WO2015058586A1 - 翼吊布局飞机中吊挂的整流罩结构 - Google Patents

翼吊布局飞机中吊挂的整流罩结构 Download PDF

Info

Publication number
WO2015058586A1
WO2015058586A1 PCT/CN2014/085418 CN2014085418W WO2015058586A1 WO 2015058586 A1 WO2015058586 A1 WO 2015058586A1 CN 2014085418 W CN2014085418 W CN 2014085418W WO 2015058586 A1 WO2015058586 A1 WO 2015058586A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
station
fairing
suspension
aircraft
Prior art date
Application number
PCT/CN2014/085418
Other languages
English (en)
French (fr)
Inventor
于哲慧
张淼
张美红
薛飞
刘铁军
张冬云
汪君红
程攀
卢勇
刘晓燕
Original Assignee
中国商用飞机有限责任公司
中国商用飞机有限责任公司上海飞机设计研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国商用飞机有限责任公司, 中国商用飞机有限责任公司上海飞机设计研究院 filed Critical 中国商用飞机有限责任公司
Priority to EP14855661.6A priority Critical patent/EP2987728B1/en
Priority to US14/893,717 priority patent/US9950803B2/en
Publication of WO2015058586A1 publication Critical patent/WO2015058586A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D29/00Power-plant nacelles, fairings, or cowlings
    • B64D29/02Power-plant nacelles, fairings, or cowlings associated with wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C7/00Structures or fairings not otherwise provided for
    • B64C7/02Nacelles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/40Arrangements for mounting power plants in aircraft
    • B64D27/402Arrangements for mounting power plants in aircraft comprising box like supporting frames, e.g. pylons or arrangements for embracing the power plant

Definitions

  • This invention generally relates to the field of aircraft aerodynamic design, and more particularly to a fairing structure suspended in a winged aircraft, particularly a front fairing structure. Background technique
  • the wing is an important part of the aircraft and is used to provide lift to the aircraft. During the flight, both the upper and lower surfaces of the wing generate lift, with the main lifting surface being the upper surface. In order to maintain the efficiency of the lift generated by the wing, it is generally desirable to avoid interference with the upper surface of the wing.
  • the suspension is the component that connects the engine to the wing.
  • the aerodynamic surface of the hanging fairing is the direct visible portion of the hanging tree. As shown in Figures 1 and 2, the fairing aerodynamic surface G of the hanging 20 is usually from the starting point near the leading edge of the nacelle 10 of the engine.
  • the suspended fairing aerodynamic surface G after rising to the highest point, extends back to the upper surface of the wing at substantially the same maximum height H max , that is, The fairing aerodynamic surface G, at the point of intersection with the leading edge 31 of the wing, is located on the upper surface of the wing.
  • the aerodynamic surface of the fairing that is suspended in the following description is simply referred to as "hanging".
  • Suspension includes the structure required to lift the aircraft engine and the internal systems, electrical and electronic cables, seals and structural components necessary to maintain the engine and aircraft operations. These components usually have certain requirements for hanging interior space.
  • the following solutions are often used: 1. Increase the distance between the engine and the leading edge of the wing, thereby increasing the hanging internal space and keeping it hanging below the leading edge of the wing;
  • the hanging uses a larger height, extending back to the front line of the wing, that is, extending to the upper surface of the wing;
  • the suspension at the smaller angle of attack induces the separation of the airflow on the upper surface of the wing, thereby increasing the resistance, and the suspension at a larger angle of attack may cause the machine to hang.
  • the airflow on the upper surface of the wing is separated by a large area, which causes the torque to rise in advance, which jeopardizes the safety of the aircraft. Therefore, the second scheme has a greater influence on the upper surface of the wing.
  • the adverse effects of the long landing gear in the scheme 1 can be avoided, and the interference on the aircraft airfoil in the scheme 2 can be avoided, but increasing the hanging width reduces the cross-section of the engine outflow runner.
  • the cross-sectional area forms a block for the engine outflow and reduces the engine thrust, thereby reducing the propulsion efficiency of the engine.
  • patent WO8401347A1 installs an auxiliary device near the hanging fairing to weaken the hanging extension by inducing a shock wave on the airfoil upper wing.
  • Patent US 3,960,345 introduces fins on the nacelle surface of the wing to suppress the vortex generated by the engine/hanging extending above the wing, improve the lift resistance characteristics of the aircraft, increase stability, and reduce the adverse effects of the lower wash on the aircraft.
  • Patent US 3,968,946 A introduces a movable fairing to fill the gap between the fixed rectification and the leading edge slat of the aircraft when the engine/hanging extends to the upper airfoil.
  • the schemes disclosed in these patents overcome the adverse effects of the extension of the suspension to the upper wing by adding additional means, but both add extra weight to the aircraft, reduce aircraft load, and reduce aircraft carrying performance. Summary of the invention
  • the object of the present invention is to overcome the shortcomings of the prior art mentioned above, and to provide a fairing structure design for hanging in a wing crane layout aircraft, and to maintain or improve the aerodynamics of the aircraft while achieving close installation of the engine to the wing. performance.
  • a fairing structure suspended in a wing crane layout aircraft including a front fairing located forward of the leading edge of the wing and a rear portion located behind the leading edge of the wing
  • the fairing wherein the longitudinal cross-section of the front fairing is a curve that rises in a forward flow direction from a starting point near the nacelle of the engine to a maximum height station and then descends below the lower surface of the wing.
  • said maximum height station is where the interior space requirement of said suspension is greatest.
  • the maximum height station is the first station, which is higher than the upper surface of the wing.
  • the longitudinal section line of the front fairing is S-shaped, and the curvature is reversed after descending from the first station position to the second station position in the forward airflow direction, and is lowered at the third station position. The lowest, then at the fourth station, extends below the lower surface of the wing.
  • the ratio of the height difference between the first station location and the fourth station location to the distance between the starting point and the fourth station location is no greater than 0.016.
  • the ratio of the distance between the first station and the fourth station to the distance between the starting point and the fourth station is no more than 0.3.
  • the invention adopts the longitudinal section line of the front part of the hanging fairing as a curve and preferably is S-shaped, and only increases the hanging position at a position requiring a larger internal space (such as near a firewall)
  • the height of the hanging fairing meets the requirements of the hanging internal space.
  • the engine can be mounted to the wing at close range, and the aircraft landing gear does not need to be lengthened, no additional equipment is needed to avoid additional weight; the suspended fairing aerodynamic surface does not extend to the upper surface of the wing, avoiding suspension during cruise flight The suspension interferes with the wing; in addition, the hanging width is not increased, and the thrust efficiency of the engine is not adversely affected; Moreover, the flight characteristics of the aircraft are ensured, and the necessary internal space (envelope structure, firewall) is ensured for the suspension. Pipeline).
  • Figure 1 is a schematic view showing the suspension of the engine and the wing in a wing-hanging layout aircraft, showing the structure of the fairing suspended in the prior art;
  • FIG. 2 is a schematic view of a pneumatic surface of a front fairing suspended in the prior art
  • Figure 3 is a schematic view showing the connection of the engine and the wing using the suspended fairing structure of the present invention
  • Figure 4 is a schematic illustration of a suspended aforesaid fairing aerodynamic surface in accordance with the present invention
  • Figure 5 is similar to Figure 4, showing the curvature profile of the suspended front fairing aerodynamic surface.
  • the improved design of the fairing structure of the sling 20 is by longitudinal sectioning of the hoisted front fairing.
  • G is designed to be "S-shaped" to achieve.
  • the front fairing can be higher than the leading edge of the wing
  • the longitudinal height of the suspension 20 gradually decreases in the direction of the forward flow
  • the leading edge 31 of the wing maintains the complete airfoil head without the aerodynamics of the suspension 20 Shape effect.
  • the surface airflow of the hanger 20 flows along the surface, and the suspension 20 directs the airflow below the leading edge 31 of the wing, which can effectively reduce or avoid the interference of the surface airflow of the suspension 20 on the upper surface 33 of the wing.
  • the longitudinal section line G of the hoist 20 starts at the front point P, and the longitudinal section line G gradually rises, and the maximum height position of the hoist 20 is also the maximum height position of the hoisting 20, That is, the maximum height H max is reached at the first station S01 (for example, the firewall position). In some embodiments, the maximum height Hmax is likely to be higher than the leading edge 31 of the wing.
  • the longitudinal section line G then slowly descends, and the curvature is reversed at the second station position S02, that is, the longitudinal section line G changes from a convex curve to a concave curve, and the height of the suspension 20 at the third station position S03 is minimized, and then rises gently.
  • the longitudinal section line G of the hanger 20 is formed into an "S shape". This configuration is advantageous in that after the hoisting 20 is at the highest point position, a space is reserved in the area along the forward direction so that the height of the hang 20 can be restored and gradually lower than the leading edge 31 of the aircraft. Finally ends on the lower surface 32 of the wing. As shown in Figures 3 and 4, the point of intersection 0 of the longitudinal section line G of the sling 20 with the leading edge 31 of the wing is located below the leading edge 31 of the wing.
  • the longitudinal section line G of the hoist 20 intersects the lower wing surface 32 at point 0, and the point O is at the fourth station S04.
  • the distance between the front starting point P of the longitudinal section line G of the hang 20 and the fourth station position S04 is denoted by L.
  • the second station position S02 of the curvature reversal is generally located before the point 0, and the distance LR is reserved before the point 0, that is, the distance between the first station S01 and the fourth station position S04 of the hoisting 20 is identified as LR, hang
  • the difference between the height of the hang 20 at the first station S01 and the height at the fourth station S04 is identified as ⁇ ⁇ .
  • ⁇ ⁇ / L is defined as the relative height of the sling 20, which is a dimensionless amount, used to describe the degree of protrusion of the S-shaped front fairing.
  • the parameter ⁇ ⁇ / L generally takes no more than 0.016. The significance of this parameter is to limit the longitudinal section line G of the hanging 20 The height of the upward bulge prevents the resulting wake from being too high and adversely affects the downstream wing.
  • the LR/L is defined as the recovery space factor of the hanging 20, which is a dimensionless quantity.
  • the parameter LR/L is generally not less than 0.3. This parameter is used to describe the amount of space that the S-shaped front fairing returns to below the leading edge of the wing after the highest point (ie, the first station S01). The significance is that the hoist 20 gently restores the height from the highest point to the lower surface 32 of the wing, avoiding unfavorable pressure gradients and ensuring aerodynamic performance of the aircraft.
  • FIG. 5 An exemplary curvature distribution of the longitudinal section line G of the front fairing of the hanger 20 is also shown in FIG. 5, and those skilled in the art can separately design the curvature of the convex curve and the concave curve according to actual needs, and then The heights at one station S01 and third station S03 are modified to achieve different spatial and/or airflow distribution purposes.
  • the longitudinal section line of the front fairing according to the present invention may also be configured in any suitable curved form such as, but not limited to, a parabola, a smooth curve, a curve. Segments, line segments, and more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明提供了一种翼吊布局飞机中吊挂(20)的整流罩结构,所述整流罩包括位于机翼前缘(31)前方的前部整流罩和位于机翼前缘(31)后方的后部整流罩,其中,所述前部整流罩的纵向剖面线(G)为曲线,沿顺气流方向从靠近发动机短舱(10)的起始点(P)处升高至最大高度站位后下降并延伸至机翼下表面(32)下方。本发明通过将吊挂的整流罩前部的纵向剖面线设计为曲线,仅在需要较大内部空间的位置满足吊挂内部空间需求,因此,发动机可以近距离安装至机翼,不需增加额外装置;吊挂的整流罩气动面不会延伸至机翼上表面,避免了巡航飞行时吊挂对机翼产生干扰。

Description

翼吊布局飞机中吊挂的整流罩结构 技术领域
本发明总的涉及飞机气动外形设计领域, 更具体地涉及翼吊布 局飞机中吊挂的整流罩结构, 尤其是前部整流罩结构。 背景技术
机翼是飞机的重要组成部分, 用于为飞机提供升力。 飞机在飞 行过程中, 机翼的上表面和下表面均产生升力, 其中主要升力面是 上表面。 为了保持机翼产生升力的效率, 一般应尽量避免对机翼上 表面产生千扰。 在翼吊布局飞机中, 吊挂是连接发动机和机翼的部 件。 吊挂整流罩气动面是吊挂棵露在外的直接可视部分, 如图 1 和 图 2所示, 吊挂 20的整流罩气动面 G, 通常从靠近发动机短舱 10 的前缘的起始点 P 沿顺气流向飞机后方延伸, 具有内侧、 外侧两个 壁面, 其后部在机翼下表面 32靠近机翼 30的后缘处收缩为一条线 或形成一个具有较窄宽度的面。 对翼吊布局飞机而言, 发动机近距 离安装至机翼的主要难点在于具备一定内部空间的吊挂的布置。 在 图 1和图 2所示的现有技术中, 吊挂的整流罩气动面 G,在上升至最 高点后, 以基本相同的最大高度 Hmax向后一直延伸到机翼上表面, 也就是整流罩气动面 G,与机翼前缘 31的相交点 0,位于机翼上表面。 这会对飞机机翼 30, 特别是机翼上表面产生干扰, 从而减小飞机升 力、 降低飞机的性能。 因此, 如果希望发动机近距离安装至机翼成 为可能, 需要减弱吊挂对机翼上表面的干扰。
为方便说明,下面叙述中将吊挂的整流罩气动面简称为 "吊挂"。 吊挂中包含吊装飞机发动机所需的结构以及维持发动机、 飞机 运转必不可少的内部系统、 电子电气线缆、 密封件及结构部件, 这 些部件通常对吊挂内部空间有一定要求。 为保证吊挂内部空间, 常 常会采用以下几种方案: 1、 加大发动机与机翼前缘线之间距离, 从而增大吊挂的内部空 间, 保持吊挂在机翼前缘线之下;
2、 吊挂采用较大的高度, 向后一直延伸到机翼前缘线之上, 即 延伸到机翼上表面;
3、 保持吊挂处于机翼前缘线以下, 但需要增加吊挂的宽度。 这些方案各有优缺点。 在第 1 种方案中, 增加发动机与机翼前 缘线之间的距离, 势必会加长起落架, 从而增加重量、 增加飞机油 耗、 减小飞机商载, 并影响飞机的运载能力。 在第 2种方案中, 没 有增加起落架高度, 因而可以避免方案 1 中的不利影响, 但会使飞 机飞行特性变差。 也就是说, 当吊挂向后延伸到机翼上方, 在较小 攻角情况下吊挂会诱导机翼上表面气流分离, 进而增加阻力, 而在 较大攻角情况下吊挂会使机翼上表面气流大面积分离, 导致力矩上 仰提前发生, 危及飞机安全性, 因此第 2种方案对机翼上表面的影 响较大。 在第 3种方案中, 可以避免方案 1 中加长起落架带来的不 利影响, 也可以避免方案 2 中对飞机上翼面的干扰, 但增加吊挂宽 度会减小发动机出流流道的横截面积, 形成对发动机出流的阻滞, 减小发动机推力, 从而降低发动机的推进效率。
为了消除或减轻吊挂延伸至机翼上方带来的不同程度的不利影 响, 专利 WO8401347A1中在吊挂整流罩附近安装辅助装置, 通过在 机翼上翼面诱导产生激波, 来削弱吊挂延伸到机翼上方对飞机升力 特性产生的不利影响。专利 US3960345中在翼上短舱表面引入翼片, 抑制由于发动机 /吊挂延伸至机翼上方产生的漩涡, 提高飞机升阻力 特性, 增加稳定性, 减小下洗对飞机产生的不利影响。 专利 US3968946A 中则是引入一种可移动的整流罩, 来填补发动机 /吊挂 延伸至机翼上翼面时所采用的固定整流与飞机前缘缝翼之间产生的 缝隙。 这些专利所披露的方案通过增加额外的装置来克服^挂延伸 到机翼上方带来的不利影响, 但都使得飞机增加额外的重量、 减小 飞机商载、 降低飞机运载性能。 发明内容
本发明的目的在于克服上述现有技术中存在的缺点, 提出一种 针对翼吊布局飞机中吊挂的整流罩结构设计, 在实现发动机近距离 安装至机翼的同时, 保持或提高飞机的气动性能。
在实际工程当中, 飞机吊挂并非在每一处都需要较大的空间来 容纳部件 (如内部系统、 电子电气线缆、 密封件及结构部件) 。 实 际上, 常常在一些较为关键的位置需要比其他位置更大的空间。 比 如, 在飞机吊挂火区和非火区界面处, 由于存在防火墙, 其包含的 更大的密封组件需要更多的内部空间, 因而只在特定位置 (如吊挂 防火墙位置) 有较大内部空间要求。 本发明的方案即针对类似的情 况而提出, 通过对飞机吊挂的整流罩结构加以改进, 来避免上述各 种现有技术带来的缺点。
根据本发明的一种实施方式, 提出一种翼吊布局飞机中吊挂的 整流罩结构, 所述整流罩包括位于机翼前缘前方的前部整流罩和位 于机翼前缘后方的后部整流罩, 其中, 所述前部整流罩的纵向剖面 线为曲线, 沿顺气流方向从靠近发动机短舱的起始点处升高至最大 高度站位后下降并延伸至机翼下表面下方。
有利地, 所述最大高度站位为所述吊挂的内部空间需求最大处。 根据一种实施方式, 所述最大高度站位为第一站位, 其高于机 翼上表面。
根据一种实施方式, 所述前部整流罩的纵向剖面线为 S 形, 沿 顺气流方向从所述第一站位下降至第二站位后曲率翻转, 并在第三 站位处降至最低, 然后在第四站位处延伸至机翼下表面下方。
有利地, 所述第一站位和所述第四站位之间的高度差与所述起 始点和所述第四站位之间的距离的比值不大于 0.016。
有利地, 所述第一站位和所述第四站位之间的距离与所述起始 点和所述第四站位之间的距离的比值不大于 0.3。
本发明通过将吊挂的整流罩前部的纵向剖面线设计为曲线并优 选为 S形, 仅在需要较大内部空间的位置 (如防火墙附近)加大吊 挂的整流罩高度, 满足吊挂内部空间需求, 在吊挂的整流罩气动面 抵达机翼前缘时, 挂纵向高度处于机翼前缘之下。 因此, 发动机 可以近距离安装至机翼, 且飞机起落架无需加长, 不需增加额外装 置, 避免增加额外重量; 挂的整流罩气动面不会延伸至机翼上表 面, 避免了巡航飞行时吊挂对机翼产生干扰; 此外, 没有增加吊挂 宽度, 对发动机推力效率不产生负面影响; 而且, 保证良好飞机飞 行特性的同时, 保证了吊挂具有必需的内部布置空间 (包络结构、 防火墙管路) 。 附图说明
本发明的其它特征以及优点将通过以下结合附图详细描述的优 选实施方式更好地理解, 附图中, 相同的附图标记标识相同或相似 的部件, 其中:
图 1 为翼吊布局飞机中用吊挂连接发动机和机翼的示意图, 示 出了现有技术中吊挂的整流罩结构;
图 2为现有技术中吊挂的前部整流罩气动面的示意图;
图 3 为使用根椐本发明的吊挂的整流罩结构连接发动机和机翼 的示意图;
图 4为根据本发明的吊挂的前部整流罩气动面的示意图; 图 5与图 4类似, 示出了吊挂的前部整流罩气动面的曲率分布。 具体实施方式
下面具体描述根据本发明的翼吊布局飞机中吊桂的整流罩结 构。 在下面的具体描述中, 方向性的术语, 例如上、 下、 左、 右等 均参考附图中描述的方向使用, 这些方向性的术语仅用于示例而非 限制。 示例的结构设计图及以下描述本发明所结合的实施例并不旨 在穷尽根据本发明的所有实施例。
参见图 3和图 4, 在根据本发明的一种优选实施方式中, 对吊桂 20的整流罩结构的改进设计通过将吊挂的前部整流罩的纵向剖面线 G设计成 "S形" 来实现。 以这种方式, 前部整流罩可高于机翼前缘 线, 吊挂 20的纵向高度沿顺气流方向逐渐降低, 机翼前缘 31保持 完整翼型头部, 不受吊挂 20的气动外形面影响。 另外, 吊挂 20的 表面气流顺^挂表面流动, 吊挂 20将气流引导至机翼前缘 31以下, 能够有效减弱或避免吊挂 20的表面气流对机翼上表面 33的干扰。
具体的, 吊挂 20的纵向剖面线 G起始于前部点 P, 并且纵向剖 面线 G渐渐升高, 在吊挂 20的内部空间需求最大处, 同样也是吊挂 20 的最大高度站位, 即第一站位 S01 (例如防火墙位置) 处达到最 大高度 Hmax。 在一些实施方式中, 最大高度 Hmax很可能高于机翼前 缘 31。 纵向剖面线 G随后緩慢下降, 在第二站位 S02处曲率翻转, 即纵向剖面线 G由凸曲线转变为凹曲线, 在第三站位 S03处吊挂 20 的高度降至最低, 然后平緩上升并在第四站位 S04处与机翼接触且 处于机翼前缘 31 以下。 这样吊挂 20的纵向剖面线 G被形成为 "S 形" 。 这种构造的有利之处在于, 吊挂 20在最高点位置之后, 沿顺 气流方向的区域预留有一定空间, 使 挂 20的高度可以恢复过渡, 并逐渐低于飞机的机翼前缘 31 , 最终结束于机翼下表面 32。 如图 3 和图 4中所示的, 吊挂 20的纵向剖面线 G与机翼前缘 31的相交点 0位于机翼前缘 31的下方。
下面结合图 4和图 5定义若干参数, 用于进一步描述上述优选 实施方式。
吊挂 20的纵向剖面线 G与机翼下表面 32相交于点 0, 点 O位 于第四站位 S04。 吊挂 20的纵向剖面线 G的前部起始点 P与第四站 位 S04之间的距离标识为 L。曲率翻转的第二站位 S02—般位于点 0 之前, 并在点 0之前预留距离 LR, 即吊挂 20的第一站位 S01与第 四站位 S04之间的距离标识为 LR, 吊挂 20在第一站位 S01 的高度 与在第四站位 S04的高度之差标识为 Δ Η。
将 Δ Η/L定义为吊挂 20的相对高度, 其为无量纲量, 用于描述 S形前部整流罩的凸起程度。 在一些实施方式中, 参数 Δ Η/L—般取 值不大于 0.016。 本参数的意义在于, 限制吊桂 20的纵向剖面线 G 向上凸起的高度, 避免其产生的尾流过高, 对下游机翼产生不利影 响。
将 LR/L定义为吊桂 20的恢复空间系数, 其为无量纲量, 在一 些实施方式中, 参数 LR/L—般取值不小于 0.3。 本参数用于描述 S 形前部整流罩在最高点(即第一站位 S01 )之后恢复到机翼前缘线以 下的空间大小。 其意义在于, 使得吊挂 20从最高点平緩地恢复高度 至机翼下表面 32, 避免产生不利的压力梯度, 保证飞机气动性能。
图 5中还示出了吊挂 20的前部整流罩的纵向剖面线 G的一种示 例性曲率分布, 本领域技术人员可根据实际需要分别设计凸曲线和 凹曲线的曲率大小, 进而对第一站位 S01和第三站位 S03处的高度 加以修改来实现不同的空间和 /或气流分布目的。 同时, 应谅理解的 是, 除了上述示例性的实施方式, 根据本发明的前部整流罩的纵向 剖面线还可被构造为任意合适的曲线形式, 例如但不限于, 抛物线、 平滑曲线、 曲线段、 折线段等等。
本发明的技术内容及技术特点已揭示如上, 应当理解的是, 上 述实施方式存在许多修改方式, 这些方式对相关领域技术人员来说 是很明显的。 这些修改 /变型落入本发明的相关领域中, 也应当包括 在所附的权利要求的范围中。

Claims

权 利 要 求 书
1、 翼吊布局飞机中吊挂 (20) 的整流罩结构, 所述整流罩包括 位于机翼前缘 (31 ) 前方的前部整流罩和位于机翼前缘(31 ) 后方 的后部整流罩, 其特征在于, 所述前部整流罩的纵向剖面线(G)为 曲线, 沿顺气流方向从靠近发动机短舱( 10) 的起始点 (P) 处升高 至最大高度站位后下降并延伸至机翼下表面 (32) 下方。
2、 根据权利要求 1所述的翼吊布局飞机中吊挂的整流罩结构, 其特征在于, 所述最大高度站位为所述吊挂 (20) 的内部空间需求 最大处。
3、 根据权利要求 2所述的翼吊布局飞机中吊挂的整流罩结构, 其特征在于, 所述最大高度站位为第一站位(S01 ) , 其高于机翼上 表面 (33) 。
4、 根据权利要求 3所述的翼吊布局飞机中吊挂的整流罩结构, 其特征在于, 所述前部整流罩的纵向剖面线(G)为 S形, 沿顺气流 方向从所述第一站位 (S01 ) 下降至第二站位 (S02) 后曲率翻转, 并在第三站位 (S03) 处降至最低, 然后在第四站位 (S04) 处延伸 至机翼下表面 (32) 下方。
5、 根据权利要求 4所述的翼吊布局飞机中吊挂的整流罩结构, 其特征在于, 所述第一站位 (S01 ) 和所述第四站位 (S04) 之间的 高度差( ΔΗ)与所述起始点 (P)和所述第四站位(S04)之间的距 离 (L) 的比值不大于 0.016。
6、 根据权利要求 5所述的翼吊布局飞机中吊挂的整流罩结构, 其特征在于, 所述第一站位 (S01 ) 和所述第四站位 (S04) 之间的 距离 (LR) 与所述起始点 (P) 和所述第四站位 (S04)之间的距离 (L) 的比值不大于 0.3。
PCT/CN2014/085418 2013-10-24 2014-08-28 翼吊布局飞机中吊挂的整流罩结构 WO2015058586A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14855661.6A EP2987728B1 (en) 2013-10-24 2014-08-28 Airplane suspension cowling structure with wing-mounted arrangement
US14/893,717 US9950803B2 (en) 2013-10-24 2014-08-28 Airplane suspension cowling structure with wing-mounted arrangement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310509001.4A CN103612769B (zh) 2013-10-24 2013-10-24 翼吊布局飞机中吊挂的整流罩结构
CN201310509001.4 2013-10-24

Publications (1)

Publication Number Publication Date
WO2015058586A1 true WO2015058586A1 (zh) 2015-04-30

Family

ID=50163499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085418 WO2015058586A1 (zh) 2013-10-24 2014-08-28 翼吊布局飞机中吊挂的整流罩结构

Country Status (4)

Country Link
US (1) US9950803B2 (zh)
EP (1) EP2987728B1 (zh)
CN (1) CN103612769B (zh)
WO (1) WO2015058586A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103612769B (zh) * 2013-10-24 2016-09-21 中国商用飞机有限责任公司 翼吊布局飞机中吊挂的整流罩结构
FR3064605A1 (fr) * 2017-03-28 2018-10-05 Airbus Operations Systeme de joints feu metalliques pour une attache moteur d'un aeronef
CN113291457B (zh) * 2021-05-19 2023-09-05 中航西安飞机工业集团股份有限公司 一种飞机机头整流罩结构及飞机姿态控制方法
CN114516404B (zh) * 2022-02-14 2024-04-09 中国商用飞机有限责任公司 吊挂整流罩

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960345A (en) 1975-05-16 1976-06-01 Grumman Aerospace Corporation Means to reduce and/or eliminate vortices, caused by wing body combinations
US3968946A (en) 1975-03-31 1976-07-13 The Boeing Company Extendable aerodynamic fairing
US4410150A (en) * 1980-03-03 1983-10-18 General Electric Company Drag-reducing nacelle
WO1984001347A1 (en) 1982-09-30 1984-04-12 Boeing Co Shock inducing pod for causing flow separation
US4489905A (en) * 1981-09-30 1984-12-25 The Boeing Company Nacelle-pylon configuration for an aircraft and method of using the same
FR2899201A1 (fr) * 2006-03-31 2007-10-05 Airbus France Sas Agencement d'aile d'aeronef comportant un mat d'accrochage de moteur definissant en zone avant un canal lateral d'ecoulement d'air
CN101801789A (zh) * 2007-09-20 2010-08-11 空中客车运作股份公司 用于飞行器发动机悬挂装置的后下空气动力学整流罩
US20110243719A1 (en) * 2010-03-30 2011-10-06 United Technologies Corporation Non-circular aft nacelle cowling geometry
CN103612769A (zh) * 2013-10-24 2014-03-05 中国商用飞机有限责任公司 翼吊布局飞机中吊挂的整流罩结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524847A (en) * 1993-09-07 1996-06-11 United Technologies Corporation Nacelle and mounting arrangement for an aircraft engine
FR2734868B1 (fr) * 1995-06-02 1997-08-14 Hurel Dubois Avions Ensemble d'inverseur de poussee a deux portes
FR2903666B1 (fr) * 2006-07-11 2008-10-10 Airbus France Sas Ensemble moteur pour aeronef comprenant un capotage aerodynamique de jonction monte sur deux elements distincts
US20080296432A1 (en) * 2007-06-04 2008-12-04 Kernkamp Industries Corporation Method of extending length of aircraft to increase interior space
US8469309B2 (en) * 2008-12-24 2013-06-25 General Electric Company Monolithic structure for mounting aircraft engine
FR2977237B1 (fr) * 2011-06-28 2014-11-21 Airbus Operations Sas Carenage aerodynamique arriere d'un mat de liaison d'un moteur d'aeronef
FR2981636B1 (fr) * 2011-10-19 2013-12-27 Airbus Operations Sas Carenage aerodynamique arriere pour dispositif d'accrochage d'un moteur d'aeronef, comprenant un bouclier thermique capable de se dilater librement

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968946A (en) 1975-03-31 1976-07-13 The Boeing Company Extendable aerodynamic fairing
US3960345A (en) 1975-05-16 1976-06-01 Grumman Aerospace Corporation Means to reduce and/or eliminate vortices, caused by wing body combinations
US4410150A (en) * 1980-03-03 1983-10-18 General Electric Company Drag-reducing nacelle
US4489905A (en) * 1981-09-30 1984-12-25 The Boeing Company Nacelle-pylon configuration for an aircraft and method of using the same
WO1984001347A1 (en) 1982-09-30 1984-04-12 Boeing Co Shock inducing pod for causing flow separation
FR2899201A1 (fr) * 2006-03-31 2007-10-05 Airbus France Sas Agencement d'aile d'aeronef comportant un mat d'accrochage de moteur definissant en zone avant un canal lateral d'ecoulement d'air
CN101801789A (zh) * 2007-09-20 2010-08-11 空中客车运作股份公司 用于飞行器发动机悬挂装置的后下空气动力学整流罩
US20110243719A1 (en) * 2010-03-30 2011-10-06 United Technologies Corporation Non-circular aft nacelle cowling geometry
CN103612769A (zh) * 2013-10-24 2014-03-05 中国商用飞机有限责任公司 翼吊布局飞机中吊挂的整流罩结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2987728A4

Also Published As

Publication number Publication date
US20160114897A1 (en) 2016-04-28
CN103612769A (zh) 2014-03-05
CN103612769B (zh) 2016-09-21
EP2987728B1 (en) 2018-09-19
EP2987728A1 (en) 2016-02-24
US9950803B2 (en) 2018-04-24
EP2987728A4 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
US4706910A (en) Combined riblet and lebu drag reduction system
WO2015058586A1 (zh) 翼吊布局飞机中吊挂的整流罩结构
KR101984750B1 (ko) 윙의 윙팁 장치 및 이러한 윙팁 장치를 갖는 윙
US9545997B2 (en) Wingtip extension for reducing wake vortices of aircraft
US8186619B2 (en) Airplane engine pylon comprising at least one protruding element to generate a vortex of the airflow
US8118265B2 (en) Devices and methods to improve wing aerodynamics at low airspeeds
CA2758220A1 (en) Aircraft having a lambda-box wing configuration
US20090261198A1 (en) Pylon for suspending a turboengine
CA2647762C (en) Aircraft wing arrangement comprising an engine attachment strut defining in the front zone a lateral air flow channel
CN103693187B (zh) 一种机翼结构
JP2012500157A (ja) 地面効果翼機の翼構造
EP2242685B1 (en) Improved slat configuration for fixed-wing aircraft
CN203666968U (zh) 一种下反式机翼小翼尖结构
JP3980775B2 (ja) 飛行機の造波抵抗低減方法
EP2604516B1 (en) Minimally intrusive wingtip vortex wake mitigation using microvane arrays
CN104670505A (zh) 具有顶部整流罩的旋翼飞行器
WO2015058585A1 (zh) 翼吊布局飞机中吊挂的整流罩结构
EP1371550B1 (en) Trailing edge shape of laminar-flow airfoil
CA2650194C (en) Aircraft equipped with a device for reducing induced drag
CN102642613A (zh) 波纹套低阻整流罩
CN102358417B (zh) 一种民用客机的机翼环形翼梢小翼
CN105083531A (zh) 基于侧缘小翼的襟翼降噪装置
CN114516404B (zh) 吊挂整流罩
EP2684797B1 (en) Airplane wingtip device
CN113581459B (zh) 用于复合翼飞机的增升组件及复合翼飞机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855661

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014855661

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14893717

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE