WO2015046800A1 - Method for setting timing of control channel in tdd-fdd joint operation and apparatus therefor - Google Patents

Method for setting timing of control channel in tdd-fdd joint operation and apparatus therefor Download PDF

Info

Publication number
WO2015046800A1
WO2015046800A1 PCT/KR2014/008639 KR2014008639W WO2015046800A1 WO 2015046800 A1 WO2015046800 A1 WO 2015046800A1 KR 2014008639 W KR2014008639 W KR 2014008639W WO 2015046800 A1 WO2015046800 A1 WO 2015046800A1
Authority
WO
WIPO (PCT)
Prior art keywords
scell
pcell
control channel
duplex mode
tdd
Prior art date
Application number
PCT/KR2014/008639
Other languages
French (fr)
Korean (ko)
Inventor
노민석
최우진
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20140061203A external-priority patent/KR20150035673A/en
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to CN201480053610.6A priority Critical patent/CN105580298B/en
Priority to US15/024,899 priority patent/US20160219543A1/en
Publication of WO2015046800A1 publication Critical patent/WO2015046800A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to a control channel timing setting method and apparatus therefor for uplink transmission of a terminal configured with cells operating in different duplex modes, and more particularly, through one or more cells operating in different duplex modes.
  • the terminal for performing the present invention relates to the timing of a control channel for transmitting data to a base station.
  • LTE Long Term Evolution
  • LTE-Advanced of the current 3GPP series are high-speed and large-capacity communication systems that can transmit and receive various data such as video and wireless data out of voice-oriented services.
  • the development of technology capable of transferring large amounts of data is required.
  • deployments such as a plurality of cells or small cells are introduced, there is a need for a technique and a method for enabling carrier aggregation to be applicable in various deployment scenarios.
  • the terminal may communicate with the base station through a plurality of cells.
  • the plurality of cells configured in the terminal may be divided into primary cells (PCell) and secondary cells (Secondary Cells, SCells) according to their functions.
  • PCell primary cells
  • SCells Secondary Cells
  • the PCell may provide a secure input, may be changed only through a handover procedure, and may transmit a control channel for uplink.
  • SCells may be configured in the form of a set of serving cells together with a PCell depending on UE capability.
  • the present invention provides a method for processing a control channel by a terminal configured with a PCell and a SCell operating in different duplex modes, wherein each of the PCell and the SCell is self-carrier scheduled and the duplex of the PCell and the SCell, respectively.
  • the present invention provides a method comprising transmitting a PUSCH to each of a PCell and a SCell based on a received control channel according to a control channel reception timing for a mode uplink transmission.
  • the present invention also provides a method for processing a control channel by a terminal configured with a PCell operating in a TDD duplex mode and a SCell operating in an FDD duplex mode, wherein the SCell is cross-carrier scheduled from the PCell and the uplink according to the duplex mode of the PCell.
  • the present invention also provides a method for processing a control channel by a terminal configured with a PCell operating in a TDD duplex mode and a SCell operating in an FDD duplex mode, wherein the SCell is cross-carrier scheduled from the PCell and is uplinked according to the duplex mode of the SCell.
  • the present invention also provides a method for processing a control channel by a terminal configured with a PCell operating in an FDD duplex mode and a SCell operating in a TDD duplex mode, wherein the SCell is cross-carrier scheduled from the PCell and an uplink according to the duplex mode of the SCell.
  • the present invention also provides a method for processing a control channel by a terminal configured with a PCell operating in the FDD duplex mode and a SCell operating in the TDD duplex mode, wherein the SCell is cross-carrier scheduled from the PCell and the uplink according to the duplex mode of the PCell.
  • the present invention also provides a method for controlling a PUSCH transmission of a terminal configured with a PCell and a SCell in which a base station operates in a different duplex mode, controlling each of the PCell or the SCell to be self-carrier scheduled and the duplex mode of each of the PCell and the SCell. And receiving a PUSCH transmitted to each of the PCell and the SCell based on the control channel transmitted from each of the PCell and the SCell according to the control channel reception timing for the uplink transmission of the PLL.
  • the present invention also provides a method for controlling a PUSCH transmission of a terminal configured with a PCell operating in a TDD duplex mode and a SCell operating in a TDD duplex mode, the PCell controlling the cross carrier scheduling of the SCell and the duplex of the PCell.
  • a method for receiving a PUSCH transmitted to an SCell based on a control channel for uplink transmission of an SCell transmitted to a PCell according to a control channel reception timing for an uplink transmission according to a mode is provided.
  • the present invention also provides a method for controlling a PUSCH transmission of a terminal configured with a PCell operating in a TDD duplex mode and a SCell operating in a TDD duplex mode, and controlling the PCell to cross-carrier schedule the SCell and the duplex of the SCell.
  • a method for receiving a PUSCH transmitted to an SCell based on a control channel for uplink transmission of an SCell transmitted to a PCell according to a control channel reception timing for an uplink transmission according to a mode is provided.
  • the present invention also provides a method for controlling a PUSCH transmission of a terminal configured with a PCell operating in an FDD duplex mode and an SCell operating in a TDD duplex mode, the PCell controlling cross-carrier scheduling of the SCell and the duplex of the SCell.
  • a method for receiving a PUSCH transmitted to an SCell based on a control channel for uplink transmission of an SCell transmitted to a PCell according to a control channel reception timing for an uplink transmission according to a mode is provided.
  • the present invention provides a method for controlling a PUSCH transmission of a terminal configured with a PCell operating in the FDD duplex mode and the SCell operating in the TDD duplex mode, the PCell control to cross-carrier scheduling the SCell and the duplex of the PCell
  • a method for receiving a PUSCH transmitted to an SCell based on a control channel for uplink transmission of an SCell transmitted to a PCell according to a control channel reception timing for an uplink transmission according to a mode is provided.
  • the present invention is a PCell and SCell operating in different duplex mode is configured in the terminal to process the control channel, the control unit for controlling the PCell and SCell each of the self-carrier scheduling and the uplink of the duplex mode of each of the PCell and SCell
  • a terminal apparatus including a transmitter for transmitting a PUSCH to each of a PCell and a SCell based on a control channel received according to a control channel reception timing for transmission.
  • the present invention also provides a PCell operating in the TDD duplex mode and a SCell operating in the FDD duplex mode to process a control channel, the control unit for controlling the SCell to cross-carrier scheduling from the PCell according to the duplex mode of the PCell
  • a terminal device including a transmitter for transmitting a PUSCH to an SCell based on a control channel received from a PCell according to a control channel reception timing for uplink transmission.
  • the present invention also provides a PCell operating in the TDD duplex mode and a SCell operating in the FDD duplex mode to process a control channel.
  • a terminal device including a transmitter for transmitting a PUSCH to an SCell based on a control channel received from a PCell according to a control channel reception timing for uplink transmission.
  • the present invention also provides a PCell operating in the FDD duplex mode and a SCell operating in the TDD duplex mode to process a control channel, the control unit for controlling the SCell to cross-carrier scheduling from the PCell according to the duplex mode of the SCell
  • a terminal device including a transmitter for transmitting a PUSCH to an SCell based on a control channel received from a PCell according to a control channel reception timing for uplink transmission.
  • the present invention also provides a PCell operating in the FDD duplex mode and a SCell operating in the TDD duplex mode to process a control channel, wherein the control unit controls the SCell to be cross-carrier scheduled from the PCell and according to the duplex mode of the PCell.
  • a terminal device including a transmitter for transmitting a PUSCH to an SCell based on a control channel received from a PCell according to a control channel reception timing for uplink transmission.
  • the present invention is a base station for controlling the PUSCH transmission of the terminal configured PCell and SCell operating in a different duplex mode, the control unit for controlling each PCell or SCell so that the self-carrier scheduling and uplink of the duplex mode of each of the PCell and SCell According to a control channel reception timing for link transmission, a base station apparatus including a receiver for receiving a PUSCH transmitted to each of the PCell and the SCell based on the control channel transmitted from each of the PCell and the SCell is provided.
  • the present invention provides a base station for controlling PUSCH transmission of a terminal configured with a PCell operating in the TDD duplex mode and a SCell operating in the FDD duplex mode, the control unit for controlling the PCell to cross-carrier scheduling the SCell in the duplex mode of the PCell According to the control channel reception timing for the uplink transmission according to the base station apparatus including a receiving unit for receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell.
  • the present invention provides a base station for controlling PUSCH transmission of a terminal configured with a PCell operating in the TDD duplex mode and a SCell operating in the FDD duplex mode, the control unit for controlling the PCell to cross-carrier scheduling the SCell in the duplex mode of the SCell According to the control channel reception timing for the uplink transmission according to the base station apparatus including a receiving unit for receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell.
  • the present invention provides a base station for controlling PUSCH transmission of a terminal configured with a PCell operating in the FDD duplex mode and a SCell operating in the TDD duplex mode, the control unit for controlling the PCell to cross-carrier scheduling the SCell in the duplex mode of the SCell According to the control channel reception timing for the uplink transmission according to the base station apparatus including a receiving unit for receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell.
  • the present invention provides a base station for controlling PUSCH transmission of a terminal configured with a PCell operating in the FDD duplex mode and a SCell operating in the TDD duplex mode, the control unit for controlling the PCell to cross-carrier scheduling the SCell in the duplex mode of the PCell According to the control channel reception timing for the uplink transmission according to the base station apparatus including a receiving unit for receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell.
  • the terminal and the base station performing the carrier aggregation operating in different duplex mode has an effect that can solve the ambiguity of the procedure to operate according to the configuration of the PCell and the SCell.
  • the accuracy of uplink and downlink data transmission / reception operations may be improved, thereby improving data transmission / reception reliability according to carrier aggregation.
  • FIG. 1 is a diagram illustrating small cell deployment according to an embodiment.
  • FIG. 2 is a diagram illustrating a small cell deployment scenario.
  • 3 to 6 show detailed scenarios in small cell deployment.
  • FIG. 7 is a diagram illustrating various scenarios of carrier aggregation.
  • FIG. 8 is a diagram illustrating a UL-DL configuration on a TDD frame structure.
  • FIG. 9 illustrates timing of PDCCH / EPDCCH for TDD UL transmission under a TDD UL-DL configuration.
  • FIG. 10 illustrates PHICH timing for TDD UL HARQ-ACK transmission under a TDD UL-DL configuration.
  • 11 to 17 exemplarily illustrate a case where a TDD Cell and an FDD Cell having respective TDD UL-DL configurations 0 to 6 become CAs for a TDD-FDD joint operation and a CA.
  • FIG. 18 is a diagram illustrating an example of an operation when a terminal is self-carrier scheduled according to another embodiment of the present invention.
  • 19 is a diagram illustrating an example of an operation when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
  • 20 is a diagram illustrating another example of an operation when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
  • 21 is a diagram illustrating another example of an operation when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
  • 22 is a diagram illustrating another example of an operation when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
  • FIG. 23 is a diagram illustrating an example of an operation of a base station when a terminal is self-carrier scheduled according to another embodiment of the present invention.
  • 24 is a diagram illustrating an example of an operation of a base station when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
  • 25 is a diagram illustrating another example of an operation of a base station when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
  • FIG. 26 is a diagram illustrating another example of an operation of a base station when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
  • FIG. 27 is a diagram illustrating another example of an operation of a base station when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
  • FIG. 28 is a diagram illustrating a configuration of a terminal according to another embodiment of the present invention.
  • 29 is a diagram illustrating a configuration of a base station according to another embodiment of the present invention.
  • the wireless communication system in the present invention is widely deployed to provide various communication services such as voice, packet data, and the like.
  • the wireless communication system includes a user equipment (UE) and a base station (base station, BS, or eNB).
  • a user terminal is a generic concept meaning a terminal in wireless communication.
  • user equipment (UE) in WCDMA, LTE, and HSPA, as well as mobile station (MS) in GSM, user terminal (UT), and SS It should be interpreted as a concept that includes a subscriber station, a wireless device, and the like.
  • a base station or a cell generally refers to a station that communicates with a user terminal, and includes a Node-B, an evolved Node-B, an Sector, a Site, and a BTS.
  • Other terms such as a base transceiver system, an access point, a relay node, a remote radio head (RRH), a radio unit (RU), and a small cell may be called.
  • RRH remote radio head
  • RU radio unit
  • a base station or a cell is a generic meaning indicating some areas or functions covered by a base station controller (BSC) in CDMA, a Node-B in WCDMA, an eNB or a sector (site) in LTE, and the like. It should be interpreted as, and it is meant to cover all the various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node, RRH, RU, small cell communication range.
  • BSC base station controller
  • the base station may be interpreted in two senses. i) the device providing the megacell, the macrocell, the microcell, the picocell, the femtocell, the small cell in relation to the wireless area, or ii) the wireless area itself. In i) all devices which provide a given wireless area are controlled by the same entity or interact with each other to cooperatively configure the wireless area to direct the base station.
  • the base station may indicate the radio area itself to receive or transmit a signal from a viewpoint of a user terminal or a neighboring base station.
  • megacells macrocells, microcells, picocells, femtocells, small cells, RRHs, antennas, RUs, low power nodes (LPNs), points, eNBs, transmit / receive points, transmit points, and receive points are collectively referred to as base stations. do.
  • the user terminal and the base station are two transmitting and receiving entities used to implement the technology or technical idea described in this specification in a comprehensive sense and are not limited by the terms or words specifically referred to.
  • the user terminal and the base station are two types of uplink or downlink transmitting / receiving subjects used to implement the technology or the technical idea described in the present invention, and are used in a generic sense and are not limited by the terms or words specifically referred to.
  • the uplink (Uplink, UL, or uplink) refers to a method for transmitting and receiving data to the base station by the user terminal
  • the downlink (Downlink, DL, or downlink) means to transmit and receive data to the user terminal by the base station It means the way.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • OFDM-FDMA OFDM-TDMA
  • OFDM-CDMA OFDM-CDMA
  • One embodiment of the present invention can be applied to resource allocation in the fields of asynchronous wireless communication evolving to LTE and LTE-Advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB.
  • the present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • a standard is configured by configuring uplink and downlink based on one carrier or a pair of carriers.
  • the uplink and the downlink include a Physical Downlink Control CHannel (PDCCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid ARQ Indicator CHannel (PHICH), a Physical Uplink Control CHannel (PUCCH), an Enhanced Physical Downlink Control CHannel (EPDCCH), and the like.
  • Control information is transmitted through the same control channel, and data is configured by a data channel such as a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • control information may also be transmitted using an enhanced PDCCH (EPDCCH or extended PDCCH).
  • EPDCCH enhanced PDCCH
  • extended PDCCH extended PDCCH
  • a cell means a component carrier having a coverage of a signal transmitted from a transmission / reception point or a signal transmitted from a transmission point or a transmission / reception point, and the transmission / reception point itself. Can be.
  • a wireless communication system to which embodiments are applied may be a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-antenna transmission scheme in which two or more transmission / reception points cooperate to transmit a signal.
  • antenna transmission system a cooperative multi-cell communication system.
  • the CoMP system may include at least two multiple transmission / reception points and terminals.
  • the multiple transmit / receive point is at least one having a base station or a macro cell (hereinafter referred to as an eNB) and a high transmission power or a low transmission power in a macro cell region, which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
  • an eNB a base station or a macro cell
  • a high transmission power or a low transmission power in a macro cell region which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
  • downlink refers to a communication or communication path from a multiple transmission / reception point to a terminal
  • uplink refers to a communication or communication path from a terminal to multiple transmission / reception points.
  • a transmitter may be part of multiple transmission / reception points, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal, and a receiver may be part of multiple transmission / reception points.
  • a situation in which a signal is transmitted and received through a channel such as a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH may be expressed in the form of 'sending and receiving a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH.
  • a description of transmitting or receiving a PDCCH or transmitting or receiving a signal through the PDCCH may be used as a meaning including transmitting or receiving an EPDCCH or transmitting or receiving a signal through the EPDCCH.
  • the physical downlink control channel or control channel described below may mean a PDCCH or an EPDCCH, and may also be used to include both PDCCH and EPDCCH.
  • the EPDCCH which is an embodiment of the present invention, may be applied to the portion described as the PDCCH, and the EPDCCH may be applied to the portion described as the EPDCCH as an embodiment of the present invention.
  • high layer signaling described below includes RRC signaling for transmitting RRC information including an RRC parameter.
  • the eNB performs downlink transmission to the terminals.
  • the eNB includes downlink control information and an uplink data channel (eg, a physical downlink shared channel (PDSCH), which is a primary physical channel for unicast transmission, and scheduling required to receive the PDSCH.
  • a physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission on a physical uplink shared channel (PUSCH) may be transmitted.
  • PUSCH physical uplink shared channel
  • Low power nodes represent nodes that use lower transmit (Tx) power than typical macro nodes.
  • a small cell could be constructed using a low power remote radio head (RRH), which is a geographically dispersed antenna within macro cell coverage.
  • RRH remote radio head
  • the macro cell and the RRH cell are constructed to be scheduled under the control of one base station.
  • an ideal backhaul is required between the macro cell node and the RRH.
  • An ideal backhaul means a backhaul that exhibits very high throughput and very low latency, such as optical fiber, dedicated point-to-point connections using LOS microwaves (Line Of Sight microwave).
  • non-ideal backhaul backhaul that exhibits relatively low throughput and large delay, such as digital subscriber line (xDSL) and Non LOS microwaves.
  • the plurality of serving cells may be merged through the single base station-based CA technology described above to provide a service to the terminal. That is, a plurality of serving cells may be configured for a terminal in a Radio Resource Control (RRC) connected state, and when an ideal backhaul is established between the macro cell node and the RRH, the macro cell And the RRH cell may be configured with serving cells to provide a service to the terminal.
  • RRC Radio Resource Control
  • the terminal may have only one RRC connection with the network.
  • one serving cell is a Non-Access Stratum (hereinafter referred to as 'NAS') mobility information (e.g., TAI: Tracking Area Identity) and one serving cell provides security input in RRC connection reset / handover.
  • 'NAS' Non-Access Stratum
  • TAI Tracking Area Identity
  • SCells Secondary Cells
  • SCells may be configured as a serving cell together with a PCell.
  • the present invention provides a joint operation between FDD and TDD to a UE belonging to a corresponding base station when a small cell and an arbitrary cell / base station / RRH / antenna / RU support different duplexes, that is, FDD and TDD in a multi-cell structure.
  • An operation method and apparatus of a terminal for enabling an operation), a base station method using the method, and an apparatus thereof are provided.
  • each duplex mode is used in the macro cell and the small cell and any cell / base station / RRH / antenna / RU, and CA and joint operations between the macro cell and the small cell, and uplink transmission of the terminal
  • FIG. 1 is a diagram illustrating small cell deployment according to an embodiment.
  • FIG. 1 illustrates a configuration in which a small cell and a macro cell coexist, and in FIGS. 2 to 3 below, whether macro coverage is present and whether the small cell is for outdoor or indoor.
  • the deployment of the small cell is divided in more detail according to whether or not to use the same frequency spectrum as the macro in terms of spectrum. The detailed configuration of the scenario will be described with reference to FIGS. 2 to 6.
  • FIG. 2 is a diagram illustrating a small cell deployment scenario.
  • FIG. 2 shows a typical representative configuration for the scenario of FIGS. 3 to 6.
  • 2 illustrates a small cell deployment scenario and includes scenarios # 1, # 2a, # 2b and # 3.
  • 200 denotes a macro cell
  • 210 and 220 denote small cells.
  • the overlapping macro cell may or may not exist.
  • Coordination may be performed between the macro cell 200 and the small cells 210 and 220, and coordination may also be performed between the small cells 210 and 220.
  • the overlapped areas of 200, 210, and 220 may be bundled into clusters.
  • 3 to 6 show detailed scenarios in small cell deployment.
  • Scenario # 1 is a co-channel deployment scenario of a small cell and a macro cell in the presence of an overhead macro and is an outdoor small cell scenario.
  • 310 denotes a case where both the macro cell 311 and the small cell are outdoors, and 312 indicates a small cell cluster. Users are distributed both indoors and outdoors.
  • Solid lines connecting the small cells in the small cell 312 mean a backhaul link within a cluster.
  • the dotted lines connecting the base station of the macro cell and the small cells in the cluster mean a backhaul link between the small cell and the macro cell.
  • Scenario 2a is a deployment scenario in which the small cell and the macro use different frequency spectrums in the presence of an overlay macro and an outdoor small cell scenario. Both macro cell 411 and small cells are outdoors and 412 indicates a small cell cluster. Users are distributed both indoors and outdoors.
  • Solid lines connecting the small cells in the small cell 412 mean a backhaul link within a cluster.
  • the dotted lines connecting the base station of the macro cell and the small cells in the cluster mean a backhaul link between the small cell and the macro cell.
  • Scenario 2b is a deployment scenario in which the small cell and the macro use different frequency spectrums in the presence of an overlay macro and an indoor small cell scenario.
  • Macro cell 511 is outdoors, small cells are all indoors, and 512 indicates a small cell cluster. Users are distributed both indoors and outdoors.
  • Solid lines connecting the small cells in the small cell 512 mean a backhaul link within a cluster.
  • the dotted lines connecting the base station of the macro cell and the small cells in the cluster mean a backhaul link between the small cell and the macro cell.
  • Scenario 3 is an indoor small cell scenario in the absence of coverage of macros. 612 indicates a small cell cluster. In addition, small cells are all indoors, and users are distributed both indoors and outdoors.
  • Solid lines connecting the small cells in the small cell 612 mean a backhaul link within a cluster.
  • the dotted lines connecting the base station of the macro cell and the small cells in the cluster mean a backhaul link between the small cell and the macro cell.
  • the frequencies F1 and F2 used in the various small cell scenarios of FIGS. 1 and 2 to 6 described above may be frequencies supporting the same duplex mode, or F1 and F2 may have different duplex modes.
  • F1 may be a frequency that supports the FDD mode
  • F2 may be a frequency that supports the TDD mode or vice versa.
  • FIG. 7 is a diagram illustrating various scenarios of carrier aggregation.
  • the corresponding F1 and F2 may be frequencies supporting the same duplex mode, or the frequencies supporting different duplex modes may be considered.
  • F1 and F2 cells are co-located and overlapped under almost the same coverage.
  • Two layers are scenarios that provide sufficient coverage and mobility, and scenarios in which aggregation between overlapped F1 and F2 cells are possible.
  • F1 and F2 cells co-locate and overlap, but the coverage of F2 is smaller than that of F1.
  • F1 has sufficient coverage, mobility support is performed based on F1 coverage, and
  • F2 is a scenario used for improving throughput, and a scenario in which overlapping F1 and F2 cells are merged is possible.
  • F1 and F2 cells co-locate, but F2 antennas are directed to the cell edge to increase cell edge throughput.
  • Mobility support is performed based on F1 coverage, where F1 has sufficient coverage but F2 is potentially a coverage hole, and F1 and F2 cells on the same eNB can be merged where coverage overlaps. That is the scenario.
  • Scenario 740 is a scenario in which F1 has macro coverage and RRH at F2 is used to improve throughput in hot spot area. Mobility support is performed based on F1 coverage and with F1 macro cell. This is a scenario in which F2 RRHs cells can be merged.
  • F1 and F2 cells in the same eNB is a scenario that can be merged where the coverage overlap.
  • the terminal when the terminal configures dual connectivity, forms an RRC connection with the terminal, terminates the base station or S1-MME providing a cell (for example, a PCell), which is a reference for handover, and cores.
  • a base station serving as a mobility anchor for a network is described as a master base station or a first base station.
  • the master base station or the first base station may be a base station providing a macro cell, and may be a base station providing any one small cell in a dual connectivity deployment between small cells.
  • a base station that is distinguished from a master base station and provides additional radio resources to a terminal is described as a secondary base station or a second base station.
  • the first base station (master base station) and the second base station (secondary base station) may provide at least one cell to the terminal, respectively, and the first base station and the second base station may be connected through an interface between the first base station and the second base station. have.
  • a cell associated with the first base station may be referred to as a macro cell, and a cell associated with the second base station may be referred to as a small cell for clarity.
  • a cell associated with the first base station may also be described as a small cell.
  • the macro cell may mean each of at least one or more cells, and may be described as representing a whole cell associated with the first base station.
  • the small cell may also mean each of at least one or more cells, and may also be described as representing a whole cell associated with the second base station.
  • the cell may be a cell associated with the first base station.
  • the cell of the second base station may be described as another small cell or another small cell.
  • the macro cell may be associated with the master base station or the first base station
  • the small cell may be associated with the secondary base station or the second base station
  • a base station or a second base station may be associated with the macro cell, and the present invention also applies to a situation where the master base station or the first base station is associated with the small cell.
  • FDD may mean frame structure type 1 and TDD may mean frame structure type 2.
  • carrier aggregation in each of FDD and TDD duplex modes can be considered.
  • carrier aggregation in the same mode as in each of FDD and TDD it may be configured to distinguish component carriers (component carriers, CCs) as follows.
  • PCell primary cell
  • the terminal When the CA is configured, the terminal has one RRC connection with the network, and one serving cell is NAS mobility information at the time of RRC connection establishment / re-establishment / handover. (NAS mobility information), and one serving cell provides a security input during RRC connection reset / handover.
  • NAS mobility information NAS mobility information
  • Such cells are referred to as primary cells.
  • the carrier corresponding to the PCell is a downlink primary component carrier (DL PCC)
  • DL PCC downlink primary component carrier
  • UPCC uplink primary component carrier
  • the PCell may be changed only by a handover procedure, and the PCell is used for transmission of the PUCCH.
  • PCell unlike SCells, PCell cannot be de-activated.
  • re-establishment is triggered when the PCell experiences the RLF, and no reset occurs when the SCell experiences the RLF.
  • NAS information is also obtained from PCell.
  • SCells Secondary Cells
  • SCells may be configured in the form of a set of serving cells with a PCell.
  • the carrier corresponding to the SCell in downlink is a downlink secondary component carrier (DL SCC)
  • the carrier corresponding to the SCell in the uplink is an uplink secondary component carrier (UL SCC). to be.
  • DL SCC downlink secondary component carrier
  • UL SCC uplink secondary component carrier
  • a set of serving cells configured in one terminal always consists of one PCell and one or more SCells.
  • the number of serving cells that can be configured depends on the aggregation capability of the terminal.
  • Reconfiguration, addition and removal of SCells may be performed by RRC, and RRC may be used with a target PCell during intra-LTE handover in LTE. You can reconfigure, add, or remove SCells.
  • RRC signaling is used to transmit all required system information of the SCell. In the connected mode, the terminal does not need to directly obtain broadcast system information from the SCells.
  • FIG. 8 illustrates a UL-DL configuration on a TDD frame structure.
  • D is a downlink subframe
  • U is an uplink subframe
  • S is a special subframe.
  • FIG. 9 illustrates timing of PDCCH / EPDCCH for TDD UL transmission under a TDD UL-DL configuration.
  • the present invention relates to timing of PDCCH / EPDCCH for transmission of a TDD UL under an existing TDD UL-DL configuration.
  • the PDCCH / EPDCCH detected in a corresponding nth subframe is n. This means that the PUSCH is transmitted in the + kth subframe.
  • the PUSCH for the PDCCH / EPDCCH and the PHICH detected in the 0 th subframe in the TDD UL-DL configuration 0 may be transmitted in the 4 th subframe, and the 1 st subframe in the 0 TDD UL-DL configuration.
  • the PUSCH for the PDCCH / EPDCCH and PHICH detected at may be transmitted in the 7th subframe.
  • FIG. 10 illustrates PHICH timing for TDD UL HARQ-ACK transmission under a TDD UL-DL configuration.
  • the present invention relates to timing of PHICH transmission for HARQ-ACK transmission according to TDD UL under an existing TDD UL-DL configuration, and HARQ-ACK for PUSCH transmitted in subframe n.
  • the PHICH timing which is transmission, may transmit the PHICH in the DL subframe of the n + k_PHICH th.
  • carrier aggregation between a duplex mode of each of the FDD and the TDD is considered.
  • aggregation and joint operation between carriers having different duplex modes, such as FDD and TDD are not considered.
  • control channel and PUSCH transmission timing and the HARQ-ACK for UL transmission in the case of considering the duplex mode FDD and TDD joint operation and FDD and TDD carrier aggregation are considered. It is intended to propose a specific method and apparatus for the PHICH timing for transmitting the PHY.
  • the present invention can be applied when the base station considers a carrier operation of FDD and TDD and a joint operation of FDD and TDD, which are different duplex modes.
  • the operation of the terminal and the base station may be different from the case of performing carrier aggregation between the same duplex mode.
  • the PUSCH transmission timing according to the reception of the control channel (PDCCH / EPDCCH) needs to be defined differently.
  • PHICH timing for transmitting HARQ-ACK for UL transmission needs to be defined differently. Therefore, the present invention proposes an operation method of a terminal, an operation setting method for a terminal from a base station, and a terminal apparatus and a base station apparatus related thereto.
  • the control channel (PDCCH / EPDCCH) is received according to reception.
  • a method of operating a terminal and a base station regarding a PHICH timing for transmitting a PUSCH transmission timing and a HARQ-ACK for UL transmission is proposed.
  • the present invention provides timing of reception of a control channel (PDCCH / EPDCCH), which may vary according to the duplex mode of each cell designated as a PCell and a SCell during a TDD-FDD joint operation and a carrier aggregation. And a method related to PUSCH transmission timing according thereto.
  • a control channel PDCCH / EPDCCH
  • the TDD-FDD joint operation and timing of PDCCH / EPDCCH for UL transmission in CA and UE procedure related to PHICH timing for transmitting an associated HARQ-ACK are defined.
  • Carriers operating in different duplex modes are merged, or when performing joint operations between carriers operating in different duplex modes, the embodiments are divided and described according to the duplex modes of the PCell and the SCell.
  • TDD PCell and FDD is SCell
  • the TDD DL subframe designated as the TDD PCell exists only in a specific subframe according to the UL-DL configuration, whereas the UL subframe for the FDD SCell exists in all subframes in one radio frame.
  • a control channel for UL transmission defined in each duplex When the timing of PDCCH / EPDCCH) and the PHICH timing for transmitting HARQ-ACK are followed, each of the independent serving cells may operate well.
  • PUSCH may be transmitted according to the PUSCH transmission timing. That is, when the PCell is in the TDD or FDD duplex mode, the PUSCH may be transmitted according to the control channel and the PUSCH timing of the TDD or FDD.
  • the SCell may transmit the PUSCH according to the control channel and the PUSCH timing of the TDD or FDD when the SCell is in the TDD or FDD duplex mode.
  • cross-carrier scheduling In a terminal operating by a carrier merging or joint operation, it is called cross-carrier scheduling when a specific carrier transmits and receives control information of another carrier and performs scheduling.
  • each carrier since each carrier does not perform cross-carrier scheduling by transmitting and receiving control information, it is called non-cross carrier scheduling or self-carrier scheduling because scheduling is performed on each carrier. .
  • the terminal and the base station may operate according to the PHICH timing according to each duplex mode.
  • TDD PCell transmits PDCCH / EPDCCH for UL transmission to FDD SCell to control FDD SCell UL transmission. If a corresponding case occurs, ambiguity may occur in whether the UL data should be transmitted according to the timing specified in the TDD PCell or the UL data according to the FDD timing relationship according to the FDD SCell.
  • the HARQ timing for the UL transmitted in the existing FDD SCell transmits the UL in the nth subframe by the UL grant received in the existing (n-4) th subframe and transmits the (n + 4) th time.
  • the PHICH timing of HARQ-ACK was used. Accordingly, in the case of cross-carrier scheduling, when there is no DL subframe in the TDD PCell based on the nth UL transmission, scheduling may be performed according to PDCCH / EPDCCH in the corresponding UL. No problem occurs.
  • the UE cannot receive a PHICH for transmitting the HARQ-ACK for the corresponding UL. Occurs.
  • the transmission timing of the UL grant for transmitting the scheduling information of the PDCCH / EPDCCH for the UL transmission for the corresponding FDD SCell and the HARQ for the corresponding UL transmission There is a need for a method for improving transmission timing of a PHICH for transmitting an -ACK.
  • duplex mode of the PCell is TDD and the duplex mode of the SCell is FDD.
  • the timing of the PDCCH / EPDCCH for UL transmission for the FDD SCell is transmitted to the TDD PCell. Can be set to match. Meanwhile, a method of applying a timing used by the TDD PCell as a PHICH timing for transmitting HARQ-ACK for UL transmission to the FDD SCell may be considered.
  • the UE transmits the PUSCH for the n th PDCCH / EPDCCH received the scheduling information (grant) in the (n-4) th subframe configured in the existing FDD-FDD CA of the FDD SCell
  • PDCCH / EPDCCH and PHICH timing may be set regardless of whether the corresponding HARQ-ACK is transmitted through the PHICH in the DL of the n + 4th subframe, which is the PHICH transmission timing of the existing FDD. That is, the reception timing of the PDCCH / EPDCCH for the TDD UL shared channel associated with the UL-DL subframe configuration used by the TDD PCell and the PHICH timing for transmitting HARQ-ACK are applied to the FDD SCell.
  • This method is applied to the FDD SCell as if the TDD SCell was added. That is, the PUSCH transmission of the SCell may be performed based on the timing of the UL-DL configuration configured to be used in the TDD PCell. In other words, the PUSCH transmission of the SCell may be transmitted based on the control channel received according to the control channel reception timing for the uplink configured to be used in the PCell.
  • the DL subframe of the TDD PCell for scheduling UL of the nth subframe for the aforementioned FDD SCell does not exist or is transmitted in a specific subframe.
  • the problem that there is no DL subframe on the TDD PCell for receiving the PHICH of the HARQ-ACK for the UL can be improved.
  • Second embodiment Control channel and PUSCH timing for UL to be transmitted to FDD SCell according to the timing of FDD SCell.
  • the PHICH timing for the uplink signal transmitted in the UL subframe of the FDD SCell under the specific UL-DL configuration configured in the specific TDD PCell is based on the TDD PCell timing.
  • the problem of wasting frames may occur.
  • the timing of the PCell according to the UL-DL configuration set in the TDD PCell is determined by the timing of receiving the PDCCH / EPDCCH for the UL transmitted from the FDD SCell and / or the PHICH timing, which is HARQ-ACK for the UL transmission.
  • the FDD SCell UL subframe mapped with the DL subframe of the TDD PCell, since the corresponding subframe was a DL subframe in the existing TDD PCell, PDCCH / EPDCCH and PHICH related timing information for UL transmission do not exist. Does not cause problems.
  • the scheduling grant timing and the PHICH from the TDD DL subframe There is no timing.
  • the UE cannot transmit the UL subframe belonging to the corresponding FDD SCell. This may reduce the uplink data rate of the FDD SCell by 40% to 90% according to the UL-DL configuration configured for each TDD PCell.
  • 11 to 17 exemplarily illustrate a case where a TDD Cell and an FDD Cell having respective TDD UL-DL configurations 0 to 6 become CAs for a TDD-FDD joint operation and a CA.
  • 11 through 17 show examples of a case where a TDD Cell and an FDD Cell having respective TDD UL-DL configurations are CAs for respective TDD-FDD joint operations and CAs.
  • the subframe shaded in the UL frequency band in the FDD Cell when operating in the TDD-FDD joint operation and CA, the timing of the PDCCH / EPDCCH for the transmission to the FDD SCell UL and the transmission of the corresponding FDD SCell UL
  • FIG. 11 is a diagram illustrating a case where a TDD Cell and an FDD Cell having a TDD UL-DL configuration of 0 according to an embodiment of the present invention become CA.
  • subframes 0, 1, 5, and 6 of the FDD SCell have a subframe of the TDD PCell having the same index as the corresponding subframe as a downlink or a special subframe. Therefore, when the FDD SCell is configured to follow the PDCCH / EPDCCH and PHICH timing of the TDD PCell according to the first embodiment described above, an operation for uplink signal transmission of subframes 0, 1, 5, and 6 of the FDD cell A problem arises in which this cannot be done. This causes subframe waste of the FDD SCell.
  • FIG. 12 is a diagram illustrating a case in which a TDD Cell and an FDD Cell having a TDD UL-DL configuration of 1 according to an embodiment of the present invention become CA.
  • a subframe of the TDD PCell having the same index as the corresponding subframe is configured as a downlink or a special subframe. Therefore, when the FDD SCell is configured to follow the PDCCH / EPDCCH and PHICH timing of the TDD PCell according to the first embodiment described above, the uplink signal of subframes 0, 1, 4, 5, 6, and 9 of the FDD cell The problem arises that the operation on the transmission cannot be performed. This causes subframe waste of the FDD SCell.
  • FIG. 13 is a diagram illustrating a case in which a TDD Cell and an FDD Cell having a TDD UL-DL configuration of 2 according to an embodiment of the present invention become CA.
  • a subframe of the TDD PCell having the same index as the corresponding subframe is configured as a downlink or a special subframe. have. Therefore, when the FDD SCell is configured to follow the PDCCH / EPDCCH and PHICH timing of the TDD PCell according to the first embodiment described above, subframes 0, 1, 3, 4, 5, 6, 8, and 9 of the FDD Cell There is a problem that the operation for the uplink signal transmission of the can not be performed. This causes subframe waste of the FDD SCell.
  • FIG. 14 illustrates a case in which a TDD Cell and an FDD Cell having a TDD UL-DL configuration of 3 according to an embodiment of the present invention become CA.
  • a subframe of the TDD PCell having the same index as the corresponding subframe is configured as a downlink or a special subframe. Therefore, when the FDD SCell is configured to follow the PDCCH / EPDCCH and PHICH timing of the TDD PCell according to the first embodiment described above, the uplink of subframes 0, 1, 5, 6, 7, 8, and 9 of the FDD Cell is uplinked. There arises a problem that the operation for link signal transmission cannot be performed. This causes subframe waste of the FDD SCell.
  • FIG. 15 is a diagram illustrating a case where a TDD Cell and an FDD Cell having a TDD UL-DL configuration of 4 according to an embodiment of the present invention become CA.
  • a subframe of the TDD PCell having the same index as the corresponding subframe is configured as a downlink or a special subframe. have. Therefore, when the FDD SCell is configured to follow the PDCCH / EPDCCH and PHICH timing of the TDD PCell according to the first embodiment described above, subframes 0, 1, 4, 5, 6, 7, 8, and 9 of the FDD Cell There is a problem that the operation for the uplink signal transmission of the can not be performed. This causes subframe waste of the FDD SCell.
  • FIG. 16 is a diagram illustrating a case where a TDD Cell and an FDD Cell having a TDD UL-DL configuration of 5 according to an embodiment of the present invention become CA.
  • a subframe of the TDD PCell having the same index as the corresponding subframe is a downlink or special subframe. It is set. Therefore, when the FDD SCell is configured to follow the PDCCH / EPDCCH and PHICH timing of the TDD PCell according to the first embodiment described above, 0, 1, 3, 4, 5, 6, 7, 8, and 9 of the FDD Cell.
  • an operation for uplink signal transmission of a subframe cannot be performed. This causes subframe waste of the FDD SCell.
  • FIG. 17 illustrates a case in which a TDD Cell and an FDD Cell having a TDD UL-DL configuration of 6 according to an embodiment of the present invention become CA.
  • a subframe of the TDD PCell having the same index as the corresponding subframe is configured as a downlink or a special subframe. Therefore, when the FDD SCell is configured to follow the PDCCH / EPDCCH and PHICH timing of the TDD PCell according to the first embodiment described above, it is used to transmit uplink signals of subframes 0, 1, 5, 6, and 9 of the FDD cell. The problem arises that the operation cannot be performed. This causes subframe waste of the FDD SCell.
  • the second embodiment of the present invention provides a method for defining a control channel reception timing for additional UL transmission and ULQ HARQ-ACK PHICH timing for the UL of the corresponding FDD SCell.
  • the control channel reception timing according to the second embodiment of the present invention may follow the timing of the FDD SCell. That is, the PUSCH transmission of the SCell may be transmitted based on the control channel received according to the control channel reception timing for the uplink configured to be used in the SCell.
  • the reception timing of the control channel (PDCCH / EPDCCH) in the TDD PCell for performing PUSCH transmission in the n-th UL subframe of the FDD SCell is a TDD PCell subframe before the (n-4) th minimum.
  • the control channel (PDCCH / EPDCCH) can be set to be transmitted by the PUSCH indicated by the detection (detection).
  • the PHICH transmitting the HARQ-ACK for the PUSCH transmitted in the nth UL subframe may be transmitted in the at least (n + 4) th TDD PCell DL subframe, even if the fastest PHICH is transmitted.
  • the control channel including the UL grant information for the PUSCH transmitted to the FDD SCell, that is, PDCCH / EPDCCH may be received at intervals of 4 ms or 4 TTI with the corresponding PUSCH.
  • Table 1 shows an example of a timing relationship of PDCCH / EPDCCH for uplink data transmission in a TDD PCell according to an embodiment of the present invention.
  • PDCCH / EPDCCH for FDD SCell PUSCH may be equally distributed and transmitted on TDD DL subframes.
  • the PUSCH transmission timing after PDCCH / EPDCCH detection is performed in the TDD PCell subframe may be performed as shown in Table 1 below. That is, this means that (n + k) by PDCCH / EPDCCH detected in the corresponding nth subframe in the TDD PCell in case PDCCH / EPDCCH transmission of UL for the FDD SCell is made in the TDD PCell (cross carrier scheduling). This means that the PUSCH is transmitted on the FDD SCell in the) th subframe.
  • the underlined k value according to each TDD UL-DL configuration is a newly defined additional timing in the existing TDD configuration. That is, in case of TDD UL-DL configuration 0, the PDCCH / EPDCCH received in the 0 th subframe may include PUSCH scheduling information in the UL subframe of the 4 th TDD Cell, which is (n + 4).
  • the FDD SCell of the present invention When the FDD SCell of the present invention is added, 5 may be added to the 0 th subframe of the TDD UL-DL configuration as 5 for the PUSCH scheduling of the 5 th FDD subframe. Accordingly, the PUSCH in the fifth subframe of the FDD SCell may be scheduled based on the PDCCH / EPDCCH received in the zeroth subframe of the TDD PCell.
  • the table shown in Table 1 exemplarily shows timing information of a PUSCH and a PDCCH / EPDCCH for an FDD SCell according to each TDD UL-DL configuration. Accordingly, the transmission timing of the PUSCH of the SCell according to each TDD UL-DL configuration may be independent, and for convenience of description, seven combinations are shown as one table, but may be separately defined. That is, each transmission timing of the PUSCH of the SCell according to the TDD UL-DL configuration of Table 1 may be defined separately.
  • the definition of the PDCCH / EPDCCH timing for the PUSCH transmitted in the FDD SCell UL subframe described with reference to Table 1 above is to equally distribute the PDCCH / EPDCCH for the FDD SCell PUSCH on the TDD DL subframes.
  • Table 1 The definition of the PDCCH / EPDCCH timing for the PUSCH transmitted in the FDD SCell UL subframe described with reference to Table 1 above is to equally distribute the PDCCH / EPDCCH for the FDD SCell PUSCH on the TDD DL subframes.
  • the PDCCH / EPDCCH timing may be configured to be allocated to a specific TDD DL subframe.
  • Tables 2 and 3 exemplarily show a timing relationship between PDCCH / EPDCCH when TDD UL-DL configuration 0 is PCell according to another embodiment of the present invention.
  • PDCCH / EPDCCH for the UL PUSCH of the corresponding FDD SCell may be centrally allocated to a specific TDD DL subframe.
  • the k value of the 0 th subframe may be set to 4, 5, and 6.
  • the PDCCH / EPDCCH received through the 0 th subframe may include PUSCH scheduling information of the (n + k) th subframe. Accordingly, PUSCH scheduling information of UL subframes 5 and 6 of the FDD SCell may be included.
  • PUSCH scheduling information of UL subframes of FDD SCells 5 and 6 may be received through subframe 1 of the TDD PCell.
  • control information for scheduling the PUSCH of the UL subframe of the FDD SCell which cannot be scheduled through the conventional TDD UL-DL configuration, may be configured to be intensively allocated to a specific subframe of the TDD PCell.
  • TDD configuration 0 is taken as an example, the same principle may be applied to other TDD UL-DL configurations.
  • it may be transmitted by including subframe index information for transmitting the corresponding PUSCH on the PDCCH / EPDCCH. That is, the UL subframe index (index) for the corresponding FDD SCell may be indicated by using the UL index information, so that the PUSCH may be transmitted in the corresponding UL subframe.
  • FDD PCell and TDD is SCell
  • a case where the duplex mode of the PCell is FDD and the duplex mode of the SCell may be considered. Even in this case, when the PCell and the SCell are self-carrier scheduled, the terminal may transmit the PUSCH based on the control channel reception timing according to the duplex mode of the PCell and the SCell.
  • control channel reception timing for the PUSCH transmitted in the TDD SCell may be set according to each embodiment as follows to reduce waste of subframes and efficiently transmit PUSCH.
  • the SCell operating in the TDD duplex mode may be added to the PCell operating in the FDD duplex mode.
  • scheduling of the UL subframe for the TDD SCell may be performed from the DL subframe of the FDD PCell.
  • the FDD PCell when cross-carrier scheduling is performed, in the FDD PCell, all subframes are configured as DL subframes in one radio frame, and cross-carrier scheduling is performed. In the FDD PCell performing the UL grant for the TDD SCell is transmitted. In addition, the PHICH for transmitting the HARQ-ACK for the uplink transmission transmitted in the TDD SCell is received in the FDD PCell.
  • the PUSCH transmission and control channel reception timing of the UL transmitted from the TDD SCell may be applied based on the TDD duplex mode of the SCell.
  • the PHICH timing may be set to apply the PHICH timing of the TDD UL used in non-cross carrier scheduling. That is, the PHICH timing of the UL transmitted from the TDD SCell may be set to follow FIG. 10 described above.
  • the PHICH timing according to another embodiment of the present invention is set to be the same as the PHICH timing shown in FIG. 10 so that non-cross-carrier scheduling and cross-carrier scheduling are performed. At this time, it may be set to have the same PHICH timing. That is, when the TDD duplex mode is included, the TDD-TDD CA and the TDD-FDD CA may be set to have the same PHICH timing of the same UE so that the UE may operate.
  • control channel reception timing and the PUSCH transmission timing transmitted to the SCell may be applied according to the TDD UL-DL configuration of the SCell like non-cross carrier scheduling. That is, it can be applied according to the timing table of FIG.
  • the PUSCH transmission of the SCell may be transmitted based on the control channel received according to the control channel reception timing for the uplink configured to be used in the SCell.
  • the timing of the FDD PCell may be applied to the control channel reception timing for the PUSCH transmitted to the TDD SCell and the PUSCH transmission timing according to the control channel reception. That is, the PUSCH transmission of the SCell may be transmitted based on the control channel received according to the control channel reception timing for the uplink configured to be used in the PCell. For example, PDCCH / EPDCCH of the PUSCH transmitted in the nth subframe may be received in the (n-4) th subframe. Or, it may be set to be received in a minimum (n-4) th subframe.
  • the terminal receiving the grant may transmit the UL to the TDD SCell in the n subframe.
  • k may be four.
  • the PUSCH and PHICH timing for the UL transmitted to the TDD SCell is set to match the FDD PCell, so that the same is the case for the FDD-FDD CA and the FDD-TDD CA regardless of the different duplex modes. It may be considered as a method for enabling PHICH timing.
  • the first to fourth embodiments of the present invention described above are scenarios used in the TDD-FDD joint operation and the CA operation, and the CA may be used through two or more component carriers in the UL and the CA in the UL. Not applicable, that is, even when using one component carrier (component carrier) are all applicable.
  • FIG. 18 is a diagram illustrating an example of an operation when a terminal is self-carrier scheduled according to another embodiment of the present invention.
  • a terminal configured with a PCell and a SCell operating in different duplex modes may be configured such that each of the PCell and the SCell is set to self-carrier scheduling and And transmitting the PUSCH to each of the PCell and the SCell based on the received control channel according to the control channel reception timing for the uplink transmission in the duplex mode.
  • a terminal configured with a PCell and a SCell operating in different duplex modes may be self-scheduled (S1810).
  • a control channel including a UL grant for PUSCH transmission of each of the PCell and the SCell may be transmitted in each of the PCell and the SCell.
  • the terminal may receive the control channel transmitted from each cell and perform PUSCH transmission of the corresponding cell.
  • the terminal may include transmitting a PUSCH to each of the PCell and the SCell based on the received control channel according to the control channel reception timing for the uplink transmission of each of the PCell and the SCell (S1820). For example, in the case of the PUSCH transmitted to the PCell, the terminal may transmit according to the control channel and the PUSCH timing according to the duplex mode of the PCell. In addition, the PUSCH transmitted to the SCell may be transmitted according to the control channel and the PUSCH timing according to the duplex mode of the SCell.
  • the PUSCH may be transmitted at timing based on the duplex mode of the cell regardless of whether the duplex mode of the PCell is TDD or FDD.
  • the control channel may be PDCCH / EPDCCH.
  • 19 is a diagram illustrating an example of an operation when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
  • a terminal configured with a PCell operating in a TDD duplex mode and a SCell operating in an FDD duplex mode is a method for processing a control channel, wherein the SCell is cross-carrier scheduled from the PCell and the duplex of the PCell. And transmitting the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for the uplink transmission according to the mode.
  • a terminal configured with a PCell operating in the TDD duplex mode and an SCell operating in the FDD duplex mode may be cross-carrier scheduled from the PCell (S1910).
  • the control channel transmitted from the PCell includes UL grant information of the SCell, and the terminal may control the PUSCH transmission of the SCell based on the information included in the control channel transmitted from the PCell.
  • the terminal may transmit the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for the uplink transmission in the duplex mode of the PCell (S1920).
  • the PUSCH may be transmitted to the SCell according to the control channel and the PUSCH transmission timing of the PCell operating in the TDD duplex mode. That is, the PUSCH transmission subframe may be determined as shown in FIG. 9 according to the TDD UL-DL configuration of the PCell.
  • 20 is a diagram illustrating another example of an operation when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
  • a terminal configured with a PCell operating in a TDD duplex mode and an SCell operating in the FDD duplex mode comprises the steps of cross-carrier scheduling of the SCell from the PCell and the duplex of the SCell. And transmitting the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for the uplink transmission according to the mode.
  • the SCell may be cross-carrier scheduled from the PCell (S2010).
  • the control channel transmitted from the PCell includes UL grant information of the SCell, and the terminal may control the PUSCH transmission of the SCell based on the information included in the control channel transmitted from the PCell.
  • the terminal may transmit the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the SCell (S2020).
  • the PUSCH may be transmitted to the SCell according to the control channel and the PUSCH transmission timing of the SCell operating in the FDD duplex mode.
  • the control channel including the UL grant for the PUSCH transmitted in the nth subframe may be received in the (n-4) th subframe. That is, the control channel transmitted and received from the PCell and the PUSCH transmitted to the SCell may have an interval of 4 ms. Or an interval of 4 TTIs.
  • 21 is a diagram illustrating another example of an operation when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
  • a step of cross-carrier scheduling of the SCell from the PCell and duplex of the SCell And transmitting the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for the uplink transmission according to the mode.
  • a terminal configured with a PCell operating in the FDD duplex mode and a SCell operating in the TDD duplex mode may be cross-carrier scheduled from the PCell (S2110).
  • the control channel transmitted from the PCell includes UL grant information of the SCell, and the terminal may control the PUSCH transmission of the SCell based on the information included in the control channel transmitted from the PCell.
  • the UE may transmit the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for the uplink transmission in the duplex mode of the SCell (S2120).
  • the PUSCH may be transmitted to the SCell according to the control channel and the PUSCH transmission timing of the SCell operating in the TDD duplex mode. That is, a PUSCH transmission subframe may be determined as shown in FIG. 9 according to the TDD UL-DL configuration of the SCell.
  • 22 is a diagram illustrating another example of an operation when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
  • a method of processing a control channel by a terminal configured with a PCell operating in FDD duplex mode and a SCell operating in TDD duplex mode according to another embodiment of the present invention, the step of cross-carrier scheduling of the SCell from the PCell and the duplex of the PCell And transmitting the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for the uplink transmission according to the mode.
  • the terminal configured with the PCell operating in the FDD duplex mode and the SCell operating in the TDD duplex mode may be cross-carrier scheduled from the PCell (S2210).
  • the control channel transmitted from the PCell includes UL grant information of the SCell, and the terminal may control the PUSCH transmission of the SCell based on the information included in the control channel transmitted from the PCell.
  • the terminal may transmit the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for uplink transmission in the duplex mode of the PCell (S2220).
  • the PUSCH may be transmitted to the SCell according to the control channel and the PUSCH transmission timing of the PCell operating in the FDD duplex mode.
  • the control channel including the UL grant for the PUSCH transmitted in the nth subframe may be received in the (n-4) th subframe. That is, the control channel transmitted and received from the PCell and the PUSCH transmitted to the SCell may be set to have an interval of 4 ms. Or it may be set to have an interval of 4 TTI.
  • 23 to 27 are diagrams illustrating operations of a base station according to each embodiment of the present invention.
  • FIG. 23 is a diagram illustrating an example of an operation of a base station when a terminal is self-carrier scheduled according to another embodiment of the present invention.
  • the base station In a method for controlling a PUSCH transmission of a terminal configured with a PCell and a SCell operating in a different duplex mode, the base station according to another embodiment of the present invention, the step of controlling each of the PCell or SCell to self-carrier scheduling and the PCell and the And receiving the PUSCH transmitted to each of the PCell and the SCell based on the control channel transmitted from each of the PCell and the SCell according to the control channel reception timing for the uplink transmission of each of the SCell duplex modes.
  • the base station may control the terminal to be self-carrier scheduled (S2310).
  • the control information related to the PCell is transmitted to the control channel of the PCell
  • the control information related to the SCell is the control channel of the SCell. Can transmit Through this, the terminal may be scheduled as described above using the received control information.
  • the base station may receive the PUSCH transmitted to each of the PCell and the SCell based on the control channel transmitted from each of the PCell and the SCell according to the control channel reception timing for the uplink transmission of the duplex mode of the PCell and the SCell. (S2320). For example, when the terminal transmits a PUSCH to the PCell based on the information of the control channel transmitted to the PCell, the base station may receive it. In addition, if the PUSCH is transmitted to the SCell based on the information of the control channel transmitted to the SCell, the base station may receive it. In this case, the control channel reception and PUSCH transmission timing of each cell may be a timing set according to the duplex mode of each cell.
  • the PUSCH received by the PCell may be a PUSCH transmitted according to a control channel defined according to each UL-DL configuration and a PUSCH transmission timing as shown in FIG. 9.
  • the PUSCH received at the SCell may be a PUSCH transmitted based on the timing of the FDD. That is, when the subframe in which the PDCCH / EPDCCH including the information for PUSCH transmission of the SCell is transmitted is the nth subframe, the subframe in which the received PUSCH is transmitted may be the (n + 4) th subframe.
  • 24 is a diagram illustrating an example of an operation of a base station when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
  • the base station In a method for controlling a PUSCH transmission of a terminal configured with a PCell operating in a TDD duplex mode and a SCell operating in the FDD duplex mode, the base station according to another embodiment of the present invention, controlling the PCell to cross-carrier scheduling the SCell And receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the PCell.
  • the base station may control the terminal to control cross carrier scheduling (S2410).
  • the control information related to the SCell is transmitted through a control channel of the PCell, thereby controlling cross-carrier scheduling of the SCell of the terminal.
  • the UL grant information for the PUSCH transmitted to the SCell may be transmitted through the control channel of the PCell.
  • the information indicating that the UL grant of the control channel is related to the SCell is included, so that the UE can confirm that the received control channel information is information related to the SCell.
  • the base station may receive the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the PCell (S2420). For example, when the terminal to be cross-carrier scheduled receives control information on the PUSCH transmitted to the SCell through the PCell, the control channel reception timing and the PUSCH timing may be set based on the duplex mode of the PCell. The base station may receive the PUSCH transmitted in the SCell based on the duplex mode timing of the PCell.
  • a timing set according to the TDD mode which is a duplex mode of the PCell, may be applied to the PDCCH / EPDCCH of the PUSCH transmitted and received in the FDD SCell. That is, in the case of the PCell operating in the TDD duplex mode, the base station may receive the PUSCH transmitted from the SCell according to the control channel reception timing and the PUSCH transmission timing defined according to each TDD UL-DL configuration as shown in FIG. 9.
  • 25 is a diagram illustrating another example of an operation of a base station when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
  • the base station In a method for controlling a PUSCH transmission of a terminal configured with a PCell operating in a TDD duplex mode and a SCell operating in the FDD duplex mode, the base station according to another embodiment of the present invention, controlling the PCell to cross-carrier scheduling the SCell And receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the SCell.
  • the base station may control the terminal to be cross-carrier scheduled (S2510).
  • the control information related to the SCell is transmitted through a control channel of the PCell, thereby controlling cross-carrier scheduling of the SCell of the terminal.
  • the UL grant information for the PUSCH transmitted to the SCell may be transmitted through the control channel of the PCell.
  • the information indicating that the UL grant of the control channel is related to the SCell is included, so that the UE can confirm that the received control channel information is information related to the SCell.
  • the base station may receive the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the SCell (S2520). For example, when the terminal to be cross-carrier scheduled receives control information on the PUSCH transmitted to the SCell through the PCell, the control channel reception timing and the PUSCH timing may be set based on the duplex mode of the SCell. The base station may receive the PUSCH transmitted in the SCell based on the duplex mode timing of the SCell.
  • a timing set according to the FDD mode which is a duplex mode of the SCell, may be applied to the PDCCH / EPDCCH of the PUSCH transmitted and received in the FDD SCell.
  • the PUSCH transmitted in the nth subframe received by the base station in the SCell may be a PUSCH transmitted based on control information included in the PDCCH / EPDCCH transmitted in the n-4th subframe according to the FDD control channel reception timing. That is, the PDCCH / EPDCCH and PUSCH transmission timing may be 4 ms. Or it may be set at intervals of 4 TTI.
  • FIG. 26 is a diagram illustrating another example of an operation of a base station when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
  • controlling the PCell to cross-carrier scheduling the SCell And receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the SCell.
  • the base station may control the terminal to be cross-carrier scheduled (S2610).
  • the control information related to the SCell is transmitted through a control channel of the PCell, thereby controlling cross-carrier scheduling of the SCell of the terminal.
  • the UL grant information for the PUSCH transmitted to the SCell may be transmitted through the control channel of the PCell.
  • the information indicating that the UL grant of the control channel is related to the SCell is included, so that the UE can confirm that the received control channel information is information related to the SCell.
  • the base station may receive the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the SCell (S2620). For example, when the terminal to be cross-carrier scheduled receives control information on the PUSCH transmitted to the SCell through the PCell, the control channel reception timing and the PUSCH timing may be set based on the duplex mode of the SCell. The base station may receive the PUSCH transmitted in the SCell based on the duplex mode timing of the SCell.
  • a timing set according to the TDD mode which is a duplex mode of the SCell, may be applied to the PDCCH / EPDCCH of the PUSCH transmitted and received in the TDD SCell. That is, in case of the SCell operating in the TDD duplex mode, as shown in FIG. 9, the base station may receive the PUSCH transmitted from the SCell according to the control channel reception timing and the PUSCH transmission timing defined according to each TDD UL-DL configuration.
  • FIG. 27 is a diagram illustrating another example of an operation of a base station when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
  • controlling the PCell to cross-carrier scheduling the SCell And receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the PCell.
  • the base station may control the terminal to control cross carrier scheduling (S2710).
  • the control information related to the SCell is transmitted through a control channel of the PCell, thereby controlling cross-carrier scheduling of the SCell of the terminal.
  • the UL grant information for the PUSCH transmitted to the SCell may be transmitted through the control channel of the PCell.
  • the information indicating that the UL grant of the control channel is related to the SCell is included, so that the UE can confirm that the received control channel information is information related to the SCell.
  • the base station may receive the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the PCell (S2720). For example, when the terminal to be cross-carrier scheduled receives control information on the PUSCH transmitted to the SCell through the PCell, the control channel reception timing and the PUSCH timing may be set based on the duplex mode of the PCell. The base station may receive the PUSCH transmitted in the SCell based on the duplex mode timing of the PCell.
  • a timing set according to the FDD mode which is a duplex mode of the PCell, may be applied to the PDCCH / EPDCCH of the PUSCH transmitted and received by the FDD PCell.
  • the PUSCH transmitted in the nth subframe received by the base station in the SCell may be a PUSCH transmitted based on control information included in the PDCCH / EPDCCH transmitted in the n-4th subframe according to the FDD control channel reception timing. That is, the PDCCH / EPDCCH and PUSCH transmission timing may be 4 ms. Or at intervals of 4 TTIs.
  • the PCell / SCell is configured between the terminal and the base station. It is possible to resolve the ambiguity between the UE and the base station for the behavior of the terminal operating according to the configuration of the base station.
  • an access procedure performed between the terminal and the base station and up / downlink data transmission and transmission and reception operations of an uplink / downlink control channel including HARQ operation can be accurately set.
  • to ensure the reliability of data transmission between the terminal and the base station which provides an effect that can increase the data rate of the uplink / downlink.
  • FIG. 28 is a diagram illustrating a configuration of a terminal according to another embodiment of the present invention.
  • the terminal 2800 includes a controller 2810, a transmitter 2820, and a receiver 2830.
  • a PCell and a SCell configured to operate in different duplex modes are configured to process a control channel.
  • the control unit 2810 and PCell and SCell respectively control the PCell and the SCell to be self-carrier scheduled.
  • the transmitter 2820 may transmit a PUSCH to each of the PCell and the SCell based on the received control channel according to the control channel reception timing for the uplink transmission in the duplex mode.
  • the controller 2810 controls the SCell to be cross-carrier scheduled from the PCell.
  • the controller 2810 controls the SCell to be cross-carrier scheduled from the PCell.
  • a transmitter 2820 that transmits the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the PCell.
  • controller 2810 may control the overall control of the control channel reception timing and the PUSCH transmission timing according to the duplex mode when operating in different duplex modes required to perform the above-described embodiments of the present invention. Control the operation.
  • the receiver 2830 may receive a control channel transmitted at a timing set according to the above-described embodiments. Also, the transmitter 2820 and the receiver 2830 are used to transmit and receive signals, messages, and data necessary for carrying out the above-described present invention.
  • 29 is a diagram illustrating a configuration of a base station according to another embodiment of the present invention.
  • a base station 2900 includes a receiver 2930, a controller 2910, and a transmitter 2920.
  • the control unit 2910 and the PCell for controlling each of the PCell or SCell self-scheduling and The receiver 2930 may receive a PUSCH transmitted to each of the PCell and the SCell based on the control channel transmitted from each of the PCell and the SCell according to the control channel reception timing for the uplink transmission of each SCell duplex mode.
  • a control unit for controlling the PCell to cross-carrier scheduling And a receiver 2930 for receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the PCell may include.
  • a control unit for controlling the PCell to cross-carrier scheduling And a receiver 2930 for receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the SCell may include.
  • a control unit for controlling the PCell to cross-carrier scheduling And a receiver 2930 for receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the SCell may include.
  • a control unit for controlling the PCell to cross-carrier scheduling And a receiver 2930 for receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the PCell may include.
  • control unit 2910 is based on a control channel reception timing and a PUSCH transmission timing that can be set differently according to each duplex mode from a terminal operating in different duplex modes required to perform the above-described embodiments of the present invention. It controls the overall operation of the base station according to receiving and processing the transmitted PUSCH.
  • the receiver 2930 receives uplink control information, data, and messages from the terminal through a corresponding channel.
  • the transmitter 2920 may transmit a PDCCH or an EPDCCH to a control channel including a UL grant to the terminal.
  • the downlink control information, data, and messages are transmitted through the corresponding channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a method for setting the timing of a control channel for uplink transmission of a terminal where cells are configured to operate in different duplex modes, and an apparatus therefor, and more particularly, to a method for setting the timing for PUSCH transmission on the basis of transmission/reception timings of scheduling information for uplink data transmission and received PDCCH/EPDCCH in TDD-FDD joint operation and CA, and an apparatus for implementing the same. Specifically, the present invention suggests a method and an apparatus for processing a control channel by a terminal where a PCell and an SCell are configured to operate in different duplex modes, the method comprising: self-carrier scheduling at each of the PCell and the SCell; and transmitting a PUSCH to each of the PCell and the SCell on the basis of the control channel received according to the reception timing of the control channel for uplink transmission in duplex modes of each of the PCell and the SCell.

Description

TDD-FDD 조인트 오퍼레이션에서의 제어채널 타이밍 설정 방법 및 그 장치 Method and apparatus for setting timing of control channel in TDD-FDD joint operation
본 발명은 서로 다른 듀플렉스 모드로 동작하는 셀이 구성된 단말의 업링크 전송에 대한 제어채널 타이밍 설정방법 및 이를 위한 장치에 관한 것으로, 보다 상세하게는 서로 다른 듀플렉스 모드로 동작하는 하나 이상의 셀을 통해서 통신을 수행하는 단말이 기지국으로 데이터를 전송하기 위한 제어채널의 타이밍에 관한 것이다.The present invention relates to a control channel timing setting method and apparatus therefor for uplink transmission of a terminal configured with cells operating in different duplex modes, and more particularly, through one or more cells operating in different duplex modes. The terminal for performing the present invention relates to the timing of a control channel for transmitting data to a base station.
통신 시스템이 발전해나감에 따라 사업체들 및 개인들과 같은 소비자들은 매우 다양한 무선 단말기들을 사용하게 되었다. 현재의 3GPP 계열의 LTE(Long Term Evolution), LTE-Advanced 등의 이동 통신 시스템은 음성 위주의 서비스를 벗어나 영상, 무선 데이터 등의 다양한 데이터를 송수신 할 수 있는 고속 대용량의 통신 시스템으로서, 유선 통신 네트워크에 준하는 대용량 데이터를 전송할 수 있는 기술 개발이 요구되고 있다. 한편, 다수의 셀 혹은 스몰 셀과 같은 전개(deployment)들이 도입됨에 따라 캐리어 병합을 다양한 전개 시나리오에서 적용 가능할 수 있도록 하는 기술과 방법이 필요하다. 한편, 단말은 다수의 셀을 통해서 기지국과 통신을 수행할 수 있다. 이 경우 단말에 구성되는 다수의 셀은 그 기능에 따라서 프라이머리 셀(Primary Cell, PCell)과 세컨더리 셀(Secondary Cells, SCells)로 구분될 수 있다. 일 예로, PCell은 보안 입력을 제공하고, 핸드오버 절차를 통해서만 변경이 될 수 있으며 상향링크를 위한 제어채널의 전송을 수행할 수 있다. 하나 이상의 SCell은 UE 능력(capability)에 의존하여 PCell과 함께 서빙 셀의 셋(a set of serving Cells)의 형태로 구성될 수 있다.As communication systems have evolved, consumers, such as businesses and individuals, have used a wide variety of wireless terminals. Mobile communication systems such as LTE (Long Term Evolution) and LTE-Advanced of the current 3GPP series are high-speed and large-capacity communication systems that can transmit and receive various data such as video and wireless data out of voice-oriented services. The development of technology capable of transferring large amounts of data is required. Meanwhile, as deployments such as a plurality of cells or small cells are introduced, there is a need for a technique and a method for enabling carrier aggregation to be applicable in various deployment scenarios. Meanwhile, the terminal may communicate with the base station through a plurality of cells. In this case, the plurality of cells configured in the terminal may be divided into primary cells (PCell) and secondary cells (Secondary Cells, SCells) according to their functions. For example, the PCell may provide a secure input, may be changed only through a handover procedure, and may transmit a control channel for uplink. One or more SCells may be configured in the form of a set of serving cells together with a PCell depending on UE capability.
이러한 PCell과 SCell의 듀플렉스 모드가 상이한 조인트 오퍼레이션에서 업링크 데이터 전송을 위한 제어채널 수신 및 수신된 제어채널에 기초한 PUSCH 전송 타이밍을 어떤 방식으로 설정할 것인지는 전체 네트워크의 효율에 영향을 미친다.How the duplex mode of the PCell and the SCell sets the control channel reception for uplink data transmission and the PUSCH transmission timing based on the received control channel in different joint operations affects the efficiency of the entire network.
대용량 데이터를 전송하기 위한 서로 다른 듀플렉스 모드로 동작하는 캐리어 간의 병합이 이루어지는 경우에 제어채널 수신 타이밍과 업링크 데이터 전송에 대한 PUSCH 타이밍에 대한 설정이 요구된다.In the case of merging between carriers operating in different duplex modes for transmitting large data, setting of control channel reception timing and PUSCH timing for uplink data transmission is required.
전술한 과제를 해결하기 위한 본 발명은 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성된 단말이 제어채널을 처리하는 방법에 있어서, PCell 및 SCell 각각이 셀프 캐리어 스케줄링 되는 단계 및 PCell 및 SCell 각각의 듀플렉스 모드의 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 수신된 제어채널에 기초하여 PCell 및 SCell 각각으로 PUSCH를 전송하는 단계를 포함하는 방법을 제공한다.In order to solve the above problems, the present invention provides a method for processing a control channel by a terminal configured with a PCell and a SCell operating in different duplex modes, wherein each of the PCell and the SCell is self-carrier scheduled and the duplex of the PCell and the SCell, respectively. The present invention provides a method comprising transmitting a PUSCH to each of a PCell and a SCell based on a received control channel according to a control channel reception timing for a mode uplink transmission.
또한, 본 발명은 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말이 제어채널을 처리하는 방법에 있어서, PCell로부터 SCell이 크로스 캐리어 스케줄링 되는 단계 및 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송하는 단계를 포함하는 방법을 제공한다.The present invention also provides a method for processing a control channel by a terminal configured with a PCell operating in a TDD duplex mode and a SCell operating in an FDD duplex mode, wherein the SCell is cross-carrier scheduled from the PCell and the uplink according to the duplex mode of the PCell. A method for transmitting a PUSCH to an SCell based on a control channel received from a PCell according to a control channel reception timing for link transmission.
또한, 본 발명은 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말이 제어채널을 처리하는 방법에 있어서, PCell로부터 SCell이 크로스 캐리어 스케줄링 되는 단계 및 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송하는 단계를 포함하는 방법을 제공한다.The present invention also provides a method for processing a control channel by a terminal configured with a PCell operating in a TDD duplex mode and a SCell operating in an FDD duplex mode, wherein the SCell is cross-carrier scheduled from the PCell and is uplinked according to the duplex mode of the SCell. A method for transmitting a PUSCH to an SCell based on a control channel received from a PCell according to a control channel reception timing for link transmission.
또한, 본 발명은 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말이 제어채널을 처리하는 방법에 있어서, PCell로부터 SCell이 크로스 캐리어 스케줄링 되는 단계 및 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송하는 단계를 포함하는 방법을 제공한다.The present invention also provides a method for processing a control channel by a terminal configured with a PCell operating in an FDD duplex mode and a SCell operating in a TDD duplex mode, wherein the SCell is cross-carrier scheduled from the PCell and an uplink according to the duplex mode of the SCell. A method for transmitting a PUSCH to an SCell based on a control channel received from a PCell according to a control channel reception timing for link transmission.
또한, 본 발명은 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말이 제어채널을 처리하는 방법에 있어서, PCell로부터 SCell이 크로스 캐리어 스케줄링 되는 단계 및 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송하는 단계를 포함하는 방법을 제공한다.The present invention also provides a method for processing a control channel by a terminal configured with a PCell operating in the FDD duplex mode and a SCell operating in the TDD duplex mode, wherein the SCell is cross-carrier scheduled from the PCell and the uplink according to the duplex mode of the PCell. A method for transmitting a PUSCH to an SCell based on a control channel received from a PCell according to a control channel reception timing for link transmission.
또한, 본 발명은 기지국이 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성된 단말의 PUSCH 전송을 제어하는 방법에 있어서, PCell 또는 SCell 각각이 셀프 캐리어 스케줄링 되도록 제어하는 단계 및 PCell 및 SCell 각각의 듀플렉스 모드의 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell 및 SCell 각각으로부터 전송된 제어채널에 기초하여 PCell 및 SCell 각각으로 전송된 PUSCH를 수신하는 단계를 포함하는 방법을 제공한다.The present invention also provides a method for controlling a PUSCH transmission of a terminal configured with a PCell and a SCell in which a base station operates in a different duplex mode, controlling each of the PCell or the SCell to be self-carrier scheduled and the duplex mode of each of the PCell and the SCell. And receiving a PUSCH transmitted to each of the PCell and the SCell based on the control channel transmitted from each of the PCell and the SCell according to the control channel reception timing for the uplink transmission of the PLL.
또한, 본 발명은 기지국이 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 방법에 있어서, PCell이 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 단계 및 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 PUSCH를 수신하는 단계를 포함하는 방법을 제공한다.The present invention also provides a method for controlling a PUSCH transmission of a terminal configured with a PCell operating in a TDD duplex mode and a SCell operating in a TDD duplex mode, the PCell controlling the cross carrier scheduling of the SCell and the duplex of the PCell. A method for receiving a PUSCH transmitted to an SCell based on a control channel for uplink transmission of an SCell transmitted to a PCell according to a control channel reception timing for an uplink transmission according to a mode is provided.
또한, 본 발명은 기지국이 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 방법에 있어서, PCell이 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 단계 및 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 PUSCH를 수신하는 단계를 포함하는 방법을 제공한다.The present invention also provides a method for controlling a PUSCH transmission of a terminal configured with a PCell operating in a TDD duplex mode and a SCell operating in a TDD duplex mode, and controlling the PCell to cross-carrier schedule the SCell and the duplex of the SCell. A method for receiving a PUSCH transmitted to an SCell based on a control channel for uplink transmission of an SCell transmitted to a PCell according to a control channel reception timing for an uplink transmission according to a mode is provided.
또한, 본 발명은 기지국이 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 방법에 있어서, PCell이 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 단계 및 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 PUSCH를 수신하는 단계를 포함하는 방법을 제공한다.The present invention also provides a method for controlling a PUSCH transmission of a terminal configured with a PCell operating in an FDD duplex mode and an SCell operating in a TDD duplex mode, the PCell controlling cross-carrier scheduling of the SCell and the duplex of the SCell. A method for receiving a PUSCH transmitted to an SCell based on a control channel for uplink transmission of an SCell transmitted to a PCell according to a control channel reception timing for an uplink transmission according to a mode is provided.
또한, 본 발명은 기지국이 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 방법에 있어서, PCell이 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 단계 및 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 PUSCH를 수신하는 단계를 포함하는 방법을 제공한다.In addition, the present invention provides a method for controlling a PUSCH transmission of a terminal configured with a PCell operating in the FDD duplex mode and the SCell operating in the TDD duplex mode, the PCell control to cross-carrier scheduling the SCell and the duplex of the PCell A method for receiving a PUSCH transmitted to an SCell based on a control channel for uplink transmission of an SCell transmitted to a PCell according to a control channel reception timing for an uplink transmission according to a mode is provided.
또한, 본 발명은 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성되어 제어채널을 처리하는 단말에 있어서, PCell 및 SCell 각각이 셀프 캐리어 스케줄링 되도록 제어하는 제어부 및 PCell 및 SCell 각각의 듀플렉스 모드의 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 수신된 제어채널에 기초하여 PCell 및 SCell 각각으로 PUSCH를 전송하는 송신부를 포함하는 단말 장치를 제공한다.In addition, the present invention is a PCell and SCell operating in different duplex mode is configured in the terminal to process the control channel, the control unit for controlling the PCell and SCell each of the self-carrier scheduling and the uplink of the duplex mode of each of the PCell and SCell Provided is a terminal apparatus including a transmitter for transmitting a PUSCH to each of a PCell and a SCell based on a control channel received according to a control channel reception timing for transmission.
또한, 본 발명은 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성되어 제어채널을 처리하는 단말에 있어서, PCell로부터 SCell이 크로스 캐리어 스케줄링 되도록 제어하는 제어부 및 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송하는 송신부를 포함하는 단말 장치를 제공한다.The present invention also provides a PCell operating in the TDD duplex mode and a SCell operating in the FDD duplex mode to process a control channel, the control unit for controlling the SCell to cross-carrier scheduling from the PCell according to the duplex mode of the PCell Provided is a terminal device including a transmitter for transmitting a PUSCH to an SCell based on a control channel received from a PCell according to a control channel reception timing for uplink transmission.
또한, 본 발명은 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성되어 제어채널을 처리하는 단말에 있어서, PCell로부터 SCell이 크로스 캐리어 스케줄링 되도록 제어하는 제어부 및 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송하는 송신부를 포함하는 단말 장치를 제공한다.The present invention also provides a PCell operating in the TDD duplex mode and a SCell operating in the FDD duplex mode to process a control channel. Provided is a terminal device including a transmitter for transmitting a PUSCH to an SCell based on a control channel received from a PCell according to a control channel reception timing for uplink transmission.
또한, 본 발명은 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성되어 제어채널을 처리하는 단말에 있어서, PCell로부터 SCell이 크로스 캐리어 스케줄링 되도록 제어하는 제어부 및 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송하는 송신부를 포함하는 단말 장치를 제공한다.The present invention also provides a PCell operating in the FDD duplex mode and a SCell operating in the TDD duplex mode to process a control channel, the control unit for controlling the SCell to cross-carrier scheduling from the PCell according to the duplex mode of the SCell Provided is a terminal device including a transmitter for transmitting a PUSCH to an SCell based on a control channel received from a PCell according to a control channel reception timing for uplink transmission.
또한, 본 발명은 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성되어 제어채널을 처리하는 단말에 있어서, PCell로부터 SCell이 크로스 캐리어 스케줄링 되도록 제어하는 제어부 및 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송하는 송신부를 포함하는 단말 장치를 제공한다.The present invention also provides a PCell operating in the FDD duplex mode and a SCell operating in the TDD duplex mode to process a control channel, wherein the control unit controls the SCell to be cross-carrier scheduled from the PCell and according to the duplex mode of the PCell. Provided is a terminal device including a transmitter for transmitting a PUSCH to an SCell based on a control channel received from a PCell according to a control channel reception timing for uplink transmission.
또한, 본 발명은 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성된 단말의 PUSCH 전송을 제어하는 기지국에 있어서, PCell 또는 SCell 각각이 셀프 캐리어 스케줄링 되도록 제어하는 제어부 및 PCell 및 SCell 각각의 듀플렉스 모드의 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell 및 SCell 각각으로부터 전송된 제어채널에 기초하여 PCell 및 SCell 각각으로 전송된 PUSCH를 수신하는 수신부를 포함하는 기지국 장치를 제공한다.In addition, the present invention is a base station for controlling the PUSCH transmission of the terminal configured PCell and SCell operating in a different duplex mode, the control unit for controlling each PCell or SCell so that the self-carrier scheduling and uplink of the duplex mode of each of the PCell and SCell According to a control channel reception timing for link transmission, a base station apparatus including a receiver for receiving a PUSCH transmitted to each of the PCell and the SCell based on the control channel transmitted from each of the PCell and the SCell is provided.
또한, 본 발명은 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 기지국에 있어서, PCell이 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 제어부 및 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 PUSCH를 수신하는 수신부를 포함하는 기지국 장치를 제공한다.In addition, the present invention provides a base station for controlling PUSCH transmission of a terminal configured with a PCell operating in the TDD duplex mode and a SCell operating in the FDD duplex mode, the control unit for controlling the PCell to cross-carrier scheduling the SCell in the duplex mode of the PCell According to the control channel reception timing for the uplink transmission according to the base station apparatus including a receiving unit for receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell.
또한, 본 발명은 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 기지국에 있어서, PCell이 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 제어부 및 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 PUSCH를 수신하는 수신부를 포함하는 기지국 장치를 제공한다.In addition, the present invention provides a base station for controlling PUSCH transmission of a terminal configured with a PCell operating in the TDD duplex mode and a SCell operating in the FDD duplex mode, the control unit for controlling the PCell to cross-carrier scheduling the SCell in the duplex mode of the SCell According to the control channel reception timing for the uplink transmission according to the base station apparatus including a receiving unit for receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell.
또한, 본 발명은 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 기지국에 있어서, PCell이 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 제어부 및 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 PUSCH를 수신하는 수신부를 포함하는 기지국 장치를 제공한다.In addition, the present invention provides a base station for controlling PUSCH transmission of a terminal configured with a PCell operating in the FDD duplex mode and a SCell operating in the TDD duplex mode, the control unit for controlling the PCell to cross-carrier scheduling the SCell in the duplex mode of the SCell According to the control channel reception timing for the uplink transmission according to the base station apparatus including a receiving unit for receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell.
또한, 본 발명은 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 기지국에 있어서, PCell이 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 제어부 및 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 PUSCH를 수신하는 수신부를 포함하는 기지국 장치를 제공한다.In addition, the present invention provides a base station for controlling PUSCH transmission of a terminal configured with a PCell operating in the FDD duplex mode and a SCell operating in the TDD duplex mode, the control unit for controlling the PCell to cross-carrier scheduling the SCell in the duplex mode of the PCell According to the control channel reception timing for the uplink transmission according to the base station apparatus including a receiving unit for receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell.
이상에서 살펴본 본 발명에 따르면, 서로 다른 듀플렉스 모드로 동작하는 캐리어 병합을 수행하는 단말 및 기지국은 PCell과 SCell의 설정에 따라 동작하는 절차의 모호성을 해결할 수 있는 효과가 있다.According to the present invention as described above, the terminal and the base station performing the carrier aggregation operating in different duplex mode has an effect that can solve the ambiguity of the procedure to operate according to the configuration of the PCell and the SCell.
또한, 본 발명에 따르면 제어채널 수신과 PUSCH 전송 타이밍을 설정함으로써 상향링크와 하향링크 데이터 송수신 동작의 정확성을 향상시켜 캐리어 병합에 따른 데이터 송수신 신뢰성을 향상시키는 효과가 있다.In addition, according to the present invention, by setting the control channel reception and PUSCH transmission timing, the accuracy of uplink and downlink data transmission / reception operations may be improved, thereby improving data transmission / reception reliability according to carrier aggregation.
도 1은 일 실시예에 의한 스몰 셀 전개를 도시하는 도면이다.1 is a diagram illustrating small cell deployment according to an embodiment.
도 2는 스몰 셀 전개 시나리오를 도시하는 도면이다.2 is a diagram illustrating a small cell deployment scenario.
도 3 내지 도 6은 스몰 셀 전개에서의 세부적인 시나리오를 도시하는 도면이다. 3 to 6 show detailed scenarios in small cell deployment.
도 7은 캐리어 병합의 다양한 시나리오를 나타내는 도면이다.7 is a diagram illustrating various scenarios of carrier aggregation.
도 8은 TDD 프레임 구조상에서의 UL-DL 구성(configuration)을 보여주는 도면이다.FIG. 8 is a diagram illustrating a UL-DL configuration on a TDD frame structure. FIG.
도 9는 TDD UL-DL 구성(configuration) 하에서의 TDD UL 전송을 위한 PDCCH/EPDCCH의 타이밍을 보여주는 도면이다.FIG. 9 illustrates timing of PDCCH / EPDCCH for TDD UL transmission under a TDD UL-DL configuration.
도 10은 TDD UL-DL 구성(configuration) 하에서의 TDD UL HARQ-ACK 전송을 위한 PHICH 타이밍을 보여주는 도면이다.FIG. 10 illustrates PHICH timing for TDD UL HARQ-ACK transmission under a TDD UL-DL configuration.
도 11 내지 17은 TDD-FDD 조인트 오퍼레이션 및 CA을 위해 각각의 TDD UL-DL 구성 0 내지 6을 가지는 TDD Cell과 FDD Cell이 CA 되었을 때의 경우를 예시적으로 도시한 도면이다.11 to 17 exemplarily illustrate a case where a TDD Cell and an FDD Cell having respective TDD UL-DL configurations 0 to 6 become CAs for a TDD-FDD joint operation and a CA.
도 18은 본 발명의 또 다른 실시예에 따른 단말이 셀프 캐리어 스케줄링 되는 경우의 동작에 대한 일 예를 보여주는 도면이다.18 is a diagram illustrating an example of an operation when a terminal is self-carrier scheduled according to another embodiment of the present invention.
도 19는 본 발명의 또 다른 실시예에 따른 단말이 크로스 캐리어 스케줄링 되는 경우의 동작에 대한 일 예를 보여주는 도면이다.19 is a diagram illustrating an example of an operation when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
도 20은 본 발명의 또 다른 실시예에 따른 단말이 크로스 캐리어 스케줄링 되는 경우의 동작에 대한 다른 예를 보여주는 도면이다.20 is a diagram illustrating another example of an operation when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
도 21은 본 발명의 또 다른 실시예에 따른 단말이 크로스 캐리어 스케줄링 되는 경우의 동작에 대한 또 다른 예를 보여주는 도면이다.21 is a diagram illustrating another example of an operation when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
도 22는 본 발명의 또 다른 실시예에 따른 단말이 크로스 캐리어 스케줄링 되는 경우의 동작에 대한 또 다른 예를 보여주는 도면이다.22 is a diagram illustrating another example of an operation when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
도 23은 본 발명의 또 다른 실시예에 따른 단말이 셀프 캐리어 스케줄링 되는 경우의 기지국 동작에 대한 일 예를 보여주는 도면이다.23 is a diagram illustrating an example of an operation of a base station when a terminal is self-carrier scheduled according to another embodiment of the present invention.
도 24는 본 발명의 또 다른 실시예에 따른 단말이 크로스 캐리어 스케줄링 되는 경우의 기지국 동작에 대한 일 예를 보여주는 도면이다.24 is a diagram illustrating an example of an operation of a base station when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
도 25은 본 발명의 또 다른 실시예에 따른 단말이 크로스 캐리어 스케줄링 되는 경우의 기지국 동작에 대한 다른 예를 보여주는 도면이다.25 is a diagram illustrating another example of an operation of a base station when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
도 26은 본 발명의 또 다른 실시예에 따른 단말이 크로스 캐리어 스케줄링 되는 경우의 기지국 동작에 대한 또 다른 예를 보여주는 도면이다.FIG. 26 is a diagram illustrating another example of an operation of a base station when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
도 27는 본 발명의 또 다른 실시예에 따른 단말이 크로스 캐리어 스케줄링 되는 경우의 기지국 동작에 대한 또 다른 예를 보여주는 도면이다.27 is a diagram illustrating another example of an operation of a base station when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
도 28는 본 발명의 또 다른 실시예에 따른 단말의 구성을 보여주는 도면이다.28 is a diagram illustrating a configuration of a terminal according to another embodiment of the present invention.
도 29은 본 발명의 또 다른 실시예에 따른 기지국의 구성을 보여주는 도면이다.29 is a diagram illustrating a configuration of a base station according to another embodiment of the present invention.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명에서의 무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.The wireless communication system in the present invention is widely deployed to provide various communication services such as voice, packet data, and the like. The wireless communication system includes a user equipment (UE) and a base station (base station, BS, or eNB). In the present specification, a user terminal is a generic concept meaning a terminal in wireless communication. In addition, user equipment (UE) in WCDMA, LTE, and HSPA, as well as mobile station (MS) in GSM, user terminal (UT), and SS It should be interpreted as a concept that includes a subscriber station, a wireless device, and the like.
기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), small cell 등 다른 용어로 불릴 수 있다.A base station or a cell generally refers to a station that communicates with a user terminal, and includes a Node-B, an evolved Node-B, an Sector, a Site, and a BTS. Other terms such as a base transceiver system, an access point, a relay node, a remote radio head (RRH), a radio unit (RU), and a small cell may be called.
즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 Node-B, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU, small cell 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다. In other words, in the present specification, a base station or a cell is a generic meaning indicating some areas or functions covered by a base station controller (BSC) in CDMA, a Node-B in WCDMA, an eNB or a sector (site) in LTE, and the like. It should be interpreted as, and it is meant to cover all the various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node, RRH, RU, small cell communication range.
상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii) 상기 무선영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN, 포인트, 송수신포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시예가 된다. ii) 에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.Since the various cells listed above have a base station for controlling each cell, the base station may be interpreted in two senses. i) the device providing the megacell, the macrocell, the microcell, the picocell, the femtocell, the small cell in relation to the wireless area, or ii) the wireless area itself. In i) all devices which provide a given wireless area are controlled by the same entity or interact with each other to cooperatively configure the wireless area to direct the base station. The eNB, RRH, antenna, RU, LPN, point, transmit / receive point, transmit point, receive point, and the like, according to the configuration of the radio region, become an embodiment of the base station. In ii), the base station may indicate the radio area itself to receive or transmit a signal from a viewpoint of a user terminal or a neighboring base station.
따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, 송수신포인트, 송신 포인트, 수신포인트를 통칭하여 기지국으로 지칭한다.Therefore, megacells, macrocells, microcells, picocells, femtocells, small cells, RRHs, antennas, RUs, low power nodes (LPNs), points, eNBs, transmit / receive points, transmit points, and receive points are collectively referred to as base stations. do.
본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다.In the present specification, the user terminal and the base station are two transmitting and receiving entities used to implement the technology or technical idea described in this specification in a comprehensive sense and are not limited by the terms or words specifically referred to. The user terminal and the base station are two types of uplink or downlink transmitting / receiving subjects used to implement the technology or the technical idea described in the present invention, and are used in a generic sense and are not limited by the terms or words specifically referred to. Here, the uplink (Uplink, UL, or uplink) refers to a method for transmitting and receiving data to the base station by the user terminal, the downlink (Downlink, DL, or downlink) means to transmit and receive data to the user terminal by the base station It means the way.
무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-Advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.There is no limitation on the multiple access scheme applied to the wireless communication system. Various multiple access techniques such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA Can be used. One embodiment of the present invention can be applied to resource allocation in the fields of asynchronous wireless communication evolving to LTE and LTE-Advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB. The present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
또한, LTE, LTE-Advanced와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel), EPDCCH(Enhanced Physical Downlink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다. In addition, in systems such as LTE and LTE-Advanced, a standard is configured by configuring uplink and downlink based on one carrier or a pair of carriers. The uplink and the downlink include a Physical Downlink Control CHannel (PDCCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid ARQ Indicator CHannel (PHICH), a Physical Uplink Control CHannel (PUCCH), an Enhanced Physical Downlink Control CHannel (EPDCCH), and the like. Control information is transmitted through the same control channel, and data is configured by a data channel such as a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH).
한편 EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.On the other hand, control information may also be transmitted using an enhanced PDCCH (EPDCCH or extended PDCCH).
본 명세서에서 셀(cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다. In the present specification, a cell means a component carrier having a coverage of a signal transmitted from a transmission / reception point or a signal transmitted from a transmission point or a transmission / reception point, and the transmission / reception point itself. Can be.
실시예들이 적용되는 무선통신 시스템은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두 개의 다중 송수신 포인트와 단말들을 포함할 수 있다. A wireless communication system to which embodiments are applied may be a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-antenna transmission scheme in which two or more transmission / reception points cooperate to transmit a signal. antenna transmission system), a cooperative multi-cell communication system. The CoMP system may include at least two multiple transmission / reception points and terminals.
다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송파워를 갖거나 매크로 셀 영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.The multiple transmit / receive point is at least one having a base station or a macro cell (hereinafter referred to as an eNB) and a high transmission power or a low transmission power in a macro cell region, which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다. In the following, downlink refers to a communication or communication path from a multiple transmission / reception point to a terminal, and uplink refers to a communication or communication path from a terminal to multiple transmission / reception points. In downlink, a transmitter may be part of multiple transmission / reception points, and a receiver may be part of a terminal. In uplink, a transmitter may be part of a terminal, and a receiver may be part of multiple transmission / reception points.
이하에서는 PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 'PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH를 전송, 수신한다'는 형태로 표기하기도 한다.Hereinafter, a situation in which a signal is transmitted and received through a channel such as a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH may be expressed in the form of 'sending and receiving a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH.'
또한 이하에서는 PDCCH를 전송 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송 또는 수신하는 것을 포함하는 의미로 사용될 수 있다.In addition, hereinafter, a description of transmitting or receiving a PDCCH or transmitting or receiving a signal through the PDCCH may be used as a meaning including transmitting or receiving an EPDCCH or transmitting or receiving a signal through the EPDCCH.
즉, 이하에서 기재하는 물리 하향링크 제어채널 또는 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다.That is, the physical downlink control channel or control channel described below may mean a PDCCH or an EPDCCH, and may also be used to include both PDCCH and EPDCCH.
또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 EPDCCH를 적용할 수 있으며, EPDCCH로 설명한 부분에도 본 발명의 일 실시예로 EPDCCH를 적용할 수 있다.In addition, for convenience of description, the EPDCCH, which is an embodiment of the present invention, may be applied to the portion described as the PDCCH, and the EPDCCH may be applied to the portion described as the EPDCCH as an embodiment of the present invention.
한편, 이하에서 기재하는 상위계층 시그널링(High Layer Signaling)은 RRC 파라미터를 포함하는 RRC 정보를 전송하는 RRC시그널링을 포함한다.Meanwhile, high layer signaling described below includes RRC signaling for transmitting RRC information including an RRC parameter.
eNB은 단말들로 하향링크 전송을 수행한다. eNB은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.The eNB performs downlink transmission to the terminals. The eNB includes downlink control information and an uplink data channel (eg, a physical downlink shared channel (PDSCH), which is a primary physical channel for unicast transmission, and scheduling required to receive the PDSCH. For example, a physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission on a physical uplink shared channel (PUSCH) may be transmitted. Hereinafter, the transmission and reception of signals through each channel will be described in the form of transmission and reception of the corresponding channel.
모바일 트래픽 폭증에 대처하기 위한 수단으로 저전력 노드를 사용하는 스몰셀이 고려되고 있다. 저전력 노드는 일반적인 매크로 노드에 비해 낮은 송신(Tx) 전력을 사용하는 노드를 나타낸다. Small cells using low power nodes are being considered as a means to cope with the explosion of mobile traffic. Low power nodes represent nodes that use lower transmit (Tx) power than typical macro nodes.
3GPP Release 11 이전의 캐리어 병합(Carrier Aggregation, 이하 CA라 함) 기술에서는 매크로 셀 커버리지 내에서 지리적으로 분산된 안테나인 저전력 RRH(Remote Radio Head)를 사용하여 스몰 셀을 구축할 수 있었다.In carrier aggregation (CA) technology before 3GPP Release 11, a small cell could be constructed using a low power remote radio head (RRH), which is a geographically dispersed antenna within macro cell coverage.
하지만 전술한 CA 기술 적용을 위해 매크로 셀과 RRH 셀은 하나의 기지국의 제어 하에 스케줄링 되도록 구축되며, 이를 위해 매크로 셀 노드와 RRH 간에는 이상적인 백홀(ideal backhaul) 구축이 요구되었다. However, in order to apply the above-described CA technology, the macro cell and the RRH cell are constructed to be scheduled under the control of one base station. For this purpose, an ideal backhaul is required between the macro cell node and the RRH.
이상적인 백홀이란, 광선로(optical fiber), LOS 마이크로웨이브(Line Of Sight microwave)를 사용하는 전용 점대점 연결과 같이 매우 높은 쓰루풋(throughput)과 매우 적은 지연을 나타내는 백홀을 의미한다.An ideal backhaul means a backhaul that exhibits very high throughput and very low latency, such as optical fiber, dedicated point-to-point connections using LOS microwaves (Line Of Sight microwave).
이와 달리, xDSL(Digital Subscriber Line), Non LOS 마이크로웨이브(microwave)와 같이 상대적으로 낮은 쓰루풋(throughput)과 큰 지연을 나타내는 백홀을 비이상적 백홀(non-ideal backhaul)이라 한다.In contrast, backhaul that exhibits relatively low throughput and large delay, such as digital subscriber line (xDSL) and Non LOS microwaves, is called non-ideal backhaul.
복수의 서빙 셀들은 위에서 설명한 단일 기지국기반의 CA 기술을 통해서 병합되어 단말에 서비스를 제공할 수 있다. 즉, 무선 자원 제어(Radio Resource Control, 이하 'RRC'라 함) 연결(CONNECTED) 상태의 단말에 대해 복수의 서빙 셀들이 구성될 수 있으며, 매크로 셀 노드와 RRH 간에 이상적인 백홀이 구축되는 경우 매크로 셀과 RRH셀이 함께 서빙 셀들로 구성되어 단말에 서비스를 제공할 수 있다.The plurality of serving cells may be merged through the single base station-based CA technology described above to provide a service to the terminal. That is, a plurality of serving cells may be configured for a terminal in a Radio Resource Control (RRC) connected state, and when an ideal backhaul is established between the macro cell node and the RRH, the macro cell And the RRH cell may be configured with serving cells to provide a service to the terminal.
단일 기지국 기반의 CA기술이 구성될 때, 단말은 네트워크와 하나의 RRC 연결(connection)만을 가질 수 있다.When CA technology based on a single base station is configured, the terminal may have only one RRC connection with the network.
RRC 연결(connection) 설정(establishment)/재설정(re-establishment)/핸드오버에서 하나의 서빙 셀이 Non-Access Stratum(이하, 'NAS'라 함) 이동성(mobility) 정보(예를 들어, TAI: Tracking Area Identity)를 제공하며, RRC connection 재설정/핸드오버에서 하나의 서빙셀이 시큐리티 입력(security input)을 제공한다. 이러한 셀을 PCell(Primary Cell)이라 한다. PCell은 단지 핸드오버 프로시져와 함께 변경될 수 있다. 단말 능력들(capabilities)에 따라 SCells(Secondary Cells)이 PCell과 함께 서빙 셀로 구성될 수 있다.In an RRC connection establishment / reestablishment / handover, one serving cell is a Non-Access Stratum (hereinafter referred to as 'NAS') mobility information (e.g., TAI: Tracking Area Identity) and one serving cell provides security input in RRC connection reset / handover. Such a cell is called a primary cell (PCell). The PCell can only be changed with the handover procedure. According to terminal capabilities, SCells (Secondary Cells) may be configured as a serving cell together with a PCell.
이하 본 발명은 다층셀 구조하에서 스몰 셀 및 임의의 셀/기지국/RRH/안테나/RU가 서로 다른 듀플렉스 즉, FDD와 TDD를 지원하는 경우에 해당 기지국에 속한 단말에게 FDD와 TDD간의 조인트 오퍼레이션(joint operation)을 지원 가능하게 하기 위한 단말의 동작 방법 및 장치와 해당 방법을 사용하는 기지국 방법과 그 장치에 관한 것이다. 또한 듀플렉스 모드에 관계없이 각각의 듀플렉스 모드가 매크로 셀 및 스몰 셀 및 임의의 셀/기지국/RRH/안테나/RU에서 사용되며, 매크로 셀과 스몰 셀과의 CA 및 조인트 오퍼레이션, 그리고 단말의 업링크 전송에 대한 제어채널 수신과 PUSCH 송신 타이밍 및 HARQ-ACK(Hybrid Automatic Repeat request-Acknowledgement) 타이밍 설정 방법 및 장치에 관한 것이다.Hereinafter, the present invention provides a joint operation between FDD and TDD to a UE belonging to a corresponding base station when a small cell and an arbitrary cell / base station / RRH / antenna / RU support different duplexes, that is, FDD and TDD in a multi-cell structure. An operation method and apparatus of a terminal for enabling an operation), a base station method using the method, and an apparatus thereof are provided. In addition, regardless of the duplex mode, each duplex mode is used in the macro cell and the small cell and any cell / base station / RRH / antenna / RU, and CA and joint operations between the macro cell and the small cell, and uplink transmission of the terminal A method and apparatus for setting control channel reception and PUSCH transmission timing and HARQ-ACK (Hybrid Automatic Repeat request-Acknowledgement) timing for the present invention.
아래는 본 발명에서 설명하고 있는 제안들의 적용이 가능한 스몰 셀 전개(small cell deployment) 시나리오를 설명한다. The following describes a small cell deployment scenario to which the proposals described in the present invention are applicable.
도 1은 일 실시예에 의한 스몰 셀 전개를 도시하는 도면이다.1 is a diagram illustrating small cell deployment according to an embodiment.
도 1에서는 스몰 셀과 매크로 셀이 공존하는 상황에서의 구성을 나타내며, 아래 도 2 내지 도 3에서는 매크로 커버리지(macro coverage)의 유무와 해당 스몰 셀이 실외(outdoor)를 위한 것인지, 실내(indoor)를 위한 것인지, 해당 스몰 셀의 전개가 산재(sparse)한 상황인지 밀집(dense)한 상황인지, 스펙트럼의 관점에서 매크로와 동일한 주파수 스펙트럼을 사용하는지 그렇지 않은지에 따라 좀 더 상세하게 구분한다. 상세한 시나리오의 구성에 대해서는 도 2 내지 도 6에서 살펴본다. FIG. 1 illustrates a configuration in which a small cell and a macro cell coexist, and in FIGS. 2 to 3 below, whether macro coverage is present and whether the small cell is for outdoor or indoor. In order to determine whether the small cell is sparse or dense, the deployment of the small cell is divided in more detail according to whether or not to use the same frequency spectrum as the macro in terms of spectrum. The detailed configuration of the scenario will be described with reference to FIGS. 2 to 6.
도 2는 스몰 셀 전개 시나리오(Small cell deployment scenario)를 도시하는 도면이다. 도 2는 도 3 내지 도 6의 시나리오에 대한 일반적인 대표 구성을 나타낸다. 도 2는 스몰 셀 전개 시나리오를 도시하고 있으며 시나리오 #1, #2a, #2b, #3을 포함한다. 200은 매크로 셀을 나타내며, 210과 220은 스몰 셀을 나타낸다. 도 2에서 중첩하는 매크로 셀은 존재할 수도 존재하지 않을 수도 있다. 매크로 셀(200)과 스몰 셀(210, 220) 간에 조정(coordination)이 이루어질 수 있고, 스몰 셀(210, 220) 간에도 조정이 이루어질 수 있다. 그리고 200, 210, 220의 중첩된 영역은 클러스터로 묶일 수 있다. 2 is a diagram illustrating a small cell deployment scenario. FIG. 2 shows a typical representative configuration for the scenario of FIGS. 3 to 6. 2 illustrates a small cell deployment scenario and includes scenarios # 1, # 2a, # 2b and # 3. 200 denotes a macro cell, and 210 and 220 denote small cells. In FIG. 2, the overlapping macro cell may or may not exist. Coordination may be performed between the macro cell 200 and the small cells 210 and 220, and coordination may also be performed between the small cells 210 and 220. The overlapped areas of 200, 210, and 220 may be bundled into clusters.
도 3 내지 도 6은 스몰 셀 전개에서의 세부적인 시나리오를 도시하는 도면이다. 3 to 6 show detailed scenarios in small cell deployment.
도 3은 스몰 셀 전개에서의 시나리오 #1(Small cell deployment scenario #1)을 도시하고 있다. 시나리오 1은 오버헤드 매크로의 존재 하에 스몰 셀과 매크로 셀의 동일 채널 전개(co-channel deployment) 시나리오이며 실외 스몰 셀(outdoor small cell) 시나리오이다. 310은 매크로 셀(311) 및 스몰 셀이 모두 실외인 경우로, 312는 스몰셀 클러스터를 지시한다. 사용자는 실내/실외에 모두 분산되어 있다.3 illustrates Scenario # 1 in small cell deployment. Scenario 1 is a co-channel deployment scenario of a small cell and a macro cell in the presence of an overhead macro and is an outdoor small cell scenario. 310 denotes a case where both the macro cell 311 and the small cell are outdoors, and 312 indicates a small cell cluster. Users are distributed both indoors and outdoors.
스몰 셀 (312) 내의 스몰 셀들을 연결하는 실선들은 클러스터 내의 백홀 링크(backhaul link within cluster)을 의미한다. 매크로 셀의 기지국과 클러스터 내의 스몰 셀들을 연결하는 점선들은 스몰 셀과 매크로 셀 간의 백홀 링크(backhaul link between small cells and macro cell)를 의미한다.Solid lines connecting the small cells in the small cell 312 mean a backhaul link within a cluster. The dotted lines connecting the base station of the macro cell and the small cells in the cluster mean a backhaul link between the small cell and the macro cell.
도 4는 스몰 셀 전개 시나리오 #2a를 도시하고 있다. 시나리오 2a는 오버레이 매크로(overlaid macro)의 존재 하에 스몰 셀과 매크로가 서로 다른 주파수 스펙트럼을 사용하는 전개 시나리오이며 실외 스몰 셀(outdoor small cell) 시나리오이다. 매크로 셀(411) 및 스몰 셀들 모두 실외이며 412는 스몰 셀 클러스터를 지시한다. 사용자는 실내/실외에 모두 분산되어 있다. 4 illustrates small cell deployment scenario # 2a. Scenario 2a is a deployment scenario in which the small cell and the macro use different frequency spectrums in the presence of an overlay macro and an outdoor small cell scenario. Both macro cell 411 and small cells are outdoors and 412 indicates a small cell cluster. Users are distributed both indoors and outdoors.
스몰 셀 (412) 내의 스몰 셀들을 연결하는 실선들은 클러스터 내의 백홀 링크(backhaul link within cluster)을 의미한다. 매크로 셀의 기지국과 클러스터 내의 스몰 셀들을 연결하는 점선들은 스몰 셀과 매크로 셀 간의 백홀 링크(backhaul link between small cells and macro cell)를 의미한다.Solid lines connecting the small cells in the small cell 412 mean a backhaul link within a cluster. The dotted lines connecting the base station of the macro cell and the small cells in the cluster mean a backhaul link between the small cell and the macro cell.
도 5는 스몰 셀 전개 시나리오 #2b를 도시하고 있다. 시나리오 2b는 오버레이 매크로의 존재 하에 스몰 셀과 매크로가 서로 다른 주파수 스펙트럼을 사용하는 전개 시나리오이며 실내 스몰 셀(indoor small cell) 시나리오이다. 매크로 셀(511)은 실외이며 스몰 셀들은 모두 실내이며 512는 스몰 셀 클러스터를 지시한다. 사용자는 실내/실외에 모두 분산되어 있다. 5 illustrates small cell deployment scenario # 2b. Scenario 2b is a deployment scenario in which the small cell and the macro use different frequency spectrums in the presence of an overlay macro and an indoor small cell scenario. Macro cell 511 is outdoors, small cells are all indoors, and 512 indicates a small cell cluster. Users are distributed both indoors and outdoors.
스몰 셀 (512) 내의 스몰 셀들을 연결하는 실선들은 클러스터 내의 백홀 링크(backhaul link within cluster)을 의미한다. 매크로 셀의 기지국과 클러스터 내의 스몰 셀들을 연결하는 점선들은 스몰 셀과 매크로 셀 간의 백홀 링크(backhaul link between small cells and macro cell)를 의미한다.Solid lines connecting the small cells in the small cell 512 mean a backhaul link within a cluster. The dotted lines connecting the base station of the macro cell and the small cells in the cluster mean a backhaul link between the small cell and the macro cell.
도 6은 스몰 셀 전개 시나리오 #3을 도시하고 있다. 시나리오 3은 매크로의 커버리지(coverage)가 존재하지 않는 상황하에 실내 스몰 셀 시나리오이다. 612는 스몰 셀 클러스터를 지시한다. 또한 스몰 셀은 모두 실내이며 사용자는 실내/실외에 모두 분산되어 있다.6 illustrates small cell deployment scenario # 3. Scenario 3 is an indoor small cell scenario in the absence of coverage of macros. 612 indicates a small cell cluster. In addition, small cells are all indoors, and users are distributed both indoors and outdoors.
스몰 셀 (612) 내의 스몰 셀들을 연결하는 실선들은 클러스터 내의 백홀 링크(backhaul link within cluster)을 의미한다. 매크로 셀의 기지국과 클러스터 내의 스몰 셀들을 연결하는 점선들은 스몰 셀과 매크로 셀 간의 백홀 링크(backhaul link between small cells and macro cell)를 의미한다.Solid lines connecting the small cells in the small cell 612 mean a backhaul link within a cluster. The dotted lines connecting the base station of the macro cell and the small cells in the cluster mean a backhaul link between the small cell and the macro cell.
위에서 설명한 도 1과 도 2 내지 도 6의 다양한 스몰 셀 시나리오에 사용되는 주파수 F1과 F2는 동일한 듀플렉스 모드(duplex mode)를 지원하는 주파수일 수 있으며 혹은 F1과 F2는 서로 다른 듀플렉스 모드를 가질 수도 있는데, 예를 들어 F1은 FDD 모드를 지원하는 주파수, F2는 TDD 모드를 지원하는 주파수 혹은 그 반대의 경우가 고려될 수 있다. The frequencies F1 and F2 used in the various small cell scenarios of FIGS. 1 and 2 to 6 described above may be frequencies supporting the same duplex mode, or F1 and F2 may have different duplex modes. For example, F1 may be a frequency that supports the FDD mode, F2 may be a frequency that supports the TDD mode or vice versa.
도 7은 캐리어 병합의 다양한 시나리오를 나타내는 도면이다.7 is a diagram illustrating various scenarios of carrier aggregation.
도 7과 같이 캐리어 병합 시나리오 하에서도 해당 F1과 F2는 동일한 듀플렉스 모드를 지원하는 주파수일 수 있으며 혹은 F1과 F2는 서로 다른 듀플렉스 모드를 지원하는 주파수가 고려될 수 있다.As shown in FIG. 7, the corresponding F1 and F2 may be frequencies supporting the same duplex mode, or the frequencies supporting different duplex modes may be considered.
710은 F1 과 F2 셀들이 거의 동일 커버리지 하에서 공존(co-located)하며 중첩(overlaid)되어 있다. 두 레이어는 충분한 커버리지와 이동성(mobility)을 제공하는 시나리오이며, 중첩된 F1과 F2 cell 간의 병합(aggregation)이 가능한 시나리오이다. In 710, F1 and F2 cells are co-located and overlapped under almost the same coverage. Two layers are scenarios that provide sufficient coverage and mobility, and scenarios in which aggregation between overlapped F1 and F2 cells are possible.
720은 F1 과 F2 셀들이 공존(co-located)하며 중첩(overlaid)되어있지만, F2의 커버리지가 F1에 비해 작은 시나리오이다. F1는 충분한 커버리지를 가지고, 이동성지원도 F1 커버리지 기반으로 수행되며, F2는 쓰루풋(throughput) 향상을 위해 사용하는 시나리오이며, 중첩된 F1과 F2 셀 간의 병합이 가능한 시나리오이다. 720 is a scenario in which F1 and F2 cells co-locate and overlap, but the coverage of F2 is smaller than that of F1. F1 has sufficient coverage, mobility support is performed based on F1 coverage, and F2 is a scenario used for improving throughput, and a scenario in which overlapping F1 and F2 cells are merged is possible.
730은 F1 과 F2 셀들이 공존(co-located)하지만, F2 안테나들은 셀 경계의 쓰루풋(cell edge throughput)을 증가시키기 위해 셀 경계에 유도(directed)되어있는 시나리오이다. 이동성 지원은 F1 커버리지 기반으로 수행되며 F1은 충분한 커버리지를 가지고 있지만 F2는 잠정적으로 커버리지 홀(coverage hole)을 가지는 시나리오이고, 같은 eNB에서의 F1 과 F2 셀들이 커버리지가 중첩되어있는 곳에서는 병합될 수 있는 시나리오이다.730 is a scenario in which F1 and F2 cells co-locate, but F2 antennas are directed to the cell edge to increase cell edge throughput. Mobility support is performed based on F1 coverage, where F1 has sufficient coverage but F2 is potentially a coverage hole, and F1 and F2 cells on the same eNB can be merged where coverage overlaps. That is the scenario.
740의 시나리오는 F1이 매크로 커버리지(macro coverage)를 가지고 F2에 RRH가 핫 스팟(hot spot)지역에서의 쓰루풋 향상을 위해 사용되는 시나리오이며, 이동성 지원은 F1 커버리지 기반으로 수행되며 F1 매크로 셀과 함께 F2 RRHs 셀이 병합될 수 있는 시나리오이다. Scenario 740 is a scenario in which F1 has macro coverage and RRH at F2 is used to improve throughput in hot spot area. Mobility support is performed based on F1 coverage and with F1 macro cell. This is a scenario in which F2 RRHs cells can be merged.
750은 720의 시나리오와 유사하게 주파수 선택적 리피터(repeaters)들이 한 캐리어의 커버리지 확장을 위해 전개(deploy)된 시나리오이다. 같은 eNB에서의 F1 과 F2 셀들이 커버리지가 중첩되어있는 곳에서는 병합될 수 있는 시나리오이다.750 is a scenario in which frequency selective repeaters are deployed for coverage expansion of one carrier, similar to the scenario of 720. F1 and F2 cells in the same eNB is a scenario that can be merged where the coverage overlap.
본 명세서에서는 단말이 이중 연결(Dual Connectivity)을 구성함에 있어서, 단말과 RRC 연결을 형성하고, 핸드오버의 기준이 되는 셀(일 예로, PCell)을 제공하는 기지국 또는 S1-MME를 종단하고, 코어 네트워크에 대해서 모빌리티 앵커(mobility anchor)역할을 하는 기지국을 마스터 기지국 또는 제 1 기지국으로 기재한다.In the present specification, when the terminal configures dual connectivity, forms an RRC connection with the terminal, terminates the base station or S1-MME providing a cell (for example, a PCell), which is a reference for handover, and cores. A base station serving as a mobility anchor for a network is described as a master base station or a first base station.
마스터 기지국 또는 제 1 기지국은 매크로 셀을 제공하는 기지국일 수 있고, 스몰 셀 간의 이중 연결 전개에서는 어느 하나의 스몰 셀을 제공하는 기지국일 수 있다.The master base station or the first base station may be a base station providing a macro cell, and may be a base station providing any one small cell in a dual connectivity deployment between small cells.
한편, 이중 연결 전개상황에서 마스터 기지국과 구별되어 단말에 추가적인 무선 자원을 제공하는 기지국을 세컨더리 기지국 또는 제 2 기지국으로 기재한다.Meanwhile, in a dual connectivity deployment situation, a base station that is distinguished from a master base station and provides additional radio resources to a terminal is described as a secondary base station or a second base station.
제 1 기지국(마스터 기지국) 및 제 2 기지국(세컨더리 기지국)은 각각 단말에 적어도 하나 이상의 셀을 제공할 수 있고, 제 1 기지국 및 제 2 기지국은 제 1 기지국과 제 2 기지국 간의 인터페이스를 통해서 연결될 수 있다.The first base station (master base station) and the second base station (secondary base station) may provide at least one cell to the terminal, respectively, and the first base station and the second base station may be connected through an interface between the first base station and the second base station. have.
또한, 이해를 돕기 위하여 제 1 기지국에 연관된 셀을 매크로 셀이라고 기재할 수 있고, 제 2 기지국에 연관된 셀을 스몰 셀이라 기재할 수 있다. 다만, 전술한 스몰 셀 클러스터 시나리오에서는 제 1 기지국에 연관된 셀도 스몰 셀로 기재될 수 있다.In addition, a cell associated with the first base station may be referred to as a macro cell, and a cell associated with the second base station may be referred to as a small cell for clarity. However, in the aforementioned small cell cluster scenario, a cell associated with the first base station may also be described as a small cell.
본 발명에서의 매크로 셀은 적어도 하나 이상의 셀 각각을 의미할 수 있고, 제 1 기지국에 연관된 전체 셀을 대표하는 의미로 기재될 수도 있다. 또한, 스몰 셀도 적어도 하나 이상의 셀 각각을 의미할 수 있고, 제 2 기지국에 연관된 전체 셀을 대표하는 의미로 기재될 수도 있다. 다만, 전술한 바와 같이 스몰 셀 클러스터와 같이 특정 시나리오에서는 제 1 기지국에 연관된 셀일 수 있으며, 이 경우 제 2 기지국의 셀은 다른 스몰 셀 또는 또 다른 스몰 셀로 기재될 수 있다.In the present invention, the macro cell may mean each of at least one or more cells, and may be described as representing a whole cell associated with the first base station. In addition, the small cell may also mean each of at least one or more cells, and may also be described as representing a whole cell associated with the second base station. However, as described above, in a specific scenario such as a small cell cluster, the cell may be a cell associated with the first base station. In this case, the cell of the second base station may be described as another small cell or another small cell.
다만, 이하 실시예를 설명함에 있어서 설명의 편의를 위하여 매크로 셀과 마스터 기지국 또는 제 1 기지국을 연관시키고, 스몰 셀과 세컨더리 기지국 또는 제 2 기지국을 연관시킬 수 있으나, 본 발명은 이에 한정되지 않으며 세컨더리 기지국 또는 제 2 기지국이 매크로 셀과 연관될 수 있고, 마스터 기지국 또는 제 1 기지국이 스몰 셀과 연관된 상황에도 본 발명이 적용된다.However, in the following embodiments, for convenience of explanation, the macro cell may be associated with the master base station or the first base station, and the small cell may be associated with the secondary base station or the second base station, but the present invention is not limited thereto. A base station or a second base station may be associated with the macro cell, and the present invention also applies to a situation where the master base station or the first base station is associated with the small cell.
또한, 본 명세서에서의 FDD는 프레임 스트럭쳐 타입 1(frame structure type 1)을 의미할 수 있으며, TDD는 프레임 스트럭쳐 타입 2(frame structure type 2)를 의미할 수 있다.Also, in the present specification, FDD may mean frame structure type 1 and TDD may mean frame structure type 2.
캐리어 병합(carrier aggregation, CA)을 지원하는 경우에는 FDD와 TDD 듀플렉스 모드(duplex mode) 각각의 모드 내에서의 캐리어 병합을 고려할 수 있다. 각각의 FDD 및 TDD와 같이 동일한 모드에서의 캐리어 병합을 고려하는 경우는 아래와 같이 컴포넌트 캐리어(component carrier, 요소 반송파 또는 CC)들을 구분하도록 설정할 수 있다.In case of supporting carrier aggregation (CA), carrier aggregation in each of FDD and TDD duplex modes can be considered. In case of considering carrier aggregation in the same mode as in each of FDD and TDD, it may be configured to distinguish component carriers (component carriers, CCs) as follows.
먼저 프라이머리 셀(Primary Cell, PCell)에 대해 살펴본다. First, the primary cell (PCell) will be described.
CA가 구성될 때, 단말은 네트워크와 하나의 RRC 연결(RRC connection)을 가지며, RRC 연결 설정/재설정/핸드오버(RRC connection establishment/re-establishment/handover)시에 하나의 서빙 셀이 NAS 이동성 정보(NAS mobility information)를 제공하고, RRC 연결 재설정/핸드오버 시에 하나의 서빙셀이 보안 입력(security input)을 제공한다. 이러한 셀을 프라이머리 셀로 한다. 하향링크에서 PCell에 해당하는 캐리어는 하향링크 프라이머리 컴포넌트 캐리어(Downlink Primary Component Carrier, DL PCC)이며, 상향링크에서는 상향링크 프라이머리 컴포넌트 캐리어(Uplink Primary Component Carrier, UL PCC)이다.When the CA is configured, the terminal has one RRC connection with the network, and one serving cell is NAS mobility information at the time of RRC connection establishment / re-establishment / handover. (NAS mobility information), and one serving cell provides a security input during RRC connection reset / handover. Such cells are referred to as primary cells. In the downlink, the carrier corresponding to the PCell is a downlink primary component carrier (DL PCC), and in the uplink, an uplink primary component carrier (UL PCC) is used.
PCell은 핸드오버 프로시져(handover procedure)로만 바뀔 수 있으며, PCell은 PUCCH의 전송을 위해 사용된다. 또한, SCells과는 달리 PCell은 비활성화(de-activated)될 수 없다. 또한, 재설정(Re-establishment)는 PCell이 RLF를 경험할 때 트리거링(triggering)되며, SCell이 RLF를 경험하는 경우에는 재설정이 이루어지지 않는다. 또한 NAS 정보는 PCell로부터 얻어진다.The PCell may be changed only by a handover procedure, and the PCell is used for transmission of the PUCCH. In addition, unlike SCells, PCell cannot be de-activated. In addition, re-establishment is triggered when the PCell experiences the RLF, and no reset occurs when the SCell experiences the RLF. NAS information is also obtained from PCell.
다음으로 세컨더리 셀(Secondary Cells, SCells)에 대해 살펴본다. Next, we look at Secondary Cells (SCells).
UE 능력(capability)에 의존하여 SCells이 PCell과 함께 서빙 셀의 셋(a set of serving Cells)의 형태로 구성될 수 있다. 하향링크에서의 SCell에 해당하는 캐리어는 하향링크 세컨더리 컴포넌트 캐리어(Downlink Secondary Component Carrier, DL SCC)이며, 상향링크에서의 SCell에 해당하는 캐리어는 상향링크 세컨더리 컴포넌트 캐리어(Uplink Secondary Component Carrier, UL SCC)이다. Depending on UE capability, SCells may be configured in the form of a set of serving cells with a PCell. The carrier corresponding to the SCell in downlink is a downlink secondary component carrier (DL SCC), and the carrier corresponding to the SCell in the uplink is an uplink secondary component carrier (UL SCC). to be.
하나의 단말에 구성된 서빙 셀의 셋은 항상 하나의 PCell과 하나 이상의 SCells로 구성된다. 구성될 수 있는 서빙 셀의 수는 단말의 병합 능력(aggregation capability)에 의존한다.A set of serving cells configured in one terminal always consists of one PCell and one or more SCells. The number of serving cells that can be configured depends on the aggregation capability of the terminal.
재구성(Reconfiguration), SCells의 추가(addition)와 제거(removal)는 RRC에 의해 수행될 수 있으며, LTE 내의 핸드오버(intra-LTE handover)시에 타겟 PCell(target PCell)과 함께 사용하기 위해 RRC는 SCells을 재구성 하거나 추가 및 제거할 수 있다. 새로운 SCell을 추가할 때, SCell의 모든 요구되는 시스템 정보(system information)를 전송하기 위해 전용 RRC 시그널링(dedicated RRC signaling)이 사용된다. 연결된 모드(Connected mode)에서 단말은 브로드캐스트 시스템 정보(broadcasted system information)를 SCells로부터 직접 얻을 필요가 없다.Reconfiguration, addition and removal of SCells may be performed by RRC, and RRC may be used with a target PCell during intra-LTE handover in LTE. You can reconfigure, add, or remove SCells. When adding a new SCell, dedicated RRC signaling is used to transmit all required system information of the SCell. In the connected mode, the terminal does not need to directly obtain broadcast system information from the SCells.
도 8은 TDD 프레임 구조(frame structure)상에서의 UL-DL 구성(configuration)을 보여주는 도면이다. D로 표시된 것은 다운링크 서브프레임(downlink subframe)이며, U로 표시된 것은 업링크 서브프레임(uplink subframe)이며, S로 표시된 것은 특별 서브프레임(Special subframe)이다.FIG. 8 illustrates a UL-DL configuration on a TDD frame structure. Denoted D is a downlink subframe, denoted U is an uplink subframe, denoted S is a special subframe.
도 9는 TDD UL-DL 구성(configuration) 하에서의 TDD UL 전송을 위한 PDCCH/EPDCCH의 타이밍을 보여주는 도면이다.FIG. 9 illustrates timing of PDCCH / EPDCCH for TDD UL transmission under a TDD UL-DL configuration.
도 9를 참조하면, 기존 TDD UL-DL configuration하에서의 TDD UL의 전송을 위한 PDCCH/EPDCCH의 타이밍(timing)에 관한 것으로, 해당 n번째 서브프레임(subframe)에서 감지(detection)된 PDCCH/EPDCCH를 n+k번째의 서브프레임에 PUSCH를 전송함을 의미한다.Referring to FIG. 9, the present invention relates to timing of PDCCH / EPDCCH for transmission of a TDD UL under an existing TDD UL-DL configuration. The PDCCH / EPDCCH detected in a corresponding nth subframe is n. This means that the PUSCH is transmitted in the + kth subframe.
일 예를 들어, TDD UL-DL 구성 0번에서 0번째 서브프레임에서 감지된 PDCCH/EPDCCH 및 PHICH에 대한 PUSCH는 4번째 서브프레임에서 전송할 수 있으며, TDD UL-DL 구성 0번에서 1번째 서브프레임에서 감지된 PDCCH/EPDCCH 및 PHICH에 대한 PUSCH는 7번째 서브프레임에서 전송할 수 있다.For example, the PUSCH for the PDCCH / EPDCCH and the PHICH detected in the 0 th subframe in the TDD UL-DL configuration 0 may be transmitted in the 4 th subframe, and the 1 st subframe in the 0 TDD UL-DL configuration. The PUSCH for the PDCCH / EPDCCH and PHICH detected at may be transmitted in the 7th subframe.
도 10은 TDD UL-DL 구성(configuration) 하에서의 TDD UL HARQ-ACK 전송을 위한 PHICH 타이밍을 보여주는 도면이다.FIG. 10 illustrates PHICH timing for TDD UL HARQ-ACK transmission under a TDD UL-DL configuration.
도 10을 참조하면, 기존 TDD UL-DL 구성(configuration)하에서의 TDD UL에 따른 HARQ-ACK 전송을 위한 PHICH 전송의 타이밍에 관한 것이며, 서브프레임 n(subframe n)에서 전송되는 PUSCH를 위한 HARQ-ACK전송인 PHICH 타이밍은 n+k_PHICH번째의 DL 서브프레임(subframe)에서 PHICH를 전송할 수 있다.Referring to FIG. 10, the present invention relates to timing of PHICH transmission for HARQ-ACK transmission according to TDD UL under an existing TDD UL-DL configuration, and HARQ-ACK for PUSCH transmitted in subframe n. The PHICH timing, which is transmission, may transmit the PHICH in the DL subframe of the n + k_PHICH th.
데이터를 효율적으로 송수신하기 위해서 FDD와 TDD 각각의 듀플렉스 모드(duplex mode) 간의 캐리어 병합(carrier aggregation)이 고려되고 있다. 다만, 본 발명에서 제시하고자 하는 FDD와 TDD 같이 서로 다른 듀플렉스 모드를 가지는 캐리어(carrier)들간의 병합(aggregation) 및 조인트 오퍼레이션(joint operation)은 고려되지 않았다. In order to efficiently transmit and receive data, carrier aggregation between a duplex mode of each of the FDD and the TDD is considered. However, aggregation and joint operation between carriers having different duplex modes, such as FDD and TDD, are not considered.
따라서 본 발명에서는 서로 다른 듀플렉스 모드인 FDD와 TDD의 조인트 오퍼레이션(joint operation) 및 FDD와 TDD의 캐리어 병합(carrier aggregation)을 고려하는 경우에서의 UL 전송에 대한 제어채널 및 PUSCH 전송 타이밍과 HARQ-ACK을 전송하는 PHICH 타이밍에 관한 구체적인 방법 및 장치에 대해서 제안하고자 한다.Therefore, in the present invention, the control channel and PUSCH transmission timing and the HARQ-ACK for UL transmission in the case of considering the duplex mode FDD and TDD joint operation and FDD and TDD carrier aggregation are considered. It is intended to propose a specific method and apparatus for the PHICH timing for transmitting the PHY.
구체적으로, 본 발명은 기지국이 단말에게 서로 다른 듀플렉스 모드(duplex mode)인 FDD와 TDD의 조인트 오퍼레이션(joint operation) 및 FDD와 TDD의 캐리어 병합(carrier aggregation)을 고려하는 경우에 적용될 수 있다. 이 경우에 단말 및 기지국의 동작이 기존 동일한 듀플렉스 모드(duplex mode) 간의 캐리어 병합(carrier aggregation)을 수행하는 경우와는 달라질 수 있다. 예를 들어, 제어채널(PDCCH/EPDCCH)의 수신에 따른 PUSCH 전송 타이밍에 관해서 달리 정의되어야 할 필요가 있다. 또한, UL 전송에 대한 HARQ-ACK을 전송하는 PHICH 타이밍(timing)에 관해서 달리 정의되어야 할 필요가 있다. 따라서 해당 경우에서의 단말의 동작 방법과 기지국으로부터의 단말에 대한 동작 설정방법 그리고 그와 관련한 단말의 장치 및 기지국 장치에 대해서 제안한다. Specifically, the present invention can be applied when the base station considers a carrier operation of FDD and TDD and a joint operation of FDD and TDD, which are different duplex modes. In this case, the operation of the terminal and the base station may be different from the case of performing carrier aggregation between the same duplex mode. For example, the PUSCH transmission timing according to the reception of the control channel (PDCCH / EPDCCH) needs to be defined differently. In addition, PHICH timing for transmitting HARQ-ACK for UL transmission needs to be defined differently. Therefore, the present invention proposes an operation method of a terminal, an operation setting method for a terminal from a base station, and a terminal apparatus and a base station apparatus related thereto.
이하에서는, 각 실시예에 따라 서로 다른 듀플렉스 모드(duplex mode)인 FDD와 TDD의 조인트 오퍼레이션(joint operation) 및 캐리어 병합(carrier aggregation)을 고려하는 경우에 제어채널(PDCCH/EPDCCH)의 수신에 따른 PUSCH 전송 타이밍과 UL 전송에 대한 HARQ-ACK을 전송하는 PHICH 타이밍(timing)에 관한 단말과 기지국의 동작 방법에 대해서 제안한다.Hereinafter, when considering a joint operation and carrier aggregation of FDD and TDD which are different duplex modes according to each embodiment, the control channel (PDCCH / EPDCCH) is received according to reception. A method of operating a terminal and a base station regarding a PHICH timing for transmitting a PUSCH transmission timing and a HARQ-ACK for UL transmission is proposed.
본 발명은 먼저 TDD-FDD 조인트 오퍼레이션 (joint operation) 및 CA(Carrier Aggregation)시 PCell과 SCell로 지정되는 각 Cell의 듀플렉스 모드(duplex mode)에 따라 달라질 수 있는 제어채널(PDCCH/EPDCCH)의 수신 타이밍 및 이에 따른 PUSCH 전송 타이밍(timing)에 관한 방법을 설명한다. 또한, TDD-FDD 조인트 오퍼레이션 및 CA시의 UL 전송에 대한 PDCCH/EPDCCH의 타이밍(timing)과 관련 HARQ-ACK을 전송하는 PHICH 타이밍(timing)에 관한 UE 동작(procedure)의 정의한다.First, the present invention provides timing of reception of a control channel (PDCCH / EPDCCH), which may vary according to the duplex mode of each cell designated as a PCell and a SCell during a TDD-FDD joint operation and a carrier aggregation. And a method related to PUSCH transmission timing according thereto. In addition, the TDD-FDD joint operation and timing of PDCCH / EPDCCH for UL transmission in CA and UE procedure related to PHICH timing for transmitting an associated HARQ-ACK are defined.
서로 다른 듀플렉스 모드로 동작하는 캐리어가 병합되거나, 서로 다른 듀플렉스 모드로 동작하는 캐리어 간의 조인트 오퍼레이션의 수행에 있어서, PCell 및 SCell의 듀플렉스 모드에 따라서 실시예를 나누어 설명한다.Carriers operating in different duplex modes are merged, or when performing joint operations between carriers operating in different duplex modes, the embodiments are divided and described according to the duplex modes of the PCell and the SCell.
TDD가 PCell이고, FDD가 SCell인 경우TDD is PCell and FDD is SCell
TDD PCell로 지정된 TDD DL 서브프레임이 UL-DL 구성(configuration)에 따라 특정 서브프레임에만 존재하는 반면 FDD SCell에 대한 UL 서브프레임은 하나의 라디오 프레임(radio frame)에 모든 서브프레임에서 존재한다. 논 크로스 캐리어 스케줄링(Non-cross carrier scheduling)의 경우에는 각각의 TDD PCell과 FDD SCell이 셀프 캐리어 스케줄링(self-carrier scheduling)을 수행하므로 각각의 듀플렉스(duplex)에서 정의된 UL 전송에 대한 제어채널(PDCCH/EPDCCH)의 타이밍 및 HARQ-ACK을 전송하는 PHICH 타이밍을 따르는 경우 각각의 독립된 서빙 셀의 형태로 잘 동작할 수 있다.The TDD DL subframe designated as the TDD PCell exists only in a specific subframe according to the UL-DL configuration, whereas the UL subframe for the FDD SCell exists in all subframes in one radio frame. In the case of non-cross carrier scheduling, since each TDD PCell and FDD SCell perform self-carrier scheduling, a control channel for UL transmission defined in each duplex ( When the timing of PDCCH / EPDCCH) and the PHICH timing for transmitting HARQ-ACK are followed, each of the independent serving cells may operate well.
예를 들어, 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성된 단말이 제어채널을 수신하여 PUSCH를 전송함에 있어서, 셀프 캐리어 스케줄링이 되는 경우에는 PCell 및 SCell 각각의 듀플렉스 모드에 기초하여 설정된 제어채널과 PUSCH 전송 타이밍에 따라서 PUSCH를 전송할 수 있다. 즉, PCell이 TDD 또는 FDD 듀플렉스 모드인 경우에 TDD 또는 FDD의 제어채널과 PUSCH 타이밍에 따라서 PUSCH를 전송할 수 있다. SCell도 동일하게 SCell이 TDD 또는 FDD 듀플렉스 모드인 경우에 TDD 또는 FDD의 제어채널과 PUSCH 타이밍에 따라서 PUSCH를 전송할 수 있다.For example, when a terminal configured with a PCell and a SCell operating in different duplex modes receives a control channel and transmits a PUSCH, in case of self-carrier scheduling, the control channel configured based on the duplex mode of each of the PCell and the SCell is determined. PUSCH may be transmitted according to the PUSCH transmission timing. That is, when the PCell is in the TDD or FDD duplex mode, the PUSCH may be transmitted according to the control channel and the PUSCH timing of the TDD or FDD. Likewise, the SCell may transmit the PUSCH according to the control channel and the PUSCH timing of the TDD or FDD when the SCell is in the TDD or FDD duplex mode.
캐리어 병합 또는 조인트 오퍼레이션으로 동작하는 단말에 있어서, 특정 캐리어가 다른 캐리어의 제어 정보를 송수신하여 스케줄링을 수행하는 것을 크로스 캐리어 스케줄링(cross-carrier scheduling)이라고 한다. 또한, 각 캐리어가 각각 제어 정보를 송수신하여 크로스 캐리어 스케줄링을 수행하지 않는 것을 논 크로스 캐리어 스케줄링(Non-cross carrier scheduling) 혹은 각각의 캐리어에서 스케줄링을 수행하므로 셀프 캐리어 스케줄링(self-carrier scheduling)이라고 한다. In a terminal operating by a carrier merging or joint operation, it is called cross-carrier scheduling when a specific carrier transmits and receives control information of another carrier and performs scheduling. In addition, since each carrier does not perform cross-carrier scheduling by transmitting and receiving control information, it is called non-cross carrier scheduling or self-carrier scheduling because scheduling is performed on each carrier. .
전술한 바와 같이 TDD PCell 및 FDD SCell의 경우에 셀프 캐리어 스케줄링의 경우에 단말 및 기지국은 각각의 듀플렉스 모드에 따른 PHICH 타이밍에 따라서 동작할 수 있다. As described above, in the case of self-carrier scheduling in the case of the TDD PCell and the FDD SCell, the terminal and the base station may operate according to the PHICH timing according to each duplex mode.
그러나, 크로스 캐리어 스케줄링(cross-carrier scheduling)이 사용되는 경우, 단말 및 기지국의 동작에 있어서 모호성이 발생할 수 있다. 구체적으로, 크로스 캐리어 스케줄링(cross-carrier scheduling)은 현재 표준규격상에서는 PCell에서만 적용될 수 있는 방법이므로 TDD PCell에서 FDD SCell에 대한 UL 전송을 위한 PDCCH/EPDCCH을 전송하여 FDD SCell UL 전송을 제어하게 된다. 단말은 해당 경우가 발생하는 경우 TDD PCell에서 지정된 타이밍을 따라 UL 데이터를 전송해야 할지, FDD SCell에 따른 FDD 타이밍 관계에 따라 UL 데이터를 전송해야 할지에 모호성이 발생할 수 있다.However, when cross-carrier scheduling is used, ambiguity may occur in the operation of the terminal and the base station. Specifically, since cross-carrier scheduling is a method that can be applied only to PCell in the current standard, TDD PCell transmits PDCCH / EPDCCH for UL transmission to FDD SCell to control FDD SCell UL transmission. If a corresponding case occurs, ambiguity may occur in whether the UL data should be transmitted according to the timing specified in the TDD PCell or the UL data according to the FDD timing relationship according to the FDD SCell.
예를 들어, 기존 FDD SCell에서 전송되는 UL에 대한 HARQ 타이밍은 기존 (n-4)번째 서브프레임에서 받은 UL grant에 의해 n번째 서브프레임에 UL을 전송하고, (n+4)번째에 전송하던 HARQ-ACK의 PHICH 타이밍을 사용하였다. 따라서, 크로스 캐리어 스케줄링의 경우, n번째 UL전송을 기준으로 (n-4)번째에 TDD PCell에서의 DL 서브프레임이 존재하지 않는 경우에 해당 UL에는 PDCCH/EPDCCH에 의한 스케줄링(scheduling)이 될 수 없는 문제가 발생한다. For example, the HARQ timing for the UL transmitted in the existing FDD SCell transmits the UL in the nth subframe by the UL grant received in the existing (n-4) th subframe and transmits the (n + 4) th time. The PHICH timing of HARQ-ACK was used. Accordingly, in the case of cross-carrier scheduling, when there is no DL subframe in the TDD PCell based on the nth UL transmission, scheduling may be performed according to PDCCH / EPDCCH in the corresponding UL. No problem occurs.
또한, 단말은 유사하게 n번째 UL 전송을 기준으로 (n+4)번째 TDD PCell에서의 DL 서브프레임이 존재하지 않는 경우에 해당 UL에 대한 HARQ-ACK을 전송하는 PHICH를 수신할 수 없는 문제가 발생한다. Further, similarly, when the DL subframe in the (n + 4) th TDD PCell does not exist based on the nth UL transmission, the UE cannot receive a PHICH for transmitting the HARQ-ACK for the corresponding UL. Occurs.
따라서 TDD-FDD 조인트 오퍼레이션 및 캐리어병합(Carrier Aggregation, CA)이 가능한 단말에 대해서는 해당 FDD SCell에 대한 UL 전송을 위한 PDCCH/EPDCCH의 스케줄링 정보를 전송하는 UL grant의 전송 타이밍과 해당 UL전송에 대한 HARQ-ACK을 전송하는 PHICH의 전송타이밍을 개선하는 방법이 필요하다.Therefore, for a terminal capable of TDD-FDD joint operation and carrier aggregation (CA), the transmission timing of the UL grant for transmitting the scheduling information of the PDCCH / EPDCCH for the UL transmission for the corresponding FDD SCell and the HARQ for the corresponding UL transmission There is a need for a method for improving transmission timing of a PHICH for transmitting an -ACK.
이하에서는, PCell의 듀플렉스 모드가 TDD이고, SCell의 듀플렉스 모드가 FDD인 경우에 본 발명의 각 실시예에 대해서 구체적으로 설명한다.Hereinafter, each embodiment of the present invention will be described in detail when the duplex mode of the PCell is TDD and the duplex mode of the SCell is FDD.
제 1 실시예: FDD SCell로 전송할 UL에 대한 제어채널과 PUSCH 타이밍은 TDD PCell의 타이밍에 맞추는 방법. First embodiment: Control channel and PUSCH timing for the UL to be transmitted to the FDD SCell to match the timing of the TDD PCell.
제 1 실시예에 따른 본 발명은 TDD PCell을 설정한 단말이 FDD SCell을 TDD-FDD 조인트 오퍼레이션 및 CA를 위해 SCell addition하는 경우에 FDD SCell에 대한 UL 전송을 위한 PDCCH/EPDCCH의 타이밍을 TDD PCell에 맞추도록 설정할 수 있다. 한편, FDD SCell로의 UL 전송에 대한 HARQ-ACK을 전송하는 PHICH 타이밍을 TDD PCell이 사용하는 타이밍을 적용하는 방법이 고려될 수 있다. According to the first embodiment of the present invention, when the terminal configuring the TDD PCell adds the FDD SCell to the TDD-FDD joint operation and the CA for the CA, the timing of the PDCCH / EPDCCH for UL transmission for the FDD SCell is transmitted to the TDD PCell. Can be set to match. Meanwhile, a method of applying a timing used by the TDD PCell as a PHICH timing for transmitting HARQ-ACK for UL transmission to the FDD SCell may be considered.
구체적으로 예를 들면, 단말은 FDD SCell의 기존 FDD-FDD CA시 설정되는 (n-4)번째의 서브프레임에서 스케줄링 정보 (grant)를 받은 PDCCH/EPDCCH에 대해서 PUSCH를 n번째에 대해서 전송하고, 기존 FDD의 PHICH 전송 타이밍인 n+4번째 서브프레임의 DL로 해당 HARQ-ACK을 PHICH를 통해 전송하도록 설정하는 것과는 관계없이 PDCCH/EPDCCH 및 PHICH 타이밍을 설정할 수 있다. 즉, TDD PCell이 사용하는 UL-DL 서브프레임 구성(UL-DL subframe configuration)에 연계된 TDD UL shared channel을 위한 PDCCH/EPDCCH의 수신 타이밍과 HARQ-ACK을 전송하는 PHICH 타이밍을 FDD SCell에 적용하는 방법이다. 이는 FDD SCell에도 마치 TDD SCell이 추가(Addition)된 것과 같은 방법으로 적용하는 방법이다. 즉, TDD PCell에서 사용하도록 설정된 UL-DL 구성(configuration)의 타이밍에 기초하여 SCell의 PUSCH 전송을 수행할 수 있다. 바꿔 말하면, SCell의 PUSCH 전송은 PCell에서 사용하도록 설정된 상향링크를 위한 제어채널 수신 타이밍에 따라 수신된 제어채널에 기초하여 전송될 수 있다. In more detail, for example, the UE transmits the PUSCH for the n th PDCCH / EPDCCH received the scheduling information (grant) in the (n-4) th subframe configured in the existing FDD-FDD CA of the FDD SCell, PDCCH / EPDCCH and PHICH timing may be set regardless of whether the corresponding HARQ-ACK is transmitted through the PHICH in the DL of the n + 4th subframe, which is the PHICH transmission timing of the existing FDD. That is, the reception timing of the PDCCH / EPDCCH for the TDD UL shared channel associated with the UL-DL subframe configuration used by the TDD PCell and the PHICH timing for transmitting HARQ-ACK are applied to the FDD SCell. It is a way. This method is applied to the FDD SCell as if the TDD SCell was added. That is, the PUSCH transmission of the SCell may be performed based on the timing of the UL-DL configuration configured to be used in the TDD PCell. In other words, the PUSCH transmission of the SCell may be transmitted based on the control channel received according to the control channel reception timing for the uplink configured to be used in the PCell.
이와 같이 본 발명의 제 1 실시예를 적용하는 경우에 전술한 FDD SCell에 대한 n번째 서브프레임의 UL를 스케줄링(scheduling)하기 위한 TDD PCell의 DL 서브프레임이 존재하지 않거나, 특정 서브프레임에서 전송된 UL에 대해 HARQ-ACK의 PHICH를 수신하기 위한 TDD PCell 상의DL 서브프레임이 존재하지 않는 문제점을 개선할 수 있다.As described above, when the first embodiment of the present invention is applied, the DL subframe of the TDD PCell for scheduling UL of the nth subframe for the aforementioned FDD SCell does not exist or is transmitted in a specific subframe. The problem that there is no DL subframe on the TDD PCell for receiving the PHICH of the HARQ-ACK for the UL can be improved.
제 2 실시예: FDD SCell로 전송할 UL에 대한 제어채널과 PUSCH 타이밍은 FDD SCell의 타이밍에 맞추는 방법. Second embodiment: Control channel and PUSCH timing for UL to be transmitted to FDD SCell according to the timing of FDD SCell.
전술한 제 1 실시예와 같이 특정 TDD PCell에 설정된 특정 UL-DL 구성(configuration)하에서 FDD SCell의 UL 서브프레임에서 전송되는 상향링크 신호에 대한 PHICH 타이밍을 TDD PCell의 타이밍을 따를 경우에 SCell의 서브프레임을 낭비하는 문제가 발생할 수도 있다.As in the above-described first embodiment, the PHICH timing for the uplink signal transmitted in the UL subframe of the FDD SCell under the specific UL-DL configuration configured in the specific TDD PCell is based on the TDD PCell timing. The problem of wasting frames may occur.
예를 들어, FDD SCell에서 전송되는 UL에 대한 PDCCH/EPDCCH를 수신하는 타이밍 및/또는 UL 전송에 대한 HARQ-ACK인 PHICH 타이밍을 TDD PCell에 설정된 UL-DL 구성(configuration)에 따라 PCell의 타이밍을 따를 경우, TDD PCell의 DL 서브프레임과 매핑(align)되어있는 FDD SCell UL 서브프레임에 대해서는 기존 TDD PCell에서는 해당 서브프레임이 DL 서브프레임이었으므로 UL 전송을 위한 PDCCH/EPDCCH 및 PHICH 관련 타이밍 정보가 존재하지 않는 문제가 발생한다. 즉, TDD PCell의 DL 서브프레임 인덱스(index)와 동일 서브프레임 인덱스(index)를 가지는 FDD SCell UL 서브프레임 인덱스(index)에 전송하고자 하는 UL PUSCH에 대해서는 TDD DL 서브프레임으로부터의 스케줄링 그랜트 타이밍과 PHICH 타이밍이 존재하지 않는다. 이로 인해, 해당 FDD SCell에 속한 UL 서브프레임의 전송을 단말이 수행할 수 없게 된다. 이는 각각의 TDD PCell로 설정된 UL-DL 구성(configuration)에 따라 FDD SCell의 상향링크 데이터 전송률을 40%~90%까지 감소시킬 수 있다. For example, the timing of the PCell according to the UL-DL configuration set in the TDD PCell is determined by the timing of receiving the PDCCH / EPDCCH for the UL transmitted from the FDD SCell and / or the PHICH timing, which is HARQ-ACK for the UL transmission. In this case, for the FDD SCell UL subframe mapped with the DL subframe of the TDD PCell, since the corresponding subframe was a DL subframe in the existing TDD PCell, PDCCH / EPDCCH and PHICH related timing information for UL transmission do not exist. Does not cause problems. That is, for the UL PUSCH to be transmitted in the FDD SCell UL subframe index having the same subframe index as the DL subframe index of the TDD PCell, the scheduling grant timing and the PHICH from the TDD DL subframe There is no timing. As a result, the UE cannot transmit the UL subframe belonging to the corresponding FDD SCell. This may reduce the uplink data rate of the FDD SCell by 40% to 90% according to the UL-DL configuration configured for each TDD PCell.
구체적으로 도면을 참조하여 TDD PCell의 구성(configuration)에 따라서 FDD SCell에서 타이밍이 존재하지 않는 서브프레임에 대해서 설명한다.In detail, a subframe in which no timing exists in the FDD SCell will be described according to the configuration of the TDD PCell with reference to the drawings.
도 11 내지 17은 TDD-FDD 조인트 오퍼레이션 및 CA을 위해 각각의 TDD UL-DL 구성 0 내지 6을 가지는 TDD Cell과 FDD Cell이 CA 되었을 때의 경우를 예시적으로 도시한 도면이다.11 to 17 exemplarily illustrate a case where a TDD Cell and an FDD Cell having respective TDD UL-DL configurations 0 to 6 become CAs for a TDD-FDD joint operation and a CA.
도 11 내지 도 17은 각각의 TDD-FDD 조인트 오퍼레이션 및 CA를 위해 각각의 TDD UL-DL 구성(configuration)을 갖는 TDD Cell과 FDD Cell이 CA 되었을 때의 경우에 관한 예시들을 제시한다. 또한, FDD Cell에서의 UL 주파수 밴드에 음영으로 표시된 서브프레임은 TDD-FDD 조인트 오퍼레이션 및 CA로 동작하는 경우, FDD SCell UL로 보내는 전송에 대한 PDCCH/EPDCCH의 타이밍과 해당 FDD SCell UL의 전송에 대한 HARQ-ACK을 전송하는 PHICH 타이밍의 설정이 추가적으로 필요한 서브프레임을 의미한다. 즉, 전술한 제 1 실시예를 적용할 경우에 FDD SCell에서의 PDCCH/EPDCCH 및 PHICH 타이밍에 대한 새로운 설정의 적용이 필요한 서브프레임을 의미한다.11 through 17 show examples of a case where a TDD Cell and an FDD Cell having respective TDD UL-DL configurations are CAs for respective TDD-FDD joint operations and CAs. In addition, the subframe shaded in the UL frequency band in the FDD Cell, when operating in the TDD-FDD joint operation and CA, the timing of the PDCCH / EPDCCH for the transmission to the FDD SCell UL and the transmission of the corresponding FDD SCell UL This means a subframe in which PHICH timing for transmitting HARQ-ACK is additionally required. That is, when the first embodiment described above is applied, it means a subframe requiring the application of a new configuration for the PDCCH / EPDCCH and PHICH timing in the FDD SCell.
도 11은 본 발명의 일 실시예에 의한 TDD UL-DL 구성이 0인 TDD Cell과 FDD Cell이 CA될 경우를 보여주는 도면이다. 도 11을 참조하면 FDD SCell의 0, 1, 5, 6번 서브프레임은 해당 서브프레임과 동일한 인덱스를 갖는 TDD PCell의 서브프레임이 다운링크 또는 스페셜 서브프레임으로 설정되어 있다. 따라서, 전술한 제 1 실시예에 따라 FDD SCell이 TDD PCell의 PDCCH/EPDCCH 및 PHICH 타이밍을 따르도록 설정될 경우에 FDD Cell의 0, 1, 5, 6번 서브프레임의 상향링크 신호 전송에 대한 동작이 수행될 수 없는 문제점이 발생한다. 이는 FDD SCell의 서브프레임 낭비를 야기한다.FIG. 11 is a diagram illustrating a case where a TDD Cell and an FDD Cell having a TDD UL-DL configuration of 0 according to an embodiment of the present invention become CA. Referring to FIG. 11, subframes 0, 1, 5, and 6 of the FDD SCell have a subframe of the TDD PCell having the same index as the corresponding subframe as a downlink or a special subframe. Therefore, when the FDD SCell is configured to follow the PDCCH / EPDCCH and PHICH timing of the TDD PCell according to the first embodiment described above, an operation for uplink signal transmission of subframes 0, 1, 5, and 6 of the FDD cell A problem arises in which this cannot be done. This causes subframe waste of the FDD SCell.
도 12는 본 발명의 일 실시예에 의한 TDD UL-DL 구성이 1인 TDD Cell과 FDD Cell이 CA될 경우를 보여주는 도면이다. 도 12를 참조하면 FDD SCell의 0, 1, 4, 5, 6, 9번 서브프레임은 해당 서브프레임과 동일한 인덱스를 갖는 TDD PCell의 서브프레임이 다운링크 또는 스페셜 서브프레임으로 설정되어 있다. 따라서, 전술한 제 1 실시예에 따라 FDD SCell이 TDD PCell의 PDCCH/EPDCCH 및 PHICH 타이밍을 따르도록 설정될 경우에 FDD Cell의 0, 1, 4, 5, 6, 9번 서브프레임의 상향링크 신호 전송에 대한 동작이 수행될 수 없는 문제점이 발생한다. 이는 FDD SCell의 서브프레임 낭비를 야기한다.12 is a diagram illustrating a case in which a TDD Cell and an FDD Cell having a TDD UL-DL configuration of 1 according to an embodiment of the present invention become CA. 12, in subframes 0, 1, 4, 5, 6, and 9 of the FDD SCell, a subframe of the TDD PCell having the same index as the corresponding subframe is configured as a downlink or a special subframe. Therefore, when the FDD SCell is configured to follow the PDCCH / EPDCCH and PHICH timing of the TDD PCell according to the first embodiment described above, the uplink signal of subframes 0, 1, 4, 5, 6, and 9 of the FDD cell The problem arises that the operation on the transmission cannot be performed. This causes subframe waste of the FDD SCell.
도 13은 본 발명의 일 실시예에 의한 TDD UL-DL 구성이 2인 TDD Cell과 FDD Cell이 CA될 경우를 보여주는 도면이다. 도 13을 참조하면 FDD SCell의 0, 1, 3, 4, 5, 6, 8, 9번 서브프레임은 해당 서브프레임과 동일한 인덱스를 갖는 TDD PCell의 서브프레임이 다운링크 또는 스페셜 서브프레임으로 설정되어 있다. 따라서, 전술한 제 1 실시예에 따라 FDD SCell이 TDD PCell의 PDCCH/EPDCCH 및 PHICH 타이밍을 따르도록 설정될 경우에 FDD Cell의 0, 1, 3, 4, 5, 6, 8, 9번 서브프레임의 상향링크 신호 전송에 대한 동작이 수행될 수 없는 문제점이 발생한다. 이는 FDD SCell의 서브프레임 낭비를 야기한다.FIG. 13 is a diagram illustrating a case in which a TDD Cell and an FDD Cell having a TDD UL-DL configuration of 2 according to an embodiment of the present invention become CA. Referring to FIG. 13, in the subframes 0, 1, 3, 4, 5, 6, 8, and 9 of the FDD SCell, a subframe of the TDD PCell having the same index as the corresponding subframe is configured as a downlink or a special subframe. have. Therefore, when the FDD SCell is configured to follow the PDCCH / EPDCCH and PHICH timing of the TDD PCell according to the first embodiment described above, subframes 0, 1, 3, 4, 5, 6, 8, and 9 of the FDD Cell There is a problem that the operation for the uplink signal transmission of the can not be performed. This causes subframe waste of the FDD SCell.
도 14는 본 발명의 일 실시예에 의한 TDD UL-DL 구성이 3인 TDD Cell과 FDD Cell이 CA될 경우를 보여주는 도면이다. 도 14를 참조하면 FDD SCell의 0, 1, 5, 6, 7, 8, 9번 서브프레임은 해당 서브프레임과 동일한 인덱스를 갖는 TDD PCell의 서브프레임이 다운링크 또는 스페셜 서브프레임으로 설정되어 있다. 따라서, 전술한 제 1 실시예에 따라 FDD SCell이 TDD PCell의 PDCCH/EPDCCH 및 PHICH 타이밍을 따르도록 설정될 경우에 FDD Cell의 0, 1, 5, 6, 7, 8, 9번 서브프레임의 상향링크 신호 전송에 대한 동작이 수행될 수 없는 문제점이 발생한다. 이는 FDD SCell의 서브프레임 낭비를 야기한다.FIG. 14 illustrates a case in which a TDD Cell and an FDD Cell having a TDD UL-DL configuration of 3 according to an embodiment of the present invention become CA. Referring to FIG. 14, in the subframes 0, 1, 5, 6, 7, 8, and 9 of the FDD SCell, a subframe of the TDD PCell having the same index as the corresponding subframe is configured as a downlink or a special subframe. Therefore, when the FDD SCell is configured to follow the PDCCH / EPDCCH and PHICH timing of the TDD PCell according to the first embodiment described above, the uplink of subframes 0, 1, 5, 6, 7, 8, and 9 of the FDD Cell is uplinked. There arises a problem that the operation for link signal transmission cannot be performed. This causes subframe waste of the FDD SCell.
도 15는 본 발명의 일 실시예에 의한 TDD UL-DL 구성이 4인 TDD Cell과 FDD Cell이 CA될 경우를 보여주는 도면이다. 도 15를 참조하면 FDD SCell의 0, 1, 4, 5, 6, 7, 8, 9번 서브프레임은 해당 서브프레임과 동일한 인덱스를 갖는 TDD PCell의 서브프레임이 다운링크 또는 스페셜 서브프레임으로 설정되어 있다. 따라서, 전술한 제 1 실시예에 따라 FDD SCell이 TDD PCell의 PDCCH/EPDCCH 및 PHICH 타이밍을 따르도록 설정될 경우에 FDD Cell의 0, 1, 4, 5, 6, 7, 8, 9번 서브프레임의 상향링크 신호 전송에 대한 동작이 수행될 수 없는 문제점이 발생한다. 이는 FDD SCell의 서브프레임 낭비를 야기한다.FIG. 15 is a diagram illustrating a case where a TDD Cell and an FDD Cell having a TDD UL-DL configuration of 4 according to an embodiment of the present invention become CA. Referring to FIG. 15, in the subframes 0, 1, 4, 5, 6, 7, 8, and 9 of the FDD SCell, a subframe of the TDD PCell having the same index as the corresponding subframe is configured as a downlink or a special subframe. have. Therefore, when the FDD SCell is configured to follow the PDCCH / EPDCCH and PHICH timing of the TDD PCell according to the first embodiment described above, subframes 0, 1, 4, 5, 6, 7, 8, and 9 of the FDD Cell There is a problem that the operation for the uplink signal transmission of the can not be performed. This causes subframe waste of the FDD SCell.
도 16은 본 발명의 일 실시예에 의한 TDD UL-DL 구성이 5인 TDD Cell과 FDD Cell이 CA될 경우를 보여주는 도면이다. 도 16을 참조하면 FDD SCell의 0, 1, 3, 4, 5, 6, 7, 8, 9번 서브프레임은 해당 서브프레임과 동일한 인덱스를 갖는 TDD PCell의 서브프레임이 다운링크 또는 스페셜 서브프레임으로 설정되어 있다. 따라서, 전술한 제 1 실시예에 따라 FDD SCell이 TDD PCell의 PDCCH/EPDCCH 및 PHICH 타이밍을 따르도록 설정될 경우에 FDD Cell의 0, 1, 3, 4, 5, 6, 7, 8, 9번 서브프레임의 상향링크 신호 전송에 대한 동작이 수행될 수 없는 문제점이 발생한다. 이는 FDD SCell의 서브프레임 낭비를 야기한다.FIG. 16 is a diagram illustrating a case where a TDD Cell and an FDD Cell having a TDD UL-DL configuration of 5 according to an embodiment of the present invention become CA. Referring to FIG. 16, in subframes 0, 1, 3, 4, 5, 6, 7, 8, and 9 of the FDD SCell, a subframe of the TDD PCell having the same index as the corresponding subframe is a downlink or special subframe. It is set. Therefore, when the FDD SCell is configured to follow the PDCCH / EPDCCH and PHICH timing of the TDD PCell according to the first embodiment described above, 0, 1, 3, 4, 5, 6, 7, 8, and 9 of the FDD Cell. There is a problem that an operation for uplink signal transmission of a subframe cannot be performed. This causes subframe waste of the FDD SCell.
도 17은 본 발명의 일 실시예에 의한 TDD UL-DL 구성이 6인 TDD Cell과 FDD Cell이 CA될 경우를 보여주는 도면이다. 도 17을 참조하면 FDD SCell의 0, 1, 5, 6, 9번 서브프레임은 해당 서브프레임과 동일한 인덱스를 갖는 TDD PCell의 서브프레임이 다운링크 또는 스페셜 서브프레임으로 설정되어 있다. 따라서, 전술한 제 1 실시예에 따라 FDD SCell이 TDD PCell의 PDCCH/EPDCCH 및 PHICH 타이밍을 따르도록 설정될 경우에 FDD Cell의 0, 1, 5, 6, 9번 서브프레임의 상향링크 신호 전송에 대한 동작이 수행될 수 없는 문제점이 발생한다. 이는 FDD SCell의 서브프레임 낭비를 야기한다.FIG. 17 illustrates a case in which a TDD Cell and an FDD Cell having a TDD UL-DL configuration of 6 according to an embodiment of the present invention become CA. Referring to FIG. 17, in subframes 0, 1, 5, 6, and 9 of the FDD SCell, a subframe of the TDD PCell having the same index as the corresponding subframe is configured as a downlink or a special subframe. Therefore, when the FDD SCell is configured to follow the PDCCH / EPDCCH and PHICH timing of the TDD PCell according to the first embodiment described above, it is used to transmit uplink signals of subframes 0, 1, 5, 6, and 9 of the FDD cell. The problem arises that the operation cannot be performed. This causes subframe waste of the FDD SCell.
이상에서 설명한 바와 같이 FDD SCell이 추가되는 경우에 전술한 제 1 실시예와 같이 SCell이 TDD PCell의 각 구성(Configuration)에 따라서 PDCCH/EPDCCH 및 PHICH 타이밍을 설정하는 경우에 FDD SCell의 일부 UL 서브프레임의 동작에 문제가 발생할 수 있다.As described above, when the FDD SCell is added, some UL subframes of the FDD SCell when the SCell sets the PDCCH / EPDCCH and PHICH timing according to each configuration of the TDD PCell as in the first embodiment described above. Problems may occur in the operation.
따라서 이를 해결하기 위한 방법으로 본 발명의 제 2 실시예는 해당 FDD SCell의 UL에 대한 추가적인 UL전송을 위한 제어채널 수신 타이밍과 UL를 위한 HARQ-ACK PHICH 타이밍을 정의하는 방법을 제공한다.Accordingly, in order to solve this problem, the second embodiment of the present invention provides a method for defining a control channel reception timing for additional UL transmission and ULQ HARQ-ACK PHICH timing for the UL of the corresponding FDD SCell.
본 발명의 제 2 실시예에 따른 제어채널 수신 타이밍은 FDD SCell의 타이밍을 따를 수 있다. 즉, SCell의 PUSCH 전송은 SCell에서 사용하도록 설정된 상향링크를 위한 제어채널 수신 타이밍에 따라 수신된 제어채널에 기초하여 전송될 수 있다. 예를 들어, FDD SCell의 n번째 UL 서브프레임(subframe)에서 PUSCH 전송을 수행하기 위한 TDD PCell에서의 제어채널(PDCCH/EPDCCH)의 수신 타이밍은 최소 (n-4)번째 이전의 TDD PCell 서브프레임에서 제어채널(PDCCH/EPDCCH) 감지(detection)에 의해 지시되는 PUSCH의 전송이 이루어질 수 있도록 설정될 수 있다. 한편, PHICH의 경우에도 n번째 UL 서브프레임에서 전송된 PUSCH에 대한 HARQ-ACK을 전송하는 PHICH에 대해서는 가장 빠른 PHICH의 전송이라고 할지라도 최소 (n+4)번째 TDD PCell DL 서브프레임에서 전송되도록 설정할 수 있다. 즉, FDD SCell로 전송되는 PUSCH에 대한 UL grant 정보를 포함하는 제어채널, 즉 PDCCH/EPDCCH는 해당 PUSCH와 4ms 혹은 4 TTI의 간격으로 수신될 수 있다.The control channel reception timing according to the second embodiment of the present invention may follow the timing of the FDD SCell. That is, the PUSCH transmission of the SCell may be transmitted based on the control channel received according to the control channel reception timing for the uplink configured to be used in the SCell. For example, the reception timing of the control channel (PDCCH / EPDCCH) in the TDD PCell for performing PUSCH transmission in the n-th UL subframe of the FDD SCell is a TDD PCell subframe before the (n-4) th minimum. In the control channel (PDCCH / EPDCCH) can be set to be transmitted by the PUSCH indicated by the detection (detection). Meanwhile, even for the PHICH, the PHICH transmitting the HARQ-ACK for the PUSCH transmitted in the nth UL subframe may be transmitted in the at least (n + 4) th TDD PCell DL subframe, even if the fastest PHICH is transmitted. Can be. That is, the control channel including the UL grant information for the PUSCH transmitted to the FDD SCell, that is, PDCCH / EPDCCH may be received at intervals of 4 ms or 4 TTI with the corresponding PUSCH.
SCell상으로 전송되는 PUSCH와 PDCCH/EPDCCH의 타이밍관계Timing Relationship between PUSCH and PDCCH / EPDCCH Transmitted on SCell
표 1은 본 발명의 일 실시예에 따른 TDD PCell에서의 업링크 데이터 전송을 위한 PDCCH/EPDCCH의 타이밍 관계의 일 예를 나타낸다.Table 1 shows an example of a timing relationship of PDCCH / EPDCCH for uplink data transmission in a TDD PCell according to an embodiment of the present invention.
표 1
Figure PCTKR2014008639-appb-T000001
Table 1
Figure PCTKR2014008639-appb-T000001
표 1을 참조하면, TDD DL 서브프레임들 상에 FDD SCell PUSCH를 위한 PDCCH/EPDCCH를 균등(equal)하게 배분하여 전송할 수 있다. 구체적으로, TDD PCell 서브프레임에서 PDCCH/EPDCCH 감지(detection)가 이루어진 후의 PUSCH 전송 타이밍은 표 1의 표와 같이 이루어질 수 있다. 즉, 이는 FDD SCell에 대한 UL의 PDCCH/EPDCCH 전송이 TDD PCell에서 이루지는 경우(크로스 캐리어 스케줄링)에 있어서 TDD PCell에서 해당 n번째 서브프레임에서 감지(detection)된 PDCCH/EPDCCH에 의해 (n+k)번째 서브프레임에 FDD SCell상에서 PUSCH를 전송함을 의미한다.Referring to Table 1, PDCCH / EPDCCH for FDD SCell PUSCH may be equally distributed and transmitted on TDD DL subframes. Specifically, the PUSCH transmission timing after PDCCH / EPDCCH detection is performed in the TDD PCell subframe may be performed as shown in Table 1 below. That is, this means that (n + k) by PDCCH / EPDCCH detected in the corresponding nth subframe in the TDD PCell in case PDCCH / EPDCCH transmission of UL for the FDD SCell is made in the TDD PCell (cross carrier scheduling). This means that the PUSCH is transmitted on the FDD SCell in the) th subframe.
일 예를 들면, 각각의 TDD UL-DL 구성에 따라서 밑줄이 표시된 k값은 기존 TDD 구성에서 추가적인 타이밍을 새롭게 정의한 부분이다. 즉, TDD UL-DL 구성 0번의 경우에 0번째 서브프레임에서 수신되는 PDCCH/EPDCCH는 (n+4)인 4번째 TDD Cell의 UL 서브프레임에서의 PUSCH 스케줄링 정보를 포함할 수 있었다. 본 발명의 FDD SCell이 추가된 경우에 5번째 FDD 서브프레임의 PUSCH 스케줄링을 위해서 TDD UL-DL 구성의 0번째 서브프레임에 k값으로 5를 추가하여 설정할 수 있다. 따라서, TDD PCell의 0번째 서브프레임에서 수신되는 PDCCH/EPDCCH에 기초하여 FDD SCell의 5번째 서브프레임에서의 PUSCH를 스케줄링 할 수 있다. For example, the underlined k value according to each TDD UL-DL configuration is a newly defined additional timing in the existing TDD configuration. That is, in case of TDD UL-DL configuration 0, the PDCCH / EPDCCH received in the 0 th subframe may include PUSCH scheduling information in the UL subframe of the 4 th TDD Cell, which is (n + 4). When the FDD SCell of the present invention is added, 5 may be added to the 0 th subframe of the TDD UL-DL configuration as 5 for the PUSCH scheduling of the 5 th FDD subframe. Accordingly, the PUSCH in the fifth subframe of the FDD SCell may be scheduled based on the PDCCH / EPDCCH received in the zeroth subframe of the TDD PCell.
표 1에 도시한 표는 각각의 TDD UL-DL 구성(configuration)에 따른 FDD SCell에 대한 PUSCH와 PDCCH/EPDCCH의 타이밍 정보를 예시적으로 도시한 것이다. 따라서, 각 TDD UL-DL 구성에 따른 SCell의 PUSCH의 전송 타이밍은 독립적일 수 있으며, 설명의 편의를 위하여 7개 조합을 하나의 표로 도시하였으나, 각각 별도로 정의될 수도 있다. 즉, 표 1의 TDD UL-DL 구성에 따른 SCell의 PUSCH의 전송 타이밍 각각은 따로 정의될 수도 있다. The table shown in Table 1 exemplarily shows timing information of a PUSCH and a PDCCH / EPDCCH for an FDD SCell according to each TDD UL-DL configuration. Accordingly, the transmission timing of the PUSCH of the SCell according to each TDD UL-DL configuration may be independent, and for convenience of description, seven combinations are shown as one table, but may be separately defined. That is, each transmission timing of the PUSCH of the SCell according to the TDD UL-DL configuration of Table 1 may be defined separately.
위에서 표 1을 참조하여 설명한 FDD SCell UL 서브프레임에 전송되는 PUSCH를 위한 PDCCH/EPDCCH 타이밍에 대한 정의는 TDD DL 서브프레임들 상에 FDD SCell PUSCH를 위한 PDCCH/EPDCCH를 균등(equal)하게 배분하여 전송할 수 있도록 제시한 예이다.The definition of the PDCCH / EPDCCH timing for the PUSCH transmitted in the FDD SCell UL subframe described with reference to Table 1 above is to equally distribute the PDCCH / EPDCCH for the FDD SCell PUSCH on the TDD DL subframes. Here is an example.
이와는 달리 FDD SCell PUSCH를 위한 PDCCH/EPDCCH 타이밍을 정의함에 있어서, PDCCH/EPDCCH 타이밍을 특정 TDD DL 서브프레임에 할당되도록 설정할 수도 있다.Alternatively, in defining the PDCCH / EPDCCH timing for the FDD SCell PUSCH, the PDCCH / EPDCCH timing may be configured to be allocated to a specific TDD DL subframe.
표 2 및 3은 본 발명의 다른 실시예에 따른 TDD UL-DL 구성 0번을 PCell로 하는 경우의 PDCCH/EPDCCH의 타이밍 관계를 예시적으로 보여주는 표이다.Tables 2 and 3 exemplarily show a timing relationship between PDCCH / EPDCCH when TDD UL-DL configuration 0 is PCell according to another embodiment of the present invention.
표 2
Figure PCTKR2014008639-appb-T000002
TABLE 2
Figure PCTKR2014008639-appb-T000002
표 3
Figure PCTKR2014008639-appb-T000003
TABLE 3
Figure PCTKR2014008639-appb-T000003
표 2 및 표 3을 참조하면, TDD UL-DL 구성(configuration) 0번을 PCell로 하는 경우에 특정 TDD DL 서브프레임에 해당 FDD SCell의 UL PUSCH을 위한 PDCCH/EPDCCH를 집중하여 할당할 수도 있다. 예를 들어, 표 2의 경우와 같이 TDD UL-DL 구성이 0번인 TDD PCell의 경우에 0번째 서브프레임의 k 값이 4, 5, 6이 되도록 설정할 수 있다. 이 경우, 0번째 서브프레임을 통해서 수신되는 PDCCH/EPDCCH는 (n+k)번째 서브프레임의 PUSCH 스케줄링 정보를 포함할 수 있다. 따라서, FDD SCell의 5번, 6번 UL 서브프레임의 PUSCH 스케줄링 정보를 포함할 수 있다.Referring to Tables 2 and 3, when the TDD UL-DL configuration 0 is the PCell, PDCCH / EPDCCH for the UL PUSCH of the corresponding FDD SCell may be centrally allocated to a specific TDD DL subframe. For example, as in the case of Table 2, in the case of the TDD PCell having the TDD UL-DL configuration 0, the k value of the 0 th subframe may be set to 4, 5, and 6. In this case, the PDCCH / EPDCCH received through the 0 th subframe may include PUSCH scheduling information of the (n + k) th subframe. Accordingly, PUSCH scheduling information of UL subframes 5 and 6 of the FDD SCell may be included.
다른 예로, 표 3을 참조하면, 5번 및 6번 FDD SCell의 UL 서브프레임의 PUSCH 스케줄링 정보는 TDD PCell의 1번 서브프레임을 통해서 수신될 수 있다. As another example, referring to Table 3, PUSCH scheduling information of UL subframes of FDD SCells 5 and 6 may be received through subframe 1 of the TDD PCell.
이와 같이 기존 TDD UL-DL 구성을 통해서는 스케줄링 할 수 없었던 FDD SCell의 UL 서브프레임의 PUSCH를 스케줄링하기 위한 제어 정보를 TDD PCell의 특정 서브프레임에 집중적으로 할당되도록 설정할 수 있다. As such, control information for scheduling the PUSCH of the UL subframe of the FDD SCell, which cannot be scheduled through the conventional TDD UL-DL configuration, may be configured to be intensively allocated to a specific subframe of the TDD PCell.
위에서는 TDD 구성(configuration) 0를 예로 들었지만 동일한 원리를 가지고 다른 TDD UL-DL 구성(configuration)에도 적용할 수 있다. 집중적으로 할당되는 경우에 있어서는 PDCCH/EPDCCH 상에 해당 PUSCH를 전송하고자 하는 서브프레임 인덱스(index) 정보를 포함하여 전송할 수 있다. 즉, UL 인덱스(index) 정보를 이용하여 해당 FDD SCell에 대한 UL 서브프레임 인덱스(index)를 지시하여 해당 UL 서브프레임에 PUSCH를 전송하도록 설정할 수 있다.Although TDD configuration 0 is taken as an example, the same principle may be applied to other TDD UL-DL configurations. In the case of intensive allocation, it may be transmitted by including subframe index information for transmitting the corresponding PUSCH on the PDCCH / EPDCCH. That is, the UL subframe index (index) for the corresponding FDD SCell may be indicated by using the UL index information, so that the PUSCH may be transmitted in the corresponding UL subframe.
이상에서는 본 발명의 제 2 실시예의 세부 실시예로 PUSCH와 PDCCH/EPDCCH의 타이밍을 균등하게 또는 집중하여 추가적으로 설정하는 방법에 대해서 설명하였다.In the above, as a detailed embodiment of the second embodiment of the present invention, a method of additionally setting the timing of the PUSCH and the PDCCH / EPDCCH is equally or concentrated has been described.
FDD가 PCell이고, TDD가 SCell인 경우FDD is PCell and TDD is SCell
본 발명의 또 다른 실시예의 경우에 PCell의 듀플렉스 모드가 FDD이고, SCell의 듀플렉스 모드가 TDD인 경우를 생각해 볼 수 있다. 이 경우에도 단말은 PCell 및 SCell이 셀프 캐리어 스케줄링 되는 경우에 PCell 및 SCell 각각의 듀플렉스 모드에 따른 제어채널 수신 타이밍에 기초하여 PUSCH를 전송할 수 있다.In another embodiment of the present invention, a case where the duplex mode of the PCell is FDD and the duplex mode of the SCell may be considered. Even in this case, when the PCell and the SCell are self-carrier scheduled, the terminal may transmit the PUSCH based on the control channel reception timing according to the duplex mode of the PCell and the SCell.
다만, 전술한 크로스 캐리어 스케줄링이 적용되는 경우에는 서브프레임의 낭비를 줄이고 효율적인 PUSCH 전송을 위하여 TDD SCell에서 전송되는 PUSCH에 대한 제어채널 수신 타이밍은 아래와 같이 각 실시예에 따라서 설정될 수 있다.However, when the above-described cross carrier scheduling is applied, the control channel reception timing for the PUSCH transmitted in the TDD SCell may be set according to each embodiment as follows to reduce waste of subframes and efficiently transmit PUSCH.
제 3 실시예: TDD SCell 제어채널 수신 타이밍과 PUSCH 타이밍을 적용하는 방법. Third Embodiment: Method of Applying TDD SCell Control Channel Reception Timing and PUSCH Timing
구체적으로 예를 들어 설명하면, FDD 듀플렉스 모드로 동작하는 PCell에 TDD 듀플렉스 모드로 동작하는 SCell이 추가(addition)될 수 있다. 이 경우, FDD PCell의 DL 서브프레임으로부터 TDD SCell에 대한 UL 서브프레임의 스케줄링이 수행될 수 있다.Specifically, for example, the SCell operating in the TDD duplex mode may be added to the PCell operating in the FDD duplex mode. In this case, scheduling of the UL subframe for the TDD SCell may be performed from the DL subframe of the FDD PCell.
이와 같이, 크로스 캐리어 스케줄링(cross-carrier scheduling)을 수행되는 경우, FDD PCell에는 하나의 라디오 프레임(radio frame)내에 모든 서브프레임이 DL 서브프레임으로 구성되어있고, 크로스 캐리어 스케줄링(cross-carrier scheduling)을 수행하는 FDD PCell에서 TDD SCell에 대한 UL grant가 전송된다. 또한, TDD SCell에서 전송되는 상향링크 전송에 대한 HARQ-ACK을 전송하는 PHICH는 FDD PCell에서 수신된다. As such, when cross-carrier scheduling is performed, in the FDD PCell, all subframes are configured as DL subframes in one radio frame, and cross-carrier scheduling is performed. In the FDD PCell performing the UL grant for the TDD SCell is transmitted. In addition, the PHICH for transmitting the HARQ-ACK for the uplink transmission transmitted in the TDD SCell is received in the FDD PCell.
따라서, TDD SCell에서 전송되는 UL의 PUSCH 전송과 제어채널 수신 타이밍은 SCell의 TDD 듀플렉스 모드에 기초하여 설정된 타이밍이 적용될 수 있다. 한편, PHICH 타이밍도 논 크로스 캐리어 스케줄링(non-cross carrier scheduling)시 사용되는 TDD UL의 PHICH 타이밍이 적용되도록 설정할 수 있다. 즉, TDD SCell에서 전송되는 UL의 PHICH 타이밍은 전술한 도 10을 따르도록 설정할 수 있다. Therefore, the PUSCH transmission and control channel reception timing of the UL transmitted from the TDD SCell may be applied based on the TDD duplex mode of the SCell. On the other hand, the PHICH timing may be set to apply the PHICH timing of the TDD UL used in non-cross carrier scheduling. That is, the PHICH timing of the UL transmitted from the TDD SCell may be set to follow FIG. 10 described above.
결론적으로 본 발명의 또 다른 실시예에 따른 PHICH 타이밍은 도 10에 도시된 PHICH 타이밍과 동일하게 설정되도록 하여서 논 크로스 캐리어 스케줄링(non-cross-carrier scheduling)과 크로스 캐리어 스케줄링(cross-carrier scheduling)일 때, 동일한 PHICH 타이밍을 갖도록 설정할 수 있다. 즉, TDD 듀플렉스 모드(duplex mode)를 포함하는 경우 TDD-TDD CA와 TDD-FDD CA가 공통되게 동일한 단말의 PHICH 타이밍을 가지고 단말이 동작할 수 있도록 하는 설정할 수 있다.In conclusion, the PHICH timing according to another embodiment of the present invention is set to be the same as the PHICH timing shown in FIG. 10 so that non-cross-carrier scheduling and cross-carrier scheduling are performed. At this time, it may be set to have the same PHICH timing. That is, when the TDD duplex mode is included, the TDD-TDD CA and the TDD-FDD CA may be set to have the same PHICH timing of the same UE so that the UE may operate.
마찬가지로, 제어채널 수신 타이밍과 SCell로 전송되는 PUSCH의 전송 타이밍도 논 크로스 캐리어 스케줄링과 같이 SCell의 TDD UL-DL 구성에 따라서 적용될 수 있다. 즉, 도 9의 타이밍 표에 따라서 적용될 수 있다. 바꿔 말하면, SCell의 PUSCH 전송은 SCell에서 사용하도록 설정된 상향링크를 위한 제어채널 수신 타이밍에 따라 수신된 제어채널에 기초하여 전송될 수 있다.Similarly, the control channel reception timing and the PUSCH transmission timing transmitted to the SCell may be applied according to the TDD UL-DL configuration of the SCell like non-cross carrier scheduling. That is, it can be applied according to the timing table of FIG. In other words, the PUSCH transmission of the SCell may be transmitted based on the control channel received according to the control channel reception timing for the uplink configured to be used in the SCell.
제 4 실시예: FDD PCell의 제어채널 수신 타이밍과 PUSCH 타이밍을 적용하는 방법. Fourth Embodiment: Method of Applying Control Channel Reception Timing and PUSCH Timing of an FDD PCell
제 3 실시예와는 달리 크로스 캐리어 스케줄링을 수행하는 경우에 TDD SCell로 전송되는 PUSCH에 대한 제어채널 수신 타이밍과 제어채널 수신에 따른 PUSCH 전송 타이밍은 FDD PCell의 타이밍이 적용될 수 있다. 즉, SCell의 PUSCH 전송은 PCell에서 사용하도록 설정된 상향링크를 위한 제어채널 수신 타이밍에 따라 수신된 제어채널에 기초하여 전송될 수 있다. 예를 들어, n번째 서브프레임에서 전송되는 PUSCH의 PDCCH/EPDCCH는 (n-4)번째 서브프레임에서 수신될 수 있다. 또는, 최소 (n-4)번째 서브프레임에서 수신되도록 설정될 수도 있다.Unlike in the third embodiment, when the cross carrier scheduling is performed, the timing of the FDD PCell may be applied to the control channel reception timing for the PUSCH transmitted to the TDD SCell and the PUSCH transmission timing according to the control channel reception. That is, the PUSCH transmission of the SCell may be transmitted based on the control channel received according to the control channel reception timing for the uplink configured to be used in the PCell. For example, PDCCH / EPDCCH of the PUSCH transmitted in the nth subframe may be received in the (n-4) th subframe. Or, it may be set to be received in a minimum (n-4) th subframe.
구체적으로 예를 들면, 크로스 캐리어 스케줄링의 경우, FDD PCell에서 서브프레임 (n-k)번째에 TDD SCell에 대한 UL grant가 전송되므로 해당 grant를 수신한 단말은 subframe n번째의 TDD SCell에 UL을 전송할 수 있다. 일 예로, k는 4일 수 있다. 한편, 서브프레임 n번째의 TDD SCell에 UL을 전송하고, 해당 UL의 전송 후 FDD PCell에서 설정되는 PHICH 타이밍에 맞게 PHICH를 수신할 수 있다. 즉, 서브프레임 (n+k_PHICH)번째 (k_PHICH=4 for FDD)의 FDD PCell DL 서브프레임에 PHICH를 수신할 수 있다. For example, in the case of cross-carrier scheduling, since the UL grant for the TDD SCell is transmitted at the subframe (nk) in the FDD PCell, the terminal receiving the grant may transmit the UL to the TDD SCell in the n subframe. . For example, k may be four. Meanwhile, the UL may be transmitted to the TDD SCell of the nth subframe, and the PHICH may be received according to the PHICH timing set in the FDD PCell after transmission of the corresponding UL. That is, the PHICH may be received in the FDD PCell DL subframe of the (n + k_PHICH) th (k_PHICH = 4 for FDD).
이와 같은 경우 TDD SCell로 전송되는 UL에 대한 PUSCH 및 PHICH 타이밍을 FDD PCell에 맞추도록 설정하여, 서로 다른 듀플렉스 모드(duplex mode)에 상관없이 FDD-FDD CA, FDD-TDD CA의 경우에 대해 동일하게 PHICH 타이밍을 설정할 수 있도록 하는 방법으로 고려될 수 있다.In this case, the PUSCH and PHICH timing for the UL transmitted to the TDD SCell is set to match the FDD PCell, so that the same is the case for the FDD-FDD CA and the FDD-TDD CA regardless of the different duplex modes. It may be considered as a method for enabling PHICH timing.
이상에서 설명한 본 발명의 제 1 내지 제 4 실시예는 TDD-FDD 조인트 오퍼레이션 및 CA 동작 시 사용되는 시나리오로서 UL에 2개 이상의 컴포넌트 캐리어(component carrier)를 통해 CA를 사용할 수 있는 경우와 UL에 CA를 사용할 수 없는, 즉 1개의 컴포넌트 캐리어(component carrier)를 사용하는 경우에도 모두 적용 가능하다.The first to fourth embodiments of the present invention described above are scenarios used in the TDD-FDD joint operation and the CA operation, and the CA may be used through two or more component carriers in the UL and the CA in the UL. Not applicable, that is, even when using one component carrier (component carrier) are all applicable.
전술한 본 발명의 각 실시예가 모두 수행될 수 있는 단말 및 기지국에 대한 각각의 동작을 도면을 참조하여 설명한다.Each operation of the terminal and the base station in which each of the above-described embodiments of the present invention can be performed will be described with reference to the drawings.
도 18은 본 발명의 또 다른 실시예에 따른 단말이 셀프 캐리어 스케줄링 되는 경우의 동작에 대한 일 예를 보여주는 도면이다.18 is a diagram illustrating an example of an operation when a terminal is self-carrier scheduled according to another embodiment of the present invention.
본 발명의 또 다른 실시예에 따른 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성된 단말은 제어채널을 처리하는 방법에 있어서, PCell 및 SCell 각각이 셀프 캐리어 스케줄링 되도록 설정되는 단계 및 PCell 및 SCell 각각의 듀플렉스 모드의 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 수신된 제어채널에 기초하여 PCell 및 SCell 각각으로 PUSCH를 전송하는 단계를 포함할 수 있다.In a method for processing a control channel, a terminal configured with a PCell and a SCell operating in different duplex modes according to another embodiment of the present invention may be configured such that each of the PCell and the SCell is set to self-carrier scheduling and And transmitting the PUSCH to each of the PCell and the SCell based on the received control channel according to the control channel reception timing for the uplink transmission in the duplex mode.
도 18을 참조하면, 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성된 단말은 셀프 스케줄링 될 수 있다(S1810). 예를 들어, PCell 및 SCell 각각의 PUSCH 전송을 위한 UL grant를 포함하는 제어채널은 PCell 및 SCell 각각에서 전송될 수 있다. 단말은 각 셀에서 전송된 제어채널을 수신하여 해당 셀의 PUSCH 전송을 수행할 수 있다.Referring to FIG. 18, a terminal configured with a PCell and a SCell operating in different duplex modes may be self-scheduled (S1810). For example, a control channel including a UL grant for PUSCH transmission of each of the PCell and the SCell may be transmitted in each of the PCell and the SCell. The terminal may receive the control channel transmitted from each cell and perform PUSCH transmission of the corresponding cell.
단말은 PCell 및 SCell 각각의 듀플렉스 모드의 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 수신된 제어채널에 기초하여 PCell 및 SCell 각각으로 PUSCH를 전송하는 단계를 포함할 수 있다(S1820). 예를 들어, 단말은 PCell로 전송되는 PUSCH의 경우에 PCell의 듀플렉스 모드에 따른 제어채널과 PUSCH 타이밍에 따라서 전송할 수 있다. 또한, SCell로 전송되는 PUSCH의 경우에도 SCell의 듀플렉스 모드에 따른 제어채널과 PUSCH 타이밍에 따라서 전송할 수 있다.The terminal may include transmitting a PUSCH to each of the PCell and the SCell based on the received control channel according to the control channel reception timing for the uplink transmission of each of the PCell and the SCell (S1820). For example, in the case of the PUSCH transmitted to the PCell, the terminal may transmit according to the control channel and the PUSCH timing according to the duplex mode of the PCell. In addition, the PUSCH transmitted to the SCell may be transmitted according to the control channel and the PUSCH timing according to the duplex mode of the SCell.
따라서, 본 발명의 실시예에서는 PCell의 듀플렉스 모드가 TDD 또는 FDD인지에 무관하게 해당 셀의 듀플렉스 모드에 기초한 타이밍에 PUSCH를 전송할 수 있다. 일 예로, 제어채널은 PDCCH/EPDCCH일 수 있다.Accordingly, in the embodiment of the present invention, the PUSCH may be transmitted at timing based on the duplex mode of the cell regardless of whether the duplex mode of the PCell is TDD or FDD. As an example, the control channel may be PDCCH / EPDCCH.
도 19는 본 발명의 또 다른 실시예에 따른 단말이 크로스 캐리어 스케줄링 되는 경우의 동작에 대한 일 예를 보여주는 도면이다.19 is a diagram illustrating an example of an operation when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
본 발명의 또 다른 실시예에 따른 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말은 제어채널을 처리하는 방법에 있어서, PCell로부터 SCell이 크로스 캐리어 스케줄링 되는 단계 및 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송하는 단계를 포함할 수 있다.According to another embodiment of the present invention, a terminal configured with a PCell operating in a TDD duplex mode and a SCell operating in an FDD duplex mode is a method for processing a control channel, wherein the SCell is cross-carrier scheduled from the PCell and the duplex of the PCell. And transmitting the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for the uplink transmission according to the mode.
도 19를 참조하면, TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말은 PCell로부터 SCell이 크로스 캐리어 스케줄링 될 수 있다(S1910). 예를 들어 설명하면, PCell에서 전송되는 제어채널은 SCell의 UL grant 정보를 포함하고, 단말은 PCell에서 전송된 제어채널에 포함된 정보에 기초하여 SCell의 PUSCH 전송을 제어할 수 있다.Referring to FIG. 19, a terminal configured with a PCell operating in the TDD duplex mode and an SCell operating in the FDD duplex mode may be cross-carrier scheduled from the PCell (S1910). For example, the control channel transmitted from the PCell includes UL grant information of the SCell, and the terminal may control the PUSCH transmission of the SCell based on the information included in the control channel transmitted from the PCell.
이 경우, 단말은 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송할 수 있다(S1920). 예를 들어, TDD 듀플렉스 모드로 동작하는 PCell의 제어채널과 PUSCH 전송 타이밍에 따라서 SCell로 해당 PUSCH를 전송할 수 있다. 즉, PCell의 TDD UL-DL 구성에 따라서 도 9와 같이 PUSCH 전송 서브프레임이 정해질 수 있다.In this case, the terminal may transmit the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for the uplink transmission in the duplex mode of the PCell (S1920). For example, the PUSCH may be transmitted to the SCell according to the control channel and the PUSCH transmission timing of the PCell operating in the TDD duplex mode. That is, the PUSCH transmission subframe may be determined as shown in FIG. 9 according to the TDD UL-DL configuration of the PCell.
도 20은 본 발명의 또 다른 실시예에 따른 단말이 크로스 캐리어 스케줄링 되는 경우의 동작에 대한 다른 예를 보여주는 도면이다.20 is a diagram illustrating another example of an operation when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
본 발명의 또 다른 실시예에 따른 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말은 제어채널을 처리하는 방법에 있어서, PCell로부터 SCell이 크로스 캐리어 스케줄링 되는 단계 및 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송하는 단계를 포함할 수 있다.In a method of processing a control channel, a terminal configured with a PCell operating in a TDD duplex mode and an SCell operating in the FDD duplex mode according to another embodiment of the present invention comprises the steps of cross-carrier scheduling of the SCell from the PCell and the duplex of the SCell. And transmitting the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for the uplink transmission according to the mode.
도 20을 참조하면, TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말은 PCell로부터 SCell이 크로스 캐리어 스케줄링 될 수 있다(S2010). 예를 들어 설명하면, PCell에서 전송되는 제어채널은 SCell의 UL grant 정보를 포함하고, 단말은 PCell에서 전송된 제어채널에 포함된 정보에 기초하여 SCell의 PUSCH 전송을 제어할 수 있다.Referring to FIG. 20, in a terminal configured with a PCell operating in the TDD duplex mode and an SCell operating in the FDD duplex mode, the SCell may be cross-carrier scheduled from the PCell (S2010). For example, the control channel transmitted from the PCell includes UL grant information of the SCell, and the terminal may control the PUSCH transmission of the SCell based on the information included in the control channel transmitted from the PCell.
이 경우, 단말은 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송할 수 있다(S2020). 예를 들어, FDD 듀플렉스 모드로 동작하는 SCell의 제어채널과 PUSCH 전송 타이밍에 따라서 SCell로 해당 PUSCH를 전송할 수 있다. 일 예로, n번째 서브프레임에서 전송되는 PUSCH에 대한 UL grant를 포함하는 제어채널은 (n-4)번째 서브프레임에서 수신될 수 있다. 즉, PCell에서 전송되어 수신되는 제어채널과 SCell로 전송되는 PUSCH는 4ms의 간격을 가질 수 있다. 혹은 4 TTI의 간격을 가질 수 있다.In this case, the terminal may transmit the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the SCell (S2020). For example, the PUSCH may be transmitted to the SCell according to the control channel and the PUSCH transmission timing of the SCell operating in the FDD duplex mode. For example, the control channel including the UL grant for the PUSCH transmitted in the nth subframe may be received in the (n-4) th subframe. That is, the control channel transmitted and received from the PCell and the PUSCH transmitted to the SCell may have an interval of 4 ms. Or an interval of 4 TTIs.
도 21은 본 발명의 또 다른 실시예에 따른 단말이 크로스 캐리어 스케줄링 되는 경우의 동작에 대한 또 다른 예를 보여주는 도면이다.21 is a diagram illustrating another example of an operation when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
본 발명의 또 다른 실시예에 따른 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말은 제어채널을 처리하는 방법에 있어서, PCell로부터 SCell이 크로스 캐리어 스케줄링 되는 단계 및 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송하는 단계를 포함할 수 있다.In a method for processing a control channel in a terminal configured with a PCell operating in FDD duplex mode and a SCell operating in TDD duplex mode according to another embodiment of the present invention, a step of cross-carrier scheduling of the SCell from the PCell and duplex of the SCell And transmitting the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for the uplink transmission according to the mode.
도 21을 참조하면, FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말은 PCell로부터 SCell이 크로스 캐리어 스케줄링 될 수 있다(S2110). 예를 들어, PCell에서 전송되는 제어채널은 SCell의 UL grant 정보를 포함하고, 단말은 PCell에서 전송된 제어채널에 포함된 정보에 기초하여 SCell의 PUSCH 전송을 제어할 수 있다.Referring to FIG. 21, a terminal configured with a PCell operating in the FDD duplex mode and a SCell operating in the TDD duplex mode may be cross-carrier scheduled from the PCell (S2110). For example, the control channel transmitted from the PCell includes UL grant information of the SCell, and the terminal may control the PUSCH transmission of the SCell based on the information included in the control channel transmitted from the PCell.
이 경우, 단말은 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송할 수 있다(S2120). 예를 들어, TDD 듀플렉스 모드로 동작하는 SCell의 제어채널과 PUSCH 전송 타이밍에 따라서 SCell로 해당 PUSCH를 전송할 수 있다. 즉, SCell의 TDD UL-DL 구성에 따라서 도 9와 같이 PUSCH 전송 서브프레임이 정해질 수 있다.In this case, the UE may transmit the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for the uplink transmission in the duplex mode of the SCell (S2120). For example, the PUSCH may be transmitted to the SCell according to the control channel and the PUSCH transmission timing of the SCell operating in the TDD duplex mode. That is, a PUSCH transmission subframe may be determined as shown in FIG. 9 according to the TDD UL-DL configuration of the SCell.
도 22는 본 발명의 또 다른 실시예에 따른 단말이 크로스 캐리어 스케줄링 되는 경우의 동작에 대한 또 다른 예를 보여주는 도면이다.22 is a diagram illustrating another example of an operation when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
본 발명의 또 다른 실시예에 따른 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말이 제어채널을 처리하는 방법에 있어서, PCell로부터 SCell이 크로스 캐리어 스케줄링 되는 단계 및 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송하는 단계를 포함할 수 있다.A method of processing a control channel by a terminal configured with a PCell operating in FDD duplex mode and a SCell operating in TDD duplex mode according to another embodiment of the present invention, the step of cross-carrier scheduling of the SCell from the PCell and the duplex of the PCell And transmitting the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for the uplink transmission according to the mode.
도 22를 참조하면, FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말은 PCell로부터 SCell이 크로스 캐리어 스케줄링 될 수 있다(S2210). 예를 들어, PCell에서 전송되는 제어채널은 SCell의 UL grant 정보를 포함하고, 단말은 PCell에서 전송된 제어채널에 포함된 정보에 기초하여 SCell의 PUSCH 전송을 제어할 수 있다.Referring to FIG. 22, the terminal configured with the PCell operating in the FDD duplex mode and the SCell operating in the TDD duplex mode may be cross-carrier scheduled from the PCell (S2210). For example, the control channel transmitted from the PCell includes UL grant information of the SCell, and the terminal may control the PUSCH transmission of the SCell based on the information included in the control channel transmitted from the PCell.
이 경우, 단말은 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송할 수 있다(S2220). 예를 들어, FDD 듀플렉스 모드로 동작하는 PCell의 제어채널과 PUSCH 전송 타이밍에 따라서 SCell로 해당 PUSCH를 전송할 수 있다. 일 예로, n번째 서브프레임에서 전송되는 PUSCH에 대한 UL grant를 포함하는 제어채널은 (n-4)번째 서브프레임에서 수신될 수 있다. 즉, PCell에서 전송되어 수신되는 제어채널과 SCell로 전송되는 PUSCH는 4ms의 간격을 갖도록 설정될 수 있다. 혹은 4 TTI의 간격을 갖도록 설정될 수 있다.In this case, the terminal may transmit the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for uplink transmission in the duplex mode of the PCell (S2220). For example, the PUSCH may be transmitted to the SCell according to the control channel and the PUSCH transmission timing of the PCell operating in the FDD duplex mode. For example, the control channel including the UL grant for the PUSCH transmitted in the nth subframe may be received in the (n-4) th subframe. That is, the control channel transmitted and received from the PCell and the PUSCH transmitted to the SCell may be set to have an interval of 4 ms. Or it may be set to have an interval of 4 TTI.
도 23 내지 도 27은 본 발명의 각 실시예에 따른 기지국의 동작을 도시한 도면이다.23 to 27 are diagrams illustrating operations of a base station according to each embodiment of the present invention.
도 23은 본 발명의 또 다른 실시예에 따른 단말이 셀프 캐리어 스케줄링 되는 경우의 기지국 동작에 대한 일 예를 보여주는 도면이다.23 is a diagram illustrating an example of an operation of a base station when a terminal is self-carrier scheduled according to another embodiment of the present invention.
본 발명의 또 다른 실시예에 따른 기지국이 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성된 단말의 PUSCH 전송을 제어하는 방법에 있어서, PCell 또는 SCell 각각이 셀프 캐리어 스케줄링 되도록 제어하는 단계 및 PCell 및 상기 SCell 각각의 듀플렉스 모드의 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell 및 SCell 각각으로부터 전송된 제어채널에 기초하여 PCell 및 SCell 각각으로 전송된 PUSCH를 수신하는 단계를 포함할 수 있다.In a method for controlling a PUSCH transmission of a terminal configured with a PCell and a SCell operating in a different duplex mode, the base station according to another embodiment of the present invention, the step of controlling each of the PCell or SCell to self-carrier scheduling and the PCell and the And receiving the PUSCH transmitted to each of the PCell and the SCell based on the control channel transmitted from each of the PCell and the SCell according to the control channel reception timing for the uplink transmission of each of the SCell duplex modes.
도 23을 참조하면, 기지국은 단말이 셀프 캐리어 스케줄링 되도록 제어할 수 있다(S2310). 예를 들어, 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성된 단말에 제어 정보를 전송함에 있어서, PCell과 관련된 제어 정보는 PCell의 제어채널로 전송하고, SCell과 관련된 제어 정보는 SCell의 제어채널로 전송할 수 있다. 이를 통해서 단말은 수신된 제어 정보를 이용하여 전술한 셀프 캐리어 스케줄링될 수 있다.Referring to FIG. 23, the base station may control the terminal to be self-carrier scheduled (S2310). For example, in transmitting control information to a terminal configured with a PCell and a SCell operating in different duplex modes, the control information related to the PCell is transmitted to the control channel of the PCell, and the control information related to the SCell is the control channel of the SCell. Can transmit Through this, the terminal may be scheduled as described above using the received control information.
기지국은 PCell 및 상기 SCell 각각의 듀플렉스 모드의 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell 및 SCell 각각으로부터 전송된 제어채널에 기초하여 상기 PCell 및 상기 SCell 각각으로 전송된 상기 PUSCH를 수신할 수 있다(S2320). 예를 들어, 단말이 PCell로 전송된 제어채널의 정보에 기초하여 PCell로 PUSCH를 전송하면, 기지국은 이를 수신할 수 있다. 또한, SCell로 전송된 제어채널의 정보에 기초하여 SCell로 PUSCH를 전송하면, 기지국은 이를 수신할 수 있다. 이 경우, 각 셀의 제어채널 수신 및 PUSCH 전송 타이밍은 각 셀의 듀플렉스 모드에 따라서 설정된 타이밍일 수 있다. 일 예로, PCell이 TDD 듀플렉스 모드로 동작하는 경우에 PCell에서 수신되는 PUSCH는 도 9에서와 같이 각 UL-DL 구성에 따라서 정의된 제어채널과 PUSCH 전송 타이밍에 따라서 전송된 PUSCH일 수 있다. 마찬가지로, SCell이 FDD 듀플렉스 모드로 동작하는 경우에 SCell에서 수신되는 PUSCH는 FDD의 타이밍에 기초하여 전송된 PUSCH일 수 있다. 즉, SCell의 PUSCH 전송을 위한 정보를 포함하는 PDCCH/EPDCCH가 전송되는 서브프레임이 n 번째 서브프레임인 경우에 수신되는 PUSCH가 전송되는 서브프레임은 (n+4) 번째 서브프레임일 수 있다.The base station may receive the PUSCH transmitted to each of the PCell and the SCell based on the control channel transmitted from each of the PCell and the SCell according to the control channel reception timing for the uplink transmission of the duplex mode of the PCell and the SCell. (S2320). For example, when the terminal transmits a PUSCH to the PCell based on the information of the control channel transmitted to the PCell, the base station may receive it. In addition, if the PUSCH is transmitted to the SCell based on the information of the control channel transmitted to the SCell, the base station may receive it. In this case, the control channel reception and PUSCH transmission timing of each cell may be a timing set according to the duplex mode of each cell. For example, when the PCell operates in the TDD duplex mode, the PUSCH received by the PCell may be a PUSCH transmitted according to a control channel defined according to each UL-DL configuration and a PUSCH transmission timing as shown in FIG. 9. Similarly, when the SCell operates in the FDD duplex mode, the PUSCH received at the SCell may be a PUSCH transmitted based on the timing of the FDD. That is, when the subframe in which the PDCCH / EPDCCH including the information for PUSCH transmission of the SCell is transmitted is the nth subframe, the subframe in which the received PUSCH is transmitted may be the (n + 4) th subframe.
도 24는 본 발명의 또 다른 실시예에 따른 단말이 크로스 캐리어 스케줄링 되는 경우의 기지국 동작에 대한 일 예를 보여주는 도면이다.24 is a diagram illustrating an example of an operation of a base station when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
본 발명의 또 다른 실시예에 따른 기지국이 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 방법에 있어서, PCell이 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 단계 및 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 PUSCH를 수신하는 단계를 포함할 수 있다.In a method for controlling a PUSCH transmission of a terminal configured with a PCell operating in a TDD duplex mode and a SCell operating in the FDD duplex mode, the base station according to another embodiment of the present invention, controlling the PCell to cross-carrier scheduling the SCell And receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the PCell.
도 24를 참조하면, 기지국은 단말이 크로스 캐리어 스케줄링 제어되도록 제어할 수 있다(S2410). 예를 들어, 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성된 단말에 제어 정보를 전송함에 있어서, SCell과 관련된 제어 정보를 PCell의 제어채널로 전송함으로써, 단말의 SCell에 대한 크로스 캐리어 스케줄링을 제어할 수 있다. 일 예로, SCell로 전송되는 PUSCH에 대한 UL grant 정보를 PCell의 제어채널을 통해서 전송할 수 있다. 이 경우, 해당 제어채널의 UL grant가 SCell과 관련된 것임을 표시하는 정보가 포함되어 단말은 수신된 제어채널의 정보가 SCell과 관련된 정보임을 확인할 수 있다.Referring to FIG. 24, the base station may control the terminal to control cross carrier scheduling (S2410). For example, in transmitting control information to a terminal configured with a PCell and a SCell operating in different duplex modes, the control information related to the SCell is transmitted through a control channel of the PCell, thereby controlling cross-carrier scheduling of the SCell of the terminal. Can be. For example, the UL grant information for the PUSCH transmitted to the SCell may be transmitted through the control channel of the PCell. In this case, the information indicating that the UL grant of the control channel is related to the SCell is included, so that the UE can confirm that the received control channel information is information related to the SCell.
기지국은 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 PUSCH를 수신할 수 있다(S2420). 예를 들어, 크로스 캐리어 스케줄링 되는 단말이 SCell로 전송하는 PUSCH에 대한 제어정보를 PCell을 통해서 수신하는 경우에 제어채널 수신 타이밍과 PUSCH 타이밍은 PCell의 듀플렉스 모드에 기초하여 설정될 수 있다. 기지국은 PCell의 듀플렉스 모드 타이밍에 기초하여 전송된 PUSCH를 SCell에서 수신할 수 있다. 일 예로, FDD SCell에서 전송되어 수신되는 PUSCH의 PDCCH/EPDCCH는 PCell의 듀플렉스 모드인 TDD 모드에 따라 설정된 타이밍이 적용될 수 있다. 즉, 기지국은 TDD 듀플렉스 모드로 동작하는 PCell인 경우 도 9에서와 같이 각 TDD UL-DL 구성에 따라서 정의된 제어채널 수신 타이밍과 PUSCH 전송 타이밍에 따라서 SCell에서 전송된 PUSCH를 수신할 수 있다.The base station may receive the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the PCell (S2420). For example, when the terminal to be cross-carrier scheduled receives control information on the PUSCH transmitted to the SCell through the PCell, the control channel reception timing and the PUSCH timing may be set based on the duplex mode of the PCell. The base station may receive the PUSCH transmitted in the SCell based on the duplex mode timing of the PCell. For example, a timing set according to the TDD mode, which is a duplex mode of the PCell, may be applied to the PDCCH / EPDCCH of the PUSCH transmitted and received in the FDD SCell. That is, in the case of the PCell operating in the TDD duplex mode, the base station may receive the PUSCH transmitted from the SCell according to the control channel reception timing and the PUSCH transmission timing defined according to each TDD UL-DL configuration as shown in FIG. 9.
도 25은 본 발명의 또 다른 실시예에 따른 단말이 크로스 캐리어 스케줄링 되는 경우의 기지국 동작에 대한 다른 예를 보여주는 도면이다.25 is a diagram illustrating another example of an operation of a base station when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
본 발명의 또 다른 실시예에 따른 기지국이 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 방법에 있어서, PCell이 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 단계 및 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 상기 PUSCH를 수신하는 단계를 포함할 수 있다.In a method for controlling a PUSCH transmission of a terminal configured with a PCell operating in a TDD duplex mode and a SCell operating in the FDD duplex mode, the base station according to another embodiment of the present invention, controlling the PCell to cross-carrier scheduling the SCell And receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the SCell.
도 25를 참조하면, 기지국은 단말이 크로스 캐리어 스케줄링 되도록 제어할 수 있다(S2510). 예를 들어, 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성된 단말에 제어 정보를 전송함에 있어서, SCell과 관련된 제어 정보를 PCell의 제어채널로 전송함으로써, 단말의 SCell에 대한 크로스 캐리어 스케줄링을 제어할 수 있다. 일 예로, SCell로 전송되는 PUSCH에 대한 UL grant 정보를 PCell의 제어채널을 통해서 전송할 수 있다. 이 경우, 해당 제어채널의 UL grant가 SCell과 관련된 것임을 표시하는 정보가 포함되어 단말은 수신된 제어채널의 정보가 SCell과 관련된 정보임을 확인할 수 있다.Referring to FIG. 25, the base station may control the terminal to be cross-carrier scheduled (S2510). For example, in transmitting control information to a terminal configured with a PCell and a SCell operating in different duplex modes, the control information related to the SCell is transmitted through a control channel of the PCell, thereby controlling cross-carrier scheduling of the SCell of the terminal. Can be. For example, the UL grant information for the PUSCH transmitted to the SCell may be transmitted through the control channel of the PCell. In this case, the information indicating that the UL grant of the control channel is related to the SCell is included, so that the UE can confirm that the received control channel information is information related to the SCell.
기지국은 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 PUSCH를 수신할 수 있다(S2520). 예를 들어, 크로스 캐리어 스케줄링 되는 단말이 SCell로 전송하는 PUSCH에 대한 제어정보를 PCell을 통해서 수신하는 경우에 제어채널 수신 타이밍과 PUSCH 타이밍은 SCell의 듀플렉스 모드에 기초하여 설정될 수 있다. 기지국은 SCell의 듀플렉스 모드 타이밍에 기초하여 전송된 PUSCH를 SCell에서 수신할 수 있다. 일 예로, FDD SCell에서 전송되어 수신되는 PUSCH의 PDCCH/EPDCCH는 SCell의 듀플렉스 모드인 FDD 모드에 따라 설정된 타이밍이 적용될 수 있다. 일 예로, 기지국이 SCell에서 수신하는 n번째 서브프레임에서 전송되는 PUSCH는 FDD 제어채널 수신 타이밍에 따라서 n-4번째 서브프레임에서 전송된 PDCCH/EPDCCH에 포함된 제어정보에 기초하여 전송된 PUSCH일 수 있다 .즉, PDCCH/EPDCCH와 PUSCH 전송 타이밍은 4ms가 될 수 있다. 혹은 4 TTI의 간격으로 설정될 수 있다.The base station may receive the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the SCell (S2520). For example, when the terminal to be cross-carrier scheduled receives control information on the PUSCH transmitted to the SCell through the PCell, the control channel reception timing and the PUSCH timing may be set based on the duplex mode of the SCell. The base station may receive the PUSCH transmitted in the SCell based on the duplex mode timing of the SCell. For example, a timing set according to the FDD mode, which is a duplex mode of the SCell, may be applied to the PDCCH / EPDCCH of the PUSCH transmitted and received in the FDD SCell. For example, the PUSCH transmitted in the nth subframe received by the base station in the SCell may be a PUSCH transmitted based on control information included in the PDCCH / EPDCCH transmitted in the n-4th subframe according to the FDD control channel reception timing. That is, the PDCCH / EPDCCH and PUSCH transmission timing may be 4 ms. Or it may be set at intervals of 4 TTI.
도 26은 본 발명의 또 다른 실시예에 따른 단말이 크로스 캐리어 스케줄링 되는 경우의 기지국 동작에 대한 또 다른 예를 보여주는 도면이다.FIG. 26 is a diagram illustrating another example of an operation of a base station when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
본 발명의 또 다른 실시예에 따른 기지국이 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 방법에 있어서, PCell이 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 단계 및 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 상기 PUSCH를 수신하는 단계를 포함할 수 있다.In a method for controlling a PUSCH transmission of a terminal configured with a PCell operating in FDD duplex mode and a SCell operating in TDD duplex mode according to another embodiment of the present invention, controlling the PCell to cross-carrier scheduling the SCell And receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the SCell.
도 26을 참조하면, 기지국은 단말이 크로스 캐리어 스케줄링 되도록 제어할 수 있다(S2610). 예를 들어, 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성된 단말에 제어 정보를 전송함에 있어서, SCell과 관련된 제어 정보를 PCell의 제어채널로 전송함으로써, 단말의 SCell에 대한 크로스 캐리어 스케줄링을 제어할 수 있다. 일 예로, SCell로 전송되는 PUSCH에 대한 UL grant 정보를 PCell의 제어채널을 통해서 전송할 수 있다. 이 경우, 해당 제어채널의 UL grant가 SCell과 관련된 것임을 표시하는 정보가 포함되어 단말은 수신된 제어채널의 정보가 SCell과 관련된 정보임을 확인할 수 있다.Referring to FIG. 26, the base station may control the terminal to be cross-carrier scheduled (S2610). For example, in transmitting control information to a terminal configured with a PCell and a SCell operating in different duplex modes, the control information related to the SCell is transmitted through a control channel of the PCell, thereby controlling cross-carrier scheduling of the SCell of the terminal. Can be. For example, the UL grant information for the PUSCH transmitted to the SCell may be transmitted through the control channel of the PCell. In this case, the information indicating that the UL grant of the control channel is related to the SCell is included, so that the UE can confirm that the received control channel information is information related to the SCell.
기지국은 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 PUSCH를 수신할 수 있다(S2620). 예를 들어, 크로스 캐리어 스케줄링 되는 단말이 SCell로 전송하는 PUSCH에 대한 제어정보를 PCell을 통해서 수신하는 경우에 제어채널 수신 타이밍과 PUSCH 타이밍은 SCell의 듀플렉스 모드에 기초하여 설정될 수 있다. 기지국은 SCell의 듀플렉스 모드 타이밍에 기초하여 전송된 PUSCH를 SCell에서 수신할 수 있다. 일 예로, TDD SCell에서 전송되어 수신되는 PUSCH의 PDCCH/EPDCCH는 SCell의 듀플렉스 모드인 TDD 모드에 따라 설정된 타이밍이 적용될 수 있다. 즉, 기지국은 TDD 듀플렉스 모드로 동작하는 SCell인 경우 도 9에서와 같이 각 TDD UL-DL 구성에 따라서 정의된 제어채널 수신 타이밍과 PUSCH 전송 타이밍에 따라서 SCell에서 전송된 PUSCH를 수신할 수 있다.The base station may receive the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the SCell (S2620). For example, when the terminal to be cross-carrier scheduled receives control information on the PUSCH transmitted to the SCell through the PCell, the control channel reception timing and the PUSCH timing may be set based on the duplex mode of the SCell. The base station may receive the PUSCH transmitted in the SCell based on the duplex mode timing of the SCell. For example, a timing set according to the TDD mode, which is a duplex mode of the SCell, may be applied to the PDCCH / EPDCCH of the PUSCH transmitted and received in the TDD SCell. That is, in case of the SCell operating in the TDD duplex mode, as shown in FIG. 9, the base station may receive the PUSCH transmitted from the SCell according to the control channel reception timing and the PUSCH transmission timing defined according to each TDD UL-DL configuration.
도 27는 본 발명의 또 다른 실시예에 따른 단말이 크로스 캐리어 스케줄링 되는 경우의 기지국 동작에 대한 또 다른 예를 보여주는 도면이다.27 is a diagram illustrating another example of an operation of a base station when a terminal is cross-carrier scheduled according to another embodiment of the present invention.
본 발명의 또 다른 실시예에 따른 기지국이 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 방법에 있어서, PCell이 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 단계 및 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 상기 PUSCH를 수신하는 단계를 포함할 수 있다.In a method for controlling a PUSCH transmission of a terminal configured with a PCell operating in FDD duplex mode and a SCell operating in TDD duplex mode according to another embodiment of the present invention, controlling the PCell to cross-carrier scheduling the SCell And receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the PCell.
도 27을 참조하면, 기지국은 단말이 크로스 캐리어 스케줄링 제어되도록 제어할 수 있다(S2710). 예를 들어, 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성된 단말에 제어 정보를 전송함에 있어서, SCell과 관련된 제어 정보를 PCell의 제어채널로 전송함으로써, 단말의 SCell에 대한 크로스 캐리어 스케줄링을 제어할 수 있다. 일 예로, SCell로 전송되는 PUSCH에 대한 UL grant 정보를 PCell의 제어채널을 통해서 전송할 수 있다. 이 경우, 해당 제어채널의 UL grant가 SCell과 관련된 것임을 표시하는 정보가 포함되어 단말은 수신된 제어채널의 정보가 SCell과 관련된 정보임을 확인할 수 있다.Referring to FIG. 27, the base station may control the terminal to control cross carrier scheduling (S2710). For example, in transmitting control information to a terminal configured with a PCell and a SCell operating in different duplex modes, the control information related to the SCell is transmitted through a control channel of the PCell, thereby controlling cross-carrier scheduling of the SCell of the terminal. Can be. For example, the UL grant information for the PUSCH transmitted to the SCell may be transmitted through the control channel of the PCell. In this case, the information indicating that the UL grant of the control channel is related to the SCell is included, so that the UE can confirm that the received control channel information is information related to the SCell.
기지국은 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 PUSCH를 수신할 수 있다(S2720). 예를 들어, 크로스 캐리어 스케줄링 되는 단말이 SCell로 전송하는 PUSCH에 대한 제어정보를 PCell을 통해서 수신하는 경우에 제어채널 수신 타이밍과 PUSCH 타이밍은 PCell의 듀플렉스 모드에 기초하여 설정될 수 있다. 기지국은 PCell의 듀플렉스 모드 타이밍에 기초하여 전송된 PUSCH를 SCell에서 수신할 수 있다. 일 예로, FDD PCell에서 전송되어 수신되는 PUSCH의 PDCCH/EPDCCH는 PCell의 듀플렉스 모드인 FDD 모드에 따라 설정된 타이밍이 적용될 수 있다. 일 예로, 기지국이 SCell에서 수신하는 n번째 서브프레임에서 전송되는 PUSCH는 FDD 제어채널 수신 타이밍에 따라서 n-4번째 서브프레임에서 전송된 PDCCH/EPDCCH에 포함된 제어정보에 기초하여 전송된 PUSCH일 수 있다 .즉, PDCCH/EPDCCH와 PUSCH 전송 타이밍은 4ms가 될 수 있다. 혹은 4 TTI의 간격으로 수신될 수 있다.The base station may receive the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the PCell (S2720). For example, when the terminal to be cross-carrier scheduled receives control information on the PUSCH transmitted to the SCell through the PCell, the control channel reception timing and the PUSCH timing may be set based on the duplex mode of the PCell. The base station may receive the PUSCH transmitted in the SCell based on the duplex mode timing of the PCell. For example, a timing set according to the FDD mode, which is a duplex mode of the PCell, may be applied to the PDCCH / EPDCCH of the PUSCH transmitted and received by the FDD PCell. For example, the PUSCH transmitted in the nth subframe received by the base station in the SCell may be a PUSCH transmitted based on control information included in the PDCCH / EPDCCH transmitted in the n-4th subframe according to the FDD control channel reception timing. That is, the PDCCH / EPDCCH and PUSCH transmission timing may be 4 ms. Or at intervals of 4 TTIs.
이상에서 설명한 바와 같이 본 발명에 따르면, 서로 다른 TDD, FDD 듀플렉스 모드(duplex mode)를 가지는 캐리어(carrier)를 사용하여 캐리어 병합(carrier aggregation)을 수행하는 경우에 단말과 기지국간에 PCell/SCell의 설정에 따라 동작하는 단말의 행동과 기지국의 설정에 대한 단말과 기지국 간의 모호성을 해결할 수 있다. 또한, 단말과 기지국간에 수행하는 접속 절차(access procedure) 및 상/하향링크 데이터 전송 그리고 HARQ 동작을 포함한 상/하향링크 컨트롤 채널의 전송과 수신 동작을 정확하게 설정할 수 있다. 또한, 단말과 기지국간의 데이터 전송에 대한 신뢰성을 확보하게 되며, 이는 상/하향링크의 데이터 전송률을 증가시킬 수 있는 효과를 제공한다.As described above, according to the present invention, in the case of performing carrier aggregation using carriers having different TDD and FDD duplex modes, the PCell / SCell is configured between the terminal and the base station. It is possible to resolve the ambiguity between the UE and the base station for the behavior of the terminal operating according to the configuration of the base station. In addition, an access procedure performed between the terminal and the base station and up / downlink data transmission and transmission and reception operations of an uplink / downlink control channel including HARQ operation can be accurately set. In addition, to ensure the reliability of data transmission between the terminal and the base station, which provides an effect that can increase the data rate of the uplink / downlink.
이상에서 설명한 본 발명이 모두 수행될 수 있는 단말 및 기지국의 구성을 도면을 참조하여 설명한다.The configuration of a terminal and a base station in which all of the present invention described above can be performed will be described with reference to the drawings.
도 28는 본 발명의 또 다른 실시예에 따른 단말의 구성을 보여주는 도면이다.28 is a diagram illustrating a configuration of a terminal according to another embodiment of the present invention.
도 28을 참조하면, 본 발명의 또 다른 실시예에 의한 단말(2800)은 제어부(2810), 송신부(2820) 및 수신부(2830)를 포함한다.Referring to FIG. 28, the terminal 2800 according to another embodiment of the present invention includes a controller 2810, a transmitter 2820, and a receiver 2830.
본 발명의 또 다른 실시예에 따른 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성되어 제어채널을 처리하는 단말은 PCell 및 상기 SCell 각각이 셀프 캐리어 스케줄링 되도록 제어하는 제어부(2810) 및 PCell 및 SCell 각각의 듀플렉스 모드의 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 수신된 제어채널에 기초하여 PCell 및 SCell 각각으로 PUSCH를 전송하는 송신부(2820)를 포함할 수 있다.According to another embodiment of the present invention, a PCell and a SCell configured to operate in different duplex modes are configured to process a control channel. The control unit 2810 and PCell and SCell respectively control the PCell and the SCell to be self-carrier scheduled. The transmitter 2820 may transmit a PUSCH to each of the PCell and the SCell based on the received control channel according to the control channel reception timing for the uplink transmission in the duplex mode.
또한 본 발명의 또 다른 실시예에 따른 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성되어 제어채널을 처리하는 단말은 PCell로부터 SCell이 크로스 캐리어 스케줄링 되도록 제어하는 제어부(2810) 및 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송하는 송신부(2820)를 포함할 수 있다.In addition, the PCell operating in the TDD duplex mode and the SCell operating in the FDD duplex mode is configured according to another embodiment of the present invention, the terminal for processing the control channel control unit 2810 for controlling the SCell cross-carrier scheduling from the PCell and The transmitter 2820 may transmit a PUSCH to the SCell based on a control channel received from the PCell according to a control channel reception timing for uplink transmission according to the duplex mode of the PCell.
또한 본 발명의 또 다른 실시예에 따른 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성되어 제어채널을 처리하는 단말은 PCell로부터 SCell이 크로스 캐리어 스케줄링 되도록 제어하는 제어부(2810) 및 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송하는 송신부(2820)를 포함할 수 있다.In addition, the PCell operating in the TDD duplex mode and the SCell operating in the FDD duplex mode is configured according to another embodiment of the present invention, the terminal for processing the control channel control unit 2810 for controlling the SCell cross-carrier scheduling from the PCell and The transmitter 2820 may transmit a PUSCH to the SCell based on a control channel received from the PCell according to a control channel reception timing for uplink transmission according to the duplex mode of the SCell.
또한 본 발명의 또 다른 실시예에 따른 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성되어 제어채널을 처리하는 단말에 있어서, PCell로부터 SCell이 크로스 캐리어 스케줄링 되도록 제어하는 제어부(2810) 및 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송하는 송신부(2820)를 포함할 수 있다.Also, in a terminal for processing a control channel, wherein the PCell operating in the FDD duplex mode and the SCell operating in the TDD duplex mode are configured according to another embodiment of the present invention, the controller 2810 controls the SCell to be cross-carrier scheduled from the PCell. And a transmitter 2820 for transmitting the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for uplink transmission according to the duplex mode of the SCell.
또한 본 발명의 또 다른 실시예에 따른 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성되어 제어채널을 처리하는 단말에 있어서, PCell로부터 SCell이 크로스 캐리어 스케줄링 되도록 제어하는 제어부(2810) 및 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로부터 수신된 제어채널에 기초하여 SCell로 PUSCH를 전송하는 송신부(2820)를 포함할 수 있다.Also, in a terminal for processing a control channel, wherein the PCell operating in the FDD duplex mode and the SCell operating in the TDD duplex mode are configured according to another embodiment of the present invention, the controller 2810 controls the SCell to be cross-carrier scheduled from the PCell. And a transmitter 2820 that transmits the PUSCH to the SCell based on the control channel received from the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the PCell.
그 외에도 제어부(2810)는 전술한 본 발명의 각 실시예를 수행하기에 필요한 서로 다른 듀플렉스 모드로 동작하는 경우의 제어채널 수신 타이밍과 PUSCH 전송 타이밍을 듀플렉스 모드에 맞게 처리하는 데에 따른 전반적인 단말의 동작을 제어한다.In addition, the controller 2810 may control the overall control of the control channel reception timing and the PUSCH transmission timing according to the duplex mode when operating in different duplex modes required to perform the above-described embodiments of the present invention. Control the operation.
이 외에도, 수신부(2830)는 전술한 각 실시예에 따라 설정된 타이밍에 전송되는 제어채널을 수신할 수 있다. 또한, 송신부(2820)와 수신부(2830)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 기지국과 송수신하는데 사용된다. In addition, the receiver 2830 may receive a control channel transmitted at a timing set according to the above-described embodiments. Also, the transmitter 2820 and the receiver 2830 are used to transmit and receive signals, messages, and data necessary for carrying out the above-described present invention.
도 29은 본 발명의 또 다른 실시예에 따른 기지국의 구성을 보여주는 도면이다.29 is a diagram illustrating a configuration of a base station according to another embodiment of the present invention.
도 29를 참조하면, 본 발명의 또 다른 실시예에 의한 기지국(2900)은 수신부(2930), 제어부(2910) 및 송신부(2920)을 포함한다.Referring to FIG. 29, a base station 2900 according to another embodiment of the present invention includes a receiver 2930, a controller 2910, and a transmitter 2920.
본 발명의 또 다른 실시예에 따른 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성된 단말의 PUSCH 전송을 제어하는 기지국에 있어서, PCell 또는 SCell 각각이 셀프 캐리어 스케줄링 되도록 제어하는 제어부(2910) 및 PCell 및 SCell 각각의 듀플렉스 모드의 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell 및 SCell 각각으로부터 전송된 제어채널에 기초하여 PCell 및 SCell 각각으로 전송된 PUSCH를 수신하는 수신부(2930)를 포함할 수 있다.In the base station for controlling the PUSCH transmission of the terminal configured PCell and SCell operating in different duplex mode according to another embodiment of the present invention, the control unit 2910 and the PCell for controlling each of the PCell or SCell self-scheduling and The receiver 2930 may receive a PUSCH transmitted to each of the PCell and the SCell based on the control channel transmitted from each of the PCell and the SCell according to the control channel reception timing for the uplink transmission of each SCell duplex mode.
또한, 본 발명의 또 다른 실시예에 따른 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 기지국에 있어서, PCell이 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 제어부(2910) 및 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 상기 PUSCH를 수신하는 수신부(2930)를 포함할 수 있다.In addition, in the base station for controlling the PUSCH transmission of the UE configured with the PCell operating in the TDD duplex mode and the SCell operating in the FDD duplex mode according to another embodiment of the present invention, a control unit for controlling the PCell to cross-carrier scheduling And a receiver 2930 for receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the PCell. It may include.
또한, 본 발명의 또 다른 실시예에 따른 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 기지국에 있어서, PCell이 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 제어부(2910) 및 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 상기 PUSCH를 수신하는 수신부(2930)를 포함할 수 있다.In addition, in the base station for controlling the PUSCH transmission of the UE configured with the PCell operating in the TDD duplex mode and the SCell operating in the FDD duplex mode according to another embodiment of the present invention, a control unit for controlling the PCell to cross-carrier scheduling And a receiver 2930 for receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the SCell. It may include.
또한, 본 발명의 또 다른 실시예에 따른 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 기지국에 있어서, PCell이 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 제어부(2910) 및 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 상기 PUSCH를 수신하는 수신부(2930)를 포함할 수 있다.In addition, in the base station for controlling the PUSCH transmission of the UE configured with the PCell operating in the FDD duplex mode and the SCell operating in the TDD duplex mode according to another embodiment of the present invention, a control unit for controlling the PCell to cross-carrier scheduling And a receiver 2930 for receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the SCell. It may include.
또한, 본 발명의 또 다른 실시예에 따른 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 기지국에 있어서, PCell이 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 제어부(2910) 및 PCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 PCell로 전송된 SCell의 상향링크 전송에 대한 제어채널에 기초하여 SCell로 전송된 상기 PUSCH를 수신하는 수신부(2930)를 포함할 수 있다.In addition, in the base station for controlling the PUSCH transmission of the UE configured with the PCell operating in the FDD duplex mode and the SCell operating in the TDD duplex mode according to another embodiment of the present invention, a control unit for controlling the PCell to cross-carrier scheduling And a receiver 2930 for receiving the PUSCH transmitted to the SCell based on the control channel for the uplink transmission of the SCell transmitted to the PCell according to the control channel reception timing for the uplink transmission according to the duplex mode of the PCell. It may include.
그 외에도 제어부(2910)는 전술한 본 발명의 각 실시예를 수행하기에 필요한 서로 다른 듀플렉스 모드로 동작하는 단말로부터 각 듀플렉스 모드에 따라서 다르게 설정될 수 있는 제어채널 수신 타이밍과 PUSCH 전송 타이밍에 기초하여 전송된 PUSCH를 수신하여 처리하는 데에 따른 전반적인 기지국의 동작을 제어한다.In addition, the control unit 2910 is based on a control channel reception timing and a PUSCH transmission timing that can be set differently according to each duplex mode from a terminal operating in different duplex modes required to perform the above-described embodiments of the present invention. It controls the overall operation of the base station according to receiving and processing the transmitted PUSCH.
그 외에도 수신부(2930)는 단말로부터 상향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.In addition, the receiver 2930 receives uplink control information, data, and messages from the terminal through a corresponding channel.
또한, 송신부(2920)는 단말에 UL grant를 포함하는 제어채널로 PDCCH 또는 EPDCCH를 전송할 수 있다. 또한, 하향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 전송한다. In addition, the transmitter 2920 may transmit a PDCCH or an EPDCCH to a control channel including a UL grant to the terminal. In addition, the downlink control information, data, and messages are transmitted through the corresponding channel.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2013년 09월 27일 한국에 출원한 특허출원번호 제 10-2013-0115725 호 및 2014년 05월 21일 한국에 출원한 특허출원번호 제 10-2014-0061203 호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application is related to the patent application No. 10-2013-0115725 filed in Korea on September 27, 2013 and the patent application No. 10-2014-0061203 filed in Korea on May 21, 2014. Priority is claimed under section (a) (35 USC § 119 (a)), all of which is incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.

Claims (20)

  1. 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성된 단말이 제어채널을 처리하는 방법에 있어서,In a method in which a terminal configured with a PCell and a SCell operating in different duplex modes processes a control channel,
    상기 PCell 및 상기 SCell 각각이 셀프 캐리어 스케줄링 되는 단계; 및Self-scheduling each of the PCell and the SCell; And
    상기 PCell 및 상기 SCell 각각의 듀플렉스 모드의 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 수신된 제어채널에 기초하여 상기 PCell 및 상기 SCell 각각으로 PUSCH를 전송하는 단계를 포함하는 방법.And transmitting a PUSCH to each of the PCell and the SCell based on a control channel received according to a control channel reception timing for uplink transmission of each of the PCell and the SCell in duplex mode.
  2. 제 1항에 있어서,The method of claim 1,
    상기 PCell의 듀플렉스 모드는 TDD로 설정되고, 상기 SCell의 듀플렉스 모드는 FDD로 설정되는 방법.The duplex mode of the PCell is set to TDD, and the duplex mode of the SCell is set to FDD.
  3. 제 1항에 있어서,The method of claim 1,
    상기 PCell의 듀플렉스 모드는 FDD로 설정되고, 상기 SCell의 듀플렉스 모드는 TDD로 설정되는 방법.The duplex mode of the PCell is set to FDD, and the duplex mode of the SCell is set to TDD.
  4. TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말이 제어채널을 처리하는 방법에 있어서,A method of processing a control channel by a terminal configured with a PCell operating in TDD duplex mode and a SCell operating in FDD duplex mode,
    상기 PCell로부터 상기 SCell이 크로스 캐리어 스케줄링 되는 단계; 및Scheduling the SCell from the PCell by cross carrier scheduling; And
    상기 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 상기 PCell로부터 수신된 제어채널에 기초하여 상기 SCell로 PUSCH를 전송하는 단계를 포함하는 방법.And transmitting a PUSCH to the SCell based on a control channel received from the PCell according to a control channel reception timing for uplink transmission in the duplex mode of the SCell.
  5. FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말이 제어채널을 처리하는 방법에 있어서,A method of processing a control channel by a terminal configured with a PCell operating in FDD duplex mode and a SCell operating in TDD duplex mode,
    상기 PCell로부터 상기 SCell이 크로스 캐리어 스케줄링 되는 단계; 및Scheduling the SCell from the PCell by cross carrier scheduling; And
    상기 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 상기 PCell로부터 수신된 제어채널에 기초하여 상기 SCell로 PUSCH를 전송하는 단계를 포함하는 방법.And transmitting a PUSCH to the SCell based on a control channel received from the PCell according to a control channel reception timing for uplink transmission in the duplex mode of the SCell.
  6. 기지국이 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성된 단말의 PUSCH 전송을 제어하는 방법에 있어서,A method of controlling a PUSCH transmission of a terminal configured with a PCell and an SCell operating in different duplex modes, the base station
    상기 PCell 또는 상기 SCell 각각이 셀프 캐리어 스케줄링 되도록 제어하는 단계; 및Controlling each of the PCell or the SCell to be self-carrier scheduled; And
    상기 PCell 및 상기 SCell 각각의 듀플렉스 모드의 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 상기 PCell 및 상기 SCell 각각으로부터 전송된 제어채널에 기초하여 상기 PCell 및 상기 SCell 각각으로 전송된 상기 PUSCH를 수신하는 단계를 포함하는 방법.Receiving the PUSCH transmitted to each of the PCell and the SCell based on a control channel transmitted from each of the PCell and the SCell according to a control channel reception timing for uplink transmission of each of the PCell and the SCell in duplex mode; How to include.
  7. 제 6항에 있어서, The method of claim 6,
    상기 PCell의 듀플렉스 모드는 TDD로 설정되고, 상기 SCell의 듀플렉스 모드는 FDD로 설정되는 방법.The duplex mode of the PCell is set to TDD, and the duplex mode of the SCell is set to FDD.
  8. 제 6항에 있어서,The method of claim 6,
    상기 PCell의 듀플렉스 모드는 FDD로 설정되고, 상기 SCell의 듀플렉스 모드는 TDD로 설정되는 방법.The duplex mode of the PCell is set to FDD, and the duplex mode of the SCell is set to TDD.
  9. 기지국이 TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 방법에 있어서,A method for controlling a PUSCH transmission of a terminal configured with a PCell operating in a TDD duplex mode and a SCell operating in an FDD duplex mode, the base station comprising:
    상기 PCell이 상기 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 단계; 및Controlling the PCell to cross-carrier schedule the SCell; And
    상기 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 상기 PCell로 전송된 상기 SCell의 상향링크 전송에 대한 제어채널에 기초하여 상기 SCell로 전송된 상기 PUSCH를 수신하는 단계를 포함하는 방법.Receiving the PUSCH transmitted to the SCell based on a control channel for uplink transmission of the SCell transmitted to the PCell according to a control channel reception timing for uplink transmission according to the duplex mode of the SCell. Way.
  10. 기지국이 FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 방법에 있어서,A method for controlling a PUSCH transmission of a terminal configured with a PCell operating in an FDD duplex mode and a SCell operating in a TDD duplex mode, the base station comprising:
    상기 PCell이 상기 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 단계; 및Controlling the PCell to cross-carrier schedule the SCell; And
    상기 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 상기 PCell로 전송된 상기 SCell의 상향링크 전송에 대한 제어채널에 기초하여 상기 SCell로 전송된 상기 PUSCH를 수신하는 단계를 포함하는 방법.Receiving the PUSCH transmitted to the SCell based on a control channel for uplink transmission of the SCell transmitted to the PCell according to a control channel reception timing for uplink transmission according to the duplex mode of the SCell. Way.
  11. 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성되어 제어채널을 처리하는 단말에 있어서,In the terminal for processing the control channel is configured PCell and SCell operating in different duplex mode,
    상기 PCell 및 상기 SCell 각각이 셀프 캐리어 스케줄링 되도록 제어하는 제어부; 및A control unit controlling each of the PCell and the SCell to be self-carrier scheduled; And
    상기 PCell 및 상기 SCell 각각의 듀플렉스 모드의 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 수신된 제어채널에 기초하여 상기 PCell 및 상기 SCell 각각으로 PUSCH를 전송하는 송신부를 포함하는 단말.And a transmitter configured to transmit a PUSCH to each of the PCell and the SCell based on a control channel received according to a control channel reception timing for uplink transmission of each of the PCell and the SCell.
  12. 제 11항에 있어서,The method of claim 11,
    상기 PCell의 듀플렉스 모드는 TDD로 설정되고, 상기 SCell의 듀플렉스 모드는 FDD로 설정되는 단말.The duplex mode of the PCell is set to TDD, the duplex mode of the SCell is set to FDD.
  13. 제 11항에 있어서,The method of claim 11,
    상기 PCell의 듀플렉스 모드는 FDD로 설정되고, 상기 SCell의 듀플렉스 모드는 TDD로 설정되는 단말.The duplex mode of the PCell is set to FDD, the duplex mode of the SCell is set to TDD.
  14. TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성되어 제어채널을 처리하는 단말에 있어서,In a terminal for processing a control channel configured with a PCell operating in the TDD duplex mode and a SCell operating in the FDD duplex mode,
    상기 PCell로부터 상기 SCell이 크로스 캐리어 스케줄링 되도록 제어하는 제어부; 및A control unit for controlling the SCell to cross-carrier scheduling from the PCell; And
    상기 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 상기 PCell로부터 수신된 제어채널에 기초하여 상기 SCell로 PUSCH를 전송하는 송신부를 포함하는 단말.And a transmitter configured to transmit a PUSCH to the SCell based on a control channel received from the PCell according to a control channel reception timing for uplink transmission in the duplex mode of the SCell.
  15. FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성되어 제어채널을 처리하는 단말에 있어서,In a terminal for processing a control channel configured with a PCell operating in FDD duplex mode and a SCell operating in TDD duplex mode,
    상기 PCell로부터 상기 SCell이 크로스 캐리어 스케줄링 되도록 제어하는 제어부; 및A control unit for controlling the SCell to cross-carrier scheduling from the PCell; And
    상기 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 상기 PCell로부터 수신된 제어채널에 기초하여 상기 SCell로 PUSCH를 전송하는 송신부를 포함하는 단말.And a transmitter configured to transmit a PUSCH to the SCell based on a control channel received from the PCell according to a control channel reception timing for uplink transmission in the duplex mode of the SCell.
  16. 서로 다른 듀플렉스 모드로 동작하는 PCell 및 SCell이 구성된 단말의 PUSCH 전송을 제어하는 기지국에 있어서,A base station for controlling PUSCH transmission of a terminal configured with a PCell and a SCell operating in different duplex modes,
    상기 PCell 또는 상기 SCell 각각이 셀프 캐리어 스케줄링 되도록 제어하는 제어부; 및A control unit controlling each of the PCell or the SCell to be self-carrier scheduled; And
    상기 PCell 및 상기 SCell 각각의 듀플렉스 모드의 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 상기 PCell 및 상기 SCell 각각으로부터 전송된 제어채널에 기초하여 상기 PCell 및 상기 SCell 각각으로 전송된 상기 PUSCH를 수신하는 수신부를 포함하는 기지국.A receiver for receiving the PUSCH transmitted to each of the PCell and the SCell based on a control channel transmitted from each of the PCell and the SCell according to a control channel reception timing for uplink transmission of each of the PCell and the SCell in duplex mode Base station comprising a.
  17. 제 16항에 있어서, The method of claim 16,
    상기 PCell의 듀플렉스 모드는 TDD로 설정되고, 상기 SCell의 듀플렉스 모드는 FDD로 설정되는 기지국.The duplex mode of the PCell is set to TDD, and the duplex mode of the SCell is set to FDD.
  18. 제 16항에 있어서,The method of claim 16,
    상기 PCell의 듀플렉스 모드는 FDD로 설정되고, 상기 SCell의 듀플렉스 모드는 TDD로 설정되는 기지국.The duplex mode of the PCell is set to FDD, and the duplex mode of the SCell is set to TDD.
  19. TDD 듀플렉스 모드로 동작하는 PCell 및 FDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 기지국에 있어서,A base station for controlling PUSCH transmission of a terminal configured with a PCell operating in a TDD duplex mode and a SCell operating in an FDD duplex mode,
    상기 PCell이 상기 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 제어부; 및A control unit for controlling the PCell to cross-carrier schedule the SCell; And
    상기 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 상기 PCell로 전송된 상기 SCell의 상향링크 전송에 대한 제어채널에 기초하여 상기 SCell로 전송된 상기 PUSCH를 수신하는 수신부를 포함하는 기지국.And a receiver configured to receive the PUSCH transmitted to the SCell based on a control channel for uplink transmission of the SCell transmitted to the PCell according to a control channel reception timing for uplink transmission according to the duplex mode of the SCell. Base station.
  20. FDD 듀플렉스 모드로 동작하는 PCell 및 TDD 듀플렉스 모드로 동작하는 SCell이 구성된 단말의 PUSCH 전송을 제어하는 기지국에 있어서,A base station for controlling PUSCH transmission of a terminal configured with a PCell operating in FDD duplex mode and a SCell operating in TDD duplex mode,
    상기 PCell이 상기 SCell을 크로스 캐리어 스케줄링 하도록 제어하는 제어부; 및A control unit for controlling the PCell to cross-carrier schedule the SCell; And
    상기 SCell의 듀플렉스 모드에 따른 상향링크 전송에 대한 제어채널 수신 타이밍에 따라 상기 PCell로 전송된 상기 SCell의 상향링크 전송에 대한 제어채널에 기초하여 상기 SCell로 전송된 상기 PUSCH를 수신하는 수신부를 포함하는 기지국.And a receiver configured to receive the PUSCH transmitted to the SCell based on a control channel for uplink transmission of the SCell transmitted to the PCell according to a control channel reception timing for uplink transmission according to the duplex mode of the SCell. Base station.
PCT/KR2014/008639 2013-09-27 2014-09-17 Method for setting timing of control channel in tdd-fdd joint operation and apparatus therefor WO2015046800A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480053610.6A CN105580298B (en) 2013-09-27 2014-09-17 Control channel sequential setting method in TDD-FDD joint operations and its device
US15/024,899 US20160219543A1 (en) 2013-09-27 2014-09-17 Method for setting timing of control channel in tdd-fdd joint operation and apparatus therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130115725 2013-09-27
KR10-2013-0115725 2013-09-27
KR20140061203A KR20150035673A (en) 2013-09-27 2014-05-21 Methods for setting control channel timing with TDD-FDD joint operation and Apparatuses thereof
KR10-2014-0061203 2014-05-21

Publications (1)

Publication Number Publication Date
WO2015046800A1 true WO2015046800A1 (en) 2015-04-02

Family

ID=52743859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008639 WO2015046800A1 (en) 2013-09-27 2014-09-17 Method for setting timing of control channel in tdd-fdd joint operation and apparatus therefor

Country Status (1)

Country Link
WO (1) WO2015046800A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107637151A (en) * 2015-05-28 2018-01-26 日本电气株式会社 Method for realizing the eCA for supporting up to 32 CC and strengthening the dynamic PUCCH resource distribution used for association

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124980A2 (en) * 2011-03-14 2012-09-20 엘지전자 주식회사 Method and device for transmitting ack/nack in wireless communication system
KR20130075620A (en) * 2011-12-27 2013-07-05 주식회사 팬택 Method and apparatus for providing pusch/phich scheduling timing in inter-band time division duplex mode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124980A2 (en) * 2011-03-14 2012-09-20 엘지전자 주식회사 Method and device for transmitting ack/nack in wireless communication system
KR20130075620A (en) * 2011-12-27 2013-07-05 주식회사 팬택 Method and apparatus for providing pusch/phich scheduling timing in inter-band time division duplex mode

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON ET AL.: "HARQ and scheduling timing for eIMTA", 3GPP TSG RAN WG1 MEETING #74,R1-133418, 19 August 2013 (2013-08-19), BARCELONA, SPAIN *
LG ELECTRONICS: "CA -based aspects for FDD-TDD joint operation", 3GPP TSG RAN WG1 MEETING #74,R1-133372, 19 August 2013 (2013-08-19), BARCELONA, SPAIN *
RESEARCH IN MOTION ET AL.: "Design of HARQ and Scheduling Timing Linkage to Support Inter-band CA with Different TDD Configurations", 3GPP TSG RAN WG1 MEETING #68,RL-120336, 6 February 2012 (2012-02-06), DRESDEN, GERMANY *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107637151A (en) * 2015-05-28 2018-01-26 日本电气株式会社 Method for realizing the eCA for supporting up to 32 CC and strengthening the dynamic PUCCH resource distribution used for association
CN107637151B (en) * 2015-05-28 2021-06-15 日本电气株式会社 Method for implementing eCA supporting up to 32 CCs and enhancing dynamic PUCCH resource allocation for associated use

Similar Documents

Publication Publication Date Title
WO2018194326A1 (en) Method for performing terminal-based handover and device therefor
WO2019160342A1 (en) Method and apparatus for supporting rach-less mobility with pre-allocated beams in wireless communication system
WO2015064972A1 (en) Method and apparatus for configuring dual connection in mobile communication network
WO2014027804A1 (en) Uplink control channel, and method and apparatus for controlling transmission of sounding reference signal
WO2018004278A1 (en) Method and device for transmitting or receiving data in dual connectivity state
WO2014196748A1 (en) Method for transmitting information for synchronization of user equipment by base station in wireless communication system and apparatus for same
WO2011099825A2 (en) Apparatus and method for establishing uplink synchronization in a wireless communication system
WO2011122834A2 (en) Apparatus and method for performing random access in a wireless communication system
WO2020027491A1 (en) Method for processing data in relay node, and device therefor
WO2018164499A1 (en) Buffer state report transmission method and device therefor
WO2014157888A1 (en) Method for handover in environment connected to multiple base stations and apparatus therefor
WO2019212249A1 (en) Method for data processing through relay node and apparatus thereof
WO2012111937A2 (en) Method and device for allocating reference signals, and method and device for receiving the reference signals using same in a wireless communication system
WO2014182009A1 (en) Method for transmitting and receiving response signal and apparatus therefor
WO2017196095A2 (en) Method for configuring dual-connectivity by terminal, and apparatus therefor
WO2018056718A1 (en) Method and apparatus for changing connection state of terminal
WO2015046780A1 (en) Method for transmitting uplink data and apparatus for same
WO2019013543A1 (en) Method and apparatus for controlling carrier aggregation for next generation wireless network
WO2023128731A1 (en) Method and apparatus for providing cell change operation
WO2016159634A1 (en) Method for reconfiguring wireless bearer and device thereof
WO2014163419A1 (en) Method for processing radio link failure and device therefor
WO2014126356A1 (en) Method for activating or deactivating small cell and apparatus therefor
WO2015053553A1 (en) Method for transmitting and receiving random access response, and apparatus therefor
WO2014133271A1 (en) Method for transmitting buffer status report of terminal in small cell environment and device therefor
WO2018169242A1 (en) Method for duplicately receiving control message, and device therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480053610.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15024899

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.07.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14848501

Country of ref document: EP

Kind code of ref document: A1