the productivity but also reduces the amount of processing (cutting) compared to dry blasting. In this respect, workability and productivity are greatly inferior, and there are advantages and disadvantages in adopting either method.
 上記の点に鑑み,本発明の発明者は,加工量を犠牲とすることなく,静電気の発生を防止することのできるブラスト加工の実現を目指して鋭意研究を重ねた結果,水の供給をブラストノズルの噴射口直前で,微粒化した状態で行うと共に,添加する水の量を既知の湿式ブラストに比較して大幅に少ない所定の範囲に制限することで,静電気の発生を抑制することができるだけでなく,加工量の大幅な向上が得られることを見出した。 In view of the above points, the inventors of the present invention have conducted intensive research aimed at realizing a blasting process capable of preventing the generation of static electricity without sacrificing the processing amount. It is possible to suppress the generation of static electricity by performing atomization just before the nozzle outlet and limiting the amount of water added to a predetermined range that is significantly smaller than that of known wet blasting. Rather, it was found that the machining amount can be greatly improved.
 しかも,この加工方法で得られる加工量の増加は,湿式のブラスト加工との比較において増加するというだけでなく,驚くべきことに,乾式のブラスト加工との比較においても大幅に向上するものであると共に,更には,加工量の向上だけでなく,特許文献1からは予期し得ない,更に別の種々の効果についても重畳的に得られることが確認された。 Moreover, the increase in the processing amount obtained by this processing method is not only increased in comparison with wet blasting, but also surprisingly greatly improved in comparison with dry blasting. At the same time, it has been confirmed that not only the processing amount is improved, but also various other effects which cannot be expected from Patent Document 1 can be obtained in a superimposed manner.
 本発明は,鋭意研究の結果得られた発明者らの上記知見に基づき成されたもので,既存の乾式のブラスト加工装置に対し僅かな構造変更を加えるだけで適用でき,ブラスト加工中の静電気の発生を防止できるだけでなく,従来の湿式ブラストは勿論,乾式ブラストとの比較においても加工量(切削速度)の向上が得られるブラスト加工方法及びブラスト加工装置を提供することを目的とする。 The present invention was made on the basis of the above findings obtained by the inventors as a result of earnest research, and can be applied to the existing dry-type blasting machine with a slight structural change. An object of the present invention is to provide a blasting method and a blasting apparatus that can not only prevent the occurrence of the above-described problem but also improve the processing amount (cutting speed) in comparison with dry blasting as well as conventional wet blasting.
 以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と発明を実施するための形態の記載との対応を明らかにするためのものであり,言うまでもなく,本願発明の技術的範囲の解釈に制限的に用いられるものではない。 Hereinafter, means for solving the problem will be described together with reference numerals used in the embodiment for carrying out the invention. This code is used to clarify the correspondence between the description of the scope of claims and the description of the mode for carrying out the invention. Needless to say, it is used in a limited manner for the interpretation of the technical scope of the present invention. It is not a thing.
 上記目的を達成するための,本発明のブラスト加工方法は,
 被加工物に対しブラストノズル8を介して圧縮気体と共に研磨材を噴射するブラスト加工方法において,
 前記ブラストノズル8に対し水などの液体を導入し,該ブラストノズル8内を流れる圧縮気体,又は前記ブラストノズルより噴射された圧縮気体に前記液体を衝突させて微粒化し,該微粒化した液体を前記圧縮気体及び研磨材と共に噴射すると共に,
 前記ブラストノズル8に対する前記液体の導入量を0.06cc/min~150cc/minとすることを特徴とする(請求項1)。
In order to achieve the above object, the blasting method of the present invention comprises:
In a blasting method for injecting an abrasive together with a compressed gas through a blast nozzle 8 to a workpiece,
A liquid such as water is introduced into the blast nozzle 8, and the liquid is made to collide with the compressed gas flowing through the blast nozzle 8 or the compressed gas ejected from the blast nozzle to atomize the atomized liquid. Spraying with the compressed gas and abrasive,
The amount of the liquid introduced into the blast nozzle 8 is set to 0.06 cc / min to 150 cc / min (claim 1).
 なお上記液体としては,水道水,純水,精製水,アルカリイオン水等の所謂「水」の他,純水・硬水のスケール除去を目的として添加されるスケール除去剤,加工済み部分のマーキング等を目的として添加される塗料,蛍光塗料などを含むものであっても良い。 The above liquids include so-called “water” such as tap water, pure water, purified water, alkaline ionized water, scale remover added for the purpose of removing scale of pure water and hard water, marking of processed parts, etc. It may contain paints, fluorescent paints, etc. added for the purpose.
 また,前述したブラスト加工方法に使用する,本発明のブラスト加工装置1は,
 圧縮気体供給源(図示せず)から供給される圧縮気体流を研磨材との混合流体としてブラストノズル8より噴射するブラスト加工装置1において,
 前記ブラストノズル8に,一端を液体供給源(図示せず)に連通可能と成すと共に,他端を前記ブラストノズル8内の圧縮気体の流路内,又は前記ブラストノズル8の噴射口において開口し,前記液体供給源より導入された液体を,前記ブラストノズル8内を流れる圧縮気体流,又は前記ブラストノズル8より噴射された圧縮気体流と衝突させて微粒化する液体導入路88を設け,
 前記液体導入路88と前記液体供給源間に,流量調整弁7やポンプ等の流量制御手段を備えたことを特徴とする(請求項2)。
Moreover, the blasting apparatus 1 of the present invention used for the blasting method described above is:
In a blasting apparatus 1 for injecting a compressed gas flow supplied from a compressed gas supply source (not shown) from a blast nozzle 8 as a mixed fluid with an abrasive,
One end of the blast nozzle 8 can communicate with a liquid supply source (not shown), and the other end is opened in the flow path of the compressed gas in the blast nozzle 8 or in the injection port of the blast nozzle 8. A liquid introduction path 88 is provided for causing the liquid introduced from the liquid supply source to collide with a compressed gas flow flowing through the blast nozzle 8 or a compressed gas flow injected from the blast nozzle 8 to be atomized,
A flow rate control means such as a flow rate adjusting valve 7 or a pump is provided between the liquid introduction path 88 and the liquid supply source (Claim 2).
 上記構成のブラスト加工装置1において,前記ブラストノズル8が,圧縮気体供給源に連通するジェット83の噴射方向にノズル82を備え,前記ジェット83とノズル82間に研磨材供給源に連通する研磨材導入室85を備え,前記ジェット83からの圧縮気体流の噴射により前記研磨材導入室85内に負圧を生じさせて前記研磨材供給源の研磨材を吸引して混合流体として噴射する,サクション式のブラストノズルであり,
 前記液体導入路88の前記他端(先端88a)を,前記ジェット83内に設けた圧縮気体流路86内,又は該ジェット83の噴射口前方位置において開口する構成とすることができる(請求項3)。
In the blasting apparatus 1 configured as described above, the blast nozzle 8 includes a nozzle 82 in the jet direction of the jet 83 communicating with the compressed gas supply source, and an abrasive that communicates with the abrasive supply source between the jet 83 and the nozzle 82. A suction chamber including an introduction chamber 85, which generates a negative pressure in the abrasive introduction chamber 85 by injection of a compressed gas flow from the jet 83, sucks the abrasive from the abrasive supply source, and injects it as a mixed fluid; Type blast nozzle,
The other end (tip 88 a) of the liquid introduction path 88 can be configured to open in a compressed gas flow path 86 provided in the jet 83 or at a position in front of the jet port of the jet 83 (invention). 3).
 更に,上記構成のブラスト加工装置1において,前記液体導入路88を,前記ジェット83内に設けた前記圧縮気体流路86内に同心状に挿入した管路によって形成し,該液体導入路88の前記他端(先端88a)を,前記ジェット83の噴射口において開口した構成としても良い(請求項4)。 Further, in the blasting apparatus 1 having the above-described configuration, the liquid introduction path 88 is formed by a pipe line that is concentrically inserted into the compressed gas flow path 86 provided in the jet 83. It is good also as a structure which opened the said other end (front-end | tip 88a) in the injection outlet of the said jet 83 (Claim 4).
 なお,上記構成のブラスト加工装置1には,前記液体供給源の液体を,前記液体導入路88に対し定量供給する,ポンプなどの液体定量供給手段を設けるものとしても良い(請求項5)。 The blasting apparatus 1 having the above-described configuration may be provided with a liquid constant supply means such as a pump for supplying a constant amount of the liquid from the liquid supply source to the liquid introduction path 88 (Claim 5).
 以上で説明した本発明の構成により,本発明のブラスト加工方法及びブラスト加工装置によれば,以下の顕著な効果を得ることができた。 With the configuration of the present invention described above, the following remarkable effects can be obtained according to the blasting method and the blasting apparatus of the present invention.
 ブラストノズル8内を流れる圧縮気体,又はブラストノズル8より噴射された圧縮気体に水等の液体を衝突させて微粒化していることと,ブラストノズルに対する液体の導入量を0.06~150cc/minに制限したことから,微粒化した液体は,ブラストノズル8によって噴射された際の圧力低下,被加工物Wに対し研磨材が衝突した際に生じる発熱によって,ブラストノズル8と被加工物W間の空間,又は被加工物Wの表面において急速に蒸発して水蒸気となることから,これにより加工室21内の湿度を上昇させることができ,静電気の発生を防止することができた。 A liquid such as water collides with the compressed gas flowing through the blast nozzle 8 or the compressed gas injected from the blast nozzle 8, and the amount of liquid introduced into the blast nozzle is 0.06 to 150 cc / min. Therefore, the atomized liquid is reduced between the blast nozzle 8 and the workpiece W due to a pressure drop when sprayed by the blast nozzle 8 and heat generated when the abrasive material collides with the workpiece W. In this space, or in the surface of the workpiece W, the water rapidly evaporates to become water vapor, so that the humidity in the processing chamber 21 can be increased and the generation of static electricity can be prevented.
 しかも,このような静電気の発生防止に拘わらず,被加工物Wを濡らさず,又は,被加工物を濡らしたとしても既知の湿式ブラストに比較して濡れの程度が少ないことから,本発明のブラスト加工方法では,給水条件の調整により水との接触を嫌う材質の被加工物等に対しても適用可能であると共に,加工後に洗浄や乾燥等の工程を新たに追加する必要がない。 In addition, despite the prevention of the occurrence of static electricity, the workpiece W is not wetted, or even if the workpiece is wetted, the degree of wetting is less than that of known wet blasting. The blasting method can be applied to workpieces and the like that dislike contact with water by adjusting the water supply conditions, and there is no need to add new steps such as washing and drying after processing.
 更に,本発明のブラスト加工方法では,前述した静電気の発生防止という効果に加え,既知の乾式ブラスト加工方法で得られる以上の加工量(切削速度)の向上という効果を筆頭に,被加工物の表面に対する研磨材の刺さりの防止,研磨材の消費量の減少,切削速度や塗膜,バリ等の除去効率の向上,被加工物の伸びや反りの発生減少、被加工物の温度上昇を低下させることによる製品の焦げ減少等といった,予想を越えた新たな効果を得ることができた。 Furthermore, in the blasting method of the present invention, in addition to the effect of preventing the generation of static electricity as described above, the effect of improving the processing amount (cutting speed) more than that obtained by the known dry blasting method is first mentioned. Prevents abrasive material from sticking to the surface, reduces consumption of abrasive material, improves cutting speed, removal efficiency of coating film, burrs, etc., reduces the elongation and warpage of the workpiece, reduces the temperature rise of the workpiece We were able to obtain new effects beyond expectations, such as reducing the burning of the product.
 このような切削速度の上昇等の効果が得られる原因は定かではないが,おそらく,圧縮気体流との衝突によって微粒化された状態で噴霧された液体が,ブラストノズルを出た際の急激な圧力低下により更にマイクロミスト化し,研磨材との衝突によって発熱した被加工物との接触によって被加工物の前面空間,あるいは被加工物の表面において急激に蒸発すること,この蒸発の際に周囲の空気や被加工物の表面から大量の気化熱を奪うこと(噴霧冷却)により得られる効果であると考えられる。 The reason why such an effect such as an increase in the cutting speed is obtained is not clear, but it is likely that the liquid sprayed in the state of being atomized by the collision with the compressed gas flow is abrupt when it exits the blast nozzle. Micro-mist is further reduced by the pressure drop, and suddenly evaporates in the front space of the work piece or on the surface of the work piece due to contact with the work piece generated by collision with the abrasive. This is considered to be an effect obtained by taking a large amount of heat of vaporization from the surface of the air or workpiece (spray cooling).
 すなわち,前述した効果のうち,一例として加工量(切削速度)の向上という点について考えると,湿式のブラスト加工が乾式のブラスト加工に比較して加工量(切削速度)が低くなる原因の一つとして,研磨材と共に噴射された水が,被加工物の表面に水膜を形成し,この水膜が被加工物の表面に衝突しようとする研磨材の衝突エネルギーを吸収してしまうことが考えられる。 That is, considering the improvement of the machining amount (cutting speed) as an example of the effects described above, wet blasting is one of the reasons why the machining amount (cutting speed) is lower than dry blasting. It is considered that water sprayed with the abrasive forms a water film on the surface of the workpiece, and this water film absorbs the collision energy of the abrasive that tries to collide with the surface of the workpiece. It is done.
 しかし,本発明の方法では,微粒化して噴射された液体は,前述したようにブラストノズル8を出ると素早く蒸発するために,被加工物を濡らさず,又は,被加工物の表面を濡らしたとしても,既知の湿式ブラストに比較して濡れの程度は少ないことから,乾式のブラスト加工と同様の衝突エネルギーを維持できる結果,液体の噴射によっても大きな加工量を維持できたものと考えられる。 However, in the method of the present invention, the atomized liquid jetted quickly as it exits the blast nozzle 8 as described above, so that it did not wet the workpiece or wet the surface of the workpiece. However, since the degree of wetting is less than that of known wet blasting, it is possible to maintain the same collision energy as dry blasting, and as a result, a large amount of processing can be maintained even by liquid injection.
 一方,乾式のブラスト加工との比較では,乾式ブラスト加工では研磨材の衝突によって被加工物の表面温度が上昇し,この温度上昇が被加工物の表面を軟化させて研磨材の衝突エネルギーを吸収することが,切削速度の低下の一因となっているものと考えられる。 On the other hand, in comparison with dry blasting, in dry blasting, the surface temperature of the workpiece rises due to the collision of the abrasive, and this temperature increase softens the surface of the workpiece and absorbs the collision energy of the abrasive. This is thought to contribute to the reduction in cutting speed.
 これに対し本発明の方法では,前述した噴霧冷却によって被加工物の表面温度の上昇が抑制され,被加工物の表面硬度が維持された状態で加工が行われる結果,乾式ブラスト加工との比較においても加工量(切削速度)の向上が得られたものと考えられる。 On the other hand, in the method of the present invention, the increase in the surface temperature of the workpiece is suppressed by the above-described spray cooling, and the processing is performed in a state where the surface hardness of the workpiece is maintained. It is considered that the amount of machining (cutting speed) was also improved.
 以上で説明した本発明のブラスト加工方法は,既存の乾式のブラスト加工装置の構成に対し,前述した液体の噴射を可能とするブラストノズル8への交換と,ブラストノズル8に対し液体の供給を行う液体供給源及びブラストノズル8に対する液体の供給量を制御する,流量調整弁7やポンプ等の流量制御手段の追加という比較的簡単な構造変更によって実現することができた。 In the blasting method of the present invention described above, the above-described configuration of an existing dry blasting apparatus is replaced with the above-described blast nozzle 8 that enables liquid injection, and liquid is supplied to the blast nozzle 8. This can be realized by a relatively simple structural change such as addition of a flow rate control means such as a flow rate adjusting valve 7 or a pump for controlling the liquid supply source to be performed and the liquid supply amount to the blast nozzle 8.
 また,ブラストノズル8のジェット83に設けた前記圧縮気体流路86内に同心状に挿入した管路を前記液体導入路88とし,該管路88の他端(先端88a)を,前記ジェット83の噴射口で開口する構成とした構成では,ジェット83からの圧縮気体の噴射によって生じる負圧によって,液体導入路88を介した液体の導入を行うことが可能であり,別途,ポンプなどの液体を供給するための手段を設ける必要が無く,また,ブラストノズル8に対する圧縮気体の導入開始,導入停止に伴って,液体の導入開始,導入停止が連動して行われるために,液体の供給を開始及び停止するための,別途の手段を設ける必要が無く,しかも,ブラストノズル8のジェット83のみの交換によって既存設備の利用が可能である。 Further, a pipe inserted concentrically into the compressed gas flow path 86 provided in the jet 83 of the blast nozzle 8 is used as the liquid introduction path 88, and the other end (tip 88a) of the pipe 88 is connected to the jet 83. In the configuration that opens at the injection port, it is possible to introduce the liquid through the liquid introduction path 88 by the negative pressure generated by the injection of the compressed gas from the jet 83. Separately, a liquid such as a pump is used. It is not necessary to provide a means for supplying the liquid, and since the introduction and stop of the liquid are performed in conjunction with the start and stop of the introduction of the compressed gas to the blast nozzle 8, the supply of the liquid is performed. There is no need to provide a separate means for starting and stopping, and the existing equipment can be used by replacing only the jet 83 of the blast nozzle 8.
 もっとも,液体導入路88に対し液体供給源の液体を定量供給するポンプ等の定量供給手段を設ける構成を採用しても良く,この場合には,ブラストノズル8に対する液体の導入位置についての設計の自由度が増すと共に,液体をより安定して確実に供給することができる。 Of course, a configuration may be adopted in which a constant supply means such as a pump for supplying the liquid from the liquid supply source to the liquid introduction path 88 is provided. In this case, the design of the liquid introduction position with respect to the blast nozzle 8 may be adopted. As the degree of freedom increases, the liquid can be supplied more stably and reliably.
本発明のブラスト加工装置の一構成例を示す説明図。Explanatory drawing which shows the example of 1 structure of the blast processing apparatus of this invention. 本発明のブラスト加工装置に設けたブラストノズルの断面図。Sectional drawing of the blast nozzle provided in the blast processing apparatus of this invention. ブラストノズル(サクション式)に対する液体導入位置の説明図。Explanatory drawing of the liquid introduction position with respect to a blast nozzle (suction type). ブラストノズル(直圧式)に対する液体導入位置の説明図。Explanatory drawing of the liquid introduction position with respect to a blast nozzle (direct pressure type). 本発明のブラスト加工装置に設けた別のブラストノズルの断面図。Sectional drawing of another blast nozzle provided in the blast processing apparatus of this invention. 給水量の変化に対する加工量の変化(ボロン板)を示したグラフ。The graph which showed the change (boron board) of the processing amount with respect to the change of water supply amount. 給水量の変化に対する加工量の変化(超硬板)を示したグラフ。The graph which showed the change (carbide board) of the processing amount with respect to the change of water supply amount. 給水量の変化に対する加工量の変化(ウレタンゴム板)を示したグラフ。The graph which showed the change (urethane rubber board) of the processing amount with respect to the change of water supply amount. 給水量の変化に対する加工量の変化(アルミ板)を示したグラフ。The graph which showed the change of the amount of processing (aluminum board) with respect to the change of the amount of water supply. 給水量の変化に対する加工量の変化(ステンレス板)を示したグラフ。The graph which showed the change of the amount of processing (stainless steel board) with respect to the change of the amount of water supply. 給水量の変化に対する加工量の変化(鉄板)を示したグラフ。The graph which showed the change (steel plate) of the processing amount with respect to the change of water supply amount. 給水量の変化に対する加工量の変化(アクリル板)を示したグラフ。The graph which showed the change (acrylic board) of the processing amount with respect to the change of water supply amount. 給水量の変化に対する加工量の変化(エポキシガラス板)を示したグラフ。The graph which showed the change (epoxy glass board) of the processing amount with respect to the change of water supply amount. 給水量の変化に対する加工量の変化(御影石)を示したグラフ。The graph which showed the change (granite) of the processing amount with respect to the change of the amount of water supply. 給水量の変化に対する研磨材の突き刺さり量の変化(ウレタンゴム)を示したグラフ。The graph which showed the change (urethane rubber) of the amount of piercing of the abrasives with respect to the change of the amount of water supply. 給水量の変化に対する研磨材の突き刺さり量の変化(ステンレス)を示したグラフ。The graph which showed the change (stainless steel) of the amount of sticking of an abrasives with respect to the change of the amount of water supply. 給水量の変化に対する研磨材の突き刺さり量の変化(鉄)を示したグラフ。The graph which showed the change (iron) of the amount of piercing of the abrasives with respect to the change of the amount of water supply. 給水量の変化に対する研磨材の突き刺さり量の変化(アクリル)を示したグラフ。The graph which showed the change (acrylic) of the amount of sticking of an abrasive | polishing material with respect to the change of water supply amount. 給水量の変化に対する研磨材の突き刺さり量の変化(エポキシガラス)を示したグラフ。The graph which showed the change (epoxy glass) of the amount of stabs of the abrasives with respect to the change of the amount of water supply. 本発明のブラスト加工方法(実施例)で使用した後の研磨材と,乾式のブラスト加工方法(比較例)で使用した研磨材の粒子構造を撮影した写真。The photograph which image | photographed the particle structure of the abrasives used by the blasting method (Example) of this invention, and the abrasives used by the dry-type blasting method (comparative example). ブラスト加工で塗膜を剥離した後のポリカーボネイト製品の表面粗さデータであり,(A)は本願の方法で処理したもの(実施例),(B)は乾式ブラストで処理したもの(比較例)。It is the surface roughness data of the polycarbonate product after peeling the coating film by blasting, (A) is processed by the method of the present application (Example), (B) is processed by dry blasting (Comparative Example) . ブラスト加工でバリ取り処理をした後のポリフェニレンサンファイド製品の表面粗さデータであり,(A)は本願の方法で処理したもの(実施例),(B)は乾式ブラストで処理したもの(比較例)。Data of surface roughness of polyphenylene sanfide product after deburring by blasting, (A) is processed by the method of the present application (Example), (B) is processed by dry blasting (comparison) Example). ノズル距離の変化に対するカバレージ100%となる迄の時間の変化を示した相関図。The correlation diagram which showed the change of time until it becomes 100% of coverage with respect to the change of nozzle distance. 研磨材の粒径変化に対するカバレージ100%となる迄の時間の変化を示した相関図。The correlation figure which showed the change of time until it becomes 100% of coverage with respect to the particle size change of an abrasives.
 次に,本発明の実施形態につき添付図面を参照しながら以下説明する。 Next, embodiments of the present invention will be described below with reference to the accompanying drawings.
1.ブラスト加工装置
(1)全体構成
 本発明のブラスト加工装置1の一構成例を図1に示す。
1. Blast Processing Device (1) Overall Configuration FIG. 1 shows a configuration example of the blast processing device 1 of the present invention.
 このブラスト加工装置1は,図1に示すように,図示せざる圧縮気体供給源と,研磨材供給源である研磨材タンク3,及び,圧縮気体供給源より導入された圧縮気体と前記研磨材タンク3からの研磨材を合流させて噴射するブラストノズル8を備えており,図示の実施形態では圧縮気体供給源からの圧縮気体,本実施形態にあっては圧縮空気を導入することでブラストノズル8内に生じた負圧によって,研磨材タンク3からの研磨材が吸引され圧縮気体流と合流し,被加工物Wに対し噴射される,所謂「サクション式」のブラスト加工装置として構成されている。 As shown in FIG. 1, the blast processing apparatus 1 includes a compressed gas supply source (not shown), an abrasive tank 3 as an abrasive supply source, and a compressed gas introduced from the compressed gas supply source and the abrasive. A blast nozzle 8 is provided for merging and injecting abrasives from the tank 3. In the illustrated embodiment, a blast nozzle is introduced by introducing compressed gas from a compressed gas supply source, in this embodiment, compressed air. 8 is configured as a so-called “suction type” blasting device in which the abrasive material from the abrasive material tank 3 is sucked by the negative pressure generated in the air 8, merged with the compressed gas flow, and injected to the workpiece W. Yes.
 図示の実施形態にあっては,このブラストノズル8を収容するキャビネット2内に形成された加工室21と,加工室21の下端に形成されたホッパに研磨材回収管91を介して連通した,サイクロンである前述の研磨材タンク3と,前記研磨材タンク3内を吸引するダストコレクタ5を備え,ダストコレクタ5に設けられた排風機6を作動してサイクロンである研磨材タンク3内を吸引しつつ加工室21内に収容されたブラストノズル8より研磨材を噴射すると,噴射された研磨材が切削粉等と共に研磨材回収管91を介して研磨材タンク3に導入され,研磨材タンク3内における風力選別により,再使用可能な研磨材は研磨材タンク3の底部に回収されると共に,破砕した研磨材や粉塵は,ダストコレクタ5に吸引されて除去されるように構成されており,研磨材を循環使用することができるようになっている。 In the illustrated embodiment, a processing chamber 21 formed in the cabinet 2 that accommodates the blast nozzle 8 and a hopper formed at the lower end of the processing chamber 21 communicated with each other through an abrasive recovery pipe 91. The above-mentioned abrasive tank 3 that is a cyclone and a dust collector 5 that sucks the inside of the abrasive tank 3 are provided, and the exhaust fan 6 provided in the dust collector 5 is operated to suck the inside of the abrasive tank 3 that is a cyclone. However, when the abrasive is sprayed from the blast nozzle 8 accommodated in the processing chamber 21, the sprayed abrasive is introduced into the abrasive tank 3 through the abrasive recovery pipe 91 together with the cutting powder and the like, and the abrasive tank 3 The reusable abrasive is collected at the bottom of the abrasive tank 3 by the wind sorting inside, and the crushed abrasive and dust are sucked into the dust collector 5 and removed. It is configured, so that it can be recycled abrasive.
 もっとも,ブラスト加工装置1の基本構成は,このようにして研磨材を循環使用する循環型の構成に限定されず,例えば使用後の研磨材を再使用せずに1回限りで使い捨てる,バッチ式の構成とすることもでき,この場合,切削粉等の粉塵と研磨材とを風力選別するために設けている構成を省略して,ダストコレクタ5で加工室21内の使用後の研磨材や粉塵を共に除去・回収するようにしても良い。 However, the basic configuration of the blast processing apparatus 1 is not limited to the circulation type configuration in which the abrasive is circulated in this way. For example, the blast processing apparatus 1 is a single-use disposable batch without reusing the used abrasive. In this case, the configuration provided for the wind separation of the dust such as cutting powder and the abrasive is omitted, and the abrasive after use in the processing chamber 21 by the dust collector 5 is omitted. Or dust may be removed and collected together.
 また,図示の例では,ブラスト加工装置をサクション式として構成するものとして説明したが,例えば加圧タンク内の圧縮気体と研磨材を共にブラストノズルに導入して噴射する,直圧式のブラスト加工装置に対し,本願発明を適用することも可能であり,ブラスト加工装置の基本構成については,既知のブラスト加工装置で採用されている各種の構造を採用可能である。 In the illustrated example, the blasting apparatus is described as being configured as a suction type. For example, a direct pressure type blasting apparatus that introduces and injects both compressed gas and abrasive in a pressurized tank into a blast nozzle. On the other hand, the present invention can be applied, and various structures employed in known blasting apparatuses can be adopted as the basic configuration of the blasting apparatus.
 本発明のブラスト加工装置1では,前述したブラストノズル8内に,液体,本実施形態では水を導入すると共に,この水を,ブラストノズル8内を流れる圧縮気体流と衝突させて平均粒径1mm以下,好ましくは300μm以下,より好ましくは100μm以下に微粒化し,この微粒化された液体を,被加工物Wに噴射される直前の圧縮気体に混入させており,これにより,被加工物Wに対し研磨材と共に微粒化した液体を噴霧することができるようになっている。 In the blasting apparatus 1 of the present invention, liquid, in this embodiment, water is introduced into the blast nozzle 8 described above, and this water is collided with a compressed gas flow flowing in the blast nozzle 8 to have an average particle diameter of 1 mm. In the following, the atomized liquid is preferably atomized to 300 μm or less, more preferably 100 μm or less, and the atomized liquid is mixed into the compressed gas immediately before being injected to the workpiece W. On the other hand, the atomized liquid can be sprayed together with the abrasive.
 このように,被加工物Wに向けて噴射する圧縮気体に微粒化した液体を混入可能とするために,本発明のブラスト加工装置1は,前述したブラストノズル8に対し液体(水)を供給するための,図示せざる液体供給源を設けると共に,前記液体供給源より供給された水をブラストノズル8の内部に導入する液体導入路88をブラストノズル8に設け,更に,前述の液体供給源と前記ブラストノズル8の液体導入路88間を連通する管路中に,流量調整弁7やポンプから成る流量制御手段を設けている。 As described above, the blasting apparatus 1 of the present invention supplies the liquid (water) to the blast nozzle 8 described above so that the atomized liquid can be mixed into the compressed gas injected toward the workpiece W. For this purpose, a liquid supply source (not shown) is provided, a liquid introduction path 88 for introducing water supplied from the liquid supply source into the blast nozzle 8 is provided in the blast nozzle 8, and the liquid supply source described above is further provided. A flow rate control means including a flow rate adjusting valve 7 and a pump is provided in a pipe line communicating between the liquid introduction path 88 of the blast nozzle 8.
(2)ブラストノズル
 本発明のブラスト加工装置1に設けたブラストノズル8の構成例を図2に示す。
(2) Blast Nozzle FIG. 2 shows a configuration example of the blast nozzle 8 provided in the blast processing apparatus 1 of the present invention.
 図2に示すブラストノズル8は,既存のサクション式のブラストノズルが備える基本構造を備えるもので,ブラストノズル8の本体部分を成すボディ81と,前記ボディ81に取り付けられるノズル82及びジェット83によって構成されている。 The blast nozzle 8 shown in FIG. 2 has a basic structure provided in an existing suction type blast nozzle, and is constituted by a body 81 constituting a main body portion of the blast nozzle 8, a nozzle 82 attached to the body 81, and a jet 83. Has been.
 前述のボディ81は,研磨材の供給源である研磨材タンク3より供給された研磨材を導入する研磨材導入口84と,この研磨材導入口84に連通して形成された略円筒容器状の研磨材導入室85を内部に備えている。 The body 81 has a substantially cylindrical container shape formed in communication with the abrasive material introduction port 84 for introducing the abrasive material supplied from the abrasive material tank 3 which is a supply source of the abrasive material. The abrasive introduction chamber 85 is provided inside.
 このボディ81に取り付けられる前述のノズル82は,円錐状に絞られた円錐内面82aを有し,前述のボディ81の前端側にこのノズル82を取り付けることで,ボディ81内に形成された研磨材導入室85と,前記円錐内面82aを備えたノズル内の流路とが連通するように構成されている。 The nozzle 82 attached to the body 81 has a conical inner surface 82a constricted in a conical shape. By attaching the nozzle 82 to the front end side of the body 81, an abrasive formed in the body 81 is provided. The introduction chamber 85 and the flow path in the nozzle provided with the conical inner surface 82a are configured to communicate with each other.
 そして,ボディ81の後端側には,先端をノズル82の円錐内面82aの中心に向けてジェット83が取り付けられており,図示せざる圧縮気体供給源からの圧縮気体をこのジェット83より噴射すると,このジェット83による圧縮気体の噴射によって生じた負圧によって研磨材導入室85内に研磨材タンク3からの研磨材が吸い込まれると共に,この研磨材がジェット83より噴射された圧縮気体と合流して,ノズル82の先端より噴射できるようになっている点は,既知のサクション式のブラストノズル8と構成を共通とする。 A jet 83 is attached to the rear end side of the body 81 so that the tip is directed toward the center of the conical inner surface 82a of the nozzle 82. When a compressed gas is supplied from a compressed gas supply source (not shown), The abrasive material from the abrasive material tank 3 is sucked into the abrasive material introduction chamber 85 by the negative pressure generated by the jet gas compressed by the jet 83, and this abrasive material joins the compressed gas ejected from the jet 83. Thus, the point that it can be injected from the tip of the nozzle 82 has the same configuration as the known suction type blast nozzle 8.
 本発明のブラスト加工装置1で使用するブラストノズル8にあっては,前述したように液体を微粒化して噴霧することができるようにするために,液体供給源(図示せず)からの液体をブラストノズル8に導入するための液体導入路88を備えており,この液体導入路88の先端88aを,ブラストノズル8内に設けた圧縮気体の流路,例えば,ジェット83内に設けた圧縮気体の流路86,又は,ジェット83の吐出口前方,更にはブラストノズルの噴射口で開口して,ブラストノズル8内を流れる高速の圧縮気体流,又はブラストノズル8から噴射された高速の圧縮気体流に液体を衝突させることにより,液体を微粒化して噴霧できるようにしている。 In the blast nozzle 8 used in the blasting apparatus 1 of the present invention, the liquid from the liquid supply source (not shown) is supplied so that the liquid can be atomized and sprayed as described above. A liquid introduction path 88 for introduction into the blast nozzle 8 is provided, and a distal end 88a of the liquid introduction path 88 is provided with a compressed gas flow path provided in the blast nozzle 8, for example, a compressed gas provided in the jet 83. The high-speed compressed gas flow that flows through the blast nozzle 8 or the high-speed compressed gas that is jetted from the blast nozzle 8 is opened in front of the discharge port of the jet 83 or in front of the discharge port of the jet 83 and further at the injection port of the blast nozzle. By making the liquid collide with the flow, the liquid can be atomized and sprayed.
 なお,本発明では,前述の液体導入路88の先端88aから吐出された液体を高速の圧縮気体流に衝突させて微粒化させることについて,液体の微粒化がより好適に行われるように,液体導入路88の先端88aの開口にメッシュ材を設置させても良い。これにより,液体導入路88から供給される液体がこのメッシュ材を通過して一度微粒化された後,さらに,高速の圧縮気体流に衝突することで液体の微粒化がより好適に行われる。 In the present invention, the liquid ejected from the tip 88a of the liquid introduction path 88 is made to collide with the high-speed compressed gas flow and atomize, so that the liquid can be atomized more suitably. You may install a mesh material in opening of the front-end | tip 88a of the introduction path 88. FIG. Thereby, after the liquid supplied from the liquid introduction path 88 passes through the mesh material and is once atomized, the liquid is further atomized by colliding with the high-speed compressed gas flow.
 本発明に使用される前記メッシュ材は特に限定されず,例えば,金属又は樹脂からなる線材を網目状に編むことにより全体として平板状に形成したものや,プレ-トに微細孔を穿けて形成したものなど種々のものを使用できる。 The mesh material used in the present invention is not particularly limited. For example, the mesh material is formed as a whole by knitting a wire made of metal or resin into a mesh shape, or by forming fine holes in a plate. Various things can be used.
 図2に示す実施形態にあっては,この液体導入路88となる管路を,ジェット83に形成された圧縮気体流路86内に同心状に配置し,圧縮気体流路86の内壁と液体導入路88の外壁間に圧縮気体が流れるようにすると共に,この液体導入路88の先端88aを,ジェット83の開口部と同一位置において開口し,液体導入路88の先端88aから出た液体を,その外周側を流れる高速,高圧の圧縮気体流と衝突させて微粒化させている。 In the embodiment shown in FIG. 2, the conduit that becomes the liquid introduction channel 88 is concentrically disposed in the compressed gas channel 86 formed in the jet 83, and the inner wall of the compressed gas channel 86 and the liquid The compressed gas is allowed to flow between the outer walls of the introduction path 88, the tip 88 a of the liquid introduction path 88 is opened at the same position as the opening of the jet 83, and the liquid discharged from the tip 88 a of the liquid introduction path 88 is removed. , It is atomized by colliding with a high-speed, high-pressure compressed gas flow that flows on the outer periphery.
 このように構成することで,本実施形態のブラスト加工装置1にあっては,研磨材導入室85内に生じる負圧によって液体導入路88の先端88aより液体が吸引されて圧縮気体流と合流されることから,液体タンク等の液体供給源(図示せず)からの液体をブラストノズル8内に供給するための,ポンプ等の液体定量供給装置を設けることなしにブラストノズル8内で液体の微粒化を行うことができると共に,ブラストノズル8に対する圧縮気体の導入開始,停止に連動して,液体供給源からの液体の導入も自動に開始,停止することから,液体の供給忘れや,供給停止を忘れることによる液垂れ等が生じない。 With this configuration, in the blast processing apparatus 1 of this embodiment, the liquid is sucked from the tip 88a of the liquid introduction path 88 due to the negative pressure generated in the abrasive introduction chamber 85, and merges with the compressed gas flow. Therefore, the liquid is supplied in the blast nozzle 8 without providing a liquid fixed quantity supply device such as a pump for supplying the liquid from a liquid supply source (not shown) such as a liquid tank into the blast nozzle 8. In addition to being able to atomize, the introduction of liquid from the liquid supply source automatically starts and stops in conjunction with the start and stop of the introduction of compressed gas to the blast nozzle 8. No dripping or the like due to forgetting to stop.
 なお,このように液体を圧縮気体流と衝突させる構成としては,図2に示す構成に限定されず,既知の各種のガスブラスト式の二流体ノズル(アトマイザー)の構成をジェット83の構成に適用するものとしても良く,また,ブラストノズル内に対する液体の導入は,前述したように研磨材導入室内の負圧を利用して行う構成に代えて,例えばポンプ等の液体定量導入手段を液体供給源であるタンク内や,液体供給源とブラストノズル間の配管中に設けることによって行うものとしても良い。 The configuration in which the liquid collides with the compressed gas flow is not limited to the configuration shown in FIG. 2, and various known gas blast type two-fluid nozzle (atomizer) configurations are applied to the jet 83 configuration. In addition, the liquid introduction into the blast nozzle may be performed by using a liquid metering means such as a pump instead of the configuration using the negative pressure in the abrasive introduction chamber as described above. It is good also as what is performed by providing in the inside of the tank which is or in piping between a liquid supply source and a blast nozzle.
 ブラストノズル8に対する液体の供給位置は,図2に示した位置とは異なる位置で行っても良く,サクション式のブラストノズルに対する液体の導入位置としては,一例として図5に示すように,ブラストノズル8のジェット83先端部外周に,前述の液体導入路88となる空間を形成すると共に,この空間をジェット83の先方向に向けて開口し,液体導入路88内に液体を導入すると,この導入された液体が,ジェット83より噴射された圧縮気体の外周を包むように噴射されることで,液体を高速,高圧の圧縮気体流と衝突させて微細化するものとしても良い。 The liquid supply position for the blast nozzle 8 may be different from the position shown in FIG. 2, and as an example of the liquid introduction position for the suction type blast nozzle, as shown in FIG. 8 is formed in the outer periphery of the front end of the jet 83, and the liquid introduction path 88 is formed. The space is opened in the forward direction of the jet 83, and the liquid is introduced into the liquid introduction path 88. The liquid thus injected may be sprayed so as to wrap around the outer periphery of the compressed gas injected from the jet 83 so that the liquid collides with a high-speed, high-pressure compressed gas flow to be refined.
 更には,図3に示すように,研磨材導入室85やブラストノズル8の噴射口の形成位置において液体導入路88の先端88aを開口し,圧縮気体流によって発生する負圧によって液体導入路88内の液体を吸引させてブラストノズル8内を流れる圧縮気体流,あるいはブラストノズル8より噴射された圧縮気体流と衝突させるように構成しても良く,又は,ジェット83内に形成された圧縮気体の流路やノズル82内に形成された圧縮気体の流路内に,液体供給源の液体をポンプによって定量供給するようにしても良く,図2,図5を参照して説明した液体の導入位置に代え,又は図2,図5を参照して説明した液体の導入位置と共に,図3に示す液体の導入位置のいずれか一又は複数箇所から液体を導入するようにしても良い。 Furthermore, as shown in FIG. 3, the tip 88a of the liquid introduction path 88 is opened at the position where the abrasive introduction chamber 85 and the blast nozzle 8 are formed, and the liquid introduction path 88 is generated by the negative pressure generated by the compressed gas flow. It may be configured to cause the liquid in the cylinder to be sucked and collide with the compressed gas flow flowing in the blast nozzle 8 or the compressed gas flow injected from the blast nozzle 8, or the compressed gas formed in the jet 83 The liquid of the liquid supply source may be quantitatively supplied by a pump into the compressed gas flow path formed in the flow path or the nozzle 82, and the liquid introduction described with reference to FIGS. Instead of the position, or together with the liquid introduction position described with reference to FIGS. 2 and 5, the liquid may be introduced from any one or a plurality of positions of the liquid introduction position shown in FIG.
 また,直圧式のブラストノズルに対する液体の導入位置としては,図4に示すように,ブラストノズル8の噴射口の形成位置において液体導入路88の先端88aを開口し,圧縮気体の噴射に伴い発生する負圧によって液体導入路88内の液体を吸引させてブラストノズル8より噴射された圧縮気体と衝突させるように構成しても良く,又は,ブラストノズル本体81’内に設けられたジェット83’内の圧縮気体流路,又はブラストノズル8の先端に取り付けられたノズル82’内に形成された圧縮気体流路内で液体導入路88の先端88aを開口し,液体供給源からの液体をポンプによってブラストノズル88内に導入するものとしても良く,このうちのいずれか1箇所,又は複数箇所を介して液体の導入を行うことができる。 Further, as shown in FIG. 4, the liquid introduction position for the direct pressure type blast nozzle is generated when the tip 88a of the liquid introduction path 88 is opened at the position where the injection port of the blast nozzle 8 is formed and the compressed gas is injected. The liquid in the liquid introduction path 88 may be sucked by a negative pressure to collide with the compressed gas ejected from the blast nozzle 8, or a jet 83 ′ provided in the blast nozzle body 81 ′. The leading end 88a of the liquid introduction path 88 is opened in a compressed gas passage formed in the nozzle 82 ′ attached to the tip of the blast nozzle 8 or the inside of the blast nozzle 8 to pump the liquid from the liquid supply source. May be introduced into the blast nozzle 88, and the liquid can be introduced through any one of these or a plurality of locations.
 なお,液体供給源から液体導入路88に至る管路には,液体導入管88に対して導入される液体の流量を制御する流量制御手段を設け,ブラストノズル8に対し導入される液体の量を調整可能としている。 Note that a flow rate control means for controlling the flow rate of the liquid introduced into the liquid introduction pipe 88 is provided in the pipe line extending from the liquid supply source to the liquid introduction path 88, and the amount of liquid introduced into the blast nozzle 8. Can be adjusted.
 本実施形態にあっては,負圧の発生位置において先端88aを開口した液体導入路88と液体供給源間の管路には,この流量制御手段として流量調整弁7を設けている。本実施形態にあってはこの流量調整弁7として開度を8段階に調整可能なものを使用したが,無段階に開度を調整可能なものを使用しても良く,液体の流量を調整可能なものであれば各種の弁を使用することができる。 In the present embodiment, the flow rate adjusting valve 7 is provided as a flow rate control means in the pipe between the liquid introduction path 88 having the tip 88a opened at the position where the negative pressure is generated and the liquid supply source. In the present embodiment, the flow rate adjusting valve 7 has an opening that can be adjusted in eight steps. However, a valve that can adjust the opening steplessly may be used to adjust the flow rate of the liquid. Various valves can be used if possible.
 また,負圧の発生位置以外の位置に先端88aを開口した液体導入路88と液体供給源間には,前述の流量制御手段としてポンプを設け,このポンプの運転速度,例えばポンプを駆動するモータの回転速度の制御によって,ブラストノズル8に対する液体の供給量を制御可能としている。 Also, a pump is provided as the above-described flow rate control means between the liquid introduction path 88 having the tip 88a opened at a position other than the position where the negative pressure is generated and the liquid supply source. The amount of liquid supplied to the blast nozzle 8 can be controlled by controlling the rotation speed.
 なお,液体導入路88の先端88aを負圧の発生位置において開口した場合においても,液体導入路88と液体供給源との間にポンプを設ける構成を採用しても良く,また,ポンプを設けた構成においてもポンプの二次側に流量調整弁を設け,これによりブラストノズル8に導入される液体の流量を調整するものとしても良い。 Even when the leading end 88a of the liquid introduction path 88 is opened at the position where the negative pressure is generated, a configuration in which a pump is provided between the liquid introduction path 88 and the liquid supply source may be employed. In this configuration, a flow rate adjusting valve may be provided on the secondary side of the pump so that the flow rate of the liquid introduced into the blast nozzle 8 is adjusted.
 更には,液体供給源として液体タンク等の容器を設けることなく,液体導入路88を上水道の取水口(蛇口)に連通して,上水道を液体供給源とすることもでき,この場合,上水道の給水圧力を利用して液体導入路88に対し液体を導入することで,前述したポンプの設置を省略することもできる。 Furthermore, without providing a container such as a liquid tank as a liquid supply source, the liquid introduction path 88 can be communicated with a water supply intake (faucet) so that the water supply can be used as a liquid supply source. By introducing the liquid into the liquid introduction path 88 using the feed water pressure, the above-described installation of the pump can be omitted.
2.作用等
 以上のように構成された図1に示すブラスト加工装置1に,図2に示すブラストノズル8を設けた場合を例にとりその動作を説明すると,以下の通りである。
2. The operation of the blast processing apparatus 1 shown in FIG. 1 configured as described above is provided with the blast nozzle 8 shown in FIG. 2 as an example.
 研磨材供給源である研磨材タンク3内に研磨材を投入すると共に,液体供給源である図示せざる液体タンク内に水等の液体を充填し,この状態で,ブラストノズル8に対し図示せざる圧縮気体供給源からの圧縮気体の導入を開始する。 The abrasive is supplied into the abrasive tank 3 as an abrasive supply source, and a liquid tank (not shown) as a liquid supply source is filled with a liquid such as water. In this state, the abrasive tank 3 is illustrated with respect to the blast nozzle 8. The introduction of compressed gas from the compressed gas supply source is started.
 このようにして,圧縮気体の導入を開始すると,ブラストノズル8のジェット83先端からは高速の圧縮気体が噴射されることにより,ノズル82内には噴射口方向に向かう高速の気流が発生する。 In this way, when the introduction of the compressed gas is started, a high-speed compressed gas is ejected from the tip of the jet 83 of the blast nozzle 8 to generate a high-speed air flow in the nozzle 82 in the direction of the ejection port.
 そのため,このような圧縮気体の流れに引かれ,ノズル82内に研磨材導入室85内の気体が吸引される結果,研磨材導入室85内が負圧となって,研磨材導入口84を介して研磨材タンク3からの研磨材が研磨材導入室85内に導入されると共に,この負圧は液体導入路88の先端88aより液体導入路88内の液体を吸い出し,吸い出された液体は,ジェット83より吹き出した高速の圧縮気体によって微粒化して圧縮気体中に混入すると共に,研磨材と共に圧縮気体中に混合されて,ブラストノズル8より噴霧される。 Therefore, the gas in the abrasive material introduction chamber 85 is sucked into the nozzle 82 by such a compressed gas flow, and as a result, the pressure in the abrasive material introduction chamber 85 becomes negative and the abrasive material introduction port 84 is opened. Then, the abrasive from the abrasive tank 3 is introduced into the abrasive introduction chamber 85, and this negative pressure sucks out the liquid in the liquid introduction path 88 from the tip 88a of the liquid introduction path 88, and the sucked liquid. Are atomized by the high-speed compressed gas blown out from the jet 83 and mixed into the compressed gas, mixed with the abrasive material in the compressed gas, and sprayed from the blast nozzle 8.
 本発明のブラスト加工方法において,好適な研磨材の噴射量は2g/min~20kg/minであり,これに対し,ブラストノズル8に対する液体の導入量は,0.06cc~150cc/minと比較的少量であること,及び,研磨材とともに噴射される液体は,ブラストノズル8内を流れる高速の圧縮気体との衝突によって微粒化され,ブラストノズル8より噴霧されることから,ブラストノズル8から噴射された圧縮気体の圧力が急激に低下することや,研磨材との衝突によって被加工物の表面が発熱していること等とも相俟って,噴霧された液体はブラストノズル8と被加工物W間の空間,あるいは,被加工物Wの表面において蒸発し,該空間及び被加工物Wの表面から大量の気化熱を奪う。 In the blasting method of the present invention, a suitable abrasive injection amount is 2 g / min to 20 kg / min. On the other hand, the amount of liquid introduced into the blast nozzle 8 is relatively 0.06 cc to 150 cc / min. Since the amount of the liquid is small and the liquid sprayed together with the abrasive is atomized by the collision with the high-speed compressed gas flowing in the blast nozzle 8 and sprayed from the blast nozzle 8, the liquid is sprayed from the blast nozzle 8. The sprayed liquid is combined with the blast nozzle 8 and the workpiece W in combination with a sudden drop in the pressure of the compressed gas and the surface of the workpiece being heated due to the collision with the abrasive. The space evaporates in the space or the surface of the workpiece W, and a large amount of heat of vaporization is taken from the space and the surface of the workpiece W.
 その結果,本発明の方法でブラスト加工を行う場合,前記液体の蒸発に伴う湿度の増加によって静電気の発生が防止できるのみならず,液体の噴霧を伴わない,一般的なブラスト加工に比較して,切削速度の向上,塗膜やバリの除去効率の向上,被加工物Wの表面に対する研磨材の突き刺さりの防止,被加工物の反りや伸びの発生防止等の効果が得られるものと考えられる。 As a result, when performing blasting by the method of the present invention, not only can the generation of static electricity be prevented due to the increase in humidity accompanying the evaporation of the liquid, but also compared with general blasting that does not involve liquid spraying. , It is considered that effects such as improvement of cutting speed, removal efficiency of coating film and burrs, prevention of abrasive sticking to the surface of the workpiece W, prevention of warpage and elongation of the workpiece, etc. .
 すなわち,本発明の方法では,水の噴射を行うものの,噴射された水は前述のように素早く蒸発することから,被加工物の表面を濡らさず,又は濡らしたとしても,その程度は,既知の湿式のブラスト加工の場合に比較して僅かであり,研磨材の衝突エネルギーを吸収する水膜が被加工物の表面に形成されることが抑制されている。 That is, in the method of the present invention, water is jetted, but the jetted water evaporates quickly as described above. Therefore, even if the surface of the workpiece is not wetted, the degree is known. The amount of water film that absorbs the collision energy of the abrasive is suppressed from being formed on the surface of the workpiece.
 一方,前述した水膜の形成は抑制されるものの,噴霧された水は蒸発する際に多量の気化熱を奪うことから,被加工物の表面温度の上昇が抑えられ,その結果,被加工物の表面,除去対象となる被加工物表面に形成された塗膜,バリ等の軟化による研磨材の衝突エネルギーの吸収が抑制される結果,このような軟化が生じ得る乾式のブラスト加工に比較した場合においても加工量の向上や,塗膜やバリの除去効率の向上が得られるものと考えられる。 On the other hand, although the formation of the water film described above is suppressed, since the sprayed water loses a large amount of heat of vaporization when it evaporates, the increase in the surface temperature of the work piece is suppressed. Compared to dry blasting, which can cause such softening as a result of suppressing the absorption of collision energy of abrasives due to softening of the surface of the workpiece, the coating film formed on the surface of the workpiece to be removed, burrs, etc. Even in this case, it is considered that the processing amount can be improved and the removal efficiency of the coating film and burrs can be improved.
 また,前述の研磨材の突き刺さりも,同様に,被加工物の表面が温度上昇と共に軟化することで,噴射された研磨材が被加工物の表面に突き刺さり易くなるために生じるものと考えられる。 Further, it is also considered that the above-described piercing of the abrasive is caused because the surface of the workpiece is softened with the temperature rise, so that the injected abrasive is likely to pierce the surface of the workpiece.
 更に,製品の寸法安定性を低下させる伸びや反りも,被加工物の温度上昇による伸び,表裏面における伸びの相違により反りが生じるものと考えられる。 Furthermore, the elongation and warpage that reduce the dimensional stability of the product are also considered to be caused by the difference in elongation due to the temperature rise of the work piece and the front and back surfaces.
 従って,本発明の方法でブラスト加工を行い,被加工物の濡れと温度上昇を抑制できたことにより,上記の効果が得られたものと考えられる。 Therefore, it is considered that the above effect was obtained by performing blasting by the method of the present invention and suppressing the wetting of the workpiece and the temperature rise.
 なお,本発明のブラスト加工方法では,原理は不明であるが液体を噴霧することなく行った従来のブラスト加工に比較して,回収した研磨材の割れや欠けが少なく,研磨材の消耗率についても低減できることが確認されている。 In the blasting method of the present invention, the principle is unknown, but the recovered abrasive is less cracked or chipped than the conventional blasting performed without spraying the liquid, and the wear rate of the abrasive is reduced. It has been confirmed that it can also be reduced.
 このように,本発明のブラスト加工方法では,加工時に静電気が帯電することにより生じるスパークの発生を有効に防止することができ,製品,特に電子部品等の製品自体の破損,欠損を無くすことができ,また,製品に設けられた電極等の破損についても無くすことができた。 As described above, the blasting method of the present invention can effectively prevent the occurrence of sparks caused by static electricity during processing, and can eliminate the damage and loss of products such as products, especially electronic parts. It was also possible to eliminate the damage to the electrodes provided in the product.
 また,製品の帯電が防止されるだけでなく,研磨材やキャビネットの内壁,ダクトの内壁等の研磨材の循環系内における静電気による帯電についても防止することができることから,キャビネット2内や研磨材タンク3内に対する研磨材の付着防止,サイクロン型の研磨材タンク3内に付着する研磨材に,旋回流中の研磨材が衝突することで,回収されずに集塵機に流れる研磨材量の低下による回収効率の向上等の効果も得ることもできた。 In addition to preventing the product from being charged, it is also possible to prevent static electricity from being charged in the circulating system of abrasives, the inner wall of the cabinet, the inner wall of the duct, and the like. Abrasion material is prevented from adhering to the inside of the tank 3, and the abrasive material adhering to the cyclone type abrasive tank 3 collides with the abrasive material in the swirling flow, thereby reducing the amount of abrasive material flowing into the dust collector without being recovered. Effects such as improvement in recovery efficiency could also be obtained.
 加えて,本発明のブラスト加工方法では,静電気の発生防止という効果のみならず,一般的な乾式ブラスト加工との比較において加工量の向上,塗膜やバリの除去効率の向上、表面粗さの低下,焦げ等に伴う変色の防止,ブラスト加工後に行う塗装やめっきに際しコンタミとなる研磨材の突き刺さりの防止,製品の寸法安定性を低下させる被加工物の反りや伸びの発生防止等の効果が得られるという,従来技術からは予測できない優れた効果を得ることができた。 In addition, the blasting method of the present invention not only has the effect of preventing the generation of static electricity, but also improves the processing amount, improves the removal efficiency of the coating film and burrs, and improves the surface roughness in comparison with general dry blasting. Effects such as prevention of discoloration due to deterioration and scoring, prevention of sticking of abrasives that become contaminants during coating and plating after blasting, prevention of warpage and elongation of workpieces that reduce dimensional stability of the product, etc. It was possible to obtain an excellent effect that cannot be predicted from the prior art.
 本発明のブラスト加工方法について,前述した効果が得られることの確認試験を行った結果を以下に示す。 The results of the confirmation test that the above-described effects can be obtained for the blasting method of the present invention are shown below.
 なお,ブラスト加工装置としては,乾式ブラスト加工(比較例)及び本発明のブラスト加工(実施例)共にサクション式のブラスト加工装置を使用して行い(構造の概略については図1参照),液体(水)の供給を行いながらブラストする本願のブラスト加工(実施例)では,ブラストノズルとして図2を参照して説明したようにジェット83の圧縮気体流路86中に液体導入路88を備えたもの,又は,図5を参照して説明したように,ジェット83の先端部外周に液体導入路88となる室を設けたもののいずれかを使用し,一方,乾式のブラスト加工(比較例)については,図2及び図5に記載のノズルに水を供給することなく研磨材を噴射して測定するか,又は,一般的なジェットを備えたブラストノズル(図2に示す構造ブラストノズルのジェット83から液体導入路88を除去した構造のもの)を使用してブラスト加工を行い測定した。 As a blasting apparatus, both dry blasting (comparative example) and blasting of the present invention (example) are performed using a suction type blasting apparatus (see FIG. 1 for an outline of the structure) and liquid ( In the blasting process (example) of the present application in which blasting is performed while supplying water), the blast nozzle is provided with the liquid introduction path 88 in the compressed gas flow path 86 of the jet 83 as described with reference to FIG. Or, as described with reference to FIG. 5, either one having a chamber that becomes a liquid introduction path 88 on the outer periphery of the tip of the jet 83 is used, while dry blasting (comparative example) 2 and FIG. 5 are measured by spraying an abrasive without supplying water, or a blast nozzle having a general jet (the structural blast shown in FIG. 2). Was measured it performs blasting using something from nozzle jet 83 of the removed structure of the liquid introducing path 88).
(1)帯電防止効果の確認
 アクリル板(100×100×5mm)に対しブラスト加工を行った際の帯電量を測定した。
(1) Confirmation of antistatic effect The amount of charge when an acrylic plate (100 × 100 × 5 mm) was blasted was measured.
 研磨材として,不二製作所製のナイロンビーズ(NB)♯0303(平均粒径300μm)を使用し,ノズル距離を160mm,噴射圧力0.3MPa,噴射時間を40分間として研磨材の噴射を行った。 Nylon beads (NB) # 0303 (average particle size 300 μm) manufactured by Fuji Seisakusho were used as the abrasive, and the abrasive was sprayed at a nozzle distance of 160 mm, an injection pressure of 0.3 MPa, and an injection time of 40 minutes. .
 加工は,図1に示す構造の循環式のブラスト加工装置に,図2を参照して説明したブラストノズルを装着して行い,ブラストノズル8に対する水の導入量を調整する流量調整弁7を全閉の状態から徐々に開いて給水量を増やしていき,アクリル板の帯電量の変化(測定器:3M製709STATIC SENSORを使用),加工室内の温度と湿度の変化を測定すると共に,加工室内の様子を観察した。測定結果を表1に示す。 The processing is performed by attaching the blast nozzle described with reference to FIG. 2 to the circulation type blast processing apparatus having the structure shown in FIG. 1 and installing the flow rate adjusting valve 7 for adjusting the amount of water introduced into the blast nozzle 8. It gradually opens from the closed state to increase the amount of water supply, changes in the charge amount of the acrylic plate (measuring instrument: using 3M 709STATICORSENSOR), changes in temperature and humidity in the processing chamber, and The state was observed. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上の結果から,流量調整弁7を全閉として無給水で行った乾式ブラストにおける帯電量に対し,0.06cc/minという僅かな給水を行っただけで帯電量が40%以上低下することが確認されており,比較的少量の水の噴霧によっても高い静電気の発生防止効果が得られることが確認された。 From the above results, the amount of charge can be reduced by 40% or more just by supplying a small amount of water of 0.06 cc / min with respect to the amount of charge in dry blasting performed with no water supply with the flow control valve 7 fully closed. It has been confirmed that high static electricity prevention effects can be obtained even by spraying a relatively small amount of water.
 その後,給水量を増やすにつれて帯電量は更に減少し,15.0cc/minで,無給水時の帯電量に対し90%以上の低下が見られた。 After that, the charge amount further decreased as the water supply amount was increased, and at 15.0 cc / min, a decrease of 90% or more was observed with respect to the charge amount when no water supply was made.
 また,流量調整弁7を全閉として無給水で行ったブラスト加工では,ブラスト加工後のキャビネット内は,被加工物の表面,キャビネットの内壁,ゴムホースやブラストノズルの表面等の至る所に研磨材が付着したものとなっていたが,本発明の方法でブラスト加工を行った後のキャビネット内には,壁面の段差部等に対する,研磨材の堆積は確認できたものの,静電気による研磨材の付着は確認することができなかった。 Also, in blasting with no flow of water with the flow control valve 7 fully closed, the blasted cabinet has an abrasive material all over the surface of the workpiece, the inner wall of the cabinet, the surface of the rubber hose and blast nozzle, etc. In the cabinet after blasting by the method of the present invention, although the accumulation of the abrasive on the stepped part of the wall surface was confirmed, the abrasive was adhered due to static electricity. Could not be confirmed.
(2)加工量(切削速度)増加の確認
(2-1) 給水量の変化に対する加工量変化の測定
 図2に示すブラストノズルを使用し,流量調整弁の開度を調整して,ブラストノズルに対する給水量を変化させると共に,ワークの加工量(切削量)の変化を測定した。
(2) Confirmation of increase in machining volume (cutting speed)
(2-1) Measurement of change in machining amount with respect to change in water supply amount Using the blast nozzle shown in Fig. 2 and adjusting the opening of the flow control valve, the water supply amount to the blast nozzle is changed and the workpiece machining amount is also changed. Changes in (cutting amount) were measured.
 測定は,噴射距離を120mm,研磨材をアルミナ研磨材〔不二製作所製「フジランダム A♯60」を使用し,噴射圧力を0.4MPaとして,下記の表2に示す材質のテストピースに対し,同表2に示した条件で加工を行い,加工前後における試験片の重量を測定して,減量を切削量として求めた。 The measurement was performed on a test piece made of the material shown in Table 2 below, using an injection distance of 120 mm, an abrasive material of alumina abrasive (“Fuji Random A # 60” manufactured by Fuji Seisakusho, and an injection pressure of 0.4 MPa). Then, machining was performed under the conditions shown in Table 2, and the weight of the test piece before and after machining was measured, and the weight loss was determined as the cutting amount.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 各テストピースに対する測定結果を,表3~11,及び図6~14に示す。なお,表3~11において減量比は,無給水での加工時における減量に対する比を示す。 Measured results for each test piece are shown in Tables 3 to 11 and FIGS. In Tables 3 to 11, the weight loss ratio indicates the ratio to the weight loss during processing with no water supply.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 以上の結果,いずれの材質のテストピースに対して加工を行った場合においても,水の供給を行うことなくブラスト処理を行った場合(比較例)に比較して,切削量の増大が得られることが確認できた。 As a result of the above, even when the test piece of any material is processed, the amount of cutting can be increased compared to the case where the blasting process is performed without supplying water (comparative example). I was able to confirm.
 この切削量の増大は,水の供給量を増やすに従い増大するが,ある程度まで切削量が増大すると,給水量を増やしても更なる増大は生じずに横這いとなった。 The increase in the amount of cutting increases as the amount of water supplied increases, but when the amount of cutting increases to some extent, the increase in water supply leveled off without further increase.
 このことから,本発明のブラスト加工方法のように,研磨材と共に比較的少量の液体を噴射することで,前述した帯電防止効果のみならず,加工量の増大という,予期しない効果が得られることが確認できた。 For this reason, as in the blasting method of the present invention, by ejecting a relatively small amount of liquid together with the abrasive, not only the antistatic effect described above, but also the unexpected effect of increasing the processing amount can be obtained. Was confirmed.
 しかも,このような効果は,被加工物の材質に拘わらず得られる効果であることが確認できた。 Moreover, it was confirmed that such an effect was obtained regardless of the material of the workpiece.
 (2-2) 研磨材の変更に対する加工量増加効果の確認
 図5に示したブラストノズルを使用してジルコングリッド(不二製作所製「FZG 60」(粒径0.125~0.250mm)を噴射してステンレス製のテストピース(SUS304)を加工した結果と,アルミナ製の研磨材(不二製作所製「フジランダムA ♯60」(平均粒径230μm)を噴射してテストピースを加工した結果を,それぞれ表12,13に示す。
(2-2) Confirmation of processing volume increase effect due to change of abrasive material Zircon grid ("FZG 60" manufactured by Fuji Seisakusho (particle size 0.125 to 0.250mm)) using the blast nozzle shown in Fig. 5 The result of processing a test piece made of stainless steel by spraying and the result of processing a test piece by spraying an abrasive material made of alumina (“Fuji Random A # 60” (average particle size 230 μm) manufactured by Fuji Seisakusho Are shown in Tables 12 and 13, respectively.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 上記の結果から,研磨材としてジルコングリッド(FZG-60)を使用した場合,アルミナ製の研磨材(不二製作所製「フジランダムA ♯60」(粒径250~212μm))を使用した場合のいずれにおいても,加工量の増大が確認されており,本願で得られる加工量の増加という効果が,使用する研磨材の種類を変更した場合であっても変わらずに得られる効果であることが確認された。 From the above results, when zircon grid (FZG-60) is used as an abrasive, an alumina abrasive (“Fuji Random A # 60” (particle size 250 to 212 μm) manufactured by Fuji Seisakusho) is used. In any case, an increase in the processing amount has been confirmed, and the effect of increasing the processing amount obtained in the present application is an effect that can be obtained without change even when the type of abrasive used is changed. confirmed.
 加工量の増大は,ジルコングリッド(FZG-60)の使用で1.5倍以上,アルミナ研磨材(不二製作所製「フジランダムA ♯60」)の使用で1.3~1.4倍であり,大幅な加工量の増大が得られることが確認できた。 The increase in the processing amount is 1.5 times or more when using zircon grid (FZG-60), and 1.3 to 1.4 times when using alumina abrasive (“Fuji Random A # 60” manufactured by Fuji Seisakusho). It was confirmed that a significant increase in the processing amount was obtained.
(3)研磨材突き刺さり状態の確認
 前掲の「(2)」「(2-1)給水量の変化に対する加工量変化の測定」で加工したテストピースのうち,ウレタンゴム板,ステンレス板,鉄板,アクリル板,エポキシガラス板の加工箇所中心の成分を,EDX(エネルギー分散型X線分析)装置(Oxford社製 INCA Energy)を使用して測定し,使用したアルミナ研磨材(不二製作所製「フジランダムA ♯60」)の主成分であるアルミニウムの質量濃度をテストピースに対する研磨材の突き刺さり量として評価した。
(3) Confirmation of the state of abrasive piercing Among the test pieces processed in “(2)” and “(2-1) Measurement of changes in processing amount with respect to changes in water supply” above, urethane rubber plates, stainless steel plates, iron plates, The component at the center of the processed part of the acrylic plate and epoxy glass plate was measured using an EDX (energy dispersive X-ray analysis) apparatus (INC Energy manufactured by Oxford) and the alumina abrasive used (Fuji Manufacturing “Fuji” The mass concentration of aluminum, which is a main component of random A # 60 "), was evaluated as the amount of abrasive piercing the test piece.
 測定結果を,表14~18及び図15~19に示す。なお,表14~18において,Al質量濃度比は,無給水でのAl質量濃度に対する比を示す。 The measurement results are shown in Tables 14 to 18 and FIGS. In Tables 14 to 18, the Al mass concentration ratio indicates the ratio to the Al mass concentration with no water supply.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 以上の結果から,液体の供給を行うことで,無給水でブラスト加工を行う場合に比較して,研磨材の刺さり込みが減少することが確認された。 From the above results, it was confirmed that by supplying the liquid, the piercing of the abrasive was reduced as compared with the case of blasting without water supply.
 なお,既知のウェットブラスト法で加工を行う場合においても,研磨材の刺さり込み量を減少することはできるが,前述したように既知のウェットブラストでは,乾式のブラスト加工に比較して,切削量の減少が生じるものであり,加工性との両立を行い得るものとはなっていなかった。 In addition, even when processing by the known wet blast method, it is possible to reduce the amount of abrasive stab, but as described above, the known wet blasting method requires less cutting than dry blasting. However, it was not possible to achieve both workability and workability.
 これに対し,本願の方法では,前述したように,従来のウェットブラストとの比較においてのみならず,無給水でのブラスト加工との比較においても切削量の向上が得られるものでありながら,同時に研磨材の刺さり込みを防止することができるという,予測し得ない効果が得られるものとなっている。 In contrast, in the method of the present application, as described above, not only in comparison with conventional wet blasting, but also in comparison with blasting without water supply, an improvement in cutting amount can be obtained simultaneously. An unpredictable effect of preventing the abrasive material from being stuck can be obtained.
(4)研磨材の消耗量と粒度の測定結果
 図2に示したブラストノズルを使用した本発明のブラスト加工方法(実施例),及び,既知のブラストノズル(図2のブラストノズルから液体導入路88を省略した構造のもの)を使用した乾式ブラスト加工方法(比較例)により,研磨材としてジルコンビーズ(不二製作所製「FZB-60」(平均粒径200μm)を使用してSUS304製の試験片に対し噴射圧力0.5MPaでブラスト加工を行い,ブラスト加工後の研磨材の消耗量を測定すると共に,研磨材の粒子の状態を観察した。
(4) Abrasive consumption and particle size measurement results The blasting method of the present invention (Example) using the blast nozzle shown in FIG. 2 and a known blast nozzle (from the blast nozzle of FIG. 2 to the liquid introduction path) Tests made of SUS304 using zircon beads (FZB-60 manufactured by Fuji Seisakusho (average particle size 200 μm) as an abrasive by dry blasting method (comparative example) using a structure with 88 omitted) The piece was blasted at an injection pressure of 0.5 MPa, the consumption of the abrasive after blasting was measured, and the state of the abrasive particles was observed.
 噴射は,連続噴射方式(図1に示す研磨材循環型のブラスト加工装置)にて行い,測定開始当初にブラスト加工装置の研磨材タンク内に投入した研磨材の重量と,回収された研磨材の重量をそれぞれ測定し,減少分の重量を消耗量として評価した。 The injection is performed by a continuous injection method (abrasive circulating type blasting apparatus shown in FIG. 1), and the weight of the abrasive put into the abrasive tank of the blasting apparatus at the beginning of measurement and the recovered abrasive The weight of each was measured, and the weight of the decrease was evaluated as the consumption.
 ブラスト加工時間は45分で,本発明のブラスト加工方法における水の導入量は6cc/minである。 The blasting time is 45 minutes, and the amount of water introduced in the blasting method of the present invention is 6 cc / min.
 上記による研磨材消耗量の測定結果を表19に,使用後の研磨材の粒子の状態を図20にそれぞれ示す。 Table 19 shows the measurement results of the abrasive consumption, and FIG. 20 shows the state of the abrasive particles after use.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 以上の結果から,本発明のブラスト加工方法では,既知の乾式ブラスト加工方法に比較して,研磨材の消耗量が減少していることが確認された。 From the above results, it was confirmed that in the blasting method of the present invention, the consumption amount of the abrasive was reduced as compared with the known dry blasting method.
 また,回収された研磨材の粒度(図20参照)の観察結果から,本発明のブラスト加工方法を行った後の研磨材に比較して,乾式のブラスト加工方法で使用した後の研磨材の方が破砕の進行が速く粒径が小さくなっており,この点でも研磨材の消耗に大きな差があることが確認された。  Further, from the observation result of the particle size (see FIG. 20) of the recovered abrasive, the abrasive after use in the dry blasting method is compared with the abrasive after performing the blasting method of the present invention. However, it was confirmed that the crushing progressed faster and the particle size was smaller.
(5)被加工物の表面温度の測定
(5-1) 熱電対による温度測定
 噴射距離を100mm,噴射圧力を0.3MPaと0.5MPaとし,研磨材としてジルコビーズ(不二製作所製「FZB-400」:粒径<0.05mm)を使用して,15mm×15mm×0.5mmの銅板に研磨材を噴射して銅板の温度変化を測定した。
(5) Measurement of surface temperature of workpiece
(5-1) Temperature measurement with thermocouple Spray distance is 100mm, spray pressure is 0.3MPa and 0.5MPa, and Zirco beads (FZB-400 made by Fuji Seisakusho: particle size <0.05mm) are used as abrasives. Then, the abrasive was sprayed onto a 15 mm × 15 mm × 0.5 mm copper plate, and the temperature change of the copper plate was measured.
 温度の測定は,銅板の裏面に熱電対型の温度計を取り付けて温度変化を読み取り可能とした状態で,図2のブラストノズルを使用して給水量を変化させながら数秒間に亘り研磨材の噴射を行い,研磨材の噴射中に表示された最も高い温度を測定値として採用した。測定結果を表20に示す。 The temperature is measured by attaching a thermocouple thermometer to the back of the copper plate and making the temperature change readable. Using the blast nozzle shown in FIG. The highest temperature displayed during the injection of the abrasive was used as the measured value. Table 20 shows the measurement results.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 上記の結果から,本発明のブラスト加工方法によれば,乾式ブラスト加工方法で加工する場合に比較して,被加工物の温度上昇を大幅に低下させることができることが確認された。 From the above results, it was confirmed that according to the blasting method of the present invention, the temperature rise of the workpiece can be greatly reduced as compared with the case of processing by the dry blasting method.
(5-2) 発熱状態の確認
 上記の試験で測定された温度は,あくまでも数秒間という極めて短時間の噴射で,且つ,処理対象とした銅板の裏面における温度を測定したものであり,研磨材の衝突が生じている表面側の温度上昇は,瞬間的に被加工物の表面を軟化させる程のより高温となっていることが予想される。
(5-2) Confirmation of heat generation The temperature measured in the above test is a very short time of spraying for a few seconds, and the temperature at the back of the copper plate to be treated is measured. It is expected that the temperature rise on the surface side where the collision occurs is so high that the surface of the workpiece is softened instantaneously.
 そこで,本発明のブラスト加工方法と,乾式のブラスト加工方法における被加工物の表面温度の相違を感覚的に判り易く捉えるため,PC(ポリカーボネイト)製の樹脂製品の塗膜剥離と,PPS(ポリフェニレンサンファイド)製樹脂製品のバリ取り処理に,本発明のブラスト処理と,既知の乾式ブラスト処理を適用して,加工状態を比較した。 Therefore, in order to grasp the difference in the surface temperature of the workpiece between the blasting method of the present invention and the dry blasting method in an easy-to-understand manner, the coating film peeling of the resin product made of PC (polycarbonate) and the PPS (polyphenylene) The processing state was compared by applying the blasting treatment of the present invention and the known dry blasting treatment to the deburring treatment of the resin product made of (Sanphide).
 なお,PC製の樹脂製品の塗膜剥離は,図2に示すブラストノズルを使用して高純度アルミナ研磨材(不二製作所製「フジランダム WA ♯600」)を加工圧力0.4MPa,ノズル距離70mmで噴射して行い,本発明の方法(実施例)においては5cc/minの給水量で,比較例においては無給水にて加工を行った。 In addition, the coating film peeling of the resin product made from PC uses a blast nozzle as shown in FIG. 2 to apply a high-purity alumina abrasive (“Fuji Random WA WA # 600” manufactured by Fuji Seisakusho) to a processing pressure of 0.4 MPa and a nozzle distance. Injecting at 70 mm, processing was performed with a water supply amount of 5 cc / min in the method (Example) of the present invention, and with no water supply in the comparative example.
 また,PPS(ポリフェニレンサンファイド)製樹脂製品のバリ取り処理は,図2に示すブラストノズルを使用して,ナイロンビーズ(不二製作所製「FNB -0303」)を加工圧力0.4MPa,ノズル距離20~30mmで噴射し,本発明の方法(実施例)においては3cc/minの給水量で,比較例においては無給水にて加工を行った。 In addition, PPS (polyphenylene sunfide) resin products are deburred using the blast nozzle shown in Fig. 2, using nylon beads ("FNB -0303" manufactured by Fuji Seisakusho) with a working pressure of 0.4 MPa and a nozzle distance. Injection was performed at 20 to 30 mm, and processing was performed with a water supply amount of 3 cc / min in the method of the present invention (Example), and with no water supply in the comparative example.
 塗膜剥離後のPC製品の表面粗さを測定した結果を図21に,バリ取り後のPPS製品の表面粗さを測定した結果を図22にそれぞれ示す。 The result of measuring the surface roughness of the PC product after peeling the coating film is shown in FIG. 21, and the result of measuring the surface roughness of the PPS product after deburring is shown in FIG.
 いずれの処理結果においても,本発明の方法で処理した樹脂製品〔図21(A),図22(A)参照〕は,乾式で行った比較例の樹脂製品〔図21(B),図22(B)〕に比較して表面の粗れが少ないことが判り,この結果から,乾式のブラスト加工では,発熱による軟化によって大きな変形を受けたものと考えられる。 In any of the treatment results, the resin product treated by the method of the present invention [see FIGS. 21A and 22A] is a resin product of a comparative example performed in a dry process [FIG. 21B and FIG. It can be seen that the surface roughness is less than that of (B)], and it is considered from this result that the dry blasting process was greatly deformed by softening due to heat generation.
 また,乾式ブラストによって処理がされた樹脂製品では,表面が焦げによって黒っぽく変色していたのに対し,本発明の方法で加工がされた樹脂製品にあっては,このような焦げの発生は確認できず,この点からも,本発明の方法では,被加工物の発熱が好適に防止できていることが確認できた。 In addition, the surface of the resin product treated by dry blasting turned dark due to scorching, whereas the resin product processed by the method of the present invention confirmed the occurrence of such scoring. In view of this, it was confirmed that the method of the present invention suitably prevented heat generation of the workpiece.
 なお,このような焦げの発生は,樹脂製品に対し処理を行う場合のみならず,アルミ等の金属製品に対する処理を行った場合にも同様に生じるものであったが,本発明の方法では,このような金属製品に対する処理においても焦げの発生を防止できるものであった。 In addition, the occurrence of such a burn occurred not only when processing a resin product, but also when processing a metal product such as aluminum, but in the method of the present invention, Even in the treatment of such metal products, the occurrence of scorching could be prevented.
 更に,乾式ブラスト加工では,11~12秒かかった塗膜の剥離が,本発明の方法では6~7秒に短縮されており,本発明のブラスト加工を行う場合には,塗膜の除去効率の向上が得られることが確認できた。 Further, in the dry blasting process, the peeling of the coating film which took 11 to 12 seconds is shortened to 6 to 7 seconds in the method of the present invention. When the blasting process of the present invention is performed, the removal efficiency of the coating film is reduced. It was confirmed that improvement of
 なお,このような効果は,母材が樹脂だけではなく、アルミニウム合金・マグネシウム合金・亜鉛合金・真鍮合金・鉄等などの金属表面の塗装剥がしでも同じ効果が確認された。 It should be noted that this effect was confirmed not only for the resin as the base material but also for the paint stripping of metal surfaces such as aluminum alloy, magnesium alloy, zinc alloy, brass alloy, and iron.
 また,バリ取り処理にあっては,乾式ブラストでは取れなかったバリについてまで,本発明のブラスト加工では除去することができており,バリ取り処理に使用した際にも本発明のブラスト加工が有効であることが確認された。 In the deburring process, even burrs that could not be removed by dry blasting can be removed by the blasting process of the present invention, and the blasting process of the present invention is also effective when used for the deburring process. It was confirmed that.
 このような相違は,乾式のブラスト加工では被加工物の表面温度が上昇して,塗膜やバリが軟化することで研磨材の衝突時の衝撃を吸収してしまい剥離や除去が行われ難くなるのに対し,本発明の方法では,被加工物の表面が冷却されることで塗膜やバリの軟化が抑制され,塗膜やバリが硬い(従って脆い)状態を維持する結果,研磨材の衝突によって剥離や除去が行われ易いことが原因であると考えられる。 The difference is that in dry blasting, the surface temperature of the workpiece rises, and the coating film and burrs soften to absorb the impact when the abrasive material collides, making peeling and removal difficult. On the other hand, in the method of the present invention, the surface of the workpiece is cooled, so that the softening of the coating film and burrs is suppressed, and the coating film and burrs are kept hard (and therefore brittle). It is thought that this is because peeling and removal are easily performed due to the collision.
 (6)反りの発生状態の確認
 図2に示したブラストノズルを使用し,研磨材としてジルコンショット(不二製作所製「FZB-425」(0.425~0.60mm平均粒径513μm))を使用してアルメンストリップ(Aストリップ)に対する加工を行った。
(6) Checking the state of warpage Using the blast nozzle shown in Fig. 2 and using a zircon shot (FZB-425, manufactured by Fuji Seisakusho (0.425 to 0.60 mm average particle size 513 μm)) as an abrasive. Processing on an almen strip (A strip) was performed.
 加工圧力は0.3MPa,0.5MPaの2種類で行い,加工時間を20秒とし,給水量を変化させてアークハイト値(試験片の湾曲高さ)を測定し,これを「反り」として評価した。測定結果を表21に示す。 The processing pressure is 0.3MPa and 0.5MPa, the processing time is 20 seconds, the water supply amount is changed, and the arc height value (curved height of the test piece) is measured. evaluated. Table 21 shows the measurement results.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 以上の結果,本発明の方法でブラスト加工を行う場合には,被加工物に対し生じる反りについても僅かに減少させることができることが確認された。 From the above results, it was confirmed that when the blasting is performed by the method of the present invention, the warpage generated on the workpiece can be slightly reduced.
 1 ブラスト加工装置
 2 キャビネット
 21 加工室
 3 研磨材タンク(サイクロン)
 5 ダストコレクタ
 6 排風機
 7 流量調整弁
 8 ブラストノズル
 81 ボディ
 82 ノズル
 82a 円錐内面
 83 ジェット
 84 研磨材導入口
 85 研磨材導入室
 86 圧縮気体流路
 88 液体導入路
 88a 先端(液体導入路の)
 91 研磨材回収管
 
1 Blasting device 2 Cabinet 21 Processing room 3 Abrasive material tank (cyclone)
DESCRIPTION OF SYMBOLS 5 Dust collector 6 Blower 7 Flow control valve 8 Blast nozzle 81 Body 82 Nozzle 82a Cone inner surface 83 Jet 84 Abrasive introduction port 85 Abrasive introduction chamber 86 Compressed gas flow path 88 Liquid introduction path 88a Tip (of liquid introduction path)
91 Abrasive recovery pipe

Claims (5)

  1.  被加工物に対しブラストノズルを介して圧縮気体と共に研磨材を噴射するブラスト加工方法において,
     前記ブラストノズルに対し液体を導入し,該ブラストノズル内を流れる圧縮気体,又は前記ブラストノズルより噴射された圧縮気体に前記液体を衝突させて微粒化し,該微粒化した液体を前記圧縮気体及び研磨材と共に噴射すると共に,
     前記ブラストノズルに対する前記液体の導入量を0.06cc/min~150cc/minとすることを特徴とするブラスト加工方法。
    In a blasting method of injecting an abrasive with a compressed gas through a blast nozzle to a workpiece,
    Liquid is introduced into the blast nozzle, and the liquid collides with the compressed gas flowing through the blast nozzle or the compressed gas ejected from the blast nozzle to atomize, and the atomized liquid is mixed with the compressed gas and the polishing. While jetting with the material,
    A blasting method, wherein an introduction amount of the liquid to the blast nozzle is 0.06 cc / min to 150 cc / min.
  2.  圧縮気体供給源から供給される圧縮気体流を研磨材との混合流体としてブラストノズルより噴射するブラスト加工装置において,
     前記ブラストノズルに,一端を液体供給源に連通可能と成すと共に,他端を前記ブラストノズル内の圧縮気体の流路内,又は前記ブラストノズルの噴射口において開口し,前記液体供給源より導入された液体を,前記ブラストノズル内を流れる圧縮気体流,又は前記ブラストノズルより噴射された圧縮気体流と衝突させて微粒化する液体導入路を設け,
     前記液体導入路と前記液体供給源間に,流量制御手段を備えたことを特徴とするブラスト加工装置。
    In a blasting apparatus for injecting a compressed gas flow supplied from a compressed gas supply source from a blast nozzle as a mixed fluid with an abrasive,
    One end of the blast nozzle can communicate with a liquid supply source, and the other end is opened in a flow path of a compressed gas in the blast nozzle or an injection port of the blast nozzle, and is introduced from the liquid supply source. A liquid introduction path for causing the liquid to collide with a compressed gas flow flowing in the blast nozzle or a compressed gas flow injected from the blast nozzle to atomize the liquid,
    A blasting apparatus comprising flow control means between the liquid introduction path and the liquid supply source.
  3.  前記ブラストノズルが,圧縮気体供給源に連通するジェットの噴射方向にノズルを備え,前記ジェットとノズル間に研磨材供給源に連通する研磨材導入室を備え,前記ジェットからの圧縮気体流の噴射により前記研磨材導入室内に負圧を生じさせて前記研磨材供給源の研磨材を吸引して混合流体として噴射する,サクション式のブラストノズルであり,
     前記液体導入路の前記他端を,前記ジェット内に設けた圧縮気体流路内,又は該ジェットの噴射口前方位置において開口することを特徴とする,請求項2記載のブラスト加工装置。
    The blast nozzle includes a nozzle in a jet direction of a jet communicating with a compressed gas supply source, and includes an abrasive introduction chamber communicating between the jet and the nozzle and an abrasive supply source, and jets of a compressed gas flow from the jet A suction-type blast nozzle that generates a negative pressure in the abrasive introduction chamber and sucks the abrasive from the abrasive supply source and jets it as a mixed fluid;
    The blasting apparatus according to claim 2, wherein the other end of the liquid introduction path is opened in a compressed gas flow path provided in the jet or at a position in front of the jet outlet of the jet.
  4.  前記液体導入路を,前記ジェット内に設けた前記圧縮気体流路内に同心状に挿入した管路によって形成し,該液体導入路の前記他端を,前記ジェットの噴射口において開口したことを特徴とする請求項3記載のブラスト加工装置。 The liquid introduction path is formed by a pipe line concentrically inserted into the compressed gas flow path provided in the jet, and the other end of the liquid introduction path is opened at the jet outlet of the jet. 4. A blasting apparatus according to claim 3, wherein
  5.  前記液体供給源の液体を,前記液体導入路に対し定量供給する液体定量供給手段を設けたことを特徴とする請求項2~4いずれか1項記載のブラスト加工装置。
     
    The blasting apparatus according to any one of claims 2 to 4, further comprising a liquid fixed amount supply means for supplying a fixed amount of liquid from the liquid supply source to the liquid introduction path.
PCT/JP2014/058044 2013-10-21 2014-03-24 Blast machining method and blast machining device WO2015059941A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/028,464 US20160236323A1 (en) 2013-10-21 2014-09-17 Blasting machining method and blast machining device
JP2015543757A JP6452615B2 (en) 2013-10-21 2014-09-17 Blasting method and blasting apparatus
CN201480056785.2A CN105636745B (en) 2013-10-21 2014-09-17 Method for blasting and blasting apparatus
EP14855828.1A EP3061567B1 (en) 2013-10-21 2014-09-17 Blast machining method and blast machining device
PCT/JP2014/074515 WO2015060043A1 (en) 2013-10-21 2014-09-17 Blast machining method and blast machining device
KR1020167012506A KR101847316B1 (en) 2013-10-21 2014-09-17 Blast machining method and blast machining device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-218715 2013-10-21
JP2013218715 2013-10-21

Publications (1)

Publication Number Publication Date
WO2015059941A1 true WO2015059941A1 (en) 2015-04-30

Family

ID=52992553

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/058044 WO2015059941A1 (en) 2013-10-21 2014-03-24 Blast machining method and blast machining device
PCT/JP2014/074515 WO2015060043A1 (en) 2013-10-21 2014-09-17 Blast machining method and blast machining device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074515 WO2015060043A1 (en) 2013-10-21 2014-09-17 Blast machining method and blast machining device

Country Status (6)

Country Link
US (1) US20160236323A1 (en)
EP (1) EP3061567B1 (en)
JP (1) JP6452615B2 (en)
KR (1) KR101847316B1 (en)
CN (1) CN105636745B (en)
WO (2) WO2015059941A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105033868A (en) * 2015-08-04 2015-11-11 长春理工大学 Device for high-pressure jetting, precise polishing and machining of abrasive flows
CN107471117A (en) * 2017-06-16 2017-12-15 无锡市京锡冶金液压机电有限公司 A kind of unnecessary gypsum removal device of building material surface
CN110656936A (en) * 2019-08-29 2020-01-07 中国矿业大学 Mine roof directional roof cutting pressure relief method based on static expanding agent
WO2023190838A1 (en) * 2022-03-31 2023-10-05 トーカロ株式会社 Surface treatment method for thermal-spray ceramic coating film, and thermal-spray ceramic coating film

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016136443A1 (en) * 2015-02-25 2017-11-30 新東工業株式会社 Nozzle assembly and surface treatment method using the nozzle assembly
JP6356103B2 (en) * 2015-09-08 2018-07-11 Jfeスチール株式会社 Bent blast nozzle
US20170072536A1 (en) * 2015-09-16 2017-03-16 Michael Seago Injection Capable Blasting Equipment
US20170173641A1 (en) * 2015-12-16 2017-06-22 E-Logic Inc. Removal of surfacing materials by wet blasting
US11548115B2 (en) * 2017-01-27 2023-01-10 Axxiom Manufacturing, Inc. Dry wet blast media blasting system
US11484988B2 (en) * 2017-01-27 2022-11-01 Axxiom Manufacturing, Inc. Dry wet blast media blasting system
CN109261321A (en) * 2017-07-18 2019-01-25 李朝和 A kind of crushing machine
KR101951624B1 (en) * 2017-07-20 2019-02-25 우남철 High Pressure Cleaning Apparatus using Wet Blast
US11219981B2 (en) * 2017-09-12 2022-01-11 Eclipse Surface Technologies, LLC Portable surface cleaning apparatus
JP6980190B2 (en) * 2017-10-05 2021-12-15 株式会社クールテクノス Dry ice sprayer
SG10201801657UA (en) * 2018-02-28 2019-09-27 Abrasive Eng Pte Ltd Media Dosage Unit for Shot Peening
JP6612418B1 (en) * 2018-11-26 2019-11-27 株式会社金星 Gas conveyance type fine powder quantitative supply method and system
CN110421488A (en) * 2019-08-30 2019-11-08 湖北华强科技有限责任公司 A kind of small-sized freeze-drying rubber plug mold core type chamber sand blasting unit and technique
US11679473B2 (en) * 2020-02-04 2023-06-20 Axxiom Manufacturing, Inc. Dry wet blast media blasting system
CN112589080B (en) * 2020-11-29 2021-11-30 中船海洋动力部件有限公司 Metal casting thermal shock sand removing device and sand removing method thereof
CA3234442A1 (en) * 2021-10-28 2023-05-04 Zygmunt Baran Dental apparatus for air abrasion and polishing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0181273U (en) * 1987-11-18 1989-05-31
US4995202A (en) * 1990-04-26 1991-02-26 The Dow Chemical Company Nozzle unit and method for using wet abrasives to clean hard surfaces
JP2010082798A (en) * 2008-10-01 2010-04-15 Hanshin Engineering:Kk Method for adjusting grounding surface while restraining generation of powder dust and device therefor

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2387193A (en) * 1944-07-03 1945-10-16 Waitstill H Swenarton Method of and apparatus for sandblasting of ships' hulls
US2608801A (en) * 1951-01-26 1952-09-02 Ian M Ridley Valve
NL104432C (en) * 1957-07-29
CA980242A (en) * 1971-05-10 1975-12-23 E. I. Du Pont De Nemours And Company Process for contacting a gas with a liquid
US3833416A (en) * 1972-03-16 1974-09-03 H Fleischer Sand blasting of metal surfaces at an angle of less than 45{20
US4253610A (en) * 1979-09-10 1981-03-03 Larkin Joe M Abrasive blast nozzle
US4522597A (en) * 1980-10-17 1985-06-11 Cooper Lasersonics, Inc. Equipment and method for delivering an abrasive-laden gas stream
US4517774A (en) * 1982-05-04 1985-05-21 Frank Dudding Wet blasting apparatus
US4771580A (en) * 1984-10-29 1988-09-20 Hardblast Australia Pty. Ltd. Nozzle for sand blasting
US5551909A (en) * 1990-12-28 1996-09-03 Bailey; Donald C. Method and apparatus for cleaning with high pressure liquid at low flow rates
US5319894A (en) * 1992-10-08 1994-06-14 Church & Dwight Co., Inc. Blast nozzle containing water atomizer for dust control
US5509849A (en) * 1994-04-18 1996-04-23 Church & Dwight Co., Inc. Blast nozzle for water injection and method of using same for blast cleaning solid surfaces
US5545074A (en) * 1994-12-28 1996-08-13 Jacobs; Patrick T. Abrasive blasting system with waste water recycling
US5531634A (en) * 1995-02-03 1996-07-02 Schott; Paul Method of using an abrasive material for blast cleaning of solid surfaces
US5626508A (en) * 1995-04-20 1997-05-06 Aqua-Dyne, Inc. Focusing nozzle
US5857900A (en) * 1995-12-04 1999-01-12 Church & Dwight Co., Inc Blast nozzle containing water atomizer
JP3086784B2 (en) * 1996-08-19 2000-09-11 株式会社不二製作所 Blasting method and apparatus
US5782673A (en) * 1996-08-27 1998-07-21 Warehime; Kevin S. Fluid jet cutting and shaping system and method of using
AU3657497A (en) * 1997-07-11 1999-02-08 Waterjet International, Inc. Method and apparatus for producing a high-velocity particle stream
KR100504629B1 (en) * 1997-07-11 2005-08-03 워터제트 테크놀로지 인코퍼레이티드 Method and apparatus for producing a high-velocity particle stream
KR20010014577A (en) * 1999-03-18 2001-02-26 시부야 히로토시 Method and apparatus for cleansing and scraping and method and apparatus for forming a cleansing and scraping media flow
US6280302B1 (en) * 1999-03-24 2001-08-28 Flow International Corporation Method and apparatus for fluid jet formation
KR100553781B1 (en) * 2000-06-30 2006-02-20 시부야 코교 가부시키가이샤 Cleaning nozzle and cleaning apparatus
JP2002103230A (en) * 2000-09-25 2002-04-09 Abe Ganaito Kogyo:Kk Method of polishing surface
JP3846842B2 (en) 2000-10-16 2006-11-15 新東工業株式会社 Humidity maintenance device in air blast equipment
IL159783A (en) * 2004-01-08 2009-06-15 Tavtech Ltd High velocity liquid-gas mist tissue abrasion device
KR20040101948A (en) * 2004-05-31 2004-12-03 (주)케이.씨.텍 Nozzle for Injecting Sublimable Solid Particles Entrained in Gas for Cleaning Surface
JP4545040B2 (en) 2005-04-25 2010-09-15 株式会社オオサワ Blast nozzle and blast gun equipped with the same
PL1890823T3 (en) * 2005-05-06 2014-01-31 Dieter Wurz Spray nozzle, spray device and the operation method thereof
US8187056B2 (en) * 2006-12-14 2012-05-29 Flow International Corporation Process and apparatus for surface-finishing
US7790344B2 (en) * 2007-05-10 2010-09-07 Ricoh Company Limited Method of preparing powder and toner for electrophotography, and toner therefor
JP4290752B2 (en) * 2007-06-20 2009-07-08 株式会社不二機販 Abrasive material and method for producing the same, and polishing method using the abrasive material
JP5145016B2 (en) * 2007-11-19 2013-02-13 株式会社不二製作所 Blasting method and blasting apparatus
JP2010046770A (en) * 2008-08-22 2010-03-04 Integrated Geotechnology Institute Ltd Multilayer jet type nozzle device
US8308525B2 (en) * 2008-11-17 2012-11-13 Flow Internationl Corporation Processes and apparatuses for enhanced cutting using blends of abrasive materials
JP4737327B2 (en) * 2009-08-31 2011-07-27 新東工業株式会社 Blasting spray nozzle
US8353741B2 (en) * 2009-09-02 2013-01-15 All Coatings Elimination System Corporation System and method for removing a coating from a substrate
JP2011237378A (en) 2010-05-13 2011-11-24 Ihi Corp Blast apparatus and blast treatment method
JP5910935B2 (en) * 2011-03-17 2016-04-27 新東工業株式会社 Nozzle for performing dry and wet blasting and blasting apparatus equipped with the nozzle
CN102672625B (en) * 2011-03-17 2016-12-14 新东工业株式会社 Shot peening nozzle and possess the blasting apparatus of this nozzle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0181273U (en) * 1987-11-18 1989-05-31
US4995202A (en) * 1990-04-26 1991-02-26 The Dow Chemical Company Nozzle unit and method for using wet abrasives to clean hard surfaces
JP2010082798A (en) * 2008-10-01 2010-04-15 Hanshin Engineering:Kk Method for adjusting grounding surface while restraining generation of powder dust and device therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105033868A (en) * 2015-08-04 2015-11-11 长春理工大学 Device for high-pressure jetting, precise polishing and machining of abrasive flows
CN107471117A (en) * 2017-06-16 2017-12-15 无锡市京锡冶金液压机电有限公司 A kind of unnecessary gypsum removal device of building material surface
CN107471117B (en) * 2017-06-16 2020-07-03 惠安县集益科技有限公司 Device for removing excess gypsum on surface of building material
CN110656936A (en) * 2019-08-29 2020-01-07 中国矿业大学 Mine roof directional roof cutting pressure relief method based on static expanding agent
WO2023190838A1 (en) * 2022-03-31 2023-10-05 トーカロ株式会社 Surface treatment method for thermal-spray ceramic coating film, and thermal-spray ceramic coating film
JP7520245B2 (en) 2022-03-31 2024-07-22 トーカロ株式会社 Surface treatment method for ceramic spray coating and ceramic spray coating

Also Published As

Publication number Publication date
CN105636745B (en) 2018-07-13
KR20160073983A (en) 2016-06-27
EP3061567B1 (en) 2024-03-20
EP3061567A1 (en) 2016-08-31
US20160236323A1 (en) 2016-08-18
CN105636745A (en) 2016-06-01
JP6452615B2 (en) 2019-01-16
KR101847316B1 (en) 2018-04-09
JPWO2015060043A1 (en) 2017-03-09
EP3061567A4 (en) 2017-05-24
WO2015060043A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP6452615B2 (en) Blasting method and blasting apparatus
KR102569456B1 (en) Method and apparatus for fluid cavitation abrasive surface finishing
US8920213B2 (en) Abrasive jet systems, including abrasive jet systems utilizing fluid repelling materials, and associated methods
WO2008026404A1 (en) Steel pipe internal-surface blasting apparatus, method of blasting steel pipe internal-surface and process for manufacturing steel pipe excelling in internal-surface surface property
UA71545C2 (en) Method and apparatus for producing a high-velocity particle stream
EA003436B1 (en) Method and apparatus for producing a high-velocity particle stream
KR20100056988A (en) Blasting method and apparatus having abrasive recovery system, processing method of thin-film solar cell panel, and thin-film solar cell panel processed by the method
WO2016136443A1 (en) Nozzle assembly and surface treatment method using said nozzle assembly
JP2012121121A (en) Blast material and blasting method
JP2008087103A (en) Scale remover and scale removing method
WO2009119540A1 (en) Scale removing method and scale removing device
RU2486046C1 (en) Surface cleaning abrasive-jet tool
JP2017035666A (en) Spray device, spray-drying granulating device and manufacturing method for granulated powder
CN106637038A (en) Machine for manufacturing nano diamond thin coating film
JP7114085B2 (en) Nozzle, blowing device and static elimination device using the same
CN111590469B (en) Surface treatment device for shaft-shaped workpiece
JP2024035137A (en) Blast device, blast method, drier for grinding material, circulation type blast system, and mixing part for blast device
JP2010115729A (en) Projection material injection device and surface treating apparatus
JP6623619B2 (en) Blast processing apparatus and blast processing method
JP2006043793A (en) Blasting apparatus and blasting method
JP2003225865A (en) Blasting machine
KR20150125148A (en) Injection nozzles for dry type cleaning apparatus
JP4110215B2 (en) Blast nozzle and blasting device
JP2011115889A (en) Liquid honing device
CN111267006A (en) Metal plate and strip descaling equipment and method and sand thrower used by same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP