WO2015056776A1 - Controller, communication node, communication system, communication method, and program - Google Patents

Controller, communication node, communication system, communication method, and program Download PDF

Info

Publication number
WO2015056776A1
WO2015056776A1 PCT/JP2014/077686 JP2014077686W WO2015056776A1 WO 2015056776 A1 WO2015056776 A1 WO 2015056776A1 JP 2014077686 W JP2014077686 W JP 2014077686W WO 2015056776 A1 WO2015056776 A1 WO 2015056776A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
virtual network
physical
control
network
Prior art date
Application number
PCT/JP2014/077686
Other languages
French (fr)
Japanese (ja)
Inventor
真実雄 外園
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2015056776A1 publication Critical patent/WO2015056776A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • H04L41/122Discovery or management of network topologies of virtualised topologies, e.g. software-defined networks [SDN] or network function virtualisation [NFV]

Definitions

  • the present invention is based on a Japanese patent application: Japanese Patent Application No. 2013-216580 (filed on October 17, 2013), and the entire contents of this application are incorporated and described in this document by reference.
  • the present invention relates to a control device, a communication node, a communication system, a communication method, and a program, and more particularly, to a control device, a switch, a communication system, a communication method, and a program that centrally control a switch to be controlled.
  • Non-Patent Documents 1 and 2 OpenFlow captures communication as an end-to-end flow and performs path control, failure recovery, load balancing, and optimization on a per-flow basis.
  • the OpenFlow switch specified in Non-Patent Document 2 includes a secure channel for communication with the OpenFlow controller, and operates according to a flow table that is appropriately added or rewritten from the OpenFlow controller. For each flow, a set of match conditions (Match Fields), flow statistical information (Counters), and instructions (Instructions) that define processing contents are defined for each flow (non-patented). (Refer to “5.2 Flow Table” in Document 2).
  • the OpenFlow switch searches the flow table for an entry having a matching condition (see “5.3 Matching” in Non-Patent Document 2) that matches the header information of the received packet. If an entry that matches the received packet is found as a result of the search, the OpenFlow switch updates the flow statistical information (counter) and processes the processing (designated) in the instruction field of the entry for the received packet. Perform packet transmission, flooding, discard, etc. from the port. On the other hand, if no entry matching the received packet is found as a result of the search, the OpenFlow switch sends an entry setting request to the OpenFlow controller via the secure channel, that is, a control for processing the received packet. An information transmission request (Packet-In message) is transmitted. The OpenFlow switch receives a flow entry whose processing content is defined and updates the flow table. As described above, the OpenFlow switch performs packet transfer using the entry stored in the flow table as control information.
  • a matching condition see “5.3 Matching” in Non-Patent Document 2
  • the OpenFlow switch updates the flow statistical information (counter
  • Non-Patent Document 2 “5.7 Meter Table” discloses a Meter Table that allows an OpenFlow switch to implement various QoS (Quality of Service) control functions such as rate limiting. Yes.
  • QoS Quality of Service
  • Patent Document 1 discloses an invention capable of configuring a virtual network logically divided (sliced) using a centralized control network represented by the above-described OpenFlow.
  • Patent Document 2 discloses a packet relay device that can control the total bandwidth of packets output to a plurality of lines.
  • this packet relay device includes a transmission unit that transmits and receives packets from a physical line, a reception unit that receives packets from a physical line, and a line group determination unit that determines line groups corresponding to a plurality of physical lines. And a line group control unit that controls the flow of packets for each line group determined by the line group determination unit.
  • Non-Patent Document 2 describes that a QoS control function can be added to an OpenFlow switch (see “5.7 Meter Table”).
  • a control device control server
  • a communication node physical node
  • the traffic input to a certain virtual node (virtual router or virtual bridge) on the virtual network may be composed of a plurality of flows with different physical nodes (switches) serving as network entrances on the physical network.
  • the total bandwidth of each flow which is a component on the physical network, matches the bandwidth limit value set in the virtual network.
  • such control is difficult only with the Meter Table of Non-Patent Document 2.
  • Patent Document 2 performs bandwidth control for each line group and each packet class in a packet relay device that distributes and transmits received packets to a plurality of physical lines by link aggregation technology or the like. It is not compatible with virtual networks and virtual links handled by control networks.
  • a bandwidth value is set for a virtual network control unit that controls the virtual network and a predetermined communication flow on the virtual network.
  • a physical network control that controls a physical network in accordance with instructions from a bandwidth value management unit and the virtual network control unit, and performs bandwidth control so that the traffic of the predetermined communication flow falls within the set bandwidth value
  • a control device is provided.
  • a communication node that operates so that the communication amount of the communication flow falls within the set bandwidth value in accordance with the control from the control device.
  • a communication system including the above-described control device and a communication node is provided.
  • a control device including a virtual network control unit that controls a virtual network based on a configuration of a virtual network configured using a physical network has a bandwidth for a predetermined communication flow on the virtual network.
  • a step of accepting a value setting; a step of controlling the physical network in accordance with an instruction from the virtual network control unit; and a step of controlling the physical network so that the traffic of the predetermined communication flow falls within the set bandwidth value A bandwidth control method is provided. This method is associated with a specific machine called a control device that controls a communication node.
  • a bandwidth value for a predetermined communication flow on the virtual network is added to a computer including a virtual network control unit that controls the virtual network based on the configuration of the virtual network configured using a physical network.
  • a process of accepting the setting of the network, a process of controlling the physical network in accordance with an instruction from the virtual network control unit, and a process of controlling the physical network so that the traffic of the predetermined communication flow falls within the set bandwidth value are provided.
  • This program can be recorded on a computer-readable (non-transient) storage medium. That is, the present invention can be embodied as a computer program product.
  • a virtual network control unit (101 in FIG. 1) that controls a virtual network based on the configuration of a virtual network configured using a physical network, and a bandwidth value management unit (FIG. 1). 102) and a physical network control unit (103 in FIG. 1) can be realized by a control device (100 in FIG. 1).
  • the bandwidth value management unit (102 in FIG. 1) sets a bandwidth value for a predetermined communication flow on the virtual network (for example, a communication flow flowing between arbitrary virtual nodes in FIG. 2).
  • the physical network control unit (103 in FIG. 1) controls the physical network in accordance with an instruction from the virtual network control unit (101 in FIG. 1), and the traffic of the predetermined communication flow (for example, any virtual network in FIG. 2). Bandwidth control is performed so that the communication volume between communication nodes corresponding to the communication flow flowing between the nodes falls within the set bandwidth value.
  • FIG. 1 is a diagram illustrating a configuration of a control device according to a first embodiment of the present invention. Referring to FIG. 1, a configuration including a virtual network control unit 101, a bandwidth value management unit 102, and a physical network control unit 103 is shown.
  • the virtual network control unit 101 manages the correspondence between the configuration of the virtual network and the configuration of the physical network as shown in FIG. Based on the input packet information raised from the physical network control unit 103 based on the correspondence between the configuration of the virtual network and the configuration of the physical network, the virtual network control unit 101 determines the virtual node on the virtual network. Calculate the behavior. Then, the virtual network control unit 101 outputs an instruction to the physical network control unit 103 based on the calculation result (for example, a packet output from a specific port of the communication node 200C, a packet discard instruction, and a transmission source) Response packet output).
  • the calculation result for example, a packet output from a specific port of the communication node 200C, a packet discard instruction, and a transmission source
  • the bandwidth value management unit 102 manages a bandwidth limit value for a predetermined communication flow on the virtual network (for example, a communication flow that flows between arbitrary virtual nodes in FIG. 2).
  • the bandwidth limit value may be arbitrarily set by the user (network administrator) or calculated by the bandwidth value management unit 102 based on a specific bandwidth control policy (communication type or bandwidth limit value for each user). It is good also as what to do.
  • the physical network control unit 103 When the physical network control unit 103 receives a control information setting request from the communication nodes 200A to 200C (hereinafter, referred to as “communication node 200” when the communication nodes are not particularly distinguished), the physical network control unit 103 is included in the control information setting request. Input packet information is transmitted to the virtual network control unit 101. When the physical network control unit 103 receives an instruction for the input packet information from the virtual network control unit 101, the physical network control unit 103 creates and sets control information that causes the communication node 200 to perform an operation according to the instruction.
  • the physical network control unit 103 determines the total communication amount of the corresponding communication flow on the communication node 200 corresponding to the predetermined communication flow according to the information managed by the bandwidth value management unit 102 for the communication flow. Band control is performed so as to be within the band limit value (see FIG. 4). Specifically, the physical network control unit 103 performs bandwidth control by notifying each communication node 200 of a bandwidth limit value.
  • the method of determining the bandwidth limit value to be assigned to each communication node 200 a method of equally apportioning the bandwidth limit value on the virtual network, a method considering the bandwidth upper limit of each physical link, and the priority of the communication flow It is possible to adopt various methods such as a method considering the above (see also the third and fourth embodiments).
  • FIG. 3 is a diagram illustrating the configuration of the communication node according to the first embodiment of this invention.
  • a communication node 200 including a control information storage unit 201 and a packet processing unit 202 is illustrated.
  • the control information storage unit 201 stores the control information set by the physical network control unit 103 of the control device 100.
  • FIG. 4 is an example of control information set in the communication node 200A by the physical network control unit 103 of the control device 100.
  • control information in which match conditions are associated with instructions is shown.
  • match condition as in the OpenFlow switch of Non-Patent Document 2, each information of the input port and the layer 2 to layer 4 packet headers in the communication node 200 can be used.
  • the packet processing unit 202 searches the control information storage unit 201 for a control information entry having a matching condition to be applied to the received packet, and processes the received packet according to the contents of the instruction field of the corresponding control information entry. .
  • the communication node 200A when receiving a packet of a communication flow (flow A) designated by a predetermined match condition, the communication node 200A performs an operation of transferring the packet to the communication node 200C. Further, since the communication node 200A is notified of 3 Gbps as the bandwidth limit value of the corresponding communication flow from the control device 100, when the communication amount that matches the matching condition exceeds 3 Gbps, the excess packet is discarded (policing) ) Or shaving.
  • Non-Patent Document 2 As a method for realizing bandwidth control in the communication node 200, a method using “5.7 Meter Table” in Non-Patent Document 2 can be used. Of course, various rate limiting functions unique to the communication node 200 may be used.
  • Each unit (processing means) of the control device 100 and the communication node 200 shown in FIGS. 1 and 3 causes a computer constituting these devices to execute the above-described processes using the hardware. Can also be realized.
  • the control device 100 and the communication node 200 can also be realized by adding on the above-described functions based on the OpenFlow controller and the OpenFlow switch described in Non-Patent Documents 1 and 2.
  • FIG. 5 is a flowchart showing the operation related to the bandwidth control of the control device according to the first embodiment of the present invention.
  • the control device 100 refers to the bandwidth value management unit 102 and selects a communication node (for example, the communication nodes 200 ⁇ / b> A and 200 ⁇ / b> B in FIG. 2) from the communication flow on the virtual network.
  • a communication node for example, the communication nodes 200 ⁇ / b> A and 200 ⁇ / b> B in FIG. 2
  • control device 100 determines a bandwidth limit value to be notified to each of the identified communication nodes (for example, the communication nodes 200A and 200B in FIG. 2) based on the bandwidth limit value on the virtual network (step). S002).
  • control device 100 notifies the determined bandwidth limit value to the specified communication node (for example, the communication nodes 200A and 200B in FIG. 2) (step S003; bandwidth limit instruction).
  • FIG. 6 is a diagram showing a configuration of a communication system according to the second exemplary embodiment of the present invention.
  • a control device 100A communication nodes 200A to 200C, and a statistical information collection device 300, and is between nodes 400A to 400C (hereinafter referred to as “node 400” unless the nodes are particularly distinguished).
  • node 400 nodes 400A to 400C
  • a configuration for realizing the communication is shown. Note that the solid line in FIG. 6 indicates a data transfer channel, and the broken line indicates a control channel between the control device 100 and the communication node 200.
  • the alternate long and short dash line indicates the flow statistics information transfer path centered on the statistics information collection device 300.
  • the control device 100A calculates the transfer path of the packet between the nodes 400 and sets control information (flow entry) for the communication node 200 on the path, thereby realizing communication between the nodes 400.
  • the communication node 200 is the same as the communication node of the first embodiment.
  • the match matches the received packet from the control information set by the control device 100A.
  • a packet having a condition is searched, and the received packet is processed based on the control information.
  • the communication node 200 has a function of identifying a flow (communication processing unit) to which the received packet belongs and performing a process (packet transfer, header rewriting, discarding, etc.) determined for each flow. I can say that.
  • the statistical information collection device 300 receives the flow statistical information from the communication node 200 and stores it for a certain period. Further, the statistical information collection device 300 transmits the stored specific flow statistical information in response to a request from the control device 100A. Note that the transmission of flow statistical information from the communication node 200 to the statistical information collection device 300 may be triggered by the communication node 200 transmitting at regular intervals, or the statistical information collection device 300 may flow to the communication node 200. The transmission of statistical information may be requested.
  • the node 400 transmits a packet addressed to the other node 400 to the communication node 200 and receives a packet originating from the other node 400 from the communication node 200.
  • FIG. 7 is a detailed configuration diagram of the control device 100A and the statistical information collection device 300 of this embodiment.
  • the control device 100A of this embodiment includes a virtual network control unit 101, a bandwidth value management unit 102A, a physical network control unit 103, a virtual network configuration storage unit 104, and a bandwidth control policy storage unit 105. And.
  • the virtual network control unit 101 receives input of virtual network topology information and virtual-physical mapping information from the user of the control device 100A, and stores it in the virtual network configuration storage unit 104. Similarly, the virtual network control unit 101 accepts input of bandwidth control policy information from the user and stores it in the bandwidth control policy storage unit 105. Furthermore, the virtual network control unit 101 instructs the physical network control unit 103 to process a packet (setting control information) based on the virtual network topology information, virtual-physical mapping information, and bandwidth control policy information.
  • the instruction includes an instruction related to traffic bandwidth control.
  • the virtual network configuration storage unit 104 holds virtual network topology information and virtual-physical mapping information (see, for example, FIG. 2).
  • the bandwidth control policy storage unit 105 holds bandwidth control policy information.
  • the physical network control unit 103 generates control information to be set in each communication node 200 based on an instruction related to packet processing (control information setting) from the virtual network control unit 101. Then, the physical network control unit 103 sets the generated control information in the communication node 200.
  • the bandwidth value management unit 102A refers to the virtual network topology information and virtual-physical mapping information stored in the virtual network configuration storage unit 104, and the bandwidth control policy information stored in the bandwidth control policy storage unit 105.
  • Flow statistics information for bandwidth control is acquired from the statistics information collection device 300.
  • the bandwidth value management unit 102A instructs the physical network control unit 103 to perform a flow control process optimal for the currently used bandwidth based on the acquired flow statistical information.
  • the statistical information collection device 300 includes a statistical information collection unit 301 and a statistical information storage unit 302.
  • the statistical information collection unit 301 stores the flow statistical information received from each communication node 200 in the statistical information storage unit 302 or deletes the unnecessary flow statistical information. Further, the statistical information collection unit 301 performs a process of searching the flow statistical information from the statistical information storage unit 302 and transmitting the flow statistical information to the control device 100A in response to a request from the control device 100A.
  • the statistical information storage unit 302 holds the flow statistical information received from each communication node 200 for a certain period.
  • control device 100A and the statistical information collection device 300 are described as being arranged independently. However, a configuration in which the statistical information collection device 300 is integrated with the control device 100A can also be employed.
  • the communication node 200 is the same as the communication node of the first embodiment (see FIG. 3), description thereof is omitted.
  • FIG. 8 is a diagram showing a configuration and a correspondence relationship between a virtual network and a physical network by the control device of the present invention.
  • virtual nodes such as a virtual router 601A and virtual bridges 602A and 602B and external NW end points 603 serving as end points thereof are arranged.
  • the virtual node and the external NW end point 603 have virtual ports 604A to 604J, respectively, and are connected via virtual links.
  • the physical network 500 includes a communication node 200 and a node 400.
  • the virtual network 600A is one of the virtual networks controlled by the control device 100, and includes a virtual router 601A, virtual bridges 602A and 602B, and external NW endpoints 603A to 603C, and virtual ports 604A to 604J, respectively. Are registered and connected by virtual links.
  • a packet input to the port on the node 400A side of the communication node 200A is handled as a packet input to the external NW end point 603A of the virtual network 600A associated with the virtual-physical mapping 701A.
  • the packet output from the virtual network to the external NW end point 603C is output from the port on the node 400C side of the communication node associated with the virtual-physical mapping 701C.
  • the virtual network control unit 101 of the control device 100A treats the packet received from the physical network control unit 103 as a packet input to the external NW endpoint 603, passes through the virtual network, and receives another external NW endpoint. Flow control is performed so as to output from 603.
  • the traffic 702A of the virtual network 600A indicates traffic input from the virtual port 604A of the virtual router 601A.
  • the bandwidth control target on the virtual network 600A is assumed to be traffic 702A.
  • the flow 703A of the physical network 500 corresponds to traffic input from the external NW end point 603A of the virtual network 600A and input to the virtual router 601A.
  • the flow 703B corresponds to traffic input from the external NW end point 603B of the virtual network 600A and input to the virtual router 601A.
  • the traffic 702A of the virtual network 600A is composed of a flow 703A and a flow 703B on the physical network.
  • FIG. 9 is a sequence diagram showing the operation (flow entry setting) of the second exemplary embodiment of the present invention. The process of FIG. 9 starts when the user sets virtual network topology information, virtual-physical mapping information, and bandwidth control policy information for the control device 100A.
  • the virtual network control unit 101 of the control device 100 stores the virtual network topology information and virtual-physical mapping information input by the user in the virtual network configuration storage unit 104. Similarly, the virtual network control unit 101 of the control device 100 stores the bandwidth control policy information input by the user in the bandwidth control policy storage unit 105. Furthermore, the virtual network control unit 101 instructs the physical network control unit 103 on the flow control contents for reflecting these virtual network settings on the physical network (step S101).
  • the bandwidth control policy information it is assumed that information defining action information such as a bandwidth limit value is input for the traffic 702A input from the virtual port 604A of the virtual router 601A of FIG.
  • the physical network control unit 103 of the control device 100A converts the flow control content instructed by the virtual network control unit 101 into control information (flow entry) for each communication node 200.
  • the physical network control unit 103 sets the control information (flow entry) for each communication node 200 (step S102).
  • This control information (flow entry) is also given a bandwidth control action performed by each communication node 200.
  • the bandwidth control target traffic 702A on the virtual network 600A corresponds to the traffic that combines the flows 703A and 703B on the physical network 500.
  • the physical network control unit 103 sets control information (flow entry) including bandwidth control content for each of the communication node 200A serving as the entrance of the flow 703A and the communication node 200B serving as the entrance of the flow 703B.
  • the physical network control unit 103 controls the combined traffic of the flows 703A and 703B with the bandwidth limit value set on the virtual network.
  • the default setting (such as distributing the bandwidth limit value equally to each flow) is performed.
  • Each communication node 200 that has received an instruction to set the control information (flow entry) adds the control information (flow entry) to the control information storage unit (see 201 in FIG. 3) (step S103).
  • each communication node 200 executes the packet processing shown in FIG. 10 when receiving a bandwidth control target packet.
  • the packet processing unit (see 202 in FIG. 3) of the communication node 200 searches the control information storage unit (see 201 in FIG. 3) for control information (flow entry) having matching conditions that match the received packet (step). S201).
  • the packet processing unit (see 202 in FIG. 3) of the communication node 200 updates the flow statistical information field of the control information (flow entry) (step S202).
  • the flow statistics information field fields such as the number of received packets, the number of received bytes, and the bandwidth used can be provided for each flow entry (see “5. 8 Counters)).
  • the packet processing unit (see 202 in FIG. 3) of the communication node 200 performs processing of the received packet (output to a designated port, etc.) according to the contents of the instruction field of the searched control information (flow entry).
  • the packet processing unit (see 202 in FIG. 3) of the communication node 200 performs bandwidth control (step S203).
  • each communication node 200 transmits flow statistical information to the statistical information collection device at a designated cycle.
  • FIG. 11 is a sequence diagram showing the flow of the flow statistical information collection process.
  • the communication node 200 transmits each flow statistical information stored in the flow statistical information field of each control information (flow entry) of the control information storage unit (see 201 in FIG. 3) to the statistical information collection device 300. (Step S301).
  • the statistical information collection unit 301 of the statistical information collection apparatus 300 stores the flow statistical information received from each communication node 200 in the statistical information storage unit 302 (step S302). Note that the communication node 200 does not need to transmit all of the flow statistical information held by itself to the statistical information collection device 300, only the flow statistical information of the control information (flow entry) in which the designated communication node is designated. May be transmitted.
  • control device 100 ⁇ / b> A simplifies the flow statistical information from the statistical information collection device 300 at a specified period and performs bandwidth control.
  • the control device 100A performs the processing in FIG. 12 for each bandwidth control target flow.
  • the bandwidth value management unit 102 of the control device 100A refers to the bandwidth control policy held in the bandwidth control policy storage unit 105, and extracts the traffic to be controlled on the virtual network and the bandwidth limit value.
  • the bandwidth value management unit 102 refers to the virtual network configuration storage unit 104 and traces the virtual network topology and the virtual-physical mapping, so that the bandwidth control target on the physical network corresponding to the bandwidth control target traffic Is identified (step S401).
  • the traffic 702A subject to bandwidth control is detected by the virtual port 604A of the virtual router 601A, and the direction is the input direction to the virtual router 601A. Trace to 602A and trace in the direction of virtual ports 604D and 604E of virtual bridge 602A, respectively. Further, by tracing from the external NW end points 603A and 603B to the virtual-physical mapping 701A and 701B, the traffic input position (input port) on the physical network can be specified, and the flows 703A and 703B input from this position are the bandwidths. It becomes a control target.
  • the bandwidth value management unit 102 of the control device 100A requests the statistical information collection device 300 to transmit the flow statistical information of each identified flow (step S402).
  • the flow identified in step S401 is an end-to-end flow from node to node, whereas the statistical information collection device 300 stores control information (flow entry) set in each communication node 200. ) Flow statistics information. For this reason, the bandwidth value management unit 102 replaces the end-to-end flow with the control information (flow entry) of each communication node 200, and requests only the necessary flow statistical information.
  • the flow 703A in FIG. 8 is an end-to-end flow from the node 400A to the node 400C.
  • This flow 703A includes control information (flow entry) for transmitting a packet addressed to the node 400C received from the node 400A by the communication node 200A in the direction of the communication node 200C, and a packet received from the communication node 200A by the communication node 200C. Is realized by control information (flow entry) for transmitting to the node 400C. Therefore, the bandwidth value management unit 102 only needs to refer to the flow statistical information of the control information (flow entry) of the communication node 200A among the control information (flow entry) realizing the flow 703A.
  • the bandwidth value management unit 102 refers to only the flow statistical information of the control information (flow entry) that the communication node 200B has among the control information (flow entry) that realizes the flow 703B. That's fine.
  • the statistical information collection unit 301 of the statistical information collection device 300 searches the statistical information storage unit 302 for each flow statistical information requested from the control device 100A, and sends it to the control device 100A. Transmit (step S403).
  • the bandwidth value management unit 102 of the control device 100A calculates the bandwidth allocated to each flow from the used bandwidth in each received flow statistical information (step S404). Then, the bandwidth value management unit 102 instructs the physical network control unit 103 to update the bandwidth limit value of the control information (flow entry) set in each communication node to the calculated bandwidth limit value. To do.
  • the optimum method can be selected according to the bandwidth control policy.
  • the following is an example of an allocation method.
  • the bandwidth value management unit 102 compares the total bandwidth used for each flow obtained from the flow statistical information with the bandwidth limit value. As a result, when the total used bandwidth of each flow does not exceed the bandwidth limit value, the bandwidth value management unit 102 ensures that the surplus bandwidth (band limit value ⁇ used bandwidth) of each flow is the same for each flow.
  • the bandwidth limit value instructed to each communication node is determined. That is, the bandwidth limit value of each flow is obtained by adding the value obtained by dividing the surplus bandwidth of all flows by the number of flows to the used bandwidth of each flow.
  • the bandwidth limit that instructs each communication node so that the excess bandwidth of each flow (used bandwidth-bandwidth limit value) is the same for each flow Determine the value. That is, the bandwidth limit value of each flow is obtained by subtracting the value obtained by dividing the excess of the bandwidth of all flows by the number of flows from the bandwidth used for each flow.
  • the physical network control unit 103 of the control device 100A instructs each communication node 200 to update the bandwidth limit value of the control information (flow entry) designated by the bandwidth value management unit 102 (step S405).
  • the packet processing unit (see 202 in FIG. 3) of each communication node 200 updates the corresponding control information (flow entry) in the control information storage unit (see 201 in FIG. 3) according to the instruction of the control device 100A (step S406). ).
  • the default bandwidth limit value is assigned to each bandwidth control target flow on the physical network in the control information (flow entry) setting process shown in FIG. 11 and 12 can be executed as needed, and the bandwidth limit value of each flow can be updated after monitoring and collecting the bandwidth used.
  • control can be performed so that the total used bandwidth of each flow on the physical network falls within the bandwidth limit value set in the virtual network.
  • FIG. 13 is a diagram for explaining the operation of the control device according to the third embodiment of the present invention.
  • the control device 100 performs bandwidth control on the flow from the communication node 200A toward the communication node 200C and the flow from the communication node 200B toward the communication node 200C.
  • FIG. 14 is a diagram illustrating an example of a priority management table held in the control device 100.
  • priorities are set for the physical link between the communication node 200A and the communication node 200C and the physical link between the communication node 200B and the communication node 200C, respectively.
  • FIG. 15 is a diagram illustrating an example of a band value management table held in the control apparatus 100.
  • 10 Gbps is set as the bandwidth limit value of traffic flowing through the virtual link VL-A.
  • FIG. 16 is an example of control information (flow entry) set in the communication node by the control device 100 of the present embodiment.
  • the physical network control unit 103 has been described as equally distributing the bandwidth limit value to each physical link (see step S102 in FIG. 9).
  • the bandwidth limit value is calculated using the priority as follows. First, the control device 100 uses the information that the priority of the physical links 200A-200C is “5” and the priority of the physical links 200B-200C is “3”, and the physical link 200A from 5 / (5 + 3) * 10 Gbps. The bandwidth limit value of ⁇ 200C is calculated as 6.25. Similarly, the control device 100 calculates the bandwidth limit value of the physical links 200B-200C as 3.75.
  • the priority is dynamically changed according to the congestion level of the physical link, rather than the user arbitrarily setting the priority. For example, by lowering the priority of a physical link with a high congestion level, it is possible to suppress the use of a physical link with a high congestion level. This makes it possible to perform optimal bandwidth control.
  • FIG. 17 is a diagram for explaining the operation of the control device according to the fourth embodiment of the present invention. For example, as shown in the upper part of FIG. 17, it is assumed that flows A and B flowing through a virtual link VL-A between virtual nodes are designated as control targets.
  • FIG. 18 is a diagram illustrating another example of a priority management table held in the control apparatus 100.
  • the priority is set for each flow that flows through the physical link between the communication node 200A and the communication node 200C and the physical link between the communication node 200B and the communication node 200C.
  • FIG. 19 is an example of control information (flow entry) set in the communication node 200A by the control device 100 according to the embodiment.
  • the bandwidth limit value is calculated from the priority of each physical link, but in this embodiment, the bandwidth limit value is determined using the priority of the flow. Specifically, assuming that 12 Gbps is set as the bandwidth limit value of the traffic flowing through the virtual link VL-A, the bandwidth limit value of the flow A is 5 Gbps, the bandwidth limit value of the flow B is 4 Gbps in descending order of priority. The bandwidth limit value of the flow C is set to 3 Gbps.
  • the bandwidth limit value for each flow may be calculated from the priority using a predetermined calculation formula. It is also possible to obtain the bandwidth limit value by using both the priority for each physical link and the priority for each flow by incorporating both the third embodiment and the fourth embodiment.
  • the priority used in the third and fourth embodiments can be corrected according to the congestion state of the physical link to be controlled (fifth embodiment).
  • the priority is changed according to the congestion level, or the bandwidth limit value itself is adjusted. Can be adjusted.
  • FIG. 20 shows that in the third embodiment, congestion has occurred in the physical link between the communication nodes 200A and 200C. Therefore, the bandwidth limit value of the communication node 200A is lowered and the bandwidth limit value of the communication node 200B is increased accordingly. This is an example. By doing so, it becomes possible to lower the congestion level of the physical link between the communication nodes 200A-200C. Note that the statistical information collection apparatus of the second embodiment can be used for detecting the congestion state.
  • a bandwidth limit value is set in the control information (flow entry), and the communication node 200 interprets the control information (flow entry) with the bandwidth limit value and executes bandwidth control.
  • a bandwidth control can be performed using the Meter Table referred to in Non-Patent Document 2 (see “5.7 Meter Table” in Non-Patent Document 2).
  • an ID for specifying an entry in the Meter table 2012 called a Meter ID is set.
  • the communication node 200a performs bandwidth control according to the corresponding entry in the Meter table 2012.
  • the operation management apparatus 900 based on the policy input from the user, according to the congestion level (physical link unit / flow unit), flow destination or / and transmission source, service type (switch port number, etc.)
  • the bandwidth limit value and priority are determined from the port priority of the switch.
  • the flow or traffic on the virtual network has been described as being band-limited.
  • the present invention can also be used for applications such as band-limiting a specific virtual link on the virtual network.
  • a bandwidth is provided for a specific virtual link (for example, a virtual link on the entrance side) of each virtual network. Limits can be applied. In the example of FIG. 23, a bandwidth limit value of 10 Gbps is set for each of the virtual links on the virtual networks of the users A and B.
  • FIG. 24 is an example of control information (flow entry) set in the communication node 200A (or communication node 200B) in order to perform bandwidth control as shown in FIG.
  • control information flow entry
  • a bandwidth of 5 Gbps is assigned to each of them.
  • one communication flow is generated for the user B, all the bandwidth of 10 Gbps is allocated.
  • the restriction in this way, it becomes possible to guarantee the use of each designated band for a plurality of users.
  • the allocated bandwidth can be changed depending on the user class (band guaranteed user and other general users). Similarly, it is possible to change the allocated bandwidth or provide an exception depending on the service type of the communication flow.
  • the bandwidth value management unit accepts, from a user, a position for limiting a bandwidth on the virtual network of the predetermined communication flow, and designation of a bandwidth limit value
  • the said physical network control part is a control apparatus which implements band control in the position of the physical network corresponding to the position which restrict
  • Priorities are set for the physical links corresponding to the virtual links used by the communication flow on the virtual network
  • the said physical network control part is a control apparatus which controls based on the said priority so that a physical link with a high said priority may be used preferentially among the physical links corresponding to the said virtual link.
  • Priority can be set for each communication flow
  • the said physical network control part is a control apparatus which controls so that a communication flow with the said high priority may be prioritized among the communication flows which use a specific physical link.
  • a statistical information collection unit that collects traffic of a predetermined physical link on the physical network
  • the physical network control unit is configured to update a bandwidth value set for each physical link using a difference between a total value of the traffic amount of the physical link corresponding to the virtual link and a bandwidth value set for the communication flow.
  • a statistical information collection unit that collects traffic of a predetermined physical link on the physical network is provided, A control device that increases or decreases the priority based on the collected traffic so that congestion does not occur in the predetermined physical link.
  • the physical network control unit sets, for the communication node on the physical network, control information associating a matching condition that is matched with a received packet and a processing content that is applied to a packet that matches the matching condition.
  • the control device that controls the physical network.
  • the said physical network control part is a control apparatus which instruct
  • the said bandwidth value management part is a control apparatus which sets a bandwidth value about the predetermined
  • the bandwidth value management unit is a control device that sets the priority based on a bandwidth control policy received from a predetermined operation management device.
  • the bandwidth value management unit sets a bandwidth value for a virtual link on the virtual network instead of a bandwidth value for a predetermined communication flow on the virtual network
  • the said physical network control part is a control apparatus which controls the said physical network so that the traffic of the communication flow on the said virtual network may be settled in the zone

Abstract

 The present invention increases available bandwidth control means in cases in which a virtual network is configured using a centralized-control-type communication system. A controller according to the present invention is provided with: a virtual network control unit for controlling a virtual network on the basis of the configuration of the virtual network configured using a physical network; a bandwidth value management unit for setting a bandwidth value with regard to a prescribed communication flow in the virtual network; and a physical network control unit for controlling a physical network in accordance with an instruction from the virtual network control unit, as well as exerting bandwidth control so that the traffic of the prescribed communication flow falls within the set bandwidth value.

Description

制御装置、通信ノード、通信システム、通信方法及びプログラムControl device, communication node, communication system, communication method, and program
 [関連出願についての記載]
 本発明は、日本国特許出願:特願2013-216580号(2013年10月17日出願)に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、制御装置、通信ノード、通信システム、通信方法及びプログラムに関し、特に、制御対象のスイッチを集中制御する制御装置、スイッチ、通信システム、通信方法及びプログラムに関する。
[Description of related applications]
The present invention is based on a Japanese patent application: Japanese Patent Application No. 2013-216580 (filed on October 17, 2013), and the entire contents of this application are incorporated and described in this document by reference.
The present invention relates to a control device, a communication node, a communication system, a communication method, and a program, and more particularly, to a control device, a switch, a communication system, a communication method, and a program that centrally control a switch to be controlled.
 近年、オープンフロー(OpenFlow)という技術が提案されている(非特許文献1、2参照)。オープンフローは、通信をエンドツーエンドのフローとして捉え、フロー単位で経路制御、障害回復、負荷分散、最適化を行うものである。非特許文献2に仕様化されているオープンフロースイッチは、オープンフローコントローラとの通信用のセキュアチャネルを備え、オープンフローコントローラから適宜追加または書き換え指示されるフローテーブルに従って動作する。フローテーブルには、フロー毎に、パケットヘッダと照合するマッチ条件(Match Fields)と、フロー統計情報(Counters)と、処理内容を定義したインストラクション(Instructions)と、の組が定義される(非特許文献2の「5.2 Flow Table」の項参照)。 In recent years, a technique called OpenFlow has been proposed (see Non-Patent Documents 1 and 2). OpenFlow captures communication as an end-to-end flow and performs path control, failure recovery, load balancing, and optimization on a per-flow basis. The OpenFlow switch specified in Non-Patent Document 2 includes a secure channel for communication with the OpenFlow controller, and operates according to a flow table that is appropriately added or rewritten from the OpenFlow controller. For each flow, a set of match conditions (Match Fields), flow statistical information (Counters), and instructions (Instructions) that define processing contents are defined for each flow (non-patented). (Refer to “5.2 Flow Table” in Document 2).
 例えば、オープンフロースイッチは、パケットを受信すると、フローテーブルから、受信パケットのヘッダ情報に適合するマッチ条件(非特許文献2の「5.3 Matching」参照)を持つエントリを検索する。検索の結果、受信パケットに適合するエントリが見つかった場合、オープンフロースイッチは、フロー統計情報(カウンタ)を更新するとともに、受信パケットに対して、当該エントリのインストラクションフィールドに記述された処理内容(指定ポートからのパケット送信、フラッディング、廃棄等)を実施する。一方、検索の結果、受信パケットに適合するエントリが見つからなかった場合、オープンフロースイッチは、セキュアチャネルを介して、オープンフローコントローラに対してエントリ設定の要求、即ち、受信パケットを処理するための制御情報の送信要求(Packet-Inメッセージ)を送信する。オープンフロースイッチは、処理内容が定められたフローエントリを受け取ってフローテーブルを更新する。このように、オープンフロースイッチは、フローテーブルに格納されたエントリを制御情報として用いてパケット転送を行う。 For example, when the OpenFlow switch receives a packet, the OpenFlow switch searches the flow table for an entry having a matching condition (see “5.3 Matching” in Non-Patent Document 2) that matches the header information of the received packet. If an entry that matches the received packet is found as a result of the search, the OpenFlow switch updates the flow statistical information (counter) and processes the processing (designated) in the instruction field of the entry for the received packet. Perform packet transmission, flooding, discard, etc. from the port. On the other hand, if no entry matching the received packet is found as a result of the search, the OpenFlow switch sends an entry setting request to the OpenFlow controller via the secure channel, that is, a control for processing the received packet. An information transmission request (Packet-In message) is transmitted. The OpenFlow switch receives a flow entry whose processing content is defined and updates the flow table. As described above, the OpenFlow switch performs packet transfer using the entry stored in the flow table as control information.
 また、非特許文献2の「5.7 Meter Table」の項には、オープンフロースイッチに、レート制限など、さまざまなQoS(Quality of Service)制御機能を実装させることのできるMeter Tableが開示されている。 In addition, Non-Patent Document 2 “5.7 Meter Table” discloses a Meter Table that allows an OpenFlow switch to implement various QoS (Quality of Service) control functions such as rate limiting. Yes.
 特許文献1には、上述のオープンフローに代表される集中制御型のネットワークを用いて論理的に分割(スライス)された仮想ネットワークを構成することのできる発明が開示されている。 Patent Document 1 discloses an invention capable of configuring a virtual network logically divided (sliced) using a centralized control network represented by the above-described OpenFlow.
 特許文献2には、複数回線へ出力するパケットの総帯域を制御できるというパケット中継装置が開示されている。同文献記載によると、このパケット中継装置は、物理回線からパケットを送受信する送信部と、物理回線からパケットを受信する受信部と、複数の物理回線に対応する回線グループを決定する回線グループ決定部と、前記回線グループ決定部で決定された回線グループ毎にパケットの流れを制御する回線グループ制御部とを有する、と記載されている。 Patent Document 2 discloses a packet relay device that can control the total bandwidth of packets output to a plurality of lines. According to the document, this packet relay device includes a transmission unit that transmits and receives packets from a physical line, a reception unit that receives packets from a physical line, and a line group determination unit that determines line groups corresponding to a plurality of physical lines. And a line group control unit that controls the flow of packets for each line group determined by the line group determination unit.
国際公開第2011/043416号International Publication No. 2011/043416 特開2007-97114号公報JP 2007-97114 A
 以下の分析は、本発明によって与えられたものである。非特許文献2には、オープンフロースイッチに、QoS制御機能を追加できることが記載されている(「5.7 Meter Table」の項参照)。しかしながら、上記機能のみでは特許文献1のような制御装置(制御サーバ)と通信ノード(物理ノード)との組み合わせを用いて仮想ネットワークを提供する場合のQoS制御を実現することができないという問題点がある。 The following analysis is given by the present invention. Non-Patent Document 2 describes that a QoS control function can be added to an OpenFlow switch (see “5.7 Meter Table”). However, there is a problem in that QoS control in the case of providing a virtual network using a combination of a control device (control server) and a communication node (physical node) as in Patent Document 1 cannot be realized only with the above functions. is there.
 例えば、仮想ネットワーク上のある仮想ノード(仮想ルータや仮想ブリッジ)へ入力するトラヒックは、物理ネットワーク上ではネットワーク入口となる物理ノード(スイッチ)が異なる複数フローで構成される場合がある。この場合に、仮想ネットワーク上の仮想ノードへ入力するトラヒックに帯域制御を適用するためには、物理ネットワーク上での構成要素となる各フローの合計帯域が仮想ネットワークに設定された帯域制限値に一致するように制御しなければならないが、非特許文献2のMeter Tableのみではかかる制御は困難である。 For example, the traffic input to a certain virtual node (virtual router or virtual bridge) on the virtual network may be composed of a plurality of flows with different physical nodes (switches) serving as network entrances on the physical network. In this case, in order to apply bandwidth control to the traffic input to the virtual node on the virtual network, the total bandwidth of each flow, which is a component on the physical network, matches the bandwidth limit value set in the virtual network. However, such control is difficult only with the Meter Table of Non-Patent Document 2.
 また、特許文献2は、リンクアグリケーション技術等により受信パケットを複数の物理回線へ振り分けて送信するパケット中継装置内で、回線グループ毎、パケットのクラス毎の帯域制御を行うものであり、上記した集中制御型ネットワークが取り扱う仮想ネットワークや仮想リンクに対応できるものとはなっていない。 Further, Patent Document 2 performs bandwidth control for each line group and each packet class in a packet relay device that distributes and transmits received packets to a plurality of physical lines by link aggregation technology or the like. It is not compatible with virtual networks and virtual links handled by control networks.
 本発明は、上記集中制御型の通信システムを用いて仮想ネットワークを構成する場合における帯域制御手段の豊富化に貢献できる制御装置、通信ノード、通信システム、通信方法及びプログラムを提供することを目的とする。 It is an object of the present invention to provide a control device, a communication node, a communication system, a communication method, and a program that can contribute to the enrichment of bandwidth control means when a virtual network is configured using the centralized control type communication system. To do.
 第1の視点によれば、物理ネットワークを用いて構成された仮想ネットワークの構成に基づいて、仮想ネットワークを制御する仮想ネットワーク制御部と、前記仮想ネットワーク上の所定の通信フローについて帯域値を設定する帯域値管理部と、前記仮想ネットワーク制御部からの指示に従い物理ネットワークを制御するとともに、前記所定の通信フローの通信量が、前記設定された帯域値に収まるように帯域制御を実施する物理ネットワーク制御部と、を備える制御装置が提供される。 According to the first aspect, based on a configuration of a virtual network configured using a physical network, a bandwidth value is set for a virtual network control unit that controls the virtual network and a predetermined communication flow on the virtual network. A physical network control that controls a physical network in accordance with instructions from a bandwidth value management unit and the virtual network control unit, and performs bandwidth control so that the traffic of the predetermined communication flow falls within the set bandwidth value A control device is provided.
 第2の視点によれば、上記した制御装置からの制御に従い、前記通信フローの通信量が、前記設定された帯域値に収まるよう動作する通信ノードが提供される。 According to the second aspect, a communication node is provided that operates so that the communication amount of the communication flow falls within the set bandwidth value in accordance with the control from the control device.
 第3の視点によれば、上記した制御装置と、通信ノードとを含む通信システムが提供される。 According to the third aspect, a communication system including the above-described control device and a communication node is provided.
 第4の視点によれば、物理ネットワークを用いて構成された仮想ネットワークの構成に基づいて、仮想ネットワークを制御する仮想ネットワーク制御部を備える制御装置が、前記仮想ネットワーク上の所定の通信フローについて帯域値の設定を受け付けるステップと、前記仮想ネットワーク制御部からの指示に従い物理ネットワークを制御するとともに、前記所定の通信フローの通信量が、前記設定された帯域値に収まるよう前記物理ネットワークを制御するステップと、を含む帯域制御方法が提供される。本方法は、通信ノードを制御する制御装置という、特定の機械に結びつけられている。 According to a fourth aspect, a control device including a virtual network control unit that controls a virtual network based on a configuration of a virtual network configured using a physical network has a bandwidth for a predetermined communication flow on the virtual network. A step of accepting a value setting; a step of controlling the physical network in accordance with an instruction from the virtual network control unit; and a step of controlling the physical network so that the traffic of the predetermined communication flow falls within the set bandwidth value A bandwidth control method is provided. This method is associated with a specific machine called a control device that controls a communication node.
 第5の視点によれば、物理ネットワークを用いて構成された仮想ネットワークの構成に基づいて、仮想ネットワークを制御する仮想ネットワーク制御部を備えるコンピュータに、前記仮想ネットワーク上の所定の通信フローについて帯域値の設定を受け付ける処理と、前記仮想ネットワーク制御部からの指示に従い物理ネットワークを制御するとともに、前記所定の通信フローの通信量が、前記設定された帯域値に収まるよう前記物理ネットワークを制御する処理と、を実行させるプログラムが提供される。なお、このプログラムは、コンピュータが読み取り可能な(非トランジエントな)記憶媒体に記録することができる。即ち、本発明は、コンピュータプログラム製品として具現することも可能である。 According to a fifth aspect, a bandwidth value for a predetermined communication flow on the virtual network is added to a computer including a virtual network control unit that controls the virtual network based on the configuration of the virtual network configured using a physical network. A process of accepting the setting of the network, a process of controlling the physical network in accordance with an instruction from the virtual network control unit, and a process of controlling the physical network so that the traffic of the predetermined communication flow falls within the set bandwidth value Are provided. This program can be recorded on a computer-readable (non-transient) storage medium. That is, the present invention can be embodied as a computer program product.
 本発明によれば、集中制御型の通信システムを用いて仮想ネットワークを構成する場合における帯域制御手段の豊富化に貢献することが可能となる。 According to the present invention, it is possible to contribute to the enrichment of bandwidth control means when a virtual network is configured using a centralized control type communication system.
本発明の第1の実施形態の制御装置の構成を示す図である。It is a figure which shows the structure of the control apparatus of the 1st Embodiment of this invention. 本発明の第1の実施形態の制御装置が構成する仮想ネットワークを説明するための図である。It is a figure for demonstrating the virtual network which the control apparatus of the 1st Embodiment of this invention comprises. 本発明の第1の実施形態の通信ノードの構成を示す図である。It is a figure which shows the structure of the communication node of the 1st Embodiment of this invention. 本発明の第1の実施形態の通信ノードに設定される制御情報の例を示す図である。It is a figure which shows the example of the control information set to the communication node of the 1st Embodiment of this invention. 本発明の第1の実施形態の制御装置の動作を表したフローチャートである。It is a flowchart showing operation | movement of the control apparatus of the 1st Embodiment of this invention. 本発明の第2の実施形態の通信システムの構成を示す図である。It is a figure which shows the structure of the communication system of the 2nd Embodiment of this invention. 本発明の第2の実施形態の制御装置と統計情報収集装置の構成を示す図である。It is a figure which shows the structure of the control apparatus and statistical information collection apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施形態の制御装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the control apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施形態の動作(フローエントリの設定)を表したシーケンス図である。It is a sequence diagram showing operation | movement (setting of a flow entry) of the 2nd Embodiment of this invention. 本発明の第2の実施形態の通信ノードの動作(パケット受信時)を表したフローチャートである。It is a flowchart showing operation | movement (at the time of packet reception) of the communication node of the 2nd Embodiment of this invention. 本発明の第2の実施形態の動作(フロー統計情報の収集)を表したシーケンス図である。It is a sequence diagram showing operation (collection of flow statistics information) of a 2nd embodiment of the present invention. 本発明の第2の実施形態の動作(帯域制御)を表したシーケンス図である。It is a sequence diagram showing operation (band control) of a 2nd embodiment of the present invention. 本発明の第3の実施形態の制御装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the control apparatus of the 3rd Embodiment of this invention. 本発明の第3の実施形態の制御装置に保持される優先度管理用のテーブルの一例を示す図である。It is a figure which shows an example of the table for priority management hold | maintained at the control apparatus of the 3rd Embodiment of this invention. 本発明の第3の実施形態の制御装置に保持される帯域値管理用のテーブルの一例を示す図である。It is a figure which shows an example of the table for the band value management hold | maintained at the control apparatus of the 3rd Embodiment of this invention. 本発明の第3の実施形態の制御装置が通信ノードに設定する制御情報(フローエントリ)の例である。It is an example of the control information (flow entry) which the control apparatus of the 3rd Embodiment of this invention sets to a communication node. 本発明の第4の実施形態の制御装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the control apparatus of the 4th Embodiment of this invention. 本発明の第4の実施形態の制御装置に保持される優先度管理用のテーブルの一例を示す図である。It is a figure which shows an example of the table for priority management hold | maintained at the control apparatus of the 4th Embodiment of this invention. 本発明の第4の実施形態の制御装置が通信ノードに設定する制御情報(フローエントリ)の例である。It is an example of the control information (flow entry) which the control apparatus of the 4th Embodiment of this invention sets to a communication node. 本発明の第5の実施形態の制御装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the control apparatus of the 5th Embodiment of this invention. 本発明の第6の実施形態の通信ノードの構成を説明するための図である。It is a figure for demonstrating the structure of the communication node of the 6th Embodiment of this invention. 本発明の第7の実施形態の通信システムの構成を示す図である。It is a figure which shows the structure of the communication system of the 7th Embodiment of this invention. 本発明の第8の実施形態の制御装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the control apparatus of the 8th Embodiment of this invention. 本発明の第8の実施形態の制御装置が通信ノードに設定する制御情報(フローエントリ)の例である。It is an example of the control information (flow entry) which the control apparatus of the 8th Embodiment of this invention sets to a communication node.
 はじめに本発明の一実施形態の概要について図面を参照して説明する。なお、この概要に付記した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、本発明を図示の態様に限定することを意図するものではない。 First, an outline of an embodiment of the present invention will be described with reference to the drawings. Note that the reference numerals of the drawings attached to this summary are attached to the respective elements for convenience as an example for facilitating understanding, and are not intended to limit the present invention to the illustrated embodiment.
 本発明は、その一実施形態において、物理ネットワークを用いて構成された仮想ネットワークの構成に基づいて、仮想ネットワークを制御する仮想ネットワーク制御部(図1の101)と、帯域値管理部(図1の102)と、物理ネットワーク制御部(図1の103)と、を備える制御装置(図1の100)にて実現できる。 In one embodiment of the present invention, a virtual network control unit (101 in FIG. 1) that controls a virtual network based on the configuration of a virtual network configured using a physical network, and a bandwidth value management unit (FIG. 1). 102) and a physical network control unit (103 in FIG. 1) can be realized by a control device (100 in FIG. 1).
 より具体的には、帯域値管理部(図1の102)は、前記仮想ネットワーク上の所定の通信フロー(例えば、図2の任意の仮想ノード間を流れる通信フロー)について帯域値を設定する。物理ネットワーク制御部(図1の103)は、仮想ネットワーク制御部(図1の101)からの指示に従い物理ネットワークを制御するとともに、前記所定の通信フローの通信量(例えば、図2の任意の仮想ノード間を流れる通信フローに対応する通信ノード間の通信量)が、前記設定された帯域値に収まるように帯域制御を実施する。 More specifically, the bandwidth value management unit (102 in FIG. 1) sets a bandwidth value for a predetermined communication flow on the virtual network (for example, a communication flow flowing between arbitrary virtual nodes in FIG. 2). The physical network control unit (103 in FIG. 1) controls the physical network in accordance with an instruction from the virtual network control unit (101 in FIG. 1), and the traffic of the predetermined communication flow (for example, any virtual network in FIG. 2). Bandwidth control is performed so that the communication volume between communication nodes corresponding to the communication flow flowing between the nodes falls within the set bandwidth value.
 以上のようにすることで、物理ネットワーク上ではネットワーク入口となる物理ノード(スイッチ)が異なる複数フローで構成される仮想ネットワーク上の通信フローの帯域制御を実施することが可能となる。 By doing as described above, it becomes possible to perform bandwidth control of a communication flow on a virtual network composed of a plurality of flows with different physical nodes (switches) serving as network entrances on the physical network.
[第1の実施形態]
 続いて、本発明の第1の実施形態について図面を参照して詳細に説明する。図1は、本発明の第1の実施形態の制御装置の構成を示す図である。図1を参照すると、仮想ネットワーク制御部101と、帯域値管理部102と、物理ネットワーク制御部103と、を備えた構成が示されている。
[First Embodiment]
Next, a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram illustrating a configuration of a control device according to a first embodiment of the present invention. Referring to FIG. 1, a configuration including a virtual network control unit 101, a bandwidth value management unit 102, and a physical network control unit 103 is shown.
 仮想ネットワーク制御部101は、図2に示すような、仮想ネットワークの構成と、物理ネットワークの構成との対応関係を管理している。仮想ネットワーク制御部101は、この仮想ネットワークの構成と物理ネットワークの構成との対応関係に基づいて、物理ネットワーク制御部103から上げられてきた入力パケット情報に基づいて、仮想ネットワーク上での仮想ノードの振る舞いを計算する。そして、仮想ネットワーク制御部101は、前記計算結果に基づいて、物理ネットワーク制御部103に対し指示を出力する(例えば、通信ノード200Cの特定のポートからのパケット出力、パケット破棄指示、送信元への応答パケットの出力等)。 The virtual network control unit 101 manages the correspondence between the configuration of the virtual network and the configuration of the physical network as shown in FIG. Based on the input packet information raised from the physical network control unit 103 based on the correspondence between the configuration of the virtual network and the configuration of the physical network, the virtual network control unit 101 determines the virtual node on the virtual network. Calculate the behavior. Then, the virtual network control unit 101 outputs an instruction to the physical network control unit 103 based on the calculation result (for example, a packet output from a specific port of the communication node 200C, a packet discard instruction, and a transmission source) Response packet output).
 帯域値管理部102は、前記仮想ネットワーク上の所定の通信フロー(例えば、図2の任意の仮想ノード間を流れる通信フロー)について帯域制限値を管理する。なお、帯域制限値は、ユーザ(ネットワーク管理者)が任意に設定してもよいし、特定の帯域制御ポリシー(通信種別やユーザ毎の帯域制限値)に基づいて、帯域値管理部102が計算するものとしてもよい。 The bandwidth value management unit 102 manages a bandwidth limit value for a predetermined communication flow on the virtual network (for example, a communication flow that flows between arbitrary virtual nodes in FIG. 2). The bandwidth limit value may be arbitrarily set by the user (network administrator) or calculated by the bandwidth value management unit 102 based on a specific bandwidth control policy (communication type or bandwidth limit value for each user). It is good also as what to do.
 物理ネットワーク制御部103は、通信ノード200A~200C(以下、通信ノードを特に区別しない場合、「通信ノード200」と記す。)から制御情報の設定要求を受信すると、制御情報の設定要求に含まれる入力パケット情報を仮想ネットワーク制御部101に送信する。物理ネットワーク制御部103は、仮想ネットワーク制御部101から前記入力パケット情報に対する指示を受信すると、通信ノード200に前記指示に従った動作を行わせる制御情報を作成、設定する。 When the physical network control unit 103 receives a control information setting request from the communication nodes 200A to 200C (hereinafter, referred to as “communication node 200” when the communication nodes are not particularly distinguished), the physical network control unit 103 is included in the control information setting request. Input packet information is transmitted to the virtual network control unit 101. When the physical network control unit 103 receives an instruction for the input packet information from the virtual network control unit 101, the physical network control unit 103 creates and sets control information that causes the communication node 200 to perform an operation according to the instruction.
 さらに、物理ネットワーク制御部103は、帯域値管理部102にて管理されている情報に従って、所定の通信フローに対応する通信ノード200上の該当通信フローの合計通信量が、当該通信フローについて定められた帯域制限値に収まるように帯域制御を実施する(図4参照)。具体的には、物理ネットワーク制御部103は、個々の通信ノード200に帯域制限値を通知することで、帯域制御を行う。なお、個々の通信ノード200に割り当てる帯域制限値の決定方法については、仮想ネットワーク上の帯域制限値を均等に按分する方法や、個々の物理リンクの帯域上限を考慮する方法、通信フローの優先度を考慮する方法等の種々の方法を採用することができる(第3、第4の実施形態も参照)。 Further, the physical network control unit 103 determines the total communication amount of the corresponding communication flow on the communication node 200 corresponding to the predetermined communication flow according to the information managed by the bandwidth value management unit 102 for the communication flow. Band control is performed so as to be within the band limit value (see FIG. 4). Specifically, the physical network control unit 103 performs bandwidth control by notifying each communication node 200 of a bandwidth limit value. As for the method of determining the bandwidth limit value to be assigned to each communication node 200, a method of equally apportioning the bandwidth limit value on the virtual network, a method considering the bandwidth upper limit of each physical link, and the priority of the communication flow It is possible to adopt various methods such as a method considering the above (see also the third and fourth embodiments).
 図3は、本発明の第1の実施形態の通信ノードの構成を示す図である。図3を参照すると、制御情報記憶部201と、パケット処理部202とを備えた通信ノード200が示されている。 FIG. 3 is a diagram illustrating the configuration of the communication node according to the first embodiment of this invention. Referring to FIG. 3, a communication node 200 including a control information storage unit 201 and a packet processing unit 202 is illustrated.
 制御情報記憶部201は、制御装置100の物理ネットワーク制御部103から設定された制御情報を記憶する。 The control information storage unit 201 stores the control information set by the physical network control unit 103 of the control device 100.
 図4は、制御装置100の物理ネットワーク制御部103から通信ノード200Aに設定された制御情報の例である。図4の例では、マッチ条件と、インストラクションとを対応付けた制御情報が示されている。マッチ条件としては、非特許文献2のオープンフロースイッチと同様、通信ノード200における入力ポート、レイヤ2~レイヤ4のパケットヘッダの各情報を用いることができる。 FIG. 4 is an example of control information set in the communication node 200A by the physical network control unit 103 of the control device 100. In the example of FIG. 4, control information in which match conditions are associated with instructions is shown. As the match condition, as in the OpenFlow switch of Non-Patent Document 2, each information of the input port and the layer 2 to layer 4 packet headers in the communication node 200 can be used.
 パケット処理部202は、パケットを受信すると、制御情報記憶部201から受信パケットに適用するマッチ条件を持つ制御情報エントリを検索し、該当する制御情報エントリのインストラクションフィールドの内容に従い、受信パケットを処理する。 When receiving the packet, the packet processing unit 202 searches the control information storage unit 201 for a control information entry having a matching condition to be applied to the received packet, and processes the received packet according to the contents of the instruction field of the corresponding control information entry. .
 例えば、図4の制御情報の場合、通信ノード200Aは、所定のマッチ条件にて指定された通信フロー(フローA)のパケットを受信すると、当該パケットを通信ノード200Cに転送する動作を行う。また、通信ノード200Aは、制御装置100から該当通信フローの帯域制限値として、3Gbpsを通知されているため、このマッチ条件に適合する通信量が3Gbpsを超えた場合、超過したパケットを破棄(ポリシング)ないしシェービングする動作を行う。 For example, in the case of the control information in FIG. 4, when receiving a packet of a communication flow (flow A) designated by a predetermined match condition, the communication node 200A performs an operation of transferring the packet to the communication node 200C. Further, since the communication node 200A is notified of 3 Gbps as the bandwidth limit value of the corresponding communication flow from the control device 100, when the communication amount that matches the matching condition exceeds 3 Gbps, the excess packet is discarded (policing) ) Or shaving.
 なお、通信ノード200における帯域制御の実現方法としては、非特許文献2の「5.7 Meter Table」を用いる方法を用いることができる。もちろん、通信ノード200固有に備わった各種レート制限機能を用いてもよい。 As a method for realizing bandwidth control in the communication node 200, a method using “5.7 Meter Table” in Non-Patent Document 2 can be used. Of course, various rate limiting functions unique to the communication node 200 may be used.
 なお、図1、図3に示した制御装置100及び通信ノード200の各部(処理手段)は、これらの装置を構成するコンピュータに、そのハードウェアを用いて、上記した各処理を実行させるコンピュータプログラムにより実現することもできる。また、制御装置100及び通信ノード200は、非特許文献1、2に記載されたオープンフローコントローラと、オープンフロースイッチをベースに、上述した機能をアドオンすることでも実現できる。 Each unit (processing means) of the control device 100 and the communication node 200 shown in FIGS. 1 and 3 causes a computer constituting these devices to execute the above-described processes using the hardware. Can also be realized. The control device 100 and the communication node 200 can also be realized by adding on the above-described functions based on the OpenFlow controller and the OpenFlow switch described in Non-Patent Documents 1 and 2.
 続いて、本実施形態の動作について説明する。図5は、本発明の第1の実施形態の制御装置の帯域制御に係る動作を表したフローチャートである。図5を参照すると、まず、制御装置100は、帯域値管理部102を参照して、仮想ネットワーク上の通信フローから、帯域制御対象の通信ノード(例えば、図2の通信ノード200A、200B)を特定する(ステップS001)。 Subsequently, the operation of this embodiment will be described. FIG. 5 is a flowchart showing the operation related to the bandwidth control of the control device according to the first embodiment of the present invention. Referring to FIG. 5, first, the control device 100 refers to the bandwidth value management unit 102 and selects a communication node (for example, the communication nodes 200 </ b> A and 200 </ b> B in FIG. 2) from the communication flow on the virtual network. Specify (step S001).
 次に、制御装置100は、仮想ネットワーク上の帯域制限値に基づいて、前記特定した通信ノード(例えば、図2の通信ノード200A、200B)に対し、それぞれ通知する帯域制限値を決定する(ステップS002)。 Next, the control device 100 determines a bandwidth limit value to be notified to each of the identified communication nodes (for example, the communication nodes 200A and 200B in FIG. 2) based on the bandwidth limit value on the virtual network (step). S002).
 最後に、制御装置100は、前記特定した通信ノード(例えば、図2の通信ノード200A、200B)に対し、前記決定した帯域制限値を通知する(ステップS003;帯域制限の指示)。 Finally, the control device 100 notifies the determined bandwidth limit value to the specified communication node (for example, the communication nodes 200A and 200B in FIG. 2) (step S003; bandwidth limit instruction).
 以上のように、本実施形態によれば、仮想ネットワーク上の通信フローの帯域制御内容に沿って、物理ネットワーク上の通信ノードに帯域制御を行わせることが可能となる。 As described above, according to this embodiment, it is possible to cause a communication node on a physical network to perform bandwidth control in accordance with the bandwidth control content of a communication flow on a virtual network.
[第2の実施形態]
 続いて、統計情報収集装置を追加して実際の使用帯域を考慮するようにした本発明の第2の実施形態について図面を参照して詳細に説明する。図6は、本発明の第2の実施形態の通信システムの構成を示す図である。図6を参照すると、制御装置100Aと通信ノード200A~200Cと、統計情報収集装置300と、を含み、ノード400A~400C(以下、ノードを特に区別しない場合、「ノード400」と記す。)間の通信を実現する構成が示されている。なお、図6中の実線はデータ転送用のチャネルを示し、破線は、制御装置100と通信ノード200間の制御チャネルを示している。また、一点鎖線は、統計情報収集装置300を中心とするフロー統計情報の転送経路を示している。
[Second Embodiment]
Next, a second embodiment of the present invention in which a statistical information collection device is added to consider the actual bandwidth used will be described in detail with reference to the drawings. FIG. 6 is a diagram showing a configuration of a communication system according to the second exemplary embodiment of the present invention. Referring to FIG. 6, it includes a control device 100A, communication nodes 200A to 200C, and a statistical information collection device 300, and is between nodes 400A to 400C (hereinafter referred to as “node 400” unless the nodes are particularly distinguished). A configuration for realizing the communication is shown. Note that the solid line in FIG. 6 indicates a data transfer channel, and the broken line indicates a control channel between the control device 100 and the communication node 200. The alternate long and short dash line indicates the flow statistics information transfer path centered on the statistics information collection device 300.
 制御装置100Aは、ノード400間のパケットの転送経路を計算し、経路上の通信ノード200に対して制御情報(フローエントリ)を設定することで、ノード400間の通信を実現する。 The control device 100A calculates the transfer path of the packet between the nodes 400 and sets control information (flow entry) for the communication node 200 on the path, thereby realizing communication between the nodes 400.
 通信ノード200は、第1の実施形態の通信ノードと同様であり、ノード400又は他の通信ノードからパケットを受信すると、制御装置100Aから設定された制御情報の中から、受信パケットに適合するマッチ条件を持つものを検索し、当該制御情報に基づいて受信パケットを処理する。換言すれば、通信ノード200は、受信パケットが属するフロー(通信処理単位)を識別し、フロー毎に定められた処理(パケットの転送、ヘッダ書き換え、破棄等)を実施する機能を備えているといえる。 The communication node 200 is the same as the communication node of the first embodiment. When a packet is received from the node 400 or another communication node, the match matches the received packet from the control information set by the control device 100A. A packet having a condition is searched, and the received packet is processed based on the control information. In other words, the communication node 200 has a function of identifying a flow (communication processing unit) to which the received packet belongs and performing a process (packet transfer, header rewriting, discarding, etc.) determined for each flow. I can say that.
 統計情報収集装置300は、通信ノード200からフロー統計情報を受信し、一定期間保存する。また、統計情報収集装置300は、制御装置100Aからの要求に応じて、保存している特定のフロー統計情報を送信する。なお、通信ノード200から統計情報収集装置300へのフロー統計情報の送信の契機は、一定時間毎に通信ノード200が送信することでもよいし、統計情報収集装置300が通信ノード200に対してフロー統計情報の送信を要求することでもよい。 The statistical information collection device 300 receives the flow statistical information from the communication node 200 and stores it for a certain period. Further, the statistical information collection device 300 transmits the stored specific flow statistical information in response to a request from the control device 100A. Note that the transmission of flow statistical information from the communication node 200 to the statistical information collection device 300 may be triggered by the communication node 200 transmitting at regular intervals, or the statistical information collection device 300 may flow to the communication node 200. The transmission of statistical information may be requested.
 ノード400は、通信ノード200に他のノード400宛てのパケットを送信したり、通信ノード200から他のノード400を送信元とするパケットを受信したりする。 The node 400 transmits a packet addressed to the other node 400 to the communication node 200 and receives a packet originating from the other node 400 from the communication node 200.
 図7は、本実施形態の制御装置100Aと統計情報収集装置300の詳細な構成図である。図7を参照すると、本実施形態の制御装置100Aは、仮想ネットワーク制御部101と、帯域値管理部102Aと、物理ネットワーク制御部103と、仮想ネットワーク構成記憶部104と、帯域制御ポリシー記憶部105と、を備えている。 FIG. 7 is a detailed configuration diagram of the control device 100A and the statistical information collection device 300 of this embodiment. Referring to FIG. 7, the control device 100A of this embodiment includes a virtual network control unit 101, a bandwidth value management unit 102A, a physical network control unit 103, a virtual network configuration storage unit 104, and a bandwidth control policy storage unit 105. And.
 仮想ネットワーク制御部101は、制御装置100Aのユーザから、仮想ネットワークトポロジ情報や仮想-物理マッピング情報の入力を受け付けて、仮想ネットワーク構成記憶部104に保存する。また、仮想ネットワーク制御部101は、同じくユーザから帯域制御ポリシー情報の入力を受け付けて、帯域制御ポリシー記憶部105に保存する。さらに、仮想ネットワーク制御部101は、物理ネットワーク制御部103に対し、仮想ネットワークトポロジ情報、仮想-物理マッピング情報及び帯域制御ポリシー情報に基づいたパケットの処理(制御情報の設定)を指示する。前記指示には、トラヒックの帯域制御に関する指示が含まれる。 The virtual network control unit 101 receives input of virtual network topology information and virtual-physical mapping information from the user of the control device 100A, and stores it in the virtual network configuration storage unit 104. Similarly, the virtual network control unit 101 accepts input of bandwidth control policy information from the user and stores it in the bandwidth control policy storage unit 105. Furthermore, the virtual network control unit 101 instructs the physical network control unit 103 to process a packet (setting control information) based on the virtual network topology information, virtual-physical mapping information, and bandwidth control policy information. The instruction includes an instruction related to traffic bandwidth control.
 仮想ネットワーク構成記憶部104は、仮想ネットワークトポロジ情報や仮想-物理マッピング情報を保持する(例えば、図2参照)。 The virtual network configuration storage unit 104 holds virtual network topology information and virtual-physical mapping information (see, for example, FIG. 2).
 帯域制御ポリシー記憶部105は、帯域制御ポリシー情報を保持する。 The bandwidth control policy storage unit 105 holds bandwidth control policy information.
 物理ネットワーク制御部103は、仮想ネットワーク制御部101からのパケットの処理(制御情報の設定)に関する指示に基づいて、各通信ノード200に設定する制御情報を生成する。そして、物理ネットワーク制御部103は、前記生成した制御情報を通信ノード200に設定する。 The physical network control unit 103 generates control information to be set in each communication node 200 based on an instruction related to packet processing (control information setting) from the virtual network control unit 101. Then, the physical network control unit 103 sets the generated control information in the communication node 200.
 帯域値管理部102Aは、仮想ネットワーク構成記憶部104に保存している仮想ネットワークトポロジ情報及び仮想-物理マッピング情報と、帯域制御ポリシー記憶部105に保存している帯域制御ポリシー情報とを参照し、統計情報収集装置300から帯域制御対象のフロー統計情報を取得する。帯域値管理部102Aは、物理ネットワーク制御部103に対して、前記取得したフロー統計情報に基づいて、現時点での使用帯域に最適なフロー制御処理を指示する。 The bandwidth value management unit 102A refers to the virtual network topology information and virtual-physical mapping information stored in the virtual network configuration storage unit 104, and the bandwidth control policy information stored in the bandwidth control policy storage unit 105. Flow statistics information for bandwidth control is acquired from the statistics information collection device 300. The bandwidth value management unit 102A instructs the physical network control unit 103 to perform a flow control process optimal for the currently used bandwidth based on the acquired flow statistical information.
 統計情報収集装置300は、統計情報収集部301と、統計情報記憶部302とを備えている。 The statistical information collection device 300 includes a statistical information collection unit 301 and a statistical information storage unit 302.
 統計情報収集部301は、統計情報記憶部302に、各通信ノード200から受信したフロー統計情報を保存したり、不要となったフロー統計情報を削除する処理を行う。また、統計情報収集部301は、制御装置100Aからの要求に応じて、統計情報記憶部302から、フロー統計情報を検索して制御装置100Aへ送信する処理を行う。 The statistical information collection unit 301 stores the flow statistical information received from each communication node 200 in the statistical information storage unit 302 or deletes the unnecessary flow statistical information. Further, the statistical information collection unit 301 performs a process of searching the flow statistical information from the statistical information storage unit 302 and transmitting the flow statistical information to the control device 100A in response to a request from the control device 100A.
 統計情報記憶部302は、各通信ノード200から受信したフロー統計情報を一定期間保持する。 The statistical information storage unit 302 holds the flow statistical information received from each communication node 200 for a certain period.
 なお、本実施形態では、制御装置100Aと統計情報収集装置300とが独立して配置されているものとして説明するが、制御装置100Aに統計情報収集装置300を統合した構成も採用可能である。 In the present embodiment, the control device 100A and the statistical information collection device 300 are described as being arranged independently. However, a configuration in which the statistical information collection device 300 is integrated with the control device 100A can also be employed.
 通信ノード200は、第1の実施形態の通信ノード(図3参照)と同様であるので、説明を省略する。 Since the communication node 200 is the same as the communication node of the first embodiment (see FIG. 3), description thereof is omitted.
 続いて、本実施形態の動作について図面を参照して詳細に説明する。はじめに、制御装置100Aがユーザに仮想ネットワークを提供する仕組みと帯域制御対象となるトラヒック(単位時間あたりの通信量)について説明する。図8は、本発明の制御装置による仮想ネットワークと物理ネットワークの構成及び対応関係を示す図である。 Subsequently, the operation of the present embodiment will be described in detail with reference to the drawings. First, the mechanism by which the control device 100A provides a virtual network to the user and the traffic to be subjected to bandwidth control (communication amount per unit time) will be described. FIG. 8 is a diagram showing a configuration and a correspondence relationship between a virtual network and a physical network by the control device of the present invention.
 図8の例では、仮想ネットワーク600Aには、仮想ルータ601A、仮想ブリッジ602A、602Bといった仮想ノードと、これらの端点となる外部NW端点603とが配置されている。仮想ノードと外部NW端点603とは、それぞれ仮想ポート604A~604Jを有し、仮想リンクを介して接続されている。 8, in the virtual network 600A, virtual nodes such as a virtual router 601A and virtual bridges 602A and 602B and external NW end points 603 serving as end points thereof are arranged. The virtual node and the external NW end point 603 have virtual ports 604A to 604J, respectively, and are connected via virtual links.
 一方、物理ネットワーク500は、通信ノード200、ノード400で構成されている。 On the other hand, the physical network 500 includes a communication node 200 and a node 400.
 仮想ネットワーク600Aは、制御装置100によって制御されている仮想ネットワークのうちの1つであり、仮想ルータ601Aや仮想ブリッジ602A、602B、外部NW端点603A~603Cを配置し、それぞれに仮想ポート604A~604Jを登録、仮想リンクで接続することで構成されている。 The virtual network 600A is one of the virtual networks controlled by the control device 100, and includes a virtual router 601A, virtual bridges 602A and 602B, and external NW endpoints 603A to 603C, and virtual ports 604A to 604J, respectively. Are registered and connected by virtual links.
 図8の破線で示す仮想-物理マッピング701A~701Cは、仮想ネットワーク600Aの外部NW端点603A~603Cと物理ネットワーク500の通信ノード200のポートの対応関係を示している。例えば、通信ノード200Aのノード400A側のポートに入力されたパケットは、仮想-物理マッピング701Aで対応付けられた仮想ネットワーク600Aの外部NW端点603Aに入力されたパケットとして取り扱われる。また、仮想ネットワーク上から外部NW端点603Cに出力されたパケットは、仮想-物理マッピング701Cで対応付けられた通信ノードのノード400C側のポートから出力される。このように、制御装置100Aの仮想ネットワーク制御部101は、物理ネットワーク制御部103から受け取ったパケットを、外部NW端点603に入力されたパケットとして取り扱い、仮想ネットワークを通過して、他の外部NW端点603から出力するようにフロー制御を実施する。 8 indicate the correspondence between the external NW end points 603A to 603C of the virtual network 600A and the ports of the communication node 200 of the physical network 500. The virtual-physical mappings 701A to 701C shown by broken lines in FIG. For example, a packet input to the port on the node 400A side of the communication node 200A is handled as a packet input to the external NW end point 603A of the virtual network 600A associated with the virtual-physical mapping 701A. Further, the packet output from the virtual network to the external NW end point 603C is output from the port on the node 400C side of the communication node associated with the virtual-physical mapping 701C. In this way, the virtual network control unit 101 of the control device 100A treats the packet received from the physical network control unit 103 as a packet input to the external NW endpoint 603, passes through the virtual network, and receives another external NW endpoint. Flow control is performed so as to output from 603.
 仮想ネットワーク600Aのトラヒック702Aは、仮想ルータ601Aが持つ仮想ポート604Aから入力するトラヒックを示す。以下、本実施形態では、仮想ネットワーク600A上の帯域制御対象をトラヒック702Aとする。 The traffic 702A of the virtual network 600A indicates traffic input from the virtual port 604A of the virtual router 601A. Hereinafter, in this embodiment, the bandwidth control target on the virtual network 600A is assumed to be traffic 702A.
 物理ネットワーク500のフロー703Aは、仮想ネットワーク600Aの外部NW端点603Aから入力して、仮想ルータ601Aに入力するトラヒックに対応する。同様にフロー703Bは、仮想ネットワーク600Aの外部NW端点603Bから入力して、仮想ルータ601Aに入力するトラヒックに対応する。つまり、仮想ネットワーク600Aのトラヒック702Aは、物理ネットワーク上のフロー703Aとフロー703Bから構成されることを意味する。 The flow 703A of the physical network 500 corresponds to traffic input from the external NW end point 603A of the virtual network 600A and input to the virtual router 601A. Similarly, the flow 703B corresponds to traffic input from the external NW end point 603B of the virtual network 600A and input to the virtual router 601A. In other words, it means that the traffic 702A of the virtual network 600A is composed of a flow 703A and a flow 703B on the physical network.
[制御情報(フローエントリ)の設定]
 図9は、本発明の第2の実施形態の動作(フローエントリの設定)を表したシーケンス図である。ユーザが制御装置100Aに対して、仮想ネットワークトポロジ情報、仮想-物理マッピング情報、帯域制御ポリシー情報を設定することで、図9の処理が開始する。
[Control information (flow entry) settings]
FIG. 9 is a sequence diagram showing the operation (flow entry setting) of the second exemplary embodiment of the present invention. The process of FIG. 9 starts when the user sets virtual network topology information, virtual-physical mapping information, and bandwidth control policy information for the control device 100A.
 制御装置100の仮想ネットワーク制御部101は、ユーザにより入力された仮想ネットワークトポロジ情報、仮想-物理マッピング情報を仮想ネットワーク構成記憶部104に保存する。同様に、制御装置100の仮想ネットワーク制御部101は、ユーザにより入力された帯域制御ポリシー情報を帯域制御ポリシー記憶部105に保存する。さらに、仮想ネットワーク制御部101は、物理ネットワーク制御部103に対して、これらの仮想ネットワーク設定を物理ネットワークに反映させるためのフロー制御内容を指示する(ステップS101)。 The virtual network control unit 101 of the control device 100 stores the virtual network topology information and virtual-physical mapping information input by the user in the virtual network configuration storage unit 104. Similarly, the virtual network control unit 101 of the control device 100 stores the bandwidth control policy information input by the user in the bandwidth control policy storage unit 105. Furthermore, the virtual network control unit 101 instructs the physical network control unit 103 on the flow control contents for reflecting these virtual network settings on the physical network (step S101).
 ここでは、図8示す仮想ネットワークトポロジ情報及び仮想-物理マッピング情報が入力されたものとする。帯域制御ポリシー情報としては、帯域制御対象トラヒックである図8の仮想ルータ601Aの仮想ポート604Aから入力するトラヒック702Aについて帯域制限値などのアクション情報を規定した情報が入力されたものとする。 Here, it is assumed that the virtual network topology information and virtual-physical mapping information shown in FIG. 8 have been input. As the bandwidth control policy information, it is assumed that information defining action information such as a bandwidth limit value is input for the traffic 702A input from the virtual port 604A of the virtual router 601A of FIG.
 制御装置100Aの物理ネットワーク制御部103は、仮想ネットワーク制御部101に指示されたフロー制御内容を、通信ノード200単位の制御情報(フローエントリ)に変換する。そして、物理ネットワーク制御部103は、各通信ノード200に対して、これら制御情報(フローエントリ)を設定する(ステップS102)。 The physical network control unit 103 of the control device 100A converts the flow control content instructed by the virtual network control unit 101 into control information (flow entry) for each communication node 200. The physical network control unit 103 sets the control information (flow entry) for each communication node 200 (step S102).
 この制御情報(フローエントリ)には、各通信ノード200が行う帯域制御アクションも付与されている。前述のように、仮想ネットワーク600A上の帯域制御対象トラヒック702Aは、物理ネットワーク500上のフロー703Aとフロー703Bを合わせたトラヒックに対応する。このため、物理ネットワーク制御部103は、フロー703Aの入口となる通信ノード200A、フロー703Bの入口となる通信ノード200Bそれぞれに対し帯域制御内容を含む制御情報(フローエントリ)を設定する。この段階では統計情報収集装置から実トラヒックの情報が得られていないため、物理ネットワーク制御部103は、フロー703Aとフロー703Bを合わせたトラヒックが仮想ネットワーク上に設定された帯域制限値で制御されるようにデフォルト(各フローに帯域制限値を等しく分配するなど)の設定を行う。 This control information (flow entry) is also given a bandwidth control action performed by each communication node 200. As described above, the bandwidth control target traffic 702A on the virtual network 600A corresponds to the traffic that combines the flows 703A and 703B on the physical network 500. For this reason, the physical network control unit 103 sets control information (flow entry) including bandwidth control content for each of the communication node 200A serving as the entrance of the flow 703A and the communication node 200B serving as the entrance of the flow 703B. At this stage, since the actual traffic information is not obtained from the statistical information collection device, the physical network control unit 103 controls the combined traffic of the flows 703A and 703B with the bandwidth limit value set on the virtual network. The default setting (such as distributing the bandwidth limit value equally to each flow) is performed.
 前記制御情報(フローエントリ)の設定指示を受けた各通信ノード200は、それぞれ制御情報記憶部(図3の201参照)に、前記制御情報(フローエントリ)を追加する(ステップS103)。 Each communication node 200 that has received an instruction to set the control information (flow entry) adds the control information (flow entry) to the control information storage unit (see 201 in FIG. 3) (step S103).
[通信ノードの動作]
 図9の処理が終了している状態において、各通信ノード200は、帯域制御対象のパケットを受信すると、図10に示すパケット処理を実行する。
[Communication node operation]
When the processing of FIG. 9 has been completed, each communication node 200 executes the packet processing shown in FIG. 10 when receiving a bandwidth control target packet.
 まず、通信ノード200のパケット処理部(図3の202参照)は、制御情報記憶部(図3の201参照)から受信パケットに適合するマッチ条件を持つ制御情報(フローエントリ)を検索する(ステップS201)。 First, the packet processing unit (see 202 in FIG. 3) of the communication node 200 searches the control information storage unit (see 201 in FIG. 3) for control information (flow entry) having matching conditions that match the received packet (step). S201).
 通信ノード200のパケット処理部(図3の202参照)は、制御情報(フローエントリ)のフロー統計情報フィールドを更新する(ステップS202)。フロー統計情報フィールドには、非特許文献2に記載されているように、フローエントリ単位に受信パケット数、受信バイト数、使用帯域などのフィールドを設けることができる(非特許文献2の「5.8 Counters)参照)。 The packet processing unit (see 202 in FIG. 3) of the communication node 200 updates the flow statistical information field of the control information (flow entry) (step S202). As described in Non-Patent Document 2, in the flow statistics information field, fields such as the number of received packets, the number of received bytes, and the bandwidth used can be provided for each flow entry (see “5. 8 Counters)).
 通信ノード200のパケット処理部(図3の202参照)は、前記検索した制御情報(フローエントリ)のインストラクションフィールドの内容に従い、受信パケットの処理(指定ポートへの出力等)を実施する。この制御情報(フローエントリ)に帯域制御内容が設定されている場合、通信ノード200のパケット処理部(図3の202参照)は、帯域制御を実施する(ステップS203)。 The packet processing unit (see 202 in FIG. 3) of the communication node 200 performs processing of the received packet (output to a designated port, etc.) according to the contents of the instruction field of the searched control information (flow entry). When the bandwidth control content is set in this control information (flow entry), the packet processing unit (see 202 in FIG. 3) of the communication node 200 performs bandwidth control (step S203).
[フロー統計情報の収集]
 図10の処理とは独立して、各通信ノード200は、指定された周期で、フロー統計情報を統計情報収集装置に送信する。図11は、フロー統計情報の収集処理の流れを表したシーケンス図である。
[Collect flow statistics]
Independently of the processing of FIG. 10, each communication node 200 transmits flow statistical information to the statistical information collection device at a designated cycle. FIG. 11 is a sequence diagram showing the flow of the flow statistical information collection process.
 通信ノード200は、統計情報収集装置300に対して、制御情報記憶部(図3の201参照)の各制御情報(フローエントリ)のフロー統計情報フィールドに保存している各フロー統計情報を送信する(ステップS301)。 The communication node 200 transmits each flow statistical information stored in the flow statistical information field of each control information (flow entry) of the control information storage unit (see 201 in FIG. 3) to the statistical information collection device 300. (Step S301).
 統計情報収集装置300の統計情報収集部301は、統計情報記憶部302に各通信ノード200から受信したフロー統計情報を保存する(ステップS302)。なお、通信ノード200は、統計情報収集装置300に、自身が保持するフロー統計情報のすべてを送信する必要はなく、指定された通信ノードが指定された制御情報(フローエントリ)のフロー統計情報だけを送信するようにしてもよい。 The statistical information collection unit 301 of the statistical information collection apparatus 300 stores the flow statistical information received from each communication node 200 in the statistical information storage unit 302 (step S302). Note that the communication node 200 does not need to transmit all of the flow statistical information held by itself to the statistical information collection device 300, only the flow statistical information of the control information (flow entry) in which the designated communication node is designated. May be transmitted.
[フロー統計情報に基づいた帯域制御]
 図11の処理とは独立して、制御装置100Aは、指定された周期で統計情報収集装置300からフロー統計情報を吸い上げ、帯域制御を実施する。なお、帯域制御対象のフローが複数ある場合、制御装置100Aは、図12の処理を帯域制御対象フロー毎に実施することになる。
[Band control based on flow statistics]
Independently of the processing of FIG. 11, the control device 100 </ b> A simplifies the flow statistical information from the statistical information collection device 300 at a specified period and performs bandwidth control. When there are a plurality of bandwidth control target flows, the control device 100A performs the processing in FIG. 12 for each bandwidth control target flow.
 制御装置100Aの帯域値管理部102は、帯域制御ポリシー記憶部105に保持された帯域制御ポリシーを参照し、仮想ネットワーク上での帯域制御対象のトラヒックと帯域制限値を抽出する。次に、帯域値管理部102は、仮想ネットワーク構成記憶部104を参照して、仮想ネットワークトポロジと仮想-物理マッピングをトレースすることにより、帯域制御対象のトラヒックに対応する物理ネットワーク上の帯域制御対象のフローを特定する(ステップS401)。 The bandwidth value management unit 102 of the control device 100A refers to the bandwidth control policy held in the bandwidth control policy storage unit 105, and extracts the traffic to be controlled on the virtual network and the bandwidth limit value. Next, the bandwidth value management unit 102 refers to the virtual network configuration storage unit 104 and traces the virtual network topology and the virtual-physical mapping, so that the bandwidth control target on the physical network corresponding to the bandwidth control target traffic Is identified (step S401).
 前述のとおり、図8では、帯域制御の対象のトラヒック702Aは、仮想ルータ601Aの仮想ポート604Aにて検出され、その方向は仮想ルータ601Aへの入力方向であるため、トラヒックの逆方向の仮想ブリッジ602Aへトレースし、仮想ブリッジ602Aの仮想ポート604D、604Eの方向へそれぞれトレースする。さらに、外部NW端点603A、603Bから仮想-物理マッピング701A、701Bへトレースすることにより、物理ネットワーク上でのトラヒックの入力位置(入力ポート)が特定でき、この位置から入力するフロー703A、703Bが帯域制御対象となる。 As described above, in FIG. 8, the traffic 702A subject to bandwidth control is detected by the virtual port 604A of the virtual router 601A, and the direction is the input direction to the virtual router 601A. Trace to 602A and trace in the direction of virtual ports 604D and 604E of virtual bridge 602A, respectively. Further, by tracing from the external NW end points 603A and 603B to the virtual-physical mapping 701A and 701B, the traffic input position (input port) on the physical network can be specified, and the flows 703A and 703B input from this position are the bandwidths. It becomes a control target.
 次に、制御装置100Aの帯域値管理部102は、統計情報収集装置300に対して、前記特定した各フローのフロー統計情報の送信を要求する(ステップS402)。ステップS401で特定したフローは、ノードからノードへのエンドツーエンドのフローであるのに対し、統計情報収集装置300に保存しているのは、各通信ノード200において設定される制御情報(フローエントリ)のフロー統計情報である。このため、帯域値管理部102は、エンドツーエンドのフローを、各通信ノード200の制御情報(フローエントリ)に置き換えて、必要な部分のフロー統計情報だけを要求する。 Next, the bandwidth value management unit 102 of the control device 100A requests the statistical information collection device 300 to transmit the flow statistical information of each identified flow (step S402). The flow identified in step S401 is an end-to-end flow from node to node, whereas the statistical information collection device 300 stores control information (flow entry) set in each communication node 200. ) Flow statistics information. For this reason, the bandwidth value management unit 102 replaces the end-to-end flow with the control information (flow entry) of each communication node 200, and requests only the necessary flow statistical information.
 例えば、図8のフロー703Aは、ノード400Aからノード400Cまでのエンドツーエンドのフローである。そして、このフロー703Aは、通信ノード200Aでノード400Aから受信したノード400C宛てのパケットを通信ノード200C方向に送信するための制御情報(フローエントリ)と、通信ノード200Cで通信ノード200Aから受信したパケットをノード400Cに送信するための制御情報(フローエントリ)で実現されている。従って、帯域値管理部102は、フロー703Aを実現している制御情報(フローエントリ)のうち、通信ノード200Aが持つ制御情報(フローエントリ)のフロー統計情報だけを参照すればよい。フロー703Bについても同様であり、帯域値管理部102は、フロー703Bを実現している制御情報(フローエントリ)のうち、通信ノード200Bが持つ制御情報(フローエントリ)のフロー統計情報だけを参照すればよい。 For example, the flow 703A in FIG. 8 is an end-to-end flow from the node 400A to the node 400C. This flow 703A includes control information (flow entry) for transmitting a packet addressed to the node 400C received from the node 400A by the communication node 200A in the direction of the communication node 200C, and a packet received from the communication node 200A by the communication node 200C. Is realized by control information (flow entry) for transmitting to the node 400C. Therefore, the bandwidth value management unit 102 only needs to refer to the flow statistical information of the control information (flow entry) of the communication node 200A among the control information (flow entry) realizing the flow 703A. The same applies to the flow 703B, and the bandwidth value management unit 102 refers to only the flow statistical information of the control information (flow entry) that the communication node 200B has among the control information (flow entry) that realizes the flow 703B. That's fine.
 前記制御装置100Aからの要求に応じて、統計情報収集装置300の統計情報収集部301は、統計情報記憶部302から、制御装置100Aから要求された各フロー統計情報を検索し、制御装置100Aへ送信する(ステップS403)。 In response to the request from the control device 100A, the statistical information collection unit 301 of the statistical information collection device 300 searches the statistical information storage unit 302 for each flow statistical information requested from the control device 100A, and sends it to the control device 100A. Transmit (step S403).
 制御装置100Aの帯域値管理部102は、受信した各フロー統計情報内の使用帯域から、各フローへ割り当てる帯域を計算する(ステップS404)。そして、帯域値管理部102は、物理ネットワーク制御部103に対して、各通信ノードに設定されている制御情報(フローエントリ)の帯域制限値を、前記計算した帯域制限値に更新するように指示する。 The bandwidth value management unit 102 of the control device 100A calculates the bandwidth allocated to each flow from the used bandwidth in each received flow statistical information (step S404). Then, the bandwidth value management unit 102 instructs the physical network control unit 103 to update the bandwidth limit value of the control information (flow entry) set in each communication node to the calculated bandwidth limit value. To do.
 各フローへの帯域の割り当て方法は様々となるため(例えば、後記第3、第4の実施形態参照)、帯域制御のポリシーにより最適な方法を選択できることが好ましい。以下は割り当て方法の一例である。 Since there are various methods for allocating the bandwidth to each flow (see, for example, the third and fourth embodiments described later), it is preferable that the optimum method can be selected according to the bandwidth control policy. The following is an example of an allocation method.
 帯域値管理部102は、フロー統計情報から得られた各フローの使用帯域の合計と、帯域制限値とを比較する。その結果、各フローの使用帯域の合計が帯域制限値を超えていない場合、帯域値管理部102は、各フローの帯域の余剰分(帯域制限値-使用帯域)が各フローで同等になるように各通信ノードに指示する帯域制限値を決定する。つまり、全フローの帯域の余剰分をフロー数で除算した値を、各フローの使用帯域に加算することで、各フローの帯域制限値を求める。 The bandwidth value management unit 102 compares the total bandwidth used for each flow obtained from the flow statistical information with the bandwidth limit value. As a result, when the total used bandwidth of each flow does not exceed the bandwidth limit value, the bandwidth value management unit 102 ensures that the surplus bandwidth (band limit value−used bandwidth) of each flow is the same for each flow. The bandwidth limit value instructed to each communication node is determined. That is, the bandwidth limit value of each flow is obtained by adding the value obtained by dividing the surplus bandwidth of all flows by the number of flows to the used bandwidth of each flow.
 各フローの使用帯域の合計が帯域制限値を超えている場合は、各フローの帯域の過剰分(使用帯域-帯域制限値)が各フローで同等になるように各通信ノードに指示する帯域制限値を決定する。つまり、全フローの帯域の過剰分をフロー数で除算した値を、各フローの使用帯域から減算することで、各フローの帯域制限値を求める。 If the total used bandwidth of each flow exceeds the bandwidth limit value, the bandwidth limit that instructs each communication node so that the excess bandwidth of each flow (used bandwidth-bandwidth limit value) is the same for each flow Determine the value. That is, the bandwidth limit value of each flow is obtained by subtracting the value obtained by dividing the excess of the bandwidth of all flows by the number of flows from the bandwidth used for each flow.
 制御装置100Aの物理ネットワーク制御部103は、各通信ノード200に対し、帯域値管理部102から指示された、制御情報(フローエントリ)の帯域制限値の更新を指示する(ステップS405)。 The physical network control unit 103 of the control device 100A instructs each communication node 200 to update the bandwidth limit value of the control information (flow entry) designated by the bandwidth value management unit 102 (step S405).
 各通信ノード200のパケット処理部(図3の202参照)は、制御装置100Aの指示に従い、制御情報記憶部(図3の201参照)の該当制御情報(フローエントリ)の更新を行う(ステップS406)。 The packet processing unit (see 202 in FIG. 3) of each communication node 200 updates the corresponding control information (flow entry) in the control information storage unit (see 201 in FIG. 3) according to the instruction of the control device 100A (step S406). ).
 以上のように、本実施形態によれば、図9に示した制御情報(フローエントリ)の設定処理で物理ネットワーク上の帯域制御対象の各フローにデフォルトの帯域制限値を割り当てておき、図10、図11、図12の処理を随時実施し、使用帯域を監視、収集した上で、各フローの帯域制限値を更新することができる。これにより、物理ネットワーク上の各フローの合計使用帯域が仮想ネットワークに設定した帯域制限値に収まるように制御できるようになる。 As described above, according to the present embodiment, the default bandwidth limit value is assigned to each bandwidth control target flow on the physical network in the control information (flow entry) setting process shown in FIG. 11 and 12 can be executed as needed, and the bandwidth limit value of each flow can be updated after monitoring and collecting the bandwidth used. As a result, control can be performed so that the total used bandwidth of each flow on the physical network falls within the bandwidth limit value set in the virtual network.
[第3の実施形態]
 続いて、制御対象のトラヒックに対応する物理ネットワークのフローの帯域制限値を決定するにあたり、各物理リンクの優先度を考慮するようにした本発明の第3の実施形態について図面を参照して詳細に説明する。以下、本実施形態は、第1又は第2の実施形態と同様の構成にて実現できるので、以下、その相違点を中心に説明する。
[Third Embodiment]
Subsequently, details of the third embodiment of the present invention in which the priority of each physical link is taken into account when determining the bandwidth limit value of the flow of the physical network corresponding to the traffic to be controlled will be described with reference to the drawings. Explained. Hereinafter, the present embodiment can be realized with the same configuration as the first or second embodiment, and therefore, the difference will be mainly described below.
 図13は、本発明の第3の実施形態の制御装置の動作を説明するための図である。例えば、図13の上段に示すように、制御対象として、仮想ノード間の仮想リンクVL-Aを流れるトラヒックが指定されているものとする。この場合、制御装置100は、通信ノード200Aから通信ノード200Cに向かうフローと、通信ノード200Bから通信ノード200Cに向かうフローと、に帯域制御を行うことになる。 FIG. 13 is a diagram for explaining the operation of the control device according to the third embodiment of the present invention. For example, as shown in the upper part of FIG. 13, it is assumed that the traffic flowing through the virtual link VL-A between the virtual nodes is designated as the control target. In this case, the control device 100 performs bandwidth control on the flow from the communication node 200A toward the communication node 200C and the flow from the communication node 200B toward the communication node 200C.
 図14は、制御装置100に保持される優先度管理用のテーブルの一例を示す図である。図14の例では、通信ノード200Aと通信ノード200Cとの間の物理リンクと、通信ノード200Bと通信ノード200Cとの間の物理リンクとにそれぞれ優先度が設定されている。 FIG. 14 is a diagram illustrating an example of a priority management table held in the control device 100. In the example of FIG. 14, priorities are set for the physical link between the communication node 200A and the communication node 200C and the physical link between the communication node 200B and the communication node 200C, respectively.
 図15は、制御装置100に保持される帯域値管理用のテーブルの一例を示す図である。図15の例では、仮想リンクVL-Aを流れるトラヒックの帯域制限値として10Gbpsが設定されている。 FIG. 15 is a diagram illustrating an example of a band value management table held in the control apparatus 100. In the example of FIG. 15, 10 Gbps is set as the bandwidth limit value of traffic flowing through the virtual link VL-A.
 図16は、本実施形態の制御装置100が通信ノードに設定する制御情報(フローエントリ)の例である。前述の第2の実施形態では、初期設定(デフォルト動作)として、物理ネットワーク制御部103が、各物理リンクに帯域制限値を等しく分配するものとして説明したが(図9のステップS102参照)、本実施形態では、優先度を用いて次のように、帯域制限値を計算する。まず、制御装置100は、物理リンク200A-200Cの優先度が“5”、物理リンク200B-200Cの優先度は“3”という情報を用いて、5/(5+3)*10Gbpsより、物理リンク200A-200Cの帯域制限値を6.25と算出する。同様に、制御装置100は、物理リンク200B-200Cの帯域制限値を3.75と算出する。 FIG. 16 is an example of control information (flow entry) set in the communication node by the control device 100 of the present embodiment. In the above-described second embodiment, as an initial setting (default operation), the physical network control unit 103 has been described as equally distributing the bandwidth limit value to each physical link (see step S102 in FIG. 9). In the embodiment, the bandwidth limit value is calculated using the priority as follows. First, the control device 100 uses the information that the priority of the physical links 200A-200C is “5” and the priority of the physical links 200B-200C is “3”, and the physical link 200A from 5 / (5 + 3) * 10 Gbps. The bandwidth limit value of −200C is calculated as 6.25. Similarly, the control device 100 calculates the bandwidth limit value of the physical links 200B-200C as 3.75.
 以上のように、優先度を高い方の物理リンクの方を優先的に使用する(帯域制限する量が小さい)ことが可能となる。また、図16の例では、優先度をそのまま用いて帯域制限値を算出したが、各優先度に、帯域制限値の計算用の係数を割り当てて計算するようにしてもよい(優先度“5”=10、優先度“4”=7、優先度“3”=3.5等)。 As described above, it is possible to preferentially use the physical link with the higher priority (the amount of bandwidth limitation is small). In the example of FIG. 16, the bandwidth limit value is calculated using the priority as it is, but the bandwidth limit value calculation coefficient may be assigned to each priority (priority “5”). "= 10, priority" 4 "= 7, priority" 3 "= 3.5, etc.).
 また、ユーザが任意に前記優先度を設定するのではなく、物理リンクの輻輳レベルに応じて動的に優先度を変更するようにすることも好ましい。例えば、輻輳レベルの高い物理リンクの優先度を低くすることで、輻輳レベルの高い物理リンクの使用を抑制することが可能となる。これにより最適な帯域制御を行うことが可能となる。 It is also preferable that the priority is dynamically changed according to the congestion level of the physical link, rather than the user arbitrarily setting the priority. For example, by lowering the priority of a physical link with a high congestion level, it is possible to suppress the use of a physical link with a high congestion level. This makes it possible to perform optimal bandwidth control.
[第4の実施形態]
 続いて、制御対象のトラヒックに対応する物理ネットワークのフローの帯域制限値を決定するにあたり、各物理リンクを流れるフローの優先度を考慮するようにした本発明の第4の実施形態について図面を参照して詳細に説明する。以下、本実施形態は、第1又は第2の実施形態と同様の構成にて実現できるので、以下、その相違点を中心に説明する。
[Fourth Embodiment]
Subsequently, in determining the bandwidth limit value of the flow of the physical network corresponding to the traffic to be controlled, refer to the drawing for the fourth embodiment of the present invention in which the priority of the flow flowing through each physical link is considered. And will be described in detail. Hereinafter, the present embodiment can be realized with the same configuration as the first or second embodiment, and therefore, the difference will be mainly described below.
 図17は、本発明の第4の実施形態の制御装置の動作を説明するための図である。例えば、図17の上段に示すように、制御対象として、仮想ノード間の仮想リンクVL-Aを流れるフローA、Bが指定されているものとする。 FIG. 17 is a diagram for explaining the operation of the control device according to the fourth embodiment of the present invention. For example, as shown in the upper part of FIG. 17, it is assumed that flows A and B flowing through a virtual link VL-A between virtual nodes are designated as control targets.
 図18は、制御装置100に保持される優先度管理用のテーブルの別の一例を示す図である。図18の例では、通信ノード200Aと通信ノード200Cとの間の物理リンクと、通信ノード200Bと通信ノード200Cとの間の物理リンクとにそれぞれ流れるフロー毎に優先度が設定されている。 FIG. 18 is a diagram illustrating another example of a priority management table held in the control apparatus 100. In the example of FIG. 18, the priority is set for each flow that flows through the physical link between the communication node 200A and the communication node 200C and the physical link between the communication node 200B and the communication node 200C.
 図19は、実施形態の制御装置100が通信ノード200Aに設定する制御情報(フローエントリ)の例である。第3の実施形態では、各物理リンクの優先度から帯域制限値を計算したが、本実施形態では、フローの優先度を用いて帯域制限値を決定している。具体的には、仮想リンクVL-Aを流れるトラヒックの帯域制限値として12Gbpsが設定されているとして、優先度の高い順に、フローAの帯域制限値を5Gbps、フローBの帯域制限値を4Gbps、フローCの帯域制限値を3Gbpsと設定している。 FIG. 19 is an example of control information (flow entry) set in the communication node 200A by the control device 100 according to the embodiment. In the third embodiment, the bandwidth limit value is calculated from the priority of each physical link, but in this embodiment, the bandwidth limit value is determined using the priority of the flow. Specifically, assuming that 12 Gbps is set as the bandwidth limit value of the traffic flowing through the virtual link VL-A, the bandwidth limit value of the flow A is 5 Gbps, the bandwidth limit value of the flow B is 4 Gbps in descending order of priority. The bandwidth limit value of the flow C is set to 3 Gbps.
 以上のように、本実施形態によれば、優先度が高い方のフローの方を優先的に流す(帯域制限する量が小さい)ことが可能となる。もちろん、第3の実施形態と同様に、所定の計算式を用いて優先度からフロー毎の帯域制限値を算出するようにしてもよい。また、第3の実施形態と第4の実施形態との双方を取り入れて、物理リンク毎の優先度と、フロー毎の優先度との双方を用いて帯域制限値を求めることも可能である。 As described above, according to the present embodiment, it is possible to preferentially flow the flow with the higher priority (the amount of bandwidth limitation is small). Of course, as in the third embodiment, the bandwidth limit value for each flow may be calculated from the priority using a predetermined calculation formula. It is also possible to obtain the bandwidth limit value by using both the priority for each physical link and the priority for each flow by incorporating both the third embodiment and the fourth embodiment.
 以上、本発明の各実施形態を説明したが、本発明は、上記した実施形態に限定されるものではなく、本発明の基本的技術的思想を逸脱しない範囲で、更なる変形・置換・調整を加えることができる。例えば、各図面に示したネットワーク構成や要素の構成は、本発明の理解を助けるための一例であり、これらの図面に示した構成に限定されるものではない。以下、いくつかの変形実施形態を説明する。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and further modifications, substitutions, and adjustments are possible without departing from the basic technical idea of the present invention. Can be added. For example, the network configuration and the configuration of elements shown in the drawings are examples for helping understanding of the present invention, and are not limited to the configurations shown in these drawings. Hereinafter, some modified embodiments will be described.
[第5の実施形態]
 例えば、制御対象の物理リンクの輻輳状態に応じて、前記第3、第4の実施形態で用いた優先度を補正することも可能である(第5の実施形態)。例えば、前述の第3の実施形態において、優先度の高い通信ノード200A-200C間の物理リンクに輻輳が発生した場合に、輻輳レベルに応じて優先度を変更したり、帯域制限値そのものを加減調整することができる。
[Fifth Embodiment]
For example, the priority used in the third and fourth embodiments can be corrected according to the congestion state of the physical link to be controlled (fifth embodiment). For example, in the above-described third embodiment, when congestion occurs in the physical link between the communication nodes 200A and 200C with high priority, the priority is changed according to the congestion level, or the bandwidth limit value itself is adjusted. Can be adjusted.
 図20は、第3の実施形態において、通信ノード200A-200C間の物理リンクに輻輳が発生したため、通信ノード200Aの帯域制限値を下げ、その分通信ノード200Bの帯域制限値を上げることで補っている例である。このようにすることで、通信ノード200A-200C間の物理リンクの輻輳レベルを下げることが可能となる。なお、輻輳状態の検出には、第2の実施形態の統計情報収集装置を用いることができる。 FIG. 20 shows that in the third embodiment, congestion has occurred in the physical link between the communication nodes 200A and 200C. Therefore, the bandwidth limit value of the communication node 200A is lowered and the bandwidth limit value of the communication node 200B is increased accordingly. This is an example. By doing so, it becomes possible to lower the congestion level of the physical link between the communication nodes 200A-200C. Note that the statistical information collection apparatus of the second embodiment can be used for detecting the congestion state.
[第6の実施形態]
 また、上記した実施形態では、制御情報(フローエントリ)に帯域制限値を設定し、通信ノード200が、帯域制限値付きの制御情報(フローエントリ)を解釈して帯域制御を実行するものとして説明したが、図21に示すように、非特許文献2で照会されているMeter Tableを用いて、帯域制御を行う構成とすることもできる(非特許文献2の「5.7 Meter Table」参照)。この場合、フローテーブル2011(制御情報記憶部201に相当)の制御情報(フローエントリ)には、Meter IDと呼ばれるMeterテーブル2012のエントリを特定するIDが設定される。通信ノード200aは、制御情報(フローエントリ)にMeter IDが設定されている場合、Meterテーブル2012の該当エントリに従い、帯域制御を実施することになる。
[Sixth Embodiment]
Further, in the above-described embodiment, it is assumed that a bandwidth limit value is set in the control information (flow entry), and the communication node 200 interprets the control information (flow entry) with the bandwidth limit value and executes bandwidth control. However, as shown in FIG. 21, a bandwidth control can be performed using the Meter Table referred to in Non-Patent Document 2 (see “5.7 Meter Table” in Non-Patent Document 2). . In this case, in the control information (flow entry) of the flow table 2011 (corresponding to the control information storage unit 201), an ID for specifying an entry in the Meter table 2012 called a Meter ID is set. When the Meter ID is set in the control information (flow entry), the communication node 200a performs bandwidth control according to the corresponding entry in the Meter table 2012.
[第7の実施形態]
 また、上記した実施形態では、ユーザが直接制御装置100に対し、制御対象と帯域制限値や優先度等を入力するものとして説明したが、図22に示すように、ユーザからの指示に基づいて制御装置100に帯域制御ポリシーを送信する運用管理装置900を設けた構成も採用可能である。この場合、ユーザは、運用管理装置900に、帯域制限値や優先度等を決めるためのポリシー等を入力すればよい。そして、運用管理装置900は、ユーザから入力されたポリシーに基づき、輻輳レベル(物理リンク単位/フロー単位)に応じた、フローの宛先又は/及び送信元、サービスの種別(スイッチのポート番号等)、スイッチのポート優先度等から、帯域制限値や優先度等を決めることになる。
[Seventh Embodiment]
In the above-described embodiment, it has been described that the user directly inputs a control target, a bandwidth limit value, a priority, and the like to the control device 100. However, as illustrated in FIG. 22, based on an instruction from the user. A configuration in which an operation management apparatus 900 that transmits a bandwidth control policy to the control apparatus 100 is provided can also be employed. In this case, the user may input a policy or the like for determining a bandwidth limit value, a priority, or the like to the operation management apparatus 900. Then, the operation management apparatus 900, based on the policy input from the user, according to the congestion level (physical link unit / flow unit), flow destination or / and transmission source, service type (switch port number, etc.) The bandwidth limit value and priority are determined from the port priority of the switch.
[第8の実施形態]
 また、上記した実施形態では、仮想ネットワーク上のフロー又はトラヒックに帯域制限を掛けるものとして説明したが、仮想ネットワーク上の特定の仮想リンクに帯域制限を掛けるといった用途にも転用可能である。
[Eighth Embodiment]
In the above-described embodiment, the flow or traffic on the virtual network has been described as being band-limited. However, the present invention can also be used for applications such as band-limiting a specific virtual link on the virtual network.
 例えば、図23に示すように、ある物理ネットワークを用いて、2つ以上の仮想ネットワークを構成している場合において、それぞれの仮想ネットワークの特定の仮想リンク(例えば、入り口側の仮想リンク)に帯域制限を掛けることができる。図23の例では、ユーザA、Bの仮想ネットワーク上の仮想リンクについてそれぞれ10Gbpsの帯域制限値が設定されている。 For example, as shown in FIG. 23, when two or more virtual networks are configured using a certain physical network, a bandwidth is provided for a specific virtual link (for example, a virtual link on the entrance side) of each virtual network. Limits can be applied. In the example of FIG. 23, a bandwidth limit value of 10 Gbps is set for each of the virtual links on the virtual networks of the users A and B.
 図24は、図23に示すような帯域制御を行うために、通信ノード200A(又は通信ノード200B)に設定される制御情報(フローエントリ)の例である。図24の例では、ユーザAには2つの通信フローが発生しているので、それぞれ5Gbpsの帯域が割り当てられている。一方、ユーザBには1つの通信フローが発生しているので、10Gbpsの帯域がすべて割り当てられている。このように制限を掛けることで、複数のユーザに対し、それぞれ指定した帯域の利用を保証することが可能となる。もちろん、ユーザのクラス(帯域保証ユーザとその他一般ユーザ)によって、割り当てる帯域を変えることも可能である。同様に、通信フローのサービス種別によって割り当てる帯域を変えたり、例外を設けることも可能である。 FIG. 24 is an example of control information (flow entry) set in the communication node 200A (or communication node 200B) in order to perform bandwidth control as shown in FIG. In the example of FIG. 24, since two communication flows are generated for user A, a bandwidth of 5 Gbps is assigned to each of them. On the other hand, since one communication flow is generated for the user B, all the bandwidth of 10 Gbps is allocated. By applying the restriction in this way, it becomes possible to guarantee the use of each designated band for a plurality of users. Of course, the allocated bandwidth can be changed depending on the user class (band guaranteed user and other general users). Similarly, it is possible to change the allocated bandwidth or provide an exception depending on the service type of the communication flow.
 最後に、本発明の好ましい形態を要約する。
[第1の形態]
 (上記第1の視点による制御装置参照)
[第2の形態]
 第1の形態の制御装置において、
 前記帯域値管理部は、ユーザから、前記所定の通信フローの仮想ネットワーク上の帯域を制限する位置と、帯域制限値の指定を受け付け、
 前記物理ネットワーク制御部は、前記仮想ネットワーク上の帯域を制限する位置に対応する物理ネットワークの位置において、帯域制御を実施する制御装置。
[第3の形態]
 第1又は第2の形態の制御装置において、
 前記仮想ネットワーク上の通信フローが使用する仮想リンクに対応する物理リンクについて、それぞれ優先度が設定され、
 前記物理ネットワーク制御部は、前記優先度に基づいて、前記仮想リンクに対応する物理リンクのうち、前記優先度が高い物理リンクを優先して使用するよう制御する制御装置。
[第4の形態]
 第1から第3いずれか一の形態の制御装置において、
 通信フロー毎に優先度を設定可能であり、
 前記物理ネットワーク制御部は、特定の物理リンクを使用する通信フローのうち、前記優先度が高い通信フローを優先するよう制御する制御装置。
[第5の形態]
 第1から第4いずれか一の形態の制御装置において、
 さらに、物理ネットワーク上の所定の物理リンクの通信量を収集する統計情報収集部を備え、
 物理ネットワーク制御部は、前記仮想リンクに対応する物理リンクの通信量の合計値と、前記通信フローに設定された帯域値との差を用いて、各物理リンクに設定する帯域値を更新する制御装置。
[第6の形態]
 第3又は第4の形態の制御装置において、
 さらに、物理ネットワーク上の所定の物理リンクの通信量を収集する統計情報収集部を備え、
 前記収集した通信量に基づいて、前記所定の物理リンクに輻輳が発生しないよう、前記優先度を増減する制御装置。
[第7の形態]
 第1から第6いずれか一の形態の制御装置において、
 前記物理ネットワーク制御部は、前記物理ネットワーク上の通信ノードに対し、受信パケットと照合するマッチ条件と、該マッチ条件に適合するパケットに適用する処理内容とを対応づけた制御情報を設定することにより、物理ネットワークを制御する制御装置。
[第8の形態]
 第7の形態の制御装置において、
 前記物理ネットワーク制御部は、前記物理ネットワーク上の通信ノードの帯域制御用のテーブルを操作することで、各通信ノードに帯域制限値を指示する制御装置。
[第9の形態]
 第1から第8いずれか一の形態の制御装置において、
 前記帯域値管理部は、所定の運用管理装置から受信した帯域制御ポリシーに基づいて、前記仮想ネットワーク上の所定の通信フローについて帯域値を設定する制御装置。
[第10の形態]
 第3又は第4の形態の制御装置において、
 前記帯域値管理部は、所定の運用管理装置から受信した帯域制御ポリシーに基づいて、前記優先度を設定する制御装置。
[第11の形態]
 前記帯域値管理部は、前記仮想ネットワーク上の所定の通信フローについての帯域値に代えて、前記仮想ネットワーク上の仮想リンクに帯域値を設定し、
 前記物理ネットワーク制御部は、前記仮想ネットワーク上の通信フローの通信量が、該当する仮想ネットワーク上の仮想リンクに設定された帯域値に収まるよう前記物理ネットワークを制御する制御装置。
[第12の形態]
 (上記第2の視点による通信ノード参照)
[第13の形態]
 (上記第3の視点による通信システム参照)
[第14の形態]
 (上記第4の視点による帯域制御方法参照)
[第15の形態]
 (上記第5の視点によるプログラム参照)
 なお、上記第12~第15の形態は、第1の形態と同様に、第2~第11の形態に展開することが可能である。
Finally, a preferred form of the invention is summarized.
[First embodiment]
(Refer to the control device according to the first viewpoint)
[Second form]
In the control device of the first form,
The bandwidth value management unit accepts, from a user, a position for limiting a bandwidth on the virtual network of the predetermined communication flow, and designation of a bandwidth limit value,
The said physical network control part is a control apparatus which implements band control in the position of the physical network corresponding to the position which restrict | limits the band on the said virtual network.
[Third embodiment]
In the control device of the first or second form,
Priorities are set for the physical links corresponding to the virtual links used by the communication flow on the virtual network,
The said physical network control part is a control apparatus which controls based on the said priority so that a physical link with a high said priority may be used preferentially among the physical links corresponding to the said virtual link.
[Fourth form]
In the control device according to any one of the first to third aspects,
Priority can be set for each communication flow,
The said physical network control part is a control apparatus which controls so that a communication flow with the said high priority may be prioritized among the communication flows which use a specific physical link.
[Fifth embodiment]
In the control device according to any one of the first to fourth aspects,
In addition, a statistical information collection unit that collects traffic of a predetermined physical link on the physical network is provided,
The physical network control unit is configured to update a bandwidth value set for each physical link using a difference between a total value of the traffic amount of the physical link corresponding to the virtual link and a bandwidth value set for the communication flow. apparatus.
[Sixth embodiment]
In the control device of the third or fourth aspect,
In addition, a statistical information collection unit that collects traffic of a predetermined physical link on the physical network is provided,
A control device that increases or decreases the priority based on the collected traffic so that congestion does not occur in the predetermined physical link.
[Seventh form]
In the control device according to any one of the first to sixth aspects,
The physical network control unit sets, for the communication node on the physical network, control information associating a matching condition that is matched with a received packet and a processing content that is applied to a packet that matches the matching condition. , The control device that controls the physical network.
[Eighth form]
In the control device of the seventh aspect,
The said physical network control part is a control apparatus which instruct | indicates a bandwidth limit value to each communication node by operating the table for bandwidth control of the communication node on the said physical network.
[Ninth Embodiment]
In the control device according to any one of the first to eighth aspects,
The said bandwidth value management part is a control apparatus which sets a bandwidth value about the predetermined | prescribed communication flow on the said virtual network based on the bandwidth control policy received from the predetermined | prescribed operation management apparatus.
[Tenth embodiment]
In the control device of the third or fourth aspect,
The bandwidth value management unit is a control device that sets the priority based on a bandwidth control policy received from a predetermined operation management device.
[Eleventh form]
The bandwidth value management unit sets a bandwidth value for a virtual link on the virtual network instead of a bandwidth value for a predetermined communication flow on the virtual network,
The said physical network control part is a control apparatus which controls the said physical network so that the traffic of the communication flow on the said virtual network may be settled in the zone | band value set to the virtual link on the applicable virtual network.
[Twelfth embodiment]
(Refer to the communication node from the second viewpoint)
[13th form]
(Refer to the communication system according to the third viewpoint)
[14th form]
(Refer to the bandwidth control method from the fourth viewpoint)
[15th form]
(Refer to the program from the fifth viewpoint above)
Note that the twelfth to fifteenth embodiments can be developed into the second to eleventh embodiments as in the first embodiment.
 なお、上記の特許文献および非特許文献の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。 It should be noted that the disclosures of the above patent documents and non-patent documents are incorporated herein by reference. Within the scope of the entire disclosure (including claims) of the present invention, the embodiments and examples can be changed and adjusted based on the basic technical concept. Further, various combinations or selections of various disclosed elements (including each element of each claim, each element of each embodiment or example, each element of each drawing, etc.) within the scope of the claims of the present invention. Is possible. That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea. In particular, with respect to the numerical ranges described in this document, any numerical value or small range included in the range should be construed as being specifically described even if there is no specific description.
 100、100A 制御装置
 101 仮想ネットワーク制御部
 102、102A 帯域値管理部
 103 物理ネットワーク制御部
 104 仮想ネットワーク構成記憶部
 105 帯域制御ポリシー記憶部
 200、200A~200C、200a 通信ノード
 201 制御情報記憶部
 202 パケット処理部
 300 統計情報収集装置
 301 統計情報収集部
 302 統計情報記憶部
 400、400A~400C ノード
 500 物理ネットワーク
 600A 仮想ネットワーク
 601A 仮想ルータ
 602A、602B 仮想ブリッジ
 603A~603C 外部NW端点
 604A~604J 仮想ポート
 701A~701C 仮想-物理マッピング
 702A トラヒック
 703A、703B フロー
 900 運用管理装置
 2011 フローテーブル
 2012 Meterテーブル
100, 100A Control device 101 Virtual network control unit 102, 102A Band value management unit 103 Physical network control unit 104 Virtual network configuration storage unit 105 Band control policy storage unit 200, 200A to 200C, 200a Communication node 201 Control information storage unit 202 Packet Processing unit 300 Statistical information collection device 301 Statistical information collection unit 302 Statistical information storage unit 400, 400A to 400C Node 500 Physical network 600A Virtual network 601A Virtual router 602A, 602B Virtual bridge 603A to 603C External NW endpoint 604A to 604J Virtual port 701A to 701C Virtual-physical mapping 702A Traffic 703A, 703B Flow 900 Operation management apparatus 2011 Flow table 2012 Met er table

Claims (15)

  1.  物理ネットワークを用いて構成された仮想ネットワークの構成に基づいて、仮想ネットワークを制御する仮想ネットワーク制御部と、
     前記仮想ネットワーク上の所定の通信フローについて帯域値を設定する帯域値管理部と、
     前記仮想ネットワーク制御部からの指示に従い物理ネットワークを制御するとともに、前記所定の通信フローの通信量が、前記設定された帯域値に収まるように帯域制御を実施する物理ネットワーク制御部と、を備える制御装置。
    A virtual network control unit that controls the virtual network based on the configuration of the virtual network configured using the physical network;
    A bandwidth value management unit for setting a bandwidth value for a predetermined communication flow on the virtual network;
    A physical network control unit that controls a physical network in accordance with an instruction from the virtual network control unit, and performs bandwidth control so that a communication amount of the predetermined communication flow falls within the set bandwidth value. apparatus.
  2.  前記帯域値管理部は、ユーザから、前記所定の通信フローの仮想ネットワーク上の帯域を制限する位置と、帯域制限値の指定を受け付け、
     前記物理ネットワーク制御部は、前記仮想ネットワーク上の帯域を制限する位置に対応する物理ネットワークの位置において、帯域制御を実施する請求項1の制御装置。
    The bandwidth value management unit accepts, from a user, a position for limiting a bandwidth on the virtual network of the predetermined communication flow, and designation of a bandwidth limit value,
    The control device according to claim 1, wherein the physical network control unit performs bandwidth control at a position of the physical network corresponding to a position that limits a bandwidth on the virtual network.
  3.  前記仮想ネットワーク上の通信フローが使用する仮想リンクに対応する物理リンクについて、それぞれ優先度が設定され、
     前記物理ネットワーク制御部は、前記優先度に基づいて、前記仮想リンクに対応する物理リンクのうち、前記優先度が高い物理リンクを優先して使用するよう制御する請求項1又は2の制御装置。
    Priorities are set for the physical links corresponding to the virtual links used by the communication flow on the virtual network,
    The control device according to claim 1, wherein the physical network control unit performs control so that a physical link having a higher priority is used preferentially among physical links corresponding to the virtual link based on the priority.
  4.  通信フロー毎に優先度を設定可能であり、
     前記物理ネットワーク制御部は、特定の物理リンクを使用する通信フローのうち、前記優先度が高い通信フローを優先するよう制御する請求項1から3いずれか一の制御装置。
    Priority can be set for each communication flow,
    The control device according to any one of claims 1 to 3, wherein the physical network control unit performs control so that a communication flow having a higher priority is given priority among communication flows using a specific physical link.
  5.  さらに、物理ネットワーク上の所定の物理リンクの通信量を収集する統計情報収集部を備え、
     物理ネットワーク制御部は、前記仮想リンクに対応する物理リンクの通信量の合計値と、前記通信フローに設定された帯域値との差を用いて、各物理リンクに設定する帯域値を更新する請求項1から4いずれか一の制御装置。
    In addition, a statistical information collection unit that collects traffic of a predetermined physical link on the physical network is provided,
    The physical network control unit updates a bandwidth value set for each physical link using a difference between a total value of the traffic amount of the physical link corresponding to the virtual link and a bandwidth value set for the communication flow. Item 5. The control device according to any one of Items 1 to 4.
  6.  さらに、物理ネットワーク上の所定の物理リンクの通信量を収集する統計情報収集部を備え、
     前記収集した通信量に基づいて、前記所定の物理リンクに輻輳が発生しないよう、前記優先度を増減する請求項3又は4の制御装置。
    In addition, a statistical information collection unit that collects traffic of a predetermined physical link on the physical network is provided,
    The control device according to claim 3 or 4, wherein the priority is increased or decreased based on the collected traffic so that congestion does not occur in the predetermined physical link.
  7.  前記物理ネットワーク制御部は、前記物理ネットワーク上の通信ノードに対し、受信パケットと照合するマッチ条件と、該マッチ条件に適合するパケットに適用する処理内容とを対応づけた制御情報を設定することにより、物理ネットワークを制御する請求項1から6いずれか一の制御装置。 The physical network control unit sets, for the communication node on the physical network, control information associating a matching condition that is matched with a received packet and a processing content that is applied to a packet that matches the matching condition. The control device according to any one of claims 1 to 6, which controls a physical network.
  8.  前記物理ネットワーク制御部は、前記物理ネットワーク上の通信ノードの帯域制御用のテーブルを操作することで、各通信ノードに帯域制限値を指示する請求項7の制御装置。 The control device according to claim 7, wherein the physical network control unit instructs a bandwidth limit value to each communication node by operating a bandwidth control table of the communication node on the physical network.
  9.  前記帯域値管理部は、所定の運用管理装置から受信した帯域制御ポリシーに基づいて、前記仮想ネットワーク上の所定の通信フローについて帯域値を設定する請求項1から8いずれか一の制御装置。 The control device according to any one of claims 1 to 8, wherein the bandwidth value management unit sets a bandwidth value for a predetermined communication flow on the virtual network based on a bandwidth control policy received from a predetermined operation management device.
  10.  前記帯域値管理部は、所定の運用管理装置から受信した帯域制御ポリシーに基づいて、前記優先度を設定する請求項3又は4の制御装置。 The control device according to claim 3 or 4, wherein the bandwidth value management unit sets the priority based on a bandwidth control policy received from a predetermined operation management device.
  11.  前記帯域値管理部は、前記仮想ネットワーク上の所定の通信フローについての帯域値に代えて、前記仮想ネットワーク上の仮想リンクに帯域値を設定し、
     前記物理ネットワーク制御部は、前記仮想ネットワーク上の通信フローの通信量が、該当する仮想ネットワーク上の仮想リンクに設定された帯域値に収まるよう前記物理ネットワークを制御する請求項1から10いずれか一の制御装置。
    The bandwidth value management unit sets a bandwidth value for a virtual link on the virtual network instead of a bandwidth value for a predetermined communication flow on the virtual network,
    The physical network control unit controls the physical network so that a communication amount of a communication flow on the virtual network falls within a bandwidth value set for a virtual link on the corresponding virtual network. Control device.
  12.  物理ネットワークを用いて構成された仮想ネットワークの構成に基づいて、仮想ネットワークを制御する仮想ネットワーク制御部と、前記仮想ネットワーク上の所定の通信フローについて帯域値を設定する帯域値管理部と、前記仮想ネットワーク制御部からの指示に従い物理ネットワークを制御するとともに、前記所定の通信フローの通信量が、前記設定された帯域値に収まるように帯域制御を実施する物理ネットワーク制御部と、を備える制御装置からの制御に従い、前記通信フローの通信量が、前記設定された帯域値に収まるよう動作する通信ノード。 Based on the configuration of a virtual network configured using a physical network, a virtual network control unit that controls the virtual network, a bandwidth value management unit that sets a bandwidth value for a predetermined communication flow on the virtual network, and the virtual network A physical network control unit that controls a physical network in accordance with an instruction from the network control unit, and that performs bandwidth control so that a communication amount of the predetermined communication flow falls within the set bandwidth value. A communication node that operates so that the communication amount of the communication flow falls within the set bandwidth value in accordance with
  13.  物理ネットワークを用いて構成された仮想ネットワークの構成に基づいて、仮想ネットワークを制御する仮想ネットワーク制御部と、
     前記仮想ネットワーク上の所定の通信フローについて帯域値を設定する帯域値管理部と、
     前記仮想ネットワーク制御部からの指示に従い物理ネットワークを制御するとともに、前記所定の通信フローの通信量が、前記設定された帯域値に収まるように帯域制御を実施する物理ネットワーク制御部と、を備える制御装置と、
     前記制御装置からの指示に従い、前記通信フローの通信量が、前記設定された帯域値に収まるよう動作する通信ノードと、を含む通信システム。
    A virtual network control unit that controls the virtual network based on the configuration of the virtual network configured using the physical network;
    A bandwidth value management unit for setting a bandwidth value for a predetermined communication flow on the virtual network;
    A physical network control unit that controls a physical network in accordance with an instruction from the virtual network control unit, and performs bandwidth control so that a communication amount of the predetermined communication flow falls within the set bandwidth value. Equipment,
    A communication node that operates according to an instruction from the control device, so that a communication amount of the communication flow falls within the set bandwidth value.
  14.  物理ネットワークを用いて構成された仮想ネットワークの構成に基づいて、仮想ネットワークを制御する仮想ネットワーク制御部を備える制御装置が、
     前記仮想ネットワーク上の所定の通信フローについて帯域値の設定を受け付けるステップと、
     前記仮想ネットワーク制御部からの指示に従い物理ネットワークを制御するとともに、前記所定の通信フローの通信量が、前記設定された帯域値に収まるよう前記物理ネットワークを制御するステップと、を含む帯域制御方法。
    A control device including a virtual network control unit that controls a virtual network based on a configuration of a virtual network configured using a physical network,
    Receiving a bandwidth value setting for a predetermined communication flow on the virtual network;
    A bandwidth control method comprising: controlling a physical network in accordance with an instruction from the virtual network control unit; and controlling the physical network so that a communication amount of the predetermined communication flow falls within the set bandwidth value.
  15.  物理ネットワークを用いて構成された仮想ネットワークの構成に基づいて、仮想ネットワークを制御する仮想ネットワーク制御部を備えるコンピュータに、
     前記仮想ネットワーク上の所定の通信フローについて帯域値の設定を受け付ける処理と、
     前記仮想ネットワーク制御部からの指示に従い物理ネットワークを制御するとともに、前記所定の通信フローの通信量が、前記設定された帯域値に収まるよう前記物理ネットワークを制御する処理と、を実行させるプログラム。
    Based on the configuration of a virtual network configured using a physical network, a computer including a virtual network control unit that controls the virtual network,
    Processing for accepting setting of a bandwidth value for a predetermined communication flow on the virtual network;
    A program that controls a physical network according to an instruction from the virtual network control unit, and that controls the physical network so that a communication amount of the predetermined communication flow falls within the set bandwidth value.
PCT/JP2014/077686 2013-10-17 2014-10-17 Controller, communication node, communication system, communication method, and program WO2015056776A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013216580 2013-10-17
JP2013-216580 2013-10-17

Publications (1)

Publication Number Publication Date
WO2015056776A1 true WO2015056776A1 (en) 2015-04-23

Family

ID=52828214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077686 WO2015056776A1 (en) 2013-10-17 2014-10-17 Controller, communication node, communication system, communication method, and program

Country Status (1)

Country Link
WO (1) WO2015056776A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022558A (en) * 2015-07-10 2017-01-26 日本電気株式会社 Virtual network management system, virtual network management device, virtual network management method and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179494A (en) * 2012-02-28 2013-09-09 Nippon Telegr & Teleph Corp <Ntt> Virtual network infrastructure control system and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179494A (en) * 2012-02-28 2013-09-09 Nippon Telegr & Teleph Corp <Ntt> Virtual network infrastructure control system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAYOSHI SHIMAMURA ET AL.: "Consideration of a QoS-aware resource controllable virtual network provisioning system in middle-layer network architecture", IEICE TECHNICAL REPORT, vol. 112, no. 10, 12 April 2012 (2012-04-12), pages 25 - 28 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022558A (en) * 2015-07-10 2017-01-26 日本電気株式会社 Virtual network management system, virtual network management device, virtual network management method and program

Similar Documents

Publication Publication Date Title
JP5975083B2 (en) COMMUNICATION SYSTEM, CONTROL DEVICE, PACKET TRANSFER ROUTE CONTROL METHOD, AND PROGRAM
KR101530594B1 (en) Communication system, information processing device, communication node, communication method, and computer-readable storage medium storing program
KR102104047B1 (en) Congestion control in packet data networking
JP5900353B2 (en) COMMUNICATION SYSTEM, CONTROL DEVICE, COMMUNICATION NODE, AND COMMUNICATION METHOD
KR101877595B1 (en) METHOD FOR CONTROLLING QoS USING TRAFFIC PROCESSING BASED ON SERVICE
KR20160041631A (en) Apparatus and method for quality of service aware routing control
JP5999251B2 (en) COMMUNICATION SYSTEM, SWITCH, CONTROL DEVICE, PACKET PROCESSING METHOD, AND PROGRAM
WO2012011290A1 (en) Communication system, node, statistical information collection device, statistical information collection method and program
CN108476175B (en) Transfer SDN traffic engineering method and system using dual variables
US9800508B2 (en) System and method of flow shaping to reduce impact of incast communications
US20150043574A1 (en) Communication apparatus, control apparatus, communication system, communication control method, communication terminal and program
KR20170033179A (en) Method and apparatus for managing bandwidth of virtual networks on SDN
KR20140052847A (en) Method and apparatus for providing quality of service in software defiend neworking network
JP2015089138A (en) Congestion avoidance and fairness in data networks with multiple traffic sources
JP2015530767A (en) COMMUNICATION SYSTEM, CONTROL DEVICE, CONTROL METHOD, AND PROGRAM
JP2012182605A (en) Network control system and administrative server
US20140376394A1 (en) Communication apparatus, control apparatus, communication system, communication control method, and computer program
KR101465884B1 (en) Method and apparatus of probabilistic controller selection in software-defined networks
KR20140050461A (en) Method and apparatus to implement virtual networks using open flow switches and controller
KR101812856B1 (en) Switch device, vlan configuration and management method, and program
WO2015056776A1 (en) Controller, communication node, communication system, communication method, and program
Nepolo et al. A predictive ECMP routing protocol for fat-tree enabled data centre networks
US20140226486A1 (en) Communication Apparatus, Communication System, Communication Control Method, and Computer Program
US20140233381A1 (en) Communication apparatus, control apparatus, communication system, communication control method, and program
Thazin et al. Resource allocation scheme for SDN-based cloud data center network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP