WO2015050157A1 - Charged particle beam device and method for setting correction filter thereof - Google Patents

Charged particle beam device and method for setting correction filter thereof Download PDF

Info

Publication number
WO2015050157A1
WO2015050157A1 PCT/JP2014/076284 JP2014076284W WO2015050157A1 WO 2015050157 A1 WO2015050157 A1 WO 2015050157A1 JP 2014076284 W JP2014076284 W JP 2014076284W WO 2015050157 A1 WO2015050157 A1 WO 2015050157A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
particle beam
processing unit
amplitude
amplitude spectrum
Prior art date
Application number
PCT/JP2014/076284
Other languages
French (fr)
Japanese (ja)
Inventor
真佐志 渡辺
千葉 寛幸
吉延 星野
川俣 茂
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to JP2015540519A priority Critical patent/JP6162813B2/en
Publication of WO2015050157A1 publication Critical patent/WO2015050157A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24495Signal processing, e.g. mixing of two or more signals

Definitions

  • the present invention provides a charged particle beam apparatus equipped with a correction filter setting function for correcting deterioration of a detection signal caused by a frequency band limitation of a detection unit (detector and its amplifier) when a sample is scanned at high speed with a charged particle beam. And its method.
  • a scanning charged particle beam apparatus (for example, a scanning electron microscope apparatus, a scanning ion microscope apparatus, or a scanning transmission electron microscope apparatus) scans the surface of a sample two-dimensionally (horizontal direction and vertical direction) with a charged particle beam, and irradiates it. A secondary signal generated from the region is detected.
  • the scanning charged particle beam apparatus amplifies and integrates detection signals by an electric circuit, and then replaces the amplitude value with a density value of image data.
  • the scanning charged particle beam apparatus generates a two-dimensional image by associating the density value after replacement with the scanning coordinates of the charged particle beam. This two-dimensional image is used for observation of the structure of the sample surface.
  • the scanning speed of the charged particle beam is determined according to the material of the sample, the purpose of observation, the characteristics of the detector that detects the secondary signal, and the like.
  • the scanning speed is fast, the SN ratio of the two-dimensional image is deteriorated because the integration time of the detection signal is small, but on the other hand, the response to the temporal change of the observation object is improved.
  • the scanning speed is high, the irradiation time of the charged particle beam to one point on the sample can be shortened, and the influence of the destruction, contamination, charging, etc. of the sample by the charged particle beam can be reduced.
  • the scanning speed is slow, the integration time of the detection signal obtained from one point on the sample surface is increased, so that the SN ratio of the two-dimensional image is improved.
  • there is an influence such as destruction of the sample by the charged particle beam, contamination, and charging. To increase. Therefore, in general, when searching for an observation field on the sample, a high scanning speed is used, and when observing and storing the sample with high image quality after determining the observation position, a slow scanning speed is used.
  • the influence may be alleviated by increasing the scanning speed of the charged particle beam.
  • There are other methods such as setting the acceleration voltage of the charged particle beam to a low voltage, and reducing the charged particle beam current amount irradiated on the sample by narrowing the probe diameter of the charged particle beam. .
  • the detector characteristics are determined by the response speed from the detection of the secondary signal to the conversion to the electrical signal and the response speed of the amplifier circuit that amplifies the detection signal.
  • the amplifier circuit has a characteristic that the response speed becomes slower as the gain is increased.
  • the detector and its amplifier circuit may be collectively referred to as a detection unit.
  • the response speed of the detector and the response speed of the amplifier circuit are both slow, when the charged particle beam is scanned at high speed, the detection signal is band-limited in the process of passing through the detector and the amplifier circuit. For this reason, when a sample surface having a fine structure is scanned at high speed with a charged particle beam and a detection signal containing a large amount of high frequency components is input to the detector, the output of the detector becomes an impulse response, and the time for the impulse response to converge An output signal having a shape in which the detection signal in t and the above-described impulse response are superimposed is obtained.
  • the above-described two-dimensional image becomes a blurred image as the image flows in the scanning direction of the charged particle beam. For this reason, it is difficult to discriminate and observe the sample structure from the acquired two-dimensional image. Therefore, it is impossible to select acquisition of a two-dimensional image by high-speed scanning in an application where it is desired to observe a sample with high gain while using a detector with a slow response speed.
  • the selection of the detector is determined by conditions such as the type of secondary signal to be detected, the atmosphere in the sample chamber, and the detection sensitivity. For this reason, depending on the observation conditions, the scanning speed of the charged particle beam may be lowered in accordance with a detector having a slow response speed. However, in this case, there is a problem that the scanning speed cannot be increased for searching the field of view or reducing the sample damage.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-165450.
  • Patent Document 1 discloses (1) a detection signal stored by scanning a charged particle beam at a speed within the bandwidth of the detector and its amplifier circuit, and a charged particle beam at a speed exceeding the upper limit of the bandwidth. (2) Calculate the deterioration function by dividing the result of Fourier transform of these two detection signals, and (3) then calculate the inverse function of the calculated deterioration function. (4) A method in which the amplitude of the signal corresponding to the time t at which the impulse response converges is used as a weighting factor for a one-dimensional filter that corrects image deterioration due to the detector and its amplifier circuit. Is disclosed.
  • Patent Document 1 applies a one-dimensional filter generated by such a method to a detection signal stored at a scanning speed exceeding the upper limit of the bandwidth of the detector and its amplifier circuit or a two-dimensional image based on the detection signal.
  • a method for restoring the original two-dimensional image from the detection signal or the detection signal without reducing the throughput of the input signal is disclosed.
  • the amplitude of the signal corresponding to the time t at which the impulse response used when Patent Document 1 generates a one-dimensional filter converges is not an impulse input in the original sense. That is, the signal generated by scanning the charged particle beam contains only a frequency component depending on the sample structure, and is not an ideal impulse waveform. For this reason, with the method described in Patent Document 1, it is not always possible to calculate an accurate one-dimensional filter corresponding to the detector mounted on the charged particle beam apparatus and its amplifier circuit.
  • the present invention adopts, for example, the configuration described in the claims.
  • the present specification includes a plurality of means for solving the above problems.
  • a charged particle source that outputs a charged particle beam
  • a scanning unit that scans the sample with the charged particle beam, and the like.
  • a first processing unit that stores a second detection signal in a storage unit; a second processing unit that performs frequency analysis of the first detection signal; and a first amplitude spectrum obtained by the frequency analysis The other first acquired for imaging conditions different from the conditions Based on a third processing unit that superimposes the amplitude spectrum, and the first amplitude spectrum after superimposition and the second amplitude spectrum obtained by frequency analysis of the second detection signal, the frequency of the detection unit A fourth processing unit that calculates a degradation function that represents the characteristics; a fifth processing unit that determines whether the amplitude spectrum after superimposition satisfies the first amplitude condition; and the amplitude spectrum
  • FIG. 1 is a diagram illustrating a configuration of an electron microscope apparatus according to Embodiment 1.
  • FIG. 5 is a flowchart for explaining a procedure for creating a deterioration function and a corrected one-dimensional filter in the first embodiment. The figure which shows the relationship between the frequency according to frequency of the amplitude spectrum acquired about slow scanning speed, and a threshold value.
  • 9 is a flowchart for explaining a procedure for creating a deterioration function and a corrected one-dimensional filter in the second embodiment. The figure which shows the relationship of the frequency according to the frequency of an amplitude spectrum acquired about slow scanning speed, and an upper limit.
  • a correction filter that corrects deterioration due to a detector when a detector having a slow response speed and a high amplification gain (including the amplifier circuit; the same applies hereinafter) is used. Is basically created according to the following procedure.
  • the first amplitude spectrum obtained by frequency analysis (for example, Fourier transform) is divided by the second amplitude spectrum obtained by frequency analysis (for example, Fourier transform) of the second detection signal to calculate a deterioration function.
  • the inverse function of the calculated degradation function is Fourier-transformed to calculate a correction filter, and (4) the calculated correction filter is stored in the storage unit.
  • the charged particle beam apparatus further executes the following processing.
  • the newly acquired first amplitude spectrum includes a frequency component sufficient for the impulse input, and (2) the frequency of the first amplitude spectrum for the impulse input. If the component is insufficient, change the field of view movement, enlargement / reduction, rotation, focus variation, charged particle beam tilt, sample tilt, etc. (that is, change the imaging conditions), (3) After changing the imaging conditions, The first detection signal obtained by scanning the charged particle beam at a first speed within the range of the detector bandwidth is stored in the storage unit, and the first region exceeding the upper limit of the detector bandwidth for the same region is stored.
  • a second detection signal obtained by scanning a charged particle beam at a speed of 2 is stored in a storage unit, and (4) a first amplitude spectrum obtained by frequency analysis (for example, Fourier transform) of the first detection signal. Acquired for different imaging conditions (5) The first amplitude spectrum after superimposition is divided by the second amplitude spectrum obtained by frequency analysis (for example, Fourier transform) of the second detection signal, and deteriorated. A function is calculated, (6) it is determined whether or not the first amplitude spectrum after superimposition includes a sufficient frequency component with respect to the impulse input, and (7) further different when the frequency component is insufficient.
  • the first and second detection signals are acquired for the imaging conditions, and the first amplitude spectrum obtained by frequency analysis of the first detection signals is superimposed on the other first amplitude spectra acquired for the different imaging conditions. Then, the process after the change of the imaging condition is repeated until it is determined that the first amplitude spectrum after the superimposition includes a sufficient frequency component compared with the impulse input, and (8) when the frequency component is sufficient, All the memorized degradation functions are averaged (the averaging may be performed sequentially while the detection is repeated), and (9) the inverse response of the averaged degradation function is inversely transformed by Fourier transform so that the impulse response is The amplitude of the signal corresponding to the convergence time t is calculated as the weighting coefficient of the correction filter (one-dimensional filter).
  • a superimposed amplitude spectrum including a sufficient frequency component is created by superimposing a plurality of first amplitude spectra that are sequentially acquired for different imaging conditions, and a deterioration function is created for the superimposed amplitude spectrum.
  • the amplitude of the signal corresponding to the time t at which the impulse response converges is calculated as a weighting coefficient of the correction filter (one-dimensional filter) by Fourier-transforming the inverse function of the deterioration function.
  • FIG. 1 shows a configuration example of an electron microscope apparatus according to the first embodiment.
  • An electron beam 2 generated from the electron gun 1 is converged by a converging lens 3. Thereafter, the electron beam 2 passes through the objective lens 4 and is converged to the minimum diameter on the surface of the sample 5.
  • the deflection coil 6 is disposed between the converging lens 3 and the objective lens 4, and changes the magnetic field intensity according to the time change of the deflection current supplied from the deflection control circuit 7. Due to the change in the magnetic field intensity, the electron beam 2 scans the surface of the sample 5 two-dimensionally (horizontal direction and vertical direction).
  • the scanning speed of the electron beam 2 can be changed in multiple stages by changing the change period of the deflection current supplied from the deflection control circuit 7.
  • the operator can input an arbitrary scanning speed to the CPU 9 through the control input device 8.
  • the CPU 9 sets a scanning speed for the deflection control circuit 7 and changes the scanning speed of the electron beam 2.
  • the sample stage 10 that supports the sample 5 moves the coordinates of the sample 5 manually or by motor drive. By moving the coordinates of the sample 5, the irradiation range (observation field of view) of the electron beam 2 irradiated on the surface of the sample 5 can be moved.
  • a secondary signal 11 is generated from the region of the sample 5 irradiated by the electron beam 2, and the detector 12 detects the secondary signal 11.
  • the detector 12 converts the detected secondary signal into an electrical signal and outputs it as a detection signal.
  • the detection signal is amplified to a signal having a sufficient amplitude by the amplifier 13.
  • the electron microscope apparatus employs a configuration in which a plurality of amplifiers having different amplification factors are provided, or a configuration in which one variable amplifier capable of arbitrarily changing the amplification factor is provided.
  • the detector 12 in addition to a secondary electron detector that detects secondary electrons, a reflected electron detector that detects reflected electrons may be employed. Further, a detector that detects current flowing in the sample 5 irradiated by the electron beam 2 such as EBIC (Electron Beam Induced Current) or absorption current may be employed.
  • EBIC Electro Beam Induced Current
  • an amplifier 13 having a minimum amplification factor, an amplifier 14 having an intermediate amplification factor, and an amplifier 15 having a maximum amplification factor is employed, and the amplification factor is switched by a switch 16.
  • the number of amplifiers may be determined in accordance with the required amplification factor range.
  • the operator inputs the amplification factor to the CPU 9 by the control input device 8, and the CPU 9 switches and controls the switch 16 so that the amplifier having the input amplification factor is connected.
  • the detector 12 and the amplifiers 13, 14, and 15 are collectively referred to as an amplifying unit.
  • the detection signal amplified in any amplifier is input to the analog-to-digital converter 17 and converted into a digital signal so that the intensity of the detection signal corresponds to the density value of the gray scale image.
  • the digitized detection signal is stored in the frame memory 18 so that the horizontal and vertical scanning coordinates of the electron beam 2 correspond to the horizontal and vertical coordinates of the two-dimensional image data.
  • the switch 20 is closed, the two-dimensional image data read from the frame memory 18 is output to the image display device 19.
  • the surface structure of the sample 5 irradiated with the electron beam 2 is displayed on the screen of the image display device 19 so as to be observable as a grayscale two-dimensional image.
  • the electron microscope apparatus further includes an image processing apparatus 21 that calculates an image degradation function and a corrected one-dimensional filter when the electron beam 2 is scanned at a speed exceeding the bandwidth of the detection unit.
  • the image processing device 21 is connected to the frame memory 18 and stores from the frame memory 18 an image stored at a low scanning speed that falls within the bandwidth of the detection unit and an image stored at a high scanning speed that exceeds the bandwidth of the detection unit. read out.
  • a slow scanning speed image and a fast scanning speed image are acquired for the same field of view (region).
  • an image with a slow scanning speed and an image with a fast scanning speed are acquired with the same amplification factor. That is, two images with different scanning speeds are acquired for the same region under the same imaging conditions other than the viewing area and the scanning speed.
  • the calculated corrected one-dimensional filter is set in the filtering unit 22.
  • the filtering unit 22 is connected to the frame memory 18, corrects an image stored at a scanning speed exceeding the bandwidth of the detector 12 and its amplification circuit, and outputs the corrected image to the frame memory 23.
  • the frame memory 23 is connected to the image display device 19 through the switch 24. When the switch 24 is closed, the image read from the frame memory 23 is displayed on the image display device 19.
  • FIG. 2 illustrates a correction one-dimensional filter setting operation executed by the image processing apparatus 21 mounted on the electron microscope apparatus according to the first embodiment.
  • the processing procedure shown in FIG. 2 mainly assumes a case where the processing procedure is executed before the use of the electron microscope apparatus is started. But you may perform at the time of the maintenance after the use start of an electron microscope apparatus, etc.
  • Step S10 The image processing device 21 acquires, from the frame memory 18, an image f (x, y) obtained by scanning the electron beam 2 at a slow scanning speed within the bandwidth of the detector 12 and its amplifier as an image without deterioration. To do.
  • Step S20 The image processing device 21 acquires, from the frame memory 18, an image g (x, y) when the electron beam 2 is scanned at a high scanning speed at which deterioration occurs for the same field of view as the image f (x, y).
  • step S10 and step S20 are out of order, and either may be performed first.
  • the image processing device 21 performs a window function on the image f (x, y) and the image g (x, y) to obtain the image f ′ (x, y) and the image g ′ (x, y).
  • the window function is a general processing function used to suppress an error component (artifact) that appears due to a sudden change in the starting point and the ending point of a signal in the process of performing Fourier transform in the next step.
  • a Hanning window is used as the window function, and the signal at the start point and the end point is suppressed to zero. This can reduce the vertical error component (artifact) in the corrected image after applying the filter, but other window functions other than the Hanning window may be used.
  • the scanning is first performed in the horizontal direction (X direction), then moved by one line in the vertical direction (Y direction), and the horizontal direction (X Direction). Due to the characteristics of this scanning, deterioration when scanning the electron beam 2 at high speed occurs in the horizontal direction (X direction) where the moving speed is high. For this reason, the calculation of the deterioration function may be executed only for the line unit extending in the horizontal direction (X direction). That is, the window function processing in step S30 need not be performed two-dimensionally on the image, but may be performed on the start and end points of data in the horizontal direction (X direction).
  • Step S40 The image processing device 21 performs Fourier transform on the image f ′ (x, y) for each image f ′ (t) for one line in the horizontal direction (X direction) to obtain F (s).
  • Step S41 The image processing device 21 obtains the amplitude spectrum from F (s) acquired in the previous step S40 and superimposes it on the amplitude spectrum stored in step S63 of the previous loop. If there is no amplitude spectrum stored in step S63 of the previous loop (at the first execution), an amplitude spectrum is obtained from F (s).
  • Step S50 The image processing device 21 outputs an image g ′ (one line in the horizontal direction (X direction) of the image g ′ (x, y) obtained by applying a window function to g (x, y) corresponding to a high scanning speed. Fourier transform is performed every t) to obtain G (s).
  • Step S60 The image processing device 21 obtains the deterioration function H ⁇ 1 (s) by the following formula 1.
  • H ⁇ 1 (s) F (s) / G (s) (Formula 1)
  • Step S61 The image processing apparatus 21 adds the deterioration function H ⁇ 1 (s) acquired in step S60 of the current loop to the deterioration function ⁇ H ⁇ 1 (s) / (n ⁇ 1) stored in step S64 of the previous loop, and averages it. And a new deterioration function given by the following Equation 2 is obtained. [Equation 2] ⁇ H ⁇ 1 (s) / n (Formula 2)
  • ⁇ H ⁇ 1 (s) represents an addition value of all deterioration functions obtained in the current and past step S60
  • n represents the number of times the deterioration functions are added (the number of loops). If there is no deterioration function stored in step S64 of the previous loop (at the first execution), this averaging process is not particularly necessary. A deterioration function reflecting all past calculation results can be obtained by averaging.
  • Step S62 When the frequency characteristic of the amplitude spectrum after superimposition obtained in step S41 of the current loop is insufficient (if the frequency is insufficient for the impulse input or the frequency of each frequency for all frequencies) If the threshold value has not reached the threshold value), the process proceeds to step S63.
  • FIG. 3 shows the relationship between the frequency and the threshold value for each frequency component of the amplitude spectrum after overlapping obtained in step S41.
  • the image processing device 21 determines whether or not the frequency of the amplitude spectrum (after superposition) acquired for the slow scanning speed has exceeded the threshold value for all frequencies. To do.
  • the threshold value does not have to be the same for all frequencies as shown in FIG. 3, and the threshold value may be changed depending on the frequency. In any case, when the frequency of each frequency does not exceed the respective threshold values for all frequencies, the process proceeds to step S63.
  • Step S63 The image processing device 21 stores the amplitude spectrum after superimposition obtained in step S41 in a storage unit (for example, a hard disk device or a semiconductor memory).
  • a storage unit for example, a hard disk device or a semiconductor memory.
  • Step S64 The image processing device 21 stores the averaged deterioration function ⁇ H ⁇ 1 (s) / n obtained in step S61.
  • Step S65 The image processing device 21 changes image acquisition conditions such as field of view movement, enlargement / reduction, rotation, focus variation, charged particle beam tilt, sample tilt in the electron microscope device. The above is one loop. Thereafter, the image processing apparatus 21 returns to step S10 and enters the next loop. In step S62, the loop configured by the above-described processing is repeated until the frequency in the amplitude spectrum after superimposition obtained in step S41 is sufficient for the impulse input or reaches the frequency determined as the threshold value. If the frequency in the amplitude spectrum after superimposition obtained in step S41 is sufficient for the impulse input or reaches the frequency determined as the threshold value, the process proceeds to step S70.
  • Step S70 The image processing device 21 inversely transforms ⁇ H ⁇ 1 (s) / n to obtain h ⁇ 1 (t).
  • h ⁇ 1 (t) is a repair function for the deteriorated image in the real image space, and the deterioration can be repaired by multiplying h ⁇ 1 (t) by the deteriorated image data g (t). .
  • Step S80 The image processing device 21 sets a value until the amplitude of h ⁇ 1 (t) converges to 0 as a weighting coefficient of the correction one-dimensional filter, and creates a correction one-dimensional filter.
  • the frequency characteristics can be accurately corrected.
  • a one-dimensional filter can be calculated. For this reason, if the corrected one-dimensional filter is applied to the filtering unit 22, the image quality of an image acquired when the electron beam 2 is scanned at high speed can be improved.
  • Example 2 Subsequently, a method of creating a corrected one-dimensional filter by the electron microscope apparatus according to the second embodiment will be described.
  • the second embodiment automatically corrects the deviation between the change in the deterioration function (characteristic change in the detector 12 and the amplifier 13 and the like) and the corrected one-dimensional filter during the long-term operation, and applies it to the filtering unit 22.
  • An electron microscope apparatus equipped with the function will be described.
  • the apparatus configuration of the electron microscope apparatus according to the present embodiment is the same as that of the first embodiment.
  • FIG. 4 illustrates processing operations executed by the image processing apparatus 21 mounted on the electron microscope apparatus according to the second embodiment.
  • the image processing apparatus 21 of the electron microscope apparatus stores the superimposed amplitude spectrum and the degradation function generated by the method of the first embodiment, and the filtering unit 22 has a one-dimensional correction filter set in advance. Yes.
  • Step S110 During normal use, the operator searches the observation target portion while viewing the image after applying the corrected one-dimensional filter displayed on the image display device 19 when the electron beam 2 is scanned at high speed. When searching, the operator changes image acquisition conditions such as visual field movement, enlargement / reduction, rotation, focus fluctuation, charged particle beam tilt, sample tilt, and the like through the control input device 8.
  • the image processing apparatus 21 monitors the operation content of the operator and the execution operation of the electron microscope apparatus through the CPU 9, and determines whether images in the same region have been acquired for both the slow scanning speed and the fast scanning speed.
  • the slow scanning speed means a speed within the bandwidth range of the detector 12 and the amplifier 13
  • the fast scanning speed means a speed exceeding the upper limit of the bandwidth of the detector 12 and the amplifier 13. . If a positive result is obtained in step S110, the image processing apparatus 21 proceeds to step S120, and repeats the above determination process while a negative result is obtained.
  • Step S120 The image processing device 21 applies a window function to the image f (x, y) acquired at a low scanning speed and the image g (x, y) acquired at a high scanning speed, and the image f ′ (x, y) and An image g ′ (x, y) is obtained.
  • Step S130 The image processing device 21 performs Fourier transform for each image f ′ (t) of one line in the horizontal direction (X direction) of the image f ′ (x, y) to obtain F (s).
  • the image processing device 21 calculates the average value (300 in FIG. 5) and the upper limit value (301 in FIG. 5) of the spectrum frequency stored in the storage unit.
  • the upper limit value is set to a value larger than the average value.
  • the upper limit value is, for example, a value obtained by adding a fixed value set in advance to the average value, a value obtained by multiplying the average value by (1 + ⁇ ) (where ⁇ > 0), a value obtained by multiplying the average value by (1 + ⁇ ) (where ⁇ is Standard deviation value).
  • Step S150 The image processing device 21 superimposes the amplitude spectrum of F (s) acquired in step S130 on the amplitude spectrum stored in the built-in memory.
  • Step S160 The image processing device 21 determines whether or not there is a frequency having a threshold value exceeding the upper limit value (301 in FIG. 5) in the amplitude spectrum after superimposition obtained in step S150. If there is no frequency having a frequency exceeding the upper limit value, the image processing device 21 stores the superimposed amplitude spectrum acquired in step S150 as it is. On the other hand, if there is a frequency (302 in FIG. 5) having a frequency exceeding the upper limit (301 in FIG. 5), the image processing device 21 returns to step S110 without storing the superimposed amplitude spectrum.
  • Step S170 If an affirmative result is obtained in step S160, the image processing device 21 applies the window function to g (x, y) corresponding to the high scanning speed and applies the horizontal direction (X G (s) is obtained by performing Fourier transform for each image g ′ (t) in one direction).
  • Step S180 The image processing device 21 obtains the deterioration function H ⁇ 1 (s) by the following Expression 3.
  • H ⁇ 1 (s) F (s) / G (s) (Formula 3)
  • Step S190 The image processing device 21 obtains and stores a deterioration function ⁇ H ⁇ 1 (s) / n obtained by averaging the deterioration function of the amplitude spectrum obtained in step S190 of the previous loop and the deterioration function obtained in step S180 of the current loop.
  • ⁇ H ⁇ 1 (s) represents an addition value of all deterioration functions obtained in the previous loop and the current loop
  • n represents the number of times the deterioration functions are added (the number of loops).
  • a deterioration function reflecting all past calculation results can be obtained by averaging.
  • Step S200 The image processing device 21 inversely transforms ⁇ H ⁇ 1 (s) / n to obtain h ⁇ 1 (t).
  • h ⁇ 1 (t) is a repair function for the deteriorated image in the real image space, and the deterioration can be repaired by multiplying h ⁇ 1 (t) by the deteriorated image data g (t). .
  • Step S210 The image processing device 21 sets a value until the amplitude of h ⁇ 1 (t) converges to 0 as a weighting coefficient of the correction one-dimensional filter, and creates a correction one-dimensional filter.
  • Step S220 The image processing device 21 resets the corrected one-dimensional filter created in step S210.
  • the present invention is not limited to the configuration of the embodiment described above, and includes various modifications.
  • some embodiments are described in detail, and it is not always necessary to include all the configurations described.
  • a part of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be partly or entirely realized as, for example, an integrated circuit or other hardware.
  • Each of the above-described configurations, functions, and the like may be realized by a processor interpreting and executing a program that realizes each function. That is, each configuration may be realized by software.
  • information such as programs, tables, and files for realizing each function can be stored in a storage device such as a memory, a hard disk, an SSD (Solid State Drive), or a storage medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for explanation, and do not represent all control lines and information lines necessary for the product. In practice, it can be considered that almost all components are connected to each other.
  • DESCRIPTION OF SYMBOLS 1 ... Electron gun, 2 ... Electron beam, 3 ... Converging lens, 4 ... Objective lens, 5 ... Sample, 6 ... Deflection coil, 7 ... Deflection control circuit, 8 ... Control input device, 9 ... CPU, 10 ... Sample stand, DESCRIPTION OF SYMBOLS 11 ... Secondary signal, 12 ... Detector, 13, 14, 15 ... Amplifier, 16 ... Switching machine, 17 ... Analog-digital converter, 18, 23 ... Frame memory, 19 ... Image display apparatus, 20, 24 ... Switch, 21: Image processing device, 22: Filtering unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

The same region of a sample is scanned with a charged particle beam at a first speed within a bandwidth range of a detection unit and a second speed which exceeds the upper bound of the bandwidth. A first amplitude spectrum which is obtained by frequency analyzing a first detection signal which is obtained by the scanning at the first speed is superpositioned with a first amplitude spectrum which is obtained in a different image capture condition. A degraded function which represents a frequency characteristic of the detection unit is computed using the superpositioned first spectrum and a second spectrum corresponding to a second detection signal. While the superpositioned frequency spectrum does not satisfy an amplitude condition, the image capture condition is changed and the process is returned to a first processing unit. If the superpositioned frequency spectrum satisfies the amplitude condition, a correction filter of the detection unit of a charged particle beam device is computed and set on the basis of an inverse function of the already computed degraded function.

Description

荷電粒子線装置及びその補正フィルタ設定方法Charged particle beam apparatus and correction filter setting method thereof
 本発明は、試料を荷電粒子線で高速走査する場合に、検出部(検出器とその増幅器)の周波数帯域制限により生じる検出信号の劣化を補正する補正フィルタの設定機能を搭載する荷電粒子線装置及びその方法に関する。 The present invention provides a charged particle beam apparatus equipped with a correction filter setting function for correcting deterioration of a detection signal caused by a frequency band limitation of a detection unit (detector and its amplifier) when a sample is scanned at high speed with a charged particle beam. And its method.
 走査型荷電粒子線装置(例えば走査電子顕微鏡装置、走査イオン顕微鏡装置、走査透過電子顕微鏡装置)は、荷電粒子線によって試料の表面を2次元的(水平方向及び垂直方向)に走査し、その照射領域から発生する二次信号を検出する。走査型荷電粒子線装置は、検出信号を電気回路により増幅し、積算した後、その振幅値を画像データの濃度値に置換する。走査型荷電粒子線装置は、置換後の濃度値を、荷電粒子線の走査座標に対応付けて2次元画像を生成する。この2次元画像が、試料表面の構造の観察に使用される。 A scanning charged particle beam apparatus (for example, a scanning electron microscope apparatus, a scanning ion microscope apparatus, or a scanning transmission electron microscope apparatus) scans the surface of a sample two-dimensionally (horizontal direction and vertical direction) with a charged particle beam, and irradiates it. A secondary signal generated from the region is detected. The scanning charged particle beam apparatus amplifies and integrates detection signals by an electric circuit, and then replaces the amplitude value with a density value of image data. The scanning charged particle beam apparatus generates a two-dimensional image by associating the density value after replacement with the scanning coordinates of the charged particle beam. This two-dimensional image is used for observation of the structure of the sample surface.
 荷電粒子線の走査速度は、試料の材質、観察目的、二次信号を検出する検出器等の特性などに応じて決定される。走査速度が速い場合、検出信号の積算時間が少ない分、2次元画像のSN比が悪くなるが、その一方で観察物の時間変化に対する応答性は良くなる。また、走査速度が速い場合には、試料上の1点への荷電粒子線の照射時間が短く済み、荷電粒子線による試料の破壊や汚染、帯電などの影響が少なく済む。 The scanning speed of the charged particle beam is determined according to the material of the sample, the purpose of observation, the characteristics of the detector that detects the secondary signal, and the like. When the scanning speed is fast, the SN ratio of the two-dimensional image is deteriorated because the integration time of the detection signal is small, but on the other hand, the response to the temporal change of the observation object is improved. Further, when the scanning speed is high, the irradiation time of the charged particle beam to one point on the sample can be shortened, and the influence of the destruction, contamination, charging, etc. of the sample by the charged particle beam can be reduced.
 一方、走査速度が遅い場合、試料表面の1点から得られる検出信号の積算時間が増えるため2次元画像のSN比が良くなるが、荷電粒子線による試料の破壊や汚染、帯電などの影響が増加する。そこで一般には、試料上の観察視野を探す場合、速い走査速度を使用し、観察位置を決めた後に試料を高画質で観察、記憶する場合、遅い走査速度を使用する。 On the other hand, when the scanning speed is slow, the integration time of the detection signal obtained from one point on the sample surface is increased, so that the SN ratio of the two-dimensional image is improved. However, there is an influence such as destruction of the sample by the charged particle beam, contamination, and charging. To increase. Therefore, in general, when searching for an observation field on the sample, a high scanning speed is used, and when observing and storing the sample with high image quality after determining the observation position, a slow scanning speed is used.
 また、荷電粒子線の照射により試料が破壊され、汚染され、帯電され易い材質の場合、荷電粒子線の走査速度を速くすることで前記の影響を緩和させることもある。なお、それ以外にも、荷電粒子線の加速電圧を低い電圧に設定する、荷電粒子線のプローブ径を細く絞って試料上に照射される荷電粒子線の電流量を少なくする等の手法もある。 Also, in the case of a material that is easily damaged due to the sample being destroyed, contaminated, or charged by irradiation of the charged particle beam, the influence may be alleviated by increasing the scanning speed of the charged particle beam. There are other methods such as setting the acceleration voltage of the charged particle beam to a low voltage, and reducing the charged particle beam current amount irradiated on the sample by narrowing the probe diameter of the charged particle beam. .
 前記の他、荷電粒子線の走査速度を決定する要因に検出器の特性がある。検出器の特性は、二次信号の検出から電気信号への変換までの応答速度と、前記検出信号を増幅する増幅回路の応答速度により決まる。なお、増幅回路には、そのゲインを高くするほど応答速度が遅くなる特性がある。以下、本発明では、検出器とその増幅回路をまとめて検出部ということもある。 In addition to the above, another factor that determines the scanning speed of the charged particle beam is the detector characteristics. The characteristics of the detector are determined by the response speed from the detection of the secondary signal to the conversion to the electrical signal and the response speed of the amplifier circuit that amplifies the detection signal. The amplifier circuit has a characteristic that the response speed becomes slower as the gain is increased. Hereinafter, in the present invention, the detector and its amplifier circuit may be collectively referred to as a detection unit.
 検出器の応答速度と増幅回路の応答速度が共に遅い場合に、荷電粒子線を高速走査すると、検出信号は検出器と増幅回路を通過する課程で帯域制限される。このため、細かい構造を有する試料表面が荷電粒子線で高速走査され、高周波数成分を多く含む検出信号が検出器に入力されると、検出器の出力はインパルス応答となり、インパルス応答が収束する時間t内の検出信号と前述のインパルス応答とが重畳された形状の出力信号が得られる。 When the response speed of the detector and the response speed of the amplifier circuit are both slow, when the charged particle beam is scanned at high speed, the detection signal is band-limited in the process of passing through the detector and the amplifier circuit. For this reason, when a sample surface having a fine structure is scanned at high speed with a charged particle beam and a detection signal containing a large amount of high frequency components is input to the detector, the output of the detector becomes an impulse response, and the time for the impulse response to converge An output signal having a shape in which the detection signal in t and the above-described impulse response are superimposed is obtained.
 その結果、前述の2次元画像は、荷電粒子線の走査方向に像が流れてブレたような像となる。このため、取得された2次元画像による試料構造の判別や観察は困難である。従って、応答速度の遅い検出器を用いつつ高ゲインで試料を観察したい用途では、高速走査による2次元画像の取得の選択は不可能である。 As a result, the above-described two-dimensional image becomes a blurred image as the image flows in the scanning direction of the charged particle beam. For this reason, it is difficult to discriminate and observe the sample structure from the acquired two-dimensional image. Therefore, it is impossible to select acquisition of a two-dimensional image by high-speed scanning in an application where it is desired to observe a sample with high gain while using a detector with a slow response speed.
 なお、検出器の選定は、検出する二次信号の種類、試料室内の雰囲気、検出感度等の条件により決定する。このため、観察条件によっては、応答速度の遅い検出器に合わせて、荷電粒子線の走査速度を遅くすることがある。しかし、この場合には、視野探しや試料ダメージの低減のために走査速度を速くすることができないという問題がある。 In addition, the selection of the detector is determined by conditions such as the type of secondary signal to be detected, the atmosphere in the sample chamber, and the detection sensitivity. For this reason, depending on the observation conditions, the scanning speed of the charged particle beam may be lowered in accordance with a detector having a slow response speed. However, in this case, there is a problem that the scanning speed cannot be increased for searching the field of view or reducing the sample damage.
 前記の問題を解決する手法が、特許文献1(特開2011-165450号公報)に提案されている。特許文献1には、(1)検出器及びその増幅回路の帯域幅の範囲内の速度で荷電粒子線を走査して記憶した検出信号と、前記帯域幅の上限を超える速度で荷電粒子線を走査して記憶した検出信号とを記憶し、(2)これら2つの検出信号をフーリエ変換した結果を除算することで劣化関数を算出し、(3)その後、算出された劣化関数の逆関数をフーリエ逆変換し、(4)その信号波形のうちインパルス応答が収束する時間tに相当する信号の振幅を、検出器及びその増幅回路による画像の劣化を補正する1次元フィルタの重み係数とする手法が開示される。 A method for solving the above problem is proposed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2011-165450). Patent Document 1 discloses (1) a detection signal stored by scanning a charged particle beam at a speed within the bandwidth of the detector and its amplifier circuit, and a charged particle beam at a speed exceeding the upper limit of the bandwidth. (2) Calculate the deterioration function by dividing the result of Fourier transform of these two detection signals, and (3) then calculate the inverse function of the calculated deterioration function. (4) A method in which the amplitude of the signal corresponding to the time t at which the impulse response converges is used as a weighting factor for a one-dimensional filter that corrects image deterioration due to the detector and its amplifier circuit. Is disclosed.
 なお、特許文献1は、このような手法で生成した1次元フィルタを、検出器及びその増幅回路の帯域幅の上限を超える走査速度で記憶した検出信号又は該検出信号に基づく2次元画像に適用することにより、入力信号のスループットを落とさずに前記検出信号又は該検出信号から本来の2次元画像を復元する手法を開示する。 Patent Document 1 applies a one-dimensional filter generated by such a method to a detection signal stored at a scanning speed exceeding the upper limit of the bandwidth of the detector and its amplifier circuit or a two-dimensional image based on the detection signal. Thus, a method for restoring the original two-dimensional image from the detection signal or the detection signal without reducing the throughput of the input signal is disclosed.
特開2011-165450号公報JP 2011-165450 A
 しかし、特許文献1が1次元フィルタを生成する際に使用するインパルス応答が収束する時間tに相当する信号の振幅は、本来の意味でのインパルス入力ではない。すなわち、荷電粒子線の走査により生じる信号には試料構造に依存した周波数成分しか含まず、理想的なインパルス波形でない。このため、特許文献1に記載の手法では、荷電粒子線装置に搭載された検出器及びその増幅回路に相当する正確な1次元フィルタを必ず算出できるとは限らない。 However, the amplitude of the signal corresponding to the time t at which the impulse response used when Patent Document 1 generates a one-dimensional filter converges is not an impulse input in the original sense. That is, the signal generated by scanning the charged particle beam contains only a frequency component depending on the sample structure, and is not an ideal impulse waveform. For this reason, with the method described in Patent Document 1, it is not always possible to calculate an accurate one-dimensional filter corresponding to the detector mounted on the charged particle beam apparatus and its amplifier circuit.
 上記課題を解決するため、本発明は、例えば請求の範囲に記載の構成を採用する。本明細書は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、荷電粒子線を出力する荷電粒子源と、前記荷電粒子線を試料に対して走査する走査部と、前記荷電粒子線の照射領域から発生する二次信号を検出し、その検出信号の振幅を増幅する検出部と、ある撮像条件の下、前記試料の同じ領域を、前記検出部の帯域幅の範囲内である第1の速度で前記荷電粒子線を走査して検出した第1の検出信号と前記検出部の帯域幅の上限を超える第2の速度で前記荷電粒子線を走査して検出した第2の検出信号を記憶部に記憶する第1の処理部と、前記第1の検出信号を周波数解析する第2の処理部と、前記周波数解析により得られる第1の振幅スペクトルを、前記撮像条件とは異なる撮像条件について取得済の他の前記第1の振幅スペクトルと重畳する第3の処理部と、重畳後の前記第1の振幅スペクトルと前記第2の検出信号を周波数解析して得られる第2の振幅スペクトルとに基づいて、前記検出部の周波数特性を表す劣化関数を算出する第4の処理部と、重畳後の振幅スペクトルが第1の振幅条件を満たすか否か判定する第5の処理部と、重畳後の振幅スペクトルが前記第1の振幅条件を満たさない間、前記撮像条件を変更して前記第1の処理部の処理に戻る第6の処理部と、重畳後の振幅スペクトルが前記第1の振幅条件を満たす場合、前記第4の処理部で算出された前記劣化関数の逆関数に基づいて前記検出部の補正フィルタを算出する第7の処理部と、算出された前記補正フィルタを、前記第2の速度で取得される前記第2の検出信号の補正用に設定する第8の処理部とを有する荷電粒子線装置。 In order to solve the above-described problems, the present invention adopts, for example, the configuration described in the claims. The present specification includes a plurality of means for solving the above problems. To give an example, a charged particle source that outputs a charged particle beam, a scanning unit that scans the sample with the charged particle beam, and the like. Detecting a secondary signal generated from the irradiation region of the charged particle beam and amplifying the amplitude of the detection signal; and under a certain imaging condition, the same region of the sample is Detected by scanning the charged particle beam at a second speed exceeding the upper limit of the bandwidth of the first detection signal and the detection unit detected by scanning the charged particle beam at a first speed within a range A first processing unit that stores a second detection signal in a storage unit; a second processing unit that performs frequency analysis of the first detection signal; and a first amplitude spectrum obtained by the frequency analysis The other first acquired for imaging conditions different from the conditions Based on a third processing unit that superimposes the amplitude spectrum, and the first amplitude spectrum after superimposition and the second amplitude spectrum obtained by frequency analysis of the second detection signal, the frequency of the detection unit A fourth processing unit that calculates a degradation function that represents the characteristics; a fifth processing unit that determines whether the amplitude spectrum after superimposition satisfies the first amplitude condition; and the amplitude spectrum after superimposition is the first A sixth processing unit that changes the imaging condition and returns to the processing of the first processing unit while the amplitude condition is not satisfied, and the fourth spectrum when the amplitude spectrum after superposition satisfies the first amplitude condition, A seventh processing unit that calculates a correction filter of the detection unit based on an inverse function of the deterioration function calculated by the processing unit, and the calculated correction filter is acquired at the second speed. Set for correction of second detection signal That the charged particle beam device having a processing unit of the eighth.
 本発明によれば、応答速度が遅く、かつ、増幅ゲインが高い検出器を荷電粒子線装置に用いる場合でも、従来方式に比して精度の高い補正フィルタを算出することができ、荷電粒子線の走査を通じて取得される画像の画質を改善することができる。前述した以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。 According to the present invention, even when a detector having a slow response speed and a high amplification gain is used for a charged particle beam apparatus, a correction filter with higher accuracy than that of the conventional method can be calculated. It is possible to improve the image quality of an image acquired through scanning. Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.
実施例1に係る電子顕微鏡装置の構成を示す図。1 is a diagram illustrating a configuration of an electron microscope apparatus according to Embodiment 1. FIG. 実施例1における劣化関数及び補正1次元フィルタの作成手順を説明するフローチャート。5 is a flowchart for explaining a procedure for creating a deterioration function and a corrected one-dimensional filter in the first embodiment. 遅い走査速度について取得された振幅スペクトルの周波数別の頻度としきい値の関係を示す図。The figure which shows the relationship between the frequency according to frequency of the amplitude spectrum acquired about slow scanning speed, and a threshold value. 実施例2における劣化関数及び補正1次元フィルタの作成手順を説明するフローチャート。9 is a flowchart for explaining a procedure for creating a deterioration function and a corrected one-dimensional filter in the second embodiment. 遅い走査速度について取得された振幅スペクトルの周波数別の頻度と上限値の関係を示す図。The figure which shows the relationship of the frequency according to the frequency of an amplitude spectrum acquired about slow scanning speed, and an upper limit.
 以下、図面に基づいて、本発明の実施の形態を説明する。なお、本発明の実施の形態は、後述する形態例に限定されるものではなく、その技術思想の範囲において、種々の変形が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments of the present invention are not limited to the embodiments described later, and various modifications are possible within the scope of the technical idea.
[採用する信号処理の概要]
 実施の形態に係る荷電粒子線装置においても、応答速度が遅く、かつ、増幅ゲインが高い検出器(その増幅回路を含む。以下同じ。)を用いる場合に、検出器による劣化を補正する補正フィルタを基本的に以下の手順で作成する。
[Outline of signal processing to be adopted]
Also in the charged particle beam apparatus according to the embodiment, a correction filter that corrects deterioration due to a detector when a detector having a slow response speed and a high amplification gain (including the amplifier circuit; the same applies hereinafter) is used. Is basically created according to the following procedure.
(1)検出器の帯域幅の範囲内である第1の速度で荷電粒子線(例えば電子線)を走査して検出した第1の検出信号と、当該第1の検出信号が取得された同じ領域を前記検出器の帯域幅の上限を超える第2の速度で荷電粒子線を走査して検出した第2の検出信号を記憶部(例えばメモリ)に記憶し、(2)第1の検出信号を周波数解析(例えばフーリエ変換)して得られる第1の振幅スペクトルを、第2の検出信号を周波数解析(例えばフーリエ変換)して得られる第2の振幅スペクトルで除算して劣化関数を算出し、(3)算出された劣化関数の逆関数をフーリエ逆変換して補正フィルタを算出し、(4)算出された補正フィルタを記憶部に記憶する。 (1) A first detection signal detected by scanning a charged particle beam (e.g., an electron beam) at a first speed that is within the bandwidth of the detector, and the same first detection signal acquired. Storing a second detection signal detected by scanning the charged particle beam at a second speed exceeding the upper limit of the bandwidth of the detector in a storage unit (for example, a memory); and (2) a first detection signal. The first amplitude spectrum obtained by frequency analysis (for example, Fourier transform) is divided by the second amplitude spectrum obtained by frequency analysis (for example, Fourier transform) of the second detection signal to calculate a deterioration function. (3) The inverse function of the calculated degradation function is Fourier-transformed to calculate a correction filter, and (4) the calculated correction filter is stored in the storage unit.
 ただし、以上の手順だけでは、正確な補正フィルタを算出することができない。そこで、実施の形態に係る荷電粒子線装置は、さらに以下の処理を実行する。 However, an accurate correction filter cannot be calculated only by the above procedure. Therefore, the charged particle beam apparatus according to the embodiment further executes the following processing.
(1)新たに取得された第1の振幅スペクトルに、インパルス入力に対して十分な周波数成分が含まれているか否かを判断し、(2)インパルス入力に対して第1の振幅スペクトルの周波数成分が不足する場合、視野移動、拡大・縮小、回転、焦点変動、荷電粒子線の傾き、試料の傾きなどを変更し(すなわち、撮像条件を変更し)、(3)撮像条件の変更後、検出器の帯域幅の範囲内である第1の速度で荷電粒子線を走査して取得した第1の検出信号を記憶部に記憶すると共に、同じ領域について検出器の帯域幅の上限を超える第2の速度で荷電粒子線を走査して取得した第2の検出信号を記憶部に記憶し、(4)第1の検出信号を周波数解析(例えばフーリエ変換)して得られる第1の振幅スペクトルを、異なる撮像条件について取得済みの第1の振幅スペクトルに重畳し、(5)重畳後の第1の振幅スペクトルを、第2の検出信号を周波数解析(例えばフーリエ変換)して得られる第2の振幅スペクトルで除算して劣化関数を算出し、(6)重畳後の第1の振幅スペクトルがインパルス入力に対して、十分な周波数成分を含むか否かを判定し、(7)周波数成分が不十分である場合、さらに異なる撮像条件について第1及び第2の検出信号を取得し、その第1の検出信号を周波数解析して得られる第1の振幅スペクトルを異なる撮像条件について取得済みの他の第1の振幅スペクトルと重畳し、重畳後の第1の振幅スペクトルがインパルス入力と比較して十分な周波数成分を含むと判断されるまで撮像条件の変更以降の処理を繰り返し、(8)周波数成分が十分である場合、記憶した全ての劣化関数を平均化し(平均化は検出を繰り返している間に逐次行っても良い)、(9)平均化された劣化関数の逆関数をフーリエ逆変換することにより、インパルス応答が収束する時間tに相当する信号の振幅を補正フィルタ(1次元フィルタ)の重み付け係数として算出する。 (1) It is determined whether or not the newly acquired first amplitude spectrum includes a frequency component sufficient for the impulse input, and (2) the frequency of the first amplitude spectrum for the impulse input. If the component is insufficient, change the field of view movement, enlargement / reduction, rotation, focus variation, charged particle beam tilt, sample tilt, etc. (that is, change the imaging conditions), (3) After changing the imaging conditions, The first detection signal obtained by scanning the charged particle beam at a first speed within the range of the detector bandwidth is stored in the storage unit, and the first region exceeding the upper limit of the detector bandwidth for the same region is stored. A second detection signal obtained by scanning a charged particle beam at a speed of 2 is stored in a storage unit, and (4) a first amplitude spectrum obtained by frequency analysis (for example, Fourier transform) of the first detection signal. Acquired for different imaging conditions (5) The first amplitude spectrum after superimposition is divided by the second amplitude spectrum obtained by frequency analysis (for example, Fourier transform) of the second detection signal, and deteriorated. A function is calculated, (6) it is determined whether or not the first amplitude spectrum after superimposition includes a sufficient frequency component with respect to the impulse input, and (7) further different when the frequency component is insufficient. The first and second detection signals are acquired for the imaging conditions, and the first amplitude spectrum obtained by frequency analysis of the first detection signals is superimposed on the other first amplitude spectra acquired for the different imaging conditions. Then, the process after the change of the imaging condition is repeated until it is determined that the first amplitude spectrum after the superimposition includes a sufficient frequency component compared with the impulse input, and (8) when the frequency component is sufficient, All the memorized degradation functions are averaged (the averaging may be performed sequentially while the detection is repeated), and (9) the inverse response of the averaged degradation function is inversely transformed by Fourier transform so that the impulse response is The amplitude of the signal corresponding to the convergence time t is calculated as the weighting coefficient of the correction filter (one-dimensional filter).
 つまり、異なる撮像条件について逐次取得される複数の第1の振幅スペクトルを重畳することにより、十分な周波数成分を含む重畳振幅スペクトルを作成し、更にその重畳振幅スペクトルについて劣化関数を作成し、作成された劣化関数の逆関数をフーリエ変換することにより、インパルス応答が収束する時間tに相当する信号の振幅を補正フィルタ(1次元フィルタ)の重み付け係数として算出することである。 In other words, a superimposed amplitude spectrum including a sufficient frequency component is created by superimposing a plurality of first amplitude spectra that are sequentially acquired for different imaging conditions, and a deterioration function is created for the superimposed amplitude spectrum. The amplitude of the signal corresponding to the time t at which the impulse response converges is calculated as a weighting coefficient of the correction filter (one-dimensional filter) by Fourier-transforming the inverse function of the deterioration function.
[実施例1]
 図1に、実施例1に係る電子顕微鏡装置の構成例を示す。電子銃1から発生した電子線2は、収束レンズ3により収束される。その後、電子線2は、対物レンズ4を通過し、試料5の表面上で最小径に収束される。偏向コイル6は、収束レンズ3と対物レンズ4の間に配置され、偏向制御回路7から供給される偏向電流の時間変化に応じて磁界強度を変化させる。当該磁界強度の変化により、電子線2は、試料5の表面上を2次元的(水平方向及び垂直方向)に走査する。
[Example 1]
FIG. 1 shows a configuration example of an electron microscope apparatus according to the first embodiment. An electron beam 2 generated from the electron gun 1 is converged by a converging lens 3. Thereafter, the electron beam 2 passes through the objective lens 4 and is converged to the minimum diameter on the surface of the sample 5. The deflection coil 6 is disposed between the converging lens 3 and the objective lens 4, and changes the magnetic field intensity according to the time change of the deflection current supplied from the deflection control circuit 7. Due to the change in the magnetic field intensity, the electron beam 2 scans the surface of the sample 5 two-dimensionally (horizontal direction and vertical direction).
 電子線2の走査速度は、偏向制御回路7から供給する偏向電流の変化周期を変えることにより多段階に変更することができる。操作者は、制御入力装置8を通じて任意の走査速度をCPU9に入力することができる。CPU9は、偏向制御回路7に対して走査速度を設定し、電子線2の走査速度を変更する。試料5を支持する試料台10は、手動又はモータ駆動により試料5の座標を移動させる。試料5の座標の移動により、試料5の表面上に照射される電子線2の照射範囲(観察視野)を移動することができる。 The scanning speed of the electron beam 2 can be changed in multiple stages by changing the change period of the deflection current supplied from the deflection control circuit 7. The operator can input an arbitrary scanning speed to the CPU 9 through the control input device 8. The CPU 9 sets a scanning speed for the deflection control circuit 7 and changes the scanning speed of the electron beam 2. The sample stage 10 that supports the sample 5 moves the coordinates of the sample 5 manually or by motor drive. By moving the coordinates of the sample 5, the irradiation range (observation field of view) of the electron beam 2 irradiated on the surface of the sample 5 can be moved.
 電子線2が照射する試料5の領域からは二次信号11が発生し、検出器12は当該二次信号11を検出する。検出器12は、検出した二次信号を電気信号に変換し、検出信号として出力する。検出信号は、増幅器13において充分な振幅の信号に増幅される。検出信号の振幅が微小である場合に備え、電子顕微鏡装置には、増幅率がそれぞれ異なる複数の増幅器を設ける構成、又は、増幅率を任意に可変できる可変増幅器を1つ設ける構成を採用する。検出器12としては、二次電子を検出する二次電子検出器の他、反射電子を検出する反射電子検出器などを採用してもよい。また、EBIC(Electron Beam Induced Current)や吸収電流など、電子線2が照射する試料5に流れる電流を検出する検出器を採用してもよい。 A secondary signal 11 is generated from the region of the sample 5 irradiated by the electron beam 2, and the detector 12 detects the secondary signal 11. The detector 12 converts the detected secondary signal into an electrical signal and outputs it as a detection signal. The detection signal is amplified to a signal having a sufficient amplitude by the amplifier 13. In preparation for the case where the amplitude of the detection signal is very small, the electron microscope apparatus employs a configuration in which a plurality of amplifiers having different amplification factors are provided, or a configuration in which one variable amplifier capable of arbitrarily changing the amplification factor is provided. As the detector 12, in addition to a secondary electron detector that detects secondary electrons, a reflected electron detector that detects reflected electrons may be employed. Further, a detector that detects current flowing in the sample 5 irradiated by the electron beam 2 such as EBIC (Electron Beam Induced Current) or absorption current may be employed.
 図1に示す電子顕微鏡装置の場合、増幅率が最小の増幅器13、増幅率が中間の増幅器14、増幅率が最大の増幅器15を設けた構成を採用し、切替機16により増幅率を切り替える。増幅器の数は、必要とする増幅率の範囲に応じて決定すればよい。操作者は、制御入力装置8により増幅率をCPU9に入力し、CPU9は入力された増幅率の増幅器が接続されるように切替機16を切替制御する。検出器12と増幅器13、14、15を合わせて増幅部ともいう。 In the case of the electron microscope apparatus shown in FIG. 1, a configuration in which an amplifier 13 having a minimum amplification factor, an amplifier 14 having an intermediate amplification factor, and an amplifier 15 having a maximum amplification factor is employed, and the amplification factor is switched by a switch 16. The number of amplifiers may be determined in accordance with the required amplification factor range. The operator inputs the amplification factor to the CPU 9 by the control input device 8, and the CPU 9 switches and controls the switch 16 so that the amplifier having the input amplification factor is connected. The detector 12 and the amplifiers 13, 14, and 15 are collectively referred to as an amplifying unit.
 いずれかの増幅器において増幅された検出信号はアナログデジタル変換器17に入力され、検出信号の強度がグレースケール画像の濃度値に対応するようにデジタル信号に変換される。デジタル化された検出信号は、電子線2の水平方向及び垂直方向の走査座標と2次元画像データの水平方向及び垂直方向の座標が対応するようにフレームメモリ18に保存される。スイッチ20が閉じられている場合、フレームメモリ18から読み出された2次元画像データが画像表示装置19に出力される。この結果、画像表示装置19の画面上には、電子線2が照射された試料5の表面構造がグレースケールの2次元画像として観察可能に表示される。 The detection signal amplified in any amplifier is input to the analog-to-digital converter 17 and converted into a digital signal so that the intensity of the detection signal corresponds to the density value of the gray scale image. The digitized detection signal is stored in the frame memory 18 so that the horizontal and vertical scanning coordinates of the electron beam 2 correspond to the horizontal and vertical coordinates of the two-dimensional image data. When the switch 20 is closed, the two-dimensional image data read from the frame memory 18 is output to the image display device 19. As a result, the surface structure of the sample 5 irradiated with the electron beam 2 is displayed on the screen of the image display device 19 so as to be observable as a grayscale two-dimensional image.
 本実施例に係る電子顕微鏡装置は、更に、検出部の帯域幅を超える速度で電子線2を走査した場合の画像の劣化関数及び補正1次元フィルタを算出する画像処理装置21を備える。画像処理装置21はフレームメモリ18に接続され、検出部の帯域幅の範囲内となる遅い走査速度で記憶した画像と、検出部の帯域幅を超える速い走査速度で記憶した画像をフレームメモリ18から読み出す。遅い走査速度の画像と速い走査速度の画像は、同じ視野(領域)について取得する。また、遅い走査速度の画像と速い走査速度の画像は、同じ増幅率で取得する。すなわち、視野領域と走査速度以外の撮像条件は同じ状態で、同一の領域について走査速度の異なる2枚の画像を取得する。 The electron microscope apparatus according to the present embodiment further includes an image processing apparatus 21 that calculates an image degradation function and a corrected one-dimensional filter when the electron beam 2 is scanned at a speed exceeding the bandwidth of the detection unit. The image processing device 21 is connected to the frame memory 18 and stores from the frame memory 18 an image stored at a low scanning speed that falls within the bandwidth of the detection unit and an image stored at a high scanning speed that exceeds the bandwidth of the detection unit. read out. A slow scanning speed image and a fast scanning speed image are acquired for the same field of view (region). Also, an image with a slow scanning speed and an image with a fast scanning speed are acquired with the same amplification factor. That is, two images with different scanning speeds are acquired for the same region under the same imaging conditions other than the viewing area and the scanning speed.
 算出された補正1次元フィルタはフィルタリング部22に設定される。フィルタリング部22は、フレームメモリ18に接続されており、検出器12及びその増幅回路の帯域幅を超える走査速度で記憶した画像を補正し、フレームメモリ23に出力する。フレームメモリ23はスイッチ24を通じて画像表示装置19に接続され、スイッチ24が閉じられている場合、フレームメモリ23から読み出された画像が画像表示装置19に表示される。 The calculated corrected one-dimensional filter is set in the filtering unit 22. The filtering unit 22 is connected to the frame memory 18, corrects an image stored at a scanning speed exceeding the bandwidth of the detector 12 and its amplification circuit, and outputs the corrected image to the frame memory 23. The frame memory 23 is connected to the image display device 19 through the switch 24. When the switch 24 is closed, the image read from the frame memory 23 is displayed on the image display device 19.
 図2に、実施例1に係る電子顕微鏡装置に搭載する画像処理装置21によって実行される補正1次元フィルタの設定動作を説明する。図2に示す処理手順は、主に、電子顕微鏡装置の使用開始前に実行される場合を想定している。もっとも、電子顕微鏡装置の使用開始後のメンテナンス時等に実行しても良い。 FIG. 2 illustrates a correction one-dimensional filter setting operation executed by the image processing apparatus 21 mounted on the electron microscope apparatus according to the first embodiment. The processing procedure shown in FIG. 2 mainly assumes a case where the processing procedure is executed before the use of the electron microscope apparatus is started. But you may perform at the time of the maintenance after the use start of an electron microscope apparatus, etc.
(ステップS10)
 画像処理装置21は、劣化のない画像として、検出器12及びその増幅器の帯域幅の範囲内の遅い走査速度で電子線2を走査したときの画像f(x、y)をフレームメモリ18から取得する。
(Step S10)
The image processing device 21 acquires, from the frame memory 18, an image f (x, y) obtained by scanning the electron beam 2 at a slow scanning speed within the bandwidth of the detector 12 and its amplifier as an image without deterioration. To do.
(ステップS20)
 画像処理装置21は、画像f(x、y)と同じ視野について、劣化が発生する速い走査速度で電子線2を走査したときの画像g(x、y)をフレームメモリ18から取得する。
(Step S20)
The image processing device 21 acquires, from the frame memory 18, an image g (x, y) when the electron beam 2 is scanned at a high scanning speed at which deterioration occurs for the same field of view as the image f (x, y).
 なお、ステップS10とステップS20は順不同であり、どちらを先に行っても良い。 Note that step S10 and step S20 are out of order, and either may be performed first.
(ステップS30)
 画像処理装置21は、画像f(x、y)及び画像g(x、y)に窓関数を施し、画像f′(x、y)及び画像g′(x、y)を求める。窓関数は、次ステップにおいてフーリエ変換を施す過程で信号の起点と終点の急峻な変化に影響されて現れるエラー成分(アーティファクト)を抑えるために用いられる一般的な処理関数である。本実施例では、窓関数としてハニング窓を使用し、起点と終点の信号を0まで抑える。これにより、フィルタ適用後の補正画像において、縦方向のエラー成分(アーティファクト)を少なくすることができるが、ハニング窓以外の他の窓関数を用いても良い。
(Step S30)
The image processing device 21 performs a window function on the image f (x, y) and the image g (x, y) to obtain the image f ′ (x, y) and the image g ′ (x, y). The window function is a general processing function used to suppress an error component (artifact) that appears due to a sudden change in the starting point and the ending point of a signal in the process of performing Fourier transform in the next step. In this embodiment, a Hanning window is used as the window function, and the signal at the start point and the end point is suppressed to zero. This can reduce the vertical error component (artifact) in the corrected image after applying the filter, but other window functions other than the Hanning window may be used.
 なお、2次元的な電子線2の走査においては、一般に、まず水平方向(X方向)に走査し、次に垂直方向(Y方向)に1ライン分移動し、次のラインについて水平方向(X方向)に走査する。この走査の特徴より、電子線2を高速走査する場合の劣化は、移動速度の速い水平方向(X方向)について発生する。このため、劣化関数の算出は、水平方向(X方向)に延びるライン単位についてのみ実行すれば良い。すなわち、ステップS30の窓関数処理は、画像に対して2次元的に行う必要はなく、水平方向(X方向)のデータの起点と終点に対して施せば良い。 In the scanning of the two-dimensional electron beam 2, generally, the scanning is first performed in the horizontal direction (X direction), then moved by one line in the vertical direction (Y direction), and the horizontal direction (X Direction). Due to the characteristics of this scanning, deterioration when scanning the electron beam 2 at high speed occurs in the horizontal direction (X direction) where the moving speed is high. For this reason, the calculation of the deterioration function may be executed only for the line unit extending in the horizontal direction (X direction). That is, the window function processing in step S30 need not be performed two-dimensionally on the image, but may be performed on the start and end points of data in the horizontal direction (X direction).
(ステップS40)
 画像処理装置21は、画像f′(x、y)を、水平方向(X方向)の1ライン分の画像f′(t)毎にフーリエ変換し、F(s)を得る。
(Step S40)
The image processing device 21 performs Fourier transform on the image f ′ (x, y) for each image f ′ (t) for one line in the horizontal direction (X direction) to obtain F (s).
(ステップS41)
 画像処理装置21は、前ステップS40で取得したF(s)から振幅スペクトルを得、前ループのステップS63で記憶した振幅スペクトルに重畳する。なお、前ループのステップS63で記憶した振幅スペクトルが無い場合(初回実行時)は、F(s)から振幅スペクトルを得る。
(Step S41)
The image processing device 21 obtains the amplitude spectrum from F (s) acquired in the previous step S40 and superimposes it on the amplitude spectrum stored in step S63 of the previous loop. If there is no amplitude spectrum stored in step S63 of the previous loop (at the first execution), an amplitude spectrum is obtained from F (s).
(ステップS50)
 画像処理装置21は、速い走査速度に対応するg(x、y)に窓関数を施して得た画像g′(x、y)の水平方向(X方向)の1ライン分の画像g′(t)毎にフーリエ変換し、G(s)を得る。
(Step S50)
The image processing device 21 outputs an image g ′ (one line in the horizontal direction (X direction) of the image g ′ (x, y) obtained by applying a window function to g (x, y) corresponding to a high scanning speed. Fourier transform is performed every t) to obtain G (s).
(ステップS60)
 画像処理装置21は、劣化関数H-1(s)を下記の式1により求める。
[数1]
 H-1(s)=F(s)/G(s)   …(式1)
(Step S60)
The image processing device 21 obtains the deterioration function H −1 (s) by the following formula 1.
[Equation 1]
H −1 (s) = F (s) / G (s) (Formula 1)
(ステップS61)
 画像処理装置21は、現ループのステップS60で取得した劣化関数H-1(s)を前ループのステップS64で記憶した劣化関数ΣH-1(s)/(n-1)に加算して平均化し、下記の式2で与えられる新たな劣化関数を求める。
[数2]
 ΣH-1(s)/n   …(式2)
(Step S61)
The image processing apparatus 21 adds the deterioration function H −1 (s) acquired in step S60 of the current loop to the deterioration function ΣH −1 (s) / (n−1) stored in step S64 of the previous loop, and averages it. And a new deterioration function given by the following Equation 2 is obtained.
[Equation 2]
ΣH −1 (s) / n (Formula 2)
 ここで、ΣH-1(s)は現在及び過去のステップS60で求めた全ての劣化関数の加算値を表し、nは劣化関数を加算した回数(ループの数)を示す。なお、前ループのステップS64で記憶した劣化関数が無い場合(初回実行時)は、この平均化処理は特に必要ない。なお、平均化により過去の全ての算出結果を反映した劣化関数を得ることができる。 Here, ΣH −1 (s) represents an addition value of all deterioration functions obtained in the current and past step S60, and n represents the number of times the deterioration functions are added (the number of loops). If there is no deterioration function stored in step S64 of the previous loop (at the first execution), this averaging process is not particularly necessary. A deterioration function reflecting all past calculation results can be obtained by averaging.
(ステップS62)
 画像処理装置21は、現ループのステップS41で求めた重畳後の振幅スペクトルの周波数特性が不十分な場合(頻度がインパルス入力に対して不十分な場合、又は、全ての周波数について各周波数の頻度がしきい値に達してしない場合)、ステップS63に進む。
(Step S62)
When the frequency characteristic of the amplitude spectrum after superimposition obtained in step S41 of the current loop is insufficient (if the frequency is insufficient for the impulse input or the frequency of each frequency for all frequencies) If the threshold value has not reached the threshold value), the process proceeds to step S63.
 図3に、ステップS41で求めた重複後の振幅スペクトルの周波数成分別の頻度としきい値の関係を示す。本実施例の場合、具体的には、画像処理装置21は、遅い走査速度について取得された振幅スペクトル(重畳後)の頻度が全ての周波数(frequency)についてしきい値を超えたか否かを判定する。なお、しきい値は、図3に示すように全ての周波数について同じ値である必要は無く、周波数によってしきい値を変えてもよい。いずれにしても、全ての周波数について各周波数の頻度が各々のしきい値を超えないとき、ステップS63に進む。 FIG. 3 shows the relationship between the frequency and the threshold value for each frequency component of the amplitude spectrum after overlapping obtained in step S41. In the case of the present embodiment, specifically, the image processing device 21 determines whether or not the frequency of the amplitude spectrum (after superposition) acquired for the slow scanning speed has exceeded the threshold value for all frequencies. To do. The threshold value does not have to be the same for all frequencies as shown in FIG. 3, and the threshold value may be changed depending on the frequency. In any case, when the frequency of each frequency does not exceed the respective threshold values for all frequencies, the process proceeds to step S63.
(ステップS63)
 画像処理装置21は、ステップS41で得た重畳後の振幅スペクトルを記憶部(例えばハードディスク装置や半導体メモリ)に記憶する。
(Step S63)
The image processing device 21 stores the amplitude spectrum after superimposition obtained in step S41 in a storage unit (for example, a hard disk device or a semiconductor memory).
(ステップS64)
 画像処理装置21は、ステップS61で求めた平均化後の劣化関数ΣH-1(s)/nを記憶する。
(Step S64)
The image processing device 21 stores the averaged deterioration function ΣH −1 (s) / n obtained in step S61.
(ステップS65)
 画像処理装置21は、電子顕微鏡装置において視野移動、拡大・縮小、回転、焦点変動、荷電粒子線の傾き、試料の傾きなどの画像取得条件を変更する。以上が1回のループである。この後、画像処理装置21は、ステップS10に戻り、次回のループに入る。ステップS62において、ステップS41で求めた重畳後の振幅スペクトルにおける頻度がインパルス入力に対して十分か、又は、しきい値として決めた頻度に達するまで前述の処理で構成されるループを繰り返す。ステップS41で求めた重畳後の振幅スペクトルにおける頻度がインパルス入力に対して十分か、又は、しきい値として決めた頻度に達したらステップS70に進む。
(Step S65)
The image processing device 21 changes image acquisition conditions such as field of view movement, enlargement / reduction, rotation, focus variation, charged particle beam tilt, sample tilt in the electron microscope device. The above is one loop. Thereafter, the image processing apparatus 21 returns to step S10 and enters the next loop. In step S62, the loop configured by the above-described processing is repeated until the frequency in the amplitude spectrum after superimposition obtained in step S41 is sufficient for the impulse input or reaches the frequency determined as the threshold value. If the frequency in the amplitude spectrum after superimposition obtained in step S41 is sufficient for the impulse input or reaches the frequency determined as the threshold value, the process proceeds to step S70.
(ステップS70)
 画像処理装置21は、ΣH-1(s)/nをフーリエ逆変換し、h-1(t)を得る。ここで、h-1(t)は、実画像空間上での劣化画像に対する修復関数であり、h-1(t)を劣化画像データg(t)に乗じることで劣化を修復することができる。
(Step S70)
The image processing device 21 inversely transforms ΣH −1 (s) / n to obtain h −1 (t). Here, h −1 (t) is a repair function for the deteriorated image in the real image space, and the deterioration can be repaired by multiplying h −1 (t) by the deteriorated image data g (t). .
(ステップS80)
 画像処理装置21は、h-1(t)の振幅が0に収束するまでの値を、補正1次元フィルタの重み係数として設定し、補正1次元フィルタを作成する。
(Step S80)
The image processing device 21 sets a value until the amplitude of h −1 (t) converges to 0 as a weighting coefficient of the correction one-dimensional filter, and creates a correction one-dimensional filter.
(まとめ)
 以上のように本実施例によれば、応答速度が遅く、かつ、増幅ゲインが高い検出部(検出器12及び増幅器13、14、15)を用いる場合でも、その周波数特性を正確に補正できる補正1次元フィルタを算出することができる。このため、当該補正1次元フィルタをフィルタリング部22に適用すれば、電子線2を高速走査する場合に取得される画像の画質を改善することができる。
(Summary)
As described above, according to the present embodiment, even when a detector (detector 12 and amplifiers 13, 14, and 15) having a slow response speed and a high amplification gain is used, the frequency characteristics can be accurately corrected. A one-dimensional filter can be calculated. For this reason, if the corrected one-dimensional filter is applied to the filtering unit 22, the image quality of an image acquired when the electron beam 2 is scanned at high speed can be improved.
[実施例2]
 続いて、実施例2に係る電子顕微鏡装置による補正1次元フィルタの作成方法について説明する。実施例2は、長期的な運用による劣化関数の変化(検出器12及び増幅器13等の特性変化)と補正1次元フィルタとのズレを運用中に自動的に修正し、フィルタリング部22に適用する機能を搭載する電子顕微鏡装置について説明する。なお、本実施例に係る電子顕微鏡装置の装置構成は実施例1と同じである。
[Example 2]
Subsequently, a method of creating a corrected one-dimensional filter by the electron microscope apparatus according to the second embodiment will be described. The second embodiment automatically corrects the deviation between the change in the deterioration function (characteristic change in the detector 12 and the amplifier 13 and the like) and the corrected one-dimensional filter during the long-term operation, and applies it to the filtering unit 22. An electron microscope apparatus equipped with the function will be described. The apparatus configuration of the electron microscope apparatus according to the present embodiment is the same as that of the first embodiment.
 図4に、実施例2に係る電子顕微鏡装置に搭載する画像処理装置21で実行される処理動作を説明する。なお、電子顕微鏡装置の画像処理装置21には、実施例1の手法で生成された重畳済みの振幅スペクトルと劣化関数が保存されており、フィルタリング部22には予め1次元補正フィルタが設定されている。 FIG. 4 illustrates processing operations executed by the image processing apparatus 21 mounted on the electron microscope apparatus according to the second embodiment. The image processing apparatus 21 of the electron microscope apparatus stores the superimposed amplitude spectrum and the degradation function generated by the method of the first embodiment, and the filtering unit 22 has a one-dimensional correction filter set in advance. Yes.
(ステップS110)
 操作者は、通常使用時、電子線2を高速走査させた際に画像表示装置19に表示される補正一次元フィルタ適用後の画像を見ながら観察対象部を探索する。操作者は、探索の際、制御入力装置8を通じて、視野移動、拡大・縮小、回転、焦点変動、荷電粒子線の傾き、試料の傾きなどの画像取得条件を変更する。
(Step S110)
During normal use, the operator searches the observation target portion while viewing the image after applying the corrected one-dimensional filter displayed on the image display device 19 when the electron beam 2 is scanned at high speed. When searching, the operator changes image acquisition conditions such as visual field movement, enlargement / reduction, rotation, focus fluctuation, charged particle beam tilt, sample tilt, and the like through the control input device 8.
 画像処理装置21は、CPU9を通じて、操作者による操作内容及び電子顕微鏡装置の実行動作を監視しており、同じ領域の画像が遅い走査速度と速い走査速度の両方について取得されたか否かを判定する。ここで、遅い走査速度は、検出器12及び増幅器13等の帯域幅の範囲内の速度を意味し、速い走査速度は、検出器12及び増幅器13等の帯域幅の上限を超える速度を意味する。画像処理装置21は、ステップS110で肯定結果が得られた場合、ステップS120に進み、否定結果が得られている間は、上記の判定処理を繰り返す。 The image processing apparatus 21 monitors the operation content of the operator and the execution operation of the electron microscope apparatus through the CPU 9, and determines whether images in the same region have been acquired for both the slow scanning speed and the fast scanning speed. . Here, the slow scanning speed means a speed within the bandwidth range of the detector 12 and the amplifier 13 and the fast scanning speed means a speed exceeding the upper limit of the bandwidth of the detector 12 and the amplifier 13. . If a positive result is obtained in step S110, the image processing apparatus 21 proceeds to step S120, and repeats the above determination process while a negative result is obtained.
(ステップS120)
 画像処理装置21は、遅い走査速度で取得された画像f(x、y)と速い走査速度で取得された画像g(x、y)に窓関数を施し、画像f′(x、y)及び画像g′(x、y)を求める。
(Step S120)
The image processing device 21 applies a window function to the image f (x, y) acquired at a low scanning speed and the image g (x, y) acquired at a high scanning speed, and the image f ′ (x, y) and An image g ′ (x, y) is obtained.
(ステップS130)
 画像処理装置21は、画像f′(x、y)の水平方向(X方向)の1ライン分の画像f′(t)毎にフーリエ変換し、F(s)を得る。
(Step S130)
The image processing device 21 performs Fourier transform for each image f ′ (t) of one line in the horizontal direction (X direction) of the image f ′ (x, y) to obtain F (s).
(ステップS140)
 画像処理装置21は、その記憶部に記憶されている振幅スペクトルの頻度の平均値(図5の300)とスペクトル頻度の上限値(図5の301)を算出する。上限値は、平均値より大きな値に設定する。上限値は、例えば平均値に事前に設定した固定値を加算した値、平均値を(1+α)倍した値(ただし、α>0)、平均値を(1+σ)倍した値(ただし、σは標準偏差値)に設定する。
(Step S140)
The image processing device 21 calculates the average value (300 in FIG. 5) and the upper limit value (301 in FIG. 5) of the spectrum frequency stored in the storage unit. The upper limit value is set to a value larger than the average value. The upper limit value is, for example, a value obtained by adding a fixed value set in advance to the average value, a value obtained by multiplying the average value by (1 + α) (where α> 0), a value obtained by multiplying the average value by (1 + σ) (where σ is Standard deviation value).
(ステップS150)
 画像処理装置21は、ステップS130で取得したF(s)の振幅スペクトルを、内蔵メモリに記憶されている振幅スペクトルに重畳する。
(Step S150)
The image processing device 21 superimposes the amplitude spectrum of F (s) acquired in step S130 on the amplitude spectrum stored in the built-in memory.
(ステップS160)
 画像処理装置21は、ステップS150で求めた重畳後の振幅スペクトルの中に上限値(図5の301)を超える閾値を有する周波数があるか否かを判定する。もし、上限値を超える頻度を有する周波数が無ければ、画像処理装置21は、ステップS150で取得された重畳後の振幅スペクトルをそのまま記憶する。一方、上限値(図5の301)を超える頻度を有する周波数(図5の302)が存在する場合、画像処理装置21は、重畳後の振幅スペクトルは記憶せずにステップS110に戻る。
(Step S160)
The image processing device 21 determines whether or not there is a frequency having a threshold value exceeding the upper limit value (301 in FIG. 5) in the amplitude spectrum after superimposition obtained in step S150. If there is no frequency having a frequency exceeding the upper limit value, the image processing device 21 stores the superimposed amplitude spectrum acquired in step S150 as it is. On the other hand, if there is a frequency (302 in FIG. 5) having a frequency exceeding the upper limit (301 in FIG. 5), the image processing device 21 returns to step S110 without storing the superimposed amplitude spectrum.
(ステップS170)
 ステップS160で肯定結果が得られた場合、画像処理装置21は、速い走査速度に対応するg(x、y)に窓関数を施して得た画像g′(x、y)の水平方向(X方向)の1ライン分の画像g′(t)毎にフーリエ変換し、G(s)を得る。
(Step S170)
If an affirmative result is obtained in step S160, the image processing device 21 applies the window function to g (x, y) corresponding to the high scanning speed and applies the horizontal direction (X G (s) is obtained by performing Fourier transform for each image g ′ (t) in one direction).
(ステップS180)
 画像処理装置21は、劣化関数H-1(s)を下記の式3により求める。
[数3]
 H-1(s)=F(s)/G(s)   …(式3)
(Step S180)
The image processing device 21 obtains the deterioration function H −1 (s) by the following Expression 3.
[Equation 3]
H −1 (s) = F (s) / G (s) (Formula 3)
(ステップS190)
 画像処理装置21は、前ループのステップS190で求めた振幅スペクトルの劣化関数と現ループのステップS180で求めた劣化関数を平均化した劣化関数ΣH-1(s)/nを求めて記憶する。ここで、ΣH-1(s)は前ループ及び現ループで求めた全ての劣化関数の加算値を表し、nは劣化関数を加算した回数(ループの数)を示す。なお、平均化により過去の全ての算出結果を反映した劣化関数を得ることができる。
(Step S190)
The image processing device 21 obtains and stores a deterioration function ΣH −1 (s) / n obtained by averaging the deterioration function of the amplitude spectrum obtained in step S190 of the previous loop and the deterioration function obtained in step S180 of the current loop. Here, ΣH −1 (s) represents an addition value of all deterioration functions obtained in the previous loop and the current loop, and n represents the number of times the deterioration functions are added (the number of loops). A deterioration function reflecting all past calculation results can be obtained by averaging.
(ステップS200)
 画像処理装置21は、ΣH-1(s)/nをフーリエ逆変換し、h-1(t)を得る。ここで、h-1(t)は、実画像空間上での劣化画像に対する修復関数であり、h-1(t)を劣化画像データg(t)に乗じることで劣化を修復することができる。
(Step S200)
The image processing device 21 inversely transforms ΣH −1 (s) / n to obtain h −1 (t). Here, h −1 (t) is a repair function for the deteriorated image in the real image space, and the deterioration can be repaired by multiplying h −1 (t) by the deteriorated image data g (t). .
(ステップS210)
 画像処理装置21は、h-1(t)の振幅が0に収束するまでの値を、補正1次元フィルタの重み係数として設定し、補正1次元フィルタを作成する。
(Step S210)
The image processing device 21 sets a value until the amplitude of h −1 (t) converges to 0 as a weighting coefficient of the correction one-dimensional filter, and creates a correction one-dimensional filter.
(ステップS220)
 画像処理装置21は、ステップS210で作成された補正1次元フィルタを再設定する。以上の処理手順を繰り返すことにより、操作者が観察を行う一連の過程の間に補正1次元フィルタの生成と再設定処理を組み込むことができ、装置の状況が変化したとしても常に適正な補正1次元フィルタを提供することが可能となる。
(Step S220)
The image processing device 21 resets the corrected one-dimensional filter created in step S210. By repeating the above processing procedure, it is possible to incorporate a correction one-dimensional filter generation and resetting process into a series of processes in which an operator observes, and always correct correction 1 even if the status of the apparatus changes. It is possible to provide a dimensional filter.
(まとめ)
 以上のように本実施例によれば、実施例1の技術効果に加え、装置の使用中における補正1次元フィルタの自動更新を実現することができる。これにより、電子顕微鏡装置を長期に使用する場合にも常に最適な補正1次元フィルタを適用し続けることができる。
(Summary)
As described above, according to the present embodiment, in addition to the technical effects of the first embodiment, it is possible to automatically update the correction one-dimensional filter while the apparatus is in use. Thereby, even when the electron microscope apparatus is used for a long period of time, it is possible to always apply the optimum correction one-dimensional filter.
[他の実施例]
 本発明は、上述した実施例の構成に限定されるものでなく、様々な変形例を含んでいる。例えば上述した実施例は、本発明を分かりやすく説明するために、一部の実施例について詳細に説明したものであり、必ずしも説明した全ての構成を備える必要は無い。また、ある実施例の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成に他の構成を追加し、又は、各実施例の一部構成を他の構成で置換し、又は各実施例の一部構成を削除することも可能である。
[Other embodiments]
The present invention is not limited to the configuration of the embodiment described above, and includes various modifications. For example, in the above-described embodiments, in order to explain the present invention in an easy-to-understand manner, some embodiments are described in detail, and it is not always necessary to include all the configurations described. Further, a part of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. It is also possible to add other configurations to the configuration of each embodiment, replace a partial configuration of each embodiment with another configuration, or delete a partial configuration of each embodiment.
 また、上述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路その他のハードウェアとして実現しても良い。また、上記の各構成、機能等は、それぞれの機能を実現するプログラムをプロセッサが解釈して実行することにより実現しても良い。すなわち、各構成等をソフトウェアにより実現しても良い。この場合、各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリやハードディスク、SSD(Solid State Drive)等の記憶装置、ICカード、SDカード、DVD等の記憶媒体に格納することができる。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be partly or entirely realized as, for example, an integrated circuit or other hardware. Each of the above-described configurations, functions, and the like may be realized by a processor interpreting and executing a program that realizes each function. That is, each configuration may be realized by software. In this case, information such as programs, tables, and files for realizing each function can be stored in a storage device such as a memory, a hard disk, an SSD (Solid State Drive), or a storage medium such as an IC card, an SD card, or a DVD. .
 また、制御線や情報線は、説明上必要と考えられるものを示すものであり、製品上必要な全ての制御線や情報線を表すものでない。実際にはほとんど全ての構成が相互に接続されていると考えて良い。 Also, the control lines and information lines indicate what is considered necessary for explanation, and do not represent all control lines and information lines necessary for the product. In practice, it can be considered that almost all components are connected to each other.
1…電子銃、2…電子線、3…収束レンズ、4…対物レンズ、5…試料、6…偏向コイル、7…偏向制御回路、8…制御入力装置、9…CPU、10…試料台、11…二次信号、12…検出器、13、14、15…増幅器、16…切替機、17…アナログデジタル変換器、18、23…フレームメモリ、19…画像表示装置、20、24…スイッチ、21…画像処理装置、22…フィルタリング部。 DESCRIPTION OF SYMBOLS 1 ... Electron gun, 2 ... Electron beam, 3 ... Converging lens, 4 ... Objective lens, 5 ... Sample, 6 ... Deflection coil, 7 ... Deflection control circuit, 8 ... Control input device, 9 ... CPU, 10 ... Sample stand, DESCRIPTION OF SYMBOLS 11 ... Secondary signal, 12 ... Detector, 13, 14, 15 ... Amplifier, 16 ... Switching machine, 17 ... Analog-digital converter, 18, 23 ... Frame memory, 19 ... Image display apparatus, 20, 24 ... Switch, 21: Image processing device, 22: Filtering unit.

Claims (8)

  1.  荷電粒子線を出力する荷電粒子源と、
     前記荷電粒子線を試料に対して走査する走査部と、
     前記荷電粒子線の照射領域から発生する二次信号を検出し、その検出信号の振幅を増幅する検出部と、
     ある撮像条件の下、前記試料の同じ領域を、前記検出部の帯域幅の範囲内である第1の速度で前記荷電粒子線を走査して検出した第1の検出信号と前記検出部の帯域幅の上限を超える第2の速度で前記荷電粒子線を走査して検出した第2の検出信号を記憶部に記憶する第1の処理部と、
     前記第1の検出信号を周波数解析する第2の処理部と、
     前記周波数解析により得られる第1の振幅スペクトルを、前記撮像条件とは異なる撮像条件について取得済の他の前記第1の振幅スペクトルと重畳する第3の処理部と、
     重畳後の前記第1の振幅スペクトルと前記第2の検出信号を周波数解析して得られる第2の振幅スペクトルとに基づいて、前記検出部の周波数特性を表す劣化関数を算出する第4の処理部と、
     重畳後の振幅スペクトルが第1の振幅条件を満たすか否か判定する第5の処理部と、
     重畳後の振幅スペクトルが前記第1の振幅条件を満たさない間、前記撮像条件を変更して前記第1の処理部の処理に戻る第6の処理部と、
     重畳後の振幅スペクトルが前記第1の振幅条件を満たす場合、前記第4の処理部で算出された前記劣化関数の逆関数に基づいて前記検出部の補正フィルタを算出する第7の処理部と、
     算出された前記補正フィルタを、前記第2の速度で取得される前記第2の検出信号の補正用に設定する第8の処理部と
     を有する荷電粒子線装置。
    A charged particle source that outputs a charged particle beam;
    A scanning unit that scans the charged particle beam with respect to the sample;
    Detecting a secondary signal generated from the irradiation region of the charged particle beam and amplifying the amplitude of the detection signal;
    The first detection signal detected by scanning the charged particle beam at the first speed within the bandwidth of the detection unit and the band of the detection unit under the same imaging condition A first processing unit that stores, in a storage unit, a second detection signal detected by scanning the charged particle beam at a second speed exceeding an upper limit of the width;
    A second processing unit for frequency analysis of the first detection signal;
    A third processing unit that superimposes the first amplitude spectrum obtained by the frequency analysis on the other first amplitude spectrum acquired for an imaging condition different from the imaging condition;
    Fourth processing for calculating a degradation function representing the frequency characteristics of the detection unit based on the first amplitude spectrum after superimposition and the second amplitude spectrum obtained by frequency analysis of the second detection signal. And
    A fifth processing unit that determines whether the amplitude spectrum after superposition satisfies the first amplitude condition;
    A sixth processing unit that changes the imaging condition and returns to the processing of the first processing unit while the amplitude spectrum after superimposition does not satisfy the first amplitude condition;
    A seventh processing unit that calculates a correction filter of the detection unit based on an inverse function of the deterioration function calculated by the fourth processing unit when the amplitude spectrum after superimposition satisfies the first amplitude condition; ,
    A charged particle beam apparatus comprising: an eighth processing unit configured to set the calculated correction filter for correction of the second detection signal acquired at the second speed.
  2.  請求項1に記載の荷電粒子線装置において、
     前記第1の撮像条件は、視野移動、拡大・縮小、回転、焦点変動、荷電粒子線の傾き及び試料の傾きのいずれか1つ又は任意の複数で与えられる
     ことを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    The charged particle beam apparatus characterized in that the first imaging condition is given by any one or any plural of visual field movement, enlargement / reduction, rotation, focus variation, charged particle beam tilt and sample tilt. .
  3.  請求項1に記載の荷電粒子線装置において、
     前記第5の処理部は、前記重畳後の前記第1の振幅スペクトルの全ての周波数について各周波数成分の頻度が閾値を超えているとき、前記第1の振幅条件を満たすと判定する
     ことを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    The fifth processing unit determines that the first amplitude condition is satisfied when the frequency of each frequency component exceeds a threshold for all frequencies of the first amplitude spectrum after the superimposition. A charged particle beam device.
  4.  請求項1に記載の荷電粒子線装置において、
     前記第7の処理部は、前記第6の処理部で前記第1の振幅条件が満たされるまでの間に、前記第4の処理部で算出された前記劣化関数の平均値を算出し、算出された前記劣化関数の平均値の逆関数に基づいて前記検出部の補正フィルタを算出する
     ことを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    The seventh processing unit calculates an average value of the deterioration function calculated by the fourth processing unit until the first amplitude condition is satisfied by the sixth processing unit, and calculates A charged particle beam apparatus, wherein a correction filter of the detection unit is calculated based on an inverse function of the average value of the deterioration function.
  5.  請求項1に記載の荷電粒子線装置において、
     前記荷電粒子線装置の使用中に、前記第1の速度と前記第2の速度で前記試料の同じ領域を走査する処理が検出された場合、検出された前記第1の検出信号と前記第2の検出信号を記憶部に記憶する第9の処理部と、
     前記第1の検出信号を周波数解析する第10の処理部と、
     前記周波数解析により得られる前記第1の振幅スペクトルを、前記第1の撮像条件とは異なる撮像条件について取得済みの他の前記第1の振幅スペクトルと重畳する第11の処理部と、
     重畳後の振幅スペクトルが第2の振幅条件を満たすか否か判定する第12の処理部と、
     重畳後の振幅スペクトルが前記第2の振幅条件を満たさない間、前記第9の処理部の処理に戻る第13の処理部と、
     重畳後の振幅スペクトルが前記第2の振幅条件を満たす場合、重畳後の前記第1の振幅スペクトルと前記第2の検出信号を周波数解析して得られる第2の振幅スペクトルとに基づいて、前記検出部の周波数特性を表す劣化関数を算出する第14の処理部と、
     前記第14の処理部で算出された前記劣化関数の逆関数に基づいて前記検出部の補正フィルタを算出する第15の処理部と、
     算出された前記補正フィルタを、前記第2の速度で取得される前記第2の検出信号の補正用に再設定する第16の処理部と
     を有する荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    When the process of scanning the same region of the sample at the first speed and the second speed is detected during use of the charged particle beam apparatus, the detected first detection signal and the second detection signal are detected. A ninth processing unit for storing the detection signal in the storage unit;
    A tenth processing unit for analyzing the frequency of the first detection signal;
    An eleventh processing unit that superimposes the first amplitude spectrum obtained by the frequency analysis with the other first amplitude spectrum acquired for an imaging condition different from the first imaging condition;
    A twelfth processing unit that determines whether or not the amplitude spectrum after superposition satisfies the second amplitude condition;
    A thirteenth processing unit that returns to the processing of the ninth processing unit while the superimposed amplitude spectrum does not satisfy the second amplitude condition;
    When the amplitude spectrum after superimposition satisfies the second amplitude condition, based on the first amplitude spectrum after superposition and the second amplitude spectrum obtained by frequency analysis of the second detection signal, A fourteenth processing unit that calculates a deterioration function representing the frequency characteristic of the detection unit;
    A fifteenth processing unit that calculates a correction filter of the detection unit based on an inverse function of the deterioration function calculated by the fourteenth processing unit;
    A charged particle beam apparatus comprising: a sixteenth processing unit that resets the calculated correction filter for correcting the second detection signal acquired at the second speed.
  6.  請求項5に記載の荷電粒子線装置において、
     前記第12の処理部は、前記重畳後の前記第1の振幅スペクトルの中に上限値を超える頻度を有する周波数成分が存在する場合、前記第2の振幅条件を満たさないと判定する
     ことを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 5,
    The twelfth processing unit determines that the second amplitude condition is not satisfied when a frequency component having a frequency exceeding an upper limit value exists in the first amplitude spectrum after the superimposition. A charged particle beam device.
  7.  請求項5に記載の荷電粒子線装置において、
     前記第14の処理部は、今回までに算出された前記劣化関数の平均値を算出し、算出された前記劣化関数の平均値の逆関数に基づいて前記検出部の補正フィルタを算出する
     ことを特徴とする荷電粒子線装置。
    In the charged particle beam device according to claim 5,
    The fourteenth processing unit calculates an average value of the deterioration function calculated so far, and calculates a correction filter of the detection unit based on an inverse function of the calculated average value of the deterioration function. Characterized charged particle beam device.
  8.  荷電粒子線を出力する荷電粒子源と、前記荷電粒子線を試料に対して走査する走査部と、前記荷電粒子線の照射領域から発生する二次信号を検出し、その検出信号の振幅を増幅する検出部とを有する荷電粒子線装置における前記検出部の補正フィルタを設定する方法において、
     計算部が、
     ある撮像条件の下、前記試料の同じ領域を、前記検出部の帯域幅の範囲内である第1の速度で前記荷電粒子線を走査して検出した第1の検出信号と前記検出部の帯域幅の上限を超える第2の速度で前記荷電粒子線を走査して検出した第2の検出信号を記憶部に記憶する第1の処理と、
     前記第1の検出信号を周波数解析する第2の処理と、
     前記周波数解析により得られる第1の振幅スペクトルを、前記撮像条件とは異なる撮像条件について取得済の他の前記第1の振幅スペクトルと重畳する第3の処理と、
     重畳後の前記第1の振幅スペクトルと前記第2の検出信号を周波数解析して得られる第2の振幅スペクトルとに基づいて、前記検出部の周波数特性を表す劣化関数を算出する第4の処理と、
     重畳後の振幅スペクトルが第1の振幅条件を満たすか否か判定する第5の処理と、
     重畳後の振幅スペクトルが前記第1の振幅条件を満たさない間、前記撮像条件を変更して前記第1の処理部の処理に戻る第6の処理と、
     重畳後の振幅スペクトルが前記第1の振幅条件を満たす場合、前記第4の処理で算出された前記劣化関数の逆関数に基づいて前記検出部の補正フィルタを算出する第7の処理と、
     算出された前記補正フィルタを、前記第2の速度で取得される前記第2の検出信号の補正用に設定する第8の処理と
     を実行することを特徴とする荷電粒子線装置の補正フィルタ設定方法。
    A charged particle source that outputs a charged particle beam, a scanning unit that scans the charged particle beam with respect to the sample, and a secondary signal generated from the irradiation region of the charged particle beam are detected, and the amplitude of the detection signal is amplified. In a method of setting a correction filter of the detection unit in a charged particle beam apparatus having a detection unit to perform,
    The calculation part
    The first detection signal detected by scanning the charged particle beam at the first speed within the bandwidth of the detection unit and the band of the detection unit under the same imaging condition A first process of storing in a storage unit a second detection signal detected by scanning the charged particle beam at a second speed exceeding an upper limit of the width;
    A second process for analyzing the frequency of the first detection signal;
    A third process of superimposing the first amplitude spectrum obtained by the frequency analysis with the other first amplitude spectrum acquired for an imaging condition different from the imaging condition;
    Fourth processing for calculating a degradation function representing the frequency characteristics of the detection unit based on the first amplitude spectrum after superimposition and the second amplitude spectrum obtained by frequency analysis of the second detection signal. When,
    A fifth process for determining whether the amplitude spectrum after superposition satisfies the first amplitude condition;
    A sixth process of changing the imaging condition and returning to the process of the first processing unit while the superimposed amplitude spectrum does not satisfy the first amplitude condition;
    A seventh process of calculating a correction filter of the detection unit based on an inverse function of the deterioration function calculated in the fourth process when the amplitude spectrum after superposition satisfies the first amplitude condition;
    A correction filter setting for a charged particle beam apparatus, wherein the calculated correction filter is set to an eighth process for correcting the second detection signal acquired at the second speed. Method.
PCT/JP2014/076284 2013-10-03 2014-10-01 Charged particle beam device and method for setting correction filter thereof WO2015050157A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015540519A JP6162813B2 (en) 2013-10-03 2014-10-01 Charged particle beam apparatus and correction filter setting method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013208518 2013-10-03
JP2013-208518 2013-10-03

Publications (1)

Publication Number Publication Date
WO2015050157A1 true WO2015050157A1 (en) 2015-04-09

Family

ID=52778745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076284 WO2015050157A1 (en) 2013-10-03 2014-10-01 Charged particle beam device and method for setting correction filter thereof

Country Status (2)

Country Link
JP (1) JP6162813B2 (en)
WO (1) WO2015050157A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021536A1 (en) * 2017-07-27 2019-01-31 株式会社日立ハイテクノロジーズ Electron beam observation device, electron beam observation system, and method for controlling electron beam observation device
WO2021053824A1 (en) * 2019-09-20 2021-03-25 株式会社日立ハイテク Charged particle beam device
US12125667B2 (en) 2019-09-20 2024-10-22 Hitachi High-Tech Corporation Charged particle beam device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236938A (en) * 1989-03-10 1990-09-19 Hitachi Ltd Image restoring method/scanning type electron microscope, and pattern appearance inspection apparatus /scanned image detector
JP2008177064A (en) * 2007-01-19 2008-07-31 Hitachi High-Technologies Corp Scanning charged particle microscope device, and processing method of image acquired with scanning charged particle microscope device
JP2011165450A (en) * 2010-02-09 2011-08-25 Hitachi High-Technologies Corp Charged particle beam device
JP2012142211A (en) * 2011-01-04 2012-07-26 Hitachi High-Technologies Corp Charged particle beam apparatus and correction method of detection signal thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236938A (en) * 1989-03-10 1990-09-19 Hitachi Ltd Image restoring method/scanning type electron microscope, and pattern appearance inspection apparatus /scanned image detector
JP2008177064A (en) * 2007-01-19 2008-07-31 Hitachi High-Technologies Corp Scanning charged particle microscope device, and processing method of image acquired with scanning charged particle microscope device
JP2011165450A (en) * 2010-02-09 2011-08-25 Hitachi High-Technologies Corp Charged particle beam device
JP2012142211A (en) * 2011-01-04 2012-07-26 Hitachi High-Technologies Corp Charged particle beam apparatus and correction method of detection signal thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021536A1 (en) * 2017-07-27 2019-01-31 株式会社日立ハイテクノロジーズ Electron beam observation device, electron beam observation system, and method for controlling electron beam observation device
WO2021053824A1 (en) * 2019-09-20 2021-03-25 株式会社日立ハイテク Charged particle beam device
US12125667B2 (en) 2019-09-20 2024-10-22 Hitachi High-Tech Corporation Charged particle beam device

Also Published As

Publication number Publication date
JPWO2015050157A1 (en) 2017-03-09
JP6162813B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP4857101B2 (en) Probe evaluation method
US7714286B2 (en) Charged particle beam apparatus, aberration correction value calculation unit therefor, and aberration correction program therefor
KR101567178B1 (en) Charged particle beam device, and image analysis device
JP2008177064A (en) Scanning charged particle microscope device, and processing method of image acquired with scanning charged particle microscope device
US11791130B2 (en) Electron beam observation device, electron beam observation system, and image correcting method and method for calculating correction factor for image correction in electron beam observation device
JP6470654B2 (en) Charged particle beam equipment
JP2020181629A (en) Electron beam observation device, electron beam observation system, and control method for electron beam observation device
JP5455694B2 (en) Charged particle beam equipment
JP5970199B2 (en) Charged particle beam equipment
JP6162813B2 (en) Charged particle beam apparatus and correction filter setting method thereof
CN108292577B (en) Charged particle beam device and image processing method in charged particle beam device
JP6343508B2 (en) Contrast / brightness adjustment method and charged particle beam apparatus
US11380514B2 (en) Charged particle beam system
JP6770482B2 (en) Charged particle beam device and scanning image distortion correction method
US8294118B2 (en) Method for adjusting optical axis of charged particle radiation and charged particle radiation device
JP6302785B2 (en) Image quality improvement method and apparatus for scanning charged particle microscope image
JP6858722B2 (en) Electron beam device and sample inspection method
JP5022981B2 (en) Charged particle beam equipment
JP2012142299A (en) Scanning charged particle microscope device, and processing method of image taken by scanning charged particle microscope device
JP2013251212A (en) Scanning electron microscope and image evaluation method
JP7336540B2 (en) Charged particle beam equipment and inspection equipment
JP2015141853A (en) Image quality evaluation method, and image quality evaluation device
US20240186108A1 (en) Charged Particle Beam System
JP6419605B2 (en) Analysis apparatus, image processing method, and beam axis alignment method
KR20220120647A (en) charged particle beam system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540519

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851341

Country of ref document: EP

Kind code of ref document: A1