WO2015050045A1 - Ion generation device and electrical machine - Google Patents

Ion generation device and electrical machine Download PDF

Info

Publication number
WO2015050045A1
WO2015050045A1 PCT/JP2014/075567 JP2014075567W WO2015050045A1 WO 2015050045 A1 WO2015050045 A1 WO 2015050045A1 JP 2014075567 W JP2014075567 W JP 2014075567W WO 2015050045 A1 WO2015050045 A1 WO 2015050045A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
discharge electrode
needle
main surface
Prior art date
Application number
PCT/JP2014/075567
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 江崎
与明 高土
聡彦 山本
慶太郎 山田
世古口 美徳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2015540466A priority Critical patent/JP6062561B2/en
Priority to CN201480045878.5A priority patent/CN105474483B/en
Publication of WO2015050045A1 publication Critical patent/WO2015050045A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Definitions

  • the present invention relates to an ion generation device and an electric device, and more particularly to an ion generation device including a discharge electrode and an electric device using the ion generation device.
  • ion generators are used to purify, sterilize, or deodorize indoor air.
  • Many ion generators generate positive ions and negative ions by corona discharge.
  • Patent Document 1 JP 2012-134052 A discloses an example of an electrode substrate unit for a charging device or a slow current device.
  • a high-voltage line connected to the high-voltage generating circuit and a discharge electrode contact for connecting the proximal end side of the discharge electrode needle are formed on the substrate body, and a current flows between the high-voltage line and the discharge electrode contact.
  • the limiting resistance element is mounted. Further, it is described that a substrate case member for holding a substrate is formed integrally with the substrate by injection molding in which the substrate is included in an insulating resin material.
  • the substrate case member and the substrate are integrally formed by injection molding, thereby improving the adhesion while ensuring the productivity. Thereby, creeping discharge on the substrate surface can be surely prevented.
  • the present invention has been made in view of the above-described problems, and a main object of the present invention is to provide an ion generator and an electric device that can supply high-concentration ions without causing a decrease in output even under high humidity. Is to provide.
  • the ion generator according to the present invention includes a discharge electrode and a substrate.
  • the discharge electrode has a tip, and ions are generated from the tip by discharge.
  • the substrate has one main surface and the other main surface. A through-hole penetrating from one main surface to the other main surface is formed in the substrate.
  • the discharge electrode is inserted through the through hole.
  • the tip of the discharge electrode protrudes from one main surface of the substrate.
  • the ion generator further includes a mold material and a blocking material.
  • the molding material is provided only on the other main surface side with respect to the substrate, and covers the through hole. The closing material closes the gap between the substrate and the discharge electrode.
  • the substrate is preferably a double-sided substrate in which a conductor pattern is formed on both one main surface and the other main surface.
  • the substrate has a conductor layer covering the inner wall surface of the through hole. The closing material passes through the substrate and closes the gap between the conductor layer and the discharge electrode.
  • the substrate is preferably a single-sided substrate in which a conductor pattern is formed only on the other main surface.
  • the ion generator further includes a conductive portion that electrically connects the conductor pattern and the discharge electrode.
  • the closing material closes the gap between one main surface and the discharge electrode.
  • one main surface of the substrate is arranged toward an air path through which a gas carrying ions generated by the discharge electrode flows.
  • the tip of the discharge electrode is disposed in the air path.
  • the ion generator preferably further includes a housing for holding the substrate.
  • the mold material is filled in a space defined by the substrate and the casing.
  • a high voltage generation unit that generates a high voltage to be applied to the discharge electrode
  • a connection unit that electrically connects the high voltage generation unit and the discharge electrode
  • a housing that accommodates the connecting portion
  • a high voltage generator that generates a high voltage to be applied to the discharge electrode, a first casing that holds the substrate and the high voltage generator, and a second casing that houses the first casing Is further provided.
  • the ion generator includes the ion generator according to any one of the above aspects and a blower that blows a gas that conveys ions generated by discharge electrodes of the ion generator.
  • the ion generator of the present invention can supply high-concentration ions without causing a decrease in output even under high humidity.
  • FIG. 1 is a plan view showing a configuration of an ion generator according to Embodiment 1.
  • FIG. It is a side view which shows the ion generator seen from the direction shown by the arrow III in FIG.
  • FIG. 2 is a plan view showing an internal structure of the ion generator according to Embodiment 1.
  • FIG. FIG. 6 is a cross-sectional view of the ion generator taken along line VI-VI shown in FIG. 5.
  • FIG. 6 is a cross-sectional view of the ion generator taken along line VII-VII shown in FIG.
  • FIG. 3 is an enlarged view of the vicinity of a discharge electrode in the ion generator of Embodiment 1.
  • FIG. 1 is a circuit diagram showing a configuration of an ion generator according to Embodiment 1.
  • FIG. It is a schematic diagram which shows the 1st example of the relationship between the ion generator of Embodiment 1, and an air path.
  • It is a schematic diagram which shows the 2nd example of the relationship between the ion generator of Embodiment 1, and an air path.
  • It is a top view which shows the internal structure of the ion generator of Embodiment 2.
  • FIG. 5 is an enlarged view of the vicinity of a discharge electrode in the ion generator of Embodiment 3.
  • 6 is a plan view showing an internal structure of an ion generator according to Embodiment 4.
  • FIG. FIG. 10 is a plan view showing an internal structure of an ion generator according to Embodiment 5.
  • FIG. 1 is a side view showing a schematic configuration of an electric device 100 including an ion generation device 26 according to Embodiment 1 of the present invention.
  • the electric device 100 may be, for example, an ion generator, an air conditioner, a dehumidifier, a humidifier, an air cleaner, a fan heater, or other devices.
  • the electrical device 100 is a device that is preferably used to adjust air in a house, a building, a hospital room, a car cabin, an airplane cabin, or a ship vessel.
  • the electrical device 100 includes an ion generator 26, a blower 16, and ducts 12 and 15.
  • the ducts 12 and 15 are hollow, and the air passage 10 through which air flows is formed by the internal spaces of the ducts 12 and 15 communicating with each other.
  • the air blower 16 is provided at the opening of the duct 12 and forms an air flow in the air passage 10.
  • the air blower 16 may be a sirocco fan, a cross flow fan, or another fan.
  • the ion generator 26 is disposed inside the duct 15.
  • the ion generator 26 may be configured to be integrated into the electric device 100.
  • the ion generator 26 may be provided so as to be detachable from the electric device 100.
  • the ion generator 26 can be made to have a replaceable specification, so that maintenance of the electric device 100 is facilitated.
  • FIG. 2 is a plan view showing the configuration of the ion generator 26 of the first embodiment.
  • FIG. 3 is a side view showing the ion generator 26 as seen from the direction indicated by the arrow III in FIG.
  • FIG. 4 is a side view showing the ion generator 26 as seen from the direction indicated by the arrow IV in FIG.
  • FIG. 5 is a plan view showing the internal structure of the ion generator 26 of the first embodiment.
  • FIG. 6 is a cross-sectional view of the ion generator 26 along the line VI-VI shown in FIG.
  • FIG. 7 is a cross-sectional view of the ion generator 26 taken along the line VII-VII shown in FIG. With reference to FIGS. 2 to 7, the structure of the ion generator 26 of the present embodiment will be described in detail.
  • the ion generator 26 of Embodiment 1 includes an outer case 31, a discharge electrode 40, an induction electrode (counter electrode) 45, a substrate 50, a high voltage generation circuit unit 53, a substrate support case 54, and a substrate support case. 55 and wiring 56 and wiring 57 are mainly provided.
  • the discharge electrode 40 includes a first needle-like electrode 41, a second needle-like electrode 42, a third needle-like electrode 43, and a fourth needle-like electrode 44.
  • Each of the first to fourth needle-like electrodes 41 to 44 is formed in a needle shape, extends linearly, and has a needle tip with a sharpened tip.
  • the first to fourth needle-like electrodes 41 to 44 are arranged in the same plane so that the extending directions of the respective electrodes are parallel to each other.
  • the first acicular electrode 41 and the third acicular electrode 43 are arranged side by side with an interval in a direction orthogonal to the extending direction.
  • the 2nd acicular electrode 42 and the 4th acicular electrode 44 are arrange
  • the first needle-like electrode 41 and the second needle-like electrode 42 are arranged to face each other with a distance in the extending direction.
  • the needle tip of the first needle electrode 41 and the needle tip of the second needle electrode 42 face each other.
  • the central axis of the first acicular electrode 41 and the central axis of the second acicular electrode 42 are located on the same straight line.
  • the third acicular electrode 43 and the fourth acicular electrode 44 are arranged to face each other with a distance in the extending direction.
  • the needle tip of the third needle electrode 43 and the needle tip of the fourth needle electrode 44 face each other.
  • the central axis of the third acicular electrode 43 and the central axis of the fourth acicular electrode 44 are located on the same straight line.
  • the induction electrode 45 is disposed between the first acicular electrode 41 and the third acicular electrode 43.
  • the induction electrode 45 is disposed away from both the first needle-like electrode 41 and the third needle-like electrode 43.
  • the induction electrode 45 is provided at a position where the distance between the first acicular electrode 41 and the induction electrode 45 and the distance between the third acicular electrode 43 and the induction electrode 45 are equal to each other. Yes.
  • the induction electrode 45 is also provided at a position where the distance between the second acicular electrode 42 and the induction electrode 45 and the distance between the fourth acicular electrode 44 and the induction electrode 45 are equal to each other. ing.
  • the induction electrode 45 By providing the induction electrode 45 in the middle between the first needle-like electrode 41 and the third needle-like electrode 43, the induction electrode 45 is located farthest from both the first and third needle-like electrodes 41, 43. And the amount of ions recovered by the induction electrode 45 and disappearing can be reduced.
  • the first to fourth needle-like electrodes 41 to 44 generate ions by discharge.
  • the first acicular electrode 41 and the fourth acicular electrode 44 generate positive ions.
  • the second acicular electrode 42 and the third acicular electrode 43 generate negative ions.
  • the first acicular electrode 41 and the third acicular electrode 43 generate ions having different polarities, and the second acicular electrode 42 and the fourth acicular electrode 44 have different polarities. Is generated.
  • the first acicular electrode 41 and the second acicular electrode 42 generate ions having different polarities, and the third acicular electrode 43 and the fourth acicular electrode 44 have different polarities. Is generated.
  • first to fourth needle-shaped electrodes 41 to 44 two needle-shaped electrodes arranged adjacent to each other or facing each other generate ions of different polarities.
  • ions of different polarities By separating the needle electrodes that generate ions of different polarity, it is possible to suppress the decrease in ion concentration due to neutralization of the generated positive ions and negative ions, or collection of ions to the different polarity electrode, etc. A higher concentration of ions can be generated.
  • the first to fourth needle-like electrodes 41 to 44 are arranged so that the generated positive ions and negative ions are easily mixed.
  • the first to fourth needle-like electrodes 41 to 44 have an air flow relative to the first to fourth needle-like electrodes 41 to 44. Even if the air path is branched downstream (downstream), positive ions and negative ions can be supplied to each branch duct in a balanced manner, and both high-concentration positive ions and negative ions are supplied to the indoor space. Can release mixed air.
  • the high voltage generation circuit unit 53 generates a high voltage to be applied to the first to fourth needle electrodes 41 to 44.
  • a positive high voltage is applied to the first needle electrode 41 and a negative high voltage is applied to the third needle electrode 43
  • a corona discharge is generated between the discharge electrode and the induction electrode 45.
  • Positive ions and negative ions are generated.
  • a negative high voltage is applied to the second acicular electrode 42 and a positive high voltage is applied to the fourth acicular electrode 44
  • a corona discharge is generated between the discharge electrode and the induction electrode 45.
  • negative ions and positive ions are generated.
  • the substrate 50 has the discharge electrode 40 mounted thereon.
  • the substrate 50 has one main surface 50a and the other main surface 50b opposite to the one main surface 50a.
  • the substrate 50 includes a substrate 51 as a first substrate and a substrate 52 as a second substrate as separate different substrates.
  • the substrate 51 and the substrate 52 are provided to face each other.
  • the substrate 51 has one surface 51a and the other surface 51b, and the substrate 52 has one surface 52a and the other surface 52b.
  • the substrates 51 and 52 are arranged so that the surface 51a and the surface 52a face each other.
  • the first acicular electrode 41 and the third acicular electrode 43 are mounted on the substrate 51.
  • the first needle-like electrode 41 and the third needle-like electrode 43 are fixed to the substrate 51 so that the respective needle tips protrude from the surface 51a.
  • the second acicular electrode 42 and the fourth acicular electrode 44 are mounted on the substrate 52.
  • the second needle-like electrode 42 and the fourth needle-like electrode 44 are fixed to the substrate 52 such that the respective needle tips protrude from the surface 52a.
  • the high voltage generation circuit unit 53 is provided on the other surface 51 b side with respect to the substrate 51.
  • the substrate support case 54 is provided so as to support the substrate 51 and cover the high voltage generation circuit unit 53.
  • the substrate support case 54 has a function as a first housing that accommodates and holds the high voltage generation circuit unit 53 and the substrate 51.
  • the substrate support case 55 is provided to support the substrate 52.
  • the substrate support case 55 has a function as a housing that accommodates and holds the substrate 52.
  • the substrate 51 is formed with a via electrode extending in the thickness direction of the substrate 51 and an electrode pattern extending in a plane direction orthogonal to the thickness direction.
  • These via electrodes and electrode patterns include a connection member that electrically connects the high voltage generation circuit portion 53 and the first and third needle-like electrodes 41 and 43.
  • the wiring 56 is provided as a connection member that electrically connects the high voltage generation circuit portion 53 and the second needle electrode 42.
  • the wiring 57 is provided as a connection member that electrically connects the high voltage generation circuit unit 53 and the fourth needle electrode 44.
  • the wirings 56 and 57 are high voltage lines having insulation resistance corresponding to the high voltage generated in the high voltage generation circuit unit 53.
  • the substrate support case 55 is provided so as to cover the contacts between the second and fourth needle electrodes 42 and 44 and the wirings 56 and 57 on the substrate 52.
  • a space defined by the surface 52 b of the substrate 52 and the substrate support case 55 is filled with a molding material 61.
  • the molding material 61 is filled in a space surrounded by the substrate 52 and the substrate support case 55.
  • the molding material 61 is provided only on the surface 52b side with respect to the substrate 52, and no molding material is provided on the surface 52a side.
  • the outer case 31 is provided as a casing that forms the appearance of the ion generator 26.
  • the outer case 31 is integrally formed of a resin material.
  • the outer case 31 has substrate housing portions 32 and 33 and rib-like portions 34 to 36 as its constituent parts.
  • the exterior case 31 has a rectangular frame shape in which four sides are constituted by the substrate housing portion 32, the rib-like portion 35, the substrate housing portion 33, and the rib-like portion 34.
  • the outer case 31 has a rectangular plan view having a long side extending along the extending direction of the discharge electrode 40 and a short side extending along a direction orthogonal to the extending direction of the discharge electrode 40. .
  • the substrate housing part 32 and the substrate housing part 33 are arranged in parallel at a distance from each other.
  • the substrate housing part 32 has a larger volume than the substrate housing part 33.
  • the substrate accommodating portion 32 accommodates a substrate 51, a high voltage generation circuit portion 53, and a substrate support case 54.
  • a substrate 52 and a substrate support case 55 are accommodated in the substrate accommodating portion 33.
  • the exterior case 31 has a function as a second housing that accommodates the substrate support cases 54 and 55, the substrate 52, the high voltage generation circuit unit 53, and the wirings 56 and 57.
  • the first acicular electrode 41 and the third acicular electrode 43 protrude from the surface 51 a of the substrate 51 and extend to the outside of the outer case 31.
  • the second acicular electrode 42 and the fourth acicular electrode 44 protrude from the surface 52 a of the substrate 52 and extend outside the outer case 31.
  • a protective cover that prevents direct contact with the needle tips of the first to fourth needle-like electrodes 41 to 44 may be provided.
  • the first and third acicular electrodes 41 and 43, the induction electrode 45, the substrate 51, the high voltage generation circuit unit 53, and the substrate support case 54 constitute a power supply unit.
  • substrate support case 55 comprise the electrode unit.
  • Both the substrate 51 on which the first and third needle-like electrodes 41 and 43 are mounted and the substrate 52 on which the second and fourth needle-like electrodes 42 and 44 are mounted are in the outer case 31. Contained. Thus, the first to fourth needle-like electrodes 41 to 44 are made into one unit.
  • the outer case 31 further accommodates a high voltage generation circuit unit 53, an induction electrode 45, substrate support cases 54 and 55, and wirings 56 and 57, and each element constituting the ion generator 26 is included in the outer case 31. It is housed and integrated. Since the first to fourth needle-like electrodes 41 to 44 are unitized, the positioning accuracy of the first to fourth needle-like electrodes 41 to 44 is improved, and the first to fourth needle-like electrodes 41 to 44 are improved.
  • the needle electrodes 41 to 44 are easy to handle.
  • the rib-shaped portion 34 and the rib-shaped portion 35 are arranged so as to be parallel to each other at a distance and orthogonal to the substrate accommodating portion 32 and the substrate accommodating portion 33.
  • One ends of the substrate housing portion 32 and the substrate housing portion 33 facing each other are connected by a rib-shaped portion 34.
  • the other ends of the substrate housing portion 32 and the substrate housing portion 33 facing each other are connected by a rib-like portion 35.
  • the rib-shaped portion 36 is disposed in parallel with the rib-shaped portion 34 and the rib-shaped portion 35.
  • the rib-shaped portion 36 connects the substrate housing portion 32 and the substrate housing portion 33 to each other between the rib-shaped portion 34 and the rib-shaped portion 35.
  • the rib portions 34 to 36 extend linearly from the substrate housing portion 32 along the extending direction of the first needle electrode 41 and the third needle electrode 43.
  • the rib portions 34 to 36 extend linearly from the substrate housing portion 33 along the extending direction of the second needle electrode 42 and the fourth needle electrode 44.
  • the induction electrode 45 protrudes from the surface 51 a of the substrate 51 toward the inside of the rib-shaped portion 36.
  • the leading end portion of the induction electrode 45 is accommodated in the exterior case 31 (rib-shaped portion 36).
  • the induction electrode 45 may have a plate shape or a rod shape in addition to the illustrated needle shape.
  • the wiring 56 is routed from the substrate housing portion 32 to the substrate housing portion 33 through the inside of the rib-shaped portion 35.
  • the wiring 57 is routed from the substrate housing portion 32 toward the substrate housing portion 33 through the inside of the rib-shaped portion 34.
  • the wiring 56 is routed so as to pass through one of the rib-like portion 34 and the rib-like portion 35, and the wiring 57 is routed so as to pass either one of the rib-like portion 34 and the rib-like portion 35. Yes.
  • a hollow space 38 is formed inside the outer case 31 surrounded by the substrate housing portion 32, the rib-shaped portion 35, the substrate housing portion 33 and the rib-shaped portion 34.
  • the space 38 is formed in a shape penetrating the outer case 31 in the direction perpendicular to the paper surface in FIGS. 2 and 5, that is, in the vertical direction in FIGS. 3, 4, 6 and 7.
  • the exterior case 31 has an outer surface 31 s, and a part of the outer surface 31 s constitutes a first wall surface 37 and a second wall surface 39 that faces the first wall surface 37.
  • the first wall surface 37 is formed in the substrate housing portion 32, and the second wall surface 39 is formed in the substrate housing portion 33.
  • the first wall surface 37 and the second wall surface 39 constitute a part of the periphery of the space 38.
  • the first wall surface 37 and the second wall surface 39 define a space 38 between the substrate housing portions 32 and 33.
  • the space 38 is formed between the first wall surface 37 and the second wall surface 39.
  • a pair of first wall surface 37 and second wall surface 39 facing each other is provided facing the space 38.
  • the substrate 51 accommodated in the substrate accommodating portion 32 is arranged so that the surface 51 a faces the space 38.
  • the substrate 52 accommodated in the substrate accommodating portion 33 is arranged so that the surface 52 a faces the space 38.
  • the tips of the first to fourth needle electrodes 41 to 44 extending from the substrates 51 and 52 are arranged in the space 38.
  • the needle tips of the first needle-like electrode 41 and the third needle-like electrode 43 protrude from the first wall surface 37 to the outside of the outer case 31 and are arranged side by side in the space 38.
  • the needle tips of the second needle-like electrode 42 and the fourth needle-like electrode 44 protrude from the second wall surface 39 to the outside of the outer case 31 and are arranged side by side in the space 38.
  • the needle tips of the first needle-like electrode 41 and the second needle-like electrode 42 are disposed in the space 38 between the rib-like portion 34 and the rib-like portion 36, and the third needle-like electrode 43 and the fourth needle-like electrode 43
  • the needle tip of the needle electrode 44 is disposed in a space 38 between the rib-like portion 36 and the rib-like portion 35.
  • the rib-like portion 36 partitions the first and third needle-like electrodes 41 and 43 that generate ions having different polarities, and similarly partitions the second and fourth needle-like electrodes 42 and 44. ing.
  • the rib-like portion 36 has a function as a partition plate that partitions between two adjacent needle-like electrodes.
  • the rib-shaped portion 36 constitutes a part of the outer case 31 and is formed of an insulating resin material. Since the rib-like portion 36 spatially blocks between the two needle-like electrodes that generate ions having different polarities, it is possible to suppress neutralization of positive ions and negative ions having different polarities to reduce the ion concentration. Yes.
  • the first wall surface 37 is formed with an opening that penetrates the outer case 31 in the thickness direction, and the opening communicates with the internal space of the substrate housing portion 32 and the space 38.
  • the first needle-like electrode 41 and the third needle-like electrode 43 are disposed so as to penetrate the opening formed in the first wall surface 37 and project the tip into the space 38.
  • An opening that penetrates the outer case 31 in the thickness direction is formed in the second wall surface 39, and the opening communicates the internal space of the substrate housing portion 33 with the space 38.
  • the second needle-like electrode 42 and the fourth needle-like electrode 44 are disposed so as to penetrate the opening formed in the second wall surface 39 and project the tip into the space 38.
  • Air is ventilated through the space 38.
  • the outer case 31 defines a part of the air flow path. Ions generated by the discharge electrode 40 are transported by air flowing through the space 38.
  • the space 38 constitutes a part of an air passage through which a gas for transporting ions generated by the first to fourth acicular electrodes 41 to 44 flows.
  • the first wall surface 37 and the second wall surface 39 that define the outer edge of the space 38 constitute a part of the air path.
  • the air flowing through the space 38 is ventilated in the direction perpendicular to the paper surface in FIGS. 2 and 5, that is, in the vertical direction in FIGS. 3, 4, 6 and 7.
  • the first to fourth needle-like electrodes 41 to 44 are arranged on the same plane perpendicular to the air flow direction in the space 38.
  • the first to fourth needle-like electrodes 41 to 44 extend in a direction orthogonal to the direction of air flow in the space 38 and are arranged in parallel to each other.
  • the space 38 defined by the outer case 31 of the ion generator 26 constitutes a part of the air passage 10 shown in FIG.
  • the space 38 communicates with the air passage 10 formed by the duct 15.
  • the blower 16 blows gas into the space 38 included in the air passage 10. Air flowing through the air passage 10 in the duct 15 is passed through the space 38.
  • the air flowing through the space 38 is vented in the upward direction in FIG.
  • the electric device 100 is provided. Positive ions P and negative ions N (see FIG. 1) generated by the first to fourth needle-like electrodes 41 to 44 are discharged from a blow-out opening in which the duct 15 opens to the outside.
  • Ions generated by the first to fourth needle-like electrodes 41 to 44 arranged in parallel in the air passage 10 are transported by air and diffused over a wide area, and high-concentration positive ions and negative ions are spread over a wide range. It comes to exist.
  • the ion generator 26 further includes a power supply connector 46.
  • the power feeding connector 46 is provided in the board housing portion 32 that houses the high voltage generation circuit portion 53.
  • the power supply connector 46 is provided as a power supply unit for supplying power to the high voltage generation circuit unit 53.
  • FIG. 8 is an enlarged view of the vicinity of the discharge electrode 40 in the ion generator 26 of the first embodiment.
  • substrate 50 is provided in a flat plate shape, and has one main surface 50a and one main surface 50a and the other main surface 50b on the opposite side.
  • Conductive pattern 511 made of a conductive material such as copper is formed on one main surface 50a.
  • Conductor pattern 512 made of a conductive material such as copper is formed on the other main surface 50b.
  • the substrate 50 is a double-sided substrate in which a conductor pattern is formed on both one main surface 50a and the other main surface 50b.
  • the substrate 50 is also formed with a through hole 50h that penetrates the substrate 50 in the thickness direction from one main surface 50a to the other main surface 50b.
  • the inner wall surface of the through hole 50h is covered with a conductor layer 520.
  • the substrate 50 has a conductor layer 520 that covers the inner wall surface of the through hole 50h.
  • the conductor layer 520 is formed by plating. The conductor layer 520 reaches from one main surface 50a of the substrate 50 to the other main surface 50b and penetrates the substrate 50 in the thickness direction.
  • the conductor pattern 511 formed on one main surface 50a includes a land 521.
  • the land 521 is formed so as to surround the periphery of the opening in which the through hole 50h opens on one main surface 50a.
  • Conductive pattern 512 formed on the other main surface 50 b includes land 522.
  • the land 522 is formed so as to surround the periphery of the opening in which the through hole 50h opens on the other main surface 50b.
  • Conductive layer 520 is electrically connected to land 521 on one main surface 50a, and electrically connected to land 522 on the other main surface 50b.
  • the substrate 50 is a through-hole substrate in which a conductor is formed inside the through hole 50h and the conductor patterns on both main surfaces are electrically connected.
  • the through hole 50h is formed as a through hole via.
  • the discharge electrode 40 is inserted into the through hole 50 h of the substrate 50.
  • the discharge electrode 40 is disposed through the through hole 50h.
  • the discharge electrode 40 has a distal end 40a and a proximal end 40b.
  • the tip 40 a of the discharge electrode 40 protrudes from one main surface 50 a of the substrate 50.
  • the base end 40 b of the discharge electrode 40 protrudes from the other main surface 50 b of the substrate 50.
  • Either one of the wirings 56 and 57 shown in FIGS. 5 to 7 is connected to the base end 40 b of the discharge electrode 40, whereby a high voltage generated by the high voltage generation circuit unit 53 is applied to the discharge electrode 40.
  • the molding material 61 is provided only on the other main surface 50 b side with respect to the substrate 50.
  • the molding material 61 is provided in contact with the other main surface 50b, and covers the through hole 50h from the other main surface 50b side.
  • the molding material 61 seals the base end 40 b of the discharge electrode 40 protruding from the other main surface 50 b of the substrate 50.
  • a blocking material 62 is provided at the root of the discharge electrode 40 that protrudes from the main surface 50 a of the substrate 50.
  • the closing material 62 of the first embodiment is a solder material.
  • the blocking material 62 is provided on one main surface 50 a of the substrate 50 so as to surround the entire circumference of the discharge electrode 40, and electrically connects the discharge electrode 40 and the land 521.
  • the blocking material 62 is provided on the other main surface 50 b of the substrate 50 so as to surround the entire circumference of the discharge electrode 40, and electrically connects the discharge electrode 40 and the land 522.
  • the closing material 62 enters the inside of the through hole 50h and is provided through the substrate 50.
  • the closing material 62 closes a minute gap G between the conductor layer 520 and the surface of the discharge electrode 40 inside the through hole 50h, and electrically connects the discharge electrode 40 and the conductor layer 520. Yes.
  • the blocking material 62 is provided so as to contact the discharge electrode 40 and to contact the conductor layer 520 and lands 521 and 522 formed on the surface of the substrate 50.
  • the blocking material 62 is formed by fixing the discharge electrode 40 to the substrate 50 using solder. In a state where the discharge electrode 40 is disposed so as to penetrate the through hole 50h, the molten solder is poured into the through hole 50h, and then the solder is cooled and cured. As a result, the discharge electrode 40 is fixed to the substrate 50, and the closing material 62 that closes the gap G between the discharge electrode 40 and the conductor layer 520 is provided.
  • FIG. 9 is a circuit diagram showing a configuration of the ion generator 26 of the first embodiment.
  • the ion generator 26 in addition to the first to fourth needle-like electrodes 41 to 44 and the induction electrode 45, the ion generator 26 includes terminals T1 and T2, a booster circuit 90, a booster transformer 91, and diodes 92 and 93. , Capacitors 94 and 95.
  • the step-up circuit 90, step-up transformer 91, diodes 92 and 93, and capacitors 94 and 95 are included in the configuration of the high voltage generation circuit unit 53 shown in FIG.
  • the booster circuit 90 includes a diode, a resistance element, an NPN bipolar transistor, and the like as appropriate.
  • Step-up transformer 91 includes a primary winding 91a and a secondary winding 91b.
  • the diodes 92 and 93 and the capacitors 94 and 95 are provided for rectification.
  • One end of the secondary winding 91b is electrically connected to the first to fourth needle electrodes 41 to 44.
  • the other end of the secondary winding 91b is electrically connected to the induction electrode 45.
  • the step-up transformer 91 generates a positive or negative high voltage applied to each of the first to fourth needle-like electrodes 41 to 44.
  • a positive high voltage pulse is applied to the first needle electrode 41 and the fourth needle electrode 44 via the diode 92, and a negative voltage is applied via the diode 93.
  • a high voltage pulse is applied to the second acicular electrode 42 and the third acicular electrode 43.
  • corona discharge is generated between the needle tips of the first to fourth needle-like electrodes 41 to 44 and the induction electrode 45, and the first needle-like electrode 41 and the fourth needle-like electrode 44 are positive ions.
  • the second acicular electrode 42 and the third acicular electrode 43 generate negative ions.
  • a single step-up transformer 91 can apply a high voltage to each of the first to fourth needle-like electrodes 41 to 44, and the number of high voltage generation circuits can be kept to a minimum. It is possible to reduce the manufacturing cost of the ion generator 26 and to reduce the power consumption of the ion generator 26. By reducing the number of induction electrodes 45 in accordance with the number of high voltage generation circuits, the efficiency of ion generation can be improved, and ions generated by the first to fourth needle-like electrodes 41 to 44 can be induced. It is possible to suppress the reduction of the ion concentration by being recovered by the above, and it is possible to generate a higher concentration of ions.
  • a positive ion is a cluster ion in which a plurality of water molecules are attached around a hydrogen ion (H + ), and is represented as H + (H 2 O) m (m is an arbitrary integer of 0 or more).
  • a negative ion is a cluster ion in which a plurality of water molecules are attached around an oxygen ion (O 2 ⁇ ), and is represented as O 2 ⁇ (H 2 O) n (n is an arbitrary integer of 0 or more).
  • FIG. 10 is a schematic diagram illustrating a first example of the relationship between the ion generator 26 and the air passage 10 according to the first embodiment.
  • FIG. 11 is a schematic diagram illustrating a second example of the relationship between the ion generator 26 and the air passage 10 according to the first embodiment.
  • the hatched portion indicates the air passage 10.
  • the air passage 10 formed in the duct 15 of the electric device 100 includes the space 38 defined by the outer case 31 of the ion generator 26.
  • the outer shape of the air passage 10 and the outer shape of the space 38 may be formed equal. That is, a configuration in which all of the air passing through the duct 15 passes through the space 38 may be adopted.
  • the outer shape of the air passage 10 may be larger than the outer shape of the space 38, and typically, the outer shape of the air passage 10 may be larger than the outer shape of the exterior case 31. In other words, only a part of the air passing through the duct 15 may pass through the space 38.
  • the ion generator 26 that can supply high-concentration ions suitable for each air passage size can be produced at a lower cost.
  • FIG. 12 is a plan view showing the internal structure of the ion generator 26 of the second embodiment.
  • the range in which the molding material 61 is provided is reduced.
  • the entire space surrounded by the substrate 52 and the substrate support case 55 is filled with the molding material 61, whereas the substrate support of the second embodiment is used.
  • the case 55 has a protruding portion 55 p that protrudes toward the substrate 52.
  • the protrusion 55p is formed in a shape surrounding the entire circumference of the through hole through which the discharge electrode 40 (needle electrodes 42, 44) is inserted.
  • the molding material 61 is filled in a space defined by the surface 52b of the substrate 52 and the protrusion 55p.
  • the molding material 61 provided in this manner has a function of sealing the through-hole formed in the substrate 52 and the discharge electrode 40 from the surface 52b side of the substrate 52, as in the first embodiment. Since the required amount of the molding material 61 can be reduced as compared with the first embodiment, the material cost and processing cost of the ion generator 26 can be suppressed.
  • a case covering the contact point between the needle-like electrode 42 and the wiring 56 and a case covering the contact point between the fourth needle-like electrode 44 and the wiring 57 may be provided separately.
  • FIG. 13 is an enlarged view of the vicinity of the discharge electrode 40 in the ion generator 26 of the third embodiment.
  • the substrate 50 is a double-sided substrate, and the blocking material 62 is in the thickness direction of the substrate 50 from one main surface 50a of the substrate 50 to the other main surface 50b.
  • the gap G between the conductor layer 520 and the discharge electrode 40 covering the through hole 50h formed in the substrate 50 is closed. Instead of this configuration, as shown in FIG.
  • the substrate 50 is a single-sided substrate in which the conductor pattern 512 is formed only on the other main surface 50 b, and the one main surface 50 a of the substrate 50 and the discharge electrode 40 You may provide the obstruction
  • the conductor pattern 512 includes a land 522 made of a conductive material such as copper.
  • the land 522 is formed so as to surround the periphery of the opening in which the through hole 50h opens on the other main surface 50b.
  • a conductive portion 530 made of a conductive material is provided between the land 522 and the discharge electrode 40.
  • the ion generator 26 of Embodiment 3 includes a conductive portion that electrically connects the conductor pattern 512 formed on the other main surface 50 b of the substrate 50 and the discharge electrode 40.
  • the plugging material 62 of Embodiment 3 is various resin coating materials excellent in water repellency, withstand voltage, or mechanical strength, represented by a fluorine resin coating material.
  • the conductive portion 530 of the third embodiment is a solder material. Also with this configuration, the gap G between the substrate 50 and the discharge electrode 40 can be reliably closed by the closing material 62.
  • the discharge electrode 40 is disposed in a state in which the discharge electrode 40 is disposed so as to penetrate the through hole 50h formed in the substrate 50.
  • 40 is soldered to the land 522 to fix the discharge electrode 40 to the substrate 50.
  • the solder material does not enter the through hole 50h because the solder material only rests on the land 522 formed on the other main surface 50b of the substrate 50.
  • the melted resin material is poured from the one main surface 50a side, and the resin material is cured, whereby the blocking material 62 is formed.
  • a part of the resin material enters the inside of the through-hole 50h.
  • FIG. 14 is a plan view showing the internal structure of the ion generator 26 of the fourth embodiment.
  • the substrate 52 and the substrate support case 55 that constitute the electrode unit are the same as the ion generator 26 according to the first embodiment described with reference to FIG.
  • the space defined by the above is filled with the molding material 61, and the surface 52b side of the substrate 52 is sealed.
  • the mold material 61 is filled in the space defined by the substrate 51 and the substrate support case 54 constituting the power supply unit, and the surface 51b side of the substrate 51 is sealed. It has been stopped.
  • the substrate 51 is provided as a through-hole substrate, and includes first and third needle-like electrodes 41 and 43 that are inserted through through-holes that penetrate the substrate in the thickness direction.
  • a blocking material 62 is provided between the conductor layer covering the inner wall surface of the hole.
  • the closing material 62 is provided so as to surround the entire circumferences of the first and third needle-like electrodes 41 and 43 on the surfaces 51a and 51b of the substrate 51 and inside the through-hole vias.
  • the blocking material 62 is provided so as to contact the first and third needle-like electrodes 41 and 43 and to contact lands on the surfaces 51 a and 51 b of the substrate 51.
  • the closing material 62 closes the gap between the substrate 51 and the first and third needle-like electrodes 41 and 43.
  • FIG. 15 is a plan view showing the internal structure of the ion generator 26 of the fifth embodiment.
  • the outer case 31 is provided so as to surround the space 38, and a plurality of ions are emitted to the space 38 from both sides of the first wall surface 37 and the second wall surface 39 facing each other. Needle-like electrodes were provided.
  • the first wall surface 37 and the second wall surface 39 may be formed as the same wall surface facing the space 38. That is, in the fifth embodiment, as shown in FIG. 15, the planar first wall surface 37 and the planar second wall surface 39 form the same plane.
  • the first needle-like electrode 41 is mounted on the substrate 51 of the power supply unit, and the third needle-like electrode 43 is not provided.
  • the electrode unit includes one electrode unit including the second needle-like electrode 42 (left side in FIG. 15) and the other electrode unit including the fourth needle-like electrode 44 (right side in FIG. 15). And divided into two.
  • One high voltage generation circuit unit 53 provided in the power supply unit is electrically connected to the second needle electrode 42 via a wiring 56, and is connected to the fourth needle electrode 44 via a wiring 57. Electrically connected.
  • a first needle electrode 41 and an induction electrode 45 mounted on the substrate 51 are provided so as to protrude from the first wall surface 37 to the space 38.
  • the second and fourth acicular electrodes 42 and 44 mounted on the substrates 52 and 52 are provided so as to protrude from the second wall surface 39 to the space 38, respectively.
  • the acicular electrodes 41, 42, 44 and the induction electrode 45 protrude from the same plane and are exposed in the space 38.
  • the first needle electrode 41 may be configured to release either positive ions or negative ions. At least one of the second and fourth acicular electrodes 42 and 44 generates ions having a polarity different from the ions generated by the first acicular electrode 41. For example, when the first needle-shaped electrode 41 generates positive ions, both the second and fourth needle-shaped electrodes 42 and 44 may generate negative ions, or the second and fourth needle-shaped electrodes. One of the electrodes 42 and 44 may generate negative ions and the other may generate positive ions.
  • the ion generator 26 includes a discharge electrode 40 and a substrate 50.
  • the discharge electrode 40 has a tip 40a, and ions are generated from the tip 40a by discharge.
  • the substrate 50 has one main surface 50a and the other main surface 50b.
  • the substrate 50 is formed with a through hole 50h penetrating from one main surface 50a to the other main surface 50b.
  • the discharge electrode 40 is inserted into the through hole 50 h of the substrate 50.
  • the tip 40a of the discharge electrode 40 protrudes from one main surface 50a.
  • the ion generator 26 further includes a molding material 61 and a closing material 62.
  • the molding material 61 is provided only on the other main surface 50 b side with respect to the substrate 50, and covers the through hole 50 h of the substrate 50.
  • the closing material 62 closes the gap G between the substrate 50 and the discharge electrode 40.
  • the space on the other main surface 50 b side is filled with the mold material 61 with respect to the through hole 50 h of the substrate 50, and the gap G between the substrate 50 and the discharge electrode 40 is further closed by the blocking material 62. It is blocked.
  • the gap G it is possible to eliminate a gap through which moisture including dust can enter, so that creeping discharge on the main surfaces 50a and 50b of the substrate 50 can be suppressed even under high humidity, and abnormal discharge and leakage are generated. Can be suppressed. Therefore, the ion generator 26 can supply high-concentration ions without causing a decrease in output even under high humidity. Furthermore, since a special manufacturing process and additional materials are not required, the ion generator 26 having high moisture resistance can be provided at a lower cost.
  • a molding material is also provided on the one main surface 50 a side of the substrate 50. Even if the main surface is sealed with the molding material 61, the gap G between the substrate 50 and the discharge electrode 40 can be closed. In this case, since both sides of the substrate 50 are sealed, moisture including dust does not enter, and the occurrence of a leak phenomenon can be prevented. However, in order to provide the molding material on both main surfaces of the substrate 50, a casing for receiving the molding material is required.
  • a rib that extends in the thickness direction of the substrate 50 and surrounds the through hole 50h formed in the substrate 50, and fills the inside of the rib with a molding material so that the molding material does not leak.
  • the size of the ion generator in the direction in which the discharge electrode extends increases, and the ion generator cannot be reduced in size.
  • the ion generator 26 of the embodiment only the other main surface 50b of the substrate 50 is filled with the molding material 61, and the one main surface 50a is not molded and exposed to the outside. Then, the dimension corresponding to the mold material on the one main surface 50a side of the substrate 50 can be reduced. Therefore, since the thinning in the extending direction of the discharge electrode 40 can be realized, the ion generator 26 can be reduced in size. In the case of a configuration in which only one surface of the substrate 50 is sealed with the molding material 61, there is a possibility of occurrence of a leakage phenomenon, but in the ion generator 26 of the embodiment, the gap G is completely blocked with the closing material 62. As a result, the occurrence of leakage can be reliably suppressed and moisture resistance can be ensured.
  • the substrate 50 is a double-sided substrate in which conductor patterns 511 and 512 are formed on both the one main surface 50a and the other main surface 50b.
  • the substrate 50 has a conductor layer 520 that covers the inner wall surface of the through hole 50h.
  • the closing material 62 penetrates the substrate 50 and closes the gap G between the conductor layer 520 and the discharge electrode 40.
  • the gap G between the substrate 50, which is a double-sided substrate, and the discharge electrode 40 is closed with a closing material 62, thereby eliminating a gap through which moisture containing dust can enter, and high-concentration ions even under high humidity. Can be realized.
  • the substrate 50 is a single-sided substrate in which a conductor pattern 512 is formed only on the other main surface 50b.
  • the ion generator 26 further includes a conductive portion 530 that electrically connects the conductor pattern 512 and the discharge electrode 40.
  • the closing material 62 closes the gap G between the one main surface 10 a and the discharge electrode 40.
  • the gap G between the substrate 50, which is a single-sided substrate, and the discharge electrode 40 is closed with a closing material 62, thereby eliminating a gap through which moisture including dust can enter, and high-concentration ions even under high humidity. Can be realized.
  • one main surface 50a of the substrate 50 is disposed toward a space 38 that constitutes a part of an air passage through which a gas carrying ions generated by the discharge electrode 40 flows.
  • the tip 40 a of the discharge electrode 40 is disposed in the space 38. In this way, ions are generated at the tip 40 a of the discharge electrode 40 protruding into the space 38, and the generated ions are carried by the gas flowing through the space 38. Therefore, it is possible to realize the ion generator 26 that can quickly discharge high-concentration ions generated at the discharge electrode 40 by blowing air.
  • the ion generator 26 further includes a substrate support case 55 as a housing for holding the substrate 50.
  • the molding material 61 is filled in a space defined by the substrate 50 and the substrate support case 55. Thereby, the space filled with the molding material 61 for sealing the other main surface 50b side of the substrate 50 is defined. It is also possible to reduce the amount of the required molding material 61 by appropriately setting the shape of the substrate support case 55 and reducing the volume of the space filled with the molding material 61.
  • the ion generator 26 further includes a high voltage generation circuit unit 53 as a high voltage generation unit, wirings 56 and 57 as connection portions, and an outer case 31 as a second casing.
  • the high voltage generation circuit unit 53 generates a high voltage to be applied to the discharge electrode 40.
  • the wirings 56 and 57 electrically connect the high voltage generation circuit unit 53 and the discharge electrode 40 (second and fourth needle electrodes 42 and 44).
  • the outer case 31 houses a substrate support case 55, a high voltage generation circuit unit 53, and wirings 56 and 57. In this way, the high voltage elements including the discharge electrode 40, the high voltage generation circuit unit 53, and the wirings 56 and 57 are accommodated and integrated in the outer case 31, and are provided as one unit.
  • the handleability of the ion generator 26 is improved and the user can handle the ion generator 26 easily. Moreover, since the user who handles the ion generator 26 can avoid touching a high voltage element directly, the safety
  • the ion generator 26 further includes a high voltage generation circuit unit 53 as a high voltage generation unit, a substrate support case 54 as a first casing, and an exterior case 31 as a second casing.
  • the substrate support case 54 holds the substrate 50 and the high voltage generation circuit unit 53.
  • the outer case 31 houses a substrate support case 54. Thereby, it can be set as the structure which the high voltage generation circuit part 53 does not receive to the influence of humidity, and the abnormal discharge in the high voltage generation circuit part 53 can be suppressed.
  • the high voltage generation circuit unit 53 is accommodated in the substrate support case 54
  • the substrate support case 54 is accommodated in the exterior case 31, and the high voltage generation circuit unit 53 is accommodated in the double case. .
  • the electric device 100 includes the ion generator 26 according to any one of the above aspects and the blower 16 that blows a gas that conveys ions generated by the discharge electrodes 40 of the ion generator 26.
  • the electric device 100 including the ion generator 26 that can generate ions with a high concentration in a wide range and is excellent in handling and safety. Since the ion generator 26 is provided as one unit, when the ion generator 26 is detachable from the electric device 100, the ion generator 26 can be easily replaced.
  • the discharge electrode 40 is mounted on the ion generator 26 of the first embodiment, that is, the substrate 50 in which the through hole 50h is formed, and the discharge electrode 40 protrudes from one main surface 50a of the substrate 50.
  • the ion generator 26 was prepared in which the root portion of the substrate was covered with a solder material, and the substrate 50 functioning as the blocking material 62 and the solder material closed the gap G between the discharge electrodes 40.
  • an ion generator was prepared that had the same configuration as that of the ion generator 26 of the first embodiment, but differed only in that it did not have the blocking material 62.
  • a duct having a flow path with a width of 245 mm and a height of 150 mm was provided, and the ion generators of Examples and Comparative Examples were arranged in the duct.
  • the first to fourth needle-like electrodes 41 to 44 were provided so that the needle tips protruded from the outer case 31 by 9.5 mm, respectively.
  • the distance between the needle tip of the first needle electrode 41 and the needle tip of the second needle electrode 42, and the distance between the needle tip of the third needle electrode 43 and the needle tip of the fourth needle electrode 44 Each distance was 101 mm.
  • the intervals were 42 mm each.
  • the air was blown into the duct with a cross flow fan (not shown) so that the flow velocity was 5 m / s on the discharge electrode 40.
  • the ion generator 26 is arranged with the outer case 31 standing in the duct 15 so that the air flowing through the duct penetrates the space 38.
  • the first to fourth needle-like electrodes 41 to 44 are arranged so as to extend in a direction perpendicular to the air flow direction in the duct 15.
  • the ion generator 26 was arranged in the duct 15 so as to be offset in the height direction. Specifically, it was arranged so that the axis connecting the first needle electrode 41 and the second needle electrode 42 was located at a position 18.5 mm from the inner wall on the bottom side of the duct 15.
  • Example 1 Using the ion generator 26 of Example 1 and the ion generator according to the comparative example, it was 350 mm away from the electrode on the downstream side (downstream side) of the air flow flowing in the duct under two conditions of relative humidity of 40% and 80%. The ion concentration at the position was measured. Table 1 summarizes the negative ion concentration at one measurement point in the center in the width direction of the inner wall on the bottom surface side of the duct in Example 1 and the comparative example, with the measurement value at 40% relative humidity being 100%. .
  • Example 1 As shown in Table 1, the negative ion concentration at one measurement point in the comparative example was reduced by 8% at 80% relative humidity compared to 40% relative humidity. On the other hand, in Example 1, the relative humidity increased by 2% at 80% relative to 40% relative humidity. From this result, in the ion generator 26 of Example 1, the moisture resistance is improved by covering the root portion of the discharge electrode 40 with the solder material, and a sufficient amount of ions equivalent to normal humidity can be obtained even under high humidity. It was confirmed that it could be supplied.
  • the ion generator 26 according to the second embodiment has the same configuration as that of the ion generator 26 according to the first embodiment, but only in that the root portion of the discharge electrode 40 is covered with a resin coating material instead of a solder material.
  • a resin coating material instead of a solder material.
  • Example 2 After the ion generator 26 according to Example 2 was exposed to a high humidity environment for 96 hours, it was placed in the duct described in Example 1, and the ion concentration was measured under the same conditions as in Example 1. Table 2 summarizes the negative ion concentration at one measurement point at the center in the width direction of the inner wall on the bottom surface side of the duct in Example 2 with the measurement value before exposure to a high humidity environment as 100%. .
  • the ion generator 26 according to Example 2 As shown in Table 2, in the ion generator 26 according to Example 2, even after being exposed to a high humidity environment for a long time, an ion concentration almost equal to that before the exposure was measured. From this result, the ion generator 26 of Example 2 is improved in moisture resistance and corrosion resistance by covering the base portion of the discharge electrode 40 with the resin coating material, and is used in a severe environment with high humidity. Even so, it was confirmed that a sufficient amount of ions equivalent to the normal environment could be supplied.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

Provided is an ion generation device able to supply a high concentration of ions even at high humidity. The ion generation device is provided with a discharge electrode (40) and a substrate (50). The discharge electrode (40) has a tip (40a), and generates ions from the tip (40a) by discharging. The substrate (50) has one principal surface (50a) and another principal surface (50b). Formed on the substrate (50) is a through hole (50h) penetrating from the one principal surface (50a) to the other principal surface (50b). The discharge electrode (40) is inserted into the through hole (50h). The tip (40a) of the discharge electrode (40) projects out from the one principal surface (50a) of the substrate (50). The ion generation device is further provided with a mold material (61) and an obstructing material (62). The mold material (61) is provided only to the other principal surface (50b) side of the substrate (50), and covers the through hole (50h). The obstructing material (62) obstructs a gap (G) between the substrate (50) and the discharge electrode (40).

Description

イオン発生装置および電気機器Ion generator and electrical equipment
 本発明は、イオン発生装置および電気機器に関し、特に、放電電極を備えるイオン発生装置と、そのイオン発生装置を用いた電気機器とに関する。 The present invention relates to an ion generation device and an electric device, and more particularly to an ion generation device including a discharge electrode and an electric device using the ion generation device.
 従来、室内の空気の浄化、殺菌または消臭などを行なうために、イオン発生装置が利用されている。イオン発生装置の多くは、コロナ放電により正イオンおよび負イオンを発生させている。 Conventionally, ion generators are used to purify, sterilize, or deodorize indoor air. Many ion generators generate positive ions and negative ions by corona discharge.
 特開2012-134052号公報(特許文献1)には、帯電装置または徐電装置用の電極基板ユニットの事例が開示されている。基板本体に、高電圧発生回路に接続した高電圧線と、放電電極針の基端側を接続するための放電電極用接点とが形成され、高電圧線と放電電極用接点との間に電流制限用抵抗素子が搭載される構成となっている。また、基板を保持する基板ケース部材が、基板を絶縁性樹脂材に内包する射出成型によって基板と一体化して形成されることが記載されている。 JP 2012-134052 A (Patent Document 1) discloses an example of an electrode substrate unit for a charging device or a slow current device. A high-voltage line connected to the high-voltage generating circuit and a discharge electrode contact for connecting the proximal end side of the discharge electrode needle are formed on the substrate body, and a current flows between the high-voltage line and the discharge electrode contact. The limiting resistance element is mounted. Further, it is described that a substrate case member for holding a substrate is formed integrally with the substrate by injection molding in which the substrate is included in an insulating resin material.
特開2012-134052号公報JP 2012-134052 A
 上記特許文献1に記載の電極基板ユニットでは、射出成型によって基板ケース部材と基板とを一体化して形成することで、生産性を確保しつつ密着性を向上させている。これにより基板表面における沿面放電を確実に防止することができるとされている。 In the electrode substrate unit described in Patent Document 1, the substrate case member and the substrate are integrally formed by injection molding, thereby improving the adhesion while ensuring the productivity. Thereby, creeping discharge on the substrate surface can be surely prevented.
 しかしながら、特許文献1に記載の電極基板ユニットでは、基板ケース部材によって囲繞される基板表面における沿面放電を防ぐことは可能であるが、放電電極針の根本部(放電電極針を保持する放電電極ホルダーの表面)には特別な対策はなされていない。そのため、高湿度下では放電電極針と放電電極ホルダーとの間の僅かな隙間に塵埃を含む水分が入り込むことによって、微弱な異常放電またはリークが生じ、出力低下を招くおそれがあった。また、放電電極針にエアを導入するための、放電電極針周囲に設けられた僅かな隙間も、同様の理由により高湿度下では出力低下を招くおそれがあった。 However, in the electrode substrate unit described in Patent Document 1, it is possible to prevent creeping discharge on the substrate surface surrounded by the substrate case member, but the root portion of the discharge electrode needle (discharge electrode holder holding the discharge electrode needle) No special measures have been taken. Therefore, under high humidity, moisture including dust enters a slight gap between the discharge electrode needle and the discharge electrode holder, which may cause a weak abnormal discharge or leakage, leading to a decrease in output. Further, a slight gap provided around the discharge electrode needle for introducing air into the discharge electrode needle may cause a decrease in output under high humidity for the same reason.
 本発明は上記の問題点に鑑みてなされたものであり、その主たる目的は、高湿度下においても出力低下を招くことなく高濃度のイオンを供給することができる、イオン発生装置および電気機器を提供することである。 The present invention has been made in view of the above-described problems, and a main object of the present invention is to provide an ion generator and an electric device that can supply high-concentration ions without causing a decrease in output even under high humidity. Is to provide.
 本発明に係るイオン発生装置は、放電電極と、基板とを備えている。放電電極は、先端を有しており、放電により先端からイオンを発生する。基板は、一方の主表面および他方の主表面を有している。基板には、一方の主表面から他方の主表面まで貫通する貫通孔が形成されている。放電電極は、貫通孔に挿通されている。放電電極の先端は、基板の一方の主表面から突出している。イオン発生装置はさらに、モールド材と、閉塞材とを備えている。モールド材は、基板に対し他方の主表面側のみに設けられており、貫通孔を覆っている。閉塞材は、基板と放電電極との間の隙間を閉塞している。 The ion generator according to the present invention includes a discharge electrode and a substrate. The discharge electrode has a tip, and ions are generated from the tip by discharge. The substrate has one main surface and the other main surface. A through-hole penetrating from one main surface to the other main surface is formed in the substrate. The discharge electrode is inserted through the through hole. The tip of the discharge electrode protrudes from one main surface of the substrate. The ion generator further includes a mold material and a blocking material. The molding material is provided only on the other main surface side with respect to the substrate, and covers the through hole. The closing material closes the gap between the substrate and the discharge electrode.
 上記イオン発生装置において好ましくは、基板は、一方の主表面と他方の主表面との両方に導体パターンが形成された両面基板である。基板は、貫通孔の内壁面を覆う導体層を有している。閉塞材は、基板を貫通して、導体層と放電電極との間の隙間を閉塞している。 In the above ion generator, the substrate is preferably a double-sided substrate in which a conductor pattern is formed on both one main surface and the other main surface. The substrate has a conductor layer covering the inner wall surface of the through hole. The closing material passes through the substrate and closes the gap between the conductor layer and the discharge electrode.
 上記イオン発生装置において好ましくは、基板は、他方の主表面のみに導体パターンが形成された片面基板である。イオン発生装置は、導体パターンと放電電極とを電気的に接続する導電部をさらに備えている。閉塞材は、一方の主表面と放電電極との間の隙間を閉塞している。 In the above ion generator, the substrate is preferably a single-sided substrate in which a conductor pattern is formed only on the other main surface. The ion generator further includes a conductive portion that electrically connects the conductor pattern and the discharge electrode. The closing material closes the gap between one main surface and the discharge electrode.
 上記イオン発生装置において好ましくは、基板の一方の主表面は、放電電極が発生したイオンを搬送する気体が流れる風路に向いて配置されている。放電電極の先端は、風路内に配置されている。 In the above ion generator, preferably, one main surface of the substrate is arranged toward an air path through which a gas carrying ions generated by the discharge electrode flows. The tip of the discharge electrode is disposed in the air path.
 上記イオン発生装置において好ましくは、基板を保持する筺体をさらに備えている。モールド材は、基板および筺体が規定する空間に充填されている。 The ion generator preferably further includes a housing for holding the substrate. The mold material is filled in a space defined by the substrate and the casing.
 上記イオン発生装置において好ましくは、放電電極に印加するための高電圧を発生する高電圧発生部と、高電圧発生部と放電電極とを電気的に接続する接続部と、筺体、高電圧発生部および接続部を収容する第2筺体とをさらに備えている。 Preferably, in the above ion generator, a high voltage generation unit that generates a high voltage to be applied to the discharge electrode, a connection unit that electrically connects the high voltage generation unit and the discharge electrode, a housing, and a high voltage generation unit And a second housing that accommodates the connecting portion.
 上記イオン発生装置において好ましくは、放電電極に印加するための高電圧を発生する高電圧発生部と、基板および高電圧発生部を保持する第1筺体と、第1筺体を収容する第2筺体とをさらに備えている。 Preferably, in the above ion generator, a high voltage generator that generates a high voltage to be applied to the discharge electrode, a first casing that holds the substrate and the high voltage generator, and a second casing that houses the first casing Is further provided.
 上記イオン発生装置において好ましくは、上記のいずれかの局面のイオン発生装置と、イオン発生装置の放電電極が発生したイオンを搬送する気体を送風する送風装置とを備えている。 Preferably, the ion generator includes the ion generator according to any one of the above aspects and a blower that blows a gas that conveys ions generated by discharge electrodes of the ion generator.
 本発明のイオン発生装置は、高湿度下においても出力低下を招くことなく高濃度のイオンを供給することができる。 The ion generator of the present invention can supply high-concentration ions without causing a decrease in output even under high humidity.
本発明の実施の形態1におけるイオン発生装置を備える電気機器の概略構成を示す側面図である。It is a side view which shows schematic structure of an electric equipment provided with the ion generator in Embodiment 1 of this invention. 実施の形態1のイオン発生装置の構成を示す平面図である。1 is a plan view showing a configuration of an ion generator according to Embodiment 1. FIG. 図2中の矢印IIIに示す方向から見たイオン発生装置を示す側面図である。It is a side view which shows the ion generator seen from the direction shown by the arrow III in FIG. 図2中の矢印IVに示す方向から見たイオン発生装置を示す側面図である。It is a side view which shows the ion generator seen from the direction shown by arrow IV in FIG. 実施の形態1のイオン発生装置の内部構造を示す平面図である。2 is a plan view showing an internal structure of the ion generator according to Embodiment 1. FIG. 図5に示すVI-VI線に沿うイオン発生装置の断面図である。FIG. 6 is a cross-sectional view of the ion generator taken along line VI-VI shown in FIG. 5. 図5に示すVII-VII線に沿うイオン発生装置の断面図である。FIG. 6 is a cross-sectional view of the ion generator taken along line VII-VII shown in FIG. 実施の形態1のイオン発生装置における放電電極付近の拡大図である。3 is an enlarged view of the vicinity of a discharge electrode in the ion generator of Embodiment 1. FIG. 実施の形態1のイオン発生装置の構成を示す回路図である。1 is a circuit diagram showing a configuration of an ion generator according to Embodiment 1. FIG. 実施の形態1のイオン発生装置と風路との関係の第1の例を示す模式図である。It is a schematic diagram which shows the 1st example of the relationship between the ion generator of Embodiment 1, and an air path. 実施の形態1のイオン発生装置と風路との関係の第2の例を示す模式図である。It is a schematic diagram which shows the 2nd example of the relationship between the ion generator of Embodiment 1, and an air path. 実施の形態2のイオン発生装置の内部構造を示す平面図である。It is a top view which shows the internal structure of the ion generator of Embodiment 2. 実施の形態3のイオン発生装置における放電電極付近の拡大図である。FIG. 5 is an enlarged view of the vicinity of a discharge electrode in the ion generator of Embodiment 3. 実施の形態4のイオン発生装置の内部構造を示す平面図である。6 is a plan view showing an internal structure of an ion generator according to Embodiment 4. FIG. 実施の形態5のイオン発生装置の内部構造を示す平面図である。FIG. 10 is a plan view showing an internal structure of an ion generator according to Embodiment 5.
 以下、図面に基づいてこの発明の実施の形態を説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 図1は、本発明の実施の形態1におけるイオン発生装置26を備える電気機器100の概略構成を示す側面図である。電気機器100は、たとえばイオン発生機、空気調和機、除湿機、加湿器、空気清浄機、ファンヒータまたはその他の機器であってもよい。電気機器100は、家屋の室内、ビルの一室、病院の病室、自動車の車室内、飛行機の機内または船の船舶内などの空気を調節するために、好適に用いられる機器である。
(Embodiment 1)
FIG. 1 is a side view showing a schematic configuration of an electric device 100 including an ion generation device 26 according to Embodiment 1 of the present invention. The electric device 100 may be, for example, an ion generator, an air conditioner, a dehumidifier, a humidifier, an air cleaner, a fan heater, or other devices. The electrical device 100 is a device that is preferably used to adjust air in a house, a building, a hospital room, a car cabin, an airplane cabin, or a ship vessel.
 図1に示すように、電気機器100は、イオン発生装置26と、送風装置16と、ダクト12,15とを備えている。ダクト12,15は中空であり、ダクト12,15の内部空間が互いに連通されることにより、空気が流れる風路10が形成されている。送風装置16は、ダクト12の開口部に設けられており、風路10内に空気の流れを形成する。送風装置16は、シロッコファン、クロスフローファンまたはその他のファンであってもよい。 As shown in FIG. 1, the electrical device 100 includes an ion generator 26, a blower 16, and ducts 12 and 15. The ducts 12 and 15 are hollow, and the air passage 10 through which air flows is formed by the internal spaces of the ducts 12 and 15 communicating with each other. The air blower 16 is provided at the opening of the duct 12 and forms an air flow in the air passage 10. The air blower 16 may be a sirocco fan, a cross flow fan, or another fan.
 イオン発生装置26は、ダクト15の内部に配置されている。イオン発生装置26は、電気機器100に一体に組み込まれた構成であってもよい。またはイオン発生装置26は、電気機器100に対して取り外し可能に設けられてもよく、この場合、イオン発生装置26を交換可能な仕様にできるので、電気機器100のメンテナンスが容易になる。 The ion generator 26 is disposed inside the duct 15. The ion generator 26 may be configured to be integrated into the electric device 100. Alternatively, the ion generator 26 may be provided so as to be detachable from the electric device 100. In this case, the ion generator 26 can be made to have a replaceable specification, so that maintenance of the electric device 100 is facilitated.
 図2は、実施の形態1のイオン発生装置26の構成を示す平面図である。図3は、図2中の矢印IIIに示す方向から見たイオン発生装置26を示す側面図である。図4は、図2中の矢印IVに示す方向から見たイオン発生装置26を示す側面図である。図5は、実施の形態1のイオン発生装置26の内部構造を示す平面図である。図6は、図5に示すVI-VI線に沿うイオン発生装置26の断面図である。図7は、図5に示すVII-VII線に沿うイオン発生装置26の断面図である。図2~図7を参照して、本実施の形態のイオン発生装置26の構造について詳細に説明する。 FIG. 2 is a plan view showing the configuration of the ion generator 26 of the first embodiment. FIG. 3 is a side view showing the ion generator 26 as seen from the direction indicated by the arrow III in FIG. FIG. 4 is a side view showing the ion generator 26 as seen from the direction indicated by the arrow IV in FIG. FIG. 5 is a plan view showing the internal structure of the ion generator 26 of the first embodiment. FIG. 6 is a cross-sectional view of the ion generator 26 along the line VI-VI shown in FIG. FIG. 7 is a cross-sectional view of the ion generator 26 taken along the line VII-VII shown in FIG. With reference to FIGS. 2 to 7, the structure of the ion generator 26 of the present embodiment will be described in detail.
 実施の形態1のイオン発生装置26は、外装ケース31と、放電電極40と、誘導電極(対向電極)45と、基板50と、高電圧発生回路部53と、基板支持ケース54および基板支持ケース55と、配線56および配線57とを主に備えている。 The ion generator 26 of Embodiment 1 includes an outer case 31, a discharge electrode 40, an induction electrode (counter electrode) 45, a substrate 50, a high voltage generation circuit unit 53, a substrate support case 54, and a substrate support case. 55 and wiring 56 and wiring 57 are mainly provided.
 放電電極40は、第1の針状電極41、第2の針状電極42、第3の針状電極43および第4の針状電極44を含んでいる。第1~第4の針状電極41~44は、それぞれ、針形状に形成されており、直線状に延在するとともに、先端が尖鋭化された針先を有している。第1~第4の針状電極41~44は、それぞれの電極の延びる方向が互いに平行となるように、同一平面内に配置されている。 The discharge electrode 40 includes a first needle-like electrode 41, a second needle-like electrode 42, a third needle-like electrode 43, and a fourth needle-like electrode 44. Each of the first to fourth needle-like electrodes 41 to 44 is formed in a needle shape, extends linearly, and has a needle tip with a sharpened tip. The first to fourth needle-like electrodes 41 to 44 are arranged in the same plane so that the extending directions of the respective electrodes are parallel to each other.
 第1の針状電極41と第3の針状電極43とは、それぞれの延びる方向に対して直交する方向に間隔をあけて、並んで配置されている。第2の針状電極42と第4の針状電極44とは、それぞれの延びる方向に対して直交する方向に間隔をあけて、並んで配置されている。 The first acicular electrode 41 and the third acicular electrode 43 are arranged side by side with an interval in a direction orthogonal to the extending direction. The 2nd acicular electrode 42 and the 4th acicular electrode 44 are arrange | positioned along with the space | interval in the direction orthogonal to each extending direction.
 第1の針状電極41と第2の針状電極42とは、それぞれの延びる方向に距離を設けて、互いに対向して配置されている。第1の針状電極41の針先と、第2の針状電極42の針先とは、互いに向かい合っている。第1の針状電極41の中心軸と第2の針状電極42の中心軸とは、同一直線上に位置している。第3の針状電極43と第4の針状電極44とは、それぞれの延びる方向に距離を設けて、互いに対向して配置されている。第3の針状電極43の針先と、第4の針状電極44の針先とは、互いに向かい合っている。第3の針状電極43の中心軸と第4の針状電極44の中心軸とは、同一直線上に位置している。 The first needle-like electrode 41 and the second needle-like electrode 42 are arranged to face each other with a distance in the extending direction. The needle tip of the first needle electrode 41 and the needle tip of the second needle electrode 42 face each other. The central axis of the first acicular electrode 41 and the central axis of the second acicular electrode 42 are located on the same straight line. The third acicular electrode 43 and the fourth acicular electrode 44 are arranged to face each other with a distance in the extending direction. The needle tip of the third needle electrode 43 and the needle tip of the fourth needle electrode 44 face each other. The central axis of the third acicular electrode 43 and the central axis of the fourth acicular electrode 44 are located on the same straight line.
 誘導電極45は、第1の針状電極41と第3の針状電極43との間に配置されている。誘導電極45は、第1の針状電極41および第3の針状電極43の両方から離れて配置されている。誘導電極45は、第1の針状電極41と誘導電極45との間の距離と、第3の針状電極43と誘導電極45との間の距離とが、互いに等しくなる位置に設けられている。誘導電極45はまた、第2の針状電極42と誘導電極45との間の距離と、第4の針状電極44と誘導電極45との間の距離とが、互いに等しくなる位置に設けられている。誘導電極45を第1の針状電極41と第3の針状電極43との中間に設けることで、第1および第3の針状電極41,43の両方から最も離れた位置に誘導電極45を配置することができ、誘導電極45で回収されて消滅するイオンの量を低減できる。 The induction electrode 45 is disposed between the first acicular electrode 41 and the third acicular electrode 43. The induction electrode 45 is disposed away from both the first needle-like electrode 41 and the third needle-like electrode 43. The induction electrode 45 is provided at a position where the distance between the first acicular electrode 41 and the induction electrode 45 and the distance between the third acicular electrode 43 and the induction electrode 45 are equal to each other. Yes. The induction electrode 45 is also provided at a position where the distance between the second acicular electrode 42 and the induction electrode 45 and the distance between the fourth acicular electrode 44 and the induction electrode 45 are equal to each other. ing. By providing the induction electrode 45 in the middle between the first needle-like electrode 41 and the third needle-like electrode 43, the induction electrode 45 is located farthest from both the first and third needle- like electrodes 41, 43. And the amount of ions recovered by the induction electrode 45 and disappearing can be reduced.
 第1~第4の針状電極41~44は、それぞれが放電によりイオンを発生する。第1の針状電極41と第4の針状電極44とは、正イオンを発生する。第2の針状電極42と第3の針状電極43とは、負イオンを発生する。第1の針状電極41と第3の針状電極43とは、互いに異なる極性のイオンを発生させ、第2の針状電極42と第4の針状電極44とは、互いに異なる極性のイオンを発生させる。第1の針状電極41と第2の針状電極42とは、互いに異なる極性のイオンを発生させ、第3の針状電極43と第4の針状電極44とは、互いに異なる極性のイオンを発生させる。 The first to fourth needle-like electrodes 41 to 44 generate ions by discharge. The first acicular electrode 41 and the fourth acicular electrode 44 generate positive ions. The second acicular electrode 42 and the third acicular electrode 43 generate negative ions. The first acicular electrode 41 and the third acicular electrode 43 generate ions having different polarities, and the second acicular electrode 42 and the fourth acicular electrode 44 have different polarities. Is generated. The first acicular electrode 41 and the second acicular electrode 42 generate ions having different polarities, and the third acicular electrode 43 and the fourth acicular electrode 44 have different polarities. Is generated.
 第1~第4の針状電極41~44のうち、隣接して配置されるまたは互いに向かい合って配置される2つの針状電極は、異なる極性のイオンを発生する。異なる極性のイオンを発生する針状電極を離して配置することにより、発生した正イオンと負イオンとの中和、または異極性電極へのイオンの回収などによるイオン濃度の減少を抑制できるので、より高濃度のイオンを発生できるようになっている。 Of the first to fourth needle-shaped electrodes 41 to 44, two needle-shaped electrodes arranged adjacent to each other or facing each other generate ions of different polarities. By separating the needle electrodes that generate ions of different polarity, it is possible to suppress the decrease in ion concentration due to neutralization of the generated positive ions and negative ions, or collection of ions to the different polarity electrode, etc. A higher concentration of ions can be generated.
 第1~第4の針状電極41~44は、発生する正イオンと負イオンとが混合されやすいように配置されており、たとえば、第1~第4の針状電極41~44に対し空気流れの下流側(風下側)に風路を分岐させたとしても、各々の分岐ダクトにバランスよく正イオンと負イオンとを供給でき、室内空間に高濃度の正イオンと負イオンとの両方が混合された空気を放出できる。 The first to fourth needle-like electrodes 41 to 44 are arranged so that the generated positive ions and negative ions are easily mixed. For example, the first to fourth needle-like electrodes 41 to 44 have an air flow relative to the first to fourth needle-like electrodes 41 to 44. Even if the air path is branched downstream (downstream), positive ions and negative ions can be supplied to each branch duct in a balanced manner, and both high-concentration positive ions and negative ions are supplied to the indoor space. Can release mixed air.
 高電圧発生回路部53は、第1~第4の針状電極41~44に印加するための高電圧を発生する。第1の針状電極41に正の高電圧が印加され、第3の針状電極43に負の高電圧が印加されると、これら放電電極と誘導電極45との間にコロナ放電が発生し、正イオンおよび負イオンが発生する。同様に、第2の針状電極42に負の高電圧が印加され、第4の針状電極44に正の高電圧が印加されると、これら放電電極と誘導電極45との間にコロナ放電が発生し、負イオンおよび正イオンが発生する。 The high voltage generation circuit unit 53 generates a high voltage to be applied to the first to fourth needle electrodes 41 to 44. When a positive high voltage is applied to the first needle electrode 41 and a negative high voltage is applied to the third needle electrode 43, a corona discharge is generated between the discharge electrode and the induction electrode 45. , Positive ions and negative ions are generated. Similarly, when a negative high voltage is applied to the second acicular electrode 42 and a positive high voltage is applied to the fourth acicular electrode 44, a corona discharge is generated between the discharge electrode and the induction electrode 45. And negative ions and positive ions are generated.
 基板50は、放電電極40を搭載している。基板50は、一方の主表面50a、および、一方の主表面50aと反対側の他方の主表面50bとを有している。基板50は、第1の基板としての基板51と、第2の基板としての基板52とを、別々の異なる基板として含んでいる。基板51と基板52とは、互いに対向して設けられている。基板51は一方の表面51aと他方の表面51bとを有しており、基板52は一方の表面52aと他方の表面52bを有している。表面51aと表面52aとが対面するように、基板51,52は配置されている。 The substrate 50 has the discharge electrode 40 mounted thereon. The substrate 50 has one main surface 50a and the other main surface 50b opposite to the one main surface 50a. The substrate 50 includes a substrate 51 as a first substrate and a substrate 52 as a second substrate as separate different substrates. The substrate 51 and the substrate 52 are provided to face each other. The substrate 51 has one surface 51a and the other surface 51b, and the substrate 52 has one surface 52a and the other surface 52b. The substrates 51 and 52 are arranged so that the surface 51a and the surface 52a face each other.
 第1の針状電極41および第3の針状電極43は、基板51に搭載されている。第1の針状電極41および第3の針状電極43は、それぞれの針先が表面51aから突出するように、基板51に固定されている。第2の針状電極42および第4の針状電極44は、基板52に搭載されている。第2の針状電極42および第4の針状電極44は、それぞれの針先が表面52aから突出するように、基板52に固定されている。 The first acicular electrode 41 and the third acicular electrode 43 are mounted on the substrate 51. The first needle-like electrode 41 and the third needle-like electrode 43 are fixed to the substrate 51 so that the respective needle tips protrude from the surface 51a. The second acicular electrode 42 and the fourth acicular electrode 44 are mounted on the substrate 52. The second needle-like electrode 42 and the fourth needle-like electrode 44 are fixed to the substrate 52 such that the respective needle tips protrude from the surface 52a.
 高電圧発生回路部53は、基板51に対し他方の表面51b側に設けられている。基板支持ケース54は、基板51を支持するとともに、高電圧発生回路部53を覆うように設けられている。基板支持ケース54は、高電圧発生回路部53および基板51を収容し保持する第1筺体としての機能を有している。基板支持ケース55は、基板52を支持するように設けられている。基板支持ケース55は、基板52を収容し保持する筺体としての機能を有している。 The high voltage generation circuit unit 53 is provided on the other surface 51 b side with respect to the substrate 51. The substrate support case 54 is provided so as to support the substrate 51 and cover the high voltage generation circuit unit 53. The substrate support case 54 has a function as a first housing that accommodates and holds the high voltage generation circuit unit 53 and the substrate 51. The substrate support case 55 is provided to support the substrate 52. The substrate support case 55 has a function as a housing that accommodates and holds the substrate 52.
 基板51には、基板51の厚み方向に延びるビア電極、および、厚み方向に直交する面方向に延びる電極パターンが形成されている。これらビア電極および電極パターンは、高電圧発生回路部53と第1および第3の針状電極41,43との間を電気的に接続する接続部材を含んでいる。配線56は、高電圧発生回路部53と第2の針状電極42の間を電気的に接続する接続部材として設けられている。配線57は、高電圧発生回路部53と第4の針状電極44との間を電気的に接続する接続部材として設けられている。配線56,57は、高電圧発生回路部53で発生する高電圧に対応した絶縁耐性を有している高圧線である。 The substrate 51 is formed with a via electrode extending in the thickness direction of the substrate 51 and an electrode pattern extending in a plane direction orthogonal to the thickness direction. These via electrodes and electrode patterns include a connection member that electrically connects the high voltage generation circuit portion 53 and the first and third needle- like electrodes 41 and 43. The wiring 56 is provided as a connection member that electrically connects the high voltage generation circuit portion 53 and the second needle electrode 42. The wiring 57 is provided as a connection member that electrically connects the high voltage generation circuit unit 53 and the fourth needle electrode 44. The wirings 56 and 57 are high voltage lines having insulation resistance corresponding to the high voltage generated in the high voltage generation circuit unit 53.
 基板支持ケース55は、基板52における、第2および第4の針状電極42,44と配線56,57との接点を覆うように、設けられている。基板52の表面52bと、基板支持ケース55とが規定する空間には、モールド材61が充填されている。モールド材61は、基板52と基板支持ケース55とによって取り囲まれる空間内に充満している。モールド材61は、基板52に対し表面52b側のみに設けられ、表面52a側にはモールド材は設けられていない。 The substrate support case 55 is provided so as to cover the contacts between the second and fourth needle electrodes 42 and 44 and the wirings 56 and 57 on the substrate 52. A space defined by the surface 52 b of the substrate 52 and the substrate support case 55 is filled with a molding material 61. The molding material 61 is filled in a space surrounded by the substrate 52 and the substrate support case 55. The molding material 61 is provided only on the surface 52b side with respect to the substrate 52, and no molding material is provided on the surface 52a side.
 外装ケース31は、イオン発生装置26の外観をなす筺体として設けられている。外装ケース31は、樹脂材料により一体に成形されている。外装ケース31は、その構成部位として、基板収容部32,33と、リブ状部34~36とを有している。外装ケース31は、基板収容部32、リブ状部35、基板収容部33およびリブ状部34により四辺が構成される、矩形の枠形状を有している。外装ケース31は、放電電極40の延在方向に沿って延びる長辺と、放電電極40の延在方向に直交する方向に沿って延びる短辺とを有する、矩形の平面視を有している。 The outer case 31 is provided as a casing that forms the appearance of the ion generator 26. The outer case 31 is integrally formed of a resin material. The outer case 31 has substrate housing portions 32 and 33 and rib-like portions 34 to 36 as its constituent parts. The exterior case 31 has a rectangular frame shape in which four sides are constituted by the substrate housing portion 32, the rib-like portion 35, the substrate housing portion 33, and the rib-like portion 34. The outer case 31 has a rectangular plan view having a long side extending along the extending direction of the discharge electrode 40 and a short side extending along a direction orthogonal to the extending direction of the discharge electrode 40. .
 基板収容部32および基板収容部33は、互いに距離を隔てて平行に配置されている。基板収容部32は、基板収容部33よりも大きい容積を有している。基板収容部32には、基板51、高電圧発生回路部53および基板支持ケース54が収容されている。基板収容部33には、基板52および基板支持ケース55が収容されている。外装ケース31は、基板支持ケース54,55、基板52、高電圧発生回路部53および配線56,57を収容する、第2筺体としての機能を有している。 The substrate housing part 32 and the substrate housing part 33 are arranged in parallel at a distance from each other. The substrate housing part 32 has a larger volume than the substrate housing part 33. The substrate accommodating portion 32 accommodates a substrate 51, a high voltage generation circuit portion 53, and a substrate support case 54. A substrate 52 and a substrate support case 55 are accommodated in the substrate accommodating portion 33. The exterior case 31 has a function as a second housing that accommodates the substrate support cases 54 and 55, the substrate 52, the high voltage generation circuit unit 53, and the wirings 56 and 57.
 第1の針状電極41および第3の針状電極43は、基板51の表面51aから突出して、外装ケース31の外部に延出している。第2の針状電極42および第4の針状電極44は、基板52の表面52aから突出して、外装ケース31の外部に延出している。図5に示す構成に追加して、安全性を向上させるために、第1~第4の針状電極41~44の針先に直接触れられなくする保護カバーを設けてもよい。 The first acicular electrode 41 and the third acicular electrode 43 protrude from the surface 51 a of the substrate 51 and extend to the outside of the outer case 31. The second acicular electrode 42 and the fourth acicular electrode 44 protrude from the surface 52 a of the substrate 52 and extend outside the outer case 31. In addition to the configuration shown in FIG. 5, in order to improve safety, a protective cover that prevents direct contact with the needle tips of the first to fourth needle-like electrodes 41 to 44 may be provided.
 第1および第3の針状電極41,43、誘導電極45、基板51、高電圧発生回路部53および基板支持ケース54は、電源ユニットを構成している。第2および第4の針状電極42,44、基板52および基板支持ケース55は、電極ユニットを構成している。 The first and third acicular electrodes 41 and 43, the induction electrode 45, the substrate 51, the high voltage generation circuit unit 53, and the substrate support case 54 constitute a power supply unit. The 2nd and 4th acicular electrodes 42 and 44, the board | substrate 52, and the board | substrate support case 55 comprise the electrode unit.
 第1および第3の針状電極41,43を搭載している基板51と、第2および第4の針状電極42,44を搭載している基板52とは、いずれも外装ケース31内に収容されている。これにより、第1~第4の針状電極41~44は、1ユニット化されている。外装ケース31内にはさらに、高電圧発生回路部53、誘導電極45、基板支持ケース54,55および配線56,57も収容されており、イオン発生装置26を構成する各要素が外装ケース31内に収められて一体化されている。第1~第4の針状電極41~44が1ユニット化されているために、第1~第4の針状電極41~44の位置決め精度が向上されており、また第1~第4の針状電極41~44の取扱が容易とされている。 Both the substrate 51 on which the first and third needle- like electrodes 41 and 43 are mounted and the substrate 52 on which the second and fourth needle- like electrodes 42 and 44 are mounted are in the outer case 31. Contained. Thus, the first to fourth needle-like electrodes 41 to 44 are made into one unit. The outer case 31 further accommodates a high voltage generation circuit unit 53, an induction electrode 45, substrate support cases 54 and 55, and wirings 56 and 57, and each element constituting the ion generator 26 is included in the outer case 31. It is housed and integrated. Since the first to fourth needle-like electrodes 41 to 44 are unitized, the positioning accuracy of the first to fourth needle-like electrodes 41 to 44 is improved, and the first to fourth needle-like electrodes 41 to 44 are improved. The needle electrodes 41 to 44 are easy to handle.
 リブ状部34およびリブ状部35は、互いに距離を隔てて平行に、かつ、基板収容部32および基板収容部33と直交するように配置されている。互いに対向する基板収容部32および基板収容部33の一方端同士が、リブ状部34によって連結されている。互いに対向する基板収容部32および基板収容部33の他方端同士が、リブ状部35によって連結されている。 The rib-shaped portion 34 and the rib-shaped portion 35 are arranged so as to be parallel to each other at a distance and orthogonal to the substrate accommodating portion 32 and the substrate accommodating portion 33. One ends of the substrate housing portion 32 and the substrate housing portion 33 facing each other are connected by a rib-shaped portion 34. The other ends of the substrate housing portion 32 and the substrate housing portion 33 facing each other are connected by a rib-like portion 35.
 リブ状部36は、リブ状部34およびリブ状部35と平行に配置されている。リブ状部36は、リブ状部34とリブ状部35との間で、基板収容部32および基板収容部33を互いに連結している。 The rib-shaped portion 36 is disposed in parallel with the rib-shaped portion 34 and the rib-shaped portion 35. The rib-shaped portion 36 connects the substrate housing portion 32 and the substrate housing portion 33 to each other between the rib-shaped portion 34 and the rib-shaped portion 35.
 リブ状部34~36は、基板収容部32から、第1の針状電極41および第3の針状電極43の延在方向に沿って、直線状に延びている。リブ状部34~36は、基板収容部33から、第2の針状電極42および第4の針状電極44の延在方向に沿って、直線状に延びている。 The rib portions 34 to 36 extend linearly from the substrate housing portion 32 along the extending direction of the first needle electrode 41 and the third needle electrode 43. The rib portions 34 to 36 extend linearly from the substrate housing portion 33 along the extending direction of the second needle electrode 42 and the fourth needle electrode 44.
 誘導電極45は、基板51の表面51aからリブ状部36の内部に向けて突出している。誘導電極45の先端部は、外装ケース31(リブ状部36)の内部に収容されている。絶縁性の樹脂材料製である外装ケース31内に誘導電極45を収容することにより、誘導電極45で回収されて消滅するイオンの量を低減できる。なお、誘導電極45は、図示された針状の形状のほか、板状または棒状の形状を有していてもよい。 The induction electrode 45 protrudes from the surface 51 a of the substrate 51 toward the inside of the rib-shaped portion 36. The leading end portion of the induction electrode 45 is accommodated in the exterior case 31 (rib-shaped portion 36). By accommodating the induction electrode 45 in the outer case 31 made of an insulating resin material, the amount of ions recovered and disappeared by the induction electrode 45 can be reduced. The induction electrode 45 may have a plate shape or a rod shape in addition to the illustrated needle shape.
 配線56は、基板収容部32からリブ状部35の内部を通って基板収容部33に向かうように配索されている。配線57は、基板収容部32からリブ状部34の内部を通って基板収容部33に向かうように配索されている。配線56は、リブ状部34およびリブ状部35のいずれか一方を通るように配索され、配線57は、リブ状部34およびリブ状部35のいずれか他方を通るように配索されている。 The wiring 56 is routed from the substrate housing portion 32 to the substrate housing portion 33 through the inside of the rib-shaped portion 35. The wiring 57 is routed from the substrate housing portion 32 toward the substrate housing portion 33 through the inside of the rib-shaped portion 34. The wiring 56 is routed so as to pass through one of the rib-like portion 34 and the rib-like portion 35, and the wiring 57 is routed so as to pass either one of the rib-like portion 34 and the rib-like portion 35. Yes.
 基板収容部32、リブ状部35、基板収容部33およびリブ状部34により囲まれた外装ケース31の内側には、中空の空間38が形成されている。空間38は、図2および図5における紙面垂直方向、すなわち、図3、図4、図6および図7における上下方向に、外装ケース31を貫通する形状に形成されている。 A hollow space 38 is formed inside the outer case 31 surrounded by the substrate housing portion 32, the rib-shaped portion 35, the substrate housing portion 33 and the rib-shaped portion 34. The space 38 is formed in a shape penetrating the outer case 31 in the direction perpendicular to the paper surface in FIGS. 2 and 5, that is, in the vertical direction in FIGS. 3, 4, 6 and 7.
 外装ケース31は、外表面31sを有しており、外表面31sの一部は、第1壁面37と、第1壁面37に対向する第2壁面39とを構成している。第1壁面37は基板収容部32に形成されており、第2壁面39は基板収容部33に形成されている。第1壁面37と第2壁面39とは、空間38の周縁の一部を構成している。第1壁面37と第2壁面39とは、基板収容部32,33間の空間38を区画形成している。空間38は、第1壁面37と第2壁面39との間に形成されている。互いに対向する一対の第1壁面37と第2壁面39とは、空間38に面して設けられている。基板収容部32内に収容された基板51は、その表面51aが空間38に向くように配置されている。基板収容部33内に収容された基板52は、その表面52aが空間38に向くように配置されている。 The exterior case 31 has an outer surface 31 s, and a part of the outer surface 31 s constitutes a first wall surface 37 and a second wall surface 39 that faces the first wall surface 37. The first wall surface 37 is formed in the substrate housing portion 32, and the second wall surface 39 is formed in the substrate housing portion 33. The first wall surface 37 and the second wall surface 39 constitute a part of the periphery of the space 38. The first wall surface 37 and the second wall surface 39 define a space 38 between the substrate housing portions 32 and 33. The space 38 is formed between the first wall surface 37 and the second wall surface 39. A pair of first wall surface 37 and second wall surface 39 facing each other is provided facing the space 38. The substrate 51 accommodated in the substrate accommodating portion 32 is arranged so that the surface 51 a faces the space 38. The substrate 52 accommodated in the substrate accommodating portion 33 is arranged so that the surface 52 a faces the space 38.
 基板51,52から延出する第1~第4の針状電極41~44の先端部は、空間38に配置されている。第1の針状電極41および第3の針状電極43の針先は、第1壁面37から外装ケース31の外部へ突出して、空間38内に並べて配置されている。第2の針状電極42および第4の針状電極44の針先は、第2壁面39から外装ケース31の外部へ突出して、空間38内に並べて配置されている。第1の針状電極41および第2の針状電極42の針先は、リブ状部34とリブ状部36との間の空間38に配置され、第3の針状電極43および第4の針状電極44の針先は、リブ状部36とリブ状部35との間の空間38に配置されている。 The tips of the first to fourth needle electrodes 41 to 44 extending from the substrates 51 and 52 are arranged in the space 38. The needle tips of the first needle-like electrode 41 and the third needle-like electrode 43 protrude from the first wall surface 37 to the outside of the outer case 31 and are arranged side by side in the space 38. The needle tips of the second needle-like electrode 42 and the fourth needle-like electrode 44 protrude from the second wall surface 39 to the outside of the outer case 31 and are arranged side by side in the space 38. The needle tips of the first needle-like electrode 41 and the second needle-like electrode 42 are disposed in the space 38 between the rib-like portion 34 and the rib-like portion 36, and the third needle-like electrode 43 and the fourth needle-like electrode 43 The needle tip of the needle electrode 44 is disposed in a space 38 between the rib-like portion 36 and the rib-like portion 35.
 リブ状部36は、互いに極性の異なるイオンを発生する第1および第3の針状電極41,43の間を仕切り、同様に、第2および第4の針状電極42,44の間を仕切っている。リブ状部36は、隣接する二つの針状電極間を仕切る仕切り板としての機能を有している。リブ状部36は、外装ケース31の一部を構成しており、絶縁性の樹脂材料によって形成されている。極性の異なるイオンを発生する二つの針状電極間がリブ状部36で空間的に遮断されるので、極性の異なる正イオンおよび負イオンが中和してイオン濃度が減少することが抑制されている。 The rib-like portion 36 partitions the first and third needle- like electrodes 41 and 43 that generate ions having different polarities, and similarly partitions the second and fourth needle- like electrodes 42 and 44. ing. The rib-like portion 36 has a function as a partition plate that partitions between two adjacent needle-like electrodes. The rib-shaped portion 36 constitutes a part of the outer case 31 and is formed of an insulating resin material. Since the rib-like portion 36 spatially blocks between the two needle-like electrodes that generate ions having different polarities, it is possible to suppress neutralization of positive ions and negative ions having different polarities to reduce the ion concentration. Yes.
 第1壁面37には、外装ケース31を厚み方向に貫通する開口部が形成されており、当該開口部は、基板収容部32の内部空間と空間38とを連通している。第1の針状電極41および第3の針状電極43は、第1壁面37に形成された開口部を貫通して、先端を空間38に突出させて配置されている。第2壁面39には、外装ケース31を厚み方向に貫通する開口部が形成されており、当該開口部は、基板収容部33の内部空間と空間38とを連通している。第2の針状電極42および第4の針状電極44は、第2壁面39に形成された開口部を貫通して、先端を空間38に突出させて配置されている。 The first wall surface 37 is formed with an opening that penetrates the outer case 31 in the thickness direction, and the opening communicates with the internal space of the substrate housing portion 32 and the space 38. The first needle-like electrode 41 and the third needle-like electrode 43 are disposed so as to penetrate the opening formed in the first wall surface 37 and project the tip into the space 38. An opening that penetrates the outer case 31 in the thickness direction is formed in the second wall surface 39, and the opening communicates the internal space of the substrate housing portion 33 with the space 38. The second needle-like electrode 42 and the fourth needle-like electrode 44 are disposed so as to penetrate the opening formed in the second wall surface 39 and project the tip into the space 38.
 空間38には、空気が通風される。外装ケース31は、空気の流路の一部を規定している。放電電極40が発生したイオンは、空間38を通過して流れる空気によって搬送される。空間38は、第1~第4の針状電極41~44が発生したイオンを搬送するための気体が流れる風路の一部を構成している。空間38の外縁を規定する第1壁面37および第2壁面39は、風路の一部を構成している。 Air is ventilated through the space 38. The outer case 31 defines a part of the air flow path. Ions generated by the discharge electrode 40 are transported by air flowing through the space 38. The space 38 constitutes a part of an air passage through which a gas for transporting ions generated by the first to fourth acicular electrodes 41 to 44 flows. The first wall surface 37 and the second wall surface 39 that define the outer edge of the space 38 constitute a part of the air path.
 空間38を流れる空気は、図2および図5における紙面垂直方向、すなわち、図3、図4、図6および図7における上下方向に、通風される。第1~第4の針状電極41~44は、空間38内の空気の流れる方向に対し直交する同一平面上に配置されている。第1~第4の針状電極41~44は、空間38内の空気の流れる方向に対し直交する方向に延びて、互いに平行に配置されている。 The air flowing through the space 38 is ventilated in the direction perpendicular to the paper surface in FIGS. 2 and 5, that is, in the vertical direction in FIGS. 3, 4, 6 and 7. The first to fourth needle-like electrodes 41 to 44 are arranged on the same plane perpendicular to the air flow direction in the space 38. The first to fourth needle-like electrodes 41 to 44 extend in a direction orthogonal to the direction of air flow in the space 38 and are arranged in parallel to each other.
 イオン発生装置26の外装ケース31により規定される空間38は、図1に示す風路10の一部を構成している。空間38は、ダクト15により形成される風路10に連通している。送風装置16は、風路10に含まれる空間38内に気体を送風する。空間38には、ダクト15内の風路10を流れる空気が通風される。空間38を通過して流れる空気は、図1中の上向き方向に通風される。 The space 38 defined by the outer case 31 of the ion generator 26 constitutes a part of the air passage 10 shown in FIG. The space 38 communicates with the air passage 10 formed by the duct 15. The blower 16 blows gas into the space 38 included in the air passage 10. Air flowing through the air passage 10 in the duct 15 is passed through the space 38. The air flowing through the space 38 is vented in the upward direction in FIG.
 空間38を通過して空気が流れることにより、放電電極40が発生したイオンが、空気の流れによって搬送され、図1に示す風路10を経由して吹出口から室内空間に放出される。空間38内に突出した第1~第4の針状電極41~44の風上および風下には、第1~第4の針状電極41~44への通風の妨げとなる構造物を配置しないように、電気機器100は設けられている。第1~第4の針状電極41~44が発生した正イオンPおよび負イオンN(図1参照)は、ダクト15が外部に開口する吹出口から放出される。風路10内に平行に配置された第1~第4の針状電極41~44で発生したイオンは、空気により搬送されて広いエリアに拡散し、高濃度の正イオンおよび負イオンが広範囲に存在するようになる。 When the air flows through the space 38, the ions generated by the discharge electrode 40 are transported by the air flow, and discharged from the air outlet to the indoor space via the air passage 10 shown in FIG. A structure that prevents the ventilation of the first to fourth needle-like electrodes 41 to 44 is not arranged on the windward and leeward sides of the first to fourth needle-like electrodes 41 to 44 protruding into the space 38. As described above, the electric device 100 is provided. Positive ions P and negative ions N (see FIG. 1) generated by the first to fourth needle-like electrodes 41 to 44 are discharged from a blow-out opening in which the duct 15 opens to the outside. Ions generated by the first to fourth needle-like electrodes 41 to 44 arranged in parallel in the air passage 10 are transported by air and diffused over a wide area, and high-concentration positive ions and negative ions are spread over a wide range. It comes to exist.
 イオン発生装置26は、給電コネクタ46をさらに備えている。給電コネクタ46は、高電圧発生回路部53を収容する基板収容部32に設けられている。給電コネクタ46は、高電圧発生回路部53に電力を供給するための給電部として設けられている。 The ion generator 26 further includes a power supply connector 46. The power feeding connector 46 is provided in the board housing portion 32 that houses the high voltage generation circuit portion 53. The power supply connector 46 is provided as a power supply unit for supplying power to the high voltage generation circuit unit 53.
 図8は、実施の形態1のイオン発生装置26における放電電極40付近の拡大図である。図8に詳細に示されるように、基板50は、平板形状に設けられており、一方の主表面50a、および、一方の主表面50aと反対側の他方の主表面50bとを有している。一方の主表面50aには、銅などの導電材料からなる導体パターン511が形成されている。他方の主表面50bには、銅などの導電材料からなる導体パターン512が形成されている。基板50は、一方の主表面50aと他方の主表面50bとの両方に導体パターンが形成された両面基板である。 FIG. 8 is an enlarged view of the vicinity of the discharge electrode 40 in the ion generator 26 of the first embodiment. As shown in detail in FIG. 8, substrate 50 is provided in a flat plate shape, and has one main surface 50a and one main surface 50a and the other main surface 50b on the opposite side. . Conductive pattern 511 made of a conductive material such as copper is formed on one main surface 50a. Conductor pattern 512 made of a conductive material such as copper is formed on the other main surface 50b. The substrate 50 is a double-sided substrate in which a conductor pattern is formed on both one main surface 50a and the other main surface 50b.
 基板50にはまた、一方の主表面50aから他方の主表面50bまで基板50を厚み方向に貫通する、貫通孔50hが形成されている。貫通孔50hの内壁面は、導体層520によって覆われている。基板50は、貫通孔50hの内壁面を覆う導体層520を有している。導体層520は、めっきにより形成されている。導体層520は、基板50の一方の主表面50aから他方の主表面50bにまで到達して、厚み方向に基板50を貫通している。 The substrate 50 is also formed with a through hole 50h that penetrates the substrate 50 in the thickness direction from one main surface 50a to the other main surface 50b. The inner wall surface of the through hole 50h is covered with a conductor layer 520. The substrate 50 has a conductor layer 520 that covers the inner wall surface of the through hole 50h. The conductor layer 520 is formed by plating. The conductor layer 520 reaches from one main surface 50a of the substrate 50 to the other main surface 50b and penetrates the substrate 50 in the thickness direction.
 一方の主表面50a上に形成された導体パターン511は、ランド521を含んでいる。ランド521は、貫通孔50hが一方の主表面50aに開口する開口部の周囲を取り囲んで形成されている。他方の主表面50b上に形成された導体パターン512は、ランド522を含んでいる。ランド522は、貫通孔50hが他方の主表面50bに開口する開口部の周囲を取り囲んで形成されている。導体層520は、一方の主表面50aにおいてランド521と電気的に接続しており、他方の主表面50bにおいてランド522と電気的に接続している。基板50は、貫通孔50hの内側に導体が形成されて両主表面上の導体パターンが電気的に接続されている、スルーホール基板である。貫通孔50hは、スルーホールビアとして形成されている。 The conductor pattern 511 formed on one main surface 50a includes a land 521. The land 521 is formed so as to surround the periphery of the opening in which the through hole 50h opens on one main surface 50a. Conductive pattern 512 formed on the other main surface 50 b includes land 522. The land 522 is formed so as to surround the periphery of the opening in which the through hole 50h opens on the other main surface 50b. Conductive layer 520 is electrically connected to land 521 on one main surface 50a, and electrically connected to land 522 on the other main surface 50b. The substrate 50 is a through-hole substrate in which a conductor is formed inside the through hole 50h and the conductor patterns on both main surfaces are electrically connected. The through hole 50h is formed as a through hole via.
 放電電極40は、基板50の貫通孔50hに挿通されている。放電電極40は、貫通孔50hを貫通して配置されている。放電電極40は、先端40aおよび基端40bを有している。放電電極40の先端40aは、基板50の一方の主表面50aから突出している。放電電極40の基端40bは、基板50の他方の主表面50bから突出している。放電電極40の基端40bに、図5~7に示す配線56,57のいずれか一方が接続され、これにより放電電極40に高電圧発生回路部53で発生した高電圧が印加される。 The discharge electrode 40 is inserted into the through hole 50 h of the substrate 50. The discharge electrode 40 is disposed through the through hole 50h. The discharge electrode 40 has a distal end 40a and a proximal end 40b. The tip 40 a of the discharge electrode 40 protrudes from one main surface 50 a of the substrate 50. The base end 40 b of the discharge electrode 40 protrudes from the other main surface 50 b of the substrate 50. Either one of the wirings 56 and 57 shown in FIGS. 5 to 7 is connected to the base end 40 b of the discharge electrode 40, whereby a high voltage generated by the high voltage generation circuit unit 53 is applied to the discharge electrode 40.
 モールド材61は、基板50に対し他方の主表面50b側のみに設けられている。モールド材61は、他方の主表面50bに接触して設けられており、他方の主表面50b側から貫通孔50hを覆っている。モールド材61は、基板50の他方の主表面50bから突出する放電電極40の基端40bを封止している。 The molding material 61 is provided only on the other main surface 50 b side with respect to the substrate 50. The molding material 61 is provided in contact with the other main surface 50b, and covers the through hole 50h from the other main surface 50b side. The molding material 61 seals the base end 40 b of the discharge electrode 40 protruding from the other main surface 50 b of the substrate 50.
 放電電極40の、基板50の主表面50aから突出する部分の根元部には、閉塞材62が設けられている。実施の形態1の閉塞材62は、半田材である。閉塞材62は、基板50の一方の主表面50a上において、放電電極40の全周を取り囲んで設けられており、放電電極40とランド521とを電気的に接続している。閉塞材62は、基板50の他方の主表面50b上において、放電電極40の全周を取り囲んで設けられており、放電電極40とランド522とを電気的に接続している。 A blocking material 62 is provided at the root of the discharge electrode 40 that protrudes from the main surface 50 a of the substrate 50. The closing material 62 of the first embodiment is a solder material. The blocking material 62 is provided on one main surface 50 a of the substrate 50 so as to surround the entire circumference of the discharge electrode 40, and electrically connects the discharge electrode 40 and the land 521. The blocking material 62 is provided on the other main surface 50 b of the substrate 50 so as to surround the entire circumference of the discharge electrode 40, and electrically connects the discharge electrode 40 and the land 522.
 閉塞材62は、貫通孔50hの内部に入りこんで、基板50を貫通して設けられている。閉塞材62は、貫通孔50hの内部において、導体層520と放電電極40の表面との間の微小な隙間Gを閉塞しており、放電電極40と導体層520とを電気的に接続している。閉塞材62は、放電電極40に接触し、かつ基板50の表面に形成された導体層520およびランド521,522に接触するように設けられている。 The closing material 62 enters the inside of the through hole 50h and is provided through the substrate 50. The closing material 62 closes a minute gap G between the conductor layer 520 and the surface of the discharge electrode 40 inside the through hole 50h, and electrically connects the discharge electrode 40 and the conductor layer 520. Yes. The blocking material 62 is provided so as to contact the discharge electrode 40 and to contact the conductor layer 520 and lands 521 and 522 formed on the surface of the substrate 50.
 閉塞材62は、放電電極40を基板50に半田を用いて固定することにより、形成されている。貫通孔50hを貫通するように放電電極40を配置した状態で、溶融した半田を貫通孔50h内に流し込み、その後半田が冷却されて硬化する。これにより、放電電極40が基板50に固定されるとともに、放電電極40と導体層520との間の隙間Gを閉塞する閉塞材62が設けられる。 The blocking material 62 is formed by fixing the discharge electrode 40 to the substrate 50 using solder. In a state where the discharge electrode 40 is disposed so as to penetrate the through hole 50h, the molten solder is poured into the through hole 50h, and then the solder is cooled and cured. As a result, the discharge electrode 40 is fixed to the substrate 50, and the closing material 62 that closes the gap G between the discharge electrode 40 and the conductor layer 520 is provided.
 図9は、実施の形態1のイオン発生装置26の構成を示す回路図である。図9に示すように、イオン発生装置26は、第1~第4の針状電極41~44および誘導電極45の他に、端子T1,T2、昇圧回路90、昇圧トランス91、ダイオード92,93、コンデンサ94,95とを備えている。昇圧回路90、昇圧トランス91、ダイオード92,93、コンデンサ94,95は、図5に示す高電圧発生回路部53の構成に含まれている。 FIG. 9 is a circuit diagram showing a configuration of the ion generator 26 of the first embodiment. As shown in FIG. 9, in addition to the first to fourth needle-like electrodes 41 to 44 and the induction electrode 45, the ion generator 26 includes terminals T1 and T2, a booster circuit 90, a booster transformer 91, and diodes 92 and 93. , Capacitors 94 and 95. The step-up circuit 90, step-up transformer 91, diodes 92 and 93, and capacitors 94 and 95 are included in the configuration of the high voltage generation circuit unit 53 shown in FIG.
 昇圧回路90は、ダイオード、抵抗素子およびNPNバイポーラトランジスタなどを適宜含んで構成されている。昇圧トランス91は、一次巻線91aと、二次巻線91bとを含んでいる。ダイオード92,93およびコンデンサ94,95は、整流のために設けられている。二次巻線91bの一端は、第1~第4の針状電極41~44に電気的に接続されている。二次巻線91bの他端は、誘導電極45に電気的に接続されている。 The booster circuit 90 includes a diode, a resistance element, an NPN bipolar transistor, and the like as appropriate. Step-up transformer 91 includes a primary winding 91a and a secondary winding 91b. The diodes 92 and 93 and the capacitors 94 and 95 are provided for rectification. One end of the secondary winding 91b is electrically connected to the first to fourth needle electrodes 41 to 44. The other end of the secondary winding 91b is electrically connected to the induction electrode 45.
 昇圧トランス91は、第1~第4の針状電極41~44のそれぞれに印加される正または負の高電圧を発生する。端子T1,T2間に電圧が印加されると、ダイオード92を介して正の高電圧パルスが第1の針状電極41および第4の針状電極44に印加され、ダイオード93を介して負の高電圧パルスが第2の針状電極42および第3の針状電極43に印加される。これにより、第1~第4の針状電極41~44の針先と誘導電極45との間でコロナ放電が発生し、第1の針状電極41および第4の針状電極44が正イオンを発生し、第2の針状電極42および第3の針状電極43が負イオンを発生する。 The step-up transformer 91 generates a positive or negative high voltage applied to each of the first to fourth needle-like electrodes 41 to 44. When a voltage is applied between the terminals T1 and T2, a positive high voltage pulse is applied to the first needle electrode 41 and the fourth needle electrode 44 via the diode 92, and a negative voltage is applied via the diode 93. A high voltage pulse is applied to the second acicular electrode 42 and the third acicular electrode 43. As a result, corona discharge is generated between the needle tips of the first to fourth needle-like electrodes 41 to 44 and the induction electrode 45, and the first needle-like electrode 41 and the fourth needle-like electrode 44 are positive ions. The second acicular electrode 42 and the third acicular electrode 43 generate negative ions.
 1つの昇圧トランス91で第1~第4の針状電極41~44の各々に高電圧を印加することができ、高電圧発生用回路の数を最小限に留めることができるので、部品点数を削減してイオン発生装置26の製造コストを抑制できるとともに、イオン発生装置26の消費電力を低減することができる。高電圧発生用回路の数に合わせて誘導電極45の数を低減することで、イオン発生の効率を向上できるとともに、第1~第4の針状電極41~44で発生したイオンが誘導電極45で回収されてイオン濃度が減少することを抑制でき、より高濃度のイオンを発生することができる。 A single step-up transformer 91 can apply a high voltage to each of the first to fourth needle-like electrodes 41 to 44, and the number of high voltage generation circuits can be kept to a minimum. It is possible to reduce the manufacturing cost of the ion generator 26 and to reduce the power consumption of the ion generator 26. By reducing the number of induction electrodes 45 in accordance with the number of high voltage generation circuits, the efficiency of ion generation can be improved, and ions generated by the first to fourth needle-like electrodes 41 to 44 can be induced. It is possible to suppress the reduction of the ion concentration by being recovered by the above, and it is possible to generate a higher concentration of ions.
 なお、正イオンは、水素イオン(H)の周囲に複数の水分子が付随したクラスターイオンであり、H(HO)m(mは0以上の任意の整数)と表わされる。負イオンは、酸素イオン(O )の周囲に複数の水分子が付随したクラスターイオンであり、O (HO)n(nは0以上の任意の整数)と表わされる。正イオンおよび負イオンを放出すると、両イオンが空気中を浮遊するカビ菌やウィルスの周りを取り囲み、その表面上で互いに化学反応を起こす。その際に生成される活性種の水酸化ラジカル(・OH)の作用により、浮遊カビ菌などが除去される。 A positive ion is a cluster ion in which a plurality of water molecules are attached around a hydrogen ion (H + ), and is represented as H + (H 2 O) m (m is an arbitrary integer of 0 or more). A negative ion is a cluster ion in which a plurality of water molecules are attached around an oxygen ion (O 2 ), and is represented as O 2 (H 2 O) n (n is an arbitrary integer of 0 or more). When positive ions and negative ions are released, both ions surround mold fungi and viruses floating in the air and cause a chemical reaction with each other on the surface. Suspended fungi and the like are removed by the action of the active species hydroxyl radical (.OH) generated at that time.
 図10は、実施の形態1のイオン発生装置26と風路10との関係の第1の例を示す模式図である。図11は、実施の形態1のイオン発生装置26と風路10との関係の第2の例を示す模式図である。なお、図10,11において斜線のハッチングを付した部分が、風路10を示している。 FIG. 10 is a schematic diagram illustrating a first example of the relationship between the ion generator 26 and the air passage 10 according to the first embodiment. FIG. 11 is a schematic diagram illustrating a second example of the relationship between the ion generator 26 and the air passage 10 according to the first embodiment. In FIGS. 10 and 11, the hatched portion indicates the air passage 10.
 上述したように、電気機器100のダクト15内に形成される風路10は、イオン発生装置26の外装ケース31によって規定される空間38を含んでいる。この空間38と風路10との関係としては、たとえば図10に示すように、風路10の外形と空間38の外形とが等しく形成されてもよい。すなわち、ダクト15内を通過する空気の全てが空間38を通過するような構成としてもよい。または、図11に示すように、風路10の外形を空間38の外形よりも大きくし、典型的には風路10の外形を外装ケース31の外形よりも大きくしてもよい。すなわち、ダクト15内を通過する空気の一部のみが空間38を通過するような構成としてもよい。 As described above, the air passage 10 formed in the duct 15 of the electric device 100 includes the space 38 defined by the outer case 31 of the ion generator 26. As the relationship between the space 38 and the air passage 10, for example, as shown in FIG. 10, the outer shape of the air passage 10 and the outer shape of the space 38 may be formed equal. That is, a configuration in which all of the air passing through the duct 15 passes through the space 38 may be adopted. Alternatively, as illustrated in FIG. 11, the outer shape of the air passage 10 may be larger than the outer shape of the space 38, and typically, the outer shape of the air passage 10 may be larger than the outer shape of the exterior case 31. In other words, only a part of the air passing through the duct 15 may pass through the space 38.
 本実施の形態によれば、各々の風路サイズに適した高濃度のイオンを供給できるイオン発生装置26を、より安価に作成することが可能となる。 According to the present embodiment, the ion generator 26 that can supply high-concentration ions suitable for each air passage size can be produced at a lower cost.
 (実施の形態2)
 図12は、実施の形態2のイオン発生装置26の内部構造を示す平面図である。図5に示す実施の形態1のイオン発生装置26と比較して、図12に示す実施の形態2のイオン発生装置26では、モールド材61の設けられる範囲が縮小している。具体的には、図5に示す実施の形態1では、基板52と基板支持ケース55とによって囲まれた空間の全体にモールド材61が充填されていたのに対し、実施の形態2の基板支持ケース55は、基板52に向けて突起する突起部55pを有している。突起部55pは、放電電極40(針状電極42,44)が挿通されている貫通孔の全周を取り囲む形状に形成されている。モールド材61は、基板52の表面52bと、突起部55pとによって規定される空間内に、充填されている。
(Embodiment 2)
FIG. 12 is a plan view showing the internal structure of the ion generator 26 of the second embodiment. Compared with the ion generator 26 of Embodiment 1 shown in FIG. 5, in the ion generator 26 of Embodiment 2 shown in FIG. 12, the range in which the molding material 61 is provided is reduced. Specifically, in the first embodiment shown in FIG. 5, the entire space surrounded by the substrate 52 and the substrate support case 55 is filled with the molding material 61, whereas the substrate support of the second embodiment is used. The case 55 has a protruding portion 55 p that protrudes toward the substrate 52. The protrusion 55p is formed in a shape surrounding the entire circumference of the through hole through which the discharge electrode 40 (needle electrodes 42, 44) is inserted. The molding material 61 is filled in a space defined by the surface 52b of the substrate 52 and the protrusion 55p.
 このように設けられたモールド材61は、実施の形態1と同様に、基板52に形成された貫通孔および放電電極40を基板52の表面52b側から封止する機能を有している。実施の形態1と比較してモールド材61の必要量を低減することができるので、イオン発生装置26の材料費および加工費を抑制することができる。 The molding material 61 provided in this manner has a function of sealing the through-hole formed in the substrate 52 and the discharge electrode 40 from the surface 52b side of the substrate 52, as in the first embodiment. Since the required amount of the molding material 61 can be reduced as compared with the first embodiment, the material cost and processing cost of the ion generator 26 can be suppressed.
 単一の基板支持ケース55が第2および第4の針状電極42,44と配線56,57との2つの接点の両方を覆っている図5,12に示す構成に替えて、第2の針状電極42と配線56との接点を覆うケースと、第4の針状電極44と配線57との接点を覆うケースとを、別々に設けてもよい。 Instead of the configuration shown in FIGS. 5 and 12 in which the single substrate support case 55 covers both the two contacts of the second and fourth needle- like electrodes 42 and 44 and the wirings 56 and 57, A case covering the contact point between the needle-like electrode 42 and the wiring 56 and a case covering the contact point between the fourth needle-like electrode 44 and the wiring 57 may be provided separately.
 (実施の形態3)
 図13は、実施の形態3のイオン発生装置26における放電電極40付近の拡大図である。図8に示す実施の形態1のイオン発生装置26では、基板50は両面基板であり、また閉塞材62は、基板50の一方の主表面50aから他方の主表面50bにまで基板50の厚み方向に延び、基板50を厚み方向に貫通して配置され、基板50に形成された貫通孔50hを覆う導体層520と放電電極40との間の隙間Gを閉塞する構成を有していた。この構成に替えて、図13に示すように、基板50は、他方の主表面50bのみに導体パターン512が形成された片面基板であり、基板50の一方の主表面50aと放電電極40との間の隙間Gを閉塞する閉塞材62を設けてもよい。
(Embodiment 3)
FIG. 13 is an enlarged view of the vicinity of the discharge electrode 40 in the ion generator 26 of the third embodiment. In the ion generator 26 of Embodiment 1 shown in FIG. 8, the substrate 50 is a double-sided substrate, and the blocking material 62 is in the thickness direction of the substrate 50 from one main surface 50a of the substrate 50 to the other main surface 50b. The gap G between the conductor layer 520 and the discharge electrode 40 covering the through hole 50h formed in the substrate 50 is closed. Instead of this configuration, as shown in FIG. 13, the substrate 50 is a single-sided substrate in which the conductor pattern 512 is formed only on the other main surface 50 b, and the one main surface 50 a of the substrate 50 and the discharge electrode 40 You may provide the obstruction | occlusion material 62 which obstruct | occludes the clearance gap G between them.
 導体パターン512は、銅などの導電材料製のランド522を含んでいる。ランド522は、貫通孔50hが他方の主表面50bに開口する開口部の周囲を取り囲んで形成されている。基板50の他方の主表面50b上において、ランド522と放電電極40との間には、導電材料製の導電部530が設けられている。実施の形態3のイオン発生装置26は、基板50の他方の主表面50bに形成された導体パターン512と放電電極40とを電気的に接続する導電部を備えている。 The conductor pattern 512 includes a land 522 made of a conductive material such as copper. The land 522 is formed so as to surround the periphery of the opening in which the through hole 50h opens on the other main surface 50b. On the other main surface 50 b of the substrate 50, a conductive portion 530 made of a conductive material is provided between the land 522 and the discharge electrode 40. The ion generator 26 of Embodiment 3 includes a conductive portion that electrically connects the conductor pattern 512 formed on the other main surface 50 b of the substrate 50 and the discharge electrode 40.
 実施の形態3の閉塞材62は、フッ素系樹脂コーティング材に代表される、撥水性、絶縁耐圧または機械的強度に優れた各種樹脂コーティング材である。実施の形態3の導電部530は、半田材である。この構成によっても、基板50と放電電極40との間の隙間Gを閉塞材62によって確実に閉塞することができる。 The plugging material 62 of Embodiment 3 is various resin coating materials excellent in water repellency, withstand voltage, or mechanical strength, represented by a fluorine resin coating material. The conductive portion 530 of the third embodiment is a solder material. Also with this configuration, the gap G between the substrate 50 and the discharge electrode 40 can be reliably closed by the closing material 62.
 図13に示す構成を備えている実施の形態3のイオン発生装置26を製造する際には、基板50に形成された貫通孔50hを貫通するように放電電極40を配置した状態で、放電電極40の基端40b側をランド522に半田付けして、放電電極40を基板50に固定する。このとき半田材は、基板50の他方の主表面50bに形成されているランド522の上にしかのらないので、貫通孔50hの中には入り込まない。その後、溶融した樹脂材料を一方の主表面50a側から流し込み、樹脂材料が硬化することにより、閉塞材62が形成される。このとき、樹脂材料の一部は貫通孔50hの内部に入りこんでいくが、図13に示すように閉塞材62と導電部530との間に空洞ができることもあれば、空洞ができない場合もあり得る。 When manufacturing the ion generator 26 of Embodiment 3 having the configuration shown in FIG. 13, the discharge electrode 40 is disposed in a state in which the discharge electrode 40 is disposed so as to penetrate the through hole 50h formed in the substrate 50. 40 is soldered to the land 522 to fix the discharge electrode 40 to the substrate 50. At this time, the solder material does not enter the through hole 50h because the solder material only rests on the land 522 formed on the other main surface 50b of the substrate 50. Thereafter, the melted resin material is poured from the one main surface 50a side, and the resin material is cured, whereby the blocking material 62 is formed. At this time, a part of the resin material enters the inside of the through-hole 50h. However, as shown in FIG. 13, there may be a cavity between the blocking material 62 and the conductive portion 530, or there may be a cavity. obtain.
 (実施の形態4)
 図14は、実施の形態4のイオン発生装置26の内部構造を示す平面図である。図14に示す実施の形態4のイオン発生装置26では、図5を参照して説明した実施の形態1のイオン発生装置26と同様に、電極ユニットを構成している基板52と基板支持ケース55とによって規定された空間にモールド材61が充填されて、基板52の表面52b側が封止されている。加えて、実施の形態5のイオン発生装置26では、電源ユニットを構成している基板51と基板支持ケース54とによって規定された空間にモールド材61が充填されて、基板51の表面51b側が封止されている。
(Embodiment 4)
FIG. 14 is a plan view showing the internal structure of the ion generator 26 of the fourth embodiment. In the ion generator 26 according to the fourth embodiment shown in FIG. 14, the substrate 52 and the substrate support case 55 that constitute the electrode unit are the same as the ion generator 26 according to the first embodiment described with reference to FIG. The space defined by the above is filled with the molding material 61, and the surface 52b side of the substrate 52 is sealed. In addition, in the ion generator 26 of the fifth embodiment, the mold material 61 is filled in the space defined by the substrate 51 and the substrate support case 54 constituting the power supply unit, and the surface 51b side of the substrate 51 is sealed. It has been stopped.
 さらに、実施の形態1と同様に、基板51はスルーホール基板として設けられており、基板を厚み方向に貫通する貫通孔に挿通された第1および第3の針状電極41,43と、貫通孔の内壁面を覆う導体層との間に、閉塞材62が設けられている。閉塞材62は、基板51の表面51a,51b上およびスルーホールビアの内部において、第1および第3の針状電極41,43の各々の全周を取り囲んで設けられている。閉塞材62は、第1および第3の針状電極41,43に接触し、かつ基板51の表面51a,51b上のランドに接触するように設けられている。閉塞材62は、基板51と第1および第3の針状電極41,43との間の隙間を閉塞している。 Further, as in the first embodiment, the substrate 51 is provided as a through-hole substrate, and includes first and third needle- like electrodes 41 and 43 that are inserted through through-holes that penetrate the substrate in the thickness direction. A blocking material 62 is provided between the conductor layer covering the inner wall surface of the hole. The closing material 62 is provided so as to surround the entire circumferences of the first and third needle- like electrodes 41 and 43 on the surfaces 51a and 51b of the substrate 51 and inside the through-hole vias. The blocking material 62 is provided so as to contact the first and third needle- like electrodes 41 and 43 and to contact lands on the surfaces 51 a and 51 b of the substrate 51. The closing material 62 closes the gap between the substrate 51 and the first and third needle- like electrodes 41 and 43.
 (実施の形態5)
 図15は、実施の形態5のイオン発生装置26の内部構造を示す平面図である。これまでの実施の形態のイオン発生装置26では、外装ケース31は空間38を取り囲むように設けられ、互いに対向する第1壁面37および第2壁面39の両側からイオンを空間38に放出する複数の針状電極が設けられていた。この構成に替えて、第1壁面37と第2壁面39とを、空間38に面する同一の壁面として形成してもよい。つまり、実施の形態5では、図15に示すように、平面状の第1壁面37と、平面状の第2壁面39とは、同一の平面を形成している。
(Embodiment 5)
FIG. 15 is a plan view showing the internal structure of the ion generator 26 of the fifth embodiment. In the ion generator 26 of the embodiments so far, the outer case 31 is provided so as to surround the space 38, and a plurality of ions are emitted to the space 38 from both sides of the first wall surface 37 and the second wall surface 39 facing each other. Needle-like electrodes were provided. Instead of this configuration, the first wall surface 37 and the second wall surface 39 may be formed as the same wall surface facing the space 38. That is, in the fifth embodiment, as shown in FIG. 15, the planar first wall surface 37 and the planar second wall surface 39 form the same plane.
 電源ユニットの基板51には、1本の第1の針状電極41が搭載されており、第3の針状電極43は設けられていない。電極ユニットは、第2の針状電極42を含んでいる一方の電極ユニット(図15中の左側)と、第4の針状電極44を含んでいる他方の電極ユニット(図15中の右側)とに、2分割されている。電源ユニットに設けられた1つの高電圧発生回路部53は、配線56を介して第2の針状電極42と電気的に接続されており、配線57を介して第4の針状電極44と電気的に接続されている。 The first needle-like electrode 41 is mounted on the substrate 51 of the power supply unit, and the third needle-like electrode 43 is not provided. The electrode unit includes one electrode unit including the second needle-like electrode 42 (left side in FIG. 15) and the other electrode unit including the fourth needle-like electrode 44 (right side in FIG. 15). And divided into two. One high voltage generation circuit unit 53 provided in the power supply unit is electrically connected to the second needle electrode 42 via a wiring 56, and is connected to the fourth needle electrode 44 via a wiring 57. Electrically connected.
 基板51に搭載された第1の針状電極41と誘導電極45とが、第1壁面37から空間38へ突出して設けられている。基板52,52に搭載された第2および第4の針状電極42,44は、それぞれ、第2壁面39から空間38へ突出して設けられている。針状電極41,42,44および誘導電極45は、同一の平面から突出し、空間38内に露出している。 A first needle electrode 41 and an induction electrode 45 mounted on the substrate 51 are provided so as to protrude from the first wall surface 37 to the space 38. The second and fourth acicular electrodes 42 and 44 mounted on the substrates 52 and 52 are provided so as to protrude from the second wall surface 39 to the space 38, respectively. The acicular electrodes 41, 42, 44 and the induction electrode 45 protrude from the same plane and are exposed in the space 38.
 第1の針状電極41は、正イオンと負イオンとのいずれかを放出する構成とされていてもよい。第2および第4の針状電極42,44のうち少なくともいずれか一方は、第1の針状電極41が発生するイオンと異なる極性のイオンを発生する。たとえば、第1の針状電極41が正イオンを発生する場合、第2および第4の針状電極42,44の両方が負イオンを発生してもよく、または第2および第4の針状電極42,44の一方が負イオンを発生し他方が正イオンを発生してもよい。 The first needle electrode 41 may be configured to release either positive ions or negative ions. At least one of the second and fourth acicular electrodes 42 and 44 generates ions having a polarity different from the ions generated by the first acicular electrode 41. For example, when the first needle-shaped electrode 41 generates positive ions, both the second and fourth needle-shaped electrodes 42 and 44 may generate negative ions, or the second and fourth needle-shaped electrodes. One of the electrodes 42 and 44 may generate negative ions and the other may generate positive ions.
 以上説明した各実施の形態の構成および作用効果についてまとめて説明すると、以下のとおりである。なお、実施の形態の構成に参照番号を付すが、これは一例である。 It is as follows when the structure and effect of each embodiment demonstrated above are demonstrated collectively. In addition, although a reference number is attached | subjected to the structure of embodiment, this is an example.
 イオン発生装置26は、放電電極40と、基板50とを備えている。放電電極40は先端40aを有しており、放電により先端40aからイオンを発生する。基板50は、一方の主表面50aと、他方の主表面50bとを有している。基板50には、一方の主表面50aから他方の主表面50bまで貫通する貫通孔50hが形成されている。放電電極40は、基板50の貫通孔50hに挿通されている。放電電極40の先端40aは、一方の主表面50aから突出している。イオン発生装置26はさらに、モールド材61と、閉塞材62とを備えている。モールド材61は、基板50に対し他方の主表面50b側のみに設けられており、基板50の貫通孔50hを覆っている。閉塞材62は、基板50と放電電極40との間の隙間Gを閉塞している。 The ion generator 26 includes a discharge electrode 40 and a substrate 50. The discharge electrode 40 has a tip 40a, and ions are generated from the tip 40a by discharge. The substrate 50 has one main surface 50a and the other main surface 50b. The substrate 50 is formed with a through hole 50h penetrating from one main surface 50a to the other main surface 50b. The discharge electrode 40 is inserted into the through hole 50 h of the substrate 50. The tip 40a of the discharge electrode 40 protrudes from one main surface 50a. The ion generator 26 further includes a molding material 61 and a closing material 62. The molding material 61 is provided only on the other main surface 50 b side with respect to the substrate 50, and covers the through hole 50 h of the substrate 50. The closing material 62 closes the gap G between the substrate 50 and the discharge electrode 40.
 このようにすれば、基板50の貫通孔50hに対して、他方の主表面50b側の空間がモールド材61で充填され、さらに基板50と放電電極40との間の隙間Gが閉塞材62によって閉塞されている。隙間Gを塞ぐことで、塵埃を含む水分が侵入し得る隙間をなくすことができるので、高湿度下においても基板50の主表面50a,50bにおける沿面放電を抑制できるとともに、異常放電およびリークの発生を抑制することができる。したがって、イオン発生装置26は、高湿度下においても出力低下を招くことなく、高濃度のイオンを供給することができる。さらに、特別な製造工程および追加資材を必要としないため、より安価に耐湿性の高いイオン発生装置26を提供することができる。 In this way, the space on the other main surface 50 b side is filled with the mold material 61 with respect to the through hole 50 h of the substrate 50, and the gap G between the substrate 50 and the discharge electrode 40 is further closed by the blocking material 62. It is blocked. By closing the gap G, it is possible to eliminate a gap through which moisture including dust can enter, so that creeping discharge on the main surfaces 50a and 50b of the substrate 50 can be suppressed even under high humidity, and abnormal discharge and leakage are generated. Can be suppressed. Therefore, the ion generator 26 can supply high-concentration ions without causing a decrease in output even under high humidity. Furthermore, since a special manufacturing process and additional materials are not required, the ion generator 26 having high moisture resistance can be provided at a lower cost.
 図5に示す、基板50の他方の主表面50b側にモールド材61が設けられている構成に加えて、基板50の一方の主表面50a側にもモールド材を設けて、基板50の両方の主表面をモールド材61で封止しても、基板50と放電電極40との間の隙間Gを塞ぐことが可能である。この場合、基板50の両側が封止されるため、塵埃を含む水分が侵入することはなく、リーク現象の発生も防止できる。しかし、基板50の両方の主表面にモールド材を設けるためには、モールド材を受け容れるための筺体が必要になる。たとえば、基板50の厚み方向に延びるとともに基板50に形成された貫通孔50hを囲うリブを設け、リブの内側にモールド材を充填して、モールド材が漏れ出ないようにする必要がある。この場合、放電電極の延びる方向におけるイオン発生装置の寸法が増大してしまい、イオン発生装置を小型化することができない。 In addition to the configuration in which the molding material 61 is provided on the other main surface 50 b side of the substrate 50 shown in FIG. 5, a molding material is also provided on the one main surface 50 a side of the substrate 50. Even if the main surface is sealed with the molding material 61, the gap G between the substrate 50 and the discharge electrode 40 can be closed. In this case, since both sides of the substrate 50 are sealed, moisture including dust does not enter, and the occurrence of a leak phenomenon can be prevented. However, in order to provide the molding material on both main surfaces of the substrate 50, a casing for receiving the molding material is required. For example, it is necessary to provide a rib that extends in the thickness direction of the substrate 50 and surrounds the through hole 50h formed in the substrate 50, and fills the inside of the rib with a molding material so that the molding material does not leak. In this case, the size of the ion generator in the direction in which the discharge electrode extends increases, and the ion generator cannot be reduced in size.
 これに対し、実施の形態のイオン発生装置26のように、基板50の他方の主表面50bのみにモールド材61を充填し、一方の主表面50aはモールドされず外部に露出している構成とすれば、基板50の一方の主表面50a側のモールド材に相当する寸法を小さくできる。したがって、放電電極40の延びる方向における薄型化を実現できるので、イオン発生装置26の小型化を達成することができる。基板50の片側の表面のみをモールド材61で封止する構成の場合、リーク現象の発生の可能性があるが、実施の形態のイオン発生装置26では、隙間Gを閉塞材62で完全に塞ぐことにより、確実にリークの発生を抑制でき、耐湿性を確保することができる。 On the other hand, like the ion generator 26 of the embodiment, only the other main surface 50b of the substrate 50 is filled with the molding material 61, and the one main surface 50a is not molded and exposed to the outside. Then, the dimension corresponding to the mold material on the one main surface 50a side of the substrate 50 can be reduced. Therefore, since the thinning in the extending direction of the discharge electrode 40 can be realized, the ion generator 26 can be reduced in size. In the case of a configuration in which only one surface of the substrate 50 is sealed with the molding material 61, there is a possibility of occurrence of a leakage phenomenon, but in the ion generator 26 of the embodiment, the gap G is completely blocked with the closing material 62. As a result, the occurrence of leakage can be reliably suppressed and moisture resistance can be ensured.
 好ましくは、基板50は、一方の主表面50aと他方の主表面50bとの両方に導体パターン511,512が形成された両面基板である。基板50は、貫通孔50hの内壁面を覆う導体層520を有している。閉塞材62は、基板50を貫通して、導体層520と放電電極40との間の隙間Gを閉塞している。この場合は、両面基板である基板50と放電電極40との間の隙間Gを閉塞材62で塞ぐことにより、塵埃を含む水分が侵入し得る隙間をなくし、高湿度下においても高濃度のイオンを供給できるイオン発生装置26を実現することができる。 Preferably, the substrate 50 is a double-sided substrate in which conductor patterns 511 and 512 are formed on both the one main surface 50a and the other main surface 50b. The substrate 50 has a conductor layer 520 that covers the inner wall surface of the through hole 50h. The closing material 62 penetrates the substrate 50 and closes the gap G between the conductor layer 520 and the discharge electrode 40. In this case, the gap G between the substrate 50, which is a double-sided substrate, and the discharge electrode 40 is closed with a closing material 62, thereby eliminating a gap through which moisture containing dust can enter, and high-concentration ions even under high humidity. Can be realized.
 好ましくは、基板50は、他方の主表面50bのみに導体パターン512が形成された片面基板である。イオン発生装置26は、導体パターン512と放電電極40とを電気的に接続する導電部530をさらに備えている。閉塞材62は、一方の主表面10aと放電電極40との間の隙間Gを閉塞している。この場合は、片面基板である基板50と放電電極40との間の隙間Gを閉塞材62で塞ぐことにより、塵埃を含む水分が侵入し得る隙間をなくし、高湿度下においても高濃度のイオンを供給できるイオン発生装置26を実現することができる。 Preferably, the substrate 50 is a single-sided substrate in which a conductor pattern 512 is formed only on the other main surface 50b. The ion generator 26 further includes a conductive portion 530 that electrically connects the conductor pattern 512 and the discharge electrode 40. The closing material 62 closes the gap G between the one main surface 10 a and the discharge electrode 40. In this case, the gap G between the substrate 50, which is a single-sided substrate, and the discharge electrode 40 is closed with a closing material 62, thereby eliminating a gap through which moisture including dust can enter, and high-concentration ions even under high humidity. Can be realized.
 好ましくは、基板50の一方の主表面50aは、放電電極40が発生したイオンを搬送する気体が流れる風路の一部を構成している空間38に向いて配置されている。放電電極40の先端40aは、空間38内に配置されている。このようにすれば、空間38内に突出した放電電極40の先端40aでイオンが発生し、発生したイオンは空間38を流れる気体によって搬送される。したがって、放電電極40で発生した高濃度のイオンを送風によって速やかに放出できるイオン発生装置26を実現することができる。 Preferably, one main surface 50a of the substrate 50 is disposed toward a space 38 that constitutes a part of an air passage through which a gas carrying ions generated by the discharge electrode 40 flows. The tip 40 a of the discharge electrode 40 is disposed in the space 38. In this way, ions are generated at the tip 40 a of the discharge electrode 40 protruding into the space 38, and the generated ions are carried by the gas flowing through the space 38. Therefore, it is possible to realize the ion generator 26 that can quickly discharge high-concentration ions generated at the discharge electrode 40 by blowing air.
 好ましくは、イオン発生装置26は、基板50を保持する筺体としての基板支持ケース55をさらに備えている。モールド材61は、基板50および基板支持ケース55が規定する空間に充填されている。これにより、基板50の他方の主表面50b側を封止するためのモールド材61が充填される空間が規定される。基板支持ケース55の形状を適切に設定し、モールド材61が充填される空間の容積を小さくすることで、必要なモールド材61の量を低減することも可能である。 Preferably, the ion generator 26 further includes a substrate support case 55 as a housing for holding the substrate 50. The molding material 61 is filled in a space defined by the substrate 50 and the substrate support case 55. Thereby, the space filled with the molding material 61 for sealing the other main surface 50b side of the substrate 50 is defined. It is also possible to reduce the amount of the required molding material 61 by appropriately setting the shape of the substrate support case 55 and reducing the volume of the space filled with the molding material 61.
 好ましくは、イオン発生装置26は、高電圧発生部としての高電圧発生回路部53と、接続部としての配線56,57と、第2筺体としての外装ケース31とをさらに備えている。高電圧発生回路部53は、放電電極40に印加するための高電圧を発生する。配線56,57は、高電圧発生回路部53と放電電極40(第2および第4の針状電極42,44)とを電気的に接続している。外装ケース31は、基板支持ケース55、高電圧発生回路部53および配線56,57を収容している。このようにすれば、放電電極40、高電圧発生回路部53および配線56,57を含む高電圧要素が、外装ケース31に収容されて一体化され、一つのユニットとして設けられている。これにより、イオン発生装置26の取扱性が向上されており、使用者は容易にイオン発生装置26を取り扱うことができる。また、イオン発生装置26を取り扱う使用者が高電圧要素に直接触れることを回避できるので、イオン発生装置26の安全性を向上することができる。 Preferably, the ion generator 26 further includes a high voltage generation circuit unit 53 as a high voltage generation unit, wirings 56 and 57 as connection portions, and an outer case 31 as a second casing. The high voltage generation circuit unit 53 generates a high voltage to be applied to the discharge electrode 40. The wirings 56 and 57 electrically connect the high voltage generation circuit unit 53 and the discharge electrode 40 (second and fourth needle electrodes 42 and 44). The outer case 31 houses a substrate support case 55, a high voltage generation circuit unit 53, and wirings 56 and 57. In this way, the high voltage elements including the discharge electrode 40, the high voltage generation circuit unit 53, and the wirings 56 and 57 are accommodated and integrated in the outer case 31, and are provided as one unit. Thereby, the handleability of the ion generator 26 is improved and the user can handle the ion generator 26 easily. Moreover, since the user who handles the ion generator 26 can avoid touching a high voltage element directly, the safety | security of the ion generator 26 can be improved.
 好ましくは、イオン発生装置26は、高電圧発生部としての高電圧発生回路部53と、第1筺体としての基板支持ケース54と、第2筺体としての外装ケース31とをさらに備えている。基板支持ケース54は、基板50および高電圧発生回路部53を保持する。外装ケース31は、基板支持ケース54を収容している。これにより、高電圧発生回路部53が湿度の影響を受けない構成とすることができ、高電圧発生回路部53における異常放電を抑制することができる。また、高電圧発生回路部53が基板支持ケース54に収容されており、さらに基板支持ケース54が外装ケース31に収容されており、高電圧発生回路部53は二重のケースに収容されている。高電圧発生回路部53を2重に保護することにより、イオン発生装置26を取り扱う使用者が高電圧発生回路部53に直接触れることを回避できるので、イオン発生装置26の安全性をより向上することができる。 Preferably, the ion generator 26 further includes a high voltage generation circuit unit 53 as a high voltage generation unit, a substrate support case 54 as a first casing, and an exterior case 31 as a second casing. The substrate support case 54 holds the substrate 50 and the high voltage generation circuit unit 53. The outer case 31 houses a substrate support case 54. Thereby, it can be set as the structure which the high voltage generation circuit part 53 does not receive to the influence of humidity, and the abnormal discharge in the high voltage generation circuit part 53 can be suppressed. Further, the high voltage generation circuit unit 53 is accommodated in the substrate support case 54, the substrate support case 54 is accommodated in the exterior case 31, and the high voltage generation circuit unit 53 is accommodated in the double case. . By protecting the high voltage generating circuit unit 53 in a double manner, it is possible to avoid a user handling the ion generating device 26 from directly touching the high voltage generating circuit unit 53, thereby further improving the safety of the ion generating device 26. be able to.
 電気機器100は、上記のいずれかの局面のイオン発生装置26と、イオン発生装置26の放電電極40が発生したイオンを搬送する気体を送風する送風装置16とを備えている。このようにすれば、高濃度のイオンを広範囲に発生できるとともに取扱性および安全性に優れたイオン発生装置26を備えた、電気機器100を提供することができる。イオン発生装置26が一つのユニットとして設けられているので、イオン発生装置26が電気機器100に対して着脱可能な場合には、イオン発生装置26の交換も容易である。 The electric device 100 includes the ion generator 26 according to any one of the above aspects and the blower 16 that blows a gas that conveys ions generated by the discharge electrodes 40 of the ion generator 26. In this way, it is possible to provide the electric device 100 including the ion generator 26 that can generate ions with a high concentration in a wide range and is excellent in handling and safety. Since the ion generator 26 is provided as one unit, when the ion generator 26 is detachable from the electric device 100, the ion generator 26 can be easily replaced.
 以下、この発明の実施例について説明する。実施例1として、実施の形態1のイオン発生装置26、すなわち、貫通孔50hの形成された基板50に放電電極40が搭載されており、基板50の一方の主表面50aから突出する放電電極40の根元部が半田材によって覆われており、閉塞材62として機能する基板50と半田材が放電電極40との間の隙間Gを閉塞しているイオン発生装置26を準備した。また、比較例として、実施の形態1のイオン発生装置26と同様の構成を備えているが閉塞材62を有していない点のみが異なるイオン発生装置を準備した。 Hereinafter, embodiments of the present invention will be described. As Example 1, the discharge electrode 40 is mounted on the ion generator 26 of the first embodiment, that is, the substrate 50 in which the through hole 50h is formed, and the discharge electrode 40 protrudes from one main surface 50a of the substrate 50. The ion generator 26 was prepared in which the root portion of the substrate was covered with a solder material, and the substrate 50 functioning as the blocking material 62 and the solder material closed the gap G between the discharge electrodes 40. As a comparative example, an ion generator was prepared that had the same configuration as that of the ion generator 26 of the first embodiment, but differed only in that it did not have the blocking material 62.
 幅245mm、高さ150mmの流路を有するダクトを設け、ダクト内に実施例および比較例のイオン発生装置を配置した。第1~第4の針状電極41~44は、それぞれ外装ケース31から針先が9.5mm突出するように設けられた。第1の針状電極41の針先と第2の針状電極42の針先との距離、および、第3の針状電極43の針先と第4の針状電極44の針先との距離は、それぞれ101mmとした。第1の針状電極41の針先と第3の針状電極43の針先との間隔、および、第2の針状電極42の針先と第4の針状電極44の針先との間隔は、それぞれ42mmとした。 A duct having a flow path with a width of 245 mm and a height of 150 mm was provided, and the ion generators of Examples and Comparative Examples were arranged in the duct. The first to fourth needle-like electrodes 41 to 44 were provided so that the needle tips protruded from the outer case 31 by 9.5 mm, respectively. The distance between the needle tip of the first needle electrode 41 and the needle tip of the second needle electrode 42, and the distance between the needle tip of the third needle electrode 43 and the needle tip of the fourth needle electrode 44 Each distance was 101 mm. The distance between the needle tip of the first needle electrode 41 and the needle tip of the third needle electrode 43, and the distance between the needle tip of the second needle electrode 42 and the needle tip of the fourth needle electrode 44. The intervals were 42 mm each.
 図示しないクロスフローファンにより、放電電極40上において5m/sの流速となるように、ダクト内に空気を送風した。イオン発生装置26は、ダクト内を流れる空気が空間38内を貫通するように、外装ケース31をダクト15内に立てて配置された。その結果、第1~第4の針状電極41~44は、ダクト15内の空気の流れる方向に対して直交する方向に延びて配置された。イオン発生装置26は、ダクト15内で高さ方向に片寄って配置された。具体的には、ダクト15の底面側の内壁から18.5mmの位置に、第1の針状電極41および第2の針状電極42を結ぶ軸が位置するように配置された。 The air was blown into the duct with a cross flow fan (not shown) so that the flow velocity was 5 m / s on the discharge electrode 40. The ion generator 26 is arranged with the outer case 31 standing in the duct 15 so that the air flowing through the duct penetrates the space 38. As a result, the first to fourth needle-like electrodes 41 to 44 are arranged so as to extend in a direction perpendicular to the air flow direction in the duct 15. The ion generator 26 was arranged in the duct 15 so as to be offset in the height direction. Specifically, it was arranged so that the axis connecting the first needle electrode 41 and the second needle electrode 42 was located at a position 18.5 mm from the inner wall on the bottom side of the duct 15.
 実施例1のイオン発生装置26および比較例に係るイオン発生装置を用いて、相対湿度40%および80%の2条件で、ダクト内を流れる空気流れ下流側(風下側)の電極から350mm離れた位置におけるイオン濃度を計測した。表1は、実施例1および比較例において、ダクトの底面側の内壁の幅方向の中心の1計測点における負イオン濃度を、相対湿度40%での計測値を100%としてまとめたものである。 Using the ion generator 26 of Example 1 and the ion generator according to the comparative example, it was 350 mm away from the electrode on the downstream side (downstream side) of the air flow flowing in the duct under two conditions of relative humidity of 40% and 80%. The ion concentration at the position was measured. Table 1 summarizes the negative ion concentration at one measurement point in the center in the width direction of the inner wall on the bottom surface side of the duct in Example 1 and the comparative example, with the measurement value at 40% relative humidity being 100%. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例における1計測点の負イオン濃度は、相対湿度40%と比較して相対湿度80%では8%減少していた。一方、実施例1では、相対湿度40%と比較して相対湿度80%では2%増加していた。この結果から、実施例1のイオン発生装置26は、放電電極40の根元部を半田材によって覆い隠すことによって耐湿性が改善され、高湿度下においても常湿と同等の十分な量のイオンを供給できることが確認された。 As shown in Table 1, the negative ion concentration at one measurement point in the comparative example was reduced by 8% at 80% relative humidity compared to 40% relative humidity. On the other hand, in Example 1, the relative humidity increased by 2% at 80% relative to 40% relative humidity. From this result, in the ion generator 26 of Example 1, the moisture resistance is improved by covering the root portion of the discharge electrode 40 with the solder material, and a sufficient amount of ions equivalent to normal humidity can be obtained even under high humidity. It was confirmed that it could be supplied.
 実施例2に係るイオン発生装置26は、実施例1のイオン発生装置26と同様の構成を備えているが、放電電極40の根元部が半田材ではなく樹脂コーティング材によって覆われている点のみにおいて異なる構成とした。 The ion generator 26 according to the second embodiment has the same configuration as that of the ion generator 26 according to the first embodiment, but only in that the root portion of the discharge electrode 40 is covered with a resin coating material instead of a solder material. In FIG.
 実施例2に係るイオン発生装置26を高湿度環境下に96時間暴露した後、実施例1において説明したダクト内に配置し、実施例1と同様の条件においてイオン濃度を計測した。表2は、実施例2において、ダクトの底面側の内壁の幅方向の中心の1計測点における負イオン濃度を、高湿度環境下への暴露前の計測値を100%としてまとめたものである。 After the ion generator 26 according to Example 2 was exposed to a high humidity environment for 96 hours, it was placed in the duct described in Example 1, and the ion concentration was measured under the same conditions as in Example 1. Table 2 summarizes the negative ion concentration at one measurement point at the center in the width direction of the inner wall on the bottom surface side of the duct in Example 2 with the measurement value before exposure to a high humidity environment as 100%. .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例2に係るイオン発生装置26では、高湿度環境下に長時間暴露した後でも、暴露前とほぼ同等のイオン濃度が計測された。この結果から、実施例2のイオン発生装置26は、放電電極40の根元部を樹脂コーティング材によって覆い隠すことによって耐湿性および耐腐食性が改善されており、湿度の高い過酷な環境下で使用しても通常環境と同等の十分な量のイオンを供給できることが確認された。 As shown in Table 2, in the ion generator 26 according to Example 2, even after being exposed to a high humidity environment for a long time, an ion concentration almost equal to that before the exposure was measured. From this result, the ion generator 26 of Example 2 is improved in moisture resistance and corrosion resistance by covering the base portion of the discharge electrode 40 with the resin coating material, and is used in a severe environment with high humidity. Even so, it was confirmed that a sufficient amount of ions equivalent to the normal environment could be supplied.
 以上のように本発明の実施の形態について説明を行なったが、各実施の形態の構成を適宜組み合わせてもよい。また、今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 Although the embodiments of the present invention have been described above, the configurations of the embodiments may be combined as appropriate. In addition, it should be considered that the embodiments and examples disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10 風路、12,15 ダクト、16 送風装置、26 イオン発生装置、31 外装ケース、31s 外表面、32,33 基板収容部、34,35,36 リブ状部、37 第1壁面、38 空間、39 第2壁面、40 放電電極、40a 先端、40b 基端、41 第1の針状電極、42 第2の針状電極、43 第3の針状電極、44 第4の針状電極、45 誘導電極、46 給電コネクタ、50,51,52 基板、50a,50b 主表面、50h 貫通孔、51a,51b,52a,52b 表面、53 高電圧発生回路部、54,55 基板支持ケース、55p 突起部、56,57 配線、61 モールド材、62 閉塞材、90 昇圧回路、91 昇圧トランス、91a 一次巻線、91b 二次巻線、92,93 ダイオード、94,95 コンデンサ、100 電気機器、G 隙間、N 負イオン、P 正イオン、T1,T2 端子。 10 air passage, 12, 15 duct, 16 air blower, 26 ion generator, 31 outer case, 31s outer surface, 32, 33 substrate housing part, 34, 35, 36 rib-like part, 37 first wall, 38 space, 39 second wall surface, 40 discharge electrode, 40a tip, 40b proximal end, 41 first needle electrode, 42 second needle electrode, 43 third needle electrode, 44 fourth needle electrode, 45 induction Electrode, 46 power supply connector, 50, 51, 52 substrate, 50a, 50b main surface, 50h through hole, 51a, 51b, 52a, 52b surface, 53 high voltage generation circuit portion, 54, 55 substrate support case, 55p protrusion, 56, 57 wiring, 61 mold material, 62 blocking material, 90 boost circuit, 91 boost transformer, 91a primary winding, 91b secondary winding, 92 93 diodes, 94 and 95 capacitors, 100 electrical equipment, G gap, N negative ions, P positive ion, T1, T2 terminals.

Claims (8)

  1.  先端を有し、放電により前記先端からイオンを発生する放電電極と、
     一方の主表面および他方の主表面を有し、前記一方の主表面から前記他方の主表面まで貫通する貫通孔が形成されている基板とを備え、
     前記放電電極は、前記貫通孔に挿通されており、前記先端は前記一方の主表面から突出し、
     さらに、前記基板に対し前記他方の主表面側のみに設けられ、前記貫通孔を覆うモールド材と、
     前記基板と前記放電電極との間の隙間を閉塞する閉塞材とを備える、イオン発生装置。
    A discharge electrode having a tip and generating ions from the tip by discharge;
    A substrate having one main surface and the other main surface, and having a through-hole penetrating from the one main surface to the other main surface;
    The discharge electrode is inserted through the through hole, and the tip protrudes from the one main surface,
    Furthermore, a molding material that is provided only on the other main surface side with respect to the substrate and covers the through hole;
    An ion generator comprising: a closing material that closes a gap between the substrate and the discharge electrode.
  2.  前記基板は、前記一方の主表面と前記他方の主表面との両方に導体パターンが形成された両面基板であり、前記貫通孔の内壁面を覆う導体層を有し、
     前記閉塞材は、前記基板を貫通して、前記導体層と前記放電電極との間の隙間を閉塞する、請求項1に記載のイオン発生装置。
    The substrate is a double-sided substrate in which a conductor pattern is formed on both the one main surface and the other main surface, and has a conductor layer covering an inner wall surface of the through hole,
    The ion generating apparatus according to claim 1, wherein the closing material passes through the substrate and closes a gap between the conductor layer and the discharge electrode.
  3.  前記基板は、前記他方の主表面のみに導体パターンが形成された片面基板であり、
     前記導体パターンと前記放電電極とを電気的に接続する導電部をさらに備え、
     前記閉塞材は、前記一方の主表面と前記放電電極との間の隙間を閉塞する、請求項1に記載のイオン発生装置。
    The substrate is a single-sided substrate in which a conductor pattern is formed only on the other main surface,
    A conductive portion for electrically connecting the conductor pattern and the discharge electrode;
    The ion generating apparatus according to claim 1, wherein the closing material closes a gap between the one main surface and the discharge electrode.
  4.  前記一方の主表面は、前記放電電極が発生したイオンを搬送する気体が流れる風路に向いて配置され、
     前記先端は、前記風路内に配置されている、請求項1から請求項3のいずれか1項に記載のイオン発生装置。
    The one main surface is arranged facing an air path through which a gas carrying ions generated by the discharge electrode flows,
    The ion generation device according to claim 1, wherein the tip is disposed in the air passage.
  5.  前記基板を保持する筺体をさらに備え、
     前記モールド材は、前記基板および前記筺体が規定する空間に充填されている、請求項1から請求項4のいずれか1項に記載のイオン発生装置。
    A housing for holding the substrate;
    The ion generator according to any one of claims 1 to 4, wherein the mold material is filled in a space defined by the substrate and the casing.
  6.  前記放電電極に印加するための高電圧を発生する高電圧発生部と、
     前記高電圧発生部と前記放電電極とを電気的に接続する接続部と、
     前記筺体、前記高電圧発生部および前記接続部を収容する第2筺体とをさらに備える、請求項5に記載のイオン発生装置。
    A high voltage generator for generating a high voltage to be applied to the discharge electrode;
    A connection part for electrically connecting the high voltage generation part and the discharge electrode;
    The ion generator according to claim 5, further comprising a second casing that houses the casing, the high-voltage generation unit, and the connection unit.
  7.  前記放電電極に印加するための高電圧を発生する高電圧発生部と、
     前記基板および前記高電圧発生部を保持する第1筺体と、
     前記第1筺体を収容する第2筺体とをさらに備える、請求項1から請求項4のいずれか1項に記載のイオン発生装置。
    A high voltage generator for generating a high voltage to be applied to the discharge electrode;
    A first housing for holding the substrate and the high voltage generator;
    The ion generator of any one of Claims 1-4 further provided with the 2nd housing | casing which accommodates the said 1st housing | casing.
  8.  請求項1から請求項7のいずれか1項に記載のイオン発生装置と、前記イオン発生装置の放電電極が発生したイオンを搬送する気体を送風する送風装置とを備える、電気機器。 An electric device comprising: the ion generator according to any one of claims 1 to 7; and a blower that blows a gas that conveys ions generated by a discharge electrode of the ion generator.
PCT/JP2014/075567 2013-10-02 2014-09-26 Ion generation device and electrical machine WO2015050045A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015540466A JP6062561B2 (en) 2013-10-02 2014-09-26 Ion generator and electrical equipment
CN201480045878.5A CN105474483B (en) 2013-10-02 2014-09-26 Ion generating device and electrical equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013207357 2013-10-02
JP2013-207357 2013-10-02

Publications (1)

Publication Number Publication Date
WO2015050045A1 true WO2015050045A1 (en) 2015-04-09

Family

ID=52778636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075567 WO2015050045A1 (en) 2013-10-02 2014-09-26 Ion generation device and electrical machine

Country Status (3)

Country Link
JP (1) JP6062561B2 (en)
CN (1) CN105474483B (en)
WO (1) WO2015050045A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180053621A1 (en) * 2015-09-02 2018-02-22 Sharp Kabushiki Kaisha Ion generation device, method for producing ion generating device, and electrical device
WO2018055787A1 (en) * 2016-09-21 2018-03-29 シャープ株式会社 Discharge device and electrical appliance
US10910186B2 (en) 2015-08-05 2021-02-02 Sharp Kabushiki Kaisha Ion generation device with brush-like discharge electrodes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202021219A (en) * 2018-11-27 2020-06-01 日商夏普股份有限公司 Ion generation device, discharge substrate, and electronic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11168276A (en) * 1997-12-04 1999-06-22 Sony Corp Component mounting method
JP2007220924A (en) * 2006-02-16 2007-08-30 Tokuyama Corp Metallized ceramic substrate with built-in lead, and package
JP2010015943A (en) * 2008-07-07 2010-01-21 Sharp Corp Ion generator and electrical apparatus
JP2010287321A (en) * 2009-06-09 2010-12-24 Sharp Corp Ion generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143502A1 (en) * 2009-06-09 2010-12-16 シャープ株式会社 Air blowing device and ion generating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11168276A (en) * 1997-12-04 1999-06-22 Sony Corp Component mounting method
JP2007220924A (en) * 2006-02-16 2007-08-30 Tokuyama Corp Metallized ceramic substrate with built-in lead, and package
JP2010015943A (en) * 2008-07-07 2010-01-21 Sharp Corp Ion generator and electrical apparatus
JP2010287321A (en) * 2009-06-09 2010-12-24 Sharp Corp Ion generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10910186B2 (en) 2015-08-05 2021-02-02 Sharp Kabushiki Kaisha Ion generation device with brush-like discharge electrodes
US20180053621A1 (en) * 2015-09-02 2018-02-22 Sharp Kabushiki Kaisha Ion generation device, method for producing ion generating device, and electrical device
US10748733B2 (en) * 2015-09-02 2020-08-18 Sharp Kabushiki Kaisha Ion generation device, method for producing ion generating device, and electrical device
WO2018055787A1 (en) * 2016-09-21 2018-03-29 シャープ株式会社 Discharge device and electrical appliance

Also Published As

Publication number Publication date
CN105474483B (en) 2017-08-25
CN105474483A (en) 2016-04-06
JP6062561B2 (en) 2017-01-18
JPWO2015050045A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6289162B2 (en) Ion generator and electrical equipment
JP6411581B2 (en) Discharge device and electrical equipment
RU2474938C2 (en) Device for generation of ions and electric device
WO2012157391A1 (en) Ion generator and electric device using same
JP6062561B2 (en) Ion generator and electrical equipment
JP5992715B2 (en) Ion generator
JP2007287368A (en) Static eliminator and discharge module
WO2012157390A1 (en) Ion generator and electric device using same
JP6004525B2 (en) Ion generator and electrical equipment using the same
CN207021513U (en) Ion generating apparatus and electrical equipment
CN204144673U (en) Ion supplying device
JP6195487B2 (en) Ion generator and electrical equipment
JP7225235B2 (en) Equipment that can be equipped with a discharge device
JP5273733B2 (en) Ion generator and electrical equipment using the same
JP2016006748A (en) Ion generator and electric device
JP2006302573A (en) Ion generating element and ion generating device using this
JP2011086533A (en) Ion generator and electric device using the same
JP2006228513A (en) Ion generating element and ion generator mounting the same
WO2015025541A1 (en) Air conditioner and ion generation device
JP6681790B2 (en) Ion generator and electric equipment
JP7225234B2 (en) discharge device
WO2024085145A1 (en) Discharge device and air conditioner
JP2013225383A (en) Ion generator and electronic apparatus using the same
JP2013152910A (en) Ion generation method, ion generator, and electronic apparatus using the same
JP2016021302A (en) Ion generation device and electrical equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045878.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540466

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850707

Country of ref document: EP

Kind code of ref document: A1