WO2015046826A1 - Inverse-wavelength dispersible compound, and inverse-wavelength dispersible composition and optically anisotropic body comprising same - Google Patents

Inverse-wavelength dispersible compound, and inverse-wavelength dispersible composition and optically anisotropic body comprising same Download PDF

Info

Publication number
WO2015046826A1
WO2015046826A1 PCT/KR2014/008751 KR2014008751W WO2015046826A1 WO 2015046826 A1 WO2015046826 A1 WO 2015046826A1 KR 2014008751 W KR2014008751 W KR 2014008751W WO 2015046826 A1 WO2015046826 A1 WO 2015046826A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
synthesis
group
carbon atoms
independently
Prior art date
Application number
PCT/KR2014/008751
Other languages
French (fr)
Korean (ko)
Inventor
이민형
전성호
서경창
김정현
홍미라
장형빈
문정욱
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140124468A external-priority patent/KR101623929B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/913,589 priority Critical patent/US9850196B2/en
Priority to JP2016518722A priority patent/JP6397004B2/en
Priority to EP14847655.9A priority patent/EP3053909B1/en
Priority to CN201480054163.6A priority patent/CN105593204B/en
Publication of WO2015046826A1 publication Critical patent/WO2015046826A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/84Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
    • C07C69/86Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring with esterified hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/94Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of polycyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of six-membered aromatic rings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • Reverse wavelength dispersible compound, reverse wavelength dispersible composition and optically anisotropic body comprising same
  • the present invention relates to a reverse wavelength dispersible compound, a reverse wavelength dispersible composition and an optically anisotropic body comprising the same.
  • LCDs liquid crystal displays
  • LEDs organic light emitting diodes
  • OLED displays are gaining attention as the displays of the future because they are superior to LCDs in various fields such as thickness, power consumption, speed of response, viewing angle, and can be used for various purposes such as transparent and flexible products.
  • OLEDs have a short lifespan and a low luminous efficiency, and thus are still limited in size.
  • OLEDs are difficult to realize perfect black due to interference of external light.
  • the present invention and the reverse wavelength dispersion composition comprising the compound It is for providing an optically anisotropic body.
  • A is a carbocyclic or heterocyclic group having 5 to 8 carbon atoms, or an aromatic or heteroaromatic group having 6 to 20 carbon atoms;
  • E 1 , E 2 , D 1 , and D 2 are each independently a single bond or a divalent linking group
  • R 1 and R 2 are each independently —H or alkyl having 1 to 12 carbon atoms;
  • n 1 to 5;
  • each repeating unit of two or more repeating-(D 1 -G 1 )-or-(G 2 -D 2 )- may be the same or different from each other;
  • G 1 and G 2 are each independently a non-aromatic carbocyclic or heterocyclic group having 5 to 8 carbon atoms, or an aromatic or heteroaromatic group having 6 to 20 carbon atoms, wherein at least one of G 1 and G 2 increases A carbocyclic or heterocyclic group, and any one of the hydrogens contained in the carbocyclic or heterocyclic group is substituted with a group represented by the following Chemical Formula 2:
  • is an integer of 1 to 10, and if ⁇ is 2 or more, each repeating unit of-(Q 1 )-repeated two or more times may be the same or different from each other,
  • ⁇ ( ⁇ ) means specific birefringence at wavelength ⁇ .
  • ⁇ ( ⁇ ) means specific birefringence at wavelength ⁇ .
  • the meaning of “comprising” embodies a particular characteristic, region, integer step, operation, element, or component, and excludes the addition of other specific characteristics, region, integer, step, operation, element, or component. It is not.
  • the "reverse wavelength dispersible compound” itself shows liquid crystallinity and reverse wavelength dispersibility, or does not itself show liquid crystallinity, but is polymerized or crosslinked with any liquid crystal compound so that the liquid crystal compound is reverse wavelength. It means a compound that can exhibit dispersibility. Specifically, after orienting a composition containing the reverse wavelength dispersible compound or the reverse wavelength dispersible compound and a liquid crystal compound (for example, a semi-ungsogenic mesogenic compound having liquid crystallinity) in a liquid crystal state, the state When irradiating active energy rays, such as an ultraviolet-ray, can obtain the superposition
  • active energy rays such as an ultraviolet-ray
  • the polymer obtained in this way has anisotropy of physical properties such as refractive index, dielectric constant, magnetization rate, elastic modulus, thermal expansion rate, and the like, so that it can be applied as an optical anisotropic body such as a retardation plate, a polarizing plate polarizing prism, a brightness enhancing film, and an optical fiber coating material. .
  • phase difference value in the wavelength ⁇ of transmitted light passing through the optical film, and may be represented by ⁇ ( ⁇ ).
  • mesogenic group means a group having the ability to induce liquid crystal phase behavior.
  • spacer groups are known to those of ordinary skill in the art, for example in C. Tschierske, G. Pelzl, S. Diele, Angew. Chem. 2004, 116, 6340-6368.
  • the spacer group refers to a flexible organic group connecting the mesogenic group and the polymerizable group.
  • “carbyl groups” comprise one or more carbon atoms (eg, —C ⁇ C—) free of any non-carbon atoms, or optionally one or more non-carbon atoms (eg, N, O, S, P At least one carbon atom in combination with Si Carbonyl), meaning any monovalent or polyvalent organic radical moiety.
  • “Hydrocarbyl group” means a carbyl group that additionally contains one or more H atoms and optionally one or more heteroatoms (eg, N, 0, S, P, Si).
  • Dispersible compounds are pore:
  • A is a carbocyclic or heterocyclic group having 5 to 8 carbon atoms, or an aromatic or heteroaromatic group having 6 to 20 carbon atoms;
  • E 1 , E 2 , D 1 , and D 2 are each independently a single bond or a divalent linking group
  • R 1 and R 2 are each independently -H or alkyl having 1 to 12 carbon atoms;
  • n are each independently an integer from 1 to 5; M or n is
  • each repeating unit of two or more repeating-(D 1 -G 1 )-or-(G 2 -D 2 )- may be the same or different from each other;
  • G 1 and G 2 are each independently a non-aromatic carbocyclic or heterocyclic group having 5 to 8 carbon atoms, or an aromatic or heteroaromatic group having 6 to 20 carbon atoms, wherein at least one of G 1 and G 2 is A carbocyclic or heterocyclic group, and any one of the hydrogens contained in the carbocyclic or heterocyclic group is substituted with a group represented by the following Chemical Formula 2:
  • p is an integer of 1 to 10, and if p is 2 or more, each repeating unit of-(Q 1 )-which is repeated two or more times may be the same or different from each other,
  • the compounds having the structure represented by the formula (1) surprisingly exhibits liquid crystallinity and reverse wavelength dispersion, or do not show liquid crystallinity by themselves but are polymerized with arbitrary liquid crystal compounds or It was confirmed that crosslinking can exhibit reverse wavelength dispersion, thereby providing an optically anisotropic body having a thin thickness and excellent optical properties.
  • the compound represented by the formula (1) is a mesogenic group (particularly, L 1-
  • the bridging group HQ 1 ] P -B 1 ) of the conjugated structure having high polarization at any one of (D 1 -G 1 ) m -group and-(G 2 -D 2 ) n -L 2 group) is in the vertical direction. It has a T-shaped structure connected in (axial direction).
  • the reverse wavelength dispersible compound has an asymmetric structure in the form of ⁇ . Accordingly, the compound of Formula 1 may exhibit stable reverse wavelength dispersion by the bridging group having a high polarization vertically and excellent orientation by the asymmetric mesogenic group in the T-shape.
  • A is a carbocyclic or heterocyclic group having 5 to 8 carbon atoms, or an aromatic or heteroaromatic group having 6 to 20 carbon atoms.
  • the carbocyclic or heterocyclic group in A is a 5-membered ring (e.g. cyclopentane, tetrahydrofuran, tetrahydrothiofuran, pyridine; 6-membered ring (e.g. cyclonucleic acid, silinane, cyclonuxene, Tetrahydropyran, tetrahydrothiopyran, 1,3-dioxane, 1,3-dithiane, piperidine); 7-membered ring (e.g. cycloheptane); or fused group (e.g.
  • the aromatic group in A is benzene, biphenylene, triphenylene, naphthalene, anthracene, binaphthylene, phenanthrene, pyrene, dihydropyrene, chrysene, perylene, tetracene, pentacene, benzpyrene Fluorene, indene, indenofluorene, spirobifluorene, and the like.
  • the heteroaromatic groups in A, G 1 and G 2 are 5-membered rings (e.g., blood, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, tetrazole). , Furan, thiophene, selenophene, oxazole, isoxazole, ⁇ thiazole, ⁇ thiazole, ⁇ oxadiazole, 2,4-oxadiazole,
  • Y 1 and Y 2 are each independently —H, —F, —CI, —CN, or —R 1 , and R 1 and R 2 are each independently —H or alkyl having 1 to 12 carbon atoms. . '
  • L 1 and L 2 are alkyl having 1 to 20 carbon atoms, oxaalkyl having 1 to 20 carbon atoms, alkoxy having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, alkynyl having 2 to 20 carbon atoms, and having 1 to C carbon atoms.
  • S p is -Xp----
  • Y 1 and Y 2 are each independently —H, —F, —CI, —CN, or —R 1 , and R 1 and R 2 are each independently —H or alkyl having 1 to 12 carbon atoms. .
  • m and n may have the same or different values, and may each independently be an integer of 1 to 5.
  • each repeating unit of-(D 1 -G 1 )-or-(G 2 -D 2 )-that is repeated two or more times may be the same or different from each other.
  • G 1 or G 1 included in each repeating unit of-(D 1 -G 1 )-(D 1 -G 1 )- is the same as or different from each other in the aforementioned range.
  • G 1 and G 2 are each independently a non-aromatic carbocyclic or heterocyclic group having 5 to 8 carbon atoms, or an aromatic or heteroaromatic group having 6 to 20 carbon atoms, wherein the G 1 and At least one of G 2 is the carbocyclic or heterocyclic group.
  • the carbocyclic group, heterocyclic group, aromatic group, and heteroaromatic group in G 1 and G 2 are replaced with the definitions for A.
  • At least one of the G 1 and G 2 is the carbocyclic or heterocyclic group, any one hydrogen contained in the carbocyclic or heterocyclic group is represented by the formula It is substituted with a group represented by:
  • p is an integer of 1 to 10, and if p is 2 or more, each repeating unit of-(Q 1 )-which is repeated two or more times may be the same or different from each other,
  • -[Q 1 ] p - may be composed of at least one subgroup Q 1 selected from the group consisting of a pi-conjugated linear group, an aromatic group and a heteroaromatic group.
  • -[Q 1 ] p - may be composed of one or more subgroups Q 1 selected from the group having a coupling angle of 120 degrees or more, preferably 180 degrees.
  • p is an integer of 1 to 10, and if p is 2 or more, each repeating unit of-(Q 1 )-repeated two or more times may be the same or different from each other.
  • such subgroup Q 1 is a divalent aromatic group connected to an adjacent group in the para-position (eg 1,4-phenylene, naphthalene-2,6-diyl, indan-2,6-diyl, Thieno [3,2-b] thiophene-2,5-diyl) or a group comprising sp-splended carbon atoms (eg, -C ⁇ C-).
  • Y 1 and ⁇ 2 are each independently —H, —F, —CI, —CN, or —R 1
  • R 1 and R 2 are each independently —H or alkyl having 1 to 12 carbon atoms. .
  • -[Q 1 ] P - is selected from the group consisting of -C ⁇ C-, substituted or unsubstituted 1,4-phenylene, and substituted or unsubstituted 9H-fluorene-2,7-diyl. It may include one or more groups. At this time, the H atom in the 9-position in the fluorene group may be replaced with a carbyl or hydrocarbyl group.
  • P 2 as defined in Formula 1, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon
  • R ⁇ 1> and R ⁇ 2> is respectively independently -H or C1-C12 alkyl.
  • B 1 is selected from the group consisting of a pi-conjugated linear group, an aromatic group and a heteroaromatic group such that the bridging group of Formula 2 has a conjugated structure among the above-described exemplary groups. It may be preferable to be the above group (for example, the group referred to above Q 1 ).
  • the reverse wavelength dispersible compound of Chemical Formula 1 compounds represented by RD-01 to RD-42 according to embodiments to be described later may be exemplified.
  • the reverse wavelength dispersible compound is not limited to the compounds of RD-01 to RD-42, and may be implemented in various combinations in the above-described range.
  • reverse wavelength dispersion compound represented by Chemical Formula 1 may be synthesized by applying known reactions, and a more detailed synthesis method will be described through examples. II. Reverse wavelength dispersion composition
  • a reverse wavelength dispersion composition comprising the compound represented by the formula (1).
  • the reverse wavelength dispersible composition may be a composition in which the compound represented by Chemical Formula 1 is dissolved in a solvent together with a polymerization initiator.
  • the composition represented by Formula 1 may be included alone or in combination of two or more kinds.
  • the polymerization initiator radical polymerization initiators conventional in the art to which the present invention pertains may be used.
  • the content of the polymerization initiator may be determined in a conventional range capable of efficiently eliciting the polymerization reaction of the reverse wavelength dispersible compound.
  • the polymerization initiator may comprise from 10 parts by weight 0/0, preferably 0.5 to 8 parts by weight 0 /, based on the total weight of the composition.
  • the solvent is benzene, toluene, xylene, mesitylene, n-butylbenzene, diethylbenzene, tetralin, methoxybenzene, 1,2-dimethoxybenzene, ethylene glycol dimethyl Ether, diethylene glycol dimethyl ether, acetone, Methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclonucleanone, ethyl acetate, methyl lactate, ethyl lactate,. Ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate,
  • a boiling point of 60 to 250 ° C. is advantageous for forming a uniform film thickness at the time of application of the composition, and is advantageous for minimizing the residual of the solvent and the deterioration of the orientation.
  • the reverse wavelength dispersion composition may optionally further include a sensitizer such as xanthone, thioxanthone, chlorothioxanthone, phenothiazine, anthracene, diphenylanthracene, and the like.
  • a sensitizer such as xanthone, thioxanthone, chlorothioxanthone, phenothiazine, anthracene, diphenylanthracene, and the like.
  • the reverse wavelength dispersion composition may optionally contain quaternary ammonium salts, alkylamine oxides, polyamine derivatives, polyoxyethylene-polyoxypropylene condensates, sodium lauryl sulfate, ammonium lauryl sulfate, and alkyl-substituted aromatic sulfonic acids.
  • Surfactants such as salts, alkyl phosphates and perfluoroalkyl sulfonates; Storage stabilizers such as hydroquinone, hydroquinone monoalkyl ethers, pyrogalls, thiophenols, 2-naphthylamines, and 2-hydroxynaphthalenes; Antioxidants such as 2,6-di-t-butyl-P-cresol and triphenylphosphite; UV absorbers such as salicylic acid ester compounds, benzophenol compounds, benzotriazole compounds, cyanoacrylate compounds, and nickel complex salt compounds may be further included.
  • Storage stabilizers such as hydroquinone, hydroquinone monoalkyl ethers, pyrogalls, thiophenols, 2-naphthylamines, and 2-hydroxynaphthalenes
  • Antioxidants such as 2,6-di-t-butyl-P-cresol and triphenylphosphite
  • the reverse wavelength dispersion composition may further include particulate matter for selectively adjusting optical anisotropy or improving the strength of the polymerized film as necessary.
  • the particulate matter is hacklite, montmorillonite, kallinite, ZnO, TiO 2 , Ce0 2 , Al 2 0 3 , Fe 2 O 3 , Zr0 2 , MgF 2 , SiO 2 , SrCO 3 , Ba (OH) 2 , Ca
  • Inorganic particulate matters such as (OH) 2 , Ga (OH) 3 , AI (OH) 3 , Mg (OH) 2 , Zr (OH) 4 ;
  • Organic particulate matter such as carbon nanotubes, fullerenes, dendrimers, polyvinyl alcohols, polymethacrylates, and polyimides.
  • the reverse wavelength dispersion composition may further include any liquid crystal compound.
  • the arbitrary liquid crystal compound may be polymerized or not.
  • the liquid crystal compound which has an ethylenically unsaturated bond, the compound which has an optical active group, a rod-like liquid crystal compound, etc. are mentioned.
  • the liquid crystal compound of any will be heunhap in appropriate amounts depending on their structure, the preferably the compound is the total compound weight of the 20 parts by weight 0/0 or more of the formula (1), or 50 parts by weight 0/0 or more It may be advantageous to be included in terms of achieving the above object.
  • an optically anisotropic body formed using the reverse wavelength dispersion composition.
  • the optically anisotropic substance may exhibit reverse wavelength dispersibility satisfying the following Formulas I and II.
  • the optically anisotropic body applies the above-mentioned reverse wavelength dispersible composition to a support substrate, and the reverse wavelength dispersible composition It is possible to obtain by desolventing the liquid crystal compound in the oriented state, and then irradiating and polymerizing the energy ray.
  • the support substrate is not particularly limited, but a preferred example is a glass plate, polyethylene terephthalate film, polyimide film, polyamide film, polymethyl methacrylate film, polystyrene film, polyvinyl chloride film, polytetrafluoroethylene film , Cellulose-based film, silicon film and the like can be used. And, a polyimide alignment film or on the support substrate What gave polyvinyl alcohol the alignment film can be used preferably.
  • a known method may be used. For example, a coating method, a spin coating method, a bar coating method, a dip coating method, a spray coating method, or the like may be applied. And, the thickness of the film formed by the composition may vary depending on the use, preferably may be selected in the range of 0.01 to 100.
  • the method of performing a pre-orientation process on a support substrate is mentioned as a non-limiting example.
  • a method of performing an orientation process the method of forming the liquid crystal aligning side containing various polyimide oriented films or polyvinyl alcohol-type oriented films on a support substrate, and performing a process, such as rubbing, is mentioned.
  • the method of applying a magnetic field, an electric field, etc. to the composition on a support substrate is mentioned.
  • the method of polymerizing the reverse wavelength dispersion composition may be a known method using light, heat, or electromagnetic waves.
  • the optically anisotropic body may be used in a retardation film, a polarizing element, an antireflection film, a selective emission film, a viewing angle compensation film, or the like of a liquid crystal display or an OLED display.
  • a retardation film a polarizing element
  • an antireflection film a selective emission film
  • a viewing angle compensation film or the like of a liquid crystal display or an OLED display.
  • interference by external light can be minimized, thereby enabling a more perfect black.
  • the reverse wavelength dispersion compound according to the present invention can provide a stronger and more stable reverse wavelength dispersion, thereby providing an optically anisotropic body having excellent optical properties.
  • FIG. 1 a to. 10 illustrates a scheme for synthesizing a reverse wavelength dispersion compound according to one embodiment of the present invention, respectively.
  • Compound RD-01 was synthesized according to the scheme shown in FIGS. 1a to 1c.
  • K 2 CO 3 potassium carbonate
  • Compound RD-02 was synthesized according to the scheme shown in FIGS. 1 a to 1 c.
  • Example 55 except that about 55 g of Compound 11-2 ((1 r, 4r) -4-(((6- (acryloyloxy) hexyl) oxy) carbonyl) cyclohexanecarboxylic acid) was used instead of Compound 11-1.
  • About 100 g of Compound 12-2 was obtained by the same method as the synthesis of Compound 12-1.
  • Compound 15-2 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 14-2 was used instead of Compound 14-1.
  • Compound RD-03 was prepared according to the scheme shown in FIGS. 1a to 1c.
  • Example 1 except that about 60 g of Compound 11-3 ((1 r, 4r) -4-(((8- (acr loyloxy) octyl) oxy) carbonyl) cyclohexanecarboxylic acid) was used instead of Compound 11-1. About 100 g of Compound 12-3 was obtained by the same method as the synthesis of Compound 12-1.
  • Compound 15-3 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 14-3 was used instead of Compound 14-1.
  • Compound RD-03 was obtained by the same method as the synthesis of Compound RD-1 of Example 1, except that Compound 15-3 was used instead of Compound 15-1.
  • Compound RD-04 was synthesized according to the scheme shown in FIGS. 2a and 2b.
  • Compound RD-05 was synthesized according to the scheme shown in FIGS. 2a and 2b.
  • Compound 24-2 was obtained by the same method as the synthesis of Compound 24-1 of Example 4, except that Compound 23-2 was used instead of Compound 23-1.
  • Compound RD-05 was obtained by the same method as the synthesis of Compound RD-04 of Example 4, except that Compound 24-2 was used instead of Compound 24-1.
  • Compound RD-06 was synthesized according to the scheme shown in FIGS. 2a and 2b.
  • Compound RD-06 was obtained by the same method as the synthesis of Compound RD-04 of Example 4, except that Compound 24-3 was used instead of Compound 24-1.
  • Compound RD-08 was synthesized according to the scheme shown in FIGS. 3a and 3b.
  • Compound 28-2 was obtained by the same method as the synthesis of Compound 28-1 of Example 7, except that ((hexyloxy) carbonyl) cyclohexanecarboxylic acid] was used. .
  • Compound RD-09 was synthesized according to the scheme shown in FIGS. 3a and 3b.
  • Compound 28-3 was obtained by the same method as the compound phase of Compound 28-1 of Example 7, except that ((octyloxy) carbonyl) cyclohexanecarboxylic acid] was used.
  • Compound RD-10 was synthesized according to the scheme shown in FIGS. 3a and 3b.
  • Compound RD-10 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 33-4 was used instead of Compound 1 5-1.
  • Compound RD-11 was synthesized according to the scheme shown in FIGS. 3a and 3b.
  • Compound RD-11 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 33-5 was used instead of Compound 15-1.
  • Compound RD-12 was synthesized according to the scheme shown in FIGS. 3a and 3b.
  • Compound 32-6 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that (acryloyloxy) hexyl) oxy) carbonyl) cyclohexanecarboxylic acid was used.
  • Compound RD-12 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 33-6 was used instead of Compound 15-1.
  • Compound RD-13 was synthesized according to the scheme shown in FIGS. 3a and 3b.
  • Compound 33-7 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 32-7 was used instead of Compound 14-1.
  • Compound RD-13 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 33-7 was used instead of Compound 15-1.
  • About 80 g of Compound 32-9 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that octyl) oxy) carbonyl) cyclohexanecarboxylic acid was used.
  • Compound RD-15 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 33-9 was used instead of Compound 15-1.
  • Compound RD-16 was synthesized according to the scheme shown in FIGS. 4a and 4b.
  • Compound RD-16 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 40-1 was used instead of Compound 15-1.
  • Compound RD-17 was synthesized according to the scheme shown in FIGS. 4a and 4b.
  • compound 39-2 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except.
  • Compound 40-2 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 39-2 was used instead of Compound 14-1 and Compound 35 was used instead of Compound 6. .
  • Compound RD-17 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 40-2 was used instead of Compound 15-1.
  • Compound RD-18 was synthesized according to the scheme shown in FIGS. 4a and 4b.
  • Compound 39-3 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that (acryloyloxy) octyl) oxy) carbonyl) cyclohexanecarboxylic acid] was used.
  • Compound 40-3 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 39-3 was used instead of Compound 14-1 and Compound 35 was used instead of Compound 6. .
  • Compound RD-18 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 40-3 was used instead of Compound 15-1.
  • Compound RD-20 was synthesized according to the scheme shown in FIGS. 5a and 5b.
  • Compound RD-20 was obtained by the same method as the synthesis of Compound RD-04 of Example 4, except that Compound 41-2 was used instead of Compound 24-1.
  • Compound RD-21 was synthesized according to the scheme shown in FIGS. 5a and 5b.
  • Compound RD-23 was synthesized according to the scheme shown in FIGS. 6a and 6b.
  • Compound RD-23 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 42-2 was used instead of Compound 15-1.
  • Compound RD-26 was synthesized according to the scheme shown in FIGS. 6a and 6b.
  • Compound RD-26 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 42-5 was used instead of Compound 15-1.
  • Compound RD-27 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 42-6 was used instead of Compound 15-1.
  • Compound RD-28 was synthesized according to the scheme shown in FIGS. 6a and 6b.
  • Compound RD-29 was synthesized according to the scheme shown in FIGS. 6a and 6b.
  • Compound RD-30 was synthesized according to the scheme shown in FIGS. 6a and 6b.
  • Compound RD-30 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 42-9 was used instead of Compound 15-1.
  • Compound RD-31 was synthesized according to the scheme shown in FIGS. 7a and 7b.
  • Compound RD-32 was synthesized according to the scheme shown in FIGS. 7a and 7b.
  • Compound 44-2 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that (methacryloyloxy) hexyl) oxy) carbonyl) cyclohexanecarboxylic acid was used.
  • Compound RD-32 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 45-2 was used instead of Compound 15-1.
  • Compound RD-33 was synthesized according to the scheme shown in FIGS. 7a and 7b.
  • Compound 44-3 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that (methacryloyloxy) octyl) oxy) carbonyl) cyclohexanecarboxylic acid was used.
  • Compound RD-33 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 45-3 was used instead of Compound 15-1.
  • Compound RD-34 was synthesized according to the scheme shown in FIGS. 8a and 8b.
  • Compound RD-34 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 48-1 was used instead of Compound 15-1.
  • Compound RD-35 was synthesized according to the scheme shown in FIGS. 8a and 8b.
  • Compound 47-2 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that (cinnamoyloxy) hexyl) oxy) carbonyl) cyclohexanecarboxylic acid] was used.
  • Example 1 except that compound 47-2 was used instead of compound 14-1.
  • Compound RD-35 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 48-2 was used instead of Compound 15-1.
  • Compound RD-36 was synthesized according to the scheme shown in FIGS. 8a and 8b.
  • Compound RD-36 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 48-3 was used instead of Compound 15-1.
  • Compound RD-37 was synthesized according to the scheme shown in FIGS. 9a and 9b.
  • Compound 50 was obtained by the same method as the synthesis of Compound 8 of Example 1, except that Compound 49 (6-hydroxy-2-naphthoic acid) was used instead of Compound 7.
  • Compound 53-1 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that Compound 52 was used instead of Compound 10.
  • Compound RD-39 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 54-3 was used instead of Compound 15-1.
  • Compound RD-40 was synthesized according to the scheme shown in FIG. 10. That is, the same as the synthesis of Compound 15-1 of Example 1, except that Compound 39-1 according to Example 16 was used instead of Compound 14-1, and about 10 g of iodobenzene was used instead of Compound 6. By method, about 30 g of compound RD-40 was obtained.
  • RD-18 compound About 100 parts by weight of the RD-18 compound according to Example 18, about 12: 5 parts by weight of the mesogenic compound represented by Formula (a), about 37.5 parts by weight of the mesogenic compound represented by Formula (b), and initiator (Irgacure 907 , Ciba-Geigy) about 12.5 parts by weight, antioxidant (Irganox 1076, Ciba-Geigy) about 0.27 parts by weight, fluorine-based surfactant (FC-171, 3M) about 3.33 parts by weight, and about 1000 parts by weight of In combination, a composition for an optical device (solid content of about 21% by weight) was prepared.
  • a retardation film was prepared by irradiating non-polarized UV light having a high pressure mercury lamp of 200 mW / citf as a light source to fix the alignment state of the liquid crystal.
  • the quantitative retardation value of the prepared retardation film was measured using Axoscan (manufactured by Axomatrix Co., Ltd.). At this time, the thickness was measured independently, and the retardation value (Arvd) was obtained from the obtained value.
  • Arrd (450 nm) An d (550 nm) and Arvd (650 nm) were measured to be 103, 1 10, and 1 14, respectively. Therefore, An (450 nm) / An (550 nm) value is 0.94, An (650 nm) / An (550 nm) value is 1.0, it was confirmed that the conditions according to the formulas I and I I above.
  • composition is coated with a norbornene-based photo-alignment material, by the coating method
  • a retardation film was prepared by a method of fixing non-polarized UV light having a high pressure mercury lamp of 200 mW / cuf as a light source to the film to fix the alignment state of the liquid crystal.
  • the quantitative retardation value of the prepared retardation film was measured using Axoscan (manufactured by Axomatrix Co., Ltd.). At this time, the thickness was measured independently, and the retardation value (Arvd) was obtained from the obtained value. As a result, zovd (450 nm), An d (550 nm), and An'd (650 nm) were measured to be 115, 120, and 124, respectively. Therefore, it was confirmed that the value of ⁇ (450 ⁇ ) / ⁇ (550 ⁇ ) was 0.96, and the value of An (650nm) / An (550nm) was 1.03, which satisfies the conditions according to the above formulas I and II.
  • the composition was coated on a TAC film coated with a norbornene-based photo-alignment material by a roll coating method, and then dried at about 80 ° C. for 2 minutes to align the liquid crystal molecules. Thereafter, a retardation film was produced by irradiating non-polarized UV light having a high pressure mercury lamp of 200 mW / cuf as a light source to fix the alignment state of the liquid crystal.
  • the quantitative retardation value of the prepared retardation film was measured using Axoscan (manufactured by Axomatrix Co., Ltd.). At this time, the thickness was measured independently, and the retardation value (Aird) was obtained from the obtained value. As a result, An'd (450 nm), An d (550 nm), and An d (650 nm) were measured to be 1 10, 1 13, and "5. Therefore, the value of An (450 nm) / An (550 nm) was 0.97 and An (650 nm) / An (550 nm) value of 1.0, which was confirmed to satisfy the conditions according to the formula (I) and formula (II).
  • the composition was coated on a TAC film coated with a norbornene-based photoalignment material by a roll coating method, and then dried at about 80 ° C. for 2 minutes to form a liquid crystal.
  • the molecules were allowed to be oriented. Thereafter, a retardation film was produced by irradiating non-polarized UV light having a high pressure mercury lamp of 200 mW / cuf as a light source to fix the alignment state of the liquid crystal.
  • the quantitative retardation value of the prepared retardation film was measured using Axoscan (manufactured by Axomatrix Co., Ltd.). At this time, the thickness was measured independently, and the retardation value (Arvd) was obtained from the obtained value. As a result, An d (450 nm), An d (550 nm), and An d (650 nm) were measured to be 125, 126, and 127, respectively. Thus, the ⁇ (450 ⁇ ) / ⁇ (550 ⁇ ) values are 0.99 and the An (650 nm) / An (550 nm) values are
  • composition by the coating method, the norbornene-based photo-alignment material is coated
  • a retardation film was produced by irradiating non-polarized UV light having a high pressure mercury lamp of 200 mW / cuf as a light source to fix the alignment state of the liquid crystal.
  • the quantitative retardation value of the prepared retardation film was measured using Axoscan (manufactured by Axomatrix Co., Ltd.). At this time, the thickness was measured independently, and the retardation value (An.d) was obtained from the obtained value. As a result, ⁇ ⁇ ⁇ (450 ⁇ ), An d (550 nm), and An d (650 nm) were measured at 225, 210, and 203, respectively. Therefore, the An (450nm) / An (550nm) value is 1.07, and the An (650nm) / An (550nm) value is 0.96, and the positive wavelength that does not satisfy the conditions according to Equation & Equation It was confirmed to exhibit dispersion.

Abstract

The present invention relates to an inverse-wavelength dispersible compound, and an inverse-wavelength dispersible composition and an optically anisotropic body comprising the same. The inverse-wavelength dispersible compound according to the present invention is capable of providing stronger and more stable inverse-wavelength dispersion, thereby being capable of providing an optically anisotropic body having superior optical properties.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
역 파장 분산성 화합물, 이를 포함하는 역 파장 분산성 조성물 및 광학 이방체  Reverse wavelength dispersible compound, reverse wavelength dispersible composition and optically anisotropic body comprising same
【기술분야】  Technical Field
본 발명은 역 파장 분산성 화합물, 이를 포함하는 역 파장 분산성 조성물 및 광학 이방체에 관한 것이다.  The present invention relates to a reverse wavelength dispersible compound, a reverse wavelength dispersible composition and an optically anisotropic body comprising the same.
【배경기술】  Background Art
디스플레이 분야에서 LCD (Liquid crystal display)의 점유율이 상승하면서, 차세대 디스플레이로 거론되고 있는 ᄋ LED(Organic light emitting diodes)에 대한 관심이 점차 높아지고 있다.  As the share of liquid crystal displays (LCDs) in the display field rises, interest in organic light emitting diodes (LEDs), which are considered as next-generation displays, is gradually increasing.
OLED 방식의 디스플레이는 두께, 소비 전력, 웅답 속도, 시야각 등 여러 부문에서 LCD 보다 탁월하고, 투명 제품과 플렉시블 제품 등 다양한 웅용이 가능해 미래의 디스플레이로 각광을 받고 있다.  OLED displays are gaining attention as the displays of the future because they are superior to LCDs in various fields such as thickness, power consumption, speed of response, viewing angle, and can be used for various purposes such as transparent and flexible products.
다만, OLED는 수명이 비교적 짧고 발광 효율이 낮아 대형화에 아직 한계가 있으며, 특히 외부광의 간섭으로 인해 완벽한 검정색을 구현하기 어려운 단점이 있다.  However, OLEDs have a short lifespan and a low luminous efficiency, and thus are still limited in size. In particular, OLEDs are difficult to realize perfect black due to interference of external light.
보다 완벽한 검정색의 구현을 위하여, OLED 방식의 디스플레이에 두 장의 편광 필름을 사용하여 외부광에 의한 간섭을 최소화하는 방법이 제안되었다. 두 장의 편광 필름을 사용하는 방법은 비교적 간단하지만, 디스플레이의 선명도에 영향을 미칠 수 있고, 제조 비용 '이 상승하게 되는 문제점이 있다. In order to achieve more perfect black color, a method of minimizing interference by external light using two polarizing films in an OLED display has been proposed. Method using two sheets of polarizer film is relatively simple, and can affect the sharpness of the display, there is a problem in the production cost, which increases.
그에 따라, 상기 편광 필름 대신 역 파장 분산성 필름을 사용하는 방법 등 외부광에 의한 간섭을 최소화하는 다양한 방법들이 제안되고 있으나, 아직 그 효과는 미흡한 실정이다.  Accordingly, various methods for minimizing interference by external light, such as a method of using a reverse wavelength dispersion film instead of the polarizing film, have been proposed, but the effect is still insufficient.
【발명의 내용】 ᅳ  [Contents of invention] ᅳ
【해결하려는 과제】  [Problem to solve]
본 발명은 보다 강하고 안정적인 역 파장 분산의 제공을 가능케 하는 역 파장 분산성 화합물을 제공하기 위한 것이다.  It is an object of the present invention to provide a reverse wavelength dispersible compound which makes it possible to provide a stronger and more stable reverse wavelength dispersion.
또한, 본 발명은 상기 화합물을 포함하는 역 파장 분산성 조성물과 광학 이방체를 제공하기 위한 것이다. In addition, the present invention and the reverse wavelength dispersion composition comprising the compound It is for providing an optically anisotropic body.
【과제의 해결 수단】  [Measures of problem]
본 발명에 따르면, 하기 화학식 1로 표시되는 역 파장 분산성 화합물이 제공된다:  According to the present invention, there is provided a reverse wavelength dispersible compound represented by the following general formula (1):
[화학식 1]
Figure imgf000004_0001
[Formula 1]
Figure imgf000004_0001
상기 화학식 1에서,  In Chemical Formula 1,
A는 탄소수 5 내지 8의 비방향족인 카보사이클릭 또는 해테로사이클릭 그룹, 또는 탄소수 6 내지 20의 방향족 또는 헤테로 방향족 그룹이고;  A is a carbocyclic or heterocyclic group having 5 to 8 carbon atoms, or an aromatic or heteroaromatic group having 6 to 20 carbon atoms;
E1, E2, D1, 및 D2는 각각 독립적으로 단일 결합 또는 2가의 연결기이고; E 1 , E 2 , D 1 , and D 2 are each independently a single bond or a divalent linking group;
L1 및 L2는 각각 독립적으로 -H, -F, -CI, -Br, -I, -CN, -NC, -NCO, -OCN, -SCN, -C(=0)NR1R2, -C(=0)R , -O-C(=0)R1 , -NH2, -SH, -SR1, -SO3H, -S02R1, - OH, -NO2, -CF3l -SF3, 치환 또는 비치환된 실릴, 치환 또는 비치환된 탄소수L 1 and L 2 are each independently —H, —F, —CI, —Br, —I, —CN, —NC, —NCO, —OCN, —SCN, —C (= 0) NR 1 R 2 , -C (= 0) R, -OC (= 0) R 1, -NH 2, -SH, -SR 1, -SO 3 H, -S0 2 R 1, - OH, -NO 2, -CF 3l - SF 3 , substituted or unsubstituted silyl, substituted or unsubstituted carbon number
1 내지 40의 카빌 또는 하이드로카빌, 또는 -Sp-P로서, 상기 L1 및 L2 중 적어도 하나는 -Sp-P이고, 상기 P는 중합성 그룹이고, 상기 sp는 스페이서 그룹 또는 단일 결합이며, 상기 R1 및 R2는 각각 독립적으로 -H 또는 탄소수 1 내지 12의 알킬이고; 1 to 40 carbyls or hydrocarbyls, or -S p -P, wherein at least one of L 1 and L 2 is -Sp-P, P is a polymerizable group, and s p is a spacer group or a single bond R 1 and R 2 are each independently —H or alkyl having 1 to 12 carbon atoms;
m 및 π은 각각 독립적으로 1 내지 5의 정수로서; 상기 m 또는 n이 m and π each independently represent an integer of 1 to 5; M or n is
2 이상이면, 둘 이상 반복되는 -(D1-G1)- 또는 -(G2-D2)- 의 각 반복 단위는 서로 동일하거나 다른 것으로 될 수 있으며; If two or more, each repeating unit of two or more repeating-(D 1 -G 1 )-or-(G 2 -D 2 )-may be the same or different from each other;
G1 및 G2는 각각 독립적으로 탄소수 5 내지 8의 비방향족인 카보사이클릭 또는 헤테로사이클릭 그룹, 또는 탄소수 6 내지 20의 방향족 또는 헤테로 방향족 그룹으로서, 상기 G1 및 G2 증 적어도 하나는 상기 카보사이클릭 또는 헤테로사이클릭 그룹이고, 상기 카보사이클릭 또는 헤테로사이클릭 그룹에 포함된 어느 하나의 수소는 하기 화학식 2로 표시되는 그룹으로 치환되어 있다: G 1 and G 2 are each independently a non-aromatic carbocyclic or heterocyclic group having 5 to 8 carbon atoms, or an aromatic or heteroaromatic group having 6 to 20 carbon atoms, wherein at least one of G 1 and G 2 increases A carbocyclic or heterocyclic group, and any one of the hydrogens contained in the carbocyclic or heterocyclic group is substituted with a group represented by the following Chemical Formula 2:
[화학식 2]
Figure imgf000005_0001
[Formula 2]
Figure imgf000005_0001
상기 화학식 2에서,  In Chemical Formula 2,
ρ는 1 내지 10의 정수로서 , ρ가 2 이상이면 둘 이상 반복되는 -(Q1)- 의 각 반복단위는 서로 동일하거나 다른 것으로 될 수 있고, ρ is an integer of 1 to 10, and if ρ is 2 or more, each repeating unit of-(Q 1 )-repeated two or more times may be the same or different from each other,
Q1은 각각 독립적으로 -C≡C-, -CY1=CY2-, 및 탄소수 6 내지 20의 치환 또는 비치환된 방향족 그룹 또는 헤테로방향족 그룹으로 이루어진 군에서 선택된 2가 그룹으로서, 상기 Y1 및 Y2는 각각 독립적으로 -H, -F, -CI -CN, 또는 -R1이고, Q 1 is each independently a divalent group selected from the group consisting of -C≡C-, -CY 1 = CY 2- , and a substituted or unsubstituted aromatic group or heteroaromatic group having 6 to 20 carbon atoms, wherein Y 1 And Y 2 are each independently —H, —F, —CI —CN, or —R 1 ,
B1은 -H, -F, -CI, -Br, -I, -CN, -NC, -NCO, -OCN, -SCN, -C(=O)NR1R2, - C(=O)R1, -NH2, -SH, -SR1, -SO3H, -SO2R1, -OH, -NO2, -CF3, -SF3, 중합성 그룹 (상기 화학식 1에서 정의된 P), 탄소수 2 내지 6의 알케닐기, 탄소수 2 내지 6의 알키닐기, 탄소수 2 내지 4의 아실기, 말단에 탄소수 2 내지 4의 아실기가 결합된 탄소수 2 내지 6의 알키닐렌기, 탄소수 1 내지 5의 알코을기 , 또는 탄소수 1 내지 12의 알콕시기이고, 상기 R1 및 R2는 각각 독립적으로 -H 또는 탄소수 1 내지 12의 알킬이다. B 1 is -H, -F, -CI, -Br, -I, -CN, -NC, -NCO, -OCN, -SCN, -C (= O) NR 1 R 2 ,-C (= O) R 1 , -NH 2 , -SH, -SR 1 , -SO 3 H, -SO 2 R 1 , -OH, -NO 2 , -CF 3 , -SF 3 , a polymerizable group (as defined in Formula 1 above) P), a C2-C6 alkenyl group, a C2-C6 alkynyl group, a C2-C4 acyl group, the C2-C6 alkynylene group which the C2-C4 acyl group couple | bonded with the terminal, C1-C6 An alcohol group of 5 or an alkoxy group having 1 to 12 carbon atoms, and R 1 and R 2 are each independently -H or alkyl having 1 to 12 carbon atoms.
또한, 본 발명에 따르면, 상기 역 파장 분산성 화합물을 포함하는 조성물로부터 수득되며, 하기 식 | 및 식 ᅵᅵ를 만족하는 광학 이방체가 제공된다:  Furthermore, according to the present invention, it is obtained from a composition comprising the reverse wavelength dispersion compound, and the following formula | And an optically anisotropic body satisfying the formula
(식 I)  (I)
A ri(450nm) An(550nm) ( 1.0 A ri (450nm) An (550nm ) (1 .0
(식 II)  (Equation II)
An(650nm/An(550nrn) 〉 1.0 An (650nm / An (550nrn) > 1 .0
상기 식 ᅵ 및 식 ᅵᅵ에서, Δ η( λ )는 파장 λ에서의 비복굴절율을 의미한다. 이하, 발명의 구현 예들에 따른 역 파장 분산성 화합물 및 이를 포함하는 조성물로부터 수득되는 광학 이방체에 대하여 설명하기로 한다. 그에 앞서, 본 명세서 전체에서 명시적인 언급이 없는 한, 전문용어는 단지 특정 구현예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 그리고, 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. In the above formulas (I) and (I), Δη (λ) means specific birefringence at wavelength λ. Hereinafter, an optically anisotropic body obtained from a reverse wavelength dispersible compound and a composition including the same according to embodiments of the present invention will be described. Prior to this, the terminology is for the purpose of referring only to particular embodiments, and unless it is stated to the contrary in the specification, it is intended to limit the invention. Not intended As used herein, the singular forms “a,” “an” and “the” include plural forms as well, unless the phrases clearly indicate the opposite.
또한ᅳ 명세서에서 사용되는 "포함 "의 의미는 특정 특성, 영역, 정수 단계, 동작, 요소 또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 또는 성분의 부가를 제외시키는 것은 아니다.  Also, as used herein, the meaning of “comprising” embodies a particular characteristic, region, integer step, operation, element, or component, and excludes the addition of other specific characteristics, region, integer, step, operation, element, or component. It is not.
한편, "역 파장 분산성 화합물 "은 그 자체로 액정성과 역 파장 분산성을 나타내거나, 또는 그 자체로 액정성을 나타내진 않지만 임의의 액정성 화합물과 중합 또는 가교되어 상기 액정성 화합물이 역 파장 분산성을 나타낼 수 있도록 하는 화합물을 의미한다. 구체적으로, 상기 역 파장 분산성 화합물, 또는 상기 역 파장 분산성 화합물 및 액정성 화합물 (예를 들어, 액정성을 가지는 반웅성 메소제닉 화합물)을 함유하는 조성물을 액정 상태로 배향시킨 후, 그 상태에서 자외선 등의 활성 에너지선을 조사하면, 액정 분자의 배향 구조를 고정화한 중합물을 얻을 수 있다. 이렇게 얻어진 중합물은 굴절율, 유전율, 자화율, 탄성율, 열팽창율 등의 물리적 성질의 이방성을 가지고 있으므로, 예를 들어 위상차판, 편광판 편광 프리즘, 휘도 향상 필름, 광 섬유의 피복재 등의 광학 이방체로서 응용 가능하다.  On the other hand, the "reverse wavelength dispersible compound" itself shows liquid crystallinity and reverse wavelength dispersibility, or does not itself show liquid crystallinity, but is polymerized or crosslinked with any liquid crystal compound so that the liquid crystal compound is reverse wavelength. It means a compound that can exhibit dispersibility. Specifically, after orienting a composition containing the reverse wavelength dispersible compound or the reverse wavelength dispersible compound and a liquid crystal compound (for example, a semi-ungsogenic mesogenic compound having liquid crystallinity) in a liquid crystal state, the state When irradiating active energy rays, such as an ultraviolet-ray, can obtain the superposition | polymerization which fixed the orientation structure of liquid crystal molecule. The polymer obtained in this way has anisotropy of physical properties such as refractive index, dielectric constant, magnetization rate, elastic modulus, thermal expansion rate, and the like, so that it can be applied as an optical anisotropic body such as a retardation plate, a polarizing plate polarizing prism, a brightness enhancing film, and an optical fiber coating material. .
그리고, "비복굴절율" (specific birefringent index)이라 함은 광학 필름을 투과하는 투과광의 파장 (λ)에 있어서의 위상차 값을 의미하는 것으로서, Δη(λ)로 표시될 수 있다.  In addition, "specific birefringent index" means a phase difference value in the wavelength λ of transmitted light passing through the optical film, and may be represented by Δη (λ).
또한, "메소제닉 그룹"은 액정상 거동을 유도할 수 있는 능력을 갖는 그룹을 의미한다. - 그리고, "스페이서 그룹"은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공지되어 있고, 예를 들어 문헌 [C. Tschierske, G. Pelzl, S. Diele, Angew. Chem. 2004, 116, 6340-6368]에 기술되어 있다. 상기 스페이서 그룹은 메소제닉 그룹과 중합성 그룹을 연결하는 가요성 유기 그룹 (flexibe organic group)을 지칭한다.  In addition, "mesogenic group" means a group having the ability to induce liquid crystal phase behavior. And "spacer groups" are known to those of ordinary skill in the art, for example in C. Tschierske, G. Pelzl, S. Diele, Angew. Chem. 2004, 116, 6340-6368. The spacer group refers to a flexible organic group connecting the mesogenic group and the polymerizable group.
그리고, "카빌 그룹"은 임의의 비 -탄소 원자가 없는 하나 이상의 탄소 원자 (예컨데, -C≡C-)를 포함하거나, 또는 선택적으로 하나 이상의 비 -탄소 원자 (예컨데, N, ᄋ, S, P, Si)와 조합된 하나 이상의 탄소 원자 (예컨데, 카보닐)를 포함하는 임의의 1가 또는 다가 유기 라디칼 잔기를 의미한다. "하이드로카빌 그룹"은 추가적으로 하나 이상의 H 원자를 함유하고, 선택적으로 하나 이상의 헤테로원자 (예컨데, N, 0, S, P, Si)를 함유하는 카빌 그룹을 의미한다. And “carbyl groups” comprise one or more carbon atoms (eg, —C≡C—) free of any non-carbon atoms, or optionally one or more non-carbon atoms (eg, N, O, S, P At least one carbon atom in combination with Si Carbonyl), meaning any monovalent or polyvalent organic radical moiety. "Hydrocarbyl group" means a carbyl group that additionally contains one or more H atoms and optionally one or more heteroatoms (eg, N, 0, S, P, Si).
I. 역 파장분산성 화합물 I. Reverse wavelength dispersion compound
발명의 일 구현 예에 따르면, 하기 화학식 03 According to an embodiment of the invention, the formula
Figure imgf000007_0001
분산성 화합물이 체공된다:
Figure imgf000007_0001
Dispersible compounds are pore:
[
Figure imgf000007_0002
[
Figure imgf000007_0002
상기 화학식 1에서,  In Chemical Formula 1,
A는 탄소수 5 내지 8의 비방향족인 카보사이클릭 또는 헤테로사이클릭 그룹, 또는 탄소수 6 내지 20의 방향족 또는 헤테로 방향족 그룹이고;  A is a carbocyclic or heterocyclic group having 5 to 8 carbon atoms, or an aromatic or heteroaromatic group having 6 to 20 carbon atoms;
E1, E2, D1, 및 D2는 각각 독립적으로 단일 결합 또는 2가의 연결기이고; E 1 , E 2 , D 1 , and D 2 are each independently a single bond or a divalent linking group;
및 L2는 각각 독립적으로 -H, -F, -CI, -Br, -I, -CN, -NC, -NCO, -OCNᅳ -SCN, -C(=O)NR1R2, -C(=O)R1, -O-C(=O)R1, -NH2, -SH, -SR1, -SO3H, -S02R1, - OH, -NO2, -CF3, -SF3, 치환 또는 비치환된 실릴, 치환 또는 비치환된 탄소수And L 2 are each independently -H, -F, -CI, -Br, -I, -CN, -NC, -NCO, -OCN ᅳ -SCN, -C (= O) NR 1 R 2 , -C (= O) R 1 , -OC (= O) R 1 , -NH 2 , -SH, -SR 1 , -SO 3 H, -S0 2 R 1 ,-OH, -NO 2 , -CF 3 ,- SF 3 , substituted or unsubstituted silyl, substituted or unsubstituted carbon number
1 내지 40의 카빌 또는 하이드로카빌, 또는 -Sp-P로서, 상기 L1 및 L2 중 적어도 하나는 -Sp-P이고, 상기 P는 중합성 그룹이고, 상기 sp는 스페이서 그룹 또는 단일 결합이며, 상기 R1 및 R2는 각각 독립적으로 -H 또는 탄소수 1 내지 12의 알킬이고; 1 to 40 carbyls or hydrocarbyls, or -Sp-P, wherein at least one of L 1 and L 2 is -S p -P, P is a polymerizable group, and s p is a spacer group or a single bond R 1 and R 2 are each independently -H or alkyl having 1 to 12 carbon atoms;
m 및 n은 각각 독립적으로 1 내지 5의 정수로서; 상기 m 또는 n이 m and n are each independently an integer from 1 to 5; M or n is
2 이상이면, 둘 이상 반복되는 -(D1-G1)- 또는 -(G2-D2)- 의 각 반복 단위는 서로 동일하거나 다른 것으로 될 수 있으며; If two or more, each repeating unit of two or more repeating-(D 1 -G 1 )-or-(G 2 -D 2 )-may be the same or different from each other;
G1 및 G2는 각각 독립적으로 탄소수 5 내지 8의 비방향족인 카보사이클릭 또는 헤테로사이클릭 그룹, 또는 탄소수 6 내지 20의 방향족 또는 헤테로 방향족 그룹으로서, 상기 G1 및 G2 중 적어도 하나는 상기 카보사이클릭 또는 헤테로사이클릭 그룹이고, 상기 카보사이클릭 또는 헤테로사이클릭 그룹에 포함된 어느 하나의 수소는 하기 화학식 2로 표시되는 그룹으로 치환되어 있다: G 1 and G 2 are each independently a non-aromatic carbocyclic or heterocyclic group having 5 to 8 carbon atoms, or an aromatic or heteroaromatic group having 6 to 20 carbon atoms, wherein at least one of G 1 and G 2 is A carbocyclic or heterocyclic group, and any one of the hydrogens contained in the carbocyclic or heterocyclic group is substituted with a group represented by the following Chemical Formula 2:
[
Figure imgf000008_0001
[
Figure imgf000008_0001
상기 화학식 2에서,  In Chemical Formula 2,
p는 1 내지 10의 정수로서, p가 2 이상이면 둘 이상 반복되는 -(Q1)- 의 각 반복단위는 서로 동일하거나 다른 것으로 될 수 있고, p is an integer of 1 to 10, and if p is 2 or more, each repeating unit of-(Q 1 )-which is repeated two or more times may be the same or different from each other,
Q1은 각각 독립적으로 -C≡C-, -CY1=CY2-, 및 탄소수 6 내지 20의 치환 또는 비치환된 방향족 그룹 또는 헤테로방향족 그룹으로 이루어진 군에서 선택된 2가 그룹으로서, 상기 Y1 및 Y2는 각각 독립적으로 -H, -F, -CI -CN, 또는 -R1이고, Q 1 is independently a divalent group selected from the group consisting of -C≡C-, -CY 1 = CY 2- , and a substituted or unsubstituted aromatic group or heteroaromatic group having 6 to 20 carbon atoms, wherein Y 1 And Y 2 are each independently -H, -F, -CI -CN, or -R 1 ,
B1은 -H, -F, -Gl, -Br, -I, -CN, -NC, -NCO, -OCN, -SCN, -C(=O)NR1R2, - C(=0)R1, -NH2, -SH, -SR1, -SO3H, -SO2R1, -OH, -NO2, -CF3, -SF3, 중합성 그룹 (상기 화학식 1에서 정의된 P), 탄소수 2 내지 6의 알케닐기, 탄소수 2 내지 6의 알키닐기, 탄소수 2 내지 4의 아실기, 말단에 탄소수 2 내지 4의 아실기가 결합된 탄소수 2 내지 6의 알키닐렌기, 탄소수 1 내지 5의 알코올기, 또는 탄소수 1 내지 12의 알콕시기이고, 상기 R1 및 R2는 각각 독립적으로 -H 또는 탄소수 1 내지 12의 알킬이다. B 1 is -H, -F, -Gl, -Br, -I, -CN, -NC, -NCO, -OCN, -SCN, -C (= O) NR 1 R 2 ,-C (= 0) R 1 , -NH 2 , -SH, -SR 1 , -SO 3 H, -SO 2 R 1 , -OH, -NO 2 , -CF 3 , -SF 3 , a polymerizable group (as defined in Formula 1 above) P), a C2-C6 alkenyl group, a C2-C6 alkynyl group, a C2-C4 acyl group, the C2-C6 alkynylene group which the C2-C4 acyl group couple | bonded with the terminal, C1-C6 An alcohol group of 5 or an alkoxy group having 1 to 12 carbon atoms, and R 1 and R 2 are each independently -H or alkyl having 1 to 12 carbon atoms.
본 발명자들의 계속적인 실험 결과, 놀랍게도 상기 화학식 1과 같은 구조를 가지는 화합물은 그 자체로 액정성과 역 파장 분산성을 나타내거나, 또는 그 자체로 액정성을 나타내진 않지만 임의위 액정성 화합물과 중합 또는 가교되어 역 파장 분산성을 나타낼 수 있어, 두께가 얇으면서도 광학적 물성이 우수한 광학 이방체의 제공을 가능케 함을 확인하였다.  As a result of the continuous experiments of the present inventors, the compounds having the structure represented by the formula (1) surprisingly exhibits liquid crystallinity and reverse wavelength dispersion, or do not show liquid crystallinity by themselves but are polymerized with arbitrary liquid crystal compounds or It was confirmed that crosslinking can exhibit reverse wavelength dispersion, thereby providing an optically anisotropic body having a thin thickness and excellent optical properties.
특히, 상기 화학식 1로 표시되는 화합물은 메소제닉 그룹 (특히, L1-In particular, the compound represented by the formula (1) is a mesogenic group (particularly, L 1-
(D1-G1)m- 그룹 및 -(G2-D2)n-L2 그룹)의 어느 한 곳에 분극율이 높은 공액 구조의 브릿징 그룹 HQ1]P-B1)이 수직 방향 (축 방향)으로 연결된 T자 형태의 구조를 갖는다. 즉, 두 개의 막대형 메소제닉 화합물이 브릿징 그룹에 의해 대칭으로 연결된 H자 형태의 대칭형 화합물과 달리, 발명의 구현 예에 따른 역 파장 분산성 화합물은 τ자 형태의 비대칭 구조를 갖는다. 그에 따라, 상기 화학식 1의 화합물은, 수직으로 높은 분극율을 갖는 브릿징 그룹에 의해 안정적인 역 파장 분산성과, T자 형태의 비대칭 메소제닉 그룹에 의한 우수한 배향성을 동시에 나타낼 수 있다. The bridging group HQ 1 ] P -B 1 ) of the conjugated structure having high polarization at any one of (D 1 -G 1 ) m -group and-(G 2 -D 2 ) n -L 2 group) is in the vertical direction. It has a T-shaped structure connected in (axial direction). In other words, unlike the H-shaped symmetric compound in which two rod-shaped mesogenic compounds are symmetrically connected by a bridging group, The reverse wavelength dispersible compound has an asymmetric structure in the form of τ. Accordingly, the compound of Formula 1 may exhibit stable reverse wavelength dispersion by the bridging group having a high polarization vertically and excellent orientation by the asymmetric mesogenic group in the T-shape.
상기 화학식 1에서 A는 탄소수 5 내지 8의 비방향족인 카보사이클릭 또는 헤테로사이클릭 그룹, 또는 탄소수 6 내지 20의 방향족 또는 헤테로 방향족 그룹이다.  In Formula 1, A is a carbocyclic or heterocyclic group having 5 to 8 carbon atoms, or an aromatic or heteroaromatic group having 6 to 20 carbon atoms.
상기 A에서 상기 카보사이클릭 또는 헤테로사이클릭 그룹은 5원 고리 (예컨대, 사이클로펜탄, 테트라하이드로퓨란, 테트라하이드로티오퓨란, 피를리딘; 6원 고리 (예컨대, 사이클로핵산, 실리난, 사이클로핵센, 테트라하이드로피란, 테트라하이드로티오피란, 1 ,3-다이옥산, 1 ,3-다이티안, 피페리딘); 7원 고리 (예컨대, 사이클로헵탄); 또는 융합된 그룹 (예컨대, 테트라하이드로나프탈렌, 데카하이드로나프탈렌, 인단, 바이사이클로 [1 .1.1 ]펜탄 -1 ,3-다이일, 바이사이클로 [2.2.2]옥탄 -1 ,4다이일, 스파이로 [3.3]헵탄 -2,6-다이일, 옥타하이드로 -4,7-메타노 -인단 -2,5-다이일) 등일 수 있다.  The carbocyclic or heterocyclic group in A is a 5-membered ring (e.g. cyclopentane, tetrahydrofuran, tetrahydrothiofuran, pyridine; 6-membered ring (e.g. cyclonucleic acid, silinane, cyclonuxene, Tetrahydropyran, tetrahydrothiopyran, 1,3-dioxane, 1,3-dithiane, piperidine); 7-membered ring (e.g. cycloheptane); or fused group (e.g. tetrahydronaphthalene, decahydro Naphthalene, indane, bicyclo [1 .1.1] pentane-1,3-diyl, bicyclo [2.2.2] octane-1,4-diyl, spiro [3.3] heptane-2,6-diyl, octa Hydro-4,7-methano-indane-2,5-diyl) and the like.
상기 A에서 방향족 그룹은 벤젠, 바이페닐렌, 트라이페닐렌, 나프탈렌, 안트라센, 바이나프틸렌, 페난트렌, 파이렌, 다이하이드로파이렌, 크리센, 페릴렌, 테트라센, 펜타센, 벤즈파이렌, 플루오렌, 인덴, 인데노플루오렌, 스파이로바이플루오렌 등일 수 있다. 그리고, 상기 A, G1 및 G2에서 헤테로방향족 그룹은 5원 고리 (예컨대, 피를, 피라졸, 이미다졸, 1 ,2,3- 트라이아졸, 1,2,4-트라이아졸, 테트라졸, 퓨란, 티오펜, 셀레노펜, 옥사졸, 아이속사졸, ^티아졸, ^티아졸, ^시옥사다이아졸, 2,4-옥사다이아졸,The aromatic group in A is benzene, biphenylene, triphenylene, naphthalene, anthracene, binaphthylene, phenanthrene, pyrene, dihydropyrene, chrysene, perylene, tetracene, pentacene, benzpyrene Fluorene, indene, indenofluorene, spirobifluorene, and the like. In addition, the heteroaromatic groups in A, G 1 and G 2 are 5-membered rings (e.g., blood, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, tetrazole). , Furan, thiophene, selenophene, oxazole, isoxazole, ^ thiazole, ^ thiazole, ^ oxadiazole, 2,4-oxadiazole,
1 ,2,5-옥사다이아졸, 1,3,4-옥사다이아졸, 1 ,2,3-티아다이아졸, 1 ,2,4- 티아다이아졸, 1,2,5-티아다이아졸, 1ᅳ 3,4-티아다이아졸); 6원 고리 (예컨대, 피리딘, 피리다진, 피리미딘, 피라진, 1 ,3,5-트라이아진, 1 ,2,4-트라이아진, 1 ,2,3-트라이아진, 1,2,4,5-테트라진, 1,2,3,4-테트라진, 1 ,2,3,5-테트라전); 또는 융합된 그룹 (예컨대, 카바졸, 인돌, 아이소인돌, 인돌리진, 인다졸, 밴즈이미다졸, 벤조트라이아졸, 푸린, 나프트이미다졸, 페난트르이미다졸, 피리드이미다졸, 피라진이미다졸, 퀴녹살린이미다졸, 벤즈옥사졸, 2,2,22,2222,,2,2J 308HCH9SHCHSCCHCC08FCSSCHFFF- - - -- -- -- - -- - - 1,2,5-oxadiazole, 1,3,4-oxadiazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1 ′ 3,4-thiadiazole); 6-membered rings (e.g. pyridine, pyridazine, pyrimidine, pyrazine, 1,3,5-triazine, 1,2,4-triazine, 1,2,3-triazine, 1,2,4,5 -Tetrazine, 1,2,3,4-tetrazin, 1,2,3,5-tetrajeon); Or fused groups (e.g. carbazole, indole, isoindole, indolizine, indazole, vanzimidazole, benzotriazole, purine, naftimidazole, phenanthrimidazole, pyridimidazole, pyrazineimidazole Quinoxalineimidazole, benzoxazole, 2,2,22 , 2222 ,, 2,2 J 308HCH9SHCHSCCHCC08FCSSCHFFF-----------
Figure imgf000010_0001
Figure imgf000010_0001
(CH2)3-, -(CH2)4-, -CF2CH2-, -CF2CH2-, -CH=CH-, -CY^CY -, -CH=N-, -N=CH-, -N=N-, -CH=CR1-, -C≡C-, -CH=CH-COO-, -OCO-CH=CH-, 또는 -CR1R2- 일 수 있다. 여기서, 상기 Y1 및 Y2는 각각 독립적으로 -H, -F, -CI, -CN, 또는 - R1이고, 상기 R1 및 R2는 각각 독립적으로 -H 또는 탄소수 1 내지 12의 알킬이다. 그리고, 상기 화학식 1에서 L1 및 L2는 메소제닉 그룹의 말단으로서, 각각 독립적으로 -H, -F, -CI, -Br, -I, -CN, -NC, -NCO, -OCN, -SCN, - C(=0)NR R2, -C(=O)R1, -O-C(=O)R1, -NH2, -SH, -SR1, -SO3H, -S02R , -OH, - NO2l -CF3, -SF3, 치환 또는 비치환된 실릴, 치환 또는 비치환된 탄소수 1 내지 40의 카빌 또는 하이드로카빌, 또는 -Sp-P 이고, 상기 L1 및 L2 중 적어도 하나는 -Sp-P 이다. 여기서, 상기 P는 중합성 그룹이고, 상기 Sp는 스페이서 그룹 또는 단일 결합이며 상기 R1 및 R2는 각각 독립적으로 -H 또는 탄소수 1 내지 12의 알킬이다. (CH 2 ) 3 -,-(CH 2 ) 4- , -CF 2 CH 2- , -CF2CH2-, -CH = CH-, -CY ^ CY-, -CH = N-, -N = CH-, -N = N-, -CH = CR 1- , -C≡C-, -CH = CH-COO-, -OCO-CH = CH-, or -CR 1 R 2- . Wherein Y 1 and Y 2 are each independently —H, —F, —CI, —CN, or —R 1 , and R 1 and R 2 are each independently —H or alkyl having 1 to 12 carbon atoms. . In Formula 1, L 1 and L 2 are each end of a mesogenic group, each independently -H, -F, -CI, -Br, -I, -CN, -NC, -NCO, -OCN,- SCN,-C (= 0) NR R 2 , -C (= O) R 1 , -OC (= O) R 1 , -NH 2 , -SH, -SR 1 , -SO 3 H, -S0 2 R , -OH, -NO 2l -CF 3 , -SF 3 , substituted or unsubstituted silyl, substituted or unsubstituted Caviar or hydrocarbyl having 1 to 40 carbon atoms, or -S p -P, wherein L 1 and L At least one of two is -Sp-P. Wherein P is a polymerizable group, S p is a spacer group or a single bond, and R 1 and R 2 are each independently —H or alkyl having 1 to 12 carbon atoms.
비제한적인 예로, 상기 L1 및 L2는 F, CI, Br, I, 또는 CN으로 일치환 또는 다치환되거나 치환되지 않은 탄소수 1 내지 25의 직쇄, 분지쇄 또는 환형 알킬기로부터 선택될 수 있고; 이때 하나 이상의 인접하지 않은 CH2 그룹은 각각 독립적으로 -ᄋ-, -S-, -NH-, -NR1-, SiR1R2-, -CO-, -COO-, -OCO-, - OCO-Ο-, -S-CO-, -CO-S-, -SO2-, -CO-NR1-, -NR1-CO-, -NR1-CO-NR1-, - CY1=CY2-, 또는 -C≡C -로 대체될 수 있다. 여기서, 상기 Y1 및 Y2는 각각 독립적으로 -H, -F, -CI, -CN, 또는 -R1이고, 상기 R1 및 R2는 각각 독립적으로 -H 또는 탄소수 1 내지 12의 알킬이다. ' By way of non-limiting example, L 1 and L 2 may be selected from linear, branched or cyclic alkyl groups having 1 to 25 carbon atoms which are mono- or polysubstituted or unsubstituted with F, CI, Br, I, or CN; Wherein at least one non-adjacent CH 2 group is each independently-ᄋ-, -S-, -NH-, -NR 1- , SiR 1 R 2- , -CO-, -COO-, -OCO-,-OCO -Ο-, -S-CO-, -CO-S-, -SO 2- , -CO-NR 1- , -NR 1 -CO-, -NR 1 -CO-NR 1 -,-CY 1 = CY 2- , or -C≡C-can be replaced. Wherein Y 1 and Y 2 are each independently —H, —F, —CI, —CN, or —R 1 , and R 1 and R 2 are each independently —H or alkyl having 1 to 12 carbon atoms. . '
또한, 상기 L1 및 L2는 탄소수 1 내지 20의 알킬, 탄소수 1 내지 20의 옥사알킬, 탄소수 1 내지 20의 알콕시, 탄소수 2 내지 20의 알켄일, 탄소수 2 내지 20의 알킨일, 탄소수 1 내지 20의 실릴, 탄소수 1 내지 20의 에스터, 탄소수 1 내지 20의 아미노, 및 탄소수 1 내지 20의 플루오로알킬로부터 선택될 수 있다. Further, L 1 and L 2 are alkyl having 1 to 20 carbon atoms, oxaalkyl having 1 to 20 carbon atoms, alkoxy having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, alkynyl having 2 to 20 carbon atoms, and having 1 to C carbon atoms. 20 silyl, ester having 1 to 20 carbon atoms, amino having 1 to 20 carbon atoms, and fluoroalkyl having 1 to 20 carbon atoms.
또한, 상기 L1 및 L2의 일 예인 -Sp-P에서, 상기 P는 중합성기로서, 바람직하게는, CH2=CZ1-COO-, CH2=CZ1-CO-, CH2=CZ2-(O)a-, CH3-CH=CH-O-, (CH2=CH)2CH-OCO-, (CH2=CH-CH2)2CH-OCO-, (CH2=CH)2CH-O-, (CH2=CH- CH2)2N -, (CH2=CH-CH2)2N-CO-, HO-CZ1Z^-, HS-CZ'Z^-, ΗΖΉ-, HO-C -NH-, CH2=CZ1-CO-NH-, CH2=CH-(COO)a-Phe-(0)b-, CH2=CH-(CO)a-Phe-(O)b-, Phe- Also, in -Sp-P which is an example of L 1 and L 2 , P is a polymerizable group, and preferably, CH 2 = CZ 1 -COO-, CH 2 = CZ 1 -CO-, CH 2 = CZ 2 - (O) a -, CH 3 -CH = CH-O-, (CH 2 = CH) 2 CH-OCO-, (CH 2 = CH-CH 2) 2 CH-OCO-, (CH 2 = CH ) 2 CH-O-, (CH 2 = CH- CH 2 ) 2 N-, (CH 2 = CH-CH 2 ) 2 N-CO-, HO-CZ 1 Z ^-, HS-CZ'Z ^-, ΗΖΉ-, HO-C -NH-, CH 2 = CZ 1 -CO-NH-, CH 2 = CH- (COO) a -Phe- (0) b-, CH 2 = CH- (CO) a -Phe- (O) b- , Phe-
CH=CH-, HOOC-, OCN-, Z1Z2Z3Si-
Figure imgf000012_0001
CH = CH-, HOOC-, OCN-, Z 1 Z 2 Z 3 Si-
Figure imgf000012_0001
Figure imgf000012_0002
'은 각각 독립적으로 -H, -F, -CI, -CN, -CF3, 페닐, 또는 탄소수 1 내지 5의 알킬이고, 상기 Phe는 -F, -CI, -Br, -I, -CN, -NC, -NCO, -OCN, -SCN, -C(=0)NR R2, - C(=O)R1, -NH2, -SH, -SR1, -SO3H, -S02R1, -OH, -NO2, -CF3, 또는 -SF3에 의해 치환 또는 비치환된 1 ,4-페닐렌이고, 상기 a 및 b는 각각 독립적으로 0 또는 1이다. 그리고, 상기 L1 및 L2의 일 예인 -Sp-P에서, 상기 Sp는 -Sp-P가 -X'-
Figure imgf000012_0002
'Are each independently -H, -F, -CI, -CN, -CF 3 , phenyl, or alkyl having 1 to 5 carbon atoms, wherein Phe is -F, -CI, -Br, -I, -CN, -NC, -NCO, -OCN, -SCN, -C (= 0) NR R 2 ,-C (= O) R 1 , -NH 2 , -SH, -SR 1 , -SO 3 H, -S0 2 Or 1,4-phenylene unsubstituted or substituted by R 1 , -OH, -NO 2 , -CF 3 , or -SF 3 , wherein a and b are each independently 0 or 1. And, in -Sp-P which is an example of the L 1 and L 2 , S p is -Xp--
Sp'-P가 되도록 하는 화학식 -X'-Sp'로부터 선택된다. 상기 Sp'는 -F, -CIᅳ -Br, -I, 또는 -CN으로 일치환 또는 다중치환된 탄소수 1 내지 20의 알킬렌이고, 상기 알킬렌에서 하나 이상의 -CH2- 그룹은 -0-, -S-, -NH-, -NR1-, SiR1R2-, - CO-, -COO-, -OCO-, -OCO-O-, -S-CO-, -CO-S-, -NR1-CO-0-, -O-CO-NR1-, - NR1-CO-NR1-, -CH=CH-, 또는 -C≡C-로 대체될 수 있다. 그리고, 상기 X'는 - O-, -S-, -CO-, -COO-, -OCO-, -Ο-COO-, -CO-NR1-, -NR1-CO-, -NR -CO-NR1-, - OCH2-, -CH20-, -SCH2-, -CH2S-, -OCF2-, -CF2O-, -SCF2-, -SF2O-, -CF2CH2-, - CF2CF2-, -CH=N-, -N=CH-, -N=N-, -CH=CR1-, -CY1=CY2-, -C≡C-, -CH=CH- COO-, -OCO-CH=CH-, 또는 단일 결합이다. 여기서, 상기 Y1 및 Y2는 각각 독립적으로 -H, -F, -CI, -CN, 또는 -R1이고, 상기 R1 및 R2는 각각 독립적으로 -H 또는 탄소수 1 내지 12의 알킬이다. 그리고, 상기 화학식 1에서 m 및 n은 서로 같거나 다른 값을 가질 수 있으며, 각각 독립적으로 1 내지 5의 정수일 수 있다. 여기서, 상기 m 또는 n이 2 이상이면, 둘 이상 반복되는 -(D1-G1)- 또는 -(G2-D2)- 의 각 반복 단위는 서로 동일하거나 다른 것으로 될 수 있다. 예를 들어, 상기 m이 2인 경우, -(D1-G1)-(D1-G1)- 의 각 반복 단위에 포함되는 D1 또는 G1은 각각 전술한 범위에서 서로 동일하거나 다른 것으로 될 수 있다. 한편, 상기 화학식 1에서 G1 및 G2는 각각 독립적으로 탄소수 5 내지 8의 비방향족인 카보사이클릭 또는 헤테로사이클릭 그룹, 또는 탄소수 6 내지 20의 방향족 또는 해테로 방향족 그룹으로서, 상기 G1 및 G2 중 적어도 하나는 상기 카보사이클릭 또는 헤테로사이클릭 그룹이다. It is selected from the formula -X'-S p 'to be S p ' -P. S p 'is alkylene having 1 to 20 carbon atoms mono- or polysubstituted with -F, -CI ᅳ -Br, -I, or -CN, wherein at least one -CH 2 -group in the alkylene is -0 -, -S-, -NH-, -NR 1- , SiR 1 R 2 -,-CO-, -COO-, -OCO-, -OCO-O-, -S-CO-, -CO-S- , -NR 1 -CO-0-, -O -CO-NR 1 - can be substituted with, -CH = CH-, or -C≡C- -, - NR 1 -CO- NR 1. And X 'is -O-, -S-, -CO-, -COO-, -OCO-, -Ο-COO-, -CO-NR 1- , -NR 1 -CO-, -NR -CO -NR 1 -,-OCH 2- , -CH 2 0-, -SCH 2- , -CH 2 S-, -OCF 2- , -CF 2 O-, -SCF 2- , -SF 2 O-,- CF 2 CH 2 -,-CF 2 CF 2- , -CH = N-, -N = CH-, -N = N-, -CH = CR 1- , -CY 1 = CY 2- , -C≡C -, -CH = CH-COO-, -OCO-CH = CH-, or a single bond. Wherein Y 1 and Y 2 are each independently —H, —F, —CI, —CN, or —R 1 , and R 1 and R 2 are each independently —H or alkyl having 1 to 12 carbon atoms. . In addition, in Formula 1, m and n may have the same or different values, and may each independently be an integer of 1 to 5. Where m Or when n is 2 or more, each repeating unit of-(D 1 -G 1 )-or-(G 2 -D 2 )-that is repeated two or more times may be the same or different from each other. For example, when m is 2, D 1 or G 1 included in each repeating unit of-(D 1 -G 1 )-(D 1 -G 1 )-is the same as or different from each other in the aforementioned range. Can be. Meanwhile, in Formula 1, G 1 and G 2 are each independently a non-aromatic carbocyclic or heterocyclic group having 5 to 8 carbon atoms, or an aromatic or heteroaromatic group having 6 to 20 carbon atoms, wherein the G 1 and At least one of G 2 is the carbocyclic or heterocyclic group.
상기 G1 및 G2에서 카보사이클릭 그룹, 헤테로사이클릭 그룹, 방향족 그룹, 및 헤테로 방향족 그룹에 대해서는 상기 A에 대한 정의 내용으로 갈음한다. The carbocyclic group, heterocyclic group, aromatic group, and heteroaromatic group in G 1 and G 2 are replaced with the definitions for A.
특히, 발명의 구현 예에 따르면, 상기 G1 및 G2 중 적어도 하나는 상기 카보사이클릭 또는 헤테로사이클릭 그룹으로서, 상기 카보사이클릭 또는 헤테로사이클릭 그룹에 포함된 어느 하나의 수소는 하기 화학식 2로 표시되는 그룹으로 치환되어 있다: In particular, according to an embodiment of the present invention, at least one of the G 1 and G 2 is the carbocyclic or heterocyclic group, any one hydrogen contained in the carbocyclic or heterocyclic group is represented by the formula It is substituted with a group represented by:
[화학식 2]  [Formula 2]
十 Q 十 Q
Figure imgf000013_0001
Figure imgf000013_0001
상기 화학식 2에서,  In Chemical Formula 2,
p는 1 내지 10의 정수로서, p가 2 이상이면 둘 이상 반복되는 -(Q1)- 의 각 반복단위는 서로 동일하거나 다른 것으로 될 수 있고, p is an integer of 1 to 10, and if p is 2 or more, each repeating unit of-(Q 1 )-which is repeated two or more times may be the same or different from each other,
Q1은 각각 독립적으로 -C≡C-, -CY =CY2-, 및 탄소수 6 내지 20의 치환 또는 비치환된 방향족 그룹 또는 헤테로방향족 그룹으로 이루어진 군에서 선택된 2가 그룹으로서, 상기 Y1 및 Y2는 각각 독립적으로 -H, -F, -CI, -CN, 또는 -R1이고, Q 1 is each independently a divalent group selected from the group consisting of -C≡C-, -CY = CY 2- , and a substituted or unsubstituted aromatic group or heteroaromatic group having 6 to 20 carbon atoms, wherein Y 1 and Each Y 2 is independently —H, —F, —CI, —CN, or —R 1 ,
B1은 -H, -F, -CI, -Br, -I, -CN, -NC, -NCO, -OCN, -SCN, -C(=O)NR1 R2, - C(=0)R1 , -NH2, -SH, -SR1 , -SO3H, -SO2R1, -OH, -N02> -CF3l -SF3, 중합성 그룹 (상기 화학식 1에서 정의된 P), 탄소수 2 내지 6의 알케닐기, 탄소수 2 내지 6의 알키닐기, 탄소수 2 내지 4의 아실기, 말단에 탄소수 2 내지 4의 아실기가 결합된 탄소수 2 내지 6의 알키닐렌기, 탄소수 1 내지 5의 알코을기, 또는 탄소수 1 내지 12의 알콕시기이고, 상기 R1 및 R2는 각각 독립적으로 -H 또는 탄소수 1 내지 12의 알킬이다. B 1 is -H, -F, -CI, -Br, -I, -CN, -NC, -NCO, -OCN, -SCN, -C (= 0) NR 1 R 2 ,-C (= 0) R 1 , -NH 2 , -SH, -SR 1 , -SO 3 H, -SO 2 R 1 , -OH, -N0 2> -CF 3l -SF 3 , a polymerizable group (P as defined in Formula 1 above ), An alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an acyl group having 2 to 4 carbon atoms, and having 2 to 4 carbon atoms at the terminal An acyl group bonded to an alkynylene group having 2 to 6 carbon atoms, an alcohol group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms, and R 1 and R 2 are each independently -H or alkyl having 1 to 12 carbon atoms. to be.
상기 화학식 2에서 -[Q1]p- 는 파이-공액된 선형 그룹, 방향족 그룹 및 헤테로방향족 그룹으로 이루어진 군에서 선택된 하나 이상의 하위 그룹 Q1으로 이루어질 수 있다. 예를 들어, 상기 -[Q1]p-는 120도 이상, 바람직하게는 180도의 결합각을 갖는 그룹들로부터 선택된 하나 이상의 하위 그룹 Q1으로 이루어질 수 있다. 여기서, 상기 p는 1 내지 10의 정수로서, p가 2 이상이면 둘 이상 반복되는 -(Q1)-의 각 반복단위는 서로 동일하거나 다른 것으로 될 수 있다. In Formula 2,-[Q 1 ] p -may be composed of at least one subgroup Q 1 selected from the group consisting of a pi-conjugated linear group, an aromatic group and a heteroaromatic group. For example,-[Q 1 ] p -may be composed of one or more subgroups Q 1 selected from the group having a coupling angle of 120 degrees or more, preferably 180 degrees. Here, p is an integer of 1 to 10, and if p is 2 or more, each repeating unit of-(Q 1 )-repeated two or more times may be the same or different from each other.
비제한적인 예로, 이러한 하위 그룹 Q1은 파라-위치의 인접한 기에 연결된 2가의 방향족 그룹 (예컨데, 1,4-페닐렌, 나프탈렌 -2,6-다이일, 인단- 2,6-다이일, 티에노 [3,2-b]티오펜 -2,5-다이일) 또는 sp-흔성된 탄소 원자 (예컨데, -C≡C-)를 포함하는 그룹일 수 있다. 또한, 상기 하위 그룹 Q1은 -CH=CH-, -CY =CY2- 및 -CH=CR1-를 포함할 수 있다. 여기서, 상기 Y1 및 γ2는 각각 독립적으로 -H, -F, -CI, -CN, 또는 -R1이고, 상기 R1 및 R2는 각각 독립적으로 -H 또는 탄소수 1 내지 12의 알킬이다. By way of non-limiting example, such subgroup Q 1 is a divalent aromatic group connected to an adjacent group in the para-position (eg 1,4-phenylene, naphthalene-2,6-diyl, indan-2,6-diyl, Thieno [3,2-b] thiophene-2,5-diyl) or a group comprising sp-splended carbon atoms (eg, -C≡C-). Further, the subgroup Q 1 may include -CH = CH-, -CY = CY 2-, and -CH = CR 1- . Wherein Y 1 and γ 2 are each independently —H, —F, —CI, —CN, or —R 1 , and R 1 and R 2 are each independently —H or alkyl having 1 to 12 carbon atoms. .
또한, 상기 -[Q1]P-는 -C≡C -, 치환 또는 비치환된 1 ,4-페닐렌, 및 치환 또는 비치환된 9H-플루오렌 -2,7-다이일로 이루어진 군에서 선택된 하나 이상의 그룹을 포함할 수 있다. 이때, 플루오렌 그룹에서 9-위치에 있는 H 원자는 카빌 또는 하이드로카빌 그룹으로 대체될 수 있다. In addition,-[Q 1 ] P -is selected from the group consisting of -C≡C-, substituted or unsubstituted 1,4-phenylene, and substituted or unsubstituted 9H-fluorene-2,7-diyl. It may include one or more groups. At this time, the H atom in the 9-position in the fluorene group may be replaced with a carbyl or hydrocarbyl group.
바람직하게는, 상기 -[Q1]p-는 ᅳ C≡C—— , — C≡≡C— C=C' ~ , Preferably, the above-[Q 1 ] p -is ᅳ C≡C——, — C≡≡C— C = C '~ ,
Figure imgf000014_0001
Figure imgf000015_0001
로 이루어진 군에서 선택될 수 있다.
Figure imgf000014_0001
Figure imgf000015_0001
It may be selected from the group consisting of.
여기서, 상기 r은 0, 1, 2, 3, 또는 4이고ᅳ 상기 D는 -F, -CI, -Br, -I, -CN, -NO2, -NCO, -NCS, -OCN, -SCN, -C(=O)NR1 R2, -C(=O)X, -C(=0)OR1, -NR1R2, -OH, -SF5, 치환 또는 비치환된 실릴, 탄소수 6 내지 12의 아릴, 탄소수 1 내지 12의 직쇄 또는 분지쇄 알킬, 알콕시, 알킬카보닐, 알콕시카보닐, 알킬카보닐옥시 , 또는 알콕시카보닐옥시이다. 그리고, 상기 화학식 2에서 B1은 -H, -F, -CI, -Br, -I, -CN, -NIC, -NCO, - OCN, -SCN, -C(=O)NR1R2, -C(=O)R1 , -NH2> -SH, -SR1 , -SO3H, -SO2R1, -OH, - NO2, -CF3, -SF3, 중합성 그룹 (상기 화학식 1에서 정의된 P), 탄소수 2 내지 6의 알케닐기, 탄소수 2 내지 6의 알키닐기, 탄소수 2 내지 4의 아실기, 말단에 탄소수 2 내지 4의 아실기가 결합된 탄소수 2 내지 6의 알키닐렌기, 탄소수 1 내지 5의 알코올기, 또는 탄소수 1 내지 12의 알콕시기이고, 상기 R1 및 R2는 각각 독립적으로 -H 또는 탄소수 1 내지 12의 알킬이다. 특히, 발명의 구현 예에 따르면, 상기 B1은 전술한 예시 그룹 중에서 상기 화학식 2의 브릿징 그룹이 공액 구조를 갖도록 하는 파이-공액된 선형 그룹, 방향족 그룹 및 헤테로방향족 그룹으로 이루어진 군에서 선택된 하나 이상의 그룹 (예를 들어 상기 Q1에 대웅하는 그룹)인 것이 바람직할 수 있다. 비제한적인 예로 상기 화학식 1의 역 파장 분산성 화합물로는 후술할 실시예들에 따른 RD-01 내지 RD-42로 표시되는 화합물들을 예로 들 수 있다. 다만, 상기 역 파장 분산성 화합물이 RD-01 내지 RD-42의 화합물만으로 한정되는 것은 아니며, 전술한 범위에서 다양한 조합으로 구현될 수 있다. Where r is 0, 1, 2, 3, or 4 and D is -F, -CI, -Br, -I, -CN, -NO 2 , -NCO, -NCS, -OCN, -SCN , -C (= O) NR 1 R 2 , -C (= O) X, -C (= 0) OR 1 , -NR 1 R 2 , -OH, -SF 5 , substituted or unsubstituted silyl, carbon number Aryl of 6 to 12, straight or branched chain alkyl of 1 to 12 carbon atoms, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy, or alkoxycarbonyloxy. In Formula 2, B 1 is -H, -F, -CI, -Br, -I, -CN, -NIC, -NCO, -OCN, -SCN, -C (= O) NR 1 R 2 , -C (= O) R 1 , -NH 2> -SH, -SR 1 , -SO 3 H, -SO 2 R 1 , -OH, -NO 2 , -CF 3 , -SF 3 , a polymerizable group ( P 2 as defined in Formula 1, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an acyl group having 2 to 4 carbon atoms, and an alky having 2 to 6 carbon atoms in which an acyl group having 2 to 4 carbon atoms is bonded to the terminal. It is a nylene group, a C1-C5 alcohol group, or a C1-C12 alkoxy group, and said R <1> and R <2> is respectively independently -H or C1-C12 alkyl. In particular, according to an embodiment of the present invention, B 1 is selected from the group consisting of a pi-conjugated linear group, an aromatic group and a heteroaromatic group such that the bridging group of Formula 2 has a conjugated structure among the above-described exemplary groups. It may be preferable to be the above group (for example, the group referred to above Q 1 ). As a non-limiting example, as the reverse wavelength dispersible compound of Chemical Formula 1, compounds represented by RD-01 to RD-42 according to embodiments to be described later may be exemplified. However, the reverse wavelength dispersible compound is not limited to the compounds of RD-01 to RD-42, and may be implemented in various combinations in the above-described range.
그리고, 상기 화학식 1로 표시되는 역 파장 분산성 화합물은 공지의 반응들을 응용하여 합성될 수 있으며, 보다 자세한 합성 방법은 실시예를 통해 서술한다. II. 역 파장분산성 조성물  In addition, the reverse wavelength dispersion compound represented by Chemical Formula 1 may be synthesized by applying known reactions, and a more detailed synthesis method will be described through examples. II. Reverse wavelength dispersion composition
한편, 발명의 다른 구현 예에 따르면, 상기 화학식 1로 표시되는 화합물을 포함하는 역 파장 분산성 조성물이 제공된다.  On the other hand, according to another embodiment of the invention, there is provided a reverse wavelength dispersion composition comprising the compound represented by the formula (1).
상기 역 파장 분산성 조성물은 전술한 화학식 1로 표시되는 화합물을 중합 개시제와 함께 용제에 용해시킨 조성물일 수 있다. 그리고, 상기 조성물에는 상기 화학식 1로 표시되는 화합물이 단독 또는 2종 이상의 조합으로 포함될 수 있다.  The reverse wavelength dispersible composition may be a composition in which the compound represented by Chemical Formula 1 is dissolved in a solvent together with a polymerization initiator. The composition represented by Formula 1 may be included alone or in combination of two or more kinds.
여기서, 상기 중합 개시제로는 본 발명이 속하는 기술분야에서 통상적인 라디칼 중합 개시제가 사용될 수 있다. 그리고, 상기 중합 개시제의 함량은 상기 역 파장 분산성 화합물의 중합 반응을 효율적으로 이끌어낼 수 있는 통상적인 범위에서 결정될 수 있다. 발명의 구현 예에 따르면, 상기 중합 개시제는 조성물 전체 중량을 기준으로 10 중량0 /0 이하, 바람직하게는 0.5 내지 8 중량 0/。로 포함될 수 있다. Here, as the polymerization initiator, radical polymerization initiators conventional in the art to which the present invention pertains may be used. The content of the polymerization initiator may be determined in a conventional range capable of efficiently eliciting the polymerization reaction of the reverse wavelength dispersible compound. According to embodiments of the invention, the polymerization initiator may comprise from 10 parts by weight 0/0, preferably 0.5 to 8 parts by weight 0 /, based on the total weight of the composition.
그라고, 상기 용제는 벤젠, 를루엔, 자일렌, 메시틸렌 (mesitylene), n- 부틸벤젠, 디에틸벤젠, 테트랄린 (tetralin), 메록시벤젠, 1,2-디메톡시벤젠, 에틸렌글리콜디메틸에테르, 디에틸렌글리콜디메틸에테르, 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 시클로펜타논, 시클로핵사논, 아세트산에틸, 락트산메틸, 락트산에틸, . 에틸렌글리콜모노메틸에테르아세테이트, 프로필렌글리콜모노메틸에테르아세테이트, The solvent is benzene, toluene, xylene, mesitylene, n-butylbenzene, diethylbenzene, tetralin, methoxybenzene, 1,2-dimethoxybenzene, ethylene glycol dimethyl Ether, diethylene glycol dimethyl ether, acetone, Methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclonucleanone, ethyl acetate, methyl lactate, ethyl lactate,. Ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate,
프로필렌글리콜모노에틸에테르아세테이트, Y-부티로락톤, 2-피를리돈, N-메틸- 2-피를리돈, 디메틸포름아미드, 클로로포름, 디클로로메탄, 사염화탄소, 디클로로에탄, 트리클로로에틸렌, 테트라클로로에틸렌, 클로로벤젠, t- 부틸알코올, 디아세톤알코올, 글리세 '린, 모노아세틴, 에틸렌글리콜, 트리에틸렌글리콜, 핵실렌글리콜, 에틸렌글리콜모노메틸에테르, 에틸셀로솔브, 부틸셀로솔브, 또는 이들의 흔합물일 수 있다. 이들 용제 중에서도 비점이 60 내지 250 °C인 것이 조성물의 도포시 균일한 막 두께를 형성하는데 유리하고, 용매의 잔류나 배향성의 저하를 최소화하는데 유리하다. Propylene glycol monoethyl ether acetate, Y-butyrolactone, 2-pyridone, N-methyl- 2-pyridone, dimethylformamide, chloroform, dichloromethane, carbon tetrachloride, dichloroethane, trichloroethylene, tetrachloroethylene , chlorobenzene, t- butyl alcohol, diacetone alcohol, glyceryl 'lean, mono-O paroxetine, ethylene glycol, triethylene glycol, nuclear xylene glycol, ethylene glycol monomethyl ether, ethyl cellosolve, butyl cellosolve to, or their It may be a complex of. Among these solvents, a boiling point of 60 to 250 ° C. is advantageous for forming a uniform film thickness at the time of application of the composition, and is advantageous for minimizing the residual of the solvent and the deterioration of the orientation.
그리고, 상기 역 파장 분산성 조성물에는, 필요에 따라 선택적으로, 크산톤 (Xanthone), 티오크산톤, 클로로티오크산톤, 페노티아진, 안트라센, 디페닐안트라센 등의 증감제가 더욱 포함될 수 있다.  The reverse wavelength dispersion composition may optionally further include a sensitizer such as xanthone, thioxanthone, chlorothioxanthone, phenothiazine, anthracene, diphenylanthracene, and the like.
또한, 상기 역 파장 분산성 조성물에는, 필요에 따라 선택적으로, 4급 암모늄염, 알킬아민옥사이드, 폴리아민 유도체, 폴리옥시에틸렌- 폴리옥시프로필렌 축합물, 라우릴황산나트륨, 라우릴황산암모늄, 알킬치환 방향족 술폰산염, 알킬인산염, 퍼플루오로알킬술폰산염 등의 계면활성제; 하이드로퀴논, 하이드로퀴논모노알킬에테르류, 피로갈를류, 티오페놀류, 2- 나프틸아민류, 2-하이드록시나프탈렌류 등의 보존 안정제; 2,6-디 -t-부틸 -P- 크레졸, 트리페닐포스파이트 등의 산화 방지제; 살리실산 에스테르계 화합물, 벤조페놀계 화합물, 벤조트리아졸계 화합물, 시아노아크릴레이트계 화합물, 니켈착염계 화합물 등의 자외선 흡수제가 더욱 포함될 수 있다.  Further, the reverse wavelength dispersion composition may optionally contain quaternary ammonium salts, alkylamine oxides, polyamine derivatives, polyoxyethylene-polyoxypropylene condensates, sodium lauryl sulfate, ammonium lauryl sulfate, and alkyl-substituted aromatic sulfonic acids. Surfactants such as salts, alkyl phosphates and perfluoroalkyl sulfonates; Storage stabilizers such as hydroquinone, hydroquinone monoalkyl ethers, pyrogalls, thiophenols, 2-naphthylamines, and 2-hydroxynaphthalenes; Antioxidants such as 2,6-di-t-butyl-P-cresol and triphenylphosphite; UV absorbers such as salicylic acid ester compounds, benzophenol compounds, benzotriazole compounds, cyanoacrylate compounds, and nickel complex salt compounds may be further included.
그리고, 상기 역 파장 분산성 조성물에는, 필요에 따라 선택적으로, 광학 이방성을 조절하거나 중합막의 강도를 향상시키기 위한 미립자화물이 더욱 포함될 수 있다. 상기 미립자화물은 핵토라이트, 몬모릴로나이트, 카을리나이트, ZnO, TiO2, Ce02, Al203, Fe2O3, Zr02, MgF2, SiO2, SrCO3, Ba(OH)2, Ca(OH)2, Ga(OH)3, AI(OH)3, Mg(OH)2, Zr(OH)4 등의 무기 미립자화물; 카본 나노튜브, 풀러린, 덴드리머, 폴리비닐알코올, 폴리메타크릴레이트, 플리이미드 등의 유기 미립자화물일 수 있다. 그리고, 상기 역 파장 분산성 조성물에는 상기 화학식 1로 표시되는 화합물 이외에, 임의의 액정 화합물이 더욱 포함될 수 있다. 상기 임의의 액정 화합물은 중합성을 갖거나 갖지 않는 것일 수 있다. 여기서, 상기 임의의 액정 화합물로는 에틸렌성 불포화 결합을 가지는 액정 화합물, 광학 활성기를 가지는 화합물, 봉상 액정 화합물 등을 예로 들 수 있다. 그리고, 상기 임의의 액정 화합물은 그들의 구조에 따라 적절한 양으로 흔합될 수 있는데, 바람직하게는 상기 화학식 1로 표시되는 화합물이 전체 화합물 중량의 20 중량0 /0 이상, 또는 50 중량0 /0 이상으로 포함되도록 하는 것이, 전술한 목적의 달성 측면에서 유리할 수 있다. In addition, the reverse wavelength dispersion composition may further include particulate matter for selectively adjusting optical anisotropy or improving the strength of the polymerized film as necessary. The particulate matter is hacklite, montmorillonite, kallinite, ZnO, TiO 2 , Ce0 2 , Al 2 0 3 , Fe 2 O 3 , Zr0 2 , MgF 2 , SiO 2 , SrCO 3 , Ba (OH) 2 , Ca Inorganic particulate matters such as (OH) 2 , Ga (OH) 3 , AI (OH) 3 , Mg (OH) 2 , Zr (OH) 4 ; Organic particulate matter such as carbon nanotubes, fullerenes, dendrimers, polyvinyl alcohols, polymethacrylates, and polyimides. In addition to the compound represented by Chemical Formula 1, the reverse wavelength dispersion composition may further include any liquid crystal compound. The arbitrary liquid crystal compound may be polymerized or not. Here, as said arbitrary liquid crystal compound, the liquid crystal compound which has an ethylenically unsaturated bond, the compound which has an optical active group, a rod-like liquid crystal compound, etc. are mentioned. Then, there the liquid crystal compound of any will be heunhap in appropriate amounts depending on their structure, the preferably the compound is the total compound weight of the 20 parts by weight 0/0 or more of the formula (1), or 50 parts by weight 0/0 or more It may be advantageous to be included in terms of achieving the above object.
 ■
III. 광학 이방체 III. Optically anisotropic
한편, 발명의 또 다른 구현 예에 따르면, 상기 역 파장 분산성 조성물을 사용하여 형성된 광학 이방체가 제공된다.  On the other hand, according to another embodiment of the invention, there is provided an optically anisotropic body formed using the reverse wavelength dispersion composition.
특히, 상기 광학 이방체는 전술한 역 파장 분산성 화합물을 사용하여 형성됨에 따라, 하기 식 I 및 식 II를 만족하는 역 파장 분산성을 나타낼 수 있다.  In particular, as the optically anisotropic body is formed using the above-mentioned reverse wavelength dispersing compound, the optically anisotropic substance may exhibit reverse wavelength dispersibility satisfying the following Formulas I and II.
(식 I)  (I)
ᅀ n(450nm/ᅀ n(550nm) 1 -0  ᅀ n (450 nm / ᅀ n (550 nm) 1 -0
(식 II)  (Equation II)
ᅀ η(650ηπι)/ᅀ n(550nm) 〉 1 ·0  ᅀ η (650ηπι) / ᅀ n (550nm)〉 1 · 0
(상기 식 I 및 식 ᅵᅵ에서, Δη(λ)는 파장 λ에서의 비복굴절을을 의미함) 상기 광학 이방체는 전술한 역 파장 분산성 조성물을 지지 기판에 도포하고, 상기 역 파장 분산성 조성물 중의 액정 화합물을쎄향시킨 상태로 탈용매하고, 이어서 에너지선을 조사하여 중합함으로써 얻을 수 있다.  (Wherein Δη (λ) means non-birefringence at wavelength λ), the optically anisotropic body applies the above-mentioned reverse wavelength dispersible composition to a support substrate, and the reverse wavelength dispersible composition It is possible to obtain by desolventing the liquid crystal compound in the oriented state, and then irradiating and polymerizing the energy ray.
여기서, 상기 지지 기판은 특별히 한정되지 않으나, 바람직한 예로는 유리판, 폴리에틸렌테레프탈레이트 필름, 폴리이미드 필름, 폴리아미드 필름, 폴리메타크릴산메틸 필름, 폴리스티렌 필름, 폴리염화비닐 필름, 폴리테트라플루오로에틸렌 필름, 셀를로오스계 필름, 실리콘 필름 등이 이용될 수 있다. 그리고, 상기 지지 기판상에 폴리이미드 배향막 또는 폴리비닐알코을 배향막을 시행한 것이 바람직하게 사용될 수 있다. Here, the support substrate is not particularly limited, but a preferred example is a glass plate, polyethylene terephthalate film, polyimide film, polyamide film, polymethyl methacrylate film, polystyrene film, polyvinyl chloride film, polytetrafluoroethylene film , Cellulose-based film, silicon film and the like can be used. And, a polyimide alignment film or on the support substrate What gave polyvinyl alcohol the alignment film can be used preferably.
상기 지지 기판에 조성물을 도포하는 방법으로는 공지의 방법이 이용될 수 있으며, 예를 들면 를 코팅법, 스핀 코팅법, 바 코팅법, 딥 코팅법, 스프레이 코팅법 등이 적용될 .수 있다. 그리고, 상기 조성물에 의해 형성되는 막의 두께는 용도에 따라 달라질 수 있는데, 바람직하게는 0.01 내지 100 의 범위에서 선택될 수 있다.  As a method of applying the composition to the support substrate, a known method may be used. For example, a coating method, a spin coating method, a bar coating method, a dip coating method, a spray coating method, or the like may be applied. And, the thickness of the film formed by the composition may vary depending on the use, preferably may be selected in the range of 0.01 to 100.
한편, 상기 액정 화합물을 배향시키는 방법으로는, 비제한적인 예로, 지지 기판상에 사전 배향 처리를 실시하는 방법을 들 수 있다. 배향 처리를 실시하는 방법으로는, 각종 폴리이미드계 배향막 또는 폴리비닐알코올계 배향막을 포함하는 액정 배향측을 지지 기판상에 형성하고, 러빙 등의 처리를 행하는 방법을 들 수 있다. 또한, 지지 기판상의 조성물에 자장 또는 전장 등을 인가하는 방법 등도 들 수 있다.  In addition, as a method of orienting the said liquid crystal compound, the method of performing a pre-orientation process on a support substrate is mentioned as a non-limiting example. As a method of performing an orientation process, the method of forming the liquid crystal aligning side containing various polyimide oriented films or polyvinyl alcohol-type oriented films on a support substrate, and performing a process, such as rubbing, is mentioned. Moreover, the method of applying a magnetic field, an electric field, etc. to the composition on a support substrate is mentioned.
그리고, 상기 역 파장 분산성 조성물을 중합시키는 방법은, 광, 열 또는 전자파를 이용하는 공지의 방법일 수 있다.  In addition, the method of polymerizing the reverse wavelength dispersion composition may be a known method using light, heat, or electromagnetic waves.
그리고, 상기 광학 이방체는 액정 디스플레이 또는 OLED 방식의 디스플레이의 위상차 필름, 편광 소자, 반사 방지 필름, 선택 방사막, 시야각 보상막 등에 사용될 수 있다. 특히, 상기 조성물을 사용하여 형성된 광학 이방체를 OLED 방식의 디스플레이에 적용할 경우, 외부광에 의한 쟌섭이 최소화될 수 있어 보다 완벽한 검정색의 구현이 가능하다.  The optically anisotropic body may be used in a retardation film, a polarizing element, an antireflection film, a selective emission film, a viewing angle compensation film, or the like of a liquid crystal display or an OLED display. In particular, when the optically anisotropic body formed using the composition is applied to an OLED display, interference by external light can be minimized, thereby enabling a more perfect black.
【발명의 효과】  【Effects of the Invention】
본 발명에 따른 역 파장 분산성 화합물은 보다 강하고 안정적인 역 파장 분산을 제공할 수 있어, 광학적 물성이 우수한 광학 이방체의 제공을 가능케 한다.  The reverse wavelength dispersion compound according to the present invention can provide a stronger and more stable reverse wavelength dispersion, thereby providing an optically anisotropic body having excellent optical properties.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1 a 내지. 도 10은 각각 본 발명의 일 구현 예에 따른 역 파장 분산성 화합물의 합성에 관한 scheme을 나타낸 것이다.  1 a to. 10 illustrates a scheme for synthesizing a reverse wavelength dispersion compound according to one embodiment of the present invention, respectively.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 구체적인 실시예들을 통해, 발명의 작용 및 효과를 보다 상세히 서술하기로 한다. 다만, 이러한 실시예들은 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
Figure imgf000020_0001
Hereinafter, the operation and effect of the invention will be described in more detail with reference to specific examples. However, these embodiments are only presented as an example of the invention, whereby the scope of the invention is not determined.
Figure imgf000020_0001
도 1a 내지 도 1c에 나타낸 Scheme에 따라 상기 화합물 RD-01을 합성하였다.  Compound RD-01 was synthesized according to the scheme shown in FIGS. 1a to 1c.
(화합물 2의 합성)  (Synthesis of Compound 2)
약 100g 의 화합물 1((rs,4'r)-4'-pentyl-[1 ,r-bi(cydohexan)]-4-one)과 약 60g의 테트라메틸렌디아민 (tetramethylenediamine)을 테트라하이드로퓨란 (tetrahydrofuran)에 녹인 후, 약 -78°C 하에서 약 300ml의 n-부틸리튬 (n-butyl lithium)을 천천히 적가하였다. 이를 약 2 시간 동안 교반한 후, 여기에 에티닐트리메틸실란 (ethynyltrimethylsilane)을 넣고 약 1 시간 동안 추가로 교반하였다. 그리고, 상기 반웅물을 디클로로메탄 (dichloromethane)과 물로 추출하였고, 유기층을 화학적으로 건조한 후, 컬럼 크로마토그래피로 정제하여 약 120g의 화합물 2를 얻었다. About 100 g of Compound 1 ((rs, 4'r) -4'-pentyl- [1, r-bi (cydohexan)]-4-one) and about 60 g of tetramethylenediamine are tetrahydrofuran ), And about 300 ml of n-butyl lithium was slowly added dropwise at about -78 ° C. After stirring for about 2 hours, ethynyltrimethylsilane was added thereto and further stirred for about 1 hour. The reaction product was extracted with dichloromethane and water, and the organic layer was chemically dried and purified by column chromatography to obtain about 120 g of Compound 2.
(화합물 3의 합성 )  (Synthesis of Compound 3)
약 120g의 상기 화합물 2와 약 100g의 K2C03(potassium carbonate)를 메탄을에 녹인 후 상온에서 약 24 시간 동안 교반하였다. 이를 필터링하여 여분의 K2C03를 제거한 후 디클로로메탄과 물로 추출하였다. 추출된 유기층을 화학적으로 건조한 후, 용매를 제거하였고, 컬럼 크로마토그래피로 정제하여 약 110g의 화합물 3을 얻었다. About 120 g of Compound 2 and about 100 g of K 2 CO 3 (potassium carbonate) were dissolved in methane, and then stirred at room temperature for about 24 hours. This was filtered to remove excess K 2 CO 3 and extracted with dichloromethane and water. After the extracted organic layer was chemically dried, the solvent was removed, and purified by column chromatography to obtain about 110g of Compound 3.
(화합물 5의 합성 )  (Synthesis of Compound 5)
약 100g의 화합물 4(1 ,4-diethynylbenzene)를 테트라하이드로퓨란에 녹인 후, 약 -78°C 하에서 약 20 분 동안 교반하였다. 여기에 약 500ml의 n- butyl lithium in 2.5M hexane을 약 2 시간에 걸쳐 천천히 적가하였다. 이를 약 4 시간 동안 교반한 후, 여기에 약 100ml의 클로로트리메틸실란 (chlorotrimethylsilane)을 넣고 약 24 시간 동안 교반하였다. 그리고, 상기 반응물을 에틸아세테이트와 물로 추출하였고, 유기층을 화학적으로 건조한 후, 컬럼 크로마토그래피로 정제하여 약 60g의 화합물 5를 얻었다. About 100 g of Compound 4 (1,4-diethynylbenzene) was dissolved in tetrahydrofuran, and then stirred for about 20 minutes at about -78 ° C. About 500ml n- Butyl lithium in 2.5M hexane was slowly added dropwise over about 2 hours. After stirring for about 4 hours, about 100ml of chlorotrimethylsilane was added thereto and stirred for about 24 hours. The reaction product was extracted with ethyl acetate and water, and the organic layer was chemically dried and purified by column chromatography to obtain about 60 g of compound 5.
(화합물 6의 합성 )  (Synthesis of Compound 6)
약 200g의 1 ,4-diiodobenzene, 약 3g의 Pd(PPh3)2CI2 (Bis(triphenylphosphine)palladium(ll) dichloride), 약 5g의 Cul (copper iodide), 및 약 200ml의 1\1,[\1-디아이소프로필에틸아민( 1\1-01 0|31"0 11 3 116)을 테트라하이드로퓨란에 녹인 후, 여기에 약 50 g의 상기 화합물 5를 녹인 테트라하이드로퓨란을 천천히 적가하였다. 이를 약 24 시간 동안 환류 교반한 후, 생성된 염을 필터링하여 제거하였고, 디클로로메탄과 물로 추출하였다. 추출된 유기층을 화학적으로 건조한 후, 컬럼 크로마토그래피로 정제하여 약 70g의 화합물 6을 얻었다. About 200 g of 1,4-diiodobenzene, about 3 g of Pd (PPh 3 ) 2 CI 2 (Bis (triphenylphosphine) palladium (ll) dichloride), about 5 g of Cul (copper iodide), and about 200 ml of 1 \ 1, [ \ 1-Diisopropylethylamine (1 \ 1-01 0 | 31 "0 11 3 116) was dissolved in tetrahydrofuran, and then tetrahydrofuran in which about 50 g of Compound 5 was dissolved was slowly added dropwise. After stirring under reflux for about 24 hours, the resulting salt was filtered off, extracted with dichloromethane and water, and the extracted organic layer was chemically dried and purified by column chromatography to obtain about 70 g of Compound 6.
(화합물 8의 합성)  (Synthesis of Compound 8)
약 100g의 화합물 7(4-hydroxy-3-iodobenzoic acid)과 약 400g의 Ν,Ν- 디아이소프로필에틸아민 (N,N-diisopropylethylamine)을 디클로로메탄에 녹인 후, 약 0°C 하에서 약 200g의 메틸클로로쩨틸에테르 (methyl chloromethyl ether)를 천천히 적가하였다. 이를 약 24 시간 동안 교반한 후, 약 500ml의 암모늄클로라이드 (ammonium chloride)로 세척하였고, 디클로로메탄과 물로 추출하였다. 그리고, 추출된 유기층을 화학적으로 건조한 후, 용매를 제거하였다. 이를 통해 얻은 물질과 포타슘하이드록사이드 (potassium hydroxide) 수용액을 메탄올에 넣고 약 3 시간 동안 환류 교반하였다. 여기에 6N의 염산 (hydrochloric acid)을 넣어 석출시킨 뒤 필터링하여 용매를 제거하였다. 그리고, 핵산을 사용하여 여분의 이물질을 제거한 후, 약 48시간 동안 건조하여 약 110g의 화합물 8을 얻었다. After about 100g compound 7 (4-hydroxy-3- iodobenzoic acid) and approximately 400g Ν, Ν- DI isopropyl ethyl amine (N, N-diisopropylethylamine) in dissolved in dichloromethane, of about 200g under about 0 ° C Methyl chloromethyl ether was slowly added dropwise. After stirring for about 24 hours, it was washed with about 500ml of ammonium chloride, extracted with dichloromethane and water. Then, the extracted organic layer was chemically dried, and then the solvent was removed. The obtained material and potassium hydroxide aqueous solution were added to methanol and stirred under reflux for about 3 hours. 6N hydrochloric acid was added thereto, precipitated, and filtered to remove the solvent. And, after removing the extra foreign matter using a nucleic acid, and dried for about 48 hours to obtain about 110g of compound 8.
(화합물 9의 합성 )  Synthesis of Compound 9
약 100g의 상기 화합물 8, 약 100g의 상기 화합물 3, 그리고 약 70g의 4- (디메틸아미노)피리딘 (4-(dimethylamino)pyridine))을 디클로로메탄에 녹인 후 약 30분간 교반하였다. 여기에 약 80g의 1-에틸 -3-(3- 디메틸아미노프로필)카보디이미드 (1 -ethyl-3-(3- dimethylaminopropyl)carbodiimide)를 첨가하여 약 24 시간 동안 교반한 후, 디클로로메탄과 물로 추출하였다. 추출된 유기층을 화학적으로 건조한 후, 컬럼 크로마토그래피로 정제하여 약 150g의 화합물 9를 얻었다. About 100 g of Compound 8, about 100 g of Compound 3, and about 70 g of 4- (dimethylamino) pyridine) in dichloromethane After melting, the mixture was stirred for about 30 minutes. About 80 g of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide was added thereto and stirred for about 24 hours, followed by dichloromethane and water. Extracted. The extracted organic layer was chemically dried and purified by column chromatography to obtain about 150 g of compound 9.
(화합물 10의 합성)  (Synthesis of Compound 10)
약 100g의 상기 화합물 9와 약 300ml의 6N 염산을 테트라하이드로퓨란에 녹인 후, 약 40°C 하에서 약 24 시간 동안 교반하였다. 그리고, 디클로로메탄과 물로 추출한 후, 추출된 유기층을 화학적으로 건조하였고, 컬럼 크로마토그래피로 정제하여 약 80g의 화합물 10을 얻었다. About 100 g of Compound 9 and about 300 ml of 6N hydrochloric acid were dissolved in tetrahydrofuran, and then stirred at about 40 ° C. for about 24 hours. After extraction with dichloromethane and water, the extracted organic layer was chemically dried and purified by column chromatography to obtain about 80 g of Compound 10.
(화합물 12-1의 합성)  (Synthesis of Compound 12-1)
약 80g의 상기 화합물 10, 약 50g의 화합물 11-1 ((1 r,4r)-4-((4- (acryloyloxy)butoxy)carbonyl)cyclohexanecarboxylic acid), 약 5g의 4- (디메틸아미노)피리딘 (4-(dimethylamino)pyridine)), 및 약 50g의 Ν,Ν- 디아이소프로필에틸아민 (N,N-diisoprapylethylamine)을 디클로로메탄에 녹인 후 약 30 분 동안 교반하였다. 여기에 약 80g의 1-에틸 -3-(3- 디메틸아미노프로필)카보디이미드 (1 -ethyl-3-(3- dimethylaminopropyl)carbodiimide) 및 약 50g의 에티닐트리메틸실란 (ethynyltrimethylsilane)를 첨가하여 약 24 시간 동안 교반한 후, 디클로로메탄과 물로 추출하였다. 추출된 유기층을 화학적으로 건조한 후, 컬럼 크로마토그래피로 정제하여 약 100g의 화합물 12-1을 얻었다.  About 80 g of the compound 10, about 50 g of the compound 11-1 ((1 r, 4r) -4-((4- (acryloyloxy) butoxy) carbonyl) cyclohexanecarboxylic acid), about 5 g of 4- (dimethylamino) pyridine ( 4- (dimethylamino) pyridine)), and about 50 g of Ν, Ν- diisopropylethylamine (N, N-diisoprapylethylamine) were dissolved in dichloromethane and stirred for about 30 minutes. About 80 g of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide and about 50 g of ethynyltrimethylsilane are added thereto. After stirring for 24 hours, the mixture was extracted with dichloromethane and water. The extracted organic layer was chemically dried and purified by column chromatography to obtain about 100 g of Compound 12-1.
(화합물 13-1의 합성)  (Synthesis of Compound 13-1)
약 80g의 상기 화합물 12-1 , 약 20g의 에티닐트리메틸실란 (ethynyltrimethylsilane), 약 3g의 Pd(PPh3)2CI2 (Bis(triphenylphosphine)palladium(ll) dichloride), 및 약 5g의 Cul (copper iodide)를 테트라하이드로퓨란에 녹인 후 약 24 시간 동안 환류 교반하였다. 생성된 염을 필터링하여 제거하였고, 디클로로메탄과 물로 추출하였다. 추출된 유기층을 화학적으로 건조한 후, 컬럼 크로마토그래피로 정제하여 약 //: O ls/-8001s2Ml>dAV7 About 80 g of the compound 12-1, about 20 g of ethynyltrimethylsilane, about 3 g of Pd (PPh 3 ) 2 CI 2 (Bis (triphenylphosphine) palladium (ll) dichloride), and about 5 g of Cul (copper iodide) was dissolved in tetrahydrofuran and stirred at reflux for about 24 hours. The resulting salt was filtered off and extracted with dichloromethane and water. The extracted organic layer was chemically dried and purified by column chromatography. // : ols / -800 1 s2Ml > dAV 7
this
Figure imgf000023_0001
Figure imgf000023_0001
ιυαο) 02 εᅳιυαο ) 02 ε ᅳ
) (ρ Ή) XPPH ))(Η2ειί69I909Η30寸ρΪ9 Ζ9Ζ/.73 -.ᅳ· -. - -· ) (Ρ Ή) XPPH)) (Η2ε ι寸ί 69 I 909Η30寸ρΪ9 Ζ9Ζ / .73 -. Eu - - - - -
(H)()(Η)(8寸 sr09¾εhu )Γζ90寸.ωss -. -. - -· ( H ) () ( Η ) ( 8 寸 sr09¾ε h u ) Γ ζ90寸 .ωss-. -. --·
Figure imgf000024_0001
Figure imgf000024_0001
도 1 a 내지 도 1 c에 나타낸 Scheme에 따라 상기 화합물 RD-02를 합성하였다.  Compound RD-02 was synthesized according to the scheme shown in FIGS. 1 a to 1 c.
(화합물 12-2의 합성)  (Synthesis of Compound 12-2)
상기 화합물 11 -1 대신 약 55g의 화합물 11-2((1 r,4r)-4-(((6- (acryloyloxy)hexyl)oxy)carbonyl)cyclohexanecarboxylic acid)를 사용한 것으로 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로 약 100g의 화합물 12-2를 얻었다.  Example 55 except that about 55 g of Compound 11-2 ((1 r, 4r) -4-(((6- (acryloyloxy) hexyl) oxy) carbonyl) cyclohexanecarboxylic acid) was used instead of Compound 11-1. About 100 g of Compound 12-2 was obtained by the same method as the synthesis of Compound 12-1.
(화합물 13-2의 합성)  (Synthesis of Compound 13-2)
상기 화합물 12-1 대신 상기 화합물 12-2를 사용한 것을 제외하고ᅳ 실시예 1의 화합물 13-1의 합성과 동일한 방법으로 약 70g의 화합물 13-2를 얻었다.  About 70 g of Compound 13-2 was obtained by the same method as the synthesis of Compound 13-1 of Example 1, except that Compound 12-2 was used instead of Compound 12-1.
(화합물 14-2의 합성)  (Synthesis of Compound 14-2)
상기 화합물 13-1 대신 상기 화합물 13-2를 사용한 것을 제외하고, 실시예 1의 화합물 14-1의 합성과 동일한 방법으로 약 70g의 화합물 14-2를 얻었다. ' About 70 g of Compound 14-2 was obtained by the same method as the synthesis of Compound 14-1 of Example 1, except that Compound 13-2 was used instead of Compound 13-1. '
(화합물 15-2의 합성)  (Synthesis of Compound 15-2)
상기 화합물 14-1 대신 상기 화합물 14-2를 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로 약 70g의 화합물 15-2를 얻었다.  About 70 g of Compound 15-2 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 14-2 was used instead of Compound 14-1.
(화합물 RD-02의 합성)  (Synthesis of Compound RD-02)
상기 화합물 15-1 대신 상기 화합물 15-2를 사용한 것을 제외하고, 실시예 1의 화합물 RD-1의 합성과 동일한 방법으로 약 50g의 화합물 RD- 02를 얻었다. Except for using the compound 15-2 instead of the compound 15-1, About 50 g of Compound RD-02 was obtained by the same method as the synthesis of Compound RD-1 of Example 1.
수득된 화합물 RD-2에 대한 NMR스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-2 is as follows.
1H NMR (CDCI3, 표준물질 TMS) δ(ρριη): 8.04(2H, d), 7.56(4H, d), 7.51 (4H, d), 7.40(2H, d), 6.27(1 H, d), 6.05(1 H, dd), 5.59(1 H, d), 4.13(2H, t), 4.05(1 H, s), 3.97(2H, t), 3.52(1 H, s), 1.60-1.12(52H, m) 실시예 3: 화합물 RD-03의 합성 1H NMR (CDCI 3, standard TMS) δ (ρρι η): 8.04 (2H, d), 7.56 (4H, d), 7.51 (4H, d), 7.40 (2H, d), 6.27 (1 H, d ), 6.05 (1 H, dd), 5.59 (1 H, d), 4.13 (2H, t), 4.05 (1 H, s), 3.97 (2H, t), 3.52 (1 H, s), 1.60- 1.12 (52H, m) Example 3: Synthesis of Compound RD-03
Figure imgf000025_0001
Figure imgf000025_0001
도 1a 내지 도 1 c에 나타낸 Scheme에 따라 상기 화합물 RD-03을 Compound RD-03 was prepared according to the scheme shown in FIGS. 1a to 1c.
합성하였다. Synthesized.
(화합물 12-3의 합성)  (Synthesis of Compound 12-3)
상기 화합물 11-1 대신 약 60g의 화합물 11-3((1 r,4r)-4-(((8- (acr loyloxy)octyl)oxy)carbonyl)cyclohexanecarboxylic acid)을 사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로 약 100g의 화합물 12-3을 얻었다.  Example 1, except that about 60 g of Compound 11-3 ((1 r, 4r) -4-(((8- (acr loyloxy) octyl) oxy) carbonyl) cyclohexanecarboxylic acid) was used instead of Compound 11-1. About 100 g of Compound 12-3 was obtained by the same method as the synthesis of Compound 12-1.
(화합물 13-3의 합성)  (Synthesis of Compound 13-3)
상기 화합물 12-1 대신 상기 화합물 12-3을 사용한 것을 제외하고, 실시예 1의 화합물 13-1의 합성과 동일한 방법으로 약 70g의 화합물 13-3을 얻었다.  About 70 g of Compound 13-3 was obtained by the same method as the synthesis of Compound 13-1 of Example 1, except that Compound 12-3 was used instead of Compound 12-1.
(화합물 14-3의 합성)  (Synthesis of Compound 14-3)
상기 화합물 13-1 대신 상기 화합물 13-3을 사용한 것을 제외하고, 실시예 1의 화합물 14-1의 합성과 동일한 방법으로 약 70g의 화합물 14-3을 얻었다. Except for using the compound 13-3 instead of the compound 13-1, About 70 g of Compound 14-3 was obtained by the same method as the synthesis of Compound 14-1 of Example 1.
(화합물 15-3의 합성)  (Synthesis of Compound 15-3)
상기 화합물 14-1 대신 상기 화합물 14-3을 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로 약 70g의 화합물 15-3을 얻었다.  About 70 g of Compound 15-3 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 14-3 was used instead of Compound 14-1.
(화합물 RD-03의 합성 )  Synthesis of Compound RD-03
상기 화합물 15-1 대신 상기 화합물 15-3을 사용한 것을 제외하고, 실시예 1의 화합물 RD-1의 합성과 동일한 방법으로 약 50g의 화합물 RD- 03을 얻었다.  About 50 g of Compound RD-03 was obtained by the same method as the synthesis of Compound RD-1 of Example 1, except that Compound 15-3 was used instead of Compound 15-1.
수득된 화합물 RD-3에 대한 NMR스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-3 is as follows.
1H NMR (CDCI3, 표준물질 TMS) δ(ρριη): 8.04(2H, d), 7.56(4H, d), 7.51(4H, d), 7.40(2H, d), 6.27(1 H, d), 6,05(1 H, dd), 5.59(1 H, d), 4.13(2H, t), 4.05(1 H, s), 3.97(2H, t), 3.52(1 H, s), 1.60-1.12(56H, m) 실시예 4: 화합물 RD-04의 합성 1 H NMR (CDCI 3 , Standard TMS) δ (ρριη): 8.04 (2H, d), 7.56 (4H, d), 7.51 (4H, d), 7.40 (2H, d), 6.27 (1 H, d ), 6,05 (1 H, dd), 5.59 (1 H, d), 4.13 (2H, t), 4.05 (1 H, s), 3.97 (2H, t), 3.52 (1 H, s), 1.60-1.12 (56H, m) Example 4: Synthesis of Compound RD-04
Figure imgf000026_0001
Figure imgf000026_0001
도 2a 및 도 2b에 나타낸 Scheme에 따라 상기 화합물 RD-04를 합성하였다.  Compound RD-04 was synthesized according to the scheme shown in FIGS. 2a and 2b.
(화합물 17의 합성)  (Synthesis of Compound 17)
약 100g의 화합물 16 (4-(4-hydroxyphenyl)cyclohexanone) 약 120g의 Ν,Ν-디아이소프로필에틸아민 (Ν,Ν-diisopropylethylamine)을 디클로로메탄에 녹인 후, 상온 하에서 약 50g의 메틸클로로메틸에테르 (methyl chloromethyl ether)를 천천히 적가하였다. 이를 약 2 시간 동안 교반한 후, 디클로로메탄과 물로 추출하였다. 그리고, 추출된 유기층을 화학적으로 건조한 후, 용매를 제거하였고, 컬럼 크로마토그래피로 정제하여 약 120g의 화합물 17을 얻었다. About 100 g of Compound 16 (4- (4-hydroxyphenyl) cyclohexanone) Approximately 120 g of Ν, Ν-diisopropylethylamine (Ν, Ν-diisopropylethylamine) is dissolved in dichloromethane, and then about 50 g of methylchloromethyl ether at room temperature. (methyl chloromethyl ether) was slowly added dropwise. This After stirring for about 2 hours, the mixture was extracted with dichloromethane and water. Then, the extracted organic layer was chemically dried, the solvent was removed, and purified by column chromatography to obtain about 120 g of Compound 17.
(화합물 18의 합성)  (Synthesis of Compound 18)
약 120g의 화합물 17과 약 100g의 Nᅳ Ν,Ν',Ν'- 테트라메틸에틸렌디아민( ^46 3 ^ ᅣ ᅵ6116(^ᅵ 116)을  About 120 g of compound 17 and about 100 g of N ᅳ Ν, Ν ', Ν'-tetramethylethylenediamine (^ 46 3 ^ ᅣ 6116 (^ 116)
테트라하이드로퓨란 (tetrahydrofuran)에 녹인 후, 약 -78°C 하에서 20 분 동안 교반하였다. 여기에, 약 500ml의 n-butyl lithium in 2.5M hexane을 2 시간에 걸쳐 천천히 적가하였다. 이를 약 4 시간 동안 교반한 후, 여기에 에티닐트리메틸실란 (ethynyltrimethylsilane)을 넣고 약 24 시간 동안 추가로 교반하였다. 그리고, 상기 반웅물을 에틸아세테이트와 물로 추출한 후, 유기층을 화학적으로 건조하였고, 컬럼 크로마토그래피로 정제하여 약 100g의 화합물 18을 얻었다. After dissolving in tetrahydrofuran, the mixture was stirred at about -78 ° C for 20 minutes. About 500 ml of n-butyl lithium in 2.5M hexane was slowly added dropwise over 2 hours. After stirring for about 4 hours, ethynyltrimethylsilane was added thereto and further stirred for about 24 hours. After the reaction product was extracted with ethyl acetate and water, the organic layer was chemically dried and purified by column chromatography to obtain about 100 g of Compound 18.
(화합물 19의 합성)  (Synthesis of Compound 19)
약 100g의 화합물 18과 약 10g의 테트라부틸암모늄 플로라이드 하이드레이트 (tetrabutylammonium fluoride hydrate)를 테트라하이드로퓨란에 녹인 후 약 2 시간 동안 교반하였다. 그리고, 상기 반응물을 에틸아세테이트와 물로 추출한 후, 유기층을 화학적으로 건조하였고, 컬럼 크로마토그래피로 정제하여 약 80g의 화합물 19를 얻었다.  About 100 g of Compound 18 and about 10 g of tetrabutylammonium fluoride hydrate were dissolved in tetrahydrofuran and stirred for about 2 hours. After the reaction was extracted with ethyl acetate and water, the organic layer was chemically dried and purified by column chromatography to obtain about 80 g of compound 19.
(화합물 21의 합성)  (Synthesis of Compound 21)
약 70g의 화합물 19, 약 70g의 화합물 20 [4- (methoxymethoxy)benzoic acid], 그리고 약 50g의 4- (디메틸아미노)피리딘 [4- (dimethylamino)pyridine)]을 디클로로메탄에 녹인 후 약 30분간 교반하였다. 여기에 약 80g의 1-에틸 -3-(3-디메틸아미노프로필)카보디이미드 (1-ethyl-3-(3- dimethylaminopropyl)carbodiimide) - 첨가하여 약 24 시간 동안 교반한 후, 디클로로메탄과 물로 추출하였다. 추출된 유기층을 화학적으로 건조한 후, 컬럼 크로마토그래피로 정제하여 약 80g의 화합물 21을 얻었다.  About 70 g of compound 19, about 70 g of compound 20 [4- (methoxymethoxy) benzoic acid], and about 50 g of 4- (dimethylamino) pyridine] were dissolved in dichloromethane for about 30 minutes. Stirred. About 80 g of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide was added thereto, followed by stirring for about 24 hours, followed by dichloromethane and water. Extracted. The extracted organic layer was chemically dried and purified by column chromatography to obtain about 80 g of Compound 21.
(화합물 22의 합성 )  Synthesis of Compound 22
약 80g의 화합물 21과 약 300ml의 6N 염산을 테트라하이드로퓨란에 녹인 후, 약 40°C 하에서 약 24 시간 동안 교반하였다. 그리고, //: O ls/-8001s2Ml>dAV7 About 80 g of Compound 21 and about 300 ml of 6N hydrochloric acid were dissolved in tetrahydrofuran, and then stirred at about 40 ° C. for about 24 hours. And, // : ols / -800 1 s2Ml> dAV 7
Figure imgf000028_0001
Figure imgf000028_0001
o  o
(ρ Ή) Ή)({ Ή)(ρρ Ή3卜 39(ρ237.0(ρ3寸ρ工ρρ2909 /ζ Ζ寸9Ζ. - -. - - - - - -. ) Η (ρ Ή) Ή) ({Ή) (ρρ Ή3卜39 (ρ237 0寸(ρ3寸ρ工ρρ 2 909 / ζ Ζ寸9Ζ.. - -. - - - - - -.
)( Ή( Ή)()寸ζ6ε寸 ει寸ρρΗ)Ηε3η09ζ6^92../ss-. "" " -· - 실시예 5: 화합물 RD-05의 합성 ) ( Ή ( Ή ) ()寸 ζ6ε 寸 ε ι寸 ρρΗ ) Ηε3η09ζ6 ^ 92 ../ ss-. """ -·- Example 5: Synthesis of Compound RD-05
Figure imgf000029_0001
Figure imgf000029_0001
도 2a 및 도 2b에 나타낸 Scheme에 따라 상기 화합물 RD-05를 합성하였다.  Compound RD-05 was synthesized according to the scheme shown in FIGS. 2a and 2b.
(화합물 23-2의 합성 )  (Synthesis of Compound 23-2)
화합물 11 -1 대신 화합물 11 -2 ((1 r,4r)-4-(((6- (acryloyloxy)hexyl)oxy)carbonyl)cyclohexanecarboxylic acid)를 사용한 것을 제외하고, 실시예 4의 화합물 23-1의 합성과 동일한 방법으로, 약 100g의 화합물 23-2를 얻었다.  Compound 23-1 of Example 4, except for using compound 11-2 ((1 r, 4r) -4-(((6- (acryloyloxy) hexyl) oxy) carbonyl) cyclohexanecarboxylic acid) instead of compound 11-1 In the same manner as in the synthesis of about 100 g of Compound 23-2 was obtained.
(화합물 24-2의 합성 )  (Synthesis of Compound 24-2)
화합물 23-1 대신 상기 화합물 23-2를 사용한 것을 제외하고, 실시예 4의 화합물 24-1의 합성과 동일한 방법으로, 약 70g의 화합물 24-2를 얻었다.  About 70 g of Compound 24-2 was obtained by the same method as the synthesis of Compound 24-1 of Example 4, except that Compound 23-2 was used instead of Compound 23-1.
(화합물 RD-05의 합성)  (Synthesis of Compound RD-05)
화합물 24-1 대신 상기 화합물 24-2를 사용한 것을 제외하고, 실시예 4의 화합물 RD-04의 합성과 동일한 방법으로, 약 50g의 화합물 RD-05를 얻었다.  About 50 g of Compound RD-05 was obtained by the same method as the synthesis of Compound RD-04 of Example 4, except that Compound 24-2 was used instead of Compound 24-1.
수득된 화합물 RD-05에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-05 is as follows.
1H NMR (CDCI3, 표준물질 TMS) δ(ρρη): 8.04(2H, d), 7.56(4H, d), 7.51 (4H, d), 7.47(2H, d), 7.40(2H, d), 7.21(2H, d), 6.27(2H, dd), 6.05(2H, dd), 5.59(2H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(4H, t), 2.50(1 H, s), 1 .60-1 .12(31 H, m)
Figure imgf000030_0001
1 H NMR (CDCI 3 , TMS) δ (ρρη): 8.04 (2H, d), 7.56 (4H, d), 7.51 (4H, d), 7.47 (2H, d), 7.40 (2H, d) , 7.21 (2H, d), 6.27 (2H, dd), 6.05 (2H, dd), 5.59 (2H, dd), 4.13 (4H, t), 4.05 (1 H, s), 3.97 (4H, t) , 2.50 (1 H, s), 1.60-1 .12 (31 H, m)
Figure imgf000030_0001
도 2a 및 도 2b에 나타낸 Scheme에 따라 상기 화합물 RD-06을 합성하였다.  Compound RD-06 was synthesized according to the scheme shown in FIGS. 2a and 2b.
(화합물 23-3의 합성 )  (Synthesis of Compound 23-3)
화합물 11 -1 대신 화합물 11-3 7-3 ((l r,4r)-4-(((8- (acryloyloxy)octyl)oxy)carbonyl)cyclohexanecarboxylic acid)을 사용한 것을 제외하고, 실시예 4의 화합물 23-1의 합성과 동일한 방법으로, 약 100g의 화합물 23-3을 얻었다.  Compound 23 of Example 4, except that Compound 11-3 7-3 ((lr, 4r) -4-(((8- (acryloyloxy) octyl) oxy) carbonyl) cyclohexanecarboxylic acid) was used instead of Compound 11-1 About 100 g of Compound 23-3 was obtained by the same method as the synthesis of -1.
(화합물 24-3의 합성)  (Synthesis of Compound 24-3)
화합물 23-1 대신 상기 화합물 23-3을 사용한 것을 제외하고, 실시예 4의 화합물 24-1의 합성과 동일한 방법으로, 약 70g의 화합물 24-3을 얻었다.  About 70 g of Compound 24-3 was obtained by the same method as the synthesis of Compound 24-1 of Example 4, except that Compound 23-3 was used instead of Compound 23-1.
(화합물 RD-06의 합성 )  Synthesis of Compound RD-06
화합물 24-1 대신 상기 화합물 24-3을 사용한 것을 제외하고, 실시예 4의 화합물 RD-04의 합성과 동일한 방법으로, 약 50g의 화합물 RD-06을 얻었다.  About 50 g of Compound RD-06 was obtained by the same method as the synthesis of Compound RD-04 of Example 4, except that Compound 24-3 was used instead of Compound 24-1.
수득된 화합물 RD-06에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-06 is as follows.
1H NMR (CDCI3, 표준물질 TMS) 5(ppm): 8.04(2H, d), 7.56(4H, d),1 H NMR (CDCI 3 , Standard TMS) 5 (ppm): 8.04 (2H, d), 7.56 (4H, d),
7.51 (4H, d), 7.47(2H, d), 7.40(2H, d), 7.21 (2H, d), 6.27(2H, dd), 6.05(2H, dd), 5.59(2H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(4H, t), 2.50(1 H, s), 1 .60-1.12(39H, m) 실시예 7: 화합물 RD-07의 합성 7.51 (4H, d), 7.47 (2H, d), 7.40 (2H, d), 7.21 (2H, d), 6.27 (2H, dd), 6.05 (2H, dd), 5.59 (2H, dd), 4.13 (4H, t), 4.05 (1 H, s), 3.97 (4H, t), 2.50 (1 H, s), 1.60-1.12 (39H, m) Example 7: Synthesis of Compound RD-07
Figure imgf000031_0001
Figure imgf000031_0001
도 3a 및 도 3b에 나타낸 Scheme에 따라 상기 화합물 RD-07을 합성하였다.  Compound RD-07 was synthesized according to the scheme shown in FIGS. 3a and 3b.
(화합물 26의 합성 )  Synthesis of Compound 26
약 100g의 화합물 25(4-hydroxybenzoic acid), 약 100g의 Ν,Ν'- 디사이클로핵실카보디이미드 (N,N'-dicyclohexylcarbodiimide), 약 10g의 4- (디메틸아미노)피리딘 (4-(dimethylamino)pyridine)), 및 약 20g의 tert- 부탄올 (tert-butan )을 테트라하이드로퓨란에 녹인 후 약 24 시간 동안 교반하였다. 그리고, 디클로로메탄과 물로 추출한 후, 추출된 유기층을 화학적으로 건조하였고, 컬럼 크로마토그래피로 정제하여 약 80g의 화합물 26을 얻었다.  About 100 g of Compound 25 (4-hydroxybenzoic acid), about 100 g of Ν, Ν'- dicyclonucleosilcarbodiimide (N, N'-dicyclohexylcarbodiimide), about 10 g of 4- (dimethylamino) pyridine (4- (dimethylamino pyridine)), and about 20 g of tert-butanol (tert-butan) were dissolved in tetrahydrofuran and stirred for about 24 hours. After extraction with dichloromethane and water, the extracted organic layer was chemically dried and purified by column chromatography to obtain about 80 g of Compound 26.
(화합물 28-1의 합성 )  (Synthesis of Compound 28-1)
약 60g의 화합물 26, 약 50g의 화합물 27-1 [(1 r,4r)-4- (butoxycarbonyl)cyclohexanecarboxylic acid], 약 5g의 4- (디메틸아미노)피리딘 (4-(dimethylamino)pyridine)), 및 약 50g의 Ν,Ν- 디아이소프로필에틸아민 (N,N-diisoprapylethylamine)을 디클로로메탄에 녹인 후 약 30분간 교반하였다. 여기에 약 80g의 1-에틸 -3-(3- 디메틸아미노프로필)카보디이미드 (1 -ethyl-3-(3- dimethylaminopropyl)carbodiimide) 및 약 ' . 50g의 에티닐트리메틸실란 (ethynyltrimethylsilane)를 첨가하여 약 24 시간 동안 교반한 후, 디클로로메탄과 물로 추출하였다. 추출된 유기층을 화학적으로 건조한 후, 컬럼 크로마토그래피로 정제하여 약 80g의 화합물 28-1을 얻었다. About 60 g of Compound 26, about 50 g of Compound 27-1 [(1 r, 4r) -4- (butoxycarbonyl) cyclohexanecarboxylic acid], about 5 g of 4- (dimethylamino) pyridine), And about 50 g of N, N-diisopropylethylamine (N, N-diisoprapylethylamine) was dissolved in dichloromethane and stirred for about 30 minutes. Here, about 80 g of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (1 -ethyl-3- (3-dimethylaminopropyl) carbodiimide) and about ' . 50 g of ethynyltrimethylsilane was added and stirred for about 24 hours, followed by extraction with dichloromethane and water. The extracted organic layer was chemically dried and purified by column chromatography to obtain about 80 g of Compound 28-1. Got it.
(화합물 29-1의 합성 )  (Synthesis of Compound 29-1)
약 80g의 화합물 28-1과 약 50g의 테트라플루오로아세틱 에시드 (tetrafluoraacetic acid)를 디클로로메탄에 녹인 후 약 24 시간 동안 교반하였다. 그리고, 디클로로메탄과 물로 추출한 후, 추출된 유기층을 화학적으로 건조하고, 컬럼 크로마토그래피로 정제하여 약 60g의 화합물 29- 1을 얻었다.  About 80 g of Compound 28-1 and about 50 g of tetrafluoraacetic acid were dissolved in dichloromethane and stirred for about 24 hours. After extraction with dichloromethane and water, the extracted organic layer was chemically dried and purified by column chromatography to obtain about 60 g of Compound 29-1.
(화합물 30-1의 합성 )  (Synthesis of Compound 30-1)
약 60g의 화합물 29-1, 실시예 4에 따른 약 50g의 화합물 19, 그리고 약 50g의 4- (디메틸아미노)피리딘 (4-(dimethylamino)pyridine))을 디클로로메탄에 녹인 후 약 30분간 교반하였다. 여기에 약 80g의 1 -에틸 -3- (3-디메틸아미노프로필)카보디이미드 (1 -ethyl-3-(3- dimethylaminopropyl)carbodiimide) - 첨가하여 약 24 시간 동안 교반한 후, 디클로로메탄과 물로 추출하였다. 추출된 유기층을 화학적으로 건조한 후, 컬럼 크로마토그래피로 정제하여 약 80g의 화합물 30-1을 얻었다.  About 60 g of Compound 29-1, about 50 g of Compound 19 according to Example 4, and about 50 g of 4- (dimethylamino) pyridine were dissolved in dichloromethane and stirred for about 30 minutes. . About 80 g of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide was added thereto and stirred for about 24 hours, followed by dichloromethane and water. Extracted. The extracted organic layer was chemically dried and purified by column chromatography to obtain about 80 g of Compound 30-1.
(화합물 31-1의 합성)  (Synthesis of Compound 31-1)
약 80g의 화합물 30-1과 약 300ml의 6N 염산을 테트라하이드로퓨란에 녹인 후, 약 4C C 하에서 약 24 시간 동안 교반하였다. 그리고, 디클로로메탄과 물로 추출한 후, 추출된 유기충을 화학적으로 건조하였고, 컬럼 크로마토그래피로 정제하여 약 60g의 화합물 31-1 (m=3)을 얻었다.  About 80 g of Compound 30-1 and about 300 ml of 6N hydrochloric acid were dissolved in tetrahydrofuran, and then stirred for about 24 hours under about 4C C. After extraction with dichloromethane and water, the extracted organic worms were chemically dried and purified by column chromatography to obtain about 60 g of compound 31-1 (m = 3).
(화합물 32-1의 합성 )  (Synthesis of Compound 32-1)
화합물 10 대신 상기 화합물 31-1 (m=3)을 사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로, 약 80g의 화합물 32- 1을 얻었다.  About 80 g of Compound 32-1 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that Compound 31-1 (m = 3) was used instead of Compound 10.
(화합물 33-1의 합성 )  (Synthesis of Compound 33-1)
화합물 14-1 대신 상기 화합물 32-1을 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 70g의 화합물 33-1을 얻었다.  About 70 g of Compound 33-1 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 32-1 was used instead of Compound 14-1.
(화합물 RD-07의 합성 ) 화합물 15-1 대신 상기 화합물 33-1을 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 30g의 화합물 RD-07을 얻었다. Synthesis of Compound RD-07 About 30 g of Compound RD-07 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 33-1 was used instead of Compound 15-1.
수득된 화합물 RD-07에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-07 is as follows.
1H NMR (CDCI3l 표준물질 TMS) 5(ppm): 8.04(2H, s), 7.56(4H, d), 7.51 (4H, d), 7.47(2H, d), 7.40(2H, d), 7.21 (2H, d), 6.27(1 H, dd), 6.05(1 H, dd), 5.59(1 H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(2H, t), 2.50(1 H, t), 1 .60-0.90(25H, m) 실시예 8: 화합물 RD-08의 합성 1 H NMR (CDCI 3l Standard TMS) 5 (ppm): 8.04 (2H, s), 7.56 (4H, d), 7.51 (4H, d), 7.47 (2H, d), 7.40 (2H, d), 7.21 (2H, d), 6.27 (1 H, dd), 6.05 (1 H, dd), 5.59 (1 H, dd), 4.13 (4H, t), 4.05 (1 H, s), 3.97 (2H, t), 2.50 (1H, t), 1.60-0.90 (25H, m) Example 8 Synthesis of Compound RD-08
Figure imgf000033_0001
Figure imgf000033_0001
도 3a 및 도 3b에 나타낸 Scheme에 따라 상기 화합물 RD-08을 합성하였다.  Compound RD-08 was synthesized according to the scheme shown in FIGS. 3a and 3b.
(화합물 28-2의 합성)  (Synthesis of Compound 28-2)
화합물 27-1 대신 화합물 27-2 [(i r,4r)-4- Compound 27-2 instead of compound 27-1 [(i r, 4r) -4-
((hexyloxy)carbonyl)cyclohexanecarboxylic acid]를 사용한 것을 제외하고, 실시예 7의 화합물 28-1의 합성과 동일한 방법으로, 약 100g의 화합물 28- 2를 얻었다. . About 100 g of Compound 28-2 was obtained by the same method as the synthesis of Compound 28-1 of Example 7, except that ((hexyloxy) carbonyl) cyclohexanecarboxylic acid] was used. .
(화합물 29-2의 합성 )  (Synthesis of Compound 29-2)
화합물 28-1 대신 상기 화합물 28-2를 사용한 것을 제외하고, 실시예 Example, except that compound 28-2 was used instead of compound 28-1
7의 화합물 29-1의 합성과 동일한 방법으로, 약 70g의 화합물 29-2를 얻었다. About 70 g of Compound 29-2 was obtained by the same method as the synthesis of Compound 29-1 of 7.
(화합물 30-2의 합성 ) 화합물 29-1 대신 상기 화합물 29-2를 사용한 것을 제외하고, 실시예 7의 화합물 30-1의 합성과 동일한 방법으로, 약 90g의 화합물 30-2를 얻었다. (Synthesis of Compound 30-2) About 90 g of Compound 30-2 was obtained by the same method as the synthesis of Compound 30-1 of Example 7, except that Compound 29-2 was used instead of Compound 29-1.
(화합물 31 -2의 합성)  (Synthesis of Compound 31-2)
화합물 30-1 대신 상기 화합물 30-2를 사용한 것을 제외하고, 실시예 Example, except that compound 30-2 was used instead of compound 30-1
7의 화합물 31 -1의 합성과 동일한 방법으로, 약 70g의 화합물 31 -2(m=5)를 얻었다. About 70 g of compound 31-2 (m = 5) was obtained by the same method as the synthesis of compound 31-1 of 7.
(화합물 32-2의 합성 )  (Synthesis of Compound 32-2)
화합물 10 대신 상기 화합물 31-2(m=5)를 사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로, 약 80g의 화합물 32- 2를 얻었다.  About 80 g of Compound 32-2 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that Compound 31-2 (m = 5) was used instead of Compound 10.
(화합물 33-2의 합성)  (Synthesis of Compound 33-2)
화합물 14-1 대신 상기 화합물 32-2를 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 70g의 화합물 33-2를 얻었다.  About 70 g of Compound 33-2 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 32-2 was used instead of Compound 14-1.
(화합물 RD-08의 합성)  (Synthesis of Compound RD-08)
화합물 15-1 대신 상기 화합물 33-2를 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 30g의 화합물 RD-08을 얻었다.  About 30 g of Compound RD-08 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 33-2 was used instead of Compound 15-1.
수득된 화합물 RD-08에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-08 is as follows.
1H NMR (CDCI3, 표준물질 TMS) δ(ρριη): 8.04(2H, s), 7.56(4H, d), 7.51 (4Η, d), 7.47(2Η, d), 7.40(2Η, d), 7.21 (2Η, d), 6.27(1 Η, dd), 6.05(1 Η, dd), 5.59(1 Η, dd), 4.13(4Η, t), 4.05(1 Η, s), 3.97(2Η, t), 2.50(1 Η, t), 1 .60-0.90(29Η, m) 실시예 9: 화합물 RD-09의 합성
Figure imgf000035_0001
1 H NMR (CDCI 3 , TMS) δ (ρριη): 8.04 (2H, s), 7.56 (4H, d), 7.51 (4Η, d), 7.47 (2Η, d), 7.40 (2Η, d) , 7.21 (2Η, d), 6.27 (1 Η, dd), 6.05 (1 Η, dd), 5.59 (1 Η, dd), 4.13 (4Η, t), 4.05 (1 Η, s), 3.97 (2Η , t), 2.50 (1 mu, t), 1.60-0.90 (29 mu, m) Example 9: Synthesis of Compound RD-09
Figure imgf000035_0001
도 3a 및 도 3b에 나타낸 Scheme에 따라 상기 화합물 RD-09를 합성하였다.  Compound RD-09 was synthesized according to the scheme shown in FIGS. 3a and 3b.
(화합물 28-3의 합성)  (Synthesis of Compound 28-3)
화합물 27-1 대신 화합물 27-3 [(1 r,4r)-4- Compound 27-3 instead of compound 27-1 [(1 r, 4r) -4-
((octyloxy)carbonyl)cyclohexanecarboxylic acid]를 사용한 것을 제외하고, 실시예 7의 화합물 28-1의 합상과 동일한 방법으로, 약 100g의 화합물 28- 3을 얻었다. About 100 g of Compound 28-3 was obtained by the same method as the compound phase of Compound 28-1 of Example 7, except that ((octyloxy) carbonyl) cyclohexanecarboxylic acid] was used.
(화합물 29-3의 합성 )  (Synthesis of Compound 29-3)
화합물 28-1 대신 상기 화합물 28-3를 사용한 것을 제외하고, 실시예 의 화합물 29-1의 합성과 동일한 방법으로, 약 70g의 화합물 29-3을 얻었다.  About 70 g of Compound 29-3 was obtained by the same method as the synthesis of Compound 29-1 of Example, except that Compound 28-3 was used instead of Compound 28-1.
(화합물 30-3의 합성)  (Synthesis of Compound 30-3)
화합물 29-1 대신 상기 화합물 29-3을 사용한 것을 제외하고, 실시예 7의 화합물 30-1의 합성과 동일한 방법으로, 약 90g의 화합물 30-3을 얻었다.  About 90 g of Compound 30-3 was obtained by the same method as the synthesis of Compound 30-1 of Example 7, except that Compound 29-3 was used instead of Compound 29-1.
(화합물 31-3의 합성)  (Synthesis of Compound 31-3)
화합물 30-1 대신 상기 화합물 30-3을 사용한 것을 제외하고, 실시예 7의 화합물 31 -1의 합성과 동일한 방법으로, 약 70g의 화합물 31 -3(m=7)을 얻었다.  About 70 g of Compound 31-3 (m = 7) was obtained by the same method as the synthesis of Compound 31-1 of Example 7, except that Compound 30-3 was used instead of Compound 30-1.
(화합물 32-3의 합성 )  (Synthesis of Compound 32-3)
화합물 10 대신 상기 화합물 31-3(m=7)을 사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로, 약 80g의 화합물 32- 3을 얻었다. About 80 g of Compound 32- in the same manner as the synthesis of Compound 12-1 of Example 1, except that Compound 31-3 (m = 7) was used instead of Compound 10. Got 3.
(화합물 33-3의 합성 )  (Synthesis of Compound 33-3)
화합물 14-1 대신 상기 화합물 32-3을 사용한 것을 제외하고 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 70g의 화합물 33-3을 얻었다.  About 70 g of Compound 33-3 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 32-3 was used instead of Compound 14-1.
(화합물 RD-09의 합성 )  Synthesis of Compound RD-09
화합물 15-1 대신 상기 화합물 33-3을 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 30g의 화합물 RD-09를 얻었다.  About 30 g of Compound RD-09 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 33-3 was used instead of Compound 15-1.
수득된 화합물 RD-09에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-09 is as follows.
1H NMR (CDCI3> 표준물질 TMS) 5(ppm): 8.04(2H, s), 7.56(4H, d), 7.51 (4H, d), 7.47(2H, d), 7.40(2H, d), 7.21 (2H, d), 6.27(1 H, dd), 6.05(1 H, dd), 5.59(1 H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(2H, t), 2.50(1 H, t), 1 .60-0.90(33H, m) 실시예 10: 화합물 RD-10의 합성 1 H NMR (CDCI 3> standard TMS) 5 (ppm): 8.04 (2H, s), 7.56 (4H, d), 7.51 (4H, d), 7.47 (2H, d), 7.40 (2H, d) , 7.21 (2H, d), 6.27 (1 H, dd), 6.05 (1 H, dd), 5.59 (1 H, dd), 4.13 (4H, t), 4.05 (1 H, s), 3.97 (2H , t), 2.50 (1H, t), 1.60-0.90 (33H, m) Example 10: Synthesis of Compound RD-10
Figure imgf000036_0001
Figure imgf000036_0001
도 3a 및 도 3b에 나타낸 Scheme에 따라 상기 화합물 RD-10을 합성하였다.  Compound RD-10 was synthesized according to the scheme shown in FIGS. 3a and 3b.
(화합물 32-4의 합성 )  (Synthesis of Compound 32-4)
화합물 10 대신 상기 화합물 31-1 (m=3)을 사용하고, 화합물 11 -1 대신 화합물 1 1-2(n=6) [(1 r,4r)-4-(((6- Compound 31-1 (m = 3) was used instead of Compound 10, and Compound 1 1-2 (n = 6) [(1 r, 4r) -4-(((6-
(acryloyloxy)hexyl)oxy)carbonyl)cyclohexanecarboxylic acid]를 사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로, 약 80g의 화합물 32-4를 얻었다. (acryloyloxy) hexyl) oxy) carbonyl) cyclohexanecarboxylic acid] About 80 g of Compound 32-4 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except.
(화합물 33-4의 합성 )  (Synthesis of Compound 33-4)
화합물 14-1 대신 상기 화합물 32-4를 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로 약 60g의 화합물 33-4를 얻었다.  About 60 g of Compound 33-4 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 32-4 was used instead of Compound 14-1.
(화합물 RD-10의 합성)  (Synthesis of Compound RD-10)
화합물 1 5-1 대신 상기 화합물 33-4를 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-10을 얻었다.  About 50 g of Compound RD-10 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 33-4 was used instead of Compound 1 5-1.
수득된 화합물 RD-10에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-10 is as follows.
1 H NMR (CDCI3j 표준물질 TMS) 6(ppm): 8.04(2H , s), 7.56(4H, d), 7.51 (4H, d), 7.47(2H, d), 7.40(2H, d), 7.21 (2H, d), 6.27(1 H, dd), 6.05(1 H, dd), 5.59(1 H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(2H, t), 2.50(1 H, t), 1.60-0.90(29H, m) 실시예 11 : 화합물 RD-11의 합성 1 H NMR (CDCI 3j Standard TMS) 6 (ppm): 8.04 (2H, s), 7.56 (4H, d), 7.51 (4H, d), 7.47 (2H, d), 7.40 (2H, d), 7.21 (2H, d), 6.27 (1 H, dd), 6.05 (1 H, dd), 5.59 (1 H, dd), 4.13 (4H, t), 4.05 (1 H, s), 3.97 (2H, t), 2.50 (1H, t), 1.60-0.90 (29H, m) Example 11 Synthesis of Compound RD-11
Figure imgf000037_0001
Figure imgf000037_0001
도 3a 및 도 3b에 나타낸 Scheme에 따라 상기 화합물 RD-11을 합성하였다.  Compound RD-11 was synthesized according to the scheme shown in FIGS. 3a and 3b.
(화합물 32-5의 합성 )  (Synthesis of Compound 32-5)
화합물 10 대신 상기 화합물 31 -2(m=5)를 사용하고, 화합물 11-1 대신 화합물 1 1-2(n=6) [(1 r,4r)-4-(((6- (acryloyloxy)hexyl)oxy)carbonyl)cyclohexanecarboxylic acid]를 사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로, 약 80g의 화합물 32-5를 얻었다. Compound 31-2 (m = 5) was used instead of Compound 10, and Compound 1 1-2 (n = 6) [(1 r, 4r) -4-(((6- About 80 g of Compound 32-5 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that (acryloyloxy) hexyl) oxy) carbonyl) cyclohexanecarboxylic acid was used.
(화합물 33-5의 합성 )  (Synthesis of Compound 33-5)
화합물 14-1 대신 상기 화합물 32-5를 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 60g의 화합물 33-5를 얻었다.  About 60 g of Compound 33-5 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 32-5 was used instead of Compound 14-1.
(화합물 RD-11의 합성 )  Synthesis of Compound RD-11
화합물 15-1 대신 상기 화합물 33-5를 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-11을 얻었다.  About 50 g of Compound RD-11 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 33-5 was used instead of Compound 15-1.
수득된 화합물 RD-11에 대한 NMR 스펙트럼은 다음과 같다. The NMR spectrum of the obtained Compound RD-11 is as follows.
H NMR (CDCI3, 표준물질 TMS) 5(ppm): 8.04(2H, s), 7.56(4H, d), 7.51 (4H, d), 7.47(2H, d), 7.40(2H, d), 7.21 (2H, d), 6.27(1 H, dd), 6.05(1 H, dd), 5.59(1 H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(2H, t), 2.50(1 H, t), 1.60-0.90(33H, m) 실시예 12: 화합물 RD-12의 합성 H NMR (CDCI 3 , Standard TMS) 5 (ppm): 8.04 (2H, s), 7.56 (4H, d), 7.51 (4H, d), 7.47 (2H, d), 7.40 (2H, d), 7.21 (2H, d), 6.27 (1 H, dd), 6.05 (1 H, dd), 5.59 (1 H, dd), 4.13 (4H, t), 4.05 (1 H, s), 3.97 (2H, t), 2.50 (1H, t), 1.60-0.90 (33H, m) Example 12: Synthesis of Compound RD-12
Figure imgf000038_0001
Figure imgf000038_0001
도 3a 및 도 3b에 나타낸 Scheme에 따라 상기 화합물 RD-12를 합성하였다.  Compound RD-12 was synthesized according to the scheme shown in FIGS. 3a and 3b.
(화합물 32-6의 합성)  (Synthesis of Compound 32-6)
화합물 10 대신 상기 화합물 31-3(m=7)을 사용하고, 화합물 11-1 대신 화합물 1 1-2(n=6) [(i r,4r)-4-(((6-Compound 31-3 (m = 7) was used instead of compound 10, and compound 11-1. Instead of compound 1 1-2 (n = 6) [(i r , 4r) -4-(((6-
(acryloyloxy)hexyl)oxy)carbonyl)cyclohexanecarboxylic acid]를 사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과,동일한 방법으로, 약 80g의 화합물 32-6을 얻었다. About 80 g of Compound 32-6 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that (acryloyloxy) hexyl) oxy) carbonyl) cyclohexanecarboxylic acid was used.
(화합물 33-6의 합성 )  (Synthesis of Compound 33-6)
화합물 14-1 대신 상기 화합물 32-6을 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 60g의 화합물 33-6을 얻었다.  About 60 g of Compound 33-6 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 32-6 was used instead of Compound 14-1.
(화합물 RD-12의 합성)  (Synthesis of Compound RD-12)
화합물 15-1 대신 상기 화합물 33-6을 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-12를 얻었다.  About 50 g of Compound RD-12 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 33-6 was used instead of Compound 15-1.
수득된 화합물 RD-12에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-12 is as follows.
1H NMR (CDCI3, 표준물질 TMS) 5(ppm): 8.04(2H, s), 7.56(4H, d), 7.51 (4H, d), 7.47(2H, d), 7.40(2H, d), 7.21 (2H, d), 6.27(1 H, dd), 6.05(1 H, dd), 5.59(1 H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(2H, t), 2.50(1 H, t), 1 .60-0.90(37H, m) 실시예 13: 화합물 RD-13의 합성 1 H NMR (CDCI 3 , Standard TMS) 5 (ppm): 8.04 (2H, s), 7.56 (4H, d), 7.51 (4H, d), 7.47 (2H, d), 7.40 (2H, d) , 7.21 (2H, d), 6.27 (1 H, dd), 6.05 (1 H, dd), 5.59 (1 H, dd), 4.13 (4H, t), 4.05 (1 H, s), 3.97 (2H , t), 2.50 (1H, t), 1.60-0.90 (37H, m) Example 13: Synthesis of Compound RD-13
Figure imgf000039_0001
Figure imgf000039_0001
도 3a 및 도 3b에 나타낸 Scheme에 따라 상기 화합물 RD-13을 합성하였다.  Compound RD-13 was synthesized according to the scheme shown in FIGS. 3a and 3b.
(화합물 32-7의 합성 ) 화합물 10 대신 상기 화합물 31-1(m=3)을 사용하고 화합물 11-1 대신 화합물 11-3(n=8) [(i r,4r)-4-(((8-(Synthesis of Compound 32-7) Compound 31-1 (m = 3) was used instead of Compound 10, and Compound 11-3 (n = 8) [(ir, 4r) -4-(((8-
(acryloyloxy)octyl)oxy)carbonyl)cyclohexanecarboxylic acid]을 사용한 '것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로, 약 80g의 화합물 32-7을 얻었다. (acryloyloxy) octyl) oxy) carbonyl ) ' except for using cyclohexanecarboxylic acid], and in the same manner as in Synthesis of Compound 12-1 in the Example 1 to obtain the compound 32-7 to approximately 80g.
(화합물 33-7의 합성 )  (Synthesis of Compound 33-7)
화합물 14-1 대신 상기 화합물 32-7을 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 60g의 화합물 33-7을 얻었다.  About 60 g of Compound 33-7 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 32-7 was used instead of Compound 14-1.
(화합물 RD-13의 합성)  (Synthesis of Compound RD-13)
화합물 15-1 대신 상기 화합물 33-7을 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-13을 얻었다.  About 50 g of Compound RD-13 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 33-7 was used instead of Compound 15-1.
수득된 화합물 RD-13에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-13 is as follows.
1H NMR (CDCI3, 표준물질 TMS) 6(ppm): 8.04(2H, s), 7.56(4H, d),1 H NMR (CDCI 3 , Standard TMS) 6 (ppm): 8.04 (2H, s), 7.56 (4H, d),
7.51(4H, d), 7.47(2H, d), 7.40(2H, d), 7.21(2H, d), 6.27(1 H, dd), 6.05(1 H, dd), 5.59(1 H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(2H, t), 2.50(1 H, t), 1.60-0.90(33H, m) 실시예 14: 화합물 RD-14의 합성 7.51 (4H, d), 7.47 (2H, d), 7.40 (2H, d), 7.21 (2H, d), 6.27 (1 H, dd), 6.05 (1 H, dd), 5.59 (1 H, dd ), 4.13 (4H, t), 4.05 (1 H, s), 3.97 (2H, t), 2.50 (1 H, t), 1.60-0.90 (33H, m) Example 14 Synthesis of Compound RD-14
Figure imgf000040_0001
Figure imgf000040_0001
도 3a 및 도 3b에 나타낸 Scheme에 따라 상기 화합물  The compound according to the scheme shown in Figures 3a and 3b
합성하였다. O Jl 5-A一 3a 3b Se FS15 £chme오 £o-
Figure imgf000041_0001
Synthesized. O Jl 5-A 一 3a 3b Se F S15 £ c h me
Figure imgf000041_0001
)s ¾ώ 32- 합성하였다. ) s ¾ώ 32- Synthesized.
(화합물 32-9의 합성 ) ·  (Synthesis of Compound 32-9)
화합물 10 대신 상기 화합물 31 -3(m=7)을 사용하고, 화합물 11 -1 대신 화합물 1 1 -3(n=8) [(1 r,4r)-4-(((8- (acryloyloxy)octyl)oxy)carbonyl)cyclohexanecarboxylic acid]을 사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로, 약 80g의 화합물 32-9를 얻었다.  Compound 31-3 (m = 7) was used instead of Compound 10, and Compound 1 1-3 (n = 8) [(1 r, 4r) -4-(((8- (acryloyloxy)) instead of Compound 11-1. About 80 g of Compound 32-9 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that octyl) oxy) carbonyl) cyclohexanecarboxylic acid was used.
(화합물 33-9의 합성)  (Synthesis of Compound 33-9)
화합물 14-1 대신 상기 화합물 32-9를 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과. 동일한 방법으로, 약 60g의 화합물 33-9를 얻었다.  Synthesis of Compound 15-1 of Example 1, except that Compound 32-9 was used instead of Compound 14-1. In the same manner, about 60 g of compound 33-9 was obtained.
(화합물 RD-15의 합성)  (Synthesis of Compound RD-15)
화합물 15-1 대신 상기 화합물 33-9를 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-15를 얻었다.  About 50 g of Compound RD-15 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 33-9 was used instead of Compound 15-1.
수득된 화합물 RD-15에 대한 NMR 스펙트럼은 다음과 같다. The NMR spectrum of the obtained Compound RD-15 is as follows.
H NMR (CDCI3, 표준물질 TMS) 5(ppm): 8.04(2H, s), 7.56(4H, d), 7.51 (4H, d), 7.47(2H, d), 7.40(2H, d), 7.21 (2H, d), 6.27(1 H, dd), 6.05(1 H, dd), 5.59(1 H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(2H, t), 2.50(1 H, t), 1.60-0.90(41 H, m) 실시예 16: 화합물 RD-16의 합성 H NMR (CDCI3, Standard TMS) 5 (ppm): 8.04 (2H, s), 7.56 (4H, d), 7.51 (4H, d), 7.47 (2H, d), 7.40 (2H, d), 7.21 (2H, d), 6.27 (1 H, dd), 6.05 (1 H, dd), 5.59 (1 H, dd), 4.13 (4H, t), 4.05 (1 H, s), 3.97 (2H, t ), 2.50 (1 H, t), 1.60-0.90 (41 H, m) Example 16: Synthesis of Compound RD-16
Figure imgf000043_0001
Figure imgf000043_0001
도 4a 및 도 4b에 나타낸 Scheme에 따라 상기 화합물 RD-16을 합성하였다.  Compound RD-16 was synthesized according to the scheme shown in FIGS. 4a and 4b.
(화합물 34의 합성)  (Synthesis of Compound 34)
약 200g의 1 ,4-diiodobenzene, 약 3g의 Pd(PPh3)2CI2 About 200 g of 1,4-diiodobenzene, about 3 g of Pd (PPh 3 ) 2 CI 2
(Bis(triphenylphosphine)palladium(ll) dichloride), 약 5g의 Cul (copper iodide), 및 약 200ml의 Ν,Ν-디아이소프로필에틸아민 (N,N-diisopropylethylamine)을 테트라하이드로퓨란에 녹인 후, 여기에 약 50 g의 화합물 4(1,4- diethynylbenzene)를 녹인 테트라하이드로퓨란을 천천히 적가하였다. 이를 약 24 시간 동안 환류 교반한 후, 생성된 염을 필터링하여 제거하였고, 디클로로메탄과 물로 추출하였다. 추출된 유기층을 화학적으로 건조한 후, 컬럼 크로마토그래피로 정제하여 약 100g의 화합물 34를 얻었다. (Bis (triphenylphosphine) palladium (ll) dichloride), about 5 g of Cul (copper iodide), and about 200 ml of Ν, Ν-diaisopropylethylamine (N, N-diisopropylethylamine) were dissolved in tetrahydrofuran, and then To this was slowly added dropwise tetrahydrofuran dissolved about 50 g of compound 4 (1,4- diethynylbenzene). After stirring under reflux for about 24 hours, the resulting salt was filtered off and extracted with dichloromethane and water. The extracted organic layer was chemically dried and purified by column chromatography to obtain about 100 g of Compound 34.
(화합물 35의 합성)  (Synthesis of Compound 35)
약 100g의 화합물 34를 테트라하이드로퓨란에 녹인 후, 약 -78 °C 하에서 약 20 분 동안 교반하였다. 여기에 약 500ml의 n-butyl lithium in 2.5M hexane을 약 2 시간에 걸쳐 천천히 적가하였다. 이를 약 4 시간 동안 교반한 후, 여기에 약 100ml의 클로로트리메틸실란 (chlorotrimethylsilane)을 넣고 약 24 시간 동안 교반하였다. 그리고, 상기 반웅물을 에틸아세테이트와 물로 추출하였고, 유기층을 화학적으로 건조한 후, 컬럼 크로마토그래피로 정제하여 약 60g의 화합물 35를 얻었다. (화합물 36의 합성) About 100 g of Compound 34 was dissolved in tetrahydrofuran and stirred at about -78 ° C for about 20 minutes. About 500 ml of n-butyl lithium in 2.5M hexane was slowly added dropwise over about 2 hours. After stirring for about 4 hours, about 100ml of chlorotrimethylsilane was added thereto and stirred for about 24 hours. The reaction product was extracted with ethyl acetate and water, and the organic layer was chemically dried and purified by column chromatography to obtain about 60 g of compound 35. (Synthesis of Compound 36)
약 100g의 화합물 25(4-hydroxybenzoic acid)와 약 400g의 Ν,Ν- 디아이소프로필에틸아민 (N,N-diisopropylethylamine)을 디클로로메탄에 녹인 후, 약 0°C 하에서 약 200g의 메틸클로로메틸에테르 (methyl chloromethyl ether)를 천천히 적가하였다. 이를 약 24 시간 동안 교반한 후, 약 500ml의 암모늄클로라이드 (ammonium chloride)로 세척하였고, 디클로로메탄과 물로 추출하였다. 그리고, 추출된 유기층을 화학적으로 건조한 후, 용매를 제거하였다. 이를 통해 얻은 물질과 포타슘하이드록사이드 (potassium hydroxide) 수용액을 메탄올에 넣고 약 3 시간 동안 환류 교반하였다. 여기에 6N의 염산 (hydrochloric acid)을 넣어 석출시킨 뒤 필터링하여 용매를 제거하였다. 그리고, 핵산을 사용하여 여분의 이물질을 제거한 후, 약 48시간 동안 건조하여 약 110g의 화합물 36을 얻었다. About 100 g of compound 25 (4-hydroxybenzoic acid) and about 400 g of Ν, Ν-diisopropylethylamine (N, N-diisopropylethylamine) are dissolved in dichloromethane, and then about 200 g of methylchloromethyl ether at about 0 ° C. (methyl chloromethyl ether) was slowly added dropwise. It was stirred for about 24 hours, washed with about 500 ml of ammonium chloride, and extracted with dichloromethane and water. Then, the extracted organic layer was chemically dried, and then the solvent was removed. The obtained material and potassium hydroxide aqueous solution were added to methanol and stirred under reflux for about 3 hours. 6N hydrochloric acid was added thereto, precipitated, and filtered to remove the solvent. Then, the excess foreign material was removed using a nucleic acid, and dried for about 48 hours to obtain about 110 g of Compound 36.
(화합물 37의 합성)  (Synthesis of Compound 37)
약 100g의 화합물 36, 실시예 1에 따른 약 100g의 상기 화합물 3, 그리고 약 70g의 4- (디메틸아미노)피리딘 (4-(dimethylamino)pyridine))을 디클로로메탄에 녹인 후 약 30분간 교반하였다. 여기에 약 80g의 1-에틸-3- (3-디메틸아미노프로필)카보디이미드(1 - 1쒜-3-(3- dimethylaminopropyl)carbodiimide)를 첨가하여 약 24 시간 동안 교반한 후, 디클로로메탄과 물로 추출하였다. 추출된 유기층을 화학적으로 건조한 후, 컬럼 크로마토그래피로 정제하여 약 150g의 화합물 37을 얻었다.  About 100 g of Compound 36, about 100 g of Compound 3 according to Example 1, and about 70 g of 4- (dimethylamino) pyridine were dissolved in dichloromethane, followed by stirring for about 30 minutes. About 80 g of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (1-1 교반 -3- (3-dimethylaminopropyl) carbodiimide) was added thereto and stirred for about 24 hours, followed by dichloromethane. Extracted with water. The extracted organic layer was chemically dried and purified by column chromatography to obtain about 150 g of Compound 37.
(화합물 38의 합성 )  (Synthesis of Compound 38)
약 100g 의 화합물 37와 약 300ml의 6N 염산을 테트라하이드로퓨란에 녹인 후, 약 40 °C 하에서 약 24 시간 동안 교반하였다. 그리고, 디클로로메탄과 물로 추출한 후, 추출된 유기층을 화학적으로 건조하였고 컬럼 크로마토그래피로 정제하여 약 80g의 화합물 38을 얻었다. About 100 g of Compound 37 and about 300 ml of 6N hydrochloric acid were dissolved in tetrahydrofuran, and then stirred for about 24 hours at about 40 ° C. After extraction with dichloromethane and water, the extracted organic layer was chemically dried and purified by column chromatography to obtain about 80 g of Compound 38.
(화합물 39-1의 합성 )  (Synthesis of Compound 39-1)
화합물 10 대신 상기 화합물 38을 사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로, 약 100g의 화합물 39-1을 얻었다.  About 100 g of Compound 39-1 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that Compound 38 was used instead of Compound 10.
(화합물 40-1의 합성 ) 화합물 14-1 대신 상기 화합물 39-1을 사용하고, 화합물 6 대신 상기 화합물 35를 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 30g의 화합물 40-1을 얻었다. (Synthesis of Compound 40-1) About 30 g of Compound 40-1 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 39-1 was used instead of Compound 14-1 and Compound 35 was used instead of Compound 6. .
(화합물 RD-16의 합성)  (Synthesis of Compound RD-16)
화합물 15-1 대신 상기 화합물 40-1을 사용한 것을 제외하고 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 20g의 화합물 RD-16을 얻었다.  About 20 g of Compound RD-16 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 40-1 was used instead of Compound 15-1.
수득된 화합물 RD-16에 대한 NMR 스펙트럼은 다음과 같다. The NMR spectrum of the obtained Compound RD-16 is as follows.
H NMR (CDCI3> 표준물질 TMS) 5(ppm): 8.04(2H, d), 7.56(4H, d), 7.55(4H, d), 7.51 (4H, d), 7.40(2H, d), 6.27(1 H, d), 6.05(1 H, dd), 5.59(1 H, d), 4.13(2H, t), 4.05(1 H, s), 3.97(2H, t), 3.52(1 H, s), 1 .60-1 .12(48H, m) 실시예 17: 화합물 RD-17의 합성 H NMR (CDCI 3> standard TMS) 5 (ppm): 8.04 (2H, d), 7.56 (4H, d), 7.55 (4H, d), 7.51 (4H, d), 7.40 (2H, d), 6.27 (1 H, d), 6.05 (1 H, dd), 5.59 (1 H, d), 4.13 (2H, t), 4.05 (1 H, s), 3.97 (2H, t), 3.52 (1 H , s), 1.60-1 .12 (48H, m) Example 17 Synthesis of Compound RD-17
Figure imgf000045_0001
Figure imgf000045_0001
도 4a 및 도 4b에 나타낸 Scheme에 따라 상기 화합물 RD-17을 합성하였다.  Compound RD-17 was synthesized according to the scheme shown in FIGS. 4a and 4b.
(화합물 39-2의 합성)  (Synthesis of Compound 39-2)
화합물 10 대신 상기 화합물 38을 사용하고, 화합물 11-1 대신 화합물 1 1 -2(n=6) [(1 r,4r)-4-(((6- (acryloyloxy)hexyl)oxy)carbonyl)cyclohexanecarboxylic acid]를 사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로, 약 100g의 화합물 39-2를 얻었다. Compound 38 is used instead of compound 10, and compound 1 1 -2 (n = 6) [(1 r, 4r) -4-(((6- (acryloyloxy) hexyl) oxy) carbonyl) cyclohexanecarboxylic instead of compound 11-1 acid] About 100 g of Compound 39-2 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except.
(화합물 40-2의 합성)  (Synthesis of Compound 40-2)
화합물 14-1 대신 상기 화합물 39-2를 사용하고, 화합물 6 대신 상기 화합물 35를 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 70g의 화합물 40-2를 얻었다.  About 70 g of Compound 40-2 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 39-2 was used instead of Compound 14-1 and Compound 35 was used instead of Compound 6. .
(화합물 RD-17의 합성)  (Synthesis of Compound RD-17)
화합물 15-1 대신 상기 화합물 40-2를 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-17을 얻었다.  About 50 g of Compound RD-17 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 40-2 was used instead of Compound 15-1.
수득된 화합물 RD-17에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-17 is as follows.
1H NMR (CDCI3, 표준물질 TMS) 5(ppm): 8.04(2H, d), 7.56(4H, d), 7.55(4H, d), 7.51 (4H, d), 7.40(2H, d), 6.27(1 H, d), 6.05(1 H, dd), 5.59(1 H, d), 4.13(2H, t), 4.05(1 H, s), 3.97(2H, t), 3.52(1 H, s), 1 .60-1 .12(52H, m) 실시예 18: 화합물 RD-18의 합성 1 H NMR (CDCI 3 , Standard TMS) 5 (ppm): 8.04 (2H, d), 7.56 (4H, d), 7.55 (4H, d), 7.51 (4H, d), 7.40 (2H, d) , 6.27 (1 H, d), 6.05 (1 H, dd), 5.59 (1 H, d), 4.13 (2H, t), 4.05 (1 H, s), 3.97 (2H, t), 3.52 (1 H, s), 1.60-1 .12 (52H, m) Example 18: Synthesis of Compound RD-18
Figure imgf000046_0001
Figure imgf000046_0001
도 4a 및 도 4b에 나타낸 Scheme에 따라 상기 화합물 RD-18을 합성하였다.  Compound RD-18 was synthesized according to the scheme shown in FIGS. 4a and 4b.
(화합물 39-3의 합성 ) 화합물 10 대신 상기 화합물 38을 사용하고, 화합물 11 -1 대신 화합물 1 1 -3(n=8) [(1 r,4r)-4-(((8-(Synthesis of Compound 39-3) Compound 38 is used instead of compound 10, and compound 1 1 -3 (n = 8) [(1 r, 4r) -4-(((8-
(acryloyloxy)octyl)oxy)carbonyl)cyclohexanecarboxylic acid]을 사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로 약 100g의 화합물 39-3을 얻었다. About 100 g of Compound 39-3 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that (acryloyloxy) octyl) oxy) carbonyl) cyclohexanecarboxylic acid] was used.
(화합물 40-3의 합성 )  (Synthesis of Compound 40-3)
화합물 14-1 대신 상기 화합물 39-3을 사용하고, 화합물 6 대신 상기 화합물 35를 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 70g의 화합물 40-3을 얻었다.  About 70 g of Compound 40-3 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 39-3 was used instead of Compound 14-1 and Compound 35 was used instead of Compound 6. .
(화합물 RD-18의 합성 )  Synthesis of Compound RD-18
화합물 15-1 대신 상기 화합물 40-3을 사용한 것을 제외하고 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-18을 얻었다.  About 50 g of Compound RD-18 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 40-3 was used instead of Compound 15-1.
수득된 화합물 RD-18에 대한 NMR스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-18 is as follows.
1H NMR (CDCI3, 표준물질 TMS) 5(ppm): 8.04(2H, d), 7.56(4H, d),1 H NMR (CDCI 3 , Standard TMS) 5 (ppm): 8.04 (2H, d), 7.56 (4H, d),
7.55(4H, d), 7.51 (4H, d), 7.40(2H, d), 6.27(1 H, d), 6.05(1 H, dd), 5.59(1 H, d), 4.13(2H, t), 4.05(1 H, s), 3.97(2H, t), 3.52(1 H, s), 1 .60-1 .12(56H, m) 실시예 19: 화합물 RD-19의 합성 7.55 (4H, d), 7.51 (4H, d), 7.40 (2H, d), 6.27 (1 H, d), 6.05 (1 H, dd), 5.59 (1 H, d), 4.13 (2H, t ), 4.05 (1H, s), 3.97 (2H, t), 3.52 (1H, s), 1.60-1 .12 (56H, m) Example 19: Synthesis of Compound RD-19
Figure imgf000047_0001
Figure imgf000047_0001
도 5a 및 도 5b에 나타낸 Scheme에 따라 상기 화합물 RD-19 합성하였다. Compound RD-19 according to the scheme shown in FIGS. 5a and 5b Synthesized.
(화합물 41 -1의 합성 )  (Synthesis of Compound 41-1)
화합물 6 대신 실시예 16에 따른 화합물 35를 사용한 것을 제외하고, 실시예 4의 화합물 24-1의 합성과 동일한 방법으로 약 70g의 화합물 41 - 1을 얻었다.  About 70 g of Compound 41-1 was obtained by the same method as the synthesis of Compound 24-1 of Example 4, except that Compound 35 according to Example 16 was used instead of Compound 6.
(화합물 RD-19의 합성 )  Synthesis of Compound RD-19
화합물 24-1 대신 상기 화합물 41 -1을 사용한 것을 제외하고, 실시예 4의 화합물 RD-04의 합성과 동일한 방법으로, 약 30g의 화합물 RD-19를 얻었다.  About 30 g of Compound RD-19 was obtained by the same method as the synthesis of Compound RD-04 of Example 4, except that Compound 41-1 was used instead of Compound 24-1.
수득된 화합물 RD-19에 대한 NMR 스펙트럼은 다음과 같다. The NMR spectrum of the obtained Compound RD-19 is as follows.
H NMR (CDCI3, 표준물질 TMS) 5(ppm): 8.04(2H, d), 7.56(4H, d), 7.55(4H, d), 7.51 (4H, d), 7.47(2H, d), 7.40(2H, d), 7.21 (2H, d), 6.27(2H, dd), 6.05(2H, dd), 5.59(2H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(4H, t), 2.50(1 H, t), 1.60-1 .12(23H, m) H NMR (CDCI 3 , Standard TMS) 5 (ppm): 8.04 (2H, d), 7.56 (4H, d), 7.55 (4H, d), 7.51 (4H, d), 7.47 (2H, d), 7.40 (2H, d), 7.21 (2H, d), 6.27 (2H, dd), 6.05 (2H, dd), 5.59 (2H, dd), 4.13 (4H, t), 4.05 (1 H, s), 3.97 (4H, t), 2.50 (1 H, t), 1.60-1 .12 (23H, m)
Figure imgf000048_0001
Figure imgf000048_0001
도 5a 및 도 5b에 나타낸 Scheme에 따라 상기 화합물 RD-20을 합성하였다.  Compound RD-20 was synthesized according to the scheme shown in FIGS. 5a and 5b.
(화합물 41 -2의 합성 )  (Synthesis of Compound 41-2)
화합물 23-1 대신 실시예 5에 따른 화합물 23-2를 사용하고 화합물 6 대신 실시예 16에 따른 화합물 35를 사용한 것을 제외하고, 실시예 4의 화합물 24-1의 합성과 동일한 방법으로, 약 70g의 화합물 41 -2를 얻었다. Use of compound 23-2 according to Example 5 instead of compound 23-1 and compound About 70 g of Compound 41-2 was obtained by the same method as the synthesis of Compound 24-1 of Example 4, except that Compound 35 according to Example 16 was used instead of 6.
(화합물 RD-20의 합성 )  Synthesis of Compound RD-20
화합물 24-1 대신 상기 화합물 41-2를 사용한 것을 제외하고, 실시예 4의 화합물 RD-04의 합성과 동일한 방법으로, 약 50g의 화합물 RD-20을 얻었다.  About 50 g of Compound RD-20 was obtained by the same method as the synthesis of Compound RD-04 of Example 4, except that Compound 41-2 was used instead of Compound 24-1.
수득된 화합물 RD-20에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-20 is as follows.
1H NMR (CDCI3, 표준물질 TMS) 5(ppm): 8.04(2H, d), 7.56(4H, d), 7.55(4H, d), 7.51 (4H, d), 7.47(2H, d), 7.40(2H, d), 7.21 (2H, d), 6.27(2H, dd), 6.05(2H, dd), 5.59(2H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(4H, t), 2.50(1 H, t), 1 .60-1 .12(31 H, m) 실시예 21 : 화합물 RD-20의 합성 1 H NMR (CDCI 3 , Standard TMS) 5 (ppm): 8.04 (2H, d), 7.56 (4H, d), 7.55 (4H, d), 7.51 (4H, d), 7.47 (2H, d) , 7.40 (2H, d), 7.21 (2H, d), 6.27 (2H, dd), 6.05 (2H, dd), 5.59 (2H, dd), 4.13 (4H, t), 4.05 (1 H, s) , 3.97 (4H, t), 2.50 (1 H, t), 1.60-1 .12 (31 H, m) Example 21 Synthesis of Compound RD-20
Figure imgf000049_0001
Figure imgf000049_0001
도 5a 및 도 5b에 나타낸 Scheme에 따라 상기 화합물 RD-21을 합성하였다.  Compound RD-21 was synthesized according to the scheme shown in FIGS. 5a and 5b.
(화합물 41 -3의 합성 )  (Synthesis of Compound 41-3)
화합물 23-1 대신 실시예 6에 따른 화합물 23-3을 사용하고, 화합물 6 대신 실시예 16에 따른 화합물 35를 사용한 것을 제외하고, 실시예 4의 화합물 24-1의 합성과 동일한 방법으로, 약 70g의 화합물 41 -3올 얻었다.  About the same method as the synthesis of Compound 24-1 of Example 4, except that Compound 23-3 according to Example 6 is used instead of Compound 23-1, and Compound 35 according to Example 16 is used instead of Compound 6. 70 g of compound 41-3 was obtained.
(화합물 RD-21의 합성 ) Synthesis of Compound RD-21
Figure imgf000050_0001
Figure imgf000050_0001
ο ο
얻었다. Got it.
수득된 화합물 RD-22에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-22 is as follows.
1H NMR (CDCI3, 표준물질 TMS) 6(ppm): 8.04(2H, d), 7.56(4H, d) 7.55(4H, d), 7.51 (4H, d), 7.47(2H, d), 7.40(2H, d), 7.21 (2H, d), 6.27(1 H, dd) 6.05(1 H, dd), 5.59(1 H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(2H, t), 2.50(1 H, t) 1 .60-0.90(25H, m) 실시예 23: 화합물 RD-23의 합성 1 H NMR (CDCI 3 , Standard TMS) 6 (ppm): 8.04 (2H, d), 7.56 (4H, d) 7.55 (4H, d), 7.51 (4H, d), 7.47 (2H, d), 7.40 (2H, d), 7.21 (2H, d), 6.27 (1 H, dd) 6.05 (1 H, dd), 5.59 (1 H, dd), 4.13 (4H, t), 4.05 (1 H, s ), 3.97 (2H, t), 2.50 (1H, t) 1.60-0.90 (25H, m) Example 23: Synthesis of Compound RD-23
Figure imgf000051_0001
Figure imgf000051_0001
도 6a 및 도 6b에 나타낸 Scheme에 따라 상기 화합물 RD-23을 합성하였다.  Compound RD-23 was synthesized according to the scheme shown in FIGS. 6a and 6b.
(화합물 42-2의 합성)  (Synthesis of Compound 42-2)
화합물 14-1 대신 실시예 8에 따른 화합물 32-2(n=4, m=5)를 사용하고, 화합물 6 대신 실시예 16에 따른 화합물 35를 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 60g의 화합물 42-2를 얻었다.  Compound 15- of Example 1, except that Compound 32-2 according to Example 8 (n = 4, m = 5) was used instead of Compound 14-1 and Compound 35 according to Example 16 was used instead of Compound 6. About 60 g of Compound 42-2 was obtained by the same method as the synthesis of 1.
(화합물 RD-23의 합성 )  Synthesis of Compound RD-23
화합물 15-1 대신 상기 화합물 42-2를 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-23을 얻었다.  About 50 g of Compound RD-23 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 42-2 was used instead of Compound 15-1.
수득된 화합물 RD-23에 대한 NMR 스펙트럼은 다음과 같다. //: O ls/-8001s2Ml>dAV7 The NMR spectrum of the obtained Compound RD-23 is as follows. // : O l s / -800 1 s2Ml > dA V7
Ή)s寸 99 / Ή2) 08 ()Q (lz寸Eddᅳ.Ή ) s 寸 99 / Ή 2) 08 () Q (l z 寸 E dd ᅳ.
(ρρ¾(ρ Ή2ρ2ρ Ή)ζ^卜寸(ρ( Ζ寸ρ Ή)9Ζ寸Z7- - -. -· - -. -.
Figure imgf000052_0001
(ρρ (ί ¾ (ρ Ή 2 ρ2ρ Ή)卜ζ ^卜寸(ρ (Ζ寸ρ Ή) 9Ζ寸Z 7 - - -. - · - -. -.
Figure imgf000052_0001
((pp Ή9pp Ή)0 (p Ή3)(ρ工ζ2寸 Zζζ(ρ 97.工寸99卜 - " -. -.ᅳ · - " -ᅳ
Figure imgf000053_0001
(ϋ (工(pp Ή9pp Ή ) 0 (p Ή3) (ρ工ζ2寸Z ζ寸ζ寸(ρ 97.工寸99卜- "-. -. - eu -" - eu
Figure imgf000053_0001
ο O  ο O
CM CM
(PP(p工(p Ή)(p Ή)(p(201ζ2ζ寸 Z ZpHT.7 - -. -. - - - - - 0 Ή)(H Ή) Ή) Ή 22ζ6 εs寸寸 ειί6^9909/s - -..·(PP ( p 工( p Ή ) ( p Ή ) ( p (2 0 1 ζ 2 ζ 寸 Z ZpHT. 7 --.-.-----0 Ή ) (H Ή ) Ή ) Ή 22ζ 6 εs寸寸 ε ιί 6 ^ 99 0 9 / s-- .. ·
(工63)06009|E- -, 실시예 26: 화합물 RD-26의 합성 (工 63 ) 06009 | E-- , Example 26: Synthesis of Compound RD-26
Figure imgf000054_0001
Figure imgf000054_0001
도 6a 및 도 6b에 나타낸 Scheme에 따라 상기 화합물 RD-26을 합성하였다.  Compound RD-26 was synthesized according to the scheme shown in FIGS. 6a and 6b.
(화합물 42-5의 합성 )  (Synthesis of Compound 42-5)
화합물 14-1 대신 실시예 11에 따른 화합물 32-5(n=6, m=5)를 사용하고, 화합물 6 대신 실시예 16에 따른 화합물 35를 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 60g의 화합물 42-5를 얻었다.  Compound 15- of Example 1, except that Compound 32-5 (n = 6, m = 5) according to Example 11 was used instead of Compound 14-1 and Compound 35 according to Example 16 was used instead of Compound 6 About 60 g of compound 42-5 was obtained by the same method as the synthesis of 1.
(화합물 RD-26의 합성 )  Synthesis of Compound RD-26
화합물 15-1 대신 상기 화합물 42-5를 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-26을 얻었다.  About 50 g of Compound RD-26 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 42-5 was used instead of Compound 15-1.
수득된 화합물 RD-26에 대한 NMR 스펙트럼은 다음과 같다. The NMR spectrum of the obtained Compound RD-26 is as follows.
H NMR (CDCI3l 표준물질 TMS) δ(ρρηη): 8.04(2H, d), 7.56(4Η, d), 7.55(4Η, d), 7.51 (4Η, d), 7.47(2H, d), 7.40(2H, d), 7.21 (2H, d), 6.27(1 H, dd), 6.05(1 H, dd), 5.59(1 H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(2H, t), 2.50(1 H, t), 1.60-0.90(33H, m) 실시예 27: 화합물 RD-27의 합성
Figure imgf000055_0001
H NMR (CDCI 3l Standard TMS) δ (ρρηη): 8.04 (2H, d), 7.56 (4Η, d), 7.55 (4Η, d), 7.51 (4Η, d), 7.47 (2H, d), 7.40 (2H, d), 7.21 (2H, d), 6.27 (1 H, dd), 6.05 (1 H, dd), 5.59 (1 H, dd), 4.13 (4H, t), 4.05 (1 H, s ), 3.97 (2H, t), 2.50 (1H, t), 1.60-0.90 (33H, m) Example 27: Synthesis of Compound RD-27
Figure imgf000055_0001
도 6a 및 도 6b에 나타낸 Scheme에 따라 상기 화합물 RD-27을 합성하였다.  Compound RD-27 was synthesized according to the scheme shown in FIGS. 6a and 6b.
(화합물 42-6의 합성  (Synthesis of Compound 42-6
화합물 14-1 대신 실시예 12에 따른 화합물 32-6(n=6, m=7)을 사용하고, 화합물 6 대신 실시예 16에 따른 화합물 35를 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 60g의 화합물 42-6을 얻었다.  Compound 15- of Example 1, except that Compound 32-6 (n = 6, m = 7) according to Example 12 was used instead of Compound 14-1 and Compound 35 according to Example 16 was used instead of Compound 6 About 60 g of compound 42-6 was obtained by the same method as the synthesis of 1.
(화합물 RD-27의 합성)  (Synthesis of Compound RD-27)
화합물 15-1 대신 상기 화합물 42-6을 사용한 것을 제외하고 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로 약 50g의 화합물 RD-27을 얻었다.  About 50 g of Compound RD-27 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 42-6 was used instead of Compound 15-1.
수득된 화합물 RD-27에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-27 is as follows.
1H NMR (CDCI3, 표준물질 TMS) 5(ppm): 8.04(2H, d), 7.56(4H, d), 7.55(4H, d), 7.51 (4H, d), 7.47(2H, d), 7.40(2H, d), 7.21 (2H, d), 6.27(1 H, dd), 6.05(1 H, dd), 5.59(1 H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(2H, t), 2.50(1 H, t), 1 .60-0.90(37H, m) 실시예 28: 화합물 RD-28의 합성 1 H NMR (CDCI 3 , Standard TMS) 5 (ppm): 8.04 (2H, d), 7.56 (4H, d), 7.55 (4H, d), 7.51 (4H, d), 7.47 (2H, d) , 7.40 (2H, d), 7.21 (2H, d), 6.27 (1 H, dd), 6.05 (1 H, dd), 5.59 (1 H, dd), 4.13 (4H, t), 4.05 (1 H , s), 3.97 (2H, t), 2.50 (1H, t), 1.60-0.90 (37H, m) Example 28: Synthesis of Compound RD-28
Figure imgf000056_0001
Figure imgf000056_0001
도 6a 및 도 6b에 나타낸 Scheme에 따라 상기 화합물 RD-28을 합성하였다.  Compound RD-28 was synthesized according to the scheme shown in FIGS. 6a and 6b.
(화합물 42-7의 합성 )  (Synthesis of Compound 42-7)
화합물 14-1 대신 실시예 13에 따른 화합물 32-7(n=8, m=3)을 사용하고, 화합물 6 대신 실시예 16에 따른 화합물 35를 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 60g의 화합물 42-7을 얻었다.  Compound 15- of Example 1, except that Compound 32-7 according to Example 13 (n = 8, m = 3) was used instead of Compound 14-1 and Compound 35 according to Example 16 was used instead of Compound 6. About 60 g of compound 42-7 was obtained by the same method as the synthesis of 1.
(화합물 RD-28의 합성 )  (Synthesis of Compound RD-28)
화합물 15-1 대신 상기 화합물 42-7을 사용한 것을 제외하고, 실시예 Example 1, except that compound 42-7 was used instead of compound 15-1
1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-28을 얻었다. About 50 g of Compound RD-28 was obtained by the same method as the synthesis of Compound RD-01.
수득된 화합물 RD-28에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-28 is as follows.
1H NMR (CDCI3, 표준물질 TMS) 6(ppm): 8.04(2H, d), 7.56(4H, d), 7.55(4H, d), 7.51 (4H, d), 7.47(2H, d), 7.40(2H, d), 7.21 (2H, d), 6.27(1 H, dd), 6.05(1 H, dd), 5.59(1 H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(2H, t), 2.50(1 H, t), 1.60-0.90(33H, m) 실시예 29: 화합물 RD-29의 합성 1 H NMR (CDCI 3 , Standard TMS) 6 (ppm): 8.04 (2H, d), 7.56 (4H, d), 7.55 (4H, d), 7.51 (4H, d), 7.47 (2H, d) , 7.40 (2H, d), 7.21 (2H, d), 6.27 (1 H, dd), 6.05 (1 H, dd), 5.59 (1 H, dd), 4.13 (4H, t), 4.05 (1 H , s), 3.97 (2H, t), 2.50 (1H, t), 1.60-0.90 (33H, m) Example 29: Synthesis of Compound RD-29
Figure imgf000057_0001
Figure imgf000057_0001
도 6a 및 도 6b에 나타낸 Scheme에 따라 상기 화합물 RD-29를 합성하였다.  Compound RD-29 was synthesized according to the scheme shown in FIGS. 6a and 6b.
(화합물 42-8의 합성 )  (Synthesis of Compound 42-8)
화합물 14-1 대신 실시예 14에 따른 화합물 32-8(n=8, m=5)을 사용하고, 화합물 6 대신 실시예 16에 따른 화합물 35를 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 60g의 화합물 42-8을 얻었다.  Compound 15- of Example 1, except that compound 32-8 (n = 8, m = 5) according to Example 14 was used instead of Compound 14-1 and Compound 35 according to Example 16 was used instead of Compound 6 In the same manner as in the synthesis of 1, about 60 g of compound 42-8 was obtained.
(화합물 RD-29의 합성)  (Synthesis of Compound RD-29)
화합물 15-1 대신 상기 화합물 42-8을 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-29를 얻었다. ' About 50 g of Compound RD-29 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 42-8 was used instead of Compound 15-1. '
수득된 화합물 RD-29에 대한 NMR 스펙트럼은 다음과 같다. The NMR spectrum of the obtained Compound RD-29 is as follows.
H NMR (CDCI3, 표준물질 TMS) 5(ppm): 8.04(2H, d), 7.56(4H, d), 7.55(4H, d), 7.51 (4H, d), 7.47(2H, d), 7.40(2H, d), 7.21 (2H, d), 6.27(1 H, dd), 6.05(1 H, dd), 5.59(1 H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(2H, t), 2.50(1 H, t), 1.60-0.90(37H, m) 실시예 30: 화합물 RD-30의 합성
Figure imgf000058_0001
H NMR (CDCI 3 , Standard TMS) 5 (ppm): 8.04 (2H, d), 7.56 (4H, d), 7.55 (4H, d), 7.51 (4H, d), 7.47 (2H, d), 7.40 (2H, d), 7.21 (2H, d), 6.27 (1 H, dd), 6.05 (1 H, dd), 5.59 (1 H, dd), 4.13 (4H, t), 4.05 (1 H, s), 3.97 (2H, t), 2.50 (1H, t), 1.60-0.90 (37H, m) Example 30: Synthesis of Compound RD-30
Figure imgf000058_0001
도 6a 및 도 6b에 나타낸 Scheme에 따라 상기 화합물 RD-30을 합성하였다.  Compound RD-30 was synthesized according to the scheme shown in FIGS. 6a and 6b.
(화합물 42-9의 합성 )  (Synthesis of Compound 42-9)
화합물 14-1 대신 실시예 15에 따른 화합물 32-9(n=8, m=7)를 사용하고, 화합물 6 대신 실시예 16에 따른 화합물 35를 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 60g의 화합물 42-9를 얻었다.  Compound 15- of Example 1, except that Compound 32-9 (n = 8, m = 7) according to Example 15 was used instead of Compound 14-1 and Compound 35 according to Example 16 was used instead of Compound 6 In the same manner as in the synthesis of 1, about 60 g of compound 42-9 was obtained.
(화합물 RD-30의 합성)  (Synthesis of Compound RD-30)
화합물 15-1 대신 상기 화합물 42-9를 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-30을 얻었다.  About 50 g of Compound RD-30 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 42-9 was used instead of Compound 15-1.
수득된 화합물 RD-30에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-30 is as follows.
1H NMR (CDCI3, 표준물질 TMS) 5(ppm): 8.04(2H, d), 7.56(4H, d), 7.55(4H, d), 7.51 (4H, d), 7.47(2H, d), 7.40(2H, d), 7.21 (2H, d), 6.27(1 H, dd), 6.05(1 H, dd), 5.59(1 H, dd), 4.13(4H, t), 4.05(1 H, s), 3.97(2H, t), 2.50(1 H, t), 1.60-0.90(41 H, m) 실시예 31 : 화합물 RD-31의 합성
Figure imgf000059_0001
1 H NMR (CDCI 3 , Standard TMS) 5 (ppm): 8.04 (2H, d), 7.56 (4H, d), 7.55 (4H, d), 7.51 (4H, d), 7.47 (2H, d) , 7.40 (2H, d), 7.21 (2H, d), 6.27 (1 H, dd), 6.05 (1 H, dd), 5.59 (1 H, dd), 4.13 (4H, t), 4.05 (1 H , s), 3.97 (2H, t), 2.50 (1H, t), 1.60-0.90 (41H, m) Example 31 Synthesis of Compound RD-31
Figure imgf000059_0001
도 7a 및 도 7b에 나타낸 Scheme에 따라 상기 화합물 RD-31을 합성하였다.  Compound RD-31 was synthesized according to the scheme shown in FIGS. 7a and 7b.
(화합물 44-1의 합성 )  (Synthesis of Compound 44-1)
화합물 10 대신 실시예 16에 따른 화합물 38을 사용하고, 화합물 11- Compound 38 according to Example 16 was used instead of compound 10 and the compound 11-
1 대신 화합물 43-1 [(1 r,4r)-4-((4-Compound 43-1 [(1 r, 4r) -4-((4- instead of 1
(methacryloyloxy)butoxy)carbonyl)cyclohexanecarboxylic acid]을 사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로, 약 OOg의 화합물 44-1을 얻었다. About OOg Compound 44-1 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that (methacryloyloxy) butoxy) carbonyl) cyclohexanecarboxylic acid was used.
(화합물 45-1의 합성 )  (Synthesis of Compound 45-1)
화합물 14_1 대신 상기 화합물 44-1을 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 30g의 화합물 45-1을 얻었다.  About 30 g of Compound 45-1 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 44-1 was used instead of Compound 14_1.
(화합물 RD-31의 합성 )  (Synthesis of Compound RD-31)
화합물 15-1 대신 상기 화합물 45-1을 사용한 것을 제외하고, 실시예 Example, except that Compound 45-1 was used instead of Compound 15-1
1의 화합물 RD-01의 합성과 동일한 방법으로, 약 20g의 화합물 RD-31을 얻었다. About 20 g of Compound RD-31 was obtained by the same method as the synthesis of Compound RD-01.
수득된 화합물 RD-31에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-31 is as follows.
1H NMR (CDCI3, 표준물질 TMS) 5(ppm): 8.04(2H, d), 7.56(4H, d), 7.51(4H, d), 7.40(2H, d), 6.48(1 H, d), 6.40(1 H, d), 5.59(1 H, d), 4.13(2H, t), 4.05(1 H, s), 3.97(2H, t), 3.52(1 H, s), 2.01(3H, s), 1.60-1.12(48H, m) 실시예 32: 화합물 RD-32의 합성 1 H NMR (CDCI 3 , Standard TMS) 5 (ppm): 8.04 (2H, d), 7.56 (4H, d), 7.51 (4H, d), 7.40 (2H, d), 6.48 (1 H, d) , 6.40 (1 H, d), 5.59 (1 H, d), 4.13 (2H, t), 4.05 (1 H, s), 3.97 (2H, t), 3.52 (1 H, s), 2.01 (3H , s), 1.60-1.12 (48H, m) Example 32: Synthesis of Compound RD-32
Figure imgf000060_0001
Figure imgf000060_0001
도 7a 및 도 7b에 나타낸 Scheme에 따라 상기 화합물 RD-32를 합성하였다.  Compound RD-32 was synthesized according to the scheme shown in FIGS. 7a and 7b.
(화합물 44-2의 합성)  (Synthesis of Compound 44-2)
화합물 10 대신 실시예 16에 따른 화합물 38을 사용하고, 화합물 11- 1 대신 화합물 43-2 [(1 r,4r)-4-(((6- Compound 38 according to Example 16 is used instead of compound 10, and compound 43-2 [(1 r, 4r) -4-(((6-
(methacryloyloxy)hexyl)oxy)carbonyl)cyclohexanecarboxylic acid]를 사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로, 약 100g의 화합물 44-2를 얻었다. About 100 g of Compound 44-2 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that (methacryloyloxy) hexyl) oxy) carbonyl) cyclohexanecarboxylic acid was used.
(화합물 45-2의 합성 )  (Synthesis of Compound 45-2)
화합물 14-1 대신 상기 화합물 44-2를 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 70g의 화합물 45-2를 얻었다.  About 70 g of Compound 45-2 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 44-2 was used instead of Compound 14-1.
(화합물 RD-32의 합성)  (Synthesis of Compound RD-32)
화합물 15-1 대신 상기 화합물 45-2를 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-32를 얻었다.  About 50 g of Compound RD-32 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 45-2 was used instead of Compound 15-1.
수득된 화합물 RD-32에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-32 is as follows.
1H NMR (CDCI3, 표준물질 TMS) 5(ppm): 8.04(2H, d), 7.56(4H, d),1 H NMR (CDCI 3 , Standard TMS) 5 (ppm): 8.04 (2H, d), 7.56 (4H, d),
7.51 (4H, d), 7.40(2H, d), 6.48(1 H, d), 6.40(1 H, d), 5.59(1 H, d), 4.13(2H, t), 4.05(1 H, s), 3.97(2H, t), 3.52(1 H, s), 2.01 (3H, s), 1.60-1 .12(52H, m) 실시예 33: 화합물 RD-33의 합성 7.51 (4H, d), 7.40 (2H, d), 6.48 (1 H, d), 6.40 (1 H, d), 5.59 (1 H, d), 4.13 (2H, t), 4.05 (1 H, s), 3.97 (2H, t), 3.52 (1 H, s), 2.01 (3H, s), 1.60-1 .12 (52H, m) Example 33: Synthesis of Compound RD-33
Figure imgf000061_0001
Figure imgf000061_0001
도 7a 및 도 7b에 나타낸 Scheme에 따라 상기 화합물 RD-33을 합성하였다.  Compound RD-33 was synthesized according to the scheme shown in FIGS. 7a and 7b.
(화합물 44-3의 합성 )  (Synthesis of Compound 44-3)
화합물 10 대신 실시예 16에 따른 화합물 38을 사용하고, 화합물 11 - 1 대신 화합물 43-3 [(1 r,4r)-4-(((8- Compound 38 according to Example 16 is used instead of compound 10, and compound 43-3 [(1 r, 4r) -4-(((8-
(methacryloyloxy)octyl)oxy)carbonyl)cyclohexanecarboxylic acid]을 사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로, 약 100g의 화합물 44-3을 얻었다. About 100 g of Compound 44-3 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that (methacryloyloxy) octyl) oxy) carbonyl) cyclohexanecarboxylic acid was used.
(화합물 45-3의 합성 )  (Synthesis of Compound 45-3)
화합물 14-1 대신 상기 화합물 44-3을 사용한 것을 제외하고, 실시예 1의 화합물 15-1의. 합성과 동일한 방법으로, 약 70g의 화합물 45-3을 얻었다.  Compound 15-1 of Example 1, except that compound 44-3 was used instead of compound 14-1. About 70 g of Compound 45-3 was obtained by the same method as the synthesis.
(화합물 RD-33의 합성 )  (Synthesis of Compound RD-33)
화합물 15-1 대신 상기 화합물 45-3을 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-33을 얻었다.  About 50 g of Compound RD-33 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 45-3 was used instead of Compound 15-1.
수득된 화합물 RD-33에 대한 NMR 스펙트럼은 다음과 같다. The NMR spectrum of the obtained Compound RD-33 is as follows.
H NMR (CDCI3, 표준물질 TMS) δ(ρρηΊ): 8.04(2H, d), 7.56(4H, d), 7.51 (4H, d), 7.40(2H, d), 6.48(1 H, d), 6.40(1 H, d), 5.59(1 H, d), 4.13(2H, t), 4.05(1 H, s), 3.97(2H, t), 3.52(1 H, s), 2.01(3H, s), 1.60-1.12(56H, m) 실시예 34: 화합물 RD-34의 합성 H NMR (CDCI3, Standard TMS) δ (ρρηΊ): 8.04 (2H, d), 7.56 (4H, d), 7.51 (4H, d), 7.40 (2H, d), 6.48 (1 H, d), 6.40 (1 H, d), 5.59 (1 H, d), 4.13 (2H, t), 4.05 (1H, s), 3.97 (2H, t), 3.52 (1H, s), 2.01 (3H, s), 1.60-1.12 (56H, m) Example 34: Synthesis of Compound RD-34
Figure imgf000062_0001
Figure imgf000062_0001
도 8a 및 도 8b에 나타낸 Scheme에 따라 상기 화합물 RD-34를 합성하였다.  Compound RD-34 was synthesized according to the scheme shown in FIGS. 8a and 8b.
(화합물 47-1의 합성 )  (Synthesis of Compound 47-1)
화합물 10 대신 실시예 16에 따른 화합물 38을 사용하고, 화합물 11- 1 대신 화합물 46-1 [(1 r,4r)-4-((4- (ci n na moyloxy)butoxy)ca rbo nyl )cyclo hexa neca rboxyl ic add]을 사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로, 약 100g의 화합물 47-1을 얻었다.  Compound 38 according to Example 16 was used instead of compound 10, and compound 46-1 [(1 r, 4r) -4-((4- (ci n na moyloxy) butoxy) ca rbo nyl) cyclo instead of compound 11-1 About 100 g of Compound 47-1 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that hexa neca rboxyl ic add] was used.
(화합물 48-1의 합성 )  (Synthesis of Compound 48-1)
화합물 14-1 대신 상기 화합물 47-1을 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 30g의 화합물 48-1을 얻었다.  About 30 g of Compound 48-1 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 47-1 was used instead of Compound 14-1.
(화합물 RD-34의 합성 )  Synthesis of Compound RD-34
화합물 15-1 대신 상기 화합물 48-1을 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 20g의 화합물 RD-34를 얻었다.  About 20 g of Compound RD-34 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 48-1 was used instead of Compound 15-1.
수득된 화합물 RD-34에 대한 NMR스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-34 is as follows.
1H NMR (CDCI3> 표준물질 TMS) 5(ppm): 8.04(2H, d), 7.60(2H, d), 7.56(4H, d), 7.51 (4H, d), 7.48(1 H, d), 7.40(4H, d), 7.33(1 H, t), 6.31 (1 H, d) 4.13(2H, t), 4.05(1 H, s), 3.97(2H, t), 3.52(1 H, s), 1 .60-1 .12(48H, m) 실시예 35: 화합물 RD-35의 합성 1 H NMR (CDCI 3> standard TMS) 5 (ppm): 8.04 (2H, d), 7.60 (2H, d), 7.56 (4H, d), 7.51 (4H, d), 7.48 (1 H, d), 7.40 (4H, d), 7.33 (1 H, t), 6.31 (1 H, d) 4.13 (2H, t) , 4.05 (1H, s), 3.97 (2H, t), 3.52 (1H, s), 1.60-1 .12 (48H, m) Example 35: Synthesis of Compound RD-35
Figure imgf000063_0001
Figure imgf000063_0001
도 8a 및 도 8b에 나타낸 Scheme에 따라 상기 화합물 RD-35를 합성하였다.  Compound RD-35 was synthesized according to the scheme shown in FIGS. 8a and 8b.
(화합물 47-2의 합성 )  (Synthesis of Compound 47-2)
화합물 10 대신 실시예 16에 따른 화합물 38을 사용하고, 화합물 11 - 1 대신 화합물 46-2 [(i r,4r)-4-(((6- Compound 38 according to Example 16 is used instead of compound 10, and compound 46-2 [(i r, 4r) -4-(((6-
(cinnamoyloxy)hexyl)oxy)carbonyl)cyclohexanecarboxylic acid]를 .사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로, 약 100g의 화합물 47-2를 얻었다. About 100 g of Compound 47-2 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that (cinnamoyloxy) hexyl) oxy) carbonyl) cyclohexanecarboxylic acid] was used.
(화합물 48-2의 합성 )  (Synthesis of Compound 48-2)
화합물 14-1 대신 상기 화합물 47-2를 사용한 것을 제외하고, 실시예 Example 1 except that compound 47-2 was used instead of compound 14-1.
1의 화합물 15-1의 합성과 동일한 방법으로, 약 70g의 화합물 48-2를 얻었다. About 70 g of Compound 48-2 was obtained by the same method as the synthesis of Compound 15-1 of 1.
(화합물 RD-35의 합성)  (Synthesis of Compound RD-35)
화합물 15-1 대신 상기 화합물 48-2를 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-35를 얻었다.  About 50 g of Compound RD-35 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 48-2 was used instead of Compound 15-1.
수득된 화합물 RD-35에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-35 is as follows.
1H NMR (CDCI3> 표준물질 TMS) 5(ppm): 8.04(2H, d), 7.60(2H, d), 7.56(4H, d), 7.51 (4H, d), 7.48(1 H, d), 7.40(4H, d), 7.33(1 H, t), 6.31 (1 H, d) 4.13(2H, t), 4.05(1 H, s), 3.97(2H, t), 3.52(1 H, s), 1 .60-1.12(52H, m) 실시예 36: 화합물 RD-36의 합성 1 H NMR (CDCI 3> standard TMS) 5 (ppm): 8.04 (2H, d), 7.60 (2H, d), 7.56 (4H, d), 7.51 (4H, d), 7.48 (1 H, d), 7.40 (4H, d), 7.33 (1 H, t), 6.31 (1 H, d) 4.13 (2H, t) , 4.05 (1H, s), 3.97 (2H, t), 3.52 (1H, s), 1.60-1.12 (52H, m) Example 36: Synthesis of Compound RD-36
Figure imgf000064_0001
Figure imgf000064_0001
도 8a 및 도 8b에 나타낸 Scheme에 따라 상기 .화합물 RD-36을 합성하였다.  Compound RD-36 was synthesized according to the scheme shown in FIGS. 8a and 8b.
(화합물 47-3의 합성)  (Synthesis of Compound 47-3)
화합물 10 대신 실시예 16에 따른 화합물 38을 사용하고, 화합물 11 - 1 대신 화합물 46-3 [(i r,4r)-4-(((8- Compound 38 according to Example 16 is used instead of compound 10, and compound 46-3 [(i r, 4r) -4-(((8-
(cinnamoyloxy)octyl)oxy)carbonyl)cyclohexanecarboxylic add]을 .사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로, 약 100g의 화합물 47-3을 얻었다. (cinnamoyloxy) octyl) oxy) carbonyl) cyclohexanecarboxylic add] . About 100 g of Compound 47-3 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that it was used.
(화합물 48-3의 합성 )  (Synthesis of Compound 48-3)
화합물 14-1 대신 상기 화합물 47-3을 사용한 것을 제외하고, 실시예 Example, except that compound 47-3 was used instead of compound 14-1
1의 화합물 15-1의 합성과 동일한 방법으로, 약 70g의 화합물 48-3을 얻었다. About 70 g of Compound 48-3 was obtained by the same method as the synthesis of Compound 15-1 of 1.
(화합물 RD-36의 합성 )  Synthesis of Compound RD-36
화합물 15-1 대신 상기 화합물 48-3을 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-36을 얻었다.  About 50 g of Compound RD-36 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 48-3 was used instead of Compound 15-1.
수득된 화합물 RD-36에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-36 is as follows.
1H NMR (CDCI3, 표준물질 TMS) 5(ppm): 8.04(2H, d), 7.60(2H, d), 7.56(4H, d), 7.51 (4H, d), 7.48(1 H, d), 7.40(4H, d), 7.33(1 H, t), 6.31 (1 H, d) 4.13(2H, t), 4.05(1 H, s), 3.97(2H, t), 3.52(1 H, s), 1 .60-1 .12(56H, m) 실시예 37: 화합물 RD-37의 합성 1 H NMR (CDCI 3 , Standard TMS) 5 (ppm): 8.04 (2H, d), 7.60 (2H, d), 7.56 (4H, d), 7.51 (4H, d), 7.48 (1 H, d), 7.40 (4H, d), 7.33 (1 H, t), 6.31 (1 H, d) 4.13 (2H, t) , 4.05 (1H, s), 3.97 (2H, t), 3.52 (1H, s), 1.60-1 .12 (56H, m) Example 37: Synthesis of Compound RD-37
Figure imgf000065_0001
Figure imgf000065_0001
도 9a 및 도 9b에 나타낸 Scheme에 따라 상기 화합물 RD-37를 합성하였다.  Compound RD-37 was synthesized according to the scheme shown in FIGS. 9a and 9b.
(화합물 50의 합성 )  (Synthesis of Compound 50)
화합물 7 대신 화합물 49 (6-hydroxy-2-naphthoic acid)를 사용한 것을 제외하고, 실시예 1의 화합물 8의 합성과 동일한 방법으로, 약 110g의 화합물 50을 얻었다.  About 110 g of Compound 50 was obtained by the same method as the synthesis of Compound 8 of Example 1, except that Compound 49 (6-hydroxy-2-naphthoic acid) was used instead of Compound 7.
(화합물 51의 합성)  (Synthesis of Compound 51)
화합물 8 대신 상기 화합물 50을 사용한 것을 제외하고, 실시예 1의 화합물 9의 합성과 동일한 방법으로, 약 150g의 화합물 51을 얻었다.  About 150 g of Compound 51 was obtained by the same method as the synthesis of Compound 9 of Example 1, except that Compound 50 was used instead of Compound 8.
(화합물 52의 합성 )  (Synthesis of Compound 52)
화합물 9 대신 상기 화합물 51을 사용한 것을 제외하고, 실시예 1의 화합물 10의 합성과 동일한 방법으로, 약 80g의 화합물 52를 얻었다.  About 80 g of Compound 52 was obtained by the same method as the synthesis of Compound 10 of Example 1, except that Compound 51 was used instead of Compound 9.
(화합물 53-1의 합성)  (Synthesis of Compound 53-1)
화합물 10 대신 상기 화합물 52를 사용한 것을 제외하고, 실시예 1의 화합물 12-1의 합성과 동일한 방법으로, 약 100g의 화합물 53-1을 얻었다.  About 100 g of Compound 53-1 was obtained by the same method as the synthesis of Compound 12-1 of Example 1, except that Compound 52 was used instead of Compound 10.
(화합물 54-1의 합성 )  (Synthesis of Compound 54-1)
화합물 14-1 대신 상기 화합물 53-1을 사용한 것을 제외하고, 실시예
Figure imgf000066_0001
)p)( ()(p) (3,,>,,C dΗ NI¾CDIm: 8.681 s 8HV TKls 5 H.211
Example, except that Compound 53-1 was used instead of Compound 14-1
Figure imgf000066_0001
) p) (() (p) (3 ,,> ,, C dΗ N I ¾CD I m : 8.68 1 s 8HV TK l s 5 H.2 11
Figure imgf000067_0001
ΐ--. "
Figure imgf000067_0001
ΐ--. "
6£rns- 6 £ rns-
LO o 1—1 1 LO o 1—1 1
(화합물 54-3의 합성 ) (Synthesis of Compound 54-3)
화합물 14-1 대신 상기 화합물 53-3을 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 70g의 화합물 54-3을 얻었다.  About 70 g of Compound 54-3 was obtained by the same method as the synthesis of Compound 15-1 of Example 1, except that Compound 53-3 was used instead of Compound 14-1.
(화합물 RD-39의 합성 )  Synthesis of Compound RD-39
화합물 15-1 대신 상기 화합물 54-3을 사용한 것을 제외하고, 실시예 1의 화합물 RD-01의 합성과 동일한 방법으로, 약 50g의 화합물 RD-39를 얻었다.  About 50 g of Compound RD-39 was obtained by the same method as the synthesis of Compound RD-01 of Example 1, except that Compound 54-3 was used instead of Compound 15-1.
수득된 화합물 RD-39에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-39 is as follows.
1H NMR (CDCI3, 표준물질 TMS) 5(ppm): 8.68(1 H, s), 8.21 (1 H, d), 8.18(1 H, d), 7.98(1 H, s), 7.97(1 H, d), 7.56(4H, d), 7.51 (4H, d), 7.48(1 H, d), 6.27(1 H, d), 6.05(1 H, dd), 5.59(1 H, d), 4.13(2H, t), 4.05(1 H, s), 3.97(2H, t), 3.52(1 H, s), 1 .60-1 .12(56H, m) 1 H NMR (CDCI 3 , Standard TMS) 5 (ppm): 8.68 (1 H, s), 8.21 (1 H, d), 8.18 (1 H, d), 7.98 (1 H, s), 7.97 ( 1 H, d), 7.56 (4H, d), 7.51 (4H, d), 7.48 (1 H, d), 6.27 (1 H, d), 6.05 (1 H, dd), 5.59 (1 H, d ), 4.13 (2H, t), 4.05 (1 H, s), 3.97 (2H, t), 3.52 (1 H, s), 1.60-1 .12 (56H, m)
Figure imgf000068_0001
Figure imgf000068_0001
도 10에 나타낸 Scheme에 따라 상기 화합물 RD-40을 합성하였다. 즉, 화합물 14-1 대신 실시예 16에 따른 화합물 39-1을 사용하고, 화합물 6 대신 약 10g의 아이오도벤젠 (iodobenzene)을 사용한 것을 제외하고, 실시예 1의 화합물 15-1의 합성과 동일한 방법으로, 약 30g의 화합물 RD-40을 얻었다.  Compound RD-40 was synthesized according to the scheme shown in FIG. 10. That is, the same as the synthesis of Compound 15-1 of Example 1, except that Compound 39-1 according to Example 16 was used instead of Compound 14-1, and about 10 g of iodobenzene was used instead of Compound 6. By method, about 30 g of compound RD-40 was obtained.
수득된 화합물 RD-40에 대한 NMR 스펙트럼은 다음과 같다.  The NMR spectrum of the obtained Compound RD-40 is as follows.
1H NMR (CDCI3, 표준물질 TMS) 5(ppm): 8.04(2H, d), 7.55(2H, d), 7.43(2H, d), 7.43(2H, d), 7.40(2H, d), 6.27(1 H, d), 6.05(1 H, dd), 5.59(1 H, d), 4.13(2H, t), 3.97(2H, t), 1.60-1.12(48H, m)
Figure imgf000069_0001
1 H NMR (CDCI3, Standard TMS) 5 (ppm): 8.04 (2H, d), 7.55 (2H, d), 7.43 (2H, d), 7.43 (2H, d), 7.40 (2H, d), 6.27 (1 H, d), 6.05 (1 H, dd), 5.59 (1 H, d), 4.13 (2H, t), 3.97 (2H, t), 1.60-1.12 (48 H, m)
Figure imgf000069_0001
4.13(2H, t), 3.97(2H, t), 1.60-1 .12(56H, m) 제조예 1 4.13 (2H, t), 3.97 (2H, t), 1.60-1 .12 (56H, m) Preparation Example 1
(광학 소자용 조성물의 제조)  (Production of Composition for Optical Device)
실시예 18에 따른 RD-18 화합물 100 중량부에 대하여, 하기 화학식 a로 표시되는 메소제닉 화합물 약 1 12:5 중량부, 하기 화학식 b로 표시되는 메소제닉 화합물 약 37.5 중량부, 개시제 (Irgacure 907, Ciba-Geigy사) 약 12.5 증량부, 산화 방지제 (Irganox 1076, Ciba-Geigy사) 약 0.27 중량부, 불소계 계면활성제 (FC-171 , 3M사) 약 3.33 중량부, 및 를루엔 약 1000 중량부를 흔합하여 광학 소자용 조성물 (고형분 함량 약 21 중량 %)을 준비하였다.  About 100 parts by weight of the RD-18 compound according to Example 18, about 12: 5 parts by weight of the mesogenic compound represented by Formula (a), about 37.5 parts by weight of the mesogenic compound represented by Formula (b), and initiator (Irgacure 907 , Ciba-Geigy) about 12.5 parts by weight, antioxidant (Irganox 1076, Ciba-Geigy) about 0.27 parts by weight, fluorine-based surfactant (FC-171, 3M) about 3.33 parts by weight, and about 1000 parts by weight of In combination, a composition for an optical device (solid content of about 21% by weight) was prepared.
[화학식 a] ᅳ [Formula a] ᅳ
Figure imgf000070_0001
Figure imgf000070_0001
' (위상차 필름의 제조) (Preparation of retardation film)
상기 조성물을, 롤 코팅 방법에 의해, 노보넨계 광배향물질이 코팅된 The composition, by the roll coating method, the norbornene-based photo-alignment material is coated
TAC 필름 위에 코팅한 후, 약 80 °C 하에서 2 분 동안 건조하여 액정 분자가 배향되도록 하였다. 그 후, 상기 필름에 200 mW/citf의 고압 수은등을 광원으로 하는 비편광 UV를 조사하여 액정의 배향 상태를 고정화 시켜는 방법으로 위상차 필름을 제조하였다. After coating on the TAC film, it was dried for 2 minutes at about 80 ° C to align the liquid crystal molecules. Thereafter, a retardation film was prepared by irradiating non-polarized UV light having a high pressure mercury lamp of 200 mW / citf as a light source to fix the alignment state of the liquid crystal.
제조된 위상차 필름의 정량적인 위상차 값은 Axoscan(Axomatrix사 제조)을 이용하여 측정하였으며, 이때 독립적으로 두께를 측정하고, 수득된 값으로부터 위상차 값 (Arvd)을 구하였다. 그 결과, Arrd(450nm), An d(550nm), 및 Arvd(650nm)이 각각 103, 1 10, 및 1 14로 측정되었다. 따라서, An(450nm)/An(550nm) 값은 0.94이고, An(650nm)/An(550nm) 값은 1 .04로서, 상기 식 I 및 식 Iᅵ에 따른 조건을 만족하는 것으로 확안되었다. 제조예 2 The quantitative retardation value of the prepared retardation film was measured using Axoscan (manufactured by Axomatrix Co., Ltd.). At this time, the thickness was measured independently, and the retardation value (Arvd) was obtained from the obtained value. As a result, Arrd (450 nm), An d (550 nm) and Arvd (650 nm) were measured to be 103, 1 10, and 1 14, respectively. Therefore, An (450 nm) / An (550 nm) value is 0.94, An (650 nm) / An (550 nm) value is 1.0, it was confirmed that the conditions according to the formulas I and I I above. Preparation 2
(광학 소자용 조성물의 제조)  (Production of Composition for Optical Device)
실시예 18에 따른 RD-18 화합물 75 중량부에 대하여, 상기 화학식 a로 표시되는 메소제닉 화합물 약 1 12.5 중량부, 상기 화학식 b로 표시되는 메소제닉 화합물 약 62.5 중량부, 개시제 (Irgacure 907, Ciba-Geigy사) 약 12.5 중량부, 산화 방지제 (Irganox 1076, Ciba-Geigy사) 약 0.27 중량부, 불소계 계면활성제 (FC-171 , 3M사) 약 3.33 중량부, 및 를루엔 약 1000 중량부를 흔합하여 광학 소자용 조성물 (고형분 함량 약 21 증량0 /。)을 준비하였다. About 75 parts by weight of the RD-18 compound according to Example 18, about 12.5 parts by weight of the mesogenic compound represented by the formula (a), about 62.5 parts by weight of the mesogenic compound represented by the formula (b), an initiator (Irgacure 907, Ciba -Geigy) about 12.5 parts by weight, antioxidant (Irganox 1076, Ciba-Geigy) about 0.27 parts by weight, fluorine-based surfactants (FC-171, 3M) about 3.33 parts by weight, and about 1000 parts by weight of The composition for optical elements (solid content about 21 weight increase 0 /.) Was prepared.
(위상차 필름의 제조)  (Manufacture of Retardation Film)
상기 조성물을, 를 코팅 방법에 의해, 노보넨계 광배향물질이 코팅된 The composition is coated with a norbornene-based photo-alignment material, by the coating method
TAC 필름 위에 코팅한 후, 약 80 °C 하에서 2 분 동안 건조하여 액정 분자가 배향되도록 하였다. 그 후, 상기 필름에 200 mW/cuf의 고압 수은등을 광원으로 하는 비편광 UV를 ¾사하여 액정의 배향 상태를 고정화 시켜는 방법으로 위상차 필름을 제조하였다. After coating on the TAC film, it was dried for 2 minutes at about 80 ° C to align the liquid crystal molecules. Thereafter, a retardation film was prepared by a method of fixing non-polarized UV light having a high pressure mercury lamp of 200 mW / cuf as a light source to the film to fix the alignment state of the liquid crystal.
제조된 위상차 필름의 정량적인 위상차 값은 Axoscan(Axomatrix사 제조)을 이용하여 측정하였으며, 이때 독립적으로 두께를 측정하고, 수득된 값으로부터 위상차 값 (Arvd)을 구하였다. 그 결과, zovd(450nm), An d(550nm), 및 An'd(650nm)이 각각 115, 120, 및 124로 측정되었다. 따라서, Δη(450ηηπ)/Δη(550ηιη) 값은 0.96이고, An(650nm)/An(550nm) 값은 1.03으로서, 상기 식 I 및 식 II에 따른 조건을 만족하는 것으로 확인되었다. 제조예 3  The quantitative retardation value of the prepared retardation film was measured using Axoscan (manufactured by Axomatrix Co., Ltd.). At this time, the thickness was measured independently, and the retardation value (Arvd) was obtained from the obtained value. As a result, zovd (450 nm), An d (550 nm), and An'd (650 nm) were measured to be 115, 120, and 124, respectively. Therefore, it was confirmed that the value of Δη (450ηηπ) / Δη (550ηιη) was 0.96, and the value of An (650nm) / An (550nm) was 1.03, which satisfies the conditions according to the above formulas I and II. Preparation Example 3
(광학 소자용 조성물의 제조)  (Production of Composition for Optical Device)
실시예 40에 따른 RD-40 화합물 100 중량부에 대하여, 상기 화학식 a로 표시되는 메소제닉 화합물 약 1 12.5 중량부, 상기 화학식 b로 표시되는 메소제닉 화합물 약 37.5 중량부, 개시제 (Irgacure 907, Ciba-Geigy사) 약 12.5 중량부, 산화 방지제 (Irganox 1076, Ciba-Geigy사) 약 0.27 중량부, 불소계 계면활성제 (FC-rn , 3M사) 약 3.33 중량부 및 를루엔 약 1000 중량부를 흔합하여 광학 소자용 조성물 (고형분 함량 약 21 중량0 /。)을 준비하였다. About 100 parts by weight of the RD-40 compound according to Example 40, about 12.5 parts by weight of the mesogenic compound represented by Formula (a), represented by Formula (b) About 37.5 parts by weight of mesogenic compound, About 12.5 parts by weight of initiator (Irgacure 907, Ciba-Geigy), About 0.27 parts by weight of antioxidant (Irganox 1076, Ciba-Geigy), Fluorine-based surfactant (FC-rn, 3M) About 3.33 parts by weight and about 1000 parts by weight of toluene were mixed to prepare a composition for an optical device (solid content of about 21 weight 0 /.).
(위상차 필름의 제조)  (Manufacture of Retardation Film)
상기 조성물을ᅤ 롤 코팅 방법에 의해, 노보넨계 광배향물질이 코팅된 TAC 필름 위에 코팅한 후, 약 80 °C 하에서 2 분 동안 건조하여 액정 분자가 배향되도록 하였다. 그 후, 상기 필름에 200 mW/cuf의 고압 수은등을 광원으로 하는 비편광 UV를 조사하여 액정의 배향 상태를 고정화 시켜는 방법으로 위상차 필름을 제조하였다. The composition was coated on a TAC film coated with a norbornene-based photo-alignment material by a roll coating method, and then dried at about 80 ° C. for 2 minutes to align the liquid crystal molecules. Thereafter, a retardation film was produced by irradiating non-polarized UV light having a high pressure mercury lamp of 200 mW / cuf as a light source to fix the alignment state of the liquid crystal.
제조된 위상차 필름의 정량적인 위상차 값은 Axoscan(Axomatrix사 제조)을 이용하여 측정하였으며, 이때 독립적으로 두께를 측정하고, 수득된 값으로부터 위상차 값 (Aird)을 구하였다. 그 결과, An'd(450nm), An d(550nm), 및 An d(650nm)이 각각 1 10, 1 13, 및 " 5로 측정되었다. 따라서, An(450nm)/An(550nm) 값은 0.97이고, An(650nm)/An(550nm) 값은 1 .02로서, 상기 식 I 및 식 II에 따른 조건을 만족하는 것으로 확인되었다. 제조예 4  The quantitative retardation value of the prepared retardation film was measured using Axoscan (manufactured by Axomatrix Co., Ltd.). At this time, the thickness was measured independently, and the retardation value (Aird) was obtained from the obtained value. As a result, An'd (450 nm), An d (550 nm), and An d (650 nm) were measured to be 1 10, 1 13, and "5. Therefore, the value of An (450 nm) / An (550 nm) was 0.97 and An (650 nm) / An (550 nm) value of 1.0, which was confirmed to satisfy the conditions according to the formula (I) and formula (II).
(광학 소자용 조성물의 제조)  (Production of Composition for Optical Device)
실시예 40에 따른 RD-40 화합물 75 중량부에 대하여, 상기 화학식 a로 표시되는 메소제닉 화합물 약 1 12.5 중량부, 상기 화학식 b로 표시되는 메소제닉 화합물 약 62.5 중량부, 개시제 (Irgacure 907, Ciba-Geigy사) 약 12.5 중량부, 산화 방지제 (Irganox 1076, Ciba-Geigy사) 약 0.27 중량부, 불소계 계면활성제 (FC-171 , 3M사) 약 3.33 중량부, 및 를루엔 약 1000 중량부를 흔합하여 광학 소자용 조성물 (고형분 함량 약 21 중량0 /。)을 준비하였다. About 75 parts by weight of the RD-40 compound according to Example 40, about 12.5 parts by weight of the mesogenic compound represented by Formula (a), about 62.5 parts by weight of the mesogenic compound represented by Formula (b), and initiator (Irgacure 907, Ciba -Geigy) about 12.5 parts by weight, antioxidant (Irganox 1076, Ciba-Geigy) about 0.27 parts by weight, fluorine-based surfactants (FC-171, 3M) about 3.33 parts by weight, and about 1000 parts by weight of The composition for optical elements (solid content about 21 weight 0 /.) Was prepared.
(위상차 필름의 제조)  (Manufacture of Retardation Film)
상기 조성물을, 롤 코팅 방법에 의해, 노보넨계 광배향물질이 코팅된 TAC 필름 위에 코팅한 후, 약 80 °C 하에서 2 분 동안 건조하여 액정 분자가 배향되도록 하였다. 그 후, 상기 필름에 200 mW/cuf의 고압 수은등을 광원으로 하는 비편광 UV를 조사하여 액정의 배향 상태를 고정화 시켜는 방법으로 위상차 필름을 제조하였다. The composition was coated on a TAC film coated with a norbornene-based photoalignment material by a roll coating method, and then dried at about 80 ° C. for 2 minutes to form a liquid crystal. The molecules were allowed to be oriented. Thereafter, a retardation film was produced by irradiating non-polarized UV light having a high pressure mercury lamp of 200 mW / cuf as a light source to fix the alignment state of the liquid crystal.
제조된 위상차 필름의 정량적인 위상차 값은 Axoscan(Axomatrix사 제조)을 이용하여 측정하였으며, 이때 독립적으로 두께를 측정하고, 수득된 값으로부터 위상차 값 (Arvd)을 구하였다. 그 결과, An d(450nm), An d(550nm), 및 An d(650nm)이 각각 125, 126, 및 127로 측정되었다. 따라서, Δη(450ηηι)/Δη(550ηηι) 값은 0.99이고, An(650nm)/An(550nm) 값은 The quantitative retardation value of the prepared retardation film was measured using Axoscan (manufactured by Axomatrix Co., Ltd.). At this time, the thickness was measured independently, and the retardation value (Arvd) was obtained from the obtained value. As a result, An d (450 nm), An d (550 nm), and An d (650 nm) were measured to be 125, 126, and 127, respectively. Thus, the Δη (450ηηι) / Δη (550ηηι) values are 0.99 and the An (650 nm) / An (550 nm) values are
1. 로서, 상기 식 I 및 식 ᅵᅵ에 따른 조건을 만족하는 것으로 확인되었다. 비교 제조예 1 '1. As, it was confirmed that the conditions according to the formula I and formula I. Comparative Preparation Example 1
(광학 소자용 조성물의 제조) (Production of Composition for Optical Device)
상기 화학식 a로 표시되는 메소제닉 화합물 100 중량부에 대하여, 상기 화학식 b로 표시되는 메소제닉 화합물 약 56.25 중량부, 개시제 (Irgacure 907, Ciba-Geigy사) 약 7.8 중량부, 산화 방지제 (Irganox 1076: Ciba-Geigy사) 약 0.17 중량부, 불소계 계면활성제 (FC-171 , 3M사) 약 2.08 중량부, 및 를루엔 약 625 중량부를 흔합하여 광학 소자용 조성물 (고형분 함량 약 21 중량0 /0)을 준비하였다. About 100 parts by weight of the mesogenic compound represented by the formula ( a ), about 56.25 parts by weight of the mesogenic compound represented by the formula (b), about 7.8 parts by weight of an initiator (Irgacure 907, Ciba-Geigy), an antioxidant (Irganox 1076 : Ciba-Geigy Co.) of about 0.17 parts by weight of a fluorine-based surface active agent (FC-171, 3M Co.) of about 2.08 parts by weight, and a toluene about 625 wt common combined parts of the composition for an optical element (a solid content of about 21 weight 0/0) Ready.
(위상차 필름의 제조)  (Manufacture of Retardation Film)
상기 조성물을, 를 코팅 방법에 의해, 노보넨계 광배향물질이 코팅된 The composition, by the coating method, the norbornene-based photo-alignment material is coated
TAC 필름 위에 코팅한 후, 약 80 °C 하에서 2 분 동안 건조하여 액정 분자가 배향되도록 하였다. 그 후, 상기 필름에 200 mW/cuf의 고압 수은등을 광원으로 하는 비편광 UV를 조사하여 액정의 배향 상태를 고정화 시켜는 방법으로 위상차 필름을 제조하였다. After coating on the TAC film, it was dried for 2 minutes at about 80 ° C to align the liquid crystal molecules. Thereafter, a retardation film was produced by irradiating non-polarized UV light having a high pressure mercury lamp of 200 mW / cuf as a light source to fix the alignment state of the liquid crystal.
제조된 위상차 필름의 정량적인 위상차 값은 Axoscan(Axomatrix사 제조)을 이용하여 측정하였으며, 이때 독립적으로 두께를 측정하고, 수득된 값으로부터 위상차 값 (An.d)을 구하였다. 그 결과, Δη·εΙ(450ηηι), An d(550nm), 및 An d(650nm)이 각각 225, 210, 및 203으로 측정되었다. 따라서, An(450nm)/An(550nm) 값은 1.07이고, An(650nm)/An(550nm) 값은 0.96으로서, 상기 식 ᅵ 및 식 ᅵᅵ에 따른 조건을 만족하지 못하는 정파장 분산을 나타내는 것으로 확인되었다. The quantitative retardation value of the prepared retardation film was measured using Axoscan (manufactured by Axomatrix Co., Ltd.). At this time, the thickness was measured independently, and the retardation value (An.d) was obtained from the obtained value. As a result, Δη · εΙ (450ηηι), An d (550 nm), and An d (650 nm) were measured at 225, 210, and 203, respectively. Therefore, the An (450nm) / An (550nm) value is 1.07, and the An (650nm) / An (550nm) value is 0.96, and the positive wavelength that does not satisfy the conditions according to Equation & Equation It was confirmed to exhibit dispersion.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
하기 화학식 1로 표시되는 역 파장 분산성 화합물:  Reverse wavelength dispersible compound represented by the following formula (1):
[화학식 1]
Figure imgf000075_0001
[Formula 1]
Figure imgf000075_0001
상기 화학식 1에서,  In Chemical Formula 1,
A는 탄소수 5 내지 8의 비방향족인 카보사이클릭 또는 헤테로사이클릭 그룹, 또는 탄소수 6 내지 20의 방향족 또는 헤테로 방향족 그룹이고;  A is a carbocyclic or heterocyclic group having 5 to 8 carbon atoms, or an aromatic or heteroaromatic group having 6 to 20 carbon atoms;
E1, E2, D1, 및 D2는 각각 독립적으로 단일 결합 또는 2가의 연결기이고; E 1 , E 2 , D 1 , and D 2 are each independently a single bond or a divalent linking group;
L1 및 L2는 각각 독립적으로 -H, -F, -CI, -Br, -I, -CN, -NC, -NCO, -OCN, -SCN, -C(=O)NR1R2, -C(=O)R1, -O-C(=O)R1, -NH2, -SH, -SR1, -S03H, -S02R1, - OH, -N02> -CF3, -SF3, 치환 또는 비치환된 실릴, 치환 또는 비치환된 탄소수 1 내지 40의 카빌 또는 하이드로카빌, 또는 -Sp-P로서, 상기 L1 및 L2 중 적어도 하나는 -Sp-P이고, 상기 P는 중합성 그룹이고, 상기 sp는 스페이서 그룹 또는 단일 결합이며, 상기 R1 및 R2는 각각 독립적으로 -H 또 탄소수 1 내지 12의 알킬이고; L 1 and L 2 are each independently —H, —F, —CI, —Br, —I, —CN, —NC, —NCO, —OCN, —SCN, —C (═O) NR 1 R 2 , -C (= O) R 1 , -OC (= O) R 1 , -NH 2 , -SH, -SR 1 , -S0 3 H, -S0 2 R 1 ,-OH, -N0 2> -CF 3 , -SF 3 , substituted or unsubstituted silyl, substituted or unsubstituted carbyl or hydrocarbyl having 1 to 40 carbon atoms, or -Sp-P, wherein at least one of L 1 and L 2 is -S p -P , Wherein P is a polymerizable group, s p is a spacer group or a single bond, and R 1 and R 2 are each independently —H or alkyl having 1 to 12 carbon atoms;
m 및 n은 각각 독립적으로 1 내지 5의 정수로서; 상기 m 또는 n이 2 이상이면, 둘 이상 반복되는 -(D1-G1)- 또는 -(G2-D2)- 의 각 반복 단위는 서로 동일하거나 다른 것으로 될 수 있으며; m and n are each independently an integer from 1 to 5; When m or n is 2 or more, each repeating unit of-(D 1 -G 1 )-or-(G 2 -D 2 )-which is repeated two or more times may be the same or different from each other;
G1 및 G2는 각각 독립적으로 탄소수 5 내지 8의 비방향족인 카보사이클릭 또는 헤테로사이클릭 그룹, 또는 탄소수 6 내지 20의 방향족 또는 헤테로 방향족 그룹으로서, 상기 G1 및 G2 중 적어도 하나는 상기 카보사이클릭 또는 헤테로사이클릭 그룹이고, 상기 카보사이클릭 또는 헤테로사이클릭 그룹에 포함된 어느 하나의 수소는 하기 화학식 2로 표시되는 그룹으로 치환되어 있다: G 1 and G 2 are each independently a non-aromatic carbocyclic or heterocyclic group having 5 to 8 carbon atoms, or an aromatic or heteroaromatic group having 6 to 20 carbon atoms, wherein at least one of G 1 and G 2 is A carbocyclic or heterocyclic group, and any one of the hydrogens contained in the carbocyclic or heterocyclic group is substituted with a group represented by the following Chemical Formula 2:
[화학식 2]
Figure imgf000075_0002
상기 화학식 2에서,
[Formula 2]
Figure imgf000075_0002
In Chemical Formula 2,
p는 1 내지 10의 정수로서 , p가 2 이상이면 둘 이상 반복되는 -(Q1)- 의 각 반복단위는 서로 동일하거나 다른 것으로 될 수 있고, p is an integer of 1 to 10, and if p is 2 or more, each repeating unit of-(Q 1 )-repeated two or more times may be the same or different from each other,
Q1은 각각 독립적으로 -C≡C-, -CY =CY2-, 및 탄소수 6 내지 20의 치환 또는 비치환된 방향족 그룹 또는 헤테로방향족 그룹으로 이루어진 군에서 선택된 2가 그룹으로서, 상기 Y1 및 Y2는 각각 독립적으로 -H, -F, -cr -CN, 또는 -R1이고, Q 1 is independently a divalent group selected from the group consisting of —C≡C—, —CY═CY 2 —, and a substituted or unsubstituted aromatic group or heteroaromatic group having 6 to 20 carbon atoms, wherein Y 1 and Each Y 2 is independently —H, —F, —cr —CN, or —R 1 ,
B1은 -H, -F, -CI, -Br, -I, -CN, -NC, -NCO, -OCN, -SCN, -C(=0)NR1R2, - C(=O)R1, -NH2, -SH, -SR1, -SO3H, -SO2R1, -OH, -NO2, -CF3, -SF3, 중합성 그룹, 탄소수 2 내지 6의 알케닐기, 탄소수 2 내지 6의 알키닐기, 탄소수 2 내지 4의 아실기, 말단에 탄소수 2 내지 4의 아실기가 결합된 탄소수 2 내지 6의 알키닐렌기, 탄소수 1 내지 5의 알코올기, 또는 탄소수 1 내지 12의 알콕시기이고, 상기 R1 및 R2는 각각 독립적으로 -H 또는 탄소수 1 내지 12의 알킬이다. B 1 is -H, -F, -CI, -Br, -I, -CN, -NC, -NCO, -OCN, -SCN, -C (= 0) NR 1 R 2 ,-C (= O) R 1 , -NH 2 , -SH, -SR 1 , -SO 3 H, -SO 2 R 1 , -OH, -NO 2 , -CF 3 , -SF 3 , a polymerizable group, alkenes having 2 to 6 carbon atoms An alkyl group, an alkynyl group of 2 to 6 carbon atoms, an acyl group of 2 to 4 carbon atoms, an alkynylene group of 2 to 6 carbon atoms in which an acyl group of 2 to 4 carbon atoms is bonded to a terminal, an alcohol group of 1 to 5 carbon atoms, or 1 to 5 carbon atoms An alkoxy group of 12, and R 1 and R 2 are each independently -H or alkyl having 1 to 12 carbon atoms.
【청구항 2】 ' [Claim 2] "
제 1 항에 있어서,  The method of claim 1,
상기 화학식 1의 A, G1 및 G2는 각각 독립적으로 사이클로핵산 고리, 사이클로핵센 고리, 벤젠 고리, 나프탈렌 고리, 또는 페난트렌 고리이고; A, G 1 and G 2 in Formula 1 are each independently a cyclonucleic acid ring, a cyclonuxene ring, a benzene ring, a naphthalene ring, or a phenanthrene ring;
상기 G1' G2 중 적어도 하나는 사이클로핵산 고리 또는 사이클로핵센 고리인, 역 파장 분산성 화합물. At least one of G 1 and ' G 2 is a cyclonucleic acid ring or a cyclonucleene ring.
【청구항 3】 [Claim 3]
제 1 항에 있어서,  The method of claim 1,
상기 화학식 1의 A에 포함된 적어도 하나의 수소는 -F, -CI, -Br, -I, - At least one hydrogen contained in A of Formula 1 is -F, -CI, -Br, -I,-
CN, -NC, -NCO, -OCN, -SCN, -C(=O)NR1R2, -C(=O)R1, -NH2, -SH, -SR1, -SO3H, -SO2R1, -OH, -NO2, -CF3, -SF3> 탄소수 2 내지 6의 알케닐기, 탄소수 2 내지CN, -NC, -NCO, -OCN, -SCN, -C (= 0) NR 1 R 2 , -C (= 0) R 1 , -NH 2 , -SH, -SR 1 , -SO 3 H, -SO 2 R 1 , -OH, -NO 2 , -CF 3 , -SF 3> alkenyl group having 2 to 6 carbon atoms, 2 to
6의 알키닐기, 탄소수 2 내지 4의 아실기, 말단에 탄소수 2 내지 4의 아실기가 결합된 탄소수 2 내지 6의 알키닐렌기, 탄소수 1 내지 5의 알코올기, 또는 탄소수 1 내지 12의 알콕시기로 치환되어 있고 상기 R1Alkynyl groups of 6, acyl groups of 2 to 4 carbon atoms, alkynylene groups of 2 to 6 carbon atoms in which acyl groups of 2 to 4 carbon atoms are bonded to terminals, alcohol groups of 1 to 5 carbon atoms, or alkoxy groups of 1 to 12 carbon atoms And R 1 and
Figure imgf000077_0001
Figure imgf000077_0001
^÷¾ 【】 4- o o ^ ÷ ¾ 【】 4- oo
Figure imgf000078_0001
Figure imgf000078_0001
Figure imgf000079_0001
로 이루어진 군에서 선택되고
Figure imgf000079_0001
Is selected from the group consisting of
상기 r은 0, 1, 2, 3, 또는 4이고,  R is 0, 1, 2, 3, or 4,
상기 D는 -F, -CI, -Br, -I, -CN, -NO2, -NCO, -NCS, -OCN, -SCN, - C(=0)NR1R2, -C(=O)X, -C(=O)OR1, -NR1R2, -OH, -SF5, 치환 또는 비치환된 실릴, 탄소수 6 내지 12의 아릴, 탄소수 1 내지 12의 직쇄 또는 분지쇄 알킬, 알콕시, 알킬카보닐, 알콕시카보닐, 알킬카보닐옥시, 또는 알콕시카보닐옥시이고, 상기 R1 및 R2는 각각 독립적으로 -H 또는 탄소수 1 내지 12의 알킬인, 역 파장 분산성 화합물. D is -F, -CI, -Br, -I, -CN, -NO 2 , -NCO, -NCS, -OCN, -SCN, -C (= 0) NR 1 R 2 , -C (= 0 ) X, -C (= O) OR 1 , -NR 1 R 2 , -OH, -SF 5 , substituted or unsubstituted silyl, aryl of 6 to 12 carbon atoms, straight or branched chain alkyl of 1 to 12 carbon atoms, And alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy, or alkoxycarbonyloxy, wherein R 1 and R 2 are each independently -H or alkyl having 1 to 12 carbon atoms.
[청구항 8】 [Claim 8]
제 1 항에 따른 역 파장 분산성 화합물을 포함하는 조성물로부터 수득되며, 하기 식 | 및 식 ||를 만족하는 광학 이방체: (식 ᅵ) Obtained from a composition comprising a reverse wavelength dispersible compound according to claim 1, wherein the formula | And an optically anisotropic body satisfying equation || (Formula ᅵ)
A ri(450nm)/ Δ n(550nm)〈 1 ·0 A ri ( 4 50 nm) / Δ n (550 nm) <1
(식 ID  (Expression ID
Δ ri(650nm)/ Δ Π(550ηΓΤΐ) 〉 1 ·0 Δ ri (650 nm) / Δ Π (550ηΓΤΐ)〉 1 · 0
상기 식 I 및 식 II에서, Δη(λ)는 파장 λ에서의 비복굴절율을 의미한다.  In formulas (I) and (II), Δη (λ) means specific birefringence at wavelength λ.
PCT/KR2014/008751 2013-09-30 2014-09-19 Inverse-wavelength dispersible compound, and inverse-wavelength dispersible composition and optically anisotropic body comprising same WO2015046826A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/913,589 US9850196B2 (en) 2013-09-30 2014-09-19 Compounds having negative optical dispersion, negative optical dispersion composition comprising the compounds, and optically anisotropic body comprising the composition
JP2016518722A JP6397004B2 (en) 2013-09-30 2014-09-19 Reverse wavelength dispersible compound, reverse wavelength dispersive composition containing the same, and optical anisotropic body
EP14847655.9A EP3053909B1 (en) 2013-09-30 2014-09-19 Inverse-wavelength dispersible compound, and inverse-wavelength dispersible composition and optically anisotropic body comprising same
CN201480054163.6A CN105593204B (en) 2013-09-30 2014-09-19 There are the compound of negative optical dispersion, the negative optical dispersion composition containing the compound and the optically anisotropic body containing the composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130116533 2013-09-30
KR10-2013-0116533 2013-09-30
KR1020140124468A KR101623929B1 (en) 2013-09-30 2014-09-18 Compounds having negative optical dispersion, negative optical dispersion composition comprising the compounds, and optically anisotropic body comprising the composition
KR10-2014-0124468 2014-09-18

Publications (1)

Publication Number Publication Date
WO2015046826A1 true WO2015046826A1 (en) 2015-04-02

Family

ID=52743881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008751 WO2015046826A1 (en) 2013-09-30 2014-09-19 Inverse-wavelength dispersible compound, and inverse-wavelength dispersible composition and optically anisotropic body comprising same

Country Status (1)

Country Link
WO (1) WO2015046826A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100016054A (en) * 2007-03-30 2010-02-12 메르크 파텐트 게엠베하 Birefringent polymer film with negative optical dispersion
KR20100130179A (en) * 2008-01-11 2010-12-10 메르크 파텐트 게엠베하 Reactive mesogenic compounds and mixtures
KR20110043776A (en) * 2008-08-18 2011-04-27 메르크 파텐트 게엠베하 Mesogenic compounds comprising discotic and calamitic groups

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100016054A (en) * 2007-03-30 2010-02-12 메르크 파텐트 게엠베하 Birefringent polymer film with negative optical dispersion
KR20100130179A (en) * 2008-01-11 2010-12-10 메르크 파텐트 게엠베하 Reactive mesogenic compounds and mixtures
KR20110043776A (en) * 2008-08-18 2011-04-27 메르크 파텐트 게엠베하 Mesogenic compounds comprising discotic and calamitic groups

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. TSCHIERSKE; G. PELZL; S. DIELE, ANGEW. CHEM., vol. 116, 2004, pages 6340 - 6368

Similar Documents

Publication Publication Date Title
JP6586085B2 (en) Composition for producing optical element having negative optical dispersion and optical anisotropic body produced therefrom
TWI722076B (en) Liquid crystal mixture and liquid crystal display
CN106536679B (en) Liquid-crystalline medium with homeotropic alignment
CN108026448B (en) Liquid-crystalline medium with homeotropic alignment
CN103119128A (en) Liquid crystal displays and liquid crystalline media with homeotropic alignment
TW200938613A (en) Reactive mesogenic compounds and mixtures
JP6431078B2 (en) Polymerizable liquid crystal compound, liquid crystal composition containing the same, and optical film
JP6397004B2 (en) Reverse wavelength dispersible compound, reverse wavelength dispersive composition containing the same, and optical anisotropic body
WO2015046826A1 (en) Inverse-wavelength dispersible compound, and inverse-wavelength dispersible composition and optically anisotropic body comprising same
KR101990057B1 (en) Compounds having negative optical dispersion, negative optical dispersion composition comprising the compounds, and optically anisotropic body comprising the composition
KR101663798B1 (en) Liquid crystal polymer with negative optical dispersion and optically anisotropic body comprising the same
WO2015046825A2 (en) Polymerizable liquid crystal compound, and liquid crystal composition and optical film comprising same
KR101682591B1 (en) Polymerizable liquid crystal compounds, liquid crystal composition comprising the compounds, and optically anisotropic body comprising the composition
KR101632061B1 (en) Polymerizable liquid crystal compounds, liquid crystal composition comprising the compounds, and optical film comprising the composition
KR101641705B1 (en) Polymerizable liquid crystal compounds, liquid crystal composition comprising the compounds, and optical film comprising the composition
KR20160033609A (en) Polymerizable liquid crystal compounds, liquid crystal composition comprising the compounds, and optical film comprising the composition
KR101838532B1 (en) Rod-like liquid crystal compound and preparation method thereof
KR20160096450A (en) Compounds having negative optical dispersion, negative optical dispersion composition comprising the compounds, and optically anisotropic body comprising the composition
KR20160033595A (en) Polymerizable liquid crystal compounds, liquid crystal composition comprising the compounds, and optical film comprising the composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847655

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014847655

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014847655

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14913589

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016518722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE