WO2015058318A1 - Composition for accelerating or improving the healing of wounds, and method for accelerating or improving the healing of wounds, comprising the application of said composition - Google Patents

Composition for accelerating or improving the healing of wounds, and method for accelerating or improving the healing of wounds, comprising the application of said composition Download PDF

Info

Publication number
WO2015058318A1
WO2015058318A1 PCT/CL2014/000055 CL2014000055W WO2015058318A1 WO 2015058318 A1 WO2015058318 A1 WO 2015058318A1 CL 2014000055 W CL2014000055 W CL 2014000055W WO 2015058318 A1 WO2015058318 A1 WO 2015058318A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
wound
wounds
treatment
cells
Prior art date
Application number
PCT/CL2014/000055
Other languages
Spanish (es)
French (fr)
Inventor
Verónica Alejandra PALMA ALVARADO
Maria Rosa BONO MERINO
Original Assignee
Universidad De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Chile filed Critical Universidad De Chile
Publication of WO2015058318A1 publication Critical patent/WO2015058318A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/32Proteins, polypeptides; Degradation products or derivatives thereof, e.g. albumin, collagen, fibrin, gelatin
    • A61L15/325Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/60Materials for use in artificial skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/64Animal cells

Definitions

  • the present invention relates to a composition comprising a support matrix and Whaen's gelatin mesenchymal stem cells (WJ-MSC) for the treatment of wounds. And a method for the treatment of wounds that comprises applying the composition on the wound to be treated.
  • WJ-MSC Whaen's gelatin mesenchymal stem cells
  • the wound to be treated is an ulcerative wound resulting from chronic ischemia, where the composition of the invention promotes neo-angiogenesis and tissue repair, so as to accelerate or improve healing, without incorporating the cells of the composition into the wound to treat.
  • Peripheral arterial disease commonly affects the arteries that supply the legs and feet, a condition known as peripheral vascular disease in the extremities or lower limbs (Beard JD., 2000).
  • PAD Peripheral arterial disease
  • the decrease in blood flow, produced by arterial occlusion can generate an imbalance between the contribution and the requirements of oxygen and nutrients at the level of the affected limb, a phenomenon known as ischemia.
  • Ischemia of the lower limbs can manifest in acute or chronic form and its clinical consequences are varied.
  • Acute ischemia is known as the sudden interruption of blood supply to a limb.
  • the chronic form is a consequence of the slow and progressive decrease in blood flow and is characterized by the appearance of muscle pain when walking, and in severe cases due to the appearance of ulcerations and gangrene, which can even lead to loss of the affected limb.
  • Diabetes is one of the most important risk factors for chronic ischemia (Giménez et al., 2011).
  • the consequences of diabetes as a disease are determined by metabolic abnormalities, characterized by hyperglycemia due to alterations in insulin secretion or defects in its action.
  • micro and macrovascular diseases such as nephropathy and retinopathy (microvascular diseases) and vascular diseases of various territories such as the heart, brain and lower extremities.
  • microvascular diseases nephropathy and retinopathy
  • vascular diseases of various territories such as the heart, brain and lower extremities.
  • microvascular diseases nephropathy and retinopathy
  • vascular diseases of various territories such as the heart, brain and lower extremities.
  • the poor circulation and the lower sensitivity in the feet of these patients result in a greater ease of chronic ulceration and infection of the ulcers.
  • the diabetic foot is the complication that motivates the greatest number of hospitalizations in the diabetic population, being also recognized as the main cause of prolonged hospitalization in the medical and general surgery rooms (Brem & Tomic-canic, 2007).
  • the annual incidence of chronic limb ischemia is in the range of 500 to 1,000 new cases per million people (Minar E., 2009), with diabetes being one of the most important risk factors of this pathology. It is estimated that in this population, its incidence is 20 times more frequent than in the population that does not have this disease (Spain Caparros G., 2000).
  • the diabetic foot is the complication that motivates the greatest number of hospitalizations in the diabetic population, presents with a prevalence of between 5.3% and 10.5%, and corresponds to the first cause of major amputations of non-traumatic origin, presenting diabetics a risk of requiring an amputation 17 to 40 times higher compared to the general population (Lipsky, 2012; Vuorisalo S. et al., 2009; Fard AS et al., 2007).
  • the management of the diabetic foot requires in a first stage, antibiotic therapy, surgical drainage and resection of dead tissue, as the first priority is to control the infection locally.
  • an evaluation of the patient is performed to detect the existence of ischemia at the level of the affected limb. If it is demonstrated that there is ischemia, the patient may undergo a percutaneous or surgical revascularization procedure, however, in a considerable proportion of patients (15%) revascularization is not an effective option. Of these patients, more than 40% will require a major amputation and 20% will die within 6 months.
  • morbidity and mortality rate Liscosky, 2012; Nikol S. et al., 2008; Fard AS et al., 2007; Faries PL. Et al. , 2004).
  • the composition of the invention has its preferred application in the field of the treatment of ulcerative wounds such as the diabetic foot, it can be applied to any wound, regardless of its origin, to promote healing of the same.
  • wounds that can be treated with the composition of the invention are all ulcerative wounds, including varicose ulcers, burns, deep sharps wounds, bedsores, etc.
  • SC stem cells
  • the SC are a specific type of undifferentiated cells, which have the ability to self-renew and the potential to differentiate into a wide range of cell lineages (Caplan I. et al., 2006; Flores-Figueroa E. et al., 2006). Depending on the development status of the individual from which they originate, they can be classified as embryonic (ESC), fetal (FSC) or adult (ASC) stem cells (Pappa Kl. Et al., 2009; Wacharaprechanont T., 2005). Within these last two groups it is possible to find a particular type of SC called mesenchymal stem cells (MSC) (Phinney & Prockop, 2007).
  • MSC mesenchymal stem cells
  • MSCs are multipotential cells, they have the ability to differentiate and give rise to different mesenchymal lineages, such as adipocytes, osteocytes, chondrocytes, myocytes, among others, and to transdifferentiate to other lineages (Uccelli A et al., 2008; Pountos I. et al., 2005; Minguell JJ et al., 2001).
  • MHC-I class I histocompatibility complex
  • MSCs arise as an attractive alternative for the treatment of this type of lesions, since they could help the reconstitution of the dermis, vascularization and other required components for an optimal cure (Volk S., 2009; Dash NR. and col., 2009).
  • obtaining a therapeutic amount of ASC is associated with the performance of a surgical procedure that requires anesthesia and hospitalization (Insausti CL. Et al., 2010 ; Wu KH. Et al., 2007).
  • ASCs It has been shown that there is a decrease in their proliferation capacity and their potential for differentiation in direct relation to the age of the patient from which they are extracted (Wagner W. et al., 2009; Fehrer C. et al., 2005).
  • cells obtained from individuals suffering from chronic diseases do not have the same potential as those obtained from healthy individuals.
  • MSCs obtained from the BM of patients with chronic Hepatitis B or cirrhosis have a low proliferation capacity (Zhong YS. Et al., 2010).
  • the MSCs obtained from diabetic patients have low proliferation capacity, decrease in the potential for differentiation, and a large percentage of them are in a senescent state (Stolzing A. et al., 2010; Kume S. et al., 2005).
  • the MSCs obtained from BM or adipose tissue of patients with diabetes, anemia or renal failure have a decreased angiogenic potential (Li TS. Y col., 2010; El-Ftesi S. et al., 2009).
  • the umbilical cord is a rich source of specific tissue SC. It has been used as a source of HSC for 20 years to restore hematopoiesis, both in malignant and non-malignant disorders (Pappa Kl. Et al, 2009).
  • the umbilical cord has been considered an attractive source of MSC cells (Pappa Kl. Et al., 2009; Erices A. et al., 2000).
  • the clinical use of the MSC derived from the umbilical cord is attractive because they are easy to obtain and do not have the limitations presented by those obtained from other sources.
  • MSCs have been isolated from several compartments of the umbilical cord, specifically from the blood, the sub-endothelium of the vein that runs through it and recently from Wharton's jelly (WJ) (Troyer DL. Et al., 2008). WJ is called the connective-gelatinous tissue that surrounds the arteries and vein inside the umbilical cord.
  • Obtaining MSC from umbilical cord blood has a low efficiency in comparison to its obtaining from BM, since the number of MSCs in cord blood mononuclear cells is very low (Musina RA. and col., 2007). However, obtaining MSC from the WJ is very efficient, since these cells are much more abundant in this tissue than in cord blood or BM. On the other hand, WJ MSCs (WJ-MSC) have a greater capacity to be expanded in vitro (Pappa Kl. Et al., 2009; Troyer DL. Et al., 2008; Secco M. et al., 2008) .
  • the inventors have developed a new composition for the treatment of wounds comprising a support matrix and Wharton's jelly mesenchymal stem cells (WJ-MSC), where the composition when applied to the wound promotes neo- angiogenesis and tissue repair, in order to accelerate or improve healing, without incorporating the cells of the composition into the patient's circulation. This is achieved by the factors secreted by the WJ-MSC, retained in the patch, which are transferred from the composition of the invention to the damaged tissue promoting healing.
  • WJ-MSC Wharton's jelly mesenchymal stem cells
  • the present invention relates to a support structure (matrix) containing mesenchymal stem cells obtained from Wharton's jelly.
  • This structure is applied to wounds to promote neo-angiogenesis, in order to accelerate or improve healing.
  • a differentiating feature of the present invention is that the integration of foreign cells into the patient is avoided or minimized, so that the technical effect is exerted through the diffusion of angiogenic factors produced by the cells towards the wound, without Consider the integration of the cells themselves to the patient.
  • healing patches had been developed using mesenchymal cells of the same patient to be treated, in order to generate an autologous transplant, which incorporated the cells of the composition as part of the repaired tissue.
  • the document AU2009320446 (A1) describes a matrix where progenitor mesenchymal cells obtained from muscle processes of the same patient are incorporated, to improve wound healing.
  • This approach has serious limitations, as previously discussed, since in patients with chronic diseases that require this type of treatment, bone marrow or adipose tissue mesenchymal cells have low proliferation capacity.
  • the inventors have solved this technical problem by not trying to incorporate mesenchymal cells as a transplant, but instead using them as a natural source of factors that promote healing and angiogenesis. In this way exogenous cells can be used, with high production capacity of these factors, such as the WJ-MSC.
  • compositions for healing that include mesenchymal stem cells, but not WJ-MSC, were known.
  • application US2011256089 (A1) describes a hydrogel composition for applying cells to a damaged area to promote healing. It is indicated that mesenchymal stem cells can be used, among many other types of cells, and the strategy is that the gel cells integrate into the tissue to be repaired. This same strategy of integrating cells into the tissue to be repaired is used in the application US2012134965, which discloses compositions for the treatment of vascular diseases in general, where the composition contains stem cells as an active component, the WJ-MSC is not mentioned and as We indicate the objective is that the cells are incorporated into the tissue to be treated.
  • Another strategy in the state of the art is that used in the application AU2012205269 (A1), where the application of mesenchymal cells is described to promote angiogenesis and improve healing among other applications, through their systemic administration.
  • the claims describe cell doses per kilogram, and it is further indicated that administration may be intravenous.
  • composition of the invention is anticipated, nor is the method for treating wounds comprising applying the composition on the wound to be treated without incorporating The composition cells in the wound to be treated.
  • FIG. 1 The stains of 2 matrices (IM and collagen), after incubation of the MTT assay in the absence and presence of WJ-MSC (1 x 10 5 cells), at different in vitro incubation times are shown.
  • FIG. 1 The stains of 2 matrices (IM and collagen), after incubation of the MTT assay in the absence and presence of WJ-MSC (1 x 10 5 cells), at different in vitro incubation times are shown.
  • FIG. 1 Abundance of VEGF protein in cell extracts obtained from WJ-MSC grown for 24 hours in collagen and IM matrices in a serum-free culture medium.
  • the symbols represent (-) absence or (+) presence of WJ-MSC.
  • FIG. 3 ⁇ A) Representative photo of the secretoma (conditioned medium) from WJ-MSC grown in the absence of serum (24 hours) obtained from the cells sown in the collagen (left) and IM (right).
  • FIG. 4 (A) Representative photo of CAM assay for IM Matrix + DMEM control culture medium (left), IM + VEGF Matrix (center) and the composition of the invention IM Matrix + WJ-MSC cells (right). (B) The graph shows the quantification of the blood vessels in the three conditions at 24, 48, 72 and 96 hours after introduced the composition. The difference in the average number of blood vessels generated by the matrices seeded with WJ-MSC and DMEM determined by ANOVA * P> 0.05
  • Figure 5 Representative photo of human cells adhered to CAM after 96 hours with IM Matrix + DMEM culture medium by immunohistochemistry, using human anti-Presinilin 1 antibody (1 mm scale bar at A, and 100 um A ' )
  • the present invention relates to a composition comprising a support matrix and Whaen's gelatin mesenchymal stem cells for wound treatment. And a method for the treatment of wounds that comprises applying the composition on the wound to be treated.
  • the wound to be treated is chosen among chronic or acute wounds, such as all ulcerative wounds, including varicose ulcers and ulcers associated with ischemia such as the diabetic foot; burns, deep sharps wounds, bedsores, etc.
  • the wound to be treated is an ulcerative wound resulting from chronic ischemia, where the composition of the invention promotes neo-angiogenesis and tissue repair, so as to accelerate or improve healing, without incorporating the cells of the composition into the wound to treat.
  • the present invention relates to a composition useful for the treatment of chronic or acute wounds, such as all ulcerative wounds, including varicose ulcers and ulcers associated with ischemia such as the diabetic foot; burns, deep sharps wounds, bedsores, etc.
  • the composition of the invention is useful in the treatment of chronic wounds or difficult healing, as is the case of wounds caused by prolonged ischemia, such as the diabetic foot.
  • the composition comprises two essential elements, a support matrix and Whaen's gelatin mesenchymal stem cells.
  • the support matrix must be flexible and allow the integration of live WJ-MSCs.
  • the matrix can be composed of any biocompatible polymer that is not biadsorbable, since the WJ-MSC must not be integrated into the wound.
  • biocompatible polymers suitable for the support matrix of the present invention are: substantially pure collagen or in combination with other compounds such as glycosaminoglycans and semi-permeable polysiloxane (silicone), pectin, carboxycellulose, chitosan, combinations thereof or any other biocompatible polymer that It exists in art.
  • the commercial support matrix, IntegraTM atrix (IM) is used.
  • the second component of the composition of the invention are Wharton's jelly mesenchymal stem cells or WJ-MSC, which are isolated from the umbilical cord.
  • the WJ-MSC are responsible for the therapeutic effect of the composition since they secrete different factors that favor wound healing, such as: pro-angiogenesis factors such as angiogenin, VEGF, uPA, IGFBP-3; of migration factors such as TIMP-1, Serpina E1, of inflammatory response factors such as IL-8, MCP-1, Pentraxin-3, and tissue repair factors such as HGF and Thrombospondin-1.
  • pro-angiogenesis factors such as angiogenin, VEGF, uPA, IGFBP-3
  • migration factors such as TIMP-1, Serpina E1, of inflammatory response factors such as IL-8, MCP-1, Pentraxin-3, and tissue repair factors such as HGF and Thrombospondin-1.
  • the matrix may comprise other components that allow to increase the survival of the WJ-MSC or components with pharmacological action for the treatment of wounds.
  • the components that can increase the survival of the WJ-MSC are the culture medium for human cells, such as the DMEM medium, or a buffer composition of physiological pH (pH 7.2) and nutrients like glucose, essential amino acids, vitamins and minerals.
  • physiological pH pH 7.2
  • nutrients like glucose, essential amino acids, vitamins and minerals.
  • WJ-MSC can grow in hypoxic conditions and survive without supply of nutrients for up to 10 days.
  • composition of the invention can optionally comprise are: argumentative sulfadiazine, poly (n-acetylgalactosamine-d-glucuronic) sodium polysulfate, chloramphenicol, retinol palmitate, benzalkonium chloride, benzoate benzyl, amino acids: alanine , cysteine, vitamins C, E, F.
  • Other healing components that can be added to the composition are components that are also secreted by the WJ-MSC in order to increase its concentration, such as: angiogenin, VEGF, uPA, IGFBP-3, TIMP-1, Serpina E1, IL-8, MCP-1, Pentraxin-3, HGF and / or Thrombospondin-1.
  • the invention in a second aspect relates to a method for treating wounds which comprises applying the composition directly on the wound to be treated.
  • the composition of the invention can remain active and stable on the wound for a period of up to 10 days or more, after that time the composition begins to degrade, and fall from the wound naturally, without any WJ transfers. -MSC to the treated wound tissue.
  • the composition can be applied again on the wound, without removing the remains of the first applied composition. This treatment can be repeated as many times as necessary until wound healing is achieved, as in the case of wounds that are difficult to heal, such as the diabetic foot.
  • the wound to be treated is an ulcerative wound resulting from chronic ischemia, where the composition of the invention promotes neo-angiogenesis and dermal repair, so as to accelerate or improve healing, without incorporating the cells of the composition into the wound to treat.
  • WJ-MSC is not incorporated into the tissue to be treated is one of the great advantages of the composition, since it eliminates the possible rejections of the patient to exogenous cells and only gives the tissue that needs to heal the factors that promote healing and angiogenesis
  • the support matrix must comprise the biocompatible polymer in a conformation that ensures its flexibility.
  • the WJ-MSC are incorporated into the support matrix at a concentration of between 1 x 10 2 to 1 x 10 8 cells per 100pL and 1 mL of matrix.
  • compositions with a concentration of WJ-MSC of between 1 x 10 4 to 1 x 10 6 cells per 00pL and 1 mL of matrix are especially preferred.
  • the WJ-MSCs are incorporated into the support matrix at a concentration of between 1 x 10 2 to 1 x 10 8 cells per 1 to 100 pL of matrix.
  • compositions with a concentration of WJ-MSC of between 1 x 10 4 to 1 x 10 6 cells per 1 and 100 pL of matrix are especially preferred.
  • composition is spread on a non-stick surface to form sheets of the composition.
  • the nature of the support matrix allows the composition to adhere to the wound to be treated without adding adhesion compounds thereto.
  • biocompatible adhesive components can be added.
  • composition of the invention is presented as sheets of the support matrix with the WJ-MSC inserted therein, and if necessary with the additional components, of a thickness of between 0.1-1 mm.
  • the shape and measurements of the sheets are variable, and do not affect the effectiveness of the invention.
  • the composition of the invention is presented in sheets of an area between 4 mm 2 to 100 cm 2 .
  • composition of the invention effectively promotes angiogenesis and healing, solving this important technical problem of the Pharmaceutical Industry.
  • Example 1 Obtaining the wound healing composition, a) Using collagen support matrix.
  • the composition of the invention was generated using collagen I support matrix, where collagen I was obtained in the laboratory from rat tail.
  • the composition of the invention was generated in a 7: 2: 1 ratio, where 70% corresponds to the preparation of collagen, 20% to DMEM medium (4X, pH 7.2) and the remaining 10% to WJ- MSC (1 x 10 4 ) resuspended in complete medium.
  • composition of the invention was generated using a commercial support matrix, IntegraTM Matrix (IM) matrices (Integra®, LifeScience Corporation).
  • IM IntegraTM Matrix
  • IM is an FDA-approved device for advanced wound care, consisting of a porous matrix of cross-linked bovine tendon collagen and glycosaminoglycans and semi-permeable polysiloxane (silicone).
  • IM pieces were used and dried with sterile gauze, then deposited in a 24-well plate where 1 x 10 4 WJ-MSC cells resuspended in complete culture medium were seeded and incubated for 1 time at 37 ° C to allow WJ-MSC cells to integrate into the IM support matrix.
  • Example 2 Evaluation of the viability of the WJ-MSC in the wound healing composition.
  • the in vitro metabolic activity of the WJ-MSCs in the compositions of the invention generated in Example 1 was first evaluated as an indicator of their viability.
  • the metabolic activity of the WJ-MSC in both matrices was quantified by an MTT assay, based on the metabolic reduction of the reagent bromide of 3- (4,5-dimethylthiazol-2-yl) -2.5 diphenyltetrazolium (MTT). After each incubation time (12, 24 and 48 hours, as well as 5 and 10 days) and in the absence of fetal bovine serum (FBS), metabolic activity was quantified by absorbance at 550 nm (OD 500nm) .
  • Example 3 Evaluation of the production of VEGF in the wound healing composition.
  • compositions of the invention are useful for accelerating or improving wound healing if WJ-MSC cells secrete angiogenic factors. For this reason, the production of VEGF, a very important angiogenic factor in both compositions of the invention generated in Example 1, was evaluated after 24 hours of culture.
  • VEGF vascular endothelial growth factor
  • collagen and IM The expression of VEGF in the compositions of the invention, with collagen and IM was determined and the results were normalized with the expression of ⁇ -actin, as matrices without WJ-MSC cells.
  • the results are shown in Figure 2, in both compositions of the invention a high expression of VEGF is observed in Cellular Used. This result demonstrates that the compositions of the invention can promote angiogenesis since they supply a large amount of VEGF on the wound in which the composition is applied.
  • Example 4 Evaluation of the production of other trophic factors in the wound healing composition.
  • conditioned media of the compositions of the invention were collected 24 hours after they were generated for Proteome Profiler assays.
  • Array according to the indications of Manufacturer (Human Angiogenesis Array Kit, Protome ProfilerTM Antibody Arrays, R&D Systems ARY007).
  • This kit allowed to detect simultaneously, quickly and sensitively, the expression levels of 55 proteins related to angiogenic processes.
  • the kit provides nitrocellulose membranes that contain specific antibodies attached at different points in duplicate, so to detect the signal of said proteins the sample must be prepared with a cocktail of biotin-coupled antibodies. To perform this test, the membrane was incubated with the conditioned medium overnight.
  • compositions of the invention secrete a wide range of trophic factors, in addition to VEGF, which favor healing, see Figure 3.
  • Figure 3 B shows the relative secretion levels of the analyzed proteins, all related to the angiogenic processes, which were grouped according to their cellular function, in both compositions of the invention.
  • compositions of the invention that employ IM support matrix show a greater secretion of the analyzed proteins
  • both compositions of the invention secrete significant amounts of pro-angiogenesis factors such as angiogenin, VEGF, uPA, IGFBP-3; of migration factors such as TIMP-1, Serpina E1, of inflammatory response factors such as IL-8, MCP-1, Pentraxin-3, and tissue repair factors such as HGF and Thrombospondin-1.
  • pro-angiogenesis factors such as angiogenin, VEGF, uPA, IGFBP-3
  • migration factors such as TIMP-1, Serpina E1
  • inflammatory response factors such as IL-8, MCP-1, Pentraxin-3
  • tissue repair factors such as HGF and Thrombospondin-1.
  • Example 5 Evaluation of angiogenesis in vivo with the wound healing composition.
  • a chicken embryo chorioallantoic membrane assay known as the CAM test. This method is a classic model to study the neovascularization
  • the test consisted of introducing an IM matrix membrane with different compositions to be analyzed, control: IM Matrix + DMEM Culture Medium, IM + VEGF Matrix (10 ng / ⁇ ) and the composition of the invention IM Matrix + WJ-MSC cells (5 x 10 5 ), on the chorioallantoic membrane of chicken embryo through a hole in the eggshell from day 8 to day 12 of embryonic development (E8-E12).
  • the angiogenesis in the membrane was quantified by quantifying the vessels that cross in a perimeter of 4 mm around the membrane.
  • the results show that the composition of the invention overcomes the angiogenesis generated by the support matrix in combination with the pure VEGF angiogenic factor, used as a positive control ( Figure 4).
  • FIG. 5 shows the distribution of human cells in the Matrix IM + DMEM culture medium assay and with the composition of the invention Matrix IM + WJ-MSC cells after 96 h in contact with it, evidencing that most of the cells are identified in the IM and not in the CAM so it can be said that the migration of WJ-MSC is not detectable.
  • Example 6 Comparison of the composition of the invention with the empty IM matrix and with I + AD- ⁇ UISC cells.
  • the present invention referring to a composition comprising a support matrix and Wharton's gelatin mesenchymal stem cells, is useful in the pharmaceutical industry for wound treatment, especially for inducing neo-angiogenesis, of way to accelerate or improve healing, without incorporating the cells of the composition into the wound to be treated.
  • mesenchymal stem / multipotent stromal cells the state of transdifferentiation and modes of tissue repair-current views. Stem cells (Dayton, Ohio), 25 (11), 2896-902. doi: 10.1634 / stemcells. 2007-0637

Abstract

The invention relates to a composition comprising a supporting matrix and mesenchymal stem cells from Wharton's jelly for treating wounds. The invention also relates to a method for treating wounds, comprising applying the composition to the wound to be treated.

Description

COMPOSICIÓN PARA ACELERAR O MEJORAR LA CICATRIZACIÓN EN HERIDAS, Y UN MÉTODO PARA ACELERAR O MEJORAR LA CICATRIZACIÓN EN HERIDAS QUE COMPRENDE APLICAR DICHA COMPOSICIÓN.  COMPOSITION TO ACCELERATE OR IMPROVE WOUND CICATRIZATION, AND A METHOD TO ACCELERATE OR IMPROVE WOUND CICATRIZATION THAT INCLUDES APPLYING SUCH COMPOSITION.
CAMPO TÉCNICO TECHNICAL FIELD
La presente invención se refiere a una composición que comprende una matriz soporte y células troncales mesenquimáticas de gelatina de Wharton (WJ-MSC) para el tratamiento de heridas. Y un método para el tratamiento de heridas que comprende aplicar la composición sobre la herida a tratar. The present invention relates to a composition comprising a support matrix and Whaen's gelatin mesenchymal stem cells (WJ-MSC) for the treatment of wounds. And a method for the treatment of wounds that comprises applying the composition on the wound to be treated.
En una realización preferida la herida a tratar es una herida ulcerosa producto de isquemia crónica, donde la composición de la invención promueve la neo-angiogénesis y reparación tisular, de manera de acelerar o mejorar la cicatrización, sin incorporar las células de la composición en la herida a tratar.  In a preferred embodiment, the wound to be treated is an ulcerative wound resulting from chronic ischemia, where the composition of the invention promotes neo-angiogenesis and tissue repair, so as to accelerate or improve healing, without incorporating the cells of the composition into the wound to treat.
ANTECEDENTES BACKGROUND
Actualmente el tratamiento de las heridas crónicas es un problema que aún no ha sido resuelto de manera satisfactoria. Dentro de estas heridas crónicas se encuentran las lesiones vasculares, como las heridas ulcerosas, y aquellas asociadas a isquemias crónicas, como las que se producen en la diabetes, donde la más importante es el pie diabético. Adicionalmente, las quemaduras muchas veces requieren de elementos que permitan acelerar la cicatrización de la herida.  Currently the treatment of chronic wounds is a problem that has not yet been satisfactorily resolved. Within these chronic wounds are vascular lesions, such as ulcerative wounds, and those associated with chronic ischemia, such as those that occur in diabetes, where the most important is the diabetic foot. Additionally, burns often require elements that accelerate wound healing.
La enfermedad arterial periférica (EAP) afecta comúnmente a las arterias que irrigan las piernas y los pies, patología conocida como enfermedad vascular periférica en extremidades o miembros inferiores (Beard JD., 2000). En la EAP la disminución del flujo sanguíneo, producido por la oclusión arterial, puede generar un desbalance entre el aporte y los requerimientos de oxígeno y nutrientes a nivel de la extremidad afectada, fenómeno conocido como isquemia. La isquemia de los miembros inferiores puede manifestarse en forma aguda o crónica y sus consecuencias clínicas son variadas. Se conoce como isquemia aguda a la interrupción brusca del aporte sanguíneo hacia una extremidad. La forma crónica por su parte, es consecuencia de la disminución lenta y progresiva del flujo sanguíneo y se caracteriza por la aparición de dolor muscular al caminar, y en casos severos por la aparición de ulceraciones y gangrena, lo que puede derivar incluso, en la perdida de la extremidad afectada. La diabetes es uno de los factores de riesgo más importantes de isquemia crónica (Giménez y col., 2011 ). Las consecuencias de la diabetes como enfermedad, están determinadas por anomalías metabólicas, caracterizadas por la hiperglicemia dada por alteraciones en la secreción de la insulina o por defectos en su acción. En el ámbito vascular, la hiperglicemia crónica establece una secuencia de fenómenos bioquímicos que finalmente se manifiestan como enfermedades micro y macrovasculares, como son la nefropatía y la retinopatía (enfermedades microvasculares) y las enfermedades vasculares de diversos territorios como el corazón, cerebro y extremidades inferiores (Julio R. y col., 2009). La mala circulación y la menor sensibilidad en los pies de estos pacientes traen como consecuencia una mayor facilidad de ulceración crónica y de infección de las úlceras. El pie diabético es la complicación que mayor número de hospitalizaciones motiva en la población diabética, siendo reconocida además como la principal causa de hospitalización prolongada en las salas de medicina y cirugía general (Brem & Tomic-canic, 2007). Peripheral arterial disease (PAD) commonly affects the arteries that supply the legs and feet, a condition known as peripheral vascular disease in the extremities or lower limbs (Beard JD., 2000). In the EAP the decrease in blood flow, produced by arterial occlusion, can generate an imbalance between the contribution and the requirements of oxygen and nutrients at the level of the affected limb, a phenomenon known as ischemia. Ischemia of the lower limbs can manifest in acute or chronic form and its clinical consequences are varied. Acute ischemia is known as the sudden interruption of blood supply to a limb. The chronic form, on the other hand, is a consequence of the slow and progressive decrease in blood flow and is characterized by the appearance of muscle pain when walking, and in severe cases due to the appearance of ulcerations and gangrene, which can even lead to loss of the affected limb. Diabetes is one of the most important risk factors for chronic ischemia (Giménez et al., 2011). The consequences of diabetes as a disease are determined by metabolic abnormalities, characterized by hyperglycemia due to alterations in insulin secretion or defects in its action. In the vascular field, chronic hyperglycemia establishes a sequence of biochemical phenomena that finally manifest as micro and macrovascular diseases, such as nephropathy and retinopathy (microvascular diseases) and vascular diseases of various territories such as the heart, brain and lower extremities. (Julio R. et al., 2009). The poor circulation and the lower sensitivity in the feet of these patients result in a greater ease of chronic ulceration and infection of the ulcers. The diabetic foot is the complication that motivates the greatest number of hospitalizations in the diabetic population, being also recognized as the main cause of prolonged hospitalization in the medical and general surgery rooms (Brem & Tomic-canic, 2007).
En Estados Unidos y Europa, la incidencia anual de la isquemia crónica de las extremidades está en el rango de entre 500 a 1.000 nuevos casos por millón de personas (Minar E., 2009), siendo la diabetes uno de los factores de riesgo más importantes de esta patología. Se estima que en esta población, su incidencia es 20 veces más frecuente que en la población que no posee esta enfermedad (España Caparros G., 2000). El pie diabético es la complicación que mayor número de hospitalizaciones motiva en la población diabética, se presenta con una prevalencia de entre un 5,3% a un 10,5%, y corresponde a la primera causa de amputaciones mayores de origen no traumático, presentando los diabéticos un riesgo de requerir una amputación 17 a 40 veces mayor respecto de la población general (Lipsky, 2012; Vuorisalo S. y col., 2009; Fard AS y col., 2007). In the United States and Europe, the annual incidence of chronic limb ischemia is in the range of 500 to 1,000 new cases per million people (Minar E., 2009), with diabetes being one of the most important risk factors of this pathology. It is estimated that in this population, its incidence is 20 times more frequent than in the population that does not have this disease (Spain Caparros G., 2000). The diabetic foot is the complication that motivates the greatest number of hospitalizations in the diabetic population, presents with a prevalence of between 5.3% and 10.5%, and corresponds to the first cause of major amputations of non-traumatic origin, presenting diabetics a risk of requiring an amputation 17 to 40 times higher compared to the general population (Lipsky, 2012; Vuorisalo S. et al., 2009; Fard AS et al., 2007).
En Chile, esta patología aqueja a cerca del 7% de la población (OMS, 2009). El año 2000, el Servicio de Salud Metropolitano Central realizó un estudio para evaluar el "pie en riesgo" dentro de la población diabética, resultando que un 63% de los diabéticos estudiados tenía pie de alto riesgo (20 o más puntos de acuerdo a norma de evaluación año 1996), así como un 13,6 % de amputaciones, siendo la tasa de amputaciones dentro de la población general de 40/100.000 adultos de 20 y más años de edad. El año 2002 se estimó que alrededor de 6 millones de pacientes beneficiarios del sistema público sufrían de diabetes (MinSal, 2006). Estudios más recientes indican que en Chile la incidencia de isquemia en las ulceras del pie diabético es cercana al 57%. Actualmente, no existen opciones disponibles de reconstrucción del tejido afectado por isquemia que deriva en ulceraciones, y los tratamientos involucrados en el cuidado de dichas heridas son sumamente costosos (Hirsch y col., 2008). Esto último es particularmente relevante considerando que más de 220 millones de personas en el mundo padecen de diabetes, proyectándose más de 440 millones de casos para el año 2025. In Chile, this pathology afflicts about 7% of the population (WHO, 2009). In 2000, the Central Metropolitan Health Service conducted a study to evaluate the "foot at risk" within the diabetic population, resulting in 63% of the diabetics studied had high-risk foot (20 or more points according to norm of evaluation year 1996), as well as 13.6% of amputations, being the rate of amputations within the general population of 40 / 100,000 adults aged 20 and over old. In 2002, it was estimated that around 6 million patients benefiting from the public system suffered from diabetes (MinSal, 2006). More recent studies indicate that in Chile the incidence of ischemia in the ulcers of the diabetic foot is close to 57%. Currently, there are no options available for reconstruction of tissue affected by ischemia resulting in ulcerations, and the treatments involved in the care of such wounds are extremely expensive (Hirsch et al., 2008). The latter is particularly relevant considering that more than 220 million people in the world suffer from diabetes, with more than 440 million cases projected by the year 2025.
El manejo del píe diabético requiere en una primera etapa, terapia antibiótica, drenaje quirúrgico y la resección del tejido muerto, pues la primera prioridad es controlar la infección a nivel local. Una vez controlada, se realiza una evaluación del paciente para detectar la existencia de isquemia a nivel del miembro afectado. Si se demuestra que presenta isquemia, el paciente puede ser sometido a un procedimiento de revascularización percutánea o quirúrgica, sin embargo, en una proporción considerable de pacientes (15%) la revascularización no es una opción efectiva. De estos pacientes, más del 40% requerirá una amputación mayor y el 20% va a morir dentro de 6 meses. Por otra parte, en aquellos pacientes que son sometidos a la intervención quirúrgica existe una alta tasa de morbilidad y mortalidad (Lipsky, 2012; Nikol S. y col., 2008; Fard AS y col., 2007; Faries PL. y col., 2004). The management of the diabetic foot requires in a first stage, antibiotic therapy, surgical drainage and resection of dead tissue, as the first priority is to control the infection locally. Once controlled, an evaluation of the patient is performed to detect the existence of ischemia at the level of the affected limb. If it is demonstrated that there is ischemia, the patient may undergo a percutaneous or surgical revascularization procedure, however, in a considerable proportion of patients (15%) revascularization is not an effective option. Of these patients, more than 40% will require a major amputation and 20% will die within 6 months. On the other hand, in those patients who undergo surgical intervention there is a high morbidity and mortality rate (Lipsky, 2012; Nikol S. et al., 2008; Fard AS et al., 2007; Faries PL. Et al. , 2004).
El costo de tratar una ulcera simple varía entre los USD 5000 y los USD 8000. La admisión en un centro hospitalario a causa de una ulcera infectada tiene un costo aproximado de USD 15.000 y la amputación de una extremidad tiene un costo que va entre los USD 50.000 a USD 150.000 (Fard AS y col., 2007). Actualmente, no existen opciones disponibles de reconstrucción del tejido afectado por isquemia que deriva en ulceraciones o gangrena.  The cost of treating a simple ulcer varies between USD 5000 and USD 8000. Admission to a hospital because of an infected ulcer has an approximate cost of USD 15,000 and limb amputation costs between USD 50,000 to USD 150,000 (Fard AS et al., 2007). Currently, there are no options available for reconstruction of tissue affected by ischemia resulting in ulcerations or gangrene.
Como ya indicamos, aunque la composición de la invención tiene su aplicación preferida en el campo del tratamiento de heridas ulcerosas tales como el pie diabético, esta puede ser aplicada sobre cualquier herida, independientemente de su origen, para promover la cicatrización de la misma. Entre las heridas que pueden ser tratadas con la composición de la invención se encuentran todas las heridas ulcerosas, incluyendo las úlceras varicosas, las quemaduras, heridas cortopunzantes profundas, escaras, etc. As already indicated, although the composition of the invention has its preferred application in the field of the treatment of ulcerative wounds such as the diabetic foot, it can be applied to any wound, regardless of its origin, to promote healing of the same. Among the wounds that can be treated with the composition of the invention are all ulcerative wounds, including varicose ulcers, burns, deep sharps wounds, bedsores, etc.
La posibilidad de utilizar células troncales (SC) en medicina con fines regenerativos ofrece posibilidades nunca imaginadas previamente en esta disciplina y es por ello que las miradas se han volcado hacia el uso de SC para el desarrollo de eventuales tratamientos ( izuno H. y col., 2010; Wu KH. Y col., 2007). En los últimos años el uso de estas células ha tomado un tremendo impulso en el área clínica, debido a los grandes avances en la comprensión de los mecanismos a través de los cuales ejercen sus efectos favorables, y al éxito alcanzado en los estudios clínicos de terapia celular en las que han sido utilizadas (Salem HK. Y col., 2009).  The possibility of using stem cells (SC) in medicine for regenerative purposes offers possibilities never previously imagined in this discipline and that is why the eyes have turned towards the use of SC for the development of eventual treatments (izuno H. et al. , 2010; Wu KH. Et al., 2007). In recent years the use of these cells has taken tremendous momentum in the clinical area, due to the great advances in the understanding of the mechanisms through which they exert their favorable effects, and the success achieved in clinical therapy studies. cell phone in which they have been used (Salem HK. And col., 2009).
Las SC, son un tipo específico de células indiferenciadas, que tienen la capacidad de auto-renovarse y el potencial para diferenciarse en un amplio rango de linajes celulares (Caplan I. y col., 2006; Flores-Figueroa E. y col., 2006). En función del estado de desarrollo del individuo del cual se originan, pueden ser clasificadas como células troncales embrionarias (ESC), fetales (FSC) o adultas (ASC) (Pappa Kl. Y col., 2009; Wacharaprechanont T., 2005). Dentro de estos dos últimos grupos es posible encontrar un tipo particular de SC llamado células troncales mesenquimáticas (MSC) (Phinney & Prockop, 2007).  The SC, are a specific type of undifferentiated cells, which have the ability to self-renew and the potential to differentiate into a wide range of cell lineages (Caplan I. et al., 2006; Flores-Figueroa E. et al., 2006). Depending on the development status of the individual from which they originate, they can be classified as embryonic (ESC), fetal (FSC) or adult (ASC) stem cells (Pappa Kl. Et al., 2009; Wacharaprechanont T., 2005). Within these last two groups it is possible to find a particular type of SC called mesenchymal stem cells (MSC) (Phinney & Prockop, 2007).
Las MSC han sido descritas como células que poseen una serie de características que las hacen muy atractivas para uso terapéutico:  MSCs have been described as cells that have a number of characteristics that make them very attractive for therapeutic use:
- Las MSC son células multipotenciales, tienen la capacidad de diferenciarse y dar origen a diferentes linajes mesenquimáticos, como adipocitos, osteocitos, condrocitos, miocitos, entre otros, y de transdiferenciar hacia otros linajes (Uccelli A y col., 2008; Pountos I. y col., 2005; Minguell JJ y col., 2001).  - MSCs are multipotential cells, they have the ability to differentiate and give rise to different mesenchymal lineages, such as adipocytes, osteocytes, chondrocytes, myocytes, among others, and to transdifferentiate to other lineages (Uccelli A et al., 2008; Pountos I. et al., 2005; Minguell JJ et al., 2001).
- Poseen la capacidad de migrar hacia zonas patológicas, incluyendo heridas o áreas isquémicas (Roufosse CA. Y col., 2004). - They have the ability to migrate to pathological areas, including wounds or ischemic areas (Roufosse CA. And col., 2004).
- Producen una serie de factores bioactivos (anti-fibroticos, anti-apoptóticos, pro- angiogénicos y mitóticos) que van en post de la sobrevida del tejido dañado (Caplan Al., 2009; Shabbir A. y col., 2009; Caplan Al. Y col. 2006), relacionados con procesos de angiogénesis, migración hacia el sitio de la herida, regeneración de células dañadas, proliferación y remodelamiento de la matriz extracelular (Burlacu y col., 2013; Ribeiro y col., 2012; Hematti, 2009; Valtieri & Sorrentino, 2008) - They produce a series of bioactive factors (anti-fibrotic, anti-apoptotic, pro-angiogenic and mitotic) that go after the survival of damaged tissue (Caplan Al., 2009; Shabbir A. et al., 2009; Caplan Al And col. 2006), related to angiogenesis processes, migration to the wound site, cell regeneration damaged, proliferation and remodeling of the extracellular matrix (Burlacu et al., 2013; Ribeiro et al., 2012; Hematti, 2009; Valtieri & Sorrentino, 2008)
□ Son células privilegiadas en términos inmunológicos, ya que entre otras características expresan niveles bajos del complejo de histocompatibilidad clase I (MHC-I) y no presentan niveles de expresión para el MHC-ll ni moléculas co- estimuladoras, lo que las hace hipo-inmunogénicas, siendo toleradas entonces por el sistema inmune del receptor cuando son utilizadas en trasplantes de tipo alogénico (Morandi y col., 2008; Uccelli A. y col., 2008; Ryan J. y col., 2005; Le Blanc K. y col., 2003). □ They are privileged cells in immunological terms, since among other characteristics they express low levels of the class I histocompatibility complex (MHC-I) and do not present levels of expression for MHC-ll or co-stimulatory molecules, which makes them hypo- immunogenic, then being tolerated by the recipient's immune system when used in allogeneic type transplants (Morandi et al., 2008; Uccelli A. et al., 2008; Ryan J. et al., 2005; Le Blanc K. and col., 2003).
Estas propiedades han generado una intensa investigación en el uso de estas células para la regeneración y la neovascularización de tejidos dañados, bien por su mera integración tisular o por la secreción localizada de factores de crecimiento o factores de supervivencia (Sukpat y col., 2013; Danner y col., 2012; Salem & Thiemermann 2010; Azari y col., 2011 ; Volarevic y col., 2011 ; Bartosh y col., 2010). These properties have generated intense research in the use of these cells for the regeneration and neovascularization of damaged tissues, either by their mere tissue integration or by the localized secretion of growth factors or survival factors (Sukpat et al., 2013; Danner et al., 2012; Salem & Thiemermann 2010; Azari et al., 2011; Volarevic et al., 2011; Bartosh et al., 2010).
Considerando las anormalidades fisiopatológicas presentes en heridas crónicas, como es el caso del pie diabético, las MSC surgen como una atractiva alternativa para el tratamiento de este tipo de lesiones, puesto que podrían ayudar a la reconstitución de la dermis, la vascularización y otros componentes requeridos para una óptima cura (Volk S., 2009; Dash NR. Y col., 2009). Considering the pathophysiological abnormalities present in chronic wounds, as is the case of the diabetic foot, MSCs arise as an attractive alternative for the treatment of this type of lesions, since they could help the reconstitution of the dermis, vascularization and other required components for an optimal cure (Volk S., 2009; Dash NR. and col., 2009).
Según el reporte desarrollado la Industria de las SC, Select Bíosciences, en 2007- 2008, los tipos de SC usados con mayor frecuencia en actividades de investigación y comercialización son las MSC obtenidas desde individuos adultos y las ESC, ambas de origen humano (Select Bíosciences, 2008). Sin embargo, el uso de estas células presenta algunas limitaciones. According to the report developed by the SC Industry, Select Bíosciences, in 2007-2008, the types of CS used most frequently in research and commercialization activities are the MSCs obtained from adult individuals and the ESC, both of human origin (Select Biosciences , 2008). However, the use of these cells has some limitations.
En el caso de las ESC su obtención está fuertemente limitada por temas éticos y regúlatenos, al ser obtenidas a partir de los primeros estadios del desarrollo embrionario (Insausti CL. y col., 2010; Flores-Figueroa E. y col., 2006). In the case of the ESC, its obtaining is strongly limited by ethical issues and regulate us, when obtained from the early stages of embryonic development (Insausti CL. Et al., 2010; Flores-Figueroa E. et al., 2006) .
Por otro lado, la obtención de una cantidad terapéutica de ASC, extraídas principalmente desde la medula ósea (BM) y el tejido adiposo, está asociada a la realización de un procedimiento quirúrgico que requiere anestesia y hospitalización (Insausti CL. y col., 2010; Wu KH. y col., 2007). Adicionalmente, en el caso de las ASC se ha demostrado que existe una disminución de su capacidad de proliferación y su potencial de diferenciación en directa relación con la edad del paciente del que son extraídas (Wagner W. y col., 2009; Fehrer C. y col., 2005). De la misma forma, las células obtenidas desde individuos que padecen alguna patología crónica no poseen las mismas potencialidades que las obtenidas desde individuos sanos. Por ejemplo, ha sido documentado que las MSC obtenidas desde la BM de pacientes con Hepatitis B crónica o cirrosis presentan una capacidad de proliferación baja (Zhong YS. y col., 2010). Por otra parte, las MSC obtenidas de pacientes diabéticos presentan baja capacidad de proliferación, disminución del potencial de diferenciación, además gran porcentaje de ellas se encuentra en un estado senescente (Stolzing A. y col., 2010; Kume S. y col., 2005). Finalmente, las MSC obtenidas desde la BM o el tejido adiposo de pacientes con diabetes, anemia o falla renal, presentan un potencial angiogénico disminuido (Li TS. Y col., 2010; El-Ftesi S. y col., 2009). La disminución de las capacidades y potencialidades de las ASC con respecto a la edad del paciente y el padecimiento de enfermedades crónicas, limita su uso en trasplantes de tipo autólogo. Frente a la existencia de estas limitaciones en el uso de las ESC y las ASC, se hace necesaria una fuente alternativa de MSC. Para esto es crucial la identificación de nuevas fuentes de MSC y la definición de su uso potencial es el centro de nuestra propuesta. On the other hand, obtaining a therapeutic amount of ASC, extracted mainly from the bone marrow (BM) and adipose tissue, is associated with the performance of a surgical procedure that requires anesthesia and hospitalization (Insausti CL. Et al., 2010 ; Wu KH. Et al., 2007). Additionally, in the case of ASCs It has been shown that there is a decrease in their proliferation capacity and their potential for differentiation in direct relation to the age of the patient from which they are extracted (Wagner W. et al., 2009; Fehrer C. et al., 2005). In the same way, cells obtained from individuals suffering from chronic diseases do not have the same potential as those obtained from healthy individuals. For example, it has been documented that MSCs obtained from the BM of patients with chronic Hepatitis B or cirrhosis have a low proliferation capacity (Zhong YS. Et al., 2010). On the other hand, the MSCs obtained from diabetic patients have low proliferation capacity, decrease in the potential for differentiation, and a large percentage of them are in a senescent state (Stolzing A. et al., 2010; Kume S. et al., 2005). Finally, the MSCs obtained from BM or adipose tissue of patients with diabetes, anemia or renal failure, have a decreased angiogenic potential (Li TS. Y col., 2010; El-Ftesi S. et al., 2009). The decrease of the capacities and potentialities of ASCs with respect to the patient's age and suffering from chronic diseases limits their use in autologous transplants. In view of the existence of these limitations in the use of ESCs and ASCs, an alternative source of MSC is necessary. For this, the identification of new sources of MSCs is crucial and the definition of their potential use is the focus of our proposal.
El cordón umbilical es una fuente rica de SC tejido específicas. Hace 20 años que está siendo utilizado como fuente de HSC para restablecer la hematopoyesis, tanto en trastornos malignos como no malignos (Pappa Kl. y col, 2009). The umbilical cord is a rich source of specific tissue SC. It has been used as a source of HSC for 20 years to restore hematopoiesis, both in malignant and non-malignant disorders (Pappa Kl. Et al, 2009).
El cordón umbilical ha sido considerado una atractiva fuente de células MSC (Pappa Kl. y col., 2009; Erices A. y col., 2000). La utilización clínica de las MSC derivadas de cordón umbilical es atractiva porque son fáciles de obtener y no poseen las limitaciones presentadas por las obtenidas desde otras fuentes. Las MSC han sido aisladas desde varios compartimientos del cordón umbilical, específicamente desde la sangre, el sub-endotelio de la vena que lo recorre y recientemente desde la gelatina de Wharton (WJ) (Troyer DL. y col., 2008). Se denomina WJ al tejido conjuntivo- gelatinoso que rodea las arterias y vena en el interior del cordón umbilical. La obtención de MSC desde sangre de cordón umbilical tiene una baja eficiencia en comparación a su obtención desde la BM, ya que el número de MSC en las células mononucleadas de la sangre de cordón es muy bajo (Musina RA. Y col., 2007). Sin embargo, la obtención de MSC de la WJ es muy eficiente, pues estas células son mucho más abundantes en este tejido que en la sangre de cordón o la BM. Por otra parte, las MSC de WJ (WJ-MSC) poseen una mayor capacidad para ser expandidas in vitro (Pappa Kl. y col., 2009; Troyer DL. y col., 2008; Secco M. y col., 2008). Adicionalmente, ha sido reportado que un porcentaje cercano al 20% de las WJ-MSC al ser expandidas no expresan los genes ni del MHC-I ni del MHC-II, lo que podría hacerlas aún mejor toleradas en un trasplante alogénico que las obtenidas desde tejidos adultos (Pappa Kl., 2009; Gucciardo L. y col., 2009). The umbilical cord has been considered an attractive source of MSC cells (Pappa Kl. Et al., 2009; Erices A. et al., 2000). The clinical use of the MSC derived from the umbilical cord is attractive because they are easy to obtain and do not have the limitations presented by those obtained from other sources. MSCs have been isolated from several compartments of the umbilical cord, specifically from the blood, the sub-endothelium of the vein that runs through it and recently from Wharton's jelly (WJ) (Troyer DL. Et al., 2008). WJ is called the connective-gelatinous tissue that surrounds the arteries and vein inside the umbilical cord. Obtaining MSC from umbilical cord blood has a low efficiency in comparison to its obtaining from BM, since the number of MSCs in cord blood mononuclear cells is very low (Musina RA. and col., 2007). However, obtaining MSC from the WJ is very efficient, since these cells are much more abundant in this tissue than in cord blood or BM. On the other hand, WJ MSCs (WJ-MSC) have a greater capacity to be expanded in vitro (Pappa Kl. Et al., 2009; Troyer DL. Et al., 2008; Secco M. et al., 2008) . Additionally, it has been reported that a percentage close to 20% of the WJ-MSC being expanded does not express the genes of either the MHC-I or the MHC-II, which could make them even better tolerated in an allogeneic transplant than those obtained from adult tissues (Pappa Kl., 2009; Gucciardo L. et al., 2009).
Teniendo en cuenta lo anterior, los inventores han desarrollado una nueva composición para el tratamiento de heridas que comprende una matriz soporte y células troncales mesenquimáticas de gelatina de Wharton (WJ-MSC), donde la composición al ser aplicada sobre la herida promueve la neo-angiogénesis y reparación tisular, de manera de acelerar o mejorar la cicatrización, sin incorporarse las células de la composición en la circulación del paciente. Esto se logra por los factores secretados por las WJ-MSC, retenidas en el parche, los que se transfieren desde la composición de la invención al tejido dañado promoviendo su cicatrización. ARTE PREVIO  Taking into account the above, the inventors have developed a new composition for the treatment of wounds comprising a support matrix and Wharton's jelly mesenchymal stem cells (WJ-MSC), where the composition when applied to the wound promotes neo- angiogenesis and tissue repair, in order to accelerate or improve healing, without incorporating the cells of the composition into the patient's circulation. This is achieved by the factors secreted by the WJ-MSC, retained in the patch, which are transferred from the composition of the invention to the damaged tissue promoting healing. PRIOR ART
La presente invención se refiere a una estructura de soporte (matriz) que contiene células troncales mesenquimáticas obtenidas desde gelatina de Wharton. Dicha estructura es aplicada a heridas para promover la neo-angiogénesis, de manera de acelerar o mejorar la cicatrización. Una característica diferenciadora de la presente invención es que se evita o reduce al máximo la integración de las células foráneas en el paciente, de manera que el efecto técnico es ejercido a través de la difusión de factores angiogénicos producidos por las células hacia la herida, sin considerar la integración de las células mismas al paciente. The present invention relates to a support structure (matrix) containing mesenchymal stem cells obtained from Wharton's jelly. This structure is applied to wounds to promote neo-angiogenesis, in order to accelerate or improve healing. A differentiating feature of the present invention is that the integration of foreign cells into the patient is avoided or minimized, so that the technical effect is exerted through the diffusion of angiogenic factors produced by the cells towards the wound, without Consider the integration of the cells themselves to the patient.
Previo al desarrollo de la presente invención se habían desarrollado parches de cicatrización utilizando células mesenquimáticas del mismo paciente a tratar, con el objeto de generar un transplante autólogo, que incorporara las células de la composición como parte del tejido reparado. Por ejemplo, el documento AU2009320446 (A1) describe una matriz donde se incorporan células mesenquimales progenitoras obtenidas demúsculo procesa del mismo paciente, para mejorar la cicatrización de las heridas. Esta aproximación tiene serias limitaciones, como se discutió previamente, ya que en los pacientes con enfermedades crónicas que requieren este tipo de tratamiento, las células mesenquimáticas de médula ósea o de tejido adiposo tienen baja capacidad de proliferación. Prior to the development of the present invention, healing patches had been developed using mesenchymal cells of the same patient to be treated, in order to generate an autologous transplant, which incorporated the cells of the composition as part of the repaired tissue. For example, the document AU2009320446 (A1) describes a matrix where progenitor mesenchymal cells obtained from muscle processes of the same patient are incorporated, to improve wound healing. This approach has serious limitations, as previously discussed, since in patients with chronic diseases that require this type of treatment, bone marrow or adipose tissue mesenchymal cells have low proliferation capacity.
Los inventores han resuelto este problema técnico al no intentar la incorporación de las células mesenquimáticas como transplante, sino que utilizarlas como una fuente natural de factores que promueven la cicatrización y angiogénesis. De este modo pueden ser utilizadas células exógenas, con alta capacidad de producción de estos factores, como son las WJ-MSC.  The inventors have solved this technical problem by not trying to incorporate mesenchymal cells as a transplant, but instead using them as a natural source of factors that promote healing and angiogenesis. In this way exogenous cells can be used, with high production capacity of these factors, such as the WJ-MSC.
En el estado del arte no se ha encontrado ningún documento que contenga todos y cada uno de los elementos que componen la presente invención.  In the state of the art, no document has been found that contains each and every one of the elements that make up the present invention.
En primer lugar es conocido en el estado del arte obtención de células troncales mesenquimáticas desde la gelatina de Wharton, esto se describe en la publicación WO2012131618 (A1), donde las WJ-MSC se formulan en una composición farmacéutica la que es útil para manejar desórdenes de carácter inmunológico, por las propiedades inmunomoduladoras de estas células. First of all, it is known in the state of the art to obtain mesenchymal stem cells from Wharton's jelly, this is described in WO2012131618 (A1), where the WJ-MSC are formulated in a pharmaceutical composition which is useful for handling disorders of immunological character, by the immunomodulatory properties of these cells.
Por otra parte se conocían composiciones para la cicatrización que incluyen células troncales mesenquimáticas, pero no WJ-MSC. Por ejemplo, la solicitud US2011256089 (A1) describe una composición de hidrogel para aplicar células a una zona dañada para promover su cicatrización. Se indica que se pueden usar células troncales mesenquimáticas, entre muchos otros tipos de células, y laestrategia es que las células del gel se integren al tejido a reparar. Esta misma estrategia, de integrar células en el tejido a reparar se emplea en la solicitud US2012134965, la que divulga composiciones para tratamiento de enfermedades vasculares en general, donde la composición contiene células troncales como componente activo, no se mencionan la WJ-MSC y como indicamos el objetivo es que las células se incorporen al tejido a tratar.  On the other hand, compositions for healing that include mesenchymal stem cells, but not WJ-MSC, were known. For example, application US2011256089 (A1) describes a hydrogel composition for applying cells to a damaged area to promote healing. It is indicated that mesenchymal stem cells can be used, among many other types of cells, and the strategy is that the gel cells integrate into the tissue to be repaired. This same strategy of integrating cells into the tissue to be repaired is used in the application US2012134965, which discloses compositions for the treatment of vascular diseases in general, where the composition contains stem cells as an active component, the WJ-MSC is not mentioned and as We indicate the objective is that the cells are incorporated into the tissue to be treated.
Otra estrategia en el estado del arte es la empleada en la solicitud AU2012205269 (A1), donde se describe la aplicación de células mesenquimales para, promover angiogénesis y mejorar cicatrización entre otras aplicaciones, a través de la administración sistémica de las mismas. En las reivindicaciones se describen dosis de células por kilogramo, y se indica además que la administración puede ser endovenosa. Another strategy in the state of the art is that used in the application AU2012205269 (A1), where the application of mesenchymal cells is described to promote angiogenesis and improve healing among other applications, through their systemic administration. The claims describe cell doses per kilogram, and it is further indicated that administration may be intravenous.
Como puede apreciarse en ninguno de los documentos analizados ni por sí mismos ni por la combinación de 2 omás documentos, se anticipa la composición de la invención, ni el método para el tratamiento de heridas que comprende aplicar la composición sobre la herida a tratar sin incorporar las células de la composición en la herida a tratar. As can be seen in any of the documents analyzed neither by themselves nor by the combination of 2 or more documents, the composition of the invention is anticipated, nor is the method for treating wounds comprising applying the composition on the wound to be treated without incorporating The composition cells in the wound to be treated.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1. (A) Se muestran las tinciones de 2 matrices (IM y colágeno), posterior a la incubación del ensayo MTT en ausencia y presencia de WJ-MSC (1 x 105 células), a distintos tiempos de incubación in vitro. (B) Cuantificación de la actividad metabólica de WJ-MSC sembradas en IM y colágeno, a distintos tiempos de incubación. Los valores corresponden al promedio ± S.E.M. (n=6). *P < 0.05 IM vs. colágeno. Figure 1. (A) The stains of 2 matrices (IM and collagen), after incubation of the MTT assay in the absence and presence of WJ-MSC (1 x 10 5 cells), at different in vitro incubation times are shown. (B) Quantification of WJ-MSC metabolic activity seeded in IM and collagen, at different incubation times. The values correspond to the average ± SEM (n = 6). * P <0.05 IM vs. collagen
Figura 2. Abundancia de la proteína VEGF en extractos celulares obtenidos a partir de las WJ-MSC cultivadas por 24 horas en matrices de colágeno e IM en un medio de cultivo libre de suero. Los símbolos representan (-) ausencia o (+) presencia de WJ- MSC. Los valores corresponden al promedio ± S.E.M. (n=6). *P < 0,05 IM vs. colágeno.  Figure 2. Abundance of VEGF protein in cell extracts obtained from WJ-MSC grown for 24 hours in collagen and IM matrices in a serum-free culture medium. The symbols represent (-) absence or (+) presence of WJ-MSC. The values correspond to the average ± S.E.M. (n = 6). * P <0.05 IM vs. collagen
Figura 3. {A) Foto representativa del secretoma (medio condicionado) proveniente de WJ-MSC cultivadas en ausencia de suero (24 horas) obtenido de las células sembradas en el colágeno (izquierda) e IM (derecha). (B) El gráfico muestra los niveles de secreción relativa que fueron agrupados según su función celular. Las diferentes intensidades de pixeles fueron normalizados por el control positivo (puntos internos de ubicación conocida en cada membrana). Los valores corresponden al promedio ± S.E.M. (n=3). *P < 0.05, IM vs. colágeno.  Figure 3. {A) Representative photo of the secretoma (conditioned medium) from WJ-MSC grown in the absence of serum (24 hours) obtained from the cells sown in the collagen (left) and IM (right). (B) The graph shows the levels of relative secretion that were grouped according to their cellular function. The different pixel intensities were normalized by the positive control (internal points of known location in each membrane). The values correspond to the average ± S.E.M. (n = 3). * P <0.05, IM vs. collagen
Figura 4. (A) Foto representativa de ensayo CAM para Matriz IM+Medio de cultivo control DMEM (izquierda), Matriz IM+VEGF (centro) y la composición de la invención Matriz IM+ células WJ-MSC (derecha). (B) El gráfico muestra la cuantificación de los vasos saguíneos en las tres condiciones a 24, 48, 72 y 96 horas después de introducida la composición. La diferencia en los promedios del número de vasos sanguíneos generados por las matrices sembradas con WJ-MSC y DMEM determinó por ANOVA * P> 0,05 Figure 4. (A) Representative photo of CAM assay for IM Matrix + DMEM control culture medium (left), IM + VEGF Matrix (center) and the composition of the invention IM Matrix + WJ-MSC cells (right). (B) The graph shows the quantification of the blood vessels in the three conditions at 24, 48, 72 and 96 hours after introduced the composition. The difference in the average number of blood vessels generated by the matrices seeded with WJ-MSC and DMEM determined by ANOVA * P> 0.05
Figura 5. (A) Foto representativa de células humanas adheridas a CAM después de 96 horas con Matriz IM+Medio de cultivo DMEM por inmunohistoquímica, utilizando anticuerpo anti- Presinilin 1 humana (Barra de escala 1 mm en A, y 100 um A ') (β) Foto representativa de células humanas adheridas a CAM después de 96 horas con Matriz IM+ células WJ-MSC por inmunohistoquímica, utilizando anticuerpo anti- Presinilin 1 humana (Barra de escala 1 mm en B, y 100 um B ').  Figure 5. (A) Representative photo of human cells adhered to CAM after 96 hours with IM Matrix + DMEM culture medium by immunohistochemistry, using human anti-Presinilin 1 antibody (1 mm scale bar at A, and 100 um A ' ) (β) Representative photo of human cells adhered to CAM after 96 hours with IM Matrix + WJ-MSC cells by immunohistochemistry, using human anti-Presinilin 1 antibody (1 mm scale bar in B, and 100 um B ').
Figura 6. (A) Fotografías representativas de transiluminación de tejido y la segmentación digital de tejidos tratados con composiciones que comprenden Matriz IM (Control), Matriz IM+ células WJ-MSC (invención), Matriz IM+ células AD-MSC (ejemplo comparativo) (n = 12 para el control, 13 para WJ-MSC y 3 para AD-MSC Las barras de escala:. 5 mm. (B) La cuantificación de la segmentación digitales mostró significativamente mayores niveles de vascularización para las composiciones que contienen WJ-MSC respecto al control de sólo matriz IM y para las composiciones que contienen AD-MSC. Los valores se normalizaron con la piel normal y se expresaron como media ± SEM. Figure 6. (A) Representative photographs of tissue transillumination and digital segmentation of tissues treated with compositions comprising IM Matrix (Control), IM Matrix + WJ-MSC cells (invention), IM Matrix + AD-MSC cells (comparative example) ( n = 12 for control, 13 for WJ-MSC and 3 for AD-MSC Scale bars: 5 mm. (B) Quantification of digital segmentation showed significantly higher levels of vascularization for compositions containing WJ-MSC. with respect to the control of IM matrix only and for compositions containing AD-MSC Values were normalized with normal skin and expressed as mean ± SEM.
RESUMEN DE LA INVENCIÓN SUMMARY OF THE INVENTION
La presente invención se refiere a una composición que comprende una matriz soporte y células troncales mesenqu imáticas de gelatina de Wharton para el tratamiento de heridas. Y un método para el tratamiento de heridas que comprende aplicar la composición sobre la herida a tratar. The present invention relates to a composition comprising a support matrix and Whaen's gelatin mesenchymal stem cells for wound treatment. And a method for the treatment of wounds that comprises applying the composition on the wound to be treated.
La herida a tratar se escoge entre heridas crónicas o agudas, tales como todas las heridas ulcerosas, incluyendo las úlceras varicosas y las úlceras asociadas a isquemia tales como el pie diabético; las quemaduras, las heridas cortopunzantes profundas, las escaras, etc. En una realización preferida la herida a tratar es una herida ulcerosa producto de isquemia crónica, donde la composición de la invención promueve la neo- angiogénesis y reparación tisular, de manera de acelerar o mejorar la cicatrización, sin incorporar las células de la composición en la herida a tratar.  The wound to be treated is chosen among chronic or acute wounds, such as all ulcerative wounds, including varicose ulcers and ulcers associated with ischemia such as the diabetic foot; burns, deep sharps wounds, bedsores, etc. In a preferred embodiment, the wound to be treated is an ulcerative wound resulting from chronic ischemia, where the composition of the invention promotes neo-angiogenesis and tissue repair, so as to accelerate or improve healing, without incorporating the cells of the composition into the wound to treat.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN La presente invención se refiere a una composición útil para el tratamiento de heridas crónicas o agudas, tales como todas las heridas ulcerosas, incluyendo las úlceras varicosas y las úlceras asociadas a isquemia tales como el pie diabético; las quemaduras, las heridas cortopunzantes profundas, las escaras, etc. En especial la composición de la invención es útil en el tratamiento de heridas crónicas o de difícil cicatrización, como es el caso de las heridas producidas por isquemias prolongadas, tales como el pie diabético. La composición comprende de dos elementos esenciales, una matriz soporte y células troncales mesenquimáticas de gelatina de Wharton. DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composition useful for the treatment of chronic or acute wounds, such as all ulcerative wounds, including varicose ulcers and ulcers associated with ischemia such as the diabetic foot; burns, deep sharps wounds, bedsores, etc. In particular, the composition of the invention is useful in the treatment of chronic wounds or difficult healing, as is the case of wounds caused by prolonged ischemia, such as the diabetic foot. The composition comprises two essential elements, a support matrix and Whaen's gelatin mesenchymal stem cells.
La matriz soporte debe ser flexible y permitir integrar en ella las WJ-MSC vivas. La matriz puede estar compuesta por cualquier polímero biocompatible que no sea biadsorbible, ya que las WJ-MSC no deben integrarse a la herida. Ejemplos de polímeros biocompatibles apropiados para la matriz soporte de la presente invención son: colágeno sustancialmente puro o combinado con otros compuestos tales como glicosaminoglicanos y polisiloxano semi permeable (silicona), pectina, carboxicelulosa, quitosano, combinaciones de los mismos u cualquier otro polímero biocompatible que exista en el arte. En una realización se utiliza la matriz soporte comercial, IntegraTM atrix (IM). The support matrix must be flexible and allow the integration of live WJ-MSCs. The matrix can be composed of any biocompatible polymer that is not biadsorbable, since the WJ-MSC must not be integrated into the wound. Examples of biocompatible polymers suitable for the support matrix of the present invention are: substantially pure collagen or in combination with other compounds such as glycosaminoglycans and semi-permeable polysiloxane (silicone), pectin, carboxycellulose, chitosan, combinations thereof or any other biocompatible polymer that It exists in art. In one embodiment, the commercial support matrix, IntegraTM atrix (IM) is used.
El segundo componente de la composición de la invención son las células troncales mesenquimáticas de gelatina de Wharton o WJ-MSC, las que se aislan desde cordón el umbilical.  The second component of the composition of the invention are Wharton's jelly mesenchymal stem cells or WJ-MSC, which are isolated from the umbilical cord.
Las WJ-MSC son las responsables del efecto terapéutico de la composición ya que secretan distintos factores que favorecen la cicatrización de heridas, tales como: factores pro-angiogénesis como angiogenina, VEGF, uPA, IGFBP-3; de factores de migración como TIMP-1 , Serpina E1 , de factores de respuesta inflamatorio como IL-8, MCP-1 , Pentraxina-3, y de factores de reparación de tejidos como HGF y Trombospondina-1.  The WJ-MSC are responsible for the therapeutic effect of the composition since they secrete different factors that favor wound healing, such as: pro-angiogenesis factors such as angiogenin, VEGF, uPA, IGFBP-3; of migration factors such as TIMP-1, Serpina E1, of inflammatory response factors such as IL-8, MCP-1, Pentraxin-3, and tissue repair factors such as HGF and Thrombospondin-1.
De modo opcional la matriz puede comprender otros componentes que permitan aumentar la sobrevida de las WJ-MSC o componentes con acción farmacológica para el tratamiento de heridas. Dentro de los componentes que pueden aumentar la sobrevida de las WJ-MSC están el medio de cultivo para células humanas, tales como el medio DMEM, o una composición tampón de pH fisiológico (pH 7,2) y los nutrientes como glucosa, aminoácidos esenciales, vitaminas y minerales. No obstante, se ha observado que las WJ-MSC pueden crecer en condiciones de hipoxia y sobreviven sin aporte de nutrientes hasta por 10 días. Optionally, the matrix may comprise other components that allow to increase the survival of the WJ-MSC or components with pharmacological action for the treatment of wounds. Among the components that can increase the survival of the WJ-MSC are the culture medium for human cells, such as the DMEM medium, or a buffer composition of physiological pH (pH 7.2) and nutrients like glucose, essential amino acids, vitamins and minerals. However, it has been observed that WJ-MSC can grow in hypoxic conditions and survive without supply of nutrients for up to 10 days.
Dentro de los componentes de acción farmacológica cicatrizante que opcionalmente puede comprender la composición de la invención se encuentran: sulfadiazina argéntica, poli(n-acetilgalactosamina-d-glucurónico) polisulfato sodio, cloranfenicol, retinol palmitato, benzalconio cloruro, benzoato bencilo, aminoácidos: alanina, cisteína, vitaminas C, E, F. Otros componentes cicatrizantes que pueden agregarse a la composición son componentes que también son secretados por las WJ-MSC con el objeto de aumentar la concentración del mismo, como por ejemplo: angiogenina, VEGF, uPA, IGFBP-3, TIMP-1 , Serpina E1 , IL-8, MCP-1 , Pentraxina-3, HGF y/o Trombospondina-1.  Among the components of healing pharmacological action that the composition of the invention can optionally comprise are: argumentative sulfadiazine, poly (n-acetylgalactosamine-d-glucuronic) sodium polysulfate, chloramphenicol, retinol palmitate, benzalkonium chloride, benzoate benzyl, amino acids: alanine , cysteine, vitamins C, E, F. Other healing components that can be added to the composition are components that are also secreted by the WJ-MSC in order to increase its concentration, such as: angiogenin, VEGF, uPA, IGFBP-3, TIMP-1, Serpina E1, IL-8, MCP-1, Pentraxin-3, HGF and / or Thrombospondin-1.
En un segundo aspecto la invención se refiere a un método para el tratamiento de heridas que comprende aplicar la composición directamente sobre la herida a tratar. La composición de la invención puede permanecer activa y estable sobre la herida por un plazo de hasta 10 días o más, después de ese tiempo la composición se comienza a degradar, y caer de la herida en forma natural, sin que exista transferencias de las WJ-MSC al tejido de la herida tratada. A los 10 días o incluso antes, dependiendo de la evolución de la herida, se puede aplicar nuevamente la composición sobre la herida, sin necesidad de eliminar los restos de la primera composición aplicada. Este tratamiento se puede repetir las veces que sea necesario hasta lograr la cicatrización de la herida, como en el caso de heridas de difícil cicatrización cómo por ejemplo el pie diabético.  In a second aspect the invention relates to a method for treating wounds which comprises applying the composition directly on the wound to be treated. The composition of the invention can remain active and stable on the wound for a period of up to 10 days or more, after that time the composition begins to degrade, and fall from the wound naturally, without any WJ transfers. -MSC to the treated wound tissue. At 10 days or even before, depending on the evolution of the wound, the composition can be applied again on the wound, without removing the remains of the first applied composition. This treatment can be repeated as many times as necessary until wound healing is achieved, as in the case of wounds that are difficult to heal, such as the diabetic foot.
En una realización preferida la herida a tratar es una herida ulcerosa producto de isquemia crónica, donde la composición de la invención promueve la neo-angiogénesis y reparación dérmica, de manera de acelerar o mejorar la cicatrización, sin incorporar las células de la composición en la herida a tratar.  In a preferred embodiment, the wound to be treated is an ulcerative wound resulting from chronic ischemia, where the composition of the invention promotes neo-angiogenesis and dermal repair, so as to accelerate or improve healing, without incorporating the cells of the composition into the wound to treat.
El que las WJ-MSC no se incorporen al tejido a tratar es una de las grandes ventajas de la composición, ya que elimina los posibles rechazos del paciente a las células exógenas y sólo otorga al tejido que necesita cicatrizar los factores que promueven la cicatrización y angiogénesis. La matriz soporte debe comprender el polímero biocompatible en una conformación que asegure la flexibilidad de la misma. The fact that WJ-MSC is not incorporated into the tissue to be treated is one of the great advantages of the composition, since it eliminates the possible rejections of the patient to exogenous cells and only gives the tissue that needs to heal the factors that promote healing and angiogenesis The support matrix must comprise the biocompatible polymer in a conformation that ensures its flexibility.
Las WJ-MSC se incorporan en la matriz soporte en una concentración de entre 1 x 102 a 1 x 108 células por cada 100pL y 1 mL de matriz. Especialmente se prefieren composiciones con una concentración de WJ-MSC de entre 1 x 104 a 1 x 106 células por cada 00pL y 1 mL de matriz. The WJ-MSC are incorporated into the support matrix at a concentration of between 1 x 10 2 to 1 x 10 8 cells per 100pL and 1 mL of matrix. Especially preferred are compositions with a concentration of WJ-MSC of between 1 x 10 4 to 1 x 10 6 cells per 00pL and 1 mL of matrix.
Las WJ-MSC se incorporan en la matriz soporte en una concentración de entre 1 x 102 a 1 x 108 células por entre 1 y 100 pL de matriz. Especialmente se prefieren composiciones con una concentración de WJ-MSC de entre 1 x 104 a 1 x 106 células por cada 1 y 100 pL de matriz. The WJ-MSCs are incorporated into the support matrix at a concentration of between 1 x 10 2 to 1 x 10 8 cells per 1 to 100 pL of matrix. Especially preferred are compositions with a concentration of WJ-MSC of between 1 x 10 4 to 1 x 10 6 cells per 1 and 100 pL of matrix.
Posteriormente la composición se extiende sobre una superficie antiadherente para formar láminas de la composición. La naturaleza de la matriz soporte permite que la composición se adhiera a la herida a tratar sin necesidad de agregar compuestos de adhesión a la misma. Opcionalmente se pueden agregar componentes adhesivos biocompatibles.  Subsequently the composition is spread on a non-stick surface to form sheets of the composition. The nature of the support matrix allows the composition to adhere to the wound to be treated without adding adhesion compounds thereto. Optionally, biocompatible adhesive components can be added.
Como ya indicamos, la composición de la invención se presenta como láminas de la matriz soporte con las WJ-MSC insertadas en ella, y en caso dado con los componentes adicionales, de un espesor de entre 0,1 - 1 mm. la forma y medidas de las láminas es variable, y no afectan la efectividad de la invención. De modo conveniente, la composición de la invención se presenta en láminas de un área de entre 4 mm2 a 100 cm2. As already indicated, the composition of the invention is presented as sheets of the support matrix with the WJ-MSC inserted therein, and if necessary with the additional components, of a thickness of between 0.1-1 mm. The shape and measurements of the sheets are variable, and do not affect the effectiveness of the invention. Conveniently, the composition of the invention is presented in sheets of an area between 4 mm 2 to 100 cm 2 .
Una vez que se ha obtenido una lámina de la composición de la invención, esta se aplica sobre la herida a tratar, presionando suavemente para que quede adherida a la herida limpia, no es necesario ningún procedimiento adicional para el tratamiento de la herida.  Once a sheet of the composition of the invention has been obtained, it is applied to the wound to be treated, by gently pressing it so that it is adhered to the clean wound, no additional procedure for the treatment of the wound is necessary.
En los ejemplos se demuestra que la composición de la invención efectivamente permite promover la angiogénesis y cicatrización, solucionando este importante problema técnico de la Industria Farmacéutica.  The examples show that the composition of the invention effectively promotes angiogenesis and healing, solving this important technical problem of the Pharmaceutical Industry.
EJEMPLOS DE APLICACIÓN APPLICATION EXAMPLES
Ejemplo 1. Obtención de la composición para la cicatrización de heridas, a) Utilizando matriz soporte de colágeno. Se generó la composición de la invención utilizando matriz soporte de colágeno I, donde el colágeno I se obtuvo en el laboratorio a partir de cola de rata. La composición de la invención se generó en una proporción 7:2:1 , donde el 70% corresponde a la preparación de colágeno, el 20% a medio DMEM (4X, pH 7,2) y el 10% restante a las WJ-MSC (1 x 104) resuspendidas en medio completo. Example 1. Obtaining the wound healing composition, a) Using collagen support matrix. The composition of the invention was generated using collagen I support matrix, where collagen I was obtained in the laboratory from rat tail. The composition of the invention was generated in a 7: 2: 1 ratio, where 70% corresponds to the preparation of collagen, 20% to DMEM medium (4X, pH 7.2) and the remaining 10% to WJ- MSC (1 x 10 4 ) resuspended in complete medium.
Rápidamente, se depositaron 80 μΙ de la esta composición en placas de 96 pocilios y luego se incubó a 37°C durante un período de 5-10 minutos para permitir que el colágeno polimerice.  Quickly, 80 μΙ of this composition was deposited in 96-well plates and then incubated at 37 ° C for a period of 5-10 minutes to allow the collagen to polymerize.
b) Utilizando matriz soporte IntegraTM Matrix (IM). b) Using IntegraTM Matrix (IM) support matrix.
Se generó la composición de la invención utilizando una matriz soporte comercial, matrices IntegraTM Matrix (IM) (Integra®, LifeScience Corporation). IM es un dispositivo aprovado por la FDA de cuidado de heridas avanzadas, compuesto por una matriz porosa de colágeno del tendón reticulado de la especie bovina y glicosaminoglicanos y polisiloxano semi permeable (silicona). Para esto, trozos de IM de 6 mm diámetro fueron utilizados y secadas con gasa estéril, para luego depositarlas en una placa de 24 pocilios donde se sembraron 1 x 104 células WJ-MSC resuspendidas en medio de cultivo completo, y se incubaron por 1 hora a 37°C para permitir que las células WJ-MSC se integren a la matriz soporte IM. The composition of the invention was generated using a commercial support matrix, IntegraTM Matrix (IM) matrices (Integra®, LifeScience Corporation). IM is an FDA-approved device for advanced wound care, consisting of a porous matrix of cross-linked bovine tendon collagen and glycosaminoglycans and semi-permeable polysiloxane (silicone). For this, 6 mm diameter IM pieces were used and dried with sterile gauze, then deposited in a 24-well plate where 1 x 10 4 WJ-MSC cells resuspended in complete culture medium were seeded and incubated for 1 time at 37 ° C to allow WJ-MSC cells to integrate into the IM support matrix.
Ejemplo 2. Evaluación de la viabilidad de las WJ-MSC en la composición para la cicatrización de heridas. Example 2. Evaluation of the viability of the WJ-MSC in the wound healing composition.
Se evaluó en primer lugar la actividad metabólica ¡n vitro de las WJ-MSC en las composiciones de la invención generadas en el Ejemplo 1 , como indicador de la viabilidad de las mismas. La actividad metabólica de las WJ-MSC en ambas matrices se cuantificó mediante un ensayo de MTT, basado en la reducción metabólica del reactivo bromuro de 3-(4,5-dimetiltiazol-2-il)-2,5 difeniltetrazolio (MTT). Posterior a cada uno de los tiempos de incubación (12, 24 y 48 horas, así como 5 y 10 días) y en ausencia de suero fetal de bovino (FBS), se cuantificó por absorbencia a 550 nm (OD 500nm) la actividad metabólica. Los resultados obtenidos muestran que la actividad metabólica de las WJ-MSC se mantuvo en ambas composiciones de la invención hasta 10 días después de generadas (Figura 1). Los resultados muestran que la actividad metabólica de las WJ-MSC se mantuvo significativamente mayor en las composiciones de la invención que utilizan matriz soporte IM. The in vitro metabolic activity of the WJ-MSCs in the compositions of the invention generated in Example 1 was first evaluated as an indicator of their viability. The metabolic activity of the WJ-MSC in both matrices was quantified by an MTT assay, based on the metabolic reduction of the reagent bromide of 3- (4,5-dimethylthiazol-2-yl) -2.5 diphenyltetrazolium (MTT). After each incubation time (12, 24 and 48 hours, as well as 5 and 10 days) and in the absence of fetal bovine serum (FBS), metabolic activity was quantified by absorbance at 550 nm (OD 500nm) . The results obtained show that the metabolic activity of the WJ-MSCs was maintained in both compositions of the invention until 10 days after they were generated (Figure 1). The results show that the metabolic activity of the WJ-MSC remained significantly higher in the compositions of the invention using IM support matrix.
Los resultados indican que la actividad metabólica de las WJ-MSC en la condición inicial (12 horas) es similar en ambas composiciones de la invención, y que como es esperable ésta decae en el tiempo, no obstante en un plazo tan prolongado como a los diez días de generadas las composiciones, aún se observa una actividad metabólica importante en las células WJ-MSC de ambas composiciones de la invención. Donde en las composiciones de la invención que comprenden colágeno la actividad es un 25% de la actividad inicial, mientras que en las composiciones de la invención que comprenden IM la actividad es de un 70% de la actividad inicial. (Figura 1).  The results indicate that the metabolic activity of the WJ-MSC in the initial condition (12 hours) is similar in both compositions of the invention, and that as expected this decays over time, however over a period as long as the Ten days after the compositions were generated, an important metabolic activity is still observed in the WJ-MSC cells of both compositions of the invention. Where in the compositions of the invention comprising collagen the activity is 25% of the initial activity, while in the compositions of the invention comprising IM the activity is 70% of the initial activity. (Figure 1).
Ejemplo 3. Evaluación de la producción de VEGF en la composición para la cicatrización de heridas. Example 3. Evaluation of the production of VEGF in the wound healing composition.
Las composiciones de la invención son útiles para acelerar o mejorar la cicatrización en heridas si las células WJ-MSC secretan factores angiogénicos. Por esta razón se evaluó la producción de VEGF, un factor angiogénico muy importante en ambas composiciones de la invención generadas en el Ejemplo 1, al cabo de 24 horas de cultivo.  The compositions of the invention are useful for accelerating or improving wound healing if WJ-MSC cells secrete angiogenic factors. For this reason, the production of VEGF, a very important angiogenic factor in both compositions of the invention generated in Example 1, was evaluated after 24 hours of culture.
Se determinó la expresión de VEGF en las composiciones de la invención, con colágeno e IM y los resultados se normalizaron con la expresión de β-actina, como control negativo se utilizó las matrices sin células WJ-MSC. Los resultados se muestran en la Figura 2, en ambas composiciones de la invención se observa una alta expresión de VEGF en los Usados celulares. Este resultado demuestra que las composiciones de la invención pueden promover la angiogénesis ya que suministran una gran cantidad de VEGF sobre la herida en la que se aplica la composición.  The expression of VEGF in the compositions of the invention, with collagen and IM was determined and the results were normalized with the expression of β-actin, as matrices without WJ-MSC cells. The results are shown in Figure 2, in both compositions of the invention a high expression of VEGF is observed in Cellular Used. This result demonstrates that the compositions of the invention can promote angiogenesis since they supply a large amount of VEGF on the wound in which the composition is applied.
Ejemplo 4. Evaluación de la producción de otros factores tróficos en la composición para la cicatrización de heridas.  Example 4. Evaluation of the production of other trophic factors in the wound healing composition.
Se analizó la producción de otros factores tróficos que promueven la angiogénesis en las 2 composiciones de la invención generadas en el Ejemplo 1. Para evaluar esto, se colectaron los medios condicionados de las composiciones de la invención a 24 horas de generadas para ensayos de Proteome Profiler Array según las indicaciones del fabricante (Human Angiogenesis Array Kit, Protome ProfilerTM Antibody Arrays, R&D Systems ARY007). Este kit permitió detectar simultáneamente, de manera rápida y sensible, los niveles de expresión de 55 proteínas relacionadas con los procesos angiogénicos. El kit provee de membranas de nitrocelulosa que contienen adosados anticuerpos específicos en distintos puntos por duplicado, por lo que para detectar la señal de dichas proteínas la muestra debe ser preparada con un cocktail de anticuerpos acoplados a biotina. Para realizar este ensayo, la membrana fue incubada con el medio condicionado durante una noche. Posteriormente, se realizaron lavados (3 x 10 minutos) y se incubó con el anticuerpo secundario acoplado a peroxidasa de rábano (HRP) que reconoce a la biotina. Finalmente, mediante una reacción de quimioluminiscencia se detectó la cantidad de cada uno de los analitos presentes en el medio condicionado de las composiciones de la invención. Nuestros resultados indicaron que las composiciones de la invención secretan una amplia gama de factores tróficos, además de VEGF, que favorecen la cicatrización, ver Figura 3. The production of other trophic factors that promote angiogenesis in the 2 compositions of the invention generated in Example 1 was analyzed. To assess this, conditioned media of the compositions of the invention were collected 24 hours after they were generated for Proteome Profiler assays. Array according to the indications of Manufacturer (Human Angiogenesis Array Kit, Protome ProfilerTM Antibody Arrays, R&D Systems ARY007). This kit allowed to detect simultaneously, quickly and sensitively, the expression levels of 55 proteins related to angiogenic processes. The kit provides nitrocellulose membranes that contain specific antibodies attached at different points in duplicate, so to detect the signal of said proteins the sample must be prepared with a cocktail of biotin-coupled antibodies. To perform this test, the membrane was incubated with the conditioned medium overnight. Subsequently, washings were performed (3 x 10 minutes) and incubated with the secondary antibody coupled to horseradish peroxidase (HRP) that recognizes biotin. Finally, by means of a chemiluminescence reaction, the amount of each of the analytes present in the conditioned medium of the compositions of the invention was detected. Our results indicated that the compositions of the invention secrete a wide range of trophic factors, in addition to VEGF, which favor healing, see Figure 3.
En la Figura 3 B se muestran los niveles de secreción relativa de las 55 proteínas analizadas, todas relacionadas con los procesos angiogénicos, las que fueron agrupadas según su función celular, en ambas composiciones de la invención. Las diferentes intensidades de pixeles fueron normalizados por el control positivo (puntos internos de ubicación conocida en cada membrana). Los valores corresponden al promedio ± S.E.M. (n=3). *P < 0.05, IM vs. colágeno. Si bien se observa que las composiciones de la invención que emplean matriz soporte IM muestran una mayor secreción de las proteínas analizadas, ambas composiciones de la invención secretan cantidades significativas de factores pro-angiogénesis como angiogenina, VEGF, uPA, IGFBP-3; de factores de migración como TIMP-1 , Serpina E1 , de factores de respuesta inflamatorio como IL-8, MCP-1 , Pentraxina-3, y de factores de reparación de tejidos como HGF y Trombospondina-1. Figure 3 B shows the relative secretion levels of the analyzed proteins, all related to the angiogenic processes, which were grouped according to their cellular function, in both compositions of the invention. The different pixel intensities were normalized by the positive control (internal points of known location in each membrane). The values correspond to the average ± S.E.M. (n = 3). * P <0.05, IM vs. collagen Although it is observed that the compositions of the invention that employ IM support matrix show a greater secretion of the analyzed proteins, both compositions of the invention secrete significant amounts of pro-angiogenesis factors such as angiogenin, VEGF, uPA, IGFBP-3; of migration factors such as TIMP-1, Serpina E1, of inflammatory response factors such as IL-8, MCP-1, Pentraxin-3, and tissue repair factors such as HGF and Thrombospondin-1.
Ejemplo 5. Evaluación de la angiogénesis in vivo con la composición para la cicatrización de heridas.  Example 5. Evaluation of angiogenesis in vivo with the wound healing composition.
Para evaluar el efecto in vivo de las composiciones de la invención se realizó un ensayo de membrana corioalantoica de embrión de pollo, conocido como ensayo CAM, por sus siglas en inglés. Este método es un modelo clásico para estudiar la neovascularización. El ensayo consistió en introducir una membrana matriz IM con diferentes composiciones a analizar, control: Matriz IM+Medio de cultivo DMEM, Matriz IM+VEGF (10 ng/μΙ) y la composición de la invención Matriz IM+ células WJ-MSC (5 x 105), sobre la membrana corioalantoica de embrión de pollo a través de un agujero en la cáscara del huevo desde el día 8 al día 12 del desarrollo embrionario (E8-E12). Posteriormente se cuantificó la angiogénesis en la membrana cuantificando los vasos que cruzan en un perímetro de 4 mm alrededor de la membrana. Los resultados muestran que la composición de la invención supera la angiogénesis generada por la matriz soporte en combinación con el factor angiogénico VEGF puro, utilizado como control positivo (Figura 4). To evaluate the in vivo effect of the compositions of the invention, a chicken embryo chorioallantoic membrane assay, known as the CAM test, was performed. This method is a classic model to study the neovascularization The test consisted of introducing an IM matrix membrane with different compositions to be analyzed, control: IM Matrix + DMEM Culture Medium, IM + VEGF Matrix (10 ng / μΙ) and the composition of the invention IM Matrix + WJ-MSC cells (5 x 10 5 ), on the chorioallantoic membrane of chicken embryo through a hole in the eggshell from day 8 to day 12 of embryonic development (E8-E12). Subsequently, the angiogenesis in the membrane was quantified by quantifying the vessels that cross in a perimeter of 4 mm around the membrane. The results show that the composition of the invention overcomes the angiogenesis generated by the support matrix in combination with the pure VEGF angiogenic factor, used as a positive control (Figure 4).
Adicionalmente se estudió la transferencia de células desde la composición a la membrana corioalantoica de embrión de pollo, por inmunohistoquímica, utilizando el anticuerpo anti- Presinilin 1 humana. La Figura 5 muestra la distribución de las células humanas en el ensayo Matriz IM+Medio de cultivo DMEM y con la composición de la invención Matriz IM+ células WJ-MSC después de 96 h en contacto con ésta, evidenciándose que la mayoría de las células se identifican en la IM y no así en la CAM por lo que se puede afirmar que la migración de WJ-MSC, no es detectable. Ejemplo 6. Comparación de la composición de la invención con la matriz IM vacía y con I + células AD-ÍUISC.  Additionally, the transfer of cells from the composition to the chorioallantoic membrane of chicken embryo was studied, by immunohistochemistry, using the human anti-Presinylin 1 antibody. Figure 5 shows the distribution of human cells in the Matrix IM + DMEM culture medium assay and with the composition of the invention Matrix IM + WJ-MSC cells after 96 h in contact with it, evidencing that most of the cells are identified in the IM and not in the CAM so it can be said that the migration of WJ-MSC is not detectable. Example 6. Comparison of the composition of the invention with the empty IM matrix and with I + AD-ÍUISC cells.
Para comparar los efectos de la composición de la invención con los efectos regenerativos asociados a la matriz IM, y al uso de células mesenquimáticas provenientes de tejido adiposo adulto, que corresponde a la práctica habitual de los transplantes autólogos, se realizó un experimento de regeneración dérmica en modelo murino evaluando las 3 condiciones: Matriz IM (Control), Matriz IM+ células WJ-MSC (invención), Matriz IM+ células AD-MSC (ejemplo comparativo). Se cuantificó el porcentaje de vascularización a los 5 y 10 días después de la aplicación de la composición. Los resultados se muestran en la Figura 6, donde se puede apreciar que la composición de la invención muestra una angiogénesis significativamente mayor a la obtenida en las otras 2 condiciones control. En la Figura 6A se muestran fotografías de los vasos sanguíneos y en la Figura 6 B se representa la cuantificación de los mismos. APLICACIÓN INDUSTRIAL To compare the effects of the composition of the invention with the regenerative effects associated with the IM matrix, and the use of mesenchymal cells from adult adipose tissue, which corresponds to the usual practice of autologous transplants, a dermal regeneration experiment was performed. in murine model evaluating the 3 conditions: IM matrix (Control), IM matrix + WJ-MSC cells (invention), IM matrix + AD-MSC cells (comparative example). The percentage of vascularization was quantified at 5 and 10 days after the application of the composition. The results are shown in Figure 6, where it can be seen that the composition of the invention shows an angiogenesis significantly greater than that obtained in the other 2 control conditions. Photographs of the blood vessels are shown in Figure 6A and their quantification is shown in Figure 6B. INDUSTRIAL APPLICATION
Como se ha descrito previamente, la presente invención, referida a una composición que comprende una matriz soporte y células troncales mesenquimaíes de gelatina de Wharton, es útil en la industria farmacéutica para el tratamiento de heridas, especialmente para inducir la la neo-angiogénesis, de manera de acelerar o mejorar la cicatrización, sin incorporar las células de la composición en la herida a tratar.  As previously described, the present invention, referring to a composition comprising a support matrix and Wharton's gelatin mesenchymal stem cells, is useful in the pharmaceutical industry for wound treatment, especially for inducing neo-angiogenesis, of way to accelerate or improve healing, without incorporating the cells of the composition into the wound to be treated.
REFERENCIAS REFERENCES
Azari, O., Babaei, H., Derakhshanfar, A., Nematollahi-Mahani, S. N., Poursahebi, R., & Moshrefi, M. (2011). Effects of transplanted mesenchymal stem cells isolated from Wharton's jelly of caprine umbilical cord on cutaneous wound healing; histopathological evaluation. Veterinary research Communications, 35(4), 211-22. doi:10.1007/s11259- 011-9464-z  Azari, O., Babaei, H., Derakhshanfar, A., Nematollahi-Mahani, S. N., Poursahebi, R., & Moshrefi, M. (2011). Effects of transplanted mesenchymal stem cells isolated from Wharton's jelly of caprine umbilical cord on cutaneous wound healing; histopathological evaluation. Veterinary research Communications, 35 (4), 211-22. doi: 10.1007 / s11259- 011-9464-z
Bartosh, T. J., Ylóstalo, J. H., Mohammadipoor, A., Bazhanov, N., Coble, K., Claypool, K., Prockop, D. J. (2010). Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13724-9. doi:10. 073/pnas.1008117107  Bartosh, T. J., Ylóstalo, J. H., Mohammadipoor, A., Bazhanov, N., Coble, K., Claypool, K., Prockop, D. J. (2010). Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their anti-inflammatory properties. Proceedings of the National Academy of Sciences of the United States of America, 107 (31), 13724-9. doi: 10. 073 / pnas. 1008117107
Brem, H., & Tomic-canic, M. (2007). Cellular and molecular basis of wound healing in diabetes. The Journal of Clinical Investigation, 117(5), 1219-1222. doi:10.1172/JCI32169.Despite  Brem, H., & Tomic-canic, M. (2007). Cellular and molecular basis of wound healing in diabetes. The Journal of Clinical Investigation, 117 (5), 1219-1222. doi: 10.1172 / JCI32169.Despite
Burlacu, A., Grigorescu, G., Rosca, A.-M., Preda, M. B., & Simionescu, M. (2013). Factors secreted by mesenchymal stem cells and endothelial progenitor cells have complementan/ effects on angiogenesis in vitro. Stem cells and development, 22(4), 643-53. doi:10.1089/scd.2012.0273  Burlacu, A., Grigorescu, G., Rosca, A.-M., Preda, M. B., & Simionescu, M. (2013). Factors secreted by mesenchymal stem cells and endothelial progenitor cells have complement / effects on angiogenesis in vitro. Stem cells and development, 22 (4), 643-53. doi: 10.1089 / scd.2012.0273
Danner, S., Kremer, M., Petschnik, A. E., Nagel, S., Zhang, Z., Hopfner, U., ... Egaña, J. T. (2012). The use of human sweat gland-derived stem cells for enhancing vascularization during dermal regeneration. The Journal of investígative dermatology, 132(6), 1707-16. doi:10.1038/jid.2012.31 Danner, S., Kremer, M., Petschnik, A. E., Nagel, S., Zhang, Z., Hopfner, U., ... Egaña, J. T. (2012). The use of human sweat gland-derived stem cells for enhancing vascularization during dermal regeneration. The Journal of Investigative Dermatology, 132 (6), 1707-16. doi: 10.1038 / jid.2012.31
Giménez, M., Gilabert, R., Lara, M., & Conget, I. (2011). Preclinical arterial disease in patients with type 1 diabetes without other major cardiovascular risk factors or micro-/ macrovascular disease. Diabetes & vascular disease research : official journal of the International Society of Diabetes and Vascular Disease, 8(1), 5-11. doi: 10.1177/1479164110388674 Giménez, M., Gilabert, R., Lara, M., & Conget, I. (2011). Preclinical arterial disease in patients with type 1 diabetes without other major cardiovascular risk factors or micro- / macrovascular disease. Diabetes & vascular disease research: official journal of the International Society of Diabetes and Vascular Disease, 8 (1), 5-11. doi: 10.1177 / 1479164110388674
Hematti, P. (2009). Role of mesenchymal stromal cells in solid organ transplantation. Transplant Rev., 22(4), 262-273. doi:10.1016/j.trre.2008.05.002.Role  Hematti, P. (2009). Role of mesenchymal stromal cells in solid organ transplantation. Transplant Rev., 22 (4), 262-273. doi: 10.1016 / j.trre.2008.05.002.Role
Hirsch, A. T., Hartman, L, Town, R. J., & Virnig, B. a. (2008). National health care costs of peripheral arterial disease in the Medicare population. Vascular medicine (London, England), 13(3), 209-15. doi:10.1177/1358863X08089277 Hirsch, A. T., Hartman, L, Town, R. J., & Virnig, B. a. (2008). National health care costs of peripheral arterial disease in the Medicare population. Vascular medicine (London, England), 13 (3), 209-15. doi: 10.1177 / 1358863X08089277
Upsky, B. A. (2012). Specific guidelines for the treatment of diabetic foot infections 2011. Diabeted Metab Res Rev, 28(October 2011), 234-235. doi: 10.1002/dmrr Morandi, F., Raffaghello, L, Bianchi, G., Meloni, F., Millo, E., Ferrone, S., ... Pistoia, V. (2008). Immunogemnicity of Human Mesenchymal Stem Cells in HLA-Class I restricted T cell responses against viral or tumor-associated antigens. Stem Cells, 26(5), 1275- 1287. doi:10.1634/stemcells.2007-0878.IMMUNOGENICITY Upsky, B. A. (2012). Specific guidelines for the treatment of diabetic foot infections 2011. Diabeted Metab Res Rev, 28 (October 2011), 234-235. doi: 10.1002 / dmrr Morandi, F., Raffaghello, L, Bianchi, G., Meloni, F., Millo, E., Ferrone, S., ... Pistoia, V. (2008). Immunogemnicity of Human Mesenchymal Stem Cells in HLA-Class I restricted T cell responses against viral or tumor-associated antigens. Stem Cells, 26 (5), 1275-1287. Doi: 10.1634 / stemcells.2007-0878.IMMUNOGENICITY
Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem cells (Dayton, Ohio), 25(11), 2896-902. doi:10.1634/stemcells.2007-0637  Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem / multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem cells (Dayton, Ohio), 25 (11), 2896-902. doi: 10.1634 / stemcells. 2007-0637
Ribeiro, C. a, Fraga, J. S., Graos, M., Neves, N. M., Reís, R. L, Gimble, J. M., ... Salgado, A. J. (2012). The secretóme of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem cell research & therapy, 3(3), 18. doi:10.1186/scrt109  Ribeiro, C. a, Fraga, J. S., Graos, M., Neves, N. M., Reís, R. L, Gimble, J. M., ... Salgado, A. J. (2012). The secretóme of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem cell research & therapy, 3 (3), 18. doi: 10.1186 / scrt109
Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: current understanding and clinical status. Stem cells (Dayton, Ohio), 28(3), 585-96. do¡:10.1002/stem.269  Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: current understanding and clinical status. Stem cells (Dayton, Ohio), 28 (3), 585-96. do¡: 10.1002 / stem.269
Sukpat, S., Isarasena, N., Wongphoom, J., & Patumraj, S. (2013). Vasculoprotective effects of combined endothelial progenitor cells and mesenchymal stem cells in diabetic wound care: their potential role in decreasing wound-oxidative stress. BioMed research international, 2013, 459196. doi: 10.1155/2013/459196 Sukpat, S., Isarasena, N., Wongphoom, J., & Patumraj, S. (2013). Vasculoprotective effects of combined endothelial progenitor cells and mesenchymal stem cells in diabetic wound care: their potential role in decreasing wound-oxidative stress. BioMed research international, 2013, 459196. doi: 10.1155 / 2013/459196
Valtieri, M., & Sorrentino, A. (2008). The mesenchymal stromal cell contribution to homeostasis. Journal of cellular physiology, 217(2), 296-300. doi:10.1002/jcp.21521 Volarevic, V., Arsenijevic, N., Lukic, M. L, & Stojkovic, M. (2011). Concise review: Mesenchymal stem cell treatment of the complications of diabetes meilitus. Stem cells Regenetrative Medicine, 29(1), 5-10. doi:10.1002/stem.556 Valtieri, M., & Sorrentino, A. (2008). The mesenchymal stromal cell contribution to homeostasis. Journal of cellular physiology, 217 (2), 296-300. doi: 10.1002 / jcp.21521 Volarevic, V., Arsenijevic, N., Lukic, M. L, & Stojkovic, M. (2011). Concise review: Mesenchymal stem cell treatment of the complications of diabetes meilitus. Stem cells Regenetrative Medicine, 29 (1), 5-10. doi: 10.1002 / stem.556

Claims

REVINDICAC!ONES REVINDICAC! ONES
1. Composición para el tratamiento de heridas que comprende una matriz soporte y células troncales mesenquiámicas de gelatina de Wharton (WJ-MSC).  1. Composition for the treatment of wounds comprising a support matrix and mesenchymal stem cells of Wharton's jelly (WJ-MSC).
2. Composición para el tratamiento de heridas, de acuerdo con la reivindicación 1 en donde la matriz soporte es un material biodegradable y farmacológicamente aceptable. 2. Composition for the treatment of wounds, according to claim 1 wherein the support matrix is a biodegradable and pharmacologically acceptable material.
3. Composición para el tratamiento de heridas, de acuerdo con la reivindicación 2 en donde la matriz soporte se escoge entre colágeno, sustancialmente puro o combinado con otros compuestos tales como glicosaminoglicanos y polisiloxano semi permeable (silicona), pectina, carboxicelulosa, quitosano, combinaciones de los mismos u cualquier otro polímero biocompatible que exista en el arte. 3. Wound treatment composition according to claim 2 wherein the support matrix is chosen from collagen, substantially pure or in combination with other compounds such as glycosaminoglycans and semi-permeable polysiloxane (silicone), pectin, carboxycellulose, chitosan, combinations of them or any other biocompatible polymer that exists in the art.
4. Composición para el tratamiento de heridas, de acuerdo con la reivindicación 3 en donde la matriz soporte es colágeno combinado con glicosaminoglicanos y polisiloxano semi permeable (silicona).  4. Composition for wound treatment according to claim 3 wherein the support matrix is collagen combined with glycosaminoglycans and semi-permeable polysiloxane (silicone).
5. Composición para el tratamiento de heridas, de acuerdo con la reivindicación 4 en donde la matriz soporte es IntegraTM Matrix (IM).  5. Composition for wound treatment according to claim 4 wherein the support matrix is IntegraTM Matrix (IM).
6. Composición para el tratamiento de heridas, de acuerdo con la reivindicación 1 en donde las WJ-MSC están en una concentración de entre 1 x 102 a 1 x 108 células por 1 ml_ de matriz. 6. Composition for the treatment of wounds according to claim 1 wherein the WJ-MSC are in a concentration of between 1 x 10 2 to 1 x 10 8 cells per 1 ml_ of matrix.
7. Composición para el tratamiento de heridas, de acuerdo con la reivindicación 6 en donde las WJ-MSC están en una concentración de entre 1 x 104 a 1 x 106 células por7. Composition for wound treatment according to claim 6 wherein the WJ-MSC are in a concentration of between 1 x 10 4 to 1 x 10 6 cells per
1 mL de matriz. 1 mL matrix
8. Composición para el tratamiento de heridas, de acuerdo con la reivindicación 1 que comprende adicionalmente otros componentes tales como medio de cultivo, tampón a pH fisiológico, o nutrientes como glucosa, aminoácidos esenciales, vitaminas y minerales.  8. A wound treatment composition according to claim 1, further comprising other components such as culture medium, physiological pH buffer, or nutrients such as glucose, essential amino acids, vitamins and minerals.
9. Composición para el tratamiento de heridas, de acuerdo con la reivindicación 1 que comprende opcionalmente otros componentes de acción farmacológica cicatrizante tales como sulfadiazina argéntica, poli(n-acetilgalactosamina-d-glucurónico) polisulfato sodio, cloranfenicol, retinol palmitato, benzalconio cloruro, benzoato bencilo, aminoácidos: alanina, cisteína, vitaminas C, E, F, angiogenina, VEGF, uPA, IGFBP-3, TIMP-1 , Serpina E1 , IL-8, MCP-1 , Pentraxina-3, HGF y/o Trombospondina-1. 9. Composition for the treatment of wounds according to claim 1 which optionally comprises other components of healing pharmacological action such as argumentative sulfadiazine, poly (n-acetylgalactosamine-d-glucuronic) sodium polysulfate, chloramphenicol, retinol palmitate, benzalkonium chloride, Benzyl benzoate, amino acids: alanine, cysteine, vitamins C, E, F, angiogenin, VEGF, uPA, IGFBP-3, TIMP-1, Serpina E1, IL-8, MCP-1, Pentraxin-3, HGF and / or Thrombospondin -one.
10. Composición para el tratamiento de heridas, de acuerdo con la reivindicación 1 que se presenta en láminas de un espesor de entre 0,1 - 1 mm. 10. Composition for the treatment of wounds, according to claim 1 which is presented in sheets of a thickness between 0.1-1 mm.
11. Método para el tratamiento de heridas que comprende aplicar sobre la herida la composición de la reivindicación 1 , la que comprende una matriz soporte y células troncales mesenquiámicas de gelatina de Wharton.  11. A method for treating wounds which comprises applying the composition of claim 1 onto the wound, which comprises a support matrix and Wharton's gelatin mesenchymal stem cells.
12. Método para el tratamiento de heridas, de acuerdo con la reivindicación 11 en donde la herida a tratar es una lesión vascular.  12. Method for treating wounds according to claim 11 wherein the wound to be treated is a vascular lesion.
13. Método para el tratamiento de heridas, de acuerdo con la reivindicación 11 en donde la herida a tratar es una herida ulcerosa.  13. Method for treating wounds according to claim 11 wherein the wound to be treated is an ulcerative wound.
14. Método para el tratamiento de heridas, de acuerdo con la reivindicación 11 en donde la herida a tratar es una quemadura. 14. Method for treating wounds according to claim 11 wherein the wound to be treated is a burn.
15. Método para el tratamiento de heridas, de acuerdo con la reivindicación 1 1 en donde la herida a tratar es un pie diabético.  15. Method for treating wounds, according to claim 1, wherein the wound to be treated is a diabetic foot.
16. Método para el tratamiento de heridas, de acuerdo con la reivindicación 1 1 en donde la herida a tratar es una herida crónica.  16. Method for treating wounds according to claim 1, wherein the wound to be treated is a chronic wound.
17. Método para el tratamiento de heridas, de acuerdo con la reivindicación 11 en donde la herida a tratar es una herida aguda.  17. Method for treating wounds according to claim 11 wherein the wound to be treated is an acute wound.
18. Método para el tratamiento de heridas, de acuerdo con la reivindicación 1 en donde la composición se aplica sobre la herida y actúa durante por un plazo de hasta 10 días o más.  18. Method for treating wounds according to claim 1 wherein the composition is applied to the wound and acts for a period of up to 10 days or more.
PCT/CL2014/000055 2013-10-22 2014-10-20 Composition for accelerating or improving the healing of wounds, and method for accelerating or improving the healing of wounds, comprising the application of said composition WO2015058318A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2013003066A CL2013003066A1 (en) 2013-10-22 2013-10-22 Composition for treatment of wounds because it comprises support matrix and stem cells mesenchymics of wharton jelly; method for treating wounds comprising applying said composition
CL3066-2013 2013-10-22

Publications (1)

Publication Number Publication Date
WO2015058318A1 true WO2015058318A1 (en) 2015-04-30

Family

ID=52020872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2014/000055 WO2015058318A1 (en) 2013-10-22 2014-10-20 Composition for accelerating or improving the healing of wounds, and method for accelerating or improving the healing of wounds, comprising the application of said composition

Country Status (2)

Country Link
CL (1) CL2013003066A1 (en)
WO (1) WO2015058318A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106310369A (en) * 2016-09-29 2017-01-11 广州赛莱拉干细胞科技股份有限公司 Composition, 3D (three-dimensional) dressing with composition and preparation method thereof
EP3456363A1 (en) * 2017-09-18 2019-03-20 Banc De Sang I Teixits Composition for regenerating bony tissue, method for preparation and use thereof
CN111760064A (en) * 2020-08-25 2020-10-13 重庆大学附属肿瘤医院 Dressing for treating diabetic foot and preparation method thereof
EP3952892A4 (en) * 2019-04-09 2023-01-25 Combangio, Inc. Processes for making and using a mesenchymal stem cell derived secretome

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009320446A1 (en) 2008-11-25 2011-07-07 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Regenerative tissue grafts and methods of making same
EP2374485A1 (en) * 2010-04-09 2011-10-12 Luisa Benassi New dermal substitute and therapeutical application thereof
US20110256089A1 (en) 2008-11-03 2011-10-20 Modern Cell & Tissue Technologies Inc. Hydrogel Type Cell Delivery Vehicle for Wound Healing, and Preparation Method Thereof
US20110293667A1 (en) * 2010-01-14 2011-12-01 Dolores Baksh Bioengineered Tissue Constructs and Methods for Producing and Using Thereof
US20120077272A1 (en) * 2006-10-23 2012-03-29 Alexander Kharazi Cellular scaffold
US20120134965A1 (en) 2009-03-24 2012-05-31 Sang-Heon Kim Method for differentiation of stem cells into vascular cells and the induction of angiogenesis using the same
EP2471902A2 (en) * 2009-08-25 2012-07-04 Servicio Andaluz De Salud Production of artificial tissues by means of tissue engineering using agarose-fibrin biomaterials
AU2012205269A1 (en) 2004-03-22 2012-08-09 Mesoblast International Sarl Mesenchymal stem cells and uses therefor
WO2012131618A1 (en) 2011-03-30 2012-10-04 Stempeutics Research Private Limited A composition comprising pooled wharton's jelly derived mesenchymal stem cells and methods thereof
WO2014027965A1 (en) * 2012-08-15 2014-02-20 National University Of Singapore Wound dressing nanomesh impregnated with human umbilical cord wharton's jelly stem cells

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012205269A1 (en) 2004-03-22 2012-08-09 Mesoblast International Sarl Mesenchymal stem cells and uses therefor
US20120077272A1 (en) * 2006-10-23 2012-03-29 Alexander Kharazi Cellular scaffold
US20110256089A1 (en) 2008-11-03 2011-10-20 Modern Cell & Tissue Technologies Inc. Hydrogel Type Cell Delivery Vehicle for Wound Healing, and Preparation Method Thereof
AU2009320446A1 (en) 2008-11-25 2011-07-07 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Regenerative tissue grafts and methods of making same
US20120134965A1 (en) 2009-03-24 2012-05-31 Sang-Heon Kim Method for differentiation of stem cells into vascular cells and the induction of angiogenesis using the same
EP2471902A2 (en) * 2009-08-25 2012-07-04 Servicio Andaluz De Salud Production of artificial tissues by means of tissue engineering using agarose-fibrin biomaterials
US20110293667A1 (en) * 2010-01-14 2011-12-01 Dolores Baksh Bioengineered Tissue Constructs and Methods for Producing and Using Thereof
EP2374485A1 (en) * 2010-04-09 2011-10-12 Luisa Benassi New dermal substitute and therapeutical application thereof
WO2012131618A1 (en) 2011-03-30 2012-10-04 Stempeutics Research Private Limited A composition comprising pooled wharton's jelly derived mesenchymal stem cells and methods thereof
WO2014027965A1 (en) * 2012-08-15 2014-02-20 National University Of Singapore Wound dressing nanomesh impregnated with human umbilical cord wharton's jelly stem cells

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
AZARI, O.; BABAEI, H.; DERAKHSHANFAR, A.; NEMATOLLAHI-MAHANI, S. N.; POURSAHEBI, R.; MOSHREFI, M.: "Effects of transplanted mesenchymal stem cells isolated from Wharton's jelly of caprine umbilical cord on cutaneous wound healing; histopathological evaluation", VETERINARY RESEARCH COMMUNICATIONS, vol. 35, no. 4, 2011, pages 211 - 22, XP019887069, DOI: doi:10.1007/s11259-011-9464-z
BARTOSH, T. J.; YLÖSTALO, J. H.; MOHAMMADIPOOR, A.; BAZHANOV, N.; COBLE, K.; CLAYPOOL, K.; PROCKOP, D. J: "Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 107, no. 31, 2010, pages 13724 - 9, XP055232564, DOI: doi:10.1073/pnas.1008117107
BREM, H.; TOMIC-CANIC, M.: "Cellular and molecular basis of wound healing in diabetes", THE JOURNAL OF CLINICAL JNVESTIGATION, vol. 117, no. 5, 2007, pages 1219 - 1222
BURLACU, A.; GRIGORESCU, G.; ROSCA, A.-M.; PREDA, M. B.; SIMIONESCU, M.: "Factors secreted by mesenchymal stem cells and endothelial progenitor cells have complementary effects on angiogenesis in vitro", STEM CELLS AND DEVELOPMENT, vol. 22, no. 4, 2013, pages 643 - 53
DANNER, S.; KREMER, M.; PETSCHNIK, A. E.; NAGEL, S.; ZHANG, Z.; HOPFNER, U., ..; EGAÑA, J. T.: "The use of human sweat gland-derived stem cells for enhancing vascularization during dermal regeneration", THE JOURNAL OF INVESTIGATIVE DERMATOLOGY, vol. 132, no. 6, 2012, pages 1707 - 16
GIMÉNEZ, M.; GILABERT, R.; LARA, M.; CONGET, ., PRECLINICAL ARTERIAL DISEASE IN PATIENTS WITH TYPE 1 DIABETES WITHOUT OTHER MAJOR CARDIOVASCULAR RISK FACTORS OR MICRO-/ MACROVASCULAR DISEASE. DIABETES & VASCULAR DISEASE RESEARCH : OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF DIABETES AND VASCU, vol. 8, no. 1, pages 5 - 11
HEMATTI, P.: "Role of mesenchymal stromal cells in solid organ transplantation", TRANSPLANT REV., vol. 22, no. 4, 2009, pages 262 - 273, XP025412857, DOI: doi:10.1016/j.trre.2008.05.002
HIRSCH, A. T.; HARTMAN, L.; TOWN, R. J.; VIRNIG, B. A.: "National health care costs of peripheral arterial disease in the Medicare population", VASCULAR MEDICINE (LONDON, ENGLAND, vol. 13, no. 3, 2008, pages 209 - 15
LIPSKY, B. A.: "Specific guídelines for the treatment of diabetic foot infections 2011", DIABETED METAB RES REV, 28 October 2011 (2011-10-28), pages 234 - 235
MORANDI, F.; RAFFAGHELLO, L.; BIANCHI, G.; MELONI, F.; MILLO, E.; FERRONE, S.; PISTOIA, V: "Immunogemnicity of Human Mesenchymal Stem Cells in HLA-Class I restricted T cell responses against viral or tumor-associated antigens", STEM CELLS, vol. 26, no. 5, 2008, pages 1275 - 1287, XP055187877, DOI: doi:10.1634/stemcells.2007-0878
PHINNEY, D. G.; PROCKOP, D. J.: "Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views", STEM CELLS (DAYTON, OHIO, vol. 25, no. 11, 2007, pages 2896 - 902, XP002612819, DOI: doi:10.1634/stemcells.2007-0637
RIBEIRO, C. A; FRAGA, J. S.; GRÁOS, M.; NEVES, N. M.; REIS, R. L.; GIMBLE, J. M.; SALGADO, A. J.: "The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations", STEM CELL RESEARCH & THERAPY, vol. 3, no. 3, 2012, pages 18, XP021096306, DOI: doi:10.1186/scrt109
SALEM, H. K.; THIEMERMANN, C.: "Mesenchymal stromal cells: current understanding and clinical status", STEM CELLS (DAYTON, OHIO, vol. 28, no. 3, 2010, pages 585 - 96
SUKPAT, S.; ISARASENA, N.; WONGPHOOM, J.; PATUMRAJ, S.: "Vasculoprotective effects of combined endothelial progenitor cells and mesenchymal stem cells in diabetic wound care: their potential role in decreasing wound-oxidative stress", BIOMED RESEARCH INTERNATIONAL, 2013, pages 459196
VALTIERI, M.; SORRENTINO, A.: "The mesenchymal stromal cell contribution to homeostasis", JOURNAL OF CELLULAR PHYSIOLOGY, vol. 217, no. 2, 2008, pages 296 - 300
VOLAREVIC, V.; ARSENIJEVIC, N.; LUKIC, M. L.; STOJKOVIC, M.: "Concise review: Mesenchymal stem cell treatment of the complications of diabetes mellitus", STEM CELLS REGENETRATIVE MEDICINE, vol. 29, no. 1, 2011, pages 5 - 10

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106310369A (en) * 2016-09-29 2017-01-11 广州赛莱拉干细胞科技股份有限公司 Composition, 3D (three-dimensional) dressing with composition and preparation method thereof
EP3456363A1 (en) * 2017-09-18 2019-03-20 Banc De Sang I Teixits Composition for regenerating bony tissue, method for preparation and use thereof
EP3952892A4 (en) * 2019-04-09 2023-01-25 Combangio, Inc. Processes for making and using a mesenchymal stem cell derived secretome
US11654160B2 (en) 2019-04-09 2023-05-23 Combangio, Inc. Processes for making and using a mesenchymal stem cell derived secretome
CN111760064A (en) * 2020-08-25 2020-10-13 重庆大学附属肿瘤医院 Dressing for treating diabetic foot and preparation method thereof

Also Published As

Publication number Publication date
CL2013003066A1 (en) 2014-07-25

Similar Documents

Publication Publication Date Title
Huang et al. A perfusable, multifunctional epicardial device improves cardiac function and tissue repair
Zeng et al. Bioenergetic and functional consequences of bone marrow–derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling
Agorogiannis et al. Topical application of autologous adipose-derived mesenchymal stem cells (MSCs) for persistent sterile corneal epithelial defect
Huang et al. Functional improvement and neurogenesis after collagen-GAG matrix implantation into surgical brain trauma
Berce et al. Cutaneous wound healing using polymeric surgical dressings based on chitosan, sodium hyaluronate and resveratrol. A preclinical experimental study
ES2927461T3 (en) Mesenchymal stem cells derived from perinatal tissue: method of preparation and uses thereof
ES2910115T3 (en) Mesenchymal stem cells preconditioned with thrombin for the treatment of neonatal EIH
Li et al. A tissue-engineered human trabecular meshwork hydrogel for advanced glaucoma disease modeling
Sun et al. Conduits harnessing spatially controlled cell-secreted neurotrophic factors improve peripheral nerve regeneration
WO2015058318A1 (en) Composition for accelerating or improving the healing of wounds, and method for accelerating or improving the healing of wounds, comprising the application of said composition
Remlinger et al. Urinary bladder matrix promotes site appropriate tissue formation following right ventricle outflow tract repair
BR112020005017A2 (en) composition containing a specific population of umbilical cord mesenchymal cells, method of selection and use of the same
Zhang et al. Combining injectable plasma scaffold with mesenchymal stem/stromal cells for repairing infarct cavity after ischemic stroke
US10471101B2 (en) Management of ischemia using pooled mesenchymal stromal cell composition
RU2012140379A (en) METHODS AND COMPOSITIONS FOR INCREASING THE SURVIVAL PERIOD OF A FAT TRANSFER
Acosta et al. Treatment of corneal ulcers with platelet rich plasma
Wang et al. Injectable double-network hydrogel for corneal repair
Murphy et al. Hydrogel biophysical properties instruct coculture-mediated osteogenic potential
Nour et al. Angiogenic effect of a nanoniosomal deferoxamine-loaded poly (vinyl alcohol)–Egg white film as a promising wound dressing
Silva et al. Sustained release of human adipose tissue stem cell secretome from star‐shaped poly (ethylene glycol) glycosaminoglycan hydrogels promotes motor improvements after complete transection in spinal cord injury rat model
Cakmak et al. A 3D in vitro co-culture model for evaluating biomaterial-mediated modulation of foreign-body responses
Rodríguez-Eguren et al. Human umbilical cord-based therapeutics: stem cells and blood derivatives for female reproductive medicine
Zhang et al. PLGA@ IL-8 nanoparticles-loaded acellular dermal matrix as a delivery system for exogenous MSCs in diabetic wound healing
Chen et al. 3D-biofabricated chondrocyte-laden decellularized extracellular matrix-contained gelatin methacrylate auxetic scaffolds under cyclic tensile stimulation for cartilage regeneration
US20160129045A1 (en) Composition for wound-healing comprising adult stem cells and elastin-like polypeptides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14809748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14809748

Country of ref document: EP

Kind code of ref document: A1