WO2015056777A1 - Device for promoting combustion of natural gas - Google Patents

Device for promoting combustion of natural gas Download PDF

Info

Publication number
WO2015056777A1
WO2015056777A1 PCT/JP2014/077690 JP2014077690W WO2015056777A1 WO 2015056777 A1 WO2015056777 A1 WO 2015056777A1 JP 2014077690 W JP2014077690 W JP 2014077690W WO 2015056777 A1 WO2015056777 A1 WO 2015056777A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
plasma
combustion
methane
natural gas
Prior art date
Application number
PCT/JP2014/077690
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 栄一
小島 宏一
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2015542682A priority Critical patent/JP6281882B2/en
Publication of WO2015056777A1 publication Critical patent/WO2015056777A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/02Engines characterised by means for increasing operating efficiency
    • F02B43/04Engines characterised by means for increasing operating efficiency for improving efficiency of combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/10Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0227Means to treat or clean gaseous fuels or fuel systems, e.g. removal of tar, cracking, reforming or enriching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a spark accelerating device, a homogeneous premixed compression self-igniting engine (HCCI engine), and a combustion accelerating device when natural gas is used as fuel in a DDF engine using both light oil and natural gas.
  • HCCI engine homogeneous premixed compression self-igniting engine
  • combustion accelerating device when natural gas is used as fuel in a DDF engine using both light oil and natural gas.
  • Natural gas has become increasingly important as an energy resource year after year due to the development of new supply sources such as shale gas and coal bed methane (CBM) in recent years, and a large proportion of the world's energy supply in the future. It is expected to bear The composition of these natural gases varies, but the main component is methane gas.
  • Methane gas is a hydrocarbon fuel in which the ratio of carbon atoms to hydrogen atoms is small, and has an advantage that the amount of carbon dioxide, which is a global warming gas, due to combustion is small compared to other hydrocarbon fuels.
  • Non-Patent Document 1 In order to efficiently burn such natural gas, a method of adding hydrogen has been known for a long time as reported in Non-Patent Document 1, for example. Combustion speed can be increased by mixing and burning hydrogen.
  • the use of natural gas to which hydrogen has been added for an internal combustion engine has already been proposed as shown in Non-Patent Document 2, for example. In this case, equipment for supplying hydrogen separately becomes a practical problem.
  • Patent Document 1 proposes a reforming method for generating hydrogen molecules and carbon monoxide by causing a plasma reaction between non-equilibrium plasma and natural gas and water.
  • Patent Document 2 proposes a method for producing hydrogen and carbon monoxide by supplying hydrocarbon gas and carbon dioxide to thermal plasma generated by high frequency induction heating.
  • Patent Document 3 for low-grade fuel gas containing methane gas, non-equilibrium plasma is used, hydrogen is generated by the plasma reaction of the methane and water, and the efficiency is improved by supplying it to the gas engine.
  • a proposal was made.
  • the abstract includes "a low-temperature plasma apparatus 105 that irradiates a part of methane contained in a low-grade fuel gas to hydrogen by a low-temperature plasma chemical reaction to generate a mixed gas containing methane and hydrogen, and the mixed gas.
  • Patent Document 4 As an ignition method using non-equilibrium plasma itself, as disclosed in Patent Document 4, a method using microwaves or supplying chemically active species (radicals) using the nonequilibrium plasma disclosed in Patent Document 5 is used. A method for promoting ignition is proposed.
  • the abstract of Patent Document 5 states that “non-equilibrium that generates chemically active species (radicals) that enhance the ignitability of the air-fuel mixture in the combustion chamber 13 or at least one of the intake passages 30 communicating with the combustion chamber 13. There is described that the plasma discharge means 50 and the photocatalyst 52 that absorbs at least part of the light emitted by the non-equilibrium plasma discharge means 50 during discharge and generates chemically active species (radicals) are described.
  • Patent Document 3 is a technique in which this conventional technique is applied to a low-grade fuel such as biogas. By adding water vapor to a part of methane contained in the low-grade fuel gas, a low-temperature plasma chemical reaction is performed. By converting to hydrogen and adding this hydrogen to the combustion chamber, the combustion rate can be improved.
  • an object of the present invention is to provide a non-equilibrium plasma in a premixed gas of combustion air and natural gas containing methane gas without using an additional facility for introducing hydrogen into the combustion chamber, such as a water vapor introducing device.
  • Irradiation partially oxidizes some of the methane gas contained in natural gas, improves the final ignition and combustion characteristics through the promotion of low-temperature reactions during compression, and improves overall thermal efficiency It aims at improving and suppressing discharge
  • a combustion promoting device of the present invention is a combustion promoting device for an engine using natural gas fuel, and is contained by irradiating plasma to a mixture of natural gas fuel and air.
  • a plasma reactor for irradiating plasma to a gas mixture is provided and an intermediate product is generated by a partial oxidation reaction
  • ignition is achieved through a low-temperature reaction such as methane molecules with low power consumption.
  • -It is possible to improve the isovolume of the engine by promoting combustion, thereby improving the overall thermal efficiency of natural gas and suppressing emission of methane gas as an unburned gas component.
  • FIG. 1 is a diagram showing an outline of an engine system including a control device according to the present invention.
  • FIG. 2 is a schematic diagram of an optimum value search for the plasma reactor voltage (V) and ignition timing ( ⁇ ) for obtaining the control map.
  • FIG. 3 shows an outline of an experimental apparatus including a non-thermal equilibrium plasma discharge reactor apparatus and a rapid compression / expansion apparatus used for accelerating ignition / combustion by partial oxidation of methane by plasma irradiation of the premixed gas.
  • FIG. FIG. 4 is a diagram showing an experimental result of a pressure waveform measurement value of a compression self-ignition experiment measured in the rapid compression / expansion device.
  • FIG. 5 is a diagram showing an experimental result of a pressure waveform measurement value of a laser spark ignition experiment measured in the rapid compression / expansion apparatus.
  • FIG. 1 shows the overall configuration.
  • a non-thermal equilibrium plasma discharge reactor apparatus 2 is installed as a plasma reactor in an intake pipe 1 that supplies premixed gas to an engine.
  • the engine is assumed to be electrically ignited in this embodiment, the engine can be similarly applied to ignition by pilot injection or ignition by laser spark.
  • the entire engine system basically includes a spark ignition (SI) device comprising a piston 3 and a cylinder 4, a spark plug 5 and a spark plug drive circuit 6 constituting a conventional gas engine, and a crank angle sensor 7 for detecting a crank angle.
  • SI spark ignition
  • a non-thermal equilibrium plasma discharge reactor apparatus 2 that irradiates plasma to a premixed mixture of natural gas and air inside the intake pipe 1, and a discharge drive circuit 8 that is driven by applying a reactor voltage to the non-thermal equilibrium plasma discharge reactor apparatus 2;
  • a pressure gauge 9 for detecting engine combustion, or a shaft output meter, a spark plug drive circuit 6, a discharge drive circuit 8 for driving the non-thermal equilibrium plasma discharge reactor apparatus 2, and the like.
  • the control device 10 obtains an operation map described below in order to improve the overall thermal efficiency of the entire engine or optimize the operation of the engine including the exhaust gas characteristics.
  • an SI ignition gas engine introduces a premixed gas into the engine under a certain rotational speed and load condition, compresses it with a piston 3, and ignites it with an ignition plug 5 at an appropriate time.
  • V1 a reactor voltage
  • a discharge driving circuit 8 to be described later a premixed gas partially oxidized is introduced into the engine
  • the low temperature reaction of methane in the compression process is promoted, Ignition advances. Therefore, the ignition timing by the spark plug 5 is retarded ( ⁇ 1) to the ignition timing (MBT) that generates the maximum torque. Since the combustion is promoted, the isovolume is improved and the thermal efficiency is improved.
  • the total thermal efficiency at this time is obtained by subtracting the power consumption of the non-thermal equilibrium plasma discharge reactor apparatus 2 from the net thermal efficiency of the engine.
  • ⁇ 2 and ⁇ 3 of MBT are determined for other voltages V 2 and V 3, etc., but considering the power consumption and exhaust gas characteristics of the non-thermal equilibrium plasma discharge reactor apparatus 2, the total as shown in FIG.
  • the rotational speed, the optimum reactor voltage (Vopt) at the load, and the SI ignition timing ( ⁇ opt) are determined.
  • HCCI compression self-ignition
  • a packed bed (PB type) plasma reactor 11 was used as the plasma reactor in order to irradiate the premixed gas of methane gas and air with plasma.
  • the methane-containing gas and air are metered from the mass flow controllers 12a and 12b that generate the premixed gas, and are introduced into the plasma reactor 11 as a mixed gas having a predetermined equivalence ratio.
  • a discharge voltage having a predetermined voltage and frequency is applied, heated to a predetermined temperature via the electric heater 13, and then at a predetermined compression ratio in a cylinder inside the rapid compression / expansion device (RCEM) 14. Compression is performed.
  • RCEM rapid compression / expansion device
  • a glass tube having an inner diameter of 18 mm is filled with glass beads having a diameter of 2 mm.
  • a metal gas pipe having a diameter of 6 mm was passed through the center of the plasma reactor 11.
  • a metal tape with a width of 3 cm stretched outside the glass tube was used as a ground electrode, and a high voltage was applied to the central metal gas pipe. The distance between the electrodes is 7 mm.
  • An intermediate product such as formaldehyde was slightly formed in the premixed gas that passed through the plasma reactor 11.
  • the pressure inside the combustor was measured with a piezo-type pressure gauge.
  • the upper part of the combustor has a quartz window, and laser light can be introduced.
  • an Nd: YAG laser was condensed from this quartz window, and it was forcibly ignited by laser spark. .
  • FIG. 4 shows the time change of pressure due to self-ignition.
  • the initial temperature is 393 K and the equivalence ratio is fixed to 0.97
  • the discharge voltage applied to the plasma reactor 11 is set to 0, and from 15 kV
  • the pressure rise characteristics obtained when the pressure is raised by 0.5 kV up to 18.5 kV are shown. It can be seen that compression self-ignition is achieved by irradiating the premixed gas with plasma by the plasma reactor 11, and the ignition timing can be controlled by the applied voltage.
  • FIG. 5 shows the pressure waveform of laser spark ignition.
  • the ignition by the laser spark is performed at 40 ms in the figure. Comparing the case where the plasma irradiation is not performed, it can be seen that the combustion rate after ignition is increased when the irradiation is significantly performed.
  • a premixed gas mixture containing methane is irradiated with non-thermal equilibrium plasma to generate a partial oxidation reaction of a very small part, thereby generating an intermediate reactant, and controlling the low temperature reaction of methane. It proceeds without going through the starting reaction to promote ignition and combustion.
  • the conversion electric field required in the plasma reactor 11 is about 100 Td, and the intermediate reactant generated by irradiation is generally very low, less than 0.1%.
  • the plasma reactor 11 can have various configurations, and a specific voltage and a flow rate of the premixed gas flowing through the plasma reactor 11 are determined under conditions for forming a necessary intermediate product.
  • the amount of intermediate product required also depends on the ignition method of the engine.
  • the gas mixture is irradiated with plasma by a plasma reactor, and the discharge voltage at that time is maximized in total thermal efficiency or exhaust gas.
  • Feedback control was performed to optimize the characteristics.
  • the overall thermal efficiency is improved at a low cost, and methane gas can be prevented from being discharged as an unburned gas component, so natural gas combustion that makes the best use of the low emission characteristics of carbon dioxide It can be expected to be widely adopted as a promotion device.

Abstract

In the present invention, installed is a plasma reactor (2) for irradiating an air-fuel mixture of natural gas fuel and air with plasma and thereby partially oxidizing a portion of the methane molecules contained in the air-fuel mixture. A discharge voltage applied to the plasma reactor (2) is subject to feedback control by a control device (10) so that the total efficiency reaches a maximum or becomes optimal along with an exhaust gas property. According to the present invention, without the use of additional equipment for introducing hydrogen to a combustion chamber, irradiating a premixed gas of combustion air and natural gas containing methane with non-equilibrium plasma makes it possible to partially oxidize a small part of the methane gas contained in the natural gas and the like, thereby making it possible to improve the combustion properties during combustion and ignition through promotion of a low-temperature reaction of the methane molecules and the like during compression, to improve the overall thermal efficiency, and to inhibit discharge as an unburned gas component.

Description

天然ガスの燃焼促進装置Natural gas combustion accelerator
 本発明は、スパーク着火、均一予混合圧縮自己着火エンジン(HCCIエンジン)、並びに軽油と天然ガスを併用するDDFエンジンで、天然ガスを燃料として利用する際の燃焼促進装置に関する。 The present invention relates to a spark accelerating device, a homogeneous premixed compression self-igniting engine (HCCI engine), and a combustion accelerating device when natural gas is used as fuel in a DDF engine using both light oil and natural gas.
 天然ガスは、近年のシェールガスやコールベッドメタン(CBM)等の新たな供給源の開発を受け、エネルギー資源としての重要性が年々増大しており、将来的には世界のエネルギー供給の大きな割合を担うものと予想されている。これらの天然ガスの組成は様々であるが、主要成分はメタンガスである。
 メタンガスは水素原子に対する炭素原子の比率が小さい炭化水素燃料であり、他の炭化水素系燃料と比べて、燃焼による地球温暖化ガスである二酸化炭素の排出量が少ない利点を有する。
Natural gas has become increasingly important as an energy resource year after year due to the development of new supply sources such as shale gas and coal bed methane (CBM) in recent years, and a large proportion of the world's energy supply in the future. It is expected to bear The composition of these natural gases varies, but the main component is methane gas.
Methane gas is a hydrocarbon fuel in which the ratio of carbon atoms to hydrogen atoms is small, and has an advantage that the amount of carbon dioxide, which is a global warming gas, due to combustion is small compared to other hydrocarbon fuels.
 また、圧縮によって自己着火しにくいガスでもあり、ノッキングを起こしにくいため、高圧縮比エンジンに用いることによる熱効率の向上も期待できるが、反面、特に高圧において、他の炭化水素燃料と比べて燃焼速度が低いという特性を有している。 It is also a gas that is difficult to self-ignite due to compression, and it is difficult to cause knocking, so it can be expected to improve thermal efficiency by using it in a high compression ratio engine. Is low.
 このため、天然ガスエンジンの熱効率を向上するため、希薄燃焼を試みた場合に、未燃ガス成分として、メタンガス放出を引き起こす可能性が高い。しかし、メタンガス自体は、その地球温暖化係数は二酸化炭素の20倍以上あるといわれていることから、メタンガスが未燃焼ガス成分として排出されるのをいかに抑制するかが、急務の技術的課題となっている。 For this reason, in order to improve the thermal efficiency of a natural gas engine, when lean combustion is attempted, there is a high possibility that methane gas will be released as an unburned gas component. However, since methane gas itself is said to have a global warming potential 20 times or more that of carbon dioxide, how to suppress the emission of methane gas as an unburned gas component is an urgent technical issue. It has become.
 この様な天然ガスを効率的に燃焼させるため、古くから例えば非特許文献1に報告されているように、水素を添加する方法が知られている。水素を混合して燃焼させることによって燃焼速度を増大させることができる。そして、水素を添加した天然ガスを内燃機関に用いることもすでに、例えば非特許文献2に示されるように提案されている。この場合、水素を別途供給するための設備などが実用上問題となる。 In order to efficiently burn such natural gas, a method of adding hydrogen has been known for a long time as reported in Non-Patent Document 1, for example. Combustion speed can be increased by mixing and burning hydrogen. The use of natural gas to which hydrogen has been added for an internal combustion engine has already been proposed as shown in Non-Patent Document 2, for example. In this case, equipment for supplying hydrogen separately becomes a practical problem.
 一方、メタン等の炭化水素燃料を、合成ガス(水素と一酸化炭素の混合ガス)に変換する改質技術も古くから知られ、現在、石油化学工業等で広く使われている。この水素を含む合成ガスの燃焼速度は天然ガスに比べて早く、内燃機関に用いることも、例えば非特許文献3に示されている。 On the other hand, reforming technology for converting hydrocarbon fuels such as methane into synthesis gas (mixed gas of hydrogen and carbon monoxide) has been known for a long time and is widely used in the petrochemical industry and the like now. The combustion speed of the synthesis gas containing hydrogen is faster than that of natural gas, and it is shown in Non-Patent Document 3, for example, that it is used for an internal combustion engine.
 合成ガスを得るために、プラズマを用いる方法も数多く提案されている。例えば特許文献1では、非平衡プラズマを天然ガスと水とをプラズマ反応させることで、水素分子と一酸化炭素を発生させる改質法が提案されている。
 また、特許文献2では、高周波誘導加熱によって生成した熱プラズマに炭化水素ガスと二酸化炭素を供給して、水素と一酸化炭素を製造する方法が提案されている。
 さらに、特許文献3では、メタンガスを含む低品位燃料ガスに対して、非平衡プラズマを用いて、そのメタンと水のプラズマ反応により水素を発生させ、ガスエンジンに供給することで効率の改善を図る提案が行われた。その要約書には、「低品位燃料ガス中に含まれるメタンの一部を、低温プラズマ化学反応によって水素に照射し、メタンおよび水素を含む混合ガスを生成する低温プラズマ装置105と、前記混合ガスを燃料として用いるガスエンジン103と、を有する低温プラズマ装置とガスエンジンとの複合システム。」と記載されている。
Many methods using plasma have been proposed to obtain synthesis gas. For example, Patent Document 1 proposes a reforming method for generating hydrogen molecules and carbon monoxide by causing a plasma reaction between non-equilibrium plasma and natural gas and water.
Patent Document 2 proposes a method for producing hydrogen and carbon monoxide by supplying hydrocarbon gas and carbon dioxide to thermal plasma generated by high frequency induction heating.
Furthermore, in Patent Document 3, for low-grade fuel gas containing methane gas, non-equilibrium plasma is used, hydrogen is generated by the plasma reaction of the methane and water, and the efficiency is improved by supplying it to the gas engine. A proposal was made. The abstract includes "a low-temperature plasma apparatus 105 that irradiates a part of methane contained in a low-grade fuel gas to hydrogen by a low-temperature plasma chemical reaction to generate a mixed gas containing methane and hydrogen, and the mixed gas. A combined system of a low-temperature plasma apparatus and a gas engine having a gas engine 103 using a gas as a fuel.
 一方、非平衡プラズマそのものを用いた着火法としては、特許文献4にあるように、マイクロ波を用いるものや、特許文献5の非平衡プラズマを用いて化学的活性種(ラジカル)を供給することで着火を促進する方法などが提案されている。特許文献5の要約書には、「燃焼室13内、または燃焼室13に連通する吸気通路30の少なくともいずれか一方に、混合気の着火性を高める化学活性種(ラジカル)を生成する非平衡プラズマ放電手段50と、この非平衡プラズマ放電手段50が放電時に発する光の少なくとも一部を吸収して、化学活性種(ラジカル)を生成する光触媒52とを設けること」が記載されている。 On the other hand, as an ignition method using non-equilibrium plasma itself, as disclosed in Patent Document 4, a method using microwaves or supplying chemically active species (radicals) using the nonequilibrium plasma disclosed in Patent Document 5 is used. A method for promoting ignition is proposed. The abstract of Patent Document 5 states that “non-equilibrium that generates chemically active species (radicals) that enhance the ignitability of the air-fuel mixture in the combustion chamber 13 or at least one of the intake passages 30 communicating with the combustion chamber 13. There is described that the plasma discharge means 50 and the photocatalyst 52 that absorbs at least part of the light emitted by the non-equilibrium plasma discharge means 50 during discharge and generates chemically active species (radicals) are described.
特公2005-519729号公報Japanese Patent Publication No. 2005-519729 特開2008-247717号公報JP 2008-247717 A 特開2005-240586号公報JP-A-2005-240586 特開2007-113570号公報JP 2007-113570 A 特開2010-37950号公報JP 2010-37950 A
 上述のように、メタンガスに水素を混合することで燃焼速度を向上させること、また炭化水素系の燃料に対して水蒸気等の含酸素分子を反応させることで水素を含む燃料に改質することは、従来技術として知られている。
 特許文献3に記載された技術は、この従来技術をバイオガス等の低品位燃料に適用したもので、低品位燃料ガス中に含まれるメタンの一部に水蒸気を加えつつ、低温プラズマ化学反応により水素に変換し、この水素を燃焼室に添加することで、燃焼速度を改善することが可能となる。
As described above, improving the combustion rate by mixing hydrogen with methane gas, and reforming to a fuel containing hydrogen by reacting oxygen-containing molecules such as water vapor with hydrocarbon-based fuel Known as the prior art.
The technique described in Patent Document 3 is a technique in which this conventional technique is applied to a low-grade fuel such as biogas. By adding water vapor to a part of methane contained in the low-grade fuel gas, a low-temperature plasma chemical reaction is performed. By converting to hydrogen and adding this hydrogen to the combustion chamber, the combustion rate can be improved.
 しかし、燃焼速度を増大させるためには、メタンガスに対し、数十%の水素を添加する必要がある。このため、特許文献3に示されたような水蒸気改質の場合には、水タンク、気化装置の設備を必要とし、重量増、コストアップを招くとともに、定期的な水補給が必要になるという問題がある。他の改質方法を用いた場合にも高いエネルギーを要する付加的な改質装置を必要とする問題がある。 However, in order to increase the combustion rate, it is necessary to add several tens of percent of hydrogen to methane gas. For this reason, in the case of steam reforming as shown in Patent Document 3, a water tank and a vaporizer are required, which increases the weight and costs, and requires regular water replenishment. There's a problem. Even when other reforming methods are used, there is a problem that an additional reforming apparatus requiring high energy is required.
 また、特許文献5に記載された、非平衡プラズマを吸気管、あるいはエンジン筒内で生成し、化学的活性種により着火の促進を図る方法では、特に寿命が極めて短い化学的活性種(ラジカル)が吸気管で供給された場合のエンジン筒内における効果は必ずしも明らかではなく、またメタンに対する言及はない。 Further, in the method described in Patent Document 5 in which non-equilibrium plasma is generated in an intake pipe or an engine cylinder and ignition is promoted by chemically active species, particularly chemically active species (radicals) having a very short lifetime. The effect in the engine cylinder is not always clear when the fuel is supplied through the intake pipe, and there is no mention of methane.
 そこで、本発明の目的は、水蒸気導入装置など、燃焼室に水素を導入するための付加的な設備を用いることなく、燃焼空気とメタンガスを含有する天然ガスとの予混合気に非平衡プラズマを照射することで、天然ガス中に含有されるメタンガス等のうち、その一部を部分酸化し、圧縮時の低温反応の促進を通じて、最終的な着火・燃焼特性を改善し、総合的な熱効率の改善を図るとともに、メタンガス等が未燃焼ガス成分として排出されるのを抑制することにある。 Accordingly, an object of the present invention is to provide a non-equilibrium plasma in a premixed gas of combustion air and natural gas containing methane gas without using an additional facility for introducing hydrogen into the combustion chamber, such as a water vapor introducing device. Irradiation partially oxidizes some of the methane gas contained in natural gas, improves the final ignition and combustion characteristics through the promotion of low-temperature reactions during compression, and improves overall thermal efficiency It aims at improving and suppressing discharge | emission of methane gas etc. as an unburned gas component.
 上記の目的を達成するため、本発明の燃焼促進装置は、天然ガス燃料を用いるエンジンの燃焼促進装置であって、天然ガス燃料と空気の混合気に対しプラズマを照射することにより、含有されるメタン分子等に対し、その一部を部分酸化させるプラズマリアクタを設置し、リアクタに印加する放電電圧、および関連する装置の動作時刻を、総合効率を最大に、あるいは排気ガス特性を含めた最適値となるようフィードバック制御するようにした。 In order to achieve the above object, a combustion promoting device of the present invention is a combustion promoting device for an engine using natural gas fuel, and is contained by irradiating plasma to a mixture of natural gas fuel and air. Install a plasma reactor that partially oxidizes a part of methane molecules, etc., and set the discharge voltage applied to the reactor and the operation time of the related equipment to the maximum value for total efficiency or including exhaust gas characteristics. Feedback control was made so that
 本発明によれば、混合気にプラズマを照射するプラズマリアクタを設け、ごく一部の部分酸化反応により中間生成物を生成するため、低消費電力でメタン分子等の低温反応を進めることを通じた着火・燃焼の促進によりエンジンの等容度を改善し、これにより、天然ガスの総合的な熱効率が改善されるとともに、メタンガスが未燃焼ガス成分として排出されるのを抑制することができる。 According to the present invention, since a plasma reactor for irradiating plasma to a gas mixture is provided and an intermediate product is generated by a partial oxidation reaction, ignition is achieved through a low-temperature reaction such as methane molecules with low power consumption. -It is possible to improve the isovolume of the engine by promoting combustion, thereby improving the overall thermal efficiency of natural gas and suppressing emission of methane gas as an unburned gas component.
図1は、本発明に係る、制御装置を含むエンジンシステムの概要を示す図である。FIG. 1 is a diagram showing an outline of an engine system including a control device according to the present invention. 図2は、制御マップを取得するためのプラズマリアクタ電圧(V)と着火時期(θ)に関する最適値探索の模式図である。FIG. 2 is a schematic diagram of an optimum value search for the plasma reactor voltage (V) and ignition timing (θ) for obtaining the control map. 図3は、予混合気へのプラズマ照射によるメタンの一部の部分酸化による着火・燃焼の促進を示すために用いた非熱平衡プラズマ放電リアクタ装置と急速圧縮膨張装置を含む実験装置の概要を示す図である。FIG. 3 shows an outline of an experimental apparatus including a non-thermal equilibrium plasma discharge reactor apparatus and a rapid compression / expansion apparatus used for accelerating ignition / combustion by partial oxidation of methane by plasma irradiation of the premixed gas. FIG. 図4は、急速圧縮膨張装置内で計測した圧縮自己着火実験の圧力波形計測値の実験結果を示す図である。FIG. 4 is a diagram showing an experimental result of a pressure waveform measurement value of a compression self-ignition experiment measured in the rapid compression / expansion device. 図5は、急速圧縮膨張装置内で計測したレーザースパーク着火実験の圧力波形計測値の実験結果を示す図である。FIG. 5 is a diagram showing an experimental result of a pressure waveform measurement value of a laser spark ignition experiment measured in the rapid compression / expansion apparatus.
 本発明を実施するための全体構成を説明する。図1に全体構成を示す。エンジンに予混合気を供給する吸気管1に、プラズマリアクタとして、非熱平衡プラズマ放電リアクタ装置2を設置する。エンジンは本形態では電気的スパーク着火を想定しているが、パイロット噴射による着火やレーザースパークによる着火などについても同様に適用することができる。 The overall configuration for carrying out the present invention will be described. FIG. 1 shows the overall configuration. A non-thermal equilibrium plasma discharge reactor apparatus 2 is installed as a plasma reactor in an intake pipe 1 that supplies premixed gas to an engine. Although the engine is assumed to be electrically ignited in this embodiment, the engine can be similarly applied to ignition by pilot injection or ignition by laser spark.
 エンジンシステム全体は、基本的には従来のガスエンジンを構成するピストン3とシリンダー4、点火プラグ5及び点火プラグ駆動回路6からなるスパーク着火(SI)装置、クランク角を検出するクランク角センサ7に、吸気管1の内部で天然ガスと空気の予混合気にプラズマ照射を行う非熱平衡プラズマ放電リアクタ装置2、この非熱平衡プラズマ放電リアクタ装置2にリアクタ電圧を印加して駆動する放電駆動回路8、およびエンジン燃焼を検知する圧力計9、あるいは軸出力計、そして点火プラグ駆動回路6、非熱平衡プラズマ放電リアクタ装置2を駆動する放電駆動回路8などを含め、全体を制御する制御装置10から構成される。
 制御装置10は、エンジン全体の総合熱効率の向上、あるいは排気ガスの特性も含めてエンジンの動作を最適化するために、以下に説明する動作マップの取得などを行う。
The entire engine system basically includes a spark ignition (SI) device comprising a piston 3 and a cylinder 4, a spark plug 5 and a spark plug drive circuit 6 constituting a conventional gas engine, and a crank angle sensor 7 for detecting a crank angle. A non-thermal equilibrium plasma discharge reactor apparatus 2 that irradiates plasma to a premixed mixture of natural gas and air inside the intake pipe 1, and a discharge drive circuit 8 that is driven by applying a reactor voltage to the non-thermal equilibrium plasma discharge reactor apparatus 2; And a pressure gauge 9 for detecting engine combustion, or a shaft output meter, a spark plug drive circuit 6, a discharge drive circuit 8 for driving the non-thermal equilibrium plasma discharge reactor apparatus 2, and the like. The
The control device 10 obtains an operation map described below in order to improve the overall thermal efficiency of the entire engine or optimize the operation of the engine including the exhaust gas characteristics.
 通常、SI着火のガスエンジンは、ある回転数、負荷の条件下で、予混合気をエンジンに導入し、ピストン3により圧縮し、適切な時期に点火プラグ5により着火する。
 後述する、放電駆動回路8により非平衡プラズマ放電リアクタ装置にリアクタ電圧(V1)を与え、一部が部分酸化された予混合気をエンジンに導入すると、圧縮プロセスにおけるメタンの低温反応が促進され、着火が進角する。そこで、最大トルクを発生する着火時期(MBT)に点火プラグ5による着火時期を遅角(θ1)させる。燃焼が促進されることより等容度が向上し、熱効率が改善する。この時の総合熱効率は、エンジンの正味熱効率から非熱平衡プラズマ放電リアクタ装置2の消費電力を差し引いたものとなる。同様に、ほかの電圧V2、V3等に対してもMBTのθ2、θ3を決定されるが、非熱平衡プラズマ放電リアクタ装置2の消費電力、排気ガス特性を考慮し、図2に示すような総合熱効率に関する等高線図を取得することによって、その回転数、負荷における最適なリアクタ電圧(Vopt)、並びにSI着火時期(θopt)が決まる。
Normally, an SI ignition gas engine introduces a premixed gas into the engine under a certain rotational speed and load condition, compresses it with a piston 3, and ignites it with an ignition plug 5 at an appropriate time.
When a reactor voltage (V1) is applied to a non-equilibrium plasma discharge reactor apparatus by a discharge driving circuit 8 to be described later and a premixed gas partially oxidized is introduced into the engine, the low temperature reaction of methane in the compression process is promoted, Ignition advances. Therefore, the ignition timing by the spark plug 5 is retarded (θ1) to the ignition timing (MBT) that generates the maximum torque. Since the combustion is promoted, the isovolume is improved and the thermal efficiency is improved. The total thermal efficiency at this time is obtained by subtracting the power consumption of the non-thermal equilibrium plasma discharge reactor apparatus 2 from the net thermal efficiency of the engine. Similarly, θ 2 and θ 3 of MBT are determined for other voltages V 2 and V 3, etc., but considering the power consumption and exhaust gas characteristics of the non-thermal equilibrium plasma discharge reactor apparatus 2, the total as shown in FIG. By obtaining a contour map relating to thermal efficiency, the rotational speed, the optimum reactor voltage (Vopt) at the load, and the SI ignition timing (θopt) are determined.
 その他の負荷、回転数条件においても同様に(V、θ)の最適化を行い、制御装置10が使用する動作マップを取得する。基本的には高負荷では燃焼は早いので、リアクタ電圧Vは低く、高回転数では反応を促進するためにリアクタ電圧Vを高くし、低負荷、低回転ではリアクタ電圧Vを低くする。 Optimize (V, θ) in the same manner under other load and rotation speed conditions, and obtain an operation map used by the control device 10. Basically, the combustion is fast at a high load, so the reactor voltage V is low, the reactor voltage V is increased to promote the reaction at a high rotation speed, and the reactor voltage V is decreased at a low load and low rotation.
 なお、圧縮自己着火(HCCI)天然ガスエンジンに適用する場合には、上記の実施例とは異なり、着火のためにスパークプラグ等の装置を用いないため、エンジンの動作を圧力計や軸出力計により計測し、適切な時期に着火が実現できるように電圧を制御する。
 また、HCCIエンジンではプラズマ照射だけでは、圧縮に伴うメタンの低温反応の進展が不十分で自己着火に至らない可能性もある。その場合には予混合気の吸入温度そのものを上げる必要がある。
In addition, when applied to a compression self-ignition (HCCI) natural gas engine, unlike the above embodiment, since a device such as a spark plug is not used for ignition, the operation of the engine is controlled by a pressure gauge or a shaft output meter. The voltage is controlled so that ignition can be realized at an appropriate time.
Further, in the HCCI engine, only plasma irradiation may cause insufficient progress of the low-temperature reaction of methane accompanying compression and may not lead to self-ignition. In that case, it is necessary to raise the intake temperature of the premixed gas itself.
 次にメタンガスの一部を部分酸化することによる燃焼特性を改善することができることを検証した実験結果について説明する。この実験では、メタンガスと空気の予混合気をプラズマ反応器内でプラズマ照射し、そのガスを急速圧縮膨張装置(RCEM)というエンジンのシングルサイクルの圧縮膨張過程をシミュレーションすることができる装置のシリンダーに導入後、圧縮膨張行程の中で着火させた。着火方法に関しては、圧縮による自己着火と、レーザースパークによる着火の双方で実験を行った。 Next, the experimental results verifying that combustion characteristics can be improved by partially oxidizing part of methane gas will be described. In this experiment, a premixed mixture of methane gas and air is irradiated with plasma in a plasma reactor, and the gas is applied to a cylinder of a device that can simulate the single-cycle compression / expansion process of an engine called a rapid compression / expansion device (RCEM). After the introduction, ignition was performed in the compression / expansion stroke. With regard to the ignition method, experiments were carried out by both self-ignition by compression and ignition by laser spark.
 以下、図3を用いて、実験に用いた設備について説明する。
 この実験設備では、メタンガスと空気の予混合気にプラズマを照射するため、プラズマリアクタとして、パックドベッド型(PB型)のプラズマリアクタ11を用いた。
 予混合気を生成するマスフローコントローラー12a、12bから、メタン含有ガスと空気が調量され、所定の当量比を有する混合気となってプラズマリアクタ11に導入される。
 プラズマリアクタ11内では、所定の電圧と周波数の放電電圧が印加され、電気ヒータ13を介して所定温度に加熱された後、急速圧縮膨張装置(RCEM)14内部のシリンダー内で所定の圧縮比で圧縮が行われる。
Hereinafter, the equipment used in the experiment will be described with reference to FIG.
In this experimental facility, a packed bed (PB type) plasma reactor 11 was used as the plasma reactor in order to irradiate the premixed gas of methane gas and air with plasma.
The methane-containing gas and air are metered from the mass flow controllers 12a and 12b that generate the premixed gas, and are introduced into the plasma reactor 11 as a mixed gas having a predetermined equivalence ratio.
In the plasma reactor 11, a discharge voltage having a predetermined voltage and frequency is applied, heated to a predetermined temperature via the electric heater 13, and then at a predetermined compression ratio in a cylinder inside the rapid compression / expansion device (RCEM) 14. Compression is performed.
 プラズマリアクタ11内部には内径18mmのガラス管内部に直径2mmのガラスビーズが充填されている。プラズマリアクタ11の中心に直径6mmの金属ガス配管を通した。
 ガラス管外部に張られた幅3cmの金属テープを接地電極とし、中心の金属ガス配管に高電圧を印加した。電極間の間隔は7mmである。プラズマリアクタ11を通過した予混合気にはホルムアルデヒド等の中間生成物がわずかに形成された。
Inside the plasma reactor 11, a glass tube having an inner diameter of 18 mm is filled with glass beads having a diameter of 2 mm. A metal gas pipe having a diameter of 6 mm was passed through the center of the plasma reactor 11.
A metal tape with a width of 3 cm stretched outside the glass tube was used as a ground electrode, and a high voltage was applied to the central metal gas pipe. The distance between the electrodes is 7 mm. An intermediate product such as formaldehyde was slightly formed in the premixed gas that passed through the plasma reactor 11.
 燃焼器内部の圧力はピエゾタイプの圧力計により計測した。燃焼器の上部には石英窓を有し、レーザー光を導入することができ、本実験では、この石英窓よりNd:YAGレーザーを集光し、レーザースパークにより強制的に着火も併せて行った。 The pressure inside the combustor was measured with a piezo-type pressure gauge. The upper part of the combustor has a quartz window, and laser light can be introduced. In this experiment, an Nd: YAG laser was condensed from this quartz window, and it was forcibly ignited by laser spark. .
 メタン予混合気に対する非熱平衡プラズマ照射による着火特性の変化を調べた。まず、圧縮による自己着火特性に対してプラズマリアクタ11への印加電圧や当量比の影響の実験結果について、次にレーザースパークによる着火後の燃焼特性結果について述べる。
 図4は、自己着火による圧力の時間変化を示すもので、初期温度393K、当量比を0.97に固定した上で、プラズマリアクタ11に印加する放電電圧を0とした場合、そして、15kVから18.5kVまで0.5kVずつ上昇させた場合に得られた圧力上昇特性を示す。プラズマリアクタ11により予混合気にプラズマを照射することによって、圧縮自己着火するようになっており、また、印加電圧によって着火時期を制御できることがわかる。
The change of ignition characteristics of methane premixed gas by non-thermal equilibrium plasma irradiation was investigated. First, the experimental results of the influence of the voltage applied to the plasma reactor 11 and the equivalent ratio on the self-ignition characteristics by compression will be described, and then the combustion characteristics results after ignition by laser spark will be described.
FIG. 4 shows the time change of pressure due to self-ignition. When the initial temperature is 393 K and the equivalence ratio is fixed to 0.97, the discharge voltage applied to the plasma reactor 11 is set to 0, and from 15 kV The pressure rise characteristics obtained when the pressure is raised by 0.5 kV up to 18.5 kV are shown. It can be seen that compression self-ignition is achieved by irradiating the premixed gas with plasma by the plasma reactor 11, and the ignition timing can be controlled by the applied voltage.
 以上は、圧縮に伴う自己着火について検証したが、次に、レーザー照射によるスパーク着火後の燃焼の様子を圧力波形から検討する。
 なお、本実験では、レーザースパークにより燃焼器の中央部より着火を行ったが、実際のエンジンに適用する場合には、通常の電気的スパークプラグを用いることができる。
The above has verified the self-ignition accompanying compression, but next, the state of combustion after spark ignition by laser irradiation is examined from the pressure waveform.
In this experiment, laser spark was ignited from the center of the combustor. However, when applied to an actual engine, a normal electric spark plug can be used.
 この実験では、プラズマリアクタ11に印加する放電電圧を16kVに固定した。
 図5にレーザースパーク着火の圧力波形を示す。レーザースパークによる着火は図で40msに行われている。プラズマ照射をしない場合とした場合を比較すると、顕著に照射をしたほうが着火後の燃焼速度が上昇していることがわかる。
In this experiment, the discharge voltage applied to the plasma reactor 11 was fixed at 16 kV.
FIG. 5 shows the pressure waveform of laser spark ignition. The ignition by the laser spark is performed at 40 ms in the figure. Comparing the case where the plasma irradiation is not performed, it can be seen that the combustion rate after ignition is increased when the irradiation is significantly performed.
 以上のように本実施例では、メタンが含まれる予混合気に非熱平衡プラズマを照射して、極一部の部分酸化反応を生じさせることによって中間反応物を生成し、メタンの低温反応を律速となる開始反応を介さずに進め、着火・燃焼を促進する。プラズマリアクタ11において必要となる換算電界はおおむね100Td程度であり、照射によって生成する中間反応物もおおむね、0.1%未満と非常に少ない。 As described above, in this example, a premixed gas mixture containing methane is irradiated with non-thermal equilibrium plasma to generate a partial oxidation reaction of a very small part, thereby generating an intermediate reactant, and controlling the low temperature reaction of methane. It proceeds without going through the starting reaction to promote ignition and combustion. The conversion electric field required in the plasma reactor 11 is about 100 Td, and the intermediate reactant generated by irradiation is generally very low, less than 0.1%.
 プラズマリアクタ11としては様々な構成が可能であり、具体的な電圧や内部を流れる予混合気の流量は必要となる中間生成物を形成する条件のなかで決定される。その必要となる中間生成物の量はエンジンの着火方法にも依存する。 The plasma reactor 11 can have various configurations, and a specific voltage and a flow rate of the premixed gas flowing through the plasma reactor 11 are determined under conditions for forming a necessary intermediate product. The amount of intermediate product required also depends on the ignition method of the engine.
 以上説明したように、本発明によれば、天然ガスをエンジン燃料として使用する際に、プラズマリアクタにより混合気にプラズマを照射するとともに、その際の放電電圧を、総合熱効率が最大、あるいは排気ガス特性を含めて最適となるようフィードバック制御した。
 これにより、低コストで、総合的な熱効率が改善されるとともに、メタンガスが未燃焼ガス成分として排出されるのを抑制することができるので、二酸化炭素の低排出特性を最大限活かした天然ガス燃焼促進装置として広く採用されることが期待できる。
As described above, according to the present invention, when natural gas is used as an engine fuel, the gas mixture is irradiated with plasma by a plasma reactor, and the discharge voltage at that time is maximized in total thermal efficiency or exhaust gas. Feedback control was performed to optimize the characteristics.
As a result, the overall thermal efficiency is improved at a low cost, and methane gas can be prevented from being discharged as an unburned gas component, so natural gas combustion that makes the best use of the low emission characteristics of carbon dioxide It can be expected to be widely adopted as a promotion device.
 1   吸気管
 2   非熱平衡プラズマ放電リアクタ装置
 3   ピストン
 4   シリンダー
 5   点火プラグ
 6   点火プラグ駆動回路
 7   クランク角センサ
 8   放電駆動回路
 9   圧力計
 10  制御装置
 11  パックドベッド型(PB型)のプラズマリアクタ
 12a、12b マスフローコントローラー
 13  ヒータ
 14  急速圧縮膨張装置(RCEM)
 
DESCRIPTION OF SYMBOLS 1 Intake pipe 2 Non-thermal equilibrium plasma discharge reactor apparatus 3 Piston 4 Cylinder 5 Spark plug 6 Spark plug drive circuit 7 Crank angle sensor 8 Discharge drive circuit 9 Pressure gauge 10 Controller 11 Packed bed type (PB type) plasma reactor 12a, 12b Mass flow controller 13 Heater 14 Rapid compression and expansion device (RCEM)

Claims (1)

  1.  天然ガス燃料を用いるエンジンの燃焼促進装置であって、
     前記天然ガス燃料と空気の混合気に対しプラズマを照射することにより、含有されるメタン分子に対し、その一部を部分酸化させるプラズマリアクタを設置し、
     前記プラズマリアクタに印加する放電電圧を、総合熱効率が最大、あるいは排気ガス特性を含めて最適となるようフィードバック制御することを特徴とする燃焼促進装置。
    An engine combustion accelerator using natural gas fuel,
    By irradiating the natural gas fuel and air mixture with plasma, a plasma reactor that partially oxidizes a part of the contained methane molecules is installed,
    A combustion promoting device, wherein the discharge voltage applied to the plasma reactor is feedback controlled so that the total thermal efficiency is maximized or optimized including exhaust gas characteristics.
PCT/JP2014/077690 2013-10-17 2014-10-17 Device for promoting combustion of natural gas WO2015056777A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015542682A JP6281882B2 (en) 2013-10-17 2014-10-17 Natural gas combustion accelerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-215949 2013-10-17
JP2013215949 2013-10-17

Publications (1)

Publication Number Publication Date
WO2015056777A1 true WO2015056777A1 (en) 2015-04-23

Family

ID=52828215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077690 WO2015056777A1 (en) 2013-10-17 2014-10-17 Device for promoting combustion of natural gas

Country Status (2)

Country Link
JP (1) JP6281882B2 (en)
WO (1) WO2015056777A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147125A (en) * 2003-10-20 2005-06-09 Toyota Motor Corp Power source circuit for plasma reactor
JP2005240586A (en) * 2004-02-24 2005-09-08 Nippon Steel Corp Complex system of low-temperature plasma device and gas engine, and energy generating method
JP2007275789A (en) * 2006-04-07 2007-10-25 Canon Inc Plasma gas treatment apparatus
JP2010101173A (en) * 2008-10-21 2010-05-06 Daihatsu Motor Co Ltd Method for controlling operation of spark-ignition internal combustion engine
JP2013148098A (en) * 2013-03-13 2013-08-01 Nissan Motor Co Ltd Ignition control device of engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159900A (en) * 1991-05-09 1992-11-03 Dammann Wilbur A Method and means of generating gas from water for use as a fuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147125A (en) * 2003-10-20 2005-06-09 Toyota Motor Corp Power source circuit for plasma reactor
JP2005240586A (en) * 2004-02-24 2005-09-08 Nippon Steel Corp Complex system of low-temperature plasma device and gas engine, and energy generating method
JP2007275789A (en) * 2006-04-07 2007-10-25 Canon Inc Plasma gas treatment apparatus
JP2010101173A (en) * 2008-10-21 2010-05-06 Daihatsu Motor Co Ltd Method for controlling operation of spark-ignition internal combustion engine
JP2013148098A (en) * 2013-03-13 2013-08-01 Nissan Motor Co Ltd Ignition control device of engine

Also Published As

Publication number Publication date
JP6281882B2 (en) 2018-02-21
JPWO2015056777A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
US9593633B1 (en) Combustion pre-chamber and method for operating same
Srivastava et al. Comparative experimental evaluation of performance, combustion and emissions of laser ignition with conventional spark plug in a compressed natural gas fuelled single cylinder engine
Birtas et al. The effect of HRG gas addition on diesel engine combustion characteristics and exhaust emissions
Liu et al. Experimental investigation on the performance of pure ammonia engine based on reactivity controlled turbulent jet ignition
Saravanan et al. An experimental investigation on hydrogen fuel injection in intake port and manifold with different EGR rates.
Hu et al. Combustion characteristics of natural gas injected into a constant volume vessel
Becerra-Ruiz et al. Using green-hydrogen and bioethanol fuels in internal combustion engines to reduce emissions
Gong et al. Numerical study of plasma produced ozone assisted combustion in a direct injection spark ignition methanol engine
Dahake et al. Effect of hydroxy gas addition on performance and emissions of diesel engine
Cha et al. An experimental study on the fuel conversion efficiency and NOx emissions of a spark-ignition gas engine for power generation by fuel mixture of methane and model syngas (H2/CO)
Woo et al. Performance evaluation of the LPG engine applied to catalytic reforming system for producing hydrogen
JP6281882B2 (en) Natural gas combustion accelerator
Huang et al. Effect of ignition timing on the emission of internal combustion engine with syngas containing hydrogen using a spark plug reformer system
US4885065A (en) Electron beam, ion beam, or neutral particle beam induced modification of or enhancement of combustion reactions
Arkhipenko et al. Atmospheric pressure glow discharge in air used for ethanol conversion: experiment and modelling
Chauhan et al. An experimental investigation of HHO gas and varying compression ratio on performance characteristics of constant speed diesel engine
Wall Effect of hydrogen enriched hydrocarbon combustion on emissions and performance
Gad et al. Impact of produced oxyhydrogen gas (HHO) from dry cell electrolyzer on spark ignition engine characteristics
Mao et al. Ignition enhancement of NH3/air mixtures by non-equilibrium excitation in a nanosecond pulsed plasma discharge
Wang et al. Experimental investigation on combustion characteristics of ammonia/air using turbulent jet ignition with auxiliary oxygen in pre-chamber
Sharma et al. Effect on performance of engine by injecting hydrogen
Premkartikkumar Influence of oxygen enriched hydrogen gas as a combustion catalyst in a DI diesel engine operating with varying injection time of a diesel fuel
Qian et al. Improving thermal efficiency of an ammonia-diesel dual-fuel compression ignition engine with the addition of premixed low-proportion hydrogen
CN204941726U (en) Water mixed fuel generating means
Asai et al. Chemical reaction processes of fuel reformation by diesel engine piston compression of rich homogeneous air-fuel mixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542682

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853829

Country of ref document: EP

Kind code of ref document: A1