WO2015057815A1 - Polymer-bound ceramic particle battery separator coating - Google Patents

Polymer-bound ceramic particle battery separator coating Download PDF

Info

Publication number
WO2015057815A1
WO2015057815A1 PCT/US2014/060656 US2014060656W WO2015057815A1 WO 2015057815 A1 WO2015057815 A1 WO 2015057815A1 US 2014060656 W US2014060656 W US 2014060656W WO 2015057815 A1 WO2015057815 A1 WO 2015057815A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
coated
coating
slurry
μιη
Prior art date
Application number
PCT/US2014/060656
Other languages
French (fr)
Inventor
Dr. John ARNOLD
Gary E. Voelker
Joe FASOLO
Original Assignee
Miltec UV International, LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miltec UV International, LLC filed Critical Miltec UV International, LLC
Priority to KR1020167012597A priority Critical patent/KR20160072162A/en
Priority to CN201480067998.5A priority patent/CN105849936B/en
Priority to EP14853525.5A priority patent/EP3058607B1/en
Priority to JP2016549195A priority patent/JP6955867B2/en
Publication of WO2015057815A1 publication Critical patent/WO2015057815A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • Electrochemical devices such as batteries, are widely used in portable and auxiliary power supplies.
  • the basic working unit of a battery is an electrochemical cell.
  • the electrochemical cell includes two electrodes (an anode and a cathode) and an electrolyte.
  • the battery electrolyte may be a liquid, solid, or gel.
  • the electrolyte provides a path for ions to flow from the cathode to the anode (charging) as well as for the ions to flow from the anode to the cathode (discharging).
  • the battery will not work if the cathode and anode make electrical contact.
  • a separator is used to "separate" the cathode from the anode, serving as an electrical barrier between the cathode and the anode.
  • the separator is an electrical barrier, the separator may not be an ionic barrier. In some instances, to maximize ionic flow, the separator is as thin and as porous as possible.
  • a separator may be a thin porous polymer film.
  • Electrolyte that also fills pores in the anode and cathode coatings.
  • An organic alkyl carbonate containing selected lithium salts is one example of a liquid electrolyte.
  • the electrolytes offer a high mobility of ions (e.g., lithium ions) and are designed to be chemically inert when exposed to the voltage potential at the cathode and anode surfaces.
  • the lithium secondary (rechargeable) battery Due to its electrical storage capacity, the lithium secondary (rechargeable) battery has become a preferred electrical storage device for hybrid and electric vehicles, electric grid storage, and a multitude of portable consumer electronics such as laptop computers, cellphones, and hand tools.
  • the higher storage capacity comes from a combination of higher voltage potential and greater energy density (ion density) within the electrode surfaces.
  • the separator is a key component to preventing fire. Fire can occur if 1) the battery discharges so quickly that the corresponding heat melts or shrinks the separator, 2) physical damage to the battery causes the anode and cathode to touch, or 3) electrolytic plating (irreversible side reactions) cause lithium ions to plate lithium metal on the anode in such a way that over time they develop lithium growths (e.g., dendrites, spikes, etc.) on the anode that keep growing until they form a metallic bridge to the cathode.
  • electrolytic plating irreversible side reactions
  • Example separator films include thermoplastic polypropylene (PP), polyethylene (PE), or coextruded blends of PE and PP.
  • PP thermoplastic polypropylene
  • PE polyethylene
  • coextruded blends of PE and PP One of the advantages of the PE or PP separator is that these thermoplastic polymers flow when exposed to heat. This heat induced flow causes the pores in the separator to close. When the pores close, the separator is a barrier to ionic flow. So in cases of mild or gradual overheating states, the thermoplastic separator shuts the battery down.
  • Thermoplastic PE-PP have several disadvantages.
  • Thermoplastic PE-PP separators are very similar in strength and heat resistance to that of a common kitchen sandwich bag. In the event of battery rupture, PE-PP separators provide insignificant mechanical strength; and in the event of fast discharge, PE-PP separators do not have the heat resistance to remain in place.
  • the polymer separator can go from melting, to curling, depolymerization, and decomposition. As the polymer separator film curls or decomposes, the barrier between the cathode and anode vanishes. In this state, fire will break out if the battery cannot be shut down immediately.
  • One or more embodiments are directed to a UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from a UV water-based mixture or from one or more precursors selected from one or more monomers, one or more oligomers, or a combination of one or more monomers and one or more oligomers; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating.
  • the ceramic particulate material is bound to the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating.
  • the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (A1 2 0 3 ), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof, and the one or more precursors include a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane, acrylated rubber, acrylated monomer, cycloaliphatic epoxy terminated oligomers, cycloaliphatic epoxy terminated monomers, acrylated terminated oligomers, acrylated terminated monomers, or a combination thereof.
  • the UV or EB cured matrix is nonionic.
  • a UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from a UV curable epoxy; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating.
  • the ceramic particulate material is bound to the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating.
  • the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI 2 O 3 ), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof.
  • the UV or EB cured matrix is nonionic.
  • a UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from a UV curable silicone; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating.
  • the ceramic particulate material is bound to the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating.
  • the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI 2 O 3 ), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof.
  • the UV or EB cured matrix is nonionic.
  • a UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from a UV curable urethane; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating.
  • the ceramic particulate material is bound to the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating.
  • the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI 2 O 3 ), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof.
  • the UV or EB cured matrix is nonionic.
  • a UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from a UV curable rubber; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating.
  • the ceramic particulate material is bound to the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating.
  • the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI 2 O 3 ), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof.
  • the UV or EB cured matrix is nonionic.
  • a UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from a UV curable thioester; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating.
  • the ceramic particulate material is bound to the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating.
  • the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI 2 O 3 ), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof.
  • the UV or EB cured matrix is nonionic.
  • Various embodiments are directed to a coated separator comprising a separator; and any of the UV or EB cured coatings discussed above adhered to at least one surface of the separator.
  • certain embodiments are directed to a coated separator comprising a separator; and a UV or EB cured coating adhered to at least one surface of the separator, said UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from one or more precursors selected from one or more monomers, one or more oligomers, or combinations thereof; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. In various embodiments, the ceramic particulate material is bound to the UV or EB cured matrix, bound to the separator by the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating.
  • the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI 2 O 3 ), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof
  • the one or more precursors include a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane, acrylated rubber, acrylated monomer, cycloaliphatic epoxy terminated oligomers, cycloaliphatic epoxy terminated monomers, acrylated terminated oligomers, acrylated terminated monomers, or a combination thereof.
  • the one or more precursors include a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane,
  • the UV or EB cured matrix is nonionic.
  • the separator is a polymeric film.
  • the separator is a trilayer separator.
  • the UV or EB cured coating is adhered to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the UV or EB cured coating is adhered to both the top surface and the bottom surface of the separator.
  • the UV or EB cured coating may be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof.
  • the coated separator suppresses ionic flow through pores of the separator and stays electrically insulating in response to being heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.).
  • the ceramic particulate material remains bound to the UV or EB cured matrix and to the separator, and the coated separator maintains its shape while heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.).
  • Certain embodiments are directed to a pattern coated separator comprising a separator; and any of the UV or EB cured coatings discussed above adhered to at least one surface of the separator in a pattern.
  • certain embodiments are directed to a coated separator comprising a separator; and a UV or EB cured coating adhered to at least one surface of the separator in a pattern, said UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from one or more precursors selected from one or more monomers, one or more oligomers, or combinations thereof; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. In various embodiments, the ceramic particulate material is bound to the UV or EB cured matrix, bound to the separator by the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating.
  • the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI 2 O 3 ), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof
  • the one or more precursors include a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane, acrylated rubber, acrylated monomer, cycloaliphatic epoxy terminated oligomers, cycloaliphatic epoxy terminated monomers, acrylated terminated oligomers, acrylated terminated monomers, or a combination thereof.
  • the one or more precursors include a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane,
  • the UV or EB cured matrix is nonionic.
  • the separator is a polymeric film. In other embodiments, the separator is a trilayer separator. According to certain embodiments, the UV or EB cured coating is adhered in a pattern to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the UV or EB cured coating is adhered to both the top surface and the bottom surface of the separator in a pattern.
  • the pattern coated separator suppresses ionic flow through pores of the separator and stays electrically insulating in response to being heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.).
  • the ceramic particulate material remains bound to the patterned UV or EB cured matrix and to the separator, and the coated separator maintains its shape while heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.).
  • FIG. 1 Other embodiments are directed to an electrochemical device having a coated separator comprising a separator; and any of the UV or EB cured coatings discussed above adhered to at least one surface of the separator.
  • certain embodiments are directed to an electrochemical device having a coated separator comprising a separator; and a UV or EB cured coating adhered to at least one surface of the separator, said UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from one or more precursors selected from one or more monomers, one or more oligomers, or combinations thereof; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. In various embodiments, the ceramic particulate material is bound to the UV or EB cured matrix, bound to the separator by the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating.
  • the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI 2 O 3 ), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof
  • the one or more precursors include a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane, acrylated rubber, acrylated monomer, cycloaliphatic epoxy terminated oligomers, cycloaliphatic epoxy terminated monomers, acrylated terminated oligomers, acrylated terminated monomers, or a combination thereof.
  • the one or more precursors include a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane,
  • the UV or EB cured matrix is nonionic.
  • the separator is a polymeric film.
  • the separator is a trilayer separator.
  • the UV or EB cured coating is adhered to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the UV or EB cured coating is adhered to both the top surface and the bottom surface of the separator.
  • the UV or EB cured coating may be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof.
  • the coated separator suppresses ionic flow through pores of the separator and stays electrically insulating in response to being heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.).
  • the ceramic particulate material remains bound to the UV or EB cured matrix and to the separator, and the coated separator maintains its shape while heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.).
  • the electrochemical device includes an anode, a cathode, an electrolyte, a current collector, or a combination thereof.
  • the electrochemical device is an alkali ion battery (e.g., a lithium ion battery).
  • Still other embodiments are directed to a lithium ion battery having a coated separator comprising a separator; and any of the UV or EB cured coatings discussed above adhered to at least one surface of the separator.
  • certain embodiments are directed to a lithium ion battery having a coated separator comprising a separator; and a UV or EB cured coating adhered to at least one surface of the separator, said UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from one or more precursors selected from one or more monomers, one or more oligomers, or combinations thereof; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. In various embodiments, the ceramic particulate material is bound to the UV or EB cured matrix, bound to the separator by the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating.
  • the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (A1 2 0 3 ), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof
  • the one or more precursors include a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane, acrylated rubber, acrylated monomer, cycloaliphatic epoxy terminated oligomers, cycloaliphatic epoxy terminated monomers, acrylated terminated oligomers, acrylated terminated monomers, or a combination thereof.
  • the UV or EB cured matrix is nonionic.
  • the separator is a polymeric film.
  • the separator is a trilayer separator.
  • the UV or EB cured coating is adhered to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the UV or EB cured coating is adhered to both the top surface and the bottom surface of the separator.
  • the UV or EB cured coating may be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof.
  • the coated separator suppresses ionic flow through pores of the separator and stays electrically insulating in response to being heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.).
  • the ceramic particulate material remains bound to the UV or EB cured matrix and to the separator, and the coated separator maintains its shape while heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.).
  • the lithium ion battery includes an anode, a cathode, an electrolyte, a current collector, or a combination thereof.
  • Various embodiments include a method of making each and any of the coated separators discussed above or any of the electrochemical devices incorporating any of the coated separators discussed above, said method comprising: mixing a ceramic particulate material with a curable binder mixture comprising one or more monomers, one or more oligomers, or a combination thereof to form a slurry; applying the slurry to at least one surface of a separator to form a slurry coated separator; and subjecting the slurry coated separator to UV or EB radiation, thereby curing the curable binder mixture and forming a UV or EB cured matrix.
  • the UV or EB cured matrix adheres to at least one surface of the separator and the ceramic particulate material is distributed substantially throughout the UV or EB cured matrix.
  • the slurry further comprises a solvent, photoinitiator, free-radical initiator, dispersant, adhesion promoter, wetting agent, silane-coated particle, dark cure additive, co-initiator, blowing agent, or a combination thereof.
  • the slurry does not comprise a solvent.
  • the slurry may be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof.
  • the slurry is applied to the separator in a printed pattern with a screen, curtain coat, gravure, reverse gravure, flexographic printer, letterpress, offset press, or a combination thereof.
  • the method may also include positioning the coated separator in an electrochemical device and then charging and discharging the electrochemical device.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating.
  • the ceramic particulate material is bound to the UV or EB cured matrix, bound to the separator by the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating.
  • the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI 2 O 3 ), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof
  • the curable binder mixture includes a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane, acrylated rubber, acrylated monomer, cycloaliphatic epoxy terminated oligomers, cycloaliphatic epoxy terminated monomers, acrylated terminated oligomers, acrylated terminated monomers, or a combination thereof.
  • the UV or EB cured matrix is nonionic.
  • the separator is a polymeric film. In other embodiments, the separator is a trilayer separator. According to certain embodiments, the UV or EB cured coating is adhered to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the UV or EB cured coating is adhered to both the top surface and the bottom surface of the separator.
  • Various embodiments are directed to a cured coating comprising: a polymeric material including a cured matrix comprising a crosslink reaction product from a precursor and a cross- linking agent; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating.
  • a wide variety of cross-linking agents are available and may be used in various embodiments.
  • Illustrative cross-linking agents usable in various embodiments include, but are not limited to, (poly)aziridine(s), metal driers, or peroxides.
  • the precursor is a water-based acrylic, a water-based urethane, or a combination thereof.
  • Still further embodiments are directed to a coated separator comprising a separator; and a cured coating adhered to at least one surface of the separator, said cured coating comprising: a cured matrix comprising a crosslink reaction product from a precursor and a cross- linking agent; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating.
  • a wide variety of cross-linking agents are available and may be used in various embodiments.
  • Illustrative cross-linking agents usable in various embodiments include, but are not limited to, (poly)aziridine(s), metal driers, or peroxides.
  • the precursor is a water-based acrylic, a water-based urethane, or a combination thereof.
  • the cured coating is adhered to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the cured coating is adhered to both the top surface and the bottom surface of the separator.
  • the cured coating may be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof.
  • Certain embodiments are directed to a pattern coated separator comprising a separator; and a cured coating adhered to at least one surface of the separator in a pattern, said cured coating comprising: a cured matrix comprising a crosslink reaction product from a precursor and a cross-linking agent; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating.
  • a wide variety of cross-linking agents are available and may be used in various embodiments.
  • Illustrative cross-linking agents usable in various embodiments include, but are not limited to, (poly)aziridine(s), metal driers, or peroxides.
  • the precursor is a water-based acrylic, a water-based urethane, or a combination thereof.
  • the cured coating is adhered in a pattern to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the cured coating is adhered to both the top surface and the bottom surface of the separator in a pattern.
  • FIG. 1 Other embodiments are directed to an electrochemical device having a coated separator comprising a separator; and a cured coating adhered to at least one surface of the separator, said cured coating comprising: a polymeric material including a cured matrix comprising a crosslink reaction product from a precursor and a cross-linking agent; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating.
  • cross-linking agents are available and may be used in various embodiments.
  • Illustrative cross-linking agents usable in various embodiments include, but are not limited to, (poly)aziridine(s), metal driers, or peroxides.
  • the precursor is a water-based acrylic, a water-based urethane, or a combination thereof.
  • the cured coating is adhered to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the cured coating is adhered to both the top surface and the bottom surface of the separator.
  • the cured coating may be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof.
  • the electrochemical device is an alkali ion battery (e.g., a lithium ion battery).
  • Various embodiments include a method of making a coated separator or an electrochemical device incorporating a coated separator, said method comprising: mixing a curable binder mixture comprising a precursor and a cross-linking agent with a ceramic particulate material to form a slurry; applying the slurry to at least one surface of a separator to form a slurry coated separator; and curing the slurry coated separator, thereby curing the curable binder mixture.
  • Various cross-linking agents are available and may be used in various embodiments. Illustrative cross-linking agents usable in various embodiments include, but are not limited to, (poly)aziridine(s), metal driers, or peroxides.
  • the precursor is a water-based acrylic, a water-based urethane, or a combination thereof.
  • the slurry may be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof.
  • the slurry is applied to the separator in a printed pattern with a screen, curtain coat, gravure, reverse gravure, flexographic printer, letterpress, offset press, or a combination thereof.
  • the method may also include positioning the coated separator in an electrochemical device and then charging and discharging the electrochemical device.
  • FIG. 1 illustrates a cross-sectional view of a coated separator according to one or more embodiments.
  • FIG. 2 is a schematic illustrating a system for coating a separator according to one or more embodiments.
  • FIG. 3 is a flowchart illustrating steps for producing a battery having a coated separator according to one or more embodiments.
  • FIG. 4A illustrates the voltage profile of an uncoated reference separator.
  • FIG. 4B illustrates the charge rate performance of an uncoated reference separator.
  • FIG. 4C illustrates the cycle performance of an uncoated reference separator.
  • FIG. 5 illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 6 illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 7 illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 8 illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 9 illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 10 illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 11 A illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 1 IB illustrates the charge rate performance of a coated separator according to one or more embodiments.
  • FIG. l lC illustrates the cycle performance of a coated separator according to one or more embodiments.
  • FIG. 12A illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 12B illustrates the charge rate performance of a coated separator according to one or more embodiments.
  • FIG. 12C illustrates the cycle performance of a coated separator according to one or more embodiments.
  • FIG. 13A illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 13B illustrates the charge rate performance of a coated separator according to one or more embodiments.
  • FIG. 13C illustrates the cycle performance of a coated separator according to one or more embodiments.
  • FIG. 14A illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 14B illustrates the charge rate performance of a coated separator according to one or more embodiments.
  • FIG. 14C illustrates the cycle performance of a coated separator according to one or more embodiments.
  • FIG. 15A illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 15B illustrates the charge rate performance of a coated separator according to one or more embodiments.
  • FIG. 15C illustrates the cycle performance of a coated separator according to one or more embodiments.
  • FIG. 16A illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 16B illustrates the charge rate performance of a coated separator according to one or more embodiments.
  • FIG. 16C illustrates the cycle performance of a coated separator according to one or more embodiments.
  • FIG. 17A illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 17B illustrates the charge rate performance of a coated separator according to one or more embodiments.
  • FIG. 17C illustrates the cycle performance of a coated separator according to one or more embodiments.
  • FIG. 18A illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 18B illustrates the charge rate performance of a coated separator according to one or more embodiments.
  • FIG. 18C illustrates the cycle performance of a coated separator according to one or more embodiments.
  • FIG. 19A illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 19B illustrates the charge rate performance of a coated separator according to one or more embodiments.
  • FIG. 19C illustrates the cycle performance of a coated separator according to one or more embodiments.
  • FIG. 20A illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 20B illustrates the charge rate performance of a coated separator according to one or more embodiments.
  • FIG. 20C illustrates the cycle performance of a coated separator according to one or more embodiments.
  • FIG. 21 A illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 2 IB illustrates the charge rate performance of a coated separator according to one or more embodiments.
  • FIG. 21C illustrates the cycle performance of a coated separator according to one or more embodiments.
  • FIG. 22A illustrates the voltage profile of a coated separator according to one or more embodiments.
  • FIG. 22B illustrates the charge rate performance of a coated separator according to one or more embodiments.
  • FIG. 22C illustrates the cycle performance of a coated separator according to one or more embodiments.
  • UV or electron beam (EB) curing slurries of reactive liquid resins (e.g., monomers and/or oligomers) and ceramic particles can be used to strengthen and protect separators and improve the operational safety of electrochemical devices using such separators.
  • reactive liquid resins e.g., monomers and/or oligomers
  • ceramic particles can be used to strengthen and protect separators and improve the operational safety of electrochemical devices using such separators.
  • coated separators having dimensional stability at high temperature, a shutdown mechanism, high porosity, and mechanical strength. Such coated separators may be manufactured by an improved process using UV or EB cured materials to bind ceramic particle coatings to a polymeric membrane separator.
  • Certain variations are directed to electrochemical device (e.g., lithium secondary battery) separators utilizing particular EB or actinic UV curable binders, and to methods for manufacturing the same.
  • particular EB and/or UV curable materials may be utilized as binders in manufacturing coated separators having a thin ceramic coating layer, as the particular EB and/or UV curable materials demonstrate good adhesion to polymeric (e.g., polyethylene, polypropylene, or combinations thereof) separators upon curing, while providing the necessary resistance to harsh electrolytic material present in an electrochemical device and retaining the necessary separator porosity.
  • polymeric e.g., polyethylene, polypropylene, or combinations thereof
  • Various embodiments are directed to a UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from one or more precursors selected from one or more monomers, one or more oligomers, or combinations thereof; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating.
  • the UV or EB cured coating may be used to strengthen and protect separators and improve the operational safety of electrochemical devices using such separators.
  • a cross sectional view of a coated separator 1 according to one or more embodiments is illustrated in FIG. 1.
  • the porous separator film 2 of FIG. 1 is coated on both the top side 3 and bottom side 4 with ceramic particles 5 in a porous UV-cured binder 6.
  • the ceramic particles are not limited to any particular shape, round or rounded particles minimize tearing stresses of the fragile polymer (e.g., polyolefm) film of the separator when the battery is assembled as well as when the battery expands and contracts in normal operation.
  • the ceramic particles 5 of FIG. 1 are examples of round or rounded particles.
  • a UV or EB cured coating may have ceramic particles having all the same or similar shape in some embodiments. In other embodiments, the ceramic particles of a UV or EB cured coating may be of varying shapes. According to further embodiments, the ceramic particles of the coating on the top side of the separator may be a different shape than the ceramic particles of the coating on the bottom side of the separator.
  • the ceramic particles can be hollow to provide greater porosity to the final UV or EB cured coating.
  • ceramic particle shapes usable in various embodiments include, but are not limited to, a simple sphere or a more complicated shape such as a zeolite.
  • the size of the particles of the ceramic particulate material is largely limited by the thickness of the UV or EB cured coating. For instance, there may be no need to use particles that would significantly exceed the thickness of the coating.
  • the actual particle size is determined in the design of the electrochemical device. For example, a temporary battery designed for single use may use a very thin coated separator (e.g., 1 ⁇ thickness) and thus, relatively small ceramic particles (e.g., 0.1 ⁇ ) may be suitable.
  • a power tool (high discharge) or a vehicle battery (high energy density) may require a long life and greater safety considerations and thus, some embodiments include a coated separator 25 ⁇ thick with 10 ⁇ ceramic particles in the coating.
  • the ceramic particles are all about the same size.
  • the ceramic particulate material contains particles of varying size.
  • the porous UV-cured binder 6 of FIG. 1 is filled with ceramic particles 5 having different sizes.
  • the ceramic particles of the coating on the top side of the separator may be a different size than the ceramic particles of the coating on the bottom side of the separator. Adding particles of different sizes increases particle to particle contact and the packing density, which increases the thermal conductivity and safety of the coating.
  • the particles of the ceramic particulate material have a particle size of from about Inm to about 10 ⁇ . In other embodiments, the particles of the ceramic particulate material have a particle size of from about Inm to about 9.5 ⁇ , from about Inm to about 9 ⁇ , from about Inm to about 8.5 ⁇ , from about Inm to about 8 ⁇ , from about Inm to about 7.5 ⁇ , from about Inm to about 7 ⁇ , from about Inm to about 6.5 ⁇ , from about Inm to about 6 ⁇ , from about Inm to about 5.5 ⁇ , from about Inm to about 5 ⁇ , from about Inm to about 4.5 ⁇ , from about Inm to about 4 ⁇ , from about Inm to about 3.5 ⁇ , from about Inm to about 3 ⁇ , from about Inm to about 2.5 ⁇ , from about Inm to about 2 ⁇ , from about lnm to about 1.5 ⁇ , from about lnm to about 1 ⁇ , from about 2nm to about 10 ⁇
  • the particles of the ceramic particulate material have a particle size of about 10 ⁇ , about 9.5 ⁇ , about 9 ⁇ , about 8.5 ⁇ , about 8 ⁇ , about 7.5 ⁇ , about 7 ⁇ , about 6.5 ⁇ , about 6 ⁇ , about 5.5 ⁇ , about 5 ⁇ , about 4.5 ⁇ m, about 4 ⁇ , about 3.5 ⁇ , about 3 ⁇ m, about 2.5 ⁇ , about 2 ⁇ m, about 1.5 ⁇ , about 1 ⁇ , about 0.9 ⁇ m, about 0.8 ⁇ , about 0.7 ⁇ m, about 0.6 ⁇ , about 0.5 ⁇ , about 0.4 ⁇ m, about 0.3 ⁇ , about 0.2 ⁇ m, about 0.1 ⁇ , about 0.09 ⁇ , about 0.08 ⁇ m, about 0.07 ⁇ , about 0.06 ⁇ m, about 0.05 ⁇ , about 0.04 ⁇ , about 0.03 ⁇ m, about 0.02 ⁇ , about 0.01 ⁇ m, about 1 nm, or a combination
  • the ceramic particulate material comprises at least one thermally conductive material that is electrically insulating (e.g., having a resistance of at least 10 7 ohms).
  • the ceramic particulate material has an electrical conductivity less than that of the curable binder mixture and less than that of the uncoated separator film.
  • the ceramic particles of the coating allow the thermal conductivity of the separator to be increased without increasing the electrical conductivity of the separator.
  • Ceramic materials usable in various embodiments include, but are not limited to, an aluminum oxide (e.g., aluminum oxide (AI 2 O 3 ), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, other compounds that are electrically insulating but have appreciable thermal conductivity, and combinations thereof.
  • the cured coating of the various embodiments includes at least one type of ceramic material. In some embodiments, the cured coating may include combinations of two or more types of ceramic materials, including combinations of any two or more, three or more, four or more, five or more, etc. of the types of ceramic materials described herein.
  • the cured coating may include one of an aluminum oxide, silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or another compound that is electrically insulating but has appreciable thermal conductivity.
  • the cured coating may include two ceramic materials (e.g., aluminum oxide (AI 2 O 3 ) and aluminum oxide hydroxide, an aluminum oxide and silicon oxide, an aluminum oxide and silicon carbide, an aluminum oxide and titanium dioxide, an aluminum oxide and magnesium oxide, an aluminum oxide and boron nitride, an aluminum oxide and another compound that is electrically insulating but has appreciable thermal conductivity, silicon oxide and titanium dioxide, silicon oxide and magnesium oxide, etc.), three ceramic materials (e.g., aluminum oxide (AI 2 O 3 ), silicon oxide, and aluminum oxide hydroxide; an aluminum oxide, silicon oxide, and silicon carbide; an aluminum oxide, silicon oxide, and titanium dioxide; an aluminum oxide, silicon oxide, and magnesium oxide; an aluminum oxide, silicon oxide, and boron nitride;
  • three ceramic materials e.g.
  • the cured coating of various embodiments comprises ceramic particulate material in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating.
  • the cured coating comprises ceramic particulate material in an amount of from about 30 to about 95 weight percent, from about 30 to about 90 weight percent, from about 30 to about 85 weight percent, from about 30 to about 80 weight percent, from about 30 to about 75 weight percent, from about 30 to about 70 weight percent, from about 30 to about 65 weight percent, from about 30 to about 60 weight percent, from about 30 to about 55 weight percent, from about 30 to about 50 weight percent, from about 30 to about 45 weight percent, from about 30 to about 40 weight percent, from about 30 to about 35 weight percent, from about 40 to about 98 weight percent, from about 40 to about 95 weight percent, from about 40 to about 90 weight percent, from about 40 to about 85 weight percent, from about 40 to about 80 weight percent, from about 40 to about 75 weight percent, from about 40 to about 70 weight percent, from about 40 to about 65 weight percent, from about 40
  • the cured coating comprises ceramic particulate material in an amount of about 30 weight percent, about 35 weight percent, about 40 weight percent, about 45 weight percent, about 50 weight percent, about 55 weight percent, about 60 weight percent, about 65 weight percent, about 70 weight percent, about 75 weight percent, about 80 weight percent, about 85 weight percent, about 90 weight percent, about 95 weight percent, about 96 weight percent, about 97 weight percent, or about 98 weight percent.
  • other solids may also be added to the ceramic particles in amounts of about 20 to about 95 weight percent based on the total weight of the cured coating to enhance lithium battery performance. In other embodiments, other solids may also be added to the ceramic particles in amounts of about 25 to about 95 weight percent, about 30 to about 95 weight percent, about 35 to about 95 weight percent, about 40 to about 95 weight percent, about 45 to about 95 weight percent, about 50 to about 95 weight percent, about 55 to about 95 weight percent, about 60 to about 95 weight percent, about 65 to about 95 weight percent, about 70 to about 95 weight percent, about 75 to about 95 weight percent, about 80 to about 95 weight percent, about 85 to about 95 weight percent, about 90 to about 95 weight percent, about 20 to about 30 weight percent, about 20 to about 40 weight percent, about 20 to about 50 weight percent, about 20 to about 60 weight percent, about 20 to about 70 weight percent, about 20 to about 80 weight percent, or about 20 to about 90 weight percent.
  • the cured coating may include one other solid (e.g., a silicon doped ceramic oxide or a lithium doped ceramic oxide, etc.). In other embodiments, the cured coating may include combinations of two or more types of other solids, including combinations of any two or more (e.g., a silicon doped ceramic oxide and a lithium doped ceramic oxide, etc.), three or more, four or more, five or more, etc. of the types of other solids described herein.
  • ceramic particles are mixed with a curable binder composition comprised of specific monomers and oligomers, which serve as precursors for the final crosslinked polymer binder, as well as photoinitiators, dispersants, adhesion promoters, wetting agents, or combinations thereof.
  • Coated particles e.g., silane-coated particles
  • the UV or EB curable binder mixture can be selected from three generic classes: 1) UV-curable water-based, 2) UV-curable epoxy comprised of UV-curable silicone or UV-curable epoxy, and 3) UV-curable (meth)acrylates (e.g., acrylated urethanes, polyesters, rubbers, and thioesters), where "(meth)acrylates” refers to methacrylates, acrylates, acrylamides, acyloyl morpholines, vinyl esters, and combinations thereof.
  • UV-curable (meth)acrylates e.g., acrylated urethanes, polyesters, rubbers, and thioesters
  • curable binder mixture components usable in various embodiments include, but are not limited to, an acrylated water-based resin blend, cycloaliphatic epoxy terminated oligomers and monomers and a cationic photoinitiator, acrylated terminated oligomers and monomers and a free-radical initiator, acrylated polyurethane, acrylated rubber, acrylated monomer and combinations thereof.
  • the curable binder mixture of various embodiments includes at least one type of precursor component.
  • the curable binder mixture includes one type of precursor component (e.g., one type of UV-curable water-based urethane, one type of acrylated polyurethane, one type of acrylated monomer, one type of acrylated rubber, one type of cycloaliphatic epoxy oligomer, one type of acrylic resin, one type of cycloaliphatic epoxy silicone, one type of polyester acrylate, one type of melamine acrylate, one type of aliphatic urethane acrylate, etc.).
  • precursor component e.g., one type of UV-curable water-based urethane, one type of acrylated polyurethane, one type of acrylated monomer, one type of acrylated rubber, one type of cycloaliphatic epoxy oligomer, one type of acrylic resin, one type of cycloaliphatic epoxy silicone, one type of polyester acrylate, one type of melamine acrylate, one type of aliphatic urethane acrylate, etc.).
  • the curable binder mixture may include combinations of two or more types of precursor components, including combinations of any two or more (e.g., cycloaliphatic epoxy terminated oligomers and monomers; acrylated monomer and acrylated rubber; acrylated terminated oligomers and monomers; etc.), three or more (e.g., polyester acrylate, aliphatic urethane acrylate, and acrylic resin; melamine acrylate, aliphatic urethane acrylate, and acrylic resin; etc.), four or more, five or more, etc. of the types of precursor components described herein.
  • any two or more e.g., cycloaliphatic epoxy terminated oligomers and monomers; acrylated monomer and acrylated rubber; acrylated terminated oligomers and monomers; etc.
  • three or more e.g., polyester acrylate, aliphatic urethane acrylate, and acrylic resin
  • compositions of precursor ingredients can be used to optimize coating properties, such as flexibility, toughness, elongation, particle adhesion, separator adhesion, porosity, and ionic conductivity.
  • coating properties such as flexibility, toughness, elongation, particle adhesion, separator adhesion, porosity, and ionic conductivity.
  • precursors that benefit from mixtures of such is acrylated ingredients.
  • the UV or EB cured coating may comprise rubber polymers (e.g., polyisoprene-based rubbers, polybutadiene-based rubbers, etc.).
  • rubber polymers e.g., polyisoprene-based rubbers, polybutadiene-based rubbers, etc.
  • curable binder mixture components useful in the production of a rubber polymer-based UV or EB cured coating include, but are not limited to, isoprene, butadiene, cyclopentadiene, ethylidene norbomene, vinyl norbornene, and combinations thereof.
  • the curable binder mixture components may be functionalized to include reactive groups (e.g., carboxylate, acrylate, vinyl, vinyl ether, or epoxy groups) that enhance ceramic particle adhesion and/or improve UV or EB induced crosslinking.
  • reactive groups e.g., carboxylate, acrylate, vinyl, vinyl ether, or epoxy groups
  • the rubber polymer is not limited to any particular polymeric backbone.
  • the UV or EB cured coating may comprise a rubber polymer having an isoprene backbone with one or more reactive functional groups.
  • Illustrative rubber polymer backbones include, but are not limited to, a carboxylated methacrylated isoprene backbone, a carboxylated methacrylated butadiene backbone, a butadiene backbone, and combinations thereof.
  • the UV or EB cured coating may comprise multiple different polymeric backbone segments (e.g., isoprene-butadiene copolymers).
  • cycloaliphatic epoxy terminated oligomers and monomers and a cationic photoinitiator are included in the resin mixture.
  • This mixture is mixed with non-basic ceramic sand, applied to a separator, and UV or EB cured on the separator.
  • the cycloaliphatic epoxy terminal group can be on virtually any polymeric backbone.
  • the polymeric backbone is a hydrocarbon or silicone backbone.
  • Mixtures of cycloaliphatic epoxy ingredients also can be selected to optimize coating properties, such as flexibility, toughness, elongation, particle adhesion, separator adhesion, and ionic conductivity.
  • an acrylated water based resin blend is mixed with ceramic particles, applied to a separator, and UV or EB cured on the separator.
  • acrylated terminated oligomers and monomers and free-radical initiators are included in the resin mixture.
  • This resin mixture is mixed with ceramics, applied to a separator, and UV or EB cured on the separator.
  • the acrylated composition is EB cured and thus, the photoinitiator is unnecessary and should not be included in the formulation.
  • the acrylated terminal group can be on virtually any polymeric backbone.
  • the polymeric backbone can resist hot electrolyte and not react with ions (e.g., lithium ions).
  • ions e.g., lithium ions.
  • Illustrative backbones include, but are not limited to, rubbers, silicones, thioesters, acrylics, styrene acrylics, urethanes, fluorinated hydrocarbons, hydrocarbons, and polyesters.
  • PVDF polyvinylidene fluoride binder
  • NMP N-methyl-2-pyrrolidone
  • various embodiments do not primarily utilize thermoplastic binder to hold ceramic particles in place. When the melt point of the thermoplastic is reached, the ceramic particles would be free to move. In contrast, the ceramic particles of various present embodiments lacking thermoplastic binder remain adhered to both the polymer of the UV or EB cured coating and to the separator.
  • additional ingredients may be mixed with the curable binder composition in various embodiments.
  • additional ingredients usable in the coatings of various embodiments include, but are not limited to, reactive diluents, dispersing agents, wetting agents, dark cure additives, alternative photoinitiators, co-initiators, solvents, blowing agents, crosslinkers, and combinations thereof.
  • Non-limiting examples of such additives are detailed in the Examples herein.
  • the coating may include one type of additional ingredient (e.g., one dispersing agent, wetting agent, dark cure additive, alternative photoinitiator, co-initiator, solvent, or blowing agent, etc.).
  • the coating may include combinations of two or more types of additional ingredients, including combinations of any two or more (e.g., dispersing agent and cationic photoinitiator; dispersing agent and solvent; photoinitiator and solvent; etc.), three or more (dispersing agent, photoinitiator and defoamer; dispersing agent, pH adjuster and crosslinker; dispersing agent, photoinitiator and solvent; etc.), four or more (dispersing agent, photoinitiator, co-initiator and solvent; etc.), five or more (dispersing agent, photoinitiator, co-initiator, pH adjuster and solvent; etc.), etc. of the types of additional ingredients described herein.
  • any two or more e.g., dispersing agent and cationic photoinitiator; dispersing agent and solvent; photoinitiator and solvent; etc.
  • three or more dispersing agent, photoinitiator and defoamer; dispersing agent, pH adjuster and cross
  • the slurry does not comprise a photoinitiator.
  • Illustrative reactive diluents useful as additional ingredients include, but are not limited to, isobornyl acryiate, polyethylene glycol diacryiate, hexaiiedioi diacrylate, alkyoxylatedhexanedioldiacrylate, and combinations thereof.
  • Examples of crosslinkers useful as additional ingredients include, but are not limited to, monofunctional acrylates, difunctional acrylates, multifunctional acrylates, other vinyl compounds, and combinations thereof.
  • acrylates may be linear, branched (e.g., 2-ethylhexyl acryiate, isostearyl acryiate, etc.), cyclic (e.g., dicyclopentanyl acryiate, n-vinyl caprolactam, etc.), or aromatic (e.g., phenoxyethylaerylate).
  • Illustrative difunctional and multifunctional acrylates include, but are not limited to, l,6 ⁇ hexandiodi(meth)acrylate, 1 ,9-hexandiodi(rneih)acrylate, tricyclodecanedimethanol diacrylate, and combinations thereof.
  • Illustrative photoinitiators useful as additional ingredients include, but are not limited to, benzopiienone, hydroxyacetopiie oiie, methylbenzophenone, 4-Plieiiylbenzopiienone, 4,4'- Bis(diethyl amino)benzophenone, Michler's Ketone, 4-(2-hydroxyethoxy)phenyl-(2-hydjroxy-2- metiiylpropyl)ketone, other benzophenone derivatives, benzyldimethyl ketal, 2-benzyl-2-N,N- dirnethylarnino-l-(4-moTpholinophenyl)-lbutanone, 2-mercaptobenzoxazole, camphorquinone, 2-hydroxy-2-methyl- 1 -(4-t-butyl)phenylpropan- 1 -none, 2 -methyl- 1 -[4-(methylthiophenyl)-2- morholmoprop
  • wetting agents useful as additional ingredients include, but are not limited to, acetone, isopropyi alcohol, dimethyl carbonate, and combinations thereof.
  • Still further embodiments are directed to a coated separator comprising a separator; and any of the UV or EB cured coatings discussed above adhered to at least one surface of the separator.
  • certain embodiments are directed to a coated separator comprising a separator; and a UV or EB cured coating adhered to at least one surface of the separator, said UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from one or more precursors selected from one or more monomers, one or more oligomers, or combinations thereof; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating.
  • inventions are directed to an electrochemical device having a coated separator comprising a separator; and any of the UV or EB cured coatings discussed above adhered to at least one surface of the separator.
  • certain embodiments are directed to an electrochemical device having a coated separator comprising a separator; and a UV or EB cured coating adhered to at least one surface of the separator, said UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from one or more precursors selected from one or more monomers, one or more oligomers, or combinations thereof; and a ceramic particulate material.
  • the ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating.
  • FIG. 1 Another embodiments are directed to a method of making a coated separator or an electrochemical device incorporating a coated separator, said method comprising: mixing a ceramic particulate material with a curable binder mixture comprising one or more monomers, one or more oligomers, or a combination thereof to form a slurry; applying the slurry to at least one surface of a separator to form a slurry coated separator; and subjecting the slurry coated separator to UV or EB radiation, thereby curing the curable binder mixture and forming a UV or EB cured matrix.
  • the UV or EB cured matrix adheres to at least one surface of the separator and the ceramic particulate material is distributed throughout the UV or EB cured matrix.
  • FIG. 2 illustrates a system on which the slurry application and curing process steps may be performed, with the porous separator film 2 being unwound from a first spool 7, coated with the slurry 8 using a liquid coater 9, passing the slurry coated film separator 10 under an optional blower/heater 11 to remove solvent (not shown), and then passing the slurry coated film separator 10 under a UV or EB source 12 (e.g., lamp(s)) to cure the slurry 8.
  • the coated separator 1 may then optionally be wound on a second spool 13.
  • the system does not have and/or utilize the optional blower/heater 11.
  • a method of making a coated separator according to certain embodiments comprises: combining and mixing a ceramic particulate material with a curable binder mixture comprising at least one selected from the group consisting of monomers, oligomers and combinations thereof to form a slurry (step 101); applying the slurry to at least one surface of a separator to form a slurry coated separator (step 102); and subjecting the slurry coated separator to UV or EB radiation (step 104), thereby curing the curable binder mixture.
  • the process may optionally include adding a solvent in step 101 to, for example, control consistency of the slurry.
  • the process may optionally include removing the solvent in optional step 103 before the slurry is cured in step 104.
  • the process may also include a step 105 of assembling a battery with the coated separator.
  • the battery may include, for example, an anode, cathode, electrolyte and the coated separator.
  • the illustrative process illustrated in FIG. 3 need not include every step, and the steps may be performed individually without performing the other steps.
  • conventional mixing technology may be used to prepare the slurry of the UV or EB curable binder components and the ceramic particles.
  • the slurry is then coated on the separator and cured using either UV actinic radiation or EB radiation.
  • the coating thickness of the slurry is nominally less than 10 ⁇ and usually less than 4 ⁇ .
  • a minimum slurry coating thickness is 0.1-0.3 ⁇ . In one or more embodiments, this minimum coating thickness is achieved using an offset press.
  • One or both sides of the separator are normally coated and the coatings UV or EB cured. UV curing refers to the spectrum from 200-500 nm.
  • UV lamps emit considerable energy in this region too, and well chosen "UV" photoinitiators absorb light at these frequencies.
  • the UV- Visible photoinitiators are especially well suited to this application as these long wave lengths are more capable of penetrating deeper into the liquid coating. This is extremely critical in some of the various embodiments because many of the thermally conductive particles are white and are very efficient at blocking UV light. For these applications, it is usually best to use lamps with output maximum in the UVC and visible ranges.
  • a mixture of photoinitiators is typically used to take advantage of any light that penetrates into the coating past the particles.
  • Water or solvent may also be added to the UV or EB curable binder composition to, for example, increase the porosity of the cured coating or to adjust the flow and rheology of the liquid coating to make it suited to different application methods.
  • slurry application methods include, but are not limited to: curtain coating, roll, gravure, flexographic, screen, rotary screen, letterpress, offset, slot die, and any other printing method suitable for coating film.
  • water or solvents are added to the binder, then they may be removed in some embodiments from the coating before UV or EB curing.
  • Some of the suitable solvents are those that have low toxicity, have minimal regulation, evaporate quickly and do not have a high affinity for the coating ingredients or the particles in the slurry.
  • solvents are available and may be used in various embodiments.
  • solvents usable in various embodiments include, but are not limited to, glycol ether and alcohols (e.g., isopropyl alcohol).
  • the solvent does not include NMP in certain embodiments. Forgoing the use of NMP eliminates the necessity of solvent capture and recycle, and thus, any cost and time associated with such processes.
  • Water or solvent, if utilized, may be present in the slurry in amounts of up to about 70%.
  • the solvent is present in the slurry in an amount between about 15 and 20%, between about 10 and 20%, or between about 5 and 20%.
  • the solvent is present in the slurry in an amount less than about 20%, less than about 15%, less than about 10%, or less than about 5%. Amounts of solvent or water less than about 20% allow rapid evaporation.
  • the separator includes a top surface and a bottom surface
  • applying the slurry to at least one surface of the separator to form a slurry coated separator comprises applying the slurry to the top surface or the bottom surface, but not to both the top surface and the bottom surface.
  • applying the slurry to at least one surface of the separator to form a slurry coated separator comprises applying the slurry to both the top surface and the bottom surface.
  • the slurry may be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof.
  • the slurry is applied as a continuous coat to the top surface and as a continuous coat to the bottom surface. In other embodiments, the slurry is applied as a pattern to the top surface and in a pattern to the bottom surface. In still other embodiments, the slurry is applied as a pattern to the top surface and as a continuous coat to the bottom surface. In further embodiments, the slurry is applied as a pattern to the bottom surface and as a continuous coat to the top surface.
  • the resulting slurry is applied on the polymeric separator as a continuous coat.
  • Illustrative application methods that can be used to apply this liquid slurry include, but are not limited to: roll coat, screen, curtain, gravure, reverse gravure, slot die, flexographic, letterpress, offset, and a combination thereof.
  • there is a brief drying period e.g., air or hot air across the web
  • the slurry is then exposed to UV actinic radiation or EB radiation to polymerize the resin and bind the ceramic particles to each other and to the separator.
  • a chilled roll is used during the UV or EB curing exposure.
  • the resulting slurry is printed on the separator in a pattern.
  • application methods that can be used to apply this liquid slurry in a printed pattern include, but are not limited to: screen, curtain coat, gravure, reverse gravure, flexographic, letterpress, offset, and a combination thereof.
  • Different printing methods are used to achieve coatings of different thickness and resolutions. The order of printing techniques listed is from thickest to thinnest as well as from coarsest to fineness of resolution. Printed patterns may require less airflow and drying as more surface is exposed.
  • the slurry is then exposed to UV actinic radiation or EB radiation to polymerize the resin and bind the ceramic particles to each other and to the separator.
  • a chilled roll is used during the UV or EB curing exposure.
  • One or both sides of the separator can be coated with this pattern print process.
  • the slurry comprises UV water-based matrix components and is printed on the separator in a pattern using flexographic printing.
  • the slurry comprises urethane and/or rubber matrix components and is printed on the separator in a pattern using offset printing.
  • the slurry comprises water-based matrix components and is printed on the separator in a pattern using an application method other than offset printing.
  • Prior art methods do not teach or utilize patterned cured separator coatings as set forth in the present disclosure. Applying the slurry to the separator in a pattern has many advantages. For instance, patterning the slurry allows for the use of less slurry (e.g., less binder and ceramic particulate material) and thus, a reduction in material costs. In some embodiments, the amount of binder used in the case of pattern coating is two times less than that used in the case of continuous coating. While providing the same safety benefits as a continuous coating, a pattern coating allows for improved coated separator porosity and increased slurry application rate, as compared to a continuous coating.
  • the separator of various embodiments is not particularly limited with regard to type, composition or form. However, the separator may be limited with regard to function. For example, in certain embodiments, the separator must at least be capable of serving as an electrical barrier between the cathode and the anode of an electrochemical device (e.g., a battery), while allowing ions (e.g., lithium ions) to flow through pores of the separator. In other words, when used in an electrochemical device (e.g., a battery), the separator must be an electrical barrier, but not an ionic barrier.
  • the separator has a shut-down mechanism.
  • the separator may be comprised of thermoplastic polymers that flow when exposed to heat. This heat-induced polymer flow causes pores in the separator to close, and thus, the separator becomes a barrier to ionic flow. Hence, in the event of mild or gradual overheating, the thermoplastic separator shuts the battery down.
  • the separator is configured to shut-down at a particular temperature. For example, in certain embodiments, the separator is configured to shut-down in response to being heated to a temperature of 100°C or higher.
  • the separator is configured to shut-down in response to being heated to a temperature of 105°C or higher, 110°C or higher, 115°C or higher, 120°C or higher, 125°C or higher, 130°C or higher, 135°C or higher, 140°C or higher, 145°C or higher, 150°C or higher, 155°C or higher, 160°C or higher, 165°C or higher, 170°C or higher, 175°C or higher, 180°C or higher, 185°C or higher, 190°C or higher, 195°C or higher, or 200°C or higher.
  • the upper shut-down temperature limit is the flammability of the particular electrolyte used or the battery casing.
  • the separator is configured to shut-down in response to being heated to a temperature from 100°C to 200°C, from 110°C to 200°C, from 120°C to 200°C, from 100°C to 140°C, from 110°C to 140°C, or from 120°C to 140°C.
  • the separator is configured to shut-down in response to being heated to a temperature of 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, 155°C, 160°C, 165°C, 170°C, 175°C, 180°C, 185°C, 190°C, 195°C, or 200°C.
  • the shut-down temperature depends on the particular polymer(s) used to make the separator. For example, the shut-down temperature of trilayer separators is often determined by the melting temperature of the center layer (e.g., polyethylene).
  • separators usable in various embodiments include, but are not limited to, polymeric membranes or film comprising polyethylene (PE), polypropylene (PP) or combinations thereof (e.g., coextruded blends of PE and PP).
  • the separator may have a single layer (e.g., a single polymeric film).
  • the separator may include two or more layers, including two or more, three or more, four or more, five or more, etc. layers.
  • the separator is a trilayer separator.
  • a non- limiting example of a trilayer separator is a PP ⁇ PE ⁇ PP trilayer separator.
  • the uncoated separator may have a thickness between about 5 and about 25 ⁇ . In certain embodiments, the thickness of the uncoated separator is between about 5 and about 20 ⁇ , between about 10 and about 20 ⁇ , between about 15 and about 20 ⁇ , between about 10 and about 25 ⁇ , or between about 15 and about 25 ⁇ .
  • the cured coating of various embodiments includes at least one type of curable binder mixture.
  • the cured coating may include combinations of two or more types of curable binder mixtures, including combinations of any two or more, three or more, four or more, five or more, etc. of the types of curable binder mixtures described herein.
  • curing may be carried out at a speed between about 5 and about 2000 ft/min. at room temperature.
  • An inert environment may be necessary, in some embodiments, if EB is used. However, in various embodiments using UV curing, an inert environment is not required.
  • radiation dosages between about 1 and about 100 kGy are suitable.
  • lamps may be powered between about 50 and about 1000 W/in.
  • the UV or EB cured coating is adhered to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the UV or EB cured coating is adhered to both the top surface and the bottom surface of the separator.
  • the UV or EB cured coating may be present on the separator as a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof.
  • the coated separator suppresses ionic flow through pores of the separator and remains electrically insulating in response to being heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.).
  • the ceramic particulate material remains bound to the UV or EB cured matrix and to the separator, and the coated separator maintains its shape while heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.).
  • the UV or EB cured matrix is nonionic.
  • the ceramic particulate material is bound to the UV or EB cured matrix, bound to the separator by the UV or EB cured matrix, and distributed uniformly throughout the UV or EB cured matrix.
  • ionic materials such as ionic polymer layers, which form channels/portals.
  • the ionic polymer layers themselves aid in ion transport and do not have a binding function. If anything, such ionic materials of the prior art bind the polymers to themselves. Charge and discharge rates of batteries using such separators of the prior art are limited because ions have to travel on the polymer.
  • the precursor mixture may comprise a water-based acrylic, water-based urethane, or combination thereof which is cured by a method other than UV or EB curing.
  • a cross-linking agent is necessary in order to obtain the chemical resistance to withstand the harsh electrolyte and lithium ion environment. Examples of common cross-linking agents for this type of chemistry include, but are not limited to, (poly)aziridine(s), metal driers, and peroxides.
  • UV or EB curing While the method not including UV or EB curing, certain embodiments which do not use UV or EB curing are not limited to any particular curing method.
  • a non-limiting example of a curing method suitable in various embodiments which do not use UV or EB curing is forced-air curing.
  • the slurry of the embodiments utilizing a curing method other than UV or EB curing may comprise the same type and amounts of ceramic particulate material as that of the UV or EB curing embodiments. These slurries may also be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof. In various embodiments, the slurry is applied to the separator in a printed pattern with a screen, curtain coat, gravure, reverse gravure, flexographic printer, letterpress, offset press, or a combination thereof. As discussed above, prior art methods do not teach or utilize patterned cured separator coatings as set forth in the present disclosure.
  • the cured coating is adhered to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the cured coating is adhered to both the top surface and the bottom surface of the separator.
  • UV or EB curing patterned separator coatings allows for a sharper, more defined pattern than curing patterned separator coatings via a curing method other than UV or EB curing. In certain embodiments, the sharper, more defined pattern obtained via UV or EB curing patterned separator coatings results in improved separator performance, as compared to that of patterned separator coatings cured via a method other than UV or EB curing.
  • the cured coating may have a thickness between about 0.1 and about 10 ⁇ .
  • the thickness of the cured coating is between about 2 and about 3 ⁇ , between about 2 and about 3 ⁇ , between about 2 and about 4 ⁇ , between about 2 and about 5 ⁇ , between about 2 and about 6 ⁇ , between about 2 and about 7 ⁇ , between about 2 and about 8 ⁇ , between about 2 and about 9 ⁇ .
  • the thickness of the cured coating is about 0.1 ⁇ , about 0.2 ⁇ , about 0.3 ⁇ , about 0.4 ⁇ , about 0.5 ⁇ , about 0.6 ⁇ , about 0.7 ⁇ , about 0.8 ⁇ , about 0.9 ⁇ , about 1 ⁇ , about 2 ⁇ , about 3 ⁇ , about 4 ⁇ , about 5 ⁇ , about 6 ⁇ , about 7 ⁇ , about 8 ⁇ , about 9 ⁇ , or about 10 ⁇ .
  • the cured coating may comprise more than one layer of coating, and each layer does not necessarily need to be the same.
  • the coated separator may include two or more layers of coating, including two or more, three or more, four or more, five or more, etc. layers of any of the coatings described herein. When multiple coating layers are applied, each layer does not necessarily have to be of the same thickness, composition, or form (e.g. patterned or continuous).
  • the cured coated separator may have a thickness between about 6 and about 30 ⁇ . In certain embodiments, the cured coated separator may have a thickness between about 6 and about 7 ⁇ , between about 6 and about 8 ⁇ , between about 6 and about 9 ⁇ , between about 6 and about 10 ⁇ , between about 6 and about 15 ⁇ , between about 6 and about 20 ⁇ , between about 6 and about 25 ⁇ , between about 10 and about 30 ⁇ , between about 15 and about 30 ⁇ , between about 20 and about 30 ⁇ , between about 25 and about 30 ⁇ , between about 10 and about 15 ⁇ , between about 10 and about 20 ⁇ , between about 10 and about 25 ⁇ .
  • the thickness of the cured coating is about 6 ⁇ , about 7 ⁇ , about 8 ⁇ , about 9 ⁇ , about 10 ⁇ , about 11 ⁇ , about 12 ⁇ , about 13 ⁇ , about 14 ⁇ , about 15 ⁇ , about 16 ⁇ , about 17 ⁇ , about 18 ⁇ , about 19 ⁇ ⁇ about 20 ⁇ , about 21 ⁇ , about 22 ⁇ , about 23 ⁇ , about 24 ⁇ , about 25 ⁇ , about 26 ⁇ , about 27 ⁇ , about 28 ⁇ , about 29 ⁇ , or about 30 ⁇ .
  • Example 1 Water-based, UV-Curable, Aluminum Oxide-Filled Coatings on a Separator
  • a water-based UV-curable binder composition was prepared and mixed with aluminum oxide powder in the proportions shown below in Table 1 to form a slurry.
  • Table 1 UV-curable, water-based binder with aluminum oxide powder
  • the trilayer separators of Samples 1 and 2 were pattern coated. As summarized in Table 2, the trilayer separator of Sample #1 was pattern coated on a single side with the coating of Table 1 , the trilayer separator of Sample #2 was pattern coated on both sides with the coating of Table 1, the trilayer separator of Sample #3 was continuous coated on a single side with the coating of Table 1, and the trilayer separator of Sample #4 was continuous coated on both sides with the coating of Table 1.
  • the continuous coatings were applied with a #1 K bar rod using an RK Control Koater.
  • the coatings were then cured on a Miltec MUVI conveyor with one single Miltec MPI- 400 lamp equipped with a Miltec 380-0004 UV bulb at a conveyor speed of 150 feet per minute.
  • Each resulting aluminum oxide-filled UV coating was 4-6 ⁇ thick.
  • the sample separators that were continuous coated on a single side had a resulting 4-6 ⁇ thick aluminum oxide-filled UV coating on that single side, and the sample separators that were continuous coated on both sides had a resulting 4-6 ⁇ thick aluminum oxide-filled UV coating per side.
  • the sample separators that were pattern coated on a single side had a resulting 2-4 ⁇ thick aluminum oxide-filled UV coating on that single side, and the sample separators that were pattern coated on both sides had a resulting 2-4 ⁇ thick aluminum oxide- filled UV coating per side.
  • FIGS. 4A, 4B and 4C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the uncoated reference separator.
  • FIGS. 5-8 illustrate the voltage profile of the coated sample separators. As shown in Table 2 and the voltage profiles (C/10) of FIGS. 4A and 5-8, the batteries utilizing the coated separators were capable of being charged and discharged and the charge and discharge capacities were similar to that of the control.
  • FIG. 1 A first figure.
  • FIG. 5 2.04 1.79 179 157 87 pattern
  • FIG. 6 1.95 1.73 181 161 89 pattern
  • FIG. 7 2.13 1.94 173 156 90 continuous
  • FIG. 8 2.15 1.82 184 156 84 continuous
  • Example 2 Another non-limiting example of a UV-curable water-based coating is set forth in Example 2.
  • Example 2 UV-Curable, Water-based Urethane Acrylate Coatings with Aluminum Oxide Powder on a Separator
  • a UV-curable, water-based urethane acrylate binder composition was prepared and mixed with aluminum oxide powder in the proportions shown below in Table 3 to form a slurry.
  • FIGS. 11A, 11B and 11C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #7.
  • the trilayer separator of Sample #7 was pattern coated on a single side with a 4-8 ⁇ thick coating of the aluminum oxide filled UV coating of Table 3.
  • Table 4 Coin Cell Test Results, UV ceramic water-based urethane acrylate,
  • FIGS. 12A, 12B and 12C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #8.
  • the trilayer separator of Sample #8 was pattern coated on both sides with an 8 ⁇ thick coating of the aluminum oxide filled UV coating of Table 3 per side.
  • Example 3 UV-Curable, Aluminum Oxide-Filled Rubber Acrylate Coatings on Separator
  • a UV-curable composition was prepared and mixed with aluminum oxide powder in the proportions shown below in Table 6 to form a slurry. This highly-filled product contains neither solvent nor water.
  • a continuous porous coating was made to the trilayer separator of Sample #6.
  • the trilayer separator of Sample #5 was pattern coated.
  • the trilayer separator of Sample #5 was pattern coated on both sides with the coating of Table 6, while the trilayer separator of Sample #6 was continuous coated on both sides with the coating of Table 6.
  • Double-sided continuous coatings were applied with a #1 K bar rod using an RK Control Koater.
  • the coatings were then cured on a Miltec MUVI conveyor with one single Miltec MPI-400 lamp equipped with a Miltec 380-0004 UV bulb at a conveyor speed of 150 feet per minute. This resulted in UV-cured aluminum oxide coatings that were 4-6 ⁇ - ⁇ per side.
  • Double-sided patterned coatings were achieved with a flexographic handproofer from Parmco.
  • the positions of the anilox and the rubber roller were reversed such that the applied pattern was that of the anilox and not the smooth coating that might result from the rubber roller.
  • a 200 line per inch (lpi) 5.3 bcm anilox was used. This resulted in a 2-4 ⁇ - ⁇ aluminum oxide filled UV coating per side.
  • FIGS. 9 and 10 illustrate the voltage profile of coated separator Samples #5 and #6, respectively. As shown in the voltage profiles (C/10) of FIGS. 9 and 10, the coin cell batteries utilizing the coated separators were capable of being charged and discharged.
  • the slurry of Table 6 was also applied to one side of a 25- ⁇ microporous PPYPEYPP trilayer separator using a Little Joe Proofer. This proofer mimics the offset printing process. In this case, a solid coating was applied with a 0.4 mil wedge plate used to maintain the coating thickness. This resulted in a uniform, thin, 1 ⁇ - ⁇ aluminum oxide filled UV coating on one side of the trilayer separator.
  • FIGS. 13 A, 13B and 13C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #9.
  • Results in Table 7 and Figure 13A demonstrate the coated separator functions in a lithium ion battery.
  • FIG. 13B shows this ceramic-rubber coated separator allows lithium-ion charging and discharging at 0.1C to 2C rates, and
  • FIG. 13C shows the battery fully charging and discharging over 50 cycles.
  • FIGS. 14A, 14B and 14C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #10.
  • Results in Table 8 and FIG. 14A demonstrate the coated separator functions in a lithium ion battery.
  • FIG. 14B shows this ceramic-rubber coated separator allows lithium-ion charge and discharge rates of 0.1 to 2C
  • FIG. 14C shows the battery charging and discharging over 50 cycles.
  • crosslink UV and other water-based polymers with chemical crosslinkers for greater adhesion and chemical resistance.
  • Table 9 shows an example of a water-based acrylic coating filled with aluminum oxide. In this case, zinc oxide is added to provide crosslinking of the acrylic resin.
  • FIGS. 15 A, 15B and 15C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #11.
  • Results in Table 10 and FIG. 15A demonstrate the single side coated separator (Sample #11) functions in a lithium ion battery.
  • FIG. 15B shows this coated separator allows lithium-ion charge and discharge rates from 0.1C to at least 2C, and
  • FIG. 15C shows the battery charging and discharging over 50 cycles.
  • FIGS. 16A, 16B and 16C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #12. Results in Table 11 and FIG. 16A demonstrate this type of two-sided coated separator (Sample #12) also functions in a lithium ion battery.
  • FIG. 16B shows this coated separator allows lithium-ion charge and discharge rates from 0.1C to at least 2C, and FIG. 16C shows the battery charging and discharging over 50 cycles.
  • a UV curable composition was prepared and mixed with aluminum oxide powder in the proportions shown below in Table 12 to form a slurry. This highly- filled product contains neither solvent nor water.
  • FIGS. 17A, 17B and 17C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #13.
  • Table 13 and FIG. 17A show the results of electrochemical half-cell testing.
  • Table 13 and FIG. 17A demonstrate that the NMC cathode -Li anode battery can be charged at C/10 with this coated separator.
  • FIG. 17B shows this ceramic-epoxy coated separator allows lithium-ion charge and discharge rates from 0.1C to at least 2C.
  • FIG. 17C shows the lithium ion half-cell battery charges and discharges over 50 cycles.
  • solvent may be necessary to reduce the viscosity of the UV epoxy in order to apply it with an anilox to mimic the flexographic and printing gravure processes.
  • Table 14 shows a slurry formula change according to one or more embodiments. In such slurry, a mixture of two solvents was added. One solvent evaporated rapidly and the other solvent evaporated slowly to avoid the coating drying on the anilox roll.
  • FIGS. 18A, 18B and 18C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #14. Results in Table 15 and FIG. 18A demonstrate this coated separator functions in a lithium ion battery.
  • FIG. 18B shows this coated separator allows lithium-ion charge and discharge rates from 0.1C to at least 2C, and FIG. 18C shows the battery charging and discharging with no issues over 50 cycles.
  • silicones include silicones.
  • the silicones may, for example, be terminated with acrylates, vinyls, cycloaliphatic epoxides, or a combination thereof.
  • a UV- curable cycloaliphatic is shown in Table 16.
  • FIGS. 19A, 19B and 19C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #15.
  • Results in Table 17 and FIG. 19A demonstrate the coated separator functions in a lithium ion battery.
  • FIG. 19B shows this coated separator allows lithium-ion charge and discharge rates from 0.1C to at least 2C, and
  • FIG. 19C shows the battery charging and discharging over 50 cycles.
  • Example 7 UV Urethane Coating.
  • UV-curable chemistries includes all forms of urethane acrylates.
  • the urethanes may, for example, be terminated with (meth)acrylates, vinyls, or a combination thereof.
  • a UV-curable ceramic coating formula is shown in Table 18.
  • the coated separators were tested in a NMC-Li metal half-cell.
  • FIGS. 20A, 20B and 20C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #16.
  • FIG. 21C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #17.
  • Results in Tables 19 and 20 and FIG. 20A (Sample #16 - single side continuous coating) and FIG. 21A (Sample #17 - single side pattern coating) demonstrate these UV-cured ceramic coated separators function in a lithium ion battery.
  • FIGS. 20B and 2 IB show these ceramic-urethane coated separators have the porosity to allow lithium-ion charge and discharge rates from 0.1C to at least 2C, and FIGS. 20C and 21C show the battery charging and discharging over 50 cycles.
  • Example 8 UV polyester Coating.
  • polyester acrylates include all forms of polyester acrylates.
  • the polyesters may, for example, be terminated with (meth)acrylates, vinyls, or a combination thereof.
  • a UV- curable polyester and urethane ceramic coating formula is shown in Table 21.
  • FIGS. 22A, 22B and 22C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #18. Electrochemical results in Table 22 and FIG. 22A demonstrate this coated separator functions in a lithium ion battery.
  • FIG. 22B shows this ceramic-polyester coated separator allows lithium-ion charge and discharge rates from 0.1C to at least 2C, and
  • FIG. 22C shows the battery charging and discharging over 50 cycles.
  • the present method is a faster and less expensive process for manufacturing a coated battery (e.g., lithium secondary battery) separator.
  • a coated battery e.g., lithium secondary battery
  • the present process is safer than prior art coating methods.
  • the present method is completely solvent free.
  • solvent is used, but a less toxic solvent and in a significantly lower amount than is used in prior art coating methods.
  • a completely harmless solvent water is used.
  • thermosetting network binding the ceramic particles to the cured binder matrix and to the separator.
  • the advantage of a thermosetting network is that it will not melt away and has much higher thermal resistance than what would be achieved with a thermoplastic network.
  • the present method may be integrated in-line with extrusion equipment. Because the present method reinforces the strength of the separator film, this in-line integration allows the production of thinner separators. A thinner separator with greater fire protection will result in a smaller battery and thinner separator will also have greater ionic conductivity due to the short path which results in faster charge and discharge cycles— all with less heat being generated in the battery.
  • the present embodiments may allow the coating to be applied before the separator is biaxially orientated to increase porosity. In this way, the coating could be applied, the film stretched and there would be less interference with the pores of the separator.
  • the battery will have more power, i.e., it is capable of charging and discharging faster than a separator coated with the same ceramic thickness but relying on solvent evaporative porosity to produce an ionic electrolyte path through the ceramic coating.
  • the present process allows for the coating of multiple layers so that there are no
  • lithium ion batteries are used to illustrate certain variations, various embodiments are suitable for the preparation of any battery disclosed herein, using any of the cured coated separator components disclosed herein. With the benefit of the present disclosure, one skilled in the art will recognize that various process parameters may need to be adjusted to compensate for the use of a different battery component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Laminated Bodies (AREA)

Abstract

Porous, electrically insulating, and electrochemically resistant surface coatings that strengthen and protect separators and that improve the operational safety of electrochemical devices using such separators, the use of ultraviolet (UV) or electron beam (EB) curable binders to secure an electrically insulating, porous, ceramic particle coating on separators, and methods of producing polymer-bound ceramic particle separator coatings, separators and electrochemical devices by UV or EB curing slurries of reactive liquid resins and ceramic particles.

Description

Polymer-Bound Ceramic Particle Battery Separator Coating
RELATED APPLICATION DATA
[001] This application claims priority to U.S. patent application serial number 14/335,367, filed July 18, 2014, and entitled "Polymer-Bound Ceramic Particle Battery Separator Coating," which claims priority to and the benefit of U.S. Provisional Application No. 61/892,885, filed October 18, 2013. Each of these priority applications are incorporated herein by reference in their entireties.
BACKGROUND
[002] Electrochemical devices, such as batteries, are widely used in portable and auxiliary power supplies. The basic working unit of a battery is an electrochemical cell. The electrochemical cell includes two electrodes (an anode and a cathode) and an electrolyte. The battery electrolyte may be a liquid, solid, or gel. The electrolyte provides a path for ions to flow from the cathode to the anode (charging) as well as for the ions to flow from the anode to the cathode (discharging). The battery will not work if the cathode and anode make electrical contact.
[003] A separator is used to "separate" the cathode from the anode, serving as an electrical barrier between the cathode and the anode. Although the separator is an electrical barrier, the separator may not be an ionic barrier. In some instances, to maximize ionic flow, the separator is as thin and as porous as possible. A separator may be a thin porous polymer film.
[004] Void spaces in the separator polymer are filled with electrolyte that also fills pores in the anode and cathode coatings. An organic alkyl carbonate containing selected lithium salts is one example of a liquid electrolyte. The electrolytes offer a high mobility of ions (e.g., lithium ions) and are designed to be chemically inert when exposed to the voltage potential at the cathode and anode surfaces.
[005] Due to its electrical storage capacity, the lithium secondary (rechargeable) battery has become a preferred electrical storage device for hybrid and electric vehicles, electric grid storage, and a multitude of portable consumer electronics such as laptop computers, cellphones, and hand tools. The higher storage capacity comes from a combination of higher voltage potential and greater energy density (ion density) within the electrode surfaces.
[006] With higher voltages and energy density comes greater risk of fire. The separator is a key component to preventing fire. Fire can occur if 1) the battery discharges so quickly that the corresponding heat melts or shrinks the separator, 2) physical damage to the battery causes the anode and cathode to touch, or 3) electrolytic plating (irreversible side reactions) cause lithium ions to plate lithium metal on the anode in such a way that over time they develop lithium growths (e.g., dendrites, spikes, etc.) on the anode that keep growing until they form a metallic bridge to the cathode.
[007] Example separator films include thermoplastic polypropylene (PP), polyethylene (PE), or coextruded blends of PE and PP. One of the advantages of the PE or PP separator is that these thermoplastic polymers flow when exposed to heat. This heat induced flow causes the pores in the separator to close. When the pores close, the separator is a barrier to ionic flow. So in cases of mild or gradual overheating states, the thermoplastic separator shuts the battery down.
[008] Thermoplastic PE-PP, however, have several disadvantages. Thermoplastic PE-PP separators are very similar in strength and heat resistance to that of a common kitchen sandwich bag. In the event of battery rupture, PE-PP separators provide insignificant mechanical strength; and in the event of fast discharge, PE-PP separators do not have the heat resistance to remain in place. In high heat conditions, the polymer separator can go from melting, to curling, depolymerization, and decomposition. As the polymer separator film curls or decomposes, the barrier between the cathode and anode vanishes. In this state, fire will break out if the battery cannot be shut down immediately.
[009] In view of fire safety considerations, a superior, porous, mechanically strong, heat resistant, and stable separator is desired, wherein the separator does not form cracks or cause short circuits due to shrinkage when the electrochemical cell is either heated or compressed.
BRIEF SUMMARY
[010] This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key or essential features. [Oil] Porous, electrically insulating (e.g., non-conductive), and electrochemically resistant surface coatings that strengthen and protect separators and that improve the operational safety of electrochemical devices using such separators are disclosed. Methods of making such coatings, separators and electrochemical devices by ultraviolet (UV) or electron beam (EB) curing slurries of reactive liquid resins (e.g., monomers and/or oligomers) and ceramic particles are further disclosed.
[012] One or more embodiments are directed to a UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from a UV water-based mixture or from one or more precursors selected from one or more monomers, one or more oligomers, or a combination of one or more monomers and one or more oligomers; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. In various embodiments, the ceramic particulate material is bound to the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating. In some embodiments, the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (A1203), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof, and the one or more precursors include a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane, acrylated rubber, acrylated monomer, cycloaliphatic epoxy terminated oligomers, cycloaliphatic epoxy terminated monomers, acrylated terminated oligomers, acrylated terminated monomers, or a combination thereof. In various embodiments, the UV or EB cured matrix is nonionic.
[013] Further embodiments are directed to a UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from a UV curable epoxy; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. In various embodiments, the ceramic particulate material is bound to the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating. In some embodiments, the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI2O3), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof. In various embodiments, the UV or EB cured matrix is nonionic.
[014] Further embodiments are directed to a UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from a UV curable silicone; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. In various embodiments, the ceramic particulate material is bound to the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating. In some embodiments, the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI2O3), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof. In various embodiments, the UV or EB cured matrix is nonionic.
[015] Further embodiments are directed to a UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from a UV curable urethane; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. In various embodiments, the ceramic particulate material is bound to the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating. In some embodiments, the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI2O3), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof. In various embodiments, the UV or EB cured matrix is nonionic.
[016] Further embodiments are directed to a UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from a UV curable rubber; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. In various embodiments, the ceramic particulate material is bound to the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating. In some embodiments, the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI2O3), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof. In various embodiments, the UV or EB cured matrix is nonionic.
[017] Further embodiments are directed to a UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from a UV curable thioester; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. In various embodiments, the ceramic particulate material is bound to the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating. In some embodiments, the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI2O3), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof. In various embodiments, the UV or EB cured matrix is nonionic.
[018] Various embodiments are directed to a coated separator comprising a separator; and any of the UV or EB cured coatings discussed above adhered to at least one surface of the separator. For instance, certain embodiments are directed to a coated separator comprising a separator; and a UV or EB cured coating adhered to at least one surface of the separator, said UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from one or more precursors selected from one or more monomers, one or more oligomers, or combinations thereof; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. In various embodiments, the ceramic particulate material is bound to the UV or EB cured matrix, bound to the separator by the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating. In some embodiments, the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI2O3), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof, and the one or more precursors include a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane, acrylated rubber, acrylated monomer, cycloaliphatic epoxy terminated oligomers, cycloaliphatic epoxy terminated monomers, acrylated terminated oligomers, acrylated terminated monomers, or a combination thereof. In various embodiments, the UV or EB cured matrix is nonionic. In some embodiments, the separator is a polymeric film. In certain embodiments, the separator is a trilayer separator. According to some embodiments, the UV or EB cured coating is adhered to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the UV or EB cured coating is adhered to both the top surface and the bottom surface of the separator. The UV or EB cured coating may be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof. According to various embodiments, the coated separator suppresses ionic flow through pores of the separator and stays electrically insulating in response to being heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.). In further embodiments, the ceramic particulate material remains bound to the UV or EB cured matrix and to the separator, and the coated separator maintains its shape while heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.).
[019] Certain embodiments are directed to a pattern coated separator comprising a separator; and any of the UV or EB cured coatings discussed above adhered to at least one surface of the separator in a pattern. For instance, certain embodiments are directed to a coated separator comprising a separator; and a UV or EB cured coating adhered to at least one surface of the separator in a pattern, said UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from one or more precursors selected from one or more monomers, one or more oligomers, or combinations thereof; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. In various embodiments, the ceramic particulate material is bound to the UV or EB cured matrix, bound to the separator by the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating. In some embodiments, the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI2O3), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof, and the one or more precursors include a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane, acrylated rubber, acrylated monomer, cycloaliphatic epoxy terminated oligomers, cycloaliphatic epoxy terminated monomers, acrylated terminated oligomers, acrylated terminated monomers, or a combination thereof. In various embodiments, the UV or EB cured matrix is nonionic. In some embodiments, the separator is a polymeric film. In other embodiments, the separator is a trilayer separator. According to certain embodiments, the UV or EB cured coating is adhered in a pattern to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the UV or EB cured coating is adhered to both the top surface and the bottom surface of the separator in a pattern. According to various embodiments, the pattern coated separator suppresses ionic flow through pores of the separator and stays electrically insulating in response to being heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.). In further embodiments, the ceramic particulate material remains bound to the patterned UV or EB cured matrix and to the separator, and the coated separator maintains its shape while heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.).
[020] Other embodiments are directed to an electrochemical device having a coated separator comprising a separator; and any of the UV or EB cured coatings discussed above adhered to at least one surface of the separator. For instance, certain embodiments are directed to an electrochemical device having a coated separator comprising a separator; and a UV or EB cured coating adhered to at least one surface of the separator, said UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from one or more precursors selected from one or more monomers, one or more oligomers, or combinations thereof; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. In various embodiments, the ceramic particulate material is bound to the UV or EB cured matrix, bound to the separator by the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating. In some embodiments, the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI2O3), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof, and the one or more precursors include a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane, acrylated rubber, acrylated monomer, cycloaliphatic epoxy terminated oligomers, cycloaliphatic epoxy terminated monomers, acrylated terminated oligomers, acrylated terminated monomers, or a combination thereof. In various embodiments, the UV or EB cured matrix is nonionic. In certain embodiments, the separator is a polymeric film. In some embodiments, the separator is a trilayer separator. According to certain embodiments, the UV or EB cured coating is adhered to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the UV or EB cured coating is adhered to both the top surface and the bottom surface of the separator. The UV or EB cured coating may be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof. According to various embodiments, the coated separator suppresses ionic flow through pores of the separator and stays electrically insulating in response to being heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.). In further embodiments, the ceramic particulate material remains bound to the UV or EB cured matrix and to the separator, and the coated separator maintains its shape while heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.). According to various embodiments, the electrochemical device includes an anode, a cathode, an electrolyte, a current collector, or a combination thereof. In certain embodiments, the electrochemical device is an alkali ion battery (e.g., a lithium ion battery). [021] Still other embodiments are directed to a lithium ion battery having a coated separator comprising a separator; and any of the UV or EB cured coatings discussed above adhered to at least one surface of the separator. For instance, certain embodiments are directed to a lithium ion battery having a coated separator comprising a separator; and a UV or EB cured coating adhered to at least one surface of the separator, said UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from one or more precursors selected from one or more monomers, one or more oligomers, or combinations thereof; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. In various embodiments, the ceramic particulate material is bound to the UV or EB cured matrix, bound to the separator by the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating. In some embodiments, the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (A1203), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof, and the one or more precursors include a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane, acrylated rubber, acrylated monomer, cycloaliphatic epoxy terminated oligomers, cycloaliphatic epoxy terminated monomers, acrylated terminated oligomers, acrylated terminated monomers, or a combination thereof. In various embodiments, the UV or EB cured matrix is nonionic. In certain embodiments, the separator is a polymeric film. In some embodiments, the separator is a trilayer separator. According to certain embodiments, the UV or EB cured coating is adhered to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the UV or EB cured coating is adhered to both the top surface and the bottom surface of the separator. The UV or EB cured coating may be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof. According to various embodiments, the coated separator suppresses ionic flow through pores of the separator and stays electrically insulating in response to being heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.). In further embodiments, the ceramic particulate material remains bound to the UV or EB cured matrix and to the separator, and the coated separator maintains its shape while heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.). According to various embodiments, the lithium ion battery includes an anode, a cathode, an electrolyte, a current collector, or a combination thereof.
[022] Various embodiments include a method of making each and any of the coated separators discussed above or any of the electrochemical devices incorporating any of the coated separators discussed above, said method comprising: mixing a ceramic particulate material with a curable binder mixture comprising one or more monomers, one or more oligomers, or a combination thereof to form a slurry; applying the slurry to at least one surface of a separator to form a slurry coated separator; and subjecting the slurry coated separator to UV or EB radiation, thereby curing the curable binder mixture and forming a UV or EB cured matrix. The UV or EB cured matrix adheres to at least one surface of the separator and the ceramic particulate material is distributed substantially throughout the UV or EB cured matrix. In some embodiments, the slurry further comprises a solvent, photoinitiator, free-radical initiator, dispersant, adhesion promoter, wetting agent, silane-coated particle, dark cure additive, co-initiator, blowing agent, or a combination thereof. In other embodiments, the slurry does not comprise a solvent. The slurry may be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof. In various embodiments, the slurry is applied to the separator in a printed pattern with a screen, curtain coat, gravure, reverse gravure, flexographic printer, letterpress, offset press, or a combination thereof. According to certain embodiments, the method may also include positioning the coated separator in an electrochemical device and then charging and discharging the electrochemical device. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. In various embodiments, the ceramic particulate material is bound to the UV or EB cured matrix, bound to the separator by the UV or EB cured matrix, and includes at least one thermally conductive material that is electrically insulating. In some embodiments, the ceramic particulate material is an aluminum oxide (e.g., aluminum oxide (AI2O3), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or a combination thereof, and the curable binder mixture includes a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane, acrylated rubber, acrylated monomer, cycloaliphatic epoxy terminated oligomers, cycloaliphatic epoxy terminated monomers, acrylated terminated oligomers, acrylated terminated monomers, or a combination thereof. In various embodiments, the UV or EB cured matrix is nonionic. In some embodiments, the separator is a polymeric film. In other embodiments, the separator is a trilayer separator. According to certain embodiments, the UV or EB cured coating is adhered to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the UV or EB cured coating is adhered to both the top surface and the bottom surface of the separator.
[023] Various embodiments are directed to a cured coating comprising: a polymeric material including a cured matrix comprising a crosslink reaction product from a precursor and a cross- linking agent; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. A wide variety of cross-linking agents are available and may be used in various embodiments. Illustrative cross-linking agents usable in various embodiments include, but are not limited to, (poly)aziridine(s), metal driers, or peroxides. In certain embodiments, the precursor is a water-based acrylic, a water-based urethane, or a combination thereof.
[024] Still further embodiments are directed to a coated separator comprising a separator; and a cured coating adhered to at least one surface of the separator, said cured coating comprising: a cured matrix comprising a crosslink reaction product from a precursor and a cross- linking agent; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. A wide variety of cross-linking agents are available and may be used in various embodiments. Illustrative cross-linking agents usable in various embodiments include, but are not limited to, (poly)aziridine(s), metal driers, or peroxides. In certain embodiments, the precursor is a water-based acrylic, a water-based urethane, or a combination thereof. According to some embodiments, the cured coating is adhered to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the cured coating is adhered to both the top surface and the bottom surface of the separator. The cured coating may be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof.
[025] Certain embodiments are directed to a pattern coated separator comprising a separator; and a cured coating adhered to at least one surface of the separator in a pattern, said cured coating comprising: a cured matrix comprising a crosslink reaction product from a precursor and a cross-linking agent; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. A wide variety of cross-linking agents are available and may be used in various embodiments. Illustrative cross-linking agents usable in various embodiments include, but are not limited to, (poly)aziridine(s), metal driers, or peroxides. In certain embodiments, the precursor is a water-based acrylic, a water-based urethane, or a combination thereof. According to certain embodiments, the cured coating is adhered in a pattern to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the cured coating is adhered to both the top surface and the bottom surface of the separator in a pattern.
[026] Other embodiments are directed to an electrochemical device having a coated separator comprising a separator; and a cured coating adhered to at least one surface of the separator, said cured coating comprising: a polymeric material including a cured matrix comprising a crosslink reaction product from a precursor and a cross-linking agent; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. A wide variety of cross-linking agents are available and may be used in various embodiments. Illustrative cross-linking agents usable in various embodiments include, but are not limited to, (poly)aziridine(s), metal driers, or peroxides. In certain embodiments, the precursor is a water-based acrylic, a water-based urethane, or a combination thereof. According to some embodiments, the cured coating is adhered to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the cured coating is adhered to both the top surface and the bottom surface of the separator. The cured coating may be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof. In some embodiments, the electrochemical device is an alkali ion battery (e.g., a lithium ion battery).
[027] Various embodiments include a method of making a coated separator or an electrochemical device incorporating a coated separator, said method comprising: mixing a curable binder mixture comprising a precursor and a cross-linking agent with a ceramic particulate material to form a slurry; applying the slurry to at least one surface of a separator to form a slurry coated separator; and curing the slurry coated separator, thereby curing the curable binder mixture. Various cross-linking agents are available and may be used in various embodiments. Illustrative cross-linking agents usable in various embodiments include, but are not limited to, (poly)aziridine(s), metal driers, or peroxides. In certain embodiments, the precursor is a water-based acrylic, a water-based urethane, or a combination thereof. The slurry may be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof. In various embodiments, the slurry is applied to the separator in a printed pattern with a screen, curtain coat, gravure, reverse gravure, flexographic printer, letterpress, offset press, or a combination thereof. According to certain embodiments, the method may also include positioning the coated separator in an electrochemical device and then charging and discharging the electrochemical device.
[028] Additional embodiments are described herein.
BRIEF DESCRIPTION OF THE DRAWINGS [029] Some embodiments are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings.
[030] FIG. 1 illustrates a cross-sectional view of a coated separator according to one or more embodiments.
[031] FIG. 2 is a schematic illustrating a system for coating a separator according to one or more embodiments.
[032] FIG. 3 is a flowchart illustrating steps for producing a battery having a coated separator according to one or more embodiments.
[033] FIG. 4A illustrates the voltage profile of an uncoated reference separator.
[034] FIG. 4B illustrates the charge rate performance of an uncoated reference separator.
[035] FIG. 4C illustrates the cycle performance of an uncoated reference separator.
[036] FIG. 5 illustrates the voltage profile of a coated separator according to one or more embodiments.
[037] FIG. 6 illustrates the voltage profile of a coated separator according to one or more embodiments.
[038] FIG. 7 illustrates the voltage profile of a coated separator according to one or more embodiments.
[039] FIG. 8 illustrates the voltage profile of a coated separator according to one or more embodiments.
[040] FIG. 9 illustrates the voltage profile of a coated separator according to one or more embodiments.
[041] FIG. 10 illustrates the voltage profile of a coated separator according to one or more embodiments.
[042] FIG. 11 A illustrates the voltage profile of a coated separator according to one or more embodiments. [043] FIG. 1 IB illustrates the charge rate performance of a coated separator according to one or more embodiments.
[044] FIG. l lC illustrates the cycle performance of a coated separator according to one or more embodiments.
[045] FIG. 12A illustrates the voltage profile of a coated separator according to one or more embodiments.
[046] FIG. 12B illustrates the charge rate performance of a coated separator according to one or more embodiments.
[047] FIG. 12C illustrates the cycle performance of a coated separator according to one or more embodiments.
[048] FIG. 13A illustrates the voltage profile of a coated separator according to one or more embodiments.
[049] FIG. 13B illustrates the charge rate performance of a coated separator according to one or more embodiments.
[050] FIG. 13C illustrates the cycle performance of a coated separator according to one or more embodiments.
[051] FIG. 14A illustrates the voltage profile of a coated separator according to one or more embodiments.
[052] FIG. 14B illustrates the charge rate performance of a coated separator according to one or more embodiments.
[053] FIG. 14C illustrates the cycle performance of a coated separator according to one or more embodiments.
[054] FIG. 15A illustrates the voltage profile of a coated separator according to one or more embodiments.
[055] FIG. 15B illustrates the charge rate performance of a coated separator according to one or more embodiments. [056] FIG. 15C illustrates the cycle performance of a coated separator according to one or more embodiments.
[057] FIG. 16A illustrates the voltage profile of a coated separator according to one or more embodiments.
[058] FIG. 16B illustrates the charge rate performance of a coated separator according to one or more embodiments.
[059] FIG. 16C illustrates the cycle performance of a coated separator according to one or more embodiments.
[060] FIG. 17A illustrates the voltage profile of a coated separator according to one or more embodiments.
[061] FIG. 17B illustrates the charge rate performance of a coated separator according to one or more embodiments.
[062] FIG. 17C illustrates the cycle performance of a coated separator according to one or more embodiments.
[063] FIG. 18A illustrates the voltage profile of a coated separator according to one or more embodiments.
[064] FIG. 18B illustrates the charge rate performance of a coated separator according to one or more embodiments.
[065] FIG. 18C illustrates the cycle performance of a coated separator according to one or more embodiments.
[066] FIG. 19A illustrates the voltage profile of a coated separator according to one or more embodiments.
[067] FIG. 19B illustrates the charge rate performance of a coated separator according to one or more embodiments.
[068] FIG. 19C illustrates the cycle performance of a coated separator according to one or more embodiments. [069] FIG. 20A illustrates the voltage profile of a coated separator according to one or more embodiments.
[070] FIG. 20B illustrates the charge rate performance of a coated separator according to one or more embodiments.
[071] FIG. 20C illustrates the cycle performance of a coated separator according to one or more embodiments.
[072] FIG. 21 A illustrates the voltage profile of a coated separator according to one or more embodiments.
[073] FIG. 2 IB illustrates the charge rate performance of a coated separator according to one or more embodiments.
[074] FIG. 21C illustrates the cycle performance of a coated separator according to one or more embodiments.
[075] FIG. 22A illustrates the voltage profile of a coated separator according to one or more embodiments.
[076] FIG. 22B illustrates the charge rate performance of a coated separator according to one or more embodiments.
[077] FIG. 22C illustrates the cycle performance of a coated separator according to one or more embodiments.
DETAILED DESCRIPTION
[078] Ultraviolet (UV) or electron beam (EB) curing slurries of reactive liquid resins (e.g., monomers and/or oligomers) and ceramic particles can be used to strengthen and protect separators and improve the operational safety of electrochemical devices using such separators. Presented herein are coated separators having dimensional stability at high temperature, a shutdown mechanism, high porosity, and mechanical strength. Such coated separators may be manufactured by an improved process using UV or EB cured materials to bind ceramic particle coatings to a polymeric membrane separator. [079] Reference now will be made in detail to various embodiments, one or more examples of which are set forth below. Each example is provided by way of explanation, not limitation of the disclosure. It will be apparent to those skilled in the art that various modifications and variations may be made without departing from the scope or spirit of the disclosure. For instance, features illustrated or described as part of one embodiment, may be used in another embodiment to yield a still further embodiment. Thus, it is intended that the disclosure cover such modifications and variations.
[080] Certain variations are directed to electrochemical device (e.g., lithium secondary battery) separators utilizing particular EB or actinic UV curable binders, and to methods for manufacturing the same. According to various embodiments, particular EB and/or UV curable materials may be utilized as binders in manufacturing coated separators having a thin ceramic coating layer, as the particular EB and/or UV curable materials demonstrate good adhesion to polymeric (e.g., polyethylene, polypropylene, or combinations thereof) separators upon curing, while providing the necessary resistance to harsh electrolytic material present in an electrochemical device and retaining the necessary separator porosity.
[081] Various embodiments are directed to a UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from one or more precursors selected from one or more monomers, one or more oligomers, or combinations thereof; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating.
[082] The UV or EB cured coating may be used to strengthen and protect separators and improve the operational safety of electrochemical devices using such separators. A cross sectional view of a coated separator 1 according to one or more embodiments is illustrated in FIG. 1. The porous separator film 2 of FIG. 1 is coated on both the top side 3 and bottom side 4 with ceramic particles 5 in a porous UV-cured binder 6.
[083] While the ceramic particles are not limited to any particular shape, round or rounded particles minimize tearing stresses of the fragile polymer (e.g., polyolefm) film of the separator when the battery is assembled as well as when the battery expands and contracts in normal operation. The ceramic particles 5 of FIG. 1 are examples of round or rounded particles. A UV or EB cured coating may have ceramic particles having all the same or similar shape in some embodiments. In other embodiments, the ceramic particles of a UV or EB cured coating may be of varying shapes. According to further embodiments, the ceramic particles of the coating on the top side of the separator may be a different shape than the ceramic particles of the coating on the bottom side of the separator. In some embodiments, the ceramic particles can be hollow to provide greater porosity to the final UV or EB cured coating. Examples of ceramic particle shapes usable in various embodiments include, but are not limited to, a simple sphere or a more complicated shape such as a zeolite.
[084] The size of the particles of the ceramic particulate material is largely limited by the thickness of the UV or EB cured coating. For instance, there may be no need to use particles that would significantly exceed the thickness of the coating. The actual particle size is determined in the design of the electrochemical device. For example, a temporary battery designed for single use may use a very thin coated separator (e.g., 1 μιη thickness) and thus, relatively small ceramic particles (e.g., 0.1 μιη) may be suitable. However, a power tool (high discharge) or a vehicle battery (high energy density) may require a long life and greater safety considerations and thus, some embodiments include a coated separator 25 μιη thick with 10 μιη ceramic particles in the coating. In some embodiments, the ceramic particles are all about the same size. In other embodiments, the ceramic particulate material contains particles of varying size. For instance, the porous UV-cured binder 6 of FIG. 1 is filled with ceramic particles 5 having different sizes. According to further embodiments, the ceramic particles of the coating on the top side of the separator may be a different size than the ceramic particles of the coating on the bottom side of the separator. Adding particles of different sizes increases particle to particle contact and the packing density, which increases the thermal conductivity and safety of the coating.
[085] In certain embodiments, the particles of the ceramic particulate material have a particle size of from about Inm to about 10 μιη. In other embodiments, the particles of the ceramic particulate material have a particle size of from about Inm to about 9.5 μιη, from about Inm to about 9 μιη, from about Inm to about 8.5 μιη, from about Inm to about 8 μιη, from about Inm to about 7.5 μιη, from about Inm to about 7 μιη, from about Inm to about 6.5 μιη, from about Inm to about 6 μιη, from about Inm to about 5.5 μιη, from about Inm to about 5 μιη, from about Inm to about 4.5 μιη, from about Inm to about 4 μιη, from about Inm to about 3.5 μιη, from about Inm to about 3 μιη, from about Inm to about 2.5 μιη, from about Inm to about 2 μιη, from about lnm to about 1.5 μηι, from about lnm to about 1 μιη, from about 2nm to about 10 μιη, from about 2nm to about 9.5 μιη, from about 2nm to about 9 μιη, from about 2nm to about 8.5 μιη, from about 2nm to about 8 μm, from about 2nm to about 7.5 μιη, from about 2nm to about 7 μιη, from about 2nm to about 6.5 μιη, from about 2nm to about 6 μιη, from about 2nm to about 5.5 μm, from about 2nm to about 5 μιη, from about 2nm to about 4.5 μιη, from about 2nm to about 4 μιη, from about 2nm to about 3.5 μιη, from about 2nm to about 3 μm, from about 2nm to about 2.5 μιη, from about 0.1 μιη to about 10 μm, from about 0.1 μιη to about 9.5 μιη, from about 0.1 μιη to about 9 μιη, from about 0.1 μm to about 8.5 μιη, from about 0.1 μιη to about 8 μιη, from about 0.1 μιη to about 7.5 μm, from about 0.1 μιη to about 7 μιη, from about 0.1 μιη to about 6.5 μιη, from about 0.1 μm to about 6 μιη, from about 0.1 μιη to about 5.5 μιη, from about 0.1 μιη to about 5 μm, from about 0.1 μιη to about 4.5 μιη, from about 0.1 μιη to about 4 μιη, from about 0.1 μm to about 3.5 μιη, from about 0.1 μιη to about 3 μιη, from about 0.1 μιη to about 2.5 μm, from about 0.1 μιη to about 2 μιη, from about 0.1 μιη to about 1.5 μιη, from about 0.1 μm to about 1 μιη, or a combination thereof.
[086] In some embodiments, the particles of the ceramic particulate material have a particle size of about 10 μιη, about 9.5 μιη, about 9 μιη, about 8.5 μιη, about 8 μιη, about 7.5 μιη, about 7 μιη, about 6.5 μιη, about 6 μιη, about 5.5 μιη, about 5 μιη, about 4.5 μm, about 4 μιη, about 3.5 μιη, about 3 μm, about 2.5 μιη, about 2 μm, about 1.5 μιη, about 1 μιη, about 0.9 μm, about 0.8 μιη, about 0.7 μm, about 0.6 μιη, about 0.5 μιη, about 0.4 μm, about 0.3 μιη, about 0.2 μm, about 0.1 μιη, about 0.09 μιη, about 0.08 μm, about 0.07 μιη, about 0.06 μm, about 0.05 μιη, about 0.04 μιη, about 0.03 μm, about 0.02 μιη, about 0.01 μm, about 1 nm, or a combination thereof.
[087] Various ceramic materials are available and may be used in various embodiments. According to certain embodiments, the ceramic particulate material comprises at least one thermally conductive material that is electrically insulating (e.g., having a resistance of at least 107 ohms). In various embodiments, the ceramic particulate material has an electrical conductivity less than that of the curable binder mixture and less than that of the uncoated separator film. In certain embodiments, the ceramic particles of the coating allow the thermal conductivity of the separator to be increased without increasing the electrical conductivity of the separator. Examples of ceramic materials usable in various embodiments include, but are not limited to, an aluminum oxide (e.g., aluminum oxide (AI2O3), aluminum oxide hydroxide, etc.), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, other compounds that are electrically insulating but have appreciable thermal conductivity, and combinations thereof. The cured coating of the various embodiments includes at least one type of ceramic material. In some embodiments, the cured coating may include combinations of two or more types of ceramic materials, including combinations of any two or more, three or more, four or more, five or more, etc. of the types of ceramic materials described herein. For example, in certain embodiments, the cured coating may include one of an aluminum oxide, silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, or another compound that is electrically insulating but has appreciable thermal conductivity. In other embodiments, the cured coating may include two ceramic materials (e.g., aluminum oxide (AI2O3) and aluminum oxide hydroxide, an aluminum oxide and silicon oxide, an aluminum oxide and silicon carbide, an aluminum oxide and titanium dioxide, an aluminum oxide and magnesium oxide, an aluminum oxide and boron nitride, an aluminum oxide and another compound that is electrically insulating but has appreciable thermal conductivity, silicon oxide and titanium dioxide, silicon oxide and magnesium oxide, etc.), three ceramic materials (e.g., aluminum oxide (AI2O3), silicon oxide, and aluminum oxide hydroxide; an aluminum oxide, silicon oxide, and silicon carbide; an aluminum oxide, silicon oxide, and titanium dioxide; an aluminum oxide, silicon oxide, and magnesium oxide; an aluminum oxide, silicon oxide, and boron nitride; an aluminum oxide, silicon oxide, and another compound that is electrically insulating but has appreciable thermal conductivity; silicon oxide, titanium dioxide, and magnesium oxide; etc.), four ceramic materials (e.g., aluminum oxide (AI2O3), silicon oxide, silicon carbide, and aluminum oxide hydroxide; an aluminum oxide, silicon oxide, silicon carbide, and titanium dioxide; an aluminum oxide, silicon oxide, silicon carbide, and magnesium oxide; an aluminum oxide, silicon oxide, silicon carbide, and boron nitride; an aluminum oxide, silicon oxide, silicon carbide, and another compound that is electrically insulating but has appreciable thermal conductivity; silicon oxide, silicon carbide, titanium dioxide, and magnesium oxide; silicon oxide, silicon carbide, titanium dioxide, and boron nitride; etc.), five ceramic materials (e.g., aluminum oxide (A1203), silicon oxide, silicon carbide, titanium dioxide, and aluminum oxide hydroxide; an aluminum oxide, silicon oxide, silicon carbide, titanium dioxide, and magnesium oxide; an aluminum oxide, silicon oxide, silicon carbide, titanium dioxide, and boron nitride; an aluminum oxide, silicon oxide, silicon carbide, titanium dioxide, and another compound that is electrically insulating but has appreciable thermal conductivity; etc.), six ceramic materials (e.g., aluminum oxide (AI2O3), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, and aluminum oxide hydroxide; an aluminum oxide, silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, and boron nitride; an aluminum oxide, silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, and another compound that is electrically insulating but has appreciable thermal conductivity; etc.), or seven ceramic materials (e.g., aluminum oxide (A1203), silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, and aluminum oxide hydroxide; an aluminum oxide, silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, and another compound that is electrically insulating but has appreciable thermal conductivity; etc.).
[088] The cured coating of various embodiments comprises ceramic particulate material in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In some embodiments, the cured coating comprises ceramic particulate material in an amount of from about 30 to about 95 weight percent, from about 30 to about 90 weight percent, from about 30 to about 85 weight percent, from about 30 to about 80 weight percent, from about 30 to about 75 weight percent, from about 30 to about 70 weight percent, from about 30 to about 65 weight percent, from about 30 to about 60 weight percent, from about 30 to about 55 weight percent, from about 30 to about 50 weight percent, from about 30 to about 45 weight percent, from about 30 to about 40 weight percent, from about 30 to about 35 weight percent, from about 40 to about 98 weight percent, from about 40 to about 95 weight percent, from about 40 to about 90 weight percent, from about 40 to about 85 weight percent, from about 40 to about 80 weight percent, from about 40 to about 75 weight percent, from about 40 to about 70 weight percent, from about 40 to about 65 weight percent, from about 40 to about 60 weight percent, from about 40 to about 55 weight percent, from about 40 to about 50 weight percent, from about 40 to about 45 weight percent, from about 50 to about 98 weight percent, from about 50 to about 95 weight percent, from about 50 to about 90 weight percent, from about 50 to about 85 weight percent, from about 50 to about 80 weight percent, from about 50 to about 75 weight percent, from about 50 to about 70 weight percent, from about 50 to about 65 weight percent, from about 50 to about 60 weight percent, from about 50 to about 55 weight percent, from about 60 to about 98 weight percent, from about 60 to about 95 weight percent, from about 60 to about 90 weight percent, from about 60 to about 85 weight percent, from about 60 to about 80 weight percent, from about 60 to about 75 weight percent, from about 60 to about 70 weight percent, from about 60 to about 65 weight percent, from about 70 to about 98 weight percent, from about 70 to about 95 weight percent, from about 70 to about 90 weight percent, from about 70 to about 85 weight percent, from about 70 to about 80 weight percent, from about 70 to about 75 weight percent, from about 80 to about 98 weight percent, from about 80 to about 95 weight percent, from about 80 to about 90 weight percent, from about 80 to about 85 weight percent, from about 90 to about 98 weight percent, from about 90 to about 95 weight percent, or from about 95 to about 98 weight percent. In certain embodiments, the cured coating comprises ceramic particulate material in an amount of about 30 weight percent, about 35 weight percent, about 40 weight percent, about 45 weight percent, about 50 weight percent, about 55 weight percent, about 60 weight percent, about 65 weight percent, about 70 weight percent, about 75 weight percent, about 80 weight percent, about 85 weight percent, about 90 weight percent, about 95 weight percent, about 96 weight percent, about 97 weight percent, or about 98 weight percent.
[089] In some embodiments, other solids may also be added to the ceramic particles in amounts of about 20 to about 95 weight percent based on the total weight of the cured coating to enhance lithium battery performance. In other embodiments, other solids may also be added to the ceramic particles in amounts of about 25 to about 95 weight percent, about 30 to about 95 weight percent, about 35 to about 95 weight percent, about 40 to about 95 weight percent, about 45 to about 95 weight percent, about 50 to about 95 weight percent, about 55 to about 95 weight percent, about 60 to about 95 weight percent, about 65 to about 95 weight percent, about 70 to about 95 weight percent, about 75 to about 95 weight percent, about 80 to about 95 weight percent, about 85 to about 95 weight percent, about 90 to about 95 weight percent, about 20 to about 30 weight percent, about 20 to about 40 weight percent, about 20 to about 50 weight percent, about 20 to about 60 weight percent, about 20 to about 70 weight percent, about 20 to about 80 weight percent, or about 20 to about 90 weight percent.
[090] Examples of other solids usable in various embodiments include, but are not limited to, silicon or lithium doped ceramic oxides. In some embodiments, the cured coating may include one other solid (e.g., a silicon doped ceramic oxide or a lithium doped ceramic oxide, etc.). In other embodiments, the cured coating may include combinations of two or more types of other solids, including combinations of any two or more (e.g., a silicon doped ceramic oxide and a lithium doped ceramic oxide, etc.), three or more, four or more, five or more, etc. of the types of other solids described herein.
[091] In certain embodiments, ceramic particles are mixed with a curable binder composition comprised of specific monomers and oligomers, which serve as precursors for the final crosslinked polymer binder, as well as photoinitiators, dispersants, adhesion promoters, wetting agents, or combinations thereof. Coated particles (e.g., silane-coated particles) may be utilized in various embodiments to enhance adhesion between the cured binder composition and the ceramic particle. [092] According to various embodiments, the UV or EB curable binder mixture can be selected from three generic classes: 1) UV-curable water-based, 2) UV-curable epoxy comprised of UV-curable silicone or UV-curable epoxy, and 3) UV-curable (meth)acrylates (e.g., acrylated urethanes, polyesters, rubbers, and thioesters), where "(meth)acrylates" refers to methacrylates, acrylates, acrylamides, acyloyl morpholines, vinyl esters, and combinations thereof.
[093] Examples of curable binder mixture components usable in various embodiments include, but are not limited to, an acrylated water-based resin blend, cycloaliphatic epoxy terminated oligomers and monomers and a cationic photoinitiator, acrylated terminated oligomers and monomers and a free-radical initiator, acrylated polyurethane, acrylated rubber, acrylated monomer and combinations thereof. The curable binder mixture of various embodiments includes at least one type of precursor component. In certain embodiments, the curable binder mixture includes one type of precursor component (e.g., one type of UV-curable water-based urethane, one type of acrylated polyurethane, one type of acrylated monomer, one type of acrylated rubber, one type of cycloaliphatic epoxy oligomer, one type of acrylic resin, one type of cycloaliphatic epoxy silicone, one type of polyester acrylate, one type of melamine acrylate, one type of aliphatic urethane acrylate, etc.). In other embodiments, the curable binder mixture may include combinations of two or more types of precursor components, including combinations of any two or more (e.g., cycloaliphatic epoxy terminated oligomers and monomers; acrylated monomer and acrylated rubber; acrylated terminated oligomers and monomers; etc.), three or more (e.g., polyester acrylate, aliphatic urethane acrylate, and acrylic resin; melamine acrylate, aliphatic urethane acrylate, and acrylic resin; etc.), four or more, five or more, etc. of the types of precursor components described herein. Mixtures of precursor ingredients can be used to optimize coating properties, such as flexibility, toughness, elongation, particle adhesion, separator adhesion, porosity, and ionic conductivity. One non-limiting example of precursors that benefit from mixtures of such is acrylated ingredients.
[094] According to certain embodiments, the UV or EB cured coating may comprise rubber polymers (e.g., polyisoprene-based rubbers, polybutadiene-based rubbers, etc.). Examples of curable binder mixture components useful in the production of a rubber polymer-based UV or EB cured coating include, but are not limited to, isoprene, butadiene, cyclopentadiene, ethylidene norbomene, vinyl norbornene, and combinations thereof. In some embodiments, the curable binder mixture components may be functionalized to include reactive groups (e.g., carboxylate, acrylate, vinyl, vinyl ether, or epoxy groups) that enhance ceramic particle adhesion and/or improve UV or EB induced crosslinking.
[095] The rubber polymer is not limited to any particular polymeric backbone. In one or more embodiments, the UV or EB cured coating may comprise a rubber polymer having an isoprene backbone with one or more reactive functional groups. Illustrative rubber polymer backbones include, but are not limited to, a carboxylated methacrylated isoprene backbone, a carboxylated methacrylated butadiene backbone, a butadiene backbone, and combinations thereof. In certain embodiments, the UV or EB cured coating may comprise multiple different polymeric backbone segments (e.g., isoprene-butadiene copolymers).
[096] In one or more embodiments, cycloaliphatic epoxy terminated oligomers and monomers and a cationic photoinitiator are included in the resin mixture. This mixture is mixed with non-basic ceramic sand, applied to a separator, and UV or EB cured on the separator. The cycloaliphatic epoxy terminal group can be on virtually any polymeric backbone. In certain embodiments, the polymeric backbone is a hydrocarbon or silicone backbone. Mixtures of cycloaliphatic epoxy ingredients also can be selected to optimize coating properties, such as flexibility, toughness, elongation, particle adhesion, separator adhesion, and ionic conductivity.
[097] In some embodiments, an acrylated water based resin blend is mixed with ceramic particles, applied to a separator, and UV or EB cured on the separator.
[098] In other embodiments, acrylated terminated oligomers and monomers and free-radical initiators are included in the resin mixture. This resin mixture is mixed with ceramics, applied to a separator, and UV or EB cured on the separator. In certain embodiments, the acrylated composition is EB cured and thus, the photoinitiator is unnecessary and should not be included in the formulation.
[099] The acrylated terminal group can be on virtually any polymeric backbone. In certain embodiments, the polymeric backbone can resist hot electrolyte and not react with ions (e.g., lithium ions). Illustrative backbones include, but are not limited to, rubbers, silicones, thioesters, acrylics, styrene acrylics, urethanes, fluorinated hydrocarbons, hydrocarbons, and polyesters.
[0100] In certain embodiments, polyvinylidene fluoride (PVDF) binder is not used. PVDF requires dissolution in N-methyl-2-pyrrolidone (NMP), a dangerous solvent. When used, NMP must be captured and recycled in certain situations, as it is too dangerous for workers to breath and a hazardous pollutant that cannot be exhausted into the environment.
[0101] Further, various embodiments do not primarily utilize thermoplastic binder to hold ceramic particles in place. When the melt point of the thermoplastic is reached, the ceramic particles would be free to move. In contrast, the ceramic particles of various present embodiments lacking thermoplastic binder remain adhered to both the polymer of the UV or EB cured coating and to the separator.
[0102] As discussed above, additional ingredients may be mixed with the curable binder composition in various embodiments. Illustrative additional ingredients usable in the coatings of various embodiments include, but are not limited to, reactive diluents, dispersing agents, wetting agents, dark cure additives, alternative photoinitiators, co-initiators, solvents, blowing agents, crosslinkers, and combinations thereof. Non-limiting examples of such additives are detailed in the Examples herein. In some embodiments, the coating may include one type of additional ingredient (e.g., one dispersing agent, wetting agent, dark cure additive, alternative photoinitiator, co-initiator, solvent, or blowing agent, etc.). In other embodiments, the coating may include combinations of two or more types of additional ingredients, including combinations of any two or more (e.g., dispersing agent and cationic photoinitiator; dispersing agent and solvent; photoinitiator and solvent; etc.), three or more (dispersing agent, photoinitiator and defoamer; dispersing agent, pH adjuster and crosslinker; dispersing agent, photoinitiator and solvent; etc.), four or more (dispersing agent, photoinitiator, co-initiator and solvent; etc.), five or more (dispersing agent, photoinitiator, co-initiator, pH adjuster and solvent; etc.), etc. of the types of additional ingredients described herein. Most of these are minor ingredients and are likely to be in the range from about 0 to about 10% by weight, from about 0 to about 5% by weight, or from about 0 to about 2% by weight. In some embodiments, the slurry does not comprise a photoinitiator.
[0103] Illustrative reactive diluents useful as additional ingredients include, but are not limited to, isobornyl acryiate, polyethylene glycol diacryiate, hexaiiedioi diacrylate, alkyoxylatedhexanedioldiacrylate, and combinations thereof. Examples of crosslinkers useful as additional ingredients include, but are not limited to, monofunctional acrylates, difunctional acrylates, multifunctional acrylates, other vinyl compounds, and combinations thereof. If used, acrylates may be linear, branched (e.g., 2-ethylhexyl acryiate, isostearyl acryiate, etc.), cyclic (e.g., dicyclopentanyl acryiate, n-vinyl caprolactam, etc.), or aromatic (e.g., phenoxyethylaerylate). Illustrative difunctional and multifunctional acrylates include, but are not limited to, l,6~hexandiodi(meth)acrylate, 1 ,9-hexandiodi(rneih)acrylate, tricyclodecanedimethanol diacrylate, and combinations thereof.
[0104] Illustrative photoinitiators useful as additional ingredients include, but are not limited to, benzopiienone, hydroxyacetopiie oiie, methylbenzophenone, 4-Plieiiylbenzopiienone, 4,4'- Bis(diethyl amino)benzophenone, Michler's Ketone, 4-(2-hydroxyethoxy)phenyl-(2-hydjroxy-2- metiiylpropyl)ketone, other benzophenone derivatives, benzyldimethyl ketal, 2-benzyl-2-N,N- dirnethylarnino-l-(4-moTpholinophenyl)-lbutanone, 2-mercaptobenzoxazole, camphorquinone, 2-hydroxy-2-methyl- 1 -(4-t-butyl)phenylpropan- 1 -none, 2 -methyl- 1 -[4-(methylthiophenyl)-2- morholmopropanone, maleimides, 2,4,5-triraethylbenzol.y-diphenyl phosphine oxides, bis(2,6- dimethyloxybenzoyl) 2,4,4-trimethylpentyl)phospbine oxide, bis(2,4,6-trimethylbenzoyl)- pheny lphosphineoxide, propanone photoinitiators (e.g., oligo(2-hydroxy-2-methyl- 1 -[4-(l - n ethylvinyl)phenyl]propanone, 2-hydroxy-2-methyl-l-phenylpropan-l-one, and combinations thereof), oxide photoinitiators (e.g., bis(2,4,6-trimethylbenzoyl)), polymeric photoimtiators derived from the above photoinitiators, and combinations thereof.
[0105] Examples of wetting agents useful as additional ingredients include, but are not limited to, acetone, isopropyi alcohol, dimethyl carbonate, and combinations thereof.
[0106] Still further embodiments are directed to a coated separator comprising a separator; and any of the UV or EB cured coatings discussed above adhered to at least one surface of the separator. For instance, certain embodiments are directed to a coated separator comprising a separator; and a UV or EB cured coating adhered to at least one surface of the separator, said UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from one or more precursors selected from one or more monomers, one or more oligomers, or combinations thereof; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating.
[0107] Other embodiments are directed to an electrochemical device having a coated separator comprising a separator; and any of the UV or EB cured coatings discussed above adhered to at least one surface of the separator. For instance, certain embodiments are directed to an electrochemical device having a coated separator comprising a separator; and a UV or EB cured coating adhered to at least one surface of the separator, said UV or EB cured coating comprising: a polymeric material including a UV or EB cured matrix comprising a crosslink reaction product from one or more precursors selected from one or more monomers, one or more oligomers, or combinations thereof; and a ceramic particulate material. The ceramic particulate material may be present in the cured coating in an amount of from about 30 to about 98 weight percent based on the total weight of the cured coating. In certain embodiments, the ceramic particulate material may be present in the cured coating in an amount of from about 40 to about 95 weight percent based on the total weight of the cured coating. Other embodiments are directed to a method of making a coated separator or an electrochemical device incorporating a coated separator, said method comprising: mixing a ceramic particulate material with a curable binder mixture comprising one or more monomers, one or more oligomers, or a combination thereof to form a slurry; applying the slurry to at least one surface of a separator to form a slurry coated separator; and subjecting the slurry coated separator to UV or EB radiation, thereby curing the curable binder mixture and forming a UV or EB cured matrix. The UV or EB cured matrix adheres to at least one surface of the separator and the ceramic particulate material is distributed throughout the UV or EB cured matrix.
[0108] FIG. 2 illustrates a system on which the slurry application and curing process steps may be performed, with the porous separator film 2 being unwound from a first spool 7, coated with the slurry 8 using a liquid coater 9, passing the slurry coated film separator 10 under an optional blower/heater 11 to remove solvent (not shown), and then passing the slurry coated film separator 10 under a UV or EB source 12 (e.g., lamp(s)) to cure the slurry 8. The coated separator 1 may then optionally be wound on a second spool 13. In certain embodiments, the system does not have and/or utilize the optional blower/heater 11.
[0109] A method of making a coated separator according to certain embodiments is shown in FIG. 3. Said method comprises: combining and mixing a ceramic particulate material with a curable binder mixture comprising at least one selected from the group consisting of monomers, oligomers and combinations thereof to form a slurry (step 101); applying the slurry to at least one surface of a separator to form a slurry coated separator (step 102); and subjecting the slurry coated separator to UV or EB radiation (step 104), thereby curing the curable binder mixture. The process may optionally include adding a solvent in step 101 to, for example, control consistency of the slurry. In the event a solvent is added in step 101, the process may optionally include removing the solvent in optional step 103 before the slurry is cured in step 104. The process may also include a step 105 of assembling a battery with the coated separator. The battery may include, for example, an anode, cathode, electrolyte and the coated separator. The illustrative process illustrated in FIG. 3 need not include every step, and the steps may be performed individually without performing the other steps.
[0110] According to various embodiments, conventional mixing technology may be used to prepare the slurry of the UV or EB curable binder components and the ceramic particles. The slurry is then coated on the separator and cured using either UV actinic radiation or EB radiation. In various embodiments, the coating thickness of the slurry is nominally less than 10 μιη and usually less than 4 μιη. In certain embodiments, a minimum slurry coating thickness is 0.1-0.3 μιη. In one or more embodiments, this minimum coating thickness is achieved using an offset press. One or both sides of the separator are normally coated and the coatings UV or EB cured. UV curing refers to the spectrum from 200-500 nm. Although 400-460 nm is technically in the purple-blue visible, UV lamps emit considerable energy in this region too, and well chosen "UV" photoinitiators absorb light at these frequencies. The UV- Visible photoinitiators are especially well suited to this application as these long wave lengths are more capable of penetrating deeper into the liquid coating. This is extremely critical in some of the various embodiments because many of the thermally conductive particles are white and are very efficient at blocking UV light. For these applications, it is usually best to use lamps with output maximum in the UVC and visible ranges. A mixture of photoinitiators is typically used to take advantage of any light that penetrates into the coating past the particles.
[0111] Water or solvent may also be added to the UV or EB curable binder composition to, for example, increase the porosity of the cured coating or to adjust the flow and rheology of the liquid coating to make it suited to different application methods. Examples of different slurry application methods include, but are not limited to: curtain coating, roll, gravure, flexographic, screen, rotary screen, letterpress, offset, slot die, and any other printing method suitable for coating film. If water or solvents are added to the binder, then they may be removed in some embodiments from the coating before UV or EB curing. Some of the suitable solvents are those that have low toxicity, have minimal regulation, evaporate quickly and do not have a high affinity for the coating ingredients or the particles in the slurry. Various solvents are available and may be used in various embodiments. Examples of solvents usable in various embodiments include, but are not limited to, glycol ether and alcohols (e.g., isopropyl alcohol). As discussed above, the solvent does not include NMP in certain embodiments. Forgoing the use of NMP eliminates the necessity of solvent capture and recycle, and thus, any cost and time associated with such processes.
[0112] Water or solvent, if utilized, may be present in the slurry in amounts of up to about 70%. In some embodiments, the solvent is present in the slurry in an amount between about 15 and 20%, between about 10 and 20%, or between about 5 and 20%. In certain embodiments, the solvent is present in the slurry in an amount less than about 20%, less than about 15%, less than about 10%, or less than about 5%. Amounts of solvent or water less than about 20% allow rapid evaporation.
[0113] In various embodiments, the separator includes a top surface and a bottom surface, and applying the slurry to at least one surface of the separator to form a slurry coated separator comprises applying the slurry to the top surface or the bottom surface, but not to both the top surface and the bottom surface. In other embodiments, applying the slurry to at least one surface of the separator to form a slurry coated separator comprises applying the slurry to both the top surface and the bottom surface. The slurry may be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof. In some embodiments, the slurry is applied as a continuous coat to the top surface and as a continuous coat to the bottom surface. In other embodiments, the slurry is applied as a pattern to the top surface and in a pattern to the bottom surface. In still other embodiments, the slurry is applied as a pattern to the top surface and as a continuous coat to the bottom surface. In further embodiments, the slurry is applied as a pattern to the bottom surface and as a continuous coat to the top surface.
[0114] In some embodiments, the resulting slurry is applied on the polymeric separator as a continuous coat. Illustrative application methods that can be used to apply this liquid slurry include, but are not limited to: roll coat, screen, curtain, gravure, reverse gravure, slot die, flexographic, letterpress, offset, and a combination thereof. In some embodiments, there is a brief drying period (e.g., air or hot air across the web) to drive the water or solvent off and produce a porous liquid coating. The slurry is then exposed to UV actinic radiation or EB radiation to polymerize the resin and bind the ceramic particles to each other and to the separator. In one or more embodiments, a chilled roll is used during the UV or EB curing exposure. One or both sides of the separator can be coated with this continuous coat process. [0115] In various embodiments, the resulting slurry is printed on the separator in a pattern. Examples of application methods that can be used to apply this liquid slurry in a printed pattern include, but are not limited to: screen, curtain coat, gravure, reverse gravure, flexographic, letterpress, offset, and a combination thereof. Different printing methods are used to achieve coatings of different thickness and resolutions. The order of printing techniques listed is from thickest to thinnest as well as from coarsest to fineness of resolution. Printed patterns may require less airflow and drying as more surface is exposed. After application, the slurry is then exposed to UV actinic radiation or EB radiation to polymerize the resin and bind the ceramic particles to each other and to the separator. In one or more embodiments, a chilled roll is used during the UV or EB curing exposure. One or both sides of the separator can be coated with this pattern print process.
[0116] In certain embodiments, the slurry comprises UV water-based matrix components and is printed on the separator in a pattern using flexographic printing. In other embodiments, the slurry comprises urethane and/or rubber matrix components and is printed on the separator in a pattern using offset printing. According to some embodiments, the slurry comprises water-based matrix components and is printed on the separator in a pattern using an application method other than offset printing.
[0117] Prior art methods do not teach or utilize patterned cured separator coatings as set forth in the present disclosure. Applying the slurry to the separator in a pattern has many advantages. For instance, patterning the slurry allows for the use of less slurry (e.g., less binder and ceramic particulate material) and thus, a reduction in material costs. In some embodiments, the amount of binder used in the case of pattern coating is two times less than that used in the case of continuous coating. While providing the same safety benefits as a continuous coating, a pattern coating allows for improved coated separator porosity and increased slurry application rate, as compared to a continuous coating.
[0118] The separator of various embodiments is not particularly limited with regard to type, composition or form. However, the separator may be limited with regard to function. For example, in certain embodiments, the separator must at least be capable of serving as an electrical barrier between the cathode and the anode of an electrochemical device (e.g., a battery), while allowing ions (e.g., lithium ions) to flow through pores of the separator. In other words, when used in an electrochemical device (e.g., a battery), the separator must be an electrical barrier, but not an ionic barrier. A variety of separators are commercially available and suitable in various embodiments. In certain embodiments, the separator has a shut-down mechanism. For example, the separator may be comprised of thermoplastic polymers that flow when exposed to heat. This heat-induced polymer flow causes pores in the separator to close, and thus, the separator becomes a barrier to ionic flow. Hence, in the event of mild or gradual overheating, the thermoplastic separator shuts the battery down. In some embodiments, the separator is configured to shut-down at a particular temperature. For example, in certain embodiments, the separator is configured to shut-down in response to being heated to a temperature of 100°C or higher. In other embodiments, the separator is configured to shut-down in response to being heated to a temperature of 105°C or higher, 110°C or higher, 115°C or higher, 120°C or higher, 125°C or higher, 130°C or higher, 135°C or higher, 140°C or higher, 145°C or higher, 150°C or higher, 155°C or higher, 160°C or higher, 165°C or higher, 170°C or higher, 175°C or higher, 180°C or higher, 185°C or higher, 190°C or higher, 195°C or higher, or 200°C or higher. In various embodiments, the upper shut-down temperature limit is the flammability of the particular electrolyte used or the battery casing. In certain embodiments, the separator is configured to shut-down in response to being heated to a temperature from 100°C to 200°C, from 110°C to 200°C, from 120°C to 200°C, from 100°C to 140°C, from 110°C to 140°C, or from 120°C to 140°C. In other embodiments, the separator is configured to shut-down in response to being heated to a temperature of 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, 155°C, 160°C, 165°C, 170°C, 175°C, 180°C, 185°C, 190°C, 195°C, or 200°C. The shut-down temperature, according to various embodiments, depends on the particular polymer(s) used to make the separator. For example, the shut-down temperature of trilayer separators is often determined by the melting temperature of the center layer (e.g., polyethylene).
[0119] Examples of separators usable in various embodiments include, but are not limited to, polymeric membranes or film comprising polyethylene (PE), polypropylene (PP) or combinations thereof (e.g., coextruded blends of PE and PP). In some embodiments, the separator may have a single layer (e.g., a single polymeric film). In other embodiments, the separator may include two or more layers, including two or more, three or more, four or more, five or more, etc. layers. In certain embodiments, the separator is a trilayer separator. A non- limiting example of a trilayer separator is a PP\PE\PP trilayer separator.
[0120] The uncoated separator may have a thickness between about 5 and about 25 μιη. In certain embodiments, the thickness of the uncoated separator is between about 5 and about 20 μηι, between about 10 and about 20 μηι, between about 15 and about 20 μηι, between about 10 and about 25 μηι, or between about 15 and about 25 μηι.
[0121] The cured coating of various embodiments includes at least one type of curable binder mixture. In some embodiments, the cured coating may include combinations of two or more types of curable binder mixtures, including combinations of any two or more, three or more, four or more, five or more, etc. of the types of curable binder mixtures described herein.
[0122] In cases where no light can penetrate to the base of the coating, then electron beam curing can be used. High energy electrons (75-300 kV) with a dosage of about 10 to about 40 kGy can penetrate the liquid slurry and cure the coating all the way to the separator (e.g., polyolefm film or trilayer separator).
[0123] In certain embodiments, curing may be carried out at a speed between about 5 and about 2000 ft/min. at room temperature. An inert environment may be necessary, in some embodiments, if EB is used. However, in various embodiments using UV curing, an inert environment is not required.
[0124] In various embodiments, radiation dosages between about 1 and about 100 kGy are suitable. In certain embodiments, lamps may be powered between about 50 and about 1000 W/in.
[0125] According to various embodiments, the UV or EB cured coating is adhered to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the UV or EB cured coating is adhered to both the top surface and the bottom surface of the separator. The UV or EB cured coating may be present on the separator as a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof. According to various embodiments, the coated separator suppresses ionic flow through pores of the separator and remains electrically insulating in response to being heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.). In further embodiments, the ceramic particulate material remains bound to the UV or EB cured matrix and to the separator, and the coated separator maintains its shape while heated to a temperature of 100°C or higher (e.g., 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, etc.). [0126] According to various embodiments, the UV or EB cured matrix is nonionic. In certain embodiments, the ceramic particulate material is bound to the UV or EB cured matrix, bound to the separator by the UV or EB cured matrix, and distributed uniformly throughout the UV or EB cured matrix. This is distinct from prior art methods using ionic materials, such as ionic polymer layers, which form channels/portals. The ionic polymer layers themselves aid in ion transport and do not have a binding function. If anything, such ionic materials of the prior art bind the polymers to themselves. Charge and discharge rates of batteries using such separators of the prior art are limited because ions have to travel on the polymer.
[0127] Certain embodiments do not require the use of UV or EB curing. For example, the precursor mixture may comprise a water-based acrylic, water-based urethane, or combination thereof which is cured by a method other than UV or EB curing. Such embodiments are useful in the case where the press does not have the equipment for UV or EB curing. However, in one or more embodiments which do not use UV or EB curing, in order to obtain the chemical resistance to withstand the harsh electrolyte and lithium ion environment, a cross-linking agent is necessary. Examples of common cross-linking agents for this type of chemistry include, but are not limited to, (poly)aziridine(s), metal driers, and peroxides. Beyond the method not including UV or EB curing, certain embodiments which do not use UV or EB curing are not limited to any particular curing method. A non-limiting example of a curing method suitable in various embodiments which do not use UV or EB curing is forced-air curing.
[0128] The slurry of the embodiments utilizing a curing method other than UV or EB curing may comprise the same type and amounts of ceramic particulate material as that of the UV or EB curing embodiments. These slurries may also be applied to the separator in a continuous coat, a pattern, or a combination thereof, and may completely or partially cover the top surface of the separator, bottom surface of the separator, or a combination thereof. In various embodiments, the slurry is applied to the separator in a printed pattern with a screen, curtain coat, gravure, reverse gravure, flexographic printer, letterpress, offset press, or a combination thereof. As discussed above, prior art methods do not teach or utilize patterned cured separator coatings as set forth in the present disclosure. According to some embodiments, the cured coating is adhered to the top surface or the bottom surface of the separator, but not to both the top surface and the bottom surface. In other embodiments, the cured coating is adhered to both the top surface and the bottom surface of the separator. [0129] According to various embodiments, UV or EB curing patterned separator coatings allows for a sharper, more defined pattern than curing patterned separator coatings via a curing method other than UV or EB curing. In certain embodiments, the sharper, more defined pattern obtained via UV or EB curing patterned separator coatings results in improved separator performance, as compared to that of patterned separator coatings cured via a method other than UV or EB curing.
[0130] One of the great disadvantages of prior art technology is the separator coating process. Such prior art coating process utilizes a PVDF binder and is extremely slow. It is much slower than the co-extrusion and biaxial orientation processes used to make the separator. Hence, the coating process becomes an off-line process. In fact, the solvent evaporation process of the prior art requires multiple lines (each longer than a football field) to keep up with each extruder. This is an extremely capital intensive process that requires a lot of people, equipment, and real estate to operate. Because the binder of various present embodiments cures instantly, various present embodiments overcome some of the time and economic constraints of other separator coating methods. Previous coating methods required a drying oven with an associated drying time. The faster the coating/drying, the longer the oven must be and therefore the larger the capital cost.
[0131] According to various embodiments, the cured coating may have a thickness between about 0.1 and about 10 μιη. In certain embodiments, the thickness of the cured coating is between about 2 and about 3 μιη, between about 2 and about 3 μιη, between about 2 and about 4 μιη, between about 2 and about 5 μιη, between about 2 and about 6 μιη, between about 2 and about 7 μιη, between about 2 and about 8 μιη, between about 2 and about 9 μιη. In some embodiments, the thickness of the cured coating is about 0.1 μιη, about 0.2 μιη, about 0.3 μιη, about 0.4 μιη, about 0.5 μιη, about 0.6 μιη, about 0.7 μιη, about 0.8 μιη, about 0.9 μιη, about 1 μιη, about 2 μιη, about 3 μιη, about 4 μιη, about 5 μιη, about 6 μιη, about 7 μιη, about 8 μιη, about 9 μιη, or about 10 μιη. The cured coating may comprise more than one layer of coating, and each layer does not necessarily need to be the same. In some embodiments, the coated separator may include two or more layers of coating, including two or more, three or more, four or more, five or more, etc. layers of any of the coatings described herein. When multiple coating layers are applied, each layer does not necessarily have to be of the same thickness, composition, or form (e.g. patterned or continuous).
[0132] According to various embodiments, the cured coated separator may have a thickness between about 6 and about 30 μιη. In certain embodiments, the cured coated separator may have a thickness between about 6 and about 7 μηι, between about 6 and about 8 μηι, between about 6 and about 9 μηι, between about 6 and about 10 μηι, between about 6 and about 15 μηι, between about 6 and about 20 μηι, between about 6 and about 25 μηι, between about 10 and about 30 μηι, between about 15 and about 30 μηι, between about 20 and about 30 μηι, between about 25 and about 30 μηι, between about 10 and about 15 μηι, between about 10 and about 20 μηι, between about 10 and about 25 μηι. In some embodiments, the thickness of the cured coating is about 6 μιη, about 7 μιη, about 8 μιη, about 9 μιη, about 10 μιη, about 11 μιη, about 12 μιη, about 13 μιη, about 14 μιη, about 15 μιη, about 16 μιη, about 17 μιη, about 18 μιη, about 19 μι ^ about 20 μιη, about 21 μιη, about 22 μιη, about 23 μιη, about 24 μιη, about 25 μιη, about 26 μιη, about 27 μιη, about 28 μιη, about 29 μιη, or about 30 μιη.
[0133] Various examples are set forth below. Each example is provided by way of explanation, not limitation of the disclosure. It will be apparent to those skilled in the art that various modifications and variations may be made without departing from the scope or spirit of the disclosure. For instance, features illustrated or described as part of one example, may be used in another example. Thus, it is intended that the disclosure cover such modifications and variations.
Examples
Example 1: Water-based, UV-Curable, Aluminum Oxide-Filled Coatings on a Separator
[0134] A water-based UV-curable binder composition was prepared and mixed with aluminum oxide powder in the proportions shown below in Table 1 to form a slurry.
Table 1 : UV-curable, water-based binder with aluminum oxide powder
Weight
Ingredient Manufacturer Chemical Description
%
Acrylated polyurethane dispersion
Ucecoat 7689 Cytec 16 mixture
Acrylated polyurethane dispersion
Ucecoat 7699 Cytec 16 mixture
Tego 750W Evonik Modified polymer dispersant 2.2
9038-95-3 Altana polysiloxane defoamer 0.2
Glycol ether Dow Chemical Solvent 2 N-methyldiethanolamine BASF co-initiator 0.8
Irgacure 500 BASF Photoinitiator 1.9
Irgacure 819-dw BASF Photoinitiator 0.9
Advanced
26R-020212UP2 Aluminum Oxide Power, 0.5-1 μιη 60
Materials, LLC
total 100
[0135] The resulting slurry from Table 1 was applied on a 25-μιη microporous PPYPEYPP trilayer separator film designed for use in lithium ion batteries (CELGARD 2325). Single or double sided coatings were made to the various sample separators. As seen in Table 2, a coating was made to a single side of the trilayer separator of Samples 1 and 3. In contrast, the trilayer separators of Samples 2 and 4 were coated on both sides (e.g., double sided coatings). In addition, the coatings applied to the separators were either continuous porous coatings or patterned coatings. As seen in Table 2, a continuous porous coating was made to the trilayer separator of Samples 3 and 4. In contrast, the trilayer separators of Samples 1 and 2 were pattern coated. As summarized in Table 2, the trilayer separator of Sample #1 was pattern coated on a single side with the coating of Table 1 , the trilayer separator of Sample #2 was pattern coated on both sides with the coating of Table 1, the trilayer separator of Sample #3 was continuous coated on a single side with the coating of Table 1, and the trilayer separator of Sample #4 was continuous coated on both sides with the coating of Table 1.
[0136] The continuous coatings were applied with a #1 K bar rod using an RK Control Koater. The coatings were then cured on a Miltec MUVI conveyor with one single Miltec MPI- 400 lamp equipped with a Miltec 380-0004 UV bulb at a conveyor speed of 150 feet per minute. Each resulting aluminum oxide-filled UV coating was 4-6 μιη thick. For instance, the sample separators that were continuous coated on a single side had a resulting 4-6 μιη thick aluminum oxide-filled UV coating on that single side, and the sample separators that were continuous coated on both sides had a resulting 4-6 μιη thick aluminum oxide-filled UV coating per side.
[0137] The patterned coatings were achieved with a flexographic hand proofer from Pamarco.
The positions of the anilox and the rubber roller were reversed such that the applied pattern was that of the anilox and not the smooth coating that might result from the rubber roller. A 200 line per inch (lpi) 5.3 bcm anilox was used. This resulted in a 2-4 μι -ΐΐι^ aluminum oxide filled
UV coating. For instance, the sample separators that were pattern coated on a single side had a resulting 2-4 μιη thick aluminum oxide-filled UV coating on that single side, and the sample separators that were pattern coated on both sides had a resulting 2-4 μηι thick aluminum oxide- filled UV coating per side.
[0138] Both the ceramic coating resulting from continuous coating and the ceramic coating resulting from pattern coating appeared uniform, stable, and strongly adhered to the separator. Samples of coated and uncoated 25-μιη microporous PPYPEYPP trilayer separator films were placed in an oven at 100°C. The uncoated sample curled and showed signs of partial melting, becoming clear in spots. The coated samples remained flat and with very little curl.
[0139] An uncoated separator was assembled into an 18650 Lithium ion coin cell. The cathode was a standard 14 mg/cm2 NMC coated aluminum. The anode was lithium metal. The cell was charged and discharged at a C/10 rate. FIGS. 4A, 4B and 4C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the uncoated reference separator.
[0140] The coated separator samples were assembled into an 18650 Lithium ion coin cell. The cathode was a standard 14 mg/cm2 NMC coated aluminum. The anode was lithium metal. The cells were charged and discharged at a C/10 rate. FIGS. 5-8 illustrate the voltage profile of the coated sample separators. As shown in Table 2 and the voltage profiles (C/10) of FIGS. 4A and 5-8, the batteries utilizing the coated separators were capable of being charged and discharged and the charge and discharge capacities were similar to that of the control.
Table 2: Coin Cell Test Results, 25-um Microporous Trilayer PP/PE/PP Separator with and without UV-cured ceramic coatings
Voltage Charge, Discharge, Charge, Discharge,
Sample # Condition AhEff,%
Profile mAh mAh mAh/g mAh/g
FIG.
Control Uncoated 2.03 1.82 176 159 90
4A
Single
sided
1 FIG. 5 2.04 1.79 179 157 87 pattern
coated
Double
sided
2 FIG. 6 1.95 1.73 181 161 89 pattern
coated
Single
sided
3 FIG. 7 2.13 1.94 173 156 90 continuous
coated Double
sided
4 FIG. 8 2.15 1.82 184 156 84 continuous
coated
[0141] Another non-limiting example of a UV-curable water-based coating is set forth in Example 2.
Example 2: UV-Curable, Water-based Urethane Acrylate Coatings with Aluminum Oxide Powder on a Separator
[0142] A UV-curable, water-based urethane acrylate binder composition was prepared and mixed with aluminum oxide powder in the proportions shown below in Table 3 to form a slurry.
Figure imgf000040_0001
[0143] The resulting slurry from Table 3 was applied on 25-μιη microporous PPYPEYPP trilayer separator film (CELGARD 2325). Single-sided and double-sided patterned coatings were achieved with a 120 lpi trihelical anilox. As in Example 1, the coated separators were tested in a NMC-Lithium metal half-cell. Results in Tables 4 and 5 and FIGS. 11A and 12A demonstrate that the single-sided and double-sided ceramic pattern coated separators function in a lithium ion battery. FIGS. 11B and 12B show the coated separator allows lithium ion charging and discharging at rates from 0.1 to at least 2C. At these rates, the coating is not impeding ion flow over that of the uncoated separator (FIG. 4B). FIGS. 11C and 12C show the battery successfully charging and discharging over 50 cycles.
[0144] FIGS. 11A, 11B and 11C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #7. The trilayer separator of Sample #7 was pattern coated on a single side with a 4-8 μιη thick coating of the aluminum oxide filled UV coating of Table 3. Table 4: Coin Cell Test Results, UV ceramic water-based urethane acrylate,
single-sic ed pattern, coated separator compared to uncoated control separator
Charge, Discharge, Charge, Discharge,
Cycle # AhEff,%
mAh mAh mAh/g mAh/g
1 2.15 1.88 176 154 87
2 1.90 1.88 155 154
99
3 1.89 1.87 155 153
99
Control - uncoated separator
1 2.03 1.82 176 159 90
[0145] FIGS. 12A, 12B and 12C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #8. The trilayer separator of Sample #8 was pattern coated on both sides with an 8 μιη thick coating of the aluminum oxide filled UV coating of Table 3 per side.
Figure imgf000041_0001
Example 3: UV-Curable, Aluminum Oxide-Filled Rubber Acrylate Coatings on Separator
[0146] A UV-curable composition was prepared and mixed with aluminum oxide powder in the proportions shown below in Table 6 to form a slurry. This highly-filled product contains neither solvent nor water.
Table 6: UV-curable, acrylated rubber coating with aluminum oxide powder Weight
Ingredient Manufacturer Chemical Description
%
SR307 Sartomer Acrylated rubber 10
SR306 Sartomer Acrylated monomer 10
SR454 Sartomer Acrylated monomer 12
Solsperse 39000 Noveon Dispersant 3.5
TPO-L BASF Photoinitiator 0.5
Irgacure 1173 BASF Photoinitiator 4.0
26R- Advanced Materials,
Aluminum Oxide Power, 0.5-1 μιη 60
020212UP2 LLC
total 100
[0147] The resulting slurry from Table 6 was applied on a 25-μιη microporous PPYPEYPP trilayer separator film designed for use in lithium ion batteries (CELGARD 2325).
[0148] A continuous porous coating was made to the trilayer separator of Sample #6. In contrast, the trilayer separator of Sample #5 was pattern coated. The trilayer separator of Sample #5 was pattern coated on both sides with the coating of Table 6, while the trilayer separator of Sample #6 was continuous coated on both sides with the coating of Table 6.
[0149] Double-sided continuous coatings were applied with a #1 K bar rod using an RK Control Koater. The coatings were then cured on a Miltec MUVI conveyor with one single Miltec MPI-400 lamp equipped with a Miltec 380-0004 UV bulb at a conveyor speed of 150 feet per minute. This resulted in UV-cured aluminum oxide coatings that were 4-6 μιη-ΐΐιίΰΐί per side.
[0150] Double-sided patterned coatings were achieved with a flexographic handproofer from Parmco. The positions of the anilox and the rubber roller were reversed such that the applied pattern was that of the anilox and not the smooth coating that might result from the rubber roller. A 200 line per inch (lpi) 5.3 bcm anilox was used. This resulted in a 2-4 μιη-ΐΐιίΰΐί aluminum oxide filled UV coating per side.
[0151] Both the ceramic coating resulting from continuous coating and the ceramic coating resulting from pattern coating appeared uniform, stable, and strongly adhered to the separator. Samples of coated and uncoated 25-μιη microporous PPYPEYPP trilayer separator films were placed in an oven at 100°C. The uncoated sample curled and showed signs of partial melting, becoming clear in spots. The coated samples remained flat and with very little curl. [0152] An uncoated separator was assembled into an 18650 Lithium ion coin cell. The cathode was a standard 14 mg/cm2 NMC coated aluminum. The anode was lithium metal. The cell was charged and discharged at a C/10 rate. FIGS. 4A, 4B and 4C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the uncoated reference separator.
[0153] The coated separator samples were assembled into an 18650 Lithium ion coin cell. The cathode was a standard 14 mg/cm2 NMC coated aluminum. The anode was lithium metal. The cells were charged and discharged at a C/10 rate. FIGS. 9 and 10 illustrate the voltage profile of coated separator Samples #5 and #6, respectively. As shown in the voltage profiles (C/10) of FIGS. 9 and 10, the coin cell batteries utilizing the coated separators were capable of being charged and discharged.
[0154] In addition, the slurry of Table 6 was also applied to one side of a 25-μιη microporous PPYPEYPP trilayer separator using a Little Joe Proofer. This proofer mimics the offset printing process. In this case, a solid coating was applied with a 0.4 mil wedge plate used to maintain the coating thickness. This resulted in a uniform, thin, 1 μιη-ΐΐιίΰΐί aluminum oxide filled UV coating on one side of the trilayer separator.
[0155] As in the above examples, the coated separator (Sample #9) was tested in a NMC- Lithium metal half-cell. FIGS. 13 A, 13B and 13C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #9. Results in Table 7 and Figure 13A demonstrate the coated separator functions in a lithium ion battery. FIG. 13B shows this ceramic-rubber coated separator allows lithium-ion charging and discharging at 0.1C to 2C rates, and FIG. 13C shows the battery fully charging and discharging over 50 cycles.
Figure imgf000043_0001
Figure imgf000044_0001
[0156] The resulting slurry of Table 6 was also applied on a 25-μηι microporous PPYPEYPP trilayer separator (CELGARD 2325) using an anilox roller. A single-sided pattern coating was made. The patterned coatings were achieved with a 220 lpi pyramidal anilox. This resulted in a 3-8 μιη thick aluminum oxide filled UV coating.
[0157] As in the above examples, the coated separator (Sample #10) was tested in a NMC- Lithium metal half-cell. FIGS. 14A, 14B and 14C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #10. Results in Table 8 and FIG. 14A demonstrate the coated separator functions in a lithium ion battery. FIG. 14B shows this ceramic-rubber coated separator allows lithium-ion charge and discharge rates of 0.1 to 2C, and FIG. 14C shows the battery charging and discharging over 50 cycles.
Figure imgf000044_0002
Example 4: Cross-linked acrylic coating with Aluminum Oxide on Separator
[0158] In addition to UV crosslinking, some embodiments crosslink UV and other water-based polymers with chemical crosslinkers for greater adhesion and chemical resistance. Table 9 shows an example of a water-based acrylic coating filled with aluminum oxide. In this case, zinc oxide is added to provide crosslinking of the acrylic resin.
Figure imgf000044_0003
Figure imgf000045_0001
tota .
[0159] The resulting slurry from Table 9 was applied on a 25-μιη microporous PPYPEYPP trilayer separator film (CELGARD 2325). Single and double sided patterned coatings were made.
[0160] The patterned coatings were achieved with a flexographic hand proofer from Pamarco. The positions of the anilox and the rubber roller were reversed such that the applied pattern was that of the anilox and not the smooth coating that might result from the rubber roller. A 120 lpi, 21.5 bcm trihelical anilox was used. This resulted in a 4-8 μι -ΐΐι^ aluminum oxide filled UV coating. For example, separator Sample #1 1 was pattern coated on a single side with a 4-8 μιη- thick aluminum oxide filled UV coating, while separator Sample #12 was pattern coated on both sides with an 8 μι -ΐΐι^ aluminum oxide filled UV coating. The ceramic coatings of both Sample #11 and Sample #12 were stable and strongly adhered to the separator.
[0161] As in the above examples, the coated separator samples were tested in a NMC- Lithium metal half-cell. FIGS. 15 A, 15B and 15C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #11. Results in Table 10 and FIG. 15A demonstrate the single side coated separator (Sample #11) functions in a lithium ion battery. FIG. 15B shows this coated separator allows lithium-ion charge and discharge rates from 0.1C to at least 2C, and FIG. 15C shows the battery charging and discharging over 50 cycles.
Figure imgf000045_0002
3 1.87 1.85 156 155 99
Control - uncoated separator
1 2.03 1.82 176 159 90
[0162] FIGS. 16A, 16B and 16C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #12. Results in Table 11 and FIG. 16A demonstrate this type of two-sided coated separator (Sample #12) also functions in a lithium ion battery. FIG. 16B shows this coated separator allows lithium-ion charge and discharge rates from 0.1C to at least 2C, and FIG. 16C shows the battery charging and discharging over 50 cycles.
Figure imgf000046_0001
Example 5: UV Curable Aluminum Oxide Filled Cycloaliphatic Epoxy Coatings on Separator
[0163] A UV curable composition was prepared and mixed with aluminum oxide powder in the proportions shown below in Table 12 to form a slurry. This highly- filled product contains neither solvent nor water.
Table 12: UV Curable, Cycloaliphatic Epoxy coating with aluminum oxide powder
Weight
Chemical Chemical Description
%
3,4-Epoxycyclohexylmethyl 3,4-
Cycloaliphatic Epoxy oligomer 38 epoxycyclohexane carboxylate
Mixed Triarylsulfonium
Hexafluorophosphate Salts in 50% Cationic Photoinitiator 2 propylene carbonate
Figure imgf000047_0001
[0164] The resulting slurry from Table 12 was applied on a 25-μιη microporous PPYPEYPP trilayer separator film designed for use in lithium ion batteries (CELGARD 2325). This liquid slurry did not contain a dispersing agent and was much higher in viscosity (-15,000-25,000 cP) to allow letterpress or offset printing applications.
[0165] Single-sided continuous coatings were applied with Little Joe press to mimic an offset press application. A 0.4 mil wedge plate was used to maintain the coating thickness. The coatings were then cured on a Miltec MUVI conveyor with one single Miltec MPI-400 lamp equipped with a Miltec 380-0004 UV bulb at a conveyor speed of 150 feet per minute. This resulted in a continuous cured aluminum oxide coating with no pattern that was 4-8 μι -ΐΐι^ (Sample #13).
[0166] As in the above examples, the coated separator samples were tested in a NMC- Lithium metal half-cell. FIGS. 17A, 17B and 17C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #13. Table 13 and FIG. 17A show the results of electrochemical half-cell testing. Table 13 and FIG. 17A demonstrate that the NMC cathode -Li anode battery can be charged at C/10 with this coated separator. FIG. 17B shows this ceramic-epoxy coated separator allows lithium-ion charge and discharge rates from 0.1C to at least 2C. FIG. 17C shows the lithium ion half-cell battery charges and discharges over 50 cycles.
Figure imgf000047_0002
[0167] In certain embodiments, solvent may be necessary to reduce the viscosity of the UV epoxy in order to apply it with an anilox to mimic the flexographic and printing gravure processes. Table 14 shows a slurry formula change according to one or more embodiments. In such slurry, a mixture of two solvents was added. One solvent evaporated rapidly and the other solvent evaporated slowly to avoid the coating drying on the anilox roll.
Figure imgf000048_0001
[0168] The resulting slurry from Table 14 was applied on a 25-μιη microporous PPYPEYPP trilayer separator film (CELGARD 2325). A single-sided pattern coating was made. The patterned coating was achieved with a 220 lpi pyramidal anilox. This resulted in a 2-3 μιη-ΐΐιίΰΐί aluminum oxide filled UV coating (Sample #14).
[0169] As in the above examples, the coated separator was tested in a NMC-Li metal half-cell. FIGS. 18A, 18B and 18C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #14. Results in Table 15 and FIG. 18A demonstrate this coated separator functions in a lithium ion battery. FIG. 18B shows this coated separator allows lithium-ion charge and discharge rates from 0.1C to at least 2C, and FIG. 18C shows the battery charging and discharging with no issues over 50 cycles.
Figure imgf000048_0002
1 2.03 1.82 176 159 90
Example 6: UV Curable Silicone Coating.
[0170] Another example of the wide range of UV-curable chemistries that can be applied, according to various embodiments, includes silicones. The silicones may, for example, be terminated with acrylates, vinyls, cycloaliphatic epoxides, or a combination thereof. A UV- curable cycloaliphatic is shown in Table 16.
Figure imgf000049_0001
[0171] The resulting slurry from Table 16 was applied to a 25-μιη microporous PPYPEYPP trilayer separator film (CELGARD 2325). Single-sided pattern coatings were made. The patterned coatings were achieved with a 120 lpi trihelical anilox. This resulted in an 8 μιη-ΐΐιίΰΐί aluminum oxide filled UV coating (Sample #15).
[0172] As in the above examples, the coated separator was tested in a NMC-Li metal half-cell. FIGS. 19A, 19B and 19C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #15. Results in Table 17 and FIG. 19A demonstrate the coated separator functions in a lithium ion battery. FIG. 19B shows this coated separator allows lithium-ion charge and discharge rates from 0.1C to at least 2C, and FIG. 19C shows the battery charging and discharging over 50 cycles.
Figure imgf000049_0002
Figure imgf000050_0001
Example 7: UV Urethane Coating.
[0173] Another example of the wide range of UV-curable chemistries that can be applied, according to various embodiments, includes all forms of urethane acrylates. The urethanes may, for example, be terminated with (meth)acrylates, vinyls, or a combination thereof. A UV-curable ceramic coating formula is shown in Table 18.
Figure imgf000050_0002
[0174] The resulting slurry from Table 18 was applied on a 25-μιη microporous PPYPEYPP trilayer separator film (CELGARD 2325). A single-sided coating was made. The continuous and patterned coatings were achieved with a 150 lpi trihelical anilox. This resulted in a 9-14 μιη- thick aluminum oxide filled UV coating. For instance, the separator of Sample #16 was coated on a single side with a 9 μι -ΐΐι^ continuous coating of the UV ceramic urethane acrylate coating of Table 18, while the separator of Sample #17 was pattern coated on a single side with an 11 μι -ΐΐι^ coating of the UV ceramic urethane acrylate coating of Table 18.
[0175] As in the above examples, the coated separators were tested in a NMC-Li metal half-cell.
FIGS. 20A, 20B and 20C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #16. FIGS. 21A, 21B and
21C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #17. Results in Tables 19 and 20 and FIG. 20A (Sample #16 - single side continuous coating) and FIG. 21A (Sample #17 - single side pattern coating) demonstrate these UV-cured ceramic coated separators function in a lithium ion battery.
Figure imgf000051_0001
Figure imgf000051_0002
[0176] Both FIGS. 20B and 2 IB show these ceramic-urethane coated separators have the porosity to allow lithium-ion charge and discharge rates from 0.1C to at least 2C, and FIGS. 20C and 21C show the battery charging and discharging over 50 cycles.
Example 8: UV polyester Coating.
[0177] Another example of the wide range of UV-curable chemistries that can be applied, according to various embodiments, includes all forms of polyester acrylates. The polyesters may, for example, be terminated with (meth)acrylates, vinyls, or a combination thereof. A UV- curable polyester and urethane ceramic coating formula is shown in Table 21.
Figure imgf000052_0001
[0178] The resulting slurry from Table 21 was applied on a 25-μιη microporous PPYPEYPP trilayer separator film (CELGARD 2325). A single-sided pattern coating was made. The patterned coating was produced with a 165 lpi Pyramidal anilox. This resulted in a 9 μιη-ΐΐιίΰΐί aluminum oxide filled UV coating (Sample #18).
[0179] As in the above examples, the coated separator was tested in a NMC-Li metal half-cell. FIGS. 22A, 22B and 22C illustrate the voltage profile (C/10), charge rate performance and cycle performance (C/5), respectively, of the coated separator of Sample #18. Electrochemical results in Table 22 and FIG. 22A demonstrate this coated separator functions in a lithium ion battery. FIG. 22B shows this ceramic-polyester coated separator allows lithium-ion charge and discharge rates from 0.1C to at least 2C, and FIG. 22C shows the battery charging and discharging over 50 cycles.
Figure imgf000052_0002
2 1.76 1.75 158 157 99
3 1.76 1.74 158 156 99
Control - uncoated separator
1 2.03 1.82 176
159 90
[0180] Although aluminum oxide is used to illustrate certain variations, various embodiments are suitable for the preparation of any coated separator disclosed herein, using any of the ceramic particulate materials disclosed herein. With the benefit of the present disclosure, one skilled in the art will recognize that various process parameters may need to be adjusted to compensate for the use of a different ceramic particulate material.
[0181] While certain variations have been described with respect to specific formulations, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques that fall within the spirit and scope of the disclosure as set forth in the appended claims.
[0182] Various embodiments provide numerous advantages over the prior art, including, but not limited to:
1. The present method is a faster and less expensive process for manufacturing a coated battery (e.g., lithium secondary battery) separator.
2. The present process is safer than prior art coating methods. In some embodiments, the present method is completely solvent free. In another embodiment, solvent is used, but a less toxic solvent and in a significantly lower amount than is used in prior art coating methods. In yet another embodiment, a completely harmless solvent (water) is used.
3. The present UV or EB process creates a thermosetting network binding the ceramic particles to the cured binder matrix and to the separator. The advantage of a thermosetting network is that it will not melt away and has much higher thermal resistance than what would be achieved with a thermoplastic network.
4. The present method may be integrated in-line with extrusion equipment. Because the present method reinforces the strength of the separator film, this in-line integration allows the production of thinner separators. A thinner separator with greater fire protection will result in a smaller battery and thinner separator will also have greater ionic conductivity due to the short path which results in faster charge and discharge cycles— all with less heat being generated in the battery.
5. The present embodiments may allow the coating to be applied before the separator is biaxially orientated to increase porosity. In this way, the coating could be applied, the film stretched and there would be less interference with the pores of the separator.
6. Some present embodiments permit the use of patterned coatings or porous solid
coatings or a combination of the two. The use of patterned coatings applied with printing techniques produces a reproducible network of ceramic insulators on the separator. This has the advantage of minimizing interference with the pores in the separator. In this way, the battery will have more power, i.e., it is capable of charging and discharging faster than a separator coated with the same ceramic thickness but relying on solvent evaporative porosity to produce an ionic electrolyte path through the ceramic coating.
7. The present process allows for the coating of multiple layers so that there are no
straight-line paths from the anode to the cathode through the separator.
[0183] The disclosure is not to be limited in scope by the specific embodiments disclosed in the examples. The specific embodiments disclosed in the examples are intended as illustrations of a few aspects, and any embodiments that are functionally equivalent are within the scope of this disclosure. Indeed, various modifications of various embodiments in addition to those shown and described herein will become apparent and are intended to fall within the scope of the appended claims.
[0184] Although lithium ion batteries are used to illustrate certain variations, various embodiments are suitable for the preparation of any battery disclosed herein, using any of the cured coated separator components disclosed herein. With the benefit of the present disclosure, one skilled in the art will recognize that various process parameters may need to be adjusted to compensate for the use of a different battery component.
[0185] The terms used in the present specification shall be understood to have the meaning usually used in the field of art to which various embodiments pertain, unless otherwise specified. [0186] Where products are described herein as having, including, or comprising specific components, or where processes are described herein as having, including, or comprising specific process steps, it is contemplated that the products of various embodiments can also consist essentially of, or consist of, the recited components, and that the processes of various embodiments also consist essentially of, or consist of, the recited process steps.
[0187] Where a range of values is provided, each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure. For example, a numerical range of "1 to 5" should be interpreted to include not only the explicitly recited values of 1 and 5, but also individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3, 4, etc. and subranges such as from 1 to 3, from 2 to 4, from 3-5, etc. The listing of illustrative values or ranges is not a disclaimer of other values or ranges between and including the upper and lower limits of a given range.
[0188] Certain ranges are presented herein with numerical values being preceded by the term "about." The term "about" is used herein to provide literal support for the exact number that it precedes, as well as a number that is near to or approximately the number that the term precedes. In determining whether a number is near to or approximately a specifically recited number, the near or approximating unrequited number may be a number, which, in the context in which it is presented, provides the substantial equivalent of the specifically recited number.
[0189] It is noted that, as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural references unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as "solely," "only" and the like in connection with the recitation of claim elements, or use of a "negative" limitation. [0190] Each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the disclosure. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
[0191] The disclosure is not limited to particular embodiments described herein. Further, the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.

Claims

We Claim:
1. A coated separator comprising
a separator; and
a coating adhered to at least one surface of the separator, wherein the coating comprises
an ultra-violet (UV) or electron beam (EB) cured matrix comprising a crosslink reaction product from one or more precursors selected from one or more monomers, one or more oligomers, or combinations thereof; and
a ceramic particulate material.
2. The coated separator of claim 1, wherein the separator comprises a trilayer separator.
3. The coated separator of claim 1, wherein the ceramic particulate material comprises at least one ceramic material selected from the group consisting of aluminum oxide, silicon oxide, silicon carbide, titanium dioxide, magnesium oxide, boron nitride, and
combinations thereof.
4. The coated separator of claim 1, wherein the one or more precursors comprises a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane, acrylated rubber, acrylated monomer, cycloaliphatic epoxy terminated oligomers, cycloaliphatic epoxy terminated monomers, acrylated terminated oligomers, acrylated terminated monomers, or a combination thereof.
5. The coated separator of claim 1, wherein the UV or EB cured matrix is nonionic.
6. The coated separator of claim 1, wherein the ceramic particulate material is bound to the UV or EB cured matrix, bound to the separator by the UV or EB cured matrix, and distributed uniformly throughout the UV or EB cured matrix.
7. The coated separator of claim 1, wherein the separator includes a top surface and a
bottom surface, and wherein the coating is adhered to: the top surface or the bottom surface, but not to both the top surface and the bottom surface.
8. The coated separator of claim 1, wherein the coating is patterned on at least one surface of the separator.
9. The coated separator of claim 1, wherein the coating is electrically insulating.
10. The coated separator of claim 9, wherein the coated separator is configured to maintain its shape, suppress ionic flow through pores of the separator, and remain electrically insulating in response to the coated separator being heated to a temperature of higher than 100°C, higher than 110 °C, or higher than 120 °C.
11. The coated separator of claim 6, wherein the coated separator is configured such that the ceramic particulate material remains bound to the UV or EB cured matrix and to the separator while the coated separator is heated to a temperature of higher than 100°C, higher than 110 °C, or higher than 120 °C.
12. An electrochemical device comprising the coated separator of claim 1.
13. A method comprising:
mixing a ceramic particulate material with a curable binder mixture comprising one or more monomers, one or more oligomers, or a combination thereof to form a slurry; applying the slurry to at least one surface of a separator to form a slurry coated separator;
subjecting the slurry coated separator to ultraviolet (UV) or electron beam (EB) radiation, thereby curing the curable binder mixture and forming a UV or EB cured matrix, wherein the UV or EB cured matrix adheres to at least one surface of the separator and the ceramic particulate material is distributed throughout the UV or EB cured matrix.
14. The method according to claim 13, wherein the slurry further comprises a solvent, and the method further comprises removing the solvent from the slurry after applying the slurry to at least one surface of the separator.
15. The method according to claim 13, wherein the curable binder mixture comprises a UV water-based mixture, UV curable epoxy, UV curable silicone, UV curable urethane, UV curable rubber, UV curable thioester, acrylated water based resin blend, acrylated polyurethane, acrylated rubber, acrylated monomer, cycloaliphatic epoxy terminated oligomers, cycloaliphatic epoxy terminated monomers, acrylated terminated oligomers, acrylated terminated monomers, or a combination thereof.
16. The method according to claim 13, wherein the separator includes a top surface and a bottom surface, the method further comprising:
applying the slurry to the top surface or the bottom surface, but not to both the top surface and the bottom surface.
17. The method according to claim 13, wherein applying the slurry to at least one surface of the separator to form a slurry coated separator comprises applying the slurry in a pattern to at least one surface of the separator.
18. The method according to claim 13, wherein applying the slurry to at least one surface of the separator to form a slurry coated separator comprises applying the slurry in a printed pattern with a screen, curtain coat, gravure, reverse gravure, flexographic printer, letterpress, offset press, or a combination thereof.
19. The method according to claim 13, wherein the slurry further comprises a photoinitiator, free-radical initiator, dispersant, adhesion promoter, wetting agent, silane-coated particle, dark cure additive, co-initiator, blowing agent, or a combination thereof.
20. A method comprising:
assembling a cathode, an anode, electrolyte, and a coated separator to form a battery; the coated separator comprising a porous separator and a coating adhered to at least one surface of the separator; the coating comprising an ultra-violet (UV) or electron beam (EB) cured matrix comprising a crosslink reaction product from one or more precursors selected from one or more monomers, one or more oligomers, or combinations thereof, and a ceramic particulate material.
PCT/US2014/060656 2013-10-18 2014-10-15 Polymer-bound ceramic particle battery separator coating WO2015057815A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167012597A KR20160072162A (en) 2013-10-18 2014-10-15 Polymer-bound ceramic particle battery separator coating
CN201480067998.5A CN105849936B (en) 2013-10-18 2014-10-15 Polymer bonding ceramic particle battery separator coating
EP14853525.5A EP3058607B1 (en) 2013-10-18 2014-10-15 Polymer-bound ceramic particle battery separator coating
JP2016549195A JP6955867B2 (en) 2013-10-18 2014-10-15 Methods of Forming Electrochemical Devices, Coated Separator, and Electrochemical Devices

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361892885P 2013-10-18 2013-10-18
US61/892,885 2013-10-18
US14/335,367 US9680143B2 (en) 2013-10-18 2014-07-18 Polymer-bound ceramic particle battery separator coating
US14/335,367 2014-07-18

Publications (1)

Publication Number Publication Date
WO2015057815A1 true WO2015057815A1 (en) 2015-04-23

Family

ID=52826449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/060656 WO2015057815A1 (en) 2013-10-18 2014-10-15 Polymer-bound ceramic particle battery separator coating

Country Status (6)

Country Link
US (2) US9680143B2 (en)
EP (1) EP3058607B1 (en)
JP (2) JP6955867B2 (en)
KR (1) KR20160072162A (en)
CN (2) CN110120484A (en)
WO (1) WO2015057815A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3170217A4 (en) * 2014-07-18 2017-11-29 Miltec UV International, LLC Uv or eb cured polymer-bonded ceramic particle lithium secondary battery separators, method for the production thereof
CN108636737A (en) * 2018-04-12 2018-10-12 连云港海创电子科技有限公司 A kind of transfer coating type anti-corrosion method of polymer power lithium-ion battery material
US10811651B2 (en) 2013-10-18 2020-10-20 Miltec UV International, LLC Polymer-bound ceramic particle battery separator coating

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303871B2 (en) * 2014-06-30 2018-04-04 Tdk株式会社 Separator and lithium ion secondary battery
KR102297823B1 (en) * 2014-11-21 2021-09-02 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
KR101618681B1 (en) * 2014-12-30 2016-05-11 삼성에스디아이 주식회사 Composition for forming porous heat-resistance layer, separators comprising the porous heat-resistance layer, electrochemical battery using the separator, and method for preparing the separator
KR101551757B1 (en) * 2014-12-30 2015-09-10 삼성에스디아이 주식회사 Composition for forming porous heat-resistance layer, separators comprising the porous heat-resistance layer, electrochemical battery using the separator, and method for preparing the separator
KR101709697B1 (en) * 2014-12-30 2017-02-23 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
JP6403277B2 (en) 2015-06-30 2018-10-10 オートモーティブエナジーサプライ株式会社 Method for producing lithium ion secondary battery
KR20170114171A (en) * 2016-04-05 2017-10-13 현대자동차주식회사 Lithium Secondary Battery And Method of preparing
US11584861B2 (en) 2016-05-17 2023-02-21 Samsung Sdi Co., Ltd. Separator for rechargeable battery and rechargeable lithium battery including the same
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US11387520B2 (en) 2016-10-10 2022-07-12 Temple University-Of The Commonwealth System Of Higher Education Silanated silica-ceramic materials, and methods of making and using the same
JP6519570B2 (en) * 2016-11-17 2019-05-29 トヨタ自動車株式会社 Separator integrated electrode plate, electrode plate pair, laminated type storage element, and method of manufacturing separator integrated electrode plate
EP3340343B1 (en) * 2016-12-20 2022-11-23 Asahi Kasei Kabushiki Kaisha Separator for power storage device, and laminated body, roll and secondary battery using it
CN108630894A (en) * 2017-03-23 2018-10-09 株式会社东芝 Secondary cell, battery pack and vehicle
CN107910476B (en) * 2017-11-06 2021-09-03 上海恩捷新材料科技有限公司 Ceramic composite lithium ion battery diaphragm and preparation method thereof
CN108063209A (en) * 2017-11-25 2018-05-22 合肥国轩高科动力能源有限公司 Lithium ion battery ceramic diaphragm and preparation method thereof
KR20200032542A (en) * 2018-09-18 2020-03-26 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
JP7234654B2 (en) 2019-01-28 2023-03-08 株式会社リコー Electrode and its manufacturing method, electrode element, non-aqueous electrolyte storage element
CN113383458A (en) * 2019-04-01 2021-09-10 卡斯特姆赛尔斯伊策霍有限责任公司 Rechargeable lithium ion battery for wide temperature range and high temperature
US11094998B2 (en) * 2019-06-19 2021-08-17 GM Global Technology Operations LLC Ceramic-coated separators for lithium-containing electrochemical cells and methods of making the same
JP2021051905A (en) * 2019-09-25 2021-04-01 富士高分子工業株式会社 Heat conductive sheet for sealing material and heat-generating electrical/electronic part incorporated with the same
CN111029514B (en) * 2019-11-14 2021-09-28 珠海冠宇电池股份有限公司 Diaphragm and high-voltage battery comprising same
CN111509170A (en) * 2020-01-17 2020-08-07 江苏厚生新能源科技有限公司 Integrated ceramic-coated lithium battery diaphragm, preparation method thereof and ceramic coating
KR20210156798A (en) * 2020-06-18 2021-12-27 주식회사 엘지에너지솔루션 Manufacturing method of separator and the separator from thereof
US12002920B2 (en) * 2020-07-29 2024-06-04 Prologium Technology Co., Ltd. Method for suppressing thermal runaway of lithium batteries
US11682805B2 (en) 2020-07-29 2023-06-20 Prologium Technology Co., Ltd. Thermal runaway suppression element and the related applications
US20220037720A1 (en) * 2020-07-29 2022-02-03 Prologium Technology Co., Ltd. Thermal runaway suppressant of lithium batteries and the related applications
DE102020130489A1 (en) 2020-11-18 2022-05-19 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Separator for lithium-ion cell with high thermal conductivity
CN113161692A (en) * 2021-04-26 2021-07-23 乐凯胶片股份有限公司 Ceramic coating, ceramic coating diaphragm and preparation method and application thereof
CN114520398A (en) * 2022-02-28 2022-05-20 惠州锂威电子科技有限公司 Diaphragm, preparation method thereof and secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904437A (en) * 1973-09-21 1975-09-09 Union Carbide Corp Separator for zinc chloride cells
US20030180623A1 (en) 2001-01-31 2003-09-25 Kyung-Suk Yun Multi-layered, uv-cured polymer electrolyte and lithium secondary battery comprising the same
US20100015533A1 (en) * 2007-04-12 2010-01-21 Masaki Deguchi Non-aqueous electrolyte secondary battery
US20110027658A1 (en) 2009-07-29 2011-02-03 Hyundai Motor Company Method for preparing cross-linked ceramic-coated separator containing ionic polymer, ceramic-coated separator prepared by the method, and lithium secondary battery using the same
US20110081575A1 (en) * 2009-10-07 2011-04-07 Miltec Corporation Actinic and electron beam radiation curable electrode binders and electrodes incorporating same
US20110311855A1 (en) * 2009-09-03 2011-12-22 Shufu Peng Methods and systems for making separators and devices arising therefrom
WO2012053286A1 (en) 2010-10-21 2012-04-26 日立マクセルエナジー株式会社 Separator for electrochemical element, method for manufacturing same, electrode for electrochemical element, electrochemical element
US20120315384A1 (en) * 2011-06-07 2012-12-13 GM Global Technology Operations LLC Method of applying nonconductive ceramics on lithium-ion battery separators
US20130059192A1 (en) * 2011-09-05 2013-03-07 Sony Corporation Separator and nonaqueous electrolyte battery
WO2013107911A1 (en) * 2012-01-19 2013-07-25 Sihl Gmbh Separator comprising a porous layer and method for producing said separator

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086401A (en) 1975-12-17 1978-04-25 Aktiebolaget Tudor Electric storage battery separator
US4650730A (en) 1985-05-16 1987-03-17 W. R. Grace & Co. Battery separator
US5130342A (en) 1988-10-14 1992-07-14 Mcallister Jerome W Particle-filled microporous materials
US4906718A (en) * 1988-12-09 1990-03-06 Dow Corning Corporation Acrylate functional organosiloxane/oxyalkylene copolymers and electrically conductive compositions containing same and a solubilized lithium salt
JPH03157801A (en) * 1989-11-16 1991-07-05 Tdk Corp Magnetic recording and reproducing method
US5176968A (en) 1990-12-27 1993-01-05 Duracell Inc. Electrochemical cell
JPH05190208A (en) 1992-01-16 1993-07-30 Nippon Telegr & Teleph Corp <Ntt> Lithium secondary battery
US5427872A (en) 1993-11-17 1995-06-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Dendrite preventing separator for secondary lithium batteries
JPH07263028A (en) 1994-03-25 1995-10-13 Fuji Photo Film Co Ltd Nonaqueous secondary battery
US5529707A (en) 1994-11-17 1996-06-25 Kejha; Joseph B. Lightweight composite polymeric electrolytes for electrochemical devices
WO1997008763A1 (en) 1995-08-28 1997-03-06 Asahi Kasei Kogyo Kabushiki Kaisha Cell and production method thereof
JP3584583B2 (en) 1995-12-12 2004-11-04 ソニー株式会社 Stacked non-aqueous electrolyte secondary battery
JPH1092444A (en) 1996-09-13 1998-04-10 Japan Gore Tex Inc Solid high molecular electrolyte complex for electrochemical reaction device and electrochemical reaction device using it
US5631103A (en) 1996-09-27 1997-05-20 Motorola, Inc. Highly filled solid polymer electrolyte
US5853916A (en) 1996-10-28 1998-12-29 Motorola, Inc. Multi-layered polymeric gel electrolyte and electrochemical cell using same
US5705084A (en) 1997-01-31 1998-01-06 Kejha; Joseph B. Polymer alloy electrolytes for electrochemical devices
US5849433A (en) 1997-03-10 1998-12-15 Motorola, Inc. Polymer blend electrolyte system and electrochemical cell using same
US5952120A (en) 1997-04-15 1999-09-14 Celgard Llc Method of making a trilayer battery separator
GB2327293A (en) 1997-06-23 1999-01-20 Solvay Novel lithium batteries
JPH1167273A (en) 1997-08-21 1999-03-09 Toshiba Corp Lithium secondary battery
JPH1180395A (en) 1997-09-09 1999-03-26 Nitto Denko Corp Porous film and separator for nonaqueous electrolyte cell or battery
JPH1183985A (en) 1997-09-10 1999-03-26 Japan Radio Co Ltd Ppi(plane position indicator) device
JP3443764B2 (en) 1998-03-27 2003-09-08 日本電池株式会社 Non-aqueous electrolyte battery
JPH11283603A (en) 1998-03-30 1999-10-15 Noritake Co Ltd Separator for battery and its manufacture
TW460505B (en) 1998-04-27 2001-10-21 Sumitomo Chemical Co Separator for nonaqueous electrolyte battery and lithium secondary battery made from the same
DE19850826A1 (en) * 1998-11-04 2000-05-11 Basf Ag Composite bodies suitable as separators in electrochemical cells
DE19855889A1 (en) 1998-12-03 2000-06-08 Basf Ag Membrane suitable for electrochemical cells
DE19916109A1 (en) 1999-04-09 2000-10-12 Basf Ag Composite bodies suitable as separators in electrochemical cells
US6468697B1 (en) 1999-10-22 2002-10-22 Lithium Technology Corporation Composite polymer electrolytes containing electrically non-conductive chopped fibers
US6432586B1 (en) * 2000-04-10 2002-08-13 Celgard Inc. Separator for a high energy rechargeable lithium battery
JP2002118288A (en) 2000-10-12 2002-04-19 Tokai Rika Co Ltd Semiconductor optical device
US7097943B2 (en) * 2001-01-31 2006-08-29 Korea Institute Of Science And Technology UV-cured multi-component polymer blend electrolyte, lithium secondary battery and their fabrication method
US6531206B2 (en) * 2001-02-07 2003-03-11 3M Innovative Properties Company Microstructured surface film assembly for liquid acquisition and transport
DE10347569A1 (en) * 2003-10-14 2005-06-02 Degussa Ag Ceramic, flexible membrane with improved adhesion of the ceramic on the carrier fleece
KR100542213B1 (en) 2003-10-31 2006-01-10 삼성에스디아이 주식회사 Negative electrode of lithium metal battery and lithium metal battery comprisng same
US8722235B2 (en) 2004-04-21 2014-05-13 Blue Spark Technologies, Inc. Thin printable flexible electrochemical cell and method of making the same
KR100659854B1 (en) * 2005-04-28 2006-12-19 삼성에스디아이 주식회사 Lithium secondary battery
KR100943234B1 (en) 2005-05-16 2010-02-18 에스케이에너지 주식회사 Microporous polyethylene film through liquid-liquid phase separation mechanism and preparing method thereof
KR101002161B1 (en) * 2007-11-29 2010-12-17 주식회사 엘지화학 A separator having porous coating layer, manufacturing mehtod thereof and electrochemical device containing the same
PL2927993T3 (en) 2008-01-30 2019-01-31 Lg Chem, Ltd. Separator for an electrochemical device
JP5059643B2 (en) * 2008-02-04 2012-10-24 ソニー株式会社 Non-aqueous electrolyte battery
JP5154349B2 (en) * 2008-09-09 2013-02-27 日東電工株式会社 Battery separator and manufacturing method thereof, and lithium ion secondary battery and manufacturing method thereof
CN101420019A (en) * 2008-11-18 2009-04-29 深圳华粤宝电池有限公司 Coating method for jelly polymer battery separator
CN102206420B (en) * 2010-03-30 2012-10-17 比亚迪股份有限公司 Composition for battery diaphragm, battery diaphragm and lithium-ion secondary battery
JP2011216376A (en) * 2010-03-31 2011-10-27 Ube Industries Ltd Compound porous film and method for manufacturing the same
JP2012033498A (en) * 2010-04-08 2012-02-16 Hitachi Maxell Energy Ltd Electrochemical element
US8957149B2 (en) 2010-08-25 2015-02-17 The Goodyear Tire & Rubber Company Preparation and use of silica reinforced rubber composition for truck tire tread
CN103339757B (en) 2010-11-30 2015-11-25 日本瑞翁株式会社 The manufacture method of secondary cell perforated membrane slurry, secondary cell perforated membrane, electrode for secondary battery, secondary battery separator, secondary cell and secondary cell perforated membrane
JP5770995B2 (en) * 2010-12-01 2015-08-26 デクセリアルズ株式会社 Thermosetting resin composition, thermosetting adhesive sheet, and method for producing thermosetting adhesive sheet
CN103262305B (en) * 2010-12-14 2015-11-25 协立化学产业株式会社 Battery electrode or baffle surface protective agent composition, by battery electrode of its protection or dividing plate and the battery with this battery electrode or dividing plate
JP5723618B2 (en) * 2011-02-04 2015-05-27 日東電工株式会社 Adhesive sheet and surface protective film
KR101281037B1 (en) 2011-04-06 2013-07-09 주식회사 엘지화학 Separator and electrochemical device comprising the same
US9276247B2 (en) * 2011-04-06 2016-03-01 Lg Chem, Ltd. Separator and electrochemical device comprising the same
WO2013012942A2 (en) 2011-07-20 2013-01-24 The Board Of Trustees Of The Leland Stanford Junior University Transparent electrochemical energy storage devices
CN103781861B (en) 2011-08-31 2016-11-16 住友化学株式会社 The manufacture method of coating fluid, laminated porous film and laminated porous film
TWI464939B (en) 2011-12-20 2014-12-11 Ind Tech Res Inst Separators utilized in lithium batteries
JP2013142148A (en) * 2012-01-12 2013-07-22 Nitto Denko Corp Method for producing pressure-sensitive adhesive sheet having ultraviolet light curing-type acrylic pressure-sensitive adhesive layer
JP5165158B1 (en) 2012-03-13 2013-03-21 株式会社日立製作所 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6028390B2 (en) * 2012-05-24 2016-11-16 住友化学株式会社 Method for producing non-aqueous electrolyte secondary battery separator
US9680143B2 (en) 2013-10-18 2017-06-13 Miltec Uv International Llc Polymer-bound ceramic particle battery separator coating

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904437A (en) * 1973-09-21 1975-09-09 Union Carbide Corp Separator for zinc chloride cells
US20030180623A1 (en) 2001-01-31 2003-09-25 Kyung-Suk Yun Multi-layered, uv-cured polymer electrolyte and lithium secondary battery comprising the same
US20100015533A1 (en) * 2007-04-12 2010-01-21 Masaki Deguchi Non-aqueous electrolyte secondary battery
US20110027658A1 (en) 2009-07-29 2011-02-03 Hyundai Motor Company Method for preparing cross-linked ceramic-coated separator containing ionic polymer, ceramic-coated separator prepared by the method, and lithium secondary battery using the same
US20110311855A1 (en) * 2009-09-03 2011-12-22 Shufu Peng Methods and systems for making separators and devices arising therefrom
US20110081575A1 (en) * 2009-10-07 2011-04-07 Miltec Corporation Actinic and electron beam radiation curable electrode binders and electrodes incorporating same
WO2012053286A1 (en) 2010-10-21 2012-04-26 日立マクセルエナジー株式会社 Separator for electrochemical element, method for manufacturing same, electrode for electrochemical element, electrochemical element
US20120315384A1 (en) * 2011-06-07 2012-12-13 GM Global Technology Operations LLC Method of applying nonconductive ceramics on lithium-ion battery separators
US20130059192A1 (en) * 2011-09-05 2013-03-07 Sony Corporation Separator and nonaqueous electrolyte battery
WO2013107911A1 (en) * 2012-01-19 2013-07-25 Sihl Gmbh Separator comprising a porous layer and method for producing said separator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3058607A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10811651B2 (en) 2013-10-18 2020-10-20 Miltec UV International, LLC Polymer-bound ceramic particle battery separator coating
EP3170217A4 (en) * 2014-07-18 2017-11-29 Miltec UV International, LLC Uv or eb cured polymer-bonded ceramic particle lithium secondary battery separators, method for the production thereof
US10818900B2 (en) 2014-07-18 2020-10-27 Miltec UV International, LLC UV or EB cured polymer-bonded ceramic particle lithium secondary battery separators, method for the production thereof
CN108636737A (en) * 2018-04-12 2018-10-12 连云港海创电子科技有限公司 A kind of transfer coating type anti-corrosion method of polymer power lithium-ion battery material

Also Published As

Publication number Publication date
JP2021153054A (en) 2021-09-30
EP3058607B1 (en) 2022-04-13
CN105849936B (en) 2019-06-04
EP3058607A1 (en) 2016-08-24
CN110120484A (en) 2019-08-13
EP3058607A4 (en) 2017-05-17
KR20160072162A (en) 2016-06-22
JP2016533631A (en) 2016-10-27
US20170244085A1 (en) 2017-08-24
US20150111086A1 (en) 2015-04-23
US9680143B2 (en) 2017-06-13
CN105849936A (en) 2016-08-10
US10811651B2 (en) 2020-10-20
JP6955867B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
US10811651B2 (en) Polymer-bound ceramic particle battery separator coating
US10818900B2 (en) UV or EB cured polymer-bonded ceramic particle lithium secondary battery separators, method for the production thereof
KR102155635B1 (en) A separator comprising a adhesion layer for an electrochemical device and an electrode assembly comprising the same
EP2050109B1 (en) Double layer capacitor using polymer electrolyte in multilayer construction
JP7021403B1 (en) Composite laminated chemical cross-linking separator
KR20170087315A (en) A separator for electrochemical device and a method for manufacturing the same
EP3671899B1 (en) Method for manufacturing separator, separator formed thereby, and electrochemical device including same
KR20210127643A (en) A separator for a electrochemical device and a method for manufacturing the same
CN112956073A (en) Inorganic particle layer, electrode element, and nonaqueous electrolyte electricity storage element
KR102019473B1 (en) A Separator Having an Electrode Bonding Layer and A Cell Assembly Comprising the Same
EP3553869B1 (en) Electrode assembly and electrochemical device comprising electrode assembly
JP2020119887A (en) Electrode and manufacturing method thereof, electrode element, and electrochemical element
JP5251157B2 (en) Method for producing electrode plate for non-aqueous electrolyte secondary battery
CN111712944B (en) Separator for lithium secondary battery and method of manufacturing the same
JPH10199545A (en) Sheet battery and manufacture of the same
EP4451450A1 (en) Organic/inorganic composite porous coating layer-containing separator for electrochemical device, and electrochemical device comprising same
KR20220113154A (en) Manufacturing method of electrode stack unit
JP2009230862A (en) Method of manufacturing electrode plate for nonaqueous electrolyte secondary battery
WO2023175544A1 (en) Method of manufacturing laminate for battery, apparatus for manufacturing laminate for battery, method of manufacturing member for battery, and apparatus for manufacturing member for battery
EP4358270A1 (en) Method for manufacturing lithium secondary battery separator, lithium secondary battery separator manufactured thereby, and lithium secondary battery comprising same
CN115210930A (en) Integrated electrode lamination unit, method of manufacturing the same, and lithium secondary battery including the same
DE102022203431A1 (en) LOW RESISTANCE SEPARATOR DESIGN IN BATTERY CELLS
CN118476078A (en) Method for manufacturing secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016549195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167012597

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014853525

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014853525

Country of ref document: EP