WO2015051694A1 - 一种基于新材料的外接的计算机加速设备 - Google Patents

一种基于新材料的外接的计算机加速设备 Download PDF

Info

Publication number
WO2015051694A1
WO2015051694A1 PCT/CN2014/087018 CN2014087018W WO2015051694A1 WO 2015051694 A1 WO2015051694 A1 WO 2015051694A1 CN 2014087018 W CN2014087018 W CN 2014087018W WO 2015051694 A1 WO2015051694 A1 WO 2015051694A1
Authority
WO
WIPO (PCT)
Prior art keywords
computer
reram
data
usb
files
Prior art date
Application number
PCT/CN2014/087018
Other languages
English (en)
French (fr)
Inventor
张维加
Original Assignee
张维加
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张维加 filed Critical 张维加
Publication of WO2015051694A1 publication Critical patent/WO2015051694A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/10Program control for peripheral devices
    • G06F13/105Program control for peripheral devices where the programme performs an input/output emulation function

Definitions

  • This product belongs to the field of computer equipment. It is a computer acceleration device based on new materials and new architecture.
  • the computer is updated very quickly, and the product models are numerous, the types of equipment are numerous, the age span is large, and the system platform is complex. Currently, there is a lack of effective universal upgrade solutions.
  • changing the CPU changing the hard disk not only needs to accurately connect various data lines and sockets in the chassis, but also needs to export the data of the old hard disk and reinstall the system and each Class software, the average user will not. And the cost is still high, and the compatibility with the motherboard is also a big problem.
  • a solid state disk (Solid State Disk) is a hard disk made of a solid state electronic memory chip array, which is composed of a control unit and a storage unit.
  • the interface specification and definition, function and usage of the SSD are exactly the same as those of the ordinary hard disk, and the shape and size of the product are also completely consistent with the ordinary hard disk.
  • Flash-based SSDs are a major category of SSDs. The internal structure is very simple, the main body of the solid state hard disk is actually a PCB board, and the most basic accessories on this PCB board are the control chip, the cache chip (some low-end hard disk without cache chip) and the flash memory chip for storing data. Except for the main control chip and the cache chip, most of the rest of the PCB board is the NAND Flash memory chip.
  • SSDs do not have the motors and rotating media of ordinary hard drives, so they are quick to start and have excellent shock resistance.
  • Solid state drives do not use heads, disk reads and writes are fast, and latency is small.
  • the read and write speed can generally reach more than 100M per second. To be precise, the expected speed is around 138M per second, which is calculated as follows: Without any acceleration measures, the typical read timing of Flash consists of command and data parts with a read time of 78us, so the typical read bandwidth is 216Mbps.
  • Flash write timing can be divided into three phases: Command phase (Command), set the start and end of the write process through the command word, and set the page address; Data phase (Data), load data into the Flash data buffer The programming phase (Program), the data in the data buffer is actually programmed into the Flash array.
  • the typical write cycle is a minimum of 25ns, and the programming time is around 220us-500us, so the write time is 275us and the maximum bandwidth is 61.4Mbps.
  • entry-level SSDs can't reach this speed.
  • Changing the hard disk means changing the whole system, copying all the files, reinstalling various drivers, and consuming at least one or two days.
  • the SSD setting is complicated, and it can only exceed the normal hard disk speed under Win7 or Win8.
  • XP does not recognize the Trim command of SSD, 4k alignment and ACHI. Not only can't you speed up, you can't use your computer, and in most cases it will blue screen and crash.
  • the first is the high price, the price of the entry-level 32G-64G for SSDs is about 500 yuan, but 64G has basically no space after installing Win7 system and Office.
  • the price of the entry-level 128G has already approached 1,000 yuan.
  • the cost of upgrading an old computer is not worth it.
  • the second is short life, solid state drives are generally MLC flash memory, and its life is very short without proper maintenance. And the Trim, 4k alignment and other maintenance measures are generally not available to customers.
  • DRAM Dynamic Rand om Access Memory
  • NAND Flash the semiconductor storage medium most commonly used for SSM.
  • DRAM has relatively low storage density and is volatile, and requires a periodic refresh mechanism to maintain data information, so DRAM is used as a medium.
  • Solid-state memory has very limited capacity and is rarely used in new types of storage devices.
  • One example I know of is the spaceborne solid-state memory of space solar telescopes, see Reference 1.
  • NANDFlash is a NAND-based flash memory chip with high storage density and its data can be maintained after power-off. The application is very extensive. However, its control logic is more complicated, and the direct access speed is lower.
  • the circuit is complicated. It is not used for memory after 2003.
  • the 2M size is about 200 yuan, and the 32M is about 2000 yuan. This means high. Cost, than upgrade The higher cost of human computers has limited these technologies to the enterprise application and server application markets.
  • the Fast Disk is a PCI-E interface expansion card with one or two NAND flash memory as a Mini PCI-E1x expansion card, through the PCI-E bus and system I. /O controller for data exchange.
  • the flash memory module used by the Fast Disk is NAND, not NOR. This is because NAND is better than NOR in accessing data performance and has better cost performance.
  • ReadyBoost and ReadyDrive functions are provided. These functions will directly improve the performance of the system in terms of booting, hibernation, installing programs, copying files, loading games and other tasks related to disk operations. According to official data, the fast disk can speed up the boot speed by 20%, while reducing the number of hard disk revolutions to save power.
  • ReadyBoost When ReadyBoost determines that the cache in the flash is more capable of satisfying random reads than the cache in the hard disk, it will randomly read the data from the flash disk media.
  • the hard disk will read a large amount of data in batches at a time, and temporarily store it in the fast disk for the system to call at any time; at the same time, the data to be written is temporarily stored in the fast disk, and then accumulated to a certain number and then uniformly written to the hard disk.
  • This on-demand read/write mechanism is very helpful in improving system performance.
  • the hard disk is idle, and the larger the capacity of the fast disk, the longer the idle time of the hard disk, thereby reducing the number of mechanical rotations and power consumption, and prolonging the battery life of the notebook battery.
  • ReadyDrive is in fact Microsoft's name for a hybrid hard drive (a hard drive with internal flash components).
  • a hybrid hard drive a hard drive with internal flash components.
  • the biggest temptation is that the data stored in it is "right to wait” - because for flash memory, there is no need to start the head or wait for the head to rotate to the proper position.
  • Hybird drives start up, hibernate, sleep faster, and consume less power. Because when the operating system reads and writes the cache, the drive itself can temporarily stop working without consuming any power. When resumed from hibernation, the laptop can immediately start reading data from the cache, instead of waiting for the drive's head to start up as usual.
  • the user can set the module to provide Read through the software interface. yBoost, ReadyDrive, or both.
  • the invention provides a method for manufacturing a computer cache device based on a memristor, which is used for improving the running speed of the existing computer and achieving the purpose of simple and reliable upgrade.
  • the cache device manufactured by the method has High speed, lower power consumption, greater cache integration density, and a simpler USB interface.
  • a plug-and-play USB interface (USB3.0 or higher interface
  • USB3.0 USB 3.0 or higher interface
  • “above” means an electronic device greater than or equal to the number of points, the electronic device includes a main control chip and a ReRAM (Resistive random-access memory) resistive memory module.
  • the sample utilizes two ReRAM chips generated in a 24 nm process to operate in a dual channel master. For computers that do not have USB3.0, if it is a desktop computer, it can be transferred from the PCI interface to USB3.0. If it is a notebook, it can be transferred from the ExpressCard interface to USB3.0.
  • the working principle of the device is: the device is connected to the computer through the USB interface, the cache file is created for the computer in the resistive memory, the common files of the cache system and the application program, and the scattered files frequently read and written by the pre-reading, and the high speed of the resistive memory is utilized. Random access and fast read and write speeds reduce computer system access to hard drives (including NAND-based SSDs), providing acceleration and improved I/O performance.
  • the device driver also improved the USB protocol, optimized the BOT protocol (Bulk-Only Transport) that hinders fast data transmission in the traditional USB interface protocol, optimized resource allocation on the USB transmission protocol, and configured more.
  • BOT protocol Bit-Only Transport
  • System resources are given to devices, and multi-tasking transmission functions similar to NCQ are supported, which greatly improves the random read/write rate under multiple QDs.
  • the algorithm and architecture of the device also adopt the following design: 1. Provide intelligent compression and automatic release in the background to the system memory, so as to avoid the computer to read and write virtual memory due to insufficient memory; 2. By long-term user habits Monitor and identify, determine which data is to be used by the system, pre-stored in the device ReRAM module, the CPU will directly obtain data from the device, and then transfer it into the memory, thereby reducing the reading and writing of the hard disk; 3. Dual channel mode, The array module integrates two ReRam chips and uses dual-channel mastering to operate in dual-channel mode for greater speed. As a logical disk group, data is stored in different ways on the different physical disks of the logical disk group. When data is accessed, the related disks in the array work in parallel, reducing the time of data access, thereby achieving RAID and RAID. The same acceleration effect of 0 (disk array 0) makes reading and writing faster.
  • the device virtualizes the application to pre-store all program files and program system environment files in the device.
  • the application storage directory that is, the ReRam module or the S LC NAND flash module, and will not be installed to the hard disk. This process most completely avoids hard disk read and write in the program.
  • Reversible resistance switching effect of electrical pulse triggered Resistive random access memory is one of the strong competitors of the next generation of high-speed high-density non-volatile random access memory.
  • ReRAM has a simple preparation process and fast read and write speed. , high storage density, non-volatile and good compatibility with silicon integrated circuit process. See reference 3.
  • the structure of the ReRAM memory is very simple. It is a sandwich structure with an insulating layer sandwiched between two metal films.
  • the middle insulating layer is generally a metal oxide film.
  • the resistivity of the insulating layer in a ReRAM device can vary several orders of magnitude, that is, the resistance of the ReRAM can be controlled and reversibly changed between a high-resistance state and a low-resistance state. This is called Resistance switch characteristics.
  • the resistor can be used to create an ideal memory. First, the ReRAM resistor conversion process is very fast (nanoseconds), so ReRAM can be used as a high-speed RAM.
  • the ReRAM resistor characteristics can be very ReRAM is a non-volatile memory for a long period of time, so ReRAM has almost no power consumption except for read and memory cycles.
  • the size of ReRAM can be as small as the feature line width of lithography. Therefore, its size is much smaller than other memories such as magnetic memory and MOS memory, so the storage density can be one to two orders of magnitude higher than other RAMs, and ReRAM can realize a multi-layer stacked structure, thereby further increasing the storage density.
  • ReRAM production process is simple, no The doping process and the conductivity type control process involved in the conventional RAM device process are required, and the fabrication process is highly compatible with the silicon integrated circuit process.
  • ReRAM ReRAM is comparable in speed to DRAM memory, and its storage capacity is stronger than current NAND. If you use ReRAM to make a new solid-state hard disk, you can fuse memory and hard disk, and the data can be directly read out into the CPU; For the upgrade of the old computer, it will change from the three-core mode to the quad-core mode including the external ReRAM cache-based acceleration device. Relying on the speed and non-volatility of ReRAM material as a cache, thereby increasing the speed from hard disk data to memory and CPU.
  • the fourth core component for the upgraded computer is the traditional CPU, memory, hard disk, this three-core mode becomes a dual-core mode that only requires CPU and hard disk.
  • ReRAM is comparable in speed to DRAM memory, and its storage capacity is stronger than current NAND. If you use ReRAM to make a new solid-state hard disk, you can fuse memory and hard disk, and the data can be directly read out into the CPU; For the upgrade of the old computer, it will change from the three-core mode to the quad-core mode including the
  • USB plug and play is the most convenient and simplest way to use, the compatibility is the highest, almost all computers have a USB interface. Any built-in interface is not convenient to use and will not be adopted by the public. So will the speed of the USB interface be affected? In fact, as long as the following classification discussion is made, it is obvious.
  • the USB interface is generally USB2.0, and the speed bandwidth is 480M per second, which is equivalent to a maximum data transmission of 60M per second. It doesn't look too high.
  • the computer did not have a solid state hard disk.
  • the random data access speed of a general mechanical hard disk was less than 20M per second, generally around 10M per second, which was much lower than the 60M bandwidth of the USB2 mode.
  • the USB protocol can be optimized, with a speed of 60M, it can be accelerated by nearly 6 times! (In the actual production sample described below, the speed under USB2 exceeds 50M per second)
  • USB 3.0 provides 5Gbps (625MB/s).
  • SATAIII has a large 6Gbps packet bandwidth
  • the conversion format of the transmission architecture is not the same, so it is only 600MB when converted to MB/s.
  • s in theory, will be smaller than USB3.0's 625MB/s, not to mention SATAII's 3Gbps (300MB/s).
  • USB is an indispensable port for every computer.
  • USB3.0 is not only backward compatible, but also has the convenience of plug and play. In terms of power supply, it is increased from 500mA to 900mA. It has created its considerable advantages.
  • USB has always had a very serious problem of low bandwidth utilization.
  • the bandwidth of USB2.0 is 480Mbps (60MB/s), but even if the actual use of devices with transmission speeds higher than 100MB/s can not use the full bandwidth, speed
  • the upper limit is usually only about half of 33MB/s, which is due to the relationship between the USB half-duplex transmission mode and the BOT (Bulk Only Transfer) transmission protocol.
  • Half-duplex data transmission is like a walkie-talkie. When one party presses the call button, the other party can only listen to the sound. You must wait for the other party to finish before you can press the call button to send the message, which means that the half-duplex mode is provided.
  • the function of two-way data transmission, but the direction of data transmission is only one-way.
  • the BOT protocol is a single-threaded transmission architecture. It must wait for a complete delivery of a data block before sending the next data, which means that no matter how wide the road is, it can only allow one. The car is driving on this road. There is no way to effectively relieve the huge traffic flow in the rear, and it will cause the traffic jam in the data block.
  • the USB is upgraded to the 3.0 specification, although the additional five contacts are used, the full-duplex data transmission mode can be used to perform two-way data transmission at the same time, and the bandwidth is increased by ten times compared with the previous generation. However, its transmission architecture is still under the BOT, so we must optimize and accelerate.
  • the BOT's acceleration mode is well understood in the above metaphor: since under the BOT architecture, there can only be one car on the road, one person is one, and the small bus is full of five people. Large passengers are still full of 50 people. When a certain number of people are to be transported, each time a large passenger transports on the road, it can reduce a lot of traffic.
  • the so-called USB Turbo mode is designed based on this principle, the data is organized into larger data blocks and then transmitted, and regardless of the storage medium, the processing capacity of the large file is always better than the small file. Using this method can significantly increase the data transfer speed.
  • the intent of the present invention is to add a fourth core component to the old computer with new materials, so that the high-speed USB interface speed is used as a new data transmission bottleneck (625M per second), and the hard disk is replaced by a pre-stored cache mode.
  • a complete computer is originally a system composed of various electronic components, and its performance depends on the data processing capability of each component itself and the data transmission speed between components.
  • the data read capability of DDR2 667 memory is 333MB per second, while the small file read and random read of traditional hard disk are 10-15MB per second, which becomes the actual data speed constraint.
  • ReRAM about 700M per second
  • Data read and write speed, especially good at random access As a USB3.0 external cache, the small file read and random read are transferred, the data bottleneck rises from 10-15M per second to 625M per second USB3.0 speed Upper limit.
  • Virtualization also virtualizes the system environment into a series of file forms that are launched at runtime. This will transfer all the required reads and writes of the program to the directory where the program is located, that is, the external ReRAM chip, which will no longer need to read and write the system disk. For this device, it means that the hard disk of the accelerated computer will no longer run the program files or system files called by the program, all of which run in the external ReRAM chip. This process completely avoids the hard disk read and write in the program, otherwise the hard disk will still be read and written during the running of the application.
  • this device Compared with the traditional computer upgrade, this device has the following advantages:
  • USB3.0 can be transferred from PCI-E or ExpressCard. Compared with the original USB3.0, these transferred USB3.0s have lower speed and data transmission is about 150M per second.
  • ReRAM has a lower process, is easier to integrate, and has a larger capacity, so the production cost per unit capacity is lower than that of NAND flash and DRAM memory.
  • Figure 2 Effect diagram of the sample device, accelerated 5-10 times.
  • Figure 4. Accelerating the memory console interface during use of the sample device.
  • Figure 5.1 is an equivalent circuit diagram of the ReRAM memory cell of TnR.
  • a memristive memory fabricated using a two-layer structure of a multilayer structure such as a CuTe film and an insulating film of a 1T1R memory cell using a USB3.0 or higher interface (the process and materials are merely exemplified herein), and more is obtained by paralleling multiple chips.
  • High speed the current process can reach 16GB per piece, the data transmission speed is 1GB/sec when reading, 200MB/sec when writing, the access waiting time is 2 ⁇ s when reading, and 10 ⁇ s when writing. If the capacity of the ReRAM chip is insufficient, SLCNAND can also be used as the secondary cache.
  • ReRAM chips At present, the manufacturing process of ReRAM chips is still in its infancy, and the solutions without absolute advantages are widely used.
  • the products used by different manufacturers are often different in use, so the above art and materials are only examples.
  • a 1TnR memory cell can be used to obtain a larger chip, and the read latency is also 2 microseconds.
  • the device driver also improves the USB protocol, optimizes the BOT protocol in the traditional USB interface protocol, and optimizes resource allocation on the USB transport protocol.
  • the algorithm and architecture of the device also adopt the following design: 1. The device creates a virtual environment, and virtualizes the application, thereby pre-storing all program files and system environment files required by the program in the device to improve the cache hit rate; 2. Pre-storing The algorithm, through the user's habit of long-term monitoring, determines the data that the system is about to use, pre-existing in the device; 3. providing intelligent compression and automatic release in the background to the system memory.
  • the present invention has produced samples while performing a series of simulation tests.
  • the multi-layer ReRAM memory module cache area pre-installed in the 24nm process, and the second-level buffer area of the SLC NAND, use the USB3.0 interface for high-speed communication, as the random storage area of the local system achieves the purpose of accelerating and improving cache performance.
  • the test read is 550M per second
  • the write is 380M per second, which has reached the current interface speed limit of U SB 3.0, far exceeding the solid state.
  • the speed of the hard disk, approaching the memory speed, the cache speed is increased by 5 times, and the system acceleration effect is very obvious.
  • a comparison of the simulation test using the cache and not using the cache is shown in Figure 2.
  • the device After the device is connected to the computer, it automatically optimizes the USB protocol, implements the BOT Turbo mode, and allocates more resources to the device. After changing the USB transfer protocol, it only supports single-line cache exchange, and becomes capable of simultaneously processing multiple cache tasks. Similar to the hard disk NCQ technology, the device is fully utilized as a new memory for the system.
  • the algorithm and architecture of the device also include: 1. Intelligent compression and automatic background release for system memory; Through long-term monitoring and identification of user habits, it is determined which data is to be used by the system, pre-existing in the device; 3. Dual channel mode, the array module integrates two ReRam chips and adopts parallel design; 4. The device virtualizes the application Processing, pre-stored program files and system environment files required by the program are in the device (the simulation test does not include this point).
  • the device also has a graphical interface console that provides intelligent, automated management and control for selective loading of channels and partitions. See Figure 4. The newly added ReRAM external cache can be viewed and managed through the control panel. Other details are as follows.
  • the integrated structure of ReRAM generally has 1R, 1T1R, 1D1R, and 1TnR structures.
  • 1R is the simplest integrated structure of the resistive memory device, and the memory cell directly using the resistive memory cell as the resistive memory device is integrated into the memory.
  • the structure of the array is relatively simple, which can significantly reduce the cell area of the device and increase the storage density of the resistive memory device.
  • the 1R structure resistive memory cell can also be integrated by means of a passive crossbar, which can effectively reduce the integration cost, but there is a data misreading problem.
  • the 1T1R structure is connected to a strobe transistor outside the memory cell.
  • the structure is a strobe transistor using a transistor as a resistive memory cell, and a resistive memory cell and a NMOS transistor are connected in series to form a 1T1R structure resistive memory cell. .
  • the 1T1R structure can effectively solve the misreading crosstalk problem of the 1R mechanism, but it is not easy to integrate.
  • 1D1R similar to the 1T1R structure, uses a diode as the gate of the memory cell to control the turn-on and turn-off of the memory cell.
  • One problem with the 1D1R structure is that it is difficult to find a suitable diode in series with the resistive memory cell.
  • FIG. 5 is a schematic diagram of an equivalent circuit of a resistive memory cell of a 1TnR structure.
  • USB 3.0 speed is much higher than 2.0, but still not as fast as another high-speed transmission standard Thunderbolt.
  • USB3.1 also known as Superspeed USB, doubles the transfer speed from 5Gbps to 10Gbps.
  • USB 3.1 supports USB 2.0/3.0 devices. After USB3.1 or even 4.0 is put into practical use, the accelerated performance can be fully utilized.
  • the sample device is intended to support two virtual modes, mode 1. If the user presses F12 to select USB boot when booting, the operating system will use the pre-packaged system in the sample. In this case, the fastest speed can also be considered as a cache. The highest hit rate is equivalent to directly blocking the hard disk in the original computer. Under the system, the following schemes enable the user to install the program to save the work, etc., to realize the daily system work, and the effect is shown in FIG. 6.
  • Mode 2 if the user starts up normally and does not enter the system preloaded by the device, it will enter the original computer system, but at this time, the user can directly use thousands of commonly used programs pre-loaded in the device, or apply the local application.
  • the program is virtualized to pre-store all program files and program system environment files in the device. (The principle of virtualization has been explained earlier. It mainly uses the virtualization technology of the sandbox. First, all the actions of the application installed into the running are recorded and processed in the cost of the file. When the main program file is executed, it will be temporary. Generate a virtual environment to execute, like the shadow system, all the operations involved are done in this virtual environment, and will not move the original system. After processing, all the calling files are in the application directory. It is under the ReRam module or the SLC NAND flash module, and will not be installed to the hard disk.) This process completely avoids the hard disk read and write in the program.
  • ReRAM is non-volatile, even if power is lost, it will not affect the data retention, which is the same as NAND except for DR AM. Therefore, the plug-and-play USB interface can be used, and the corresponding US B optimization can be used to ensure that the performance is not affected while being more convenient to use. As USB bandwidth continues to rise, its applications are becoming more popular.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Memory System Of A Hierarchy Structure (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

一种基于ReRAM(阻变存储材料)的外接的计算机加速设备,包含主控芯片及ReRAM模块,具备USB接口(USB3.0以上)来连接计算机,在阻变存储器中为计算机创建缓存文件,缓存系统与应用程序的常用文件以及预读频繁读写的零散文件,作为高速缓存。同时,设备驱动还对USB协议进行改善,对于传统的USB接口协议中的BOT协议进行优化,并在USB传输协议上做资源分配优化。设备的算法与架构还采用如下设计:1.对系统内存提供智能压缩与后台自动释放;2.通过对用户习惯进行长期监测,判断出系统即将使用的数据,预存在设备中;3.多通道模式,阵列模组集成多块ReRam芯片并采用多通道主控;4.设备将应用程序进行虚拟化处理,从而预存所有程序文件与程序所需系统环境文件在设备中。

Description

一种基于新材料的外接的计算机加速设备 技术领域
该产品属于计算机设备领域。是一种基于新材料与新架构的电脑加速设备。
背景技术
计算机的更新换代非常快,而产品型号众多,设备种类繁多,年代跨度大,系统平台复杂,目前暂时缺乏有效的通用型升级解决方案。
1.为什么需要电脑加速型功能的产品
技术的发展总把硬件甩在后面。电影变高清,系统出Win8,游戏的最低配置纷纷变四核了,微软新推出的Office2013就要占掉2G内存。升级电脑成本很高,一般都要数千元。目前,这种升级是一个棘手的问题,现有的解决方案一般是升级电脑配新机器,不但花费近万,而且旧机器从此闲置成为占空间的电子垃圾,或者也有不少用户自行购买零配件来拆机换部件,技术要求较高,难度也很大,比如换CPU,换硬盘不但需要准确接驳机箱中的各种数据线与插口,还需要导出旧硬盘的数据并重装系统与各类软件,一般用户根本不会。而且成本依然居高不下,与主板的兼容性也存在很大问题。
也有一些软件可以优化电脑系统,比如360优化大师,加速球,但是这些都没有在实质上改善硬件能力,只是清理电脑缓存垃圾等,和很多人常说的电脑用久了就重装一下系统可以变快很类似。本身并没有增强计算机的性能。
2.电脑加速的瓶颈在哪里?在于硬盘的速度
近十年来,CPU和内存的性能提高了100多倍,但硬盘的性能只提高了两倍。整个数据处理的瓶颈,就在硬盘上。只要能打通这个瓶颈,信息传输就走上了“高速公路”。
正因为此,固态硬盘才被用于取代机械硬盘。固态硬盘(Solid State Disk)用固态电子存储芯片阵列而制成的硬盘,由控制单元和存储单元组成。固态硬盘的接口规范和定义、功能及使用方法上与普通硬盘的完全相同,在产品外形和尺寸上也完全与普通硬盘一致。基于闪存的固态硬盘是固态硬盘的主要类别, 其内部构造十分简单,固态硬盘内主体其实就是一块PCB板,而这块PCB板上最基本的配件就是控制芯片,缓存芯片(部分低端硬盘无缓存芯片)和用于存储数据的闪存芯片。除了主控芯片和缓存芯片以外,PCB板上其余的大部分位置都是NAND Flash闪存芯片了。
固态硬盘没有普通硬盘的电机和旋转介质,因此启动快、抗震性极佳。固态硬盘不用磁头,磁盘读取和写入速度快,延迟很小。读写速度一般可以达到100M每秒以上。准确的说,预期速度在138M每秒左右,其计算方式如下:在不采取任何加速措施的情况下,Flash典型的读时序由命令和数据部分组成,读时间为78us,因此典型的读带宽为216Mbps。Flash的写时序主要可以分为3个阶段:命令阶段(Command),通过命令字设置写入过程的开始和结束,并设置页面地址;数据阶段(Data),将数据加载到Flash的数据缓冲中;编程阶段(Program),将数据缓冲中的数据真正编程到Flash阵列中。典型的写周期最小为25ns,编程时间在220us-500us左右,因此其写入时间为275us,最大带宽为61.4Mbps。对于一个典型的应用,有50%的读和50%的写,则综合速率为216×50%+61.4×50%=138.7Mbps。当然,入门级固态硬盘还达不到此速度。
虽然速度比起机械硬盘那还是快不少,但是坏处也是很多的,比如价格贵,容量小,电池航程较短,写入寿命有限等等。关键是价格贵容量小,确切的说是不贵的就容量小,五百元左右的入门级金士顿SSD NOW只有32G容量。容量大的就价格贵,同样是1TB的大小,机械硬盘200元左右,固态硬盘至少五千。因此在新的出厂的电脑中,固态硬盘也仍然没有取代机械硬盘。
而且老电脑升级主要要考虑可行性,以及性价比,这两个方面。可行性上:首先是兼容性问题。早期的主板并不支持固态硬盘。具体地说,90年代到2010年期间的主板基本上都不能够支持固态硬盘。就可行性而言:首先对于绝大多数老电脑来说,安装SSD是无效的,因为11年以前的电脑根本就不支持SATA2协议,更别提SATA3了,主板接口最大支持速度就是100M每秒的普通IDE或者SATA硬盘协议,根本无法用SSD获得加速效果。而更换主板几乎不可能。其次, 依然是不方便,一般的用户并不擅长自己更换硬盘,更换硬盘尤其意味着更换整个系统,拷贝所有的文件,重装各种驱动,消耗至少一两天的时间。再者,SSD设置复杂,只有在Win7或者Win8下才可以超过普通硬盘速度,XP不识别SSD的Trim指令、4k对齐以及ACHI。不但不能加速,还会无法使用电脑,在大多数情况下会蓝屏、死机。
就性价比而言:第一就是价格高,固态硬盘的入门级32G-64G的价格都要五百元左右,可是64G在安装Win7系统与Office之后就基本没有剩余空间了。而入门级128G的价格就已经逼近千元。升级旧电脑来说这个成本已经不值得。第二就是寿命短,固态硬盘一般都是MLC闪存,其寿命在得不到正确保养下很短。而开启Trim,4k对齐等保养措施一般客户不会。
最重要的是,即使采用固态硬盘,数据速度依然与内存速度有十倍的差距!
目前最常用于SSM的半导体存储介质是DRAM(DynamicRand omAccessMemory)和NANDFlash.其中,DRAM的存储密度相对较低,且具有易失性,需有定期刷新机制以维持数据信息,因此以DRAM为介质的固态存储器的容量极为有限,在新型存储设备中应用较少,我所知的有一个案例是空间太阳望远镜的星载固态存储器,见参考文献1。而NANDFlash是基于与非门的闪存芯片,存储密度较高,同时其数据在断电后依然能够保持,应用非常广泛.但它的控制逻辑比较复杂,直接访问速度较低,如何根据NANDFlash的特征实现存储阵列的高速访问是目前学术界和工业界亟待解决的问题。当然,固态存储系统的存取速率慢的问题,也已经引起了重视。目前常用的优化技术主要有缓存和并行读写技术,见参考文献2。并行技术即通过增加总线宽度的方法来提高存取速度,现有的SSM解决方案主要包括例如SAMSUNG、Toshiba、SANDISK等厂商推出的基于NANDFlash的256GB的大容量固态存储器,其读写速度最高可达200~220MB/s,但大容量闪存造成成本高昂,且这个速度由于受到总线宽度的限制,已经是极限。缓存技术采用SRAM等高速静态缓存材料,然而SRAM是作为CPU缓存用的,电路复杂,03年之后就不用于内存了,2M大小就在200元左右,32M就要2000元左右,这意味着高昂的成本,比升级个 人计算机更高的成本,从而使得这些技术局限在企业应用与服务器应用市场。
3.那么目前是否有其他的低成本高效果的技术方案来解决硬盘速度的瓶颈?
当前也有用其他设备来加速电脑的尝试。目前所知的就是英特尔的迅盘:迅盘是一块PCI-E接口的扩展卡,搭载有一块或两块NAND闪存,作为一个Mini PCI-E1x规格的扩展卡,通过PCI-E总线与系统I/O控制器进行数据交换。迅盘所采用的闪存模块为NAND,而并非NOR,这是由于NAND在存取数据的性能方面要优于NOR,且具备更好的性价比。
在系统的支持下,可提供ReadyBoost和ReadyDrive功能,这些功能将直接对系统在启动、休眠、安装程序、拷贝文件、载入游戏等有关磁盘操作的任务上进行性能提升。官方资料表明,迅盘可以使开机速度加快20%,同时减少硬盘转数以节省功耗。
ReadyBoost功能简介:
当ReadyBoost确定闪存内的缓存比硬盘内的缓存更能满足随机读取需求时,它便会从闪盘介质内随机读取数据。硬盘会一次性的批量读出大量数据,并暂时储存在迅盘中,供系统随时调用;同时需要写入的数据也先暂存在迅盘中,等积累到一定数量后再统一写入到硬盘中,这种随用随取的读/写机制对提高系统性能很有帮助。在这段时间里,硬盘处于闲置状态,而且迅盘的容量越大,硬盘闲置的时间越长,从而减少机械转动次数和电量消耗,延长笔记本电池的续航时间。
ReadyDriver功能简介:
ReadyDrive事实上就是微软对混合硬盘(带有内部闪存部件的硬盘)的称呼。这种硬盘除了闪存显而易见的随机访问速度优势外,最大的诱惑还是在于其中保存的数据“立等可取”—因为对于闪存而言,既不需要启动磁头,也不用等待磁头转动到合适的位置。Hybird硬盘的启动、休眠、睡眠速度更快,而且功耗更低。因为当操作系统读写缓存时,驱动器本身可以暂时停止工作,不消耗任何电力。而从休眠状态恢复运行时,笔记本电脑也能够马上从缓存中读取数据开始工作,而不用像往常那样,先得等待驱动器的磁头启动起来。
在迅盘的驱动程序中可以看出,使用者可以通过软件界面设定该模块提供Read  yBoost、ReadyDrive功能,还是两者兼具。
但是,迅盘依然不是一个有效的升级方案。也正因为此,现在已经不太有人提起。其失败的主要原因在于:1.不能用于台式机,也不能用于绝大多数笔记本。所有上网本以及多数笔记本电脑均不支持迅盘模块,因为这不仅要求笔记本电脑提供一个额外的Mini PCI-E插槽,同时更重要的还要求笔记本电脑的SATA接口支持ACHI功能;2.安装复杂,一般用户并不会拆机安装mini PCI-E,以至于无法用于旧电脑升级;3.效果不好。PCI-E总线的速度本身被限制在150M每秒以下,而英特尔的NAND闪存则还远达不到这个速度,实测在35M每秒的随机读写速度,对硬盘提升不大,比固态硬盘还不如;
4.价格昂贵。4G的迅盘定价就在100美元;5.系统兼容性差。这一点本身就足以排除迅盘用于给旧电脑加速的可能了。无论Readydrive还是Readyboost都只能用于WindowsVista以上的操作系统,而旧电脑绝大多数都是XP的操作系统,也只能在XP下流畅运行。
技术问题
本发明提供了一种基于忆阻器的计算机缓存设备的制造方法,用于为现有的计算机提高运行速度,实现简单可靠的升级目的,与原有技术相比,本方法制造的缓存设备具有很高的速度,更低功耗,更大的缓存集成密度,并使用了更简便的USB接口。
问题的解决方案
技术解决方案
因此,在本发明中,一种基于新材料专门设计的用于加速电脑的外接式硬件设备被提出。
听起来似乎很荒谬,但是随着新材料的出现,电脑对外数据通信速度的日益提升以及云计算的发展,这是完全可以做到的,在我们后面制作的样品中,也基本达到了设计目的。
为了有效提升旧电脑的性能,并同时满足简易的安装使用能力与需求,本发明采用了如下方案:一种即插即用的USB接口(USB3.0以上接口,注:根据百度 百科,“以上”表示大于等于此数点)的电子设备,该电子设备的包含有主控芯片以及ReRAM(Resistive random-access memory)阻变存储器模块。样本利用了在24nm制程下生成的ReRAM芯片两块,以双通道主控工作。对于不具备USB3.0的电脑,如是台式机则可以从PCI接口转接出USB3.0,如是笔记本则可以从ExpressCard接口转接出USB3.0,这两种转接卡一般都只要几十元,从而具备普适性。该设备的工作原理为:设备通过USB接口与计算机连接,在阻变存储器中为计算机创建缓存文件,缓存系统与应用程序的常用文件以及预读频繁读写的零散文件,利用阻变存储器的高速随机访问以及快速读写速度,减少计算机系统对硬盘(包括基于NAND的固态硬盘)的访问,为计算机提供加速并提升I/O性能。
同时,设备的驱动还对USB协议进行了改善,对于传统的USB接口协议中阻碍快速数据传输的BOT协议(Bulk-Only Transport)进行优化,在USB传输协议上做了资源分配优化,配置更多系统资源给设备,并且支持类似NCQ的多任务传输功能,大幅提升多QD下的随机读写速率。
设备的算法与架构还采用了如下设计:1.对系统内存提供智能压缩与后台自动释放,从而避免计算机因内存不足调用虚拟内存而增大对硬盘的读写;2.通过对用户习惯进行长期监测识别,判断出系统即将使用哪些数据,预存在设备ReRAM模块中,CPU将直接从设备中获取数据,再将其转入内存中,从而减少对硬盘的读写;3.双通道模式,该阵列模组将2块ReRam芯片集成在一起,并采用双通道主控,从而能够以双通道模式工作,达到更大速度。作为一个逻辑磁盘组,将数据以分段的方式存储在这个逻辑磁盘组的不同物理磁盘上,进行数据存取时,阵列中的相关磁盘并行工作,减低数据存取的时间,从而达到和RAID 0(磁盘阵列0)相同的加速效果,使读写速度更快。
另外很重要的一点是,设备将应用程序进行虚拟化处理,从而预存所有程序文件与程序系统环境文件在设备中。(虚拟化原理有多种,主要是利用沙盒的虚拟化技术,先把应用程序安装到运行中所有的动作都记录起来并处理成本地的文件,当执行主程序文件时,它会临时产生一个虚拟环境来执行,类似影子系统一样,一切涉及的操作都是在这个虚拟环境中完成,并不会去动原本的系统 。这样处理后所有的调用文件都在应用程序的存放目录,也就是ReRam模块或S LC NAND闪存模块下,而不会安装到硬盘。)这一处理最彻底地避免了程序使用中的硬盘读写。
这样做是为了实现更快的程序运行、更为简单的程序安装与操作、更强大的系统运行能力,并具有广泛兼容性的系统程序运行能力。使得该应用程序可以无需安装,直接以即插即用的形式在计算机运行,并且是高速运行。而后设备再将该应用程序以数据形式导入到服务端。这种做法还减少了系统服务项,尤其是大大减少了计划任务项,扩展加载项与开机启动项,从而在增强系统应用功能的同时达到系统优化。
设备方案见说明书附图1.
关于几个关键问题的说明如下:
1.为什么使用ReRAM?
电脉冲触发的可逆电阻开关效应的电阻式随机存储器(ReRAM,阻变存储器)是下一代高速高密度非挥发性随机存储器的强有力的竞争者之一.ReRAM具有制备工艺简单,读写速度快,存储密度高,非挥发性以及与硅集成电路工艺兼容性好等优势。见参考文献3.
ReRAM存储器的结构十分简单,为两层金属薄膜中间夹一层绝缘层的三明治结构,中间的绝缘层一般为金属氧化物薄膜.当在这样的ReRAM存储器两端施加一个电压脉冲时,根据脉冲的高度、宽度和极性,ReRAM器件中绝缘层的电阻率可以发生几个数量级的可逆变化,即ReRAM的电阻可在高阻态和低阻态之间发生可控可逆的变化,这就是所谓的电阻开关特性。利用这种电阻开关变化特性可以制作理想的存储器.首先,ReRAM的电阻转换过程非常快(纳秒级),因此ReRAM可以用作高速RAM.其次,如果不施加电压,ReRAM的电阻特性可以在很长的时间内保持其状态不变,因此ReRAM是一种非挥发性存储器,除了读取以及存储周期外,ReRAM几乎没有能耗.第三,ReRAM的尺寸可以小至光刻技术的特征线宽,因此其尺寸比其他存储器如磁存储器、MOS存储器的小得多,所以存储密度可以比其它RAM高1到2个数量级,而且ReRAM可以实现多层堆积结构,因此可进一步提高存储密度.第四,ReRAM制作工艺简单,不 需要常规RAM器件过程中涉及的掺杂工艺及导电类型控制工艺,而且制作工艺与硅集成电路工艺的兼容性很高.
申请人认为,随着ReRAM的工业化生产,新的计算机会减少一种核心部件。从传统的CPU,内存,硬盘这个三核心模式变成只需要CPU与硬盘的双核心模式。ReRAM在速度上与DRAM内存不相上下,在存储能力上则比目前的NAND更强,如果用ReRAM制造新型的固态硬盘,则可以融合内存与硬盘,数据直接读取出来进入CPU即可;但是对于原有的旧电脑的升级,则会从三核心模式变成包括外接基于ReRAM缓存的加速设备的四核心模式。依靠ReRAM材料的速度与非易失性作为高速缓存,从而提升从硬盘数据到内存与CPU的速度。为被升级的电脑提供的第四个核心部件。
2.为什么要采用外接USB方式而不是内置的SATA方式?
很显然,USB即插即用是最方便也最简单的使用方式,兼容性最高,几乎所有电脑都有USB接口。任何内置接口都不方便使用,也不会被社会大众采纳。那么USB接口的速度会收到影响吗?实际上只要进行如下的分类讨论就很明显了。
对于2009年以前的电脑,USB接口一般为USB2.0,速度带宽480M每秒,相当于最高数据传输为60M每秒。看起来不高。但是,09年以前的电脑没有固态硬盘,一般的机械硬盘的随机数据存取速度都小于20M每秒,一般在10M每秒左右,远低于USB2模式的60M带宽。只要能够对USB协议进行优化,利用满60M的速度,可以加速接近6倍!(在下面介绍的实际生产样品中,在USB2下的速度就超过了50M每秒)
而对于有USB3的电脑,则USB3的速度实际上大于SATA3。先以带宽来看,USB 3.0提供了5Gbps(625MB/s)的大小,虽然SATAIII的6Gbps账面带宽较大,不过因为传输架构的换算方式并不相同,因此换算成MB/s时仅为600MB/s,在理论值上会比USB3.0的625MB/s来得小,更不用说是SATAII的3Gbps(300MB/s)了。再以方便性来讨论这两者,USB是每台计算机不可或缺的端口,USB3.0不但可以向下兼容、拥有即插即用的便利性,在供电方面更从500mA增加到了900mA,而造就了其相当大的优势。
3.为什么要修改USB协议?
USB以往就一直存在相当严重的带宽利用率低下的问题,USB2.0的带宽为480Mbps(60MB/s),但就算实际使用传输速度高达100MB/s以上的设备也无法用到完整的带宽,速度上限往往仅有约一半的33MB/s左右,这是因为USB的半双工传输模式与BOT(Bulk Only Transfer)传输协议所导致的关系。半双工的数据传输方式就像是对讲机,当一方按下发话钮时另一方只能收听声音,必须等待对方说完才可以按下发话钮进行发话,也就是说半双工的模式虽然提供了双向数据传输的功能,但是数据的传输方向仅有单向而已。而BOT协议则是一种单线程的传输架构,必须等待一笔数据区块完整送达之后才能够发送出下一笔数据,也就是说不论这条马路有多宽,但是就只能够允许一台车子在这条马路上行驶,这样的方式根本没有办法有效纾解后方庞大的车流量,而会造成资料区块「塞车」的情形发生。而当USB提升到3.0的规格,虽然使用了额外的五个接点,改为全双工的数据传输模式,可以同时进行双向的数据传输,带宽比起上一代也提升了有十倍之多,不过其传输架构还是在BOT之下,因此我们必须予以优化加速。
BOT的加速模式在上述的比喻下就很好理解了:既然在BOT的架构之下,马路上就只能够有一台车在行驶,一个人开是一台,小客车坐满5个人也是一台,大型客运坐满50人也还是一台,在要运送一定数目的人数时,每次都是大型客运在路上行驶,就可以减少许多车流量了。所谓的USB Turbo模式就是基于这样的原理来设计的,将数据整理成较大数据区块再进行传送,而且不论何种储存媒体,对于大档案的处理能力总是比小档案要来得好,因此使用这种方式可以显著提升数据传输速度。
本发明的本意是用新材料为旧计算机添加第四个核心部件,从而以高速的USB接口速度作为新的数据传输瓶颈(625M每秒),以预存缓存的模式代替硬盘。
从实质上来说,一个完整的计算机原本就是各个电子元器件组成的系统,其性能依赖于各个元器件本身的数据处理能力以及元器件之间的数据传输速度。DDR2 667内存的数据读取能力在333MB每秒,而传统硬盘的小文件读取和随机读取都在10-15MB每秒,成为实际上的数据速度制约。采用ReRAM(约700M每秒 数据读写速度,尤其擅长随机访问)作为USB3.0外接缓存,将小文件读取和随机读取都转移的话,这个数据瓶颈就从10-15M每秒上升到625M每秒的USB3.0速度上限。
4.为什么要虚拟化系统程式?
虚拟化将系统环境也虚拟化成一系列的文件形式,在运行的时候启动。这就将程序运行的所有所需读写都转移到程序所在目录,也就是外接的ReRAM芯片中,不会再需要系统盘的读写。对于本设备而言,意味着被加速电脑的硬盘将不再运行程序文件或程序调用的系统文件,所有这些都在外接的ReRAM芯片中运行。这一处理最彻底地避免了程序使用中的硬盘读写,否则在应用程序运行过程中不可避免对硬盘依然会有读写。
同时,这样做是为了实现更快的程序运行、更为简单的程序安装与操作、更强大的系统运行能力,并具有广泛兼容性的系统程序运行能力。使得该应用程序可以无需安装,直接以即插即用的形式在计算机运行,并且是高速运行。而后设备再将该应用程序以数据形式导入到服务端。这种做法还减少了系统服务项,尤其是大大减少了计划任务项,扩展加载项与开机启动项,从而在增强系统应用功能的同时达到系统优化。
发明的有益效果
有益效果
相比于传统的电脑升级,本设备具备如下优点:
1.操作简单:升级老电脑往往需要拆机换内存换硬盘,如果要加快速度还要动手焊主板换CPU,忙活一两天还常常倒腾坏,或出现蓝屏,各种接口之间的兼容性问题也绝非一般用户搞得清楚的。最妥当的办法是自己当搬运工将电脑抱到电脑城去现场升级,但价格很高,猫腻很多,常常被偷换部件。用本设备只需要安装驱动插上电脑点击几下就可以完成。
2.效果较好:ReRAM的速度逼近内存的速度,可有效突破计算机性能瓶颈,将整机的运行速度提升。真正的速度限制其实是接口速度限制,而随着未来USB接口速度的进一步提升,这一限制会逐步消除。测试与模拟表明,对于USB2.0的普通机械硬盘的电脑,程序启动运行速度可以提升3-6倍,对于USB3.0的较新机 械硬盘或混合硬盘的电脑,程序启动运行速度可以提升10-20倍,对于USB3.0的固态硬盘的电脑,程序启动运行速度可以提升2-3倍.(此外,其实对于一般的电脑,都可以从PCI-E或者ExpressCard转接出USB3.0,相比于原装的USB3.0,这些转接出的USB3.0速度较低,数据传输大约在150M每秒)。
3.成本低廉:ReRAM的制程更低,易于集成,容量更大,因此单位容量生产成本比NAND闪存与DRAM内存都更低。
对附图的简要说明
附图说明
图1.设备的原理图。
图2.样品设备的使用效果图,加速5-10倍。
图3.样品设备的使用操作图,USB即插即用。
图4.样品设备的使用中加速内存控制台界面。
图5.1TnR的ReRAM存储单元等效电路图。
图6.从样品设备以USB启动即插即用的XP系统并安装运行office的测试图,进入系统仅仅花了7秒钟。这是由于系统装在外接的ReRAM存储区的缘故。Win8企业版也支持USB启动。
实施该发明的最佳实施例
本发明的最佳实施方式
根据目前已知的市场设备与技术手段,在合理的成本范围下,目前能够应用的最佳实施方案之一为:
采用USB3.0以上接口,采用多层构造的如CuTe膜和绝缘膜的1T1R存储单元的双层构造制造的忆阻存储器(此处工艺与材料仅做举例),并通过并行多块芯片获得更高速度,目前工艺可达到16GB每片,数据传输速度在读取时为1GB/秒,写入时为200MB/秒,访问等待时间在读取时为2μs,写入时为10μs。如ReRAM芯片的容量不足,还可采用SLCNAND作为二级缓存。
目前ReRAM芯片的制造工艺还处于初期,没有绝对性优势的方案被广泛采用,不同厂家生产的产品使用工艺往往不同,因此以上艺与材料仅做举例。比如采用1TnR存储单元可以获得容量更大的芯片,读取延时同样为2微秒。
在设备中为计算机创建并分配缓存文件,缓存系统与应用程序的常用文件以及预读频繁读写的零散文件,作为高速缓存。并带有控制台,在控制台中完成程序预载,内存压缩,重点加速程序,以及一个专门基于本设备缓存机制编写的浏览器,以实现网络应用的重点加速。
同时,设备驱动还对USB协议进行改善,对于传统的USB接口协议中的BOT协议进行优化,并在USB传输协议上做资源分配优化。设备的算法与架构还采用如下设计:1.设备创建虚拟环境,将应用程序进行虚拟化处理,从而预存所有程序文件与程序所需系统环境文件在设备中,以提高缓存命中率;2.预存算法,通过对用户习惯长期监测,判断出系统即将使用的数据,预存在设备中;3.对系统内存提供智能压缩与后台自动释放。
上所述仅为在目前已知的市场设备与技术手段下,在合理的成本预算范围下,本发明的最佳实施方式之一,并不限定本专利的保护范围,本领域技术人员在本发明保护范围内的结构修改均应在本发明的保护范围之内。
发明实施例
本发明的实施方式
本发明已经生产出样品,同时进行了一系列模拟测试。样品上预装24nm制程的多层的ReRAM存储模块高速缓存区,以及SLC NAND的二级缓存区,用USB3.0接口进行高速通信,作为本地系统的随机存储区达到加速、提升缓存性能的目的。在Cadence与Cadence USB3.0 VIP模拟测试中,在USB3.0接口下,其测试读取为550M每秒,写入为380M每秒,已经达到U SB 3.0目前的接口速度上限,远远超过固态硬盘的速度,逼近内存速度,缓存速度提升了5倍,对于系统加速效果十分明显。使用高速缓存与不使用高速缓存的模拟测试对比见附图2所示。
设备在与计算机连接后会自动进行USB协议优化,实现BOT Turbo模式,并分配更多资源给设备,改变USB传输协议之后原本只支持单线的缓存交换,变成可同时处理多重缓存任务读写,类似硬盘NCQ技术,更充分发挥了设备作为系统新内存的作用。
设备的算法与架构还包括了:1.对系统内存提供智能压缩与后台自动释放;2. 通过对用户习惯进行长期监测识别,判断出系统即将使用哪些数据,预存在设备中;3.双通道模式,阵列模组集成2块ReRam芯片并采用并行设计;4.设备将应用程序进行虚拟化处理,预存程序文件与程序所需系统环境文件在设备中(模拟测试暂未包括此点)。
用户只需要插入电脑并安装驱动便可以开启上述功能了,见附图3所示。
设备还具有图形界面的控制台,提供智能化的自动管理与控制,可以选择性的载入通道与分区。见附图4所示。新增加的ReRAM外接缓存可以通过控制面板查看与管理。其他详细介绍如下。
1.样品使用材料
ReRAM的集成结构一般有1R,1T1R,1D1R,以及1TnR结构。
其中1R是最简单的阻变存储器件的集成结构,直接使用阻变存储元作为阻变存储器件的存储单元集成到存储器中。这种阵列的结构比较简单,可以明显降低器件的单元面积,提高阻变存储器件的存储密度。1R结构的阻变存储单元还可以采用无源交叉阵列(crossbar)的方式集成,可有效降低集成成本,但存在数据误读问题。
1T1R结构在存储元外接入一个选通晶体管,结构就是使用一个晶体管作为阻变存储单元的选通管,将1个阻变存储单元与1个NMOS晶体管串联组成一个1T1R结构的阻变存储单元。1T1R结构能有效解决1R机构的误读串扰问题,但不易集成。
1D1R,与1T1R结构类似,即采用一个二级管作为存储元的选通管,控制存储单元的开通与关断。但1D1R结构的一个问题是很难找到一个与阻变存储单元串联合适的二极管。
样本采用的材料是1TnR结构设计的。由于RRAM易于3D集成的特性,增强RRAM存储单元的可靠性又进一步提高集成度,研究出一种可行的1TnR的单元结构,即采用一个晶体管控制多个存储元,这样就可以在1T1R结构的基础上进一步提高RRAM阻变存储器件的存储密度。图5是1TnR结构的阻变存储单元等效电路示意图。
2.未来限制应用的是USB接口速度而不是材料
即使是在多年前的工作[参考文献4、5]中,其生产出的ReRAM芯片的写入速度已经为443M每秒,读取速度已经达到2.3GB每秒,已经接近于DDR3内存的实际数据速度。(注:实际数据速度与带宽之间存在换算关系。)因此,基本可以认为已经超出了USB3.0的带宽。随着工艺的进步,当时的小容量芯片已经升级成今天的GB级别的芯片。
USB3.0速度比2.0大大提高,但依然不及另一个高速传送标准Thunderbolt。不过USB标准刚刚公布最一代:USB3.1,速度再次大提升。USB3.1又名Superspeed USB令传送速度由5Gbps双倍提高至10Gbps。USB3.1一样支持USB2.0/3.0的装置。等到USB3.1甚至4.0以上进入实际应用后,加速的性能方能全部发挥。
3.样品采用的虚拟化方案
样品设备拟支持两种虚拟模式,模式1,如果用户在开机的时候按下F12选择USB启动,则操作系统都会采用样品中预先封装的系统,这种情况下速度最快,也可认为是缓存的命中率最高,相当于直接屏蔽了原计算机中的硬盘。该系统下通过如下方案使得用户依旧可以安装程序保存工作等,实现日常系统的工作,效果见附图6。
模式2,如果用户正常开机,不进入设备预载的系统,则会进入原计算机系统,但此时用户可以直接用设备中预载的数千款已经虚拟化的常用程序,或者将本机应用程序进行虚拟化处理,从而预存所有程序文件与程序系统环境文件在设备中。(虚拟化原理前面已经阐述了,主要是利用沙盒的虚拟化技术,先把应用程序安装到运行中所有的动作都记录起来并处理成本地的文件,当执行主程序文件时,它会临时产生一个虚拟环境来执行,类似影子系统一样,一切涉及的操作都是在这个虚拟环境中完成,并不会去动原本的系统。这样处理后所有的调用文件都在应用程序的存放目录,也就是ReRam模块或SLC NAND闪存模块下,而不会安装到硬盘。)这一处理最彻底地避免了程序使用中的硬盘读写。
以上所述乃是本发明的具体实施例及所运用的技术手段,根据本文的揭露或教导可衍生推导出许多的变更与修正,若依本发明的构想所作的等效改变,其所 产生的作用仍未超出说明书及附图所涵盖的实质精神时,均应视为在本发明的技术范畴之内,合先陈明。
工业实用性
现今的计算机性能主要受制于I/O性能。根据目前的工业水平,以及可预见的未来的工艺增长,可以预见到速度快而成本低的ReRAM存储器是能够广泛量产的,而将其与DRAM缓存及并行多通道方案结合,来充当计算机的多层次缓存,提升缓存速度,将传统计算机的三层结构改变为四层结构。
幸运的是,ReRAM具备非挥发性,即使掉电也不会影响数据的存留,这与DR AM不同而与NAND相同。因此可以采用即插即用的USB接口,并进行相应的US B优化,则可以在更方便使用的同时保障性能不被影响。随着USB带宽的继续上升,其应用当更普及。
参考文献:[1].王芳,李恪,苏林,耿立红.空间太阳望远镜的星载固态存储器研制[J].电子学报,2004年第3期:472-475。
[2].王超,张惠臻,周学海,马宏星.异质存储系统中的高速缓存机制研究[J].电子学报,2011年第6期:1267-1271。
[3].王源,贾嵩,甘学温.新一代存储技术:
阻变存储器[J].北京大学学报(自然科学版),第47卷,第3期,2011年5月。
[4]A.Kawahara,etal.,“An 8Mb Multi-Layered Cross-Point ReRAM Macro with 443MB/s Write Throughput”,ISSCC Dig.Tech.Papers,pp.432-433,Feb.2012。
[5]W.Otsuka,etal.,“A 4Mb Conductive-Bridge Resistive Memory with 2.3GB/s Read-Throughput and 216MB/s Program-Throughput,”ISSCC Dig.Tech Papers,pp.210-211,Feb.2011。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (10)

  1. 一种即插即用的通用串行总线接口(大于等于USB3.0标准)的电子设备,该电子设备的包含有主控芯片以及ReRAM阻变存储器模块,且该设备的工作原理为:设备通过USB接口与计算机连接,在阻变存储器模块中为计算机创建缓存文件,(缓存文件可以包括:系统与应用程序的常用文件、预读频繁读写的零散文件、随机数据等),利用阻变存储器的高速随机访问以及快速读写速度,减少计算机系统对硬盘(包括基于NAND的固态硬盘)的访问,为计算机提供加速并提升I/O性能。
  2. 根据权利要求1的一种设备,其特征在于,设备的算法与架构还采用了如下设计:对USB协议进行改善,例如对于传统的USB接口协议中阻碍快速数据传输的BOT协议进行优化,在USB传输协议上做了系统资源分配的优化,提供更多资源给USB设备,并且支持类似NCQ的多任务传输功能,大幅提升多QD下的随机读写速率。
  3. 根据权利要求1的一种设备,其特征在于,设备的算法与架构还采用了如下设计:对系统内存提供智能压缩与后台自动释放,从而避免计算机因内存不足调用虚拟内存而增大对硬盘的读写。
  4. 根据权利要求1的一种设备,其特征在于,设备的算法与架构还采用了如下设计:通过对用户习惯进行长期监测识别,判断出系统即将使用哪些数据,预存在根据权利要求1的该种设备中,CPU将直接从设备中获取数据,再将其转入内存中,从而减少对硬盘的读写。
  5. 根据权利要求1的一种设备,其特征在于,设备的算法与架构还采用了如下设计:多通道模式,阵列模组集成多块ReRam芯片并采用多通道主控——具备可选的阵列模组,该阵列模组将多块ReRam或3DV-NAND芯片集成在一起,并采用多通道主控,从而能够以双通道或多通道模式工作,例如,多个物理芯片组成一个阵列 ,作为一个逻辑磁盘组,将数据以分段的方式存储在这个逻辑磁盘组的不同物理磁盘上,进行数据存取时,阵列中的相关磁盘并行工作,减低数据存取的时间,从而达到和RAID 0(磁盘阵列0)相同的加速效果,使读写速度更快。
  6. 根据权利要求1的一种设备,其特征在于,设备的算法与架构还采用了如下设计:具备两重缓存,除了ReRAM阻变存储器模块之外还具有SLC NAND闪存模块,以ReRAM阻变存储器模块为一级缓存,SLC NAND闪存模块为二级缓存。
  7. 根据权利要求1的一种设备,其特征在于,设备的算法与架构还采用了如下设计:设备将应用程序进行虚拟化处理,从而预存所有程序文件与程序系统环境文件在设备中——虚拟化原理有多种,主要是利用沙盒的虚拟化技术,先把应用程序安装到运行中所有的动作都记录起来并处理成本地的文件,当执行主程序文件时,它会临时产生一个虚拟环境来执行,类似影子系统一样,一切涉及的操作都是在这个虚拟环境中完成,并不会去动原本的系统,这样处理后所有的调用文件都在应用程序的存放目录,也就是ReR am模块或SLC NAND闪存模块下,而不会安装到硬盘,这一处理最彻底地避免了程序使用中的硬盘读写。
  8. 根据权利要求1的一种设备,其特征在于,设备和远程服务器通信,用户通过设备将程序安装到远程服务器,然后由远程服务器的云计算来分担本地宿主计算机的程序运行、游戏运行等计算任务,在本地计算机上显示用户界面:为实现该目的,设备还可能包含了3G网络模块或更高速的网络模块,用于和远程服务器传输数据,而无需借用宿主计算机的网络,从而可以在网络环境不好的地区实现云计算功能;如果只是将用户界面以及键盘,鼠标动作和屏幕的更新信息,通过3G模块用3G网络在本地计算机和服务器之间传递.传递的是键盘,鼠标动作和屏幕的更新信息,是图片增量变化的那部分信息,一般情况下,这种变化的信息只有几K到几 十K而已,3G网络是没有问题的。
  9. 根据权利要求1的一种设备,其特征在于,该设备还为本地计算机提供了安全验证机制的升级,通过将该设备的硬件指纹(闪存、显卡、通讯模块等均有硬件指纹)和用户自行设置的密码组合作为加密机制,为电脑提供类似U盾的文件防护、计算机锁等功能。
  10. 根据权利要求1的一种设备,其特征在于,设备还提供即插即用的操作系统,可以通过设置BIOS从USB接口启动该设备预装在非易失存储区内的操作系统。
PCT/CN2014/087018 2013-10-11 2014-09-22 一种基于新材料的外接的计算机加速设备 WO2015051694A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310472373.4A CN103500075A (zh) 2013-10-11 2013-10-11 一种基于新材料的外接的计算机加速设备
CN201310472373.4 2013-10-11

Publications (1)

Publication Number Publication Date
WO2015051694A1 true WO2015051694A1 (zh) 2015-04-16

Family

ID=49865291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087018 WO2015051694A1 (zh) 2013-10-11 2014-09-22 一种基于新材料的外接的计算机加速设备

Country Status (2)

Country Link
CN (1) CN103500075A (zh)
WO (1) WO2015051694A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9697874B1 (en) 2015-06-09 2017-07-04 Crossbar, Inc. Monolithic memory comprising 1T1R code memory and 1TnR storage class memory
CN113205853A (zh) * 2021-06-18 2021-08-03 长江存储科技有限责任公司 测试用转接装置、测试系统及固态硬盘

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103500075A (zh) * 2013-10-11 2014-01-08 张维加 一种基于新材料的外接的计算机加速设备
CN104298620A (zh) * 2014-10-10 2015-01-21 张维加 一种耐擦写低能耗的外接计算机加速设备
CN104298474A (zh) * 2014-10-13 2015-01-21 张维加 一种基于服务端与外部缓存系统的外接式计算设备加速方法与实现该方法的设备
CN109885279B (zh) * 2019-03-01 2021-05-04 山东大学 一种水下传感器及定位系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1648878A (zh) * 2005-01-07 2005-08-03 清华大学 基于移动存储的计算机系统磁盘同步写性能提高方法
US20070006035A1 (en) * 2003-08-28 2007-01-04 Kazou Usui Microcomputer and method for developing system program
CN102681620A (zh) * 2012-05-07 2012-09-19 成都国腾实业集团有限公司 无线云终端用户桌面连接器
CN102810101A (zh) * 2011-06-03 2012-12-05 北京搜狗科技发展有限公司 一种网页预读取的方法、装置及一种浏览器
CN103500076A (zh) * 2013-10-13 2014-01-08 张维加 一种基于多通道slc nand与dram缓存的新usb协议计算机加速设备
CN103500075A (zh) * 2013-10-11 2014-01-08 张维加 一种基于新材料的外接的计算机加速设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2586210Y (zh) * 2002-12-16 2003-11-12 昆盈企业股份有限公司 具快取辅助功能的快闪记忆资料撷取装置
CN1525284A (zh) * 2003-09-18 2004-09-01 复旦大学 移动操作系统
CN100458751C (zh) * 2007-05-10 2009-02-04 忆正存储技术(深圳)有限公司 并行闪存控制器
CN101149685A (zh) * 2007-11-07 2008-03-26 苏州壹世通科技有限公司 从移动存储设备启动多操作系统的组合装置及其方法
CN103064630A (zh) * 2011-07-22 2013-04-24 洪一礧 硬盘混合动力卡

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070006035A1 (en) * 2003-08-28 2007-01-04 Kazou Usui Microcomputer and method for developing system program
CN1648878A (zh) * 2005-01-07 2005-08-03 清华大学 基于移动存储的计算机系统磁盘同步写性能提高方法
CN102810101A (zh) * 2011-06-03 2012-12-05 北京搜狗科技发展有限公司 一种网页预读取的方法、装置及一种浏览器
CN102681620A (zh) * 2012-05-07 2012-09-19 成都国腾实业集团有限公司 无线云终端用户桌面连接器
CN103500075A (zh) * 2013-10-11 2014-01-08 张维加 一种基于新材料的外接的计算机加速设备
CN103500076A (zh) * 2013-10-13 2014-01-08 张维加 一种基于多通道slc nand与dram缓存的新usb协议计算机加速设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9697874B1 (en) 2015-06-09 2017-07-04 Crossbar, Inc. Monolithic memory comprising 1T1R code memory and 1TnR storage class memory
CN113205853A (zh) * 2021-06-18 2021-08-03 长江存储科技有限责任公司 测试用转接装置、测试系统及固态硬盘
CN113205853B (zh) * 2021-06-18 2023-10-20 长江存储科技有限责任公司 测试用转接装置、测试系统及固态硬盘

Also Published As

Publication number Publication date
CN103500075A (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
US11068170B2 (en) Multi-tier scheme for logical storage management
US10725677B2 (en) Systems and methods for efficient power state transitions
US10089134B2 (en) Controlling access to namespaces of a storage device
WO2015051711A1 (zh) 一种基于多通道slc nand与dram缓存的新usb协议计算机加速设备
Dirik et al. The performance of PC solid-state disks (SSDs) as a function of bandwidth, concurrency, device architecture, and system organization
WO2015051694A1 (zh) 一种基于新材料的外接的计算机加速设备
TWI614752B (zh) 經由記憶體通道關閉之節電技術
US9535827B2 (en) RAM disk using non-volatile random access memory
CN107608910B (zh) 用于实现具有不同操作模式的多级存储器分级结构的设备和方法
US20170147233A1 (en) Interface architecture for storage devices
US9927999B1 (en) Trim management in solid state drives
KR102372888B1 (ko) 저장 장치의 온도별 데이터 관리 방법
US9727267B1 (en) Power management and monitoring for storage devices
EP3441885B1 (en) Technologies for caching persistent two-level memory data
CN103946826A (zh) 用于在公共存储器通道上实现多级存储器层级的设备和方法
US9323657B1 (en) Memory system and method for improving read latency of a high-priority partition
US10095432B2 (en) Power management and monitoring for storage devices
CN108062201A (zh) 用于固态驱动器的自虚拟化闪速存储器
WO2016058560A1 (zh) 一种基于服务端与外部缓存系统的外接式计算设备加速方法与实现该方法的设备
US11775188B2 (en) Communications to reclaim storage space occupied by proof of space plots in solid state drives
Huffman et al. The nonvolatile memory transformation of client storage
CN104298620A (zh) 一种耐擦写低能耗的外接计算机加速设备
KR102434840B1 (ko) 데이터 저장 장치
KR20220103340A (ko) 데이터 저장 장치 및 그것의 동작 방법
Zhang et al. Revamping storage class memory with hardware automated memory-over-storage solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14852755

Country of ref document: EP

Kind code of ref document: A1