WO2015046970A1 - Structure of axial-type multistage turbine - Google Patents

Structure of axial-type multistage turbine Download PDF

Info

Publication number
WO2015046970A1
WO2015046970A1 PCT/KR2014/009054 KR2014009054W WO2015046970A1 WO 2015046970 A1 WO2015046970 A1 WO 2015046970A1 KR 2014009054 W KR2014009054 W KR 2014009054W WO 2015046970 A1 WO2015046970 A1 WO 2015046970A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
turbine
blade
axial
multistage turbine
Prior art date
Application number
PCT/KR2014/009054
Other languages
French (fr)
Korean (ko)
Inventor
최혁선
Original Assignee
최혁선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최혁선 filed Critical 최혁선
Priority to RU2016116404A priority Critical patent/RU2016116404A/en
Priority to US15/024,917 priority patent/US20160237821A1/en
Priority to EP14849067.5A priority patent/EP3051060A1/en
Priority to CN201480057246.0A priority patent/CN105658910A/en
Priority to JP2016545690A priority patent/JP2016535205A/en
Publication of WO2015046970A1 publication Critical patent/WO2015046970A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/04Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/10Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines having two or more stages subjected to working-fluid flow without essential intermediate pressure change, i.e. with velocity stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/34Non-positive-displacement machines or engines, e.g. steam turbines characterised by non-bladed rotor, e.g. with drilled holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/026Impact turbines with buckets, i.e. impulse turbines, e.g. Pelton turbines

Definitions

  • the present invention relates to a structure of an axial multistage turbine which can be arbitrarily formed in one or multiple stages depending on the type or flow rate of the fluid and the speed or drop of the fluid.
  • the turbine structure may be a collision type (aka impulse type)
  • impulse type aka impulse type
  • the reaction type the user can selectively use it according to the site situation, and in particular, the angle of the blade and nozzle of the turbine is best formed to maximize the efficiency, thereby greatly improving the quality and reliability of the product. It is to make a good image by satisfying various needs of users who are users.
  • the present invention is to know in advance that the present invention is an improved invention of the patent application No. 1184877 (name: improved structure of the axial turbine) registered and filed by the present applicant.
  • a turbine is a machine that converts energy of a fluid such as wind, water, gas, steam, etc. into useful mechanical work, and is characterized by rotational motion.
  • a turbine is a turbo type machine in which a plurality of blades or wings are planted on a circumference of a rotating body, and a fluid having a constant speed is ejected and rotated at high speed.
  • a hydro turbine is used to drop water from a high place and pass it through a runner, which is a rotating chain, to convert the energy of the flowing water into mechanical work.
  • a steam turbine uses steam energy that spouts steam from a nozzle and strikes a blade. .
  • Steam turbines also have impulse and recoil turbines, as well as hybrid gas turbines that combine the best of both worlds.
  • a gas turbine uses energy of high temperature and high pressure gas
  • an air turbine uses energy of high pressure compressed air. Any turbine is important for industrial power.
  • Steam turbines are used to drive generators in nuclear power plants, including thermal power plants, and hydro turbines are used to move generators in hydropower plants.
  • a multistage turbine refers to a turbine that expands gas or vapor expansion into several stages, which is a combination of stages consisting of nozzles or fixed vanes and rotary vanes.
  • the gas turbine has low thermal efficiency and high fuel consumption, and the structure of the rotor is complicated and enlarged, so that a large space in the axial direction is required, and thus the installation is not easy.
  • the prior art has a big problem that the efficiency is lowered because the angle of the blade and the nozzle of the turbine is not formed best.
  • Patent Document 1 Korean Unexamined Patent Publication No. 2010-0105103 (name: axial type multi-stage turbine) has been published.
  • Patent Document 2 Korean Patent Registration No. 1184877 (name: improved structure of axial multistage turbine) has been registered.
  • the present invention has been made in order to solve the problems of the prior art as described above, the first object of the first and second rotating blades and the fixed blade and the inclined slope and the resistance projections are provided in the body, the technical configuration described above According to the second object of the present invention, one or multiple stages may be arbitrarily formed and used depending on the type or flow rate of the fluid, and the speed or drop of the fluid.
  • the third object is a collision type (called impulse type).
  • impulse type the user can selectively use it according to the site situation.
  • the fourth purpose is to form the best angle of the blade and nozzle of the turbine to maximize the efficiency
  • the fifth purpose is to As it greatly improves the quality and reliability of the product, it can meet the various needs (users) of consumers as users and instill a good image. It provides a structure of an axial multistage turbine.
  • a mixed turbine turbine mixed with a collision type and a reaction type having a fluid filled therein, and the mixed turbine has a fluid inside the rotor.
  • the space portion 108 is formed to be filled, the body 101 formed with the inlet 102 and the outlet 103 at the top and bottom, respectively;
  • a rotating shaft 140 installed in the center of the body to rotate at a high speed and having a discharge hole formed therein;
  • At least one first rotating blade 110 which is integrally formed with the rotating shaft 140;
  • a second rotary blade 120 integrally formed with the rotary shaft at a predetermined interval;
  • a blowout hole 106 formed inside the upper end of the body, and a plurality of fixed blades 130 at the lower end thereof.
  • the axial flow type multistage turbine is provided.
  • the reaction turbine is provided with a fluid filled inside the rotor, the reaction turbine, the space 108 is formed so that the fluid is filled therein, the upper end A body formed with an inlet and an outlet at the bottom and the bottom, respectively; A rotating shaft arranged in the center of the body to rotate at a high speed and having a discharge hole formed therein; A plurality of rotating blades integrally formed with the rotating shaft at regular intervals and having a fixed space formed thereon; And a plurality of stationary blades at fixed intervals inside the body.
  • the structure of the axial multistage turbine is fixed.
  • the present invention is provided so that the first and second rotating blades and the fixed blades and the collision inclined surfaces and the resistance protrusions are provided on the body.
  • the present invention by the above-described technical configuration is to be used to form any one or multiple stages depending on the type or flow rate of the fluid and the speed or drop of the fluid.
  • the present invention is to allow the user to selectively use the turbine structure of the collision type (aka impulse type), the reaction type according to the site situation.
  • the turbine structure of the collision type aka impulse type
  • the present invention is to form the best angle of the blade and the nozzle of the turbine to maximize the efficiency.
  • the present invention greatly improves the quality and reliability of the product due to the above-described effects, which is a very useful invention that can be used to plant a good image by satisfying various needs (needs) of consumers.
  • FIG. 1 is a cross-sectional view of a first embodiment of an axial multistage turbine structure applied to the present invention.
  • FIG. 2 is a sectional view of a second embodiment of an axial multistage turbine structure applied to the present invention
  • FIG. 3 is a cross-sectional view of a third embodiment of an axial multistage turbine structure applied to the present invention.
  • FIG. 4 is a sectional view of a fourth embodiment of an axial multistage turbine structure applied to the present invention.
  • FIG. 5 is a plan sectional view of an axial multistage turbine applied to the present invention.
  • FIG. 6 is a sectional view of a first embodiment of a nozzle applied to the present invention.
  • FIG. 7 (a) is a cross-sectional view of a second embodiment of a nozzle applied to the present invention
  • FIG. 8 (a) is a cross-sectional view of a fourth embodiment of a nozzle applied to the present invention.
  • FIG. 9 is a sectional view of a sixth embodiment of a nozzle applied to the present invention.
  • FIG. 10 is a configuration diagram of another embodiment of the electric blade applied to the present invention.
  • hybrid turbine 110 first rotating blade
  • the structure of the axial multistage turbine applied to the present invention is configured as shown in Figs.
  • the first embodiment of the present invention in the structure of the axial multistage turbine, as shown in Figure 1, is provided with a hybrid turbine 100 is filled with a fluid inside, the hybrid turbine, the fluid inside The space portion 105 is formed to be filled, and the body 101 formed with the inlet 102 and the outlet 103 at the top and bottom, respectively.
  • the fluid passage 107 is formed so that the fluid flows and the rotating shaft 140 is provided.
  • At least one first rotating blade 110 is formed integrally with the rotating shaft 140 is provided.
  • the second rotary blade 120 is provided with a plurality of integrally arranged at a predetermined interval with the rotary shaft 140.
  • Blowing holes 121 to be guided to flow is formed and a plurality of fixed blades 130 are fixed.
  • the resistance protrusion 104 is formed at a predetermined interval so that the fluid hits the inside of the body 101 applied to the present invention.
  • first rotary blade 110 is further formed with a collision wing inclined surface 111 to bump the fluid to increase the rotational force.
  • the second rotating blade 120 is further formed with a blow hole 121 so that the fluid introduced into the discharge protrusion toward the resistance projection.
  • the second embodiment of the present invention in the structure of the axial multistage turbine, as shown in Figure 2, provided with a reaction turbine 200 is filled with a fluid inside, the reaction turbine, the fluid inside The space portion 203 is formed to be filled, and the body 201 is formed with the injection hole 202 and the discharge hole at the top and bottom, respectively.
  • the rotating shaft 220 is arranged in the center of the body 201 to rotate at a high speed, so that the inlet space 204 is formed.
  • a plurality of pieces are arranged at regular intervals integrally with the rotating shaft 220, and a rotating blade 230 is formed to form a fixed space 205.
  • a plurality of fixed blades 210 are fixedly installed at predetermined intervals inside the body 201.
  • the rotary blade 230 and the fixed blade 210 applied to the present invention is installed to be crossed to each other " ⁇ " or " ⁇ ".
  • a fluid passage is formed at a first end portion 207 in which a fluid ejecting direction is formed in an inner space at an outer portion of the rotary blade 230 as shown in FIG. 5.
  • the outer edge of the rotating blade 230 is formed with a second end portion 208 protruding upward, the bent portion 230a is fluid flows from the inside of the wing to the outside through the conduit groove 200 as shown in FIG. And it is formed to hit the resistance protrusion 206 formed inside the housing to obtain a reaction force.
  • the nozzle sphere end surface 231 is formed in parallel with the rotary blade end surface 232 in order to prevent loss of fluid, and has at least one or a plurality of multiple nozzle structures.
  • the nozzle sphere end surface 231 applied to the present invention is formed with a cover 300 so that the fluid does not spread out.
  • the present invention is the blade blade of the rotating blade 230 is formed on the end side of the rotating blade like a gear, the vertical angle is made vertical, the angle before (rotation direction) after (counter rotation direction) It is preferable to form inclined in the range of 5 ⁇ 45 degrees around the central axis 701 in the rotation direction.
  • the rotating blade 230 is formed as a fan (Fig. 8a), the left and right angles are preferably inclined in the rotational direction to 90 to 60 degrees, the front and rear angles are formed to be inclined to 5 to 45 degrees toward the rotational direction.
  • the present invention is such that the angle of the nozzle is in a straight line perpendicular to the wing surface where the fluid collides, the upper and lower angles of the nozzle in the fan-shaped disk shape is made in the range of 1 ⁇ 30 degrees, the left and right angles are inclined in the rotation direction Form at right angles to the wing surface.
  • the fluid enters the inlet 202 and enters the fixed space 205 formed inside the rotating blade through the inlet space 204, and the pipe groove formed at the end of the rotating body. Receives a reaction force by hitting the resistance wall 221 formed in the front of the conduit groove through the 230b propelling action and the ejection to the opposite direction in which the fluid is rotated to hit the resistance projection wall 206 formed inside the housing It is characterized by.
  • the present invention as shown in Figure 7a, 7b the end surface of the nozzle is formed in parallel with the blade end surface 232 of the rotating blade that the fluid collides, the nozzle is made of a plurality of, to prevent the dispersion of the fluid
  • the outer cover is characterized by being covered.
  • the present invention is characterized in that the end surface 231 of the nozzle for ejecting the fluid is formed to be made in parallel with the rotor blade end surface 232.
  • the present invention may be variously modified and may take various forms in applying the above configuration.
  • the wing shape can be transformed into various shapes, particularly in the crash mode.
  • the present invention is to allow the user to selectively use the turbine structure of the collision type, the reaction type according to the site situation, in particular to maximize the efficiency by forming the angle of the blade and nozzle of the turbine to the best.
  • the first embodiment of the present invention will be described first, and the fluid or gas is filled in the inner space 105 through the injection hole 102 in a state in which the outlet 103 of the body 101 is blocked.
  • the passage portion of the fluid or gas is formed in the inner space portion of the first rotary blade 110 and the second rotary blade 120 as well as the space portion 105 of the body 101 and the size of the passage space is fluid Or it is installed according to the type of gas or the situation of pressure.
  • the fluid or gas is introduced into the fluid passage 107 and the first rotating blade 110 is formed around the rotating shaft 140.
  • the second rotating blade 120 is rotated at a high speed.
  • the first rotating blade 110 allows the fluid coming through the ejection hole 106 to face the front to rotate at a high speed, to form a collision wing inclined surface 111 on the end surface of the first rotating blade and the collision wing inclined surface Plurality is formed at 60 to 90 degrees. That is, the angle at which the fluid is ejected is within 1 to 30 degrees, and the impingement wing slope is formed at an inclination angle (tilt) of 60 to 90 degrees, and the angle of the plane (collision wing slope) that matches the ejected angle is perpendicular to each other. It is characterized by.
  • the fluid or gas After the fluid or gas passes through the fluid passage 107, the fluid or gas is injected through the ejection hole 121 formed in the outer circumferential surface of the second rotating blade 120 and then discharged to the next stage.
  • the fluid or gas ejected to the ejection hole 121 is introduced into the inward direction after hitting the resistance protrusion 104, and this process is repeated, the hybrid turbine 100 is operated.
  • the present invention can minimize the flow loss can rotate the second rotating blade 120 at a high speed.
  • the adjacent fixed blade 130 is positioned in a fixed state without rotating.
  • the second embodiment of the present invention is almost similar to the first embodiment described above, and other differences will be described below.
  • the fluid introduced through the injection hole 202 is rotated at a high speed by rotating the rotating blade 230 built on the rotating shaft 220 while exiting the rotating blade 230 and the fixed blade 210 through the inlet space 204. Let's go.
  • the first end portion 207 having a space formed therein is formed on the outer side of the rotating blade 230 so as to increase the rotational force.
  • a second end portion 208 protruding upward is formed on the outer side of the rotating blade 230 in the above process, so that the fluid strikes the second end portion to further increase the rotational force of the rotating blade 230. do.
  • the present invention of course, to be able to use the configuration of the collision and the reaction type turbine as shown in FIG.
  • the end surface of the nozzle can be formed as shown in Figure 6, 7a, 7b, 7c to increase the rotational force of the rotating blade.
  • the present invention is to enable the use of the nozzle formed in one or a plurality of multiple structures as shown in Figure 7 (a) (b), the nozzle is formed in parallel along the circle to reduce the flow rate loss,
  • the rotating blade is formed to be equal to or less than the angle of the ejecting fluid to ensure that there is no loss of fluid.
  • the present invention as shown in Figure 8 (a) (b) to enable the use of a nozzle formed in one or a plurality of multiple structures, the nozzle end surface and the blade end surface of the rotary blade is formed to rotate in parallel Make it possible to increase the rotational force of the blade.
  • the present invention forms a cover 300 on the nozzle end surface as shown in Figure 9 so that the fluid or air is discharged immediately without spreading out to increase the rotational force of the rotating blade.
  • the technical idea of the structure of the axial multistage turbine of the present invention is that the same result can be repeatedly carried out.
  • it is possible to promote technological development and contribute to industrial development, which is worth protecting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Hydraulic Turbines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The present invention relates to a structure of an axial-type multistage turbine. To this end, the present invention provides the structure of the axial-type multistage turbine including a mixed-type turbine (100) having an inner part filled with a fluid, and the mixed type turbine comprises: a body (101) having a space part (105) in which a fluid is filled, and an inlet (102) and an outlet (103) respectively formed at an upper end and a lower end thereof; a rotary shaft (140) provided in a center of the body (101) to be rotated at a high speed and having a discharging hole (107); at least one first rotational blade (110) provided to be integrated with the rotary shaft (140); a plurality of second rotational blades (120) provided to be integrated with the rotary shaft (140) at a predetermined interval; and the body (101) comprising a reception hole (106) formed inside the upper end thereof and a plurality of fixing blades (130) provided to be fixed at a lower end of the body. The present invention having the above-mentioned configuration enables a user to selectively use a turbine structure among an immersion type, a collision type, and a recoil-operated type in accordance with circumstances on site, and particularly, can maximize efficiency by superlatively forming angles of a blade and a nozzle of the turbine, thereby providing a good image of a product by satisfying various consumer needs of users by remarkably improving quality and reliability of the product.

Description

축류형 다단 터빈의 구조Structure of Axial Multistage Turbine
본 발명은 유체의 종류나 유량과 유체의 속도 또는 낙차에 따라 일단 또는 다단으로 임의 형성할 수 있는 축류형 다단 터빈의 구조에 관한 것으로, 보다 상세하게는 터빈 구조를 충돌식(일명 충동식), 반동식 중에서 사용자가 현장상황에 맞게 선택적으로 사용할 수 있도록 한 것이고, 특히 터빈의 블레이드와 노즐의 각도를 최상으로 형성하여 효율을 극대화시킬 수 있도록 한 것이며, 이로 인해 제품의 품질과 신뢰성을 대폭 향상시키므로 사용자인 소비자들의 다양한 욕구(니즈)를 충족시켜 좋은 이미지를 심어줄 수 있도록 한 것이다The present invention relates to a structure of an axial multistage turbine which can be arbitrarily formed in one or multiple stages depending on the type or flow rate of the fluid and the speed or drop of the fluid. More specifically, the turbine structure may be a collision type (aka impulse type), Among the reaction type, the user can selectively use it according to the site situation, and in particular, the angle of the blade and nozzle of the turbine is best formed to maximize the efficiency, thereby greatly improving the quality and reliability of the product. It is to make a good image by satisfying various needs of users who are users.
본 발명은 본 출원인이 선출원하여 등록받은 특허등록 제1184877호(명칭: 축류형 터빈의 개량구조)를 개량 발명한 것임을 미리 밝혀두는 바이다.The present invention is to know in advance that the present invention is an improved invention of the patent application No. 1184877 (name: improved structure of the axial turbine) registered and filed by the present applicant.
주지하다시피 터빈(turbine)은 바람·물·가스·증기 등의 유체가 가지는 에너지를 유용한 기계적 일로 변환시키는 기계로, 회전운동을 하는 것이 특징이다. 보통 회전체의 원주에 여러 개의 깃(blade) 또는 날개를 심고 거기에 일정속도를 가진 유체를 내뿜어 고속 회전시키는 터보형의 기계를 터빈이라고 한다. 높은 곳의 물을 낙하시켜 그것을 회전체인 러너(runner)를 지나게 하여 유수의 에너지를 기계적 일로 변환시키는 것이 수력터빈이고, 증기를 노즐로부터 내뿜어 깃에 부딪치게 하여 회전시키는 증기에너지를 이용하는 것이 증기터빈이다. 또, 증기터빈에는 충동식과 반동식 터빈이 있고 양쪽의 장점을 조합한 혼합식 가스터빈도 있다. 또한 고온·고압의 가스가 가지는 에너지를 이용하는 것이 가스터빈이고, 고압의 압축공기가 가지는 에너지를 이용하는 것이 공기터빈이다. 터빈은 어느 것이나 공업용 동력으로 중요하다. 증기터빈은 화력발전소를 비롯하여 원자력발전소에서 발전기를 구동하는 데 사용되고, 수력터빈은 수력발전소에서 발전기를 움직이는 데 사용된다.As is well known, a turbine is a machine that converts energy of a fluid such as wind, water, gas, steam, etc. into useful mechanical work, and is characterized by rotational motion. In general, a turbine is a turbo type machine in which a plurality of blades or wings are planted on a circumference of a rotating body, and a fluid having a constant speed is ejected and rotated at high speed. A hydro turbine is used to drop water from a high place and pass it through a runner, which is a rotating chain, to convert the energy of the flowing water into mechanical work. A steam turbine uses steam energy that spouts steam from a nozzle and strikes a blade. . Steam turbines also have impulse and recoil turbines, as well as hybrid gas turbines that combine the best of both worlds. In addition, a gas turbine uses energy of high temperature and high pressure gas, and an air turbine uses energy of high pressure compressed air. Any turbine is important for industrial power. Steam turbines are used to drive generators in nuclear power plants, including thermal power plants, and hydro turbines are used to move generators in hydropower plants.
한편 다단 터빈(multistage turbine)은 가스 또는 증기의 팽창을 몇 단으로 나누어 팽창시키는 터빈을 말하는데, 노즐 또는 고정 날개와 회전 날개로 이루어지는 단(段)을 여러 단 조합한 것이다.A multistage turbine, on the other hand, refers to a turbine that expands gas or vapor expansion into several stages, which is a combination of stages consisting of nozzles or fixed vanes and rotary vanes.
그러나 상기한 가스터빈은 열효율이 낮고 연료소비가 크며, 회전체의 구조가 복잡하고 대형화되어 축방향으로 넓은 공간이 필요하여 설치가 용이하지 못하다는 문제점이 발생 되었다.However, the gas turbine has low thermal efficiency and high fuel consumption, and the structure of the rotor is complicated and enlarged, so that a large space in the axial direction is required, and thus the installation is not easy.
또한 상기 종래 기술은 터빈의 블레이드와 노즐의 각도를 최상으로 형성하지 못해 효율이 저하되는 커다란 문제점이 발생 되었다.In addition, the prior art has a big problem that the efficiency is lowered because the angle of the blade and the nozzle of the turbine is not formed best.
[선행기술문헌][Preceding technical literature]
(특허문헌 1) 대한민국 공개특허 제2010-0105103호(명칭: 축류형 다단터빈)가 공개된바 있다.(Patent Document 1) Korean Unexamined Patent Publication No. 2010-0105103 (name: axial type multi-stage turbine) has been published.
(특허문헌 2) 대한민국 특허등록 제1184877호(명칭: 축류형 다단 터빈의 개량구조)가 등록된바 있다.(Patent Document 2) Korean Patent Registration No. 1184877 (name: improved structure of axial multistage turbine) has been registered.
본 발명은 상기와 같은 종래 기술의 제반 문제점을 해소하기 위하여 안출한 것으로, 몸체에 제1,2회전블레이드와 고정블레이드 그리고 충돌경사면과 저항돌기가 구비됨을 제1목적으로 한 것이고, 상기한 기술적 구성에 의한 본 발명의 제2목적은 유체의 종류나 유량과 유체의 속도 또는 낙차에 따라 일단 또는 다단으로 임의 형성하여 사용할 수 있도록 한 것이며, 제3목적은 터빈 구조를 충돌식, (일명 충동식이라 한다)반동식 중에서 사용자가 현장상황에 맞게 선택적으로 사용할 수 있도록 한 것이고, 제4목적은 특히 터빈의 블레이드와 노즐의 각도를 최상으로 형성하여 효율을 극대화시킬 수 있도록 한 것이며, 제5목적은 이로 인해 제품의 품질과 신뢰성을 대폭 향상시키므로 사용자인 소비자들의 다양한 욕구(니즈)를 충족시켜 좋은 이미지를 심어줄 수 있도록 한 축류형 다단 터빈의 구조를 제공한다.The present invention has been made in order to solve the problems of the prior art as described above, the first object of the first and second rotating blades and the fixed blade and the inclined slope and the resistance projections are provided in the body, the technical configuration described above According to the second object of the present invention, one or multiple stages may be arbitrarily formed and used depending on the type or flow rate of the fluid, and the speed or drop of the fluid. The third object is a collision type (called impulse type). Among the recoil type, the user can selectively use it according to the site situation. The fourth purpose is to form the best angle of the blade and nozzle of the turbine to maximize the efficiency, and the fifth purpose is to As it greatly improves the quality and reliability of the product, it can meet the various needs (users) of consumers as users and instill a good image. It provides a structure of an axial multistage turbine.
이러한 목적 달성을 위하여 본 발명은 축류형 다단 터빈의 구조에 있어서, 내부에 유체가 채워지는 혼합식터빈(충돌식과 반동식이 혼합된 터빈)이 구비되되, 상기 혼합식터빈은, 회전체 내부에 유체가 채워지게 공간부(108)가 형성되고, 상단과 하단에 각각 주입구(102)와 배출구(103)가 형성된 몸체(101); 상기 몸체의 중앙에 축설되어 고속으로 회전하며, 배출공이 형성되도록 한 회전축(140); 상기 회전축(140)과 일체로 축설되는 적어도 하나 이상의 제1회전블레이드(110); 상기 회전축과 일체로 일정 간격으로 복수개가 축설되는 제2회전블레이드(120); 및 상기 몸체의 상단 내부에 분출공(106)이 형성됨과 아울러 하단에는 복수개의 고정블레이드(130);가 고정 설치됨을 특징으로 하는 축류형 다단 터빈의 구조를 제공한다.In order to achieve the object of the present invention, in the structure of an axial multistage turbine, a mixed turbine (turbine mixed with a collision type and a reaction type) having a fluid filled therein is provided, and the mixed turbine has a fluid inside the rotor. The space portion 108 is formed to be filled, the body 101 formed with the inlet 102 and the outlet 103 at the top and bottom, respectively; A rotating shaft 140 installed in the center of the body to rotate at a high speed and having a discharge hole formed therein; At least one first rotating blade 110 which is integrally formed with the rotating shaft 140; A second rotary blade 120 integrally formed with the rotary shaft at a predetermined interval; And a blowout hole 106 formed inside the upper end of the body, and a plurality of fixed blades 130 at the lower end thereof. The axial flow type multistage turbine is provided.
또한 본 발명은 축류형 다단 터빈의 구조에 있어서, 회전체 내부에 유체가 채워지는 반동식터빈이 구비되되, 상기 반동식터빈은, 내부에 유체가 채워지게 공간부(108)가 형성되고, 상단과 하단에 각각 주입구와 배출구가 형성된 몸체; 상기 몸체의 중앙에 축설되어 고속으로 회전하며, 배출공이 형성되도록 한 회전축; 상기 회전축과 일체로 일정 간격으로 복수개가 축설되며, 고정공간이 형성되도록 한 회전블레이드; 및 상기 몸체의 내부에는 일정간격으로 복수개의 고정블레이드;가 고정 설치됨을 특징으로 하는 축류형 다단 터빈의 구조를 제공한다.In addition, in the structure of the axial multistage turbine, the reaction turbine is provided with a fluid filled inside the rotor, the reaction turbine, the space 108 is formed so that the fluid is filled therein, the upper end A body formed with an inlet and an outlet at the bottom and the bottom, respectively; A rotating shaft arranged in the center of the body to rotate at a high speed and having a discharge hole formed therein; A plurality of rotating blades integrally formed with the rotating shaft at regular intervals and having a fixed space formed thereon; And a plurality of stationary blades at fixed intervals inside the body. The structure of the axial multistage turbine is fixed.
상기에서 상세히 살펴본 바와 같이 본 발명은 몸체에 제1,2회전블레이드와 고정블레이드 그리고 충돌경사면과 저항돌기가 구비되도록 한 것이다.As described in detail above, the present invention is provided so that the first and second rotating blades and the fixed blades and the collision inclined surfaces and the resistance protrusions are provided on the body.
상기한 기술적 구성에 의한 본 발명은 유체의 종류나 유량과 유체의 속도 또는 낙차에 따라 일단 또는 다단으로 임의 형성하여 사용할 수 있도록 한 것이다.The present invention by the above-described technical configuration is to be used to form any one or multiple stages depending on the type or flow rate of the fluid and the speed or drop of the fluid.
또한 본 발명은 터빈 구조를 충돌식(일명 충동식이라 한다.), 반동식 중에서 사용자가 현장상황에 맞게 선택적으로 사용할 수 있도록 한 것이다.In addition, the present invention is to allow the user to selectively use the turbine structure of the collision type (aka impulse type), the reaction type according to the site situation.
특히 본 발명은 터빈의 블레이드와 노즐의 각도를 최상으로 형성하여 효율을 극대화시킬 수 있도록 한 것이다.In particular, the present invention is to form the best angle of the blade and the nozzle of the turbine to maximize the efficiency.
본 발명은 상기한 효과로 인해 제품의 품질과 신뢰성을 대폭 향상시키므로 사용자인 소비자들의 다양한 욕구(니즈)를 충족시켜 좋은 이미지를 심어줄 수 있도록 한 매우 유용한 발명인 것이다.The present invention greatly improves the quality and reliability of the product due to the above-described effects, which is a very useful invention that can be used to plant a good image by satisfying various needs (needs) of consumers.
이하에서는 이러한 효과 달성을 위한 본 발명의 바람직한 실시 예를 첨부된 도면에 따라 상세히 설명하면 다음과 같다.Hereinafter, described in detail with reference to the accompanying drawings a preferred embodiment of the present invention for achieving this effect are as follows.
도 1 은 본 발명에 적용된 축류형 다단 터빈 구조의 제1실시예 단면도.1 is a cross-sectional view of a first embodiment of an axial multistage turbine structure applied to the present invention.
도 2 는 본 발명에 적용된 축류형 다단 터빈 구조의 제2실시예 단면도.2 is a sectional view of a second embodiment of an axial multistage turbine structure applied to the present invention;
도 3 은 본 발명에 적용된 축류형 다단 터빈 구조의 제3실시예 단면도.3 is a cross-sectional view of a third embodiment of an axial multistage turbine structure applied to the present invention;
도 4 는 본 발명에 적용된 축류형 다단 터빈 구조의 제4실시예 단면도.4 is a sectional view of a fourth embodiment of an axial multistage turbine structure applied to the present invention;
도 5 는 본 발명에 적용된 축류형 다단 터빈의 평단면도.5 is a plan sectional view of an axial multistage turbine applied to the present invention.
도 6 은 본 발명에 적용된 노즐의 제1실시예 단면도.6 is a sectional view of a first embodiment of a nozzle applied to the present invention;
도 7 의 (a)는 본 발명에 적용된 노즐의 제2실시예 단면도이고,7 (a) is a cross-sectional view of a second embodiment of a nozzle applied to the present invention,
(b)는 본 발명에 적용된 노즐의 제3실시예 단면도이다.        (b) is sectional drawing of 3rd Example of the nozzle applied to this invention.
도 8 의 (a)는 본 발명에 적용된 노즐의 제4실시예 단면도이고,8 (a) is a cross-sectional view of a fourth embodiment of a nozzle applied to the present invention,
(b)는 본 발명에 적용된 노즐의 제5실시예 단면도이다.        (b) is sectional drawing of 5th Example of the nozzle applied to this invention.
도 9 은 본 발명에 적용된 노즐의 제6실시예 단면도.9 is a sectional view of a sixth embodiment of a nozzle applied to the present invention;
도 10 은 본 발명에 적용된 히전블레이드의 또 다른 실시예 구성도.10 is a configuration diagram of another embodiment of the electric blade applied to the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
100: 혼합식터빈 110: 제1회전블레이드100: hybrid turbine 110: first rotating blade
120: 제2회전블레이드 130: 고정블레이드120: second rotating blade 130: fixed blade
140: 회전축 300: 커버140: rotation axis 300: cover
본 발명에 적용된 축류형 다단 터빈의 구조는 도 1 내지 도 10 에 도시된 바와 같이 구성되는 것이다.The structure of the axial multistage turbine applied to the present invention is configured as shown in Figs.
하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 설정된 용어들로서 이는 생산자의 의도 또는 관례에 따라 달라질 수 있으므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.The following terms are terms set in consideration of functions in the present invention, which may vary depending on the intention or custom of the producer, and their definitions should be made based on the contents throughout the specification.
먼저, 본 발명 제1실시예는 도 1 에 도시된 바와 같이 축류형 다단 터빈의 구조에 있어서, 내부에 유체가 채워지는 혼합식터빈(100)이 구비되되, 상기 혼합식터빈은, 내부에는 유체가 채워지게 공간부(105)가 형성되고, 상단과 하단에 각각 주입구(102)와 배출구(103)가 형성된 몸체(101)가 구비된다.First, the first embodiment of the present invention, in the structure of the axial multistage turbine, as shown in Figure 1, is provided with a hybrid turbine 100 is filled with a fluid inside, the hybrid turbine, the fluid inside The space portion 105 is formed to be filled, and the body 101 formed with the inlet 102 and the outlet 103 at the top and bottom, respectively.
그리고 상기 몸체(101)의 중앙에 축설되어 고속으로 회전하며, 유체가 흐르도록 유체통로(107)가 형성되고 회전축(140)이 구비된다.And it is installed in the center of the body 101 is rotated at high speed, the fluid passage 107 is formed so that the fluid flows and the rotating shaft 140 is provided.
또한 상기 회전축(140)과 일체로 축설되는 적어도 하나 이상의 제1회전블레이드(110)가 구비된다.In addition, at least one first rotating blade 110 is formed integrally with the rotating shaft 140 is provided.
아울러 상기 회전축(140)과 일체로 일정 간격으로 복수개가 축설되는 제2회전블레이드(120)가 구비된다.In addition, the second rotary blade 120 is provided with a plurality of integrally arranged at a predetermined interval with the rotary shaft 140.
더하여 상기 몸체(101)의 상단 내부에 형성된 공간부(109)에 유체가 유입되어 노즐구(106)에서 분출된 유체가 제1회전블레이드(111)에 충돌하고 유체통로(107)를 통하여 유체가 흐르도록 유도되는 분출공(121)이 형성됨과 아울러 복수개의 고정블레이드(130)가 고정 설치된다.In addition, fluid flows into the space portion 109 formed inside the upper end of the body 101 so that the fluid ejected from the nozzle hole 106 impinges on the first rotating blade 111 and the fluid flows through the fluid passage 107. Blowing holes 121 to be guided to flow is formed and a plurality of fixed blades 130 are fixed.
특히 본 발명에 적용된 상기 몸체(101)의 내부에는 유체가 부딪혀 반동을 일으키도록 일정 간격으로 저항돌기(104)가 돌출 형성된다.In particular, the resistance protrusion 104 is formed at a predetermined interval so that the fluid hits the inside of the body 101 applied to the present invention.
또한 상기 제1회전블레이드(110)에는 유체가 부딪혀 회전력을 높이는 충돌날개경사면(111)이 더 형성된다.In addition, the first rotary blade 110 is further formed with a collision wing inclined surface 111 to bump the fluid to increase the rotational force.
그리고 상기 제2회전블레이드(120)에는 내부로 유입된 유체가 저항돌기 쪽으로 배출되도록 분출공(121)이 더 형성된다.In addition, the second rotating blade 120 is further formed with a blow hole 121 so that the fluid introduced into the discharge protrusion toward the resistance projection.
한편, 본 발명 제2실시예는 도 2 에 도시된 바와 같이 축류형 다단 터빈의 구조에 있어서, 내부에 유체가 채워지는 반동식터빈(200)이 구비되되, 상기 반동식터빈은, 내부에는 유체가 채워지게 공간부(203)가 형성되고, 상단과 하단에 각각 주입구(202)와 배출구가 형성된 몸체(201)가 구비된다.On the other hand, the second embodiment of the present invention, in the structure of the axial multistage turbine, as shown in Figure 2, provided with a reaction turbine 200 is filled with a fluid inside, the reaction turbine, the fluid inside The space portion 203 is formed to be filled, and the body 201 is formed with the injection hole 202 and the discharge hole at the top and bottom, respectively.
또한 상기 몸체(201)의 중앙에 축설되어 고속으로 회전하며, 인입공간(204)이 형성되도록 한 회전축(220)이 구비된다.In addition, the rotating shaft 220 is arranged in the center of the body 201 to rotate at a high speed, so that the inlet space 204 is formed.
그리고 상기 회전축(220)과 일체로 일정 간격으로 복수개가 축설되며, 고정공간(205)이 형성되도록 한 회전블레이드(230)가 구비된다.In addition, a plurality of pieces are arranged at regular intervals integrally with the rotating shaft 220, and a rotating blade 230 is formed to form a fixed space 205.
아울러 상기 몸체(201)의 내부에는 일정간격으로 복수개의 고정블레이드(210)가 고정 설치된다.In addition, a plurality of fixed blades 210 are fixedly installed at predetermined intervals inside the body 201.
특히 본 발명에 적용된 상기 회전블레이드(230)와 고정블레이드(210)는 상호 "⊂" 또는 "⊃"로 교차되게 조립 설치된다.In particular, the rotary blade 230 and the fixed blade 210 applied to the present invention is installed to be crossed to each other "⊂" or "⊃".
그리고 상기 회전블레이드(230)의 외곽에는 내부 공간부에 유체분출 방향로가 형성된 제1끝부분(207)에는 도5와 같이 유체통로가 형성된다.In addition, a fluid passage is formed at a first end portion 207 in which a fluid ejecting direction is formed in an inner space at an outer portion of the rotary blade 230 as shown in FIG. 5.
또한 상기 회전블레이드(230)의 외곽에는 상부로 돌출된 제2끝부분(208)이 형성되고, 절곡부분(230a)은 도5와 같은 관로홈(200)을 통하여 날개 안쪽에서 바깥쪽으로 유체가 진행되며 하우징 내측에 형성된 저항돌기(206)에 부딪쳐 반동력을 얻도록 형성된다.In addition, the outer edge of the rotating blade 230 is formed with a second end portion 208 protruding upward, the bent portion 230a is fluid flows from the inside of the wing to the outside through the conduit groove 200 as shown in FIG. And it is formed to hit the resistance protrusion 206 formed inside the housing to obtain a reaction force.
더하여 충돌식에서 상기 노즐구 끝면(231)은 유체의 손실방지를 위해 회전블레이드끝면(232)과 평형하게 형성되고, 적어도 하나 또는 복수의 다중노즐구조로 이루어진다. In addition, in the collision type, the nozzle sphere end surface 231 is formed in parallel with the rotary blade end surface 232 in order to prevent loss of fluid, and has at least one or a plurality of multiple nozzle structures.
또한 본 발명에 적용된 상기 노즐구 끝면(231)은 유체가 밖으로 퍼지지 않도록 커버(300)가 형성된다.In addition, the nozzle sphere end surface 231 applied to the present invention is formed with a cover 300 so that the fluid does not spread out.
또 한편으로, 본 발명은 상기 회전블레이드(230)의 날개 깃이 기어처럼 회전블레이드자 끝 측면에 형성되고, 상하 각도는 수직으로 이루되, 전(회전방향) 후(회전반대방향)의 각도는 회전방향으로 중심축(701)을 중심으로 하여 5~45도 범위내에서 경사지게 형성함이 바람직하다.On the other hand, the present invention is the blade blade of the rotating blade 230 is formed on the end side of the rotating blade like a gear, the vertical angle is made vertical, the angle before (rotation direction) after (counter rotation direction) It is preferable to form inclined in the range of 5 ~ 45 degrees around the central axis 701 in the rotation direction.
또한 상기 회전블레이드(230)가 부채살 처럼 형성(도8a)되되, 좌우의 각도는 90~60도까지 회전방향으로 기울고, 전후 각도는 회전방향쪽으로 5~45도까지 경사지게 형성함이 바람직하다.In addition, the rotating blade 230 is formed as a fan (Fig. 8a), the left and right angles are preferably inclined in the rotational direction to 90 to 60 degrees, the front and rear angles are formed to be inclined to 5 to 45 degrees toward the rotational direction.
아울러 본 발명은 상기 노즐의 각도는 유체가 부딪치는 날개면과 일직선 직각이 되도록 하고, 부채살 원판형에 있어서 노즐의 상하는 각도는 1~30도 범위로 이루어지고, 좌우의 각도는 회전방향으로 경사진 날개면과 직각으로 형성한다.In addition, the present invention is such that the angle of the nozzle is in a straight line perpendicular to the wing surface where the fluid collides, the upper and lower angles of the nozzle in the fan-shaped disk shape is made in the range of 1 ~ 30 degrees, the left and right angles are inclined in the rotation direction Form at right angles to the wing surface.
더하여 본 발명은 도2 및 도5에 도시된 바와 같이 유체가 주입구(202)로 들어가 인입공간(204)을 통하여 회전 블레이드 내부에 형성된 고정공간(205)으로 들어가고, 회전체 끝부분에 형성된 관로홈(230b)을 통해 들어가 관로홈의 전면에 형성된 저항벽(221)에 부딪쳐 추진 작용이 이루어지고 또한 유체가 회전하는 반대방향으로 바뀌어 분출되면서 하우징 안쪽에 형성된 저항돌기벽(206)에 부딪쳐 반동력을 얻는 것을 특징으로 구성된다.In addition, in the present invention, as shown in FIGS. 2 and 5, the fluid enters the inlet 202 and enters the fixed space 205 formed inside the rotating blade through the inlet space 204, and the pipe groove formed at the end of the rotating body. Receives a reaction force by hitting the resistance wall 221 formed in the front of the conduit groove through the 230b propelling action and the ejection to the opposite direction in which the fluid is rotated to hit the resistance projection wall 206 formed inside the housing It is characterized by.
또한 본 발명은 도7a,7b에 도시된 바와 같이 노즐의 끝면은 유체가 부딪치는 회전블레이드의 날개끝면(232)과 평행하게 형성하고, 노즐은 다수개로 이루어지고, 유체의 분산을 막기 위해 끝면의 외곽이 커버가 씌워짐을 특징으로 구성된다.In addition, the present invention, as shown in Figure 7a, 7b the end surface of the nozzle is formed in parallel with the blade end surface 232 of the rotating blade that the fluid collides, the nozzle is made of a plurality of, to prevent the dispersion of the fluid The outer cover is characterized by being covered.
그리고 본 발명은 상기 유체를 분출하는 노즐의 끝면(231)은 회전체 날개 끝면(232)과 평행하게 이루어지도록 형성함을 특징으로 구성된다.And the present invention is characterized in that the end surface 231 of the nozzle for ejecting the fluid is formed to be made in parallel with the rotor blade end surface 232.
한편 본 발명은 상기의 구성부를 적용함에 있어 다양하게 변형될 수 있고 여러 가지 형태를 취할 수 있다.On the other hand, the present invention may be variously modified and may take various forms in applying the above configuration.
그리고 본 발명은 상기의 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하고, 특히 충돌식에 있어 날개모양은 다양한 형태로 변형될 수 있다.And it is to be understood that the invention is not limited to the specific forms referred to in the foregoing description, but rather includes all modifications, equivalents and substitutions within the spirit and scope of the invention as defined by the appended claims. In particular, the wing shape can be transformed into various shapes, particularly in the crash mode.
상기와 같이 구성된 본 발명 축류형 다단 터빈의 구조의 작용효과를 설명하면 다음과 같다.Referring to the operation and effect of the structure of the present invention the axial multistage turbine configured as described above are as follows.
우선, 본 발명은 터빈 구조를 충돌식, 반동식 중에서 사용자가 현장상황에 맞게 선택적으로 사용할 수 있도록 한 것이고, 특히 터빈의 블레이드와 노즐의 각도를 최상으로 형성하여 효율을 극대화시킬 수 있도록 한 것이다.First, the present invention is to allow the user to selectively use the turbine structure of the collision type, the reaction type according to the site situation, in particular to maximize the efficiency by forming the angle of the blade and nozzle of the turbine to the best.
이를 위해 본 발명의 제1실시예를 먼저 설명하면, 몸체(101)의 배출구(103)를 막은 상태에서 주입구(102)를 통해 내부 공간부(105)에 유체 또는 기체를 가득 채워지게 한다.To this end, the first embodiment of the present invention will be described first, and the fluid or gas is filled in the inner space 105 through the injection hole 102 in a state in which the outlet 103 of the body 101 is blocked.
그렇게 되면 몸체(101)의 공간부(105)는 물론 제1회전블레이드(110)와 제2회전블레이드(120)의 내부 공간부에는 유체 또는 기체의 진행통로가 형성되고 그 통로 공간의 크기는 유체 또는 기체의 종류나 압력의 상황에 따라 조정 설치된다.Then, the passage portion of the fluid or gas is formed in the inner space portion of the first rotary blade 110 and the second rotary blade 120 as well as the space portion 105 of the body 101 and the size of the passage space is fluid Or it is installed according to the type of gas or the situation of pressure.
상기한 상태에서 주입구(102)와 분출공(106)을 통해 고압으로 압력을 주입하게 되면 유체 또는 기체는 유체통로(107)로 유입되면서 회전축(140)을 중심으로 제1회전블레이드(110)와 제2회전블레이드(120)를 고속으로 회전시키게 된다.When the pressure is injected at a high pressure through the injection hole 102 and the ejection hole 106 in the above state, the fluid or gas is introduced into the fluid passage 107 and the first rotating blade 110 is formed around the rotating shaft 140. The second rotating blade 120 is rotated at a high speed.
특히 상기 제1회전블레이드(110)는 분출공(106)을 통해 들어온 유체가 정면으로 맞아 고속으로 회전할 수 있게 하고, 제1회전블레이드 끝면에 충돌날개 경사면(111)을 형성하고 그 충돌날개경사면은 60~90도로 복수개 형성된다. 즉, 유체가 분출되는 각도는 1~30도 이내이고, 충돌날개경사면은 60~90도의 경사 각도(기울기)로 형성되며, 분출되는 각도와 맞는 면(충돌날개경사면)의 각도가 직각이 되도록 한 것을 특징으로 한다.In particular, the first rotating blade 110 allows the fluid coming through the ejection hole 106 to face the front to rotate at a high speed, to form a collision wing inclined surface 111 on the end surface of the first rotating blade and the collision wing inclined surface Plurality is formed at 60 to 90 degrees. That is, the angle at which the fluid is ejected is within 1 to 30 degrees, and the impingement wing slope is formed at an inclination angle (tilt) of 60 to 90 degrees, and the angle of the plane (collision wing slope) that matches the ejected angle is perpendicular to each other. It is characterized by.
그리고 상기 유체 또는 기체는 유체통로(107)를 통과한 후 제2회전블레이드(120)의 외주면에 형성된 분출공(121)을 통해 분사된 후 다음 단으로 배출된다.After the fluid or gas passes through the fluid passage 107, the fluid or gas is injected through the ejection hole 121 formed in the outer circumferential surface of the second rotating blade 120 and then discharged to the next stage.
이때 상기 분출공(121)으로 분출된 유체 또는 기체는 저항돌기(104)에 부딪친 후 다시 내측방향으로 유입되고 이러한 과정이 반복되면서 혼합식터빈(100)이 작동되는 것이다.At this time, the fluid or gas ejected to the ejection hole 121 is introduced into the inward direction after hitting the resistance protrusion 104, and this process is repeated, the hybrid turbine 100 is operated.
더하여 상기 유체는 고정블레이드(130)와 제2회전블레이드(120)의 공간으로 유출되고 또한 유체통로(107)를 통해서도 진행되어지므로, 종래에 터빈 날개의 끝면과 하우징 내벽사이로 유출되는 것과는 달리, 본 발명은 유량손실을 최소화할 수 있게 되어 제2회전블레이드(120)를 고속으로 회전시킬 수 있다.In addition, since the fluid is discharged into the space of the fixed blade 130 and the second rotary blade 120 and also proceeds through the fluid passage 107, unlike the conventional flow between the end surface of the turbine blades and the housing inner wall, The present invention can minimize the flow loss can rotate the second rotating blade 120 at a high speed.
상기 제2회전블레이드(120)가 회전할 때 인접한 고정블레이드(130)는 회전하지 않고 고정된 상태로 위치하게 된다.When the second rotating blade 120 rotates, the adjacent fixed blade 130 is positioned in a fixed state without rotating.
한편, 본 발명의 제2실시예를 설명하면 다음과 같다.Meanwhile, the second embodiment of the present invention will be described below.
본 발명의 제2실시예는 전술한 제1실시예와 거의 유사하고, 이하에서 다른 차이점을 설명하도록 하겠다.The second embodiment of the present invention is almost similar to the first embodiment described above, and other differences will be described below.
주입구(202)를 통해 유입된 유체는 회전블레이드(230)와 고정블레이드(210)를 사이 인입공간(204)을 통해 빠져 나가면서 회전축(220)에 축설된 상기 회전블레이드(230)를 고속으로 회전시키게 된다.The fluid introduced through the injection hole 202 is rotated at a high speed by rotating the rotating blade 230 built on the rotating shaft 220 while exiting the rotating blade 230 and the fixed blade 210 through the inlet space 204. Let's go.
상기 과정에서 회전블레이드(230)의 외곽에는 내부에 공간부가 형성된 제1끝부분(207)이 형성되어 회전력을 높일 수 있도록 하게 된다.In the above process, the first end portion 207 having a space formed therein is formed on the outer side of the rotating blade 230 so as to increase the rotational force.
또한 상기 과정에서 회전블레이드(230)의 외곽에는 상부로 돌출된 제2끝부분(208)이 형성되어 이 역시 유체가 제2끝부분을 타격하여 회전블레이드(230)의 회전력을 더욱 증대시킬 수 있게 된다.In addition, a second end portion 208 protruding upward is formed on the outer side of the rotating blade 230 in the above process, so that the fluid strikes the second end portion to further increase the rotational force of the rotating blade 230. do.
한편, 본 발명은 본원발명을 도 4 에 도시된 바와 같이 충돌식과 반동식의 터빈으로 구성하여 사용할 수 있도록 함은 물론이다.On the other hand, the present invention, of course, to be able to use the configuration of the collision and the reaction type turbine as shown in FIG.
또한 본 발명은 도 6 에 도시된 바와 같이 노즐의 끝면은 도6,7a,7b,7c와 같이 형성하여 회전블레이드의 회전력을 높일 수 있다.In addition, the present invention as shown in Figure 6 the end surface of the nozzle can be formed as shown in Figure 6, 7a, 7b, 7c to increase the rotational force of the rotating blade.
또한 본 발명은 도 7(a)(b)에 도시된 바와 같이 노즐을 하나 또는 복수개의 다중 구조로 형성하여 사용할 수 있도록 한 것으로, 노즐은 유량 손실을 적게 하기 위해 원을 따라서 평행하게 형성하고, 또한 회전블레이드는 분출하는 유체의 각도와 같거나 또는 그 이하로 형성하여 유체가 손실이 없도록 하게 된다.In addition, the present invention is to enable the use of the nozzle formed in one or a plurality of multiple structures as shown in Figure 7 (a) (b), the nozzle is formed in parallel along the circle to reduce the flow rate loss, In addition, the rotating blade is formed to be equal to or less than the angle of the ejecting fluid to ensure that there is no loss of fluid.
또 한편으로 본 발명은 도 8(a)(b)에 도시된 바와 같이 노즐을 하나 또는 복수개의 다중 구조로 형성하여 사용할 수 있도록 한 것으로, 노즐 끝면과 회전블레이드의 날개 끝면은 평행하게 형성하여 회전블레이드의 회전력을 높일 수 있도록 한다.On the other hand, the present invention, as shown in Figure 8 (a) (b) to enable the use of a nozzle formed in one or a plurality of multiple structures, the nozzle end surface and the blade end surface of the rotary blade is formed to rotate in parallel Make it possible to increase the rotational force of the blade.
또한 본 발명은 도 9 에 도시된 바와 같이 노즐 끝면에는 커버(300)를 형성하여 유체 또는 에어가 밖으로 퍼지지 않고 곧바로 배출되도록 하여 회전블레이드의 회전력을 높일 수 있도록 한다.In addition, the present invention forms a cover 300 on the nozzle end surface as shown in Figure 9 so that the fluid or air is discharged immediately without spreading out to increase the rotational force of the rotating blade.
본 발명 축류형 다단 터빈의 구조의 기술적 사상은 실제로 동일결과를 반복 실시 가능한 것으로, 특히 이와 같은 본원발명을 실시함으로써 기술발전을 촉진하여 산업발전에 이바지할 수 있어 보호할 가치가 충분히 있다.The technical idea of the structure of the axial multistage turbine of the present invention is that the same result can be repeatedly carried out. In particular, by implementing the present invention, it is possible to promote technological development and contribute to industrial development, which is worth protecting.

Claims (14)

  1. 축류형 다단 터빈의 구조에 있어서,In the structure of an axial multistage turbine,
    내부에 유체가 채워지는 혼합식터빈(100)이 구비되되, 상기 혼합식터빈은,The hybrid turbine 100 is provided with a fluid filled therein, the hybrid turbine,
    내부에는 유체가 채워지게 공간부(105)가 형성되고, 상단과 하단에 각각 주입구(102)와 배출구(103)가 형성된 몸체(101);A space portion 105 formed therein so as to fill a fluid, and a body 101 having an injection hole 102 and an discharge hole 103 formed at upper and lower ends thereof, respectively;
    상기 몸체(101)의 중앙에 축설되어 고속으로 회전하며, 유체흐름통로인 유체통로(107)가 형성되도록 한 회전축(140);A rotating shaft 140 arranged in the center of the body 101 to rotate at a high speed and to form a fluid passage 107 which is a fluid flow passage;
    상기 회전축(140)과 일체로 축설되는 적어도 하나 이상의 제1회전블레이드(110);At least one first rotating blade 110 which is integrally formed with the rotating shaft 140;
    상기 회전축(140)과 일체로 일정 간격으로 복수개가 축설되는 제2회전블레이드(120); 및A second rotating blade 120 integrally formed with the rotating shaft 140 at a predetermined interval; And
    상기 몸체(101)의 상단 내부에 노즐구(106)가 형성됨과 아울러 하단에는 복수개의 고정블레이드(130);가 고정 설치됨을 특징으로 하는 축류형 다단 터빈의 구조.The nozzle port 106 is formed inside the upper end of the body 101, and a plurality of fixed blades 130 are formed at the lower end of the axial flow type multistage turbine.
  2. 청구항 1 에 있어서,The method according to claim 1,
    상기 몸체(101)의 내부에는 유체가 부딪혀 반동을 일으키도록 일정 간격으로 저항돌기(104);가 돌출 형성됨을 특징으로 하는 축류형 다단 터빈의 구조.A structure of the axial flow type multi-stage turbine, characterized in that the protruding formed in the body 101, the resistance protrusion 104 at a predetermined interval so that the fluid hits the reaction.
  3. 청구항 1 에 있어서,The method according to claim 1,
    상기 제2회전블레이드(120)에는 내부로 유입된 유체가 저항돌기 쪽으로 배출되도록 분출공(121);이 더 형성됨을 특징으로 하는 축류형 다단 터빈의 구조.The second rotary blade 120, the ejection hole 121 so that the fluid introduced into the discharge toward the resistance projections; the structure of the axial flow multistage turbine, characterized in that further formed.
  4. 축류형 다단 터빈의 구조에 있어서,In the structure of an axial multistage turbine,
    내부에 유체가 채워지는 반동식터빈(200)이 구비되되, 상기 침수반동식터빈은,The reaction turbine 200 is provided with a fluid filled therein, the submerged reaction turbine,
    내부에는 유체가 채워지게 공간부(203)가 형성되고, 상단과 하단에 각각 주입구(202)와 배출구가 형성된 몸체(201);A space portion 203 is formed to fill the fluid, and the body 201 having the inlet 202 and the outlet formed at the top and the bottom thereof, respectively;
    상기 몸체(201)의 중앙에 축설되어 고속으로 회전하며, 인입공간(204)이 형성되도록 한 회전축(220);A rotating shaft 220 installed in the center of the body 201 to rotate at a high speed so that an inlet space 204 is formed;
    상기 회전축(220)과 일체로 일정 간격으로 복수개가 축설되며, 고정공간(205)이 형성되도록 한 회전블레이드(230); 및A plurality of rotating blades 230 which are integrally formed with the rotating shaft 220 at regular intervals and have a fixed space 205 formed thereon; And
    상기 몸체(201)의 내부에는 일정간격으로 복수개의 고정블레이드(210);가 고정 설치됨을 특징으로 하는 축류형 다단 터빈의 구조.A plurality of fixed blades 210 at a predetermined interval inside the body 201; Fixed structure of the axial flow multistage turbine, characterized in that the installation.
  5. 청구항 4 에 있어서,The method according to claim 4,
    상기 회전블레이드(230)의 외곽에는 내부 공간부에 유체가 분출되는 방향으로 제1끝부분(207);이 더 형성됨을 특징으로 하는 축류형 다단 터빈의 구조.The outer blade of the rotary blade 230, the first end portion 207 in the direction in which the fluid is ejected in the inner space; axial flow multi-stage turbine structure, characterized in that is further formed.
  6. 청구항 4 에 있어서,The method according to claim 4,
    상기 회전블레이드(230)의 외곽에는 상부로 돌출된 제2끝부분(208)이 형성되고, 절곡부분(230a)에 형성된 관로홈(230b)을 통하여 날개 안쪽에서 바깥쪽으로 유체가 흐르면서 상기 관로 홈의 전방에 형성된 벽에 부딪치고 유체가 회전하는 반대방향으로 분출되면서 분출되는 방향에 형성된 저항돌기(206)에 부딪쳐 반동력을 얻도록 함을 특징으로 하는 축류형 다단 터빈의 구조.The outer end of the rotary blade 230 is formed with a second end portion 208 protruding upward, the fluid flows from the inside of the wing through the pipe groove 230b formed in the bent portion 230a to the outside of the pipe groove A structure of an axial multistage turbine characterized in that it strikes a wall formed in front and hits a resistance protrusion (206) formed in the ejecting direction while ejecting in the opposite direction in which the fluid rotates.
  7. 청구항 1 또는 4 에 있어서,The method according to claim 1 or 4,
    상기 노즐 끝면(231)은 유량 손실을 적게 하기 위해 회전블레이드를 따라 평행으로 형성되고, 적어도 하나 또는 복수의 다중 구조로 이루어지고, The nozzle end surface 231 is formed in parallel along the rotating blade in order to reduce the flow loss, at least one or a plurality of multiple structures,
    유체가 부딪치는 회전블레이드의 끝면(232)은 유체의 손실을 적게 하기 위해 분출하는 유체의 각도와 같거나 또는 그 이하로 형성함을 특징으로 하는 축류형 다단 터빈의 구조.An end face 232 of the rotating blades in which the fluid collides is configured to be equal to or less than the angle of the ejected fluid to reduce the loss of fluid.
  8. 청구항 7 에 있어서,The method according to claim 7,
    상기 노즐 끝면은 유체가 밖으로 분산되지 않도록 커버(300);가 더 형성됨을 특징으로 하는 축류형 다단 터빈의 구조.The nozzle end surface of the axial flow type multistage turbine, characterized in that the cover; is further formed so that the fluid is not dispersed out.
  9. 청구항 1 또는 4 에 있어서,The method according to claim 1 or 4,
    상기 회전블레이드 끝측면에 날개가 형성되고, 상하 각도는 60~90도로 이루어지고, 전(회전방향) 후(회전반대방향)의 각도는 중심축(701)의 일직선을 기준으로 하여 회전방향으로 5~45도 까지 경사지게 형성함을 특징으로 하는 축류형 다단 터빈의 구조.The blade is formed on the end side of the rotating blade, the upper and lower angles are made of 60 ~ 90 degrees, the angle of the front (rotation direction) after (rotation opposite direction) is 5 in the rotation direction on the basis of the straight line of the central axis 701 A axial flow type multistage turbine characterized in that it is formed to be inclined to ~ 45 degrees.
  10. 청구항 1 또는 4 에 있어서,The method according to claim 1 or 4,
    상기 회전블레이드(230)가 부채살 처럼 형성되되, 상하의 각도는 90~60도로이루어지고, 전후의 각도는 중심축(801)의 일직선을 기준으로 하여 회전방향으로 5~45도까지 경사지게 형성함을 특징으로 하는 축류형 다단 터빈의 구조.The rotating blade 230 is formed like a fan, the upper and lower angles are made of 90 ~ 60 degrees, the angle before and after is formed to be inclined to 5 ~ 45 degrees in the rotation direction based on the straight line of the central axis 801 The structure of the axial multistage turbine.
  11. 청구항 1 또는 4 에 있어서,The method according to claim 1 or 4,
    상기 노즐의 각도는 유체가 부딪치는 날개면과 일직선 직각이 되도록 5~45도까지 이루는 것과, 부채살 원판형에 있어서 노즐의 좌우각도는 1~30도 범위로 이루어지고, 전후각도는 회전방향으로 5~45도로 경사지게 형성함을 특징으로 하는 축류형 다단 터빈의 구조.The angle of the nozzle is made up to 5 to 45 degrees so as to be in a right angle to the blade surface hitting the fluid, and in the fan-shaped disc shape, the left and right angles of the nozzle is in the range of 1 to 30 degrees, the front and rear angle is 5 in the rotation direction An axial flow multistage turbine characterized in that it is formed at an angle of ~ 45 degrees.
  12. 청구항 1 또는 4 에 있어서,The method according to claim 1 or 4,
    유체가 주입구(202)로 들어가 인입공간(204)을 통하여 회전 블레이드 내부에 형성된 고정공간(205)으로 들어가고, 회전체 끝부분에 형성된 관로홈(230b)을 통해 들어가 관로홈전면에 형성된 저항벽(221)에 부딪쳐 추진 작용이 이루어지고 또한 유체가 회전하는 반대방향(222)으로 바뀌어 분출되면서 하우징 안쪽에 형성된 저항돌기벽(206)에 부딪쳐 반동력을 얻는 것을 특징으로 하는 축류형 다단 터빈의 구조.The fluid enters the inlet 202 and enters the fixed space 205 formed inside the rotating blade through the inlet space 204, and enters through the pipe groove 230b formed at the end of the rotor, and the resistance wall formed on the front of the pipe groove ( The structure of the axial multistage turbine, characterized in that the propulsion action is made by hitting the 221 and the fluid is rotated in the opposite direction (222) is ejected to hit the resistance projection wall 206 formed inside the housing to obtain a reaction force.
  13. 청구항 1 또는 4 에 있어서,The method according to claim 1 or 4,
    상기 노즐의 각도는 유체가 부딪치는 날개의 면과 상하좌우 직각이 되도록 형성하고, 하나 또는 복수의 노즐이 복층으로 이루어지고 평행하게 이루어지도록 끝면을 따라 연장하여 복층구조를 형성하고, 유체의 분산을 막기 위해 끝면의 외곽이 커버가 씌워짐을 특징으로 하는 축류형 다단 터빈의 구조.The angle of the nozzle is formed so as to be perpendicular to the surface of the blade collided with the fluid, and to extend along the end surface so that one or a plurality of nozzles are made of multiple layers and parallel to form a multi-layer structure, the dispersion of the fluid A structure of an axial multistage turbine, characterized in that the outer surface of the end surface is covered to prevent it.
  14. 청구항 1 또는 4 에 있어서,The method according to claim 1 or 4,
    상기 유체를 분출하는 노즐 끝면(231)은 회전블레이드끝면(232)와 평행하게 이루어지도록 형성함을 특징으로 하는 축류형 다단 터빈의 구조.The nozzle end surface 231 for ejecting the fluid is formed to be parallel to the rotating blade end surface (232) structure of the axial flow multistage turbine.
PCT/KR2014/009054 2013-09-27 2014-09-26 Structure of axial-type multistage turbine WO2015046970A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2016116404A RU2016116404A (en) 2013-09-27 2014-09-26 AXIAL TYPE MULTI-STAGE TURBINE DESIGN
US15/024,917 US20160237821A1 (en) 2013-09-27 2014-09-26 Structure of axial-type multistage turbine
EP14849067.5A EP3051060A1 (en) 2013-09-27 2014-09-26 Structure of axial-type multistage turbine
CN201480057246.0A CN105658910A (en) 2013-09-27 2014-09-26 Structure of axial-type multistage turbine
JP2016545690A JP2016535205A (en) 2013-09-27 2014-09-26 Structure of an axial-flow multistage turbine.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130115511A KR101418345B1 (en) 2013-09-27 2013-09-27 A structure of turbine with impeller for an axis line
KR10-2013-0115511 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015046970A1 true WO2015046970A1 (en) 2015-04-02

Family

ID=51741887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009054 WO2015046970A1 (en) 2013-09-27 2014-09-26 Structure of axial-type multistage turbine

Country Status (7)

Country Link
US (1) US20160237821A1 (en)
EP (1) EP3051060A1 (en)
JP (1) JP2016535205A (en)
KR (1) KR101418345B1 (en)
CN (1) CN105658910A (en)
RU (1) RU2016116404A (en)
WO (1) WO2015046970A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101667386B1 (en) * 2014-12-24 2016-10-19 포스코에너지 주식회사 Steam turbine improved axial performance
KR101578360B1 (en) 2015-02-12 2015-12-28 최혁선 A axial flow type turbine
KR101644924B1 (en) * 2015-07-10 2016-08-03 포스코에너지 주식회사 Reaction-type steam turbine
JP2018534478A (en) * 2015-12-15 2018-11-22 ポスコ エナジー カンパニー リミテッド Reaction type steam turbine
US20180195392A1 (en) * 2017-01-11 2018-07-12 General Electric Company Steam turbine system with impulse stage having plurality of nozzle groups
JP6318332B1 (en) * 2017-08-18 2018-04-25 村山 修 A power generator that generates power without generating CO2 from an existing coal-fired thermal power generator.
KR102078465B1 (en) * 2018-08-16 2020-02-17 동해기연(주) Turbines having a constant water volume structure
RU2728310C2 (en) * 2018-11-21 2020-07-29 Владимир Викторович Михайлов Radial turbine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063811A (en) * 2004-08-24 2006-03-09 Nidec Shibaura Corp Multistage turbo fan
KR20070092841A (en) * 2006-03-09 2007-09-14 피티엘중공업 주식회사 Hybrid jet turbine generation system having the synergy of increasing thermal efficiency
JP2009019516A (en) * 2007-07-10 2009-01-29 Hitachi Ltd Axial-flow turbine and low-pressure steam turbine using the same
KR20100105103A (en) 2009-03-20 2010-09-29 최혁선 Turbine with multistage inpeller for an axis line
KR101184877B1 (en) 2011-04-05 2012-09-26 최혁선 A improved structure of turbine with impeller for an axis line

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1349487A (en) * 1917-05-31 1920-08-10 Erastus S Bennett Turbine-engine
US1676806A (en) * 1925-06-01 1928-07-10 William D Smalley Turbine
US4027995A (en) * 1975-07-14 1977-06-07 Berry Clyde F Steam track turbine
US4150918A (en) * 1976-01-21 1979-04-24 Hollymatic Corporation Pressure gas engine
US4421454A (en) * 1979-09-27 1983-12-20 Solar Turbines Incorporated Turbines
JP3353259B2 (en) * 1994-01-25 2002-12-03 謙三 星野 Turbin
US6354800B1 (en) * 2000-03-31 2002-03-12 Lance G. Hays Dual pressure Euler turbine
JP5592933B2 (en) * 2009-03-18 2014-09-17 エイチケー タービン カンパニー,リミテッド Reaction turbine
US8678749B2 (en) * 2010-01-05 2014-03-25 Takeo S. Saitoh Centrifugal reverse flow disk turbine and method to obtain rotational power thereby
DE102010012583A1 (en) * 2010-03-23 2011-09-29 Alstom Technology Ltd. Method for operating a steam turbine with a pulse rotor and steam turbine for carrying out the method
CN201671659U (en) * 2010-03-26 2010-12-15 西安陕鼓动力股份有限公司 Steam-jet type turbine
US20110311347A1 (en) * 2010-06-16 2011-12-22 John Marsden Flash Steam Turbine
WO2013051818A1 (en) * 2011-10-04 2013-04-11 Choi Hyuk Sun Axial turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063811A (en) * 2004-08-24 2006-03-09 Nidec Shibaura Corp Multistage turbo fan
KR20070092841A (en) * 2006-03-09 2007-09-14 피티엘중공업 주식회사 Hybrid jet turbine generation system having the synergy of increasing thermal efficiency
JP2009019516A (en) * 2007-07-10 2009-01-29 Hitachi Ltd Axial-flow turbine and low-pressure steam turbine using the same
KR20100105103A (en) 2009-03-20 2010-09-29 최혁선 Turbine with multistage inpeller for an axis line
KR101184877B1 (en) 2011-04-05 2012-09-26 최혁선 A improved structure of turbine with impeller for an axis line

Also Published As

Publication number Publication date
JP2016535205A (en) 2016-11-10
KR101418345B1 (en) 2014-07-10
US20160237821A1 (en) 2016-08-18
RU2016116404A (en) 2017-11-01
EP3051060A1 (en) 2016-08-03
CN105658910A (en) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2015046970A1 (en) Structure of axial-type multistage turbine
CA1159264A (en) Multi-stage, wet steam turbine
CN110635622B (en) Wind generating set, electromagnetic device and iron core heat exchange device
CN1322226C (en) Gas turbine and method for discharging gas from gas turbine
KR101184877B1 (en) A improved structure of turbine with impeller for an axis line
CN108204281A (en) Gs-oil separator, oil and gas separating system and aero-engine
WO2003002872A1 (en) Ducted wind turbine
WO2006066310A1 (en) Omni-directional wind turbine
WO2016117742A1 (en) Floating-type humidifier
WO2010107146A1 (en) Reaction-type turbine
WO2013051818A1 (en) Axial turbine
WO2011102638A2 (en) Rotational force generating device and a centripetally acting type of water turbine using the same
WO2016129949A1 (en) Axial flow turbine
WO2012118288A1 (en) Gas turbine
WO2016167456A1 (en) Volute casing and rotary machine having same
CN110630454B (en) Motor and heat exchange device of shaft system thereof and wind generating set
WO2021025524A1 (en) Impulse turbine and turbine device
WO2015046704A1 (en) Rotation body of nozzle for reaction-type steam turbine
KR102054004B1 (en) axial flow turbine
CN102196961B (en) High efficiency turbine
WO2011081307A2 (en) Air turbine assembly for a wind-collecting tower wind power generator
WO2013058500A1 (en) Reaction-type turbine
CN211174383U (en) High-power device for upwards jetting airflow
CN209960487U (en) Nozzle combining self-rotation swirl groove and swirl chamber
KR200363205Y1 (en) Water turbin rotatory device for generating electricity

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016545690

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15024917

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014849067

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014849067

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016116404

Country of ref document: RU

Kind code of ref document: A