WO2015059777A1 - Method for separating actinide and device for treating spent fuel - Google Patents

Method for separating actinide and device for treating spent fuel Download PDF

Info

Publication number
WO2015059777A1
WO2015059777A1 PCT/JP2013/078638 JP2013078638W WO2015059777A1 WO 2015059777 A1 WO2015059777 A1 WO 2015059777A1 JP 2013078638 W JP2013078638 W JP 2013078638W WO 2015059777 A1 WO2015059777 A1 WO 2015059777A1
Authority
WO
WIPO (PCT)
Prior art keywords
spent fuel
ionic liquid
fluoride
solution
dissolving
Prior art date
Application number
PCT/JP2013/078638
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 渡邉
祐子 可児
笹平 朗
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/078638 priority Critical patent/WO2015059777A1/en
Publication of WO2015059777A1 publication Critical patent/WO2015059777A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/42Reprocessing of irradiated fuel
    • G21C19/44Reprocessing of irradiated fuel of irradiated solid fuel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention relates to a method and apparatus for separating spent fuel components into uranium and plutonium, minor actinides and fission products, that is, a separation method and spent fuel processing apparatus for separating actinides.
  • the spent fuel discharged from the nuclear power plant is planned to be processed into vitrified material and disposed of after the nuclear fuel material is recovered by reprocessing.
  • the vitrified material contains minor actinides, which are radionuclides with a very long half-life, and therefore the vitrified material can reach hundreds of thousands of years by geological disposal. It is said that it needs to be kept stable.
  • the actinide means an element having an atomic number of 89 to 103, and corresponds to an element group called uranium (U), plutonium (Pu), or a minor actinide used as nuclear fuel.
  • the minor actinide refers to an element obtained by removing Pu from a transuranium element among actinide elements, and corresponds to neptunium, americium, curium, and the like.
  • the minor actinides are separated from the high-level radioactive liquid waste generated during the reprocessing of spent fuel, and the neutrons are irradiated to the minor actinides to give a short half-life radionuclide.
  • the technology of converting to is being studied.
  • the high level radioactive liquid waste is a liquid after separation of uranium (U) and Pu from a solution in which spent fuel is dissolved in nitric acid.
  • the high level radioactive liquid waste mainly contains fission products and minor actinides. Is dissolved.
  • uranium and plutonium are separated by reprocessing spent fuel, and minor actinides are separated by a minor actinide separation process from high-level radioactive liquid waste.
  • Each product is separated.
  • Various methods for separating minor actinides from high-level radioactive liquid waste have been studied. For example, methods for selectively separating minor actinides from high-level radioactive liquid waste using an extractant have been studied.
  • an ionic liquid which is a substance consisting only of ions and has a property of becoming a liquid near room temperature, has attracted attention.
  • the ionic liquid can change the combination of the cation and anion which comprise it according to various uses.
  • Typical cations include imidazolium, pyridinium, pyrrolidinium, piperidinium, ammonium, and phosphonium.
  • Representative anions include halide ions (Cl ⁇ , Br ⁇ , I ⁇ ), tetrafluoroborate (BF 4 ⁇ ), hexafluorophosphate (PF 6 ⁇ ), bis (trifluoromethylsulfonyl) amide ( C 2 F 6 NO 4 S 2 ⁇ ), trifluoromethanesulfonate (CF 3 O 3 S ⁇ ), trifluoroacetate (CF 3 COO ⁇ ) and the like.
  • Japanese Patent Publication No. 2002-503820 discloses a method of separating U and Pu by dissolving a spent fuel or a substance containing a spent fuel component in an ionic liquid.
  • Japanese Patent Publication No. 2001-516871 describes a method of regenerating used metal salt generated when reprocessing irradiated fuel with molten salt with an ionic liquid.
  • Non-Patent Document 1 describes a method of separating various elements by supplying components contained in spent fuel such as uranium oxide to an ionic liquid, blowing chlorine gas into the ionic liquid, and performing electrolysis. .
  • the ionic liquid when reprocessing spent fuel or handling radionuclide-containing substances, the ionic liquid contains hydrogen atoms that tend to decelerate neutrons compared to water-based solvents such as nitric acid solutions. Since the amount of ionic liquid used as a solvent is smaller than the method using water as a solvent, it is less likely to generate decelerated neutrons that contribute to the criticality, that is, it is easier to manage operations without causing criticality. There are benefits.
  • Japanese Patent Publication No. 2002-503820 discloses a method for dissolving a spent fuel or a substance containing its component in an ionic liquid, but data such as the amount of the spent fuel component dissolved in the ionic liquid is shown. Absent. In [Non-Patent Document 1], it is necessary to blow chlorine gas, which is corrosive gas, into the ionic liquid in order to dissolve and separate spent fuel components. In this method, chlorine gas is treated. It is expected that the equipment will be complicated, such as the need to install off-gas treatment equipment. Moreover, since chlorine gas is used in [Non-Patent Document 1], it is expected that a normal spent fuel whose chemical form is an oxide is hardly dissolved in an ionic liquid as it is. Easily dissolving the spent fuel component in the ionic liquid is also considered as a particular problem of the method of separating the spent fuel component using the ionic liquid.
  • spent fuel is reacted with a fluorinating agent to produce solid fluoride
  • the produced solid fluoride is dissolved in an ionic liquid
  • U and Pu fission from the solution in which the solid fluoride is dissolved in the ionic liquid
  • the present invention also provides a fluorination treatment apparatus for producing a solid fluoride by reacting a spent fuel with a fluorinating agent, a dissolution tank for producing a solution in which the solid fluoride is dissolved in an ionic liquid, and the solution.
  • components of spent fuel can be efficiently dissolved in an ionic liquid, and facilities for separating spent fuel components into U and Pu, fission products, and minor actinides are provided. It can be a simple facility. In the present invention, separating U and Pu, fission products, and minor actinides will be referred to as separating actinides.
  • the present inventors have newly found through experiments that a compound having a chemical form of fluoride has high solubility in an ionic liquid.
  • Table 1 shows the amount of fluoride dissolved in the ionic liquid obtained by this experiment.
  • the vertical axis in Table 1 represents tetrafluoroborate (BF 4 ⁇ ), hexafluorophosphate (PF 6 ⁇ ), bis (trifluoromethylsulfonyl) amide (C 2 F 6 NO 4 S 2 ⁇ ) as anions.
  • Trifluoromethanesulfonate (CF 3 O 3 S ⁇ ), chloride ion (Cl ⁇ ) were used in the experiment.
  • anion species are arranged in the Lewis basic order of anions, and trifluoroacetate (CF 3 COO ⁇ ) is described as a reference.
  • cerium fluoride was typically supplied to each ionic liquid, dissolved at a temperature of 100 ° C. with stirring for 1 hour, and then the amount of cerium dissolved in the solution was measured. . It is said that ionic liquids have been developed since the 1990s, and there are almost no examples in which the amount of inorganic compounds dissolved in such ionic liquids has been reported.
  • an ionic liquid having an imidazolium cation has a strong Lewis basic ionic liquid and tends to have a high dissolution amount, and an anion of BF 4 ⁇ or C 2 F 6 NO 4 S 2 ⁇ .
  • An ionic liquid having a low Lewis acidity tends to increase the amount of dissolution. Therefore, it is considered that fluoride is best dissolved in an ionic liquid composed of a cation with weak Lewis acidity and an anion with strong Lewis basicity.
  • the weakest BF 4 cation and the Lewis basicity of the Lewis acid strongest imidazolium - even ionic liquids composed of a combination of anion, since it is possible to dissolve the fluoride, at least Table 1 It is considered that the fluoride can be dissolved if the ionic liquid is a combination of an anion and a cation shown in FIG.
  • the present inventors have devised a process for separating actinides using the newly acquired knowledge that fluoride dissolves in ionic liquids.
  • the spent fuel is reacted with fluorine gas, the spent fuel is converted into a form of fluoride that is easily dissolved in the ionic liquid, and the fluoride residue containing the actinide is dissolved in the ionic liquid,
  • the dissolved elements are separated by operations such as solvent extraction.
  • the apparatus for reacting the spent fuel with fluorine gas is referred to in the flame furnace system referred to in Japanese Patent Application Laid-Open Nos. 2004-233066 and 2012-47546, and in Japanese Patent Application Laid-Open No. 2013-101666.
  • a batch type fluorination apparatus can be used. By using such a fluorination apparatus, it is possible to react spent fuel with fluorine gas and convert it into fluoride.
  • Example 1 A first embodiment of the present invention will be described with reference to FIG.
  • FIG. 1 is a flowchart of the present embodiment showing the steps until the actinide is separated from the spent fuel.
  • a fluorination step 1 for fluorinating the spent fuel 4 a dissolution step 2 for dissolving the fluoride residue (solid fluoride) 7 obtained in the fluorination step 1 with an ionic liquid 8, and dissolution
  • a separation step 3 for separating U and Pu10, fission product 11, and minor actinide 12 from the solution 9 obtained in step 2 is provided.
  • the spent fuel 4 discharged from the nuclear power plant is stored in a cladding tube, it is sheared and decoated by an existing method implemented in a reprocessing plant.
  • the spent fuel 4 thus obtained is reacted with the fluorine gas 5 in the fluorination step 1.
  • a flame furnace type or batch type fluorination apparatus can be used.
  • the fluorine gas 5 is very reactive, and almost all the components of the spent fuel 4 react with the fluorine gas 5 and the chemical form is converted from oxide to fluoride.
  • the spent fuel 4 contains various elements and the boiling points of the fluorides differ greatly, in the fluorination step 1, mainly volatile uranium hexafluoride (UF 6 gas 6) and fluoride are used. It is divided roughly into residue 7.
  • the fluoride residue 7 contains Pu, fission products, minor actinides, and small amounts of U.
  • the fluoride residue 7 is collected, and the fluoride residue 7 is dissolved in the ionic liquid 8 in the dissolution step 2 to obtain a solution 9.
  • the ionic liquid 8 any of ionic liquids in which cations and anions shown in Table 1 are combined can be used.
  • Table 1 shows the amount of cerium fluoride dissolved in each ionic liquid as a representative example, but the actinide element, which is an element for separation in this example, is an element of the same group as cerium.
  • the actinide fluoride is considered to dissolve in the ionic liquid as well.
  • the elements dissolved in the solution 9 are separated by various separation methods using differences in chemical properties of the elements and the size of the compounds, and U and Pu10, fission products 11, Each minor actinide 12 can be obtained.
  • the separation method an extraction separation method in which an element is selectively recovered using an extractant, an electrolysis method, an adsorption method in which an element is selectively adsorbed on an adsorbent, and the like are effective.
  • U and Pu10 are reused as nuclear fuel through treatment such as oxide conversion.
  • the fission product 11 is vitrified.
  • Minor actinides 12 are transmutated by neutron irradiation or the like, converted into nuclides with a short half-life, and then solidified in the same manner as fission products.
  • U and Pu10 and minor actinide 12 are separated. However, according to the usage of these elements, Pu and minor actinide 12 may be collected together without being separated. .
  • the fluorine gas 5 is used as a fluorinating agent for converting the spent fuel 4 into fluoride.
  • boron fluoride, carbon fluoride, nitrogen fluoride, chlorine fluoride, bromine fluoride, fluorine The same effect can be obtained by using a fluorinating agent such as iodine fluoride.
  • the spent fuel component can be dissolved by a simple method that does not require an operation such as blowing a gas into the ionic liquid by converting the spent fuel component into a chemical form of fluoride.
  • an operation such as blowing a gas into the ionic liquid by converting the spent fuel component into a chemical form of fluoride.
  • the spent fuel processing apparatus of the present embodiment that separates minor actinides from spent fuel will be described with reference to FIG.
  • the spent fuel processing apparatus of the present embodiment includes a flame furnace 20, a residue receiving tank / dissolution tank 21, a valve A22, a valve B23, a valve C24, a valve D25, a valve E27, a pump 26, and a separation device 28.
  • a valve A22 and a valve B23 are installed between the flame furnace 20 and the residue receiving and melting tank 21. By opening the valve A22 and the valve B23, the flame furnace 20 and the residue receiving tank / dissolving tank 21 are connected, and by closing the valve A22 and the valve B23, the pipe between the frame furnace 20 and the residue receiving tank / dissolving tank 21 is closed.
  • a valve C24 is installed between a collection container (not shown) for collecting the UF 6 gas 6 and the residue receiving tank / dissolution tank 21. By opening the valve C24, the gas UF 6 gas 6 is transferred to the outside of the residue receiving tank / dissolving tank 21 and collected in a recovery container. By closing the valve C24, the UF 6 gas is transferred to the residue receiving tank / dissolving tank 21. From being transferred to the collection container.
  • a valve D25 is installed between a tank (not shown) in which the ionic liquid 8 is stored and the residue receiving tank / dissolving tank 21. By opening the valve D25, the ionic liquid 8 is injected into the residue receiving tank / dissolving tank 21.
  • valve D25 By closing the valve D25, the injection of the ionic liquid 8 into the residue receiving tank / dissolving tank 21 is stopped.
  • a valve E27 is installed between the pump 26 and the residue receiving / dissolving tank 21. By opening the valve E27 while the pump 26 is driven, the solution 9 in which the fluoride residue 7 is dissolved in the ionic liquid 8 can be taken out of the residue receiving tank / dissolving tank 21. By closing the valve E27, the removal of the solution 9 from the residue receiving tank / dissolving tank 21 is stopped.
  • a separation device 28 is connected to the subsequent stage of the pump 26.
  • UF 6 gas 6 and fluoride residue 7 are generated by fluorination treatment of the spent fuel 4. Since the fluoride residue 7 is solid, it falls from the lower part of the frame furnace 20 and is collected in the residue receiving tank / dissolving tank 21. Since the UF 6 gas 6 is a gas, it passes through the frame furnace 20 and the residue receiving tank / dissolving tank 21 and is transferred to the outside of the residue receiving tank / dissolving tank 21 through the valve C24. The UF 6 gas 6 is collected separately, purified and concentrated, and then reused as nuclear fuel.
  • a stirring device for stirring the solution 9 may be installed in the residue receiving and dissolving tank 21. By providing the stirring device, it is possible to shorten the time for the components contained in the fluoride residue 7 to dissolve in the ionic liquid 8.
  • a heat exchanger for adjusting the temperature of the ionic liquid 8 or the solution 9 may be installed in the residue receiving tank / dissolution tank 21.
  • the heat exchanger By heating the temperature of the solution 9 in which the ionic liquid 8 or the fluoride residue 7 is dissolved by the heat exchanger, the time during which the fluoride residue 7 is dissolved in the solution 9 can be shortened.
  • the operation of transferring the solution 9 in the residue receiving and dissolving tank 21 to the separation device 28 is performed.
  • the solution 9 in the residue receiving tank / dissolving tank 21 is transferred to the separation device 28.
  • Separation device 28 separates minor actinide 12, uranium and plutonium 10 and fission product 11 from solution 9.
  • the receiving tank for the fluoride residue 7 and the dissolving tank are the same equipment, so that there is no need to recover the fluoride residue 7 from the receiving tank and transfer it to another dissolving tank. The benefits can be obtained.
  • the spent fuel processing apparatus of the present embodiment is a very simple facility because it is not necessary to blow chlorine gas or the like in the dissolving step 2 for dissolving the fluoride residue 7 obtained from the spent fuel into the ionic liquid. be able to.
  • An example of recovering nuclear fuel material by the PUREX method after reacting spent fuel with fluorine gas as in JP-A-2002-257980 can be considered.
  • An example in which this method is combined with a method of selectively separating minor actinides from high-level radioactive liquid waste using an extractant is also considered as Comparative Example 1.
  • the dissolution process 2 of the present example does not use water, so that the effect that the critical control is easy can be obtained.
  • Example 2 a method in which spent fuel is reacted with fluorine gas and solid fluoride is dissolved in a molten salt and elements are separated by electrolysis as disclosed in Japanese Patent Application Laid-Open No. 2010-127616.
  • the temperature of the dissolution step generally needs to be several hundred degrees Celsius. Since it can melt
  • Example 2 A second embodiment of the present invention will be described with reference to FIG.
  • a flame furnace 20 and a residue receiving tank / dissolving tank 21 are connected via a valve A22 and a valve B23, a recovery container for recovering the UF 6 gas 6, the recovery container and the residue receiving tank was configured to include a valve C24 which is installed between and dissolving tank 21, but spent fuel processing apparatus of the present embodiment is a configuration without a collecting container for collecting the frame oven and UF 6 gas 6.
  • the spent fuel processing apparatus of the present embodiment will be described below with a focus on the configuration different from that of the first embodiment.
  • the spent fuel processing apparatus of this embodiment includes a dissolution tank 30, a heat exchanger 33, a pump 26, a valve E27, a valve F31, and a valve G32.
  • a valve F31 is installed between the fluoride residue container (not shown) in which the fluoride residue 7 is stored and the dissolution tank 30.
  • the fluoride residue container and the dissolution tank 30 are connected by opening the valve F31, and the piping between the fluoride residue container and the dissolution tank 30 is closed by closing the valve F31.
  • a heat exchanger 33 is installed in the dissolution tank 30.
  • the spent fuel is fluorinated in a separately installed flame furnace.
  • the fluorination step 1 is performed using a flame furnace
  • the fluorination step may be performed using a batch type fluorination apparatus.
  • the generated fluoride residue 7 is collected in advance and stored in a fluoride residue container.
  • the valve E27 is closed, the valve G32 is opened, and the ionic liquid 8 is supplied to the dissolution tank 30 from a pipe connected to the valve G32.
  • a stirring device for stirring the solution 9 may be installed in the dissolution tank 30. By providing the stirring device, it is possible to shorten the time for the components contained in the fluoride residue 7 to dissolve in the ionic liquid 8.
  • a heating device that adjusts the temperature of the ionic liquid 8 or the solution 9 may be installed in the dissolution tank 30. Since the spent fuel processing apparatus of the present embodiment includes the heat exchanger 33 in the dissolution tank 30, the solution 9 can be heated using the heat exchanger 33. Since the heat exchanger 33 heats the solution 9 in which the ionic liquid 8 or the fluoride residue 7 is dissolved, the time for which the fluoride residue 7 is dissolved in the solution 9 can be shortened.
  • the operation of transferring the solution 9 to the separation device 28 is performed.
  • the solution 9 in the dissolution tank 30 is transferred to the separation device 28.
  • Separation device 28 separates minor actinide 12, uranium and plutonium 10 and fission product 11 from solution 9.
  • the refrigerant 34 may be supplied to the heat exchanger 33.
  • An example of supplying the refrigerant 34 to the heat exchanger 33 will be described.
  • an abnormality such as an earthquake occurs during the operation of dissolving the fluoride residue 7 in the ionic liquid 8 in the dissolution tank 30 and the pipe connected to the dissolution tank 30 is broken, the solution 9 is considered to be at risk of leaking.
  • the ionic liquid of a combination of imidazolium and chloride ions having the highest solubility of cerium fluoride has a melting point near room temperature.
  • the solution 9 is cooled and solidified by supplying the refrigerant 34 to the heat exchanger 33 when an earthquake occurs. Even when an abnormality such as a broken pipe is detected, the solution 9 can be retained in the dissolution tank 30 and leakage to the outside can be prevented.
  • the spent fuel processing apparatus of the present embodiment is configured to include the heat exchanger 33 in the dissolution tank 30, the solution 9 can be solidified in an emergency and the risk of liquid leakage can be eliminated.
  • the spent fuel processing apparatus of this embodiment converts the spent fuel into fluoride and dissolves the spent fuel component in the ionic liquid by dissolving the fluoride in the ionic liquid. It can be made easy.
  • the spent fuel processing apparatus of the present embodiment is a very simple facility because it is not necessary to blow chlorine gas or the like in the dissolving step 2 for dissolving the fluoride residue 7 obtained from the spent fuel into the ionic liquid. be able to.
  • An example of recovering nuclear fuel material by the PUREX method after reacting spent fuel with fluorine gas as in JP-A-2002-257980 can be considered.
  • An example in which this method is combined with a method of selectively separating minor actinides from high-level radioactive liquid waste using an extractant is also considered as Comparative Example 1.
  • the dissolution process 2 of the present example does not use water, so that the effect that the critical control is easy can be obtained.
  • the temperature of the dissolution step generally needs to be several hundred degrees Celsius. Since it can melt

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

Provided is a method for separating actinides from a spent fuel using an ionic liquid and using a device having a simple equipment configuration. The method comprises reacting a spent fuel with fluorine gas to convert the chemical forms of the actinides into fluorides which are soluble in an ionic liquid, dissolving the actinide-containing fluoride residues in the ionic liquid, and then separating and recovering the dissolved actinides. The problem of the invention can be solved therewith.

Description

アクチニドの分離方法および使用済燃料処理装置Actinide separation method and spent fuel processor
 本発明は、使用済燃料の成分をウラン及びプルトニウム、マイナーアクチニド、核分裂生成物に分別する方法および装置、すなわち、アクチニドを分離する分離方法および使用済燃料処理装置に関する。 The present invention relates to a method and apparatus for separating spent fuel components into uranium and plutonium, minor actinides and fission products, that is, a separation method and spent fuel processing apparatus for separating actinides.
 原子力発電所から排出される使用済燃料は、再処理によって核燃料物質が回収された後、ガラス固化体へ加工され、地層処分される計画となっている。現行のPUREX法で再処理する場合、ガラス固化体には半減期が非常に長い放射性核種であるマイナーアクチニドが含まれるため、ガラス固化体については地層処分することにより数十万年の期間に及び安定に閉じ込めておく必要があると言われている。ここで、アクチニドとは原子番号89から103までの元素のことを言い、核燃料として使用されるウラン(U)やプルトニウム(Pu)、マイナーアクチニドと称される元素群が該当する。また、マイナーアクチニドとは、アクチニド元素のうち、超ウラン元素からPuを除いた元素のことを言い、ネプツニウム、アメリシウム、キュリウムなどが該当する。 The spent fuel discharged from the nuclear power plant is planned to be processed into vitrified material and disposed of after the nuclear fuel material is recovered by reprocessing. When reprocessing by the current PUREX method, the vitrified material contains minor actinides, which are radionuclides with a very long half-life, and therefore the vitrified material can reach hundreds of thousands of years by geological disposal. It is said that it needs to be kept stable. Here, the actinide means an element having an atomic number of 89 to 103, and corresponds to an element group called uranium (U), plutonium (Pu), or a minor actinide used as nuclear fuel. The minor actinide refers to an element obtained by removing Pu from a transuranium element among actinide elements, and corresponds to neptunium, americium, curium, and the like.
 現在、ガラス固化体の閉じ込め期間を短縮することを目的として、使用済燃料の再処理において発生する高レベル放射性廃液からマイナーアクチニドを分離し、マイナーアクチニドに中性子を照射して半減期の短い放射性核種へ変換するという技術が研究されている。ここで、高レベル放射性廃液とは、使用済燃料を硝酸に溶解した溶液からウラン(U)とPuを分離した後の廃液であり、高レベル放射性廃液には主に核分裂生成物とマイナーアクチニドが溶解している。整理すると、使用済燃料の再処理によりウランとプルトニウムを分離し、高レベル放射性廃液からのマイナーアクチニド分離工程によりマイナーアクチニドを分離することで、使用済燃料の成分をU及びPu、マイナーアクチニド、核分裂生成物にそれぞれ分離するということになる。高レベル放射性廃液からのマイナーアクチニドの分離方法については様々な方法が研究されており、例えば高レベル放射性廃液から抽出剤を用いてマイナーアクチニドを選択的に分離する方法などが研究されてきている。 Currently, for the purpose of shortening the confinement period of vitrified solids, the minor actinides are separated from the high-level radioactive liquid waste generated during the reprocessing of spent fuel, and the neutrons are irradiated to the minor actinides to give a short half-life radionuclide. The technology of converting to is being studied. Here, the high level radioactive liquid waste is a liquid after separation of uranium (U) and Pu from a solution in which spent fuel is dissolved in nitric acid. The high level radioactive liquid waste mainly contains fission products and minor actinides. Is dissolved. In summary, uranium and plutonium are separated by reprocessing spent fuel, and minor actinides are separated by a minor actinide separation process from high-level radioactive liquid waste. Each product is separated. Various methods for separating minor actinides from high-level radioactive liquid waste have been studied. For example, methods for selectively separating minor actinides from high-level radioactive liquid waste using an extractant have been studied.
 一方、近年では、イオンだけからなる物質であり、室温付近で液体となる性質を持つイオン液体と呼ばれる物質が注目を集めている。イオン液体は、構成するカチオンとアニオンの組み合わせを様々な用途に応じて変えることが可能である。代表的なカチオンとしては、イミダゾリウム系、ピリジニウム系、ピロリジニウム系、ピペリジニウム系、アンモニウム系、ホスホニウム系などがある。また、代表的なアニオンとしては、ハロゲン化物イオン(Cl-、 Br-、I-)、テトラフルオロボレート(BF4 -)、ヘキサフルオロホスフェート(PF6 -)、ビス(トリフルオロメチルスルホニル)アミド(C26NO42 -)、トリフルオロメタンスルホネート(CF33-)、トリフルオロアセテート(CF3COO-)などがある。 On the other hand, in recent years, a substance called an ionic liquid, which is a substance consisting only of ions and has a property of becoming a liquid near room temperature, has attracted attention. The ionic liquid can change the combination of the cation and anion which comprise it according to various uses. Typical cations include imidazolium, pyridinium, pyrrolidinium, piperidinium, ammonium, and phosphonium. Representative anions include halide ions (Cl , Br , I ), tetrafluoroborate (BF 4 ), hexafluorophosphate (PF 6 ), bis (trifluoromethylsulfonyl) amide ( C 2 F 6 NO 4 S 2 ), trifluoromethanesulfonate (CF 3 O 3 S ), trifluoroacetate (CF 3 COO ) and the like.
 このイオン液体を用いて、使用済燃料に含まれる元素をそれぞれ分離するための研究が現在なされている。例えば、特表2002-503820号公報では、使用済燃料又は使用済燃料の成分を含む物質をイオン液体へ溶解させて、UやPuを分離する方法が記載されている。 Currently, research is being conducted to separate elements contained in spent fuel using this ionic liquid. For example, Japanese Patent Publication No. 2002-503820 discloses a method of separating U and Pu by dissolving a spent fuel or a substance containing a spent fuel component in an ionic liquid.
 また、特表2001-516871号公報では、溶融塩を用いて照射燃料を再処理した際に発生する使用済の金属塩をイオン液体により再生する方法が記載されている。 Also, Japanese Patent Publication No. 2001-516871 describes a method of regenerating used metal salt generated when reprocessing irradiated fuel with molten salt with an ionic liquid.
 〔非特許文献1〕では、酸化ウランなど使用済燃料に含まれる成分をイオン液体へ供給し、そこへ塩素ガスを吹き込み、電気分解を行うことで、各種元素を分離する方法が記載されている。 [Non-Patent Document 1] describes a method of separating various elements by supplying components contained in spent fuel such as uranium oxide to an ionic liquid, blowing chlorine gas into the ionic liquid, and performing electrolysis. .
 以上のように、使用済燃料の再処理や放射性核種を含む物質を取り扱う場合において、イオン液体は硝酸溶液などの水が主成分である溶媒と比べて中性子を減速しやすい水素原子が含まれている量が少ないため、イオン液体を溶媒として使用する方法は水を溶媒とする方法よりも臨界に寄与しやすい減速された中性子を生成しにくく、すなわち臨界を起こさないための運転管理が容易になるメリットがある。 As described above, when reprocessing spent fuel or handling radionuclide-containing substances, the ionic liquid contains hydrogen atoms that tend to decelerate neutrons compared to water-based solvents such as nitric acid solutions. Since the amount of ionic liquid used as a solvent is smaller than the method using water as a solvent, it is less likely to generate decelerated neutrons that contribute to the criticality, that is, it is easier to manage operations without causing criticality. There are benefits.
特表2002-503820号公報Japanese translation of PCT publication No. 2002-503820 特開2004-233066号公報Japanese Patent Laid-Open No. 2004-233066 特開2012-47546号公報JP 2012-47546 A 特開2013-101066号公報JP 2013-101066 A 特開2002-257980号公報JP 2002-257980 A 特開2010-127616号公報JP 2010-127616 A 特表2001-516871号公報JP 2001-516871 A
 特表2002-503820号公報では、イオン液体へ使用済燃料またはその成分を含む物質を溶解させる方法が記載されいるが、使用済燃料の成分のイオン液体への溶解量などのデータは示されていない。そして、〔非特許文献1〕では使用済燃料の成分を溶解させて分離するために腐食性ガスである塩素ガスをイオン液体中へ吹き込むことを必要としており、この手法では塩素ガスを処理するためのオフガス処理設備を設置する必要があるなど、設備が複雑になることが予測される。また、〔非特許文献1〕において塩素ガスを使用していることから、化学形態が酸化物である通常の使用済燃料はそのままではイオン液体へ溶解しにくいと予想される。イオン液体へ使用済燃料の成分を溶解しやすくすることも、イオン液体を利用して使用済燃料の成分を分離する方法の特有の課題と考えられる。 Japanese Patent Publication No. 2002-503820 discloses a method for dissolving a spent fuel or a substance containing its component in an ionic liquid, but data such as the amount of the spent fuel component dissolved in the ionic liquid is shown. Absent. In [Non-Patent Document 1], it is necessary to blow chlorine gas, which is corrosive gas, into the ionic liquid in order to dissolve and separate spent fuel components. In this method, chlorine gas is treated. It is expected that the equipment will be complicated, such as the need to install off-gas treatment equipment. Moreover, since chlorine gas is used in [Non-Patent Document 1], it is expected that a normal spent fuel whose chemical form is an oxide is hardly dissolved in an ionic liquid as it is. Easily dissolving the spent fuel component in the ionic liquid is also considered as a particular problem of the method of separating the spent fuel component using the ionic liquid.
 したがって、イオン液体にガスを吹き込む必要が無い簡素な設備において、イオン液体へ使用済燃料の成分を容易に溶解させることができる手法が必要とされている。 Therefore, there is a need for a technique capable of easily dissolving spent fuel components in an ionic liquid in a simple facility that does not require blowing gas into the ionic liquid.
 本発明は、使用済燃料をフッ化剤と反応させて固体フッ化物を生成し、生成した固体フッ化物をイオン液体に溶解し、固体フッ化物をイオン液体に溶解した溶液からUおよびPu、核分裂生成物、マイナーアクチニドをそれぞれ分離することによって、上記課題を解決する。 In the present invention, spent fuel is reacted with a fluorinating agent to produce solid fluoride, the produced solid fluoride is dissolved in an ionic liquid, and U and Pu, fission from the solution in which the solid fluoride is dissolved in the ionic liquid The above problems are solved by separating the product and minor actinide.
  また、本発明は、使用済燃料にフッ化剤を反応させて固体フッ化物を生成するフッ化処理装置と、固体フッ化物をイオン液体に溶解させた溶液を生成する溶解槽と、この溶液からUおよびPu、核分裂生成物、マイナーアクチニドをそれぞれ分離する分離装置を備えることによって、上記課題を解決する。 The present invention also provides a fluorination treatment apparatus for producing a solid fluoride by reacting a spent fuel with a fluorinating agent, a dissolution tank for producing a solution in which the solid fluoride is dissolved in an ionic liquid, and the solution. The above-described problems are solved by providing a separation device that separates U and Pu, fission products, and minor actinides.
 本発明によれば、使用済燃料の成分をイオン液体に効率よく溶解させることができるようになり、使用済燃料の成分をUおよびPu、核分裂生成物、マイナーアクチニドにそれぞれ分離するための設備を簡素な設備とすることができる。なお、本発明では、UおよびPu、核分裂生成物、マイナーアクチニドをそれぞれ分離することを、アクチニドを分離すると称することにする。
According to the present invention, components of spent fuel can be efficiently dissolved in an ionic liquid, and facilities for separating spent fuel components into U and Pu, fission products, and minor actinides are provided. It can be a simple facility. In the present invention, separating U and Pu, fission products, and minor actinides will be referred to as separating actinides.
本発明の一実施例である使用済燃料からのアクチニドの分離工程を示すフローチャートである。It is a flowchart which shows the isolation | separation process of the actinide from the spent fuel which is one Example of this invention. 本発明の第1実施例である使用済燃料処理装置の概略図である。It is the schematic of the spent fuel processing apparatus which is 1st Example of this invention. 本発明の第2実施例である使用済燃料処理装置の概略図である。It is the schematic of the spent fuel processing apparatus which is 2nd Example of this invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明者らは、化学形態がフッ化物である化合物がイオン液体への溶解度が高くなることを、実験により新たに見出した。この実験によって得られた、フッ化物のイオン液体への溶解量を表1に示す。 The present inventors have newly found through experiments that a compound having a chemical form of fluoride has high solubility in an ionic liquid. Table 1 shows the amount of fluoride dissolved in the ionic liquid obtained by this experiment.
 本発明者らによる実験では、表1に示されるアニオンとカチオンの組み合わせからなるイオン液体のうち、溶解量が記されているアニオンとカチオンの組み合わせのイオン液体を用いて、フッ化セリウムのイオン液体への溶解度を求めた。具体的には、カチオンとしては、イミダゾリウム系、ピリジニウム系、ピロリジニウム系のイオン液体を用いた。表1の横軸は、カチオンのルイス酸性の序列でカチオン種を並べ、さらに参考としてアンモニウム系のカチオンを記載した。また、表1の縦軸は、アニオンとしては、テトラフルオロボレート(BF4 -)、ヘキサフルオロホスフェート(PF6 -)、ビス(トリフルオロメチルスルホニル)アミド(C26NO42 -)、トリフルオロメタンスルホネート(CF33-)、塩化物イオン(Cl-)を実験に用いた。カチオンと同様に、表1ではアニオンのルイス塩基性の序列でアニオン種を並べ、さらに参考としてトリフルオロアセテート(CF3COO-)を記載した。実験方法については、代表としてフッ化セリウムを各イオン液体へ供給し、温度を100℃に保持して1時間のあいだ攪拌しながら溶解した後、溶液中のセリウムの溶解量を測定する方法とした。イオン液体が開発されたのは1990代以降と言われており、このようなイオン液体への無機化合物の溶解量が報告されている例はほとんど無い。 In the experiment by the present inventors, among the ionic liquids composed of combinations of anions and cations shown in Table 1, an ionic liquid of a combination of anions and cations whose dissolution amount is described is used, and an ionic liquid of cerium fluoride is used. The solubility in was determined. Specifically, imidazolium-based, pyridinium-based, and pyrrolidinium-based ionic liquids were used as cations. The horizontal axis in Table 1 lists the cationic species in the order of Lewis acidity of cations, and further describes ammonium cations for reference. In addition, the vertical axis in Table 1 represents tetrafluoroborate (BF 4 ), hexafluorophosphate (PF 6 ), bis (trifluoromethylsulfonyl) amide (C 2 F 6 NO 4 S 2 ) as anions. , Trifluoromethanesulfonate (CF 3 O 3 S ), chloride ion (Cl ) were used in the experiment. Similar to the cation, in Table 1, anion species are arranged in the Lewis basic order of anions, and trifluoroacetate (CF 3 COO ) is described as a reference. As an experimental method, cerium fluoride was typically supplied to each ionic liquid, dissolved at a temperature of 100 ° C. with stirring for 1 hour, and then the amount of cerium dissolved in the solution was measured. . It is said that ionic liquids have been developed since the 1990s, and there are almost no examples in which the amount of inorganic compounds dissolved in such ionic liquids has been reported.
 表1によれば、イミダゾリウム系のカチオンを持つイオン液体ではルイス塩基性の強いイオン液体で溶解量が高くなる傾向があり、また、BF4 - もしくはC26NO42 -のアニオンを持つイオン液体ではルイス酸性の弱いイオン液体で溶解量が高くなる傾向がある。したがって、フッ化物はルイス酸性が弱いカチオンとルイス塩基性が強いアニオンからなるイオン液体に最もよく溶解すると考えられる。表1によれば、ルイス酸性が最も強いイミダゾリウム系のカチオンとルイス塩基性が最も弱いBF4 -アニオンの組み合わせで構成されるイオン液体であっても、フッ化物を溶解できるため、少なくとも表1に示されるアニオンとカチオンの組み合わせのイオン液体ならばフッ化物を溶解することが可能であると考えられる。 According to Table 1, an ionic liquid having an imidazolium cation has a strong Lewis basic ionic liquid and tends to have a high dissolution amount, and an anion of BF 4 or C 2 F 6 NO 4 S 2 . An ionic liquid having a low Lewis acidity tends to increase the amount of dissolution. Therefore, it is considered that fluoride is best dissolved in an ionic liquid composed of a cation with weak Lewis acidity and an anion with strong Lewis basicity. According to Table 1, the weakest BF 4 cation and the Lewis basicity of the Lewis acid strongest imidazolium - even ionic liquids composed of a combination of anion, since it is possible to dissolve the fluoride, at least Table 1 It is considered that the fluoride can be dissolved if the ionic liquid is a combination of an anion and a cation shown in FIG.
 本発明者らは、フッ化物はイオン液体に溶解するという新たに得た知見を利用したアクチニドの分離プロセスを考案した。本発明のアクチニドの分離プロセスでは、使用済燃料をフッ素ガスと反応させ、使用済燃料をイオン液体に溶解しやすいフッ化物の形態に変換し、アクチニドを含むフッ化物残渣をイオン液体に溶解し、溶解した元素を溶媒抽出などの操作で分離する。 The present inventors have devised a process for separating actinides using the newly acquired knowledge that fluoride dissolves in ionic liquids. In the actinide separation process of the present invention, the spent fuel is reacted with fluorine gas, the spent fuel is converted into a form of fluoride that is easily dissolved in the ionic liquid, and the fluoride residue containing the actinide is dissolved in the ionic liquid, The dissolved elements are separated by operations such as solvent extraction.
 使用済燃料をフッ素ガスと反応させる装置については、特開2004-233066号公報や特開2012-47546号公報において言及されているフレーム炉方式や、また特開2013-101066号公報において言及されているバッチ式のフッ化装置が使用できる。このようなフッ化装置を用いることによって、使用済燃料をフッ素ガスと反応させてフッ化物に変換することが可能である。
(実施例1)
 本発明の第1の実施例について、図1を用いて説明する。図1は、使用済燃料からアクチニドを分離するまでの工程を示す本実施例のフローチャートである。本実施例では、使用済燃料4をフッ化処理するフッ化工程1と、フッ化工程1で得られたフッ化物残渣(固体フッ化物)7をイオン液体8で溶解する溶解工程2と、溶解工程2で得られた溶液9からUおよびPu10と核分裂生成物11とマイナーアクチニド12を分離する分離工程3を備える。以下に、本実施例の使用済燃料の処理方法について、詳細に説明する。
The apparatus for reacting the spent fuel with fluorine gas is referred to in the flame furnace system referred to in Japanese Patent Application Laid-Open Nos. 2004-233066 and 2012-47546, and in Japanese Patent Application Laid-Open No. 2013-101666. A batch type fluorination apparatus can be used. By using such a fluorination apparatus, it is possible to react spent fuel with fluorine gas and convert it into fluoride.
Example 1
A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a flowchart of the present embodiment showing the steps until the actinide is separated from the spent fuel. In this embodiment, a fluorination step 1 for fluorinating the spent fuel 4, a dissolution step 2 for dissolving the fluoride residue (solid fluoride) 7 obtained in the fluorination step 1 with an ionic liquid 8, and dissolution A separation step 3 for separating U and Pu10, fission product 11, and minor actinide 12 from the solution 9 obtained in step 2 is provided. Below, the processing method of the spent fuel of a present Example is demonstrated in detail.
 原子力発電所から排出された使用済燃料4は被覆管の中に収納されているため、再処理工場で実施されている既存方法によってせん断および脱被覆がなされる。こうして得られた使用済燃料4をフッ化工程1でフッ素ガス5と反応させる。フッ化工程1では、フレーム炉方式やバッチ式のフッ化装置を用いることができる。フッ素ガス5は非常に反応性が高く、使用済燃料4の成分のほぼ全てがフッ素ガス5と反応し、化学形態が酸化物からフッ化物へ転換される。使用済燃料4には多種の元素が含まれており、そのフッ化物の沸点は大きく異なるため、フッ化工程1おいて、主に揮発性の六フッ化ウラン(UF6ガス6)とフッ化物残渣7に大別される。フッ化物残渣7にはPu、核分裂生成物、マイナーアクチニド、および少量のUが含まれる。 Since the spent fuel 4 discharged from the nuclear power plant is stored in a cladding tube, it is sheared and decoated by an existing method implemented in a reprocessing plant. The spent fuel 4 thus obtained is reacted with the fluorine gas 5 in the fluorination step 1. In the fluorination step 1, a flame furnace type or batch type fluorination apparatus can be used. The fluorine gas 5 is very reactive, and almost all the components of the spent fuel 4 react with the fluorine gas 5 and the chemical form is converted from oxide to fluoride. Since the spent fuel 4 contains various elements and the boiling points of the fluorides differ greatly, in the fluorination step 1, mainly volatile uranium hexafluoride (UF 6 gas 6) and fluoride are used. It is divided roughly into residue 7. The fluoride residue 7 contains Pu, fission products, minor actinides, and small amounts of U.
 このフッ化物残渣7を回収し、溶解工程2においてフッ化物残渣7をイオン液体8へ溶解し、溶液9を得る。イオン液体8としては、表1に示されるカチオンとアニオンを組み合わせたイオン液体のいずれかを用いることができる。また、表1は代表例としてフッ化セリウムの各イオン液体への溶解量を記載してあるが、本実施例において分離の目的としている元素であるアクチニド元素はセリウムと同じ族の元素であるため、アクチニドのフッ化物も同様にイオン液体に溶解すると考えられる。 The fluoride residue 7 is collected, and the fluoride residue 7 is dissolved in the ionic liquid 8 in the dissolution step 2 to obtain a solution 9. As the ionic liquid 8, any of ionic liquids in which cations and anions shown in Table 1 are combined can be used. Table 1 shows the amount of cerium fluoride dissolved in each ionic liquid as a representative example, but the actinide element, which is an element for separation in this example, is an element of the same group as cerium. The actinide fluoride is considered to dissolve in the ionic liquid as well.
 最後に、分離工程3において、溶液9に溶解している元素を、元素の化学的性質や化合物の大きさなどの違いを利用した各種分離法によって分離し、UおよびPu10、核分裂生成物11、マイナーアクチニド12をそれぞれ得ることができる。分離方法としては、抽出剤を用いて選択的に元素を回収する抽出分離法、電気分解法、吸着剤へ選択的に元素を吸着させる吸着法などが有効である。 Finally, in the separation step 3, the elements dissolved in the solution 9 are separated by various separation methods using differences in chemical properties of the elements and the size of the compounds, and U and Pu10, fission products 11, Each minor actinide 12 can be obtained. As the separation method, an extraction separation method in which an element is selectively recovered using an extractant, an electrolysis method, an adsorption method in which an element is selectively adsorbed on an adsorbent, and the like are effective.
 このように元素群ごとに分離した後、UおよびPu10は酸化物転換などの処理を経て、核燃料として再利用される。核分裂生成物11はガラス固化処理される。マイナーアクチニド12は中性子照射などにより核変換され、半減期の短い核種に変換された後、核分裂生成物と同様にガラス固化される。 After separation for each element group in this way, U and Pu10 are reused as nuclear fuel through treatment such as oxide conversion. The fission product 11 is vitrified. Minor actinides 12 are transmutated by neutron irradiation or the like, converted into nuclides with a short half-life, and then solidified in the same manner as fission products.
 本実施例では、UおよびPu10と、マイナーアクチニド12を分離する例を示したが、これら元素の利用法に応じてPuとマイナーアクチニド12を分離せずに合せて回収する方法であってもよい。 In this embodiment, U and Pu10 and minor actinide 12 are separated. However, according to the usage of these elements, Pu and minor actinide 12 may be collected together without being separated. .
 本実施例では、使用済燃料4をフッ化物に転換するためのフッ化剤としてフッ素ガス5を用いたが、フッ化ホウ素、フッ化炭素、フッ化窒素、フッ化塩素、フッ化臭素、フッ化ヨウ素、などのフッ化剤を用いても同様の効果を得ることができる。 In this embodiment, the fluorine gas 5 is used as a fluorinating agent for converting the spent fuel 4 into fluoride. However, boron fluoride, carbon fluoride, nitrogen fluoride, chlorine fluoride, bromine fluoride, fluorine The same effect can be obtained by using a fluorinating agent such as iodine fluoride.
 本実施例によれば、使用済燃料の成分をフッ化物の化学形態に変換することで、イオン液体にガスを吹き込むなどの操作が不要な簡易な方法により使用済燃料の成分を溶解できるようになり、溶解したことにより各種分離操作によってマイナーアクチニドを他の元素と分離することが可能になる効果を得ることができる。 According to the present embodiment, the spent fuel component can be dissolved by a simple method that does not require an operation such as blowing a gas into the ionic liquid by converting the spent fuel component into a chemical form of fluoride. Thus, it is possible to obtain an effect that the minor actinide can be separated from other elements by various separation operations by being dissolved.
 図2を用いて、使用済燃料からマイナーアクチニドを分離する本実施例の使用済燃料処理装置について説明する。本実施例の使用済燃料処理装置は、フレーム炉20、残渣受槽兼溶解槽21、バルブA22、バルブB23、バルブC24、バルブD25、バルブE27、ポンプ26、分離装置28を備える。フレーム炉20と残渣受槽兼溶解槽21の間に、バルブA22及びバルブB23が設置される。バルブA22及びバルブB23を開くことでフレーム炉20と残渣受槽兼溶解槽21が接続され、バルブA22及びバルブB23を閉じることでフレーム炉20と残渣受槽兼溶解槽21の間の配管が閉じられる。UF6ガス6を回収する回収容器(図示せず)と残渣受槽兼溶解槽21の間にバルブC24が設置される。バルブC24を開くことで、気体であるUF6ガス6が残渣受槽兼溶解槽21の外部に移送されて回収容器に回収され、バルブC24を閉じることで、UF6ガスが残渣受槽兼溶解槽21から回収容器に移送されることを停止する。イオン液体8が貯留されたタンク(図示せず)と残渣受槽兼溶解槽21の間にバルブD25が設置される。バルブD25を開くことで、イオン液体8を残渣受槽兼溶解槽21内に注入する。また、バルブD25を閉じることで、イオン液体8の残渣受槽兼溶解槽21内への注入を停止する。ポンプ26と残渣受槽兼溶解槽21の間にバルブE27が設置される。ポンプ26の駆動中にバルブE27を開くことで、フッ化物残渣7をイオン液体8に溶解させた溶液9を、残渣受槽兼溶解槽21の外部に取り出すことができる。バルブE27を閉じることで、残渣受槽兼溶解槽21内からの溶液9の取り出しを停止する。ポンプ26の後段に分離装置28が接続される。 The spent fuel processing apparatus of the present embodiment that separates minor actinides from spent fuel will be described with reference to FIG. The spent fuel processing apparatus of the present embodiment includes a flame furnace 20, a residue receiving tank / dissolution tank 21, a valve A22, a valve B23, a valve C24, a valve D25, a valve E27, a pump 26, and a separation device 28. A valve A22 and a valve B23 are installed between the flame furnace 20 and the residue receiving and melting tank 21. By opening the valve A22 and the valve B23, the flame furnace 20 and the residue receiving tank / dissolving tank 21 are connected, and by closing the valve A22 and the valve B23, the pipe between the frame furnace 20 and the residue receiving tank / dissolving tank 21 is closed. A valve C24 is installed between a collection container (not shown) for collecting the UF 6 gas 6 and the residue receiving tank / dissolution tank 21. By opening the valve C24, the gas UF 6 gas 6 is transferred to the outside of the residue receiving tank / dissolving tank 21 and collected in a recovery container. By closing the valve C24, the UF 6 gas is transferred to the residue receiving tank / dissolving tank 21. From being transferred to the collection container. A valve D25 is installed between a tank (not shown) in which the ionic liquid 8 is stored and the residue receiving tank / dissolving tank 21. By opening the valve D25, the ionic liquid 8 is injected into the residue receiving tank / dissolving tank 21. Further, by closing the valve D25, the injection of the ionic liquid 8 into the residue receiving tank / dissolving tank 21 is stopped. A valve E27 is installed between the pump 26 and the residue receiving / dissolving tank 21. By opening the valve E27 while the pump 26 is driven, the solution 9 in which the fluoride residue 7 is dissolved in the ionic liquid 8 can be taken out of the residue receiving tank / dissolving tank 21. By closing the valve E27, the removal of the solution 9 from the residue receiving tank / dissolving tank 21 is stopped. A separation device 28 is connected to the subsequent stage of the pump 26.
 次に、本実施例の使用済燃料処理装置を用いて使用済燃料からアクチニドを分離する手順について説明する。まずは、使用済燃料4をフッ化処理するために、バルブA22とバルブB23とバルブC24を開の状態としておき、バルブD25とバルブE27を閉の状態とする。次に、せん断および脱被覆された使用済燃料4とフッ素ガス5をフレーム炉20で反応させる。フレーム炉方式では使用済燃料4とフッ素ガス5をフレーム13と呼ばれる高温の領域で高速で反応させる。フレーム13内の温度はフッ化の反応熱で維持されている。フレーム炉方式では連続処理が可能であり、使用済燃料4とそのフッ化に必要な量以上のフッ素ガス5を連続的に供給することができる。図1に示すとおり、使用済燃料4のフッ化処理により、UF6ガス6とフッ化物残渣7を生成する。フッ化物残渣7は固体であるため、フレーム炉20の下部より落下し、残渣受槽兼溶解槽21で回収される。UF6ガス6は気体であるためフレーム炉20と残渣受槽兼溶解槽21を通過し、バルブC24より残渣受槽兼溶解槽21の外部へと移送される。UF6ガス6は別途回収され、精製および濃縮された後、核燃料として再利用される。 Next, a procedure for separating actinides from spent fuel using the spent fuel processing apparatus of this embodiment will be described. First, in order to fluorinate the spent fuel 4, the valves A22, B23, and C24 are opened, and the valves D25 and E27 are closed. Next, the spent fuel 4 that has been sheared and decoated is reacted with the fluorine gas 5 in a flame furnace 20. In the flame furnace method, spent fuel 4 and fluorine gas 5 are reacted at a high speed in a high temperature region called a frame 13. The temperature in the frame 13 is maintained by the reaction heat of fluorination. In the flame furnace system, continuous treatment is possible, and the spent fuel 4 and the fluorine gas 5 in an amount more than that necessary for fluorination thereof can be continuously supplied. As shown in FIG. 1, UF 6 gas 6 and fluoride residue 7 are generated by fluorination treatment of the spent fuel 4. Since the fluoride residue 7 is solid, it falls from the lower part of the frame furnace 20 and is collected in the residue receiving tank / dissolving tank 21. Since the UF 6 gas 6 is a gas, it passes through the frame furnace 20 and the residue receiving tank / dissolving tank 21 and is transferred to the outside of the residue receiving tank / dissolving tank 21 through the valve C24. The UF 6 gas 6 is collected separately, purified and concentrated, and then reused as nuclear fuel.
 次に、所定量の使用済燃料4のフッ化処理が終了したら、使用済燃料4とフッ素ガス5のフレーム炉20への供給を止める。次に、バルブA22とバルブB23とバルブC24とバルブE27を閉じ、バルブD25を開く。イオン液体8が、バルブD25に接続されている配管から残渣受槽兼溶解槽21に供給される。残渣受槽兼溶解槽21内で、フッ化物残渣7がイオン液体8に溶解される。このときの溶液を溶液9と称する。 Next, when the fluorination treatment of the predetermined amount of the spent fuel 4 is completed, the supply of the spent fuel 4 and the fluorine gas 5 to the flame furnace 20 is stopped. Next, valve A22, valve B23, valve C24 and valve E27 are closed, and valve D25 is opened. The ionic liquid 8 is supplied to the residue receiving tank / dissolution tank 21 from a pipe connected to the valve D25. The fluoride residue 7 is dissolved in the ionic liquid 8 in the residue receiving and dissolving tank 21. The solution at this time is referred to as Solution 9.
 残渣受槽兼溶解槽21内に溶液9を攪拌させる攪拌装置を設置してもよい。攪拌装置を備えることによって、フッ化物残渣7に含まれる成分がイオン液体8に溶解する時間を短縮することができる。 A stirring device for stirring the solution 9 may be installed in the residue receiving and dissolving tank 21. By providing the stirring device, it is possible to shorten the time for the components contained in the fluoride residue 7 to dissolve in the ionic liquid 8.
 残渣受槽兼溶解槽21内にイオン液体8または溶液9の温度を調整する熱交換器(加温装置)を設置してもよい。熱交換器が、イオン液体8またはフッ化物残渣7が溶解された溶液9の温度を加熱することによって、フッ化物残渣7が溶液9に溶解される時間を短縮することができる。 A heat exchanger (heating device) for adjusting the temperature of the ionic liquid 8 or the solution 9 may be installed in the residue receiving tank / dissolution tank 21. By heating the temperature of the solution 9 in which the ionic liquid 8 or the fluoride residue 7 is dissolved by the heat exchanger, the time during which the fluoride residue 7 is dissolved in the solution 9 can be shortened.
 フッ化物残渣7をイオン液体8に溶解する操作が終了したら、残渣受槽兼溶解槽21内の溶液9を分離装置28へ移送する操作を行う。バルブE27を開け、ポンプ26を作動してポンプ駆動することで、残渣受槽兼溶解槽21内の溶液9を分離装置28に移送する。分離装置28が、溶液9からマイナーアクチニド12と、ウランおよびプルトニウム10と核分裂生成物11とを分離する。 When the operation of dissolving the fluoride residue 7 in the ionic liquid 8 is completed, the operation of transferring the solution 9 in the residue receiving and dissolving tank 21 to the separation device 28 is performed. By opening the valve E27 and operating the pump 26 to drive the pump, the solution 9 in the residue receiving tank / dissolving tank 21 is transferred to the separation device 28. Separation device 28 separates minor actinide 12, uranium and plutonium 10 and fission product 11 from solution 9.
 本実施例の使用済燃料処理装置を用いることで、使用済燃料4からアクチニドを容易に分離することが可能となる。 It becomes possible to easily separate the actinide from the spent fuel 4 by using the spent fuel processing apparatus of this embodiment.
 本実施例の使用済燃料処理装置によれば、フッ化物残渣7の受槽と溶解槽を同じ設備としているため、フッ化物残渣7の受槽から回収して別の溶解槽へ移送する操作が不要になるメリットを得ることができる。 According to the spent fuel processing apparatus of the present embodiment, the receiving tank for the fluoride residue 7 and the dissolving tank are the same equipment, so that there is no need to recover the fluoride residue 7 from the receiving tank and transfer it to another dissolving tank. The benefits can be obtained.
 本実施例の使用済燃料処理装置は、使用済燃料から得られたフッ化物残渣7をイオン液体に溶解する溶解工程2で、塩素ガスなどを吹き込む必要がないため、非常に簡素な設備とすることができる。 The spent fuel processing apparatus of the present embodiment is a very simple facility because it is not necessary to blow chlorine gas or the like in the dissolving step 2 for dissolving the fluoride residue 7 obtained from the spent fuel into the ionic liquid. be able to.
 特開2002-257980号公報のように使用済燃料をフッ素ガスと反応させた後にPUREX法で核燃料物質を回収する例が考えられる。この方法と高レベル放射性廃液から抽出剤を用いてマイナーアクチニドを選択的に分離する方法を組み合わせる例も比較例1として考えられる。比較例1と本実施例によるマイナーアクチニドを分離する方法を比較した場合、本実施例の溶解工程2では、水を使用していないため、臨界管理が容易であるという効果を得ることができる。 An example of recovering nuclear fuel material by the PUREX method after reacting spent fuel with fluorine gas as in JP-A-2002-257980 can be considered. An example in which this method is combined with a method of selectively separating minor actinides from high-level radioactive liquid waste using an extractant is also considered as Comparative Example 1. When the method for separating the minor actinides according to the comparative example 1 and the present example is compared, the dissolution process 2 of the present example does not use water, so that the effect that the critical control is easy can be obtained.
 特開2010-127616号公報のように使用済燃料をフッ素ガスと反応させた後に固体フッ化物を溶融塩へ溶解し、電気分解で元素を分離する方法が比較例2として考えられる。比較例2と本実施によるマイナーアクチニドを分離する方法を比較した場合、比較例2では、溶解工程の温度は一般的に数百℃とする必要があるが、本実施例の溶解工程2では常温付近で溶解することが可能であるため、本実施例によれば溶解工程の温度を低くすることができるという効果を得ることができる。
(実施例2)
 本発明の第2の実施例について、図3を用いて説明する。実施例1の使用済燃料処理装置は、フレーム炉20と残渣受槽兼溶解槽21がバルブA22及びバルブB23を介して接続され、UF6ガス6を回収する回収容器と、当該回収容器と残渣受槽兼溶解槽21の間に設置されるバルブC24を備える構成であったが、本実施例の使用済燃料処理装置は、フレーム炉及びUF6ガス6を回収する回収容器を備えない構成である。本実施例の使用済燃料処理装置について、実施例1と異なる構成を中心に以下に説明する。
As a comparative example 2, a method in which spent fuel is reacted with fluorine gas and solid fluoride is dissolved in a molten salt and elements are separated by electrolysis as disclosed in Japanese Patent Application Laid-Open No. 2010-127616. When comparing the comparative example 2 and the method for separating the minor actinides according to the present embodiment, in the comparative example 2, the temperature of the dissolution step generally needs to be several hundred degrees Celsius. Since it can melt | dissolve near, according to a present Example, the effect that the temperature of a melt | dissolution process can be made low can be acquired.
(Example 2)
A second embodiment of the present invention will be described with reference to FIG. In the spent fuel processing apparatus of Example 1, a flame furnace 20 and a residue receiving tank / dissolving tank 21 are connected via a valve A22 and a valve B23, a recovery container for recovering the UF 6 gas 6, the recovery container and the residue receiving tank was configured to include a valve C24 which is installed between and dissolving tank 21, but spent fuel processing apparatus of the present embodiment is a configuration without a collecting container for collecting the frame oven and UF 6 gas 6. The spent fuel processing apparatus of the present embodiment will be described below with a focus on the configuration different from that of the first embodiment.
 本実施例の使用済燃料処理装置は、溶解槽30、熱交換器33、ポンプ26、バルブE27、バルブF31、バルブG32を備える。フッ化物残渣7が貯留されたフッ化物残渣容器(図示せず)と溶解槽30の間にバルブF31が設置される。バルブF31を開くことでフッ化物残渣容器と溶解槽30が接続され、バルブF31を閉じることでフッ化物残渣容器と溶解槽30の間の配管が閉じられる。溶解槽30内に熱交換器33が設置される。 The spent fuel processing apparatus of this embodiment includes a dissolution tank 30, a heat exchanger 33, a pump 26, a valve E27, a valve F31, and a valve G32. A valve F31 is installed between the fluoride residue container (not shown) in which the fluoride residue 7 is stored and the dissolution tank 30. The fluoride residue container and the dissolution tank 30 are connected by opening the valve F31, and the piping between the fluoride residue container and the dissolution tank 30 is closed by closing the valve F31. A heat exchanger 33 is installed in the dissolution tank 30.
 次に、本実施例の使用済燃料処理装置を用いて使用済燃料からマイナーアクチニドを分離する手順について説明する。別に設けられたフレーム炉で、使用済燃料のフッ化処理を行なう。本実施例では、フレーム炉を用いてフッ化工程1を行う例を説明するが、バッチ式のフッ化装置を用いてフッ化工程を実施しても良い。生成したフッ化物残渣7をあらかじめ回収し、フッ化物残渣容器に貯留する。フッ化物残渣7を溶解するために、バルブE27を閉じ、バルブG32を開けて、バルブG32に接続された配管からイオン液体8を溶解槽30へ供給する。次に、バルブF31を開き、バルブF31に接続された配管からフッ化物残渣7を溶解槽30へ供給する。溶解槽30内で、フッ化物残渣7をイオン液体8へ溶解させる。このときの溶液を溶液9と称する。 Next, the procedure for separating the minor actinide from the spent fuel using the spent fuel processing apparatus of this embodiment will be described. The spent fuel is fluorinated in a separately installed flame furnace. In this embodiment, an example in which the fluorination step 1 is performed using a flame furnace will be described, but the fluorination step may be performed using a batch type fluorination apparatus. The generated fluoride residue 7 is collected in advance and stored in a fluoride residue container. In order to dissolve the fluoride residue 7, the valve E27 is closed, the valve G32 is opened, and the ionic liquid 8 is supplied to the dissolution tank 30 from a pipe connected to the valve G32. Next, the valve F31 is opened, and the fluoride residue 7 is supplied to the dissolution tank 30 from the pipe connected to the valve F31. The fluoride residue 7 is dissolved in the ionic liquid 8 in the dissolution tank 30. The solution at this time is referred to as Solution 9.
 溶解槽30内に溶液9を攪拌させる攪拌装置を設置してもよい。攪拌装置を備えることによって、フッ化物残渣7に含まれる成分がイオン液体8に溶解する時間を短縮することができる。 A stirring device for stirring the solution 9 may be installed in the dissolution tank 30. By providing the stirring device, it is possible to shorten the time for the components contained in the fluoride residue 7 to dissolve in the ionic liquid 8.
 溶解槽30内にイオン液体8または溶液9の温度を調整する加温装置を設置してもよい。本実施例の使用済燃料処理装置は、溶解槽30内に熱交換器33を備えるため、この熱交換器33を用いて溶液9を加温することができる。熱交換器33が、イオン液体8またはフッ化物残渣7が溶解された溶液9を加温することによって、フッ化物残渣7が溶液9に溶解される時間を短縮することができる。 A heating device that adjusts the temperature of the ionic liquid 8 or the solution 9 may be installed in the dissolution tank 30. Since the spent fuel processing apparatus of the present embodiment includes the heat exchanger 33 in the dissolution tank 30, the solution 9 can be heated using the heat exchanger 33. Since the heat exchanger 33 heats the solution 9 in which the ionic liquid 8 or the fluoride residue 7 is dissolved, the time for which the fluoride residue 7 is dissolved in the solution 9 can be shortened.
 フッ化物残渣7をイオン液体8へ溶解する操作が終了したら、溶液9を分離装置28に移送する操作を行う。バルブE27を開け、ポンプ26を作動してポンプ駆動することで、溶解槽30内の溶液9を分離装置28に移送する。分離装置28が、溶液9からマイナーアクチニド12と、ウランおよびプルトニウム10と核分裂生成物11とを分離する。 When the operation of dissolving the fluoride residue 7 in the ionic liquid 8 is completed, the operation of transferring the solution 9 to the separation device 28 is performed. By opening the valve E27 and operating the pump 26 to drive the pump, the solution 9 in the dissolution tank 30 is transferred to the separation device 28. Separation device 28 separates minor actinide 12, uranium and plutonium 10 and fission product 11 from solution 9.
 本実施例の使用済燃料処理装置は、熱交換器33を備えるが、当該熱交換器33に冷媒34を供給する構成としてもよい。熱交換器33に冷媒34を供給する例を説明する。溶解槽30内で、フッ化物残渣7をイオン液体8に溶解している作業中に地震等が発生し、例えば溶解槽30に接続している配管が破断する等の異常を検知した場合、溶液9が漏れ出すリスクがあると考えられる。一方、表1において、最もフッ化セリウムの溶解度が高かったイミダゾリウム系と塩化物イオンの組み合わせのイオン液体は、融点が常温付近に存在する。したがって、特にこのような融点が常温付近にあるイオン液体を溶媒として使用しておけば、地震が起こった際に熱交換器33に冷媒34を供給することで溶液9を冷却して固化することができ、万が一に配管が破断する等の異常を検知した場合でも溶液9を溶解槽30内に留めることができ、外部への漏洩を防止することができる。 Although the spent fuel processing apparatus of the present embodiment includes the heat exchanger 33, the refrigerant 34 may be supplied to the heat exchanger 33. An example of supplying the refrigerant 34 to the heat exchanger 33 will be described. When an abnormality such as an earthquake occurs during the operation of dissolving the fluoride residue 7 in the ionic liquid 8 in the dissolution tank 30 and the pipe connected to the dissolution tank 30 is broken, the solution 9 is considered to be at risk of leaking. On the other hand, in Table 1, the ionic liquid of a combination of imidazolium and chloride ions having the highest solubility of cerium fluoride has a melting point near room temperature. Therefore, in particular, when an ionic liquid having such a melting point near room temperature is used as a solvent, the solution 9 is cooled and solidified by supplying the refrigerant 34 to the heat exchanger 33 when an earthquake occurs. Even when an abnormality such as a broken pipe is detected, the solution 9 can be retained in the dissolution tank 30 and leakage to the outside can be prevented.
 本実施例の使用済燃料処理装置を用いることで、使用済燃料からアクチニドを容易に分離することが可能となる。 By using the spent fuel processing apparatus of this embodiment, it becomes possible to easily separate the actinide from the spent fuel.
 本実施例の使用済燃料処理装置は、溶解槽30内に熱交換器33を備える構成であるため、緊急時に溶液9を固体化することができ、液体の漏洩リスクを排除することができる。 Since the spent fuel processing apparatus of the present embodiment is configured to include the heat exchanger 33 in the dissolution tank 30, the solution 9 can be solidified in an emergency and the risk of liquid leakage can be eliminated.
 本実施例の使用済燃料処理装置は、予め使用済燃料をフッ化物に転換しておき、そのフッ化物をイオン液体に溶解するようにしておくことによって、使用済燃料の成分をイオン液体に溶解させやすくすることができる。 The spent fuel processing apparatus of this embodiment converts the spent fuel into fluoride and dissolves the spent fuel component in the ionic liquid by dissolving the fluoride in the ionic liquid. It can be made easy.
 本実施例の使用済燃料処理装置は、使用済燃料から得られたフッ化物残渣7をイオン液体に溶解する溶解工程2で、塩素ガスなどを吹き込む必要がないため、非常に簡素な設備とすることができる。 The spent fuel processing apparatus of the present embodiment is a very simple facility because it is not necessary to blow chlorine gas or the like in the dissolving step 2 for dissolving the fluoride residue 7 obtained from the spent fuel into the ionic liquid. be able to.
 特開2002-257980号公報のように使用済燃料をフッ素ガスと反応させた後にPUREX法で核燃料物質を回収する例が考えられる。この方法と高レベル放射性廃液から抽出剤を用いてマイナーアクチニドを選択的に分離する方法を組み合わせる例も比較例1として考えられる。比較例1と本実施例によるマイナーアクチニドを分離する方法を比較した場合、本実施例の溶解工程2では、水を使用していないため、臨界管理が容易であるという効果を得ることができる。 An example of recovering nuclear fuel material by the PUREX method after reacting spent fuel with fluorine gas as in JP-A-2002-257980 can be considered. An example in which this method is combined with a method of selectively separating minor actinides from high-level radioactive liquid waste using an extractant is also considered as Comparative Example 1. When the method for separating the minor actinides according to the comparative example 1 and the present example is compared, the dissolution process 2 of the present example does not use water, so that the effect that the critical control is easy can be obtained.
 特開2010-127616号公報のように使用済燃料をフッ素ガスと反応させた後に固体フッ化物を溶融塩へ溶解し、電気分解で元素を分離する方法が比較例2として考えられる。比較例2と本実施によるマイナーアクチニドを分離する方法を比較した場合、比較例2では、溶解工程の温度は一般的に数百℃とする必要があるが、本実施例の溶解工程2では常温付近で溶解することが可能であるため、本実施例によれば溶解工程の温度を低くすることができるという効果を得ることができる。 As a comparative example 2, a method in which spent fuel is reacted with fluorine gas, solid fluoride is dissolved in a molten salt, and elements are separated by electrolysis as disclosed in Japanese Patent Application Laid-Open No. 2010-127616. When comparing the comparative example 2 and the method for separating the minor actinides according to the present embodiment, in the comparative example 2, the temperature of the dissolution step generally needs to be several hundred degrees Celsius. Since it can melt | dissolve near, according to a present Example, the effect that the temperature of a melt | dissolution process can be made low can be acquired.
1・・フッ化工程
2・・溶解工程
3・・分離工程
4・・使用済燃料
5・・フッ素ガス
6・・UF6ガス
7・・フッ化物残渣
8・・イオン液体
9・・.溶液
10・・ウラン(U)及びプルトニウム(Pu)
11・・ 核分裂生成物
12・・マイナーアクチニド
13・・フレーム
20・・フレーム炉
21・・残渣受槽兼溶解槽
22・・バルブA
23・・バルブB
24・・バルブC
25・・バルブD
26・・ポンプ
27・・バルブE
28・・分離装置
30・・溶解槽
31・・バルブF
32・・バルブG
33・・熱交換器
34・・冷媒
1 .. fluoride Step 2 · dissolving step 3 · separating step 4 .. spent fuel 5 ... fluorine gas 6 .. UF 6 gas 7 .. fluoride residue 8 ... ionic liquid 9 ... Solution 10 ..Uranium (U) and plutonium (Pu)
11. Fission product 12. Minor actinide 13. Frame 20. Flame furnace 21. Residue receiving and melting tank 22. Valve A
23. Valve B
24. Valve C
25. Valve D
26 ・ ・ Pump 27 ・ ・ Valve E
28 .. Separation device 30 .. Melting tank 31 .. Valve F
32. Valve G
33 ... Heat exchanger 34 ... Refrigerant

Claims (9)

  1.  イオン液体を用いて使用済燃料からアクチニドを分離する分離方法において、
     前記使用済燃料をフッ化剤と反応させて固体フッ化物を生成し、
     生成した前記固体フッ化物をイオン液体に溶解し、
     前記固体フッ化物をイオン液体に溶解した溶液からアクチニドを分離することを特徴とするアクチニドの分離方法。
    In a separation method for separating actinides from spent fuel using an ionic liquid,
    Reacting the spent fuel with a fluorinating agent to produce a solid fluoride;
    Dissolving the produced solid fluoride in an ionic liquid;
    A method for separating actinides, comprising separating actinides from a solution in which the solid fluoride is dissolved in an ionic liquid.
  2.  前記イオン溶液の温度を調整した後に、前記固体フッ化物を前記イオン溶液に溶解することを特徴とする請求項1に記載のアクチニドの分離方法。 The method for separating actinides according to claim 1, wherein the solid fluoride is dissolved in the ion solution after adjusting the temperature of the ion solution.
  3.  前記固体フッ化物をイオン溶液に溶解した溶液を攪拌することを特徴とする請求項1または請求項2に記載のアクチニドの分離方法。 The method for separating actinides according to claim 1 or 2, wherein a solution obtained by dissolving the solid fluoride in an ionic solution is stirred.
  4.  異常を検知すると、前記固体フッ化物をイオン溶液に溶解した溶液を冷却することを特徴とする請求項1乃至請求項3のいずれか1項に記載のアクチニドの分離方法。 4. The actinide separation method according to claim 1, wherein when an abnormality is detected, a solution obtained by dissolving the solid fluoride in an ionic solution is cooled.
  5.  使用済燃料にフッ化剤を反応させて固体フッ化物を生成するフッ化処理装置と、
     前記固体フッ化物をイオン液体に溶解させた溶液を生成する溶解槽と、
     前記溶液からアクチニドを分離する分離装置を備えることを特徴とする使用済燃料処理装置。
    A fluorination treatment apparatus for producing a solid fluoride by reacting a fluorinating agent with spent fuel;
    A dissolution tank for producing a solution in which the solid fluoride is dissolved in an ionic liquid;
    A spent fuel processor comprising a separator for separating actinides from the solution.
  6.  前記溶解槽が、前記固体フッ化物を回収する受槽として機能し、
     当該溶解槽は、前記イオン液体を注入する注入口を有し、当該溶解槽の内部に当該イオン液体をためる構成であることを特徴とする請求項5に記載の使用済燃料処理装置。
    The dissolution tank functions as a receiving tank for collecting the solid fluoride,
    The spent fuel processing apparatus according to claim 5, wherein the dissolution tank has an inlet for injecting the ionic liquid, and is configured to accumulate the ionic liquid in the dissolution tank.
  7.  前記溶解槽は、前記イオン液体の温度を調節する熱交換器を有することを特徴とする請求項5または請求項6に記載の使用済燃料処理装置。 The spent fuel processing apparatus according to claim 5 or 6, wherein the dissolution tank has a heat exchanger for adjusting a temperature of the ionic liquid.
  8.  前記溶解槽は、前記固体フッ化物をイオン液体に溶解させた溶液を攪拌する攪拌装置を有することを特徴とする請求項5乃至請求項7のいずれか1項に記載の使用済燃料処理装置。 The spent fuel processing device according to any one of claims 5 to 7, wherein the dissolution tank includes a stirring device for stirring a solution obtained by dissolving the solid fluoride in an ionic liquid.
  9.  前記熱交換器は、前記固体フッ化物をイオン液体に溶解させた溶液を冷却することを特徴とする請求項7または請求項8に記載の使用済燃料処理装置。 The spent fuel processing apparatus according to claim 7 or 8, wherein the heat exchanger cools a solution obtained by dissolving the solid fluoride in an ionic liquid.
PCT/JP2013/078638 2013-10-23 2013-10-23 Method for separating actinide and device for treating spent fuel WO2015059777A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/078638 WO2015059777A1 (en) 2013-10-23 2013-10-23 Method for separating actinide and device for treating spent fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/078638 WO2015059777A1 (en) 2013-10-23 2013-10-23 Method for separating actinide and device for treating spent fuel

Publications (1)

Publication Number Publication Date
WO2015059777A1 true WO2015059777A1 (en) 2015-04-30

Family

ID=52992415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078638 WO2015059777A1 (en) 2013-10-23 2013-10-23 Method for separating actinide and device for treating spent fuel

Country Status (1)

Country Link
WO (1) WO2015059777A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008891A (en) * 2014-06-25 2016-01-18 株式会社日立製作所 Separation method of actinide and separation unit of actinide
CN111584111A (en) * 2020-05-15 2020-08-25 中国原子能科学研究院 Dissolver for spent fuel element and treatment method of dissolving liquid
WO2021178751A3 (en) * 2020-03-06 2021-12-02 The Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Las Vegas Stoichiometric recovery of uf4 from uf6 dissolved in ionic liquids
CN116665942A (en) * 2023-05-29 2023-08-29 西安交通大学 Spent fuel nuclide pre-separation method
US11760654B2 (en) 2019-03-29 2023-09-19 The Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Las Vegas Conversion of uranium hexafluoride and recovery of uranium from ionic liquids

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257980A (en) * 2001-03-02 2002-09-11 Tokyo Electric Power Co Inc:The Method of reprocessing spent nuclear fuel
JP2011107156A (en) * 2011-01-24 2011-06-02 Japan Atomic Energy Agency Recovery method of uranium using ionic liquid
JP2013101066A (en) * 2011-11-09 2013-05-23 Hitachi-Ge Nuclear Energy Ltd Treatment device and treatment method for used fuel containing zirconium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257980A (en) * 2001-03-02 2002-09-11 Tokyo Electric Power Co Inc:The Method of reprocessing spent nuclear fuel
JP2011107156A (en) * 2011-01-24 2011-06-02 Japan Atomic Energy Agency Recovery method of uranium using ionic liquid
JP2013101066A (en) * 2011-11-09 2013-05-23 Hitachi-Ge Nuclear Energy Ltd Treatment device and treatment method for used fuel containing zirconium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008891A (en) * 2014-06-25 2016-01-18 株式会社日立製作所 Separation method of actinide and separation unit of actinide
US11760654B2 (en) 2019-03-29 2023-09-19 The Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Las Vegas Conversion of uranium hexafluoride and recovery of uranium from ionic liquids
WO2021178751A3 (en) * 2020-03-06 2021-12-02 The Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Las Vegas Stoichiometric recovery of uf4 from uf6 dissolved in ionic liquids
CN111584111A (en) * 2020-05-15 2020-08-25 中国原子能科学研究院 Dissolver for spent fuel element and treatment method of dissolving liquid
CN116665942A (en) * 2023-05-29 2023-08-29 西安交通大学 Spent fuel nuclide pre-separation method
CN116665942B (en) * 2023-05-29 2024-01-23 西安交通大学 Spent fuel nuclide pre-separation method

Similar Documents

Publication Publication Date Title
Baron et al. A review of separation processes proposed for advanced fuel cycles based on technology readiness level assessments
WO2015059777A1 (en) Method for separating actinide and device for treating spent fuel
JP2018507396A (en) Nuclear material processing
JP2016008891A (en) Separation method of actinide and separation unit of actinide
Lewin et al. International developments in electrorefining technologies for pyrochemical processing of spent nuclear fuels
McFarlane et al. Review of hazards associated with molten salt reactor fuel processing operations
Sameh Production Cycle for Large Scale Fission Mo‐99 Separation by the Processing of Irradiated LEU Uranium Silicide Fuel Element Targets
US8867692B2 (en) Systems and methods for treating material
Laidler et al. Chemical partitioning technologies for an ATW system
JP6038585B2 (en) Processing method of radioactive material
Shadrin et al. Hydrometallurgical and combined technologies fast reactor MNUP and MOX UNF reprocessing
EP2701158B1 (en) Method for reprocessing irradiated nuclear fuel
Samsonov et al. Supercritical fluid extraction in modern radiochemistry
Serrano-Purroy et al. Towards a DIAMEX process using high active concentrate. Production of genuine solutions
RU2366012C2 (en) Method of irradiated nuclear fuel treatment
Miguirditchian et al. Advanced concepts for uranium and plutonium multi-recycling
Yano et al. Uranium crystallization test with dissolver solution of irradiated fuel
JP5065163B2 (en) Method for recycling uranium from spent nuclear fuel
Brown et al. Recovery and Recycle of Irradiated Low-Enriched Uranium from the Production of 99Mo
US20230360813A1 (en) Modular, integrated, automated, compact, and proliferation-hardened method to chemically recycle used nuclear fuel (unf) originating from nuclear reactors to recover a mixture of transuranic (tru) elements for advanced reactor fuel to recycle uranium and zirconium
JP7235601B2 (en) Method for separating lanthanides from radioactive solutions
KR20230098285A (en) Method for Selective Removal of Anionic Radionuclides
WO2017145352A1 (en) Method for separating minor actinides and apparatus for separating minor actinides
Paviet et al. Nuclear Fuel Recycling
JP2005338019A (en) Pretreatment method for nuclide analysis of radioactivated graphite, nuclide separation method and pretreatment equipment of nuclide analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP