WO2015058726A1 - 一种上行信道估计的方法、发送装置及接收装置 - Google Patents

一种上行信道估计的方法、发送装置及接收装置 Download PDF

Info

Publication number
WO2015058726A1
WO2015058726A1 PCT/CN2014/089526 CN2014089526W WO2015058726A1 WO 2015058726 A1 WO2015058726 A1 WO 2015058726A1 CN 2014089526 W CN2014089526 W CN 2014089526W WO 2015058726 A1 WO2015058726 A1 WO 2015058726A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
pilot
information
control
bits
Prior art date
Application number
PCT/CN2014/089526
Other languages
English (en)
French (fr)
Inventor
胡文权
焦淑蓉
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015058726A1 publication Critical patent/WO2015058726A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/12Outer and inner loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, a transmitting device, and a receiving device for uplink channel estimation.
  • the most commonly used means for increasing the uplink data transmission rate is to apply 16QAM (Quadrature Amplitude Modulation) or 64QAM to the uplink channel to improve the uplink transmission TB (Transport Block). ) size, thereby increasing the uplink data transmission rate.
  • 16QAM Quadrature Amplitude Modulation
  • 64QAM 64QAM
  • the requirements for the pilot channel are also higher. For example, after the actual application of 16QAM, the channel estimation accuracy is higher because the TB block size of the uplink transmission increases.
  • the data block size exceeds a certain threshold, only the DPCCH (Dedicated Physical Control Channel) is used.
  • the pilot channel of the E-DPCH E-DCH Dedicated Physical Data Channel
  • the E-DPCCH E-DCH Dedicated Physical Control
  • E-DCH dedicated physical control channel E-DCH dedicated physical control channel
  • boosting enhancementd
  • the DPCCH and the E-DPCCH participate in channel estimation as pilot channels to meet the performance requirements for E-DPDCH channel estimation, so as to ensure the transmission quality of uplink data. Further, in order to ensure performance when performing channel estimation using the E-DPCCH, it is necessary to control the block error rate of the E-DPCCH to a lower range.
  • the uplink data transmission rate is increased, it is necessary to increase the transmission power of the data channel, thereby increasing the The degree of self-interference during line transmission makes the error block rate of E-DPCCH high, and it is difficult to meet the performance requirements for channel estimation of E-DPDCH.
  • the current solution is to increase the SINR (signal to interference plus noise ratio) of the DPCCH.
  • the transmit power of the DPCCH is to improve the demodulation performance of the E-DPCCH to reduce the block error rate of the E-DPCCH.
  • the uplink and outer loop power control is important to ensure the data transmission quality.
  • the DPCCH signal to interference and noise ratio target value (SINR target ) needs to be adjusted.
  • SINR target the DPCCH signal to interference and noise ratio target value
  • the device increases the SINR target of the DPCCH in order to increase the transmit power of the DPCCH, and reduces the SINR target of the DPCCH because of the need for uplink outer loop power control, so that the DPCCH transmit power is reduced. Due to the reduced transmit power of the DPCCH, after increasing the uplink data transmission rate, the DPCCH is difficult to meet the performance requirements for channel estimation of the E-DPDCH, thereby reducing the transmission quality of the uplink data and reducing the system performance.
  • Embodiments of the present invention provide a method, a transmitting device, and a receiving device for uplink channel estimation, which can reduce the impact on the uplink and outer loop power control while satisfying the performance requirement of the physical data channel for channel estimation, thereby improving uplink data transmission. Quality, improve system performance.
  • an embodiment of the present invention provides a method for estimating an uplink channel, where the uplink packet access system includes: at least one data channel, corresponding to the first of the at least one data channel. a control channel, and a pilot channel, where the first control channel is used to carry control information of the at least one data channel, and the pilot channel carries first pilot information, where the method includes:
  • E-TFCI Obtaining a current enhanced transport format combination indication E-TFCI, where the E-TFCI is used to indicate a size of a transport block currently transmitted in the at least one data channel;
  • the E-TFCI is greater than or equal to the first threshold, transmitting the control information and the second pilot information on the second control channel by using the first transmit power, where the second control channel is used instead of the first control
  • the channel carries the control information, and the second pilot information is used to perform uplink channel estimation in association with the first pilot information, where the first transmit power is greater than a third transmit power of the first control channel.
  • the second transmit power is in the first control Transmitting the control signal on the channel Information, wherein the second transmission power is greater than the third transmission power;
  • the second threshold is smaller than the first threshold.
  • one subframe in a frame format of the second control channel, includes three time slots, and each time slot carries 10 Bit information.
  • the sending, by using the first transmit power, the control information and the second pilot information on the second control channel includes:
  • the control information is encoded into 20 bits by using a Reed-Muller RM (20:10) encoding method, and is configured into three time slots of the subframe, and the second pilot information is configured to the In each of the three time slots, the control information occupies 6 or 7 bits in each time slot, and the second pilot information occupies 4 or 3 bits, wherein the control information includes 10 in total. a bit, the second pilot information comprising a total of 10 bits;
  • control information includes: a 7-bit E-TFCI, a 2-bit retransmission sequence number RSN, and a 1-bit satisfaction bit happy Bit;
  • the transmitting the control information and the second pilot information on the second control channel by using the first transmit power includes:
  • control information includes: a 7-bit E-TFCI, a 2-bit RSN, and a 1-bit happy bit;
  • the transmitting the control information and the second pilot information on the second control channel by using the first transmit power includes:
  • the compressed control information is encoded into 24 bits using a Reed-Muller RM (24:8) encoding method, and configured into three time slots of the subframe, and the second pilot information is Configuring into the three time slots, in each time slot, the control information occupies 8 bits, and the second pilot information occupies 2 bits, wherein the second pilot information is total Including 6 bits;
  • the uplink packet access system is a high speed uplink packet access system HSUPA
  • the data channel is an enhanced dedicated channel E-
  • the first control channel is an E-DCH dedicated physical control channel E-DPCCH
  • the pilot channel is a dedicated physical control channel DPCCH.
  • an embodiment of the present invention provides a method for uplink channel estimation, where the uplink packet access system includes: at least one data channel, corresponding to the first of the at least one data channel. a control channel, and a pilot channel, where the first control channel is used to carry control information of the at least one data channel, and the pilot channel carries first pilot information, where the method includes:
  • Channel estimation is performed by combining the first pilot information and the second pilot information acquired from the pilot channel.
  • the uplink packet access system is a high speed uplink packet access system HSUPA
  • the data channel is an enhanced dedicated channel E-DCH dedicated physical data channel.
  • E-DPDCH the first control channel is an E-DCH dedicated physical control channel E-DPCCH
  • the pilot channel is a dedicated physical control channel DPCCH.
  • an embodiment of the present invention provides a transmitting apparatus, configured in an uplink packet access system, where
  • the row packet access system includes: at least one data channel corresponding to a first control channel of the at least one data channel, and a pilot channel, wherein the first control channel is configured to carry control information of the at least one data channel
  • the pilot channel carries the first pilot information
  • the method includes the sending device includes:
  • An extracting module configured to acquire a current enhanced transport format combination indication E-TFCI, where the E-TFCI is used to indicate a size of a transport block currently transmitted in the at least one data channel;
  • a second channel sending module configured to send the control information and the second pilot information on the second control channel, where the E-TFCI is greater than or equal to the first threshold, the second control channel And the second pilot information is used to perform uplink channel estimation in association with the first pilot information, where the first transmit power is greater than the first The third transmit power of a control channel.
  • the sending device further includes:
  • a first channel sending module configured to send the control information on the first control channel by using a second sending power, if the E-TFCI is greater than or equal to a second threshold and less than the first threshold, where Said second transmission power is greater than said third transmission power;
  • the second threshold is smaller than the first threshold.
  • each time slot carries 10 bits of information.
  • the second channel sending module includes:
  • a first coding unit configured to encode the control information into 20 bits by using a Reed-Muller RM (20:10) coding manner, and configured into three time slots of the subframe, and the foregoing Two pilot information is configured into the three time slots, in each time slot, the control information occupies 6 or 7 bits, and the second pilot information occupies 4 or 3 bits, where The control information includes a total of 10 bits, and the second pilot information includes a total of 10 bits;
  • a first sending unit configured to send the control information and the second pilot information on the second control channel by using the first transmit power according to the frame format.
  • control information includes: a 7-bit E-TFCI, a 2-bit retransmission sequence number RSN, and a 1-bit satisfactory bit happy bit;
  • second channel transmission module includes:
  • a first compression unit configured to compress the 7-bit E-TFCI in the control information into 4 bits
  • a second coding unit configured to encode the compressed control information into 20 bits in a Reed-Muller RM (20:7) coding manner, and configured into three time slots of the subframe, and
  • the second pilot information is configured into the three time slots, and in each time slot, the control information occupies 6 or 7 bits, and correspondingly, the second pilot information occupies 4 or 3 a bit, wherein the second pilot information comprises a total of 10 bits.
  • control information includes: a 7-bit E-TFCI, a 2-bit RSN, a 1-bit happy bit
  • the second The channel sending module includes:
  • a second compression unit configured to compress the 7-bit E-TFCI in the control information into 5 bits
  • a third coding unit configured to encode the compressed control information into 24 bits in a Reed-Muller RM (24:8) coding manner, and configured into three time slots of the subframe, and
  • the second pilot information is configured into the three time slots, in each time slot, the control information occupies 8 bits, and the second pilot information occupies 2 bits, where The second pilot information includes a total of 6 bits.
  • the uplink packet access system is a high speed uplink packet access system HSUPA
  • the data channel is an enhanced dedicated channel E-
  • the first control channel is an E-DCH dedicated physical control channel E-DPCCH
  • the pilot channel is a dedicated physical control channel DPCCH.
  • an embodiment of the present invention provides a receiving apparatus, in an uplink packet access system, where the uplink packet access system includes: at least one data channel, corresponding to a first control channel of the at least one data channel. And a pilot channel, where the first control channel is used to carry control information of the at least one data channel, and the pilot channel carries first pilot information, where the method includes:
  • a channel detecting module configured to detect the first control channel and the second control channel
  • a pilot extraction module configured to: when detecting that the user equipment uses the second control channel to replace the first control channel to send the control information and the second pilot information on the second control channel, Obtaining, by the second control channel, the second pilot information;
  • a channel estimation module configured to perform channel estimation by jointly combining the first pilot information and the second pilot information acquired from the pilot channel.
  • the uplink packet access system is a high speed uplink packet access system HSUPA
  • the data channel is an enhanced dedicated channel E-DCH dedicated physical data channel.
  • E-DPDCH the first control channel is an E-DCH dedicated physical control channel E-DPCCH
  • the pilot channel is a dedicated physical control channel DPCCH.
  • the device as the transmitting end can add a pilot bit by transmitting a new physical control channel and adding a frame to the frame transmitted on the new physical control channel.
  • the embodiments of the present invention can meet the performance requirements of the physical data channel for channel estimation, and reduce the adjustment of the signal to interference and noise ratio target value. For example, after the pilot bit is carried by the new physical control channel, the performance requirement of the physical data channel for channel estimation is satisfied, so that it is no longer necessary to increase the DPCCH power by increasing the signal-to-interference ratio target value SINR target of the DPCCH. Therefore, the performance requirement for channel estimation of the physical data channel is ensured, the impact on the uplink and outer loop power control is avoided, the transmission quality of the uplink data is improved, and the system performance is improved.
  • FIG. 1 is a schematic diagram of a network architecture according to an embodiment of the present invention
  • FIG. 1b is a schematic diagram of a channel transmission process of a specific example according to an embodiment of the present invention.
  • FIG. 1c is a flowchart of a method for estimating an uplink channel according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another method for estimating an uplink channel according to an embodiment of the present invention.
  • 3a, 3b, and 3c are flowcharts of a specific implementation manner of a method for estimating an uplink channel according to an embodiment of the present invention
  • FIG. 3b1, FIG. 3b, and FIG. 3c are schematic diagrams showing a frame structure in a specific implementation manner according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of still another method for estimating an uplink channel according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a sending apparatus according to an embodiment of the present disclosure.
  • FIG. 5b is a schematic structural diagram of another sending apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a receiving apparatus according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a user equipment UE according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • An embodiment of the present invention provides a method for estimating an uplink channel, which is used in a sending end of an uplink packet access system, such as a user equipment UE, where the uplink packet access system includes: at least one data channel, accompanied by at least one a first control channel of the data channel, and a pilot channel, the first control channel carries control information, and the pilot channel carries bit information, as shown in FIG.
  • the uplink packet access system includes a transmitting end, such as a user equipment UE, and The receiving end, such as a base station, is configured to send data to the receiving end through the uplink channel, where the uplink channel includes a physical data channel and a physical control channel, and the physical control channel can be used to transmit control information of the transport block on the physical data channel.
  • the uplink channel includes a physical data channel and a physical control channel
  • the physical control channel can be used to transmit control information of the transport block on the physical data channel.
  • E- The DPDCH E-DCH Dedicated Physical Data Channel
  • an E-DCH Enhanced Dedicated Channel
  • E-DPDCH One, two or four E-DPDCH channels.
  • the channel power of the E-DCHCH (E-DCH Dedicated Physical Control Channel) needs to be improved and used as the control channel of the E-DPDCH, for example, when the TB is sent upstream.
  • the E-TFCI Enhanced Transport Format Combination Indicator
  • the Boosting of the E-DPCCH is started.
  • the control information of the transport block on the E-DPDCH is transmitted on the E-DPCCH, so that the base station receives the transport block corresponding to the transport block on the E-DPCCH and the E-DPDCH while receiving the transported transport block through the E-DPDCH. .
  • the control information is then used for demodulation.
  • the control information transmitted on the E-DPCCH may include: an RSN (Retransmission Sequence Number), an E-TFCI, a Happy bit, and the like.
  • the E-TFCI corresponds to the size of the transport block TB; the RSN is used to map a HARQ (Hybrid ARQ Hybrid Automatic Repeat Request) RV (Redundancy Version) for HARQ merging; The bit is used to feedback the transmitter to the current data transmission rate, so that the base station can determine the scheduling value through the Happy bit.
  • HARQ Hybrid ARQ Hybrid Automatic Repeat Request
  • RV Redundancy Version
  • the embodiment of the present invention may be applied to a high-speed uplink packet access system HSUPA, that is, the uplink packet access system in the embodiment of the present invention may be an HSUPA, and the data channel is an enhanced dedicated channel E-DCH dedicated physical data channel E-DPDCH, first
  • the control channel is an E-DCH dedicated physical control channel E-DPCCH, and the pilot channel is a dedicated physical control channel DPCCH.
  • the method for estimating the uplink channel provided in this embodiment, as shown in FIG. 1c, may include:
  • E-TFCI current enhanced transport format combination indication
  • the user equipment UE may obtain an enhanced transport format combination indication E-TFCI through the first control channel.
  • the E-TFCI is used to indicate the size of the transport block currently transmitted in the at least one data channel.
  • the correspondence between E-TFCI and TBS can be referred to the table "2ms TTI E-DCH Transport Block Size Table0" in the appendix of the 3gpp protocol 25.321.
  • E-TFCI is greater than or equal to the first threshold, send control information and second pilot information on the second control channel with the first transmit power, instead of the first control channel, to carry the control information. And carrying the second pilot information.
  • the second pilot information is used in combination with the first pilot information to perform channel estimation.
  • the first transmit power is greater than the third transmit power of the first control channel.
  • the first threshold may be set according to the threshold of the existing E-TFCI. For example, when the E-TFCI is greater than or equal to the first threshold, the error block rate BLER of the E-DPCCH according to the existing protocol is greater than 9.9%, which cannot satisfy the condition of channel estimation. Therefore, when the data block is too large, the E-TFCI is greater than Equal to the first threshold, causing the E-DPCCH to be used as a phase reference for the E-DPDCH channel. In this case, the user equipment UE may transmit the control information and the second pilot information on the second control channel with the first transmission power.
  • the transmitting end may directly transmit the pilot bit to the subframe of the second control channel, and may send the second control channel carrying the pilot bit.
  • the transmitting end may send the pilot bit carrying the pilot bit on the uplink carrier.
  • a second control channel the receiving end may obtain pilot bits from the second control channel after receiving the second control channel sent by the transmitting end, and according to the pilot bits carried by the second control channel and the bit information carried by the pilot channel Joint channel estimation.
  • the device as the transmitting end can add a pilot bit by transmitting a new physical control channel and adding a frame to the frame transmitted on the new physical control channel.
  • the embodiment of the present invention satisfies the performance requirement of the physical data channel for channel estimation by adding pilot bits in the frame transmitted on the physical control channel.
  • the adjustment of the signal to interference and noise ratio target value, for example, the pilot carried over the new physical control channel, is avoided when the power of the physical control channel is increased in order to meet the performance requirements of the physical data channel for channel estimation.
  • the performance requirement of the physical data channel for channel estimation is satisfied, so it is no longer necessary to increase the DPCCH power by increasing the signal-to-interference ratio target value SINR target of the DPCCH. Therefore, the performance requirement for channel estimation of the physical data channel is ensured, the impact on the uplink and outer loop power control is avoided, the transmission quality of the uplink data is improved, and the system performance is improved.
  • 102b or 102c may also be included in this embodiment. among them:
  • E-TFCI is greater than or equal to a second threshold and less than the first threshold, sending the control information on the first control channel by using a second transmit power.
  • the second transmit power is greater than the third transmit power of the first control channel.
  • the second threshold is smaller than the first threshold.
  • each subframe in the frame format of the second control channel, includes three slots, and each slot carries 10 bits of information.
  • the specific implementation manner of carrying the second control information and the pilot bits by using the second control channel may be various. The following three possible implementation manners are illustrated:
  • 102 can be specifically implemented as:
  • the control information occupies 6 or 7 bits, and correspondingly, the second pilot information occupies 4 or 3 bits, wherein the control information is 10 bits, and the second pilot information is 10 Bit.
  • the transmitting end can carry pilot bits in the vacant bits in each time slot.
  • control information and the second pilot information are sent on the second control channel by using the first transmit power according to the frame format.
  • control information includes: a 7-bit enhanced transport format combination indication E-TFCI, a 2-bit retransmission sequence number RSN, and a 1-bit happy bit happy bit, 102 specifically implemented as:
  • the first control channel may be a dedicated physical control channel E-DPCCH of the enhanced dedicated channel, and the transmitting end may vacate the bit for carrying the pilot bit by compressing the E-TFCI, for example:
  • the E-TFCI is less likely to correspond to a smaller TB, and the mapping table of the TB size and the E-TFCI can be reformulated.
  • the range of TB sizes indicated by TFCI is reduced to compress the bits required for E-TFCI, such as compression from 7 bits to 4 bits.
  • the pilot bits occupy 3 bits in each slot.
  • 10 bits of other information are included in the current frame structure, and other information includes RSN, E-TFCI, and Happy bit, and the E-TFCI can be compressed from 7 bits to 4 bits. The number of bits occupied by other information is reduced from 10 bits to 7 bits.
  • control information and the second pilot information are sent on the second control channel by using the first transmit power according to the frame format.
  • the E-TFCI to be carried on the subframe of the E-DPCCH is compressed from 7 bits to 4 bits.
  • the pilot bit pilot is obtained, and the 20-bit coding result and the pilot bit are carried in three time slots of one subframe. As shown in FIG. 3b2, 4 bits of the pilot bits can be carried on the slot 1. And 6 bits out of the 20-bit coding result; 3 bits in the pilot bits are carried on slot 2, and 7 bits out of the 20-bit coding result; 3 bits in the pilot bits are carried on slot 3, and 20-bit coding results are included 7bit.
  • the frame format of the E-DPCCH is changed so that the pilot bits can be carried on the subframe.
  • the second control channel in which the pilot is added in the subframe may be represented by R-E-DPCCH (Reduced E-DPCCH).
  • the transmitting end can transmit the R-E-DPCCH through a code channel different from the E-DPCCH. Therefore, the first control channel sent by the user equipment UE is an E-DPCCH, and the second control channel may be an R-E-DPCCH. And both channels can be sent simultaneously.
  • control information includes: a 7-bit E-TFCI, a 2-bit RSN, and a 1-bit happy bit, and the specific implementation is:
  • the sender can compress the E-TFCI in the subframe from 7 bits to 5 bits, and then perform (24, 8) RM on other information including RSN, E-TFCI, and Happy bit. After encoding, the bits occupied by other information carried in one slot of the subframe are reduced from 10 bits to 8 bits. Can use vacated 2 bits carry pilot bits.
  • the pilot bits occupy 2 bits in each slot.
  • 1023c Send the control information and the second pilot information on the second control channel by using the first transmit power according to the frame format.
  • the technician can also obtain the following scenario:
  • the E-TFCI information field is compressed to 5 bits, and then RM encoding (24, 8) is performed on data such as RSN, E-TFCI, and Happy bit, and a total of 24 bit encoding results are output.
  • the pilot bit pilot is obtained, and the 24-bit coding result and the pilot bit are sequentially carried in three time slots of one subframe. As shown in FIG. 3c1, the pilot bit 2bit can be carried on each time slot. And 8bit among the 24bit encoding results.
  • the frame format of the E-DPCCH is changed so that the pilot bits can be carried on the subframe.
  • the second control channel in which the pilot is added in the subframe may be represented by R-E-DPCCH (Reduced E-DPCCH).
  • the transmitting end can transmit the R-E-DPCCH through a code channel different from the E-DPCCH. Thereby, simultaneous transmission of E-DPCCH and R-E-DPCCH is achieved.
  • the device as the transmitting end can add a pilot bit by transmitting a new physical control channel and adding a frame to the frame transmitted on the new physical control channel.
  • the embodiment of the present invention satisfies the performance requirement of the physical data channel for channel estimation by adding pilot bits in the frame transmitted on the physical control channel.
  • the adjustment of the signal to interference and noise ratio target value, for example, the pilot carried over the new physical control channel, is avoided when the power of the physical control channel is increased in order to meet the performance requirements of the physical data channel for channel estimation.
  • the performance requirement of the physical data channel for channel estimation is satisfied, so it is no longer necessary to increase the DPCCH power by increasing the signal-to-interference ratio target value SINR target of the DPCCH. Therefore, the performance requirement for channel estimation of the physical data channel is ensured, the impact on the uplink and outer loop power control is avoided, the transmission quality of the uplink data is improved, and the system performance is improved.
  • the embodiment of the invention provides a method for uplink channel estimation, which is used for a receiving end in an uplink packet access system, such as a base station.
  • the uplink packet access system includes: at least one data channel corresponding to the first of the at least one data channel And a control channel, where the first control channel carries control information of the at least one data channel, and the pilot channel carries the first pilot information.
  • the embodiment of the present invention may be applied to a high-speed uplink packet access system HSUPA, that is, the uplink packet access system in the embodiment of the present invention may be an HSUPA, and the data channel is an enhanced dedicated channel E-DCH dedicated physical data channel E-DPDCH, first
  • the control channel is an E-DCH dedicated physical control channel E-DPCCH, and the pilot channel is a dedicated physical control channel DPCCH.
  • the method on the receiving end side may include:
  • the transmitting end adds a pilot to the subframe to change the frame format of the channel, and the R-E-DPCCH (Reduced E-DPCCH) may be used to indicate the second control channel in which the transmitting end adds the pilot in the subframe. And, the transmitting end transmits the R-E-DPCCH through a code channel different from the E-DPCCH as the first control channel.
  • the base station can simultaneously monitor the E-DPCCH and the R-E-DPCCH channels. When detecting that the user equipment UE uplinks the R-E-DPCCH, the pilot bits are obtained from the R-E-DPCCH.
  • the first control channel may be a dedicated physical control channel E-DPCCH of the enhanced dedicated channel.
  • the receiving end can receive the new physical control channel transmitted by the transmitting end, and the transmitting end adds the pilot bit to the frame transmitted on the new physical control channel.
  • the embodiment of the present invention satisfies the performance requirement of the physical data channel for channel estimation by adding pilot bits in the frame transmitted on the physical control channel.
  • the adjustment of the signal to interference and noise ratio target value, for example, the pilot carried over the new physical control channel, is avoided when the power of the physical control channel is increased in order to meet the performance requirements of the physical data channel for channel estimation.
  • the performance requirement of the physical data channel for channel estimation is satisfied, so it is no longer necessary to increase the DPCCH power by increasing the signal-to-interference ratio target value SINR target of the DPCCH. Therefore, the performance requirement for channel estimation of the physical data channel is ensured, the impact on the uplink and outer loop power control is avoided, the transmission quality of the uplink data is improved, and the system performance is improved.
  • the embodiment further provides a sending device 50, configured in an uplink packet access system, where the uplink packet is accessed.
  • the system includes: at least one data channel corresponding to a first control channel of the at least one data channel, and a pilot channel, wherein the first control channel is configured to carry control information of the at least one data channel, the guide The frequency channel carries the first pilot information.
  • the transmitting device 50 includes:
  • the extracting module 51 is configured to obtain a current enhanced transport format combination indication E-TFCI, where the E-TFCI is used to indicate a size of a transport block currently transmitted in the at least one data channel.
  • the second channel sending module 52 is configured to: if the E-TFCI is greater than or equal to the first threshold, send the control information and the second pilot information on the second control channel by using the first transmit power, where the second control And the second pilot information is used to perform uplink channel estimation in association with the first pilot information, where the first transmit power is greater than the The third transmit power of the first control channel.
  • the sending device 50 may further include:
  • the first channel sending module 53 is configured to send the control information on the first control channel by using a second sending power, if the E-TFCI is greater than or equal to a second threshold and less than the first threshold, where The second transmission power is greater than the third transmission power; and/or
  • the second threshold is smaller than the first threshold.
  • a second subframe in a frame format of the second control channel, one subframe includes three slots, each slot carries 10 bits of information, and therefore, a second The channel sending module 52 may specifically include:
  • a first encoding unit 521 configured to encode the control information into 20 bits in a Reed-Muller RM (20:10) encoding manner, and configured into three time slots of the subframe, and
  • the second pilot information is configured into the three time slots, in each time slot, the control information occupies 6 or 7 bits, and the second pilot information occupies 4 or 3 bits, wherein
  • the control information includes a total of 10 bits, and the second pilot information includes a total of 10 bits.
  • the first sending unit 522 is configured to send the control information and the second pilot information on the second control channel by using the first transmit power according to the frame format.
  • control information includes: a 7-bit E-TFCI, a 2-bit retransmission sequence number RSN, and a 1-bit happy bit happy bit.
  • the second channel sending module 52 may further include:
  • a second encoding unit 523 configured to encode the compressed control information into 20 bits by using a Reed-Muller RM (20:7) encoding manner, and configured into three time slots of the subframe, and Configuring the second pilot information into the three time slots, in each time slot, the control information occupies 6 or 7 bits, and correspondingly, the second pilot information occupies 4 or 3 bits, wherein the second pilot information comprises a total of 10 bits.
  • the first compression unit 524 is configured to compress the 7-bit E-TFCI in the control information into 4 bits.
  • control information includes: a 7-bit E-TFCI, a 2-bit RSN, and a 1-bit happy bit.
  • the second channel sending module 52 may further include:
  • a third encoding unit 525 configured to encode the compressed control information into 24 bits by using a Reed-Muller RM (24:8) encoding manner, and configured into three time slots of the subframe, and Configuring the second pilot information into the three time slots, in each time slot, the control information occupies 8 bits, and the second pilot information occupies 2 bits, where The second pilot information includes a total of 6 bits.
  • the second compression unit 526 is configured to compress the 7-bit E-TFCI in the control information into 5 bits.
  • the first control channel may be a dedicated physical control channel E-DPCCH that enhances the dedicated channel.
  • the uplink packet access system is a high-speed uplink packet access system HSUPA
  • the data channel is an enhanced dedicated channel E-DCH dedicated physical data channel E-DPDCH
  • the first control channel is an E-DCH dedicated physics.
  • Control channel E-DPCCH the pilot channel is a dedicated physical control channel DPCCH.
  • the transmitting apparatus provided by the embodiment of the present invention is capable of adding a pilot bit by transmitting a new physical control channel and adding a frame to a frame transmitted on a new physical control channel.
  • the embodiment of the present invention satisfies the performance requirement of the physical data channel for channel estimation by adding pilot bits in the frame transmitted on the physical control channel.
  • the adjustment of the signal to interference and noise ratio target value, for example, the pilot carried over the new physical control channel, is avoided when the power of the physical control channel is increased in order to meet the performance requirements of the physical data channel for channel estimation.
  • the performance requirement of the physical data channel for channel estimation is satisfied, so it is no longer necessary to increase the DPCCH power by increasing the signal-to-interference ratio target value SINR target of the DPCCH. Therefore, the performance requirement for channel estimation of the physical data channel is ensured, the impact on the uplink and outer loop power control is avoided, the transmission quality of the uplink data is improved, and the system performance is improved.
  • the embodiment further provides a receiving device 60, configured in an uplink packet access system, where the uplink packet access system includes: at least one data channel, a first control channel corresponding to the at least one data channel, and a guide And a frequency channel, where the first control channel is used to carry control information of the at least one data channel, and the pilot channel carries first pilot information.
  • the receiving device 60 includes:
  • a channel detecting module 61 configured to detect the first control channel and the second control channel
  • a pilot extraction module 62 configured to: when detecting that the user equipment uses the second control channel to replace the first control channel to send the control information and the second pilot information on the second control channel, Obtaining, by the second control channel, the second pilot information;
  • the channel estimation module 63 is configured to perform channel estimation by jointly combining the first pilot information and the second pilot information acquired from the pilot channel.
  • the uplink packet access system is a high-speed uplink packet access system HSUPA
  • the data channel is an enhanced dedicated channel E-DCH dedicated physical data channel E-DPDCH
  • the first control channel is an E-DCH dedicated physics.
  • Control channel E-DPCCH the pilot channel is a dedicated physical control channel DPCCH.
  • the receiving apparatus provided by the embodiment of the present invention is capable of receiving a new physical control channel transmitted by the transmitting end, and the transmitting end adds a pilot bit to a frame transmitted on the new physical control channel.
  • the embodiment of the present invention satisfies the performance requirement of the physical data channel for channel estimation by adding pilot bits in the frame transmitted on the physical control channel.
  • the adjustment of the signal to interference and noise ratio target value, for example, the pilot carried over the new physical control channel is avoided when the power of the physical control channel is increased in order to meet the performance requirements of the physical data channel for channel estimation.
  • the physical data channel to meet the performance requirements for channel estimation, so it is no longer the DPCCH by increasing the target signal to interference noise ratio SINR target to increase the DPCCH power. Therefore, the performance requirement for channel estimation of the physical data channel is ensured, the impact on the uplink and outer loop power control is avoided, the transmission quality of the uplink data is improved, and the system performance is improved.
  • the embodiment of the present invention further provides a structure of a user equipment UE70.
  • the user equipment UE70 includes: at least one processor 71, such as a CPU, at least one wireless network interface 74 or a user interface 73, and a memory 75.
  • Communication bus 72 is used to implement connection communication between these components.
  • the user interface 73 may include a display, a keyboard or a pointing device (eg, a mouse, a trackball, a touchpad or a touch sensitive display).
  • the wireless network interface 74 may include elements for wireless communication, such as an antenna of the user equipment UE and a radio frequency circuit, and the memory 75 may include a high speed RAM memory, and may also include a non-volatile memory, such as at least one disk. Memory.
  • the memory 75 can optionally include at least one storage device located remotely from the aforementioned processor 71.
  • the processor 71 is configured to: acquire a current enhanced transport format combination indication E-TFCI, where the E-TFCI is used to indicate a size of a transport block currently transmitted in the at least one data channel;
  • E-TFCI is greater than or equal to the first threshold, transmitting control information and second pilot information on the second control channel with the first transmit power, instead of the first control channel, to carry the control information and bearer.
  • Two pilot information, the second pilot information being used in combination with the first pilot information to perform channel estimation, wherein the first transmit power is greater than a third transmit power of the first control channel.
  • the processor 71 is further configured to: if the E-TFCI is greater than or equal to a second threshold and less than the first threshold, send the first control channel uplink by using a second transmit power, where the second transmit power And being greater than the transmit power of the first control channel; or if the E-TFCI is less than the second threshold, maintaining a transmit power of the first control channel unchanged, and transmitting the first control channel uplink.
  • each subframe includes three time slots, each time slot carrying 10 bits of information, and the processor 71 may be specifically configured to:
  • the control information is encoded into 20 bits in a Reed-Muller RM (20:10) encoding manner, and configured into three slots of one frame, and the second pilot information is configured to the third In each time slot, the control information occupies 6 or 7 bits in each time slot, and correspondingly, the second pilot information occupies 4 or 3 bits, wherein the control information is 10 Bit, the second pilot information is 10 bits;
  • the processor 71 may be specifically configured to: compress the E-TFCI in the control information into 4 bits; encode the compressed control information in a Reed-Muller RM (20:7) encoding manner. 20 bits, and configured into three time slots of one frame, and configuring the second pilot information into the three time slots, in each time slot, the control information occupies 6 or 7
  • the second pilot information occupies 4 or 3 bits, wherein the second pilot information is 10 bits; and the encoded uplink is sent by using the first transmit power Control information and the second pilot information.
  • the processor 71 may be specifically configured to: compress the E-TFCI in the control information into 5 bits; and encode the compressed control information in a Reed-Muller RM (24:8) encoding manner. Is 24 bits and is configured into three time slots of one frame, and the second pilot information is configured into the three time slots, in each time slot, the control information occupies 8 bits Bit, the second pilot information occupies 2 bits, wherein the second pilot information is 6 bits; and the encoded control information and the second uplink are sent by using the first transmit power Pilot information.
  • a Reed-Muller RM 24:8 encoding manner. Is 24 bits and is configured into three time slots of one frame, and the second pilot information is configured into the three time slots, in each time slot, the control information occupies 8 bits Bit, the second pilot information occupies 2 bits, wherein the second pilot information is 6 bits; and the encoded control information and the second uplink are sent by using the first transmit power Pilot information.
  • the user equipment UE provided by the embodiment of the present invention can add a pilot bit by transmitting a new physical control channel and adding a frame to a frame transmitted on a new physical control channel.
  • the embodiment of the present invention satisfies the performance requirement of the physical data channel for channel estimation by adding pilot bits in the frame transmitted on the physical control channel.
  • the adjustment of the signal to interference and noise ratio target value, for example, the pilot carried over the new physical control channel, is avoided when the power of the physical control channel is increased in order to meet the performance requirements of the physical data channel for channel estimation.
  • the performance requirement of the physical data channel for channel estimation is satisfied, so it is no longer necessary to increase the DPCCH power by increasing the signal-to-interference ratio target value SINR target of the DPCCH. Therefore, the performance requirement for channel estimation of the physical data channel is ensured, the impact on the uplink and outer loop power control is avoided, the transmission quality of the uplink data is improved, and the system performance is improved.
  • the embodiment of the present invention further provides a structure of a base station 80.
  • the base station 80 includes at least one processor 81, such as a CPU, at least one wireless network interface 83, a memory 84, and at least one communication bus 82.
  • Communication bus 82 is used to implement connection communication between these components.
  • the wireless network interface 83 may include elements for wireless communication, such as antennas and radio frequency circuits of the base station, and the memory 84 may include high speed RAM memory, and may also include non-volatile memory, such as at least one disk memory.
  • the memory 84 can optionally include at least one storage device located remotely from the aforementioned processor 81.
  • the processor 81 is configured to: detect the first control channel and the second control channel; when detecting that the user equipment uplink sends the second control channel instead of the first control channel, to carry the control information and carry the second guide And frequency information, acquiring second pilot information from the second control channel; combining the first pilot information acquired from the pilot channel, and the second pilot information to perform channel estimation.
  • the base station provided by the embodiment of the present invention can receive a new physical control channel transmitted by the transmitting end, and the transmitting end adds a pilot bit to a frame transmitted on the new physical control channel.
  • the embodiment of the present invention satisfies the performance requirement of the physical data channel for channel estimation by adding pilot bits in the frame transmitted on the physical control channel.
  • the adjustment of the signal to interference and noise ratio target value, for example, the pilot carried over the new physical control channel is avoided when the power of the physical control channel is increased in order to meet the performance requirements of the physical data channel for channel estimation.
  • the performance requirement of the physical data channel for channel estimation is satisfied, so it is no longer necessary to increase the DPCCH power by increasing the signal-to-interference ratio target value SINR target of the DPCCH. Therefore, the performance requirement for channel estimation of the physical data channel is ensured, the impact on the uplink and outer loop power control is avoided, the transmission quality of the uplink data is improved, and the system performance is improved.
  • the storage medium is It is a disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种上行信道估计的方法、发送装置及接收装置,涉及无线通信技术领域,能够在保证对于物理数据信道进行信道估计时的性能要求的同时避免了对上行外环功控的影响,从而提高上行数据的传输质量,提高系统性能。本发明的方法包括:获取当前的增强传输格式组合指示E-TFCI,E-TFCI用于指示至少一个数据信道中当前传输的传输块的大小;若E-TFCI大于等于第一阈值,则以第一发送功率在第二控制信道上发送控制信息以及第二导频信息以替代第一控制信道承载控制信息,以及承载第二导频信息,第二导频信息用于与第一导频信息联合,以进行信道估计,其中,第一发送功率大于第一控制信道的第三发送功率。本发明适用于提高信道估计的性能。

Description

一种上行信道估计的方法、发送装置及接收装置
本申请要求于2013年10月25日提交中国专利局、申请号为201310514396.7、发明名称为“一种上行信道估计的方法、发送装置及接收装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种上行信道估计的方法、发送装置及接收装置。
背景技术
随着无线通信技术的日趋进步,增大上行数据发送速率已成为必然趋势。最常用的增大上行数据发送速率的手段是将16QAM(Quadrature Amplitude Modulation,正交幅度调制)或、64QAM等技术应用到上行信道的传输过程中,以提高上行发送的TB(Transport Block,传输块)大小,从而增大上行数据发送速率。
但是随着数据发送速率的提升,对导频信道的要求也更高。例如:在实际应用16QAM后,由于上行发送的TB块大小增加,对信道估计准确性要求更高,当数据块大小超过一定的门限,仅仅使用DPCCH(Dedicated Physical Control Channel,专用物理控制信道)作为E-DPDCH(E-DCH Dedicated Physical Data Channel,E-DCH专用物理数据信道)的导频信道就难以满足信道估计时的性能要求,因此发射端通常会执行E-DPCCH(E-DCH Dedicated Physical Control Channel,E-DCH专用物理控制信道)的boosting(增强)过程,即提升E-DPCCH的功率,再将E-DPCCH也作为E-DPDCH的导频信道参与信道估计,使得E-DPDCH可以同时利用DPCCH和E-DPCCH作为导频信道参与信道估计,以满足对于E-DPDCH信道估计时的性能要求,才能保证上行数据的传输质量。并且,为了保证利用E-DPCCH进行信道估计时的性能,需要将E-DPCCH的误块率控制在较低的范围。
但是,由于增大了上行数据发送速率,需要提高数据信道的发射功率,从而增加上 行传输时的自干扰程度,使得E-DPCCH的误块率较高,难以满足对E-DPDCH进行信道估计时的性能要求。为了在增大了上行数据发送速率的情况下满足对E-DPDCH进行信道估计时的性能要求,目前的解决方案是通过增加DPCCH的SINR(signal to interference plus noise ratio,信号干扰噪声比)来提高DPCCH的发送功率以提高E-DPCCH的解调性能以降低E-DPCCH的误块率。
但是,在无线网络传输数据的过程中,上行外环功控是保证数据传输质量很重要,在上行外环功控过程中,也需要调整DPCCH的信干噪比目标值(SINRtarget)。在实际应用中,往往会出现设备为了提高DPCCH的发射功率而增加了DPCCH的SINRtarget后,又因为上行外环功控的需要减少了DPCCH的SINRtarget,使得DPCCH发射功率又减小了。由于DPCCH发射功率减小,使得在增大了上行数据发送速率后,DPCCH难以满足对E-DPDCH进行信道估计时的性能要求,从而降低了上行数据的传输质量,降低了系统性能。
发明内容
本发明的实施例提供一种上行信道估计的方法、发送装置及接收装置,能够在满足物理数据信道进行信道估计的性能要求的同时减少对上行外环功控的影响,从而提高上行数据的传输质量,提高系统性能。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明的实施例提供一种上行信道估计的方法,用于上行分组接入系统,所述上行分组接入系统包括:至少一个数据信道,对应所述至少一个数据信道的第一控制信道,以及导频信道,其中,所述第一控制信道用于承载所述至少一个数据信道的控制信息,所述导频信道承载第一导频信息,所述方法包括:
获取当前的增强传输格式组合指示E-TFCI,所述E-TFCI用于指示所述至少一个数据信道中当前传输的传输块的大小;
若所述E-TFCI大于等于第一阈值,则以第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息,所述第二控制信道用于替代所述第一控制信道承载所述控制信息,所述第二导频信息用于与所述第一导频信息联合进行上行信道估计,其中,所述第一发送功率大于所述第一控制信道的第三发送功率。
结合第一方面,在第一方面的第一种可能的实现方式中,若所述E-TFCI大于等于第二阈值且小于所述第一阈值,则以第二发送功率在所述第一控制信道上发送所述控制信 息,其中,所述第二发送功率大于所述第三发送功率;和/或
若所述E-TFCI小于所述第二阈值,则维持所述第一控制信道的第三发送功率不变;
其中,所述第二阈值小于所述第一阈值。
结合第一方面,在第一方面以及第一方面的第二种可能的实现方式中,在所述第二控制信道的帧格式中,一个子帧包括三个时隙,每个时隙承载10比特的信息。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述以第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息包括:
采用里德-穆勒RM(20:10)编码方式将所述控制信息编码为20比特,并配置到所述子帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用6或7个比特位,所述第二导频信息占用4或3个比特位,其中,所述控制信息总共包括10比特,所述第二导频信息总共包括10比特;
按照所述帧格式,以所述第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息。
结合第一方面的第二种可能的实现方式,在第四种可能的实现方式中,所述控制信息包括:7比特E-TFCI、2比特的重传序列号RSN、1比特的满意比特happy bit;
所述以第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息包括:
将所述控制信息中的所述7比特E-TFCI压缩为4比特;
采用里德-穆勒RM(20:7)编码方式将压缩后的所述控制信息编码为20比特,并配置到所述子帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用6或7个比特位,对应的,所述第二导频信息占用4或3个比特位,其中,所述第二导频信息总共包括10比特;
按照所述帧格式,以所述第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息。
结合第一方面的第二种可能的实现方式,在第五种可能的实现方式中,所述控制信息包括:7比特E-TFCI、2比特的RSN、1比特的happy bit;
所述以第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息包括:
将所述控制信息中的所述7比特E-TFCI压缩为5比特;
采用里德-穆勒RM(24:8)编码方式将压缩后的所述控制信息编码为24比特,并配置到所述子帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用8个比特位,所述第二导频信息占用2个比特位,其中,所述第二导频信息总共包括6比特;
按照所述帧格式,以所述第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息。
结合第一方面以及第一方面各个可能的实现方式,在第六种可能的实现方式中,所述上行分组接入系统为高速上行分组接入系统HSUPA,所述数据信道为增强专用信道E-DCH专用物理数据信道E-DPDCH,所述第一控制信道为E-DCH专用物理控制信道E-DPCCH,所述导频信道为专用物理控制信道DPCCH。
第二方面,本发明的实施例提供一种上行信道估计的方法,用于上行分组接入系统,所述上行分组接入系统包括:至少一个数据信道,对应所述至少一个数据信道的第一控制信道,以及导频信道,其中,所述第一控制信道用于承载所述至少一个数据信道的控制信息,所述导频信道承载第一导频信息,所述方法包括:
检测所述第一控制信道和第二控制信道;
当检测到用户设备使用第二控制信道替代所述第一控制信道以在所述第二控制信道上发送所述控制信息以及第二导频信息时,从所述第二控制信道获取所述第二导频信息;
通过联合从所述导频信道获取的所述第一导频信息以及所述第二导频信息,进行信道估计。
结合第二方面,在第二方面的第一种可能的实现方式中,所述上行分组接入系统为高速上行分组接入系统HSUPA,所述数据信道为增强专用信道E-DCH专用物理数据信道E-DPDCH,所述第一控制信道为E-DCH专用物理控制信道E-DPCCH,所述导频信道为专用物理控制信道DPCCH。
第三方面,本发明的实施例提供一种发送装置,用于上行分组接入系统中,所述上 行分组接入系统包括:至少一个数据信道,对应所述至少一个数据信道的第一控制信道,以及导频信道,其中,所述第一控制信道用于承载所述至少一个数据信道的控制信息,所述导频信道承载第一导频信息,所述方法包括所述发送装置包括:
提取模块,用于获取当前的增强传输格式组合指示E-TFCI,所述E-TFCI用于指示所述至少一个数据信道中当前传输的传输块的大小;
第二信道发送模块,用于若所述E-TFCI大于等于第一阈值,则以第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息,所述第二控制信道用于替代所述第一控制信道承载所述控制信息,所述第二导频信息用于与所述第一导频信息联合进行上行信道估计,其中,所述第一发送功率大于所述第一控制信道的第三发送功率。
结合第三方面,在第三方面的第一种可能的实现方式中,所述发送装置还包括:
第一信道发送模块,用于若所述E-TFCI大于等于第二阈值且小于所述第一阈值,则以第二发送功率在所述第一控制信道上发送所述控制信息,其中,所述第二发送功率大于所述第三发送功率;和/或
若所述E-TFCI小于所述第二阈值,则维持所述第一控制信道的第三发送功率不变;
其中,所述第二阈值小于所述第一阈值。
结合第三方面以及第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,在所述第二控制信道的帧格式中,一个子帧包括三个时隙,每个时隙承载10比特的信息。
结合第三方面的第二种可能的实现方式,在第三种可能的实现方式中,所述第二信道发送模块包括:
第一编码单元,用于采用里德-穆勒RM(20:10)编码方式将所述控制信息编码为20比特,并配置到所述子帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用6或7个比特位,所述第二导频信息占用4或3个比特位,其中,所述控制信息总共包括10比特,所述第二导频信息总共包括10比特;
第一发送单元,用于按照所述帧格式,以所述第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息。
结合第三方面的第二或第三种种可能的实现方式,在第四种可能的实现方式中,所 述控制信息包括:7比特E-TFCI、2比特的重传序列号RSN、1比特的满意比特happy bit;所述第二信道发送模块包括:
第一压缩单元,用于将所述控制信息中的所述7比特E-TFCI压缩为4比特;
第二编码单元,用于采用里德-穆勒RM(20:7)编码方式将压缩后的所述控制信息编码为20比特,并配置到所述子帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用6或7个比特位,对应的,所述第二导频信息占用4或3个比特位,其中,所述第二导频信息总共包括10比特。
结合第三方面的第二种可能的实现方式,在第五种可能的实现方式中,所述控制信息包括:7比特E-TFCI、2比特的RSN、1比特的happy bit;所述第二信道发送模块包括:
第二压缩单元,用于将所述控制信息中的所述7比特E-TFCI压缩为5比特;
第三编码单元,用于采用里德-穆勒RM(24:8)编码方式将压缩后的所述控制信息编码为24比特,并配置到所述子帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用8个比特位,所述第二导频信息占用2个比特位,其中,所述第二导频信息总共包括6比特。
结合第三方面以及第三方面各个可能的实现方式,在第六种可能的实现方式中,所述上行分组接入系统为高速上行分组接入系统HSUPA,所述数据信道为增强专用信道E-DCH专用物理数据信道E-DPDCH,所述第一控制信道为E-DCH专用物理控制信道E-DPCCH,所述导频信道为专用物理控制信道DPCCH。
第四方面,本发明的实施例提供一种接收装置,用于上行分组接入系统中,所述上行分组接入系统包括:至少一个数据信道,对应所述至少一个数据信道的第一控制信道,以及导频信道,其中,所述第一控制信道用于承载所述至少一个数据信道的控制信息,所述导频信道承载第一导频信息,所述方法包括:
信道检测模块,用于检测所述第一控制信道和第二控制信道;
导频提取模块,用于当检测到用户设备使用第二控制信道替代所述第一控制信道以在所述第二控制信道上发送所述控制信息以及第二导频信息时,从所述第二控制信道获取所述第二导频信息;
信道估计模块,用于通过联合从所述导频信道获取的所述第一导频信息以及所述第二导频信息,进行信道估计。
结合第四方面,在第四方面的第一种可能的实现方式中,所述上行分组接入系统为高速上行分组接入系统HSUPA,所述数据信道为增强专用信道E-DCH专用物理数据信道E-DPDCH,所述第一控制信道为E-DCH专用物理控制信道E-DPCCH,所述导频信道为专用物理控制信道DPCCH。
本发明实施例提供的上行信道估计的方法、发送装置及接收装置,作为发送端的设备能够通过发射一个新的物理控制信道,并在新的物理控制信道上传输的帧中添加导频比特。与现有技术相比,本发明实施例可满足物理数据信道进行信道估计时的性能要求,减少了对于信干噪比目标值的调整。例如:在通过新的物理控制信道承载了导频比特后,满足了物理数据信道进行信道估计时的性能要求,因此就不必再通过增加DPCCH的信干噪比目标值SINRtarget来提高DPCCH功率。从而在保证对于物理数据信道进行信道估计时的性能要求的同时避免了对上行外环功控的影响,提高了上行数据的传输质量,提高了系统性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1a为本发明实施例提供的一种网络架构示意图;
图1b为本发明实施例提供的一种具体实例的信道传输流程的示意图;
图1c为本发明实施例提供的一种上行信道估计的方法的流程图;
图2为本发明实施例提供的另一种上行信道估计的方法的流程图;
图3a、图3b、图3c为本发明实施例提供的上行信道估计的方法的具体实施方式的流程图;
图3b1、图3b2、图3c1为本发明实施例提供的具体实施方式的中的帧结构的示意图;
图4为本发明实施例提供的再一种上行信道估计的方法的流程图;
图5a为本发明实施例提供的一种发送装置的结构示意图;
图5b为本发明实施例提供的另一种发送装置的结构示意图;
图6为本发明实施例提供的一种接收装置的结构示意图;
图7为本发明实施例提供的一种用户设备UE的结构示意图;
图8为本发明实施例提供的一种基站的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明实施例提供一种上行信道估计的方法,用于上行分组接入系统中的一个发送端,比如用户设备UE,其特征在于,上行分组接入系统包括:至少一个数据信道,伴随至少一个数据信道的第一控制信道,以及导频信道,第一控制信道承载控制信息,导频信道承载比特信息,如图1a所示,上行分组接入系统包括了发送端,比如用户设备UE,以及接收端,比如基站,发送端用于通过上行信道向接收端发送数据,上行信道包括了物理数据信道和物理控制信道,物理控制信道可以用于传输在物理数据信道上的传输块的控制信息。例如:如图1b所示,在基于WCDMA(Wideband Code Division Multiple Access,宽带码分多址)的HSUPA(High Speed Uplink Packet Access,高速上行链路分组接入)技术中,可以由多个E-DPDCH(E-DCH Dedicated Physical Data Channel,E-DCH专用物理数据信道)信道用于承载数据,根据每次传输的数据量的大小,一个E-DCH(Enhanced Dedicated Channel,增强专用信道)可能会使用一个、二个或四个E-DPDCH信道。伴随E-DPDCH的传输,需要将E-DPCCH(E-DCH Dedicated Physical Control Channel,E-DCH专用物理控制信道)的信道功率进行提升并作为E-DPDCH的控制信道,比如:当上行发送的TB(Transport Block,传输块)大小增加后,E-TFCI(Enhanced Transport Format Combination Indicator,增强传输格式组合指示)也会相应地增加,当E-TFCI大于门限即开始执行E-DPCCH的boosting。之后在E-DPCCH上传输E-DPDCH上的传输块的控制信息,以便基站通过E-DPDCH接收传输的传输块的同时,通过接收E-DPCCH与E-DPDCH上的传输块相对应的控制信息。再利用控制信息进行解调。其中,E-DPCCH上传输的控制信息可以包括:RSN(Retransmission sequence number,重传序列号)、E-TFCI、Happy bit等。其中,E-TFCI与传输块TB的大小相对应;RSN用于映射出HARQ(Hybrid ARQ Hybrid Automatic Repeat Request,混合自动重传请求)RV(Redundancy Version,冗余版本),以便进行HARQ合并;Happy bit则用于反馈发射端对目前数据发射速率满意程度,以便于基站通过Happy bit进行调度值确定。本发明实施例可以应用在高速上行分组接入系统HSUPA,即本发明实施例中的上行分组接入系统可以是HSUPA,数据信道为增强专用信道E-DCH专用物理数据信道E-DPDCH,第一控制信道为E-DCH专用物理控制信道E-DPCCH,导频信道为专用物理控制信道DPCCH。
本实施例提供的上行信道估计的方法,如图1c所示,可以包括:
101,获取当前的增强传输格式组合指示E-TFCI,所述E-TFCI用于指示所述至少一 个数据信道中当前传输的传输块的大小。
其中,用户设备UE可以通过第一控制信道获取增强传输格式组合指示E-TFCI。E-TFCI用于指示至少一个数据信道中当前传输的传输块的大小。例如:E-TFCI与TBS的对应关系可参考3gpp协议25.321的附录中的表格“2ms TTI E-DCH Transport Block Size Table0”。
102a,若所述E-TFCI大于等于第一阈值,则以第一发送功率在第二控制信道上发送控制信息以及第二导频信息,替代所述第一控制信道,以承载所述控制信息以及承载第二导频信息。
其中,第二导频信息用于与第一导频信息联合,以进行信道估计。第一发送功率大于第一控制信道的第三发送功率。
在本实施例中,可以依据现有的E-TFCI的门限设定第一阈值。比如:当E-TFCI大于等于第一阈值时,按照现有协议的E-DPCCH的误块率BLER大于9.9%,不能满足作为信道估计的条件,因此数据块过大时,导致E-TFCI大于等于第一阈值,造成了E-DPCCH无法作为E-DPDCH信道作相位参考。在这种情况下,用户设备UE可以第一发送功率在第二控制信道上发送控制信息以及第二导频信息。
发送端可以将导频比特直接承载在第二控制信道的子帧上,并可以发送承载了导频比特的第二控制信道,比如:发送端可以在上行载波上发送承载了导频比特的第二控制信道;接收端则可以在接收到发送端发送的第二控制信道后从第二控制信道中获取导频比特,并根据第二控制信道承载的导频比特和导频信道承载的比特信息联合进行信道估计。
本发明实施例提供的上行信道估计的方法,作为发送端的设备能够通过发射一个新的物理控制信道,并在新的物理控制信道上传输的帧中添加导频比特。与现有技术相比,由于本发明实施例通过在物理控制信道传输的帧中添加导频比特,以满足物理数据信道进行信道估计时的性能要求。避免了现有技术中为了满足物理数据信道进行信道估计时的性能要求而提升物理控制信道的功率时,对于信干噪比目标值的调整,例如:在通过新的物理控制信道承载了导频比特后,满足了物理数据信道进行信道估计时的性能要求,因此就不必再通过增加DPCCH的信干噪比目标值SINRtarget来提高DPCCH功率。从而在保证对于物理数据信道进行信道估计时的性能要求的同时避免了对上行外环功控的影响,提高了上行数据的传输质量,提高了系统性能。
与102a并列可选的,如图2所示,在本实施例中还可以包括102b或102c的方法流程, 其中:
102b,若所述E-TFCI大于等于第二阈值且小于所述第一阈值,则以第二发送功率在所述第一控制信道上发送所述控制信息。
其中,第二发送功率大于第一控制信道的第三发送功率。
102c,若所述E-TFCI小于所述第二阈值,则维持所述第一控制信道的第三发送功率不变。
其中,所述第二阈值小于所述第一阈值。
在本发明实施例中,在第二控制信道的帧格式中,每个子帧包括三个时隙,每个时隙承载10比特的信息。利用第二控制信道承载第二控制信息和导频比特的具体实施方式可以有多种,下面列举三种可行的实施方式来说明:
其一,如图3a所示,102可以具体实现为:
1021a,采用里德-穆勒RM(20:10)编码方式将所述控制信息编码为20比特,并配置到一个帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中。
其中,在每个时隙中,控制信息占用6或7个比特位,对应的,第二导频信息占用4或3个比特位,其中,控制信息为10比特,第二导频信息为10比特。例如:通过(20,10)RM的编码方式,由此每一个时隙中可以空余出3或4个比特位,则发送端可以在每一个时隙中通过空余出比特位承载导频比特。
1022a,按照所述帧格式,以所述第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息。
其二,如图3b所示,所述控制信息包括:7比特的增强传输格式组合指示E-TFCI、2比特的重传序列号RSN、1比特的满意比特happy bit,102具体实现为:
1021b,将所述控制信息中的所述7比特E-TFCI压缩为4比特。
在本实施例中,第一控制信道可以为增强专用信道的专用物理控制信道E-DPCCH,所述发送端可以通过压缩E-TFCI来空出用于承载导频比特的比特位,例如:
在64QAM(Quadrature Amplitude Modulation,正交幅度调制)场景下由于需要使用更大的TB,E-TFCI对应较小TB的可能性较小,可以重新制定TB大小与E-TFCI的映射表格,将E-TFCI指示的TB大小范围缩小,以压缩E-TFCI所需的比特,如由7bit压缩至4bit。
1022b,采用里德-穆勒RM(20:7)编码方式将压缩后的所述控制信息编码为20比特, 并配置到一个帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用6或7个比特位,对应的,所述第二导频信息占用4或3个比特位,其中,所述第二导频信息总共包括10比特。
其中,在每一个时隙中导频比特占用3个比特位。
例如:如图3b1所示,在目前的帧结构中包括了10bit的其他信息,其他信息包括了RSN、E-TFCI和Happy bit等,发送端可以将其中的E-TFCI由7bit压缩至4bit,使得其他信息占用的比特数由10bit减少至7bit。
1023b,按照所述帧格式,以所述第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息。
当本实施例具体应用在HSUPA中,根据本实施例提供的上行信道估计的方法,技术人员可以获得如下场景:
1、将需要在E-DPCCH的子帧上承载的E-TFCI由7bit压缩至4bit。
2、对RSN、E-TFCI和Happy bit等数据进行(20,7)的RM编码,并输出总共20bit大小的编码结果。
3、获取导频比特pilot,并将20bit的编码结果和导频比特承载在一个子帧的3个时隙上,如图3b2所示,可以在时隙1上承载导频比特中的4bit,以及20bit的编码结果当中的6bit;在时隙2上承载导频比特中的3bit,以及20bit的编码结果当中的7bit;在时隙3上承载导频比特中的3bit,以及20bit的编码结果当中的7bit。从而改变了E-DPCCH的帧格式,使得子帧上能够承载导频比特。进一步的,由于在子帧上增加了导频从而改变了帧格式,可以用R-E-DPCCH(Reduced E-DPCCH)表示在子帧中增加了导频的第二控制信道。并且,发送端可以通过与E-DPCCH不同的码道发送R-E-DPCCH。因此用户设备UE所发送的第一控制信道为E-DPCCH,第二控制信道可以为R-E-DPCCH。并且可以同时发送这两条信道。
其三,如图3c所示,控制信息包括:7比特的E-TFCI、2比特的RSN、1比特的happy bit,102具体实现为:
1021c,将所述控制信息中的所述7比特E-TFCI压缩为5比特。
例如:在64QAM的场景下,发送端可以对子帧中的E-TFCI由7bit压缩至5bit,再对包括了RSN、E-TFCI和Happy bit等数据的其他信息进行(24,8)的RM编码后,在子帧的一个时隙中所承载的其他信息所占的比特由10bit减小为8bit。从而可以使用空出的 2bit承载导频比特。
1022c,采用里德-穆勒RM(24:8)编码方式将压缩后的所述控制信息编码为24比特,并配置到一个帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用8个比特位,所述第二导频信息占用2个比特位,其中,所述第二导频信息总共包括6比特。
其中,在每一个时隙中导频比特占用2个比特位。
1023c,按照所述帧格式,以所述第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息。
当本实施例具体应用在HSUPA中,根据本实施例提供的上行信道估计的方法,技术人员还可以获得如下场景:
1、将E-TFCI信息域压缩至5比特,然后对RSN、E-TFCI和Happy bit等数据进行(24,8)的RM编码,并输出总共24bit的编码结果。
2、获取导频比特pilot,并将24bit的编码结果和导频比特依次承载在一个子帧的3个时隙上,如图3c1所示,可以在每一个时隙上承载导频比特2bit,以及24bit的编码结果当中的8bit。从而改变了E-DPCCH的帧格式,使得子帧上能够承载导频比特。进一步的,由于在子帧上增加了导频从而改变了帧格式,可以用R-E-DPCCH(Reduced E-DPCCH)表示在子帧中增加了导频的第二控制信道。并且,发送端可以通过与E-DPCCH不同的码道发送R-E-DPCCH。从而实现同时发送E-DPCCH和R-E-DPCCH。
本发明实施例提供的上行信道估计的方法,作为发送端的设备能够通过发射一个新的物理控制信道,并在新的物理控制信道上传输的帧中添加导频比特。与现有技术相比,由于本发明实施例通过在物理控制信道传输的帧中添加导频比特,以满足物理数据信道进行信道估计时的性能要求。避免了现有技术中为了满足物理数据信道进行信道估计时的性能要求而提升物理控制信道的功率时,对于信干噪比目标值的调整,例如:在通过新的物理控制信道承载了导频比特后,满足了物理数据信道进行信道估计时的性能要求,因此就不必再通过增加DPCCH的信干噪比目标值SINRtarget来提高DPCCH功率。从而在保证对于物理数据信道进行信道估计时的性能要求的同时避免了对上行外环功控的影响,提高了上行数据的传输质量,提高了系统性能。
本发明实施例提供一种上行信道估计的方法,用于上行分组接入系统中的接收端,比如基站。上行分组接入系统包括:至少一个数据信道,对应至少一个数据信道的第一 控制信道,以及导频信道,第一控制信道承载至少一个数据信道的控制信息,导频信道承载第一导频信息。本发明实施例可以应用在高速上行分组接入系统HSUPA,即本发明实施例中的上行分组接入系统可以是HSUPA,数据信道为增强专用信道E-DCH专用物理数据信道E-DPDCH,第一控制信道为E-DCH专用物理控制信道E-DPCCH,导频信道为专用物理控制信道DPCCH。如图4所示,接收端侧的方法可以包括:
201,检测所述第一控制信道和第二控制信道。
202,当检测到用户设备使用第二控制信道替代所述第一控制信道以在所述第二控制信道上发送所述控制信息以及第二导频信息时,从所述第二控制信道获取所述第二导频信息。
例如:
发送端在子帧上增加了导频从而改变了信道的帧格式,可以用R-E-DPCCH(Reduced E-DPCCH)表示发送端在子帧中增加了导频的第二控制信道。并且,发送端通过与作为第一控制信道的E-DPCCH不同的码道发送了R-E-DPCCH。基站可以同时监听E-DPCCH和R-E-DPCCH这两条信道,当检测到用户设备UE上行发送了R-E-DPCCH时,从R-E-DPCCH获取导频比特。
203,通过联合从所述导频信道获取的所述第一导频信息以及所述第二导频信息,进行信道估计。
可选的,当本实施例具体应用在HSUPA中时,第一控制信道可以为增强专用信道的专用物理控制信道E-DPCCH。
本发明实施例提供的上行信道估计的方法,接收端能够接收到发送端通过发射的新的物理控制信道,并且发送端在新的物理控制信道上传输的帧中添加了导频比特。与现有技术相比,由于本发明实施例通过在物理控制信道传输的帧中添加导频比特,以满足物理数据信道进行信道估计时的性能要求。避免了现有技术中为了满足物理数据信道进行信道估计时的性能要求而提升物理控制信道的功率时,对于信干噪比目标值的调整,例如:在通过新的物理控制信道承载了导频比特后,满足了物理数据信道进行信道估计时的性能要求,因此就不必再通过增加DPCCH的信干噪比目标值SINRtarget来提高DPCCH功率。从而在保证对于物理数据信道进行信道估计时的性能要求的同时避免了对上行外环功控的影响,提高了上行数据的传输质量,提高了系统性能。
本实施例还提供了一种发送装置50,用于上行分组接入系统中,所述上行分组接入 系统包括:至少一个数据信道,对应所述至少一个数据信道的第一控制信道,以及导频信道,其中,所述第一控制信道用于承载所述至少一个数据信道的控制信息,所述导频信道承载第一导频信息。如图5a所示,发送装置50包括:
提取模块51,用于获取当前的增强传输格式组合指示E-TFCI,所述E-TFCI用于指示所述至少一个数据信道中当前传输的传输块的大小。
第二信道发送模块52,用于若所述E-TFCI大于等于第一阈值,则以第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息,所述第二控制信道用于替代所述第一控制信道承载所述控制信息,所述第二导频信息用于与所述第一导频信息联合进行上行信道估计,其中,所述第一发送功率大于所述第一控制信道的第三发送功率。
可选的,如图5b所示,发送装置50还可以包括:
第一信道发送模块53,用于若所述E-TFCI大于等于第二阈值且小于所述第一阈值,则以第二发送功率在所述第一控制信道上发送所述控制信息,其中,所述第二发送功率大于所述第三发送功率;和/或
若所述E-TFCI小于所述第二阈值,则维持所述第一控制信道的第三发送功率不变;
其中,所述第二阈值小于所述第一阈值。
可选的,所述第二控制信道的帧格式中,在所述第二控制信道的帧格式中,一个子帧包括三个时隙,每个时隙承载10比特的信息,因此,第二信道发送模块52具体可以包括:
第一编码单元521,用于采用里德-穆勒RM(20:10)编码方式将所述控制信息编码为20比特,并配置到所述子帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用6或7个比特位,所述第二导频信息占用4或3个比特位,其中,所述控制信息总共包括10比特,所述第二导频信息总共包括10比特。
第一发送单元522,用于按照所述帧格式,以所述第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息。
并列可选的,所述控制信息包括:7比特E-TFCI、2比特的重传序列号RSN、1比特的满意比特happy bit,第二信道发送模块52具体还可以包括:
第二编码单元523,用于采用里德-穆勒RM(20:7)编码方式将压缩后的所述控制信息编码为20比特,并配置到所述子帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用6或7个比特位,对应的,所述第二导频信息占用4或3个比特位,其中,所述第二导频信息总共包括10比特。
第一压缩单元524,用于将所述控制信息中的所述7比特E-TFCI压缩为4比特。
并列可选的,所述控制信息包括:7比特E-TFCI、2比特的RSN、1比特的happy bit,第二信道发送模块52具体还可以包括:
第三编码单元525,用于采用里德-穆勒RM(24:8)编码方式将压缩后的所述控制信息编码为24比特,并配置到所述子帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用8个比特位,所述第二导频信息占用2个比特位,其中,所述第二导频信息总共包括6比特。
第二压缩单元526,用于将所述控制信息中的所述7比特E-TFCI压缩为5比特。
其中,所述第一控制信道可以是增强专用信道的专用物理控制信道E-DPCCH。
具体的,所述上行分组接入系统为高速上行分组接入系统HSUPA,所述数据信道为增强专用信道E-DCH专用物理数据信道E-DPDCH,所述第一控制信道为E-DCH专用物理控制信道E-DPCCH,所述导频信道为专用物理控制信道DPCCH。
本发明实施例提供的发送装置,能够通过发射一个新的物理控制信道,并在新的物理控制信道上传输的帧中添加导频比特。与现有技术相比,由于本发明实施例通过在物理控制信道传输的帧中添加导频比特,以满足物理数据信道进行信道估计时的性能要求。避免了现有技术中为了满足物理数据信道进行信道估计时的性能要求而提升物理控制信道的功率时,对于信干噪比目标值的调整,例如:在通过新的物理控制信道承载了导频比特后,满足了物理数据信道进行信道估计时的性能要求,因此就不必再通过增加DPCCH的信干噪比目标值SINRtarget来提高DPCCH功率。从而在保证对于物理数据信道进行信道估计时的性能要求的同时避免了对上行外环功控的影响,提高了上行数据的传输质量,提高了系统性能。
本实施例还提供了一种接收装置60,用于上行分组接入系统中,所述上行分组接入系统包括:至少一个数据信道,对应所述至少一个数据信道的第一控制信道,以及导频信道,其中,所述第一控制信道用于承载所述至少一个数据信道的控制信息,所述导频信道承载第一导频信息,。如图6所示,接收装置60包括:
信道检测模块61,用于检测所述第一控制信道和第二控制信道;
导频提取模块62,用于当检测到用户设备使用第二控制信道替代所述第一控制信道以在所述第二控制信道上发送所述控制信息以及第二导频信息时,从所述第二控制信道获取所述第二导频信息;
信道估计模块63,用于通过联合从所述导频信道获取的所述第一导频信息以及所述第二导频信息,进行信道估计。
具体的,所述上行分组接入系统为高速上行分组接入系统HSUPA,所述数据信道为增强专用信道E-DCH专用物理数据信道E-DPDCH,所述第一控制信道为E-DCH专用物理控制信道E-DPCCH,所述导频信道为专用物理控制信道DPCCH。
本发明实施例提供的接收装置,能够接收到发送端通过发射的新的物理控制信道,并且发送端在新的物理控制信道上传输的帧中添加了导频比特。与现有技术相比,由于本发明实施例通过在物理控制信道传输的帧中添加导频比特,以满足物理数据信道进行信道估计时的性能要求。避免了现有技术中为了满足物理数据信道进行信道估计时的性能要求而提升物理控制信道的功率时,对于信干噪比目标值的调整,例如:在通过新的物理控制信道承载了导频比特后,满足了物理数据信道进行信道估计时的性能要求,因此就不必再通过增加DPCCH的信干噪比目标值SINRtarget来提高DPCCH功率。从而在保证对于物理数据信道进行信道估计时的性能要求的同时避免了对上行外环功控的影响,提高了上行数据的传输质量,提高了系统性能。
本发明实施例还提供了一种用户设备UE70的结构,如图7所示,该用户设备UE70包括:至少一个处理器71,例如CPU,至少一个无线网络接口74或者用户接口73,存储器75,至少一个通信总线72。通信总线72用于实现这些组件之间的连接通信。可选的,用户接口73,可以包括显示器,键盘或者点击设备(例如,鼠标,轨迹球(trackball),触感板或触感显示屏)。无线网络接口74可以包括用户设备UE的天线和射频电路等用于无线通信的元件,存储器75可能包含高速RAM存储器,也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器75可选的可以包含至少一个位于远离前述处理器71的存储装置。
处理器71用于:获取当前的增强传输格式组合指示E-TFCI,所述E-TFCI用于指示所述至少一个数据信道中当前传输的传输块的大小;
若所述E-TFCI大于等于第一阈值,则以第一发送功率在第二控制信道上发送控制信息以及第二导频信息替代所述第一控制信道,以承载所述控制信息以及承载第二导频信息,所述第二导频信息用于与所述第一导频信息联合,以进行信道估计,其中,所述第一发送功率大于所述第一控制信道的第三发送功率。
处理器71还用于:若所述E-TFCI大于等于第二阈值且小于所述第一阈值,则以第二发送功率,上行发送所述第一控制信道,其中,所述第二发送功率大于所述第一控制信道的发送功率;或若所述E-TFCI小于所述第二阈值,则维持所述第一控制信道的发送功率不变,上行发送所述第一控制信道。
其中,所述第二控制信道的帧格式中,每个子帧包括三个时隙,每个时隙承载10比特的信息,处理器71具体可以用于:
采用里德-穆勒RM(20:10)编码方式将所述控制信息编码为20比特,并配置到一个帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用6或7个比特位,对应的,所述第二导频信息占用4或3个比特位,其中,所述控制信息为10比特,所述第二导频信息为10比特;
按照所述帧格式,以所述第一发送功率,上行发送编码后所述控制信息和所述第二导频信息。
或者,处理器71具体可以用于:将所述控制信息中的所述E-TFCI压缩为4比特;采用里德-穆勒RM(20:7)编码方式将压缩后的所述控制信息编码为20比特,并配置到一个帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用6或7个比特位,对应的,所述第二导频信息占用4或3个比特位,其中,所述第二导频信息为10比特;以所述第一发送功率,上行发送编码后的所述控制信息和所述第二导频信息。
或者,处理器71具体可以用于:将所述控制信息中的所述E-TFCI压缩为5比特;采用里德-穆勒RM(24:8)编码方式将压缩后的所述控制信息编码为24比特,并配置到一个帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用8个比特位,所述第二导频信息占用2个比特位,其中,所述第二导频信息为6比特;以所述第一发送功率,上行发送编码后的所述控制信息和所述第二导频信息。
本发明实施例提供的用户设备UE,能够通过发射一个新的物理控制信道,并在新的物理控制信道上传输的帧中添加导频比特。与现有技术相比,由于本发明实施例通过在物理控制信道传输的帧中添加导频比特,以满足物理数据信道进行信道估计时的性能要求。避免了现有技术中为了满足物理数据信道进行信道估计时的性能要求而提升物理控制信道的功率时,对于信干噪比目标值的调整,例如:在通过新的物理控制信道承载了导频比特后,满足了物理数据信道进行信道估计时的性能要求,因此就不必再通过增加 DPCCH的信干噪比目标值SINRtarget来提高DPCCH功率。从而在保证对于物理数据信道进行信道估计时的性能要求的同时避免了对上行外环功控的影响,提高了上行数据的传输质量,提高了系统性能。
本发明实施例还提供了一种基站80的结构,如图8所示,该基站80包括:至少一个处理器81,例如CPU,至少一个无线网络接口83,存储器84,至少一个通信总线82。通信总线82用于实现这些组件之间的连接通信。无线网络接口83可以包括基站的天线和射频电路等用于无线通信的元件,存储器84可能包含高速RAM存储器,也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器84可选的可以包含至少一个位于远离前述处理器81的存储装置。
处理器81用于:检测所述第一控制信道和第二控制信道;当检测到用户设备上行发送了第二控制信道替代所述第一控制信道,以承载所述控制信息以及承载第二导频信息时,从所述第二控制信道获取第二导频信息;联合从所述导频信道获取的所述第一导频信息,以及所述第二导频信息,进行信道估计。
本发明实施例提供的基站,能够接收到发送端通过发射的新的物理控制信道,并且发送端在新的物理控制信道上传输的帧中添加了导频比特。与现有技术相比,由于本发明实施例通过在物理控制信道传输的帧中添加导频比特,以满足物理数据信道进行信道估计时的性能要求。避免了现有技术中为了满足物理数据信道进行信道估计时的性能要求而提升物理控制信道的功率时,对于信干噪比目标值的调整,例如:在通过新的物理控制信道承载了导频比特后,满足了物理数据信道进行信道估计时的性能要求,因此就不必再通过增加DPCCH的信干噪比目标值SINRtarget来提高DPCCH功率。从而在保证对于物理数据信道进行信道估计时的性能要求的同时避免了对上行外环功控的影响,提高了上行数据的传输质量,提高了系统性能。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于设备实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可 为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (18)

  1. 一种上行接入方法,用于上行分组接入系统,其特征在于,所述上行分组接入系统包括:至少一个数据信道,对应所述至少一个数据信道的第一控制信道,以及导频信道,其中,所述第一控制信道用于承载所述至少一个数据信道的控制信息,所述导频信道承载第一导频信息,所述方法包括:
    获取当前的增强传输格式组合指示E-TFCI,所述E-TFCI用于指示所述至少一个数据信道中当前传输的传输块的大小;
    若所述E-TFCI大于等于第一阈值,则以第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息,所述第二控制信道用于替代所述第一控制信道承载所述控制信息,所述第二导频信息用于与所述第一导频信息联合进行上行信道估计,其中,所述第一发送功率大于所述第一控制信道的第三发送功率。
  2. 根据权利要求1所述的上行接入方法,其特征在于,所述方法还包括:
    若所述E-TFCI大于等于第二阈值且小于所述第一阈值,则以第二发送功率在所述第一控制信道上发送所述控制信息,其中,所述第二发送功率大于所述第三发送功率;和/或
    若所述E-TFCI小于所述第二阈值,则维持所述第一控制信道的第三发送功率不变;
    其中,所述第二阈值小于所述第一阈值。
  3. 根据权利要求1或2所述的上行接入方法,其特征在于,在所述第二控制信道的帧格式中,一个子帧包括三个时隙,每个时隙承载10比特的信息。
  4. 根据权利要求3所述的上行接入方法,其特征在于,所述以第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息包括:
    采用里德-穆勒RM(20:10)编码方式将所述控制信息编码为20比特,并配置到所述子帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用6或7个比特位,所述第二导频信息占用4或3个比特位,其中,所述控制信息总共包括10比特,所述第二导频信息总共包括10比特;
    按照所述帧格式,以所述第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息。
  5. 根据权利要求3所述的上行信道估计的方法,其特征在于,所述控制信息包括:7比特E-TFCI、2比特的重传序列号RSN、1比特的满意比特happy bit;
    所述以第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息包括:
    将所述控制信息中的所述7比特E-TFCI压缩为4比特;
    采用里德-穆勒RM(20:7)编码方式将压缩后的所述控制信息编码为20比特,并配置到所述子帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用6或7个比特位,对应的,所述第二导频信息占用4或3个比特位,其中,所述第二导频信息总共包括10比特;
    按照所述帧格式,以所述第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息。
  6. 根据权利要求3所述的上行接入方法,其特征在于,所述控制信息包括:7比特E-TFCI、2比特的RSN、1比特的happy bit;
    所述以第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息包括:
    将所述控制信息中的所述7比特E-TFCI压缩为5比特;
    采用里德-穆勒RM(24:8)编码方式将压缩后的所述控制信息编码为24比特,并配置到所述子帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用8个比特位,所述第二导频信息占用2个比特位,其中,所述第二导频信息总共包括6比特;
    按照所述帧格式,以所述第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息。
  7. 根据权利要求1-6中任意一项所述的上行信道估计的方法,其特征在于,所述上行分组接入系统为高速上行分组接入系统HSUPA,所述数据信道为增强专用信道E-DCH专用物理数据信道E-DPDCH,所述第一控制信道为E-DCH专用物理控制信道E-DPCCH,所述导频信道为专用物理控制信道DPCCH。
  8. 一种上行信道估计方法,用于上行分组接入系统,其特征在于,所述上行分组接入系统包括:至少一个数据信道,对应所述至少一个数据信道的第一控制信道,以及导频信道,其中,所述第一控制信道用于承载所述至少一个数据信道的控制信息,所述导频信道承载第一导频信息,所述方法包括:
    检测所述第一控制信道和第二控制信道;
    当检测到用户设备使用第二控制信道替代所述第一控制信道以在所述第二控制信道上发送所述控制信息以及第二导频信息时,从所述第二控制信道获取所述第二导频信息;
    通过联合从所述导频信道获取的所述第一导频信息以及所述第二导频信息,进行信 道估计。
  9. 根据权利要求8中任意一项所述的上行信道估计的方法,其特征在于,所述上行分组接入系统为高速上行分组接入系统HSUPA,所述数据信道为增强专用信道E-DCH专用物理数据信道E-DPDCH,所述第一控制信道为E-DCH专用物理控制信道E-DPCCH,所述导频信道为专用物理控制信道DPCCH。
  10. 一种发送装置,用于上行分组接入系统中,其特征在于,所述上行分组接入系统包括:至少一个数据信道,对应所述至少一个数据信道的第一控制信道,以及导频信道,其中,所述第一控制信道用于承载所述至少一个数据信道的控制信息,所述导频信道承载第一导频信息,所述方法包括所述发送装置包括:
    提取模块,用于获取当前的增强传输格式组合指示E-TFCI,所述E-TFCI用于指示所述至少一个数据信道中当前传输的传输块的大小;
    第二信道发送模块,用于若所述E-TFCI大于等于第一阈值,则以第一发送功率在第二控制信道上发送所述控制信息以及第二导频信息,所述第二控制信道用于替代所述第一控制信道承载所述控制信息,所述第二导频信息用于与所述第一导频信息联合进行上行信道估计,其中,所述第一发送功率大于所述第一控制信道的第三发送功率。
  11. 根据权利要求10所述的发送装置,其特征在于,所述发送装置还包括:
    第一信道发送模块,用于若所述E-TFCI大于等于第二阈值且小于所述第一阈值,则以第二发送功率在所述第一控制信道上发送所述控制信息,其中,所述第二发送功率大于所述第三发送功率;和/或
    若所述E-TFCI小于所述第二阈值,则维持所述第一控制信道的第三发送功率不变;
    其中,所述第二阈值小于所述第一阈值。
  12. 根据权利要求10或11所述的发送装置,其特征在于,在所述第二控制信道的帧格式中,一个子帧包括三个时隙,每个时隙承载10比特的信息。
  13. 根据权利要求12所述的发送装置,其特征在于,所述第二信道发送模块包括:
    第一编码单元,用于采用里德-穆勒RM(20:10)编码方式将所述控制信息编码为20比特,并配置到所述子帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用6或7个比特位,所述第二导频信息占用4或3个比特位,其中,所述控制信息总共包括10比特,所述第二导频信息总共包括10比特;
    第一发送单元,用于按照所述帧格式,以所述第一发送功率在第二控制信道上发送 所述控制信息以及第二导频信息。
  14. 根据权利要求12或13所述的发送装置,其特征在于,所述控制信息包括:7比特E-TFCI、2比特的重传序列号RSN、1比特的满意比特happy bit;所述第二信道发送模块包括:
    第一压缩单元,用于将所述控制信息中的所述7比特E-TFCI压缩为4比特;
    第二编码单元,用于采用里德-穆勒RM(20:7)编码方式将压缩后的所述控制信息编码为20比特,并配置到所述子帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用6或7个比特位,对应的,所述第二导频信息占用4或3个比特位,其中,所述第二导频信息总共包括10比特。
  15. 根据权利要求12或13所述的发送装置,其特征在于,所述控制信息包括:7比特E-TFCI、2比特的RSN、1比特的happy bit;所述第二信道发送模块包括:
    第二压缩单元,用于将所述控制信息中的所述7比特E-TFCI压缩为5比特;
    第三编码单元,用于采用里德-穆勒RM(24:8)编码方式将压缩后的所述控制信息编码为24比特,并配置到所述子帧的三个时隙中,并将所述第二导频信息配置到所述三个时隙中,在每个时隙中,所述控制信息占用8个比特位,所述第二导频信息占用2个比特位,其中,所述第二导频信息总共包括6比特。
  16. 根据权利要求10-15中任意一项所述的发送装置,其特征在于,所述上行分组接入系统为高速上行分组接入系统HSUPA,所述数据信道为增强专用信道E-DCH专用物理数据信道E-DPDCH,所述第一控制信道为E-DCH专用物理控制信道E-DPCCH,所述导频信道为专用物理控制信道DPCCH。
  17. 一种接收装置,用于上行分组接入系统中,其特征在于,所述上行分组接入系统包括:至少一个数据信道,对应所述至少一个数据信道的第一控制信道,以及导频信道,其中,所述第一控制信道用于承载所述至少一个数据信道的控制信息,所述导频信道承载第一导频信息,所述方法包括:
    信道检测模块,用于检测所述第一控制信道和第二控制信道;
    导频提取模块,用于当检测到用户设备使用第二控制信道替代所述第一控制信道以在所述第二控制信道上发送所述控制信息以及第二导频信息时,从所述第二控制信道获取所述第二导频信息;
    信道估计模块,用于通过联合从所述导频信道获取的所述第一导频信息以及所述第 二导频信息,进行信道估计。
  18. 根据权利要求17中任意一项所述的接收装置,其特征在于,所述上行分组接入系统为高速上行分组接入系统HSUPA,所述数据信道为增强专用信道E-DCH专用物理数据信道E-DPDCH,所述第一控制信道为E-DCH专用物理控制信道E-DPCCH,所述导频信道为专用物理控制信道DPCCH。
PCT/CN2014/089526 2013-10-25 2014-10-27 一种上行信道估计的方法、发送装置及接收装置 WO2015058726A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310514396.7 2013-10-25
CN201310514396.7A CN104580034B (zh) 2013-10-25 2013-10-25 一种上行信道估计的方法、发送装置及接收装置

Publications (1)

Publication Number Publication Date
WO2015058726A1 true WO2015058726A1 (zh) 2015-04-30

Family

ID=52992301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089526 WO2015058726A1 (zh) 2013-10-25 2014-10-27 一种上行信道估计的方法、发送装置及接收装置

Country Status (2)

Country Link
CN (1) CN104580034B (zh)
WO (1) WO2015058726A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383748A (zh) * 2019-05-09 2019-10-25 北京小米移动软件有限公司 下行控制信息发送方法、装置及可读存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107343321B (zh) * 2016-04-29 2022-11-08 中兴通讯股份有限公司 接入方法及装置、发射机、接收机、终端
CN107666682B (zh) * 2016-07-27 2023-05-02 中兴通讯股份有限公司 通信信道的传输方法及装置、系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521527A (zh) * 2008-02-28 2009-09-02 华为技术有限公司 高速专用物理控制信道的功率控制方法和装置
CN101563857A (zh) * 2006-12-21 2009-10-21 艾利森电话股份有限公司 所传输控制信道符号的功率等级
CN101998596A (zh) * 2009-08-17 2011-03-30 夏普株式会社 上行多输入多输出信道的功率控制方法
WO2013137656A1 (ko) * 2012-03-14 2013-09-19 삼성전자 주식회사 무선 통신 시스템에서 단말의 상향링크 송신 전력을 효율적으로 제어하는 방법 및 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7702029B2 (en) * 2006-10-02 2010-04-20 Freescale Semiconductor, Inc. MIMO precoding enabling spatial multiplexing, power allocation and adaptive modulation and coding
CN102843759B (zh) * 2011-06-23 2016-03-02 华为技术有限公司 一种上行多入多出信道的功率控制方法和用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101563857A (zh) * 2006-12-21 2009-10-21 艾利森电话股份有限公司 所传输控制信道符号的功率等级
CN101521527A (zh) * 2008-02-28 2009-09-02 华为技术有限公司 高速专用物理控制信道的功率控制方法和装置
CN101998596A (zh) * 2009-08-17 2011-03-30 夏普株式会社 上行多输入多输出信道的功率控制方法
WO2013137656A1 (ko) * 2012-03-14 2013-09-19 삼성전자 주식회사 무선 통신 시스템에서 단말의 상향링크 송신 전력을 효율적으로 제어하는 방법 및 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383748A (zh) * 2019-05-09 2019-10-25 北京小米移动软件有限公司 下行控制信息发送方法、装置及可读存储介质

Also Published As

Publication number Publication date
CN104580034B (zh) 2018-04-10
CN104580034A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
CN105917733B (zh) 用户设备、基站及d2d通信的方法
US7813754B2 (en) Transfer rate control method, transmission power control method, transmission power ratio control method, mobile communication system, mobile station, and radio base station
US9450742B2 (en) Apparatus and method for transmitting ACK/NACK in TDD system
US7586977B2 (en) Transmission power control method, mobile station, and radio network controller
US10218477B2 (en) Method for determining channel quality and apparatus thereof
US8060023B2 (en) Mobile communication system, radio base station, and mobile station
WO2015035910A1 (zh) 上行控制信息的传输方法、用户设备及网络侧设备
US20080074999A1 (en) Mobile Communication System, Wireless Line Control Station, Mobile Station, And Wireless Base Station
US9999061B2 (en) Radio resource adaptation method and associated wireless communication devices
RU2324290C2 (ru) Способ управления скоростью передачи и мобильная станция
US7894845B2 (en) Transmission power control method, mobile station, radio base station and radio network controller
CN106576312B (zh) 用于利用辅助上行导频信道的发射功率控制的系统和方法
US20120302251A1 (en) Transmission rate control method, mobile station and radio network controller
US8433252B2 (en) Method for controlling communication in wireless terminal and wireless terminal
WO2006107047A1 (ja) 送信方法、受信方法、無線基地局及び移動局
WO2015058726A1 (zh) 一种上行信道估计的方法、发送装置及接收装置
WO2021203392A1 (zh) 边链路传输方法以及装置
US7693170B2 (en) Transmission rate control method and mobile station
JP2017519429A (ja) 2つ以上のキャリアにおけるアップリンク送信を容易にするためのデバイスおよび方法
US20080261606A1 (en) Transmission Rate Control Method, Mobile Station and Radio Network Controller
US20160269153A1 (en) Method, device and storage medium for improving distance measure equipment interference resisting capability of lte system
US9414407B2 (en) Enhanced scheduling information transmission in a heterogeneous network
WO2012010009A1 (zh) 一种调度控制方法和基站
US20120331365A1 (en) Radio device and radio communication control method
WO2019127488A1 (zh) 一种通信方法、装置以及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854921

Country of ref document: EP

Kind code of ref document: A1