WO2015046736A1 - Method for directly producing high-energy biodiesel from wet biomass - Google Patents

Method for directly producing high-energy biodiesel from wet biomass Download PDF

Info

Publication number
WO2015046736A1
WO2015046736A1 PCT/KR2014/007027 KR2014007027W WO2015046736A1 WO 2015046736 A1 WO2015046736 A1 WO 2015046736A1 KR 2014007027 W KR2014007027 W KR 2014007027W WO 2015046736 A1 WO2015046736 A1 WO 2015046736A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
alcohol
biodiesel
biomass
wet biomass
Prior art date
Application number
PCT/KR2014/007027
Other languages
French (fr)
Korean (ko)
Inventor
양지원
박민성
미슈라산쥬
서인상
파루크와싶
Original Assignee
재단법인 탄소순환형 차세대 바이오매스 생산전환 기술연구단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 탄소순환형 차세대 바이오매스 생산전환 기술연구단 filed Critical 재단법인 탄소순환형 차세대 바이오매스 생산전환 기술연구단
Publication of WO2015046736A1 publication Critical patent/WO2015046736A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a method for the direct production of high energy biodiesel from a wet biomass, and more particularly, the step of pretreatment by adding alcohol to the wet biomass; And adding alcohol and a catalyst to the pretreated biomass, followed by heating to perform transesterification, thereby directly producing biodiesel from the wet biomass without extracting lipids. It is about.
  • biodiesel one of the main forms of alternative energy.
  • Almost all of today's biodiesel is produced from edible crops such as wheat and corn, waste cooking oil and animal fats.
  • these will not serve as alternative energy sources for fossil fuels because of ultimate sustainability issues.
  • Daemon's research paper (Deamon, 2007, Nature, 449: 652-655) and Laurent's research paper (Laurent et al., 2009, Environ. Sci. Technol. 43: 6475-6481)
  • the debate over fuel has been raised and the need for a biomass base that does not hinder food production.
  • the 2011 study paper (D.H.Lee et al., 2011, Biores.Technol. 102: 43-49) raised the issue of the lack of arable land and replacement sites for biomass grown for fuel production.
  • Microalgae are single-cell photosynthetic organisms capable of photosynthetic growth using water, carbon dioxide and sunlight, also called phytoplankton, and are estimated to be present in about 200,000 to 800,000 species worldwide. Microalgae can be cultivated anywhere in the wasteland, the coast, and the sea as long as photosynthesis is possible. The microalgae live in freshwater or seawater, absorb carbon dioxide and release oxygen, and contain useful substances such as oil. . In particular, microalgae accumulate high quality vegetable oils in vivo through photosynthesis, and the amount of oil produced per unit area is 10 times less than conventional edible crops such as soybeans and corn for obtaining biodiesel raw oil. It is about 50-100 times higher on average.
  • the microalgae has the advantage that the growth rate is faster than the land plants, can be grown in high concentration in a large amount, and can grow even in extreme environments. Microalgae show higher fuel productivity compared to conventional crops because the available oil content amounts to 30-70% of the biomass. In addition, since microalgae do not compete with other crops in terms of land or space, the present invention has the advantage of not causing secondary environmental problems such as rising prices of food resources and deforestation.
  • microalgae uses extremely high process costs of dehydration, drying, extraction and processing when microalgae are used for biodiesel production.
  • Microalgae also have polar structures such as monoglycerides (MAGs, monoglycerides), diglycerides (DAGs, diglycerides) and triglycerides (TAGs, triglycerides), and polar structures such as phospholipids and glycolipids. Having lipids, the biochemical composition and amount of such lipids can be altered by harvesting, drying and storage techniques.
  • microalgae are known to consume stored fat through cellular respiration during long-term storage after harvesting, and contain lipases that can break down lipids into free fatty acids, resulting in significant amounts of lipids during storage at room temperature. There is a problem that the amount is lost and the quality is reduced. Thus, for this reason, it is essential that the microalgae's wet biomass be treated as soon as it is available.
  • lipids are first extracted before being converted to fuel.
  • the cell walls of microalgae composed of coarse cellulose must be destroyed.
  • Lipids can then be recovered from the microalgae by physical (cold press, French press, homogenization and cavity methods) and chemical (solvent extraction) methods.
  • Solvent extraction processes for lipids are generally carried out using other combinations of chlorine or neutral solvents such as chloroform, methanol and water, and after extraction, the neutral lipids can be obtained via hexane fractions. Since most individual methods are not sufficient for high recovery of lipids, a combination of these methods is required for effective extraction. However, all of the drying and extraction steps are energy intensive, expensive, use many solvents and require several steps.
  • Korean Patent Publication No. 2013-0037516 discloses an 'integrated non-catalyst continuous biodiesel conversion process without omission of milking and extraction'
  • Korean Patent No. 1264543 discloses 'raw material for biodiesel from microalgae'. Method of extracting and biodiesel production using the same 'is disclosed, but there is no description of the direct production process of high-energy biodiesel from the wet biomass of the present invention.
  • the present invention is derived by the above requirements, the present inventors pre-treatment with alcohol to the microalgae with high moisture content, without additional lipid extraction process, the alcohol and catalyst to the pre-treated microalgae again and heat
  • the present invention was completed by developing a method for producing fatty acid ethyl ester, which is a high-energy biodiesel, by adding a transesterification reaction.
  • It provides a method for producing biodiesel directly from the wet biomass without extracting lipids, comprising the step of adding an alcohol and a catalyst to the pre-treated biomass, followed by heating to perform a transesterification reaction. .
  • the present invention relates to a manufacturing method for producing biodiesel directly from a biomass having a high moisture content, and the method of the present invention can be effectively applied to produce high energy biodiesel without using a separate milking and extraction process using microalgae. Can be.
  • the method of the present invention is more cost-effective than conventional methods because there is no lipid extraction process, and solvents such as chloroform, dichloromethane and carbon tetrachloride for separating lipids are not used, and wastes generated during the process can be reused. As it is an improved process, eco-friendly effects can be expected.
  • 1 is a process chart of the production method for producing biodiesel directly from the microalgae of the present invention.
  • FIG. 2 is a result of comparing the production of biodiesel (FAEE) according to the treatment time of alcohol pretreatment conditions.
  • FAEE biodiesel
  • Figure 3 is a result of comparing the production amount of biodiesel by the number of alcohol pretreatment treatment.
  • Figure 4 is a result of comparing the production of biodiesel according to the alcohol volume ratio to the biomass of alcohol pretreatment conditions.
  • Figure 6 is a result of comparing the biodiesel production by temperature during the transesterification reaction.
  • Figure 10 is the result of confirming the distribution of lipids in algae during the process of the present invention in three types of microalgae Atria, Nannochloropsis and Oranthiochitrium. Lipid in residual biomass; Biomass, alcohol fraction (pretreatment) remaining after conversion; Alcohol recovered after pretreatment of wet biomass, Alcohol fraction (conversion); Alcohol fractions having undergone transesterification using biomass, acid and heat.
  • a method for producing biodiesel directly from the wet biomass without extracting lipids comprising the step of performing a transesterification reaction by heating.
  • the wet biomass is a raw material capable of producing biodiesel as a living microorganism containing lipids, and may be any type of microalgae, yeast, mold, bacteria or microbial slurry, and fresh water.
  • B may be a species of seawater, preferably microalgae, but is not limited thereto.
  • the microorganism may be cultured by a heterotrophic, autotrophic or mixed nutrition.
  • the microalgae may be harvested by centrifugation, flocculation, bio-flocculation, filtration, etc., but are not limited thereto.
  • the microalgae of the present invention is Ettlia, Dunaliella, Chlorella, Nannochloropsis, Golenkinia, Spirulina, Chlamydomonas ( Chlamydomonas, Chroococcus, Chaetoceros, Achnanthes, Amphora species, and the like, preferably Ettlia oleoabundans , Nanocloc Rob cis Salina (Nannochloropsis salin a), nanno claw Rob cis Gardiner appear (Nannochloropsis gaditana), two flying it Ella right Wiltshire (Dunaliella bardawil), two flying it Ella Salina (Dunaliella salina), two flying it Ella Primo rekta (Dunaliella primolecta), chlorella Bulgari ( Chlorella vulgaris ), Chlorella emorsonii , Chlorella minutissima , Chlorella sorokiniana , S
  • the cultured microalgae is 10 to 99% by weight, preferably 60 to 90% by weight, more preferably 80 to 90% by weight when used as a raw material for biodiesel production through the production method of the present invention after harvesting. It may be, but is not limited thereto.
  • the alcohol used in the pretreatment step may have a volume ratio of biomass: alcohol of 1: 0.1 to 100, preferably 1: 1 to 100, more preferably It may be 1: 1 to 10, and most preferably 1:10, but is not limited thereto.
  • the number of pretreatment may be one or more times, preferably 1 to 10 times, but is not limited thereto.
  • the alcohol of step (1) is very hygroscopic and is not limited so long as it may cause dehydration, preferably methanol, ethanol, propanol or butanol, and the like. It may be a lower alcohol, most preferably ethanol, but is not limited thereto.
  • the alcohol may inhibit the lipase that removes excess water in the biomass, lowers the yield of biodiesel, or inhibits the activity of the inhibitor of the transesterification reaction.
  • the alcohol used in the pretreatment may preferably be recycled and used during the process for producing the biodiesel of the present invention, but is not limited thereto.
  • a catalyst of a transesterification reaction is used to produce a biodiesel of fatty acid ester from the pretreated wet biomass, wherein the catalyst is an acid catalyst, a base catalyst, a homogeneous ), A heterogeneous catalyst, an enzyme catalyst or any other catalyst, and the like, and preferably, a solid acid catalyst such as zeolite and heteropoly acid, an inorganic acid catalyst such as hydrofluoric acid, sulfuric acid and phosphoric acid, and a base catalyst such as sodium hydroxide and potassium hydroxide.
  • It may be an ion exchange resin catalyst such as Amberlyst, more preferably an acid catalyst such as sulfuric acid, hydrochloric acid, nitric acid, acetyl chloride, and more preferably sulfuric acid, but is not limited thereto.
  • Amberlyst an ion exchange resin catalyst such as Amberlyst
  • an acid catalyst such as sulfuric acid, hydrochloric acid, nitric acid, acetyl chloride, and more preferably sulfuric acid, but is not limited thereto.
  • alcohol and catalyst may be reused one or more times to increase the biodiesel content in the reaction mixture.
  • the step of the transesterification reaction may be heated for 60 to 150 °C, preferably 80 to 120 °C, and reacted for 5 to 300 minutes at a stirring speed of 10 to 300 rpm
  • the present invention is not limited thereto.
  • the present invention preferably
  • the ponds were cultured by independent, mixed or heterotrophic methods.
  • Dry cell concentration in the culture medium varied from 0.1% to 1.4% (w / v). Cell concentrations were found high in the heterotrophic state and low in the autotrophic state. Cultured cells exhibited high levels of water content both intracellularly and extracellularly. Extracellular water was dehydrated using one of the known methods in microbial production, including but not limited to membrane filtration, centrifugation, precipitation or flotation (floating). Yeast cell Cryptococcus curvatus and Cryptococcus sp. Were grown for 16 hours at 25 ° C. in organic defined medium supplemented with nitrogen and a carbon source. Since the harvested biomass shows various changes in the intracellular contents of water and lipids, the harvested biomass was stored at -80 ° C until used in the process.
  • lipid content of the dry biomass was analyzed through the following steps: Approximately 10 mg of dry algal cells were mixed with 2 ml of a 2: 1 chloroform: methanol solution and capped with a Teflon capped Pyrex tube The lipid was extracted by stirring for 10 minutes at.
  • the microbial biomass After harvesting, the microbial biomass naturally contains between about 60 and 90% moisture.
  • Wet biomass of microalgae has many inhibitors that inhibit the transesterification process during biodiesel manufacturing. Therefore, in this process, we washed the wet biomass using a microbiologically synthesized solvent to inactivate inhibitors such as water or enzymes.
  • Wet biomass was mixed with a microbiologically synthesized solvent at a rate of 1: 1-10 at a speed of 300 rpm in a vibrating machine. Solvents serve to stop the activity of enzymes that can degrade lipids and remove excess water that interferes with the process of biodiesel production.
  • the solvent is then separated from the biomass through known separation methods such as centrifugation, filtration and precipitation.
  • Microalgae cells were pretreated due to the fact that intracellular lipids were sequestered after thick cellulose structures.
  • Microalgal strains of Atria with relatively thick cell walls were cultured and microalgae were harvested by centrifugation. The moisture content of the harvested microalgal samples was in the range of 80-90%.
  • the conditions for direct in situ transesterification (conversion) from triglycerides (TAG) to fatty acid ethyl esters (FAEE) were optimized.
  • TAG triglycerides
  • FEE fatty acid ethyl esters
  • wet biomass samples were obtained from a 200 m 3 open pond, an outdoor mass culture facility.
  • the microalgae used are Nannochloropsis oceanica , a seawater aquaculture system, which has a relatively high lipid content.
  • the moisture content of the wet biomass sample was found to be in the range of 65-70%.
  • reaction temperature on conversion was checked to find the optimal conditions for transesterification reaction. It is hypothesized that higher reaction temperatures will bring higher conversion yields, and are expected to be even more energy integrated, especially above 100 ° C.
  • the transesterification reaction was performed using a wet biomass for 2 hours at a temperature section between 60 ⁇ 120 °C. As a result, 8.14 mg of fatty acid ethyl ester was produced at a temperature of 60 ° C., and 10.76 mg of biodiesel was produced at a temperature of 120 ° C., confirming an increase of about 32% (FIG. 6). However, especially after the reaction temperature was increased to 100 ° C. or more, no increase was observed as much as the conversion period experiment conducted in Example 5. This suggests the possibility of achieving high yields at low conversion temperatures while other conditions are being optimized.
  • heterogeneous catalyst Amberlyst-15 (surface area 50 m 2 / g) was used as a catalyst for the direct transesterification of Ettlia sp. Biomass instead of sulfuric acid.
  • the conversion time was 2 hours and compared with the amount of fatty acid ethyl ester of the reaction via sulfuric acid catalyst.
  • the conversion yield of the sulfuric acid catalyst was not reached, but it was confirmed that the conversion yield increased as the amount of use thereof increased (FIG. 8).
  • the biodiesel production yield was improved as in the case of Example 5 described above (FIG. 9).
  • Nannochloropsis some biomass extracts large amounts of these lipids during pretreatment. These extracted lipids in the pretreated alcohol fraction are collected and subsequently subjected to transesterification.
  • Biodiesel was produced using methanol and butanol, lower alcohols than ethanol.
  • the production method uses microalgae of Ettlia sp., which has about 75% water content, as biomass, and performs pretreatment once for 10 minutes with a biomass: alcohol volume ratio of 1:10.
  • 100 ⁇ l of sulfuric acid was used as a catalyst and transesterification was carried out at 120 ° C. for 2 hours.
  • the resulting biodiesel was analyzed for fatty acid composition using gas chromatography.
  • biodiesel could be produced in all cases using methanol, ethanol and butanol, and the yield was confirmed to be similar.
  • FEE fatty acid ethyl ester
  • Ethanol mixtures mixed with fatty acid ethyl esters (FAEE) produced from the completed reactions according to the biodiesel production process of the present invention were used in the conversion reaction for biodiesel production of the next batch of microalgal biomass.
  • 200 ml of Gorenkinia wet type biomass (74.9% water content) was treated with 2 ml of fresh ethanol as a pretreatment for dehydration, and transesterified with recycled ethanol and sulfuric acid or fresh ethanol and sulfuric acid.
  • Sulfuric acid was treated at various concentrations from 0 to 200 ⁇ l to confirm the reusability of the acid catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fats And Perfumes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

The present invention relates to a method for directly producing biodiesel from wet biomass by performing alcohol pretreatment and applying alcohol, catalyst, and heat to the pretreated biomass, without a separate lipid extraction procedure. The method of the present invention is more cost-effective than existing methods by not employing a lipid separation process, and improved the processes so that the waste generated during the processing process can be recycled, and thus an eco-friendly effect may be expected.

Description

습식 바이오매스로부터 고에너지 바이오디젤의 직접적인 생산 방법Direct production of high energy biodiesel from wet biomass
본 발명은 습식 바이오매스로부터 고에너지 바이오디젤의 직접적인 생산 방법에 관한 것으로, 더욱 자세하게는 습식 바이오매스에 알코올을 첨가하여 전처리하는 단계; 및 상기 전처리된 바이오매스에 알코올 및 촉매를 가한 후, 가열하여 에스테르 교환 반응(transesterification)을 수행하는 단계를 포함하는 것을 특징으로 하는 지질을 추출하지 않고 습식 바이오매스로부터 바이오디젤을 직접적으로 제조하는 방법에 관한 것이다.The present invention relates to a method for the direct production of high energy biodiesel from a wet biomass, and more particularly, the step of pretreatment by adding alcohol to the wet biomass; And adding alcohol and a catalyst to the pretreated biomass, followed by heating to perform transesterification, thereby directly producing biodiesel from the wet biomass without extracting lipids. It is about.
세계 평균 에너지 소비율보다 2~3배 높은 에너지 소비율을 가진 개발 도상국의 에너지 소비 때문에, 전 세계적으로 에너지 수요가 지속적으로 빠른 속도로 증가하고 있다. 에너지 정보청(EIA)의 2007년 보고서에 따르면, 2030년까지 현재와 비교해서 60% 더 높은 에너지 수요가 예측된다.Due to the energy consumption of developing countries, which are two to three times higher than the world average energy consumption, energy demand continues to increase rapidly around the world. According to the EIA's 2007 report, energy demand is expected to be 60% higher by 2030 than it is today.
에너지의 주요 자원으로서 화석연료의 지속적인 소비는 한정된 자원의 고갈을 야기하고, 소비량에 비례하여 대기 중 이산화탄소의 양을 증가시켜 지구온난화 및 환경오염에 기여하기 때문에, 지속 불가능한 에너지 자원으로 널리 인식되고 있다. 따라서 에너지 자원으로서 화석연료들은 다음과 같은 요구 사항을 충족시키는 이상적인 대체 에너지원으로 교체되어야 한다: 탄소 중립적인 것, 에너지 중립적인 것, 지속가능한 것 및 경제적인 것.Sustainable consumption of fossil fuels as a major source of energy is widely recognized as an unsustainable energy source because it contributes to the depletion of limited resources and contributes to global warming and environmental pollution by increasing the amount of carbon dioxide in the air in proportion to consumption. . Therefore, fossil fuels as energy sources should be replaced with ideal alternative energy sources that meet the following requirements: carbon neutral, energy neutral, sustainable and economic.
지난 10년 동안, 대체 에너지의 주요 형태 중 하나인 바이오디젤(biodiesel)의 생산에 대해서 과학계가 많은 관심을 가졌다. 오늘날의 거의 모든 바이오디젤은 밀과 옥수수 같은 식용작물, 폐식용유 및 동물성 지방 등을 원료로 생산된다. 그러나, 이러한 것들은 궁극적인 지속 가능성 문제로 인해 화석연료에 대한 대체 에너지 역할을 할 수 없을 것으로 인식되고 있다. Daemon의 연구 논문(Deamon, 2007, Nature, 449:652-655) 및 Laurent의 연구 논문(Laurent et al., 2009, Environ. Sci. Technol. 43:6475-6481)에서 다루어졌듯이, '식량 대 연료'에 대한 논쟁이 제기되었고 식량 생산을 방해하지 않는 바이오매스 기반의 필요성이 강조되었다. 또한, 2011년 연구 논문(D.H.Lee et al., 2011, Biores. Technol. 102:43-49)에서는 연료 생산을 위해 재배되는 바이오매스의 경작지 부족 및 대체 장소의 필요성 문제가 제기되었다.In the last decade, the scientific community has been interested in the production of biodiesel, one of the main forms of alternative energy. Almost all of today's biodiesel is produced from edible crops such as wheat and corn, waste cooking oil and animal fats. However, it is recognized that these will not serve as alternative energy sources for fossil fuels because of ultimate sustainability issues. As discussed in Daemon's research paper (Deamon, 2007, Nature, 449: 652-655) and Laurent's research paper (Laurent et al., 2009, Environ. Sci. Technol. 43: 6475-6481), The debate over fuel has been raised and the need for a biomass base that does not hinder food production. In addition, the 2011 study paper (D.H.Lee et al., 2011, Biores.Technol. 102: 43-49) raised the issue of the lack of arable land and replacement sites for biomass grown for fuel production.
미세조류(Microalgae)는 물, 이산화탄소와 햇빛을 이용하여 광합성 성장이 가능한 단세포성 광합성 생물로서 식물플랑크톤으로도 불리우며 전 세계적으로 약 20만 내지 80만 종이 존재하는 것으로 추정되고 있다. 미세조류는 광합성만 가능하다면 황무지나 해안가, 바다 등 어디서든 배양할 수 있으며, 약 3~30㎛ 크기에 담수나 해수에서 서식하고 이산화탄소를 흡수하고 산소를 배출하며, 오일 등 유용물질을 함유하고 있다. 특히 미세조류는 광합성을 통해 양질의 식물성 오일을 생체 내에 축적하며, 단위면적당 오일 생산량이 종래의 바이오디젤 원료유를 얻기 위한 콩, 옥수수 등의 기존 식용작물에 비해 적게는 10배, 많게는 100배, 평균 약 50-100배 이상 높은 것이 특징이다. 또한, 미세조류는 육상식물에 비해 성장률이 빠르고, 대량으로 고농도 배양이 가능하며, 극한 환경에서도 성장이 가능한 장점을 가지고있다. 미세조류는 사용 가능한 오일 성분이 바이오매스의 30~70%에 달하므로 기존 작물에 비해 높은 연료 생산성을 나타낸다. 또한, 미세조류는 다른 작물과 토지나 공간 측면에서 상호 경쟁하지 않으므로, 현재 식량 자원의 가격 상승 및 산림 파괴 등 2차적인 환경 문제를 일으키지 않는다는 장점을 가진다.Microalgae are single-cell photosynthetic organisms capable of photosynthetic growth using water, carbon dioxide and sunlight, also called phytoplankton, and are estimated to be present in about 200,000 to 800,000 species worldwide. Microalgae can be cultivated anywhere in the wasteland, the coast, and the sea as long as photosynthesis is possible.The microalgae live in freshwater or seawater, absorb carbon dioxide and release oxygen, and contain useful substances such as oil. . In particular, microalgae accumulate high quality vegetable oils in vivo through photosynthesis, and the amount of oil produced per unit area is 10 times less than conventional edible crops such as soybeans and corn for obtaining biodiesel raw oil. It is about 50-100 times higher on average. In addition, the microalgae has the advantage that the growth rate is faster than the land plants, can be grown in high concentration in a large amount, and can grow even in extreme environments. Microalgae show higher fuel productivity compared to conventional crops because the available oil content amounts to 30-70% of the biomass. In addition, since microalgae do not compete with other crops in terms of land or space, the present invention has the advantage of not causing secondary environmental problems such as rising prices of food resources and deforestation.
하지만 미세조류 바이오디젤은 높은 가능성에도 불구하고, 바이오디젤 생산을 위해 미세조류를 사용할 경우, 탈수, 건조, 추출 및 가공의 엄청나게 높은 공정 비용이 문제가 된다. 또한, 미세조류는 모노글리세라이드(MAGs, monoglycerides), 다이글리세라이드(DAGs, diglycerides) 및 트리글리세라이드(TAGs, triglycerides)와 같은 중성 저장 지질, 인지질(phospholipids) 및 당지질(glycolipids)과 같은 극성 구조의 지질을 가지는데, 이러한 지질의 생화학적 조성 및 양이 수확 후, 건조 및 저장 기술에 의해 변경될 수 있다. 대부분의 미세조류는 수확 후 장기간 보관 시에 세포 호흡을 통해 저장된 지방을 소모하는 것으로 알려져 있고, 지질을 유리 지방산으로 분해시킬 수 있는 리파제(lipase)를 포함하고 있어, 실온에서 보관되는 동안 지질의 상당한 양이 손실되고 품질의 감소되는 문제가 있다. 따라서, 상기와 같은 이유 때문에, 미세조류의 습식 바이오매스는 이용가능 하자마자 처리되어야 하는 것이 필수적이다.However, algal biodiesel, despite its high potential, uses extremely high process costs of dehydration, drying, extraction and processing when microalgae are used for biodiesel production. Microalgae also have polar structures such as monoglycerides (MAGs, monoglycerides), diglycerides (DAGs, diglycerides) and triglycerides (TAGs, triglycerides), and polar structures such as phospholipids and glycolipids. Having lipids, the biochemical composition and amount of such lipids can be altered by harvesting, drying and storage techniques. Most microalgae are known to consume stored fat through cellular respiration during long-term storage after harvesting, and contain lipases that can break down lipids into free fatty acids, resulting in significant amounts of lipids during storage at room temperature. There is a problem that the amount is lost and the quality is reduced. Thus, for this reason, it is essential that the microalgae's wet biomass be treated as soon as it is available.
전통적으로 습식 바이오매스는 수확 후 건조되고, 연료로 변환되기 전에 지질을 먼저 추출한다. 지질 추출을 위해, 거친 셀룰로오스로 구성된 미세조류의 세포벽은 반드시 파괴해야 한다. 그 후에 물리적(냉압착, 프렌치 프레스, 균질화 및 캐비티 방법) 및 화학적(용매 추출) 방법들에 의해서 미세조류로부터 지질을 회수할 수 있다. 지질에 대한 용매 추출 공정은 일반적으로 클로로포름, 메탄올 및 물과 같은 염소 또는 중성 용제의 다른 조합을 사용하는 것으로 수행되며, 추출 이후에, 중성 지질은 헥산(hexane) 분획을 통해 얻을 수 있다. 대부분의 개별 방법은 지질의 높은 회수에 충분하지 않기 때문에, 효과적인 추출을 위해 이러한 방법들의 조합이 필요하다. 하지만, 건조 및 추출 단계들의 모든 것들은 에너지 집약적이고, 비용이 비싸며, 많은 용매를 사용하고, 여러 단계를 필요로 하는 과정이다.Traditionally, wet biomass is dried after harvesting and the lipids are first extracted before being converted to fuel. For lipid extraction, the cell walls of microalgae composed of coarse cellulose must be destroyed. Lipids can then be recovered from the microalgae by physical (cold press, French press, homogenization and cavity methods) and chemical (solvent extraction) methods. Solvent extraction processes for lipids are generally carried out using other combinations of chlorine or neutral solvents such as chloroform, methanol and water, and after extraction, the neutral lipids can be obtained via hexane fractions. Since most individual methods are not sufficient for high recovery of lipids, a combination of these methods is required for effective extraction. However, all of the drying and extraction steps are energy intensive, expensive, use many solvents and require several steps.
아직까지 미세조류, 효모 또는 박테리아의 습식 바이오매스로부터 지방산 에스테르의 생산을 위해 공개된 비용 효율적인 공정이 없다. 본 발명은 이러한 기본적인 한계들을 모두 극복하고, 습식 바이오매스에서 지방산 에스테르를 생산하는 새롭고 단순화된, 비용 효율적인 공정을 개발하고자 하였다. 또한 소비된 폐기물, 특히 미생물 발효의 유기 영양분 또는 에탄올 생산을 위한 비료로서 활용될 수 있는 가수분해된 바이오매스와 같은 폐기물의 활용과 같은, 공정에 있어서 여러 다른 관련된 개선점들 또한 본 발명의 일부를 구성한다.There is yet no published cost effective process for the production of fatty acid esters from wet biomass of microalgae, yeast or bacteria. The present invention seeks to overcome all of these basic limitations and to develop a new, simplified, cost-effective process for producing fatty acid esters in wet biomass. In addition, several other related improvements in the process, such as the use of spent waste, in particular wastes such as hydrolyzed biomass, which can be utilized as fertilizers for the production of organic nutrients of microbial fermentation or ethanol, also form part of the invention. do.
한편, 한국공개특허 제2013-0037516호에는 '착유 및 추출과정을 생략한 통합형 무촉매 연속식 바이오디젤 전환 공정'이 개시되어 있고, 한국등록특허 제1264543호에는 '미세조류로부터 바이오디젤용 원료유를 추출하는 방법 및 이를 이용한 바이오디젤 생산방법'이 개시되어 있으나, 본 발명의 습식 바이오매스로부터 고에너지 바이오디젤의 직접적인 생산공정에 대해서는 기재된 바가 없다.Meanwhile, Korean Patent Publication No. 2013-0037516 discloses an 'integrated non-catalyst continuous biodiesel conversion process without omission of milking and extraction', and Korean Patent No. 1264543 discloses 'raw material for biodiesel from microalgae'. Method of extracting and biodiesel production using the same 'is disclosed, but there is no description of the direct production process of high-energy biodiesel from the wet biomass of the present invention.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자는 별도의 지질 추출 과정 없이, 수분 함량이 높은 미세조류에 알코올로 전처리를 하고, 상기 전처리된 미세조류에 다시 알코올 및 촉매를 처리하고 열을 가해 에스테르 교환 반응을 수행하여, 고에너지 바이오디젤인 지방산 에틸 에스테르를 생산하는 방법을 개발함으로써, 본 발명을 완성하였다.The present invention is derived by the above requirements, the present inventors pre-treatment with alcohol to the microalgae with high moisture content, without additional lipid extraction process, the alcohol and catalyst to the pre-treated microalgae again and heat The present invention was completed by developing a method for producing fatty acid ethyl ester, which is a high-energy biodiesel, by adding a transesterification reaction.
상기 과제를 해결하기 위해, 본 발명은In order to solve the above problems, the present invention
습식 바이오매스에 알코올을 첨가하여 전처리하는 단계; 및Pretreatment by adding alcohol to the wet biomass; And
상기 전처리된 바이오매스에 알코올 및 촉매를 가한 후, 가열하여 에스테르 교환 반응을 수행하는 단계를 포함하는 것을 특징으로 하는 지질을 추출하지 않고 습식 바이오매스로부터 바이오디젤을 직접적으로 생산하는 제조 방법을 제공한다.It provides a method for producing biodiesel directly from the wet biomass without extracting lipids, comprising the step of adding an alcohol and a catalyst to the pre-treated biomass, followed by heating to perform a transesterification reaction. .
본 발명은 수분 함량이 높은 바이오매스로부터 바이오디젤을 직접적으로 생산하는 제조방법에 관한 것으로, 본 발명의 방법은 미세조류를 사용하여 별도의 착유 및 추출 공정 없이 고에너지 바이오디젤을 만들어 내는데 효과적으로 적용할 수 있다. 또한, 본 발명의 방법은 지질 추출 공정이 없기 때문에 기존의 방법보다 비용 효율적이며, 지질을 분리하기 위한 클로로포름, 디클로로메탄 및 사염화탄소 등의 용매 등이 사용되지 않고, 공정과정 중에 발생한 폐기물을 재사용할 수 있는 개선된 공정이므로 친환경적인 효과를 기대할 수 있다.The present invention relates to a manufacturing method for producing biodiesel directly from a biomass having a high moisture content, and the method of the present invention can be effectively applied to produce high energy biodiesel without using a separate milking and extraction process using microalgae. Can be. In addition, the method of the present invention is more cost-effective than conventional methods because there is no lipid extraction process, and solvents such as chloroform, dichloromethane and carbon tetrachloride for separating lipids are not used, and wastes generated during the process can be reused. As it is an improved process, eco-friendly effects can be expected.
도 1은 본 발명의 미세조류로부터 바이오디젤을 직접적으로 생산하는 제조방법의 공정도이다.1 is a process chart of the production method for producing biodiesel directly from the microalgae of the present invention.
도 2는 알코올 전처리 조건 중 처리시간에 따른 바이오디젤(FAEE)의 생산량을 비교한 결과이다. FAEE; fatty acid ethyl esterFigure 2 is a result of comparing the production of biodiesel (FAEE) according to the treatment time of alcohol pretreatment conditions. FAEE; fatty acid ethyl ester
도 3은 알코올 전처리 처리 횟수별 바이오디젤의 생산량을 비교한 결과이다.Figure 3 is a result of comparing the production amount of biodiesel by the number of alcohol pretreatment treatment.
도 4는 알코올 전처리 조건 중 바이오매스에 대한 알코올 부피비에 따른 바이오디젤의 생산량을 비교한 결과이다.Figure 4 is a result of comparing the production of biodiesel according to the alcohol volume ratio to the biomass of alcohol pretreatment conditions.
도 5는 에스테르 교환 반응의 반응시간에 따른 바이오디젤의 생산량을 비교한 결과이다.5 is a result of comparing the biodiesel production according to the reaction time of the transesterification reaction.
도 6은 에스테르 교환 반응시 온도별 바이오디젤의 생산량을 비교한 결과이다.Figure 6 is a result of comparing the biodiesel production by temperature during the transesterification reaction.
도 7은 에스테르 교환 반응에 사용된 촉매인 황산의 사용량에 따른 바이오디젤의 생산량을 비교한 결과이다.7 is a result of comparing biodiesel production according to the amount of sulfuric acid which is a catalyst used in the transesterification reaction.
도 8은 에스테르 교환 반응에 사용된 촉매인 앰벌리스트(amberlyst)의 사용량에 따른 바이오디젤의 생산량을 비교한 결과이다.8 is a result of comparing biodiesel production according to the amount of Amberlyst, a catalyst used in the transesterification reaction.
도 9는 앰벌리스트 촉매를 사용한 에스테르 교환 반응의 반응시간에 따른 바이오디젤의 생산량을 비교한 결과이다.9 is a result of comparing the biodiesel production according to the reaction time of the transesterification reaction using the Amberlyst catalyst.
도 10은 본 발명의 공정 과정 중 조류내 지질의 분포를 세 종류의 미세조류 에틀리아, 난노클로롭시스 및 오란티오키트리움에서 확인한 결과이다. Lipid in residual biomass; 전환 후 남아있는 바이오매스, Alcohol fraction(pretreatment); 습식 바이오매스의 전처리 후 회수된 알코올, Alcohol fraction(conversion); 바이오매스, 산 및 열을 이용하여 에스테르 교환 반응을 수행한 알코올 분획.Figure 10 is the result of confirming the distribution of lipids in algae during the process of the present invention in three types of microalgae Atria, Nannochloropsis and Oranthiochitrium. Lipid in residual biomass; Biomass, alcohol fraction (pretreatment) remaining after conversion; Alcohol recovered after pretreatment of wet biomass, Alcohol fraction (conversion); Alcohol fractions having undergone transesterification using biomass, acid and heat.
도 11은 저급 알코올인 메탄올, 에탄올 및 부탄올을 이용하여 생성된 바이오디젤의 지방산 조성을 분석한 결과이다. MeOH, 메탄올; EtOH, 에탄올; BuOH, 부탄올; C16:0, 팔미트산(Palmitic acid); C16:1, 팔미톨레산(Palmitoleic acid); C18, 스테아르산(Stearic acid); C18:1, 올레산(Oleic acid); C18:2, 리놀레산(Linoleic acid); C18:3, 리놀렌산(Linolenic acid).11 is a result of analyzing the fatty acid composition of the biodiesel produced using methanol, ethanol and butanol as lower alcohols. MeOH, methanol; EtOH, ethanol; BuOH, butanol; C16: 0, Palmitic acid; C16: 1, Palmitoleic acid; C18, stearic acid; C18: 1, oleic acid; C18: 2, linoleic acid; C18: 3, linolenic acid.
도 12는 본 발명의 재사용 에탄올의 바이오디젤 생산 효율을 분석한 결과로, 재사용 에탄올과 신선한 에탄올을 사용하여 바이오디젤을 생산하는 경우를 비교한 것이다.12 is a result of analyzing the biodiesel production efficiency of the reused ethanol of the present invention, it compares the case of producing biodiesel using the reused ethanol and fresh ethanol.
본 발명의 목적을 달성하기 위하여, 본 발명은In order to achieve the object of the present invention, the present invention
습식 바이오매스에 알코올을 첨가하여 전처리하는 단계; 및Pretreatment by adding alcohol to the wet biomass; And
상기 전처리된 바이오매스에 알코올 및 촉매를 가한 후, 가열하여 에스테르 교환 반응을 수행하는 단계를 포함하는 것을 특징으로 하는 지질을 추출하지 않고 습식 바이오매스로부터 직접 바이오디젤을 제조하는 방법을 제공한다.After adding alcohol and a catalyst to the pretreated biomass, a method for producing biodiesel directly from the wet biomass without extracting lipids, comprising the step of performing a transesterification reaction by heating.
본 발명의 일 구현 예에 따른 방법에서, 상기 습식 바이오매스는 지질을 함유하는 살아있는 미생물로 바이오디젤을 생산할 수 있는 원료이며, 미세조류, 효모, 곰팡이, 박테리아 또는 미생물 슬러리 등의 어떠한 유형일 수 있으며 담수나 해수의 생물 종일 수 있고, 바람직하게는 미세조류일 수 있으나, 이에 제한되지 않는다. 상기 미생물은 종속영양, 독립영양 또는 혼합영양의 방법으로 배양된 것일 수 있다.In the method according to an embodiment of the present invention, the wet biomass is a raw material capable of producing biodiesel as a living microorganism containing lipids, and may be any type of microalgae, yeast, mold, bacteria or microbial slurry, and fresh water. B may be a species of seawater, preferably microalgae, but is not limited thereto. The microorganism may be cultured by a heterotrophic, autotrophic or mixed nutrition.
상기 미세조류는 원심분리(centrifugation), 응집(flocculation), 바이오응집(bio-flocculation), 여과(filtration) 방법 등에 의해 수확할 수 있으나, 이에 제한되지 않는다.The microalgae may be harvested by centrifugation, flocculation, bio-flocculation, filtration, etc., but are not limited thereto.
본 발명의 상기 미세조류는 에틀리아(Ettlia), 두날리엘라(Dunaliella), 클로렐라(Chlorella), 난노클로롭시스(Nannochloropsis), 고렌키니아(Golenkinia), 스피룰리나(Spirulina), 클라미도모나스(Chlamydomonas), 크루코커스(Chroococcus), 채토세로스(Chaetoceros), 아크난테스(Achnanthes), 엠포라(Amphora) 종 등일 수 있으며, 바람직하게는 에틀리아 올레오아분단스(Ettlia oleoabundans), 난노클로롭시스 살리나(Nannochloropsis salina), 난노클로롭시스 가디타나(Nannochloropsis gaditana), 두날리엘라 바르다윌(Dunaliella bardawil), 두날리엘라 살리나(Dunaliella salina), 두날리엘라 프리모렉타(Dunaliella primolecta), 클로렐라 불가리스(Chlorella vulgaris), 클로렐라 에모르소니(Chlorella emorsonii), 클로렐라 미누티시마(Chlorella minutissima), 클로렐라 소로키니아나(Chlorella sorokiniana), 스피룰리나 플라텐시스(Spirulina platensis), 사이클로텔라 크립티카(Cyclotella cryptica), 테트라셀미스 수에시카(Tetraselmis suecica), 모노라피디엄(Monoraphidium), 보트리오코커스 브라우니(Botryococcus braunii), 스티코쿠스(Stichococcus), 해마토코커스 플루비알리스(Haematococcus pluvialis), 패오닥틸룸 트리코뮤텀(Phaeodactylum tricomutum), 이소크리시스 갈바나(Isochrysis galbana), 니츠쉬아 클로스테리움(Nitzschia closterium), 오란티오키트리움(Aurantiochytrium), 클라미도모나스 페리그라눌라타(Chlamydomonas perigranulata) 등일 수 있으며, 더욱 바람직하게는 에틀리아 종(Ettlia sp) 또는 난노클로롭시스 종(Nannochloropsis sp) 일 수 있으나, 이에 제한되지 않는다. 상기 박테리아는 시네코시스티스(Synechocystis) 등일 수 있으나, 이에 제한되지 않는다. 상기 효모는 크립토코커스 커바투스(Cryptococcus curvatus), 크립토코커스 종(Cryptococcus sp.) 등일 수 있으나, 이에 제한되지 않는다.The microalgae of the present invention is Ettlia, Dunaliella, Chlorella, Nannochloropsis, Golenkinia, Spirulina, Chlamydomonas ( Chlamydomonas, Chroococcus, Chaetoceros, Achnanthes, Amphora species, and the like, preferably Ettlia oleoabundans , Nanocloc Rob cis Salina (Nannochloropsis salin a), nanno claw Rob cis Gardiner appear (Nannochloropsis gaditana), two flying it Ella right Wiltshire (Dunaliella bardawil), two flying it Ella Salina (Dunaliella salina), two flying it Ella Primo rekta (Dunaliella primolecta), chlorella Bulgari ( Chlorella vulgaris ), Chlorella emorsonii , Chlorella minutissima , Chlorella sorokiniana , Spirulina platensis , Cyclotella cryptica , Tetraselmis suecica , Monoraphidium , Botryococcus braunii , Stichococcus , Hamato Lactococcus flat ruby Alice (Haematococcus pluvialis), L ohdak tilrum tricot myuteom (Phaeodactylum tricomutum), isopropyl Cri cis galvanic or (Isochrysis galbana), Chemnitz shea Claus Te Solarium (Nitzschia closterium), Oran thio kit Solarium (Aurantiochytrium), Chlamydomonas Perlamulata ( Chlamydomonas perigranulata ) and the like, more preferably may be Ettlia sp or Nannochloropsis sp, but is not limited thereto. The bacterium may be Synechocystis and the like, but is not limited thereto. The yeast may be, but not limited to, Cryptococcus curvatus ( Cryptococcus curvatus ), Cryptococcus sp.
배양된 미세조류는 수확 후 본 발명의 상기 제조방법을 통해 바이오디젤 생산의 원료로 사용될 때 수분함량이 10~99 중량%, 바람직하게는 60~90 중량%, 더욱 바람직하게는 80~90 중량%일 수 있으나, 이에 제한되지 않는다.The cultured microalgae is 10 to 99% by weight, preferably 60 to 90% by weight, more preferably 80 to 90% by weight when used as a raw material for biodiesel production through the production method of the present invention after harvesting. It may be, but is not limited thereto.
본 발명의 일 구현 예에 따른 방법에서, 전처리 단계에 사용되는 알코올은 바이오매스:알코올의 부피비가 1:0.1~100일 수 있고, 바람직하게는 1:1~100일 수 있고, 더욱 바람직하게는 1:1~10일 수 있고, 가장 바람직하게는 1:10일 수 있으나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the alcohol used in the pretreatment step may have a volume ratio of biomass: alcohol of 1: 0.1 to 100, preferably 1: 1 to 100, more preferably It may be 1: 1 to 10, and most preferably 1:10, but is not limited thereto.
본 발명의 일 구현 예에 따른 방법에서, 상기 전처리 횟수는 1회 이상, 바람직하게는 1회 내지 10회일 수 있으나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the number of pretreatment may be one or more times, preferably 1 to 10 times, but is not limited thereto.
본 발명의 일 구현 예에 따른 방법에서, 상기 (1)단계의 알코올은 매우 흡습성(hygroscopic)이며 탈수(dehydration)를 일으킬 수 있는 것이면 제한되지 않으나, 바람직하게는 메탄올, 에탄올, 프로판올 또는 부탄올 등의 저급 알코올일 수 있으며, 가장 바람직하게는 에탄올일 수 있으나, 이에 제한되지 않는다. 상기 알코올은 바이오매스 내의 과량의 물을 제거하거나 바이오디젤의 수율을 낮추는 리파아제(lipase)를 저해하거나 에스테르 교환 반응의 저해제의 활성을 저해시킬 수 있다.In the method according to an embodiment of the present invention, the alcohol of step (1) is very hygroscopic and is not limited so long as it may cause dehydration, preferably methanol, ethanol, propanol or butanol, and the like. It may be a lower alcohol, most preferably ethanol, but is not limited thereto. The alcohol may inhibit the lipase that removes excess water in the biomass, lowers the yield of biodiesel, or inhibits the activity of the inhibitor of the transesterification reaction.
또한, 전처리에 사용된 알코올은 바람직하게는 본 발명의 바이오디젤을 생산하기 위한 공정 과정 중에 재순환되어 사용될 수 있으나, 이에 제한되지 않는다.In addition, the alcohol used in the pretreatment may preferably be recycled and used during the process for producing the biodiesel of the present invention, but is not limited thereto.
본 발명의 일 구현 예에 따른 방법에서, 상기 전처리 된 습식 바이오매스로부터 지방산 에스테르의 바이오디젤을 생산하기 위해 에스테르 교환 반응의 촉매를 첨가하여 사용하는데, 상기 촉매는 산 촉매, 염기 촉매, 균일(homogeneous) 촉매, 불균일(heterogeneous) 촉매, 효소 촉매 또는 임의의 다른 촉매 등일 수 있으며, 바람직하게는 제올라이트, 헤테로폴리산 등의 고체산촉매, 불산, 황산, 인산 등의 무기산촉매, 수산화나트륨, 수산화칼륨 등의 염기 촉매, 앰벌리스트(amberlyst) 등의 이온교환수지촉매일 수 있고, 더욱 바람직하게는 황산, 염산, 질산, 아세틸크로라이드 등의 산 촉매이며, 더더욱 바람직하게는 황산일 수 있으나, 이에 제한되지 않는다.In a method according to an embodiment of the present invention, a catalyst of a transesterification reaction is used to produce a biodiesel of fatty acid ester from the pretreated wet biomass, wherein the catalyst is an acid catalyst, a base catalyst, a homogeneous ), A heterogeneous catalyst, an enzyme catalyst or any other catalyst, and the like, and preferably, a solid acid catalyst such as zeolite and heteropoly acid, an inorganic acid catalyst such as hydrofluoric acid, sulfuric acid and phosphoric acid, and a base catalyst such as sodium hydroxide and potassium hydroxide. It may be an ion exchange resin catalyst such as Amberlyst, more preferably an acid catalyst such as sulfuric acid, hydrochloric acid, nitric acid, acetyl chloride, and more preferably sulfuric acid, but is not limited thereto.
본 발명의 바이오디젤 생산 공정 과정에서는 알코올과 촉매를 1회 이상 재사용하여 반응 혼합물 내에 있는 바이오디젤 함량을 증가시킬 수 있다.In the biodiesel production process of the present invention, alcohol and catalyst may be reused one or more times to increase the biodiesel content in the reaction mixture.
또한 본 발명의 일 구현 예에 따른 방법에서, 에스테르 교환 반응의 단계는 60~150℃, 바람직하게는 80~120℃의 열을 가하고, 10~300rpm의 교반 속도로 5~300분 동안 반응시킬 수 있으나, 이에 제한되지 않는다.In addition, in the method according to an embodiment of the present invention, the step of the transesterification reaction may be heated for 60 to 150 ℃, preferably 80 to 120 ℃, and reacted for 5 to 300 minutes at a stirring speed of 10 to 300 rpm However, the present invention is not limited thereto.
따라서, 본원 발명은 바람직하게는Therefore, the present invention preferably
(1) 습식 미세조류에 알코올을 첨가하여 전처리하는 단계; 및(1) pretreatment by adding alcohol to the wet microalgae; And
(2) 상기 전처리된 미세조류에 알코올 및 산 촉매를 가한 후, 60~150℃에서 가열하여 10~300분 동안 에스테르 교환 반응을 수행하는 단계를 포함하는 것을 특징으로 하는 지질을 추출하지 않고 습식 미세조류로부터 지방산 알킬 에스테르의 직접 제조 방법을 제공한다.(2) adding alcohol and an acid catalyst to the pretreated microalgae, and heating at 60-150 ° C. to perform a transesterification reaction for 10-300 minutes. Provided is a method for the direct preparation of fatty acid alkyl esters from algae.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.
실시예 1. 미세조류 습식 바이오매스의 준비Example 1 Preparation of Microalgae Wet Biomass
미세조류 에틀리아 종(Ettlia sp), 클로렐라 프로토테코이데스(Chlorella protothecoides) 또는 난노클로롭시스 종(Nannochloropsis sp)을 500㎖ 플라스크, 20ℓ 반응기 및 담수 혹은 해수를 사용하는 1000ℓ 야외 대량 배양 수로 형 연못에서 독립 영양, 혼합 영양 또는 종속 영양 방법으로 배양하였다. Microalga Ettlia sp, Chlorella protothecoides or Nannochloropsis sp in a 500 ml flask, a 20 l reactor and a 1000 l outdoor bulk culture channel using fresh or seawater The ponds were cultured by independent, mixed or heterotrophic methods.
배양 배지의 건조 세포 농도는 0.1%에서 1.4%(w/v)까지 다양하였다. 세포 농도는 종속 영양 상태에서 높고, 독립 영양 상태에서 낮게 확인되었다. 배양된 세포들은 세포 내 및 세포 밖에 높은 수준의 수분 함량을 나타내었다. 세포 외 물은 막 여과, 원심 분리, 침전 혹은 부유(부상법)를 포함하지만 이에 국한되지 않는 미생물 생산에서 알려진 방법들 중 하나를 사용하여 탈수시켰다. 효모 세포 크립토코커스 커바투스(Cryptococcus curvatus) 및 크립토코커스 종(Cryptococcus sp.)을 질소 및 탄소원으로 보충된 유기 한정 배지에서 25℃에서 16시간 동안 키웠다. 수확한 바이오매스는 물과 지질의 세포 내 함량에서 다양한 변화를 나타내므로, 수확 후, -80℃에서 공정에 사용되기 전까지 보관하였다.Dry cell concentration in the culture medium varied from 0.1% to 1.4% (w / v). Cell concentrations were found high in the heterotrophic state and low in the autotrophic state. Cultured cells exhibited high levels of water content both intracellularly and extracellularly. Extracellular water was dehydrated using one of the known methods in microbial production, including but not limited to membrane filtration, centrifugation, precipitation or flotation (floating). Yeast cell Cryptococcus curvatus and Cryptococcus sp. Were grown for 16 hours at 25 ° C. in organic defined medium supplemented with nitrogen and a carbon source. Since the harvested biomass shows various changes in the intracellular contents of water and lipids, the harvested biomass was stored at -80 ° C until used in the process.
세포들의 0.3g은 세포 내 수분의 정확한 양을 알기 위해서, 동결 건조 방법을 이용해서 건조시키고, 건조된 세포들은 기존의 지방산 메틸 에스테르(FAME) 함량 분석 방법 및 가스 크로마토그래피(GC, gas chromatography)로 분석하였다. 또한, 건조 바이오매스의 지질량을 다음과 같은 단계들을 통해 분석하였다 : 건조한 조류 세포들의 약 10㎎은 2:1의 클로로포름:메탄올 용액 2㎖과 혼합하고, 테프론으로 봉인된 나사로 뚜껑을 덮은 파이렉스 튜브에서 10분 동안 교반하여 지질을 추출하였다. 그 후, 헵타데칸산(C17:0) 0.5㎎을 포함하는 1㎖의 클로로포름을 내부 표준 물질로 튜브에 첨가하고, 메탄올 1㎖ 및 황산 300㎕을 와이즈 썸 HB 96-D 가열 블록을 사용하여 100℃ 온도 하에서 에스테르 교환 반응을 위해 첨가하였다. 반응 후 샘플 튜브들을 물에서 상온으로 냉각시켰고, 증류수 1㎖을 잔류 메탄올 및 황산을 씻어 주기 위해 첨가하여 상 분리를 위해서 원심 분리하였고, 하층의 클로로포름 층을 0.2μm PVDF 주사기 필터(Whatman, 영국)를 통해서 여과한 후, 가스 크로마토그래피 분석에 사용하였다. 모든 샘플에 대한 가스 크로마토그래피 분석은 불꽃 이온화 검출기(flame ionization detector) 및 HP19091N-213 HP-INNOWax 폴리에틸렌 글리콜 컬럼(Agilent)을 장착한 애질런트 6890 가스 크로마토그래피(Agilent, 미국)를 사용하여 수행하였다. 각 지방산 메틸 에스테르(FAME) 피크는 37 component FAME 표준 혼합(Supelco, 미국)을 참조하여 식별하고 정량화하였다. 총 지질량은 용매와 내부 표준 물질의 피크를 제외한 모든 피크를 합산하여 계산하였다.0.3g of cells are dried using a freeze drying method to know the exact amount of water in the cells, and the dried cells are analyzed by conventional fatty acid methyl ester (FAME) content analysis method and gas chromatography (GC). Analyzed. In addition, the lipid content of the dry biomass was analyzed through the following steps: Approximately 10 mg of dry algal cells were mixed with 2 ml of a 2: 1 chloroform: methanol solution and capped with a Teflon capped Pyrex tube The lipid was extracted by stirring for 10 minutes at. Thereafter, 1 ml of chloroform containing 0.5 mg of heptadecanoic acid (C17: 0) was added to the tube with an internal standard, and 1 ml of methanol and 300 µl of sulfuric acid were added using a Wise Sum HB 96-D heating block. It was added for transesterification reaction under the temperature of ℃. After the reaction, the sample tubes were cooled to room temperature in water, and 1 ml of distilled water was added to rinse the residual methanol and sulfuric acid, followed by centrifugation for phase separation. The lower chloroform layer was washed with 0.2 μm PVDF syringe filter (Whatman, UK). After filtration through, it was used for gas chromatography analysis. Gas chromatography analysis for all samples was performed using Agilent 6890 Gas Chromatography (Agilent, USA) equipped with a flame ionization detector and HP19091N-213 HP-INNOWax polyethylene glycol column (Agilent). Each fatty acid methyl ester (FAME) peak was identified and quantified with reference to the 37 component FAME standard mix (Supelco, USA). Total lipid amount was calculated by summing all peaks except the peaks of solvent and internal standard.
수확 후, 미생물 바이오매스는 자연스럽게 약 60~90% 사이의 수분을 포함한다. 미세 조류의 습식 바이오매스는 바이오 디젤 제조 동안 에스테르 교환 반응 과정을 억제하는 많은 억제제를 가지고있다. 따라서 이 과정에서, 우리는 물 혹은 효소와 같은 억제제를 비활성화하기 위해 미생물학적으로 합성된 용매를 사용해서, 습식 바이오매스를 세척하였다. 습식 바이오매스를 진동 기기에서 300rpm의 속도로 1:1~10의 비율로 미생물학적으로 합성된 용매와 혼합하였다. 용매는 지질을 분해하고, 바이오 디젤 제조의 공정을 저해하는 과량의 물을 제거할 수 있는 효소의 활동을 중지하기 위해서 역할을 한다. 그 후, 용매는 원심 분리, 여과 및 침전과 같은 알려진 분리 방법을 통해서 바이오매스로부터 분리된다.After harvesting, the microbial biomass naturally contains between about 60 and 90% moisture. Wet biomass of microalgae has many inhibitors that inhibit the transesterification process during biodiesel manufacturing. Therefore, in this process, we washed the wet biomass using a microbiologically synthesized solvent to inactivate inhibitors such as water or enzymes. Wet biomass was mixed with a microbiologically synthesized solvent at a rate of 1: 1-10 at a speed of 300 rpm in a vibrating machine. Solvents serve to stop the activity of enzymes that can degrade lipids and remove excess water that interferes with the process of biodiesel production. The solvent is then separated from the biomass through known separation methods such as centrifugation, filtration and precipitation.
실시예 2. 전처리 조건 최적화 : 처리시간Example 2 Optimization of Pretreatment Conditions: Treatment Time
미세조류 세포는 두꺼운 셀룰로오스 구조들 뒤에 세포 내 지질이 격리되어 있는 사실 때문에 전처리를 수행하였다. 비교적 두꺼운 세포벽을 가진 미세조류 계통 에틀리아 종을 배양하고, 원심 분리를 이용하여 미세조류를 수확하였다. 수확된 미세조류 샘플의 수분 함량은 80~90%의 범위에 있었다.Microalgae cells were pretreated due to the fact that intracellular lipids were sequestered after thick cellulose structures. Microalgal strains of Atria with relatively thick cell walls were cultured and microalgae were harvested by centrifugation. The moisture content of the harvested microalgal samples was in the range of 80-90%.
먼저, 전처리 공정의 알코올, 본 발명의 경우 에탄올, 처리시간의 효과를 조사하였다. 10~60분까지 다른 처리시간을 주고 바이오디젤 생산량을 비교하였다. 이론적으로 에탄올은 거의 순간적으로 세포들을 탈수시키기 때문에, 에탄올 처리시간의 증가 효과는 무시할 수 있는 것으로 예측되었다. 생산된 지방산 에틸 에스테르(FAEE)의 양을 측정한 결과, 처리시간에 따른 바이오디젤 생산량 변화는 관찰되지 않았고, 생산된 지방산 에틸 에스테르의 양은 모든 처리시간에 일정한 수준으로 확인되었다(도 2). 이는 본 발명의 에탄올 전처리 과정이 빠른 탈수와 함께 세포 구조의 파괴를 동시에 이룬다는 것을 보여 준다.First, the effects of alcohol in the pretreatment process, ethanol in the present invention, and treatment time were investigated. Different treatment times were given from 10 to 60 minutes to compare biodiesel production. Theoretically, since ethanol dehydrates cells almost instantaneously, the effect of increasing the ethanol treatment time was predicted to be negligible. As a result of measuring the amount of produced fatty acid ethyl ester (FAEE), no change in biodiesel production with treatment time was observed, and the amount of produced fatty acid ethyl ester was confirmed at a constant level at all treatment times (FIG. 2). This shows that the ethanol pretreatment process of the present invention simultaneously destroys the cell structure with rapid dehydration.
실시예 3. 전처리 조건 최적화 : 처리 횟수Example 3 Optimization of Pretreatment Conditions: Number of Treatments
에탄올 처리시간에 따른 영향을 확인한 후에, 에탄올 전처리의 처리 횟수가 바이오디젤의 생산량에 미치는 영향을 조사하였다. 습식 바이오매스 샘플을 직접적인 에스테르 교환 단계 전에, 에탄올 전처리를 0, 1 및 2회 반복 처리하였다. 그 결과, 전처리의 횟수가 0회(무처리)에서 2회로 증가할 때, 지방산 에틸 에스테르(FAEE)의 생산량이 4배 이상 증가되는 것을 관찰하였다(도 3). 이는, 에탄올 전처리 공정의 반복이 습식 바이오매스 샘플의 완전한 탈수를 야기하고, 이의 영향으로 바이오디젤의 수율이 증가되는 것으로 예상되었다.After confirming the effect of ethanol treatment time, the effect of the number of times of ethanol pretreatment on the production of biodiesel was investigated. The wet biomass sample was subjected to 0, 1 and 2 replicates of ethanol pretreatment before the direct transesterification step. As a result, when the number of times of pretreatment increased from 0 times (no treatment) to two times, it was observed that the production amount of fatty acid ethyl ester (FAEE) increased more than four times (Fig. 3). It was expected that repetition of the ethanol pretreatment process would result in complete dehydration of the wet biomass sample, with the effect of increasing biodiesel yield.
실시예 4. 전처리 조건 최적화 : 에탄올 양Example 4 Optimization of Pretreatment Conditions: Ethanol Amount
전처리 과정 및 에스테르 교환 단계 동안에 습식 바이오매스에 대한 에탄올의 비율 증가는 지방산 에틸 에스테르(FAEE)의 수율을 증가시킬 것으로 예상되었다. 우선, 전처리 과정에서 습식 바이오매스에 대한 에탄올의 비율이 1:1에서 최대 1:10까지 되는 조건의 바이오디젤 생산량을 비교하였다. 그 결과, 에탄올의 습식 바이오매스에 대한 비율이 증가하는 것과 비례하여 지방산 에틸 에스테르(FAEE)의 생산량이 6배 증가되는 것이 관찰되었다(도 4).Increasing the ratio of ethanol to wet biomass during the pretreatment and transesterification steps was expected to increase the yield of fatty acid ethyl esters (FAEE). First, biodiesel production was compared under the condition that the ratio of ethanol to wet biomass was 1: 1 to maximum 1:10 during the pretreatment. As a result, a 6-fold increase in the production of fatty acid ethyl ester (FAEE) was observed in proportion to the increase in the ratio of ethanol to the wet biomass (Fig. 4).
실시예 5. 에스테르 교환 반응(전환) 조건 최적화 : 시간Example 5 Optimization of Transesterification (Conversion) Conditions: Time
상기 전처리 조건의 최적화 후에, 트리글리세라이드(TAG)로부터 지방산 에틸 에스테르(FAEE)로의 직접적인 인 시츄(in situ) 에스테르 교환 반응(전환)에 대한 조건을 최적화하였다. 전환 최적화 조건 연구를 위해, 야외 대량 배양 시설인 200m3 크기의 개방형 연못에서 배양된 습식 바이오매스 샘플을 얻었다. 사용한 미세조류는 해수 서식 계통의 난노클로롭시스 오세아니카(Nannochloropsis oceanica)이고, 이 계통은 상대적으로 높은 지질 함량을 가지고 있다. 습식 바이오매스 샘플의 수분 함량은 65~70%의 범위임을 확인하였다.After optimization of the pretreatment conditions, the conditions for direct in situ transesterification (conversion) from triglycerides (TAG) to fatty acid ethyl esters (FAEE) were optimized. For the study of conversion optimization conditions, wet biomass samples were obtained from a 200 m 3 open pond, an outdoor mass culture facility. The microalgae used are Nannochloropsis oceanica , a seawater aquaculture system, which has a relatively high lipid content. The moisture content of the wet biomass sample was found to be in the range of 65-70%.
에스테르 교환 반응의 지속 시간의 증가는 바이오디젤 생산 수율을 향상시킬 것으로 예상되었고, 이에 전환 지속 시간을 10, 30, 60 및 120분으로 증가시키면서 수율의 변화를 확인해보았다. 그 결과, 인 시츄 에스테르 교환 반응의 수율이 전환 지속 시간이 증가함에 따라 점진적으로 증가되는 것을 확인하였다(도 5). Increasing the duration of the transesterification reaction was expected to improve the biodiesel production yield, thus confirming the change in yield while increasing the conversion duration to 10, 30, 60 and 120 minutes. As a result, it was confirmed that the yield of the in situ transesterification reaction gradually increased as the conversion duration increased (FIG. 5).
지질을 상층으로 배출할 때, 우리가 달성할 수 있는 공정의 최대 총 효율은 브리 건조 방법의 114% 였다.When discharging lipids to the upper layer, the maximum total efficiency of the process we can achieve was 114% of the Bree drying method.
실시예 6. 에스테르 교환 반응(전환) 조건 최적화 : 온도 조건Example 6 Optimization of Transesterification (Conversion) Conditions: Temperature Conditions
에스테르 교환 반응의 최적화 조건을 찾기 위해 전환시 반응 온도의 영향을 확인하였다. 더 높은 반응 온도가 더 높은 전환 수율을 가지고 올 것이라고 가설을 세웠고, 특히 100℃ 이상에서는 훨씬 더 에너지 집적화될 것으로 예상하였다. 이에 60~120℃ 사이의 온도 구간에서 2시간 동안 습식 바이오매스를 이용하여 에스테르 교환 반응을 수행하였다. 그 결과, 60℃의 온도 조건에서는 8.14mg의 지방산 에틸 에스테르가 생산되었고, 120℃의 온도 조건에서는 10.76mg의 바이오디젤이 생산되어, 약 32%의 증가율을 확인하였다(도 6). 그러나, 특별히 반응 온도가 100℃ 이상으로 증가된 이후에는 실시예 5에서 수행한 전환 기간 실험만큼의 큰 증가율은 관찰되지 않았다. 이것은 다른 조건들이 최적화되는 동안에, 낮은 전환 온도에서 높은 수율을 달성할 수 있는 가능성이 있음을 암시하였다.The effect of reaction temperature on conversion was checked to find the optimal conditions for transesterification reaction. It is hypothesized that higher reaction temperatures will bring higher conversion yields, and are expected to be even more energy integrated, especially above 100 ° C. The transesterification reaction was performed using a wet biomass for 2 hours at a temperature section between 60 ~ 120 ℃. As a result, 8.14 mg of fatty acid ethyl ester was produced at a temperature of 60 ° C., and 10.76 mg of biodiesel was produced at a temperature of 120 ° C., confirming an increase of about 32% (FIG. 6). However, especially after the reaction temperature was increased to 100 ° C. or more, no increase was observed as much as the conversion period experiment conducted in Example 5. This suggests the possibility of achieving high yields at low conversion temperatures while other conditions are being optimized.
실시예 7. 에스테르 교환 반응(전환) 조건 최적화 : 촉매의 양Example 7 Optimization of Transesterification (Conversion) Conditions: Amount of Catalyst
전환 시간과 반응 온도에 대한 최적화 조건 실험 이후에, 에스테르 교환 반응에서 촉매의 양을 변화시켜 그 영향에 초점을 맞추었다. 이를 위해서 98% 황산(H2SO4)을 에스테르 교환 반응을 위한 산 촉매로 사용하였다. 우리는 100, 300 및 500㎕의 촉매를 전체 반응 볼륨 3㎖에 첨가하고, 80℃의 온도 조건에서 2시간의 전환을 통해 지방산 에틸 에스테르(FAEE)의 수율을 확인하였다. 그 결과, 전체적으로, 촉매의 양이 증가함에 따라, 전환 수율이 증가하지 않는 것으로 관찰되었고(도 7), 이는 본 발명의 공정에서 적은 양의 촉매로도 효과적으로 바이오디젤을 생산할 수 있다는 것을 나타냈다.Optimization Conditions for Conversion Time and Reaction Temperature After the experiment, the amount of catalyst in the transesterification reaction was varied to focus on the effect. For this purpose 98% sulfuric acid (H 2 SO 4 ) was used as the acid catalyst for the transesterification reaction. We added 100, 300 and 500 μl of the catalyst to 3 ml of the total reaction volume and confirmed the yield of fatty acid ethyl ester (FAEE) through a 2 hour conversion at 80 ° C. temperature conditions. As a result, it was observed that as the amount of catalyst increased, the conversion yield did not increase (FIG. 7), indicating that biodiesel can be produced effectively even with a small amount of catalyst in the process of the present invention.
또한, 불균일(heterogeneous) 촉매인 앰벌리스트(amberlyst)-15 (표면 면적 50m2/g)를 황산 대신 에틀리아 종(Ettlia sp.) 바이오매스의 직접적인 에스테르 교환 반응을 위한 촉매로 사용하였다. 전환 시간은 2시간으로 하였고, 황산 촉매를 통한 반응의 지방산 에틸 에스테르 양과 비교하였다. 그 결과, 앰벌리스트의 경우, 황산 촉매의 전환 수율에는 미치지 못했지만, 그 사용량이 증가됨에 따라 전환 수율이 증가되는 것으로 확인되었다(도 8). 또한, 앰벌리스트 500mg을 촉매로 사용하고 에스테르 교환 반응의 지속 시간을 증가시킨 결과, 전술한 실시예 5의 경우와 같이 바이오디젤 생산 수율이 향상되는 것을 확인하였다(도 9).In addition, heterogeneous catalyst Amberlyst-15 (surface area 50 m 2 / g) was used as a catalyst for the direct transesterification of Ettlia sp. Biomass instead of sulfuric acid. The conversion time was 2 hours and compared with the amount of fatty acid ethyl ester of the reaction via sulfuric acid catalyst. As a result, in the case of Amberlyst, the conversion yield of the sulfuric acid catalyst was not reached, but it was confirmed that the conversion yield increased as the amount of use thereof increased (FIG. 8). In addition, as a result of increasing the duration of the transesterification reaction by using 500 mg of Amberlyst as a catalyst, it was confirmed that the biodiesel production yield was improved as in the case of Example 5 described above (FIG. 9).
실시예 8. 공정 중 지질 분포의 변화Example 8 Changes in Lipid Distribution in the Process
본 발명의 공정 중 지질 분포를 살펴본 결과, 전환되지 않은 지질은 잔류 바이오매스에 미량이 남아 있는 반면, 대부분의 지방산 에스테르는 알코올 분획에 발견되었다(도 10).Investigation of lipid distribution in the process of the present invention showed that unconverted lipids remained in trace biomass while most fatty acid esters were found in the alcohol fraction (FIG. 10).
난노클로롭시스의 경우에, 일부 바이오매스는 전처리 동안 이들 지질의 많은 양을 추출한다. 전처리 알코올 분획에서 이러한 추출된 지질은 모아서 이후에 에스테르 교환 반응을 수행한다.In the case of Nannochloropsis, some biomass extracts large amounts of these lipids during pretreatment. These extracted lipids in the pretreated alcohol fraction are collected and subsequently subjected to transesterification.
실시예 9. 미세조류 균주 간 비교Example 9 Comparison Between Microalgal Strains
전처리 및 전환 조건들의 최적화 이후에, 다른 종류의 미세조류 네 종, 에틀리아 종(Ettlia sp.), 난노클로롭시스 오세아니카(Nannochloropsis oceanica), 오란티오키트리움(Aurantiochytrium), 고렌키니아 종(Golenkinia sp.), 클로렐라 불가리스(Chlorella vulgaris) 및 난노클로롭시스 살리나(Nannochloropsis salina)를 이용하여 본 발명의 공정의 전체 효율을 측정하였다. 방법은 전체 지방산 에틸 에스테르(FAEE)의 함량을 측정하여 계산하였고, 다른 추출 공정을 벤치마킹하기 위한 분석적인 공정으로 기존의 건조 브리 방법(dry Bligh Dyer)과의 효율을 비교하였다. 그 결과 본 발명의 공정을 통한 바이오디젤의 생산 효율이 균주 특성에 따라 차이는 있지만, 기존의 건조 브리 방법의 효율보다 우수하거나 유사하다는 것을 발견하였다(표 1).After optimization of pretreatment and conversion conditions, four different species of microalgae, Ettlia sp., Nannochloropsis oceanica , Aurantiochytrium and Gorenkinia species (Golenkinia sp.), chlorella was measured the overall efficiency of the process of the invention using a vulgaris (chlorella vulgaris) and nanno claw Rob cis Salina (Nannochloropsis salina). The method was calculated by measuring the content of total fatty acid ethyl ester (FAEE), and compared with the conventional dry Bligh Dyer as an analytical process for benchmarking other extraction processes. As a result, the production efficiency of the biodiesel through the process of the present invention was found to be superior to or similar to the efficiency of the conventional dry bridging method, although there are differences depending on the strain characteristics (Table 1).
표 1
Figure PCTKR2014007027-appb-T000001
Table 1
Figure PCTKR2014007027-appb-T000001
실시예 10. 저급 알코올을 이용한 바이오디젤의 생산Example 10 Production of Biodiesel Using Lower Alcohol
에탄올 외 저급 알코올인 메탄올 및 부탄올을 사용하여 바이오디젤을 생산하였다. 생산 방법은 수분 함량이 약 75%인 에틀리아 종(Ettlia sp.)의 미세조류를 바이오매스로 사용하여, 바이오매스:알코올 부피비를 1:10으로 하고 10분 동안 1회 전처리를 수행한 후, 100㎕의 황산을 촉매로 사용하여 120℃에서 2시간 동안 에스테르 교환 반응을 실시하였다. 생성된 바이오디젤은 가스 크로마토그래피를 이용하여 지방산 조성을 분석하였다.Biodiesel was produced using methanol and butanol, lower alcohols than ethanol. The production method uses microalgae of Ettlia sp., Which has about 75% water content, as biomass, and performs pretreatment once for 10 minutes with a biomass: alcohol volume ratio of 1:10. , 100 μl of sulfuric acid was used as a catalyst and transesterification was carried out at 120 ° C. for 2 hours. The resulting biodiesel was analyzed for fatty acid composition using gas chromatography.
그 결과, 메탄올, 에탄올 및 부탄올을 이용한 모든 경우에서 바이오디젤을 생산할 수 있었으며, 그 생성량은 비슷한 수준으로 확인되었다. 또한, 에탄올을 사용하여 생산한 지방산 에틸 에스테르(FAEE)의 경우, 총 생산량은 10.6mg이었고, 가스 크로마토그래피를 통해 지방산 조성을 분석한 결과, 팔미트산(Palmitic acid, C16:0) 및 팔미톨레산(Palmitoleic acid, C16:1)이 각각 2.0과 0.3mg, 스테아르산(Stearic acid, C18), 올레산(Oleic acid, C18:1), 리놀레산(Linoleic acid, C18:2) 및 리놀렌산(Linolenic acid, C18:3)이 각각 0.4, 2.7, 1.6, 1.3mg을 이루고 있었다. 에탄올 외 메탄올 및 부탄올을 이용하여 바이오디젤을 생산한 경우에도 지방산 메틸 에스테르(FAME) 및 지방산 부틸 에스테르(FABE)의 전체 생성량 및 지방산 조성비율이 에탄올을 이용하여 바이오디젤을 생산한 경우와 비슷한 결과를 나타내었다(도 11). 또한 상기 바이오디젤의 생산량 및 효율은 기존의 건조 브리 방법의 생산 효율과 유사하거나 우수한 수준으로 확인되었다.As a result, biodiesel could be produced in all cases using methanol, ethanol and butanol, and the yield was confirmed to be similar. In addition, in the case of fatty acid ethyl ester (FAEE) produced using ethanol, the total production was 10.6 mg, and the analysis of fatty acid composition through gas chromatography showed that palmitic acid (C16: 0) and palmitoleic acid. (Palmitoleic acid, C16: 1) is 2.0 and 0.3mg, respectively, stearic acid (C18), oleic acid (C18: 1), linoleic acid (C18: 2), and linolenic acid (C18: 1) : 3) were 0.4, 2.7, 1.6, and 1.3 mg, respectively. Even in the case of producing biodiesel using methanol and butanol in addition to ethanol, the total production amount and fatty acid composition ratio of fatty acid methyl ester (FAME) and fatty acid butyl ester (FABE) were similar to those produced using biodiesel using ethanol. Is shown (FIG. 11). In addition, the production and efficiency of the biodiesel was confirmed to be similar or superior to the production efficiency of the conventional dry bridging method.
실시예 11. 재사용 에탄올의 바이오디젤 전환 효율Example 11. Biodiesel Conversion Efficiency of Reusable Ethanol
본 발명의 바이오디젤 생성공정에 따른 완료된 반응으로부터 생성된 지방산 에틸 에스테르(FAEE)가 혼합된 에탄올 혼합물을 미세조류 바이오매스의 다음 배치의 바이오디젤 생산을 위한 전환 반응에 사용하였다. 고렌키니아 종 습식 바이오매스(74.9% 수분량) 200mg에 탈수를 위한 전처리로 신선한 에탄올 2㎖을 처리하고, 재사용된 에탄올과 황산 또는 신선한 에탄올과 황산으로 에스테르 교환 반응을 실시하였다. 황산은 0 내지 200㎕의 다양한 농도로 처리하여, 산 촉매의 재사용성도 확인해보았다.Ethanol mixtures mixed with fatty acid ethyl esters (FAEE) produced from the completed reactions according to the biodiesel production process of the present invention were used in the conversion reaction for biodiesel production of the next batch of microalgal biomass. 200 ml of Gorenkinia wet type biomass (74.9% water content) was treated with 2 ml of fresh ethanol as a pretreatment for dehydration, and transesterified with recycled ethanol and sulfuric acid or fresh ethanol and sulfuric acid. Sulfuric acid was treated at various concentrations from 0 to 200 μl to confirm the reusability of the acid catalyst.
그 결과, 재사용 에탄올로부터 수득되는 바이오디젤의 양에는 큰 변화가 없었지만, 바이오매스로부터 생산되는 바이오디젤의 양은 신선한 에탄올을 사용한 반응보다 재사용 에탄올을 사용한 반응에서 더 많이 생산되는 것을 확인할 수 있었다. 또한, 상기 실시예 7의 결과에서와 같이 황산 촉매의 양은 그 사용량을 증가시켜도 바이오디젤의 생산량에는 큰 영향을 미치지 않음을 확인할 수 있었다(도 12). 상기의 결과를 통해, 본 발명의 바이오디젤의 직접적인 제조 방법에 있어서, 알코올과 촉매를 여러번 재사용하여 반응 혼합물 안에 바이오디젤 함량(v/v%)을 증가시킬 수도 있음을 알 수 있었다.As a result, there was no significant change in the amount of biodiesel obtained from reused ethanol, but the amount of biodiesel produced from biomass was confirmed to be more produced in the reaction using reused ethanol than the reaction using fresh ethanol. In addition, as shown in the result of Example 7, the amount of the sulfuric acid catalyst was confirmed that even if the amount of increase does not significantly affect the production of biodiesel (Fig. 12). From the above results, it can be seen that in the direct preparation method of the biodiesel of the present invention, the biodiesel content (v / v%) may be increased in the reaction mixture by reusing the alcohol and the catalyst several times.

Claims (16)

  1. (1) 습식 바이오매스에 알코올을 첨가하여 전처리하는 단계; 및(1) pretreatment by adding alcohol to the wet biomass; And
    (2) 상기 전처리된 바이오매스에 알코올 및 촉매를 가한 후, 가열하여 에스테르 교환 반응을 수행하는 단계를 포함하는 것을 특징으로 하는 지질을 추출하지 않고 습식 바이오매스로부터 바이오디젤의 직접 제조 방법.(2) directly adding the alcohol and the catalyst to the pretreated biomass, followed by heating to perform a transesterification reaction, wherein the method of producing biodiesel directly from the wet biomass without extracting lipids.
  2. 제1항에 있어서, 상기 습식 바이오매스는 지질 함유 미생물인 것을 특징으로 하는 습식 바이오매스로부터 바이오디젤의 직접 제조 방법.The method of claim 1, wherein the wet biomass is a lipid-containing microorganism.
  3. 제2항에 있어서, 상기 지질 함유 미생물은 미세조류, 효모, 곰팡이 또는 박테리아인 것을 특징으로 하는 습식 바이오매스로부터 바이오디젤의 직접 제조 방법.The method of claim 2, wherein the lipid-containing microorganism is microalgae, yeast, mold or bacteria.
  4. 제3항에 있어서, 상기 미생물은 종속영양, 독립영양 또는 혼합영양의 방법으로 배양된 것을 특징으로 하는 습식 바이오매스로부터 바이오디젤의 직접 제조 방법.4. The method of claim 3, wherein the microorganism is cultured by heterotrophic, autotrophic or mixed nutrition.
  5. 제3항에 있어서, 상기 미세조류는 에틀리아(Ettlia), 두날리엘라(Dunaliella), 클로렐라(Chlorella), 난노클로롭시스(Nannochloropsis), 고렌키니아(Golenkinia), 스피룰리나(Spirulina), 클라미도모나스(Chlamydomonas), 사이클로텔라(Cyclotella), 테트라셀미스(Tetraselmis), 모노라피디엄(Monoraphidium), 보트리오코커스(Botryococcus), 스티코쿠스(Stichococcus), 해마토코커스(Haematococcus), 패오닥틸룸(Phaeodactylum), 이소크리시스(Isochrysis), 니츠쉬아(Nitzschia), 오란티오키트리움(Aurantiochytrium), 크루코커스(Chroococcus), 채토세로스(Chaetoceros), 아크난테스(Achnanthes) 및 엠포라(Amphora) 종으로부터 이루어진 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는 습식 바이오매스로부터 바이오디젤의 직접 제조 방법.According to claim 3, wherein the microalgae are Ettlia, Dunaliella, Chlorella, Nannochloropsis, Golenkinia, Spirulina, Chlamydomonas, Cyclotella, Tetraselmis, Monooraphidium, Botryococcus, Stichococcus, Haematococcus, Pae Phaeodactylum, Isochrysis, Nitzschia, Aurantiochytrium, Chrococcus, Chaetoceros, Achnanthes, and Emporas (Achnanthes) Amphora) A method for producing biodiesel directly from a wet biomass, characterized in that at least one selected from the group consisting of.
  6. 제1항에 있어서, 상기 습식 바이오매스의 수분 함량은 10~99 중량%인 것을 특징으로 하는 습식 바이오매스로부터 바이오디젤의 직접 제조 방법.The method of claim 1, wherein the moisture content of the wet biomass is 10 to 99% by weight.
  7. 제1항에 있어서, 상기 (1)단계의 습식 바이오매스:알코올의 부피 비율은 1:0.1~100인 것을 특징으로 하는 습식 바이오매스로부터 바이오디젤의 직접 제조 방법.The method of claim 1, wherein the volume ratio of the wet biomass: alcohol of the step (1) is 1: 0.1 to 100, characterized in that the direct production of biodiesel from the wet biomass.
  8. 제1항에 있어서, 상기 (1)단계의 전처리 횟수는 1회 이상인 것을 특징으로 하는 습식 바이오매스로부터 바이오디젤의 직접 제조 방법.The method of claim 1, wherein the number of pretreatments in step (1) is one or more times.
  9. 제1항에 있어서, 상기 알코올은 C1~C4의 저급 알코올인 것을 특징으로 하는 습식 바이오매스로부터 바이오디젤의 직접 제조 방법.The method of claim 1, wherein the alcohol is a C1 to C4 lower alcohol.
  10. 제9항에 있어서, 상기 저급 알코올은 재순환(recycle)되는 것을 특징으로 하는 습식 바이오매스로부터 바이오디젤의 직접 제조 방법.10. The method of claim 9, wherein the lower alcohol is recycled.
  11. 제10항에 있어서, 상기 저급 알코올과 촉매는 1회 이상 재사용하는 것을 특징으로 하는 습식 바이오매스로부터 바이오디젤의 직접 제조 방법.The method of claim 10, wherein the lower alcohol and catalyst are reused one or more times.
  12. 제1항에 있어서, 상기 가열은 60~150℃에서 수행하는 것을 특징으로 하는 습식 바이오매스로부터 바이오디젤의 직접 제조 방법.The method of claim 1, wherein the heating is performed at 60 ° C. to 150 ° C. 6.
  13. 제1항에 있어서, 상기 에스테르 교환 반응은 5~300분 동안 수행하는 것을 특징으로 하는 습식 바이오매스로부터 바이오디젤의 직접 제조 방법.The method of claim 1, wherein the transesterification is carried out for 5 to 300 minutes.
  14. 제1항에 있어서, 상기 촉매는 산 촉매, 염기 촉매, 균일(homogeneous) 촉매, 불균일(heterogeneous) 촉매 또는 효소 촉매인 것을 특징으로 하는 습식 바이오매스로부터 바이오디젤의 직접 제조 방법.The method of claim 1, wherein the catalyst is an acid catalyst, a base catalyst, a homogeneous catalyst, a heterogeneous catalyst or an enzyme catalyst.
  15. 제14항에 있어서, 상기 산 촉매는 황산, 염산, 질산 및 아세틸클로라이드로 구성된 군에서 선택된 어느 하나인 것을 특징으로 하는 습식 바이오매스로부터 바이오디젤의 직접 제조 방법.15. The method of claim 14, wherein the acid catalyst is any one selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid and acetyl chloride.
  16. (1) 습식 미세조류에 알코올을 첨가하여 전처리하는 단계; 및(1) pretreatment by adding alcohol to the wet microalgae; And
    (2) 상기 전처리된 미세조류에 알코올 및 산 촉매를 가한 후, 60~150℃에서 가열하여 10~300분 동안 에스테르 교환 반응을 수행하는 단계를 포함하는 것을 특징으로 하는 지질을 추출하지 않고 습식 미세조류로부터 지방산 알킬 에스테르의 직접 제조 방법.(2) adding alcohol and an acid catalyst to the pretreated microalgae, and heating at 60-150 ° C. to perform a transesterification reaction for 10-300 minutes. Process for the direct preparation of fatty acid alkyl esters from algae.
PCT/KR2014/007027 2013-09-25 2014-07-31 Method for directly producing high-energy biodiesel from wet biomass WO2015046736A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130113578 2013-09-25
KR10-2013-0113578 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015046736A1 true WO2015046736A1 (en) 2015-04-02

Family

ID=52743822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007027 WO2015046736A1 (en) 2013-09-25 2014-07-31 Method for directly producing high-energy biodiesel from wet biomass

Country Status (2)

Country Link
KR (1) KR20150035678A (en)
WO (1) WO2015046736A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107099314A (en) * 2017-06-27 2017-08-29 华中科技大学 A kind of utilization agriculture and forestry organic waste material prepares long chain fatty acids and the method for nitrating carbon

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110054200A1 (en) * 2009-09-01 2011-03-03 Catilin, Inc. Systems and Processes for Biodiesel Production
US20120065416A1 (en) * 2010-09-15 2012-03-15 Utah State University Methods for Production of Biodiesel
KR20130037516A (en) * 2011-10-06 2013-04-16 재단법인 포항산업과학연구원 Direct non-catalytic biodiesel production without oil extraction
KR20130094182A (en) * 2010-04-06 2013-08-23 헬리아에 디벨롭먼트, 엘엘씨 Methods of and systems for producing biofuels
US20130236938A1 (en) * 2012-02-16 2013-09-12 Smartflow Technologies, Inc. Biodiesel fuel production, separation methods and systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110054200A1 (en) * 2009-09-01 2011-03-03 Catilin, Inc. Systems and Processes for Biodiesel Production
KR20130094182A (en) * 2010-04-06 2013-08-23 헬리아에 디벨롭먼트, 엘엘씨 Methods of and systems for producing biofuels
US20120065416A1 (en) * 2010-09-15 2012-03-15 Utah State University Methods for Production of Biodiesel
KR20130037516A (en) * 2011-10-06 2013-04-16 재단법인 포항산업과학연구원 Direct non-catalytic biodiesel production without oil extraction
US20130236938A1 (en) * 2012-02-16 2013-09-12 Smartflow Technologies, Inc. Biodiesel fuel production, separation methods and systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107099314A (en) * 2017-06-27 2017-08-29 华中科技大学 A kind of utilization agriculture and forestry organic waste material prepares long chain fatty acids and the method for nitrating carbon

Also Published As

Publication number Publication date
KR20150035678A (en) 2015-04-07

Similar Documents

Publication Publication Date Title
Das et al. Microalgal co-cultivation for biofuel production and bioremediation: current status and benefits
Wahlen et al. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures
Bhuyar et al. Effect of plant hormones on the production of biomass and lipid extraction for biodiesel production from microalgae Chlorella sp
Cheng et al. The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation
Hena et al. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production
Pinzi et al. Latest trends in feedstocks for biodiesel production
Cheng et al. Biodiesel from wet microalgae: Extraction with hexane after the microwave-assisted transesterification of lipids
Zheng et al. High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production
Thiru et al. Process for biodiesel production from Cryptococcus curvatus
Cheirsilp et al. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel
He et al. Cost-effective biodiesel production from wet microalgal biomass by a novel two-step enzymatic process
Ahmad et al. Transesterification of oil extracted from different species of algae for biodiesel production
Kitcha et al. Enhancing lipid production from crude glycerol by newly isolated oleaginous yeasts: strain selection, process optimization, and fed-batch strategy
Shahid et al. Impact of wastewater cultivation on pollutant removal, biomass production, metabolite biosynthesis, and carbon dioxide fixation of newly isolated cyanobacteria in a multiproduct biorefinery paradigm
Borges et al. Spirulina sp. LEB-18 culture using effluent from the anaerobic digestion
Scarsella et al. Study on the optimal growing conditions of Chlorella vulgaris in bubble column photobioreactors
Manzoor et al. Mixotrophic cultivation of Scenedesmus dimorphus in sugarcane bagasse hydrolysate
Zhang et al. Lipid production and composition of fatty acids in Chlorella vulgaris cultured using different methods: photoautotrophic, heterotrophic, and pure and mixed conditions
Chen et al. Optimization of the transesterification reaction of microalgal Monoraphidium sp
Yu et al. Role of sufficient phosphorus in biodiesel production from diatom Phaeodactylum tricornutum
Herrera-Valencia et al. Naturally occurring fatty acid methyl esters and ethyl esters in the green microalga Chlamydomonas reinhardtii
WO2015174588A1 (en) Microalgae chlamydomonas reinhardtii variant having increased contents of biomass, starch, and lipid through gamma irradiation, and a use thereof
WO2014109438A1 (en) High starch and high lipid producing microalgae cholorella cell strain isolated from artic ocean and use therefor
Mathimani et al. Process optimization of one-step direct transesterification and dual-step extraction-transesterification of the Chlorococcum-Nannochloropsis consortium for biodiesel production
Panchal et al. Optimization of biodiesel from dried biomass of Schizochytrium limacinum using methanesulfonic acid-DMC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848740

Country of ref document: EP

Kind code of ref document: A1