WO2015047031A1 - Polypropylene preparation method and polypropylene obtained therefrom - Google Patents

Polypropylene preparation method and polypropylene obtained therefrom Download PDF

Info

Publication number
WO2015047031A1
WO2015047031A1 PCT/KR2014/009203 KR2014009203W WO2015047031A1 WO 2015047031 A1 WO2015047031 A1 WO 2015047031A1 KR 2014009203 W KR2014009203 W KR 2014009203W WO 2015047031 A1 WO2015047031 A1 WO 2015047031A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
group
catalyst
carbon atoms
alkyl
Prior art date
Application number
PCT/KR2014/009203
Other languages
French (fr)
Korean (ko)
Inventor
최지호
박철영
노경섭
김원희
전상진
최라윤
김병석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/023,626 priority Critical patent/US9771441B2/en
Priority to CN201480051983.XA priority patent/CN105555811B/en
Priority claimed from KR1020140130844A external-priority patent/KR101593175B1/en
Publication of WO2015047031A1 publication Critical patent/WO2015047031A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged

Definitions

  • the present invention relates to a process for producing polypropylene and to polypropylene obtained therefrom. More specifically, it relates to a process for producing polypropylene using a catalyst comprising a novel metallocene compound having excellent polymerization activity and to a polypropylene obtained therefrom.
  • CGC Constrained-Geometry Catalyst
  • the Group 4 transition metal compound having one or two cyclopentadienyl groups as a ligand can be activated as methylaluminoxane or boron compound to be used as a catalyst for olepin polymerization.
  • Such catalysts exhibit unique properties that conventional Ziegler-Natta catalysts cannot realize.
  • the polymer obtained using such a catalyst has a narrow molecular weight distribution, better response to a second monomer such as alphalefin or cyclic olefin, and a homogeneous distribution of the two monomers of the polymer.
  • a second monomer such as alphalefin or cyclic olefin
  • a homogeneous distribution of the two monomers of the polymer in the metallocene catalyst.
  • metallocene catalysts are expensive compared to conventional Ziegler-Natta catalysts, so they have good activity and are economically valuable.
  • bridged catalysts studied so far are largely dependent on the type of bridge .
  • One is a catalyst in which two cyclopentadienyl ligands are linked to an alkylenedibridge by reaction with an electrophile such as an alkyl halide and indene or fluorene
  • the second is a silicon bridged catalyst connected by -SiR 2-
  • the third Is a methylene bridged catalyst obtained from the reaction of fulven and indene, fluorene and the like.
  • the application of the metallocene compound to the gas phase and slurry plant commercially commercialized is carried on the carrier.
  • the research has been carried out so that the activity appears even if the additional promoter is not added during the polymerization process, but basically, if the non-uniform catalyst is made by carrying out the support, There is a disadvantage that the activity is lower than that of a homogeneous catalyst.
  • the present invention is to provide a method for producing a polypropylene to polymerize propylene in the presence of a catalyst containing a metallocene compound of a new structure.
  • the present invention also provides a polypropylene obtained by the above production method. [Measures of problem]
  • the present invention provides a method for producing a polypropylene comprising the step of polymerizing propylene in the presence of a catalyst comprising a metallocene compound represented by the following formula (1).
  • M 1 is a Group 3 whole metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide family of all 0- or actanide family transition metals;
  • X is the same or different halogen from each other
  • A is an element of group 14 and is a bridge group connecting indenyl groups
  • R 1 is alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
  • R 2 is hydrogen, alkyl of 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or aryl;
  • R 3 , 3 ′ , R 4 , and R 4 ′ are the same or different from each other, and are each alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
  • n is an integer from 1 to 20.
  • the present invention also provides a polypropylene obtained by the above production method to provide.
  • the method for producing polypropylene according to the present invention by polymerizing propylene using a novel metallocene compound having excellent polymerization activity and hydrogen reactivity, the physical properties of the polypropylene can be easily controlled and the polypropylene has excellent mechanical properties. Can be obtained.
  • the polypropylene obtained by the method for producing a polypropylene according to the present invention exhibits high transparency and is excellent in mechanical properties, fluidity, crystallinity, etc., and thus may be used for various purposes.
  • a catalyst comprising a metallocene compound represented by the formula (1), provides a method for producing a polypropylene comprising the step of polymerizing propylene.
  • M 1 is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide transition metal or an actanide transition metal;
  • X is the same or different halogen from each other
  • A is an element of group 14 and is a bridge group connecting indenyl groups
  • R 1 is alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms ;
  • R 2 is hydrogen, alkyl of 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or aryl;
  • R 3 , R 3 ′, R 4 , and R 4 ′ are the same as or different from each other, and each having 1 to 4 carbon atoms.
  • n is an integer from 1 to 20.
  • Ri and R 2 are each 1 to
  • the metallocene compound of Chemical Formula 1 is a ligand in which both substituents other than hydrogen are introduced at positions 2 and 4, two indenyl groups (indenyl group), and in particular, the bridge group connecting the ligand (oxygeniwkmor) is substituted with a functional group that can act as a Lewis base has the advantage of maximizing the activity as a catalyst . It also exhibits high polymerization activity even when supported on a carrier. Accordingly the compound of formula 1 is itself or. When supported on a carrier and used as a catalyst for the production of polyolefins, polyolefins having desired physical properties can be produced more easily.
  • the metallocene compound represented by Chemical Formula 1 may be used alone or in a method for preparing polypropylene as a supported catalyst supported on a carrier with a promoter.
  • the promoter may include an alkylaluminoxane based promoter and a boron based promoter.
  • the carrier is not particularly limited, since a conventional one may be used in the art to which the present invention pertains.
  • one or more carriers selected from the group consisting of silica, silica-alumina, and silica-magnesia may be used.
  • a carrier such as silica
  • the silica carrier and the functional group of the metallocene compound are supported by chemical bonding, there are almost no catalysts liberated from the surface of the carrier in the olefin polymerization process. In manufacturing, there is an advantage that fouling does not occur when the wall or polymer particles are entangled with each other.
  • the polypropylene produced in the presence of a supported catalyst comprising such a carrier is excellent in the particle form and striking density of the polymer, and thus can be suitably used in conventional slurry polymerization, bulk polymerization and gas phase polymerization processes.
  • a carrier having a high banung siloxane group on the surface by drying at a high temperature may be used.
  • silica, silica-alumina, and the like, which are dried from silver may be used, and these are usually oxides, carbonates, sulfates, and nitrates such as Na 2 O, K 2 C0 3 , BaS0 4 , and Mg (N0 3 ) 2 . It may be contained.
  • the metallocene compound represented by Chemical Formula 1 may be used as a catalyst for propylene polymerization together with an alkylaluminoxane-based promoter and a boron-based promoter.
  • the alkylaluminoxane-based promoter may be represented by the following formula (2)
  • M 2 is a Group 13 metal element
  • R 5 is the same or different from one another and is each alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
  • . m may be an integer of 2 or more.
  • the alkylaluminoxane-based promoter is preferably in Formula 2
  • R 5 is methyl, ethyl, propyl, isopropyl, isopropenyl, n-butyl, sec-butyl, tert-butyl : pentyl, hexyl, octyl, decyl, dodecyl, tridecyl, tetradecyl, tetradecyl, pentadecyl ( pentadecyl, hexadecyl, octadecyl, octadecyl, ekosyl, dokosyl, tetrakosyl, cyclohexyl, cyclooctyl, cyclooctyl, phenyl, Tolyl, or ethylphenyl; M 2 may be aluminum.
  • m may be an integer of 2 or more, or 2 to 500, preferably 6 or more, or an integer of 6 to 300, more preferably an integer of 10 or more or 10 to 100 have.
  • the alkylaluminoxane-based promoter may serve as a Lewis acid capable of forming a bond through a Lewis acid-base interaction with a functional group introduced into a bridge group of the metallocene compound of Formula 1 It is characterized by including a metal element.
  • the cocatalyst compound of Chemical Formula 2 may be present in a linear, circular or reticular form, and examples of such cocatalyst compounds may be at least one of methylaluminoxane, ethylaluminoxane, propylaluminoxane, and butylaluminoxane. have.
  • the catalyst for polypropylene polymerization of the present invention may use a cocatalyst including a non-coordinating anion as the alkylalkyl aluminoxane-based cocatalyst as the non-alkyl aluminoxane.
  • a cocatalyst including a non-coordinating anion as the alkylalkyl aluminoxane-based cocatalyst as the non-alkyl aluminoxane.
  • a boron-based promoter as such a non-alkyl aluminoxane-based promoter.
  • the boron-based promoter is dimethylanilinium tetrakis (pentafluorophenyl) borate, (Dimethylanilinium tetakis (pentafluorophenyl) borate, [HN (CH 3 ) 2 C 6 H 5 ] [B (C 6 F 5 ) 4 ] ), Trityl tetrakis (pentafluorophenyl) borate (Trityl
  • the boron-based promoter stabilizes the metallocene compound to maintain activity in the polymerization.
  • the metallocene compound used in the present invention has a tether, and because of this functional group, leaching does not occur during polymerization, and fouling does not occur, and thus excellent activity may be exhibited.
  • fouling occurs with most of the leaching catalyst precursor and boron promoter.
  • a supported catalyst having improved activity can be made by simultaneously supporting two kinds of promoters of the boron-based promoter as the alkylaluminoxane-based promoter and the non-alkylaluminoxane-based.
  • a promoter was selected that does not cause adverse effects between the two promoters, and the optimal loading ratio was also confirmed through experiments.
  • the metallocene compound is present in an amount of about 40 to about 240 ⁇ , preferably about 80 to about 160 ⁇ , based on the weight of the carrier, for example, based on silica lg. It can be carried in a range.
  • alkylaluminoxane-based promoter is about 8 to about 25 mmol, preferably about 10 to about 20, based on the weight of the carrier, for example, silica lg. It can be supported in the content range of mm.
  • the boron-based promoter may be supported in a content range of about 50 to about 300 ⁇ , preferably about 64 to about 240 ⁇ , based on the weight of the carrier, for example, silica lg.
  • the catalyst has an improved catalytic activity than the supported catalyst on which one cocatalyst is supported, and even if the supporting conditions of the metallocene compound change, that is, the reaction temperature, reaction time, silica type, and the amount of the metallocene compound are changed.
  • the supporting conditions of the metallocene compound change that is, the reaction temperature, reaction time, silica type, and the amount of the metallocene compound are changed.
  • polypropylene can be produced with improved activity.
  • polymerization of propylene is at a temperature of about 25 to about 500 ° C. and about
  • the method for preparing polypropylene of the present invention may be performed by contacting propylene with a catalyst containing a metallocene compound represented by Formula 1 above.
  • the polymerization of propylene may be carried out under hydrogen gas.
  • the hydrogen gas serves to activate the inert site of the phthalocene catalyst and to control the molecular weight by causing a chain transfer reaction.
  • the metallocene compound of the present invention is excellent in hydrogen reaction properties, and thus, by controlling the amount of hydrogen gas used in the polymerization process, polypropylene having a desired molecular weight and melt index can be effectively obtained.
  • the hydrogen gas may be introduced to about 30 to about 2,000 ppm, or 1 to 50 to about 1,500 ppm, or about 50 to about 500 ppm, relative to the weight of propylene.
  • the molecular weight distribution and melt index MI can be adjusted to the desired range, thereby producing a polypropylene having suitable physical properties according to the application.
  • the metallocene catalyst of the present invention has a very good hydrogen reactivity so that the chain transfer reaction is activated as the amount of hydrogen gas is increased, thereby obtaining polypropylene having a reduced molecular weight and a high melt index. Can be.
  • the polypropylene manufacturing method may be performed by a solution polymerization process, a slurry process, or a gas phase process using one continuous slurry polymerization reactor, a loop slurry reactor, a gas phase reactor, or a solution reactor.
  • the catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, such as pentane, nucleic acid, heptane, nonane, decane, and isomers thereof, suitable for the polymerization process of olefinic monomers. It can be injected by dissolving or diluting aromatic hydrocarbon solvents such as toluene and benzene and hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene.
  • the solvent used herein is preferably used by removing a small amount of water, air, or the like acting as a catalyst poison by treating a small amount of alkylaluminum.
  • the catalyst containing the novel metallocene compoundol by using the catalyst containing the novel metallocene compoundol, it is possible to obtain a polypropylene having excellent hydrogen reaction and high polymerization activity compared with the case of using the conventional metallocene compound. have.
  • the polypropylene may be used as a packaging container, a film, a sheet, an injection molded article, a textile product, and the like having low processing temperature and excellent transparency and fluidity.
  • the weight average molecular weight (Mw) of the produced polypropylene is based on the amount of hydrogen used during the polymerization process. According to a weight average molecular weight (Mw) of about 30,000 to about 9,000,000 g / mol, or about 80,000 to about 1,000,000 g / mol, or about 10,000 to about 1,000,000 can be g / m.
  • the polypropylene thus prepared may have a molecular weight distribution (Mw / Mn) of about 5 or less, for example about 1 to about 5, preferably about 2 to about 3.
  • Mw / Mn molecular weight distribution
  • the xylene solubles (Xs) of the polypropylene represents from about 2.0% by weight or less, preferably about 1.5 parts by weight 0/0, more preferably high stereoregularity to about 1.0% by weight (tacticity).
  • Xylene solubles were the content (% by weight) of the polymer soluble in pentagonal xylenes determined by dissolving the polypropylene in xylene and crystallizing the insoluble portion from the pentagonal solution.
  • Xylene solubles contain polymer chains of low stereoregularity, and the lower the content of xylene solubles, the higher the stereoregularity.
  • particle size is 75 ⁇ or less fine powder content is about 5.0 wt. 0 /., Preferably at most about 3.0 wt. 0/0, more preferably from about 2.0 wt. 0/0 derivative or less Less generation, preventing fouling due to fine powder and process stability due to this, it is possible to reduce the problem of scattering particles during product processing.
  • the polypropylenes produced according to the invention exhibit high flowability.
  • the polypropylene prepared according to the present invention when measured at 230 ° C., 2.16 kg, is at least about 1 g / lOmin, for example from about 1 to about 2,500 g / 10min, preferably from about 5 to about It has a broad melt index (MI) of 1,500 g / 10min, and can control the melt index according to the amount of hydrogen used in the polymerization process, thereby producing a polypropylene having an appropriate melt index according to the application.
  • MI melt index
  • n-butyllithium solution 2.5 M, nucleic acid solvent
  • Step 3 Preparation of Butoxynucleosilmethylsilane—Diyl Bis (2-Methyl-4-phenylindenyl) 1 Zirconium Dichloride
  • N-butyllithium solution (2.5) in 50 mL of the previously prepared (6-t-subspecification nucleus) (methyl) bis (2-methyl-4-phenyl) indenylsilane ether / nucleic acid 1/1 solution (3.37 mmol) M in nucleic acid) 3.0 mL was slowly added dropwise at -78 ° C, then stirred for about 2 hours at phase silver and then vacuum dried. Thereafter, the salt was washed with nucleic acid, filtered and dried in vacuo to give a yellow solid.
  • Step 2 Preparation of ⁇ dimethylsilanediylbis (2-methyl--phenylindenyl) 1 zirconium ' dichloride
  • the metallocene compound obtained in Synthesis Example 1 was supported, and further, a supported catalyst was prepared by supporting a boron-based promoter.
  • silica L203F was pre-weighed in a shrink flask, and 40 mm of methylaluminoxane (MAO) was added thereto and reacted at 95 ° C. for 24 hours. Washed over. 360 ⁇ of the metallocene compound obtained in Synthesis Example 1 was dissolved in toluene, and reacted at 75 ° C. for 5 hours. After the reaction was completed and the precipitate was finished, the supernatant solution was removed and the remaining reaction product was washed with toluene. Dimethylanilinium tetrakis (pentafluorophenyl) borate 252 ⁇ was reacted at 75 ° C. for 5 hours. After completion of the reaction, the mixture was washed with toluene, washed with nucleic acid again, and dried in vacuo to obtain 5 g of silica supported metallocene catalyst in the form of solid particles. Comparative Production Example 1
  • the supported catalyst was prepared in the same manner as in Preparation Example 1, except that the metallocene compound obtained in Comparative Synthesis Example 1 was used instead of the metallocene compound obtained in Synthesis Example 1.
  • Example 1 propylene polymerization was carried out in the same manner as in Example 1 except that the detailed operating conditions were different. Comparative Example 1
  • Example 1 propylene polymerization was carried out in the same manner as in Example 1, except that the supported catalyst obtained in Comparative Preparation Example 1 was used. Comparative Example 2
  • Comparative Example 1 propylene polymerization was carried out in the same manner as in Comparative Example 1 except that the detailed operating conditions were different. Detailed operating conditions of Examples 1 to 4 and Comparative Examples 1 and 2 are summarized in Table 1 below.
  • Example 2 70 35 0.9 80 50 100
  • Example 3 70 35 0.8 80 50 500
  • Example 4 70 35 0.8 80 50 1500 Comparative
  • 1 70 35 1.1 80 50 100
  • Comparative Example 2 70 35 1.1 80 50 1500
  • the relative molecular weight relative to the reference was measured by passing through a column tube at about l .Occ / min per sample.
  • the temperature was increased to 200 ° C., maintained at that temperature for 5 minutes, then lowered to 30 ° C., and the temperature was increased again to form the melting point at the top of the DSC (Differential Scanning Calorimeter, TA) curve. At this time, the rate of rise and fall of the temperature is 10 ° C / min, the melting point was used in the results measured in the section where the second temperature rises.
  • DSC Denssion Scanning Calorimeter
  • Samples were made into sheets of thickness 3 mm, radius 2 cm with a 210 ° C. Press Mold and measured on a Mettler balance at 10 ° C./min.
  • Xylene was added to the sample and preheated by heating at 135 ° C for 1 hour and cooling for 30 minutes. Lml / min on OminiSec (Viscotek FIPA) instrument. When Xylene is poured for 4 hours at the flow rate and the base lines of RI, DP, and IP are stabilized, the concentration of the pre-treated sample and injection amount should be entered. The peak area was calculated.
  • HELOS optical diffraction particle size analyzer
  • the embodiment of the present invention can be produced a propylene polymer with a high activity, it can be seen that the lower xylene soluble content than the comparative example has a high stereoregular properties, particle size 75 The fine powder content of ⁇ or less showed a low advantage. Moreover, when Example 2 and 4 and Comparative Examples 1 and 2 are compared, respectively, it turns out that the catalyst used for the Example shows more excellent hydrogen reaction property.
  • the melt index was increased by about 12 times from 1 2 5 g / 10 min (Example 2) to 1520 g / lOmin (Example 4), In the comparative example, the increase was only about 4 times from 205 g / 10 min (Comparative Example 1) to 805 g / 10 min (Comparative Example 2).
  • the production method of the present invention due to the high hydrogen reaction properties of the catalyst it is easy to control the weight average molecular weight and the melt index of the polymer according to the hydrogen input amount, by adjusting the hydrogen input amount in the polymerization process to obtain a propylene polymer having the desired physical properties It is expected to be able to manufacture.

Abstract

The present invention relates to a polypropylene preparation method and polypropylene obtained therefrom and, more specifically, to a polypropylene preparation method using a catalyst containing a novel metallocene compound having excellent polymerization activity, and polypropylene obtained therefrom. According to the present invention, by polymerizing propylene using a novel metallocene compound having excellent polymerization activity and hydrogen reactivity, the physical properties of polypropylene can be easily controlled and polypropylene having excellent physical properties can be obtained.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
폴리프로필렌의 제조방법 및 이로부터 수득되는 폴리프로필렌 【기술분야】  Method for producing polypropylene and polypropylene obtained therefrom
본 발명은 폴리프로필렌의 제조방법 및 이로부터 수득되는 폴리프로필렌에 관한 것이다. 보다 상세하게는, 우수한 중합 활성을 갖는 신규의 메탈로센 화합물을 포함하는 촉매를 아용하는 폴리프로필렌의 제조방법 및 이로부터 수득되는 폴리프로필렌에 관한 것이다.  The present invention relates to a process for producing polypropylene and to polypropylene obtained therefrom. More specifically, it relates to a process for producing polypropylene using a catalyst comprising a novel metallocene compound having excellent polymerization activity and to a polypropylene obtained therefrom.
본 출원은 2013년 9월 30일에 한국특허청에 제출된 한국 특허 출원 제 10-2013-01 16654호 및 2014년 9월 30일에 한국특허청에 제출된 한국 특허 출원 제 10-2014-0130844호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.  This application is filed with the Korean Patent Application No. 10-2013-01 16654 filed with the Korean Patent Office on September 30, 2013 and the Korean Patent Application No. 10-2014-0130844 filed with the Korean Patent Office on September 30, 2014. Claims the full benefit of which is incorporated herein by reference.
【배경기술】  Background Art
다우 (Dow) 사가 1990년대 초반 [Me2Si(Me4C5)NtBu]TiCl2(Constrained- Geometry Catalyst, 이하에서 CGC로 약칭한다)를 발표하였는데 (미국 특허 등록 제 5,064,802호), 에틸렌과 알파-올레핀의 공중합 반웅에서 상기 CGC가 기존까지 알려진 메탈로센 촉매들에 비해 우수한 측면은 크게 다음과 같이 두 가지로 요약할 수 있다: (1) 높은 중합 온도에서도 높은 활성도를 나타내면서 고분자량의 증합체를 생성하며, (2) 1-핵센 및 1 -옥텐과 같은 입체적 장애가 큰 알파-을레핀의 공중합성도 매우 뛰어나다는 점이다. 그 외에도 증합 반응 시, CGC의 여러 가지 특성들이 점차 알려지면서 이의 유도체를 합성하여 중합 촉매로 사용하고자 하는 노력이 학계 및 산업계에서 활발히 이루어졌다. Dow announced in the early 1990s [Me 2 Si (Me 4 C 5 ) NtBu] TiCl 2 (Constrained-Geometry Catalyst, hereinafter abbreviated as CGC) (US Patent No. 5,064,802), ethylene and alpha The superiority of CGC in the copolymerization reaction of -olefins compared to the metallocene catalysts known to the prior art can be summarized in two ways: (1) A high molecular weight polymerizer showing high activity even at high polymerization temperature. And (2) the copolymerization of alpha-lefin, which has a large steric hindrance such as 1-nuxene and 1-octene, is also excellent. In addition, during the polymerization reaction, various characteristics of CGC are gradually known, and efforts to synthesize derivatives thereof and use them as polymerization catalysts have been actively conducted in academia and industry.
리간드로 시클로펜타디에닐기를 한 개 또는 두 개 가지고 있는 4족 전이금속 화합물을 메틸알루미녹산이나 보론 화합물로 활성화시켜 을레핀 중합의 촉매로 이용할 수 있다. 이러한 촉매는 종래의 지글러 -나타 촉매가 구현할 수 없는 독특한 특성을 보여준다.  The Group 4 transition metal compound having one or two cyclopentadienyl groups as a ligand can be activated as methylaluminoxane or boron compound to be used as a catalyst for olepin polymerization. Such catalysts exhibit unique properties that conventional Ziegler-Natta catalysts cannot realize.
즉, 이러한 촉매를 이용하여 얻은 중합체는 분자량 분포가 좁고 알파을레핀이나 시클릭올레핀과 같은 제 2 단량체에 대한 반웅성이 더 좋고, 중합체의 게 2 단량체 분포도 균일하다. 또한, 메탈로센 촉매 내의 시클로펜타디에닐 리간드의 치환체를 변화시켜 줌으로써 알파올레핀을 중합할 때 고분자의 입체 선택성을 조절할 수 있으며, 에틸렌과 다른 올레핀을 공중합할 때 공중합 정도, 분자량, 및 제 2 단량체 분포 등을 용이하게 조절할 수 있다. In other words, the polymer obtained using such a catalyst has a narrow molecular weight distribution, better response to a second monomer such as alphalefin or cyclic olefin, and a homogeneous distribution of the two monomers of the polymer. In addition, in the metallocene catalyst By changing the substituent of the cyclopentadienyl ligand, it is possible to control the stereoselectivity of the polymer when polymerizing the alpha olefin, and to easily control the degree of copolymerization, molecular weight, and second monomer distribution when copolymerizing ethylene and other olefins. have.
한편, 메탈로센 촉매는 종래의 지글러 -나타 촉매에 비해 가격이 비싸기 때문에 활성이 좋아야 경제적인 가치가 있다.  On the other hand, metallocene catalysts are expensive compared to conventional Ziegler-Natta catalysts, so they have good activity and are economically valuable.
여러 연구자들이 다양한 촉매를 연구한 결과, 일반적으로 브리지된 촉매가 제 2 단량체에 대해 반응성이 좋다는 것이 판명되었다. 지금까지 연구된 브리지된 촉매는 브리지 형태에 따라 크게 세 .가지로 분류될 수 있다. 하나는 알킬 할라이드와 같은 친전자체와 인덴이나 플루오렌 등과의 반웅에 의해 두 개의 시클로펜타디에닐 리간드가 알킬렌디브리지로 연결된 촉매이고, 둘째는 -SiR2-에 의해서 연결된 실리콘 브리지된 촉매, 및 셋째는 풀벤과 인덴이나 플루오렌 등과의 반옹으로부터 얻어진 메틸렌브리지된 촉매가 그것이다. . Several researchers have studied various catalysts and found that bridged catalysts generally have good reactivity with the second monomer. Bridged catalysts studied so far are largely dependent on the type of bridge . Can be classified into branches. One is a catalyst in which two cyclopentadienyl ligands are linked to an alkylenedibridge by reaction with an electrophile such as an alkyl halide and indene or fluorene, the second is a silicon bridged catalyst connected by -SiR 2- , and the third Is a methylene bridged catalyst obtained from the reaction of fulven and indene, fluorene and the like. .
그러나, 상기 시도들 증에서 실제로 상업 공장에 적용되고 있는 촉매들은 소수이며, 보다 향상된 중합 성능을 보여주는 촉매의 제조가 여전히 요구된다.  However, the catalysts actually being applied in commercial plants in the above trials are few, and there is still a need for the production of catalysts that show improved polymerization performance.
또한, 메탈로센 화합물을 실제 상용화된 기상 및 슬러리 공장에 적용함에 있어서, 담지체에 담지를 실시하게 된다. 담지를 함에 있어서 조촉매를 동시에 담지하여, 중합 과정중에 추가적인 조촉매를 투입하지 않아도 활성이 나타나도록 하는 연구가 이루어지고 있으나, 기본적으로 담지를 실시하여 비균일계 촉매를 만들면, 담지를 실시하지 않는 균일계 촉매에 비해 활성이 낮아지는 단점이 있다.  In addition, the application of the metallocene compound to the gas phase and slurry plant commercially commercialized, it is carried on the carrier. In supporting the co-catalyst at the same time, the research has been carried out so that the activity appears even if the additional promoter is not added during the polymerization process, but basically, if the non-uniform catalyst is made by carrying out the support, There is a disadvantage that the activity is lower than that of a homogeneous catalyst.
【발명의 내용】  [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
상기와 같은 과제를 해결하고자, 본 발명은 새로운 구조의 메탈로센 화합물을 포함하는 촉매의 존재 하에, 프로필렌을 중합시키는 폴리프로필렌의 제조방법을 제공하고자 한다.  In order to solve the above problems, the present invention is to provide a method for producing a polypropylene to polymerize propylene in the presence of a catalyst containing a metallocene compound of a new structure.
본 발명은 또한, 상기 제조방법에 의해 수득되는 폴리프로필렌을 제공하고자 한다. 【과제의 해결 수단】 The present invention also provides a polypropylene obtained by the above production method. [Measures of problem]
본 발명은 하기 화학식 1로 표시되는 메탈로센 화합물을 포함하는 촉매의 존재 하에, 프로필렌을 중합시키는 단계를 포함하는 폴리프로필렌의 제조방법을 제공한다.  The present invention provides a method for producing a polypropylene comprising the step of polymerizing propylene in the presence of a catalyst comprising a metallocene compound represented by the following formula (1).
[화학식 1]  [Formula 1]
Figure imgf000004_0001
Figure imgf000004_0001
상기 화학식 1에서,  In Chemical Formula 1,
M1은 3족 전미금속, 4족 전이금속, 5족 전이금속, 란타나이드 계열의 전 0 -속 또는 악타나이드 계열의 전이금속이고; M 1 is a Group 3 whole metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide family of all 0- or actanide family transition metals;
X는 서로 동일하거나 상이한 할로겐이며;  X is the same or different halogen from each other;
A는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹 (bridge group)이고;,  A is an element of group 14 and is a bridge group connecting indenyl groups;
R1은 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이고-R 1 is alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
R2는 수소, 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; R 2 is hydrogen, alkyl of 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or aryl;
R3, 3', R4, 및 R4'은 서로 동일하거나 상이하고, 각각 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; R 3 , 3 ′ , R 4 , and R 4 ′ are the same or different from each other, and are each alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
n은 1 내지 20의 정수이다.  n is an integer from 1 to 20.
본 발명은 또한, 상기 제조방법에 의해 수득되는 폴리프로필렌을 제공한다. The present invention also provides a polypropylene obtained by the above production method to provide.
【발명의 효과】  【Effects of the Invention】
본 발명에 따른 폴리프로필렌의 제조방법에 따르면, 우수한 중합 활성 및 수소 반응성을 갖는 신규의 메탈로센 화합물을 이용하여 프로필렌을 중합시킴으로써, 폴리프로필렌의 물성을 쉽게 제어할 수 있으며 기계적 물성이 우수한 폴리프로필렌을 얻을 수 있다.  According to the method for producing polypropylene according to the present invention, by polymerizing propylene using a novel metallocene compound having excellent polymerization activity and hydrogen reactivity, the physical properties of the polypropylene can be easily controlled and the polypropylene has excellent mechanical properties. Can be obtained.
또한, 본 발명에 따른 폴리프로필렌의 제조방법에 의해 수득된 폴리프로필렌은 고투명성을 나타내고, 기계적 물성, 유동성, 결정성 등이 우수하여 다양한 용도로 사용될 수 있다.  In addition, the polypropylene obtained by the method for producing a polypropylene according to the present invention exhibits high transparency and is excellent in mechanical properties, fluidity, crystallinity, etc., and thus may be used for various purposes.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 발명의 구체적인 구현예에 따른 폴리프로필렌의 제조방법 및 상기 제조방법에 의해 수득된 폴리프로필렌을 보다 상세히 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리범위가 한정되는 것은 아니며, 발명의 권리범위 내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.  Hereinafter, a method for producing polypropylene and a polypropylene obtained by the method according to a specific embodiment of the invention will be described in more detail. However, this is presented as an example of the invention, thereby not limited to the scope of the invention, it is apparent to those skilled in the art that various modifications to the embodiment is possible within the scope of the invention.
추가적으로, 본 명세서 전체에서 톡별한 언급이 없는 한 "포함" 또는 "함유 "라 함은 어떤 구성 요소 (또는 구성 성분)를 별다른 제한 없이 포함함을 지칭하며 , 다른 구성 요소 (또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다. 본 발명의 일 측면에 따르면, 하기 화학식 1로 표시되는 메탈로센 화합물을 포함하는 촉매의 존재 하에, 프로필렌을 중합시키는 단계를 포함하는 폴리프로필렌의 제조방법을 제공한다.  Additionally, unless stated otherwise in this specification, "comprising" or "containing" refers to including any component (or component) without particular limitation, and adding another component (or component). Cannot be interpreted as excluding. According to an aspect of the present invention, in the presence of a catalyst comprising a metallocene compound represented by the formula (1), provides a method for producing a polypropylene comprising the step of polymerizing propylene.
[화학식 1] [Formula 1]
Figure imgf000006_0001
Figure imgf000006_0001
상기 화학식 1에서,  In Chemical Formula 1,
M1은 3족 전이금속, 4족 전이금속, 5족 전이금속, 란타나이드 계열의 전이금속 또는 악타나이드 계열의 전이금속이고; M 1 is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide transition metal or an actanide transition metal;
X는 서로 동일하거나 상이한 할로겐이며;  X is the same or different halogen from each other;
A는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹 (bridge group)이고;  A is an element of group 14 and is a bridge group connecting indenyl groups;
R1은 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이고; R 1 is alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms ;
R2는 수소, 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; R 2 is hydrogen, alkyl of 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or aryl;
R3, R3', R4, 및 R4'은 서로 동일하거나 상이하고, 각각 탄소수 1 내지R 3 , R 3 ′, R 4 , and R 4 ′ are the same as or different from each other, and each having 1 to 4 carbon atoms.
20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; 20 alkyl, alkenyl, alkylaryl, arylalkyl or aryl;
n은 1 내지 20의 정수이다.  n is an integer from 1 to 20.
; 바람직하게는, 상기 화학식 1에서 Ri 및 R 2는 각각 탄소수 1 내지Preferably, in Formula 1, Ri and R 2 are each 1 to
4의 알킬이고; R3 및 R3'는 각각 탄소수 1 내지 20의 알킬, 알케닐, 또는 아릴알킬이며; R4 및 R4'는 각각 탄소수 1 내지 20의 아릴, 또는 알킬아릴이고; n은 1 내지 6의 정수이며; A는 규소 (Si)일 수 있다. Alkyl of 4; R 3 and R 3 ′ are alkyl, alkenyl, or arylalkyl each having 1 to 20 carbon atoms; R 4 and R 4 ' are each aryl having 1 to 20 carbon atoms or alkylaryl; n is an integer from 1 to 6; A may be silicon (Si).
상기 화학식 1의 메탈로센 화합물은 리간드로 2번 위치 및 4번 위치에 모두 수소 이외의 치환기가 도입된, 두 개의 인데닐기 (indenyl group)를 포함하며, 특히 상기 리간드를 연결하는 브릿지 그룹 (bridge group)에 산소 -주게 (oxygeiwkmor)로써 루이스 염기의 역할을 할 수 있는 작용기가 치환되어 있어 촉매로서의 활성을 극대화할 수 있는 장점이 있다. 또한 담체에 담지 시에도 높은 중합 활성을 나타낸다. 이에 따라 상기 화학식 1의 화합물을 그 자체 또는. 담체에 담지하여 폴리올레핀의 제조에 촉매로써 사용할 경우 원하는 물성을 갖는 폴리을레핀을 보다 용이하게 제조할 수 있다. The metallocene compound of Chemical Formula 1 is a ligand in which both substituents other than hydrogen are introduced at positions 2 and 4, two indenyl groups (indenyl group), and in particular, the bridge group connecting the ligand (oxygeniwkmor) is substituted with a functional group that can act as a Lewis base has the advantage of maximizing the activity as a catalyst . It also exhibits high polymerization activity even when supported on a carrier. Accordingly the compound of formula 1 is itself or. When supported on a carrier and used as a catalyst for the production of polyolefins, polyolefins having desired physical properties can be produced more easily.
본 발명의 일 구현예에 따르면, 상기 화학식 1로 표시되는 메탈로센 화합물은 단독으로, 또는 조촉매와 함께 담체에 담지된 담지 촉매로 폴리프로필렌의 제조방법에 사용될 수 있다. 상기 조촉매로는 알킬알루미녹산계 조촉매, 및 보론계 조촉매를 포함할 수 있다.  According to one embodiment of the present invention, the metallocene compound represented by Chemical Formula 1 may be used alone or in a method for preparing polypropylene as a supported catalyst supported on a carrier with a promoter. The promoter may include an alkylaluminoxane based promoter and a boron based promoter.
상기 담체는 본 발명이 속하는 기술분야에서 통상적인 것이 사용될 수 있으므로 특별히 한정되지 않으나, 바람직하게는 실리카, 실리카-알루미나 및 실리카-마그네시아로 이루어진 군에서 선택되는 1 종 이상의 담체가 사용될 수 있다. 한편, 실리카와 같은 담체에 담지될 때에는 실리카 담체와 상기 메탈로센 화합물의 작용기가 화학적으로 결합하여 담지되므로, 올레핀 중합공정에서 담체 표면으로부터 유리되어 나오는 촉매가 거의 없어서 슬러리 또는 기상 중합으로 폴리프로필렌을 제조할 때 반웅기 벽면이나 중합체 입자끼리 엉겨 붙는 파울링이 발생하지 않는 장점이 있다.  The carrier is not particularly limited, since a conventional one may be used in the art to which the present invention pertains. Preferably, one or more carriers selected from the group consisting of silica, silica-alumina, and silica-magnesia may be used. On the other hand, when supported on a carrier such as silica, since the silica carrier and the functional group of the metallocene compound are supported by chemical bonding, there are almost no catalysts liberated from the surface of the carrier in the olefin polymerization process. In manufacturing, there is an advantage that fouling does not occur when the wall or polymer particles are entangled with each other.
또한, 이와 같은 담체를 포함하는 담지 촉매의 존재 하에 제조되는 폴리프로필렌은, 폴리머의 입자 형태 및 걸보기 밀도가 우수하여 종래의 슬러리 중합 또는 벌크 중합, 기상 중합 공정에 적합하게 사용 가능하다ᅳ 따라서, 바람직하게는 고온에서 건조되어 표면에 반웅성이 큰 실록산기를 가지고 있는 담체를 사용할 수 있다. 구체적으로는 고은에서 건조된 실리카, 실리카-알루미나 등이 사용될 수 있고, 이들은 통상적으로 Na20, K2C03, BaS04, Mg(N03)2 등의 산화물, 탄산염, 황산염, 질산염 성분이 함유될 수 있다. In addition, the polypropylene produced in the presence of a supported catalyst comprising such a carrier is excellent in the particle form and striking density of the polymer, and thus can be suitably used in conventional slurry polymerization, bulk polymerization and gas phase polymerization processes. Preferably, a carrier having a high banung siloxane group on the surface by drying at a high temperature may be used. Specifically, silica, silica-alumina, and the like, which are dried from silver, may be used, and these are usually oxides, carbonates, sulfates, and nitrates such as Na 2 O, K 2 C0 3 , BaS0 4 , and Mg (N0 3 ) 2 . It may be contained.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 메탈로센 화합물은 알킬알루미녹산계 조촉매 및 보론계 조촉매 등과 함께, 프로필렌 중합용 촉매로 사용될 수 있다. 상기 알킬알루미녹산계 조촉매는 하기 화학식 2로 표시되는 것일 수 According to an embodiment of the present invention, the metallocene compound represented by Chemical Formula 1 may be used as a catalyst for propylene polymerization together with an alkylaluminoxane-based promoter and a boron-based promoter. The alkylaluminoxane-based promoter may be represented by the following formula (2)
[화학식 2] [Formula 2]
R5 R 5
상기 화학식 2에서, In Chemical Formula 2,
M2은 13족 금속 원소이고; M 2 is a Group 13 metal element;
R5는 서로 동일학거나 상이하고, 각각 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; R 5 is the same or different from one another and is each alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
. m은 2 이상의 정수일 수 있다.  . m may be an integer of 2 or more.
상기 알킬알루미녹산계 조촉매는 바람직하게는, 상기 화학식 2에서 The alkylaluminoxane-based promoter is preferably in Formula 2
R5가 각각 메틸 (methyl), 에틸 (ethyl), 프로필 (propyl), 이소프로필 (isopropyl), 이소프로펜일 (isopropenyl), n-부틸 (n-butyl), sec-부틸 (sec-butyl), tert-부틸 (teri-butyl): 펜틸 (pentyl), 핵실 (hexyl), 옥틸 (octyl), 데실 (decyl), 도데실 (dodecyl), 트리데실 (tridecyl), 테트라데실 (tetradecyl), 펜타데실 (pentadecyl), 핵사데실 (hexadecyl), 옥타데실 (Octadecyl), 에이코실 (eikosyl), 도코실 (dokosyl), 테트라코실 (tetrakosyl), 시클로핵실 (cyclohexyl), 시클로옥틸 (cyclooctyl), 페닐 (phenyl), 틀릴 (tolyl), 또는 에틸페닐 (ethylphenyl)이며; M2은 알루미늄일 수 있다. R 5 is methyl, ethyl, propyl, isopropyl, isopropenyl, n-butyl, sec-butyl, tert-butyl : pentyl, hexyl, octyl, decyl, dodecyl, tridecyl, tetradecyl, tetradecyl, pentadecyl ( pentadecyl, hexadecyl, octadecyl, octadecyl, ekosyl, dokosyl, tetrakosyl, cyclohexyl, cyclooctyl, cyclooctyl, phenyl, Tolyl, or ethylphenyl; M 2 may be aluminum.
또한, 상기 화학식 2에서, m은 2 이상, 또는 2 내지 500의 정수가 될 수 있으며, 바람직하게는 6 이상, 또는 6 내지 300의 정수, 좀더 바람직하게는 10 이상 또는 10 내지 100의 정수가 돨수 있다.  In addition, in Formula 2, m may be an integer of 2 or more, or 2 to 500, preferably 6 or more, or an integer of 6 to 300, more preferably an integer of 10 or more or 10 to 100 have.
상기 알킬알루미녹산계 조촉매는 상기 화학식 1의 메탈로센 환합물의 브릿지 그룹 (bridge group)에 도입된 작용기와 루이스 산 -염기 상호 작용을 통한 결합을 형성할 수 있는 루이스 산의 역할을 할 수 있는 금속 원소를 포함하는 것을 특징으로 한다. 상기 화학식 2의 조촉매 화합물은 선형, 원형 또는 망상형으로 존재가 가능하며, 이러한 조촉매 화합물의 예는 메틸알루미녹산, 에틸알루미녹산, 프로필알루미녹산, 부틸알루미녹산 등의 1종 이상이 될 수 있다. 또한, 본 발명의 폴리프로필렌 중합용 촉매는 상기 알킬알루미녹산계 조촉매와 더불어 비알킬알루미녹산계로서 비배위성 음이온을 포함한 조촉매를 사용할 수 있다. 특히, 본 발명의 일 실시예에 따르면 이러한 비알킬알루미녹산계 조촉매로서 보론계 조촉매를 사용할 수 있다. The alkylaluminoxane-based promoter may serve as a Lewis acid capable of forming a bond through a Lewis acid-base interaction with a functional group introduced into a bridge group of the metallocene compound of Formula 1 It is characterized by including a metal element. The cocatalyst compound of Chemical Formula 2 may be present in a linear, circular or reticular form, and examples of such cocatalyst compounds may be at least one of methylaluminoxane, ethylaluminoxane, propylaluminoxane, and butylaluminoxane. have. In addition, the catalyst for polypropylene polymerization of the present invention may use a cocatalyst including a non-coordinating anion as the alkylalkyl aluminoxane-based cocatalyst as the non-alkyl aluminoxane. In particular, according to one embodiment of the present invention can be used a boron-based promoter as such a non-alkyl aluminoxane-based promoter.
상기 보론계 조촉매는 디메틸아닐리니음테트라키스 (펜타플루오로페닐)보레이트, (Dimethylanilinium tetakis(pentafluorophenyl)borate, [HN(CH3)2C6H5] [B(C6F5)4]), 트리틸테트라키스 (펜타플루오로페닐)보레이트 (Trityl The boron-based promoter is dimethylanilinium tetrakis (pentafluorophenyl) borate, (Dimethylanilinium tetakis (pentafluorophenyl) borate, [HN (CH 3 ) 2 C 6 H 5 ] [B (C 6 F 5 ) 4 ] ), Trityl tetrakis (pentafluorophenyl) borate (Trityl
tetakis(pentafluorophenyl)borate, [(C6H5)3C][B(C6F5)4]), 및 메틸아닐리니움테트라키스 (펜타플루오로디페닐)보레이트 (Methylanilinium tetakis(pentafluorodiphenyl)borate, [HN(CH3)(C6H5)2][B(C6F5)4])로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다. tetakis (pentafluorophenyl) borate, [(C 6 H 5 ) 3 C] [B (C 6 F 5 ) 4 ]), and methylanilinium tetrakis (pentafluorodiphenyl) borate (Methylanilinium tetakis (pentafluorodiphenyl) borate, One or more selected from the group consisting of [HN (CH 3 ) (C 6 H 5 ) 2 ] [B (C 6 F 5 ) 4 ]) can be used.
상기 보론계 조촉매는 상기 메탈로센 화합물을 안정화시켜 중합에서 활성을 유지할 수 있도록 한다. 특히, 본 발명에서 사용한 메탈로센 화합물은 테더 (Tether)가 있으며, 이 작용기 때문에 중합시 침출 (leaching) 현상이 발생되지 않아 파울링 (fouling)이 발생되지 않고, 우수한 활성을 나타낼 수 있다. 그러나, 만약 기존에 알려진 메탈로센 화합물과 같이 테더 (tether)가 없는 구조라면 침출 (leaching)된 촉매 전구체와 보론계 조촉매와 반웅하여 대부분 파울링 (fouling)이 발생하는 문제가 있다.  The boron-based promoter stabilizes the metallocene compound to maintain activity in the polymerization. In particular, the metallocene compound used in the present invention has a tether, and because of this functional group, leaching does not occur during polymerization, and fouling does not occur, and thus excellent activity may be exhibited. However, if there is no tether structure such as a metallocene compound known in the art, fouling occurs with most of the leaching catalyst precursor and boron promoter.
본 발명의 제조방법에서는 알킬알루미녹산계 조촉매와 비알킬알루미녹산계로서 보론계 조촉매의 2종의 조촉매를 동시에 담지하여 활성이 보다 향상된 담지 촉매를 만들 수 있다. 또한, 2종의 조촉매간 서로 역효과가 발생하지 않는 조촉매를 선정했으며, 최적의 담지 비율 또한 실험을 통해 확인하였다.  In the production method of the present invention, a supported catalyst having improved activity can be made by simultaneously supporting two kinds of promoters of the boron-based promoter as the alkylaluminoxane-based promoter and the non-alkylaluminoxane-based. In addition, a promoter was selected that does not cause adverse effects between the two promoters, and the optimal loading ratio was also confirmed through experiments.
본 발명의 일 실시예에 따른 폴리프로필렌의 제조방법에서, 상기 메탈로센 화합물은 담체 중량당, 예컨대, 실리카 lg을 기준으로 약 40 내지 약 240 μηιοΐ, 바람직하게는 약 80 내지 약 160 μηιοΐ 의 함량 범위로 담지될 수 있다.  In the method for preparing polypropylene according to an embodiment of the present invention, the metallocene compound is present in an amount of about 40 to about 240 μηιοΐ, preferably about 80 to about 160 μηιοΐ, based on the weight of the carrier, for example, based on silica lg. It can be carried in a range.
또한, 상기 알킬알루미녹산계 조촉매는 담체 중량당, 예컨대, 실리카 lg을 기준으로 약 8 내지 약 25 mmol, 바람직하게는 약 10 내지 약 20 mm이의 함량 범위로 담지될 수 있다. In addition, the alkylaluminoxane-based promoter is about 8 to about 25 mmol, preferably about 10 to about 20, based on the weight of the carrier, for example, silica lg. It can be supported in the content range of mm.
상기 보론계 조촉매는 담체 중량당, 예컨대, 실리카 lg을 기준으로 약 50 내지 약 300 μπιοΐ, 바람직하게는 약 64 내지 약 240 μπιοΐ 의 함량 범위로 담지될 수 있다.  The boron-based promoter may be supported in a content range of about 50 to about 300 μπιοΐ, preferably about 64 to about 240 μπιοΐ, based on the weight of the carrier, for example, silica lg.
본 발명의 일 실시예에 따른 폴리프로필렌의 제조방법에서. 상기 촉매는 1종의 조촉매가 담지된 담지 촉매보다 향상된 촉매 활성을 가지며, 메탈로센 화합물의 담지 조건이 변하더라도, 즉, 반응 온도, 반웅 시간, 실리카 종류, 메탈로센 화합물의 담지량이 변경되더라도 향상된 활성으로 폴리프로필렌을 제조할 수 있다.  In the method for producing a polypropylene according to an embodiment of the present invention. The catalyst has an improved catalytic activity than the supported catalyst on which one cocatalyst is supported, and even if the supporting conditions of the metallocene compound change, that is, the reaction temperature, reaction time, silica type, and the amount of the metallocene compound are changed. However, polypropylene can be produced with improved activity.
여기서, 상기 프로필렌의 중합은 약 25 내지 약 500 °C의 온도 및 약Wherein the polymerization of propylene is at a temperature of about 25 to about 500 ° C. and about
1 내지 약 100 kgf/cm2의 압력 하에서 약 1 내지 약 24 시간 동안 반웅시켜 수행될 수 있다. 이때, 상기 중합 반웅 온도는 약 25 내지 약 200 °C가 바람직하고, 약 50 내지 약 100 °C가 보다 바람직하다. 또한, 상기 중합 반응 압력은 약 1 내지 약 70 kgf/cm2가 바람직하고, 약 5 내지 약 50 kgf/cm2가 보다 바람직하다. 상기 중합 반웅 시간은 약 1 내지 약 5 시간이 바람직하다. 본 발명의 폴리프로필렌의 제조방법은 상기 화학식 1로 표시되는 메탈로센 화합물을 포함하는 촉매와, 프로필렌을 접촉시키는 것에 의하여 수행될 수 있다. It may be performed by reacting for about 1 to about 24 hours under a pressure of 1 to about 100 kgf / cm 2 . At this time, the polymerization reaction temperature is preferably about 25 to about 200 ° C, more preferably about 50 to about 100 ° C. Further, the polymerization pressure is preferably about 1 to about 70 kgf / cm 2 , more preferably about 5 to about 50 kgf / cm 2 . The polymerization reaction time is preferably about 1 to about 5 hours. The method for preparing polypropylene of the present invention may be performed by contacting propylene with a catalyst containing a metallocene compound represented by Formula 1 above.
또한, 본 발명의 일 실시예예 따르면, 상기 프로필렌의 중합은 수소 기체 하에서 수행될 수 있다.  In addition, according to an embodiment of the present invention, the polymerization of propylene may be carried out under hydrogen gas.
이때, 상기 수소 기체는 쩨탈로센 촉매의 비활성 사이트를 활성화시키고 체인 이동 반웅 (chain transfer reaction)을 일으켜 분자량을 조절하는 역할을 한다. 본 발명의 메탈로센 화합물은 수소 반웅성이 우수하며, 따라서, 중합 공정시 상기 수소 기체 사용량의 조절에 의해, 원하는 수준의 분자량과 용융 지수를 갖는 폴리프로필렌이 효과적으로 얻어질 수 있다.  At this time, the hydrogen gas serves to activate the inert site of the phthalocene catalyst and to control the molecular weight by causing a chain transfer reaction. The metallocene compound of the present invention is excellent in hydrogen reaction properties, and thus, by controlling the amount of hydrogen gas used in the polymerization process, polypropylene having a desired molecular weight and melt index can be effectively obtained.
상기 수소 기체는 프로필렌의 중량에 대하여, 약 30 내지 약 2,000 ppm, 또는 1 약 50 내지 약 1,500 ppm, 또는 약 50 내지 약 500 ppm 이 되도록 투입될 수 있다. 상기 수소 기체의 사용량을 조절하여, 층분한 촉매 활성을 나타내면서도 제조되는 폴리프로필렌의 분자량 분포 및 용융 지수 (melt index, MI)를 원하는 범위 내로 조절할 수 있으며, 이에 따라 용도에 따라 적절한 물성을 갖는 폴리프로필렌을 제조할 수 있다. 보다 구체적으로, 본 발명의 메탈로센 촉매는 매우 우수한 수소 반응성을 갖고 있어 수소 기체의 사용량을 증가시킴에 따라 체인 이동 반응이 활성화되며, 이에 따라 분자량이 감소되고 용융 지수가 높은 폴리프로필렌을 수득할 수 있다. The hydrogen gas may be introduced to about 30 to about 2,000 ppm, or 1 to 50 to about 1,500 ppm, or about 50 to about 500 ppm, relative to the weight of propylene. By adjusting the amount of the hydrogen gas, the molecular weight distribution and melt index MI) can be adjusted to the desired range, thereby producing a polypropylene having suitable physical properties according to the application. More specifically, the metallocene catalyst of the present invention has a very good hydrogen reactivity so that the chain transfer reaction is activated as the amount of hydrogen gas is increased, thereby obtaining polypropylene having a reduced molecular weight and a high melt index. Can be.
상기 폴리프로필렌의 제조방법은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반응기, 기상 반응기 또는 용액 반응기 등을 이용하여, 용액 중합 공정, 슬러리 공정 또는 기상 공정에 의해 수행될 수 있다.  The polypropylene manufacturing method may be performed by a solution polymerization process, a slurry process, or a gas phase process using one continuous slurry polymerization reactor, a loop slurry reactor, a gas phase reactor, or a solution reactor.
본 발명에 따른 폴리프로필렌의 제조방법에 있어서, 상기 촉매는 을레핀계 단량체의 중합 공정에 적합한 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 핵산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 를루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입 가능하다. 여기에 사용되는 용매는 소량의 알킬알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하다.  In the method for producing polypropylene according to the present invention, the catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, such as pentane, nucleic acid, heptane, nonane, decane, and isomers thereof, suitable for the polymerization process of olefinic monomers. It can be injected by dissolving or diluting aromatic hydrocarbon solvents such as toluene and benzene and hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene. The solvent used herein is preferably used by removing a small amount of water, air, or the like acting as a catalyst poison by treating a small amount of alkylaluminum.
본 발명의 다른 일 측면에 따르면, 상술한 제조방법에 의해 수득되는 폴리프로필렌을 제공한다.  According to another aspect of the present invention, there is provided a polypropylene obtained by the above-described manufacturing method.
전술한 바 대로, 본 발명에 따르면 상기 신규한 메탈로센 화합물올 포함하는 촉매 사용함으로써, 기존의 메탈로센 화합물을 사용하였을 경우에 비해 우수한 수소 반웅성과 높은 중합 활성을 갖는 폴리프로필렌을 수득할 수 있다.  As described above, according to the present invention, by using the catalyst containing the novel metallocene compoundol, it is possible to obtain a polypropylene having excellent hydrogen reaction and high polymerization activity compared with the case of using the conventional metallocene compound. have.
상기 폴리프로필렌은 가공 온도가 낮고 투명성 및 유동성이 우수하여 이러한 특성이 요구되는 포장용기, 필름, 시트, 사출 성형품, 섬유 제품 등으로 이용될 수 있다.  The polypropylene may be used as a packaging container, a film, a sheet, an injection molded article, a textile product, and the like having low processing temperature and excellent transparency and fluidity.
본 발명의 일 실시예에 따르면, 상기 메탈로센 화합물을 포함하는 촉매를 사용하여 프로필렌의 중합 공정을 수행하였을 때, 생성된 폴리프로필렌의 중량 평균 분자량 (Mw)은 중합 공정시 투입하는 수소 사용량에 따라 중량 평균 분자량 (Mw)이 약 30,000 내지 약 9,000,000 g/mol, 또는 약 80,000 내지 약 1 ,000,000 g/mol, 또는 약 10,000 내지 약 1,000,000 g/m 이 될 수 있다. According to one embodiment of the present invention, when the polymerization process of propylene is carried out using the catalyst containing the metallocene compound, the weight average molecular weight (Mw) of the produced polypropylene is based on the amount of hydrogen used during the polymerization process. According to a weight average molecular weight (Mw) of about 30,000 to about 9,000,000 g / mol, or about 80,000 to about 1,000,000 g / mol, or about 10,000 to about 1,000,000 can be g / m.
또한, 이렇게 제조된 상기 폴리프로필렌은 분자량 분포 (Mw/Mn)가 약 5 이하, 예를 들어 약 1 내지 약 5, 바람직하게는 약 2 내지 약 3이 될 수 있다. 상기와 같이 좁은 분자량 분포를 가짐으로써 투명도가 높고 특히 폴라프로필렌 특유의 맛이나 냄새 문제가 적은 제품을 제조할 수 있다.  In addition, the polypropylene thus prepared may have a molecular weight distribution (Mw / Mn) of about 5 or less, for example about 1 to about 5, preferably about 2 to about 3. By having a narrow molecular weight distribution as described above, it is possible to produce a product with high transparency and particularly less polarity and odor problems peculiar to polar propylene.
또한, 상기 폴리프로필렌의 자일렌 가용분 (Xs)은 약 2.0 중량 % 이하, 바람직하게는 약 1.5 중량0 /0, 보다 바람직하게는 약 1.0 중량% 이하로 높은 입체 규칙도 (tacticity)를 나타낸다. 자일렌 가용분은 상기 폴리프로필렌을 자일렌 중에 용해시키고, 넁각 용액으로부터 불용성 부분을 결정화시켜 결정된 넁각 자일렌 증에 가용성인 중합체의 함량 (중량 %)이ᅳ다. 자일렌 가용분은 낮은 입체 규칙성의 중합체 사슬을 함유하는 것으로, 자일렌 가용분의 함량이 낮을수록 높은 입체 규칙도를 갖는다. Further, the xylene solubles (Xs) of the polypropylene represents from about 2.0% by weight or less, preferably about 1.5 parts by weight 0/0, more preferably high stereoregularity to about 1.0% by weight (tacticity). Xylene solubles were the content (% by weight) of the polymer soluble in pentagonal xylenes determined by dissolving the polypropylene in xylene and crystallizing the insoluble portion from the pentagonal solution. Xylene solubles contain polymer chains of low stereoregularity, and the lower the content of xylene solubles, the higher the stereoregularity.
또한, 본 발명에 따라 제조된 폴리프로필렌에서, 입경이 75μηι 이하인 미분 함량이 약 5.0 중량0 /。 이하, 바람직하게는 약 3.0 중량0 /0, 보다 바람직하게는 약 2.0 중량0 /0 이하로 미분 발생이 적어, 미분에 의한 파울링 발생 및 이로 인한 공정 블안정성이 방지되며, 제품 가공 시 입자가 비산되는 문제점을 줄일 수 있다. Also, in the polypropylene produced in accordance with the present invention, particle size is 75μηι or less fine powder content is about 5.0 wt. 0 /., Preferably at most about 3.0 wt. 0/0, more preferably from about 2.0 wt. 0/0 derivative or less Less generation, preventing fouling due to fine powder and process stability due to this, it is possible to reduce the problem of scattering particles during product processing.
또한, 본 발명에 따라 제조된 폴리프로필렌은 높은 유동성을 나타낸다. 예를 들어, 본 발명에 따라 제조된 폴리프로필렌은 230 °C , 2.16 kg에서 측정하였을 때, 약 1 g/lOmin 이상, 예를 들어 약 1 내지 약 2,500 g/10min, 바람직하게는 약 5 내지 약 1 ,500 g/10min 의 광범위한 용융 지수 (melt index, MI)를 가지며, 중합 공정시 투입하는 수소 사용량에 따라 용융 지수의 조절이 가능하여 용도에 따라 적절한 용융 지수를 갖는 폴리프로필렌을 제조할 수 있다  In addition, the polypropylenes produced according to the invention exhibit high flowability. For example, the polypropylene prepared according to the present invention, when measured at 230 ° C., 2.16 kg, is at least about 1 g / lOmin, for example from about 1 to about 2,500 g / 10min, preferably from about 5 to about It has a broad melt index (MI) of 1,500 g / 10min, and can control the melt index according to the amount of hydrogen used in the polymerization process, thereby producing a polypropylene having an appropriate melt index according to the application.
본 발명에 있어서 상기 기재된 내용 이외의 사항은 필요에 따라 가감이 가능한 것이므로, 본 발명에서는 특별히 한정하지 아니한다.  In the present invention, matters other than those described above can be added or subtracted as necessary, and therefore the present invention is not particularly limited.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다. <실시예 > Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited thereto. <Example>
<합성예: 메탈로센 화합물의 합성 >  Synthesis Example Synthesis of Metallocene Compound
Figure imgf000013_0001
Figure imgf000013_0001
1 단계: (6-t-부톡시핵실)디클로로메틸실란의 제조  Step 1: Preparation of (6-t-butoxynucleosil) dichloromethylsilane
100 mL의 트리클로로메틸실란 용액 (약 0.21 mol, 핵산)에 100 mL의 t- 부톡시핵실 마그네슘 클로라이드 용액 (약 0.14 mol, 에테르)을 -100 °C 하에서 3 시간에 걸쳐 천천히 적가한 후, 상온에서 3 시간 동안 교반하였다. To 100 mL of trichloromethylsilane solution (about 0.21 mol, nucleic acid), 100 mL of t-butoxynucleosil magnesium chloride solution (about 0.14 mol, ether) was slowly added dropwise over 3 hours at -100 ° C., followed by room temperature Stirred for 3 h.
상기 흔합 용액에서 투명한 유가층을 분리한 후, 분리된 투명 유기층을 진공 건조하여 과량의 트리클로로메틸실란을 제거하였다. 이로써, 투명한 액상의 (6-t-부록시핵실)디클로로메틸실란을 얻었다 (수율 84 %).  After the transparent valuable layer was separated from the mixed solution, the separated transparent organic layer was vacuum dried to remove excess trichloromethylsilane. This resulted in a transparent liquid (6-t-butoxynucleosil) dichloromethylsilane (yield 84%).
1H NMR (500 MHz, CDC13, 7.24 ppm): 0.76(3H, s), 1.11(2H, t), 1.18(9H,s), 1.32~1.55(8H, m), 3.33(2H, t) 1 H NMR (500 MHz, CDC1 3 , 7.24 ppm): 0.76 (3H, s), 1.11 (2H, t), 1.18 (9H, s), 1.32-1.55 (8H, m), 3.33 (2H, t)
2 단계: (6-t-부톡시헥실) (메틸) -비스 (2-메틸 -4-페닐인데닐ᅵ실란의 제조 77 mL의 2-메틸 -4-페닐인덴 를루엔 /THF=10/1 용액 (34.9 mmol)에 n- 부틸리튬 용액 (2.5 M, 핵산 용매) 15.4 mL를 0 °C에서 천천히 적가하였고, 80 °C에서 1시간 동안 교반한 뒤 상온에서 하루 동안 교반하였다. 그 후, - 78 °C에서 상기 흔합 용액에 앞서 제조한 (6-t-부록시핵실)디클로로메틸실란 5 g을 천천히 적가하였고, 약 10 분 동안 교반한 뒤 80 °C에서 1 시간 동안 교반하였다. 그 뒤 물을 가하여 유기층을 분리한 뒤 실리카 컬럼 정제하고 진공 건조하여 끈끈한 노란색 오일을 78%의 수율로 얻었다 (racemic:meso = 1 :1). Step 2: Preparation of (6-t-butoxyhexyl) (methyl) -bis (2-methyl-4-phenylindenylsilane) 77 mL of 2-methyl-4-phenylindene toluene / THF = 10 / 15.4 mL of n-butyllithium solution (2.5 M, nucleic acid solvent) was slowly added dropwise to 1 solution (34.9 mmol) at 0 ° C., stirred at 80 ° C. for 1 hour, and then stirred at room temperature for 1 day. 5 g of (6-t-butoxynucleosil) dichloromethylsilane, prepared previously, was slowly added dropwise to the mixed solution at 78 ° C., stirred for about 10 minutes, and then stirred at 80 ° C. for 1 hour. Stirred. Then, water was added, the organic layer was separated, silica column purified, and vacuum dried to give a sticky yellow oil in a yield of 78% (racemic: meso = 1: 1).
1H NMR (500 MHz, CDC13, 7.24 ppm): 0.10(3H, s), 0.98(2H, t), 1.25(9H, s), 1.36~1.50(8H, m), 1.62(8H, m), 2.26(6H, s), 3.34(2H, t), 3.81(2H, s), 6.87(2H, s), 7.25(2H, t), 7.35(2H, t), 7.45(4H, d), 7.53(4H, t), 7.61(4H, d) 1 H NMR (500 MHz, CDC1 3 , 7.24 ppm): 0.10 (3H, s), 0.98 (2H, t), 1.25 (9H, s), 1.36-1.50 (8H, m), 1.62 (8H, m), 2.26 (6H, s), 3.34 (2H, t), 3.81 (2H, s), 6.87 (2H, s), 7.25 (2H, t), 7.35 (2H, t), 7.45 (4H, d), 7.53 (4H, t), 7.61 (4H, d)
3 단계: 부톡시핵실메틸실란—디일 비스 (2-메틸 -4-페닐인데닐) 1 지르코늄 디클로라이드의 제조  Step 3: Preparation of Butoxynucleosilmethylsilane—Diyl Bis (2-Methyl-4-phenylindenyl) 1 Zirconium Dichloride
앞서 제조한 (6-t-부특시핵실) (메틸)비스 (2-메틸 -4-페닐)인데닐실란 에테르 /핵산 =1/1 용액 (3.37 mmol) 50 mL에 n-부틸리튬 용액 (2.5 M in 핵산) 3.0 mL를 -78 °C에서 천천히 적가한 후, 상은에서 약 2 시간 동안 교반한 뒤 진공 건조하였다. 그 뒤, 핵산으로 염을 세척한 후 여과 및 진공 건조하여 노란색의 고체를 얻었다. 글로브 박스 (glove box) 내에서 합성한 리간드 염 (ligand salt)와 비스 (Ν,Ν'-디페닐 -1,3-프로판디아미도)디클로로지르코늄 비스 (테트라하이드로퓨란) [Zr(C5H6NCH2CH2CH2NC5H6)Cl2(C4H80)2]을 쉬링크 플라스크 (schlenk flask)에 칭량 (weighing)한 후, -78 °C에서 에테르를 천천히 적가한 뒤 상은에서 하루 동안 교반하였다. 이후에, 붉은색 반응 용액을 여과 분리한 후 HC1 에테르 용액 (1M) 4 당량을 -78 °C에서 천천히 적가한 후 상온에서 3 시간 동안 교반하였다. 이후 여과하고 진공 건조하여 오렌지색 고체 성분의 메탈로센 화합물을 85%의 수율로 얻었다 (racemic:meso = 10:1). N-butyllithium solution (2.5) in 50 mL of the previously prepared (6-t-subspecification nucleus) (methyl) bis (2-methyl-4-phenyl) indenylsilane ether / nucleic acid = 1/1 solution (3.37 mmol) M in nucleic acid) 3.0 mL was slowly added dropwise at -78 ° C, then stirred for about 2 hours at phase silver and then vacuum dried. Thereafter, the salt was washed with nucleic acid, filtered and dried in vacuo to give a yellow solid. Ligand salt synthesized in a glove box and bis (Ν, Ν'-diphenyl-1,3-propanediamido) dichlorozirconium bis (tetrahydrofuran) [Zr (C 5 H 6 NCH 2 CH 2 CH 2 NC 5 H 6 ) Cl 2 (C 4 H 8 0) 2 ] was weighed into a schlenk flask, and ether was slowly added dropwise at -78 ° C. Stirred for one day. Thereafter, the red reaction solution was filtered off, and then 4 equivalents of HC1 ether solution (1M) was slowly added dropwise at -78 ° C, followed by stirring at room temperature for 3 hours. After filtration and vacuum drying to give an orange solid metallocene compound in 85% yield (racemic: meso = 10: 1).
1H NMR (500 MHz, C6D6, 7.24 ppm): 1.19(9H, s), 1.32(3H, s), 1.48~1.86(10H, m), 2.25(6H, s), 3.37(2H, t), 6.95(2H, s), 7.13(2H, t), 7.36(2H, d), 7.43(6H, t), 7.62(4H, d), 7.67(2H, d) 비교 합성예 1 H NMR (500 MHz, C 6 D 6 , 7.24 ppm): 1.19 (9H, s), 1.32 (3H, s), 1.48-1.86 (10H, m), 2.25 (6H, s), 3.37 (2H, t ), 6.95 (2H, s), 7.13 (2H, t), 7.36 (2H, d), 7.43 (6H, t), 7.62 (4H, d), 7.67 (2H, d) Comparative Synthesis Example
Figure imgf000015_0001
Figure imgf000015_0001
' 1 단계: 디메틸비스 (2-메틸 -4페닐인데닐)실란의 제조 '' Step 1: Preparation of Dimethylbis (2-methyl-4phenylindenyl) silane
77 mL의 2-메틸 -4-페닐인덴 를루엔 /THF=10/1 용액 (49.5 mmol)에 n- 부틸라튬 용액 (2.5 M, 핵산 용매) 21.8 mL를 0 °C에서 천천히 적가하고, 80 °C에서 1 시간 동안 교반한 뒤 상은에서 하루 동안 교반하였다. 그 후, 0 °C 이하에서 디클로로메틸실란 2.98 mL를 천천히 적가하고, 약 10 분 동안 교반한 뒤 80 t로 온도를 을려 1 시간 동안 교반하였다. 그 뒤 물을 가하여 유기층을 분리한 뒤 실리카 컬럼 정제하고 진공 건조하여 끈끈한 노란색 오일을 61%의 수율로 얻었다 (racemic:meso = 1 : 1). To a 77 mL 2-methyl-4-phenylindene toluene / THF = 10/1 solution (49.5 mmol), 21.8 mL of n-butylaluminum solution (2.5 M, nucleic acid solvent) were slowly added dropwise at 0 ° C, and 80 Stir at 1 ° C. for 1 hour and then stir at phase silver for 1 day. Then, 2.98 mL of dichloromethylsilane was slowly added dropwise at 0 ° C. or lower, stirred for about 10 minutes, and stirred at 80 t for 1 hour. Then, water was added, the organic layer was separated, silica column purified, and vacuum dried to give a sticky yellow oil in a yield of 61% (racemic: meso = 1: 1).
Ή NMR (500 MHz, CDC13, 7.24 ppm): 0.02(6H, s), 2.37(6H, s), 4.00(2H, s),NMR (500 MHz, CDC1 3 , 7.24 ppm): 0.02 (6H, s), 2.37 (6H, s), 4.00 (2H, s),
6.87(2H, t), 7.38(2H, t), 7.45(2H, t), 7.57(4H, d), 7.65(4H, t), 7.75(4H, d) 6.87 (2H, t), 7.38 (2H, t), 7.45 (2H, t), 7.57 (4H, d), 7.65 (4H, t), 7.75 (4H, d)
2 단계: Γ디메틸실란디일비스 (2-메틸 - -페닐인데닐ᅵ1 지르코늄 ' 디클로라이드의 제조 Step 2: Preparation of Γdimethylsilanediylbis (2-methyl--phenylindenyl) 1 zirconium ' dichloride
240 mL의 디메틸비스 (2-메틸 -4-페닐인데닐)실란 에테르 /핵산 =1/1 용액 (12.4 mmol)에 n-부틸리튬 용액 (2.5 M in 핵산) 1으9 mL를 -78 °C에서 천천히 적가하였다. 그 뒤, 상온에서 하루 동안 교반한 뒤 여과하고 진공 건조하여 연한 노란색의 고체를 얻었다. 글로브 박스 (glove box) 내에서 합성한 리간드 염 (ligand salt)과 비스 (Ν,Ν'-디페닐 -1,3- 프로판디아미도)디클로로지르코늄비스 (테트라하이드로퓨란)을 쉬링크 플라스크 (schlenk flask)에 칭량 (weighing)한 후, -78 °C에서 에테르를 천천히 적가한 뒤 상온에서 하투 동안 교반하였다. 붉은색의 용액을 여과 분리한 후 진공 건조하고 를루엔 /에테르 = 1/2 용액을 가하여 깨끗한 붉은 색 용액을 얻었다. HC1 에테르 용액 (1M) 1.5-2 당량을 -78 °C에서 천천히 적가한 후 상온에서 3시간 동안 교반하였다. 이후 여과하고 진공 건조하여 오렌지색 고체 성분의 촉매를 70%의 수율로 얻었다 (racemic only). -78 ° C to 9 mL of n-butyllithium solution (2.5 M in nucleic acid) 1 in 240 mL dimethylbis (2-methyl-4-phenylindenyl) silane ether / nucleic acid = 1/1 solution (12.4 mmol) Was slowly added dropwise. Thereafter, the mixture was stirred at room temperature for one day, filtered and dried in vacuo to give a pale yellow solid. Ligand salt and bis (Ν, Ν'-diphenyl-1,3-propanediamido) dichlorozirconiumbis (tetrahydrofuran) synthesized in a glove box were used in the Schlenk flask. After weighing (), slowly ether ether at -78 ° C After the dropwise addition, the mixture was stirred at room temperature during hatu. The red solution was separated by filtration, dried in vacuo and toluene / ether = 1/2 solution was added to obtain a clean red solution. 1.5-2 equivalents of HC1 ether solution (1M) was slowly added dropwise at -78 ° C, followed by stirring at room temperature for 3 hours. Then filtered and dried in vacuo to give an orange solid catalyst in 70% yield (racemic only).
1H NMR (500 MHz, C6D6, 7.24 ppm): 1.32(6H, s), 2.24(6H, s), 6.93(2H, s), 7.10(2H, t), 7.32(2H, t), 7.36(2H, d), 7.43(4H, t), 7.60(4H, d), 7.64(2H, d) 1 H NMR (500 MHz, C 6 D 6 , 7.24 ppm): 1.32 (6H, s), 2.24 (6H, s), 6.93 (2H, s), 7.10 (2H, t), 7.32 (2H, t), 7.36 (2H, d), 7.43 (4H, t), 7.60 (4H, d), 7.64 (2H, d)
<제조예: 담지 촉매의 제조 > Preparation Example: Preparation of Supported Catalysts
제조예 1  Preparation Example 1
실리카에 메틸알루미녹산을 담지한 이후에 상기 합성예 1에서 수득된 메탈로센 화합물을 담지하였으며, 추가로 보론계 조촉매를 담지하여 담지 촉매를 제조하였다.  After the methylaluminoxane was supported on silica, the metallocene compound obtained in Synthesis Example 1 was supported, and further, a supported catalyst was prepared by supporting a boron-based promoter.
보다 구체적으로, 실리카 L203F, 3 g을 쉬링크 플라스크에 미리 칭량한 후 메틸알루미녹산 (MAO) 40 mm이을 넣어 95 °C에서 24 시간 동안 반웅시켰다ᅳ 침전후 상층부는 제거하고 를루엔으로 2희에 걸쳐 세척하였다. 상기 합성예 1에서 수득된 메탈로센 화합물 360 μιη이을 를루엔에 녹인 후, 75 °C에서 5 시간 동안 반웅시켰다. 반웅 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반응 생성물을 를루엔으로 세척하였다. 디메틸아닐리니움테트라키스 (펜타플루오로페닐)보레이트 252 μπι이를 75 °C에서 5 시간 동안 반웅시켰다. 반응 종료한 후 를루엔으로 세척하였고, 핵산으로 재차 세척한 후 진공 건조하여 고체 입자 형태의 실리카 담지 메탈로센 촉매 5 g을 얻었다. 비교 제조예 1 More specifically, 3 g of silica L203F was pre-weighed in a shrink flask, and 40 mm of methylaluminoxane (MAO) was added thereto and reacted at 95 ° C. for 24 hours. Washed over. 360 μιη of the metallocene compound obtained in Synthesis Example 1 was dissolved in toluene, and reacted at 75 ° C. for 5 hours. After the reaction was completed and the precipitate was finished, the supernatant solution was removed and the remaining reaction product was washed with toluene. Dimethylanilinium tetrakis (pentafluorophenyl) borate 252 μπι was reacted at 75 ° C. for 5 hours. After completion of the reaction, the mixture was washed with toluene, washed with nucleic acid again, and dried in vacuo to obtain 5 g of silica supported metallocene catalyst in the form of solid particles. Comparative Production Example 1
상기 합성예 1에서 수득된 메탈로센 화합물 대신 비교 합성예 1에서 수득된 메탈로센 화합물을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 담지 촉매를 제조하였다.  The supported catalyst was prepared in the same manner as in Preparation Example 1, except that the metallocene compound obtained in Comparative Synthesis Example 1 was used instead of the metallocene compound obtained in Synthesis Example 1.
<프로필렌 중합의 실시여 실시예 1 <The implementation of propylene polymerization Example 1
2 L 스테인레스 반응기를 65 °C에서 진공건조한 후 넁각하고, 실온에서 트리에틸알루미늄 1.5 mm이을 넣고, 수소를 0.37 L를 넣고, 1.5 L의 프로필렌을 순차적으로 투입하였다. 이후 10 분 동안 교반한 후, 실시예 1에서 제조한 메탈로센 담지 촉매를 질소 압력으로 반웅기에 투입하였다. 이후 반응기 온도를 70 I까지 5분 이내로 승온한 후 1 시간 동안 중합하였다. 반응 종료후 미반응된 프로필렌은 벤트하였다. 실시예 2 내지 4 After vacuum drying the 2 L stainless reactor at 65 ° C., the mixture was inverted, triethylaluminum 1.5 mm was added at room temperature, 0.37 L of hydrogen was added, and 1.5 L of propylene was sequentially added. After stirring for 10 minutes, the metallocene supported catalyst prepared in Example 1 was added to the reactor under nitrogen pressure. Thereafter, the reactor temperature was raised to 70 l within 5 minutes and then polymerized for 1 hour. After the reaction was completed, unreacted propylene was vented. Examples 2-4
실시예 1에서, 세부 운전 조건을 달리한 것을 제외하고는 실시예 1과 동일한 방법으로 프로필렌 중합을 실시하였다. 비교예 1  In Example 1, propylene polymerization was carried out in the same manner as in Example 1 except that the detailed operating conditions were different. Comparative Example 1
실시예 1에서, 비교 제조예 1에서 수득된 담지 촉매를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 프로필렌 증합을 진행하였다. 비교예 2  In Example 1, propylene polymerization was carried out in the same manner as in Example 1, except that the supported catalyst obtained in Comparative Preparation Example 1 was used. Comparative Example 2
비교예 1에서, 세부 운전 조건을 달리한 것을 제외하고는 비교예 1과 동일한 방법으로 프로필렌 증합을 실시하였다. - 상기 실시예 1 내지 4 및 비교예 1 내지 2의 세부적인 운전 조건은 하기 표 1에 정리하여 나타내었다.  In Comparative Example 1, propylene polymerization was carried out in the same manner as in Comparative Example 1 except that the detailed operating conditions were different. Detailed operating conditions of Examples 1 to 4 and Comparative Examples 1 and 2 are summarized in Table 1 below.
【표 1】  Table 1
오 c 압력 촉매 프로필렌 TEAL 수소  O-C Pressure Catalyst Propylene TEAL Hydrogen
(°C) (kg/cm2) 투입량 투입량 투입량 투입량 ( ° C) (kg / cm 2 ) Input dose Input dose
(g hr) (kg/hr) (PPm) (PPm) 실시예 1 70 35 0.9 80 50 50  (g hr) (kg / hr) (PPm) (PPm) Example 1 70 35 0.9 80 50 50
실시예 2 70 35 0.9 80 50 100 실시예 3 70 35 0.8 80 50 500 실시예 4 70 35 0.8 80 50 1500 비교예 1 70 35 1.1 80 50 100 Example 2 70 35 0.9 80 50 100 Example 3 70 35 0.8 80 50 500 Example 4 70 35 0.8 80 50 1500 Comparative Example 1 70 35 1.1 80 50 100
비교예 2 70 35 1.1 80 50 1500  Comparative Example 2 70 35 1.1 80 50 1500
<중합체의 물성 측정 방법 > <Measurement Method of Physical Properties of Polymer>
상기 실시예 1 내지 4 및 비교예 1 내지 2에서 수득된 중합체에 대해 하기 방법으로 물성을 측정하여 표 2 및 3에 정리하여 나타내었다.  Physical properties of the polymers obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were measured by the following methods, and are summarized in Tables 2 and 3 below.
(1) 촉매 활성  (1) catalytic activity
단위 시간 (h)을 기준으로 사용된 담지 촉매 질량 (g)당 생성된 중합체의 무게 (kg PP)의 비 및 담지 촉매에 들어있는 메탈로센 화합물 함량 (μιηοΐ)당 생성된 중합체의 무게 (kgPP)의 비로 계산하였다.  The ratio of the weight of polymer produced (kg PP) per supported catalyst mass (g), based on unit time (h) and the weight of polymer produced (kgPP) per metallocene compound content (μιηοΐ) in the supported catalyst Calculated as
(2) 용융지수 (Ml)  (2) Melt Index (Ml)
ASTM D1238에 따라 230 °C에서 2.16kg 하중으로 측정하며, 10분 동안 용융되어 나온 중합체의 무게 (g)로 나타내었다. Measured at 2.16 kg load at 230 ° C. according to ASTM D1238, expressed as weight (g) of polymer melted for 10 minutes.
(3) 중량평균분자량  (3) Weight average molecular weight
TCB에 녹인 샘플을 220°C까지 온도를 증가시킨 후, 한 샘플당 약 l .Occ/min으로 컬럼관을 통과시켜 reference 대비 상대 분자량을 측정하였다. After increasing the temperature of the sample dissolved in TCB to 220 ° C., the relative molecular weight relative to the reference was measured by passing through a column tube at about l .Occ / min per sample.
(4) 용융점 (Tm)  (4) melting point (Tm)
온도를 200 °C까지 증가시킨 후, 5분 동안 그 온도에서 유지하고, 그 다음 30°C까지 내리고, 다시 온도를 증가시켜 DSC(Differential Scanning Calorimeter, TA사 제조) 곡선의 꼭대기를 용융점으로 하였다. 이 때, 온도의 상승과 내림의 속도는 lO°C/min 이고, 용융점은 두 번째 온도가 상승하는 구간에서 측정한 결과를 사용하였다. The temperature was increased to 200 ° C., maintained at that temperature for 5 minutes, then lowered to 30 ° C., and the temperature was increased again to form the melting point at the top of the DSC (Differential Scanning Calorimeter, TA) curve. At this time, the rate of rise and fall of the temperature is 10 ° C / min, the melting point was used in the results measured in the section where the second temperature rises.
(5) 밀도  (5) density
샘플을 210°C 프레스 몰드 (Press Mold)로 두께 3mm, 반지름 2cm의 시트를 제작하고 10 °C/min으로 메를러 (Mettler) 저울에서 측정하였다. Samples were made into sheets of thickness 3 mm, radius 2 cm with a 210 ° C. Press Mold and measured on a Mettler balance at 10 ° C./min.
(6) 자일렌 가용분 (Xylene Soluble)  (6) Xylene Soluble
샘플에 Xylene을 넣고 135 °C에서 1시간 동안 Heating, 30분간 cooling하여 전처리를 하였다. OminiSec(Viscotek사 FIPA) 장비에서 lml/min. Flow rate으로 4시간동안 Xylene을 홀려주어 RI, DP, IP의 base line이 안정화되면, 전처리한 샘플의 농도, 인젝션 양을 기입하여 측정 후 피크면적을 계산하였다. Xylene was added to the sample and preheated by heating at 135 ° C for 1 hour and cooling for 30 minutes. Lml / min on OminiSec (Viscotek FIPA) instrument. When Xylene is poured for 4 hours at the flow rate and the base lines of RI, DP, and IP are stabilized, the concentration of the pre-treated sample and injection amount should be entered. The peak area was calculated.
(7) 입도  (7) particle size
광회절 입도분석장치 (Symatec사 HELOS)에 샘플을 호퍼에 주입 후, 50 - 3500μπι 범위의 method를 설정하여 APS(Average Particle Size), Span값 및 After injecting the sample into the hopper of the optical diffraction particle size analyzer (HELOS), set the method in the range of 50-3500μπι and APS (Average Particle Size), Span value and
75μηι 이하 (미분)의 함량을 확인하였다. The content of 75 μηι or less (fine powder) was confirmed.
【표 2】  Table 2
Figure imgf000019_0001
Figure imgf000019_0001
【표 3】 Table 3
Figure imgf000019_0002
표 2 및 3을 참조하면, 본 발명의 실시예는 고활성으로 프로필렌 중합체를 제조할 수 있으며, 비교예에 비하여 낮은 자일렌 가용분을 보여 높은 입체 규칙성의 특성을 가짐을 알 수 있으며, 입경 75 μιη 이하의 미분 함량이 낮은 장점을 나타내었다. 또한, 실시예 2 및 4와, 비교예 1 및 2를 각각 비교하면, 실시예에 사용한 촉매가 보다 우수한 수소 반웅성을 나타내는 것을 알 수 있다. 즉, 수소 투입량을 동일하게 lOOppm에서 1500ppm으로 변화시켰을 때, 실시예의 경우 용융 지수가 125 g/10min (실시예 2)에서 1520 g/lOmin (실시예 4)으로 약 12배 이상 증가한 반면, 비교예의 경우 205 g/10min (비교예 1)에서 805g/10min (비교예 2)으로 약 4배 증가에 그쳤다. 따라서 본 발명의 제조방법에 따르면, 촉매의 높은 수소 반웅성으로 인하여 수소 투입량에 따라 중합체의 중량평균 분자량 및 용융 지수의 조절이 용이하여, 중합 공정시 수소 투입량을 조절함으로써 원하는 물성을 갖는 프로필렌 중합체를 제조할 수 있을 것으로 기대된다.
Figure imgf000019_0002
Referring to Tables 2 and 3, the embodiment of the present invention can be produced a propylene polymer with a high activity, it can be seen that the lower xylene soluble content than the comparative example has a high stereoregular properties, particle size 75 The fine powder content of μιη or less showed a low advantage. Moreover, when Example 2 and 4 and Comparative Examples 1 and 2 are compared, respectively, it turns out that the catalyst used for the Example shows more excellent hydrogen reaction property. That is, when the hydrogen input amount was changed from 100 ppm to 1500 ppm in the same manner, in the case of Example, the melt index was increased by about 12 times from 1 2 5 g / 10 min (Example 2) to 1520 g / lOmin (Example 4), In the comparative example, the increase was only about 4 times from 205 g / 10 min (Comparative Example 1) to 805 g / 10 min (Comparative Example 2). Therefore, according to the production method of the present invention, due to the high hydrogen reaction properties of the catalyst it is easy to control the weight average molecular weight and the melt index of the polymer according to the hydrogen input amount, by adjusting the hydrogen input amount in the polymerization process to obtain a propylene polymer having the desired physical properties It is expected to be able to manufacture.

Claims

【특허청구범위】 【청구항 1】 하기 화학식 1로 표시되는 메탈로센 화합물을 포함하는 촉매의 존재 하에, 프로필렌을 중합시키는 단계를 포함하는 폴리프로필렌의 제조방법: 【Patent Claims】 【Claim 1】 A method for producing polypropylene comprising the step of polymerizing propylene in the presence of a catalyst containing a metallocene compound represented by the following formula (1):
[화학식 1] [Formula 1]
Figure imgf000021_0001
Figure imgf000021_0001
상기 화학식 1에서, In Formula 1,
M1은 3족 전이금속, 4족 전이금속, 5족 전이금속, 란타나이드 계열의 전이금속 또는 악타나이드 계열의 전이금속이고; M 1 is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide series transition metal, or an actanide series transition metal;
X는 서로 동일하거나 상이한 할로겐이며; X are the same or different halogens;
A는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹 (bridge group)이고; A is an element of group 14 and is a bridge group connecting the indenyl group;
R1은 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이고; R 1 is alkyl, alkenyl, alkylaryl, arylalkyl, or aryl having 1 to 20 carbon atoms;
R2는 수소, 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; R 2 is hydrogen, alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
R3, R3', R4, 및 R4'은 서로 동일하거나 상이하고, 각각 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; . R 3 , R 3' , R 4 , and R 4' are the same or different from each other and are each alkyl, alkenyl, alkylaryl, arylalkyl, or aryl having 1 to 20 carbon atoms; .
n은 1 내지 20의 정수이다. n is an integer from 1 to 20.
【청구항 2】 【Claim 2】
제 1항에 있어서, 상기 화학식 1에서 R1 및 R2는 각각 탄소수 1 내지 4의 알킬이고; R3 및 R3'는 각각 탄소수 1 내지 20의 알킬, 알케닐, 또는 아릴알킬이며; R4 및 R4'는 각각 탄소수 1 내지 20의 아릴, 또는 알킬아릴이고; n은 1 내지 6의 정수이며; A는 규소 (Si)인, 폴리프로필렌의 제조방법. The method of claim 1, wherein in Formula 1, R 1 and R 2 are each alkyl having 1 to 4 carbon atoms; R 3 and R 3' are each alkyl, alkenyl, or arylalkyl having 1 to 20 carbon atoms; R 4 and R 4' are each aryl or alkylaryl having 1 to 20 carbon atoms; n is an integer from 1 to 6; A is silicon (Si), a method for producing polypropylene.
【청구항 3 ] [Claim 3]
제 1항에 있어서, 상기 촉매는 상기 화학식 1로 표시되는 메탈로센 화합물, 알킬알루미녹산계 조촉매, 및 보론계 조촉매가 담체에 담지된 담지 촉매인, 폴리프로필렌의 제조방법. The method of claim 1, wherein the catalyst is a supported catalyst in which a metallocene compound represented by Formula 1, an alkylaluminoxane-based cocatalyst, and a boron-based cocatalyst are supported on a carrier.
【청구항 4】 ' 제 3항에 있어서, 상기 알킬알루미녹산계 조촉매는 메틸알루미녹산, 에틸알루미녹산, 프로필알루미녹산, 및 부틸알루미녹산으로 이루어진 군에서 선택되는 1 종 이상인, 플리프로필렌의 제조방법. [ Claim 4] The method of claim 3, wherein the alkylaluminoxane-based cocatalyst is at least one selected from the group consisting of methylaluminoxane, ethylaluminoxane, propylaluminoxane, and butylaluminoxane. .
【청구항 5】 【Claim 5】
제 3항에 있어서, 상기 보론계 조촉매는 디메틸아닐리니움테트라키스 (펜타플루오로페닐)보레이트, The method of claim 3, wherein the boron-based cocatalyst is dimethylaniliniumtetrakis(pentafluorophenyl)borate,
트리틸테트라키스 (펜타플루오로페닐)보레이트, 및 메틸아닐리니움테트라키스 (펜타플루오로디페닐)보레이트로 이루어진 군에서 선택되는 1 종 이상인, 폴리프로필렌의 제조방법. A method for producing polypropylene, which is at least one selected from the group consisting of trityltetrakis (pentafluorophenyl)borate and methylaniliniumtetrakis (pentafluorodiphenyl)borate.
【청구항 6】 【Claim 6】
제 3항에 있어서, 상기 담지는 실리카, 실리카-알루미나 및 실리카- 마.그네시아로 이루어진 군에서 선택되는 1 종 이상인, 폴리프로필렌의 제조방법. The method of claim 3, wherein the support is at least one selected from the group consisting of silica, silica-alumina, and silica-magnesia.
【청구항 7】 거 l l항에 있어서, 상기 프로필렌의 중합은 25 내지 50C C의 온도 및 1 내지 100 kgf/cm2의 압력 하에서 1 내지 24 시간 동안 반웅시켜 수행하는,폴리프로필렌의 제조방법. 【Claim 7】 The method of claim 1, wherein the polymerization of propylene is carried out by reacting for 1 to 24 hours at a temperature of 25 to 50 C C and a pressure of 1 to 100 kgf/cm 2 .
【청구항 8】 【Claim 8】
제 1항에 있어서, 상기 프로필렌의 중량에 대하여 30 내지 2,000 ppm의 수소 (¾)기체 하에서 수행되는, 상기 폴리프로필렌의 제조방법. The method of producing polypropylene according to claim 1, which is carried out under 30 to 2,000 ppm of hydrogen (¾) gas based on the weight of the propylene.
【청구항 9】 【Claim 9】
게 1항의 제조방법에 의해 수득되는 폴리프로필렌. Polypropylene obtained by the production method of paragraph 1.
【청구항 10】 【Claim 10】
제 9항에 있어서, 1 내지 2,500 g/10min의 용융 지수 (melt index, MI)를 갖는 폴리프로필렌. The polypropylene of claim 9, having a melt index (MI) of 1 to 2,500 g/10min.
【청구항 11】 【Claim 11】
제 9항에 있어서, 2.0 중량 % 이하의 자일렌 가용분 (Xs)을 폴리프로필렌. The polypropylene according to claim 9, wherein the xylene soluble content (Xs) is 2.0% by weight or less.
PCT/KR2014/009203 2013-09-30 2014-09-30 Polypropylene preparation method and polypropylene obtained therefrom WO2015047031A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/023,626 US9771441B2 (en) 2013-09-30 2014-09-30 Preparation method of a polypropylene and a polypropylene obtained therefrom
CN201480051983.XA CN105555811B (en) 2013-09-30 2014-09-30 Polyacrylic preparation method and thus obtained polypropylene

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130116654 2013-09-30
KR10-2013-0116654 2013-09-30
KR1020140130844A KR101593175B1 (en) 2013-09-30 2014-09-30 Method for preparing polypropylene and polypropylene prepared therefrom
KR10-2014-0130844 2014-09-30

Publications (1)

Publication Number Publication Date
WO2015047031A1 true WO2015047031A1 (en) 2015-04-02

Family

ID=52744031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009203 WO2015047031A1 (en) 2013-09-30 2014-09-30 Polypropylene preparation method and polypropylene obtained therefrom

Country Status (1)

Country Link
WO (1) WO2015047031A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406475A (en) * 2015-08-24 2017-11-28 Lg化学株式会社 Transistion metal compound, the carbon monoxide-olefin polymeric comprising it and the method that olefin polymer is prepared using the carbon monoxide-olefin polymeric
CN107428788A (en) * 2015-06-05 2017-12-01 Lg化学株式会社 Metallocene compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239416A (en) * 1995-03-02 1996-09-17 Mitsui Petrochem Ind Ltd New transition metal compound and olefin polymerization catalyst component comprising same
US20070293640A1 (en) * 2002-10-15 2007-12-20 Peijun Jiang Multiple catalyst system for olefin polymerization and polymers produced therefrom
US20120059135A1 (en) * 2009-03-30 2012-03-08 Mitsui Chemicals, Inc. Copolymer of olefin and conjugated diene, and process for producing the same
US20120149829A1 (en) * 2008-01-18 2012-06-14 Canich Jo Ann M Polymerization Process And Adhesives Therefrom
US20120245299A1 (en) * 2011-03-25 2012-09-27 Peijun Jiang Branched Vinyl Terminated Polymers And Methods For Production Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239416A (en) * 1995-03-02 1996-09-17 Mitsui Petrochem Ind Ltd New transition metal compound and olefin polymerization catalyst component comprising same
US20070293640A1 (en) * 2002-10-15 2007-12-20 Peijun Jiang Multiple catalyst system for olefin polymerization and polymers produced therefrom
US20120149829A1 (en) * 2008-01-18 2012-06-14 Canich Jo Ann M Polymerization Process And Adhesives Therefrom
US20120059135A1 (en) * 2009-03-30 2012-03-08 Mitsui Chemicals, Inc. Copolymer of olefin and conjugated diene, and process for producing the same
US20120245299A1 (en) * 2011-03-25 2012-09-27 Peijun Jiang Branched Vinyl Terminated Polymers And Methods For Production Thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107428788A (en) * 2015-06-05 2017-12-01 Lg化学株式会社 Metallocene compound
CN107406475A (en) * 2015-08-24 2017-11-28 Lg化学株式会社 Transistion metal compound, the carbon monoxide-olefin polymeric comprising it and the method that olefin polymer is prepared using the carbon monoxide-olefin polymeric

Similar Documents

Publication Publication Date Title
KR101593175B1 (en) Method for preparing polypropylene and polypropylene prepared therefrom
KR101738139B1 (en) Polypropylene
JP6420911B2 (en) Hybrid supported catalyst and method for producing olefin polymer using the same
EP3421506B1 (en) Metallocene supported catalyst and method for producing polypropylene using same
KR101653356B1 (en) Metallocene catalyst for preparing polyolefin with high molecular weight
KR101599978B1 (en) Method for preparing propylene-1-butene copolymer and propylene-1-butene copolymer prepared therefrom
KR101631702B1 (en) Catalyst for olefin polymerization and preparation method of polyolefin by using the same
JP6711906B2 (en) Hybrid supported metallocene catalyst and method for producing polyolefin using the same
KR20130125311A (en) Ansa-metallocene catalyst and preparation method of supported catalyst by using the same
JP2013521371A (en) Method for producing supported metallocene catalyst and method for producing polyolefin using the same
CN106795229B (en) Metallocene-supported catalyst and method for preparing polyolefin using the same
KR102024328B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
KR101737568B1 (en) Supported hybrid catalyst and method for preparing of olefin based polymer using the same
KR101599981B1 (en) Method for preparing propylene based terpolymer and propylene based terpolymer prepared therefrom
KR101665076B1 (en) Ansa-metallocene catalyst and preparation method of supported catalyst by using it
JP2022528411A (en) Propylene-ethylene random copolymer
WO2016122017A1 (en) Metallocene compound, catalyst composition comprising same, and method for preparing olefin-based polymer using same
KR101723488B1 (en) Method for preparing polypropylene and polypropylene prepared therefrom
WO2017142273A1 (en) High-stiffness and energy-reducing polypropylene for foaming
WO2015047031A1 (en) Polypropylene preparation method and polypropylene obtained therefrom
KR102024327B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
KR102022686B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
KR102157787B1 (en) Metallocene supported catalyst and method for preparing polypropylene using the same
KR20160054357A (en) Metallocene catalyst for preparing polyolefin with high molecular weight
KR102022685B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051983.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847068

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15023626

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847068

Country of ref document: EP

Kind code of ref document: A1