WO2015059831A1 - Multilayer film and intermediate film for laminated glass formed of same - Google Patents

Multilayer film and intermediate film for laminated glass formed of same Download PDF

Info

Publication number
WO2015059831A1
WO2015059831A1 PCT/JP2013/079023 JP2013079023W WO2015059831A1 WO 2015059831 A1 WO2015059831 A1 WO 2015059831A1 JP 2013079023 W JP2013079023 W JP 2013079023W WO 2015059831 A1 WO2015059831 A1 WO 2015059831A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
multilayer film
mass
polyvinyl acetal
Prior art date
Application number
PCT/JP2013/079023
Other languages
French (fr)
Japanese (ja)
Inventor
楠藤 健
太我 油井
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2013549649A priority Critical patent/JP5469287B1/en
Priority to PCT/JP2013/079023 priority patent/WO2015059831A1/en
Publication of WO2015059831A1 publication Critical patent/WO2015059831A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10678Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising UV absorbers or stabilizers, e.g. antioxidants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10688Adjustment of the adherence to the glass layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/70Scrap or recycled material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a multilayer film having heat ray shielding properties and sound insulation properties.
  • the present invention also relates to an interlayer film for laminated glass comprising the multilayer film, and a laminated glass using the interlayer film. Furthermore, this invention relates to the manufacturing method of the film using the recovered material of the said multilayer film.
  • Polyvinyl acetal is obtained by an acetalization reaction in water under acidic conditions using polyvinyl alcohol (hereinafter sometimes abbreviated as “PVA”) and an aldehyde compound.
  • PVA polyvinyl alcohol
  • Polyvinyl acetal films are used in various applications because they are tough and have a unique structure that has both hydrophilic hydroxy groups and hydrophobic acetal groups.
  • Various polyvinyl acetals have been proposed. Yes. Among them, polyvinyl formal produced from PVA and formaldehyde, polyvinyl acetal in a narrow sense produced from PVA and acetaldehyde, and polyvinyl butyral produced from PVA and butyraldehyde occupy commercially important positions.
  • polyvinyl butyral is widely used as an interlayer film for laminated glass of automobiles and buildings, and occupies a particularly important position commercially.
  • polyvinyl acetal has a problem that it is easily colored by heating; a foreign substance (undissolved part) is likely to be generated in the polyvinyl acetal film.
  • Various proposals have been made to solve these problems.
  • Patent Documents 1 and 2 describe a method for suppressing coloring of polyvinyl acetal by acetalization at a specific hydroxide ion concentration under high temperature and high pressure.
  • Patent Document 3 describes a method of suppressing coloring of the obtained polyvinyl acetal by adding a reducing agent after neutralization by acetalization reaction.
  • Patent Document 4 describes a method of suppressing the generation of coarse particles by adjusting the concentration of the obtained resin particle slurry in the neutralization reaction after the acetalization reaction.
  • Patent Document 5 describes a method for suppressing the generation of coarse particles by defining the relationship between an acid catalyst and a surfactant used in the acetalization reaction.
  • foreign matters were likely to be generated in the film produced using the polyvinyl acetal obtained by the methods described in Patent Documents 4 and 5.
  • the film was easily colored by heating. For these reasons, there is a strong demand for polyvinyl acetals in which all the above-mentioned problems are solved.
  • interlayer films for laminated glass For example, for the purpose of imparting high sound insulation performance and heat insulation performance to the interlayer film for laminated glass, a plurality of polyvinyl acetal layers having different content ratios of polyvinyl acetal and plasticizer are laminated, and the central layer is made of heat ray shielding particles.
  • An interlayer film for laminated glass is disclosed (see, for example, Patent Documents 6 to 9).
  • polyvinyl acetals having different average residual hydroxyl groups are used for each layer in order to make the amount of plasticizer contained in each layer different.
  • the interlayer film for laminated glass is generally manufactured using an extruder from the viewpoint of production cost.
  • the interlayer film for laminated glass is produced by a coextrusion method.
  • a certain amount of trim material is generated at the edge of the film, and there are also off-spec products that are difficult to use as products due to non-uniform composition and thickness. can get.
  • JP 2011-219670 A JP 2011-219671 A Japanese Patent Laid-Open No. 5-140211 JP-A-5-155915 JP 2002-069126 A JP 2003-252657 A WO2008-122608 JP 2004-143008 A WO2012-077689
  • the present invention has been made in order to solve the above-mentioned problems, has sufficient heat ray shielding and sound insulation properties, has little coloration due to heating, has less foreign matter (undissolved content), and is recyclable.
  • Another object of the present invention is to provide an excellent multilayer film. Moreover, it aims at providing the laminated glass which used the said multilayer film as an intermediate film. Furthermore, it aims at providing the manufacturing method of the film using the recovered material of the said multilayer film.
  • a polyvinyl acetal having a degree of acetalization of 55 to 80 mol%, a vinyl ester monomer unit content of 0.1 to 1.5 mol% and a viscosity average polymerization degree of 1400 to 5000 (I )
  • An ultraviolet absorber and a plasticizer-containing layer (X) the degree of acetalization is 70 to 85 mol%, the content of vinyl ester monomer units is 5 to 15 mol%, and the viscosity average polymerization degree
  • A The peak top of the polymer component measured by a differential refractive index detector when the multilayer film heated at 230 ° C. for 3 hours was measured by gel permeation chromatography (hereinafter sometimes abbreviated as GPC).
  • GPC gel permeation chromatography
  • Molecular weight a Signal intensity at peak top molecular weight (A)
  • B Peak of polymer component measured by an absorptiometric detector (measurement wavelength 280 nm) when the multilayer film heated at 230 ° C.
  • GPC Top molecular weight b Signal intensity at peak top molecular weight (B) x: Differential refractive index detector when GPC measurement of monodispersed polymethyl methacrylate (hereinafter, polymethyl methacrylate may be abbreviated as PMMA) Signal strength y at peak top molecular weight measured by: monodispersed PMMA When the GPC measurement, a signal intensity at the peak top molecular weight measured by spectrophotometric detector (measuring wavelength 220 nm).
  • hexafluoroisopropanol may be abbreviated as HFIP.
  • Sample concentration 1.00 mg / ml
  • Sample injection volume 100 ⁇ l
  • Column temperature 40 ° C
  • Flow rate 1.0 ml / min.
  • the multilayer film satisfies the following formulas (3) and (4).
  • the polyvinyl acetal (I) and the polyvinyl acetal (II) are preferably polyvinyl butyral (hereinafter sometimes abbreviated as PVB).
  • An interlayer film for laminated glass made of the multilayer film is a preferred embodiment of the present invention.
  • a laminated glass formed by bonding a plurality of glass plates using the interlayer film for laminated glass is also a preferred embodiment of the present invention.
  • a method for producing a single-layer film in which the collected product of the multilayer film is melt-kneaded and then formed is also a preferred embodiment of the present invention.
  • the recovered product was a polyvinyl acetal having a degree of acetalization of 55 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 15 mol%, and a viscosity average polymerization degree of 1400 to 5000 ( It is more preferable to form a film after melt-kneading III) and the plasticizer.
  • the multilayer film of the present invention has sufficient heat ray shielding and sound absorbing properties, is less colored by heating, has less foreign matter (undissolved content), and is excellent in recyclability. Therefore, the multilayer film is useful as an interlayer film for laminated glass. Furthermore, the film obtained by the manufacturing method using the recovered material of the multilayer film has excellent transparency since it is less colored and has less foreign matter (undissolved content).
  • RI differential refractive index detector
  • UV absorptiometric detector
  • the multilayer film of the present invention has an acetalization degree of 55 to 80 mol%, a vinyl ester monomer unit content of 0.1 to 1.5 mol%, and a viscosity average polymerization degree of 1400 to 5000.
  • the layer (X) is disposed on both outer sides of the layer (Y) and satisfies the following formulas (1) and (2).
  • the peak top molecular weight b of the polymer component measured by an absorptiometric detector measured by an absorptiometric detector (measurement wavelength 280 nm): signal intensity x at peak top molecular weight (B): Signal intensity y at the peak top molecular weight measured with a differential refractive index detector when monodispersed PMMA is measured by GPC: with an absorptiometric detector (measurement wavelength 220 nm) when the monodispersed PMMA is measured by GPC Signal intensity at the measured peak top molecular weight.
  • a GPC apparatus having a differential refractive index detector and an absorptiometric detector and capable of simultaneously performing measurement by these detectors.
  • the cell of the detection part of the absorptiometric detector preferably has a cell length (optical path length) of 10 mm.
  • the absorptiometric detector may measure the absorption of ultraviolet light having a specific wavelength, or may measure the absorption of ultraviolet light having a specific range of wavelengths.
  • the multilayer film subjected to the measurement is separated into each molecular weight component by a GPC column.
  • the signal intensity by the differential refractive index detector is approximately proportional to the concentration (g / l) of the film component.
  • the components detected by the absorptiometric detector are only those having a structure that absorbs a predetermined wavelength.
  • the concentration and absorbance at a predetermined wavelength can be measured for each molecular weight component of the film.
  • HFIP containing sodium trifluoroacetate having a concentration of 20 mmol / l is used as a solvent and a mobile phase used for dissolving the multilayer film and PMMA measured in the GPC measurement.
  • HFIP can dissolve the multilayer film and PMMA of the present invention. Further, by adding sodium trifluoroacetate, adsorption of film components and PMMA to the column filler is prevented.
  • the flow rate and column temperature in the GPC measurement are appropriately adjusted according to the type of column used. The flow rate in the GPC measurement is usually 1.0 ml / min, and the column temperature is usually 40 ° C.
  • the GPC column used in the GPC measurement is not particularly limited as long as it can separate the components in the multilayer film of the present invention for each molecular weight.
  • “GPC HFIP-806M” manufactured by Showa Denko KK is preferably used.
  • standard PMMA is monodispersed PMMA.
  • monodispersed PMMA which is usually used as a standard for preparing a calibration curve for molecular weight measurement by GPC measurement, can be used.
  • Several types of standard PMMA with different molecular weights are measured, and a calibration curve is created from the GPC elution volume and the molecular weight of the standard PMMA.
  • a calibration curve prepared using the detector is used for the measurement with the differential refractive index detector, and a calibration prepared using the detector (measurement wavelength: 220 nm) for the measurement with the absorptiometric detector. Use lines. Using these calibration curves, the GPC elution volume is converted into the molecular weight, and the peak top molecular weight (A) and the peak top molecular weight (B) are determined.
  • the multilayer film is heated at 230 ° C. for 3 hours.
  • the multilayer film is heated by the following method.
  • the multilayer film is heated by hot pressing for 3 hours at a pressure of 2 MPa and 230 ° C.
  • the thickness of the film to be heated is 600 to 800 ⁇ m, preferably about 760 ⁇ m, which is the thickness of a normal laminated glass interlayer.
  • a measurement sample is obtained by dissolving the heated multilayer film in the above-mentioned solvent (HFIP containing sodium trifluoroacetate).
  • the concentration of the measurement sample is 1.00 mg / ml, and the injection volume is 100 ⁇ l.
  • the viscosity average polymerization degree of the polyvinyl acetal (I) or the polyvinyl acetal (II) in the multilayer film exceeds 2400, the excluded volume increases. Therefore, when the concentration of the measurement sample is 1.00 mg / ml, the reproducibility is good. Measurement may not be possible. In that case, an appropriately diluted sample (injection amount 100 ⁇ l) is used.
  • the signal intensity detected by the absorptiometric detector and the differential refractive index detector is proportional to the concentration of the sample. Therefore, the concentration of the diluted sample and the actually measured signal intensity are used to convert each signal intensity when the concentration of the measurement sample is 1.00 mg / ml.
  • FIG. 1 shows the relationship between the molecular weight obtained by GPC measurement of the multilayer film of the present invention and the signal intensity measured with a differential refractive index detector, and the molecular weight measured with an absorptiometric detector (measurement wavelength 280 nm). It is the graph which showed the relationship with the signal intensity (absorbance).
  • the GPC measurement in the present invention will be further described with reference to FIG.
  • the chromatogram indicated by “RI” is a plot of the signal intensity measured by the differential refractive index detector against the molecular weight (horizontal axis) of the film component converted from the elution volume.
  • the peak seen in the chromatogram near the molecular weight of 100,000 is the peak of the polymer component.
  • the molecular weight at the peak position of such a polymer component is defined as the peak top molecular weight (A) of the polymer component
  • the signal intensity at the peak top molecular weight (A) is defined as the signal intensity (a). Since the film of the present invention contains polyvinyl acetal having a viscosity average degree of polymerization of 1400 to 5000, the peak top molecular weight (A) of the polymer component usually exceeds 3500.
  • the peak seen in the molecular weight 1500 vicinity is a peak of the plasticizer contained in a film.
  • the molecular weight at the peak position having the highest peak height is defined as the peak top molecular weight (A).
  • the chromatogram indicated by “UV” shows the signal intensity (absorbance) measured with an absorptiometric detector (measurement wavelength 280 nm) with respect to the molecular weight (horizontal axis) of the film component converted from the elution volume. It is a plot.
  • the peak seen in the chromatogram near the molecular weight of 50,000 is the peak of the polymer component.
  • the molecular weight at the peak position of such a polymer component is defined as the peak top molecular weight (B) of the polymer component
  • the signal intensity (absorbance) at the peak top molecular weight (B) is defined as the signal intensity (b).
  • the peak top molecular weight (B) of the polymer component usually exceeds 3500.
  • the molecular weight at the peak position having the highest peak height is defined as the peak top molecular weight (B).
  • the multilayer film of the present invention is measured by the peak top molecular weight (A) of the polymer component measured by the differential refractive index detector and measured by the absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed by the method described above.
  • the peak top molecular weight (B) of the polymer component to be satisfied satisfies the following formula (1). (AB) / A ⁇ 0.80 (1)
  • the peak top molecular weight (A) is a value serving as an index of the molecular weight of the polymer component in the multilayer film.
  • the peak top molecular weight (B) is derived from a component having absorption at 280 nm, which is present in the polymer component.
  • (AB) / A becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 280 nm.
  • the foreign matter (undissolved part) in the obtained multilayer film increases.
  • foreign matter (undissolved content) in the film produced by using the recovered material (trim, off-spec product, etc.) of the multilayer film also increases, and the transparency of the film decreases.
  • (AB) / A is preferably less than 0.75, more preferably less than 0.70.
  • the multilayer film of the present invention satisfies the following formula (2). 1.00 ⁇ 10 ⁇ 2 ⁇ (b / y) / (a / x) ⁇ 2.00 ⁇ 10 ⁇ 1 (2)
  • a is the signal intensity measured by the differential refractive index detector at the peak top molecular weight (A) in the GPC measurement.
  • b is the signal intensity (absorbance) measured with an absorptiometric detector (measurement wavelength 280 nm) at the peak top molecular weight (B).
  • x is the signal intensity at the peak top molecular weight measured by the differential refractive index detector when monodispersed PMMA is measured by GPC.
  • y is the signal intensity (absorbance) at the peak top molecular weight measured with an absorptiometer (measurement wavelength 220 nm) when the monodispersed PMMA is measured by GPC.
  • the GPC measurement of monodispersed PMMA is the same as the GPC measurement of the aforementioned multilayer film except that monodispersed PMMA is used instead of the heated multilayer film and the measurement wavelength of the spectrophotometric detector is changed to 220 nm. Perform in the same way.
  • the signal intensity (x) is obtained in the same manner as the signal intensity (a).
  • the signal intensity (y) is obtained in the same manner as the signal intensity (b).
  • PMMA having a weight average molecular weight of about 85,000 is preferable.
  • (B / y) / (a / x) is an index of the content of a component having a structure that absorbs ultraviolet light having a wavelength of 280 nm in the polymer component of the multilayer film. When this value is large, it means that the content is large.
  • the signal intensity by the differential refractive index detector is approximately proportional to the concentration (g / l) of the film component.
  • what is detected by the absorptiometric detector is only the component having absorption at 280 nm which is the measurement wavelength, and the signal intensity (absorbance) by the absorptiometric detector is proportional to the concentration of the component having absorption at 280 nm. .
  • the signal intensity of the differential refractive index detector is indicated by “millivolt”
  • the signal intensity (absorbance) of the absorptiometric detector is indicated by “absorbance unit (AU)”.
  • the ratio of both is simply compared. It ’s difficult.
  • the ratio of the signal intensity obtained by the differential refractive index detector and the signal intensity obtained by the absorptiometric detector is not different depending on the model of the GPC apparatus and the measurement conditions. Desired.
  • the ratio (a / x) of the signal intensity (a) of the multilayer film by the differential refractive index detector to the signal intensity (x) of monodispersed PMMA by the differential refractive index detector, and by the absorptiometric detector The ratio (b / y) of the signal intensity (b) of the multilayer film by the absorptiometric detector to the signal intensity (y) of monodispersed PMMA is determined. And ratio (b / y) / (a / x) of both is calculated
  • the multilayer film of the present invention preferably satisfies the following formula (2 ′), and more preferably satisfies the following formula (2 ′′). 1.50 ⁇ 10 ⁇ 2 ⁇ (b / y) / (a / x) ⁇ 1.50 ⁇ 10 ⁇ 1 (2 ′) 2.00 ⁇ 10 ⁇ 2 ⁇ (b / y) / (a / x) ⁇ 1.00 ⁇ 10 ⁇ 1 (2 ′′)
  • the polymer component of the multilayer film contains few components that absorb ultraviolet light having a wavelength of 280 nm. Therefore, the foreign material (undissolved part) in a multilayer film increases. Therefore, the foreign material (undissolved part) in the film manufactured using the collection
  • the peak top molecular weight (A) measured with a differential refractive index detector in the GPC measurement is expressed by the following formula (3) (AC) / A ⁇ 0.80 (3) It is preferable to satisfy.
  • the peak top molecular weight (C) is measured in the same manner as the peak top molecular weight (B) except that the measurement wavelength in the absorptiometric detector is 320 nm.
  • the peak top molecular weight (C) is derived from a component having an absorption at 320 nm, which is present in the polymer component in the multilayer film.
  • (AC) / A becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet rays having a wavelength of 320 nm.
  • foreign matter undissolved content
  • recovery of a multilayer film may also increase, and there exists a possibility that the transparency of the said film may fall.
  • (AC) / A is more preferably less than 0.75, and even more preferably less than 0.70.
  • the multilayer film of the present invention preferably satisfies the following formula (4). 5.00 ⁇ 10 ⁇ 3 ⁇ (c / y) / (a / x) ⁇ 7.00 ⁇ 10 ⁇ 2 (4)
  • a, x and y are the same as the above formula (2).
  • c is the signal intensity (absorbance) measured with an absorptiometric detector (measurement wavelength: 320 nm) at the peak top molecular weight (C).
  • (c / y) / (a / x) is an index of the content of a component having a structure that absorbs ultraviolet light having a wavelength of 320 nm in the polymer component of the multilayer film. When this value is large, it means that the content is large. And it calculates
  • the film of the present invention more preferably satisfies the following formula (4 ′), and more preferably satisfies the following formula (4 ′′). 7.00 ⁇ 10 ⁇ 3 ⁇ (c / y) / (a / x) ⁇ 6.00 ⁇ 10 ⁇ 2 (4 ′) 1.00 ⁇ 10 -2 ⁇ (c / y) / (a / x) ⁇ 5.00 ⁇ 10 -2 (4 ")
  • the polymer component of the multilayer film has few components that absorb ultraviolet light having a wavelength of 320 nm. Therefore, there is a possibility that foreign matter (undissolved part) in the multilayer film increases.
  • recovery of a multilayer film may also increase, and there exists a possibility that the transparency of the said film may fall.
  • the polymer component of the film has many components that absorb ultraviolet light having a wavelength of 320 nm. Therefore, the obtained multilayer film may be easily colored by heating. Moreover, there exists a possibility that the film manufactured using the collection
  • the viscosity average degree of polymerization of polyvinyl acetal is represented by the viscosity average degree of polymerization of the raw material PVA measured according to JIS-K6726. That is, after re-saponifying and purifying PVA to a saponification degree of 99.5 mol% or more, it can be obtained from the intrinsic viscosity [ ⁇ ] measured in water at 30 ° C. by the following equation.
  • the viscosity average polymerization degree of PVA and the viscosity average polymerization degree of polyvinyl acetal obtained by acetalizing it are substantially the same.
  • P ([ ⁇ ] ⁇ 10000 / 8.29) (1 / 0.62)
  • the viscosity average polymerization degree of polyvinyl acetal (I) and polyvinyl acetal (II) is 1400 to 5000, and preferably 1500 to 3500.
  • the viscosity average degree of polymerization is less than 1400, the strength of the multilayer film is insufficient.
  • the polymerization degree exceeds 5000, the melt viscosity becomes too high and film formation becomes difficult.
  • the degree of acetalization of the polyvinyl acetal (I) used in the present invention is 55 to 80 mol%. When the degree of acetalization is less than 55 mol%, the compatibility with a plasticizer or the like decreases. Moreover, the foreign material (undissolved part) in a multilayer film increases. Moreover, the foreign material (undissolved part) in the film manufactured using the collection
  • the degree of acetalization of the polyvinyl acetal (I) is preferably 60 mol% or more, more preferably 65 mol% or more. On the other hand, when the degree of acetalization exceeds 80 mol%, it may be easy to color.
  • the degree of acetalization of the polyvinyl acetal (I) is preferably 75 mol% or less.
  • the degree of acetalization of the polyvinyl acetal (II) used in the present invention is 70 to 85 mol%. When the degree of acetalization exceeds 85 mol%, the efficiency of the acetalization reaction is significantly reduced.
  • the multilayer film is colored by heating. Furthermore, the film manufactured using the recovered material of the multilayer film is also colored.
  • the degree of acetalization of polyvinyl acetal (II) is preferably 80 mol% or less. On the other hand, when the degree of acetalization is less than 70 mol%, foreign matter (undissolved content) in the film may increase.
  • the difference between the degree of acetalization of polyvinyl acetal (I) and the degree of acetalization of polyvinyl acetal (II) from the point of excellent balance between the coloration resistance of the resulting multilayer film and the amount of foreign matter (undissolved) (II- I) is preferably 2 mol% or more, and more preferably 4 mol% or more.
  • the degree of acetalization represents the ratio of acetalized vinyl alcohol monomer units to the total monomer units constituting polyvinyl acetal.
  • the vinyl alcohol monomer units in the raw material PVA those that are not acetalized remain in the resulting polyvinyl acetal as vinyl alcohol monomer units.
  • the content of the vinyl ester monomer unit of polyvinyl acetal (I) used in the present invention is 0.1 to 1.5 mol%.
  • the content of the vinyl ester monomer unit is preferably 0.3 mol% or more, more preferably 0.5 mol% or more, and further preferably 0.7 mol% or more.
  • the content of the vinyl ester monomer unit is preferably 1.2 mol% or less.
  • the content of the vinyl ester monomer unit of polyvinyl acetal (II) used in the present invention is 5 to 15 mol%.
  • the resulting multilayer film is colored by heating.
  • the film manufactured using the recovered material of the multilayer film is also colored.
  • the content of the vinyl ester monomer unit of polyvinyl acetal (II) is preferably 13 mol% or less, more preferably 10 mol% or less.
  • the content of the vinyl ester monomer unit is preferably 6 mol% or more, more preferably 7 mol% or more.
  • the layer (Y) becomes a soft layer, and the multilayer film of the present invention maintains a practical mechanical strength. , Has excellent sound insulation performance.
  • the content of the vinyl alcohol monomer unit of the polyvinyl acetal (I) used in the present invention is preferably 18.5 to 44.9 mol%.
  • the content of the vinyl alcohol monomer unit in the polyvinyl acetal (II) used in the present invention is preferably 5 to 25 mol%.
  • content (mol%) of the vinyl alcohol monomer unit of polyvinyl acetal (I) is larger than content (mol%) of the vinyl alcohol monomer unit of polyvinyl acetal (II). It is preferable.
  • the affinity of the surfactant for the layer (Y) is higher than the affinity for the layer (X) by providing a difference in the content of the vinyl alcohol monomer units in the layer (X) and the layer (Y) The bleed-out of the surfactant can be effectively suppressed.
  • the difference (I-II) between the content of the vinyl alcohol monomer unit of the polyvinyl acetal (I) and the content of the vinyl alcohol monomer unit of the polyvinyl acetal (II) is preferably 5 mol% or more, More preferably, it is 10 mol% or more. On the other hand, the difference (I-II) is preferably 30 mol% or less.
  • Content of monomer units other than acetalized monomer unit, vinyl ester monomer unit and vinyl alcohol monomer unit in polyvinyl acetal (I) and polyvinyl acetal (II) used in the present invention Is preferably 20 mol% or less, more preferably 10 mol% or less, and even more preferably 5 mol% or less.
  • the polyvinyl acetal (I) and polyvinyl acetal (II) used in the present invention are usually produced by acetalizing PVA.
  • the saponification degree of the raw material PVA used for the production of polyvinyl acetal is preferably 80 to 99.9 mol%, more preferably 82 to 99.7 mol%, still more preferably 85 to 99.5 mol%, Preferably, it is 87 to 99.3 mol%.
  • the saponification degree of raw material PVA is less than 80 mol%, the foreign material (undissolved part) in the obtained multilayer film may increase, or the obtained multilayer film may be easily colored by heating.
  • the degree of saponification exceeds 99.9 mol%, PVA may not be produced stably.
  • the degree of saponification of PVA is measured according to JIS-K6726.
  • the raw material PVA may contain an alkali metal salt of carboxylic acid, and its content is preferably 0.50% by mass or less, more preferably 0.37% by mass or less, and 0.28% by mass in terms of the mass of the alkali metal. % Or less is more preferable, and 0.23 mass or less is particularly preferable.
  • the content of the alkali metal salt of the carboxylic acid in the raw material PVA exceeds 0.50% by mass, the resulting multilayer film may be easily colored.
  • the content of alkali metal salt of carboxylic acid (calculated in terms of alkali metal mass) is obtained from the amount of alkali metal ions obtained by ashing PVA with a platinum crucible and then measuring the resulting ash content by ICP emission analysis. Can do.
  • vinyl ester monomers used in the production of raw material PVA include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate and versatic.
  • vinyl acid examples include vinyl acid, and vinyl acetate is particularly preferable.
  • the raw material PVA can also be produced by polymerizing vinyl ester monomers in the presence of thiol compounds such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid, and saponifying the resulting polyvinyl ester. You can also By this method, PVA in which a functional group derived from a thiol compound is introduced at the terminal is obtained.
  • thiol compounds such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid
  • Examples of the method for polymerizing the vinyl ester monomer include known methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.
  • a bulk polymerization method performed without a solvent or a solution polymerization method performed using a solvent such as alcohol is usually employed.
  • a solution polymerization method in which polymerization is performed together with a lower alcohol is preferable.
  • the lower alcohol is not particularly limited, but an alcohol having 3 or less carbon atoms such as methanol, ethanol, propanol and isopropanol is preferable, and methanol is usually used.
  • the reaction can be carried out by either a batch method or a continuous method.
  • the initiator used in the polymerization reaction include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethyl-valeronitrile), 2,2′-azobis (4-methoxy).
  • Azo initiators such as -2,4-dimethylvaleronitrile
  • organic peroxide initiators such as benzoyl peroxide, n-propyl peroxycarbonate, peroxydicarbonate, etc., within a range that does not impair the effects of the present invention.
  • a well-known initiator is mentioned.
  • an organic oxide initiator having a half-life of 10 to 110 minutes at 60 ° C. is preferable, and peroxydicarbonate is particularly preferable.
  • the polymerization temperature for carrying out the polymerization reaction but a range of 5 ° C to 200 ° C is suitable.
  • a copolymerizable monomer can be copolymerized as necessary as long as the effects of the present invention are not impaired.
  • monomers include ⁇ -olefins such as ethylene, propylene, 1-butene, isobutene, 1-hexene; carboxylic acids such as fumaric acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride, or the like Derivatives; acrylic acid or salts thereof; acrylic acid esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate; methacrylic acid or salts thereof; methyl methacrylate, ethyl methacrylate, n-methacrylate Methacrylic acid esters such as propyl and isopropyl methacrylate; Acrylamide derivatives such as acrylamide, N-methylacrylamide and N-ethy
  • the amount of the monomer that can be copolymerized with these vinyl ester monomers varies depending on the purpose and use of the monomer, but is usually based on all monomers used for copolymerization. Is 20 mol% or less, preferably 10 mol% or less, and more preferably 5 mol% or less.
  • PVA is obtained by saponifying the polyvinyl ester obtained by the above method in an alcohol solvent.
  • an alkaline substance is usually used, and examples thereof include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, and alkali metal alkoxides such as sodium methoxide.
  • the amount of the alkaline substance used is preferably in the range of 0.002 to 0.2 in the molar ratio based on the vinyl ester monomer unit of the polyvinyl ester, and in the range of 0.004 to 0.1. It is particularly preferred.
  • the saponification catalyst may be added all at once in the early stage of the saponification reaction, or a part thereof may be added in the early stage of the saponification reaction, and the rest may be added during the saponification reaction.
  • Examples of the solvent that can be used for the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, diethyl sulfoxide, and dimethylformamide. Of these solvents, methanol is preferably used. In its use, the water content of methanol is preferably adjusted to 0.001 to 1% by weight, more preferably 0.003 to 0.9% by weight, and particularly preferably 0.005 to 0.8% by weight.
  • the saponification reaction is preferably performed at a temperature of 5 to 80 ° C., more preferably 20 to 70 ° C.
  • the time required for the saponification reaction is preferably 5 minutes to 10 hours, more preferably 10 minutes to 5 hours.
  • the saponification reaction can be carried out by either a batch method or a continuous method.
  • the remaining saponification catalyst may be neutralized as necessary.
  • Usable neutralizing agents include organic acids such as acetic acid and lactic acid, and ester compounds such as methyl acetate.
  • the alkaline substance containing an alkali metal added during the saponification reaction is usually neutralized by an ester such as methyl acetate produced by the progress of the saponification reaction, or neutralized by adding a carboxylic acid such as acetic acid. At this time, an alkali metal salt of a carboxylic acid such as sodium acetate is formed.
  • the raw material PVA preferably contains a predetermined amount of an alkali metal salt of carboxylic acid.
  • the PVA may be washed with a washing solution containing a lower alcohol such as methanol after saponification.
  • the cleaning liquid may contain 20 parts by mass or less of water with respect to 100 parts by mass of the lower alcohol.
  • cleaning liquid may contain ester, such as methyl acetate produced
  • the content of the ester at this time is not particularly limited, but is preferably 1000 parts by mass or less with respect to 100 parts by mass of the lower alcohol.
  • the amount of the cleaning solution used for cleaning is preferably 100 parts by weight to 10000 parts by weight, more preferably 150 parts by weight to 5000 parts by weight, with respect to 100 parts by weight of the gel obtained by saponification and PVA swollen with alcohol. More preferably, it is 200 to 1000 parts by mass.
  • the addition amount of the cleaning liquid is less than 100 parts by mass, the alkali metal salt amount of the carboxylic acid may exceed the above range.
  • the addition amount of the cleaning liquid exceeds 10,000 parts by mass, the improvement of the cleaning effect by increasing the addition amount cannot be expected.
  • the washing method is not particularly limited.
  • PVA welled gel
  • a washing solution For example, PVA (swelled gel) and a washing solution are added to a tank, and the solution is stirred or allowed to stand for 5 to 180 minutes at 5 to 100 ° C. to remove the liquid.
  • a batch method in which the process is repeated until the content of the alkali metal salt of the carboxylic acid is within the above range can be mentioned.
  • the alkali metal salt of the carboxylic acid contained in the raw material PVA is obtained by neutralizing the alkali catalyst used in the saponification step, for example, sodium hydroxide, potassium hydroxide, sodium methylate, etc. with carboxylic acid,
  • the carboxylic acid added for the purpose of suppressing alcoholysis of the vinyl ester monomer such as vinyl acetate used in the polymerization process is neutralized in the saponification process, to stop radical polymerization
  • a carboxylic acid having a conjugated double bond is used as an inhibitor to be added to the carboxylic acid, those obtained by neutralizing the carboxylic acid in the saponification step or those intentionally added are included.
  • Specific examples include sodium acetate, potassium acetate, sodium propionate, potassium propionate, sodium glycerate, potassium glycerate, sodium malate, potassium malate, sodium citrate, potassium citrate, sodium lactate, potassium lactate, tartaric acid Sodium, potassium tartrate, sodium salicylate, potassium salicylate, sodium malonate, potassium malonate, sodium succinate, potassium succinate, sodium maleate, potassium maleate, sodium phthalate, potassium phthalate, sodium oxalate, potassium oxalate , Sodium glutarate, potassium glutarate, sodium abietic acid, potassium abietic acid, sodium sorbate, potassium sorbate, 2,4,6-octatri Sodium 1,1-carboxylate, potassium 2,4,6-octatriene-1-carboxylate, sodium eleostearate, potassium eleostearate, sodium 2,4,6,8-decatetraene-1-carboxylate 2,4,6,8-decatetraene-1-carboxylate, sodium reti
  • the PVA thus obtained is acetalized to produce polyvinyl acetal used for film production.
  • the method of acetalization is not specifically limited, For example, the following method is mentioned.
  • PVA is dissolved in water by heating to 80 to 100 ° C., and then gradually cooled over 10 to 60 minutes to obtain a 3 to 40% by mass aqueous solution of PVA.
  • an aldehyde and an acid catalyst are added to the aqueous solution, and an acetalization reaction is performed for 30 to 300 minutes while keeping the temperature constant.
  • polyvinyl acetal having reached a certain degree of acetalization is precipitated.
  • the temperature of the reaction solution is raised to 25 to 80 ° C.
  • aggregated particles made of polyvinyl acetal are generated in such a reaction or processing step, and coarse particles are easily formed.
  • coarse particles are generated, there is a risk of causing variation between batches.
  • PVA produced using a predetermined method to be described later is used as a raw material, the generation of coarse particles is suppressed as compared with the conventional product.
  • the obtained polyvinyl acetal is melt-cast, A film having a reduced dissolved content can be obtained.
  • the acid catalyst used in the acetalization reaction is not particularly limited, and any of organic acids and inorganic acids can be used. Examples thereof include acetic acid, paratoluenesulfonic acid, nitric acid, sulfuric acid, and hydrochloric acid. Of these, hydrochloric acid, sulfuric acid, and nitric acid are preferably used. In general, when nitric acid is used, the reaction rate of the acetalization reaction is increased, and improvement in productivity can be expected. On the other hand, the obtained polyvinyl acetal particles tend to be coarse and the variation between batches tends to increase.
  • the PVA of the present invention when used as a raw material, the formation of coarse particles is suppressed, and as a result, when the obtained polyvinyl acetal is melt-formed, a film with reduced foreign matter (undissolved content) is obtained. be able to.
  • the aldehyde used for the acetalization reaction of polyvinyl acetal is not particularly limited, but a conventionally known aldehyde having 1 to 8 carbon atoms is preferable, an aldehyde having 4 to 6 carbon atoms is more preferable, and n-butyraldehyde is particularly preferable.
  • polyvinyl acetal obtained by using two or more aldehydes in combination can also be used.
  • a method for adjusting each value obtained by GPC measurement of a multilayer film so as to fall within the above-mentioned range 1) a method for forming a film by adding an antioxidant to polyvinyl acetal, 2) a predetermined method
  • the method of using PVA manufactured using the method of (2) as a raw material of polyvinyl acetal (I) and polyvinyl acetal (II) is mentioned. You may combine these methods suitably.
  • the antioxidant used in the method 1) is not particularly limited, and examples thereof include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like. Among these, phenolic antioxidants are used. Preferably, alkyl-substituted phenolic antioxidants are particularly preferred.
  • phenolic antioxidants examples include 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2,4-di-t-amyl- Acrylate compounds such as 6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate; 2,6-di-t-butyl-4-methylphenol, 2,6-di-t -Butyl-4-ethylphenol, octadecyl-3- (3,5-) di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylene-bis (4-methyl-6-t-butylphenol), 4,4′-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidene-bis (6-tert-butyl-m-cresol), 4,4′-thiobi (3-methyl-6-tert-butylphenol
  • phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2-t-butyl).
  • sulfur-based antioxidant examples include dilauryl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, lauryl stearyl 3,3′-thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thiopropionate), 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane.
  • the blending amount of the antioxidant is not particularly limited, but is 0.001 to 5 parts by mass, preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polyvinyl acetal. When the amount of the antioxidant is less than 0.001 part by mass, a sufficient effect may not be exhibited, and when it exceeds 5 parts by mass, the effect cannot be improved by increasing the blending amount.
  • a vinyl ester monomer from which a radical polymerization inhibitor contained in the raw material vinyl ester monomer has been removed in advance is used for polymerization.
  • Impurities include aldehydes such as acetaldehyde, crotonaldehyde, and acrolein; acetals such as acetaldehyde dimethyl acetal, crotonaldehyde dimethyl acetal, and acrolein dimethyl acetal obtained by acetalizing the aldehyde with a solvent alcohol; ketones such as acetone; methyl acetate and ethyl acetate And esters.
  • Organic acids specifically hydroxycarboxylic acids such as glycolic acid, glyceric acid, malic acid, citric acid, lactic acid, tartaric acid, salicylic acid; malonic acid, succinic acid, maleic acid, phthalic acid, oxalic acid, glutaric acid, etc.
  • a carboxylic acid or the like is added to suppress the generation of aldehydes such as acetaldehyde generated by decomposition as much as possible.
  • the addition amount of the organic acid is preferably 1 to 500 ppm, more preferably 3 to 300 ppm, and still more preferably 5 to 100 ppm with respect to the raw material vinyl ester monomer.
  • the impurities contained in the solvent include those described above as the impurities contained in the raw material vinyl ester monomer.
  • Organic peroxide is used as a radical polymerization initiator used for radical polymerization of a vinyl ester monomer.
  • Organic peroxides include acetyl peroxide, isobutyl peroxide, diisopropyl peroxycarbonate, diallyl peroxydicarbonate, di-n-propyl peroxydicarbonate, dimyristyl peroxydicarbonate, di (2-ethoxyethyl) peroxide Examples include oxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, di (methoxyisopropyl) peroxydicarbonate, and di (4-tert-butylcyclohexyl) peroxydicarbonate. It is preferable to use peroxydicarbonate with a period of 10 to 110 minutes.
  • an inhibitor When an inhibitor is added after radical polymerization of the vinyl ester monomer in order to suppress the polymerization, an inhibitor of 5 molar equivalents or less is added to the remaining undecomposed radical polymerization initiator.
  • the inhibitor include a compound having a conjugated double bond having a molecular weight of 1000 or less and a compound that stabilizes a radical and inhibits a polymerization reaction.
  • isoprene 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-t-butyl-1,3-butadiene, 1,3-pentadiene, , 3-dimethyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, 3,4-dimethyl-1,3-pentadiene, 3-ethyl-1,3-pentadiene, 2-methyl-1 , 3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, 2,4-hexadiene, 2,5-dimethyl-2,4-hexadiene, , 3-octadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1-methoxy-1,3-butadiene, 2-methoxy-1,3-butadiene, 1-
  • Polyenes such as conjugated polyene consisting Motoni double bond of four or more conjugated structure. Any one having a plurality of stereoisomers such as 1,3-pentadiene, myrcene, and farnesene may be used.
  • a polyvinyl ester alcohol solution from which the remaining vinyl ester monomer is removed as much as possible is used for the saponification reaction.
  • the residual monomer removal rate is 99% or more, more preferably 99.5% or more, still more preferably 99.8% or more.
  • the desired PVA can be obtained by appropriately combining A) to H). PVA thus obtained is preferably used as a raw material for polyvinyl acetal (I) and polyvinyl acetal (II).
  • the plasticizer contained in the layer (X) and the layer (Y) is not particularly limited as long as the effect of the present invention is not impaired and there is no problem in compatibility with polyvinyl acetal.
  • the plasticizers can be used alone or in combination of two or more.
  • the plasticizer is preferably a diester of an oligoalkylene glycol having a hydroxyl group at both ends and an aliphatic carboxylic acid, or a diester of an alkylene dicarboxylic acid and an aliphatic monohydric alcohol.
  • oligoalkylene glycols having hydroxyl groups at both ends include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propylene glycol, 1,2-propylene glycol dimer and trimer, 1,3 -Propylene glycol, 1,3-propylene glycol dimer and trimer, 1,2-butylene glycol, 1,2-butylene glycol dimer and trimer, 1,4-butylene glycol, 1, 4-butylene glycol dimer and trimer, 1,2-hexanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,2-octanediol, 1,8-octane Diol, 1,9-nonanediol, 2-methyl-1,8-octanediol, , 2-decanediol, 1,4-cyclohexane diol.
  • aliphatic carboxylic acid examples include acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid, decanoic acid and the like.
  • the combination of oligoalkylene glycol and aliphatic carboxylic acid is arbitrary, and may be a combination of a plurality of oligoalkylene glycols and a plurality of carboxylic acids.
  • a diester of triethylene glycol and 2-ethylhexanoic acid is preferable from the viewpoint of handleability (volatility during molding).
  • Triethylene glycol-di-2-ethylhexanoate is particularly preferable.
  • alkylene dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and sebacic acid.
  • Aliphatic monohydric alcohols include methanol, ethanol, propanol, butanol, pentanol, hexanol, cyclohexanol, heptanol, octanol, 2-ethylhexanol, nonaol, decanol, 2-methoxyethanol, 2-ethoxyethanol, 2-propoxy Examples include ethanol and 2-butoxyethanol.
  • the combination of an alkylene dicarboxylic acid and an aliphatic monohydric alcohol is arbitrary, and a combination of a plurality of alkylene dicarboxylic acids and a plurality of aliphatic monohydric alcohols may be used.
  • an aliphatic compound having a hydroxyl group such as an aliphatic ester compound having a hydroxyl group or an aliphatic ether compound having a hydroxyl group may be used.
  • the number of hydroxyl groups in these compounds is preferably 2 or more, more preferably 2 to 3.
  • the aliphatic ester compound having a hydroxyl group is a compound having at least one ester bond and having a hydroxyl group
  • the aliphatic ether compound having a hydroxyl group is a compound having at least one ether bond and having a hydroxyl group.
  • the aliphatic ester compound having a hydroxyl group is not particularly limited, but methyl ricinoleate, butyl ricinoleate, 2-ethylhexyl ricinoleate, ricinoleic acid (2-hydroxyethyl), glycerin monoricinoleate, glycerin diricinoleate, glycerin triglyceride.
  • Ricinoleic acid ester glycerin diricinoleic acid monooleate, oleic acid (2-hydroxyethyl), 2-ethylhexanoic acid (2-hydroxyethyl), ricinoleic acid ⁇ 2- [2- (2-hydroxyethoxy) ethoxy ] Ethyl ⁇ 2-ethylhexanoic acid ⁇ 2- [2- (2-hydroxyethoxy) ethoxy] ethyl ⁇ , methyl ricinoleate, ethyl ricinoleate, butyl ricinoleate, octyl ricinoleate, 6-hydroxyhexanoic acid Chill, 12-hydroxystearic acid methyl other such castor, and polyester compounds having a hydroxyl group.
  • Castor oil is a glycerin tricarboxylic acid ester obtained from castor seeds, and most of the carboxylic acid ester portion, usually 80 to 95% by mass, is ricinoleic acid ester, and the remainder is palmitic acid ester, stearic acid ester, It is composed of oleic acid ester, linoleic acid ester, linolenic acid ester and the like.
  • polyester compound having a hydroxyl group examples include an aliphatic polyester having a hydroxyl group, which is a condensation copolymer of a polyvalent carboxylic acid and a polyhydric alcohol, an aliphatic polyester having a hydroxyl group, which is a polymer of a hydroxycarboxylic acid, and a hydroxyl group.
  • Aliphatic polycarbonate polyol having a hydroxyl group which is a condensation copolymer of a polyvalent carboxylic acid and a polyhydric alcohol
  • an aliphatic polyester having a hydroxyl group which is a polymer of a hydroxycarboxylic acid
  • a hydroxyl group examples include an aliphatic polycarbonate polyol having a hydroxyl group, which is a condensation copolymer of a polyvalent carboxylic acid and a polyhydric alcohol, an aliphatic polyester having a hydroxyl group, which is a polymer of a hydroxycarboxylic acid, and a
  • An aliphatic polyester having a hydroxyl group which is a condensation copolymer of a polycarboxylic acid and a polyhydric alcohol, can be obtained by condensation polymerization of an aliphatic polycarboxylic acid and an aliphatic polyhydric alcohol in an excess of polyhydric alcohol. .
  • aliphatic polycarboxylic acids examples include succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, 1,2-cyclohexanedicarboxylic acid, and other aliphatic divalent carboxylic acids, 1,2,3-propane Examples thereof include, but are not limited to, tricarboxylic acids and aliphatic trivalent carboxylic acids such as 1,3,5-pentatricarboxylic acid. Of these, aliphatic divalent carboxylic acids, particularly aliphatic divalent carboxylic acids having 6 to 10 carbon atoms are preferred.
  • Examples of the aliphatic polyhydric alcohol include 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 1,2-hexane.
  • An aliphatic polyester having a hydroxyl group which is a polymer of hydroxycarboxylic acid, can be obtained by condensation polymerization of hydroxycarboxylic acid.
  • the hydroxycarboxylic acid include glycolic acid, lactic acid, 2-hydroxybutanoic acid, 3-hydroxybutanoic acid, 4-hydroxybutanoic acid, 6-hydroxyhexanoic acid, ricinoleic acid and the like.
  • a lactone compound obtained by intramolecular condensation of these hydroxycarboxylic acids can also be used as a raw material.
  • lactone compound examples include, but are not limited to, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, 4-methyl- ⁇ -valerolactone, and the like.
  • a lactone compound When a lactone compound is used, a polyester can be obtained by ring-opening polymerization. Of these, 6-hydroxycarboxylic acid or ⁇ -caprolactone is preferred from the viewpoint of excellent heat resistance of the polyester.
  • Examples of the aliphatic ether compound having a hydroxyl group include ethylene glycol monohexyl ether and an aliphatic polyether compound having a hydroxyl group. Among these, an aliphatic polyether compound having a hydroxyl group is preferable.
  • the aliphatic polyether compound having a hydroxyl group is a polymer of an aliphatic polyhydric alcohol such as ethylene glycol and 1,2-propylene glycol and having a hydroxyl group. For example, polyethylene glycol and polypropylene glycol are preferable.
  • the molecular weight of the aliphatic compound having a hydroxyl group is not particularly limited, but is preferably 200 to 2000, more preferably 220 to 1000, and still more preferably 250 to 700.
  • the number average molecular weight based on the hydroxyl value of the compound is not particularly limited, but is preferably 200 to 2000, more preferably 220 to 1700, and further preferably 240 to 1500.
  • the number average molecular weight based on the hydroxyl value is smaller than 200, the boiling point of the compound may not be sufficiently high, and high volatility may be a problem.
  • the compatibility between the compound and polyvinyl acetal may be insufficient.
  • the number of hydroxyl groups per molecule of a compound having a hydroxyl group indicates an average value per molecule of the compound having a hydroxyl group contained in the mixture.
  • the hydroxyl value of the aliphatic compound having a hydroxyl group is not particularly limited, but is preferably 50 to 600 mgKOH / g, more preferably 70 to 500 mgKOH / g, and further preferably 100 to 400 mgKOH / g. If the hydroxyl value is less than 50 mgKOH / g, the transparency of the resulting multilayer film may be reduced. On the other hand, when the hydroxyl value exceeds 600 mgKOH / g, the compatibility with polyvinyl acetal is lowered, transparency may be lowered, and bleeding may occur from the multilayer film.
  • the hydroxyl value in the present invention is a value obtained by measurement by the method described in JIS K1557-1 (2007).
  • the hydroxyl value in the case of using a mixture of two or more compounds having a hydroxyl group is a mixture thereof (mixture of compounds having a hydroxyl group having the same mixing ratio as the mixing ratio of the plasticizer in each layer of the multilayer film of the present invention). Of hydroxyl value.
  • a compound having an aromatic ring such as an ether compound of a polyalkylene glycol and an aromatic alcohol or an ester compound of a polyalkylene glycol and an aromatic carboxylic acid is used. You can also.
  • the molecular weight of the compound is not particularly limited, but is preferably 200 to 2000, more preferably 220 to 1500, and still more preferably 250 to 1000.
  • ether compounds of polyalkylene glycol and aromatic alcohol include polyoxyethylene phenyl ether, polyoxyethylene methyl phenyl ether, polyoxyethylene ethyl phenyl ether, polyoxyethylene n-propyl phenyl ether, polyoxyethylene i.
  • Polyoxyethylene alkylphenyl ethers such as -propylphenyl ether, polyoxyethylene i-propylmethylphenyl ether, polyoxyethylene n-butylphenyl ether, polyoxyethylene i-butylphenyl ether, polyoxyethylene t-butylphenyl ether Can be mentioned.
  • the polyoxyethylene alkylphenyl ether is preferably a monoether. It is also preferable that the alkyl group on the aromatic ring of the polyoxyethylene alkylphenyl ether has 4 or less carbon atoms.
  • an ether compound of polyalkylene glycol and aromatic alcohol aromatic alcohol having a plurality of aromatic rings such as polyoxyethylene monobenzyl phenyl ether, polyoxyethylene dibenzyl phenyl ether, polyoxyethylene tribenzyl phenyl ether and polyoxyethylene monobenzyl phenyl ether
  • aromatic alcohol having a plurality of aromatic rings such as polyoxyethylene monobenzyl phenyl ether, polyoxyethylene dibenzyl phenyl ether, polyoxyethylene tribenzyl phenyl ether and polyoxyethylene monobenzyl phenyl ether
  • ether compounds with alkylene glycols such as polyoxyethylene naphthyl ether
  • these ether compounds are preferably monoethers.
  • a compound etherified with a plurality of polyethylene glycols such as 2,2-bis (4-polyoxyethyleneoxyphenyl) propane may be mentioned.
  • ester compounds of polyalkylene glycols and aromatic carboxylic acids include esters of aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and trimellitic acid with polyalkylene glycols such as polyethylene glycol. Compounds.
  • polyoxyethylene alkylphenyl ether an ether compound of an aromatic alcohol having a plurality of aromatic rings and polyoxyethylene
  • an ether of an aromatic alcohol having a condensed aromatic ring and a polyalkylene glycol Compounds are preferred, more preferably they are monoethers.
  • the solubility of the plasticizer used in the present invention in water is not particularly limited, but the amount of dissolution in 100 g of water at 20 ° C. is preferably 100 g or less. When the amount of the plasticizer dissolved is in such a range, it is preferable that when the resulting multilayer film comes into contact with water, the plasticizer is less likely to be eluted by water.
  • the amount of the plasticizer dissolved in 100 g of water at 20 ° C. is more preferably 50 g or less, further preferably 10 g or less, and particularly preferably 2 g or less.
  • the content of the plasticizer in the multilayer film of the present invention is preferably 20 to 100 parts by mass with respect to 100 parts by mass of polyvinyl acetal (I) or polyvinyl acetal (II) for each layer. If it is less than 20 mass parts, the impact resistance of the laminated glass or the laminated glass using the multilayer film as an intermediate film may be insufficient. On the other hand, when the amount exceeds 100 parts by mass, the plasticizer may bleed out and the transparency of the resulting multilayer film may be reduced, or the adhesion to glass may be impaired.
  • the difference between the plasticizer content relative to 100 parts by mass of the polyvinyl acetal (II) in the layer (Y) and the plasticizer content relative to 100 parts by mass of the polyvinyl acetal (I) in the layer (X) is 5 parts by mass or more. It is preferable from the viewpoint of sound insulation performance.
  • the content difference is preferably 7.5 parts by mass or more, and more preferably 10 parts by mass or more.
  • the difference in content is preferably 50 parts by mass or less.
  • Layer (X) contains an ultraviolet absorber.
  • the layer (X) located outside the layer (Y) containing the heat ray shielding fine particles contains an ultraviolet absorber, thereby preventing the heat ray shielding fine particles from being exposed to ultraviolet rays, and causing deterioration of the resin and particles caused by the photocatalytic activity of the particles. Can be prevented.
  • the ultraviolet absorber may also be contained in the layer (Y).
  • the ultraviolet absorber contained in the layer (X) is not particularly limited, but 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3,5-bis ( ⁇ , ⁇ 'dimethylbenzyl) phenyl) -2H-benzotriazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2- (3-t-butyl-5-methyl-2- Hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-amyl- Benzotriazole UV absorption such as 2-hydroxyphenyl) benzotriazole, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole Agent: 2,2,6,6-tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-t
  • Examples of commercially available ultraviolet absorbers include benzotriazole ultraviolet absorbers such as Tinuvin P, Tinuvin 213, Tinuvin 234, Tinuvin 326, Tinuvin 328, Tinuvin 329, and Tinuvin 571 manufactured by Ciba Japan, and triazine ultraviolet absorbers such as Tinuvin 1577 manufactured by Ciba Japan.
  • examples thereof include benzophenone-based ultraviolet absorbers such as CHIMASSORB 81 manufactured by Ciba Japan, and malonate-based ultraviolet absorbers such as Hostavin PR-25 manufactured by Clariant. These ultraviolet absorbers can be used alone or in combination of two or more.
  • a known light stabilizer such as a hindered amine compound may be used in combination.
  • the content of the ultraviolet absorber in the layer (X) is not particularly limited, but is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the total amount of polyvinyl acetal (I) and plasticizer.
  • the addition amount is less than 0.01 parts by mass, a sufficient ultraviolet shielding effect may not be expected. More preferably, it is 0.05 mass part or more, More preferably, it is 0.1 mass part or more.
  • the coloring of the multilayer film may be remarkably unsuitable. More preferably, it is 2 mass parts or less, More preferably, it is 1 mass part or less.
  • the glass transition temperature of the resin composition containing the polyvinyl acetal (I) constituting the layer (X), the ultraviolet absorber, and the plasticizer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the temperature is in the range of 5 to 45 ° C, more preferably 10 to 40 ° C.
  • the glass transition temperature is preferably in the above range.
  • the layer (Y) contains heat ray shielding fine particles for the purpose of imparting heat ray shielding properties.
  • the heat ray shielding fine particles used in this case are not particularly limited as long as they have a property of absorbing at least light in the near-infrared wavelength region as a function.
  • tin-doped indium oxide, antimony-doped tin oxide, aluminum-doped oxidation examples thereof include zinc, indium-doped zinc oxide, gallium-doped zinc oxide, tungsten oxide, lanthanum hexaboride, cerium hexaboride, anhydrous zinc antimonate, and copper sulfide. These may be used alone or in combination of two or more. Among these, it is preferable to contain anhydrous zinc antimonate from the viewpoints of performance, safety, raw material availability, price, and the like.
  • the heat ray shielding fine particles may be contained in the layer (X) as necessary.
  • the heat ray shielding fine particles are preferably contained in an amount of 0.001 to 5 parts by mass with respect to 100 parts by mass of the total amount of polyvinyl acetal (II) and plasticizer in the layer (Y). If the content is less than 0.001 part by mass, the expected heat ray shielding effect may not be obtained. More preferably, it is 0.002 mass part or more, More preferably, it is 0.005 mass part or more. Moreover, when content exceeds 5 mass parts, there exists a possibility that the transparency of a multilayer film may be impaired. More preferably, it is 2 parts by mass or less.
  • the layer (Y) contains a surfactant as a dispersant for the heat ray shielding fine particles.
  • a surfactant as a dispersant for the heat ray shielding fine particles.
  • the surfactant is not particularly limited as long as it is not contrary to the gist of the present invention, but a phosphate ester is preferable.
  • the phosphate ester is not particularly limited, and a phosphate ester of a monobasic acid or a dibasic acid is preferably used.
  • the content of the surfactant in the layer (Y) is preferably 0.005 to 2 parts by mass with respect to 100 parts by mass of the total amount of the polyvinyl acetal (II) and the plasticizer in the layer (Y). . If the content is less than 0.005 parts by mass, the dispersion effect may not be sufficiently obtained. More preferably, it is 0.05 mass part or more, More preferably, it is 0.1 mass part or more. Moreover, when it exceeds 2 mass parts, the bleed-out of surfactant will be remarkable and the adhesive force with respect to glass may not be hold
  • the layer (Y) is likely to deteriorate due to the influence of the heat-shielding fine particles and the surfactant. Add salt.
  • the alkali metal salt and / or alkaline earth metal salt is not particularly limited, and examples of the alkali metal and / or alkaline earth metal forming the salt include sodium, potassium, magnesium and the like.
  • the acid forming the salt include linear carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid and octanoic acid, and branched carboxylic acids such as 2-ethylbutanoic acid and 2-ethylhexanoic acid.
  • examples thereof include organic acids such as acids, and inorganic acids such as hydrochloric acid, nitric acid, and sulfuric acid. These may be used alone or in combination of two or more.
  • the content of the alkali metal salt and / or alkaline earth metal salt in the layer (Y) is the total content of the alkali metal and / or alkaline earth metal derived from the alkali metal salt and / or alkaline earth metal salt. Is preferably 0.006 to 0.2 parts by mass with respect to 100 parts by mass of polyvinyl acetal (II). If it is less than 0.006 parts by mass, deterioration of the resin derived from the surfactant may not be sufficiently suppressed. More preferably, it is 0.008 mass part or more. Moreover, when content exceeds 0.2 mass part, aggregation of a heat ray shielding fine particle will be accelerated
  • the glass transition temperature of the resin composition containing polyvinyl acetal (II) constituting the layer (Y), heat ray shielding fine particles, surfactant, alkali metal salt and / or alkaline earth metal salt, and plasticizer is not particularly limited.
  • the temperature can be appropriately selected depending on the purpose, but is preferably in the range of 0 to 45 ° C, more preferably 0 to 35 ° C, and further preferably 0 to 30 ° C.
  • the glass transition temperature is preferably in the above range.
  • the method for obtaining the layer (X) constituting the multilayer film of the present invention is not particularly limited; after forming a film obtained by dissolving or dispersing polyvinyl acetal (I), an ultraviolet absorber and a plasticizer in an organic solvent, Examples include a method of distilling off the organic solvent; a method of melt-molding a resin composition containing polyvinyl acetal (I), an ultraviolet absorber and a plasticizer. Among these, the latter is preferable from the viewpoint of productivity and the like.
  • the method of adding the ultraviolet absorber is not particularly limited, but it is added to the polyvinyl acetal (I) in a state where the ultraviolet absorber is dissolved or suspended in advance in a plasticizer. It is preferable. Moreover, there is no restriction
  • the melt kneading method is not particularly limited, and a known kneader such as a single screw extruder, a twin screw extruder, a brabender, an open roll, or a kneader can be used.
  • the resin temperature at the time of melt kneading is preferably 150 to 250 ° C, more preferably 170 to 230 ° C. If the resin temperature becomes too high, the polyvinyl acetal (I) will be decomposed, and the content of volatile substances in the film after film formation will increase. On the other hand, if the temperature is too low, volatile matter removal by the kneader becomes insufficient, and the content of volatile substances in the film after film formation increases. In order to efficiently remove the volatile substance, it is preferable to remove the volatile substance from the vent port by reducing the pressure in the kneader.
  • the mixed melt is melt-molded into a film.
  • a known method can be adopted as the molding method.
  • a film can be produced by directly attaching a T-die to the melt-kneading apparatus, or a resin composition pellet can be produced once, and then a film can be separately formed.
  • the method for obtaining the layer (Y) constituting the multilayer film of the present invention is not particularly limited; polyvinyl acetal (II), heat ray shielding fine particles, surfactant, alkali metal salt and / or alkaline earth metal salt, and plastic A method in which an organic solvent is dissolved or dispersed in an organic solvent, and then the organic solvent is distilled off; polyvinyl acetal (II), heat ray shielding fine particles, surfactant, alkali metal salt and / or alkaline earth metal Examples thereof include a method of melt-molding a resin composition containing a salt and a plasticizer. Among these, the latter is preferable from the viewpoint of productivity and the like.
  • the melt molding method preferably includes a step of melt-kneading a dispersion of a heat ray shielding fine particle and a plasticizer with respect to polyvinyl acetal (II) and forming the film into a film shape. More preferably, the metal salt and / or alkaline earth metal salt are mixed separately and then melt-molded. By mixing separately, aggregation of heat ray shielding fine particles is suppressed, and as a result, a film having a further lower haze can be obtained.
  • a method of mixing the heat ray shielding fine particles as a dispersion is preferable, and the dispersion of the heat ray shielding fine particles and the alkali metal salt and / or alkaline earth metal salt solution are separately obtained from polyvinyl acetal ( The method of mixing in II) is more preferred.
  • the surfactant may be added to any one of the dispersion of the heat ray shielding fine particles and the alkali metal salt and / or alkaline earth metal salt solution. From the viewpoint of the dispersibility of the heat ray shielding fine particles, at least heat rays are added. It is preferably contained in a dispersion of shielding fine particles.
  • a method for obtaining a dispersion of heat ray shielding fine particles containing a surfactant a method of mixing heat ray shielding fine particles, a surfactant and a solvent followed by pulverization treatment, including heat ray shielding fine particles and a solvent, pulverization treatment was performed.
  • Either a method of adding a surfactant to the dispersion, or a method of adding a dispersion containing heat ray shielding fine particles and a solvent and subjected to pulverization treatment to the surfactant may be used.
  • the order of mixing the dispersion of the heat ray shielding fine particles, the alkali metal salt and / or alkaline earth metal salt solution, the plasticizer and the polyvinyl acetal (II) is not particularly limited.
  • the solvent contained in the dispersion of the heat ray shielding fine particles is not particularly limited, and a general-purpose organic solvent, water, a plasticizer, or the like can be used.
  • general-purpose organic solvents include methanol, ethanol, n-propanol, i-propanol, n-butanol, ethylene glycol, diethylene glycol, hexylene glycol, tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, ⁇ -butyrolactone, ⁇ -caprolactone, N -Methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexane, toluene, acetonitrile and the like.
  • the solvent contained in the alkali metal salt and / or alkaline earth metal salt solution is not particularly limited, and a solvent similar to the dispersion of the heat ray shielding fine particles can be used as the solution.
  • An aqueous solution of an alkali metal salt and / or alkaline earth metal salt suspended in a plasticizer can also be added.
  • the method of mixing the raw materials is not particularly limited, but it is preferable to mix by melt kneading from the viewpoint of productivity and the like.
  • the method of melt kneading is not particularly limited, and the above-described kneader used for melt kneading the raw material of the layer (X) is used.
  • the mixed melt is melt-molded into a film.
  • the forming method the method described above as the melt forming method used for the production of the layer (X) is used.
  • a general molding method can be applied. That is, a method in which the resin composition of each layer is coextruded to a die or a feed block, a method in which each layer is separately formed into a film, and then bonded together are included.
  • the thickness of the layer (X) constituting the multilayer film of the present invention is not particularly limited.
  • the thickness of the layer (X) is preferably 0.05 to 1.2 mm, more preferably 0.07 to 1 mm, and further preferably 0.1 to 0.7 mm. If the thickness is less than 0.05 mm, the mechanical strength of the multilayer film may be reduced, and if it exceeds 1.2 mm, the flexibility of the multilayer film may be insufficient. Therefore, when the thickness of the layer (X) deviates from 0.05 to 1.2 mm, the laminated film obtained when the multilayer film of the present invention is used as an interlayer film of laminated glass. The safety of the glass may be reduced.
  • the thickness of the layer (Y) constituting the multilayer film of the present invention is not particularly limited.
  • the thickness of the layer (Y) is preferably from 0.01 to 1 mm, more preferably from 0.02 to 0.8 mm, still more preferably from 0.05 to 0.5 mm.
  • the thickness is less than 0.01 mm, the sound insulation performance of the laminated glass using the multilayer film of the present invention as an interlayer film of the laminated glass may be deteriorated.
  • the thickness exceeds 1 mm the mechanical strength of the multilayer film cannot be expected by increasing the thickness.
  • the ratio (Y / X) of the thickness of the layer (Y) to the thickness of the layer (X) is not particularly limited, but is preferably 0.05 to 4 from the viewpoint of the mechanical strength and the sound insulation, and 0.07 To 2 is more preferable, and 0.1 to 0.8 is more preferable.
  • the multilayer film of the present invention has layers (X) arranged on both outer sides of the layer (Y). That is, any of the outermost layers is the layer (X).
  • the multilayer film of the present invention is used as an interlayer film for laminated glass, if both outermost layers are layers (X), the adhesiveness between the multilayer film and the glass can be adjusted appropriately. The merit of such a layer structure is great.
  • the layer configuration include layer (X) / layer (Y) / layer (X), layer (X) / layer (Y) / layer (X) / layer (Y) / layer (X), and the like. .
  • the thickness of the multilayer film of the present invention is not particularly limited, but is preferably 0.2 to 3 mm, more preferably 0.25 to 2.5 mm, and further preferably 0.3 to 2 mm. If the thickness is less than 0.2 mm, the mechanical strength may be insufficient. When thickness exceeds 3 mm, there exists a possibility that a softness
  • An interlayer film for laminated glass comprising the multilayer film of the present invention is a preferred embodiment of the present invention.
  • an adhesiveness adjusting agent may be contained in the layer (X).
  • the adhesion adjusting agent conventionally known ones can be used. For example, acetic acid, propionic acid, butanoic acid, hexanoic acid, 2-ethylbutanoic acid, sodium salt of organic acid such as 2-ethylhexanoic acid, potassium salt, A magnesium salt or the like is used. These can be used alone or in combination of two or more.
  • the optimum content of the adhesion modifier varies depending on the adhesion modifier used, but the adhesion of the resulting film to glass is determined by the Pummel test (described in International Publication No. WO2003 / 033583). In general, it is preferable to adjust to 3 to 10. In particular, when high penetration resistance is required, the content is preferably adjusted to 3 to 6, and when high glass scattering prevention property is required, the content is adjusted to 7 to 10. It is preferable. When high glass scattering prevention property is required, it is also a useful method not to add an adhesion modifier.
  • the content of the adhesion adjusting agent in the layer (X) is preferably 0.0001 to 1% by mass, more preferably 0.0005 to 0.1% by mass, and 0.001 to 0.03. More preferred is mass%.
  • a silane coupling agent can be mentioned.
  • the content of the silane coupling agent in the layer (X) is preferably 0.01 to 5% by mass.
  • the shape of the surface of the interlayer film for laminated glass is not particularly limited. However, in consideration of the handleability (foam removal property) when laminating with glass, the surface in contact with the glass is melted, embossed, or the like by a conventionally known method. It is preferable that an uneven structure is formed.
  • the emboss height is not particularly limited, but is preferably 5 ⁇ m to 500 ⁇ m, more preferably 7 ⁇ m to 300 ⁇ m, and still more preferably 10 ⁇ m to 200 ⁇ m. When the embossing height is less than 5 ⁇ m, bubbles formed between the glass and the intermediate film may not be efficiently removed when laminating to glass, and when it exceeds 500 ⁇ m, it is difficult to form embossing. Moreover, although embossing may be given to the single side
  • the embossed concavo-convex pattern is not particularly limited as long as it satisfies the specific conditions described above, and may be regularly distributed or randomly distributed.
  • the embossing roll method In order to form such embossing, the embossing roll method, the profile extrusion method, An extrusion lip embossing method using a melt fracture is employed.
  • the embossing roll method is suitable for stably obtaining an embossed film on which uniform and fine irregularities are formed.
  • the embossing roll used in the embossing roll method can be produced by, for example, using an engraving mill (mother mill) having a desired concavo-convex pattern and transferring the concavo-convex pattern onto the surface of the metal roll. It can also be produced using laser etching. Further, after forming a fine concavo-convex pattern on the roll surface as described above, blasting is performed on the surface using an abrasive such as aluminum oxide, silicon oxide, or glass beads to form a finer concavo-convex pattern. You can also.
  • the embossing roll used in the embossing roll method is preferably subjected to a release treatment.
  • a roll without mold release treatment When a roll without mold release treatment is used, troubles that cannot be peeled off from the roll easily occur depending on conditions.
  • known techniques such as silicone treatment, Teflon (registered trademark) treatment, plasma treatment and the like can be used.
  • a laminated glass obtained by bonding a plurality of glass plates using the interlayer film for laminated glass is a preferred embodiment of the present invention.
  • the laminated glass can be produced by sandwiching the intermediate film between at least two glass plates and heating and bonding the intermediate film.
  • the glass used for the laminated glass is not particularly limited.
  • inorganic glass such as float plate glass, tempered plate glass, polished plate glass, mold plate glass, netted plate glass, heat ray absorbing plate glass, conventionally known polymethyl methacrylate, polycarbonate and the like.
  • Organic glass or the like can be used. These may be colorless, colored, transparent or non-transparent. Moreover, these may be used independently and may use 2 or more types together.
  • the thickness of glass is not specifically limited, It is preferable that it is 100 mm or less.
  • the shape of the glass is not particularly limited, and may be a simple flat plate glass or a glass having a curvature such as an automobile windshield.
  • the laminated glass can be produced by a conventionally known method, and examples thereof include a method using a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, and a method using a nip roll. Further, there is a method in which the obtained laminate is put into an autoclave after being temporarily pressed using these methods.
  • an example of the production conditions is as follows.
  • the glass and the interlayer film are heated at a temperature of 100 to 200 ° C., particularly 130 to 160 ° C. under a reduced pressure of 1 ⁇ 10 ⁇ 6 to 3 ⁇ 10 ⁇ 2 MPa.
  • a method using a vacuum bag or a vacuum ring is described in, for example, European Patent No. 1235683, and is laminated at 130 to 145 ° C. under a pressure of about 2 ⁇ 10 ⁇ 2 MPa, for example.
  • degassing is performed by a roll at a temperature not higher than the flow start temperature of the resin composition containing the polyvinyl acetal (I), ultraviolet absorber and plasticizer used for the production of the layer (X) described above.
  • a method of performing pressure bonding at a temperature close to the flow start temperature can be mentioned. Specifically, for example, there is a method of heating to 30 to 70 ° C. with an infrared heater or the like, then degassing with a roll, further heating to 50 to 120 ° C., and then pressing with a roll.
  • the operating conditions of the autoclave process are appropriately selected depending on the thickness and configuration of the laminated glass. For example, 1.0 to 1.5 MPa The treatment is preferably carried out at a temperature of 130 to 145 ° C. for 0.5 to 3 hours under pressure.
  • the multilayer film of the present invention is less colored by heating and less foreign matter (undissolved part). Therefore, the multilayer film of the present invention is excellent in recyclability.
  • recovery of the said multilayer film is demonstrated.
  • a method for producing a monolayer film in which a multilayer film recovery product of the present invention (hereinafter, the “multilayer film recovery product of the present invention” may be abbreviated as “collection product”) is melt-kneaded and then formed into a film.
  • the recovered product was a polyvinyl acetal having a degree of acetalization of 55 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 15 mol%, and a viscosity average polymerization degree of 1400 to 5000 ( It is more preferable to form a film after melt-kneading III) and the plasticizer.
  • Polyvinyl acetal (III) has a viscosity average polymerization degree of 1400 to 5000, preferably 1500 to 3500.
  • the viscosity average degree of polymerization is less than 1400, the strength of the obtained multilayer film is insufficient.
  • the polymerization degree exceeds 5000, the melt viscosity becomes too high and film formation becomes difficult.
  • the degree of acetalization of polyvinyl acetal (III) is 55 to 85 mol%.
  • the degree of acetalization is preferably 60 mol% or more, more preferably 65 mol% or more.
  • the degree of acetalization is preferably 80 mol% or less.
  • the content of the vinyl ester monomer unit of polyvinyl acetal (III) is 0.1 to 15 mol%. When the content of the vinyl ester monomer unit is less than 0.1 mol%, the polyvinyl acetal cannot be stably produced and the film cannot be formed.
  • the content of the vinyl ester monomer unit is preferably 0.7 mol% or more, more preferably 6 mol% or more, and further preferably 7 mol% or more.
  • the content of the vinyl ester monomer unit exceeds 15 mol%, the resulting multilayer film is colored.
  • the content of the vinyl ester monomer unit is preferably 13 mol% or less, more preferably 10 mol% or less, and still more preferably 10 mol% or less. When the content of the vinyl ester monomer unit is within these ranges, the layer (Y ′) used in the multilayer film using the recovery film described later becomes a soft layer, and the resulting multilayer film is Excellent sound insulation performance while maintaining practical mechanical strength
  • the content of the vinyl alcohol monomer unit of the polyvinyl acetal (III) used in the present invention is preferably 5 to 44.9 mol%.
  • the content of monomer units other than acetalized monomer units, vinyl ester monomer units and vinyl alcohol monomer units in the polyvinyl acetal (III) used in the present invention is preferably 20 mol. % Or less, more preferably 10 mol% or less, and further preferably 5 mol% or less.
  • the polyvinyl acetal (III) used in the present invention is preferably produced in the same manner as described above as a method for producing the polyvinyl acetal (I) and the polyvinyl acetal (II).
  • polyvinyl acetal (I) and the polyvinyl acetal (II) described above are preferably used as the polyvinyl acetal (III). From the viewpoint of further improving the strength of the single layer film, it is preferable to use polyvinyl acetal (I) as polyvinyl acetal (III).
  • the film formation of polyvinyl acetal is carried out, for example, in a film formation apparatus in which an extruder is equipped with a measuring machine such as a gear pump and a die such as a T die.
  • a measuring machine such as a gear pump
  • a die such as a T die.
  • trims both ends (trims) of the film are cut off. It is very important to collect and reuse such trims from the viewpoints of energy saving, effective utilization of resources and improvement of yield.
  • off-spec products that are difficult to use as products produced when manufacturing films with irregularities on the surface and off-spec products that are difficult to use as products due to non-uniform composition and thickness are also the same as trim It is useful because it can be reused.
  • the formation of coarse particles is suppressed during the acetalization reaction, and as a result, the resulting polyvinyl acetal is melt-formed.
  • a film with reduced foreign matter (undissolved content) can be obtained.
  • the multilayer film of the present invention is less colored when heat-treated, it is possible to effectively reuse the collected materials such as the trim and off-spec products.
  • plasticizer newly added to the recovered material those described above as used in the production of the layer (X) are used.
  • plasticizer to be newly added any of the aforementioned plasticizers can be used as long as the resulting single layer film has excellent transparency.
  • the amount of the recovered product exceeds 50 parts by mass with respect to 100 parts by mass of newly added polyvinyl acetal (III), 10 parts by mass or more of the added plasticizer is an aliphatic ester having a hydroxyl group.
  • a compound an aliphatic ether compound having a hydroxyl group, an aliphatic polyester compound having a hydroxyl group, a monoether compound of a polyalkylene glycol and an aromatic alcohol, or a monoester compound of a polyalkylene glycol and an aromatic carboxylic acid.
  • the ratio of the recovered material to the newly added polyvinyl acetal (III) is not particularly limited, and can be arbitrarily changed.
  • the recovered material is 1 to 10000 parts by mass with respect to 100 parts by mass of polyvinyl acetal (III).
  • the content of the plasticizer added to the recovered material is not particularly limited, but is preferably 20 to 100 parts by mass with respect to 100 parts by mass of newly added polyvinyl acetal (III). If it is less than 20 mass parts, the impact resistance of the film obtained and the laminated glass manufactured using the said film may become inadequate. On the other hand, if it exceeds 100 parts by mass, the plasticizer may bleed out, and the transparency of the resulting film may be lowered, or the adhesion to glass may be impaired.
  • the method described above as the method used when producing the layer (X) is used.
  • a method of feeding the recovered material back into the extruder a method in which a film of a trim or off-spec product is wound on a roll is unwound as it is and then fed back into the extruder; the trim or off-spec product is taken up on a roll. For example, there is a method of cutting the cake into a certain size and then re-feeding it into the extruder.
  • the thickness of the monolayer film obtained by the production method using the recovered material is not particularly limited, but is preferably 0.05 to 5.0 mm, more preferably 0.1 to 2.0 mm, More preferably, it is 1 to 1.2 mm.
  • An interlayer film for laminated glass composed of a single layer film obtained by a production method using the recovered material is also a preferred embodiment of the present invention.
  • the single layer film is less colored.
  • the said single layer film has few foreign materials (undissolved part), the said single layer film is excellent in transparency. Therefore, the single layer film is useful as an interlayer film for laminated glass.
  • a laminated glass obtained by bonding a plurality of glass plates using the interlayer film for laminated glass is also a preferred embodiment of the present invention.
  • the said laminated glass can be manufactured by the method mentioned above as a manufacturing method of the laminated glass which used the multilayer film of this invention as an intermediate film.
  • the haze of the laminated glass thus obtained is 1.0 or less.
  • the haze of the laminated glass is measured according to JIS K7105.
  • a preferred embodiment of the present invention is a method for producing a multilayer film in which a layer (X) formed by melting and kneading a polyvinyl acetal (I), an ultraviolet absorber, and a plasticizer is disposed on both outer sides. is there.
  • polyvinyl acetal (III) those described above as being used for a monolayer film obtained using the recovered material are used.
  • polyvinyl acetal (III) it is preferable to use the above-mentioned polyvinyl acetal (I) and polyvinyl acetal (II). From the viewpoint of further improving sound insulation, it is preferable to use polyvinyl acetal (II) as polyvinyl acetal (III).
  • plasticizer heat ray shielding fine particles, surfactant, alkali metal salt and alkaline earth metal salt added to the recovered material, those described above as those used for the production of the layer (Y) are used.
  • any of the plasticizers described above as used for the production of the layer (Y) can be used as long as the obtained single layer film has excellent transparency.
  • 10 parts by mass or more of the added plasticizer is an aliphatic ester having a hydroxyl group. It is preferable to use a compound, an aliphatic ether compound having a hydroxyl group, an aliphatic polyester compound having a hydroxyl group, a monoether compound of a polyalkylene glycol and an aromatic alcohol, or a monoester compound of a polyalkylene glycol and an aromatic carboxylic acid.
  • the ratio of the recovered material to the newly added polyvinyl acetal (III) is not particularly limited, and can be arbitrarily changed.
  • the recovered material is 1 to 10000 parts by mass with respect to 100 parts by mass of polyvinyl acetal (III).
  • the amount of the plasticizer to be newly added is preferably 20 to 100 parts by mass with respect to 100 parts by mass of the newly added polyvinyl acetal (III). If it is less than 20 mass parts, the impact resistance of a multilayer film and the laminated glass obtained may become inadequate. On the other hand, when the amount exceeds 100 parts by mass, the plasticizer may bleed out and the transparency of the resulting multilayer film may be reduced, or the adhesion to glass may be impaired.
  • the amount of the heat ray shielding fine particles added is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass of the total amount of plasticizer and polyvinyl acetal (III) to be newly added. If the content is 0.001 part by mass or less, the expected heat ray shielding effect may not be obtained. More preferably, it is 0.002 mass part or more, More preferably, it is 0.005 mass part or more. Moreover, when content exceeds 2 mass parts, there exists a possibility that transparency of the multilayer film obtained may be impaired. More preferably, it is 1.5 mass parts or less, More preferably, it is 1 mass part or less.
  • the addition amount of the surfactant is preferably 0.005 to 2 parts by mass with respect to 100 parts by mass of the total amount of polyvinyl acetal (III) and plasticizer to be newly added.
  • the content is less than 0.005 parts by mass, the effect of dispersing the heat ray shielding fine particles may not be sufficiently obtained. More preferably, it is 0.05 mass part or more, More preferably, it is 0.1 mass part or more.
  • it exceeds 2 mass parts the bleed-out of surfactant will be remarkable and the adhesive force with respect to glass may not be hold
  • the amount of the alkali metal salt and / or alkaline earth metal salt added to the recovered material is the content of the alkali metal and / or alkaline earth metal derived from the alkali metal salt and / or alkaline earth metal salt. Is preferably 0.006 to 0.2 parts by mass with respect to 100 parts by mass of polyvinyl acetal (III). If it is less than 0.006 parts by mass, deterioration of the resin derived from the surfactant may not be sufficiently suppressed. More preferably, it is 0.008 mass part or more. Moreover, when content exceeds 0.2 mass part, aggregation of a heat ray shielding fine particle will be accelerated
  • the layer (Y ′) can be produced by the method described above as the production method of the layer (Y) except that polyvinyl acetal (III) and the recovered material are used instead of polyvinyl acetal (II).
  • a method of feeding the recovered material into the extruder again a method in which a film of a trim or off-spec product is wound on a roll is unwound as it is and then fed back into the extruder; the trim or off-spec product is rolled.
  • a method of cutting the wound material into a certain size and then re-feeding it into the extruder may be mentioned.
  • the multilayer film using the recovered material is the method described above as the method for producing a laminated film having the layer (X) and the layer (Y) except that the layer (Y ′) is used instead of the layer (Y). It can be manufactured in the same manner.
  • the multilayer structure and thickness of the multilayer film using the recovered material are the multilayer film having the layer (X) and the layer (Y) described above, except that the layer (Y ′) is used instead of the layer (Y). The same.
  • An interlayer film for laminated glass made of a multilayer film obtained by the method for producing a multilayer film using the recovered material is a preferred embodiment of the present invention. Since the multilayer film using the recovered material has few foreign matters (undissolved content), the multilayer film is excellent in transparency. Therefore, the multilayer film is useful as an interlayer film for laminated glass.
  • a laminated glass obtained by bonding a plurality of glass plates using the interlayer film for laminated glass is also a preferred embodiment of the present invention.
  • the said laminated glass can be manufactured by the method mentioned above as a manufacturing method of the laminated glass which used the multilayer film which has layer (X) and layer (Y) as an intermediate film.
  • the haze of the laminated glass thus obtained is preferably 1.0 or less.
  • the polymerization degree was measured using a part of the methanol solution of PVAc-1 obtained.
  • a 10% methanol solution of sodium hydroxide was added to the methanol solution of PVAc-1 so that the molar ratio of sodium hydroxide to vinyl acetate units in polyvinyl acetate was 0.1.
  • the gelled product was formed, the gel was pulverized and subjected to Soxhlet extraction with methanol for 3 days.
  • the obtained polyvinyl alcohol was dried and subjected to viscosity average polymerization degree measurement.
  • the degree of polymerization was 1700.
  • PVAc-2 to PVAc-12 Polyvinyl acetate (PVAc-2 to PVAc-12) was obtained in the same manner as PVAc-1, except that the conditions were changed to those described in Table 1.
  • “ND” means less than 1 ppm.
  • the degree of polymerization of each polyvinyl acetate obtained was determined in the same manner as PVAc-1. The results are shown in Table 1.
  • the polymerization degree and saponification degree of PVA-1 were determined by the method described in JIS-K6726.
  • the degree of polymerization was 1700, and the degree of saponification was 99.1 mol%.
  • These physical property data are also shown in Table 2.
  • the sodium acetate content of PVA-1 was determined by measuring the amount of sodium in the obtained ash using an ICP emission analyzer “IRIS AP” manufactured by Jarrel Ash. .
  • the sodium acetate content was 0.7% (0.20% in terms of sodium).
  • PVA-6, comparative PVA-4 and 5 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 3 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 3.
  • PVA-7, comparative PVA-6 and 7 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 4 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 4.
  • PVA-8-11, comparative PVA-8 and 9 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 5 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 5.
  • PVA-12, comparative PVA-10 and 11 Each PVA was synthesized in the same manner as PVA-1 except that the conditions were changed to those shown in Table 6.
  • the polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 6.
  • PVA-13, comparative PVA-12 and 13 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 7 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 7.
  • composition of PVB The degree of butyralization (degree of acetalization) of PVB-1, the content of vinyl acetate monomer units, and the content of vinyl alcohol monomer units were measured according to JIS K6728. The degree of butyralization (degree of acetalization) was 68.2 mol%, the content of vinyl acetate monomer units was 0.9 mol%, and the content of vinyl alcohol monomer units was 30.9 mol%. It was. The results are also shown in Table 8.
  • PVB-2 ⁇ 5 PVB was synthesized and evaluated in the same manner as PVB-1, except that the raw material PVA was changed to that shown in Table 8. The results are shown in Table 8.
  • PVB-6 PVB was synthesized and evaluated in the same manner as PVB-1, except that the amount of n-butyraldehyde added was changed to 320 g. The results are shown in Table 8.
  • PVB-7 PVB was synthesized and evaluated in the same manner as PVB-1, except that the amount of n-butyraldehyde added was changed to 362 g. The results are shown in Table 8.
  • PVB-8 Polyvinyl butyral was synthesized and evaluated in the same manner as PVB-1, except that the amount of n-butyraldehyde added was changed to 449 g. The results are shown in Table 8.
  • Comparison PVB-1 ⁇ 3 Polyvinyl butyral was synthesized and evaluated in the same manner as PVB-1, except that the raw material PVA was changed to that shown in Table 8. The results are shown in Table 8.
  • Comparison PVB-4 Polyvinyl butyral was synthesized and evaluated in the same manner as PVB-6 except that the raw material PVA was changed to comparative PVA-1. The results are shown in Table 8.
  • Comparative PVB-5 Polyvinyl butyral was synthesized and evaluated in the same manner as PVB-8, except that the raw material PVA was changed to comparative PVA-1. The results are shown in Table 8.
  • Comparative PVB-6 Polyvinyl butyral was synthesized and evaluated in the same manner as PVB-6 except that the raw material PVA was changed to comparative PVA-2. The results are shown in Table 8.
  • Comparative PVB-7 Polyvinyl butyral was synthesized and evaluated in the same manner as PVB-8, except that the raw material PVA was changed to comparative PVA-2. The results are shown in Table 8.
  • PVB-9 A 10-liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade was charged with 8234 g of ion-exchanged water and 526 g of PVA-6 (PVA concentration 6.0%), and the contents were raised to 95 ° C. Warm to dissolve completely. Next, the contents were gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, and then 307 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 120 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C.
  • the composition of the obtained polyvinyl butyral was measured in the same manner as PVB-1.
  • the degree of butyralization (degree of acetalization) was 68.2 mol%, the content of vinyl acetate monomer units was 1.3 mol%, and the content of vinyl alcohol monomer units was 30.5 mol%. It was.
  • GPC measurement of the obtained PVB-9 was performed in the same manner as PVB-1. Table 9 shows the evaluation results.
  • Comparative PVB-8 and 9 PVB was synthesized and evaluated in the same manner as PVB-9, except that the raw material PVA was changed to that shown in Table 9. The results are shown in Table 9.
  • PVB-10 A 10-liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade was charged with 8322 g of ion-exchanged water and 438 g of PVA-7 (PVA concentration 5.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 20 ° C. over about 30 minutes while stirring at 120 rpm, and then 256 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 120 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C.
  • the composition of the obtained PVB was measured in the same manner as PVB-1.
  • the degree of butyralization degree of acetalization
  • the degree of acetalization was 68.1 mol%
  • the content of vinyl acetate monomer units was 1.5 mol%
  • the content of vinyl alcohol monomer units was 30.4 mol%. It was.
  • GPC measurement of the obtained PVB-10 was performed in the same manner as PVB-1. Table 10 shows the evaluation results.
  • Comparative PVB-10 and 11 PVB was synthesized and evaluated in the same manner as PVB-10 except that the raw material PVA was changed to that shown in Table 10. The results are shown in Table 10.
  • PVB-11 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-8 (PVA concentration 7.5%), and the contents were raised to 95 ° C. Warm to dissolve completely. Next, the contents are gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, and then 432 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C.
  • the composition of the obtained PVB was measured in the same manner as PVB-1.
  • the degree of butyralization degree of acetalization
  • the degree of acetalization was 74.1 mol%
  • the content of vinyl acetate monomer units was 8.1 mol%
  • the content of vinyl alcohol monomer units was 17.8 mol%. It was.
  • GPC measurement of the obtained PVB-11 was performed in the same manner as PVB-1. The evaluation results are shown in Table 11.
  • PVB-12-14 PVB was synthesized and evaluated in the same manner as PVB-11 except that the raw material PVA was changed to that shown in Table 11. The results are shown in Table 11.
  • PVB-15 PVB was synthesized and evaluated in the same manner as PVB-11 except that the amount of n-butyraldehyde added was changed to 458 g. The results are shown in Table 11.
  • Comparative PVB-12 and 13 PVB was synthesized and evaluated in the same manner as PVB-11 except that the raw material PVA was changed to that shown in Table 11. The results are shown in Table 11.
  • Comparative PVB-14 and 15 PVB was synthesized and evaluated in the same manner as PVB-15 except that the raw material PVA was changed to that shown in Table 11. The results are shown in Table 11.
  • PVB-16 A 10 L liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8234 g of ion-exchanged water and 526 g of PVA-12 (PVA concentration 6.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 15 ° C. over about 60 minutes while stirring at 120 rpm, and then 344 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C.
  • the composition of the obtained PVB was measured in the same manner as PVB-1.
  • the degree of butyralization degree of acetalization
  • the degree of acetalization was 74.6 mol%
  • the content of vinyl acetate monomer units was 8.3 mol%
  • the content of vinyl alcohol monomer units was 17.1 mol%. It was.
  • GPC measurement of the obtained PVB-16 was performed in the same manner as PVB-1. The evaluation results are shown in Table 12.
  • Comparative PVB-16 and 17 PVB was synthesized and evaluated in the same manner as PVB-16 except that the raw material PVA was changed to that shown in Table 12. The results are shown in Table 12.
  • PVB-17 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid-type stirring blade was charged with 8234 g of ion-exchanged water and 438 g of PVA-13 (PVA concentration 5.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 15 ° C. over about 60 minutes while stirring at 120 rpm, and then 265 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C.
  • the composition of the obtained PVB was measured in the same manner as PVB-1.
  • the degree of butyralization (average degree of acetalization) of PVB is 73.2 mol%
  • the content of vinyl acetate monomer units is 8.1 mol%
  • the content of vinyl alcohol monomer units is 18.7 mol%. %Met.
  • GPC measurement of the obtained PVB-17 was performed in the same manner as PVB-1. The evaluation results are shown in Table 13.
  • Comparative PVB-18 and 19 PVB was synthesized and evaluated in the same manner as PVB-17 except that the raw material PVA was changed to that shown in Table 13. The results are shown in Table 13.
  • Example 1 [Production of Layer (X)] 50 parts by mass of the synthesized PVB-1 powder, 19 parts by mass of triethylene glycol-di-2-ethylhexanoate as a plasticizer, and 0.175 parts by mass of “Tinuvin 328” manufactured by Ciba Japan as an ultraviolet absorber, Using a Labo plast mill “C model” manufactured by Toyo Seiki Seisakusho Co., Ltd., melt kneading was performed at 170 ° C. and 50 rpm for 5 minutes. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 320 ⁇ m.
  • Layer (X) and layer (Y) are layered in the order of layer (X) / layer (Y) / layer (X), and pressed in a form of 760 ⁇ m under conditions of 135 ° C. and 10 kg / cm 2.
  • a multilayer film composed of (X) (320 ⁇ m) / layer (Y) (120 ⁇ m) / layer (X) (320 ⁇ m) was obtained.
  • GPC measurement (measuring device) GPC measurement was performed using “GPCmax” manufactured by VISCOTECH. As a differential refractive index detector, “TDA305” manufactured by VISCOTECH was used. “UV Detector 2600” manufactured by VISCOTECH was used as an ultraviolet-visible absorption detector. The optical path length of the detection cell of the absorptiometric detector is 10 mm. As the GPC column, “GPC HFIP-806M” manufactured by Showa Denko KK was used. Moreover, OmniSEC (Version 4.7.0.406) attached to the apparatus was used as analysis software.
  • HFIP HFIP containing 20 mmol / l sodium trifluoroacetate was used as the mobile phase.
  • the mobile phase flow rate was 1.0 ml / min.
  • the sample injection amount was 100 ⁇ l, and measurement was performed at a GPC column temperature of 40 ° C.
  • the sample in which the PVA viscosity average polymerization degree in a sample exceeded 2400 performed GPC measurement using the sample (100 microliters) diluted suitably.
  • the absorbance at a sample concentration of 1.00 mg / ml was calculated from the measured value according to the following formula. ⁇ (mg / ml) is the concentration of the diluted sample.
  • Absorbance at a sample concentration of 1.00 mg / ml (1.00 / ⁇ ) ⁇ measured value of absorbance
  • the signal intensity obtained from the differential refractive index detector is expressed in millivolts
  • the signal intensity obtained from the absorptiometric detector is expressed in absorbance (abs unit: Absorbance unit).
  • the resulting multilayer film was heated by hot pressing at 2 MPa and 230 ° C. for 3 hours, and then cooled to obtain a heat-treated film.
  • a film piece obtained by cutting perpendicularly to the surface of the film from the center was used as a sample.
  • the obtained sample was dissolved in HFIP containing 20 mmol / l sodium trifluoroacetate to prepare a solution (concentration 1.00 mg / ml) in which the sample was dissolved.
  • the solution was filtered through a 0.45 ⁇ m polytetrafluoroethylene filter and then subjected to GPC measurement.
  • a chromatogram in which the signal intensity measured by the differential refractive index detector is plotted with respect to the molecular weight converted from the elution volume (PMMA converted molecular weight) is prepared, and the peak top molecular weight (A) and the peak top molecular weight are prepared.
  • the signal intensity (a) in (A) was determined.
  • the signal intensity at the peak top molecular weight (C) and the peak top molecular weight (C) was the same as the method for determining the peak top molecular weight (B) and the signal intensity (absorbance, b) except that the measurement wavelength was changed to 320 nm. (Absorbance, c) was determined.
  • the peak top molecular weight (A) and the peak top molecular weight (C) are expressed by the following formula (AC) / A The value obtained by substituting for was 0.51. The results are also shown in Table 14.
  • PMMA85K weight average molecular weight 85450, number average molecular weight 74300, intrinsic viscosity 0.309
  • PMMA GPC measurement was performed in the same manner as the above method except that the sample was changed to the PMMA.
  • the signal intensity (absorbance, y) at the peak top molecular weight measured with an absorptiometric detector (220 nm) obtained in the same manner as the method for determining the peak top molecular weight (B) was 269.28 mV (0.26928 absorber). Unit).
  • Signal intensity (a), peak top molecular weight (c), signal intensity (x), and signal intensity (y) are represented by the following formula (c / y) / (a / x) The value obtained by substituting for was 1.60 ⁇ 10 ⁇ 2 . The results are also shown in Table 14.
  • the laminated film obtained in the above “production of laminated film” was cut into a size of 1 cm ⁇ 1 cm. With respect to 100 parts by mass of the cut laminated film, 70 parts by mass of unused PVB-1 powder, and castor oil (glycerin tricarboxylic acid ester, 86% by mass of the carboxylic acid ester part was ricinoleic acid as a plasticizer.
  • 13 mass% is any one of palmitic acid ester, stearic acid ester, oleic acid ester, linoleic acid ester, and linolenic acid ester, and 1 mass% is composed of other carboxylic acid esters; hydroxyl groups per molecule 2.6 number, hydroxyl value 160 mgKOH / g, number average molecular weight based on hydroxyl value 910) at a ratio of 30 parts by mass using a lab plast mill “C model” manufactured by Toyo Seiki Co., Ltd., 180 ° C., 50 rpm For 5 minutes. There was no fuming from the raw material mixture during melt kneading. The kneaded sample was hot-pressed (170 ° C., 30 minutes) to obtain a single-layer film having a size of 20 cm ⁇ 20 cm and a thickness of 760 ⁇ m.
  • the laminated film obtained in the above “production of laminated film” was cut into a size of 1 cm ⁇ 1 cm.
  • 70 parts by mass of PVB-1 powder and castor oil (glycerin tricarboxylic acid ester, 86% by mass of the carboxylic acid ester part being ricinoleic acid ester) as a plasticizer 13% by mass is any one of palmitic acid ester, stearic acid ester, oleic acid ester, linoleic acid ester, and linolenic acid ester, and 1% by mass is composed of other carboxylic acid ester; the number of hydroxyl groups per molecule is 2 .6, hydroxyl value 160 mgKOH / g, number average molecular weight based on hydroxyl value 910) 15 parts by mass, 1.1 parts by mass of the above-mentioned zinc antimonate methanol dispersion having a concentration
  • the kneaded sample was hot-pressed (170 ° C., 30 minutes) to obtain a single-layer PVB film having a size of 20 cm ⁇ 20 cm and a thickness of 120 ⁇ m. This was designated as a layer (Y ′).
  • a laminated film consisting of the layer (X) (320 ⁇ m) was obtained.
  • Examples 2-5 Each film in the same manner as in Example 1 except that the PVB used for the production of the layer (X), the PVB used for the production of the layer (Y), and the PVB added to the recovered material were changed to those shown in Tables 14 and 15, respectively. Were prepared and evaluated. The results are shown in Tables 14 and 15.
  • Examples 6 and 7 The PVB used for the production of the layer (X) and the PVB added to the recovered material were changed to those shown in Tables 14 and 15, respectively, and the plasticizer used for the production of the layer (X) and the layer (Y) was changed to dibutoxyethyl adipate. Except for the change, each film was produced and evaluated in the same manner as in Example 1. The results are shown in Tables 14 and 15.
  • Example 8 Each of the PVBs used for the production of the layer (X), the PVBs used for the production of the layer (Y), and the PVBs added to the recovered materials were changed to those shown in Tables 14 and 15, respectively. Film preparation and evaluation were performed. The results are shown in Tables 14 and 15.
  • Example 12 Each film was prepared and evaluated in the same manner as in Example 1 except that a tin-doped indium oxide isopropanol dispersion ("ITO isopropanol dispersion" manufactured by Mitsubishi Materials Corporation) was used instead of the zinc antimonate methanol dispersion. . The results are shown in Tables 14 and 15.
  • ITO isopropanol dispersion manufactured by Mitsubishi Materials Corporation
  • Example 13 [Production of Layer (X)] 50 parts by mass of the synthesized PVB-1 powder, 19 parts by mass of triethylene glycol di-2-ethylhexanoate as a plasticizer, and 0.175 parts by mass of “Tinuvin 328” manufactured by Ciba Japan as an ultraviolet absorber was melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using a lab plast mill “C model” manufactured by Toyo Seiki Seisakusho Co., Ltd. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 310 ⁇ m.
  • Layer (X) and layer (Y) are layered in the order of layer (X) / layer (Y) / layer (X), and pressed in a form of 760 ⁇ m under conditions of 135 ° C. and 10 kg / cm 2.
  • a laminated film consisting of (X) (310 ⁇ m) / layer (Y) (140 ⁇ m) / layer (X) (310 ⁇ m) was obtained.
  • Example 2 Evaluation of the obtained laminated film was evaluated in the same manner as in Example 1. Moreover, except having used the obtained laminated
  • Example 14 [Production of Layer (X)] 50 parts by mass of the synthesized PVB-1 powder, 19 parts by mass of triethylene glycol di-2-ethylhexanoate as a plasticizer, and 0.175 parts by mass of “Tinuvin 328” manufactured by Ciba Japan as an ultraviolet absorber was melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using a lab plast mill “C model” manufactured by Toyo Seiki Seisakusho Co., Ltd. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 300 ⁇ m.
  • the obtained dispersion 22 parts by mass of triethylene glycol-di-2-ethylhexanoate, 0.10 parts by mass of a 25% by mass aqueous solution of a mixture of magnesium acetate and potassium acetate (mixing mass ratio: 2/1), and 43 parts by mass of the synthesized PVB-17 powder was melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using the Laboplast mill. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 160 ⁇ m.
  • Layer (X) and layer (Y) are layered in the order of layer (X) / layer (Y) / layer (X), and pressed in a form of 760 ⁇ m under conditions of 135 ° C. and 10 kg / cm 2.
  • a laminated film consisting of (X) (300 ⁇ m) / layer (Y) (160 ⁇ m) / layer (X) (300 ⁇ m) was obtained.
  • Example 2 Evaluation of the obtained laminated film was evaluated in the same manner as in Example 1. Moreover, except having used the obtained laminated
  • Example 15 [Production of Layer (X)] 46 parts by mass of the synthesized PVB-9 powder, 23 parts by mass of triethylene glycol-di-2-ethylhexanoate as a plasticizer, and 0.175 parts by mass of “Tinuvin 328” manufactured by Ciba Japan as an ultraviolet absorber.
  • Layer (X) and layer (Y) are layered in the order of layer (X) / layer (Y) / layer (X), and pressed in a form of 760 ⁇ m under conditions of 135 ° C. and 10 kg / cm 2.
  • a laminated film consisting of (X) (320 ⁇ m) / layer (Y) (120 ⁇ m) / layer (X) (320 ⁇ m) was obtained.
  • Example 1 Evaluation of the obtained laminated film was evaluated in the same manner as in Example 1. Moreover, it was the same as Example 1 except having used the obtained laminated
  • Example 16 [Production of Layer (X)] 46 parts by mass of the synthesized PVB-9 powder, 23 parts by mass of triethylene glycol-di-2-ethylhexanoate as a plasticizer, and 0.175 parts by mass of “Tinuvin 328” manufactured by Ciba Japan as an ultraviolet absorber.
  • the obtained dispersion 21 parts by mass of triethylene glycol-di-2-ethylhexanoate, 0.10 parts by mass of a 25% by mass aqueous solution of a mixture of magnesium acetate and potassium acetate (mixing mass ratio: 2/1), and 43 parts by mass of the synthesized PVB-17 powder was melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using the Laboplast mill. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 140 ⁇ m.
  • Layer (X) and layer (Y) are layered in the order of layer (X) / layer (Y) / layer (X), and pressed in a form of 760 ⁇ m under conditions of 135 ° C. and 10 kg / cm 2.
  • a laminated film consisting of (X) (310 ⁇ m) / layer (Y) (140 ⁇ m) / layer (X) (310 ⁇ m) was obtained.
  • Example 2 Evaluation of the obtained laminated film was evaluated in the same manner as in Example 1. Moreover, it was the same as that of Example 1 except having used the obtained laminated
  • Example 17 [Production of Layer (X)] 40.6 parts by mass of the synthesized PVB-10 powder, 28.4 parts by mass of triethylene glycol-di-2-ethylhexanoate as a plasticizer, and “Tinuvin 328” manufactured by Ciba Japan Co., Ltd. as an ultraviolet absorber are set to 0.0. 175 parts by mass was melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using a lab plast mill “C model” manufactured by Toyo Seiki Co., Ltd. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 320 ⁇ m.
  • the obtained dispersion 21 parts by mass of triethylene glycol-di-2-ethylhexanoate, 0.10 parts by mass of a 25% by mass aqueous solution of a mixture of magnesium acetate and potassium acetate (mixing mass ratio: 2/1), and 43 parts by mass of the synthesized PVB-17 powder was melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using the Laboplast mill. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 120 ⁇ m.
  • Layer (X) and layer (Y) are layered in the order of layer (X) / layer (Y) / layer (X), and pressed in a form of 760 ⁇ m under conditions of 135 ° C. and 10 kg / cm 2.
  • a laminated film consisting of (X) (320 ⁇ m) / layer (Y) (120 ⁇ m) / layer (X) (320 ⁇ m) was obtained.
  • Example 1 Evaluation of the obtained laminated film was evaluated in the same manner as in Example 1. Moreover, it was the same as that of Example 1 except having used the obtained laminated
  • the multilayer film of the present invention has sufficient heat shielding properties, little coloring due to heating, and few foreign matters (undissolved content). And the film using the collection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A multilayer film which has a layer (X) that contains a polyvinyl acetal (I) having an acetalization degree of 55-80% by mole, a content of a vinyl ester monomer unit of 0.1-1.5% by mole and a viscosity-average polymerization degree of 1,400-5,000, an ultraviolet absorbent and a plasticizer, and a layer (Y) that contains a polyvinyl acetal (II) having an acetalization degree of 70-85% by mole, a content of a vinyl ester monomer unit of 5-15% by mole and a viscosity-average polymerization degree of 1,400-5,000, heat blocking fine particles, a surfactant, an alkali metal salt and/or an alkaline earth metal salt, and a plasticizer, and wherein the layer (X) is arranged on both outer surfaces of the layer (Y). This multilayer film satisfies formulae (1) and (2). (A - B)/A < 0.80 (1) 1.00 × 10-2 < (b/y)/(a/x) < 2.00 × 10-1 (2) Consequently, there can be provided a film which has sufficient heat blocking performance, sufficient sound absorption performance, reduced inclusion of foreign substances (unsolved contents) and excellent recyclability, while being suppressed in coloration caused by heating.

Description

複層フィルム及びそれからなる合わせガラス用中間膜Multilayer film and interlayer film for laminated glass comprising the same
 本発明は、熱線遮蔽性及び遮音性を有する複層フィルムに関する。また、本発明は当該複層フィルムからなる合わせガラス用中間膜、及び当該中間膜を用いた合わせガラスに関する。さらに、本発明は、前記複層フィルムの回収物を用いたフィルムの製造方法に関する。 The present invention relates to a multilayer film having heat ray shielding properties and sound insulation properties. The present invention also relates to an interlayer film for laminated glass comprising the multilayer film, and a laminated glass using the interlayer film. Furthermore, this invention relates to the manufacturing method of the film using the recovered material of the said multilayer film.
 ポリビニルアセタールは、ポリビニルアルコール(以下「PVA」と略記する場合がある)とアルデヒド化合物を用いて、酸性条件下、水中にて、アセタール化反応することにより得られる。ポリビニルアセタールからなるフィルムは強靭であること、親水性のヒドロキシ基と疎水性のアセタール基を併せ持つユニークな構造であることなどから、様々な用途に用いられており、種々のポリビニルアセタールが提案されている。その中でも、PVAとホルムアルデヒドから製造されるポリビニルホルマール、PVAとアセトアルデヒドから製造される狭義のポリビニルアセタール、及びPVAとブチルアルデヒドから製造されるポリビニルブチラールは、商業的に重要な位置を占めている。 Polyvinyl acetal is obtained by an acetalization reaction in water under acidic conditions using polyvinyl alcohol (hereinafter sometimes abbreviated as “PVA”) and an aldehyde compound. Polyvinyl acetal films are used in various applications because they are tough and have a unique structure that has both hydrophilic hydroxy groups and hydrophobic acetal groups. Various polyvinyl acetals have been proposed. Yes. Among them, polyvinyl formal produced from PVA and formaldehyde, polyvinyl acetal in a narrow sense produced from PVA and acetaldehyde, and polyvinyl butyral produced from PVA and butyraldehyde occupy commercially important positions.
 特に、ポリビニルブチラールは、自動車や建築物の合わせガラス用の中間膜等として広く用いられており、商業的に特に重要な位置を占めている。 In particular, polyvinyl butyral is widely used as an interlayer film for laminated glass of automobiles and buildings, and occupies a particularly important position commercially.
 一方で、ポリビニルアセタールは、加熱により着色しやすい;ポリビニルアセタールのフィルム中に異物(未溶解分)が生じやすいなどの問題を有していた。これらの問題を解決するために、種々の提案がなされている。 On the other hand, polyvinyl acetal has a problem that it is easily colored by heating; a foreign substance (undissolved part) is likely to be generated in the polyvinyl acetal film. Various proposals have been made to solve these problems.
 特許文献1及び2には、高温高圧下にて特定の水酸化物イオン濃度でアセタール化することにより、ポリビニルアセタールの着色を抑制する方法が記載されている。また、特許文献3には、アセタール化反応して中和した後に還元剤を添加することにより、得られるポリビニルアセタールの着色を抑制する方法が記載されている。しかしながら、特許文献1~3に記載された方法により得られたポリビニルアセタールを用いて作製されたフィルム中に異物が生じやすかった。特許文献4には、アセタール化反応後の中和反応において、得られた樹脂粒子のスラリーの濃度を調整することにより、粗粒子の発生を抑制する方法が記載されている。また、特許文献5には、アセタール化反応に用いる、酸触媒と界面活性剤との関係を規定することにより粗粒子の発生を抑制する方法が記載されている。しかしながら、特許文献4及び5に記載された方法により得たポリビニルアセタールを用いて作製されたフィルム中には異物が生じやすかった。また、当該フィルムは加熱により着色し易かった。このようなことから、上述した問題が全て解決されたポリビニルアセタールが強く求められている。 Patent Documents 1 and 2 describe a method for suppressing coloring of polyvinyl acetal by acetalization at a specific hydroxide ion concentration under high temperature and high pressure. Patent Document 3 describes a method of suppressing coloring of the obtained polyvinyl acetal by adding a reducing agent after neutralization by acetalization reaction. However, foreign matters were liable to occur in the film produced using the polyvinyl acetal obtained by the methods described in Patent Documents 1 to 3. Patent Document 4 describes a method of suppressing the generation of coarse particles by adjusting the concentration of the obtained resin particle slurry in the neutralization reaction after the acetalization reaction. Patent Document 5 describes a method for suppressing the generation of coarse particles by defining the relationship between an acid catalyst and a surfactant used in the acetalization reaction. However, foreign matters were likely to be generated in the film produced using the polyvinyl acetal obtained by the methods described in Patent Documents 4 and 5. Moreover, the film was easily colored by heating. For these reasons, there is a strong demand for polyvinyl acetals in which all the above-mentioned problems are solved.
 また、近年、合わせガラス用中間膜用途において、さまざまな高機能化製品の開発が行われている。例えば、合わせガラス用中間膜に高い遮音性能及び遮熱性能を付与する目的で、ポリビニルアセタール及び可塑剤の含有量比等が異なる複数のポリビニルアセタール層が積層され、その中心層が熱線遮蔽粒子を含有する合わせガラス用中間膜が開示されている(例えば、特許文献6~9参照)。当該複層合わせガラス用中間膜においては、一般に、各層に含まれる可塑剤量が異なるようにするため、各層に平均残存水酸基量が異なるポリビニルアセタールが使用される。 In recent years, various highly functional products have been developed for use in interlayer films for laminated glass. For example, for the purpose of imparting high sound insulation performance and heat insulation performance to the interlayer film for laminated glass, a plurality of polyvinyl acetal layers having different content ratios of polyvinyl acetal and plasticizer are laminated, and the central layer is made of heat ray shielding particles. An interlayer film for laminated glass is disclosed (see, for example, Patent Documents 6 to 9). In the interlayer film for multi-layer laminated glass, generally, polyvinyl acetals having different average residual hydroxyl groups are used for each layer in order to make the amount of plasticizer contained in each layer different.
 ところで、合わせガラス用中間膜は生産コストの観点から、一般に押出機を用いて製造される。そして、前記複層合わせガラス用中間膜は、共押出法により生産されるが。これらの方法で合わせガラス用中間膜を生産する場合、膜端部の端材(トリム)が一定量発生するほか、組成や厚さが不均一なため製品として使用することが難しいオフスペック品も得られる。 Incidentally, the interlayer film for laminated glass is generally manufactured using an extruder from the viewpoint of production cost. The interlayer film for laminated glass is produced by a coextrusion method. When producing an interlayer film for laminated glass using these methods, a certain amount of trim material is generated at the edge of the film, and there are also off-spec products that are difficult to use as products due to non-uniform composition and thickness. can get.
 単層合わせガラス用中間膜のトリムやオフスペック品をリサイクルする場合、加熱によって、得られるフィルムが着色する問題や、得られるフィルム中に異物(未溶解分)が発生する問題があった。一方、各層で組成が異なる複層合わせガラス用中間膜のトリムやオフスペック品をリサイクルする際には、これらの問題に加えて、各成分が相溶しにくいため、透明性が低下する問題もあった。特に前述した遮音性と遮熱性とが付与された複層合わせガラス用中間膜をリサイクルする場合、各層を構成する平均残存水酸基量が異なるポリビニルアセタールを相溶させることが困難であった。そのため、得られる合わせガラス用中間膜は、透明性に劣る問題があった。加えて、当該中間膜をリサイクルする場合、中心層の熱線遮蔽粒子を再分散させることが困難であった。この点も透明性悪化を招く一因になっていた。 When recycling the trim or off-spec product of the interlayer film for single-layer laminated glass, there were problems that the resulting film was colored by heating and that foreign matter (undissolved part) was generated in the obtained film. On the other hand, when recycling trim and off-spec products for multi-layer laminated glass with different compositions in each layer, in addition to these problems, each component is difficult to be compatible, so there is a problem that transparency is lowered. there were. In particular, when recycling the interlayer film for laminated glass provided with the above-described sound insulation and heat insulation, it is difficult to dissolve polyvinyl acetals having different average residual hydroxyl groups constituting each layer. Therefore, the obtained interlayer film for laminated glass has a problem inferior in transparency. In addition, when the intermediate film is recycled, it is difficult to redisperse the heat ray shielding particles in the center layer. This also contributed to the deterioration of transparency.
 昨今の省エネルギー化、資源の有効活用などの観点から、フィルム製造工程全体の収率向上が非常に重要な課題となっている。そのため、これまで困難であった熱線遮蔽粒子を含有する複層合わせガラス用中間膜などのリサイクルも求められており、上述した課題の解決が望まれている。 From the viewpoint of recent energy saving and effective use of resources, improving the yield of the entire film manufacturing process is a very important issue. Therefore, recycling of an interlayer film for multilayer laminated glass containing heat ray shielding particles, which has been difficult until now, is also demanded, and a solution to the above-described problems is desired.
特開2011-219670号公報JP 2011-219670 A 特開2011-219671号公報JP 2011-219671 A 特開平5-140211号公報Japanese Patent Laid-Open No. 5-140211 特開平5-155915号公報JP-A-5-155915 特開2002-069126号公報JP 2002-069126 A 特開2003-252657号公報JP 2003-252657 A WO2008-122608号公報WO2008-122608 特開2004-143008号公報JP 2004-143008 A WO2012-077689号公報WO2012-077689
 本発明は、上記課題を解決するためになされたものであり、十分な熱線遮蔽性と遮音性とを有し、加熱による着色が少なく、異物(未溶解分)が少ないうえに、リサイクル性にも優れた複層フィルムを提供することを目的とする。また、当該複層フィルムを中間膜として用いた合わせガラスを提供することを目的とする。さらに、前記複層フィルムの回収物を用いたフィルムの製造方法を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems, has sufficient heat ray shielding and sound insulation properties, has little coloration due to heating, has less foreign matter (undissolved content), and is recyclable. Another object of the present invention is to provide an excellent multilayer film. Moreover, it aims at providing the laminated glass which used the said multilayer film as an intermediate film. Furthermore, it aims at providing the manufacturing method of the film using the recovered material of the said multilayer film.
 上記課題は、アセタール化度が55~80モル%でありビニルエステル単量体単位の含有量が0.1~1.5モル%であり粘度平均重合度が1400~5000であるポリビニルアセタール(I)、紫外線吸収剤、及び可塑剤を含有する層(X)と、アセタール化度が70~85モル%でありビニルエステル単量体単位の含有量が5~15モル%であり粘度平均重合度が1400~5000であるポリビニルアセタール(II)、熱線遮蔽微粒子、界面活性剤、アルカリ金属塩及び/又はアルカリ土類金属塩、並びに可塑剤を含有する層(Y)とを有し、層(Y)の両外側に層(X)が配置され、かつ下記式(1)及び(2)を満たす複層フィルムを提供することによって解決される。
(A-B)/A<0.80  (1)
1.00×10-2<(b/y)/(a/x)<2.00×10-1  (2)
The above-mentioned problem is that a polyvinyl acetal having a degree of acetalization of 55 to 80 mol%, a vinyl ester monomer unit content of 0.1 to 1.5 mol% and a viscosity average polymerization degree of 1400 to 5000 (I ), An ultraviolet absorber and a plasticizer-containing layer (X), the degree of acetalization is 70 to 85 mol%, the content of vinyl ester monomer units is 5 to 15 mol%, and the viscosity average polymerization degree A layer (Y) containing polyvinyl acetal (II) having a particle size of 1400 to 5000, a heat ray shielding fine particle, a surfactant, an alkali metal salt and / or an alkaline earth metal salt, and a plasticizer. This is solved by providing a multilayer film in which the layers (X) are disposed on both outer sides of the following formulas (1) and (2).
(AB) / A <0.80 (1)
1.00 × 10 −2 <(b / y) / (a / x) <2.00 × 10 −1 (2)
 式中、
A:230℃において3時間加熱された前記複層フィルムをゲルパーミエーションクロマトグラフィー(以下、GPCと略記することがある)測定したときの、示差屈折率検出器で測定されるポリマー成分のピークトップ分子量
a:ピークトップ分子量(A)におけるシグナル強度
B:230℃において3時間加熱された前記複層フィルムをGPC測定したときの、吸光光度検出器(測定波長280nm)で測定されるポリマー成分のピークトップ分子量
b:ピークトップ分子量(B)におけるシグナル強度
x:単分散のポリメタクリル酸メチル(以下、ポリメタクリル酸メチルをPMMAと略記することがある)をGPC測定したときの、示差屈折率検出器で測定されるピークトップ分子量におけるシグナル強度
y:前記単分散のPMMAをGPC測定したときの、吸光光度検出器(測定波長220nm)で測定されるピークトップ分子量におけるシグナル強度
である。
Where
A: The peak top of the polymer component measured by a differential refractive index detector when the multilayer film heated at 230 ° C. for 3 hours was measured by gel permeation chromatography (hereinafter sometimes abbreviated as GPC). Molecular weight a: Signal intensity at peak top molecular weight (A) B: Peak of polymer component measured by an absorptiometric detector (measurement wavelength 280 nm) when the multilayer film heated at 230 ° C. for 3 hours is measured by GPC Top molecular weight b: Signal intensity at peak top molecular weight (B) x: Differential refractive index detector when GPC measurement of monodispersed polymethyl methacrylate (hereinafter, polymethyl methacrylate may be abbreviated as PMMA) Signal strength y at peak top molecular weight measured by: monodispersed PMMA When the GPC measurement, a signal intensity at the peak top molecular weight measured by spectrophotometric detector (measuring wavelength 220 nm).
 ただし、複層フィルム及びPMMAのGPC測定において、
移動相:20mmol/lトリフルオロ酢酸ナトリウム含有ヘキサフルオロイソプロパノール(以下、ヘキサフルオロイソプロパノールをHFIPと略記することがある。)
試料濃度:1.00mg/ml
試料注入量:100μl
カラム温度:40℃
流速:1.0ml/分
である。
However, in GPC measurement of multilayer film and PMMA,
Mobile phase: 20 mmol / l sodium trifluoroacetate-containing hexafluoroisopropanol (hereinafter, hexafluoroisopropanol may be abbreviated as HFIP.)
Sample concentration: 1.00 mg / ml
Sample injection volume: 100 μl
Column temperature: 40 ° C
Flow rate: 1.0 ml / min.
 前記複層フィルムが、下記式(3)及び(4)を満たすことが好適である。
(A-C)/A<0.80  (3)
5.00×10-3<(c/y)/(a/x)<7.00×10-2  (4)
It is preferable that the multilayer film satisfies the following formulas (3) and (4).
(AC) / A <0.80 (3)
5.00 × 10 −3 <(c / y) / (a / x) <7.00 × 10 −2 (4)
 式中、
A:前記式(1)と同じ
a、x、y:前記式(2)と同じ
C:230℃において3時間加熱された前記複層フィルムをGPC測定したときの、吸光光度検出器(測定波長320nm)で測定されるポリマー成分のピークトップ分子量
c:ピークトップ分子量(C)におけるシグナル強度
である。
Where
A: Same as the above formula (1), a, x, y: Same as the above formula (2) C: Absorbance detector (measurement wavelength when GPC measurement is performed on the multilayer film heated at 230 ° C. for 3 hours) Peak top molecular weight c of the polymer component measured at 320 nm): signal intensity at peak top molecular weight (C).
 ポリビニルアセタール(I)及びポリビニルアセタール(II)がポリビニルブチラール(以下、PVBと略記することがある)であることが好適である。 The polyvinyl acetal (I) and the polyvinyl acetal (II) are preferably polyvinyl butyral (hereinafter sometimes abbreviated as PVB).
 前記複層フィルムからなる合わせガラス用中間膜が本発明の好適な実施態様である。当該合わせガラス用中間膜を用いて複数のガラス板を接着してなる合わせガラスも本発明の好適な実施態様である。 An interlayer film for laminated glass made of the multilayer film is a preferred embodiment of the present invention. A laminated glass formed by bonding a plurality of glass plates using the interlayer film for laminated glass is also a preferred embodiment of the present invention.
 前記複層フィルムの回収物を溶融混練してから製膜する単層フィルムの製造方法も本発明の好適な実施態様である。このとき、前記回収物、アセタール化度が55~85モル%でありビニルエステル単量体単位の含有量が0.1~15モル%であり粘度平均重合度が1400~5000であるポリビニルアセタール(III)、及び可塑剤を溶融混練してから製膜することがより好適である。 A method for producing a single-layer film in which the collected product of the multilayer film is melt-kneaded and then formed is also a preferred embodiment of the present invention. At this time, the recovered product was a polyvinyl acetal having a degree of acetalization of 55 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 15 mol%, and a viscosity average polymerization degree of 1400 to 5000 ( It is more preferable to form a film after melt-kneading III) and the plasticizer.
 前記複層フィルムの回収物、アセタール化度が55~85モル%でありビニルエステル単量体単位の含有量が0.1~15モル%であり粘度平均重合度が1400~5000であるポリビニルアセタール(III)、可塑剤、熱線遮蔽微粒子、界面活性剤、並びにアルカリ金属塩及び/又はアルカリ土類金属塩を溶融混練してから製膜してなる層(Y’)の両外側に、ポリビニルアセタール(I)、紫外線吸収剤、及び可塑剤を溶融混練してから製膜してなる層(X)を配置する複層フィルムの製造方法も本発明の好適な実施態様である。 Collected product of the multilayer film, polyvinyl acetal having an acetalization degree of 55 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 15 mol%, and a viscosity average polymerization degree of 1400 to 5000 (III) Polyvinyl acetal on both outer sides of the layer (Y ′) formed by melt-kneading the plasticizer, heat ray shielding fine particles, surfactant, and alkali metal salt and / or alkaline earth metal salt. A method for producing a multilayer film in which the layer (X) formed by melt-kneading (I), an ultraviolet absorber and a plasticizer and then forming a film is also a preferred embodiment of the present invention.
 本発明の複層フィルムは、十分な熱線遮蔽性と吸音性とを有し、加熱による着色が少なく、異物(未溶解分)が少ないうえに、リサイクル性にも優れている。したがって、当該複層フィルムは、合わせガラス用中間膜として有用である。さらに、当該複層フィルムの回収物を用いた製造方法によって得られるフィルムは、着色が少なく、なおかつ異物(未溶解分)が少ないため優れた透明性を有する。 The multilayer film of the present invention has sufficient heat ray shielding and sound absorbing properties, is less colored by heating, has less foreign matter (undissolved content), and is excellent in recyclability. Therefore, the multilayer film is useful as an interlayer film for laminated glass. Furthermore, the film obtained by the manufacturing method using the recovered material of the multilayer film has excellent transparency since it is less colored and has less foreign matter (undissolved content).
本発明の複層フィルムにおいて、分子量と示差屈折率検出器(RI)で測定された値との関係、及び分子量と吸光光度検出器(UV)(測定波長280nm)で測定された吸光度との関係を示したグラフである。In the multilayer film of the present invention, the relationship between the molecular weight and the value measured by the differential refractive index detector (RI), and the relationship between the molecular weight and the absorbance measured by the absorptiometric detector (UV) (measurement wavelength 280 nm). It is the graph which showed.
 本発明の複層フィルムは、アセタール化度が55~80モル%でありビニルエステル単量体単位の含有量が0.1~1.5モル%であり粘度平均重合度が1400~5000であるポリビニルアセタール(I)、紫外線吸収剤、及び可塑剤を含有する層(X)と、アセタール化度が70~85モル%でありビニルエステル単量体単位の含有量が5~15モル%であり粘度平均重合度が1400~5000であるポリビニルアセタール(II)、熱線遮蔽微粒子、界面活性剤、アルカリ金属塩及び/又はアルカリ土類金属塩、並びに可塑剤を含有する層(Y)とを有し、層(Y)の両外側に層(X)が配置され、かつ下記式(1)及び(2)を満たすものである。
(A-B)/A<0.80  (1)
1.00×10-2<(b/y)/(a/x)<2.00×10-1  (2)
The multilayer film of the present invention has an acetalization degree of 55 to 80 mol%, a vinyl ester monomer unit content of 0.1 to 1.5 mol%, and a viscosity average polymerization degree of 1400 to 5000. A layer (X) containing polyvinyl acetal (I), an ultraviolet absorber, and a plasticizer, an acetalization degree of 70 to 85 mol%, and a vinyl ester monomer unit content of 5 to 15 mol% A layer (Y) containing polyvinyl acetal (II) having a viscosity average polymerization degree of 1400 to 5000, heat ray shielding fine particles, surfactant, alkali metal salt and / or alkaline earth metal salt, and plasticizer The layer (X) is disposed on both outer sides of the layer (Y) and satisfies the following formulas (1) and (2).
(AB) / A <0.80 (1)
1.00 × 10 −2 <(b / y) / (a / x) <2.00 × 10 −1 (2)
 式中、
A:230℃において3時間加熱された前記複層フィルムをGPC測定したときの、示差屈折率検出器で測定されるポリマー成分のピークトップ分子量
a:ピークトップ分子量(A)におけるシグナル強度
B:230℃において3時間加熱された前記複層フィルムをGPC測定したときの、吸光光度検出器(測定波長280nm)で測定されるポリマー成分のピークトップ分子量
b:ピークトップ分子量(B)におけるシグナル強度
x:単分散のPMMAをGPC測定したときの、示差屈折率検出器で測定されるピークトップ分子量におけるシグナル強度
y:前記単分散のPMMAをGPC測定したときの、吸光光度検出器(測定波長220nm)で測定されるピークトップ分子量におけるシグナル強度
である。
Where
A: When the multilayer film heated at 230 ° C. for 3 hours is subjected to GPC measurement, the peak top molecular weight of the polymer component measured by the differential refractive index detector a: the signal intensity B at the peak top molecular weight (A) B: 230 When the multilayer film heated at 3 ° C. for 3 hours is subjected to GPC measurement, the peak top molecular weight b of the polymer component measured by an absorptiometric detector (measurement wavelength 280 nm): signal intensity x at peak top molecular weight (B): Signal intensity y at the peak top molecular weight measured with a differential refractive index detector when monodispersed PMMA is measured by GPC: with an absorptiometric detector (measurement wavelength 220 nm) when the monodispersed PMMA is measured by GPC Signal intensity at the measured peak top molecular weight.
 ただし、複層フィルム及びPMMAのGPC測定において、
移動相:20mmol/lトリフルオロ酢酸ナトリウム含有HFIP
試料濃度:1.00mg/ml
試料注入量:100μl
カラム温度:40℃
流速:1.0ml/分
である。
However, in GPC measurement of multilayer film and PMMA,
Mobile phase: HFIP containing 20 mmol / l sodium trifluoroacetate
Sample concentration: 1.00 mg / ml
Sample injection volume: 100 μl
Column temperature: 40 ° C
Flow rate: 1.0 ml / min.
 本発明におけるGPC測定では、示差屈折率検出器及び吸光光度検出器を有し、これらの検出器による測定を同時に行うことができるGPC装置を使用する。吸光光度検出器の検出部のセルは、セル長(光路長)が10mmのものが好ましい。吸光光度検出器は、特定波長の紫外光の吸収を測定するものでもよいし、特定範囲の波長の紫外光の吸収を分光測定するものでもよい。測定に供された複層フィルムは、GPCカラムによって各分子量成分に分離される。示差屈折率検出器によるシグナル強度は、概ねフィルム成分の濃度(g/l)に比例する。一方、吸光光度検出器により検出される成分は、所定の波長を吸収する構造を有するもののみである。前記GPC測定により、フィルムの各分子量成分ごとの、濃度および所定の波長における吸光度を測定することができる。 In the GPC measurement in the present invention, a GPC apparatus having a differential refractive index detector and an absorptiometric detector and capable of simultaneously performing measurement by these detectors is used. The cell of the detection part of the absorptiometric detector preferably has a cell length (optical path length) of 10 mm. The absorptiometric detector may measure the absorption of ultraviolet light having a specific wavelength, or may measure the absorption of ultraviolet light having a specific range of wavelengths. The multilayer film subjected to the measurement is separated into each molecular weight component by a GPC column. The signal intensity by the differential refractive index detector is approximately proportional to the concentration (g / l) of the film component. On the other hand, the components detected by the absorptiometric detector are only those having a structure that absorbs a predetermined wavelength. By the GPC measurement, the concentration and absorbance at a predetermined wavelength can be measured for each molecular weight component of the film.
 前記GPC測定において測定される複層フィルム及びPMMAの溶解に用いる溶媒及び移動相として、20mmol/lの濃度のトリフルオロ酢酸ナトリウム含有HFIPを用いる。HFIPは、本発明の複層フィルム及びPMMAを溶解させることができる。また、トリフルオロ酢酸ナトリウムを添加することにより、カラム充填剤へのフィルム成分やPMMAの吸着が防止される。前記GPC測定における流速やカラム温度は使用するカラムの種類等によって適宜調整する。前記GPC測定における流速は通常1.0ml/分であり、カラム温度は通常40℃である。 HFIP containing sodium trifluoroacetate having a concentration of 20 mmol / l is used as a solvent and a mobile phase used for dissolving the multilayer film and PMMA measured in the GPC measurement. HFIP can dissolve the multilayer film and PMMA of the present invention. Further, by adding sodium trifluoroacetate, adsorption of film components and PMMA to the column filler is prevented. The flow rate and column temperature in the GPC measurement are appropriately adjusted according to the type of column used. The flow rate in the GPC measurement is usually 1.0 ml / min, and the column temperature is usually 40 ° C.
 前記GPC測定において使用されるGPCカラムは、本発明の複層フィルム中の成分を分子量ごとに分離できるものであれば特に限定されない。具体的には、昭和電工株式会社製「GPC HFIP-806M」等が好適に用いられる。 The GPC column used in the GPC measurement is not particularly limited as long as it can separate the components in the multilayer film of the present invention for each molecular weight. Specifically, “GPC HFIP-806M” manufactured by Showa Denko KK is preferably used.
 本発明において、標準PMMAとは、単分散のPMMAである。標準PMMAとして、通常、GPC測定による分子量測定の検量線作成用の標品として使用される単分散のPMMAを使用できる。分子量の異なる数種類の標準PMMAを測定し、GPC溶出容量と標準PMMAの分子量から検量線を作成する。本発明においては、示差屈折率検出器による測定には当該検出器を用いて作成した検量線を使用し、吸光光度検出器による測定には当該検出器(測定波長220nm)を用いて作成した検量線を使用する。これらの検量線を用いてGPC溶出容量から分子量に換算し、ピークトップ分子量(A)及びピークトップ分子量(B)を求める。 In the present invention, standard PMMA is monodispersed PMMA. As the standard PMMA, monodispersed PMMA, which is usually used as a standard for preparing a calibration curve for molecular weight measurement by GPC measurement, can be used. Several types of standard PMMA with different molecular weights are measured, and a calibration curve is created from the GPC elution volume and the molecular weight of the standard PMMA. In the present invention, a calibration curve prepared using the detector is used for the measurement with the differential refractive index detector, and a calibration prepared using the detector (measurement wavelength: 220 nm) for the measurement with the absorptiometric detector. Use lines. Using these calibration curves, the GPC elution volume is converted into the molecular weight, and the peak top molecular weight (A) and the peak top molecular weight (B) are determined.
 前記GPC測定の前に、複層フィルムを230℃において3時間加熱する。本発明においては、以下の方法で複層フィルムを加熱する。複層フィルムを圧力2MPa、230℃にて、3時間熱プレスすることにより加熱を行う。これにより、加熱処理後の試料の色相の差異を吸光度(すなわち、吸光光度検出器で検出されるシグナル強度)の差異に明確に反映させる。加熱に供するフィルムの厚みは、600~800μmであり、通常の合わせガラス中間膜の厚みである概ね760μmであることが好ましい。 Before the GPC measurement, the multilayer film is heated at 230 ° C. for 3 hours. In the present invention, the multilayer film is heated by the following method. The multilayer film is heated by hot pressing for 3 hours at a pressure of 2 MPa and 230 ° C. Thereby, the difference in the hue of the sample after the heat treatment is clearly reflected in the difference in the absorbance (that is, the signal intensity detected by the absorptiometric detector). The thickness of the film to be heated is 600 to 800 μm, preferably about 760 μm, which is the thickness of a normal laminated glass interlayer.
 加熱された複層フィルムを前述した溶媒(トリフルオロ酢酸ナトリウム含有HFIP)に溶解させて測定試料を得る。測定試料の濃度は1.00mg/mlとし、注入量は100μlとする。但し、複層フィルム中のポリビニルアセタール(I)又はポリビニルアセタール(II)の粘度平均重合度が2400を超える場合、排除体積が増大するため、測定試料の濃度が1.00mg/mlでは再現性良く測定できない場合がある。その場合には、適宜希釈した試料(注入量100μl)を用いる。吸光光度検出器及び示差屈折率検出器で検出されるシグナル強度は試料の濃度に比例する。したがって、希釈した試料の濃度と実測された各シグナル強度を用いて、測定試料の濃度が1.00mg/mlの場合の各シグナル強度に換算する。 A measurement sample is obtained by dissolving the heated multilayer film in the above-mentioned solvent (HFIP containing sodium trifluoroacetate). The concentration of the measurement sample is 1.00 mg / ml, and the injection volume is 100 μl. However, when the viscosity average polymerization degree of the polyvinyl acetal (I) or the polyvinyl acetal (II) in the multilayer film exceeds 2400, the excluded volume increases. Therefore, when the concentration of the measurement sample is 1.00 mg / ml, the reproducibility is good. Measurement may not be possible. In that case, an appropriately diluted sample (injection amount 100 μl) is used. The signal intensity detected by the absorptiometric detector and the differential refractive index detector is proportional to the concentration of the sample. Therefore, the concentration of the diluted sample and the actually measured signal intensity are used to convert each signal intensity when the concentration of the measurement sample is 1.00 mg / ml.
 図1は、本発明の複層フィルムをGPC測定して得られた、分子量と示差屈折率検出器で測定されたシグナル強度との関係、及び分子量と吸光光度検出器(測定波長280nm)で測定されたシグナル強度(吸光度)との関係を示したグラフである。図1を用いて本発明におけるGPC測定についてさらに説明する。図1において、「RI」で示されるクロマトグラムは、溶出容量から換算したフィルム成分の分子量(横軸)に対して、示差屈折率検出器で測定されたシグナル強度をプロットしたものである。当該クロマトグラム中の分子量10万付近に見られるピークがポリマー成分のピークである。本発明において、このようなポリマー成分のピークの位置における分子量をポリマー成分のピークトップ分子量(A)とし、ピークトップ分子量(A)におけるシグナル強度をシグナル強度(a)とする。本発明のフィルムは、粘度平均重合度が1400~5000であるポリビニルアセタールを含有するため、通常、ポリマー成分のピークトップ分子量(A)は3500を超える。なお、図1において、分子量1500付近に見られるピークはフィルムに含有される可塑剤のピークである。クロマトグラム中にピークトップ分子量が3500を超えるピークが複数存在する場合には、ピーク高さが最も高いピークの位置における分子量をピークトップ分子量(A)とする。 FIG. 1 shows the relationship between the molecular weight obtained by GPC measurement of the multilayer film of the present invention and the signal intensity measured with a differential refractive index detector, and the molecular weight measured with an absorptiometric detector (measurement wavelength 280 nm). It is the graph which showed the relationship with the signal intensity (absorbance). The GPC measurement in the present invention will be further described with reference to FIG. In FIG. 1, the chromatogram indicated by “RI” is a plot of the signal intensity measured by the differential refractive index detector against the molecular weight (horizontal axis) of the film component converted from the elution volume. The peak seen in the chromatogram near the molecular weight of 100,000 is the peak of the polymer component. In the present invention, the molecular weight at the peak position of such a polymer component is defined as the peak top molecular weight (A) of the polymer component, and the signal intensity at the peak top molecular weight (A) is defined as the signal intensity (a). Since the film of the present invention contains polyvinyl acetal having a viscosity average degree of polymerization of 1400 to 5000, the peak top molecular weight (A) of the polymer component usually exceeds 3500. In addition, in FIG. 1, the peak seen in the molecular weight 1500 vicinity is a peak of the plasticizer contained in a film. When there are a plurality of peaks having a peak top molecular weight exceeding 3500 in the chromatogram, the molecular weight at the peak position having the highest peak height is defined as the peak top molecular weight (A).
 図1において、「UV」で示されるクロマトグラムは、溶出容量から換算したフィルム成分の分子量(横軸)に対して、吸光光度検出器(測定波長280nm)で測定されたシグナル強度(吸光度)をプロットしたものである。当該クロマトグラム中の分子量5万付近に見られるピークがポリマー成分のピークである。本発明において、このようなポリマー成分のピークの位置における分子量をポリマー成分のピークトップ分子量(B)とし、ピークトップ分子量(B)におけるシグナル強度(吸光度)をシグナル強度(b)とする。本発明の複層フィルムは、粘度平均重合度が1400~5000であるポリビニルアセタール(I)及びポリビニルアセタール(II)を含有するため、通常、ポリマー成分のピークトップ分子量(B)は3500を超える。クロマトグラム中にピークトップ分子量が3500を超えるピークが複数存在する場合には、ピーク高さが最も高いピークの位置における分子量をピークトップ分子量(B)とする。 In FIG. 1, the chromatogram indicated by “UV” shows the signal intensity (absorbance) measured with an absorptiometric detector (measurement wavelength 280 nm) with respect to the molecular weight (horizontal axis) of the film component converted from the elution volume. It is a plot. The peak seen in the chromatogram near the molecular weight of 50,000 is the peak of the polymer component. In the present invention, the molecular weight at the peak position of such a polymer component is defined as the peak top molecular weight (B) of the polymer component, and the signal intensity (absorbance) at the peak top molecular weight (B) is defined as the signal intensity (b). Since the multilayer film of the present invention contains polyvinyl acetal (I) and polyvinyl acetal (II) having a viscosity average polymerization degree of 1400 to 5000, the peak top molecular weight (B) of the polymer component usually exceeds 3500. When there are a plurality of peaks having a peak top molecular weight exceeding 3500 in the chromatogram, the molecular weight at the peak position having the highest peak height is defined as the peak top molecular weight (B).
 本発明の複層フィルムは、上述した方法によりGPC測定されたときの、示差屈折率検出器で測定されるポリマー成分のピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるポリマー成分のピークトップ分子量(B)が下記式(1)を満たす。
(A-B)/A<0.80   (1)
The multilayer film of the present invention is measured by the peak top molecular weight (A) of the polymer component measured by the differential refractive index detector and measured by the absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed by the method described above. The peak top molecular weight (B) of the polymer component to be satisfied satisfies the following formula (1).
(AB) / A <0.80 (1)
 ピークトップ分子量(A)は、複層フィルム中のポリマー成分の分子量の指標となる値である。一方、ピークトップ分子量(B)は、ポリマー成分中に存在する、280nmに吸収を有する成分に由来する。通常、ピークトップ分子量(B)よりもピークトップ分子量(A)のほうが大きいため、(A-B)/Aは正の値になる。ピークトップ分子量(B)が大きくなれば、(A-B)/Aは小さくなり、ピークトップ分子量(B)が小さくなれば、(A-B)/Aは大きくなる。すなわち、(A-B)/Aが大きい場合には、ポリマー成分中の低分子量成分に波長280nmの紫外線を吸収する成分が多いことを意味する。 The peak top molecular weight (A) is a value serving as an index of the molecular weight of the polymer component in the multilayer film. On the other hand, the peak top molecular weight (B) is derived from a component having absorption at 280 nm, which is present in the polymer component. Usually, since the peak top molecular weight (A) is larger than the peak top molecular weight (B), (AB) / A becomes a positive value. As the peak top molecular weight (B) increases, (AB) / A decreases, and as the peak top molecular weight (B) decreases, (AB) / A increases. That is, when (AB) / A is large, it means that the low molecular weight component in the polymer component contains many components that absorb ultraviolet light having a wavelength of 280 nm.
 (A-B)/Aが0.80以上の場合、上述の通り、低分子量成分に波長280nmの紫外線を吸収する成分が多くなる。この場合には、得られる複層フィルム中の異物(未溶解分)が増加する。そのため、当該複層フィルムの回収物(トリム、オフスペック品等)を用いて製造されるフィルム中の異物(未溶解分)も増加し、当該フィルムの透明性が低下する。(A-B)/Aは、好ましくは0.75未満であり、より好ましくは0.70未満である。 When (AB) / A is 0.80 or more, as described above, the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 280 nm. In this case, the foreign matter (undissolved part) in the obtained multilayer film increases. For this reason, foreign matter (undissolved content) in the film produced by using the recovered material (trim, off-spec product, etc.) of the multilayer film also increases, and the transparency of the film decreases. (AB) / A is preferably less than 0.75, more preferably less than 0.70.
 本発明の複層フィルムは下記式(2)を満たす。
1.00×10-2<(b/y)/(a/x)<2.00×10-1  (2)
The multilayer film of the present invention satisfies the following formula (2).
1.00 × 10 −2 <(b / y) / (a / x) <2.00 × 10 −1 (2)
 式(2)中、aは、前記GPC測定における、ピークトップ分子量(A)における示差屈折率検出器で測定されるシグナル強度である。bは、ピークトップ分子量(B)における吸光光度検出器(測定波長280nm)で測定されるシグナル強度(吸光度)である。 In the formula (2), a is the signal intensity measured by the differential refractive index detector at the peak top molecular weight (A) in the GPC measurement. b is the signal intensity (absorbance) measured with an absorptiometric detector (measurement wavelength 280 nm) at the peak top molecular weight (B).
 式(2)中、xは、単分散のPMMAをGPC測定したときの、示差屈折率検出器で測定されるピークトップ分子量におけるシグナル強度である。yは、前記単分散のPMMAをGPC測定したときの、吸光光度検出器で(測定波長220nm)で測定されるピークトップ分子量におけるシグナル強度(吸光度)である。単分散のPMMAのGPC測定は、加熱された複層フィルムの代わりに単分散のPMMAを用いること及び吸光光度検出器の測定波長を220nmに変更すること以外は、前述した複層フィルムのGPC測定と同様にして行う。シグナル強度(x)は、シグナル強度(a)と同様にして求められる。シグナル強度(y)は、シグナル強度(b)と同様にして求められる。x及びyを求める際に使用する単分散のPMMAとして、重量平均分子量約85000であるPMMAが好ましい。 In the formula (2), x is the signal intensity at the peak top molecular weight measured by the differential refractive index detector when monodispersed PMMA is measured by GPC. y is the signal intensity (absorbance) at the peak top molecular weight measured with an absorptiometer (measurement wavelength 220 nm) when the monodispersed PMMA is measured by GPC. The GPC measurement of monodispersed PMMA is the same as the GPC measurement of the aforementioned multilayer film except that monodispersed PMMA is used instead of the heated multilayer film and the measurement wavelength of the spectrophotometric detector is changed to 220 nm. Perform in the same way. The signal intensity (x) is obtained in the same manner as the signal intensity (a). The signal intensity (y) is obtained in the same manner as the signal intensity (b). As the monodispersed PMMA used for obtaining x and y, PMMA having a weight average molecular weight of about 85,000 is preferable.
 (b/y)/(a/x)は、複層フィルムのポリマー成分中の、波長280nmの紫外光を吸収する構造を有する成分の含有量の指標となる。この値が大きい場合は、当該含有量が多いことを意味する。上述したとおり、示差屈折率検出器によるシグナル強度は概ねフィルム成分の濃度(g/l)に比例する。一方、吸光光度検出器により検出されるものは、測定波長である280nmに吸収を有する成分のみであり、吸光光度検出器によるシグナル強度(吸光度)は、280nmに吸収を有する成分の濃度に比例する。通常、示差屈折率検出器のシグナル強度は「ミリボルト」、吸光光度検出器のシグナル強度(吸光度)は「アブソーバンスユニット(A.U.)」で表示される。 (B / y) / (a / x) is an index of the content of a component having a structure that absorbs ultraviolet light having a wavelength of 280 nm in the polymer component of the multilayer film. When this value is large, it means that the content is large. As described above, the signal intensity by the differential refractive index detector is approximately proportional to the concentration (g / l) of the film component. On the other hand, what is detected by the absorptiometric detector is only the component having absorption at 280 nm which is the measurement wavelength, and the signal intensity (absorbance) by the absorptiometric detector is proportional to the concentration of the component having absorption at 280 nm. . Usually, the signal intensity of the differential refractive index detector is indicated by “millivolt”, and the signal intensity (absorbance) of the absorptiometric detector is indicated by “absorbance unit (AU)”.
 但し、示差屈折率検出器により測定されるシグナル強度(a)及び吸光光度検出器により得られるシグナル強度(b)は、GPC装置の機種や測定条件によって異なるため、両者の比を単純に比較することは難しい。それに対して、本発明では、以下に説明するとおり、示差屈折率検出器により得られるシグナル強度と、吸光光度検出器により得られるシグナル強度の比を、GPC装置の機種や測定条件による差がなく求められる。 However, since the signal intensity (a) measured by the differential refractive index detector and the signal intensity (b) obtained by the absorptiometric detector differ depending on the model of the GPC apparatus and the measurement conditions, the ratio of both is simply compared. It ’s difficult. On the other hand, in the present invention, as described below, the ratio of the signal intensity obtained by the differential refractive index detector and the signal intensity obtained by the absorptiometric detector is not different depending on the model of the GPC apparatus and the measurement conditions. Desired.
 本発明では、示差屈折率検出器による単分散のPMMAのシグナル強度(x)に対する示差屈折率検出器による複層フィルムのシグナル強度(a)の比(a/x)と、吸光光度検出器による単分散のPMMAのシグナル強度(y)に対する吸光光度検出器による複層フィルムのシグナル強度(b)の比(b/y)とをそれぞれ求める。そして、両者の比(b/y)/(a/x)を求め、これを波長280nmの紫外光を吸収する構造を有する成分の含有量の指標とする。このように、単分散のPMMAのシグナル強度を基準に用いることで、装置の機種や測定条件に関わらず、同じ指標により評価できる。 In the present invention, the ratio (a / x) of the signal intensity (a) of the multilayer film by the differential refractive index detector to the signal intensity (x) of monodispersed PMMA by the differential refractive index detector, and by the absorptiometric detector The ratio (b / y) of the signal intensity (b) of the multilayer film by the absorptiometric detector to the signal intensity (y) of monodispersed PMMA is determined. And ratio (b / y) / (a / x) of both is calculated | required and this is made into the parameter | index of content of the component which has a structure which absorbs ultraviolet light with a wavelength of 280 nm. Thus, by using the signal intensity of monodispersed PMMA as a reference, the same index can be used for evaluation regardless of the device model and measurement conditions.
 本発明の複層フィルムは、下記式(2’)を満たすことが好ましく、下記式(2”)を満たすことがより好ましい。
1.50×10-2<(b/y)/(a/x)<1.50×10-1 (2’)
2.00×10-2<(b/y)/(a/x)<1.00×10-1 (2”)
The multilayer film of the present invention preferably satisfies the following formula (2 ′), and more preferably satisfies the following formula (2 ″).
1.50 × 10 −2 <(b / y) / (a / x) <1.50 × 10 −1 (2 ′)
2.00 × 10 −2 <(b / y) / (a / x) <1.00 × 10 −1 (2 ″)
 (b/y)/(a/x)が1.00×10-2以下である場合、上述の通り、複層フィルムのポリマー成分中に波長280nmの紫外光を吸収する成分が少ない。そのため、複層フィルム中の異物(未溶解分)が増加する。そのため、当該複層フィルムの回収物を用いて製造されるフィルム中の異物(未溶解分)も増加し、当該フィルムの透明性が低下する。逆に、(b/y)/(a/x)が2.00×10-1以上である場合、フィルムのポリマー成分中に波長280nmの紫外光を吸収する成分が多い。そのため、得られる複層フィルムが加熱により着色する。また、当該複層フィルムの回収物を用いて製造されるフィルムが着色する。 When (b / y) / (a / x) is 1.00 × 10 −2 or less, as described above, the polymer component of the multilayer film contains few components that absorb ultraviolet light having a wavelength of 280 nm. Therefore, the foreign material (undissolved part) in a multilayer film increases. Therefore, the foreign material (undissolved part) in the film manufactured using the collection | recovery of the said multilayer film also increases, and the transparency of the said film falls. Conversely, when (b / y) / (a / x) is 2.00 × 10 −1 or more, the polymer component of the film has many components that absorb ultraviolet light having a wavelength of 280 nm. Therefore, the obtained multilayer film is colored by heating. Moreover, the film manufactured using the recovered material of the multilayer film is colored.
 本発明の複層フィルムにおける、着色の抑制および異物(未溶解分)の低減のバランスに優れる観点からは、前記GPC測定における、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長320nm)で測定されるピークトップ分子量(C)が下記式(3)
(A-C)/A<0.80   (3)
を満たすことが好ましい。
From the viewpoint of excellent balance between suppression of coloring and reduction of foreign matter (undissolved content) in the multilayer film of the present invention, the peak top molecular weight (A) measured with a differential refractive index detector in the GPC measurement, The peak top molecular weight (C) measured by an absorptiometric detector (measurement wavelength: 320 nm) is expressed by the following formula (3)
(AC) / A <0.80 (3)
It is preferable to satisfy.
 ピークトップ分子量(C)は、吸光光度検出器における測定波長が320nmであること以外はピークトップ分子量(B)と同様にして測定される。ピークトップ分子量(C)は、複層フィルム中のポリマー成分中に存在する、320nmに吸収を有する成分に由来する。通常、ピークトップ分子量(C)よりもピークトップ分子量(A)のほうが大きいため、(A-C)/Aは正の値になる。ピークトップ分子量(C)が大きくなれば、(A-C)/Aは小さくなり、ピークトップ分子量(C)が小さくなれば、(A-C)/Aは大きくなる。すなわち、(A-C)/Aが大きい場合には、ポリマー成分中の低分子量成分に320nm波長の紫外線を吸収する成分が多いことを意味する。 The peak top molecular weight (C) is measured in the same manner as the peak top molecular weight (B) except that the measurement wavelength in the absorptiometric detector is 320 nm. The peak top molecular weight (C) is derived from a component having an absorption at 320 nm, which is present in the polymer component in the multilayer film. Usually, since the peak top molecular weight (A) is larger than the peak top molecular weight (C), (AC) / A becomes a positive value. As the peak top molecular weight (C) increases, (AC) / A decreases, and as the peak top molecular weight (C) decreases, (AC) / A increases. That is, when (AC) / A is large, it means that the low molecular weight component in the polymer component contains many components that absorb ultraviolet light having a wavelength of 320 nm.
 (A-C)/Aが0.80以上の場合、上述の通り、低分子量成分に波長320nmの紫外線を吸収する成分が多くなる。この場合には、得られる複層フィルム中の異物(未溶解分)が増加するおそれがある。当該異物(未溶解分)が増加した場合、複層フィルムの回収物を用いて製造されるフィルム中の異物(未溶解分)も増加し、当該フィルムの透明性が低下するおそれがある。(A-C)/Aは、より好ましくは0.75未満であり、さらに好ましくは0.70未満である。 When (AC) / A is 0.80 or more, as described above, the low molecular weight component contains more components that absorb ultraviolet rays having a wavelength of 320 nm. In this case, there is a possibility that foreign matter (undissolved content) in the obtained multilayer film increases. When the said foreign material (undissolved part) increases, the foreign material (undissolved part) in the film manufactured using the collection | recovery of a multilayer film may also increase, and there exists a possibility that the transparency of the said film may fall. (AC) / A is more preferably less than 0.75, and even more preferably less than 0.70.
 本発明の複層フィルムは、下記式(4)を満たすことが好ましい。
5.00×10-3<(c/y)/(a/x)<7.00×10-2  (4)
The multilayer film of the present invention preferably satisfies the following formula (4).
5.00 × 10 −3 <(c / y) / (a / x) <7.00 × 10 −2 (4)
 式(4)中、a、x及びyは、上記式(2)と同じである。cは、ピークトップ分子量(C)における吸光光度検出器(測定波長320nm)で測定されるシグナル強度(吸光度)である。 In the formula (4), a, x and y are the same as the above formula (2). c is the signal intensity (absorbance) measured with an absorptiometric detector (measurement wavelength: 320 nm) at the peak top molecular weight (C).
ここで、(c/y)/(a/x)は、複層フィルムのポリマー成分中の、波長320nmの紫外光を吸収する構造を有する成分の含有量の指標となる。この値が大きい場合は、当該含有量が多いことを意味する。そして、吸光光度検出器における測定波長が320nmであること以外は、上述の(b/y)/(a/x)と同様にして求められる。 Here, (c / y) / (a / x) is an index of the content of a component having a structure that absorbs ultraviolet light having a wavelength of 320 nm in the polymer component of the multilayer film. When this value is large, it means that the content is large. And it calculates | requires similarly to the above-mentioned (b / y) / (a / x) except the measurement wavelength in an absorptiometric detector being 320 nm.
 本発明フィルムは、下記式(4’)を満たすことがより好ましく、下記式(4”)を満たすことがさらに好ましい。
7.00×10-3<(c/y)/(a/x)<6.00×10-2 (4’)
1.00×10-2<(c/y)/(a/x)<5.00×10-2 (4”)
The film of the present invention more preferably satisfies the following formula (4 ′), and more preferably satisfies the following formula (4 ″).
7.00 × 10 −3 <(c / y) / (a / x) <6.00 × 10 −2 (4 ′)
1.00 × 10 -2 <(c / y) / (a / x) <5.00 × 10 -2 (4 ")
 (c/y)/(a/x)が5.00×10-3以下である場合、上述の通り、複層フィルムのポリマー成分中に波長320nmの紫外光を吸収する成分が少ない。そのため、複層フィルム中の異物(未溶解分)が増加するおそれがある。当該異物(未溶解分)が増加した場合、複層フィルムの回収物を用いて製造されるフィルム中の異物(未溶解分)も増加し、当該フィルムの透明性が低下するおそれがある。逆に、(c/y)/(a/x)が7.00×10-2以上である場合、フィルムのポリマー成分中に波長320nmの紫外光を吸収する成分が多い。そのため、得られる複層フィルムが加熱により着色し易くなるおそれがある。また、当該複層フィルムの回収物を用いて製造されるフィルムが着色し易くなるおそれがある。 When (c / y) / (a / x) is 5.00 × 10 −3 or less, as described above, the polymer component of the multilayer film has few components that absorb ultraviolet light having a wavelength of 320 nm. Therefore, there is a possibility that foreign matter (undissolved part) in the multilayer film increases. When the said foreign material (undissolved part) increases, the foreign material (undissolved part) in the film manufactured using the collection | recovery of a multilayer film may also increase, and there exists a possibility that the transparency of the said film may fall. Conversely, when (c / y) / (a / x) is 7.00 × 10 −2 or more, the polymer component of the film has many components that absorb ultraviolet light having a wavelength of 320 nm. Therefore, the obtained multilayer film may be easily colored by heating. Moreover, there exists a possibility that the film manufactured using the collection | recovery of the said multilayer film may become easy to color.
 本発明において、ポリビニルアセタールの粘度平均重合度は、JIS-K6726に準じて測定される原料のPVAの粘度平均重合度で表される。すなわち、PVAをけん化度99.5モル%以上に再けん化し、精製した後、30℃の水中で測定した極限粘度[η]から次式により求めることができる。PVAの粘度平均重合度と、それをアセタール化して得られるポリビニルアセタールの粘度平均重合度とは、実質的に同じである。
  P=([η]×10000/8.29)(1/0.62)
In the present invention, the viscosity average degree of polymerization of polyvinyl acetal is represented by the viscosity average degree of polymerization of the raw material PVA measured according to JIS-K6726. That is, after re-saponifying and purifying PVA to a saponification degree of 99.5 mol% or more, it can be obtained from the intrinsic viscosity [η] measured in water at 30 ° C. by the following equation. The viscosity average polymerization degree of PVA and the viscosity average polymerization degree of polyvinyl acetal obtained by acetalizing it are substantially the same.
P = ([η] × 10000 / 8.29) (1 / 0.62)
 ポリビニルアセタール(I)及びポリビニルアセタール(II)の粘度平均重合度は1400~5000であり、1500~3500が好ましい。粘度平均重合度が1400に満たない場合には、複層フィルムの強度が不足する。逆に、重合度が5000を超える場合には溶融粘度が高くなりすぎて製膜が困難になる。 The viscosity average polymerization degree of polyvinyl acetal (I) and polyvinyl acetal (II) is 1400 to 5000, and preferably 1500 to 3500. When the viscosity average degree of polymerization is less than 1400, the strength of the multilayer film is insufficient. On the other hand, when the polymerization degree exceeds 5000, the melt viscosity becomes too high and film formation becomes difficult.
 本発明において用いられるポリビニルアセタール(I)のアセタール化度は55~80モル%である。アセタール化度が55モル%未満である場合、可塑剤などとの相溶性が低下する。また、複層フィルム中の異物(未溶解分)が増加する。また、当該複層フィルムの回収物を用いて製造されるフィルム中の異物(未溶解分)も増加し、当該フィルムの透明性が低下する。ポリビニルアセタール(I)のアセタール化度は、好ましくは60モル%以上であり、より好ましくは65モル%以上である。一方、アセタール化度が80モル%を超える場合には、着色しやすくなる場合がある。ポリビニルアセタール(I)のアセタール化度は、好ましくは75モル%以下である。 The degree of acetalization of the polyvinyl acetal (I) used in the present invention is 55 to 80 mol%. When the degree of acetalization is less than 55 mol%, the compatibility with a plasticizer or the like decreases. Moreover, the foreign material (undissolved part) in a multilayer film increases. Moreover, the foreign material (undissolved part) in the film manufactured using the collection | recovery of the said multilayer film also increases, and the transparency of the said film falls. The degree of acetalization of the polyvinyl acetal (I) is preferably 60 mol% or more, more preferably 65 mol% or more. On the other hand, when the degree of acetalization exceeds 80 mol%, it may be easy to color. The degree of acetalization of the polyvinyl acetal (I) is preferably 75 mol% or less.
 本発明において用いられるポリビニルアセタール(II)のアセタール化度は70~85モル%である。アセタール化度が85モル%を超える場合には、アセタール化反応の効率が著しく低下する。また、複層フィルムが加熱により着色する。さらに、当該複層フィルムの回収物を用いて製造されるフィルムも着色する。ポリビニルアセタール(II)のアセタール化度は好ましくは80モル%以下である。一方、アセタール化度が70モル%未満である場合、フィルム中の異物(未溶解分)が増加する場合がある。 The degree of acetalization of the polyvinyl acetal (II) used in the present invention is 70 to 85 mol%. When the degree of acetalization exceeds 85 mol%, the efficiency of the acetalization reaction is significantly reduced. In addition, the multilayer film is colored by heating. Furthermore, the film manufactured using the recovered material of the multilayer film is also colored. The degree of acetalization of polyvinyl acetal (II) is preferably 80 mol% or less. On the other hand, when the degree of acetalization is less than 70 mol%, foreign matter (undissolved content) in the film may increase.
 得られる複層フィルムの耐着色性と異物(未溶解分)量とのバランスに優れる点からは、ポリビニルアセタール(I)のアセタール化度とポリビニルアセタール(II)のアセタール化度の差(II-I)が2モル%以上であることが好ましく、4モル%以上であることがより好ましい。 The difference between the degree of acetalization of polyvinyl acetal (I) and the degree of acetalization of polyvinyl acetal (II) from the point of excellent balance between the coloration resistance of the resulting multilayer film and the amount of foreign matter (undissolved) (II- I) is preferably 2 mol% or more, and more preferably 4 mol% or more.
 なお、本発明においてアセタール化度はポリビニルアセタールを構成する全単量体単位に対する、アセタール化されたビニルアルコール単量体単位の割合を表す。原料のPVA中のビニルアルコール単量体単位のうち、アセタール化されなかったものは、得られるポリビニルアセタール中において、ビニルアルコール単量体単位として残存する。 In the present invention, the degree of acetalization represents the ratio of acetalized vinyl alcohol monomer units to the total monomer units constituting polyvinyl acetal. Among the vinyl alcohol monomer units in the raw material PVA, those that are not acetalized remain in the resulting polyvinyl acetal as vinyl alcohol monomer units.
 本発明において用いられるポリビニルアセタール(I)のビニルエステル単量体単位の含有量は0.1~1.5モル%である。ビニルエステル単量体単位の含有量が0.1モル%に満たない場合、ポリビニルアセタールを安定に製造することができず、製膜できない。ビニルエステル単量体単位の含有量は、好ましくは0.3モル%以上であり、より好ましくは0.5モル%以上であり、さらに好ましくは0.7モル%以上である。一方、ビニルエステル単量体単位の含有量は、好ましくは1.2モル%以下である。 The content of the vinyl ester monomer unit of polyvinyl acetal (I) used in the present invention is 0.1 to 1.5 mol%. When the content of the vinyl ester monomer unit is less than 0.1 mol%, the polyvinyl acetal cannot be stably produced and the film cannot be formed. The content of the vinyl ester monomer unit is preferably 0.3 mol% or more, more preferably 0.5 mol% or more, and further preferably 0.7 mol% or more. On the other hand, the content of the vinyl ester monomer unit is preferably 1.2 mol% or less.
 本発明において用いられるポリビニルアセタール(II)のビニルエステル単量体単位の含有量は5~15モル%である。ビニルエステル単量体単位の含有量はビニルエステル単量体単位の含有量が15モル%を超える場合には、得られる複層フィルムが加熱により着色する。さらに、当該複層フィルムの回収物を用いて製造されるフィルムも着色する。ポリビニルアセタール(II)のビニルエステル単量体単位の含有量は、好ましくは13モル%以下であり、より好ましくは10モル%以下である。一方、ビニルエステル単量体単位の含有量は、好ましくは6モル%以上であり、より好ましくは7モル%以上である。ポリビニルアセタール(II)のビニルエステル単量体単位の含有量が上記範囲であることにより、層(Y)が軟質層となり、本発明の複層フィルムは、実用的な力学的強度を維持したまま、優れた遮音性能を有する。 The content of the vinyl ester monomer unit of polyvinyl acetal (II) used in the present invention is 5 to 15 mol%. When the content of the vinyl ester monomer unit exceeds 15 mol%, the resulting multilayer film is colored by heating. Furthermore, the film manufactured using the recovered material of the multilayer film is also colored. The content of the vinyl ester monomer unit of polyvinyl acetal (II) is preferably 13 mol% or less, more preferably 10 mol% or less. On the other hand, the content of the vinyl ester monomer unit is preferably 6 mol% or more, more preferably 7 mol% or more. When the content of the vinyl ester monomer unit of polyvinyl acetal (II) is in the above range, the layer (Y) becomes a soft layer, and the multilayer film of the present invention maintains a practical mechanical strength. , Has excellent sound insulation performance.
 本発明において用いられるポリビニルアセタール(I)のビニルアルコール単量体単位の含有量が18.5~44.9モル%であることが好ましい。本発明において用いられるポリビニルアセタール(II)のビニルアルコール単量体単位の含有量が5~25モル%であることが好ましい。 The content of the vinyl alcohol monomer unit of the polyvinyl acetal (I) used in the present invention is preferably 18.5 to 44.9 mol%. The content of the vinyl alcohol monomer unit in the polyvinyl acetal (II) used in the present invention is preferably 5 to 25 mol%.
 また、本発明において、ポリビニルアセタール(I)のビニルアルコール単量体単位の含有量(モル%)が、ポリビニルアセタール(II)のビニルアルコール単量体単位の含有量(モル%)よりも、多いことが好ましい。層(X)及び層(Y)のビニルアルコール単量体単位の含有量に差異を設けることにより、層(Y)に対する界面活性剤の親和性が層(X)に対する親和性よりも高くなる結果、界面活性剤のブリードアウトを効果的に抑制することができる。ポリビニルアセタール(I)のビニルアルコール単量体単位の含有量とポリビニルアセタール(II)のビニルアルコール単量体単位の含有量との差(I-II)が5モル%以上であることが好ましく、10モル%以上であることがより好ましい。一方、前記差(I-II)が30モル%以下であることが好ましい。 Moreover, in this invention, content (mol%) of the vinyl alcohol monomer unit of polyvinyl acetal (I) is larger than content (mol%) of the vinyl alcohol monomer unit of polyvinyl acetal (II). It is preferable. The result that the affinity of the surfactant for the layer (Y) is higher than the affinity for the layer (X) by providing a difference in the content of the vinyl alcohol monomer units in the layer (X) and the layer (Y) The bleed-out of the surfactant can be effectively suppressed. The difference (I-II) between the content of the vinyl alcohol monomer unit of the polyvinyl acetal (I) and the content of the vinyl alcohol monomer unit of the polyvinyl acetal (II) is preferably 5 mol% or more, More preferably, it is 10 mol% or more. On the other hand, the difference (I-II) is preferably 30 mol% or less.
 本発明において用いられるポリビニルアセタール(I)及びポリビニルアセタール(II)中の、アセタール化された単量体単位、ビニルエステル単量体単位及びビニルアルコール単量体単位以外の単量体単位の含有量は、好ましくは20モル%以下、より好ましくは10モル%以下であり、さらに好ましくは5モル%以下である。 Content of monomer units other than acetalized monomer unit, vinyl ester monomer unit and vinyl alcohol monomer unit in polyvinyl acetal (I) and polyvinyl acetal (II) used in the present invention Is preferably 20 mol% or less, more preferably 10 mol% or less, and even more preferably 5 mol% or less.
 本発明において用いられるポリビニルアセタール(I)及びポリビニルアセタール(II)は、通常、PVAをアセタール化することにより製造する。 The polyvinyl acetal (I) and polyvinyl acetal (II) used in the present invention are usually produced by acetalizing PVA.
 ポリビニルアセタールの製造に用いられる原料PVAのけん化度は80~99.9モル%が好ましく、より好ましくは82~99.7モル%であり、更に好ましくは85~99.5モル%であり、特に好ましくは87~99.3モル%である。原料PVAのけん化度が80モル%に満たない場合、得られる複層フィルム中の異物(未溶解分)が増加するおそれや、得られる複層フィルムが加熱により着色し易くなるおそれがある。一方、けん化度が99.9モル%を超える場合、PVAを安定に製造することができない場合がある。PVAのけん化度はJIS-K6726に準じて測定される。 The saponification degree of the raw material PVA used for the production of polyvinyl acetal is preferably 80 to 99.9 mol%, more preferably 82 to 99.7 mol%, still more preferably 85 to 99.5 mol%, Preferably, it is 87 to 99.3 mol%. When the saponification degree of raw material PVA is less than 80 mol%, the foreign material (undissolved part) in the obtained multilayer film may increase, or the obtained multilayer film may be easily colored by heating. On the other hand, when the degree of saponification exceeds 99.9 mol%, PVA may not be produced stably. The degree of saponification of PVA is measured according to JIS-K6726.
 原料PVAは、カルボン酸のアルカリ金属塩を含有しても良く、その含有量はアルカリ金属の質量換算で0.50質量%以下が好ましく、0.37質量%以下がより好ましく、0.28質量%以下が更に好ましく、0.23質量以下が特に好ましい。原料PVA中のカルボン酸のアルカリ金属塩の含有量が0.50質量%を超える場合、得られる複層フィルムが着色しやすくなるおそれがある。カルボン酸のアルカリ金属塩の含有量(アルカリ金属の質量換算)は、PVAを白金ルツボにて灰化したのち、得られた灰分をICP発光分析により測定して得たアルカリ金属イオン量から求めることができる。 The raw material PVA may contain an alkali metal salt of carboxylic acid, and its content is preferably 0.50% by mass or less, more preferably 0.37% by mass or less, and 0.28% by mass in terms of the mass of the alkali metal. % Or less is more preferable, and 0.23 mass or less is particularly preferable. When the content of the alkali metal salt of the carboxylic acid in the raw material PVA exceeds 0.50% by mass, the resulting multilayer film may be easily colored. The content of alkali metal salt of carboxylic acid (calculated in terms of alkali metal mass) is obtained from the amount of alkali metal ions obtained by ashing PVA with a platinum crucible and then measuring the resulting ash content by ICP emission analysis. Can do.
 原料PVAの製造に用いられるビニルエステルモノマーとしては、例えばギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニルおよびバーサティック酸ビニル等が挙げられ、とりわけ酢酸ビニルが好ましい。 Examples of vinyl ester monomers used in the production of raw material PVA include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate and versatic. Examples thereof include vinyl acid, and vinyl acetate is particularly preferable.
 また、原料PVAは、ビニルエステルモノマーを2-メルカプトエタノール、n-ドデシルメルカプタン、メルカプト酢酸、3-メルカプトプロピオン酸などのチオール化合物の存在下で重合させ、得られるポリビニルエステルをけん化することによっても製造することもできる。この方法により、チオール化合物に由来する官能基が末端に導入されたPVAが得られる。 The raw material PVA can also be produced by polymerizing vinyl ester monomers in the presence of thiol compounds such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid, and saponifying the resulting polyvinyl ester. You can also By this method, PVA in which a functional group derived from a thiol compound is introduced at the terminal is obtained.
 ビニルエステル単量体を重合する方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法などの公知の方法が挙げられる。その方法の中でも、無溶媒で行う塊状重合法またはアルコールなどの溶媒を用いて行う溶液重合法が通常採用される。本発明の効果を高める点では、低級アルコールと共に重合する溶液重合法が好ましい。低級アルコールとしては、特に限定はされないが、メタノール、エタノール、プロパノール、イソプロパノールなど炭素数3以下のアルコールが好ましく、通常、メタノールが用いられる。塊状重合法や溶液重合法で重合反応を行うにあたって、反応の方式は回分式および連続式のいずれの方式にても実施可能である。重合反応に使用される開始剤としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチル-バレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)などのアゾ系開始剤;過酸化ベンゾイル、n-プロピルパーオキシカーボネート、パーオキシジカーボネートなどの有機過酸化物系開始剤など本発明の効果を損なわない範囲で公知の開始剤が挙げられる。中でも、60℃での半減期が10~110分の有機化酸化物系開始剤が好ましく、特にパーオキシジカーボネートを用いることが好ましい。重合反応を行う際の重合温度については特に制限はないが、5℃~200℃の範囲が適当である。 Examples of the method for polymerizing the vinyl ester monomer include known methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization. Among the methods, a bulk polymerization method performed without a solvent or a solution polymerization method performed using a solvent such as alcohol is usually employed. In terms of enhancing the effect of the present invention, a solution polymerization method in which polymerization is performed together with a lower alcohol is preferable. The lower alcohol is not particularly limited, but an alcohol having 3 or less carbon atoms such as methanol, ethanol, propanol and isopropanol is preferable, and methanol is usually used. When performing the polymerization reaction by the bulk polymerization method or the solution polymerization method, the reaction can be carried out by either a batch method or a continuous method. Examples of the initiator used in the polymerization reaction include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethyl-valeronitrile), 2,2′-azobis (4-methoxy). Azo initiators such as -2,4-dimethylvaleronitrile); organic peroxide initiators such as benzoyl peroxide, n-propyl peroxycarbonate, peroxydicarbonate, etc., within a range that does not impair the effects of the present invention. A well-known initiator is mentioned. Among them, an organic oxide initiator having a half-life of 10 to 110 minutes at 60 ° C. is preferable, and peroxydicarbonate is particularly preferable. There is no particular limitation on the polymerization temperature for carrying out the polymerization reaction, but a range of 5 ° C to 200 ° C is suitable.
 ビニルエステル単量体をラジカル重合させる際には、本発明の効果が損なわれない範囲であれば、必要に応じて、共重合可能な単量体を共重合させることができる。このような単量体としては、エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセン等のα-オレフィン;フマール酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその誘導体;アクリル酸またはその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル等のアクリル酸エステル類;メタクリル酸またはその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル等のメタクリル酸エステル類;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド等のアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル等のビニルエーテル類;エチレングリコールビニルエーテル、1,3-プロパンジオールビニルエーテル、1,4-ブタンジオールビニルエーテル等のヒドロキシ基含有ビニルエーテル類;アリルアセテート、プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテル等のアリルエーテル類;オキシアルキレン基を有する単量体;酢酸イソプロペニル、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オール等のヒドロキシ基含有α-オレフィン類;エチレンスルホン酸、アリルスルホン酸、メタリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸基を有する単量体;ビニロキシエチルトリメチルアンモニウムクロライド、ビニロキシブチルトリメチルアンモニウムクロライド、ビニロキシエチルジメチルアミン、ビニロキシメチルジエチルアミン、N-アクリルアミドメチルトリメチルアンモニウムクロライド、N-アクリルアミドエチルトリメチルアンモニウムクロライド、N-アクリルアミドジメチルアミン、アリルトリメチルアンモニウムクロライド、メタリルトリメチルアンモニウムクロライド、ジメチルアリルアミン、アリルエチルアミン等のカチオン基を有する単量体;ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルジメチルエトキシシラン、3-(メタ)アクリルアミド-プロピルトリメトキシシラン、3-(メタ)アクリルアミド-プロピルトリエトキシシラン等のシリル基を有する単量体などが挙げられる。これらのビニルエステル単量体と共重合可能な単量体の使用量は、その使用される目的および用途等によっても異なるが、通常、共重合に用いられる全ての単量体を基準にした割合で20モル%以下、好ましくは10モル%以下であり、より好ましくは5モル%以下である。 When the vinyl ester monomer is radically polymerized, a copolymerizable monomer can be copolymerized as necessary as long as the effects of the present invention are not impaired. Examples of such monomers include α-olefins such as ethylene, propylene, 1-butene, isobutene, 1-hexene; carboxylic acids such as fumaric acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride, or the like Derivatives; acrylic acid or salts thereof; acrylic acid esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate; methacrylic acid or salts thereof; methyl methacrylate, ethyl methacrylate, n-methacrylate Methacrylic acid esters such as propyl and isopropyl methacrylate; Acrylamide derivatives such as acrylamide, N-methylacrylamide and N-ethylacrylamide; Derivatives of methacrylamide such as methacrylamide, N-methylmethacrylamide and N-ethylmethacrylamide Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, and n-butyl vinyl ether; vinyl group-containing vinyl ethers such as ethylene glycol vinyl ether, 1,3-propanediol vinyl ether, and 1,4-butanediol vinyl ether Allyl ethers such as allyl acetate, propyl allyl ether, butyl allyl ether, hexyl allyl ether; monomers having an oxyalkylene group; isopropenyl acetate, 3-buten-1-ol, 4-penten-1-ol, Hydroxy group-containing α-olefins such as 5-hexen-1-ol, 7-octen-1-ol, 9-decen-1-ol, 3-methyl-3-buten-1-ol; Monomers having a sulfonic acid group such as phonic acid, allylsulfonic acid, methallylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid; vinyloxyethyltrimethylammonium chloride, vinyloxybutyltrimethylammonium chloride, vinyloxyethyl Cationic groups such as dimethylamine, vinyloxymethyldiethylamine, N-acrylamidomethyltrimethylammonium chloride, N-acrylamidoethyltrimethylammonium chloride, N-acrylamidodimethylamine, allyltrimethylammonium chloride, methallyltrimethylammonium chloride, dimethylallylamine, allylethylamine Monomers having a vinyl trimethoxysilane, vinylmethyldimethoxysilane, Monomers having a silyl group such as xylsilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, vinyldimethylethoxysilane, 3- (meth) acrylamide-propyltrimethoxysilane, 3- (meth) acrylamide-propyltriethoxysilane Etc. The amount of the monomer that can be copolymerized with these vinyl ester monomers varies depending on the purpose and use of the monomer, but is usually based on all monomers used for copolymerization. Is 20 mol% or less, preferably 10 mol% or less, and more preferably 5 mol% or less.
 上述の方法により得られたポリビニルエステルをアルコール溶媒中でけん化することによりPVAが得られる。 PVA is obtained by saponifying the polyvinyl ester obtained by the above method in an alcohol solvent.
 ポリビニルエステルのけん化反応の触媒としては通常アルカリ性物質が用いられ、その例として、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属の水酸化物、およびナトリウムメトキシドなどのアルカリ金属アルコキシドが挙げられる。アルカリ性物質の使用量は、ポリビニルエステルのビニルエステル単量体単位を基準にしたモル比で0.002~0.2の範囲内であることが好ましく、0.004~0.1の範囲内であることが特に好ましい。けん化触媒は、けん化反応の初期に一括して添加しても良いし、けん化反応の初期に一部を添加し、残りをけん化反応の途中で添加しても良い。 As the catalyst for the saponification reaction of polyvinyl ester, an alkaline substance is usually used, and examples thereof include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, and alkali metal alkoxides such as sodium methoxide. The amount of the alkaline substance used is preferably in the range of 0.002 to 0.2 in the molar ratio based on the vinyl ester monomer unit of the polyvinyl ester, and in the range of 0.004 to 0.1. It is particularly preferred. The saponification catalyst may be added all at once in the early stage of the saponification reaction, or a part thereof may be added in the early stage of the saponification reaction, and the rest may be added during the saponification reaction.
 けん化反応に用いることができる溶媒としては、メタノール、酢酸メチル、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルホルムアミドなどが挙げられる。これらの溶媒の中でもメタノールが好ましく用いられる。その使用にあたり、メタノールの含水率が好ましくは0.001~1重量%、より好ましくは0.003~0.9重量%、特に好ましくは0.005~0.8重量%に調整される。 Examples of the solvent that can be used for the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, diethyl sulfoxide, and dimethylformamide. Of these solvents, methanol is preferably used. In its use, the water content of methanol is preferably adjusted to 0.001 to 1% by weight, more preferably 0.003 to 0.9% by weight, and particularly preferably 0.005 to 0.8% by weight.
 けん化反応は、好ましくは5~80℃、より好ましくは20~70℃の温度で行われる。けん化反応に必要とされる時間は、好ましくは5分間~10時間、より好ましくは10分間~5時間である。けん化反応は、バッチ法および連続法のいずれの方式によっても実施可能である。けん化反応の終了後に、必要に応じて、残存するけん化触媒を中和しても良い。使用可能な中和剤として、酢酸、乳酸などの有機酸、および酢酸メチルなどのエステル化合物などが挙げられる。 The saponification reaction is preferably performed at a temperature of 5 to 80 ° C., more preferably 20 to 70 ° C. The time required for the saponification reaction is preferably 5 minutes to 10 hours, more preferably 10 minutes to 5 hours. The saponification reaction can be carried out by either a batch method or a continuous method. After completion of the saponification reaction, the remaining saponification catalyst may be neutralized as necessary. Usable neutralizing agents include organic acids such as acetic acid and lactic acid, and ester compounds such as methyl acetate.
 けん化反応時に添加したアルカリ金属を含有するアルカリ性物質は、通常、けん化反応の進行により生じる酢酸メチルなどのエステルにより中和されるか、酢酸などのカルボン酸添加などにより中和される。このとき、酢酸ナトリウムなどのカルボン酸のアルカリ金属塩が生じる。上述したとおり、原料のPVAはカルボン酸のアルカリ金属塩を所定量含有することが好ましい。 The alkaline substance containing an alkali metal added during the saponification reaction is usually neutralized by an ester such as methyl acetate produced by the progress of the saponification reaction, or neutralized by adding a carboxylic acid such as acetic acid. At this time, an alkali metal salt of a carboxylic acid such as sodium acetate is formed. As described above, the raw material PVA preferably contains a predetermined amount of an alkali metal salt of carboxylic acid.
 このようなPVAを得るために、けん化後にPVAをメタノールなどの低級アルコールを含む洗浄液で洗浄しても良い。前記洗浄液は、低級アルコール100質量部に対して20質量部以下の水を含んでいてもよい。また、前記洗浄液は、けん化工程において生成する酢酸メチルなどのエステルを含んでいてもよい。このときの、エステルの含有量としては、特に制限はないが、低級アルコール100質量部に対して、1000質量部以下が好ましい。洗浄に用いる洗浄液の添加量としては、けん化により得られる、アルコールによってPVAが膨潤したゲル100質量部に対して、100質量部~10000質量部が好ましく、150質量部~5000質量部がより好ましく、200質量部~1000質量部が更に好ましい。洗浄液の添加量が100質量部に満たない場合には、カルボン酸のアルカリ金属塩量が上記範囲を超えるおそれがある。一方、洗浄液の添加量が10000質量部を超える場合には、添加量を増やすことによる洗浄効果の改善が見込めない。洗浄の方法としては、特に限定はないが、例えば、槽内にPVA(膨潤したゲル)と洗浄液とを加え、5~100℃で、5分~180分程度、攪拌あるいは静置し脱液する工程を、カルボン酸のアルカリ金属塩の含有量が上記範囲になるまで繰り返すバッチ方式が挙げられる。また、おおよそバッチ方式と同温度、同時間で、塔頂からPVAを連続的に添加するとともに、塔底より洗浄液を連続的に添加し、両者を接触交流させる連続方式も挙げられる。 In order to obtain such a PVA, the PVA may be washed with a washing solution containing a lower alcohol such as methanol after saponification. The cleaning liquid may contain 20 parts by mass or less of water with respect to 100 parts by mass of the lower alcohol. Moreover, the said washing | cleaning liquid may contain ester, such as methyl acetate produced | generated in a saponification process. The content of the ester at this time is not particularly limited, but is preferably 1000 parts by mass or less with respect to 100 parts by mass of the lower alcohol. The amount of the cleaning solution used for cleaning is preferably 100 parts by weight to 10000 parts by weight, more preferably 150 parts by weight to 5000 parts by weight, with respect to 100 parts by weight of the gel obtained by saponification and PVA swollen with alcohol. More preferably, it is 200 to 1000 parts by mass. When the addition amount of the cleaning liquid is less than 100 parts by mass, the alkali metal salt amount of the carboxylic acid may exceed the above range. On the other hand, when the addition amount of the cleaning liquid exceeds 10,000 parts by mass, the improvement of the cleaning effect by increasing the addition amount cannot be expected. The washing method is not particularly limited. For example, PVA (swelled gel) and a washing solution are added to a tank, and the solution is stirred or allowed to stand for 5 to 180 minutes at 5 to 100 ° C. to remove the liquid. A batch method in which the process is repeated until the content of the alkali metal salt of the carboxylic acid is within the above range can be mentioned. Further, there is also a continuous method in which PVA is continuously added from the top of the tower at approximately the same temperature and for the same time as the batch method, and a cleaning liquid is continuously added from the bottom of the tower, and the two are brought into contact with each other.
 原料PVAに含有されるカルボン酸のアルカリ金属塩としては、上述したけん化工程で使用するアルカリ触媒、例えば水酸化ナトリウム、水酸化カリウム、ナトリウムメチラートなどをカルボン酸で中和して得られるもの、また、重合工程で使用する酢酸ビニルなどの原料ビニルエステル単量体の加アルコール分解を抑制する目的で添加されるカルボン酸が、けん化工程で中和されて得られるもの、ラジカル重合を停止させるために添加する禁止剤として共役二重結合を有するカルボン酸を用いた場合に、当該カルボン酸がけん化工程で中和されて得られるもの、あるいは意図的に添加されたものもなどが含まれる。具体例としては、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、プロピオン酸カリウム、グリセリン酸ナトリウム、グリセリン酸カリウム、リンゴ酸ナトリウム、リンゴ酸カリウム、クエン酸ナトリウム、クエン酸カリウム、乳酸ナトリウム、乳酸カリウム、酒石酸ナトリウム、酒石酸カリウム、サリチル酸ナトリウム、サリチル酸カリウム、マロン酸ナトリウム、マロン酸カリウム、コハク酸ナトリウム、コハク酸カリウム、マレイン酸ナトリウム、マレイン酸カリウム、フタル酸ナトリウム、フタル酸カリウム、シュウ酸ナトリウム、シュウ酸カリウム、グルタル酸ナトリウム、グルタル酸カリウム、アビエチン酸ナトリウム、アビエチン酸カリウム、ソルビン酸ナトリウム、ソルビン酸カリウム、2,4,6-オクタトリエン-1-カルボン酸ナトリウム、2,4,6-オクタトリエン-1-カルボン酸カリウム、エレオステアリン酸ナトリウム、エレオステアリン酸カリウム、2,4,6,8-デカテトラエン-1-カルボン酸ナトリウム、2,4,6,8-デカテトラエン-1-カルボン酸カリウム、レチノイン酸ナトリウム、レチノイン酸カリウムなどが挙げられるが、これらに限定されるものではない。 The alkali metal salt of the carboxylic acid contained in the raw material PVA is obtained by neutralizing the alkali catalyst used in the saponification step, for example, sodium hydroxide, potassium hydroxide, sodium methylate, etc. with carboxylic acid, In addition, the carboxylic acid added for the purpose of suppressing alcoholysis of the vinyl ester monomer such as vinyl acetate used in the polymerization process is neutralized in the saponification process, to stop radical polymerization When a carboxylic acid having a conjugated double bond is used as an inhibitor to be added to the carboxylic acid, those obtained by neutralizing the carboxylic acid in the saponification step or those intentionally added are included. Specific examples include sodium acetate, potassium acetate, sodium propionate, potassium propionate, sodium glycerate, potassium glycerate, sodium malate, potassium malate, sodium citrate, potassium citrate, sodium lactate, potassium lactate, tartaric acid Sodium, potassium tartrate, sodium salicylate, potassium salicylate, sodium malonate, potassium malonate, sodium succinate, potassium succinate, sodium maleate, potassium maleate, sodium phthalate, potassium phthalate, sodium oxalate, potassium oxalate , Sodium glutarate, potassium glutarate, sodium abietic acid, potassium abietic acid, sodium sorbate, potassium sorbate, 2,4,6-octatri Sodium 1,1-carboxylate, potassium 2,4,6-octatriene-1-carboxylate, sodium eleostearate, potassium eleostearate, sodium 2,4,6,8-decatetraene-1- carboxylate 2,4,6,8-decatetraene-1-carboxylate, sodium retinoate, potassium retinoate and the like, but are not limited thereto.
 こうして得られたPVAをアセタール化してフィルムの製造に用いられるポリビニルアセタールを製造する。アセタール化の方法は特に限定されないが、例えば以下の方法が挙げられる。80~100℃に加熱してPVAを水に溶解させた後、10~60分かけて徐々に冷却することにより、PVAの3~40質量%水溶液を得る。温度が-10~30℃まで低下したところで、前記水溶液にアルデヒドおよび酸触媒を添加し、温度を一定に保ちながら、30~300分間アセタール化反応を行う。その際、一定のアセタール化度に達したポリビニルアセタールが析出する。その後反応液を30~300分かけて25~80℃まで昇温し、その温度を10分~25時間保持する(この温度を追い込み時反応温度とする)。次に反応溶液に、必要に応じてアルカリなどの中和剤を添加して酸触媒を中和し、水洗、乾燥することにより、ポリビニルアセタールが得られる。 The PVA thus obtained is acetalized to produce polyvinyl acetal used for film production. Although the method of acetalization is not specifically limited, For example, the following method is mentioned. PVA is dissolved in water by heating to 80 to 100 ° C., and then gradually cooled over 10 to 60 minutes to obtain a 3 to 40% by mass aqueous solution of PVA. When the temperature falls to −10 to 30 ° C., an aldehyde and an acid catalyst are added to the aqueous solution, and an acetalization reaction is performed for 30 to 300 minutes while keeping the temperature constant. At that time, polyvinyl acetal having reached a certain degree of acetalization is precipitated. Thereafter, the temperature of the reaction solution is raised to 25 to 80 ° C. over 30 to 300 minutes, and the temperature is maintained for 10 minutes to 25 hours (this temperature is set as the reaction temperature for driving in). Next, a neutralizing agent such as an alkali is added to the reaction solution as necessary to neutralize the acid catalyst, and the resultant is washed with water and dried to obtain polyvinyl acetal.
一般的に、このような反応や処理の工程においてポリビニルアセタールからなる凝集粒子が生じ、粗粒子を形成しやすい。このような粗粒子が生じた場合には、バッチ間のばらつきの原因になるおそれがある。それに対して、後述する所定の方法を用いて製造したPVAを原料とした場合、従来品より粗粒子の生成が抑制され、その結果、得られるポリビニルアセタールを溶融製膜した際に、異物(未溶解分)が低減されたフィルムを得ることができる。 In general, aggregated particles made of polyvinyl acetal are generated in such a reaction or processing step, and coarse particles are easily formed. When such coarse particles are generated, there is a risk of causing variation between batches. On the other hand, when PVA produced using a predetermined method to be described later is used as a raw material, the generation of coarse particles is suppressed as compared with the conventional product. As a result, when the obtained polyvinyl acetal is melt-cast, A film having a reduced dissolved content can be obtained.
 アセタール化反応に用いる酸触媒としては特に限定されず、有機酸および無機酸のいずれでも使用可能であり、例えば、酢酸、パラトルエンスルホン酸、硝酸、硫酸、塩酸等が挙げられる。これらの中でも塩酸、硫酸、硝酸が好ましく用いられる。また一般には、硝酸を用いた場合は、アセタール化反応の反応速度が速くなり、生産性の向上が望める一方、得られるポリビニルアセタールの粒子が粗大になりやすく、バッチ間のばらつきが大きくなる傾向があるが、本発明のPVAを原料とした場合、粗粒子の生成が抑制され、結果として、得られたポリビニルアセタールを溶融製膜した際に、異物(未溶解分)が低減されたフィルムを得ることができる。 The acid catalyst used in the acetalization reaction is not particularly limited, and any of organic acids and inorganic acids can be used. Examples thereof include acetic acid, paratoluenesulfonic acid, nitric acid, sulfuric acid, and hydrochloric acid. Of these, hydrochloric acid, sulfuric acid, and nitric acid are preferably used. In general, when nitric acid is used, the reaction rate of the acetalization reaction is increased, and improvement in productivity can be expected. On the other hand, the obtained polyvinyl acetal particles tend to be coarse and the variation between batches tends to increase. However, when the PVA of the present invention is used as a raw material, the formation of coarse particles is suppressed, and as a result, when the obtained polyvinyl acetal is melt-formed, a film with reduced foreign matter (undissolved content) is obtained. be able to.
 ポリビニルアセタールのアセタール化反応に用いられるアルデヒドは特に限定されないが、従来公知の炭素数1~8のアルデヒドが好ましく、炭素数4~6のアルデヒドがより好ましく、n-ブチルアルデヒドが特に好ましい。本発明においては、アルデヒドを2種類以上併用して得られるポリビニルアセタールを使用することもできる。 The aldehyde used for the acetalization reaction of polyvinyl acetal is not particularly limited, but a conventionally known aldehyde having 1 to 8 carbon atoms is preferable, an aldehyde having 4 to 6 carbon atoms is more preferable, and n-butyraldehyde is particularly preferable. In the present invention, polyvinyl acetal obtained by using two or more aldehydes in combination can also be used.
 本発明において、複層フィルムのGPC測定により求められる各値がそれぞれ上述した範囲に入るように調整する方法としては、1)ポリビニルアセタールに酸化防止剤を添加して製膜する方法、2)所定の方法を用いて製造したPVAをポリビニルアセタール(I)及びポリビニルアセタール(II)の原料として用いる方法が挙げられる。これらの方法を適宜組み合わせてもよい。 In the present invention, as a method for adjusting each value obtained by GPC measurement of a multilayer film so as to fall within the above-mentioned range, 1) a method for forming a film by adding an antioxidant to polyvinyl acetal, 2) a predetermined method The method of using PVA manufactured using the method of (2) as a raw material of polyvinyl acetal (I) and polyvinyl acetal (II) is mentioned. You may combine these methods suitably.
 上記1)の方法で用いられる酸化防止剤は、特に限定されないが、例えばフェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤などが挙げられ、これらの中でもフェノール系酸化防止剤が好ましく、アルキル置換フェノール系酸化防止剤が特に好ましい。 The antioxidant used in the method 1) is not particularly limited, and examples thereof include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like. Among these, phenolic antioxidants are used. Preferably, alkyl-substituted phenolic antioxidants are particularly preferred.
 フェノール系酸化防止剤の例としては、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジt-アミル-6-(1-(3,5-ジt-アミル-2-ヒドロキシフェニル)エチル)フェニルアクリレートなどのアクリレート系化合物;2,6-ジt-ブチル-4-メチルフェノール、2,6-ジt-ブチル-4-エチルフェノール、オクタデシル-3-(3,5-)ジt-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(4-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(6-t-ブチル-m-クレゾール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、ビス(3-シクロヘキシル-2-ヒドロキシ-5-メチルフェニル)メタン、3,9-ビス(2-(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジt-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス(メチレン-3-(3’,5’-ジt-ブチル-4’-ヒドロキシフェニル)プロピオネート)メタン、トリエチレングリコールビス(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物;6-(4-ヒドロキシ-3,5-ジt-ブチルアニリノ)-2,4-ビス-オクチルチオ-1,3,5-トリアジン、6-(4-ヒドロキシ-3,5-ジメチルアニリノ)-2,4-ビス-オクチルチオ-1,3,5-トリアジン、6-(4-ヒドロキシ-3-メチル-5-t-ブチルアニリノ)-2,4-ビス-オクチルチオ-1,3,5-トリアジン、2-オクチルチオ-4,6-ビス-(3,5-ジt-ブチル-4-オキシアニリノ)-1,3,5-トリアジンなどのトリアジン基含有フェノール系化合物などがある。 Examples of phenolic antioxidants include 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2,4-di-t-amyl- Acrylate compounds such as 6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate; 2,6-di-t-butyl-4-methylphenol, 2,6-di-t -Butyl-4-ethylphenol, octadecyl-3- (3,5-) di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylene-bis (4-methyl-6-t-butylphenol), 4,4′-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidene-bis (6-tert-butyl-m-cresol), 4,4′-thiobi (3-methyl-6-tert-butylphenol), bis (3-cyclohexyl-2-hydroxy-5-methylphenyl) methane, 3,9-bis (2- (3- (3-tert-butyl-4-hydroxy) -5-methylphenyl) propionyloxy) -1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane, 1,1,3-tris (2-methyl-4- Hydroxy-5-t-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, tetrakis (methylene-3- ( 3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate) methane, triethylene glycol bis (3- (3-t-butyl-4-hydroxy-5-methylphenyl) Alkyl-substituted phenolic compounds such as propionate); 6- (4-hydroxy-3,5-di-t-butylanilino) -2,4-bis-octylthio-1,3,5-triazine, 6- (4-hydroxy-) 3,5-dimethylanilino) -2,4-bis-octylthio-1,3,5-triazine, 6- (4-hydroxy-3-methyl-5-t-butylanilino) -2,4-bis-octylthio Triazine group-containing phenolic compounds such as 1,3,5-triazine, 2-octylthio-4,6-bis- (3,5-di-t-butyl-4-oxyanilino) -1,3,5-triazine There is.
 リン系酸化防止剤としては、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2-t-ブチル-4-メチルフェニル)ホスファイト、トリス(シクロヘキシルフェニル)ホスファイト、2,2-メチレンビス(4,6-ジt-ブチルフェニル)オクチルホスファイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジt-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレンなどのモノホスファイト系化合物;4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジトリデシルホスファイト)、4,4’-イソプロピリデン-ビス(フェニル-ジアルキル(C12~C15)ホスファイト)、4,4’-イソプロピリデン-ビス(ジフェニルモノアルキル(C12~C15)ホスファイト)、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチルフェニル)ブタン、テトラキス(2,4-ジt-ブチルフェニル)-4,4’-ビフェニレンホスファイトなどのジホスファイト系化合物などがある。中でもモノホスファイト系化合物が好ましい。 Examples of phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2-t-butyl). -4-methylphenyl) phosphite, tris (cyclohexylphenyl) phosphite, 2,2-methylenebis (4,6-dit-butylphenyl) octyl phosphite, 9,10-dihydro-9-oxa-10-phos Phaphenanthrene-10-oxide, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-decyloxy-9 , 10-Dihydro-9-oxa-10-phospha Monophosphite compounds such as enanthrene; 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-ditridecyl phosphite), 4,4′-isopropylidene-bis (phenyl-dialkyl (C12 To C15) phosphite), 4,4′-isopropylidene-bis (diphenylmonoalkyl (C12 to C15) phosphite), 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5- and diphosphite compounds such as t-butylphenyl) butane and tetrakis (2,4-di-t-butylphenyl) -4,4′-biphenylene phosphite. Of these, monophosphite compounds are preferred.
 硫黄系酸化防止剤としては、例えば、ジラウリル3,3’-チオジプロピオネート、ジステアリル3,3’-チオジプロピオネート、ラウリルステアリル3,3’-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンなどがある。 Examples of the sulfur-based antioxidant include dilauryl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, lauryl stearyl 3,3′-thiodipropionate, pentaerythritol-tetrakis- (Β-lauryl-thiopropionate), 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane.
 これらの酸化防止剤は単独で、あるいは2種以上を組み合わせて用いることができる。酸化防止剤の配合量は、特に制限はないが、ポリビニルアセタール100質量部に対して0.001~5質量部、好ましくは0.01~1質量部の範囲である。酸化防止剤の量が0.001質量部未満である場合には十分な効果が発現しないことがあり、また5質量部を超える場合、配合量を増やすことによる効果の向上が望めない。 These antioxidants can be used alone or in combination of two or more. The blending amount of the antioxidant is not particularly limited, but is 0.001 to 5 parts by mass, preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polyvinyl acetal. When the amount of the antioxidant is less than 0.001 part by mass, a sufficient effect may not be exhibited, and when it exceeds 5 parts by mass, the effect cannot be improved by increasing the blending amount.
 上記2)の方法に用いられるPVAの製造方法として、下記A)~H)が挙げられる。 The following A) to H) are mentioned as a method for producing PVA used in the above method 2).
 A)原料ビニルエステルモノマーに含まれるラジカル重合禁止剤を予め取り除いたビニルエステルモノマーを重合に用いる。 A) A vinyl ester monomer from which a radical polymerization inhibitor contained in the raw material vinyl ester monomer has been removed in advance is used for polymerization.
 B)原料ビニルエステルモノマー中に含まれる不純物の合計含有量が、好ましくは1~1200ppm、より好ましくは3~1100ppm、さらに好ましくは5~1000ppmであるビニルエステルモノマーをラジカル重合に用いる。不純物としては、アセトアルデヒド、クロトンアルデヒド、アクロレインなどのアルデヒド;同アルデヒドが溶媒のアルコールによりアセタール化したアセトアルデヒドジメチルアセタール、クロトンアルデヒドジメチルアセタール、アクロレインジメチルアセタールなどのアセタール;アセトンなどのケトン;酢酸メチル、酢酸エチルなどのエステルなどが挙げられる。 B) A vinyl ester monomer having a total content of impurities contained in the raw material vinyl ester monomer of preferably 1 to 1200 ppm, more preferably 3 to 1100 ppm, and even more preferably 5 to 1000 ppm is used for radical polymerization. Impurities include aldehydes such as acetaldehyde, crotonaldehyde, and acrolein; acetals such as acetaldehyde dimethyl acetal, crotonaldehyde dimethyl acetal, and acrolein dimethyl acetal obtained by acetalizing the aldehyde with a solvent alcohol; ketones such as acetone; methyl acetate and ethyl acetate And esters.
 C)アルコール溶媒中にて原料ビニルエステルモノマーをラジカル重合し、未反応モノマーを回収再利用する一連の工程にて、アルコールや微量の水分によるモノマーの加アルコール分解や加水分解を抑制するために、有機酸、具体的にはグリコール酸、グリセリン酸、リンゴ酸、クエン酸、乳酸、酒石酸、サリチル酸などのヒドロキシカルボン酸;マロン酸、コハク酸、マレイン酸、フタル酸、シュウ酸、グルタル酸などの多価カルボン酸などを添加し、分解により生じるアセトアルデヒドなどのアルデヒドの生成を極力抑制する。有機酸の添加量としては、原料ビニルエステルモノマーに対して、好ましくは1~500ppm、より好ましくは3~300ppm、さらに好ましくは5~100ppmである。 C) In order to suppress the alcoholysis and hydrolysis of the monomer by alcohol and a small amount of water in a series of steps of radical polymerization of the raw material vinyl ester monomer in an alcohol solvent and collecting and reusing unreacted monomer, Organic acids, specifically hydroxycarboxylic acids such as glycolic acid, glyceric acid, malic acid, citric acid, lactic acid, tartaric acid, salicylic acid; malonic acid, succinic acid, maleic acid, phthalic acid, oxalic acid, glutaric acid, etc. A carboxylic acid or the like is added to suppress the generation of aldehydes such as acetaldehyde generated by decomposition as much as possible. The addition amount of the organic acid is preferably 1 to 500 ppm, more preferably 3 to 300 ppm, and still more preferably 5 to 100 ppm with respect to the raw material vinyl ester monomer.
 D)重合に用いる溶媒として、不純物の合計含有量が、好ましくは1~1200ppm、より好ましくは3~1100ppm、さらに好ましくは5~1000ppmであるものを用いる。溶媒中に含まれる不純物としては、原料ビニルエステルモノマー中に含まれる不純物として上述したものが挙げられる。 D) As the solvent used for the polymerization, a solvent having a total impurity content of preferably 1 to 1200 ppm, more preferably 3 to 1100 ppm, and still more preferably 5 to 1000 ppm. Examples of the impurities contained in the solvent include those described above as the impurities contained in the raw material vinyl ester monomer.
 E)ビニルエステルモノマーをラジカル重合する際に、ビニルエステルモノマーに対する溶媒の比を高める。 E) When the radical polymerization of the vinyl ester monomer, the ratio of the solvent to the vinyl ester monomer is increased.
 F)ビニルエステルモノマーをラジカル重合する際に使用するラジカル重合開始剤として、有機過酸化物を用いる。有機過酸化物としては、アセチルパーオキシド、イソブチルパーオキシド、ジイソプロピルパーオキシカーボネート、ジアリルパーオキシジカーボネート、ジn-プロピルパーオキシジカーボネート、ジミリスチルパーオキシジカーボネート、ジ(2-エトキシエチル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジ(メトキシイソプロピル)パーオキシジカーボネート、ジ(4-tert-ブチルシクロヘキシル)パーオキシジカーボネートなどが挙げられ、特に、60℃での半減期が10~110分のパーオキシジカーボネートを用いることが好ましい。 F) An organic peroxide is used as a radical polymerization initiator used for radical polymerization of a vinyl ester monomer. Organic peroxides include acetyl peroxide, isobutyl peroxide, diisopropyl peroxycarbonate, diallyl peroxydicarbonate, di-n-propyl peroxydicarbonate, dimyristyl peroxydicarbonate, di (2-ethoxyethyl) peroxide Examples include oxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, di (methoxyisopropyl) peroxydicarbonate, and di (4-tert-butylcyclohexyl) peroxydicarbonate. It is preferable to use peroxydicarbonate with a period of 10 to 110 minutes.
 G)ビニルエステルモノマーのラジカル重合後に、重合を抑制するために禁止剤を添加する場合、残存する未分解のラジカル重合開始剤に対して5モル当量以下の禁止剤を添加する。禁止剤の種類としては、分子量が1000以下の共役二重結合を有する化合物であって、ラジカルを安定化させて重合反応を阻害する化合物が挙げられる。具体的には、イソプレン、2,3-ジメチル-1,3-ブタジエン、2,3-ジエチル-1,3-ブタジエン、2-t-ブチル-1,3-ブタジエン、1,3-ペンタジエン、2,3-ジメチル-1,3-ペンタジエン、2,4-ジメチル-1,3-ペンタジエン、3,4-ジメチル-1,3-ペンタジエン、3-エチル-1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,5-ジメチル-2,4-ヘキサジエン、1,3-オクタジエン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1-メトキシ-1,3-ブタジエン、2-メトキシ-1,3-ブタジエン、1-エトキシ-1,3-ブタジエン、2-エトキシ-1,3-ブタジエン、2-ニトロ-1,3-ブタジエン、クロロプレン、1-クロロ-1,3-ブタジエン、1-ブロモ-1,3-ブタジエン、2-ブロモ-1,3-ブタジエン、フルベン、トロポン、オシメン、フェランドレン、ミルセン、ファルネセン、センブレン、ソルビン酸、ソルビン酸エステル、ソルビン酸塩、アビエチン酸等の炭素-炭素二重結合2個の共役構造よりなる共役ジエン;1,3,5-ヘキサトリエン、2,4,6-オクタトリエン-1-カルボン酸、エレオステアリン酸、桐油、コレカルシフェロール等の炭素-炭素二重結合3個の共役構造よりなる共役トリエン;シクロオクタテトラエン、2,4,6,8-デカテトラエン-1-カルボン酸、レチノール、レチノイン酸等の炭素-炭素二重結合4個以上の共役構造よりなる共役ポリエンなどのポリエンが挙げられる。なお、1,3-ペンタジエン、ミルセン、ファルネセンのように、複数の立体異性体を有するものについては、そのいずれを用いても良い。さらに、p-ベンゾキノン、ヒドロキノン、ヒドロキノンモノメチルエーテル、2-フェニル-1-プロペン、2-フェニル-1-ブテン、2,4-ジフェニル-4-メチル-1-ペンテン、3,5-ジフェニル-5-メチル-2-ヘプテン、2,4,6-トリフェニル-4,6-ジメチル-1-ヘプテン、3,5,7-トリフェニル-5-エチル-7-メチル-2-ノネン、1,3-ジフェニル-1-ブテン、2,4-ジフェニル-4-メチル-2-ペンテン、3,5-ジフェニル-5-メチル-3-ヘプテン、1,3,5-トリフェニル-1-ヘキセン、2,4,6-トリフェニル-4,6-ジメチル-2-ヘプテン、3,5,7-トリフェニル-5-エチル-7-メチル-3-ノネン、1-フェニル-1,3-ブタジエン、1,4-ジフェニル-1,3-ブタジエン等の芳香族系化合物が挙げられる。 G) When an inhibitor is added after radical polymerization of the vinyl ester monomer in order to suppress the polymerization, an inhibitor of 5 molar equivalents or less is added to the remaining undecomposed radical polymerization initiator. Examples of the inhibitor include a compound having a conjugated double bond having a molecular weight of 1000 or less and a compound that stabilizes a radical and inhibits a polymerization reaction. Specifically, isoprene, 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-t-butyl-1,3-butadiene, 1,3-pentadiene, , 3-dimethyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, 3,4-dimethyl-1,3-pentadiene, 3-ethyl-1,3-pentadiene, 2-methyl-1 , 3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, 2,4-hexadiene, 2,5-dimethyl-2,4-hexadiene, , 3-octadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1-methoxy-1,3-butadiene, 2-methoxy-1,3-butadiene, 1-ethoxy-1,3- Tadiene, 2-ethoxy-1,3-butadiene, 2-nitro-1,3-butadiene, chloroprene, 1-chloro-1,3-butadiene, 1-bromo-1,3-butadiene, 2-bromo-1, Conjugated dienes comprising a conjugated structure of two carbon-carbon double bonds such as 3-butadiene, fulvene, tropone, osymene, ferrandrene, myrcene, farnesene, semblene, sorbic acid, sorbic acid ester, sorbic acid salt, abietic acid; Conjugated triene having a conjugated structure of three carbon-carbon double bonds such as 1,3,5-hexatriene, 2,4,6-octatriene-1-carboxylic acid, eleostearic acid, tung oil, cholecalciferol Carbons such as cyclooctatetraene, 2,4,6,8-decatetraene-1-carboxylic acid, retinol, retinoic acid, etc. Polyenes such as conjugated polyene consisting Motoni double bond of four or more conjugated structure. Any one having a plurality of stereoisomers such as 1,3-pentadiene, myrcene, and farnesene may be used. Further, p-benzoquinone, hydroquinone, hydroquinone monomethyl ether, 2-phenyl-1-propene, 2-phenyl-1-butene, 2,4-diphenyl-4-methyl-1-pentene, 3,5-diphenyl-5 Methyl-2-heptene, 2,4,6-triphenyl-4,6-dimethyl-1-heptene, 3,5,7-triphenyl-5-ethyl-7-methyl-2-nonene, 1,3- Diphenyl-1-butene, 2,4-diphenyl-4-methyl-2-pentene, 3,5-diphenyl-5-methyl-3-heptene, 1,3,5-triphenyl-1-hexene, 2,4 , 6-triphenyl-4,6-dimethyl-2-heptene, 3,5,7-triphenyl-5-ethyl-7-methyl-3-nonene, 1-phenyl-1,3-butadiene, 1,4 -The Aromatic compounds such as Eniru 1,3-butadiene.
 H)残存するビニルエステルモノマーが極力除去されたポリビニルエステルのアルコール溶液をけん化反応に用いる。好ましくは残存モノマーの除去率99%以上、より好ましくは99.5%以上、更に好ましくは99.8%以上のものを用いる。 H) A polyvinyl ester alcohol solution from which the remaining vinyl ester monomer is removed as much as possible is used for the saponification reaction. Preferably, the residual monomer removal rate is 99% or more, more preferably 99.5% or more, still more preferably 99.8% or more.
 A)~H)を適宜組み合わせることで所望のPVAが得られる。こうして得られるPVAをポリビニルアセタール(I)及びポリビニルアセタール(II)の原料として用いることが好ましい。 The desired PVA can be obtained by appropriately combining A) to H). PVA thus obtained is preferably used as a raw material for polyvinyl acetal (I) and polyvinyl acetal (II).
 層(X)及び層(Y)に含有される可塑剤は、本発明の効果を損なわず、ポリビニルアセタールとの相溶性に問題がなければ特に制限はない。前記可塑剤は単独で、あるいは2種以上を組み合わせて用いることができる。前記可塑剤として、両末端に水酸基を有するオリゴアルキレングリコールと脂肪族カルボン酸とのジエステル、アルキレンジカルボン酸と脂肪族一価アルコールとのジエステルが好ましい。両末端に水酸基を有するオリゴアルキレングリコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロピレングリコール、1,2-プロピレングリコールの二量体および三量体、1,3-プロピレングリコール、1,3-プロピレングリコールの二量体および三量体、1,2-ブチレングリコール、1,2-ブチレングリコールの二量体および三量体、1,4-ブチレングリコール、1,4-ブチレングリコールの二量体および三量体、1,2-ヘキサンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,2-オクタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,2-デカンジオール、1,4-シクロヘキサンジオールなどが挙げられる。脂肪族カルボン酸としては、酢酸、プロパン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、2-エチルヘキサン酸、ノナン酸、デカン酸などが挙げられる。ここで、オリゴアルキレングリコールと脂肪族カルボン酸との組み合わせは任意であり、複数のオリゴアルキレングリコールと複数のカルボン酸との組み合わせでも良い。これらの中でも、トリエチレングリコールと2-エチルヘキサン酸のジエステルが取り扱い性(成形時の揮発性)などの観点で好ましい。特にトリエチレングリコール-ジ2-エチルヘキサノエートが好ましい。また、アルキレンジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸などが挙げられる。脂肪族一価アルコールとしては、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ヘプタノール、オクタノール、2-エチルヘキサノール、ノナオール、デカノール、2-メトキシエタノール、2-エトキシエタノール、2-プロポキシエタノール、2-ブトキシエタノールなどが挙げられる。ここで、アルキレンジカルボン酸と脂肪族一価アルコールの組み合わせは任意であり、複数のアルキレンジカルボン酸と複数の脂肪族一価アルコールとの組み合わせでも良い。 The plasticizer contained in the layer (X) and the layer (Y) is not particularly limited as long as the effect of the present invention is not impaired and there is no problem in compatibility with polyvinyl acetal. The plasticizers can be used alone or in combination of two or more. The plasticizer is preferably a diester of an oligoalkylene glycol having a hydroxyl group at both ends and an aliphatic carboxylic acid, or a diester of an alkylene dicarboxylic acid and an aliphatic monohydric alcohol. Examples of oligoalkylene glycols having hydroxyl groups at both ends include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propylene glycol, 1,2-propylene glycol dimer and trimer, 1,3 -Propylene glycol, 1,3-propylene glycol dimer and trimer, 1,2-butylene glycol, 1,2-butylene glycol dimer and trimer, 1,4-butylene glycol, 1, 4-butylene glycol dimer and trimer, 1,2-hexanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,2-octanediol, 1,8-octane Diol, 1,9-nonanediol, 2-methyl-1,8-octanediol, , 2-decanediol, 1,4-cyclohexane diol. Examples of the aliphatic carboxylic acid include acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid, decanoic acid and the like. Here, the combination of oligoalkylene glycol and aliphatic carboxylic acid is arbitrary, and may be a combination of a plurality of oligoalkylene glycols and a plurality of carboxylic acids. Among these, a diester of triethylene glycol and 2-ethylhexanoic acid is preferable from the viewpoint of handleability (volatility during molding). Triethylene glycol-di-2-ethylhexanoate is particularly preferable. Examples of the alkylene dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and sebacic acid. Aliphatic monohydric alcohols include methanol, ethanol, propanol, butanol, pentanol, hexanol, cyclohexanol, heptanol, octanol, 2-ethylhexanol, nonaol, decanol, 2-methoxyethanol, 2-ethoxyethanol, 2-propoxy Examples include ethanol and 2-butoxyethanol. Here, the combination of an alkylene dicarboxylic acid and an aliphatic monohydric alcohol is arbitrary, and a combination of a plurality of alkylene dicarboxylic acids and a plurality of aliphatic monohydric alcohols may be used.
 前記可塑剤として、水酸基を有する脂肪族エステル化合物、水酸基を有する脂肪族エーテル化合物などの水酸基を有する脂肪族化合物を用いることもできる。これらの化合物中の水酸基の数は、好ましくは2個以上であり、より好ましくは2~3個である。水酸基を有する脂肪族エステル化合物とはエステル結合を少なくとも1つ含み、かつ水酸基を有する化合物であり、また水酸基を有する脂肪族エーテル化合物とはエーテル結合を少なくとも1つ含み、かつ水酸基を有する化合物である。 As the plasticizer, an aliphatic compound having a hydroxyl group such as an aliphatic ester compound having a hydroxyl group or an aliphatic ether compound having a hydroxyl group may be used. The number of hydroxyl groups in these compounds is preferably 2 or more, more preferably 2 to 3. The aliphatic ester compound having a hydroxyl group is a compound having at least one ester bond and having a hydroxyl group, and the aliphatic ether compound having a hydroxyl group is a compound having at least one ether bond and having a hydroxyl group. .
 水酸基を有する脂肪族エステル化合物は特に限定されないが、リシノール酸メチル、リシノール酸ブチル、リシノール酸2-エチルヘキシル、リシノール酸(2-ヒドロキシエチル)、グリセリンモノリシノール酸エステル、グリセリンジリシノール酸エステル、グリセリントリリシノール酸エステル、グリセリンジリシノール酸エステルモノオレイン酸エステル、オレイン酸(2-ヒドロキシエチル)、2-エチルヘキサン酸(2-ヒドロキシエチル)、リシノール酸{2-[2-(2-ヒドロキシエトキシ)エトキシ]エチル}2-エチルヘキサン酸{2-[2-(2-ヒドロキシエトキシ)エトキシ]エチル}、リシノール酸メチル、リシノール酸エチル、リシノール酸ブチル、リシノール酸オクチル、6-ヒドロキシヘキサン酸オクチル、12-ヒドロキシステアリン酸メチル、ひまし油などの他、水酸基を有するポリエステル化合物が挙げられる。なお、ひまし油とはひまの種子から得られるグリセリントリカルボン酸エステルであって、カルボン酸エステル部分の大部分、通常80~95質量%がリシノール酸エステルであり、残りがパルミチン酸エステル、ステアリン酸エステル、オレイン酸エステル、リノール酸エステル、リノレン酸エステルなどで構成される。 The aliphatic ester compound having a hydroxyl group is not particularly limited, but methyl ricinoleate, butyl ricinoleate, 2-ethylhexyl ricinoleate, ricinoleic acid (2-hydroxyethyl), glycerin monoricinoleate, glycerin diricinoleate, glycerin triglyceride. Ricinoleic acid ester, glycerin diricinoleic acid monooleate, oleic acid (2-hydroxyethyl), 2-ethylhexanoic acid (2-hydroxyethyl), ricinoleic acid {2- [2- (2-hydroxyethoxy) ethoxy ] Ethyl} 2-ethylhexanoic acid {2- [2- (2-hydroxyethoxy) ethoxy] ethyl}, methyl ricinoleate, ethyl ricinoleate, butyl ricinoleate, octyl ricinoleate, 6-hydroxyhexanoic acid Chill, 12-hydroxystearic acid methyl other such castor, and polyester compounds having a hydroxyl group. Castor oil is a glycerin tricarboxylic acid ester obtained from castor seeds, and most of the carboxylic acid ester portion, usually 80 to 95% by mass, is ricinoleic acid ester, and the remainder is palmitic acid ester, stearic acid ester, It is composed of oleic acid ester, linoleic acid ester, linolenic acid ester and the like.
 水酸基を有するポリエステル化合物としては、例えば、多価カルボン酸と多価アルコールの縮合共重合体であって水酸基を有する脂肪族ポリエステル、ヒドロキシカルボン酸の重合体であって水酸基を有する脂肪族ポリエステル、水酸基を有する脂肪族ポリカーボネートポリオールなどが挙げられる。 Examples of the polyester compound having a hydroxyl group include an aliphatic polyester having a hydroxyl group, which is a condensation copolymer of a polyvalent carboxylic acid and a polyhydric alcohol, an aliphatic polyester having a hydroxyl group, which is a polymer of a hydroxycarboxylic acid, and a hydroxyl group. Aliphatic polycarbonate polyol having
 多価カルボン酸と多価アルコールの縮合共重合体であって水酸基を有する脂肪族ポリエステルは、脂肪族多価カルボン酸と脂肪族多価アルコールを多価アルコール過剰下で縮合重合させることにより得られる。 An aliphatic polyester having a hydroxyl group, which is a condensation copolymer of a polycarboxylic acid and a polyhydric alcohol, can be obtained by condensation polymerization of an aliphatic polycarboxylic acid and an aliphatic polyhydric alcohol in an excess of polyhydric alcohol. .
 脂肪族多価カルボン酸としてはコハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸、1,2-シクロヘキサンジカルボン酸などの脂肪族2価カルボン酸、1,2,3-プロパントリカルボン酸、1,3,5-ペンタトリカルボン酸などの脂肪族3価カルボン酸などが挙げられるが、これらに限定されない。中でも脂肪族2価カルボン酸、特に炭素数6~10の脂肪族2価カルボン酸が好適である。また、脂肪族多価アルコールとしては、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,2-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,2-オクタンジオール、1,2-ノナンジオール、1,8-ノナンジオール、1,9-ノナンジオール、1,2-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコールなどの脂肪族2価アルコール;グリセリンなどの脂肪族3価アルコール;エリトリトール、ペンタエリトリトールなどの脂肪族4価アルコールなどが挙げられるが、これらに限定されない。中でも脂肪族2価アルコールが、得られるポリエステルの耐侯性にも優れる観点から好適である。 Examples of aliphatic polycarboxylic acids include succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, 1,2-cyclohexanedicarboxylic acid, and other aliphatic divalent carboxylic acids, 1,2,3-propane Examples thereof include, but are not limited to, tricarboxylic acids and aliphatic trivalent carboxylic acids such as 1,3,5-pentatricarboxylic acid. Of these, aliphatic divalent carboxylic acids, particularly aliphatic divalent carboxylic acids having 6 to 10 carbon atoms are preferred. Examples of the aliphatic polyhydric alcohol include 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 1,2-hexane. Diol, 3-methyl-1,5-pentanediol, 1,2-octanediol, 1,2-nonanediol, 1,8-nonanediol, 1,9-nonanediol, 1,2-cyclohexanediol, 1, Examples include aliphatic dihydric alcohols such as 2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol and triethylene glycol; aliphatic trihydric alcohols such as glycerin; aliphatic tetrahydric alcohols such as erythritol and pentaerythritol. However, it is not limited to these. Of these, aliphatic dihydric alcohols are preferred from the viewpoint of excellent weather resistance of the resulting polyester.
 ヒドロキシカルボン酸の重合体であって水酸基を有する脂肪族ポリエステルは、ヒドロキシカルボン酸を縮合重合させることにより得られる。ヒドロキシカルボン酸としては、グリコール酸、乳酸、2-ヒドロキシブタン酸、3-ヒドロキシブタン酸、4-ヒドロキシブタン酸、6-ヒドロキシヘキサン酸、リシノール酸などが挙げられる。またこれらヒドロキシカルボン酸が分子内縮合したラクトン化合物も原料として使用できる。ラクトン化合物としては、β-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトン、4-メチル-δ-バレロラクトンなどが挙げられるが、これらに限定されない。ラクトン化合物を用いる場合は開環重合によりポリエステルを得ることができる。中でも、ポリエステルの耐熱性にも優れる観点から、6-ヒドロキシカルボン酸またはε-カプロラクトンが好ましい。 An aliphatic polyester having a hydroxyl group, which is a polymer of hydroxycarboxylic acid, can be obtained by condensation polymerization of hydroxycarboxylic acid. Examples of the hydroxycarboxylic acid include glycolic acid, lactic acid, 2-hydroxybutanoic acid, 3-hydroxybutanoic acid, 4-hydroxybutanoic acid, 6-hydroxyhexanoic acid, ricinoleic acid and the like. A lactone compound obtained by intramolecular condensation of these hydroxycarboxylic acids can also be used as a raw material. Examples of the lactone compound include, but are not limited to, β-butyrolactone, δ-valerolactone, ε-caprolactone, 4-methyl-δ-valerolactone, and the like. When a lactone compound is used, a polyester can be obtained by ring-opening polymerization. Of these, 6-hydroxycarboxylic acid or ε-caprolactone is preferred from the viewpoint of excellent heat resistance of the polyester.
 水酸基を有する脂肪族エーテル化合物としては、エチレングリコールモノヘキシルエーテルや、水酸基を有する脂肪族ポリエーテル化合物などが挙げられる。中でも、水酸基を有する脂肪族ポリエーテル化合物が好ましい。水酸基を有する脂肪族ポリエーテル化合物は、エチレングリコール、1,2-プロピレングリコールなどの脂肪族多価アルコールの重合体であってかつ水酸基を有する化合物であり、例えばポリエチレングリコール、ポリプロピレングリコールなどが好ましい。 Examples of the aliphatic ether compound having a hydroxyl group include ethylene glycol monohexyl ether and an aliphatic polyether compound having a hydroxyl group. Among these, an aliphatic polyether compound having a hydroxyl group is preferable. The aliphatic polyether compound having a hydroxyl group is a polymer of an aliphatic polyhydric alcohol such as ethylene glycol and 1,2-propylene glycol and having a hydroxyl group. For example, polyethylene glycol and polypropylene glycol are preferable.
 水酸基を有する脂肪族化合物の分子量は特に限定されないが、好ましくは200~2000、より好ましくは220~1000、さらに好ましくは250~700である。また前記化合物の水酸基価に基づく数平均分子量は特に限定されないが、200~2000であることが好ましく、220~1700であることがより好ましく、240~1500であることがさらに好ましい。水酸基価に基づく数平均分子量が200より小さいと、当該化合物の沸点が十分に高くない場合があり、揮発性が高いことが問題になることがある。水酸基価に基づく数平均分子量が2000より大きいと、当該化合物とポリビニルアセタールとの相溶性が不十分となることがある。なお水酸基価に基づく数平均分子量は、(水酸基を有する化合物1分子あたりの水酸基の数)/(水酸基を有する化合物1gあたりの水酸基の物質量[mol/g])=1000×(水酸基を有する化合物1分子あたりの水酸基の数)/((水酸基を有する化合物の水酸基価)/56)で得られる値である。ここで、水酸基を有する脂肪族化合物を2種類以上混合して使用する場合の水酸基を有する化合物1分子あたりの水酸基の数は、その混合物に含まれる水酸基を有する化合物1分子あたりの平均値を指す。 The molecular weight of the aliphatic compound having a hydroxyl group is not particularly limited, but is preferably 200 to 2000, more preferably 220 to 1000, and still more preferably 250 to 700. The number average molecular weight based on the hydroxyl value of the compound is not particularly limited, but is preferably 200 to 2000, more preferably 220 to 1700, and further preferably 240 to 1500. When the number average molecular weight based on the hydroxyl value is smaller than 200, the boiling point of the compound may not be sufficiently high, and high volatility may be a problem. When the number average molecular weight based on the hydroxyl value is larger than 2000, the compatibility between the compound and polyvinyl acetal may be insufficient. The number average molecular weight based on the hydroxyl value is (number of hydroxyl groups per molecule having a hydroxyl group) / (substance amount of hydroxyl group per 1 g of the compound having a hydroxyl group [mol / g]) = 1000 × (compound having a hydroxyl group) This is a value obtained by (number of hydroxyl groups per molecule) / ((hydroxyl value of a compound having a hydroxyl group) / 56). Here, when two or more types of aliphatic compounds having a hydroxyl group are used as a mixture, the number of hydroxyl groups per molecule of a compound having a hydroxyl group indicates an average value per molecule of the compound having a hydroxyl group contained in the mixture. .
 水酸基を有する脂肪族化合物の水酸基価は特に限定されないが、50~600mgKOH/gであることが好ましく、70~500mgKOH/gであることがより好ましく、100~400mgKOH/gであることがさらに好ましい。水酸基価が50mgKOH/gより小さいと得られる複層フィルムの透明性が低下するおそれがある。一方、水酸基価が600mgKOH/gを超えると、ポリビニルアセタールとの相溶性が低下して透明性が低下したり、また複層フィルムからブリードが起こったりするおそれがある。ここで、本発明における水酸基価は、JIS K1557-1(2007)に記載された方法で測定をして得られる値である。なお、水酸基を有する化合物を2種類以上混合して使用する場合の水酸基価は、その混合物(本発明の複層フィルムの各層における可塑剤の混合比率と同じ混合比率の水酸基を有する化合物の混合物)の水酸基価を指す。 The hydroxyl value of the aliphatic compound having a hydroxyl group is not particularly limited, but is preferably 50 to 600 mgKOH / g, more preferably 70 to 500 mgKOH / g, and further preferably 100 to 400 mgKOH / g. If the hydroxyl value is less than 50 mgKOH / g, the transparency of the resulting multilayer film may be reduced. On the other hand, when the hydroxyl value exceeds 600 mgKOH / g, the compatibility with polyvinyl acetal is lowered, transparency may be lowered, and bleeding may occur from the multilayer film. Here, the hydroxyl value in the present invention is a value obtained by measurement by the method described in JIS K1557-1 (2007). The hydroxyl value in the case of using a mixture of two or more compounds having a hydroxyl group is a mixture thereof (mixture of compounds having a hydroxyl group having the same mixing ratio as the mixing ratio of the plasticizer in each layer of the multilayer film of the present invention). Of hydroxyl value.
 層(X)及び層(Y)に含有される可塑剤として、ポリアルキレングリコールと芳香族アルコールとのエーテル化合物、ポリアルキレングリコールと芳香族カルボン酸とのエステル化合物などの芳香環を有する化合物を用いることもできる。当該化合物の分子量は特に限定されないが、好ましくは200~2000、より好ましくは220~1500、さらに好ましくは250~1000である。 As a plasticizer contained in the layer (X) and the layer (Y), a compound having an aromatic ring such as an ether compound of a polyalkylene glycol and an aromatic alcohol or an ester compound of a polyalkylene glycol and an aromatic carboxylic acid is used. You can also. The molecular weight of the compound is not particularly limited, but is preferably 200 to 2000, more preferably 220 to 1500, and still more preferably 250 to 1000.
 ポリアルキレングリコールと芳香族アルコールとのエーテル化合物の具体例としては、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンメチルフェニルエーテル、ポリオキシエチレンエチルフェニルエーテル、ポリオキシエチレンn-プロピルフェニルエーテル、ポリオキシエチレンi-プロピルフェニルエーテル、ポリオキシエチレンi-プロピルメチルフェニルエーテル、ポリオキシエチレンn-ブチルフェニルエーテル、ポリオキシエチレンi-ブチルフェニルエーテル、ポリオキシエチレンt-ブチルフェニルエーテルなどのポリオキシエチレンアルキルフェニルエーテルが挙げられる。当該ポリオキシエチレンアルキルフェニルエーテルがモノエーテルであることが好ましい。当該ポリオキシエチレンアルキルフェニルエーテルの芳香環上のアルキル基の炭素数が4以下であることも好ましい。 Specific examples of ether compounds of polyalkylene glycol and aromatic alcohol include polyoxyethylene phenyl ether, polyoxyethylene methyl phenyl ether, polyoxyethylene ethyl phenyl ether, polyoxyethylene n-propyl phenyl ether, polyoxyethylene i. Polyoxyethylene alkylphenyl ethers such as -propylphenyl ether, polyoxyethylene i-propylmethylphenyl ether, polyoxyethylene n-butylphenyl ether, polyoxyethylene i-butylphenyl ether, polyoxyethylene t-butylphenyl ether Can be mentioned. The polyoxyethylene alkylphenyl ether is preferably a monoether. It is also preferable that the alkyl group on the aromatic ring of the polyoxyethylene alkylphenyl ether has 4 or less carbon atoms.
 さらにポリアルキレングリコールと芳香族アルコールとのエーテル化合物として、ポリオキシエチレンモノベンジルフェニルエーテル、ポリオキシエチレンジベンジルフェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテルなどの複数の芳香環を有する芳香族アルコールとポリアルキレングリコールとのエーテル化合物も挙げられる。また、ポリオキシエチレンナフチルエーテルなどの縮合芳香環を有する芳香族アルコールとポリアルキレングリコールとのエーテル化合物も挙げられる。これらのエーテル化合物がモノエーテルであることが好ましい。さらに、2,2-ビス(4-ポリオキシエチレンオキシフェニル)プロパンなどの複数のポリエチレングリコールでエーテル化された化合物も挙げられる。 Further, as an ether compound of polyalkylene glycol and aromatic alcohol, aromatic alcohol having a plurality of aromatic rings such as polyoxyethylene monobenzyl phenyl ether, polyoxyethylene dibenzyl phenyl ether, polyoxyethylene tribenzyl phenyl ether and polyoxyethylene monobenzyl phenyl ether Also included are ether compounds with alkylene glycols. Moreover, the ether compound of aromatic alcohol and polyalkylene glycol which have condensed aromatic rings, such as polyoxyethylene naphthyl ether, is also mentioned. These ether compounds are preferably monoethers. Furthermore, a compound etherified with a plurality of polyethylene glycols such as 2,2-bis (4-polyoxyethyleneoxyphenyl) propane may be mentioned.
 ポリアルキレングリコールと芳香族カルボン酸とのエステル化合物の具体例としては、安息香酸やフタル酸、イソフタル酸、テレフタル酸、トリメリット酸などの芳香族カルボン酸とポリエチレングリコールなどのポリアルキレングリコールとのエステル化合物が挙げられる。 Specific examples of ester compounds of polyalkylene glycols and aromatic carboxylic acids include esters of aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and trimellitic acid with polyalkylene glycols such as polyethylene glycol. Compounds.
 上述した芳香環を有する化合物の中でも、ポリオキシエチレンアルキルフェニルエーテル、複数の芳香環を有する芳香族アルコールとポリオキシエチレンとのエーテル化合物及び縮合芳香環を有する芳香族アルコールとポリアルキレングリコールとのエーテル化合物が好ましく、これらがモノエーテルであることが更に好ましい。 Among the compounds having an aromatic ring described above, polyoxyethylene alkylphenyl ether, an ether compound of an aromatic alcohol having a plurality of aromatic rings and polyoxyethylene, and an ether of an aromatic alcohol having a condensed aromatic ring and a polyalkylene glycol Compounds are preferred, more preferably they are monoethers.
 本発明において使用される、可塑剤の水に対する溶解性は、特に限定されないが、20℃における水100gへの溶解量が100g以下であることが好ましい。可塑剤の溶解量がこのような範囲である場合、得られる複層フィルムが水に接した場合に、当該可塑剤が水により溶出しにくくなるので好ましい。20℃における水100gへの前記可塑剤の溶解量が50g以下であることがより好ましく、10g以下であることがさらに好ましく、2g以下であることが特に好ましい。 The solubility of the plasticizer used in the present invention in water is not particularly limited, but the amount of dissolution in 100 g of water at 20 ° C. is preferably 100 g or less. When the amount of the plasticizer dissolved is in such a range, it is preferable that when the resulting multilayer film comes into contact with water, the plasticizer is less likely to be eluted by water. The amount of the plasticizer dissolved in 100 g of water at 20 ° C. is more preferably 50 g or less, further preferably 10 g or less, and particularly preferably 2 g or less.
 本発明の複層フィルムにおける可塑剤の含有量は、各層ごとに、ポリビニルアセタール(I)またはポリビニルアセタール(II)100質量部に対して、20~100質量部であることが好ましい。20質量部未満では、複層フィルムや当該複層フィルムを中間膜として用いた合わせガラスの耐衝撃性が不十分となることがある。逆に100質量部を超えると、可塑剤がブリードアウトして、得られる複層フィルムの透明性が低下したり、ガラスに対する接着性が損なわれることがある。 The content of the plasticizer in the multilayer film of the present invention is preferably 20 to 100 parts by mass with respect to 100 parts by mass of polyvinyl acetal (I) or polyvinyl acetal (II) for each layer. If it is less than 20 mass parts, the impact resistance of the laminated glass or the laminated glass using the multilayer film as an intermediate film may be insufficient. On the other hand, when the amount exceeds 100 parts by mass, the plasticizer may bleed out and the transparency of the resulting multilayer film may be reduced, or the adhesion to glass may be impaired.
 また、層(Y)におけるポリビニルアセタール(II)100質量部に対する可塑剤の含有量と、層(X)におけるポリビニルアセタール(I)100質量部に対する可塑剤の含有量との差が5質量部以上であることが、遮音性能の観点から好ましい。前記含有量の差は、7.5質量部以上がより好ましく、10質量部以上がさらに好ましい。また、前記含有量の差は、50質量部以下が好ましい。 Further, the difference between the plasticizer content relative to 100 parts by mass of the polyvinyl acetal (II) in the layer (Y) and the plasticizer content relative to 100 parts by mass of the polyvinyl acetal (I) in the layer (X) is 5 parts by mass or more. It is preferable from the viewpoint of sound insulation performance. The content difference is preferably 7.5 parts by mass or more, and more preferably 10 parts by mass or more. The difference in content is preferably 50 parts by mass or less.
 層(X)は、紫外線吸収剤を含有する。熱線遮蔽微粒子を含有する層(Y)の外側に位置する層(X)に紫外線吸収剤を含有させることにより、熱線遮蔽微粒子の紫外線曝露を防ぎ、粒子の光触媒活性に起因する樹脂の劣化や粒子の変質を抑制することができる。また、紫外線吸収剤は層(Y)にも含有されていてもよい。 Layer (X) contains an ultraviolet absorber. The layer (X) located outside the layer (Y) containing the heat ray shielding fine particles contains an ultraviolet absorber, thereby preventing the heat ray shielding fine particles from being exposed to ultraviolet rays, and causing deterioration of the resin and particles caused by the photocatalytic activity of the particles. Can be prevented. Moreover, the ultraviolet absorber may also be contained in the layer (Y).
 層(X)に含有される紫外線吸収剤としては特に限定されるものではないが、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ビス(α,α’ジメチルベンジル)フェニル)-2H-ベンゾトリアゾール、2-(3,5-ジt-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジt-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジt-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系紫外線吸収剤;2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジt-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、4-(3-(3,5-ジt-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ)-1-(2-(3-(3,5-ジt-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ)エチル)-2,2,6,6-テトラメチルピペリジンなどのヒンダードアミン系紫外線吸収剤;2,4-ジt-ブチルフェニル-3,5ジt-ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジt-ブチル-4-ヒドロキシベンゾエートなどのベンゾエート系紫外線吸収剤;マロン酸[(4-メトキシフェニル)-メチレン]-ジメチルエステル等のマロン酸エステル系紫外線吸収剤、2-エチル-2’-エトキシ-オキサルアニリド等のシュウ酸アニリド系紫外線吸収剤などが挙げられる。市販の紫外線吸収剤としては、例えばチバ・ジャパン社製TinuvinP、Tinuvin213、Tinuvin234、Tinuvin326、Tinuvin328、Tinuvin329、Tinuvin571等のベンゾトリアゾール系紫外線吸収剤、チバ・ジャパン社製Tinuvin1577等のトリアジン系紫外線吸収剤、チバ・ジャパン社製CHIMASSORB81等のベンゾフェノン系紫外線吸収剤、クラリアント社製HostavinPR-25等のマロン酸エステル系紫外線吸収剤が挙げられる。これらの紫外線吸収剤は単独で、あるいは2種以上を組み合わせて用いることができる。また、この他にも、ヒンダードアミン系化合物等公知の光安定剤を併用してもよい。 The ultraviolet absorber contained in the layer (X) is not particularly limited, but 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3,5-bis ( α, α'dimethylbenzyl) phenyl) -2H-benzotriazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2- (3-t-butyl-5-methyl-2- Hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-amyl- Benzotriazole UV absorption such as 2-hydroxyphenyl) benzotriazole, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole Agent: 2,2,6,6-tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl) -4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl malonate, 4- (3- (3,5-di-t-butyl-4-hydroxy) Hindered amines such as phenyl) propionyloxy) -1- (2- (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy) ethyl) -2,2,6,6-tetramethylpiperidine UV absorber; benzo such as 2,4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, hexadecyl-3,5-di-t-butyl-4-hydroxybenzoate UV absorbers; malonic acid ester UV absorbers such as malonic acid [(4-methoxyphenyl) -methylene] -dimethyl ester, and oxalic acid anilides such as 2-ethyl-2'-ethoxy-oxalanilide Examples include ultraviolet absorbers. Examples of commercially available ultraviolet absorbers include benzotriazole ultraviolet absorbers such as Tinuvin P, Tinuvin 213, Tinuvin 234, Tinuvin 326, Tinuvin 328, Tinuvin 329, and Tinuvin 571 manufactured by Ciba Japan, and triazine ultraviolet absorbers such as Tinuvin 1577 manufactured by Ciba Japan. Examples thereof include benzophenone-based ultraviolet absorbers such as CHIMASSORB 81 manufactured by Ciba Japan, and malonate-based ultraviolet absorbers such as Hostavin PR-25 manufactured by Clariant. These ultraviolet absorbers can be used alone or in combination of two or more. In addition, a known light stabilizer such as a hindered amine compound may be used in combination.
 層(X)における上記紫外線吸収剤の含有量としては特に限定されないが、ポリビニルアセタール(I)および可塑剤の合計量100質量部に対して、0.01~5質量部であることが好ましい。添加量が0.01質量部未満の場合は、十分な紫外線遮蔽効果が期待できない場合がある。より好ましくは0.05質量部以上、さらに好ましくは0.1質量部以上である。また、添加量が5質量部を超えると、複層フィルムの着色が著しく不適となる場合がある。より好ましくは2質量部以下、さらに好ましくは1質量部以下である。 The content of the ultraviolet absorber in the layer (X) is not particularly limited, but is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the total amount of polyvinyl acetal (I) and plasticizer. When the addition amount is less than 0.01 parts by mass, a sufficient ultraviolet shielding effect may not be expected. More preferably, it is 0.05 mass part or more, More preferably, it is 0.1 mass part or more. Moreover, when the addition amount exceeds 5 parts by mass, the coloring of the multilayer film may be remarkably unsuitable. More preferably, it is 2 mass parts or less, More preferably, it is 1 mass part or less.
 層(X)を構成するポリビニルアセタール(I)、紫外線吸収剤、及び可塑剤を含む樹脂組成物のガラス転移温度は特に限定されず、目的に応じて適宜選択可能であるが、0~50℃の範囲であることが好ましく、5~45℃であることがより好ましく、10~40℃であることがさらに好ましい。本発明の複層フィルムを合わせガラス中間膜として使用する場合にガラス転移温度が上記範囲であることが好ましい。 The glass transition temperature of the resin composition containing the polyvinyl acetal (I) constituting the layer (X), the ultraviolet absorber, and the plasticizer is not particularly limited and may be appropriately selected depending on the intended purpose. Preferably, the temperature is in the range of 5 to 45 ° C, more preferably 10 to 40 ° C. When the multilayer film of the present invention is used as a laminated glass interlayer, the glass transition temperature is preferably in the above range.
 層(Y)は、熱線遮蔽微粒子を熱線遮蔽性付与の目的で含有する。この場合に用いられる熱線遮蔽微粒子は、機能として少なくとも近赤外波長領域の光線を吸収する性質を有するものであれば特に限定はされず、例えば錫ドープ酸化インジウム、アンチモンドープ酸化錫、アルミニウムドープ酸化亜鉛、インジウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、酸化タングステン、六ホウ化ランタン、六ホウ化セリウム、無水アンチモン酸亜鉛、硫化銅等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。これらの中でも、性能、安全性、原料入手性、価格等の観点から無水アンチモン酸亜鉛を含むことが好ましい。なお、熱線遮蔽微粒子は、必要に応じて層(X)にも含有されていてもよい。 The layer (Y) contains heat ray shielding fine particles for the purpose of imparting heat ray shielding properties. The heat ray shielding fine particles used in this case are not particularly limited as long as they have a property of absorbing at least light in the near-infrared wavelength region as a function. For example, tin-doped indium oxide, antimony-doped tin oxide, aluminum-doped oxidation Examples thereof include zinc, indium-doped zinc oxide, gallium-doped zinc oxide, tungsten oxide, lanthanum hexaboride, cerium hexaboride, anhydrous zinc antimonate, and copper sulfide. These may be used alone or in combination of two or more. Among these, it is preferable to contain anhydrous zinc antimonate from the viewpoints of performance, safety, raw material availability, price, and the like. The heat ray shielding fine particles may be contained in the layer (X) as necessary.
 上記熱線遮蔽微粒子は、層(Y)中の、ポリビニルアセタール(II)および可塑剤の合計量100質量部に対して、0.001~5質量部含有することが好ましい。含有量が0.001質量部未満になると期待する熱線遮蔽効果が得られないおそれがある。より好ましくは0.002質量部以上、さらに好ましくは0.005質量部以上である。また、含有量が5質量部を超えると、複層フィルムの透明性が損なわれるおそれがある。より好ましくは2質量部以下である。 The heat ray shielding fine particles are preferably contained in an amount of 0.001 to 5 parts by mass with respect to 100 parts by mass of the total amount of polyvinyl acetal (II) and plasticizer in the layer (Y). If the content is less than 0.001 part by mass, the expected heat ray shielding effect may not be obtained. More preferably, it is 0.002 mass part or more, More preferably, it is 0.005 mass part or more. Moreover, when content exceeds 5 mass parts, there exists a possibility that the transparency of a multilayer film may be impaired. More preferably, it is 2 parts by mass or less.
 層(Y)は、前記熱線遮蔽微粒子の分散剤として界面活性剤を含有する。界面活性剤が熱線遮蔽微粒子の表面に吸着することによって表面が疎水化され、ポリビニルアセタール(II)や可塑剤と複合した際に生じる粒子の凝集を効果的に抑制することができる。 The layer (Y) contains a surfactant as a dispersant for the heat ray shielding fine particles. When the surfactant is adsorbed on the surface of the heat ray shielding fine particles, the surface is hydrophobized, and aggregation of particles generated when combined with polyvinyl acetal (II) or a plasticizer can be effectively suppressed.
 前記界面活性剤は、本発明の主旨に反しない限り特に限定されないが、リン酸エステルが好ましい。当該リン酸エステルとしては特に限定されるものではなく、一塩基酸もしくは二塩基酸のリン酸エステルが好適に用いられる。例えばビックケミー社製Disperbyk-102、Disperbyk-103、Disperbyk-106、Disperbyk-107、Disperbyk-108、Disperbyk-110、Disperbyk-111、Disperbyk-181、Disperbyk-182、Disperbyk-183、Disperbyk-184、Disperbyk-185、Disperbyk-187、Disperbyk-190、Disperbyk-191、Disperbyk-192、第一工業製薬社製プライサーフA208B、プライサーフA208F、プライサーフA210B、プライサーフA212C、プライサーフA213B、プライサーフA215C、プライサーフA212C、プライサーフA219B、プライサーフAL、プライサーフM208F、アデカ社製アデカコールTS-230E、アデカコールCS-141E、アデカコールCS-1361E、アデカコールCS-279、アデカコールPS-440E、アデカコールPS-810E、アデカコールPS-807、アデカコールPS-984等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 The surfactant is not particularly limited as long as it is not contrary to the gist of the present invention, but a phosphate ester is preferable. The phosphate ester is not particularly limited, and a phosphate ester of a monobasic acid or a dibasic acid is preferably used. For example, Disperbyk-102, Disperbyk-103, Disperbyk-106, Disperbyk-107, Disperbyk-108, Disperbyk-110, Disperbyk-111, Disperbyk-182D, Disperbyk-182 185, Disperbyk-187, Disperbyk-190, Disperbyk-191, Disperbyk-192, Daiichi Kogyo Seiyaku Co., Ltd., PRISURF A208B, PRISURF A210B, PRISURF A212C, PRISURF A213B, PRISURF A215C, PRISURF A215C A212C, Price Surf 219B, Prisurf AL, Prisurf M208F, Adeka Coal TS-230E, Adeka Coal CS-141E, Adeka Coal CS-1361E, Adeka Coal CS-279, Adeka Coal PS-440E, Adeka Coal PS-810E, Adeka Coal PS-807, Adeka Coal PS -984 or the like. These may be used alone or in combination of two or more.
 層(Y)中の界面活性剤の含有量は、層(Y)中の、ポリビニルアセタール(II)および可塑剤の合計量100質量部に対して0.005~2質量部であることが好ましい。含有量が0.005質量部未満であると、分散効果が十分に得られない場合がある。より好ましくは0.05質量部以上、さらに好ましくは0.1質量部以上である。また、2質量部を超えると、界面活性剤のブリードアウトが著しく、ガラスに対する接着力が安定的に保持されない場合がある。より好ましくは1.8質量部以下である。 The content of the surfactant in the layer (Y) is preferably 0.005 to 2 parts by mass with respect to 100 parts by mass of the total amount of the polyvinyl acetal (II) and the plasticizer in the layer (Y). . If the content is less than 0.005 parts by mass, the dispersion effect may not be sufficiently obtained. More preferably, it is 0.05 mass part or more, More preferably, it is 0.1 mass part or more. Moreover, when it exceeds 2 mass parts, the bleed-out of surfactant will be remarkable and the adhesive force with respect to glass may not be hold | maintained stably. More preferably, it is 1.8 parts by mass or less.
 本発明の複層フィルムにおいては、層(Y)が熱線遮蔽微粒子及び界面活性剤の影響により劣化し易いため、層(Y)に樹脂劣化抑制の目的でアルカリ金属塩および/またはアルカリ土類金属塩を配合する。 In the multilayer film of the present invention, the layer (Y) is likely to deteriorate due to the influence of the heat-shielding fine particles and the surfactant. Add salt.
 上記アルカリ金属塩および/またはアルカリ土類金属塩としては特に限定されないが、塩を形成するアルカリ金属および/またはアルカリ土類金属としては、ナトリウム、カリウム、マグネシウム等が挙げられる。また、塩を形成する酸としては、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、ヘキサン酸、オクタン酸等の直鎖カルボン酸や、2-エチルブタン酸、2-エチルヘキサン酸等の分枝カルボン酸等の有機酸、塩酸、硝酸、硫酸等の無機酸が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 The alkali metal salt and / or alkaline earth metal salt is not particularly limited, and examples of the alkali metal and / or alkaline earth metal forming the salt include sodium, potassium, magnesium and the like. Examples of the acid forming the salt include linear carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid and octanoic acid, and branched carboxylic acids such as 2-ethylbutanoic acid and 2-ethylhexanoic acid. Examples thereof include organic acids such as acids, and inorganic acids such as hydrochloric acid, nitric acid, and sulfuric acid. These may be used alone or in combination of two or more.
 層(Y)における上記アルカリ金属塩および/またはアルカリ土類金属塩の含有量は、アルカリ金属塩および/またはアルカリ土類金属塩に由来するアルカリ金属および/またはアルカリ土類金属の含有量の総計が、ポリビニルアセタール(II)100質量部に対して0.006~0.2質量部であることが好ましい。0.006質量部未満であると、界面活性剤に由来する樹脂の劣化を十分に抑制できない場合がある。より好ましくは0.008質量部以上である。また、含有量が0.2質量部を超えると、熱線遮蔽微粒子の凝集が促進され、結果として得られる複層フィルムの透明性が失われる場合がある。より好ましくは0.1質量部以下である。 The content of the alkali metal salt and / or alkaline earth metal salt in the layer (Y) is the total content of the alkali metal and / or alkaline earth metal derived from the alkali metal salt and / or alkaline earth metal salt. Is preferably 0.006 to 0.2 parts by mass with respect to 100 parts by mass of polyvinyl acetal (II). If it is less than 0.006 parts by mass, deterioration of the resin derived from the surfactant may not be sufficiently suppressed. More preferably, it is 0.008 mass part or more. Moreover, when content exceeds 0.2 mass part, aggregation of a heat ray shielding fine particle will be accelerated | stimulated and the transparency of the multilayer film obtained as a result may be lost. More preferably, it is 0.1 mass part or less.
 層(Y)を構成するポリビニルアセタール(II)、熱線遮蔽微粒子、界面活性剤、アルカリ金属塩及び/又はアルカリ土類金属塩、並びに可塑剤を含む樹脂組成物のガラス転移温度は特に限定されず、目的に応じて適宜選択可能であるが、0~45℃の範囲であることが好ましく、0~35℃であることがより好ましく、0~30℃であることがさらに好ましい。本発明の複層フィルムを合わせガラス中間膜として使用する場合にガラス転移温度が上記範囲であることが好ましい。 The glass transition temperature of the resin composition containing polyvinyl acetal (II) constituting the layer (Y), heat ray shielding fine particles, surfactant, alkali metal salt and / or alkaline earth metal salt, and plasticizer is not particularly limited. The temperature can be appropriately selected depending on the purpose, but is preferably in the range of 0 to 45 ° C, more preferably 0 to 35 ° C, and further preferably 0 to 30 ° C. When the multilayer film of the present invention is used as a laminated glass interlayer, the glass transition temperature is preferably in the above range.
 層(X)及び層(Y)は、本発明の主旨に反しない限り、接着性改良剤、顔料、染料、安定剤、滑剤、難燃剤、加工助剤、帯電防止剤、着色剤、耐衝撃助剤、充填剤、耐湿剤、その他従来公知の添加剤を含んでいても良い。 Layer (X) and layer (Y), unless contrary to the gist of the present invention, adhesion improver, pigment, dye, stabilizer, lubricant, flame retardant, processing aid, antistatic agent, colorant, impact resistance Auxiliaries, fillers, moisture-proofing agents, and other conventionally known additives may be included.
 本発明の複層フィルムを構成する層(X)を得る方法は特に限定されないが;ポリビニルアセタール(I)、紫外線吸収剤及び可塑剤を有機溶剤に溶解又は分散させたものを製膜した後、前記有機溶剤を留去する方法;ポリビニルアセタール(I)、紫外線吸収剤及び可塑剤を含む樹脂組成物を溶融成形する方法等が挙げられる。なかでも、生産性等の観点から後者が好ましい。 The method for obtaining the layer (X) constituting the multilayer film of the present invention is not particularly limited; after forming a film obtained by dissolving or dispersing polyvinyl acetal (I), an ultraviolet absorber and a plasticizer in an organic solvent, Examples include a method of distilling off the organic solvent; a method of melt-molding a resin composition containing polyvinyl acetal (I), an ultraviolet absorber and a plasticizer. Among these, the latter is preferable from the viewpoint of productivity and the like.
 前記溶融成形方法により層(X)を得る場合、紫外線吸収剤を添加する方法は特に限定されないが、あらかじめ可塑剤に紫外線吸収剤を溶解あるいは懸濁させた状態でポリビニルアセタール(I)に添加することが好ましい。また、原料を混合する方法としては特に制限はないが、生産性等の観点から溶融混練により混合することが好ましい。溶融混練の方法としては特に限定されず、一軸押出機、二軸押出機、ブラベンダー、オープンロール、ニーダー等の公知の混練機を用いることができる。溶融混練時の樹脂温度は150~250℃が好ましく、170~230℃がより好ましい。樹脂温度が高くなりすぎるとポリビニルアセタール(I)が分解を起こし、製膜後のフィルム中の揮発性物質の含有量が多くなる。逆に温度が低すぎると、混練機での揮発分除去が不十分となり、製膜後のフィルム中の揮発性物質の含有量は多くなる。揮発性物質を効率的に除去するためには、混練機内を減圧することによりベント口から揮発性物質を除去することが好ましい。 When the layer (X) is obtained by the melt molding method, the method of adding the ultraviolet absorber is not particularly limited, but it is added to the polyvinyl acetal (I) in a state where the ultraviolet absorber is dissolved or suspended in advance in a plasticizer. It is preferable. Moreover, there is no restriction | limiting in particular as a method of mixing a raw material, However, Mixing by melt-kneading is preferable from viewpoints of productivity. The melt kneading method is not particularly limited, and a known kneader such as a single screw extruder, a twin screw extruder, a brabender, an open roll, or a kneader can be used. The resin temperature at the time of melt kneading is preferably 150 to 250 ° C, more preferably 170 to 230 ° C. If the resin temperature becomes too high, the polyvinyl acetal (I) will be decomposed, and the content of volatile substances in the film after film formation will increase. On the other hand, if the temperature is too low, volatile matter removal by the kneader becomes insufficient, and the content of volatile substances in the film after film formation increases. In order to efficiently remove the volatile substance, it is preferable to remove the volatile substance from the vent port by reducing the pressure in the kneader.
 混合された溶融物は、フィルム状に溶融成形される。成形方法としては公知の方法を採用することができる。上記溶融混練装置に直接Tダイを装着してフィルムを製造することもできるし、一旦樹脂組成物ペレットを製造してから、別途フィルムを成形しても構わない。 The mixed melt is melt-molded into a film. A known method can be adopted as the molding method. A film can be produced by directly attaching a T-die to the melt-kneading apparatus, or a resin composition pellet can be produced once, and then a film can be separately formed.
 本発明の複層フィルムを構成する層(Y)を得る方法は特に限定されないが;ポリビニルアセタール(II)、熱線遮蔽微粒子、界面活性剤、アルカリ金属塩及び/又はアルカリ土類金属塩、並びに可塑剤を有機溶剤に溶解又は分散させたものを製膜した後、前記有機溶剤を留去する方法;ポリビニルアセタール(II)、熱線遮蔽微粒子、界面活性剤、アルカリ金属塩及び/又はアルカリ土類金属塩、並びに可塑剤を含む樹脂組成物を溶融成形する方法等が挙げられる。なかでも、生産性等の観点から後者が好ましい。溶融成形する方法において、ポリビニルアセタール(II)に対して、熱線遮蔽微粒子の分散液および可塑剤を溶融混練し、フィルム状に成形する工程を含むことが好ましく、熱線遮蔽微粒子の分散液と、アルカリ金属塩および/またはアルカリ土類金属塩とを、別々に混合した後、溶融成形することがより好ましい。別々に混合することにより、熱線遮蔽微粒子の凝集が抑制され、結果としてヘイズがさらに低いフィルムを得ることができる。 The method for obtaining the layer (Y) constituting the multilayer film of the present invention is not particularly limited; polyvinyl acetal (II), heat ray shielding fine particles, surfactant, alkali metal salt and / or alkaline earth metal salt, and plastic A method in which an organic solvent is dissolved or dispersed in an organic solvent, and then the organic solvent is distilled off; polyvinyl acetal (II), heat ray shielding fine particles, surfactant, alkali metal salt and / or alkaline earth metal Examples thereof include a method of melt-molding a resin composition containing a salt and a plasticizer. Among these, the latter is preferable from the viewpoint of productivity and the like. The melt molding method preferably includes a step of melt-kneading a dispersion of a heat ray shielding fine particle and a plasticizer with respect to polyvinyl acetal (II) and forming the film into a film shape. More preferably, the metal salt and / or alkaline earth metal salt are mixed separately and then melt-molded. By mixing separately, aggregation of heat ray shielding fine particles is suppressed, and as a result, a film having a further lower haze can be obtained.
 ポリビニルアセタール(II)に対して、熱線遮蔽微粒子と、アルカリ金属塩および/またはアルカリ土類金属塩とを別々に混合する手法としては、例えば;遮蔽微粒子と、アルカリ金属塩および/またはアルカリ土類金属塩とを、そのままの状態で別々にポリビニルアセタール(II)に添加する手法;熱線遮蔽微粒子の分散液と、アルカリ金属塩および/またはアルカリ土類金属塩とを、別々にポリビニルアセタール(II)に混合する手法;アルカリ金属塩および/またはアルカリ土類金属塩の溶液と、熱線遮蔽微粒子とを、別々にポリビニルアセタール(II)に混合する手法;熱線遮蔽微粒子の分散液と、アルカリ金属塩および/またはアルカリ土類金属塩の溶液とを、別々にポリビニルアセタール(II)に混合する手法;熱線遮蔽微粒子を含むポリビニルアセタール(II)の成形体と、アルカリ金属塩および/またはアルカリ土類金属塩の溶液とを混合する手法;アルカリ金属塩および/またはアルカリ土類金属塩を含むポリビニルアセタールの成形体と、熱線遮蔽微粒子の分散液とを混合する手法等が挙げられる。これらの中でも、上述のとおり、熱線遮蔽微粒子を分散液として混合する方法が好ましく、熱線遮蔽微粒子の分散液と、アルカリ金属塩および/またはアルカリ土類金属塩の溶液とを、別々にポリビニルアセタール(II)に混合する方法がより好ましい。 As a method of separately mixing heat ray shielding fine particles and alkali metal salt and / or alkaline earth metal salt with respect to polyvinyl acetal (II), for example; shielding fine particles, alkali metal salt and / or alkaline earth A method of separately adding a metal salt to the polyvinyl acetal (II) as it is; a dispersion of heat ray shielding fine particles and an alkali metal salt and / or an alkaline earth metal salt separately from the polyvinyl acetal (II) A method of mixing alkali metal salt and / or alkaline earth metal salt solution and heat ray shielding fine particles separately into polyvinyl acetal (II); a dispersion of heat ray shielding fine particles, an alkali metal salt and / Or a method of separately mixing alkaline earth metal salt solution with polyvinyl acetal (II); A method of mixing a molded article of polyvinyl acetal (II) and a solution of an alkali metal salt and / or an alkaline earth metal salt; a molded article of polyvinyl acetal containing an alkali metal salt and / or an alkaline earth metal salt; Examples thereof include a method of mixing with a dispersion of heat ray shielding fine particles. Among these, as described above, a method of mixing the heat ray shielding fine particles as a dispersion is preferable, and the dispersion of the heat ray shielding fine particles and the alkali metal salt and / or alkaline earth metal salt solution are separately obtained from polyvinyl acetal ( The method of mixing in II) is more preferred.
 また、界面活性剤は、熱線遮蔽微粒子の分散液、アルカリ金属塩および/またはアルカリ土類金属塩の溶液のいずれに添加されていてもよいが、熱線遮蔽微粒子の分散性の観点から、少なくとも熱線遮蔽微粒子の分散液に含まれていることが好ましい。界面活性剤を含む熱線遮蔽微粒子の分散液を得る方法としては、熱線遮蔽微粒子、界面活性剤及び溶媒を混合した後粉砕処理を施す手法、熱線遮蔽微粒子及び溶媒を含み、粉砕処理が施された分散液に界面活性剤を添加する手法、界面活性剤に、熱線遮蔽微粒子および溶媒を含み、粉砕処理が施された分散液を添加する手法のいずれでもよい。また、熱線遮蔽微粒子の分散液、アルカリ金属塩および/またはアルカリ土類金属塩の溶液、可塑剤およびポリビニルアセタール(II)を混合する順序は特に限定されない。 The surfactant may be added to any one of the dispersion of the heat ray shielding fine particles and the alkali metal salt and / or alkaline earth metal salt solution. From the viewpoint of the dispersibility of the heat ray shielding fine particles, at least heat rays are added. It is preferably contained in a dispersion of shielding fine particles. As a method for obtaining a dispersion of heat ray shielding fine particles containing a surfactant, a method of mixing heat ray shielding fine particles, a surfactant and a solvent followed by pulverization treatment, including heat ray shielding fine particles and a solvent, pulverization treatment was performed. Either a method of adding a surfactant to the dispersion, or a method of adding a dispersion containing heat ray shielding fine particles and a solvent and subjected to pulverization treatment to the surfactant may be used. Further, the order of mixing the dispersion of the heat ray shielding fine particles, the alkali metal salt and / or alkaline earth metal salt solution, the plasticizer and the polyvinyl acetal (II) is not particularly limited.
 熱線遮蔽微粒子の分散液に含まれる溶媒としては特に限定されるものではなく、汎用の有機溶媒、水、あるいは可塑剤等を用いることができる。汎用の有機溶媒としては、例えばメタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、エチレングリコール、ジエチレングリコール、ヘキシレングリコール、テトラヒドロフラン、ジオキサン、アセトン、メチルエチルケトン、γ-ブチロラクトン、ε-カプロラクトン、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサン、トルエン、アセトニトリル等が挙げられる。 The solvent contained in the dispersion of the heat ray shielding fine particles is not particularly limited, and a general-purpose organic solvent, water, a plasticizer, or the like can be used. Examples of general-purpose organic solvents include methanol, ethanol, n-propanol, i-propanol, n-butanol, ethylene glycol, diethylene glycol, hexylene glycol, tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, γ-butyrolactone, ε-caprolactone, N -Methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexane, toluene, acetonitrile and the like.
 また、アルカリ金属塩および/またはアルカリ土類金属塩の溶液に含まれる溶媒としては特に限定されるものではなく、熱線遮蔽微粒子の分散液と同様の溶媒を溶液として使用できる。アルカリ金属塩および/またはアルカリ土類金属塩の水溶液を可塑剤中に懸濁させたものを添加することもできる。 Further, the solvent contained in the alkali metal salt and / or alkaline earth metal salt solution is not particularly limited, and a solvent similar to the dispersion of the heat ray shielding fine particles can be used as the solution. An aqueous solution of an alkali metal salt and / or alkaline earth metal salt suspended in a plasticizer can also be added.
 層(Y)を得るに際して、原料を混合する方法としては特に制限はないが、生産性等の観点から溶融混練により混合することが好ましい。溶融混練の方法としては特に限定されず、層(X)の原料を溶融混練するために使用される混練機として上述したものが用いられる。 In obtaining the layer (Y), the method of mixing the raw materials is not particularly limited, but it is preferable to mix by melt kneading from the viewpoint of productivity and the like. The method of melt kneading is not particularly limited, and the above-described kneader used for melt kneading the raw material of the layer (X) is used.
 混合された溶融物は、フィルム状に溶融成形される。成形方法としては層(X)の製造に用いられる溶融成形方法として上述した方法が用いられる。 The mixed melt is melt-molded into a film. As the forming method, the method described above as the melt forming method used for the production of the layer (X) is used.
 複層フィルムを製造する方法としては、一般的な成形方法が適用できる。即ち、各層の樹脂組成物をダイあるいはフィードブロックへ共押し出しする手法、各層を別々にフィルム成形し、その後貼り合わせる手法などが挙げられる。 As a method for producing a multilayer film, a general molding method can be applied. That is, a method in which the resin composition of each layer is coextruded to a die or a feed block, a method in which each layer is separately formed into a film, and then bonded together are included.
 本発明の複層フィルムを構成する層(X)の厚さに特に限定はない。層(X)の厚さは0.05~1.2mmが好ましく、0.07~1mmがより好ましく、0.1~0.7mmがさらに好ましい。厚さが0.05mm未満の場合、複層フィルムの力学強度が低下するおそれがあり、1.2mmを超えると複層フィルムの柔軟性が不十分となるおそれがある。このようなことから、層(X)の厚さが0.05~1.2mmから外れた場合には、本発明の複層フィルムを合わせガラスの中間膜としての使用した場合に、得られる合わせガラスの安全性が低下する場合がある。 The thickness of the layer (X) constituting the multilayer film of the present invention is not particularly limited. The thickness of the layer (X) is preferably 0.05 to 1.2 mm, more preferably 0.07 to 1 mm, and further preferably 0.1 to 0.7 mm. If the thickness is less than 0.05 mm, the mechanical strength of the multilayer film may be reduced, and if it exceeds 1.2 mm, the flexibility of the multilayer film may be insufficient. Therefore, when the thickness of the layer (X) deviates from 0.05 to 1.2 mm, the laminated film obtained when the multilayer film of the present invention is used as an interlayer film of laminated glass. The safety of the glass may be reduced.
 本発明の複層フィルムを構成する層(Y)の厚さに特に限定はない。層(Y)の厚さは0.01~1mmが好ましく、0.02~0.8mmがより好ましく、0.05~0.5mmがさらに好ましい。厚さが0.01mm未満の場合、本発明の複層フィルムを合わせガラスの中間膜として使用した合わせガラスの遮音性能が低下することがある。厚さが1mmを超えた場合、厚くすることによる複層フィルムの力学強度が望めない。 The thickness of the layer (Y) constituting the multilayer film of the present invention is not particularly limited. The thickness of the layer (Y) is preferably from 0.01 to 1 mm, more preferably from 0.02 to 0.8 mm, still more preferably from 0.05 to 0.5 mm. When the thickness is less than 0.01 mm, the sound insulation performance of the laminated glass using the multilayer film of the present invention as an interlayer film of the laminated glass may be deteriorated. When the thickness exceeds 1 mm, the mechanical strength of the multilayer film cannot be expected by increasing the thickness.
 また、層(X)の厚さに対する層(Y)の厚さの比(Y/X)は特に限定されないが、力学強度や遮音性発現の観点から0.05~4が好ましく、0.07~2がより好ましく、0.1~0.8がさらに好ましい。 Further, the ratio (Y / X) of the thickness of the layer (Y) to the thickness of the layer (X) is not particularly limited, but is preferably 0.05 to 4 from the viewpoint of the mechanical strength and the sound insulation, and 0.07 To 2 is more preferable, and 0.1 to 0.8 is more preferable.
 本発明の複層フィルムは、層(Y)の両外側に層(X)が配置されてなる。すなわち、最外層のいずれもが層(X)である。特に、本発明の複層フィルムを合わせガラス用中間膜として使用する場合には、最外層がともに層(X)であると、複層フィルムとガラスとの接着性を適切に調節できるため、このような層構成にすることのメリットが大きい。層構成の例としては、層(X)/層(Y)/層(X)、層(X)/層(Y)/層(X)/層(Y)/層(X)などが挙げられる。 The multilayer film of the present invention has layers (X) arranged on both outer sides of the layer (Y). That is, any of the outermost layers is the layer (X). In particular, when the multilayer film of the present invention is used as an interlayer film for laminated glass, if both outermost layers are layers (X), the adhesiveness between the multilayer film and the glass can be adjusted appropriately. The merit of such a layer structure is great. Examples of the layer configuration include layer (X) / layer (Y) / layer (X), layer (X) / layer (Y) / layer (X) / layer (Y) / layer (X), and the like. .
 本発明の複層フィルムの厚みに特に限定はないが、0.2~3mmが好ましく、0.25~2.5mmがより好ましく、0.3~2mmがさらに好ましい。厚みが0.2mm未満の場合、力学強度が不十分になるおそれがある。厚みが3mmを超える場合、柔軟性が不十分となるおそれがある。 The thickness of the multilayer film of the present invention is not particularly limited, but is preferably 0.2 to 3 mm, more preferably 0.25 to 2.5 mm, and further preferably 0.3 to 2 mm. If the thickness is less than 0.2 mm, the mechanical strength may be insufficient. When thickness exceeds 3 mm, there exists a possibility that a softness | flexibility may become inadequate.
 本発明の複層フィルムからなる合わせガラス用中間膜が本発明の好適な実施態様である。本発明の合わせガラス用中間膜を、ガラスとの接着性を適切に調節する必要がある用途に使用する場合、層(X)に接着性調整剤が含有されていてもよい。接着性調整剤としては従来公知のものが使用可能であるが、例えば酢酸、プロピオン酸、ブタン酸、ヘキサン酸、2-エチルブタン酸、2-エチルヘキサン酸などの有機酸のナトリウム塩、カリウム塩、マグネシウム塩などが用いられる。これらは単独で、あるいは2種類以上を組み合わせて使用できる。接着性調整剤の最適な含有量は、使用する接着性調整剤により異なるが、得られるフィルムのガラスへの接着力が、パンメル試験(Pummel test;国際公開公報第WO2003/033583号等に記載)において一般には3~10になるように調整することが好ましい。特に高い耐貫通性を必要とする場合は3~6になるように含有量を調整することが好ましく、高いガラス飛散防止性を必要とする場合は7~10になるように含有量を調整することが好ましい。高いガラス飛散防止性が求められる場合は、接着性調整剤を添加しないことも有用な方法である。通常、層(X)における接着性調整剤の含有量としては、0.0001~1質量%であることが好ましく、0.0005~0.1質量%がより好ましく、0.001~0.03質量%が更に好ましい。 An interlayer film for laminated glass comprising the multilayer film of the present invention is a preferred embodiment of the present invention. When the interlayer film for laminated glass of the present invention is used for an application where it is necessary to appropriately adjust the adhesiveness with glass, an adhesiveness adjusting agent may be contained in the layer (X). As the adhesion adjusting agent, conventionally known ones can be used. For example, acetic acid, propionic acid, butanoic acid, hexanoic acid, 2-ethylbutanoic acid, sodium salt of organic acid such as 2-ethylhexanoic acid, potassium salt, A magnesium salt or the like is used. These can be used alone or in combination of two or more. The optimum content of the adhesion modifier varies depending on the adhesion modifier used, but the adhesion of the resulting film to glass is determined by the Pummel test (described in International Publication No. WO2003 / 033583). In general, it is preferable to adjust to 3 to 10. In particular, when high penetration resistance is required, the content is preferably adjusted to 3 to 6, and when high glass scattering prevention property is required, the content is adjusted to 7 to 10. It is preferable. When high glass scattering prevention property is required, it is also a useful method not to add an adhesion modifier. Usually, the content of the adhesion adjusting agent in the layer (X) is preferably 0.0001 to 1% by mass, more preferably 0.0005 to 0.1% by mass, and 0.001 to 0.03. More preferred is mass%.
 また、上記接着性を調整するための他の調整剤としてはシランカップリング剤が挙げられる。層(X)におけるシランカップリング剤の含有量は、0.01~5質量%が好ましい。 Further, as another adjusting agent for adjusting the adhesiveness, a silane coupling agent can be mentioned. The content of the silane coupling agent in the layer (X) is preferably 0.01 to 5% by mass.
 前記合わせガラス用中間膜の表面の形状は特に限定されないが、ガラスとラミネートする際の取り扱い性(泡抜け性)を考慮すると、ガラスと接触する面にメルトフラクチャー、エンボスなど、従来公知の方法で凹凸構造が形成されていることが好ましい。エンボス高さについては特に制限はないが、5μm~500μmであることが好ましく、7μm~300μmであることがより好ましく、10μm~200μmであることが更に好ましい。エンボス高さが5μmに満たない場合には、ガラスへのラミネートの際にガラスと中間膜との間にできる気泡を効率よく除去できない場合があり、500μmを超える場合にはエンボスの形成が難しい。またエンボスを中間膜の片面に施してもよいし、両面でもよいが、通常、両面に施すのが好ましい。 The shape of the surface of the interlayer film for laminated glass is not particularly limited. However, in consideration of the handleability (foam removal property) when laminating with glass, the surface in contact with the glass is melted, embossed, or the like by a conventionally known method. It is preferable that an uneven structure is formed. The emboss height is not particularly limited, but is preferably 5 μm to 500 μm, more preferably 7 μm to 300 μm, and still more preferably 10 μm to 200 μm. When the embossing height is less than 5 μm, bubbles formed between the glass and the intermediate film may not be efficiently removed when laminating to glass, and when it exceeds 500 μm, it is difficult to form embossing. Moreover, although embossing may be given to the single side | surface of an intermediate film, and both sides may be sufficient, it is preferable to give normally to both surfaces.
 エンボスの凹凸模様は、上述した特定の条件を満たすものであれば特に限定されず、規則的に分布していてもよく、ランダムに分布していてもよい。 The embossed concavo-convex pattern is not particularly limited as long as it satisfies the specific conditions described above, and may be regularly distributed or randomly distributed.
 このようなエンボスを形成するには、従来と同様に、エンボスロ-ル法、異形押出法、
メルトフラクチャーを利用した押出リップエンボス法等が採用される。特に均一で微細な凹凸が形成されたエンボスフィルムを安定的に得るにはエンボスロ-ル法が好適である。
In order to form such embossing, the embossing roll method, the profile extrusion method,
An extrusion lip embossing method using a melt fracture is employed. In particular, the embossing roll method is suitable for stably obtaining an embossed film on which uniform and fine irregularities are formed.
 エンボスロール法で用いられるエンボスロールは例えば、所望の凹凸模様を有する彫刻ミル(マザーミル)を用い、この凹凸模様を金属ロール表面に転写することにより作製できる。また、レーザーエッチングを用いても作製できる。さらに上記のようにしてロール表面に微細な凹凸模様を形成した後、その表面に酸化アルミニウムや酸化珪素やガラスビ-ズなどの研削材を用いてブラスト処理を行ってさらに微細な凹凸模様を形成することもできる。 The embossing roll used in the embossing roll method can be produced by, for example, using an engraving mill (mother mill) having a desired concavo-convex pattern and transferring the concavo-convex pattern onto the surface of the metal roll. It can also be produced using laser etching. Further, after forming a fine concavo-convex pattern on the roll surface as described above, blasting is performed on the surface using an abrasive such as aluminum oxide, silicon oxide, or glass beads to form a finer concavo-convex pattern. You can also.
 またエンボスロ-ル法で用いられるエンボスロールは離形処理を施すことが好ましい。離形処理がないロ-ルを用いた場合、条件によってはロールから剥離できないトラブルが発生しやすい。離形処理はシリコーン処理、テフロン(登録商標)処理、プラズマ処理、等の公知の技術が利用できる。 Also, the embossing roll used in the embossing roll method is preferably subjected to a release treatment. When a roll without mold release treatment is used, troubles that cannot be peeled off from the roll easily occur depending on conditions. For the release treatment, known techniques such as silicone treatment, Teflon (registered trademark) treatment, plasma treatment and the like can be used.
 前記合わせガラス用中間膜を用いて複数のガラス板を接着してなる合わせガラスが本発明の好適な実施態様である。当該合わせガラスは、前記中間膜を少なくとも2枚のガラス板で挟み、中間膜を加熱し接着させることによって製造することができる。前記合わせガラスに使用するガラスは特に限定されず、フロート板ガラス、強化板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、熱線吸収板ガラスなどの無機ガラスのほか、ポリメタクリル酸メチル、ポリカーボネートなどの従来公知の有機ガラス等が使用できる。これらは無色、有色、あるいは透明、非透明のいずれであってもよい。また、これらは単独で使用してもよく、2種以上を併用してもよい。ガラスの厚みは特に限定されないが、100mm以下であることが好ましい。上記ガラスの形状については特に制限はなく、単純な平面状の板ガラスであっても、自動車フロントガラスなどの曲率を有するガラスであっても良い。 A laminated glass obtained by bonding a plurality of glass plates using the interlayer film for laminated glass is a preferred embodiment of the present invention. The laminated glass can be produced by sandwiching the intermediate film between at least two glass plates and heating and bonding the intermediate film. The glass used for the laminated glass is not particularly limited. In addition to inorganic glass such as float plate glass, tempered plate glass, polished plate glass, mold plate glass, netted plate glass, heat ray absorbing plate glass, conventionally known polymethyl methacrylate, polycarbonate and the like. Organic glass or the like can be used. These may be colorless, colored, transparent or non-transparent. Moreover, these may be used independently and may use 2 or more types together. Although the thickness of glass is not specifically limited, It is preferable that it is 100 mm or less. The shape of the glass is not particularly limited, and may be a simple flat plate glass or a glass having a curvature such as an automobile windshield.
 前記合わせガラスは従来公知の方法で製造が可能であり、例えば真空ラミネーター装置を用いる方法、真空バッグを用いる方法、真空リングを用いる方法、ニップロールを用いる方法等が挙げられる。またこれらの方法を用いて仮圧着させた後に、得られた積層体をオートクレーブに投入する方法も挙げられる。 The laminated glass can be produced by a conventionally known method, and examples thereof include a method using a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, and a method using a nip roll. Further, there is a method in which the obtained laminate is put into an autoclave after being temporarily pressed using these methods.
 真空ラミネーター装置を用いる場合、その作製条件の一例を示すと、1×10-6~3×10-2MPaの減圧下、100~200℃、特に130~160℃の温度でガラスと中間膜がラミネートされる。真空バッグまたは真空リングを用いる方法は、例えば、欧州特許第1235683号明細書に記載されており、例えば約2×10-2MPaの圧力下、130~145℃でラミネートされる。 In the case of using a vacuum laminator, an example of the production conditions is as follows. The glass and the interlayer film are heated at a temperature of 100 to 200 ° C., particularly 130 to 160 ° C. under a reduced pressure of 1 × 10 −6 to 3 × 10 −2 MPa. Laminated. A method using a vacuum bag or a vacuum ring is described in, for example, European Patent No. 1235683, and is laminated at 130 to 145 ° C. under a pressure of about 2 × 10 −2 MPa, for example.
 ニップロールを用いた製造方法としては、上述した、層(X)の製造に用いられるポリビニルアセタール(I)、紫外線吸収剤及び可塑剤を含む樹脂組成物の流動開始温度以下の温度でロールにより脱気した後、さらに流動開始温度に近い温度で圧着を行う方法が挙げられる。具体的には、例えば、赤外線ヒーターなどで30~70℃に加熱した後、ロールで脱気し、さらに50~120℃に加熱した後ロールで圧着させる方法が挙げられる。 As a production method using a nip roll, degassing is performed by a roll at a temperature not higher than the flow start temperature of the resin composition containing the polyvinyl acetal (I), ultraviolet absorber and plasticizer used for the production of the layer (X) described above. Then, a method of performing pressure bonding at a temperature close to the flow start temperature can be mentioned. Specifically, for example, there is a method of heating to 30 to 70 ° C. with an infrared heater or the like, then degassing with a roll, further heating to 50 to 120 ° C., and then pressing with a roll.
 上述の方法を用いて圧着させた後にオートクレーブに投入してさらに圧着を行う場合、オートクレーブ工程の運転条件は、合わせガラスの厚さや構成により適宜選択されるが、例えば1.0~1.5MPaの圧力下、130~145℃の温度で0.5~3時間処理することが好ましい。 When pressure bonding is performed using the above-described method, and then further pressure bonding is performed, the operating conditions of the autoclave process are appropriately selected depending on the thickness and configuration of the laminated glass. For example, 1.0 to 1.5 MPa The treatment is preferably carried out at a temperature of 130 to 145 ° C. for 0.5 to 3 hours under pressure.
 本発明の複層フィルムは、加熱による着色が少なく、異物(未溶解分)も少ない。したがって、本発明の複層フィルムは、リサイクル性に優れている。以下、当該複層フィルムの回収物を用いたフィルムの製造方法について説明する。 The multilayer film of the present invention is less colored by heating and less foreign matter (undissolved part). Therefore, the multilayer film of the present invention is excellent in recyclability. Hereinafter, the manufacturing method of the film using the collection | recovery of the said multilayer film is demonstrated.
 本発明の複層フィルムの回収物(以下、「本発明の複層フィルムの回収物」を「回収物」と略記することがある)を溶融混練してから製膜する単層フィルムの製造方法も本発明の好適な実施態様である。このとき、前記回収物、アセタール化度が55~85モル%でありビニルエステル単量体単位の含有量が0.1~15モル%であり粘度平均重合度が1400~5000であるポリビニルアセタール(III)、及び可塑剤を溶融混練してから製膜することがより好適である。 A method for producing a monolayer film in which a multilayer film recovery product of the present invention (hereinafter, the “multilayer film recovery product of the present invention” may be abbreviated as “collection product”) is melt-kneaded and then formed into a film. Is also a preferred embodiment of the present invention. At this time, the recovered product was a polyvinyl acetal having a degree of acetalization of 55 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 15 mol%, and a viscosity average polymerization degree of 1400 to 5000 ( It is more preferable to form a film after melt-kneading III) and the plasticizer.
 ポリビニルアセタール(III)の粘度平均重合度は1400~5000であり、1500~3500が好ましい。粘度平均重合度が1400に満たない場合には、得られる複層フィルムの強度が不足する。逆に、重合度が5000を超える場合には溶融粘度が高くなりすぎて製膜が困難になる。 Polyvinyl acetal (III) has a viscosity average polymerization degree of 1400 to 5000, preferably 1500 to 3500. When the viscosity average degree of polymerization is less than 1400, the strength of the obtained multilayer film is insufficient. On the other hand, when the polymerization degree exceeds 5000, the melt viscosity becomes too high and film formation becomes difficult.
 ポリビニルアセタール(III)のアセタール化度は55~85モル%である。アセタール化度が55モル%未満である場合、可塑剤などとの相溶性が低下する。また、得られる複層フィルム中の異物(未溶解分)が増加するおそれがある。アセタール化度は好ましくは60モル%以上であり、より好ましくは65モル%以上である。一方、アセタール化度が85モル%を超える場合には、アセタール化反応の効率が著しく低下する。また、得られるフィルムが着色しやすくなるおそれがある。アセタール化度は好ましくは80モル%以下である。 The degree of acetalization of polyvinyl acetal (III) is 55 to 85 mol%. When the degree of acetalization is less than 55 mol%, the compatibility with a plasticizer or the like decreases. Moreover, there exists a possibility that the foreign material (undissolved part) in the obtained multilayer film may increase. The degree of acetalization is preferably 60 mol% or more, more preferably 65 mol% or more. On the other hand, when the degree of acetalization exceeds 85 mol%, the efficiency of the acetalization reaction is significantly reduced. Moreover, there exists a possibility that the film obtained may become easy to color. The degree of acetalization is preferably 80 mol% or less.
 ポリビニルアセタール(III)のビニルエステル単量体単位の含有量は0.1~15モル%である。ビニルエステル単量体単位の含有量が0.1モル%に満たない場合、ポリビニルアセタールを安定に製造することができず、製膜できない。ビニルエステル単量体単位の含有量は好ましくは0.7モル%以上であり、より好ましくは6モル%以上であり、更に好ましくは7モル%以上である。一方、ビニルエステル単量体単位の含有量が15モル%を超える場合には、得られる複層フィルムが着色する。ビニルエステル単量体単位の含有量は好ましくは13モル%以下であり、より好ましくは10モル%以下であり、更に好ましくは10モル%以下である。ビニルエステル単量体単位の含有量がこれらの範囲にあることにより、後述する、前記回収フィルムを用いた複層フィルムに用いられる層(Y’)が軟質層となり、得られる複層フィルムは、実用的な力学的強度を維持したまま、優れた遮音性能を有する The content of the vinyl ester monomer unit of polyvinyl acetal (III) is 0.1 to 15 mol%. When the content of the vinyl ester monomer unit is less than 0.1 mol%, the polyvinyl acetal cannot be stably produced and the film cannot be formed. The content of the vinyl ester monomer unit is preferably 0.7 mol% or more, more preferably 6 mol% or more, and further preferably 7 mol% or more. On the other hand, when the content of the vinyl ester monomer unit exceeds 15 mol%, the resulting multilayer film is colored. The content of the vinyl ester monomer unit is preferably 13 mol% or less, more preferably 10 mol% or less, and still more preferably 10 mol% or less. When the content of the vinyl ester monomer unit is within these ranges, the layer (Y ′) used in the multilayer film using the recovery film described later becomes a soft layer, and the resulting multilayer film is Excellent sound insulation performance while maintaining practical mechanical strength
 本発明において用いられるポリビニルアセタール(III)のビニルアルコール単量体単位の含有量が5~44.9モル%であることが好ましい。 The content of the vinyl alcohol monomer unit of the polyvinyl acetal (III) used in the present invention is preferably 5 to 44.9 mol%.
 本発明において用いられるポリビニルアセタール(III)中の、アセタール化された単量体単位、ビニルエステル単量体単位及びビニルアルコール単量体単位以外の単量体単位の含有量は、好ましくは20モル%以下、より好ましくは10モル%以下であり、さらに好ましくは5モル%以下である。 The content of monomer units other than acetalized monomer units, vinyl ester monomer units and vinyl alcohol monomer units in the polyvinyl acetal (III) used in the present invention is preferably 20 mol. % Or less, more preferably 10 mol% or less, and further preferably 5 mol% or less.
 本発明において用いられるポリビニルアセタール(III)は、ポリビニルアセタール(I)及びポリビニルアセタール(II)の製造方法として上述した方法と同様にして製造することが好ましい。 The polyvinyl acetal (III) used in the present invention is preferably produced in the same manner as described above as a method for producing the polyvinyl acetal (I) and the polyvinyl acetal (II).
 ポリビニルアセタール(III)として、上述したポリビニルアセタール(I)及びポリビニルアセタール(II)を用いることが好ましい。単層フィルムの強度をより向上させる観点からは、ポリビニルアセタール(III)として、ポリビニルアセタール(I)を用いることが好ましい。 The polyvinyl acetal (I) and the polyvinyl acetal (II) described above are preferably used as the polyvinyl acetal (III). From the viewpoint of further improving the strength of the single layer film, it is preferable to use polyvinyl acetal (I) as polyvinyl acetal (III).
通常、ポリビニルアセタールの製膜は、例えば押出機にギアポンプなどの計量機およびTダイなどのダイを備え付けた製膜装置にて実施される。一般的に、製膜の際には、フィルムの両端部(トリム)は切り取られる。このようなトリムを回収し、再利用することは省エネルギー化、資源の有効活用や収率向上の観点から非常に重要である。また、表面に凹凸を有するフィルムの製造の際に生じた製品として使用することが難しいオフスペック品や、組成や厚さが不均一なため製品として使用することが難しいオフスペック品も、トリム同様に再利用できるため有用である。本発明の複層フィルムで使用されるポリビニルアセタール(I)及びポリビニルアセタール(II)は、アセタール化反応の際に粗粒子の生成が抑制され、その結果、得られるポリビニルアセタールを溶融製膜した際に、異物(未溶解分)が低減されたフィルムを得ることができる。また、本発明の複層フィルムは熱処理した際の着色が少ないことから、上記トリムやオフスペック品等の回収物を有効に再利用できる。 Usually, the film formation of polyvinyl acetal is carried out, for example, in a film formation apparatus in which an extruder is equipped with a measuring machine such as a gear pump and a die such as a T die. Generally, in film formation, both ends (trims) of the film are cut off. It is very important to collect and reuse such trims from the viewpoints of energy saving, effective utilization of resources and improvement of yield. In addition, off-spec products that are difficult to use as products produced when manufacturing films with irregularities on the surface and off-spec products that are difficult to use as products due to non-uniform composition and thickness are also the same as trim It is useful because it can be reused. When the polyvinyl acetal (I) and the polyvinyl acetal (II) used in the multilayer film of the present invention are used, the formation of coarse particles is suppressed during the acetalization reaction, and as a result, the resulting polyvinyl acetal is melt-formed. In addition, a film with reduced foreign matter (undissolved content) can be obtained. Moreover, since the multilayer film of the present invention is less colored when heat-treated, it is possible to effectively reuse the collected materials such as the trim and off-spec products.
 前記回収物に対して新たに添加される可塑剤として、層(X)の製造に用いられるものとして上述したものが使用される。新たに添加される可塑剤としては、得られる単層フィルムの透明性が優れるものであれば、前述の可塑剤のいずれも使用できる。新たに添加されるポリビニルアセタール(III)100質量部に対して、前記回収物の量が50質量部を超える場合には、添加する可塑剤のうち10質量部以上が、水酸基を有する脂肪族エステル化合物、水酸基を有する脂肪族エーテル化合物、水酸基を有する脂肪族ポリエステル化合物、ポリアルキレングリコールと芳香族アルコールとのモノエーテル化合物またはポリアルキレングリコールと芳香族カルボン酸とのモノエステル化合物を用いることが好ましい。 As the plasticizer newly added to the recovered material, those described above as used in the production of the layer (X) are used. As the plasticizer to be newly added, any of the aforementioned plasticizers can be used as long as the resulting single layer film has excellent transparency. When the amount of the recovered product exceeds 50 parts by mass with respect to 100 parts by mass of newly added polyvinyl acetal (III), 10 parts by mass or more of the added plasticizer is an aliphatic ester having a hydroxyl group. It is preferable to use a compound, an aliphatic ether compound having a hydroxyl group, an aliphatic polyester compound having a hydroxyl group, a monoether compound of a polyalkylene glycol and an aromatic alcohol, or a monoester compound of a polyalkylene glycol and an aromatic carboxylic acid.
 前記回収物と新たに添加されるポリビニルアセタール(III)の量の比率については特に限定されず、任意に変更できる。通常、ポリビニルアセタール(III)100質量部に対して、前記回収物は、1~10000質量部である。 The ratio of the recovered material to the newly added polyvinyl acetal (III) is not particularly limited, and can be arbitrarily changed. Usually, the recovered material is 1 to 10000 parts by mass with respect to 100 parts by mass of polyvinyl acetal (III).
 前記回収物に対して添加される可塑剤の含有量は、特に限定されないが、新たに添加されるポリビニルアセタール(III)100質量部に対して、20~100質量部であることが好ましい。20質量部未満では、得られるフィルムや当該フィルム用いて製造される合わせガラスの耐衝撃性が不十分となることがある。逆に100質量部を超えると、可塑剤がブリードアウトして、得られるフィルムの透明性が低下したり、ガラスに対する接着性が損なわれたりすることがある。 The content of the plasticizer added to the recovered material is not particularly limited, but is preferably 20 to 100 parts by mass with respect to 100 parts by mass of newly added polyvinyl acetal (III). If it is less than 20 mass parts, the impact resistance of the film obtained and the laminated glass manufactured using the said film may become inadequate. On the other hand, if it exceeds 100 parts by mass, the plasticizer may bleed out, and the transparency of the resulting film may be lowered, or the adhesion to glass may be impaired.
 前記回収物を用いた単層フィルムの製造方法において採用される溶融混練方法や製膜方法として、層(X)を製造する際に用いる方法として上述した方法が使用される。回収物を再び押出機に投入する方法として、トリムやオフスペック品のフィルムをロールに巻き取ったものを、そのまま巻き出して押出機に再投入する方法;トリムやオフスペック品をロールに巻き取ったものを一定の大きさにカットした後、押出機に再投入する方法などが挙げられる。 As the melt-kneading method and the film forming method employed in the method for producing a single layer film using the recovered material, the method described above as the method used when producing the layer (X) is used. As a method of feeding the recovered material back into the extruder, a method in which a film of a trim or off-spec product is wound on a roll is unwound as it is and then fed back into the extruder; the trim or off-spec product is taken up on a roll. For example, there is a method of cutting the cake into a certain size and then re-feeding it into the extruder.
 上記トリムあるいはオフスペック品等の回収物を再利用するにあたって、ポリビニルアセタール(III)、可塑剤、その他の成分の量の調整については、新たに得られるフィルムの成分を分析しつつ、押出機へのそれぞれの添加量を調整しながら、所望のフィルムを得ることができる。 When reusing collected materials such as trims or off-spec products, adjust the amount of polyvinyl acetal (III), plasticizer, and other components to the extruder while analyzing the newly obtained film components. A desired film can be obtained while adjusting the amount of each added.
 前記回収物を用いた製造方法によって得られる単層フィルムの厚みは特に限定されないが、0.05~5.0mmであることが好ましく、0.1~2.0mmであることがより好ましく、0.1~1.2mmであることがさらに好ましい。 The thickness of the monolayer film obtained by the production method using the recovered material is not particularly limited, but is preferably 0.05 to 5.0 mm, more preferably 0.1 to 2.0 mm, More preferably, it is 1 to 1.2 mm.
 前記回収物を用いた製造方法によって得られる単層フィルムからなる合わせガラス用中間膜も本発明の好適な実施態様である。当該単層フィルムは着色が少ない。また、当該単層フィルムは異物(未溶解分)が少ないため、当該単層フィルムは透明性に優れる。したがって、前記単層フィルムは合わせガラス用中間膜として有用である。当該合わせガラス用中間膜を用いて複数のガラス板を接着してなる合わせガラスもまた本発明の好適な実施態様である。前記合わせガラスは、本発明の複層フィルムを中間膜として用いた合わせガラスの製造方法として上述した方法により製造できる。 An interlayer film for laminated glass composed of a single layer film obtained by a production method using the recovered material is also a preferred embodiment of the present invention. The single layer film is less colored. Moreover, since the said single layer film has few foreign materials (undissolved part), the said single layer film is excellent in transparency. Therefore, the single layer film is useful as an interlayer film for laminated glass. A laminated glass obtained by bonding a plurality of glass plates using the interlayer film for laminated glass is also a preferred embodiment of the present invention. The said laminated glass can be manufactured by the method mentioned above as a manufacturing method of the laminated glass which used the multilayer film of this invention as an intermediate film.
 こうして得られる合わせガラスのヘイズが1.0以下であることが好適である。本発明において、合わせガラスのヘイズはJIS K7105に準じて測定する。 It is preferable that the haze of the laminated glass thus obtained is 1.0 or less. In the present invention, the haze of the laminated glass is measured according to JIS K7105.
 前記回収物、ポリビニルアセタール(III)、可塑剤、熱線遮蔽微粒子、界面活性剤、並びにアルカリ金属塩及び/又はアルカリ土類金属塩を溶融混練してから製膜してなる層(Y’)の両外側に、ポリビニルアセタール(I)、紫外線吸収剤、及び可塑剤を溶融混練してから製膜してなる層(X)を配置する複層フィルムの製造方法も本発明の好適な実施態様である。 Of the layer (Y ′) formed by melting and kneading the recovered material, polyvinyl acetal (III), plasticizer, heat ray shielding fine particles, surfactant, and alkali metal salt and / or alkaline earth metal salt. A preferred embodiment of the present invention is a method for producing a multilayer film in which a layer (X) formed by melting and kneading a polyvinyl acetal (I), an ultraviolet absorber, and a plasticizer is disposed on both outer sides. is there.
 ここで、ポリビニルアセタール(III)は、前記回収物を用いて得られる単層フィルムに用いられるものとして上述したものが用いられる。ポリビニルアセタール(III)として、上述したポリビニルアセタール(I)及びポリビニルアセタール(II)を用いることが好ましい。遮音性をより向上させる観点からは、ポリビニルアセタール(III)として、ポリビニルアセタール(II)を用いることが好ましい。 Here, as the polyvinyl acetal (III), those described above as being used for a monolayer film obtained using the recovered material are used. As polyvinyl acetal (III), it is preferable to use the above-mentioned polyvinyl acetal (I) and polyvinyl acetal (II). From the viewpoint of further improving sound insulation, it is preferable to use polyvinyl acetal (II) as polyvinyl acetal (III).
 前記回収物に対して添加される可塑剤、熱線遮蔽微粒子、界面活性剤、アルカリ金属塩及びアルカリ土類金属塩として、層(Y)の製造に用いられるものとして上述したものが使用される。 As the plasticizer, heat ray shielding fine particles, surfactant, alkali metal salt and alkaline earth metal salt added to the recovered material, those described above as those used for the production of the layer (Y) are used.
 得られる単層フィルムの透明性が優れるものであれば、層(Y)の製造に用いられるものとして上述した可塑剤のいずれも使用できる。新たに添加されるポリビニルアセタール(III)100質量部に対して、前記回収物の量が50質量部を超える場合には、添加する可塑剤のうち10質量部以上が、水酸基を有する脂肪族エステル化合物、水酸基を有する脂肪族エーテル化合物、水酸基を有する脂肪族ポリエステル化合物、ポリアルキレングリコールと芳香族アルコールとのモノエーテル化合物またはポリアルキレングリコールと芳香族カルボン酸とのモノエステル化合物を用いることが好ましい。 Any of the plasticizers described above as used for the production of the layer (Y) can be used as long as the obtained single layer film has excellent transparency. When the amount of the recovered product exceeds 50 parts by mass with respect to 100 parts by mass of newly added polyvinyl acetal (III), 10 parts by mass or more of the added plasticizer is an aliphatic ester having a hydroxyl group. It is preferable to use a compound, an aliphatic ether compound having a hydroxyl group, an aliphatic polyester compound having a hydroxyl group, a monoether compound of a polyalkylene glycol and an aromatic alcohol, or a monoester compound of a polyalkylene glycol and an aromatic carboxylic acid.
 前記回収物と新たに添加されるポリビニルアセタール(III)の量の比率については特に限定されず、任意に変更できる。通常、ポリビニルアセタール(III)100質量部に対して、前記回収物は、1~10000質量部である。 The ratio of the recovered material to the newly added polyvinyl acetal (III) is not particularly limited, and can be arbitrarily changed. Usually, the recovered material is 1 to 10000 parts by mass with respect to 100 parts by mass of polyvinyl acetal (III).
 新たに添加する可塑剤の添加量は、新たに添加するポリビニルアセタール(III)100質量部に対して、20~100質量部であることが好ましい。20質量部未満では、複層フィルムや得られる合わせガラスの耐衝撃性が不十分となることがある。逆に100質量部を超えると、可塑剤がブリードアウトして、得られる複層フィルムの透明性が低下したり、ガラスに対する接着性が損なわれることがある。 The amount of the plasticizer to be newly added is preferably 20 to 100 parts by mass with respect to 100 parts by mass of the newly added polyvinyl acetal (III). If it is less than 20 mass parts, the impact resistance of a multilayer film and the laminated glass obtained may become inadequate. On the other hand, when the amount exceeds 100 parts by mass, the plasticizer may bleed out and the transparency of the resulting multilayer film may be reduced, or the adhesion to glass may be impaired.
 前記熱線遮蔽微粒子の添加量は、新たに添加する、可塑剤及びポリビニルアセタール(III)の合計量100質量部に対して、0.001~2質量部含有することが好ましい。含有量が0.001質量部以下になると期待する熱線遮蔽効果が得られないおそれがある。より好ましくは0.002質量部以上、さらに好ましくは0.005質量部以上である。また、含有量が2質量部を超えると、得られる複層フィルムの透明性が損なわれるおそれがある。より好ましくは1.5質量部以下、さらに好ましくは1質量部以下である。 The amount of the heat ray shielding fine particles added is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass of the total amount of plasticizer and polyvinyl acetal (III) to be newly added. If the content is 0.001 part by mass or less, the expected heat ray shielding effect may not be obtained. More preferably, it is 0.002 mass part or more, More preferably, it is 0.005 mass part or more. Moreover, when content exceeds 2 mass parts, there exists a possibility that transparency of the multilayer film obtained may be impaired. More preferably, it is 1.5 mass parts or less, More preferably, it is 1 mass part or less.
 前記界面活性剤の添加量は、新たに添加するポリビニルアセタール(III)および可塑剤の合計量100質量部に対して0.005~2質量部であることが好ましい。含有量が0.005質量部未満であると、熱線遮蔽微粒子の分散効果が十分に得られない場合がある。より好ましくは0.05質量部以上、さらに好ましくは0.1質量部以上である。また、2質量部を超えると、界面活性剤のブリードアウトが著しく、ガラスに対する接着力が安定的に保持されない場合がある。より好ましくは1.8質量部以下である。 The addition amount of the surfactant is preferably 0.005 to 2 parts by mass with respect to 100 parts by mass of the total amount of polyvinyl acetal (III) and plasticizer to be newly added. When the content is less than 0.005 parts by mass, the effect of dispersing the heat ray shielding fine particles may not be sufficiently obtained. More preferably, it is 0.05 mass part or more, More preferably, it is 0.1 mass part or more. Moreover, when it exceeds 2 mass parts, the bleed-out of surfactant will be remarkable and the adhesive force with respect to glass may not be hold | maintained stably. More preferably, it is 1.8 parts by mass or less.
 回収物に対して添加する前記アルカリ金属塩および/またはアルカリ土類金属塩の添加量は、アルカリ金属塩および/またはアルカリ土類金属塩に由来するアルカリ金属および/またはアルカリ土類金属の含有量の総計が、ポリビニルアセタール(III)100質量部に対して0.006~0.2質量部であることが好ましい。0.006質量部未満であると、界面活性剤に由来する樹脂の劣化を十分に抑制できない場合がある。より好ましくは0.008質量部以上である。また、含有量が0.2質量部を超えると、熱線遮蔽微粒子の凝集を促進し、結果として得られる複層フィルムの透明性が失われる場合がある。より好ましくは0.1質量部以下、さらに好ましくは0.04質量部以下である。 The amount of the alkali metal salt and / or alkaline earth metal salt added to the recovered material is the content of the alkali metal and / or alkaline earth metal derived from the alkali metal salt and / or alkaline earth metal salt. Is preferably 0.006 to 0.2 parts by mass with respect to 100 parts by mass of polyvinyl acetal (III). If it is less than 0.006 parts by mass, deterioration of the resin derived from the surfactant may not be sufficiently suppressed. More preferably, it is 0.008 mass part or more. Moreover, when content exceeds 0.2 mass part, aggregation of a heat ray shielding fine particle will be accelerated | stimulated and the transparency of the multilayer film obtained as a result may be lost. More preferably, it is 0.1 mass part or less, More preferably, it is 0.04 mass part or less.
 層(Y’)は、ポリビニルアセタール(II)の代わりにポリビニルアセタール(III)及び前記回収物を用いること以外は、層(Y)の製造方法として上述した方法により製造することができる。ここで、回収物を再び押出機に投入する方法として、トリムやオフスペック品のフィルムをロールに巻き取ったものを、そのまま巻き出して押出機に再投入する方法;トリムやオフスペック品をロールに巻き取ったものを一定の大きさにカットした後、押出機に再投入する方法などが挙げられる。前記回収物を用いた複層フィルムは、層(Y)の代わりに層(Y’)を用いること以外は、層(X)及び層(Y)を有する積層フィルムの製造方法として上述した方法と同様にして製造できる。 The layer (Y ′) can be produced by the method described above as the production method of the layer (Y) except that polyvinyl acetal (III) and the recovered material are used instead of polyvinyl acetal (II). Here, as a method of feeding the recovered material into the extruder again, a method in which a film of a trim or off-spec product is wound on a roll is unwound as it is and then fed back into the extruder; the trim or off-spec product is rolled. For example, a method of cutting the wound material into a certain size and then re-feeding it into the extruder may be mentioned. The multilayer film using the recovered material is the method described above as the method for producing a laminated film having the layer (X) and the layer (Y) except that the layer (Y ′) is used instead of the layer (Y). It can be manufactured in the same manner.
 前記回収物を用いた複層フィルムの層構成、厚みは、層(Y)の代わりに層(Y’)を用いること以外は、上述した層(X)及び層(Y)を有する多層フィルムと同じである。 The multilayer structure and thickness of the multilayer film using the recovered material are the multilayer film having the layer (X) and the layer (Y) described above, except that the layer (Y ′) is used instead of the layer (Y). The same.
 前記回収物を用いた複層フィルムの製造方法によって得られる複層フィルムからなる合わせガラス用中間膜が本発明の好適な実施態様である。前記回収物を用いた複層フィルムは異物(未溶解分)が少ないため、当該複層フィルムは透明性に優れる。したがって、前記複層フィルムは合わせガラス用中間膜として有用である。当該合わせガラス用中間膜を用いて複数のガラス板を接着してなる合わせガラスもまた本発明の好適な実施態様である。前記合わせガラスは、層(X)及び層(Y)を有する複層フィルムを中間膜として用いた合わせガラスの製造方法として上述した方法により製造できる。こうして得られる合わせガラスのヘイズが1.0以下であることが好適である。 An interlayer film for laminated glass made of a multilayer film obtained by the method for producing a multilayer film using the recovered material is a preferred embodiment of the present invention. Since the multilayer film using the recovered material has few foreign matters (undissolved content), the multilayer film is excellent in transparency. Therefore, the multilayer film is useful as an interlayer film for laminated glass. A laminated glass obtained by bonding a plurality of glass plates using the interlayer film for laminated glass is also a preferred embodiment of the present invention. The said laminated glass can be manufactured by the method mentioned above as a manufacturing method of the laminated glass which used the multilayer film which has layer (X) and layer (Y) as an intermediate film. The haze of the laminated glass thus obtained is preferably 1.0 or less.
 以下、実施例および比較例により本発明をさらに詳細に説明する。なお、以下の実施例および比較例において「部」および「%」は、特に断らない限り質量基準である。「重合度」は「粘度平均重合度」を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. In the following examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified. “Polymerization degree” means “viscosity average polymerization degree”.
[ポリ酢酸ビニルの合成]
PVAc-1
 撹拌機、温度計、窒素導入チューブ、還流管を備え付けた6Lセパラブルフラスコに、あらかじめ脱酸素し、アセトアルデヒド(AA)を500ppm、アセトアルデヒドジメチルアセタール(DMA)を50ppm含有する酢酸ビニルモノマー(VAM)2555g;アセトアルデヒドジメチルアセタールを50ppm含有し、アセトアルデヒドの含有量が1ppm未満であるメタノール(MeOH)945g;酢酸ビニルモノマー中の酒石酸の含有量が20ppmとなる量の酒石酸1%メタノール溶液を仕込んだ。前記フラスコ内に窒素を吹き込みながら、フラスコ内の温度を60℃に調整した。なお、還流管には-10℃のエチレングリコール/水溶液を循環させた。ジn-プロピルパーオキシジカーボネートの0.55質量%メタノール溶液を調製し、18.6mLを前記フラスコ内に添加し重合を開始した。このときのジn-プロピルパーオキシジカーボネートの添加量は0.081gであった。ジn-プロピルパーオキシジカーボネートのメタノール溶液を20.9mL/時間の速度で重合終了まで逐次添加した。重合中、フラスコ内の温度を60℃に保った。重合開始から4時間後、重合液の固形分濃度が25.1%となった時点で、ソルビン酸を0.0141g(重合液中に未分解で残存するジn-プロピルパーオキシジカーボネートの3モル等量に相当する)含有するメタノールを1200g添加した後、重合液を冷却し重合を停止した。重合停止時の酢酸ビニルモノマーの重合率は35.0%であった。重合液を室温まで冷却した後、水流アスピレータを用いてフラスコ内を減圧することにより、酢酸ビニルモノマーおよびメタノールを留去し、ポリ酢酸ビニルを析出させた。析出したポリ酢酸ビニルにメタノールを3000g添加し、30℃で加温しつつポリ酢酸ビニルを溶解させた後、再び水流アスピレータを用いてフラスコ内を減圧することにより、酢酸ビニルモノマーおよびメタノールを留去してポリ酢酸ビニルを析出させた。ポリ酢酸ビニルをメタノールに溶解させた後、析出させる操作をさらに2回繰り返した。析出したポリ酢酸ビニルにメタノールを添加し、酢酸ビニルモノマーの除去率99.8%のポリ酢酸ビニル(PVAc-1)の40質量%のメタノール溶液を得た。
[Synthesis of polyvinyl acetate]
PVAc-1
A 6 L separable flask equipped with a stirrer, thermometer, nitrogen introduction tube, and reflux tube was deoxygenated in advance, and vinyl acetate monomer (VAM) 2555 g containing 500 ppm acetaldehyde (AA) and 50 ppm acetaldehyde dimethyl acetal (DMA). 945 g of methanol (MeOH) containing 50 ppm of acetaldehyde dimethyl acetal and an acetaldehyde content of less than 1 ppm; 1% methanol solution of tartaric acid in an amount of 20 ppm of tartaric acid in the vinyl acetate monomer was charged. While blowing nitrogen into the flask, the temperature inside the flask was adjusted to 60 ° C. Note that an ethylene glycol / water solution at −10 ° C. was circulated in the reflux tube. A 0.55% by mass methanol solution of di-n-propyl peroxydicarbonate was prepared, and 18.6 mL was added to the flask to initiate polymerization. At this time, the amount of di-n-propyl peroxydicarbonate added was 0.081 g. A methanol solution of di-n-propyl peroxydicarbonate was sequentially added at a rate of 20.9 mL / hour until the completion of polymerization. During the polymerization, the temperature in the flask was kept at 60 ° C. Four hours after the start of the polymerization, when the solid content concentration of the polymerization solution reached 25.1%, 0.0141 g of sorbic acid (3% of di-n-propyl peroxydicarbonate remaining undecomposed in the polymerization solution) was obtained. After adding 1200 g of contained methanol (corresponding to a molar equivalent), the polymerization solution was cooled to stop the polymerization. When the polymerization was stopped, the polymerization rate of the vinyl acetate monomer was 35.0%. After the polymerization solution was cooled to room temperature, the inside of the flask was depressurized using a water aspirator to distill off the vinyl acetate monomer and methanol, thereby precipitating polyvinyl acetate. 3000 g of methanol was added to the precipitated polyvinyl acetate, and the polyvinyl acetate was dissolved while heating at 30 ° C., and then the inside of the flask was decompressed again using a water aspirator to distill off the vinyl acetate monomer and methanol. Thus, polyvinyl acetate was precipitated. The operation of dissolving polyvinyl acetate in methanol and then precipitating it was further repeated twice. Methanol was added to the precipitated polyvinyl acetate to obtain a 40% by mass methanol solution of polyvinyl acetate (PVAc-1) with a vinyl acetate monomer removal rate of 99.8%.
 得られたPVAc-1のメタノール溶液の一部を用いて重合度を測定した。PVAc-1のメタノール溶液に、ポリ酢酸ビニル中の酢酸ビニル単位に対する水酸化ナトリウムのモル比が、0.1となるように水酸化ナトリウムの10%メタノール溶液を添加した。ゲル化物が生成した時点でゲルを粉砕し、メタノールでソックスレー抽出を3日間行った。得られたポリビニルアルコールを乾燥し、粘度平均重合度測定に供した。重合度は1700であった。 The polymerization degree was measured using a part of the methanol solution of PVAc-1 obtained. A 10% methanol solution of sodium hydroxide was added to the methanol solution of PVAc-1 so that the molar ratio of sodium hydroxide to vinyl acetate units in polyvinyl acetate was 0.1. When the gelled product was formed, the gel was pulverized and subjected to Soxhlet extraction with methanol for 3 days. The obtained polyvinyl alcohol was dried and subjected to viscosity average polymerization degree measurement. The degree of polymerization was 1700.
PVAc-2~PVAc-12
 表1に記載した条件に変更したこと以外は、PVAc-1と同様の方法により、ポリ酢酸ビニル(PVAc-2~PVAc-12)を得た。なお、表1中の「ND」は1ppm未満を意味する。得られた各ポリ酢酸ビニルの重合度をPVAc-1と同様にして求めた。その結果を表1に示す。
PVAc-2 to PVAc-12
Polyvinyl acetate (PVAc-2 to PVAc-12) was obtained in the same manner as PVAc-1, except that the conditions were changed to those described in Table 1. In Table 1, “ND” means less than 1 ppm. The degree of polymerization of each polyvinyl acetate obtained was determined in the same manner as PVAc-1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[ポリビニルアルコールの合成]
PVA-1
PVAc-1のポリ酢酸ビニルの40質量%のメタノール溶液に対して、総固形分濃度(けん化濃度)が30質量%となるように、メタノールおよびポリ酢酸ビニル中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が0.020となるように水酸化ナトリウムの8%メタノール溶液を撹拌下に加え、40℃でけん化反応を開始した。けん化反応の進行に伴ってゲル化物が生成した時点でゲルを粉砕し、粉砕後のゲルを40℃の容器に移し、けん化反応の開始から60分経過した時点で、メタノール/酢酸メチル/水(25/70/5質量比)の溶液に浸漬し、中和処理した。得られた膨潤ゲルを遠心分離し、膨潤ゲルの質量に対して、2倍の質量のメタノールを添加、浸漬し30分間放置した後、遠心分離する操作を4回繰り返し、60℃1時間、100℃で2時間乾燥してPVA-1を得た。
[Synthesis of polyvinyl alcohol]
PVA-1
Water with respect to vinyl acetate monomer units in methanol and polyvinyl acetate so that the total solid concentration (saponification concentration) is 30% by mass with respect to a 40% by mass methanol solution of polyvinyl acetate in PVAc-1. An 8% methanol solution of sodium hydroxide was added with stirring so that the molar ratio of sodium oxide was 0.020, and the saponification reaction was started at 40 ° C. The gel is pulverized when the gelated product is generated as the saponification reaction proceeds, and the crushed gel is transferred to a container at 40 ° C. When 60 minutes have elapsed from the start of the saponification reaction, methanol / methyl acetate / water ( 25/70/5 mass ratio) solution and neutralized. The obtained swollen gel was centrifuged, and methanol twice as much as the swollen gel was added, immersed, left for 30 minutes, and then centrifuged four times, 60 ° C. for 1 hour, 100 PVA-1 was obtained by drying at 2 ° C. for 2 hours.
 PVA-1の重合度およびけん化度を、JIS-K6726に記載の方法により求めた。重合度は1700、けん化度は99.1モル%であった。これらの物性データを表2にも示す。 The polymerization degree and saponification degree of PVA-1 were determined by the method described in JIS-K6726. The degree of polymerization was 1700, and the degree of saponification was 99.1 mol%. These physical property data are also shown in Table 2.
 PVA-1を灰化した後に、ジャーレルアッシュ社製ICP発光分析装置「IRIS AP」を用いて、得られた灰分中のナトリウム量を測定することによりPVA-1の酢酸ナトリウム含有量を求めた。酢酸ナトリウム含有量0.7%(ナトリウム換算で0.20%)であった。これらの物性データを表2にも示す。 After ashing PVA-1, the sodium acetate content of PVA-1 was determined by measuring the amount of sodium in the obtained ash using an ICP emission analyzer “IRIS AP” manufactured by Jarrel Ash. . The sodium acetate content was 0.7% (0.20% in terms of sodium). These physical property data are also shown in Table 2.
PVA-2~5、比較PVA-1~3
 表2に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。それらの結果を表2に示す。
PVA-2 ~ 5, comparative PVA-1 ~ 3
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 2 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
PVA-6、比較PVA-4及び5
 表3に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。それらの結果を表3に示す。
PVA-6, comparative PVA-4 and 5
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 3 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
PVA-7、比較PVA-6及び7
 表4に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。それらの結果を表4に示す。
PVA-7, comparative PVA-6 and 7
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 4 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
PVA-8~11、比較PVA-8及び9
 表5に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。それらの結果を表5に示す。
PVA-8-11, comparative PVA-8 and 9
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 5 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
PVA-12、比較PVA-10及び11
 表6に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。それらの結果を表6に示す。
PVA-12, comparative PVA-10 and 11
Each PVA was synthesized in the same manner as PVA-1 except that the conditions were changed to those shown in Table 6. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
PVA-13、比較PVA-12及び13
 表7に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。それらの結果を表7に示す。
PVA-13, comparative PVA-12 and 13
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 7 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[PVBの合成]
PVB-1
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100gとPVA-1を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、10℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド384gと20%の塩酸540mLを添加し、ブチラール化反応を150分間行った。その後60分かけて60℃まで昇温し、60℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で樹脂を再洗浄した後、乾燥してPVB-1を得た。
[Synthesis of PVB]
PVB-1
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid-type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-1 (PVA concentration 7.5%), and the content was raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents were gradually cooled to 10 ° C. over about 30 minutes while stirring at 120 rpm, and then 384 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 150 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C. for 120 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, the resin was washed again with ion-exchanged water and dried to obtain PVB-1.
[PVBの組成]
 PVB-1のブチラール化度(アセタール化度)、酢酸ビニル単量体単位の含有量、及びビニルアルコール単量体単位の含有量はJIS K6728に従って測定した。ブチラール化度(アセタール化度)は68.2モル%、酢酸ビニル単量体単位の含有量は0.9モル%であり、ビニルアルコール単量体単位の含有量は30.9モル%であった。結果を表8にも示す。
[Composition of PVB]
The degree of butyralization (degree of acetalization) of PVB-1, the content of vinyl acetate monomer units, and the content of vinyl alcohol monomer units were measured according to JIS K6728. The degree of butyralization (degree of acetalization) was 68.2 mol%, the content of vinyl acetate monomer units was 0.9 mol%, and the content of vinyl alcohol monomer units was 30.9 mol%. It was. The results are also shown in Table 8.
PVB-2~5
 原料PVAを表8に示すものに変更したこと以外はPVB-1と同様にしてPVBの合成及び評価を実施した。その結果を表8に示す。
PVB-2 ~ 5
PVB was synthesized and evaluated in the same manner as PVB-1, except that the raw material PVA was changed to that shown in Table 8. The results are shown in Table 8.
PVB-6
 n-ブチルアルデヒドの添加量を320gに変更したこと以外はPVB-1と同様にしてPVBの合成及び評価を実施した。その結果を表8に示す。
PVB-6
PVB was synthesized and evaluated in the same manner as PVB-1, except that the amount of n-butyraldehyde added was changed to 320 g. The results are shown in Table 8.
PVB-7
 n-ブチルアルデヒドの添加量を362gに変更したこと以外はPVB-1と同様にしてPVBの合成及び評価を実施した。その結果を表8に示す。
PVB-7
PVB was synthesized and evaluated in the same manner as PVB-1, except that the amount of n-butyraldehyde added was changed to 362 g. The results are shown in Table 8.
PVB-8
 n-ブチルアルデヒドの添加量を449gに変更したこと以外はPVB-1と同様にしてポリビニルブチラールの合成及び評価を実施した。その結果を表8に示す。
PVB-8
Polyvinyl butyral was synthesized and evaluated in the same manner as PVB-1, except that the amount of n-butyraldehyde added was changed to 449 g. The results are shown in Table 8.
比較PVB-1~3
 原料PVAを表8に示すものに変更したこと以外はPVB-1と同様にしてポリビニルブチラールの合成及び評価を実施した。その結果を表8に示す。
Comparison PVB-1 ~ 3
Polyvinyl butyral was synthesized and evaluated in the same manner as PVB-1, except that the raw material PVA was changed to that shown in Table 8. The results are shown in Table 8.
比較PVB-4
 原料PVAを比較PVA-1に変更したこと以外は、PVB-6と同様にしてポリビニルブチラールの合成及び評価を実施した。その結果を表8に示す。
Comparison PVB-4
Polyvinyl butyral was synthesized and evaluated in the same manner as PVB-6 except that the raw material PVA was changed to comparative PVA-1. The results are shown in Table 8.
比較PVB-5
 原料PVAを比較PVA-1に変更したこと以外は、PVB-8と同様にしてポリビニルブチラールの合成及び評価を実施した。その結果を表8に示す。
Comparative PVB-5
Polyvinyl butyral was synthesized and evaluated in the same manner as PVB-8, except that the raw material PVA was changed to comparative PVA-1. The results are shown in Table 8.
比較PVB-6
 原料PVAを比較PVA-2に変更したこと以外は、PVB-6と同様にしてポリビニルブチラールの合成及び評価を実施した。その結果を表8に示す。
Comparative PVB-6
Polyvinyl butyral was synthesized and evaluated in the same manner as PVB-6 except that the raw material PVA was changed to comparative PVA-2. The results are shown in Table 8.
比較PVB-7
 原料PVAを比較PVA-2に変更したこと以外は、PVB-8と同様にしてポリビニルブチラールの合成及び評価を実施した。その結果を表8に示す。
Comparative PVB-7
Polyvinyl butyral was synthesized and evaluated in the same manner as PVB-8, except that the raw material PVA was changed to comparative PVA-2. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
PVB-9
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8234g、PVA-6を526g仕込み(PVA濃度6.0%)、内容物を95℃に昇温して完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド307gと20%の塩酸540mLを添加し、ブチラール化反応を120分間行った。その後60分かけて60℃まで昇温し、60℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してポリビニルブチラールを得た。
PVB-9
A 10-liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade was charged with 8234 g of ion-exchanged water and 526 g of PVA-6 (PVA concentration 6.0%), and the contents were raised to 95 ° C. Warm to dissolve completely. Next, the contents were gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, and then 307 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 120 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C. for 120 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, it was rewashed with ion-exchanged water and dried to obtain polyvinyl butyral.
 得られたポリビニルブチラールの組成をPVB-1と同様にして測定した。ブチラール化度(アセタール化度)は68.2モル%、酢酸ビニル単量体単位の含有量は1.3モル%であり、ビニルアルコール単量体単位の含有量は30.5モル%であった。次に、得られたPVB-9のGPC測定をPVB-1と同様にして行った。評価結果を表9に示す。 The composition of the obtained polyvinyl butyral was measured in the same manner as PVB-1. The degree of butyralization (degree of acetalization) was 68.2 mol%, the content of vinyl acetate monomer units was 1.3 mol%, and the content of vinyl alcohol monomer units was 30.5 mol%. It was. Next, GPC measurement of the obtained PVB-9 was performed in the same manner as PVB-1. Table 9 shows the evaluation results.
比較PVB-8及び9
 原料PVAを表9に示すものに変更したこと以外は、PVB-9と同様にしてPVBの合成及び評価を実施した。結果を表9に示す。
Comparative PVB-8 and 9
PVB was synthesized and evaluated in the same manner as PVB-9, except that the raw material PVA was changed to that shown in Table 9. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
PVB-10
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8322g、PVA-7を438g仕込み(PVA濃度5.0%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、20℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド256gと20%の塩酸540mLを添加し、ブチラール化反応を120分間行った。その後60分かけて60℃まで昇温し、60℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。
PVB-10
A 10-liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade was charged with 8322 g of ion-exchanged water and 438 g of PVA-7 (PVA concentration 5.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 20 ° C. over about 30 minutes while stirring at 120 rpm, and then 256 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 120 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C. for 120 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, PVB was obtained by re-washing with ion-exchanged water and drying.
 得られたPVBの組成をPVB-1と同様にして測定した。ブチラール化度(アセタール化度)は68.1モル%、酢酸ビニル単量体単位の含有量は1.5モル%であり、ビニルアルコール単量体単位の含有量は30.4モル%であった。次に、得られたPVB-10のGPC測定をPVB-1と同様にして行った。評価結果を表10に示す。 The composition of the obtained PVB was measured in the same manner as PVB-1. The degree of butyralization (degree of acetalization) was 68.1 mol%, the content of vinyl acetate monomer units was 1.5 mol%, and the content of vinyl alcohol monomer units was 30.4 mol%. It was. Next, GPC measurement of the obtained PVB-10 was performed in the same manner as PVB-1. Table 10 shows the evaluation results.
比較PVB-10及び11
 原料PVAを表10に示すものに変更したこと以外は、PVB-10と同様にしてPVBの合成及び評価を実施した。結果を表10に示す。
Comparative PVB-10 and 11
PVB was synthesized and evaluated in the same manner as PVB-10 except that the raw material PVA was changed to that shown in Table 10. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
PVB-11
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100g、PVA-8を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温して完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド432gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて45℃まで昇温し、45℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。
PVB-11
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-8 (PVA concentration 7.5%), and the contents were raised to 95 ° C. Warm to dissolve completely. Next, the contents are gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, and then 432 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C. for 180 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, PVB was obtained by re-washing with ion-exchanged water and drying.
 得られたPVBの組成をPVB-1と同様にして測定した。ブチラール化度(アセタール化度)は74.1モル%、酢酸ビニル単量体単位の含有量は8.1モル%であり、ビニルアルコール単量体単位の含有量は17.8モル%であった。得られたPVB-11のGPC測定をPVB-1と同様にして行った。評価結果を表11に示す。 The composition of the obtained PVB was measured in the same manner as PVB-1. The degree of butyralization (degree of acetalization) was 74.1 mol%, the content of vinyl acetate monomer units was 8.1 mol%, and the content of vinyl alcohol monomer units was 17.8 mol%. It was. GPC measurement of the obtained PVB-11 was performed in the same manner as PVB-1. The evaluation results are shown in Table 11.
PVB-12~14
 原料PVAを表11に示すものに変更したこと以外は、PVB-11と同様にしてPVBの合成及び評価を実施した。結果を表11に示す。
PVB-12-14
PVB was synthesized and evaluated in the same manner as PVB-11 except that the raw material PVA was changed to that shown in Table 11. The results are shown in Table 11.
PVB-15
 n-ブチルアルデヒドの添加量を458gに変更したこと以外はPVB-11と同様にしてPVBの合成及び評価を実施した。結果を表11に示す。
PVB-15
PVB was synthesized and evaluated in the same manner as PVB-11 except that the amount of n-butyraldehyde added was changed to 458 g. The results are shown in Table 11.
比較PVB-12及び13
 原料PVAを表11に示すものに変更したこと以外は、PVB-11と同様にしてPVBの合成及び評価を実施した。結果を表11に示す。
Comparative PVB-12 and 13
PVB was synthesized and evaluated in the same manner as PVB-11 except that the raw material PVA was changed to that shown in Table 11. The results are shown in Table 11.
比較PVB-14及び15
 原料PVAを表11に示すものに変更したこと以外は、PVB-15と同様にしてPVBの合成及び評価を実施した。結果を表11に示す。
Comparative PVB-14 and 15
PVB was synthesized and evaluated in the same manner as PVB-15 except that the raw material PVA was changed to that shown in Table 11. The results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
PVB-16
 還流冷却器、温度計、イカリ型攪拌翼を備えた10Lリットルのガラス製容器に、イオン交換水を8234g、PVA-12を526g仕込み(PVA濃度6.0%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約60分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド344gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて45℃まで昇温し、45℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。
PVB-16
A 10 L liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8234 g of ion-exchanged water and 526 g of PVA-12 (PVA concentration 6.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 15 ° C. over about 60 minutes while stirring at 120 rpm, and then 344 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C. for 180 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, PVB was obtained by re-washing with ion-exchanged water and drying.
 得られたPVBの組成をPVB-1と同様にして測定した。ブチラール化度(アセタール化度)は74.6モル%、酢酸ビニル単量体単位の含有量は8.3モル%であり、ビニルアルコール単量体単位の含有量は17.1モル%であった。得られたPVB-16のGPC測定をPVB-1と同様にして行った。評価結果を表12に示す。 The composition of the obtained PVB was measured in the same manner as PVB-1. The degree of butyralization (degree of acetalization) was 74.6 mol%, the content of vinyl acetate monomer units was 8.3 mol%, and the content of vinyl alcohol monomer units was 17.1 mol%. It was. GPC measurement of the obtained PVB-16 was performed in the same manner as PVB-1. The evaluation results are shown in Table 12.
比較PVB-16及び17
 原料PVAを表12に示すものに変更したこと以外は、PVB-16と同様にしてPVBの合成及び評価を実施した。結果を表12に示す。
Comparative PVB-16 and 17
PVB was synthesized and evaluated in the same manner as PVB-16 except that the raw material PVA was changed to that shown in Table 12. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
PVB-17
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8234g、PVA-13を438g仕込み(PVA濃度5.0%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約60分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド265gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて45℃まで昇温し、45℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。
PVB-17
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid-type stirring blade was charged with 8234 g of ion-exchanged water and 438 g of PVA-13 (PVA concentration 5.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 15 ° C. over about 60 minutes while stirring at 120 rpm, and then 265 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C. for 180 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, PVB was obtained by re-washing with ion-exchanged water and drying.
 得られたPVBの組成をPVB-1と同様にして測定した。PVBのブチラール化度(平均アセタール化度)は73.2モル%、酢酸ビニル単量体単位の含有量は8.1モル%であり、ビニルアルコール単量体単位の含有量は18.7モル%であった。得られたPVB-17のGPC測定をPVB-1と同様にして行った。評価結果を表13に示す。 The composition of the obtained PVB was measured in the same manner as PVB-1. The degree of butyralization (average degree of acetalization) of PVB is 73.2 mol%, the content of vinyl acetate monomer units is 8.1 mol%, and the content of vinyl alcohol monomer units is 18.7 mol%. %Met. GPC measurement of the obtained PVB-17 was performed in the same manner as PVB-1. The evaluation results are shown in Table 13.
比較PVB-18及び19
 原料PVAを表13に示すものに変更したこと以外は、PVB-17と同様にしてPVBの合成及び評価を実施した。結果を表13に示す。
Comparative PVB-18 and 19
PVB was synthesized and evaluated in the same manner as PVB-17 except that the raw material PVA was changed to that shown in Table 13. The results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
実施例1
[層(X)の作製]
 合成したPVB-1の粉体50質量部、可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート19質量部、及び紫外線吸収剤としてチバ・ジャパン社製「Tinuvin328」0.175質量部を、株式会社東洋精機製作所製ラボプラストミル「Cモデル」を用い、170℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を150℃、5MPa、30分間熱プレスして、厚み320μmのフィルムを作製した。
Example 1
[Production of Layer (X)]
50 parts by mass of the synthesized PVB-1 powder, 19 parts by mass of triethylene glycol-di-2-ethylhexanoate as a plasticizer, and 0.175 parts by mass of “Tinuvin 328” manufactured by Ciba Japan as an ultraviolet absorber, Using a Labo plast mill “C model” manufactured by Toyo Seiki Seisakusho Co., Ltd., melt kneading was performed at 170 ° C. and 50 rpm for 5 minutes. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 320 μm.
[層(Y)の作製]
 ZnSbである無水アンチモン酸亜鉛メタノール分散液(日産化学株式会社製「CX-Z693M-F」)をビーズミルで粉砕処理することにより、濃度60質量%のアンチモン酸亜鉛メタノール分散液を作製した。得られた分散液1.62質量部、リン酸エステルとしてビックケミー社製「DISPERBYK-102」0.24質量部及び可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート12.1質量部を混合して得られた分散液、トリエチレングリコール-ジ2-エチルヘキサノエート12.2質量部、酢酸マグネシウムと酢酸カリウムとの混合物(混合質量比:2/1)の25質量%水溶液0.10質量部、及び合成したPVB-11の粉体43質量部を、上記ラボプラストミルを用い、170℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を150℃、5MPa、30分間熱プレスして、厚み120μmのフィルムを作製した。
[Preparation of layer (Y)]
A ZnSb 2 O 6 anhydrous zinc antimonate methanol dispersion (“CX-Z693M-F” manufactured by Nissan Chemical Co., Ltd.) was pulverized with a bead mill to prepare a zinc antimonate methanol dispersion having a concentration of 60% by mass. . 1.62 parts by mass of the obtained dispersion, 0.24 parts by mass of “DISPERBYK-102” manufactured by Big Chemie as phosphate ester, and 12.1 parts by mass of triethylene glycol-di-2-ethylhexanoate as a plasticizer The dispersion obtained in this way, 12.2 parts by mass of triethylene glycol-di-2-ethylhexanoate, a 25% by mass aqueous solution 0.10 of a mixture of magnesium acetate and potassium acetate (mixing mass ratio: 2/1) 0.10 Mass parts and 43 parts by mass of the synthesized PVB-11 powder were melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using the Laboplast mill. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 120 μm.
[複層フィルムの作製]
層(X)及び層(Y)を層(X)/層(Y)/層(X)の順に重ね、厚さ760μmの型枠で135℃、10kg/cmの条件でプレスして、層(X)(320μm)/層(Y)(120μm)/層(X)(320μm)からなる複層フィルムを得た。
[Production of multilayer film]
Layer (X) and layer (Y) are layered in the order of layer (X) / layer (Y) / layer (X), and pressed in a form of 760 μm under conditions of 135 ° C. and 10 kg / cm 2. A multilayer film composed of (X) (320 μm) / layer (Y) (120 μm) / layer (X) (320 μm) was obtained.
[GPC測定]
(測定装置)
 VISCOTECH製「GPCmax」を用いてGPC測定を行った。示差屈折率検出器としてVISCOTECH製「TDA305」を用いた。紫外可視吸光光度検出器としてVISCOTECH製「UV Detector2600」を用いた。当該吸光光度検出器の検出用セルの光路長は10mmである。GPCカラムには昭和電工株式会社製「GPC HFIP-806M」を用いた。また、解析ソフトには、装置付属のOmniSEC(Version 4.7.0.406)を用いた。
[GPC measurement]
(measuring device)
GPC measurement was performed using “GPCmax” manufactured by VISCOTECH. As a differential refractive index detector, “TDA305” manufactured by VISCOTECH was used. “UV Detector 2600” manufactured by VISCOTECH was used as an ultraviolet-visible absorption detector. The optical path length of the detection cell of the absorptiometric detector is 10 mm. As the GPC column, “GPC HFIP-806M” manufactured by Showa Denko KK was used. Moreover, OmniSEC (Version 4.7.0.406) attached to the apparatus was used as analysis software.
(測定条件)
 移動相には、20mmol/lトリフルオロ酢酸ナトリウム含有HFIPを用いた。移動相の流速は1.0ml/分とした。試料注入量は100μlとし、GPCカラム温度40℃にて測定した。
(Measurement condition)
As the mobile phase, HFIP containing 20 mmol / l sodium trifluoroacetate was used. The mobile phase flow rate was 1.0 ml / min. The sample injection amount was 100 μl, and measurement was performed at a GPC column temperature of 40 ° C.
 なお、試料中のPVA粘度平均重合度が2400を超える試料は、適宜希釈した試料(100μl)を用いてGPC測定を行った。実測値から下記式により、試料濃度が1.00mg/mlの場合における吸光度を算出した。α(mg/ml)は希釈された試料の濃度である。
 
試料濃度1.00mg/mlにおける吸光度=(1.00/α)×吸光度の測定値
 
In addition, the sample in which the PVA viscosity average polymerization degree in a sample exceeded 2400 performed GPC measurement using the sample (100 microliters) diluted suitably. The absorbance at a sample concentration of 1.00 mg / ml was calculated from the measured value according to the following formula. α (mg / ml) is the concentration of the diluted sample.

Absorbance at a sample concentration of 1.00 mg / ml = (1.00 / α) × measured value of absorbance
(検量線の作成)
 標品として、Agilent Technologies製の単分散のPMMA(ピークトップ分子量:1944000、790000、467400、271400、144000、79250、35300、13300、7100、1960、1020、690)を測定し、示差屈折率検出器および吸光光度検出器のそれぞれについて、溶出容量をPMMA分子量に換算するための検量線を作成した。各検量線の作成には、前記解析ソフトを用いた。なお、本測定においてはPMMAの測定において、1944000と271400の両分子量の標準試料同士のピークが分離できる状態のカラムを用いた。
(Create a calibration curve)
As a standard, monodispersed PMMA (peak top molecular weight: 1944000, 790000, 467400, 271400, 144000, 79250, 35300, 13300, 7100, 1960, 1020, 690) manufactured by Agilent Technologies was measured, and a differential refractive index detector. A calibration curve for converting the elution volume into the PMMA molecular weight was prepared for each of the absorptiometric detectors. The analytical software was used to create each calibration curve. In this measurement, a column in a state where the peaks of standard samples having both molecular weights of 1944000 and 271400 can be separated in the PMMA measurement is used.
 なお、本装置においては、示差屈折率検出器から得られるシグナル強度はミリボルトで、吸光光度検出器から得られるシグナル強度は吸光度(abs unit:アブソーバンスユニット)で表される。 In this apparatus, the signal intensity obtained from the differential refractive index detector is expressed in millivolts, and the signal intensity obtained from the absorptiometric detector is expressed in absorbance (abs unit: Absorbance unit).
(試料の調整)
 得られた複層フィルムを圧力2MPa、230℃にて、3時間熱プレスすることにより加熱後、冷却して加熱処理されたフィルムを得た。その中央付近からフィルムの面に対して垂直に切断して得られたフィルム片を試料とした。
(Sample adjustment)
The resulting multilayer film was heated by hot pressing at 2 MPa and 230 ° C. for 3 hours, and then cooled to obtain a heat-treated film. A film piece obtained by cutting perpendicularly to the surface of the film from the center was used as a sample.
(測定)
 得られた試料を20mmol/lトリフルオロ酢酸ナトリウム含有HFIPに溶解し、試料が溶解した溶液(濃度1.00mg/ml)を調製した。当該溶液を0.45μmのポリテトラフルオロエチレン製フィルターでろ過した後、GPC測定した。このときの、溶出容量から換算した分子量(PMMA換算分子量)に対して、示差屈折率検出器で測定されたシグナル強度をプロットしたクロマトグラムを作成して、ピークトップ分子量(A)及びピークトップ分子量(A)におけるシグナル強度(a)を求めた。また、分子量(PMMA換算分子量)に対して、吸光光度検出器(測定波長280nm)で測定されたシグナル強度(吸光度)をプロットしたクロマトグラムを作成して、ピークトップ分子量(B)及びピークトップ分子量(B)におけるシグナル強度(吸光度、b)を求めた。
(Measurement)
The obtained sample was dissolved in HFIP containing 20 mmol / l sodium trifluoroacetate to prepare a solution (concentration 1.00 mg / ml) in which the sample was dissolved. The solution was filtered through a 0.45 μm polytetrafluoroethylene filter and then subjected to GPC measurement. At this time, a chromatogram in which the signal intensity measured by the differential refractive index detector is plotted with respect to the molecular weight converted from the elution volume (PMMA converted molecular weight) is prepared, and the peak top molecular weight (A) and the peak top molecular weight are prepared. The signal intensity (a) in (A) was determined. Also, a chromatogram in which the signal intensity (absorbance) measured with an absorptiometer (measurement wavelength 280 nm) is plotted against the molecular weight (PMMA equivalent molecular weight) is created, and the peak top molecular weight (B) and peak top molecular weight The signal intensity (absorbance, b) in (B) was determined.
得られたピークトップ分子量(A)及びピークトップ分子量(B)を下記式
(A-B)/A
に代入して得られた値は0.49であった。結果を表14にも示す。
The obtained peak top molecular weight (A) and peak top molecular weight (B) are expressed by the following formula (AB) / A
The value obtained by substituting for was 0.49. The results are also shown in Table 14.
 測定波長を320nmに変更したこと以外は、ピークトップ分子量(B)及びシグナル強度(吸光度、b)を求めた方法と同様にして、ピークトップ分子量(C)及びピークトップ分子量(C)におけるシグナル強度(吸光度、c)をそれぞれ求めた。ピークトップ分子量(A)とピークトップ分子量(C)とを下記式
(A-C)/A
に代入して得られた値は0.51であった。結果を表14にも示す。
The signal intensity at the peak top molecular weight (C) and the peak top molecular weight (C) was the same as the method for determining the peak top molecular weight (B) and the signal intensity (absorbance, b) except that the measurement wavelength was changed to 320 nm. (Absorbance, c) was determined. The peak top molecular weight (A) and the peak top molecular weight (C) are expressed by the following formula (AC) / A
The value obtained by substituting for was 0.51. The results are also shown in Table 14.
 単分散のPMMAとして、American Polymer Standard Corp.社製「PMMA85K」(重量平均分子量85450、数平均分子量74300、固有粘度0.309)を使用した。試料を当該PMMAに変更したこと以外は上記方法と同様にしてPMMAのGPC測定を行った。ピークトップ分子量(A)を求めた方法と同様にして求めた、示差屈折率検出器で測定されたピークトップ分子量におけるシグナル強度(x)は390.82mVであった。また、ピークトップ分子量(B)を求めた方法と同様にして求めた、吸光光度検出器(220nm)で測定されたピークトップ分子量におけるシグナル強度(吸光度、y)は269.28mV(0.26928アブソーバンスユニット)であった。 As a monodispersed PMMA, American Polymer Standard Corp. “PMMA85K” (weight average molecular weight 85450, number average molecular weight 74300, intrinsic viscosity 0.309) manufactured by the company was used. PMMA GPC measurement was performed in the same manner as the above method except that the sample was changed to the PMMA. The signal intensity (x) at the peak top molecular weight measured with a differential refractive index detector, which was determined in the same manner as the method for determining the peak top molecular weight (A), was 390.82 mV. In addition, the signal intensity (absorbance, y) at the peak top molecular weight measured with an absorptiometric detector (220 nm) obtained in the same manner as the method for determining the peak top molecular weight (B) was 269.28 mV (0.26928 absorber). Unit).
 シグナル強度(a)、ピークトップ分子量(b)、シグナル強度(x)及びシグナル強度(y)を下記式
(b/y)/(a/x)
に代入して得られた値は2.82×10-2であった。結果を表14にも示す。
Signal intensity (a), peak top molecular weight (b), signal intensity (x) and signal intensity (y) are expressed by the following formula (b / y) / (a / x)
The value obtained by substituting for was 2.82 × 10 −2 . The results are also shown in Table 14.
 シグナル強度(a)、ピークトップ分子量(c)、シグナル強度(x)及びシグナル強度(y)を下記式
(c/y)/(a/x)
に代入して得られた値は1.60×10-2であった。結果を表14にも示す。
Signal intensity (a), peak top molecular weight (c), signal intensity (x), and signal intensity (y) are represented by the following formula (c / y) / (a / x)
The value obtained by substituting for was 1.60 × 10 −2 . The results are also shown in Table 14.
[フィルム中の未溶解分]
得られた積層フィルムを2枚の透明なガラス板(20cm×20cm)の間に挟み、ガラス板とフィルムの間の空気を押出しながら110℃にてプレスロールを通すことにより予備接着を行った。予備接着後の積層体をオートクレーブにて135℃、1.2MPaで30分間静置することにより合わせガラスを作製(合計20枚)した。拡大鏡を用いて得られた合わせガラス中の異物の数を目視観察によりカウントした。合わせガラス20枚中の合計異物数を求め、以下の判定基準で評価した。結果を表14に示す。
 A:0(個/20枚)
 B:1(個/20枚)
 C:2~3(個/20枚)
 D:4~8(個/20枚)
 E:9以上(個/20枚)
[Undissolved content in the film]
The obtained laminated film was sandwiched between two transparent glass plates (20 cm × 20 cm), and preliminary adhesion was performed by passing a press roll at 110 ° C. while extruding air between the glass plate and the film. The laminated body after the preliminary adhesion was allowed to stand at 135 ° C. and 1.2 MPa for 30 minutes in an autoclave to produce a laminated glass (20 sheets in total). The number of foreign matters in the laminated glass obtained using a magnifying glass was counted by visual observation. The total number of foreign substances in 20 laminated glasses was determined and evaluated according to the following criteria. The results are shown in Table 14.
A: 0 (pieces / 20 sheets)
B: 1 (20 pieces)
C: 2-3 (pieces / 20 pieces)
D: 4-8 (pieces / 20 pieces)
E: 9 or more (pieces / 20 sheets)
[可視光透過率・日照透過率の測定]
 上記「フィルム中の未溶解分」と同様にして合わせガラスを作製した。島津製作所株式会社製の分光光度計「SolidSpec-3700」を用い、作製した合わせガラスについて、波長領域280~2500nmの透過率を測定した。そして、JIS R3106に準じ、380~780nmの可視光透過率(%)を求めた。また、JIS R3106記載の重価係数を用いて300~2500nmの日射透過率(%)を求めた。結果を表14に示す。
[Measurement of visible light transmittance and sunlight transmittance]
A laminated glass was produced in the same manner as in the above “undissolved part in the film”. Using a spectrophotometer “SolidSpec-3700” manufactured by Shimadzu Corporation, the transmittance of the produced laminated glass in the wavelength region of 280 to 2500 nm was measured. Then, according to JIS R3106, a visible light transmittance (%) of 380 to 780 nm was determined. Further, the solar transmittance (%) of 300 to 2500 nm was determined using the weight coefficient described in JIS R3106. The results are shown in Table 14.
[フィルムの着色性]
 上記「積層フィルムの作製」で得られた積層フィルムを、230℃、圧力2MPa、3時間熱処理した。熱処理前の積層フィルムと当該熱処理後の積層フィルムの黄色度をそれぞれ測定し、両者の黄色度の差(ΔYI)から以下の判定基準で着色性を評価した。測定は、スガ試験機株式会社製SMカラーコンピュータ「SM-T-H」を用い、JIS K 7105に従って行った。結果を表14に示す。
 A:0.5未満
 B:0.5以上1.0未満
 C:1.0以上2.0未満
 D:2.0以上3.0未満
 E:3.0以上
[Colorability of film]
The laminated film obtained in “Preparation of laminated film” was heat-treated at 230 ° C., pressure 2 MPa, and 3 hours. The yellowness of the laminated film before the heat treatment and the laminated film after the heat treatment were measured, and the colorability was evaluated from the difference in yellowness (ΔYI) between the two according to the following criteria. The measurement was performed according to JIS K 7105 using an SM color computer “SM-TH” manufactured by Suga Test Instruments Co., Ltd. The results are shown in Table 14.
A: Less than 0.5 B: 0.5 or more and less than 1.0 C: 1.0 or more and less than 2.0 D: 2.0 or more and less than 3.0 E: 3.0 or more
[回収物を用いた単層フィルムの作製]
 上記「積層フィルムの作製」にて得られた積層フィルムを1cm×1cmの大きさにカットした。カットした積層フィルム100質量部に対して、未使用のPVB-1の粉体70質量部、及び可塑剤として、ひまし油(グリセリントリカルボン酸エステルであって、カルボン酸エステル部分の86質量%がリシノール酸エステルであり、13質量%がパルミチン酸エステル、ステアリン酸エステル、オレイン酸エステル、リノール酸エステル、リノレン酸エステルのいずれかであり、1質量%がその他のカルボン酸エステルで構成;1分子あたりの水酸基の数2.6個、水酸基価160mgKOH/g、水酸基価に基づく数平均分子量910)30質量部の比率にて、株式会社東洋精機製作所製ラボプラストミル「Cモデル」を用い、180℃、50rpmにて5分間溶融混練した。溶融混練中、原料混合物からの発煙はなかった。混錬後のサンプルを熱プレス(170℃、30分)して、20cm×20cm、厚み760μmの単層フィルムを得た。
[Production of monolayer film using recovered material]
The laminated film obtained in the above “production of laminated film” was cut into a size of 1 cm × 1 cm. With respect to 100 parts by mass of the cut laminated film, 70 parts by mass of unused PVB-1 powder, and castor oil (glycerin tricarboxylic acid ester, 86% by mass of the carboxylic acid ester part was ricinoleic acid as a plasticizer. 13 mass% is any one of palmitic acid ester, stearic acid ester, oleic acid ester, linoleic acid ester, and linolenic acid ester, and 1 mass% is composed of other carboxylic acid esters; hydroxyl groups per molecule 2.6 number, hydroxyl value 160 mgKOH / g, number average molecular weight based on hydroxyl value 910) at a ratio of 30 parts by mass using a lab plast mill “C model” manufactured by Toyo Seiki Co., Ltd., 180 ° C., 50 rpm For 5 minutes. There was no fuming from the raw material mixture during melt kneading. The kneaded sample was hot-pressed (170 ° C., 30 minutes) to obtain a single-layer film having a size of 20 cm × 20 cm and a thickness of 760 μm.
[回収物を用いた単層フィルムの着色性]
 上記の「回収物を用いた単層フィルムの作製」で得られた単層フィルムを、230℃、圧力2MPa、3時間熱処理した。熱処理前の単層フィルムと当該熱処理後の単フィルムの黄色度をそれぞれ測定し、両者の黄色度の差(ΔYI)から以下の判定基準で着色性を評価した。測定は、スガ試験機株式会社製SMカラーコンピュータ「SM-T-H」を用い、JIS K 7105に従って行った。結果を表15に示す。
 A:0.5未満
 B:0.5以上1.0未満
 C:1.0以上2.0未満
 D:2.0以上3.0未満
 E:3.0以上
[Colorability of single-layer film using recovered material]
The single layer film obtained in the above-mentioned “Preparation of Single Layer Film Using Collected Material” was heat-treated at 230 ° C., pressure 2 MPa, and 3 hours. The yellowness of the single-layer film before the heat treatment and the single film after the heat treatment were measured, and the colorability was evaluated from the difference in yellowness (ΔYI) between the two according to the following criteria. The measurement was performed according to JIS K 7105 using an SM color computer “SM-TH” manufactured by Suga Test Instruments Co., Ltd. The results are shown in Table 15.
A: Less than 0.5 B: 0.5 or more and less than 1.0 C: 1.0 or more and less than 2.0 D: 2.0 or more and less than 3.0 E: 3.0 or more
[回収物を用いた単層フィルムのヘイズ]
 上記の(回収再利用単層PVBフィルムの作製)で得られた単層フィルムを、上記(フィルム中の未溶解分)と同様の方法で合わせガラス1枚を作製した。得られた合わせガラスをスガ試験機社製、ヘーズメーター(HZ-1)を使用し、合わせガラス-1のヘイズを測定し、以下の評価基準にて評価した。結果を表15に示す。
 A:0.5未満
 B:0.5以上1.0未満
 C:1.0以上2.0未満
 D:2.0以上3.0未満
 E:3.0以上
[Haze of single layer film using recovered material]
A single laminated glass was produced from the monolayer film obtained in the above (production of recovered and reused monolayer PVB film) in the same manner as above (undissolved portion in the film). The obtained laminated glass was measured by using the haze meter (HZ-1) manufactured by Suga Test Instruments Co., Ltd., and the haze of the laminated glass-1 was measured and evaluated according to the following evaluation criteria. The results are shown in Table 15.
A: Less than 0.5 B: 0.5 or more and less than 1.0 C: 1.0 or more and less than 2.0 D: 2.0 or more and less than 3.0 E: 3.0 or more
[回収物を用いた複層フィルムの作製]
 上記「積層フィルムの作製」にて得られた積層フィルムを1cm×1cmの大きさにカットした。カットした積層フィルム100質量部に対して、PVB-1の粉体70質量部、及び可塑剤として、ひまし油(グリセリントリカルボン酸エステルであって、カルボン酸エステル部分の86質量%がリシノール酸エステルであり、13質量%がパルミチン酸エステル、ステアリン酸エステル、オレイン酸エステル、リノール酸エステル、リノレン酸エステルのいずれかであり、1質量%がその他のカルボン酸エステルで構成;1分子あたりの水酸基の数2.6個、水酸基価160mgKOH/g、水酸基価に基づく数平均分子量910)15質量部、前述の濃度60質量%のアンチモン酸亜鉛メタノール分散液1.1質量部、前述のリン酸エステル0.17質量部及び前述のひまし油15質量部を混合して得られた分散液を、株式会社東洋精機製作所製ラボプラストミル「Cモデル」を用い、180℃、50rpmにて5分間溶融混練した。溶融混練中、原料混合物からの発煙はなかった。混錬後のサンプルを熱プレス(170℃、30分)して、20cm×20cm、厚み120μmの単層PVBフィルムを得た。これを層(Y’)とした。得られた層(Y’)を層(Y)の代わりに用いたこと以外は上記「積層フィルムの作製」と同様にして、層(X)(320μm)/層(Y’)(120μm)/層(X)(320μm)からなる積層フィルムを得た。
[Preparation of multilayer film using recovered material]
The laminated film obtained in the above “production of laminated film” was cut into a size of 1 cm × 1 cm. With respect to 100 parts by mass of the cut laminated film, 70 parts by mass of PVB-1 powder and castor oil (glycerin tricarboxylic acid ester, 86% by mass of the carboxylic acid ester part being ricinoleic acid ester) as a plasticizer 13% by mass is any one of palmitic acid ester, stearic acid ester, oleic acid ester, linoleic acid ester, and linolenic acid ester, and 1% by mass is composed of other carboxylic acid ester; the number of hydroxyl groups per molecule is 2 .6, hydroxyl value 160 mgKOH / g, number average molecular weight based on hydroxyl value 910) 15 parts by mass, 1.1 parts by mass of the above-mentioned zinc antimonate methanol dispersion having a concentration of 60% by mass, the above-mentioned phosphate ester 0.17 A dispersion obtained by mixing 15 parts by weight of the above-mentioned castor oil and 10 parts by weight of the above-mentioned castor oil Using Seisakusho Laboplastomill "C Model", 180 ° C., for 5 minutes melt-kneaded at 50 rpm. There was no fuming from the raw material mixture during melt kneading. The kneaded sample was hot-pressed (170 ° C., 30 minutes) to obtain a single-layer PVB film having a size of 20 cm × 20 cm and a thickness of 120 μm. This was designated as a layer (Y ′). Layer (X) (320 μm) / Layer (Y ′) (120 μm) / Similar to “Preparation of laminated film” except that the obtained layer (Y ′) was used instead of the layer (Y). A laminated film consisting of the layer (X) (320 μm) was obtained.
[回収物を用いた複層フィルムのヘイズ]
「回収物を用いた単層PVBフィルムのヘイズ」と同様の方法により、得られた回収物を用いた複層フィルムのヘイズを測定した。結果を表15に示す。
[Haze of multilayer film using recovered material]
The haze of the multilayer film using the obtained recovered material was measured in the same manner as in “Haze of single-layer PVB film using recovered material”. The results are shown in Table 15.
[回収物を用いた複層フィルムの可視光透過率・日照透過率の測定]
 「回収物を用いた単層PVBフィルムのヘイズ」と同様の方法により、得られた回収物を用いた複層フィルムの可視光透過率及び日照透過率を測定した。結果を表15に示す。
[Measurement of visible light transmittance and sunshine transmittance of multilayer film using collected material]
The visible light transmittance and sunshine transmittance of the multilayer film using the collected material were measured in the same manner as in “Haze of single-layer PVB film using collected material”. The results are shown in Table 15.
[回収物を用いた複層フィルムの着色性]
 「回収物を用いた単層PVBフィルムのヘイズ」と同様の方法により、得られた回収物を用いた複層フィルムの着色性を評価した。結果を表15に示す。
[Colorability of multilayer film using recovered material]
By the same method as “haze of single layer PVB film using recovered material”, the colorability of the multilayer film using the recovered material was evaluated. The results are shown in Table 15.
実施例2~5
 層(X)の作製に用いるPVB、層(Y)の作製に用いるPVB、回収物に添加するPVBをそれぞれ表14及び15に示すものに変更したこと以外は実施例1と同様にして各フィルムの作製及び評価を実施した。その結果を表14及び15に示す。
Examples 2-5
Each film in the same manner as in Example 1 except that the PVB used for the production of the layer (X), the PVB used for the production of the layer (Y), and the PVB added to the recovered material were changed to those shown in Tables 14 and 15, respectively. Were prepared and evaluated. The results are shown in Tables 14 and 15.
実施例6及び7
 層(X)の作製に用いるPVB、回収物に添加するPVBをそれぞれ表14及び15に示すものに変更し、層(X)および層(Y)の作製に用いる可塑剤をジブトキシエチルアジペートに変更したこと以外は、実施例1と同様にして各フィルムの作製及び評価を実施した。その結果を表14及び15に示す。
Examples 6 and 7
The PVB used for the production of the layer (X) and the PVB added to the recovered material were changed to those shown in Tables 14 and 15, respectively, and the plasticizer used for the production of the layer (X) and the layer (Y) was changed to dibutoxyethyl adipate. Except for the change, each film was produced and evaluated in the same manner as in Example 1. The results are shown in Tables 14 and 15.
実施例8
層(X)の作製に用いるPVB、層(Y)の作製に用いるPVB、回収物に添加するPVBをそれぞれ表14及び15に示すものに変更したこと以外は、実施例1と同様にして各フィルムの作製及び評価を実施した。その結果を表14及び15に示す。
Example 8
Each of the PVBs used for the production of the layer (X), the PVBs used for the production of the layer (Y), and the PVBs added to the recovered materials were changed to those shown in Tables 14 and 15, respectively. Film preparation and evaluation were performed. The results are shown in Tables 14 and 15.
実施例9~11
 回収物に添加する可塑剤をそれぞれ表14及び15に示すものに変更したこと以外は、実施例1と同様にして各フィルムの作製及び評価を実施した。その結果を表14及び15に示す。
Examples 9-11
Each film was produced and evaluated in the same manner as in Example 1 except that the plasticizer added to the recovered material was changed to those shown in Tables 14 and 15, respectively. The results are shown in Tables 14 and 15.
実施例12
 アンチモン酸亜鉛メタノール分散液の代わりに錫ドープ酸化インジウムイソプロパノール分散液(三菱マテリアル株式会社製「ITOイソプロパノール分散液」)を使用したこと以外は実施例1同様にして各フィルムの作製及び評価を実施した。その結果を表14及び15に示す。
Example 12
Each film was prepared and evaluated in the same manner as in Example 1 except that a tin-doped indium oxide isopropanol dispersion ("ITO isopropanol dispersion" manufactured by Mitsubishi Materials Corporation) was used instead of the zinc antimonate methanol dispersion. . The results are shown in Tables 14 and 15.
比較例1~3、5、7~9
 層(X)の作製に用いるPVB、層(Y)の作製に用いるPVB、回収物に添加するPVBをそれぞれ表14及び15に示すものに変更したこと以外は実施例1と同様にして各フィルムの作製及び評価を実施した。その結果を表14及び15に示す。
Comparative Examples 1 to 3, 5, 7 to 9
Each film in the same manner as in Example 1 except that the PVB used for the production of the layer (X), the PVB used for the production of the layer (Y), and the PVB added to the recovered material were changed to those shown in Tables 14 and 15, respectively. Were prepared and evaluated. The results are shown in Tables 14 and 15.
比較例4及び6
 層(X)の作製に用いるPVB、層(Y)の作製に用いるPVB、回収物に添加するPVBをそれぞれ表14及び15に示すものに変更し、層(X)および層(Y)の作製に用いる可塑剤をジブトキシエチルアジペートに変更したこと以外は、実施例1と同様にして各フィルムの作製及び評価を実施した。その結果を表14及び15に示す。
Comparative Examples 4 and 6
The PVB used for the production of the layer (X), the PVB used for the production of the layer (Y), and the PVB to be added to the recovered material are changed to those shown in Tables 14 and 15, respectively. Each film was produced and evaluated in the same manner as in Example 1 except that the plasticizer used in the above was changed to dibutoxyethyl adipate. The results are shown in Tables 14 and 15.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
実施例13
[層(X)の作製]
 合成したPVB-1の粉体50質量部、可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート19質量部、及び紫外線吸収剤としてチバ・ジャパン社製「Tinuvin328」を0.175質量部とを、株式会社東洋精機製作所製ラボプラストミル「Cモデル」を用い、170℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を150℃、5MPa、30分間熱プレスして、厚み310μmのフィルムを作製した。
Example 13
[Production of Layer (X)]
50 parts by mass of the synthesized PVB-1 powder, 19 parts by mass of triethylene glycol di-2-ethylhexanoate as a plasticizer, and 0.175 parts by mass of “Tinuvin 328” manufactured by Ciba Japan as an ultraviolet absorber Was melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using a lab plast mill “C model” manufactured by Toyo Seiki Seisakusho Co., Ltd. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 310 μm.
[層(Y)の作製]
 ZnSbである無水アンチモン酸亜鉛メタノール分散液(日産化学株式会社製「CX-Z693M-F」)をビーズミルで粉砕処理することにより、濃度60質量%のアンチモン酸亜鉛メタノール分散液を作製した。得られた分散液1.62質量部、リン酸エステルとしてビックケミー社製「DISPERBYK-102」0.24質量部及び可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート14.3質量部を混合して得られた分散液、トリエチレングリコール-ジ2-エチルヘキサノエート14.4質量部、酢酸マグネシウムと酢酸カリウムとの混合物(混合質量比:2/1)の25質量%水溶液0.10質量部、及び合成したPVB-16の粉体43質量部を、上記ラボプラストミルを用い、170℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を150℃、5MPa、30分間熱プレスして、厚み140μmのフィルムを作製した。
[Preparation of layer (Y)]
A ZnSb 2 O 6 anhydrous zinc antimonate methanol dispersion (“CX-Z693M-F” manufactured by Nissan Chemical Co., Ltd.) was pulverized with a bead mill to prepare a zinc antimonate methanol dispersion having a concentration of 60% by mass. . 1.62 parts by mass of the obtained dispersion, 0.24 parts by mass of “DISPERBYK-102” manufactured by BYK Chemie as a phosphate ester, and 14.3 parts by mass of triethylene glycol-di-2-ethylhexanoate as a plasticizer The dispersion obtained in this way, 14.4 parts by mass of triethylene glycol-di-2-ethylhexanoate, a 25% by mass aqueous solution 0.10 of a mixture of magnesium acetate and potassium acetate (mixing mass ratio: 2/1) 0.10 Mass parts and 43 parts by mass of the synthesized PVB-16 powder were melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using the Laboplast mill. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 140 μm.
[積層フィルムの作製]
層(X)及び層(Y)を層(X)/層(Y)/層(X)の順に重ね、厚さ760μmの型枠で135℃、10kg/cmの条件でプレスして、層(X)(310μm)/層(Y)(140μm)/層(X)(310μm)からなる積層フィルムを得た。
[Production of laminated film]
Layer (X) and layer (Y) are layered in the order of layer (X) / layer (Y) / layer (X), and pressed in a form of 760 μm under conditions of 135 ° C. and 10 kg / cm 2. A laminated film consisting of (X) (310 μm) / layer (Y) (140 μm) / layer (X) (310 μm) was obtained.
 得られた積層フィルムの評価を実施例1と同様にして評価した。また、得られた積層フィルムを回収物として用いたこと以外は実施例1と同様にして、回収物を用いた単層及び複層フィルムを作製し、それぞれ評価した。結果を表16及び17に示す。 Evaluation of the obtained laminated film was evaluated in the same manner as in Example 1. Moreover, except having used the obtained laminated | multilayer film as a recovered material, it carried out similarly to Example 1, and produced the single layer and the multilayer film which used the recovered material, and evaluated each. The results are shown in Tables 16 and 17.
比較例10~13
 層(X)の作製に用いるPVB、層(Y)の作製に用いるPVB、回収物に添加するPVBをそれぞれ表16及び17に示すものに変更したこと以外は実施例13と同様にして各フィルムの作製及び評価を実施した。その結果を表16及び17に示す。
Comparative Examples 10-13
Each film in the same manner as in Example 13 except that the PVB used for the production of the layer (X), the PVB used for the production of the layer (Y), and the PVB added to the recovered material were changed to those shown in Tables 16 and 17, respectively. Were prepared and evaluated. The results are shown in Tables 16 and 17.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
実施例14
[層(X)の作製]
 合成したPVB-1の粉体50質量部、可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート19質量部、及び紫外線吸収剤としてチバ・ジャパン社製「Tinuvin328」を0.175質量部とを、株式会社東洋精機製作所製ラボプラストミル「Cモデル」を用い、170℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を150℃、5MPa、30分間熱プレスして、厚み300μmのフィルムを作製した。
Example 14
[Production of Layer (X)]
50 parts by mass of the synthesized PVB-1 powder, 19 parts by mass of triethylene glycol di-2-ethylhexanoate as a plasticizer, and 0.175 parts by mass of “Tinuvin 328” manufactured by Ciba Japan as an ultraviolet absorber Was melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using a lab plast mill “C model” manufactured by Toyo Seiki Seisakusho Co., Ltd. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 300 μm.
[層(Y)の作製]
 ZnSbである無水アンチモン酸亜鉛メタノール分散液(日産化学株式会社製「CX-Z693M-F」)をビーズミルで粉砕処理することにより、濃度60質量%のアンチモン酸亜鉛メタノール分散液を作製した。得られた分散液1.62質量部、リン酸エステルとしてビックケミー社製「DISPERBYK-102」0.24質量部及び可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート21質量部を混合して得られた分散液、トリエチレングリコール-ジ2-エチルヘキサノエート22質量部、酢酸マグネシウムと酢酸カリウムとの混合物(混合質量比:2/1)の25質量%水溶液0.10質量部、及び合成したPVB-17の粉体43質量部を、上記ラボプラストミルを用い、170℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を150℃、5MPa、30分間熱プレスして、厚み160μmのフィルムを作製した。
[Preparation of layer (Y)]
A ZnSb 2 O 6 anhydrous zinc antimonate methanol dispersion (“CX-Z693M-F” manufactured by Nissan Chemical Co., Ltd.) was pulverized with a bead mill to prepare a zinc antimonate methanol dispersion having a concentration of 60% by mass. . 1.62 parts by mass of the obtained dispersion, 0.24 parts by mass of “DISPERBYK-102” manufactured by BYK Chemie as a phosphate ester, and 21 parts by mass of triethylene glycol-di-2-ethylhexanoate as a plasticizer were mixed. The obtained dispersion, 22 parts by mass of triethylene glycol-di-2-ethylhexanoate, 0.10 parts by mass of a 25% by mass aqueous solution of a mixture of magnesium acetate and potassium acetate (mixing mass ratio: 2/1), and 43 parts by mass of the synthesized PVB-17 powder was melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using the Laboplast mill. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 160 μm.
[積層フィルムの作製]
層(X)及び層(Y)を層(X)/層(Y)/層(X)の順に重ね、厚さ760μmの型枠で135℃、10kg/cmの条件でプレスして、層(X)(300μm)/層(Y)(160μm)/層(X)(300μm)からなる積層フィルムを得た。
[Production of laminated film]
Layer (X) and layer (Y) are layered in the order of layer (X) / layer (Y) / layer (X), and pressed in a form of 760 μm under conditions of 135 ° C. and 10 kg / cm 2. A laminated film consisting of (X) (300 μm) / layer (Y) (160 μm) / layer (X) (300 μm) was obtained.
 得られた積層フィルムの評価を実施例1と同様にして評価した。また、得られた積層フィルムを回収物として用いたことと、新たに添加するPVBの量と可塑剤の量を表18及び19に示すとおりに変更したこと以外は実施例1と同様にして、回収物を用いた単層及び複層フィルムを作製し、それぞれ評価した。結果を表18及び19に示す。 Evaluation of the obtained laminated film was evaluated in the same manner as in Example 1. Moreover, except having used the obtained laminated | multilayer film as a collection | recovery thing, and having changed the quantity of the PVB newly added and the quantity of a plasticizer as shown in Table 18 and 19, similarly to Example 1, Single layer and multilayer films using the recovered material were prepared and evaluated. The results are shown in Tables 18 and 19.
比較例14~17
 層(X)の作製に用いるPVB、層(Y)の作製に用いるPVB、回収物に添加するPVBをそれぞれ表18及び19に示すものに変更したこと以外は実施例14と同様にして各フィルムの作製及び評価を実施した。その結果を表18及び19に示す。
Comparative Examples 14-17
Each film in the same manner as in Example 14 except that the PVB used for the production of the layer (X), the PVB used for the production of the layer (Y), and the PVB added to the recovered material were changed to those shown in Tables 18 and 19, respectively. Were prepared and evaluated. The results are shown in Tables 18 and 19.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
実施例15
[層(X)の作製]
 合成したPVB-9の粉体46質量部、可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート23質量部、及び紫外線吸収剤としてチバ・ジャパン社製「Tinuvin328」を0.175質量部とを、株式会社東洋精機製作所製ラボプラストミル「Cモデル」を用い、170℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を150℃、5MPa、30分間熱プレスして、厚み320μmのフィルムを作製した。
Example 15
[Production of Layer (X)]
46 parts by mass of the synthesized PVB-9 powder, 23 parts by mass of triethylene glycol-di-2-ethylhexanoate as a plasticizer, and 0.175 parts by mass of “Tinuvin 328” manufactured by Ciba Japan as an ultraviolet absorber. Was melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using a lab plast mill “C model” manufactured by Toyo Seiki Seisakusho Co., Ltd. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 320 μm.
[層(Y)の作製]
 ZnSbである無水アンチモン酸亜鉛メタノール分散液(日産化学株式会社製「CX-Z693M-F」)をビーズミルで粉砕処理することにより、濃度60質量%のアンチモン酸亜鉛メタノール分散液を作製した。得られた分散液1.62質量部、リン酸エステルとしてビックケミー社製「DISPERBYK-102」0.24質量部及び可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート14.3質量部を混合して得られた分散液、トリエチレングリコール-ジ2-エチルヘキサノエート14.4質量部、酢酸マグネシウムと酢酸カリウムとの混合物(混合質量比:2/1)の25質量%水溶液0.10質量部、及び合成したPVB-16の粉体43質量部を、上記ラボプラストミルを用い、170℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を150℃、5MPa、30分間熱プレスして、厚み120μmのフィルムを作製した。
[Preparation of layer (Y)]
A ZnSb 2 O 6 anhydrous zinc antimonate methanol dispersion (“CX-Z693M-F” manufactured by Nissan Chemical Co., Ltd.) was pulverized with a bead mill to prepare a zinc antimonate methanol dispersion having a concentration of 60% by mass. . 1.62 parts by mass of the obtained dispersion, 0.24 parts by mass of “DISPERBYK-102” manufactured by BYK Chemie as a phosphate ester, and 14.3 parts by mass of triethylene glycol-di-2-ethylhexanoate as a plasticizer The dispersion obtained in this way, 14.4 parts by mass of triethylene glycol-di-2-ethylhexanoate, a 25% by mass aqueous solution 0.10 of a mixture of magnesium acetate and potassium acetate (mixing mass ratio: 2/1) 0.10 Mass parts and 43 parts by mass of the synthesized PVB-16 powder were melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using the Laboplast mill. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 120 μm.
[積層フィルムの作製]
層(X)及び層(Y)を層(X)/層(Y)/層(X)の順に重ね、厚さ760μmの型枠で135℃、10kg/cmの条件でプレスして、層(X)(320μm)/層(Y)(120μm)/層(X)(320μm)からなる積層フィルムを得た。
[Production of laminated film]
Layer (X) and layer (Y) are layered in the order of layer (X) / layer (Y) / layer (X), and pressed in a form of 760 μm under conditions of 135 ° C. and 10 kg / cm 2. A laminated film consisting of (X) (320 μm) / layer (Y) (120 μm) / layer (X) (320 μm) was obtained.
 得られた積層フィルムの評価を実施例1と同様にして評価した。また、得られた積層フィルムを回収物として用いたこと、並びに新たに添加するPVBの種類と量、及び可塑剤の量を表20及び21に示すとおりに変更したこと以外は実施例1と同様にして、回収物を用いた単層及び複層フィルムを作製し、それぞれ評価した。結果を表20及び21に示す。 Evaluation of the obtained laminated film was evaluated in the same manner as in Example 1. Moreover, it was the same as Example 1 except having used the obtained laminated | multilayer film as a collection | recovery, and having changed the kind and quantity of PVB to add newly, and the quantity of a plasticizer as shown in Table 20 and 21. Thus, single-layer and multilayer films using the recovered material were prepared and evaluated. The results are shown in Tables 20 and 21.
比較例18~21
 層(X)の作製に用いるPVB、層(Y)の作製に用いるPVB、回収物に添加するPVBをそれぞれ表20及び21に示すものに変更したこと以外は実施例15と同様にして各フィルムの作製及び評価を実施した。その結果を表20及び21に示す。
Comparative Examples 18-21
Each film in the same manner as in Example 15 except that the PVB used for the production of the layer (X), the PVB used for the production of the layer (Y), and the PVB added to the recovered material were changed to those shown in Tables 20 and 21, respectively. Were prepared and evaluated. The results are shown in Tables 20 and 21.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
実施例16
[層(X)の作製]
 合成したPVB-9の粉体46質量部、可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート23質量部、及び紫外線吸収剤としてチバ・ジャパン社製「Tinuvin328」を0.175質量部とを、株式会社東洋精機製作所製ラボプラストミル「Cモデル」を用い、170℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を150℃、5MPa、30分間熱プレスして、厚み310μmのフィルムを作製した。
Example 16
[Production of Layer (X)]
46 parts by mass of the synthesized PVB-9 powder, 23 parts by mass of triethylene glycol-di-2-ethylhexanoate as a plasticizer, and 0.175 parts by mass of “Tinuvin 328” manufactured by Ciba Japan as an ultraviolet absorber. Was melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using a lab plast mill “C model” manufactured by Toyo Seiki Seisakusho Co., Ltd. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 310 μm.
[層(Y)の作製]
 ZnSbである無水アンチモン酸亜鉛メタノール分散液(日産化学株式会社製「CX-Z693M-F」)をビーズミルで粉砕処理することにより、濃度60質量%のアンチモン酸亜鉛メタノール分散液を作製した。得られた分散液1.62質量部、リン酸エステルとしてビックケミー社製「DISPERBYK-102」0.24質量部及び可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート21質量部を混合して得られた分散液、トリエチレングリコール-ジ2-エチルヘキサノエート21質量部、酢酸マグネシウムと酢酸カリウムとの混合物(混合質量比:2/1)の25質量%水溶液0.10質量部、及び合成したPVB-17の粉体43質量部を、上記ラボプラストミルを用い、170℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を150℃、5MPa、30分間熱プレスして、厚み140μmのフィルムを作製した。
[Preparation of layer (Y)]
A ZnSb 2 O 6 anhydrous zinc antimonate methanol dispersion (“CX-Z693M-F” manufactured by Nissan Chemical Co., Ltd.) was pulverized with a bead mill to prepare a zinc antimonate methanol dispersion having a concentration of 60% by mass. . 1.62 parts by mass of the obtained dispersion, 0.24 parts by mass of “DISPERBYK-102” manufactured by BYK Chemie as a phosphate ester, and 21 parts by mass of triethylene glycol-di-2-ethylhexanoate as a plasticizer were mixed. The obtained dispersion, 21 parts by mass of triethylene glycol-di-2-ethylhexanoate, 0.10 parts by mass of a 25% by mass aqueous solution of a mixture of magnesium acetate and potassium acetate (mixing mass ratio: 2/1), and 43 parts by mass of the synthesized PVB-17 powder was melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using the Laboplast mill. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 140 μm.
[積層フィルムの作製]
層(X)及び層(Y)を層(X)/層(Y)/層(X)の順に重ね、厚さ760μmの型枠で135℃、10kg/cmの条件でプレスして、層(X)(310μm)/層(Y)(140μm)/層(X)(310μm)からなる積層フィルムを得た。
[Production of laminated film]
Layer (X) and layer (Y) are layered in the order of layer (X) / layer (Y) / layer (X), and pressed in a form of 760 μm under conditions of 135 ° C. and 10 kg / cm 2. A laminated film consisting of (X) (310 μm) / layer (Y) (140 μm) / layer (X) (310 μm) was obtained.
 得られた積層フィルムの評価を実施例1と同様にして評価した。また、得られた積層フィルムを回収物として用いたこと、並びに新たに添加するPVBの種類と量、及び可塑剤の量を表22及び23に示すとおりに変更したこと以外は実施例1と同様にして、回収物を用いた単層及び複層フィルムを作製し、それぞれ評価した。結果を表22及び23に示す。 Evaluation of the obtained laminated film was evaluated in the same manner as in Example 1. Moreover, it was the same as that of Example 1 except having used the obtained laminated | multilayer film as a collection | recovery, and having changed the kind and quantity of PVB to add newly, and the quantity of a plasticizer as shown in Table 22 and 23. Thus, single-layer and multilayer films using the recovered material were prepared and evaluated. The results are shown in Tables 22 and 23.
比較例22~25
 層(X)の作製に用いるPVB、層(Y)の作製に用いるPVB、回収物に添加するPVBをそれぞれ表22及び23に示すものに変更したこと以外は実施例16と同様にして各フィルムの作製及び評価を実施した。その結果を表22及び23に示す。
Comparative Examples 22-25
Each film in the same manner as in Example 16 except that the PVB used for the production of the layer (X), the PVB used for the production of the layer (Y), and the PVB added to the recovered material were changed to those shown in Tables 22 and 23, respectively. Were prepared and evaluated. The results are shown in Tables 22 and 23.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
実施例17
[層(X)の作製]
 合成したPVB-10の粉体40.6質量部、可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート28.4質量部、及び紫外線吸収剤としてチバ・ジャパン社製「Tinuvin328」を0.175質量部とを、株式会社東洋精機製作所製ラボプラストミル「Cモデル」を用い、170℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を150℃、5MPa、30分間熱プレスして、厚み320μmのフィルムを作製した。
Example 17
[Production of Layer (X)]
40.6 parts by mass of the synthesized PVB-10 powder, 28.4 parts by mass of triethylene glycol-di-2-ethylhexanoate as a plasticizer, and “Tinuvin 328” manufactured by Ciba Japan Co., Ltd. as an ultraviolet absorber are set to 0.0. 175 parts by mass was melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using a lab plast mill “C model” manufactured by Toyo Seiki Co., Ltd. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 320 μm.
[層(Y)の作製]
 ZnSbである無水アンチモン酸亜鉛メタノール分散液(日産化学株式会社製「CX-Z693M-F」)をビーズミルで粉砕処理することにより、濃度60質量%のアンチモン酸亜鉛メタノール分散液を作製した。得られた分散液1.62質量部、リン酸エステルとしてビックケミー社製「DISPERBYK-102」0.24質量部及び可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート21質量部を混合して得られた分散液、トリエチレングリコール-ジ2-エチルヘキサノエート21質量部、酢酸マグネシウムと酢酸カリウムとの混合物(混合質量比:2/1)の25質量%水溶液0.10質量部、及び合成したPVB-17の粉体43質量部を、上記ラボプラストミルを用い、170℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を150℃、5MPa、30分間熱プレスして、厚み120μmのフィルムを作製した。
[Preparation of layer (Y)]
A ZnSb 2 O 6 anhydrous zinc antimonate methanol dispersion (“CX-Z693M-F” manufactured by Nissan Chemical Co., Ltd.) was pulverized with a bead mill to prepare a zinc antimonate methanol dispersion having a concentration of 60% by mass. . 1.62 parts by mass of the obtained dispersion, 0.24 parts by mass of “DISPERBYK-102” manufactured by BYK Chemie as a phosphate ester, and 21 parts by mass of triethylene glycol-di-2-ethylhexanoate as a plasticizer were mixed. The obtained dispersion, 21 parts by mass of triethylene glycol-di-2-ethylhexanoate, 0.10 parts by mass of a 25% by mass aqueous solution of a mixture of magnesium acetate and potassium acetate (mixing mass ratio: 2/1), and 43 parts by mass of the synthesized PVB-17 powder was melt-kneaded for 5 minutes at 170 ° C. and 50 rpm using the Laboplast mill. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film having a thickness of 120 μm.
[積層フィルムの作製]
層(X)及び層(Y)を層(X)/層(Y)/層(X)の順に重ね、厚さ760μmの型枠で135℃、10kg/cmの条件でプレスして、層(X)(320μm)/層(Y)(120μm)/層(X)(320μm)からなる積層フィルムを得た。
[Production of laminated film]
Layer (X) and layer (Y) are layered in the order of layer (X) / layer (Y) / layer (X), and pressed in a form of 760 μm under conditions of 135 ° C. and 10 kg / cm 2. A laminated film consisting of (X) (320 μm) / layer (Y) (120 μm) / layer (X) (320 μm) was obtained.
 得られた積層フィルムの評価を実施例1と同様にして評価した。また、得られた積層フィルムを回収物として用いたこと、並びに新たに添加するPVBの種類と量、及び可塑剤の量を表24及び25に示すとおりに変更したこと以外は実施例1と同様にして、回収物を用いた単層及び複層フィルムを作製し、それぞれ評価した。結果を表24及び25に示す。 Evaluation of the obtained laminated film was evaluated in the same manner as in Example 1. Moreover, it was the same as that of Example 1 except having used the obtained laminated | multilayer film as a collection | recovery, and having changed the kind and quantity of PVB to add newly, and the quantity of a plasticizer as shown in Table 24 and 25. Thus, single-layer and multilayer films using the recovered material were prepared and evaluated. The results are shown in Tables 24 and 25.
比較例26~29
 層(X)の作製に用いるPVB、層(Y)の作製に用いるPVB、回収物に添加するPVBをそれぞれ表24及び25に示すものに変更したこと以外は実施例17と同様にして各フィルムの作製及び評価を実施した。その結果を表24及び25に示す。
Comparative Examples 26-29
Each film in the same manner as in Example 17 except that the PVB used for the production of the layer (X), the PVB used for the production of the layer (Y), and the PVB added to the recovered material were changed to those shown in Tables 24 and 25, respectively. Were prepared and evaluated. The results are shown in Tables 24 and 25.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 上記実施例において、本発明の複層フィルムは、十分な遮熱性を有し、加熱による着色が少なく、異物(未溶解分)が少ないことが示されている。そして、当該複層フィルムの回収物を用いたフィルムもまた、着色が少なく、異物(未溶解分)が少なく、優れた透明性を有することが示されている。 In the above examples, it is shown that the multilayer film of the present invention has sufficient heat shielding properties, little coloring due to heating, and few foreign matters (undissolved content). And the film using the collection | recovery of the said multilayer film is also shown that there is little coloring, there are few foreign materials (undissolved part), and it has the outstanding transparency.

Claims (8)

  1.  アセタール化度が55~80モル%でありビニルエステル単量体単位の含有量が0.1~1.5モル%であり粘度平均重合度が1400~5000であるポリビニルアセタール(I)、紫外線吸収剤、及び可塑剤を含有する層(X)と、
     アセタール化度が70~85モル%でありビニルエステル単量体単位の含有量が5~15モル%であり粘度平均重合度が1400~5000であるポリビニルアセタール(II)、熱線遮蔽微粒子、界面活性剤、アルカリ金属塩及び/又はアルカリ土類金属塩、並びに可塑剤を含有する層(Y)とを有し、
     層(Y)の両外側に層(X)が配置され、かつ
     下記式(1)及び(2)を満たす複層フィルム。
    (A-B)/A<0.80  (1)
    1.00×10-2<(b/y)/(a/x)<2.00×10-1  (2)
     式中、
    A:230℃において3時間加熱された前記複層フィルムをゲルパーミエーションクロマトグラフィー測定したときの、示差屈折率検出器で測定されるポリマー成分のピークトップ分子量
    a:ピークトップ分子量(A)におけるシグナル強度
    B:230℃において3時間加熱された前記複層フィルムをゲルパーミエーションクロマトグラフィー測定したときの、吸光光度検出器(測定波長280nm)で測定されるポリマー成分のピークトップ分子量
    b:ピークトップ分子量(B)におけるシグナル強度
    x:単分散のポリメタクリル酸メチルをゲルパーミエーションクロマトグラフィー測定したときの、示差屈折率検出器で測定されるピークトップ分子量におけるシグナル強度
    y:前記単分散のポリメタクリル酸メチルをゲルパーミエーションクロマトグラフィー測定したときの、吸光光度検出器(測定波長220nm)で測定されるピークトップ分子量におけるシグナル強度
    である。
    Polyvinyl acetal (I) having an acetalization degree of 55 to 80 mol%, a vinyl ester monomer unit content of 0.1 to 1.5 mol% and a viscosity average polymerization degree of 1400 to 5000, UV absorption A layer (X) containing an agent and a plasticizer;
    Polyvinyl acetal (II) having an acetalization degree of 70 to 85 mol%, a vinyl ester monomer unit content of 5 to 15 mol% and a viscosity average polymerization degree of 1400 to 5000, heat ray shielding fine particles, surface activity A layer (Y) containing an agent, an alkali metal salt and / or an alkaline earth metal salt, and a plasticizer,
    A multilayer film in which the layer (X) is disposed on both outer sides of the layer (Y) and satisfies the following formulas (1) and (2).
    (AB) / A <0.80 (1)
    1.00 × 10 −2 <(b / y) / (a / x) <2.00 × 10 −1 (2)
    Where
    A: When the multilayer film heated at 230 ° C. for 3 hours is measured by gel permeation chromatography, the peak top molecular weight of the polymer component measured by the differential refractive index detector a: the signal at the peak top molecular weight (A) Intensity B: peak top molecular weight of polymer component measured with an absorptiometric detector (measurement wavelength: 280 nm) when the multilayer film heated at 230 ° C. for 3 hours is measured by gel permeation chromatography b: peak top molecular weight Signal intensity x in (B): Signal intensity at peak top molecular weight measured by differential refractive index detector when monodisperse polymethyl methacrylate is measured by gel permeation chromatography y: Monodisperse polymethacrylic acid Methyl gel permeation Upon chromatographic measurement, a signal intensity at the peak top molecular weight measured by spectrophotometric detector (measuring wavelength 220 nm).
  2.  下記式(3)及び(4)を満たす請求項1に記載の複層フィルム。
    (A-C)/A<0.80  (3)
    5.00×10-3<(c/y)/(a/x)<7.00×10-2  (4)
     式中、
    A:前記式(1)と同じ
    a、x、y:前記式(2)と同じ
    C:230℃において3時間加熱された前記複層フィルムをゲルパーミエーションクロマトグラフィー測定したときの、吸光光度検出器(測定波長320nm)で測定されるポリマー成分のピークトップ分子量
    c:ピークトップ分子量(C)におけるシグナル強度
    である。
    The multilayer film of Claim 1 which satisfy | fills following formula (3) and (4).
    (AC) / A <0.80 (3)
    5.00 × 10 −3 <(c / y) / (a / x) <7.00 × 10 −2 (4)
    Where
    A: Same as the formula (1), a, x, y: Same as the formula (2) C: Absorbance detection when the multilayer film heated at 230 ° C. for 3 hours is measured by gel permeation chromatography The peak top molecular weight c of the polymer component measured with a vessel (measurement wavelength: 320 nm): the signal intensity at the peak top molecular weight (C).
  3.  ポリビニルアセタール(I)及びポリビニルアセタール(II)がポリビニルブチラールである請求項1又は2に記載の複層フィルム。 The multilayer film according to claim 1 or 2, wherein the polyvinyl acetal (I) and the polyvinyl acetal (II) are polyvinyl butyral.
  4.  請求項1~3のいずれかに記載の複層フィルムからなる合わせガラス用中間膜。 An interlayer film for laminated glass comprising the multilayer film according to any one of claims 1 to 3.
  5.  請求項4に記載の合わせガラス用中間膜を用いて複数のガラス板を接着してなる合わせガラス。 Laminated glass obtained by bonding a plurality of glass plates using the interlayer film for laminated glass according to claim 4.
  6.  請求項1~3のいずれかに記載の複層フィルムの回収物を溶融混練してから製膜する単層フィルムの製造方法。 A method for producing a single layer film, wherein the recovered product of the multilayer film according to any one of claims 1 to 3 is melt-kneaded and then formed.
  7.  前記回収物、アセタール化度が55~85モル%でありビニルエステル単量体単位の含有量が0.1~15モル%であり粘度平均重合度が1400~5000であるポリビニルアセタール(III)、及び可塑剤を溶融混練してから製膜する請求項6に記載の単層フィルムの製造方法。 The recovered product, polyvinyl acetal (III) having a degree of acetalization of 55 to 85 mol%, a content of vinyl ester monomer units of 0.1 to 15 mol% and a viscosity average polymerization degree of 1400 to 5000, The method for producing a single layer film according to claim 6, wherein the film is formed after melt-kneading the plasticizer.
  8.  請求項1~3のいずれかに記載の複層フィルムの回収物、アセタール化度が55~85モル%でありビニルエステル単量体単位の含有量が0.1~15モル%であり粘度平均重合度が1400~5000であるポリビニルアセタール(III)、可塑剤、熱線遮蔽微粒子、界面活性剤、並びにアルカリ金属塩及び/又はアルカリ土類金属塩を溶融混練してから製膜してなる層(Y’)の両外側に、
     ポリビニルアセタール(I)、紫外線吸収剤、及び可塑剤を溶融混練してから製膜してなる層(X)を配置する複層フィルムの製造方法。
     
    The recovered multilayer film according to any one of claims 1 to 3, wherein the degree of acetalization is 55 to 85 mol%, the content of vinyl ester monomer units is 0.1 to 15 mol%, and the viscosity average A layer formed by melt-kneading a polyvinyl acetal (III) having a polymerization degree of 1400 to 5000, a plasticizer, a heat ray shielding fine particle, a surfactant, and an alkali metal salt and / or alkaline earth metal salt ( On both outer sides of Y ′)
    The manufacturing method of the multilayer film which arrange | positions layer (X) formed by melt-kneading polyvinyl acetal (I), a ultraviolet absorber, and a plasticizer, and forming into a film.
PCT/JP2013/079023 2013-10-25 2013-10-25 Multilayer film and intermediate film for laminated glass formed of same WO2015059831A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013549649A JP5469287B1 (en) 2013-10-25 2013-10-25 Multilayer film and interlayer film for laminated glass comprising the same
PCT/JP2013/079023 WO2015059831A1 (en) 2013-10-25 2013-10-25 Multilayer film and intermediate film for laminated glass formed of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/079023 WO2015059831A1 (en) 2013-10-25 2013-10-25 Multilayer film and intermediate film for laminated glass formed of same

Publications (1)

Publication Number Publication Date
WO2015059831A1 true WO2015059831A1 (en) 2015-04-30

Family

ID=50749746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079023 WO2015059831A1 (en) 2013-10-25 2013-10-25 Multilayer film and intermediate film for laminated glass formed of same

Country Status (2)

Country Link
JP (1) JP5469287B1 (en)
WO (1) WO2015059831A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094257A (en) * 2017-03-27 2019-06-20 株式会社クラレ Polyvinyl acetal resin film for glass laminate
CN112409677A (en) * 2020-10-12 2021-02-26 上海春宜药品包装材料有限公司 Degradable composite membrane and preparation method thereof
EP3636612A4 (en) * 2017-06-08 2021-03-17 Kuraray Co., Ltd. Method for reusing intermediate film for laminated glass

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10259198B2 (en) 2014-02-18 2019-04-16 Kuraray Co., Ltd. Interlayer film for laminated glass
JP6501498B2 (en) * 2014-11-07 2019-04-17 マークテック株式会社 Rubber paint
WO2016076338A1 (en) 2014-11-10 2016-05-19 株式会社クラレ Intermediate film for laminated glass, and laminated glass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003252655A (en) * 2002-02-27 2003-09-10 Sekisui Chem Co Ltd Interlayer for laminated glass and laminated glass
JP2004002108A (en) * 2002-05-31 2004-01-08 Sekisui Chem Co Ltd Intermediate film for laminated glass and laminated glass
JP2011508802A (en) * 2007-12-21 2011-03-17 セキスイ・スペシャルティ・ケミカルズ・アメリカ・エルエルシー How to make low color polyvinyl alcohol
JP2011084468A (en) * 2009-02-23 2011-04-28 Sekisui Chem Co Ltd Interlayer for laminated glass and laminated glass
JP2011251906A (en) * 2003-12-26 2011-12-15 Sekisui Chem Co Ltd Intermediate film for laminated glass and laminated glass
JP2012025645A (en) * 2010-07-28 2012-02-09 Kuraray Co Ltd Interlayer for laminated glass, method for producing the same and laminated glass using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003252655A (en) * 2002-02-27 2003-09-10 Sekisui Chem Co Ltd Interlayer for laminated glass and laminated glass
JP2004002108A (en) * 2002-05-31 2004-01-08 Sekisui Chem Co Ltd Intermediate film for laminated glass and laminated glass
JP2011251906A (en) * 2003-12-26 2011-12-15 Sekisui Chem Co Ltd Intermediate film for laminated glass and laminated glass
JP2011508802A (en) * 2007-12-21 2011-03-17 セキスイ・スペシャルティ・ケミカルズ・アメリカ・エルエルシー How to make low color polyvinyl alcohol
JP2011084468A (en) * 2009-02-23 2011-04-28 Sekisui Chem Co Ltd Interlayer for laminated glass and laminated glass
JP2012025645A (en) * 2010-07-28 2012-02-09 Kuraray Co Ltd Interlayer for laminated glass, method for producing the same and laminated glass using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094257A (en) * 2017-03-27 2019-06-20 株式会社クラレ Polyvinyl acetal resin film for glass laminate
JP7046789B2 (en) 2017-03-27 2022-04-04 クラレイ ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツング Polyvinyl acetal resin film for laminated glass
EP3636612A4 (en) * 2017-06-08 2021-03-17 Kuraray Co., Ltd. Method for reusing intermediate film for laminated glass
US11518147B2 (en) 2017-06-08 2022-12-06 Kuraray Europe Gmbh Method for recycling intermediate film for laminated glass
CN112409677A (en) * 2020-10-12 2021-02-26 上海春宜药品包装材料有限公司 Degradable composite membrane and preparation method thereof

Also Published As

Publication number Publication date
JPWO2015059831A1 (en) 2017-03-09
JP5469287B1 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5469286B1 (en) Multilayer film and interlayer film for laminated glass comprising the same
JP5632077B1 (en) Composition with excellent transparency
JP5469287B1 (en) Multilayer film and interlayer film for laminated glass comprising the same
JP6441307B2 (en) Interlayer film for laminated glass
JP5420804B1 (en) Film containing polyvinyl acetal
JP5529345B1 (en) Polyvinyl acetal composition
JP5420808B1 (en) Film containing polyvinyl acetal
JP5469288B1 (en) Multilayer film and interlayer film for laminated glass comprising the same
JP6259307B2 (en) Intermediate film for laminated glass and laminated glass using the same
JP5469289B1 (en) Multilayer film and interlayer film for laminated glass comprising the same
JP2012530034A (en) Low haze, infrared absorbing interlayer film for laminated glass
JP5420806B1 (en) Polyvinyl acetal and interlayer film for laminated glass containing the same
JP5420805B1 (en) Polyvinyl acetal and interlayer film for laminated glass containing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013549649

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896054

Country of ref document: EP

Kind code of ref document: A1