WO2015050351A1 - 그래핀 구조체 제조방법 및 이에 의해 제조된 그래핀 구조체 - Google Patents

그래핀 구조체 제조방법 및 이에 의해 제조된 그래핀 구조체 Download PDF

Info

Publication number
WO2015050351A1
WO2015050351A1 PCT/KR2014/009153 KR2014009153W WO2015050351A1 WO 2015050351 A1 WO2015050351 A1 WO 2015050351A1 KR 2014009153 W KR2014009153 W KR 2014009153W WO 2015050351 A1 WO2015050351 A1 WO 2015050351A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
linker
oxide
graphene structure
graphene oxide
Prior art date
Application number
PCT/KR2014/009153
Other languages
English (en)
French (fr)
Inventor
박영민
권순근
윤동명
Original Assignee
코닝정밀소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝정밀소재 주식회사 filed Critical 코닝정밀소재 주식회사
Publication of WO2015050351A1 publication Critical patent/WO2015050351A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0033Manufacture or treatment of substrate-free structures, i.e. not connected to any support
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation

Definitions

  • the present invention relates to a method for producing a graphene structure and a graphene structure produced by this, and more particularly, a linker for chemically reacting functional groups with these functional groups between layered graphene oxides to connect graphene oxides at both sides.
  • a linker for chemically reacting functional groups with these functional groups between layered graphene oxides to connect graphene oxides at both sides By inserting the), it is possible to maintain the distance between the two sides of the graphene oxide constant over the entire area, and through this, a graphene structure manufacturing method and a graphene structure produced by this can produce a graphene structure with an increased specific surface area Relates to a fin structure.
  • an electrode active material a key material that determines the capacity performance of the device is an electrode active material.
  • the electrode active material a high specific surface area carbon-based material is utilized.
  • activated carbon having a high specific surface area of 1500 to 2000 m 2 / g is commonly used.
  • graphene is attracting much attention as an electrode material for supercapacitors based on its high specific surface area and electrical conductivity. Unlike the conventional electrode material composition, such graphene has an advantage that it can be used alone without mixing conductive materials such as carbon black.
  • Graphene flakes when composed of a single layer, have a high specific surface area value of about 2630 m 2 / g. However, even if a single layer level of graphene flakes is obtained through a conventional peeling technique, re-stacking between neighboring graphene flakes occurs in an assembly process for manufacturing an electrode. At this time, the interlayer spacing between the graphene flakes thus reaggregated is about 0.4 nm, which is smaller than the ion size of the electrolyte of 1.5 nm, making surface adsorption of the electrolyte impossible.
  • a spacer is conventionally inserted between the graphene flakes. That is, in the related art, the specific surface area of graphene flakes is increased by physically increasing the interlayer spacing between neighboring graphene flakes.
  • such a physical method has a problem that it is difficult to constantly adjust the interlayer spacing between graphene flakes.
  • the object of the present invention is a linker for connecting the graphene oxide of both sides by chemically reacting their functional groups between the layered graphene oxide ( By inserting a linker), it is possible to maintain the distance between the two sides of the graphene oxide constant over the entire area, and through this, a graphene structure manufacturing method and a method for producing a graphene structure with a specific surface area can be produced It is to provide a graphene structure.
  • the present invention graphene oxide preparation step of preparing a graphene oxide; And a linker insertion step of connecting a plurality of graphene oxides by inserting a linker chemically reacting with the functional group of the graphene oxides between the plurality of layered graphene oxides. It provides a graphene structure manufacturing method.
  • the linker may be added to the solution containing the graphene oxide and then heated.
  • a reactor including a diphosphonic acid, a diboronic acid, and a silane is attached to both sides thereof, and a reactor capable of reacting with a functional group of the graphene oxide. At least one of the group of candidates having excitation may be used as the linker.
  • a benzene-based molecule or an alkyl chain may be used as the linker.
  • the graphene oxide preparation step may include a first process of acid-processing graphite to form graphite oxide, and a second process of layer-separating the graphene oxide from the graphite oxide.
  • the liquid phase ultrasonic treatment may be performed after adding the graphite oxide to the solvent.
  • the linker insertion step may further include a reduction treatment step of reducing the plurality of the graphene oxide.
  • the reduction may be performed by any one of a plasma reduction method, a thermal reduction method and a laser reduction method.
  • the present invention comprises a plurality of graphene flakes consisting of a layer of reduced graphene oxide; And a plurality of linkers formed between the plurality of graphene flakes, spaced apart from each of the plurality of graphene flakes, and chemically bonded to each of the graphene flakes.
  • the length of the linker may be 1 nm or more.
  • the linker is also a candidate having a reactor attached to both sides, including diphosphonic acid, diboronic acid and silane, and having a reactor capable of reacting with the functional group of the graphene oxide. It may be made of at least one of the substance group.
  • linker may be made of a benzene-based molecule or an alkyl chain.
  • the distance between the graphene oxides on both sides is constant over the entire area. It can be maintained, and the specific surface area of the graphene structure to be produced can be increased and the volume increase can be minimized.
  • the graphene structure prepared according to the present invention may be used as a gas collecting powder that is limited in volume or may be applied as an electrode material of an ultracapacitor.
  • FIG. 1 is a process flow chart showing a graphene structure manufacturing method according to an embodiment of the present invention.
  • Figure 2 is a graphene oxide schematic diagram used in the graphene structure manufacturing method according to an embodiment of the present invention.
  • Figure 3 is a graphene oxide schematic diagram after inserting the linker in the graphene structure manufacturing method according to an embodiment of the present invention.
  • Figure 4 is an illustration of a linker used in the graphene structure manufacturing method according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram showing a graphene structure manufactured by the graphene structure manufacturing method according to an embodiment of the present invention.
  • FIG. 7 is an X-ray diffraction analysis of the graphene structure prepared by the method for producing a graphene structure according to an embodiment of the present invention.
  • the graphene structure manufacturing method for producing a graphene structure (100 in Figure 5) used as an electrode material of the gas collecting powder or electric double layer capacitor. Way.
  • the graphene structure manufacturing method includes a graphene oxide preparation step (S1) and a linker insertion step (S2).
  • the graphene oxide preparation step (S1) is a step of preparing graphene oxide (GO) (111 of FIG. 2) to be reduced and made of graphene flakes (110 of FIG. 5).
  • a graphite (Hummer's method) of the graphite (Hummer's method) the surface of the hydroxyl group (hydroxyl group, epoxide group and carboxylic group (carboxylic group)
  • graphite oxide (111 in FIG. 2) is obtained through layer separation from the produced graphite oxide.
  • the layer separation process may be performed by adding graphite oxide to a predetermined concentration in distilled water as a solvent and then performing liquid sonication.
  • functional groups such as hydroxy groups, epoxide groups, and carboxy groups are bonded to the surface of the graphene oxide 111 obtained through the above method.
  • the linker insertion step (S2) is a linker (linker) between the plurality of layered, more specifically, graphene oxide 111 arranged in an infinite repeat in one direction ( 120) step. That is, in the linker insertion step (S2) according to an embodiment of the present invention, by inserting the linker 120 chemically reacting with the functional group as described above of the graphene oxide 111 between the graphene oxide 111, a plurality of Graphene oxide (111) is connected.
  • the linker 120 inserted as described above is a spacer spaced apart from the neighboring graphene oxide 111, and serves to control the interlayer distance between the graphene oxides 111 and the conventional method of physically controlling the interlayer distance.
  • the interlayer distance between the graphene oxide 111 may be kept constant over the entire area through chemical bonding by a chemical reaction. In this way, when the linker 120 chemically bonds with the functional groups between the graphene oxides 111 is inserted, the interlayer distance of the graphene oxides 111 is uniformly maintained at 1 nm or more over the entire area.
  • gas or electrolyte ions may enter between the graphene oxides 111, and thus, the effect of increasing the specific surface area per volume / mass of the graphene structure (100 of FIG. 5) to be manufactured may be expected. Can be. In addition, while the specific surface area is increased, the volume increase can be minimized by about 3 times. Through this, the graphene structure (100 of FIG. 5) manufactured according to the embodiment of the present invention is limited to the volume of gas collected. It can be used as a powder or as an electrode material for ultracapacitors.
  • the linker insertion step S2 may include, for example, graphene oxide 111. After dipping in a solution such as methanol, the solution may be heated to about 80 ° C. after adding the linker 120 to the solution.
  • a linker (a material having a reactor capable of chemically reacting with functional groups, that is, hydroxy, epoxide and carboxyl groups of graphene oxide 111, 120).
  • a linker may include diphosphonic acid, diboronic acid, silane, etc., in which a reactor is attached to both sides and reacts with a functional group of graphene oxide 111. Can be used as 120.
  • a benzene-based molecule or an alkyl chain may be used as the linker 120.
  • the graphene structure manufacturing method in order to improve the characteristics of the graphene structure (100 of Figure 5) to be produced, after the linker insertion step (S2), the layer connected to the linker 120 It may further include a reduction treatment step of reducing the graphene oxide forming 111.
  • the graphene oxide 111 may be reduced by selecting any one of various reduction methods such as plasma reduction, thermal reduction, and laser reduction.
  • the reduction treatment step when the reduction treatment step is performed, for example, when the benzene ring is formed by the linker 120, it remains as it is after the reduction, and the graphene flakes (110 of FIG. 5) which are reduced graphene oxide 111 are reduced.
  • the interlayer spacing of these can be kept wider than before.
  • a layer is formed between the plurality of graphene flakes 110 and the plurality of graphene flakes 110 formed of the reduced graphene oxide 111.
  • a graphene structure 100 is formed, spaced apart from each of the plurality of graphene flakes 110, and including a plurality of linkers 120 chemically bonded to each of the graphene flakes 110. Since the linker 120 has a length of 1 nm or more, the interlayer distance between each graphene flake 110 is also maintained at 1 nm or more.
  • the linker 120 forming the graphene structure 100 may include diphosphonic acid, diboronic acid, and silane. It may be made of at least one of (silane), it may be made of a benzene-based molecule or an alkyl chain.
  • the interlayer distance of the graphene oxide with or without the linker was measured by X-ray diffraction analysis.
  • FIG. 6 is an X-ray diffraction analysis result of graphene oxide
  • FIG. 7 is an X-ray diffraction analysis result of graphene structure manufactured by the graphene structure manufacturing method according to an embodiment of the present invention.
  • the interlayer distance or spacing between graphene oxides was measured to be about 7.62 ⁇
  • X-ray diffraction analysis of graphene oxides with linker was inserted (FIG. 7)
  • the interlayer distance between graphene oxides was 14.1. It measured to ⁇ 11.7 mm 3.
  • gas or electrolyte ions may be introduced when applied to an electrode material.
  • a linker 120 that chemically reacts with the functional group of the graphene oxide 111
  • gas or electrolyte ions may be introduced when applied to an electrode material.
  • gas or electrolyte ions may be introduced when applied to an electrode material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

본 발명은 그래핀 구조체 제조방법 및 이에 의해 제조된 그래핀 구조체에 관한 것으로서 더욱 상세하게는 층을 이루는 산화 그래핀 사이에 이들의 작용기와 화학적으로 반응하여 양측의 산화 그래핀을 연결시키는 링커(linker)를 삽입함으로써, 양측 산화 그래핀 간의 거리를 전 면적에 걸쳐 일정하게 유지시킬 수 있고, 이를 통해, 비표면적이 증대된 그래핀 구조체를 제조할 수 있는 그래핀 구조체 제조방법 및 이에 의해 제조된 그래핀 구조체에 관한 것이다. 이를 위해, 본 발명은, 산화 그래핀을 준비하는 산화 그래핀 준비단계; 및 층을 이루는 복수 개의 상기 산화 그래핀 사이에 상기 산화 그래핀의 작용기와 화학적으로 반응하는 링커(linker)를 삽입하여, 복수 개의 상기 산화 그래핀을 연결시키는 링커 삽입단계를 포함하는 것을 특징으로 하는 그래핀 구조체 제조방법 및 이에 의해 제조된 그래핀 구조체를 제공한다.

Description

그래핀 구조체 제조방법 및 이에 의해 제조된 그래핀 구조체
본 발명은 그래핀 구조체 제조방법 및 이에 의해 제조된 그래핀 구조체에 관한 것으로서 더욱 상세하게는 층을 이루는 산화 그래핀 사이에 이들의 작용기와 화학적으로 반응하여 양측의 산화 그래핀을 연결시키는 링커(linker)를 삽입함으로써, 양측 산화 그래핀 간의 거리를 전 면적에 걸쳐 일정하게 유지시킬 수 있고, 이를 통해, 비표면적이 증대된 그래핀 구조체를 제조할 수 있는 그래핀 구조체 제조방법 및 이에 의해 제조된 그래핀 구조체에 관한 것이다.
전기 이중층 커패시터의 전극 소재 중 소자의 용량 성능을 좌우하는 핵심 물질은 전극 활물질이다. 이러한 전극 활물질로는 고 비표면적의 탄소계 소재가 활용되고 있다. 예를 들어, 1500~2000㎡/g의 높은 비표면적 특성을 가지는 활성탄(activated carbon)이 상용적으로 활용되고 있다. 하지만, 활성탄은 높은 비표면적에도 불구하고 전기 전도성 저하 문제가 있어, 전극 구성 시 전기 전도성이 우수한 카본 블랙을 도전재로 혼합(예: 활성탄:도전재=8:2)하여 사용하고 있다.
한편, 그래핀(graphene)은 높은 비표면적과 전기 전도성의 특성을 바탕으로 슈퍼커패시터(supercapacitor)용 전극 소재로 크게 각광받고 있다. 이러한 그래핀은 기존 전극 소재 구성과 달리 카본 블랙과 같은 도전재의 혼합 없이 단독으로 사용할 수 있는 장점을 가지고 있다.
그래핀 플레이크(graphene flake)는 단일층으로 이루어져 있을 때, 약 2630㎡/g의 높은 비표면적 값을 가진다. 하지만, 종래의 박리 기술을 통하여 단일층 수준의 그래핀 플레이크를 획득하였을지라도 전극 제조를 위한 조립 과정에서 이웃한 그래핀 플레이크 사이의 재응집(re-stacking)이 발생하게 된다. 이때, 이와 같이 재응집된 그래핀 플레이크 사이의 층간 간격은 약 0.4㎚인데, 이는, 1.5㎚인 전해질의 이온 크기보다 작아, 전해질의 표면 흡착이 불가능해진다.
이를 해결하기 위해, 종래에는 그래핀 플레이크 사이에 스페이서를 삽입하였다. 즉, 종래에는 이웃하는 그래핀 플레이크 간의 층간 간격을 물리적으로 늘려주는 방식으로 그래핀 플레이크의 비표면적을 증대시켰다. 하지만, 이와 같은 물리적인 방법은 그래핀 플레이크 간의 층간 간격을 일정하게 조절하기 어려운 문제가 있었다.
(선행기술문헌)
미국 등록특허공보 US8,227,685(2012.07.24.)
본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 층을 이루는 산화 그래핀 사이에 이들의 작용기와 화학적으로 반응하여 양측의 산화 그래핀을 연결시키는 링커(linker)를 삽입함으로써, 양측 산화 그래핀 간의 거리를 전 면적에 걸쳐 일정하게 유지시킬 수 있고, 이를 통해, 비표면적이 증대된 그래핀 구조체를 제조할 수 있는 그래핀 구조체 제조방법 및 이에 의해 제조된 그래핀 구조체를 제공하는 것이다.
이를 위해, 본 발명은, 산화 그래핀을 준비하는 산화 그래핀 준비단계; 및 층을 이루는 복수 개의 상기 산화 그래핀 사이에 상기 산화 그래핀의 작용기와 화학적으로 반응하는 링커(linker)를 삽입하여, 복수 개의 상기 산화 그래핀을 연결시키는 링커 삽입단계를 포함하는 것을 특징으로 하는 그래핀 구조체 제조방법을 제공한다.
여기서, 상기 링커 삽입단계에서는 상기 산화 그래핀이 담겨져 있는 용액에 상기 링커를 첨가한 후 가열할 수 있다.
또한, 상기 링커 삽입단계에서는 디포스포닉산(diphosphonic acid), 디보로닉산(diboronic acid) 및 실란(silane)을 포함하는, 양쪽에 반응기가 붙어 있고 상기 산화 그래핀의 작용기와 반응할 수 있는 반응기를 가진 후보물질 군 중 적어도 어느 하나를 상기 링커로 사용할 수 있다.
그리고 상기 링커 삽입단계에서는 벤젠계 분자 또는 알킬 체인을 상기 링커로 사용할 수 있다.
아울러, 상기 산화 그래핀 준비단계는, 흑연을 산처리하여 산화 흑연을 만드는 제1 과정, 및 상기 산화 흑연으로부터 상기 산화 그래핀을 층 분리시키는 제2 과정을 포함할 수 있다.
이때, 상기 제2 과정에서는 용매에 상기 산화 흑연을 첨가한 후 액상 초음파 처리할 수 있다.
또한, 상기 링커 삽입단계 후, 복수 개의 상기 산화 그래핀을 환원 처리하는 환원 처리단계를 더 포함할 수 있다.
이때, 상기 환원 처리단계는 플라즈마 환원법, 열적 환원법 및 레이저 환원법 중 어느 하나의 환원법으로 진행될 수 있다.
한편, 본 발명은, 환원된 산화 그래핀으로 이루어지고, 층을 이루는 복수 개의 그래핀 플레이크; 및 상기 복수 개의 그래핀 플레이크 사이에 형성되고, 상기 복수 개의 그래핀 플레이크 각각을 이격시키며, 각각의 상기 그래핀 플레이크와 화학 결합되어 있는 복수 개의 링커를 포함하는 것을 특징으로 하는 그래핀 구조체를 제공한다.
여기서, 상기 링커의 길이는 1㎚ 이상일 수 있다.
또한, 상기 링커는 디포스포닉산(diphosphonic acid), 디보로닉산(diboronic acid) 및 실란(silane)을 포함하는, 양쪽에 반응기가 붙어 있고 상기 산화 그래핀의 작용기와 반응할 수 있는 반응기를 가진 후보물질 군 중 적어도 어느 하나로 이루어질 수 있다.
그리고 상기 링커는 벤젠계 분자 또는 알킬 체인으로 이루어질 수 있다.
본 발명에 따르면, 층을 이루는 산화 그래핀 사이에 이들의 작용기와 화학적으로 반응하여 양측의 산화 그래핀을 연결시키는 링커(linker)를 삽입함으로써, 양측 산화 그래핀 간의 거리를 전 면적에 걸쳐 일정하게 유지시킬 수 있으며, 제조되는 그래핀 구조체의 비표면적은 증대시키고 부피 증가는 최소화시킬 수 있다.
이에 따라, 본 발명에 따라 제조되는 그래핀 구조체를 부피에 제한을 받는 기체 포집용 파우더로 사용하거나 울트라캐패시터(ultracapacitor)의 전극 소재로 적용할 수 있다.
도 1은 본 발명의 실시 예에 따른 그래핀 구조체 제조방법을 나타낸 공정 순서도.
도 2는 본 발명의 실시 예에 따른 그래핀 구조체 제조방법에 사용되는 산화 그래핀 도식도.
도 3은 본 발명의 실시 예에 따른 그래핀 구조체 제조방법에서, 링커 삽입 후 산화 그래핀 도식도.
도 4는 본 발명의 실시 예에 따른 그래핀 구조체 제조방법에서 사용되는 링커의 예시도.
도 5는 본 발명의 실시 예에 따른 그래핀 구조체 제조방법을 통해 제조된 그래핀 구조체를 나타낸 도식도.
도 6은 산화 그래핀의 X선 회절 분석 결과.
도 7은 본 발명의 실시 예에 따른 그래핀 구조체 제조방법을 통해 제조된 그래핀 구조체의 X선 회절 분석 결과.
이하에서는 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 그래핀 구조체 제조방법 및 이에 의해 제조된 그래핀 구조체에 대해 상세히 설명한다.
아울러, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다.

도 1에 도시한 바와 같이, 본 발명의 실시 예에 따른 그래핀 구조체 제조방법은, 기체 포집용 파우더나 전기 이중층 커패시커의 전극 소재로 사용되는 그래핀 구조체(도 5의 100)를 제조하기 위한 방법이다. 이러한 그래핀 구조체 제조방법은 산화 그래핀 준비단계(S1) 및 링커 삽입단계(S2)를 포함한다.

먼저, 산화 그래핀 준비단계(S1)는 환원되어 그래핀 플레이크(도 5의 110)로 만들어질 산화 그래핀(graphene oxide; GO)(도 2의 111)을 준비하는 단계이다. 일례로, 산화 그래핀 준비단계(S1)에서는 먼저, 흑연(graphite)을 산처리(Hummer's method)하여, 표면에 하이드록시기(hydroxyl group), 에폭시드기(epoxide group) 및 카르복시기(carboxylic group)를 갖는 산화 흑연을 만든다. 그 다음, 만들어진 산화 흑연으로부터의 층 분리를 통해 산화 그래핀(도 2의 111)을 얻는다. 이때, 층 분리 공정은 용매인 증류수에 산화 흑연을 소정 농도로 첨가한 후 액상 초음파 처리하는 방식으로 진행될 수 있다. 도 2에 도시한 바와 같이, 상기와 같은 방식을 통해 얻어진 산화 그래핀(111)의 표면에는 하이드록시기, 에폭시드기 및 카르복시기와 같은 작용기(functional group)가 결합되어 있다.

다음으로, 도 3에 도시한 바와 같이, 링커 삽입단계(S2)는 층을 이루는 복수 개, 보다 상세하게는 일 방향으로 무한 반복 배열되는 산화 그래핀(111)들 사이 사이에 링커(linker)(120)를 삽입하는 단계이다. 즉, 본 발명의 실시 예에 따른 링커 삽입단계(S2)에서는 산화 그래핀(111)의 상기와 같은 작용기와 화학적으로 반응하는 링커(120)를 산화 그래핀(111)들 사이에 삽입하여, 복수 개의 산화 그래핀(111)을 연결시킨다. 여기서, 이와 같이 삽입되는 링커(120)는 이웃하는 산화 그래핀(111)을 이격시키는 스페이서로, 산화 그래핀(111)들의 층간 거리를 조절하는 역할을 하는데, 종래 물리적으로 층간 거리를 조절하는 방식에 비해, 화학 반응에 의한 화학 결합을 통해 산화 그래핀(111) 간의 층간 거리를 전 면적에 걸쳐 일정하게 유지시킬 수 있다. 그리고 이와 같이 산화 그래핀(111)들 사이에 이들의 작용기와 화학적으로 결합하는 링커(120)가 삽입되어, 산화 그래핀(111)들의 층간 거리가 전 면적에 걸쳐 1㎚ 이상으로 균일하게 유지되면, 전극 소재로 적용 시 기체나 전해질 이온이 산화 그래핀(111)들 사이로 진입할 수 있어, 실질적으로, 제조되는 그래핀 구조체(도 5의 100)의 부피/질량 당 비표면적이 늘어나는 효과를 기대할 수 있다. 아울러, 비표면적은 늘어나는 반면, 부피 증가는 약 3배 정도로 최소화할 수 있는데, 이를 통해, 본 발명의 실시 예에 따라 제조되는 그래핀 구조체(도 5의 100)를 부피에 제한을 받는 기체 포집용 파우더로 사용하거나 울트라커패시터(ultracapacitor)의 전극 소재로 적용할 수 있다.
상술한 바와 같이, 층을 이루는 산화 그래핀(111) 사이에 이들의 작용기와 화학적으로 반응하여 연결되는 링커(120)를 삽입하기 위해, 링커 삽입단계(S2)에서는 산화 그래핀(111)을 예컨대, 메탄올과 같은 용액에 담근 다음, 이 용액에 링커(120)를 첨가한 후 약 80℃로 가열할 수 있다.
이때, 도 4에 도시한 바와 같이, 링커 삽입단계(S2)에서는 산화 그래핀(111)의 작용기, 즉, 하이드록시기, 에폭시드기 및 카르복시기와 화학적으로 반응할 수 있는 반응기를 가진 물질을 링커(120)로 사용하는데, 예컨대, 양쪽에 반응기가 붙어 있고 산화 그래핀(111)의 작용기와 반응할 수 있는 디포스포닉산(diphosphonic acid), 디보로닉산(diboronic acid) 및 실란(silane) 등을 링커(120)로 사용할 수 있다. 또한, 링커 삽입단계(S2)에서는 벤젠계 분자 또는 알킬 체인을 링커(120)로 사용할 수 있다.
한편, 본 발명의 실시 예에 따른 그래핀 구조체 제조방법은 제조되는 그래핀 구조체(도 5의 100)의 특성 향상을 위해, 링커 삽입단계(S2) 후, 링커(120)로 연결되어 있는 층을 이루는 산화 그래핀(111)을 환원 처리하는 환원 처리단계를 더 포함할 수 있다. 이때, 환원 처리단계에서는 플라즈마 환원법, 열적 환원법 및 레이저 환원법과 같은 다양한 환원법 중 어느 하나를 선택하여 산화 그래핀(111)을 환원 처리할 수 있다. 이와 같이, 환원 처리단계를 진행할 시, 예를 들어, 링커(120)로 벤젠링을 형성시킨 경우, 환원 후에도 그대로 남아 있어, 환원된 산화 그래핀(111)인 그래핀 플레이크(도 5의 110)들의 층간 간격을 종래보다 넓게 유지할 수 있다.

도 5에 도시한 바와 같이, 환원 처리단계가 완료되면, 층을 이루고, 환원된 산화 그래핀(111)으로 이루어진 복수 개의 그래핀 플레이크(110) 및 복수 개의 그래핀 플레이크(110)들 사이 사이에 형성되고, 복수 개의 그래핀 플레이크(110) 각각을 이격시키며, 각각의 그래핀 플레이크(110)와 화학 결합되어 있는 복수 개의 링커(120)를 포함하는 그래핀 구조체(100)가 제조된다. 링커(120)의 길이는 1㎚ 이상으로 형성되므로, 각각의 그래핀 플레이크(110) 간의 층간 거리도 1㎚ 이상으로 유지된다. 또한, 상술한 바와 같이, 환원 처리단계 후에도 링커(120)는 그대로 남아 있으므로, 그래핀 구조체(100)를 이루는 링커(120)는 디포스포닉산(diphosphonic acid), 디보로닉산(diboronic acid) 및 실란(silane) 중 적어도 어느 하나로 이루어질 수 있고, 벤젠계 분자 또는 알킬 체인으로 이루어질 수 있다.

한편, 산화 그래핀과 화학적으로 반응하는 링커의 층간 거리 조절 효과를 확인하기 위해, 링커 유무에 따른 산화 그래핀의 층간 거리를 X선 회절 분석을 통해 측정하였다.
도 6은 산화 그래핀의 X선 회절 분석 결과이고, 도 7은 본 발명의 실시 예에 따른 그래핀 구조체 제조방법을 통해 제조된 그래핀 구조체의 X선 회절 분석 결과로서, 산화 그래핀의 X선 회절 분석 결과(도 6), 산화 그래핀 간의 층간 거리 혹은 간격은 약 7.62Å 정도로 측정된 반면, 링커가 삽입된 산화 그래핀의 X선 회절 분석 결과(도 7), 산화 그래핀 간의 층간 거리는 14.1~11.7Å로 측정되었다.

이와 같이, 본 발명의 실시 예에 따른 그래핀 구조체 제조방법에서는 산화 그래핀(111)의 작용기와 화학적으로 반응하는 링커(120)를 삽입함으로써, 전극 소재로 적용 시 기체나 전해질 이온의 진입이 가능하도록, 산화 그래핀(111) 간의 층간 거리를 증대시킬 수 있고, 이는, 그래핀 구조체(100)의 비표면적 증대로 이어져, 울트라커패시터의 전극 소재로 적용 가능함은 물론, 기체 포집용 파우더로도 사용 가능하다.

이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (12)

  1. 산화 그래핀을 준비하는 산화 그래핀 준비단계; 및
    층을 이루는 복수 개의 상기 산화 그래핀 사이에 상기 산화 그래핀의 작용기와 화학적으로 반응하는 링커(linker)를 삽입하여, 복수 개의 상기 산화 그래핀을 연결시키는 링커 삽입단계;
    를 포함하는 것을 특징으로 하는 그래핀 구조체 제조방법.
  2. 제1항에 있어서,
    상기 링커 삽입단계에서는 상기 산화 그래핀이 담겨져 있는 용액에 상기 링커를 첨가한 후 가열하는 것을 특징으로 하는 그래핀 구조체 제조방법.
  3. 제1항에 있어서,
    상기 링커 삽입단계에서는 디포스포닉산(diphosphonic acid), 디보로닉산(diboronic acid) 및 실란(silane)을 포함하는, 양쪽에 반응기가 붙어 있고 상기 산화 그래핀의 작용기와 반응할 수 있는 반응기를 가진 후보물질 군 중 어느 하나를 상기 링커로 사용하는 것을 특징으로 하는 그래핀 구조체 제조방법.
  4. 제1항에 있어서,
    상기 링커 삽입단계에서는 벤젠계 분자 또는 알킬 체인을 상기 링커로 사용하는 것을 특징으로 하는 그래핀 구조체 제조방법.
  5. 제1항에 있어서,
    상기 산화 그래핀 준비단계는,
    흑연을 산처리하여 산화 흑연을 만드는 제1 과정, 및
    상기 산화 흑연으로부터 상기 산화 그래핀을 층 분리시키는 제2 과정을 포함하는 것을 특징으로 하는 그래핀 구조체 제조방법.
  6. 제5항에 있어서,
    상기 제2 과정에서는 용매에 상기 산화 흑연을 첨가한 후 액상 초음파 처리하는 것을 특징으로 하는 그래핀 구조체 제조방법.
  7. 제1항에 있어서,
    상기 링커 삽입단계 후, 복수 개의 상기 산화 그래핀을 환원 처리하는 환원 처리단계를 더 포함하는 것을 특징으로 하는 그래핀 구조체 제조방법.
  8. 제7항에 있어서,
    상기 환원 처리단계는 플라즈마 환원법, 열적 환원법 및 레이저 환원법 중 어느 하나의 환원법으로 진행되는 것을 특징으로 하는 그래핀 구조체 제조방법.
  9. 환원된 산화 그래핀으로 이루어지고, 층을 이루는 복수 개의 그래핀 플레이크; 및
    상기 복수 개의 그래핀 플레이크 사이에 형성되고, 상기 복수 개의 그래핀 플레이크 각각을 이격시키며, 각각의 상기 그래핀 플레이크와 화학 결합되어 있는 복수 개의 링커;
    를 포함하는 것을 특징으로 하는 그래핀 구조체.
  10. 제9항에 있어서,
    상기 링커의 길이는 1㎚ 이상인 것을 특징으로 하는 그래핀 구조체.
  11. 제9항에 있어서,
    상기 링커는 디포스포닉산(diphosphonic acid), 디보로닉산(diboronic acid) 및 실란(silane)을 포함하는, 양쪽에 반응기가 붙어 있고 상기 산화 그래핀의 작용기와 반응할 수 있는 반응기를 가진 후보물질 군 중 적어도 어느 하나로 이루어진 것을 특징으로 하는 그래핀 구조체.
  12. 제9항에 있어서,
    상기 링커는 벤젠계 분자 또는 알킬 체인으로 이루어진 것을 특징으로 하는 그래핀 구조체.
PCT/KR2014/009153 2013-10-01 2014-09-30 그래핀 구조체 제조방법 및 이에 의해 제조된 그래핀 구조체 WO2015050351A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130117296 2013-10-01
KR10-2013-0117296 2013-10-01

Publications (1)

Publication Number Publication Date
WO2015050351A1 true WO2015050351A1 (ko) 2015-04-09

Family

ID=52778902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009153 WO2015050351A1 (ko) 2013-10-01 2014-09-30 그래핀 구조체 제조방법 및 이에 의해 제조된 그래핀 구조체

Country Status (1)

Country Link
WO (1) WO2015050351A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220048765A1 (en) * 2020-08-11 2022-02-17 Hyundai Motor Company Hydrogen storage composite material and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101142525B1 (ko) * 2011-03-17 2012-05-07 한국전기연구원 그래핀을 이용한 플렉시블 디스플레이의 제조방법 그리고 이를 이용한 디스플레이
US8227685B2 (en) * 2009-02-17 2012-07-24 Samsung Electronics Co., Ltd. Graphene sheet comprising an intercalation compound and process of preparing the same
KR20120125906A (ko) * 2011-05-09 2012-11-19 성균관대학교산학협력단 자기조립 단분자층의 프린팅 방법을 이용한 환원된 산화 그래핀 패턴을 포함하는 바이오센서의 제조방법 및 이에 따라 제조된 바이오센서

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227685B2 (en) * 2009-02-17 2012-07-24 Samsung Electronics Co., Ltd. Graphene sheet comprising an intercalation compound and process of preparing the same
KR101142525B1 (ko) * 2011-03-17 2012-05-07 한국전기연구원 그래핀을 이용한 플렉시블 디스플레이의 제조방법 그리고 이를 이용한 디스플레이
KR20120125906A (ko) * 2011-05-09 2012-11-19 성균관대학교산학협력단 자기조립 단분자층의 프린팅 방법을 이용한 환원된 산화 그래핀 패턴을 포함하는 바이오센서의 제조방법 및 이에 따라 제조된 바이오센서

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUA LI ET AL.: "Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup", J. MATER. CHEM. A, vol. 1, 10 January 2013 (2013-01-10), pages 3446 - 3453 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220048765A1 (en) * 2020-08-11 2022-02-17 Hyundai Motor Company Hydrogen storage composite material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Zou et al. Additive-mediated intercalation and surface modification of MXenes
Bhauriyal et al. Graphene-like carbon–nitride monolayer: a potential anode material for Na-and K-ion batteries
Ibragimova et al. pH-dependent distribution of functional groups on titanium-based MXenes
Wang et al. Titanium carbide MXene shows an electrochemical anomaly in water-in-salt electrolytes
Ogata et al. All-graphene oxide flexible solid-state supercapacitors with enhanced electrochemical performance
Sun et al. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi‐walled carbon nanotubes for solid‐state, flexible, asymmetric supercapacitors
Hu et al. High-capacitance mechanism for Ti3C2 T x MXene by in situ electrochemical Raman spectroscopy investigation
Naguib et al. Synthesis of two-dimensional materials by selective extraction
Mahmood et al. Unveiling surface redox charge storage of interacting two-dimensional heteronanosheets in hierarchical architectures
Yang et al. Density functional theory calculations for the quantum capacitance performance of graphene-based electrode material
Wang et al. LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors
Mousavi-Khoshdel et al. First-principles calculation of quantum capacitance of codoped graphenes as supercapacitor electrodes
Yang et al. Methanol and diethanolamine assisted synthesis of flexible nitrogen-doped Ti3C2 (MXene) film for ultrahigh volumetric performance supercapacitor electrodes
Youn et al. High‐surface‐area nitrogen‐doped reduced graphene oxide for electric double‐layer capacitors
Liu et al. A high-performance hierarchical graphene@ polyaniline@ graphene sandwich containing hollow structures for supercapacitor electrodes
Hu et al. Single-nanowire electrochemical probe detection for internally optimized mechanism of porous graphene in electrochemical devices
Ganguly et al. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies
Karim et al. Effect of interlayer distance and oxygen content on proton conductivity of graphite oxide
Yu et al. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping
Hwang et al. Highly tunable charge transport in layer-by-layer assembled graphene transistors
Pak et al. Impact of graphene edges on enhancing the performance of electrochemical double layer capacitors
Kim et al. Soft-chemical exfoliation of Na0. 9Mo2O4: preparation and electrical conductivity characterization of a molybdenum oxide nanosheet
Chen et al. Interaction and quantum capacitance of nitrogen/sulfur co-doped graphene: a theoretical calculation
Abdah et al. Advancements in MXene-polymer composites for high-performance supercapacitor applications
Song et al. General scalable strategy toward heterogeneously doped hierarchical porous graphitic carbon bubbles for lithium-ion battery anodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851122

Country of ref document: EP

Kind code of ref document: A1