WO2015046716A1 - Catalyst for glycerin dehydration reaction, preparation method therefor, and acrolein preparation method - Google Patents

Catalyst for glycerin dehydration reaction, preparation method therefor, and acrolein preparation method Download PDF

Info

Publication number
WO2015046716A1
WO2015046716A1 PCT/KR2014/005485 KR2014005485W WO2015046716A1 WO 2015046716 A1 WO2015046716 A1 WO 2015046716A1 KR 2014005485 W KR2014005485 W KR 2014005485W WO 2015046716 A1 WO2015046716 A1 WO 2015046716A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
compound
clause
glycerin
glycerin dehydration
Prior art date
Application number
PCT/KR2014/005485
Other languages
French (fr)
Korean (ko)
Inventor
조왕래
최준선
김지연
천주영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140057278A external-priority patent/KR101606191B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/442,992 priority Critical patent/US9321040B2/en
Publication of WO2015046716A1 publication Critical patent/WO2015046716A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/52Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition by dehydration and rearrangement involving two hydroxy groups in the same molecule

Definitions

  • the present invention relates to a catalyst for glycerin dehydration, a method for preparing the same, and a method for preparing acrolein, a catalyst having high selectivity for acrolein and minimizing the generation of by-products, and a highly active glycerin dehydration reaction catalyst, a method for preparing the same. And to a process for producing acrolein.
  • Acrolein is a simple unsaturated aldehyde compound that has high reactivity, including incomplete reactors, and is used as a major intermediate for the synthesis of various compounds.
  • acrolein has been widely used as an intermediate for the synthesis of acrylic acid, acrylic esters, superabsorbent resins, animal feed supplements, or food supplements.
  • Such acrolein has been produced through the selective gas phase oxidation reaction with atmospheric oxygen mainly using propylene synthesized in the petroleum process as a starting material.
  • environmental problems such as the reduction of fossil fuels and the greenhouse effect are gradually raised, a great deal of research has been conducted on how to synthesize acrolein using renewable raw materials that are not based on fossil fuels.
  • glycerin which can be obtained as a by-product of the process of synthesizing biodiesel as a natural product, has received much attention as a raw material for producing acrolein.
  • the market size of glycerin is increasing according to the production of biodiesel, and the method of applying it industrially due to the price drop of glycerin is being studied.
  • a method for obtaining acrolein by dehydrating glycerin in the presence of a catalyst is known, and it is known to be carried out using an acid catalyst such as zeolite, phosphate, tungstophosphoric acid (H 3 PW 12 0 4 ).
  • an acid catalyst such as zeolite, phosphate, tungstophosphoric acid (H 3 PW 12 0 4 ).
  • previous catalysts used to make acrolein produced byproducts such as hydroxy acetone, hydroxy propane, polycondensation products of propane aldehyde, acetaldehyde, acetone, and glycerin to synthesize high purity acrolein.
  • There was a limit to use in the process Accordingly, there is a need to develop a highly active catalyst system capable of minimizing the formation of by-products to increase the selectivity and purity of acrolein, and to improve the conversion and reaction yield of glycerin.
  • the present invention can improve the selectivity and purity of acrolein prepared by minimizing the production of by-products, and to provide a catalyst for glycerin dehydration that is highly active.
  • the present invention also provides a method for preparing the catalyst for glycerin dehydration.
  • the present invention also relates to a method for producing acrolein using the catalyst for glycerin dehydration reaction.
  • the present invention is selected from the group consisting of phosphorus (P) and silicon (Si)
  • a catalyst for glycerin dehydration comprising at least one element and a heteropolyacid compound comprising copper (Cu) and tungsten (W).
  • the present invention includes a step of sequentially reacting a heteropolyacid compound containing tungsten (W) with at least one element selected from the group consisting of phosphorus (P) and silicon (Si) with a barium compound and a copper compound, and glycerin dehydration. It provides a method for producing a catalyst for reaction.
  • the present invention provides a method for producing acrolein comprising the step of reacting glycerin in the presence of the catalyst for glycerin dehydration reaction.
  • a glyc a serine dehydration catalyst, a method for preparing the same, and a method for preparing acrolein according to a specific embodiment of the present invention will be described in more detail.
  • "glycerine dehydration reaction” means the whole process of the reaction in which water is separated in the glycerin molecule, and glycerin can be converted into acrolein through such glycerin dehydration.
  • heteropolyacid refers to a multi-nucleic acid multi-acid formed by combining two or more different elements of oxo acid as a component and forming these molecules, and having different valence soccer ball shapes based on a central atom. (Keggin type) may be combined form.
  • a catalyst for glycerin dehydration comprising one or more elements selected from the group consisting of phosphorus (P) and silicon (Si) and a heteropolyacid compound including copper (Cu) and tungsten (W)can be provided.
  • the present inventors recognize that the conventional method of producing acrolein through gas phase oxidation using propylene as a starting material is limited due to the reduction of fossil fuel storage and the rise of environmental problems such as greenhouse effect. Research was conducted on the production of acrolein using environmentally friendly and renewable raw materials. Accordingly, when dehydration of glycerin in the presence of a catalyst comprising a heteropolyacid compound containing copper and tungsten with at least one element selected from the group consisting of phosphorus and silicon, high yields of acrolein can be achieved while minimizing the formation of by-products. It was confirmed through experimentation that the high conversion was made to complete the invention.
  • the heteropolyacid compound is a form in which oxygen atoms and tungsten atoms are bonded in a soccer ball shape (Keggin type) around phosphorus or silicon atoms, and copper and / or hydrogen ions are bonded between the bonded molecules. May exist.
  • the heteropolyacid compound of the above type The amount and strength of Brönsted or Lewis acid points can be controlled, thus allowing the glycerin to dehydrate more efficiently.
  • the catalyst for glycerin dehydration is a cation such as Cs, Rb, Ca, Fe, Zr, La, Hf, Bi, etc. of H + cations of heteropolyacids having a structure of 3 ⁇ 4PW 12 0 4 or H 4 SiW 12 0 4 .
  • the substituted catalyst it can show high acrolein selectivity and low byproducts.
  • the molar ratio of copper and tungsten in the heteropolyacid compound included in the glycerin dehydration reaction catalyst may be 1: 5 to 1: 10,000.
  • the content of oxygen in the heteropolyacid compound may be appropriately adjusted according to the content and ratio of one or more elements selected from the group consisting of phosphorus and silicon, tungsten, and components which may be further included, but preferably phosphorus and silicon.
  • the ratio of the number of moles of oxygen to the total number of moles of one or more elements selected from the group consisting of copper and tungsten may be 2 to 5, preferably 2 to 4. If the content of oxygen is too small or too large, a soccer ball shape (eg, Keggin type) heteropoly acid structure cannot be formed, and it is preferable to include oxygen in the above-described content.
  • the heteropolyacid compound is selected from the group consisting of Zr, Ti, Ce, V, Nb, Cr, Mo, Mn, Zn, B, and Cu in addition to at least one element selected from the group consisting of phosphorus and silicon and copper and tungsten It may further comprise at least one second metal.
  • second is a term used to distinguish the metals from phosphorus, silicon, copper, and tungsten, and does not indicate a reaction order or importance.
  • the second metal may be in a state in which the oxygen is shared with one or more elements selected from the group consisting of phosphorus and silicon, copper, and / or tungsten and oxygen in the heteropolyacid compound.
  • the heteropolyacid compound may further improve the selectivity of acrolein by further including the second metal, and may act to inhibit the production of by-product hydroxy acetone, hydroxy propanone, and the like.
  • the second metal may be included in an amount of 0.1 mol to 10 mol relative to tungsten, respectively.
  • the effect of improving the selectivity of acrolein may be insignificant, and if it is included too much, the catalytic activity or the selectivity improving effect due to the increase of the content of the metal may be insignificant, resulting in low economic efficiency.
  • such a heteropoly acid compound may be represented by the following formula (1).
  • A is phosphorus (P) or silicon (Si)
  • B is selected from the group consisting of Zr, Ti, Ce, V, Nb, Cr, Mo, Mn, Zn, B and Cu
  • x is 0. (31-5, y is 0-5, z is 0-12.
  • X may vary depending on the substitution amount of hydrogen ions to a value corresponding to 0.01 to 5.
  • the value of X is large, the amount of scattering points is reduced, and when the value of X is small, the amount of scattering points is increased.
  • 1.5 and y may be 0 to 2.98.
  • the heteropolyacid represented by Formula 1 is a form in which H + positive ions are substituted with copper silver in a heteropolyacid of 3 ⁇ 4PW 12 0 4 or H 4 SiW 12 0 4 , and prepared according to a method for preparing a glycerin dehydration catalyst, which will be described later.
  • the copper ions can increase the amount of distribution of the weak acid point and decrease the strong acid point, thereby controlling the acid strength to a strength suitable for the production reaction of acrolein, so that hydrogen ions are reduced to Cs, Compared with a catalyst substituted with elements of Rb, Ca, Fe, Zr, La, Hf and Bi, higher arc selectivity can be exhibited.
  • heteropolyacid compound represented by Chemical Formula 1 may include Cu 0 . 25 H 2 . 5 PW 12 0 40 , Cuo. 5 H 2 .oPW 12 0 40 , CU0.75H1.5PW12O40, CLU.OHI.OPWA, CU1.5PW12O40, CU0.75H2.5S1W12O40, CU0.75H1.5PM012O40, CU0.75H2.5S1M012O40, Cuo.75H1.5PWe Mo 6 0 40 etc. are mentioned.
  • the glycerin dehydration reaction catalyst may further include a carrier to which the heteropolyacid compound is fixed.
  • the carrier can be used without any significant limitation as long as it is known that it can be used in a conventional catalyst.
  • a carrier include silica, alumina, silica-alumina, titania, zeolite, activated carbon, clay, zirconia, magnesia, magnesium aluminate, calcium aluminate, silicon carbide, zirconium phosphate, or a combination thereof.
  • silica having a pore size of 20 nm or more may be used.
  • the carrier serves to fix a heteropolyacid compound containing copper and tungsten with at least one element selected from the group consisting of phosphorus and silicon, and the heteropolyacid compound is fixed in a form of sharing oxygen to a carrier having a large surface area. There may be.
  • the heteropolyacid compound is prepared in a form fixed to the carrier as described above, it can be stored and transported more easily, and due to the large surface area, a large amount of glycerin can be efficiently reacted.
  • the carrier may have a specific surface area of 10 to 500 mVg, preferably 50 to 200 mVg.
  • the catalyst for glycerin dehydration prepared by supporting the heteropolyacid compound on a carrier having a large specific surface area in the above range has an appropriate pore size so that coke deposition may be reduced and sufficient catalyst activity may be provided. .
  • the catalyst for glycerin dehydration may include 1 to 50 parts by weight of a heteropolyacid compound containing one or more elements selected from the group consisting of phosphorus and silicon and copper and tungsten based on 100 parts by weight of the carrier.
  • a heteropolyacid compound including tungsten (W) and at least one element selected from the group consisting of phosphorus (P) and silicon (Si) may be sequentially converted to a barium compound and a copper compound.
  • a method for producing a catalyst for glycerin dehydration comprising the step of reacting.
  • a catalyst for glycerin dehydration of an embodiment of the present invention described above may be provided. As described above, this catalyst can minimize the formation of by-products in the dehydration reaction of glycerin to produce acrolein with high selectivity.
  • the glycerin dehydration catalyst is represented by the formula
  • A is phosphorus (P) or silicon (Si)
  • B is selected from the group consisting of Zr, Ti, Ce, V, Nb, Cr, Mo, Mn, Zn, B and Cu
  • X is each independently O. Oi to 5
  • y is each independently 0 to 5
  • z is 0 to 12
  • a is 0.01 to 5.
  • the preparing of the compound of Formula 3 and the preparing of the compound of Formula 1 may be performed in the presence of a solvent. That is, the compound of Formula 2 and the barium compound may be reacted under a solvent, and the compound of Formula 3 and the copper compound prepared above may be reacted under a solvent. Examples of the solvent include water, alcohols or a mixture thereof.
  • Ba (0H) 2 , BaS0 4 , Ba (N0 3 ) 2 , BaC0 3 , BaC.l 2, or a mixture thereof may be used, and in particular, by-products when Ba (0H) 2 is used. Because of the production of water rather than strong acids such as sulfuric acid and nitric acid. It does not affect the activity, and since the purification process of the catalyst is not necessary, it is possible to prepare the catalyst for glycerin dehydration reaction more easily.
  • CuS0 4 Cu (N0 3 ) 2 , CuC0 3 , CuCl 2, or a mixture thereof may be used.
  • the method for preparing a glycerin dehydration reaction catalyst may further include drying and calcining the compound of Chemical Formula 1 produced by sequentially reacting the heteropolyacid compound with a barium compound and a copper compound.
  • the drying step after reacting the heteropoly acid with a copper compound, it may be dried for 10 minutes to 24 hours at a temperature of 100 ° C or more before firing to remove the solvent.
  • a drying method and a drying apparatus known to be commonly used may be used.
  • drying may be performed using a heat source such as a hot air fan, an oven, a heating plate, and the like.
  • the step of firing means a series of processes for making the curable material by heating the semi-coated water at a high temperature, it may be made in a temperature range of 100 to 900 ° C, preferably 200 to 5 (xrc. If less than, the organic matter remaining in the catalyst may not be properly removed, thereby reducing the activity of the reaction catalyst, and in the case of exceeding the silver range, the structure of the heteropoly acid may collapse and lose its inherent acid properties.
  • the drying and firing steps may be performed for 10 minutes to 10 hours, respectively. If the drying and firing time is too short, the catalyst may not be completely dried and calcined, and the drying and firing time is too long. In the long case, various side reactions such as carbonization of the catalyst can occur.
  • the method may further include separating the precipitate of the barium compound generated by sequentially reacting the compound of Formula 2 with the barium compound and the copper compound. Separation of the precipitate is a compound of formula 2 to a barium compound and a copper compound In order to remove the barium precipitate, which is a by-product of substitution, in a solution in which the compound of Chemical Formula 1 produced by sequentially reacting is dissolved, it may be separated and removed by filtration or centrifugation.
  • the method for preparing a glycerin dehydration reaction catalyst of one embodiment may further include supporting the compound of Formula 1 on a carrier.
  • the step of supporting the compound on the carrier can be used without limitation methods known in the art, for example, impregnation method or powder mixing method can be used.
  • the specific examples and the mixing ratio of the carrier can be applied to the above-described content without limitation.
  • the carrier is used as it is, or is produced in the form of a sphere or pellet, and then aged and calcined together with the mixed solution in which the precipitate in the gel form is formed.
  • the powder mixing method is It is a process of baking and supporting the powder obtained by mixing with a powder support
  • the catalyst for glycerin dehydration reaction of the embodiment is more preferably used by impregnation because the heteropolyacid compound is easy to disperse on a carrier, and in this impregnation method, alcohol, such as water and methanol, is preferably used. And polar solvents such as acetone, THF, acetone and acetonitrile. In particular, when alcohols such as water or methanol are used as a supporting solvent, the produced glycerin dehydration reaction catalyst may exhibit higher catalytic activity.
  • a method for producing acrolein comprising the step of reacting the glycerin in the presence of the above-mentioned catalyst for glycerin dehydration reaction.
  • the catalyst for glycerin dehydration of the embodiment of the present invention it is possible to perform dehydration of glycerin having a high acrolein selectivity, and in particular, by-products compared to other catalysts previously known.
  • the production can be minimized.
  • the amount of the catalyst for glycerin dehydration reaction can be appropriately adjusted according to the amount and concentration of glycerin as a reactant, for example, the catalyst can be layered at a weight space velocity of 10 to 300 kPa ol / h ⁇ g cat , preferably Preferably it can be filled at a weight space velocity of 10 to lOOmmol l / h ⁇ g cat .
  • the step of reacting the glycerin may be carried out at a temperature of 200 to 4 (xrc. It is preferable to carry out the reaction.
  • tungstophosphoric acid H 3 PW 12 0 40 , WAK0
  • tungstoic acid H 3 PW 12 0 40 , WAK0
  • barium hydroxide Ba (0H) 2 83 ⁇ 40, purity 98%, KANT0
  • the barium hydroxide is completely substituted to a transparent Ba 0 . 25 H 2 .
  • a CULOHLOPW ⁇ C ⁇ O catalyst was prepared in the same manner as in Example 1 except that 0.438 g of barium hydroxide and 0.347 g of copper sulfide were used.
  • a CULSP ⁇ O ⁇ catalyst was prepared in the same manner as in Example 1 except that 0.657 g of barium hydroxide and 0.520 g of copper sulfide were used.
  • Example 3 0.2 g of the catalyst prepared in Example 3 was dissolved in 7 ml of distilled water to form an aqueous solution, and then 1.8 g of silica (Q30, FUJI Co., Ltd.) was added thereto to prepare a silica slurry, which was then stirred. After that, the moisture of the silica slurry is Removed. Then dry in a no ° c oven for 12 hours ,
  • A1 2 0 3 supported catalyst was prepared.
  • a Cuo ⁇ HuPW ⁇ to / ST supported catalyst was prepared in the same manner as in Example 7, except that ST31116 (Ti0 2 from SAINT GOBAIN) was used as a carrier instead of silica (Q30, FUJ I).
  • H 3 PW 12 0 40 purchased from WM0 was used.
  • H 4 SiW 12 0 40 purchased from WAK0 was used.
  • a H 3 PW 12 0 40 / Si0 2 catalyst was prepared in the same manner as in Example 7, except that 3 ⁇ 4PW 12 0 40 (K0) was used.
  • a H 4 SiW 12 0 40 / Si0 2 -Al 2 0 3 catalyst was prepared in the same manner as in Example 8 except that H 4 SiW 12 0 40 (KO) was used instead of 5 PWi 2 04o.
  • a H 4 SiW 12 0 40 / Ti0 2 catalyst was prepared in the same manner as in Comparative Example 5 except that Ti0 2 (DEGUSSA) was used as the carrier.
  • the conversion rate of glycerin represents the ratio of glycerin to another compound
  • the selectivity of acrolein represents the ratio of acrolein to the converted compound
  • Comparative selectivity 1 shows the comparison of the selectivity of the hydroxy acetone with respect to the selectivity of the acrolein and the compound of molecular weight 130
  • Comparative selectivity 2 is the selectivity of the compound of molecular weight 130
  • a comparison of the selectivity of by-products against selectivity is shown.
  • hydroxy acetone is the main by-product of glycerin dehydration reaction
  • the by-product is hydroxy acetone, aryl alcohol, ace, propionic acid, 1, 2- propanediol, 1, 3-propanedi
  • Cyclic acetal compounds produced through depolymerization between intermolecular glycerin, or acer and glycerin, and the like.
  • the compound having a molecular weight of 130 in the molecular weight 130 compound selectivity is a cyclic acetal compound produced by dehydration of acrolein and glycerin and is a by-product produced by heating to 2oo ° C. at the rear of the reactor.
  • Comparative selectivity 1 selectivity of hydroxy acetone I (selectivity of acrolein + selectivity of 130 molecular weight compounds)
  • Comparative selectivity 2 selectivity I of the by-product (selectivity of acrolein + selectivity of 130 molecular weight compounds), as shown in Table 2 and Table 3, containing the phosphorus and / or silicon, copper and tungsten
  • the glycerin conversion and the acrolein selectivity were higher than those of the catalyst of the comparative example.
  • the comparative selectivity 1 and 2 which is the ratio of the selectivity of the byproduct to the selectivity of the target main product, acrolein, were lower than those of the catalyst of the comparative example.
  • the catalyst prepared in Examples from the above experimental results has a higher selectivity of acrolein compared to a heteropolyacid compound of H 3 PW 12 0 4 and Comparative Example 3 prepared by substituting hydrogen of the heteropolyacid compound with Cs, and by-products. It can be seen that the selectivity of is low.
  • the catalyst for glycerin dehydration reaction of the embodiment can generate acrolein with high selectivity and high purity from glycerin, and can suppress the formation of by-products such as hydroxy acetone.

Abstract

The present invention relates to a catalyst for a glycerin dehydration reaction, a preparation method therefor, and an acrolein preparation method. More specifically, the catalyst for the glycerin dehydration reaction can improve acrolein selectivity by minimizing the generation of by-products and can maintain a high catalytic activity during a reaction.

Description

【명세서】  【Specification】
【발명의 명칭]  [Name of invention]
글리세린 탈수반웅용 촉매, 이의 제조 방법 및 아크를레인의 제조 방법 【기술분야】  Glycerin dehydration reaction catalyst, preparation method thereof and preparation method of acrolein [technical field]
본 발명은 글리세린 탈수반응용 촉매, 이의 제조 방법 및 아크를레인의 제조 방법에 관한 것으로서, 부산물의 생성을 최소화하여 아크를레인의 선택도가 높고, 고 활성인 글리세린 탈수반웅용 촉매, 이의 제조 방법 및 아크를레인의 제조 방법에 관한 것이다.  The present invention relates to a catalyst for glycerin dehydration, a method for preparing the same, and a method for preparing acrolein, a catalyst having high selectivity for acrolein and minimizing the generation of by-products, and a highly active glycerin dehydration reaction catalyst, a method for preparing the same. And to a process for producing acrolein.
【발명의 배경이 되는 기술】 [Technique to become background of invention]
아크를레인은 단순한 불포화 알데하이드 화합물로, 불완전한 반응기를 포함하여 높은 반응성을 가지며, 다양한 화합물의 합성올 위한 주요 중간체로 사용된다. 특히 아크를레인은 아크릴산, 아크릴산 에스테르, 고흡수성 .수지, 동물 사료 보충물, 또는 식품 보층제 등의 합성을 위한 중간생성물로서 널리 사용되어 왔다.  Acrolein is a simple unsaturated aldehyde compound that has high reactivity, including incomplete reactors, and is used as a major intermediate for the synthesis of various compounds. In particular, acrolein has been widely used as an intermediate for the synthesis of acrylic acid, acrylic esters, superabsorbent resins, animal feed supplements, or food supplements.
이러한 아크롤레인을 기존에는 주로 석유공정에서 합성된 프로필렌을 출발물질로 하여 대기 산소와 선택적인 기상 산화반응을 통해서 제조하였다. 하지만 화석 연료의 감소 및 온실효과와 같은 환경문제가 점차 대두됨에 따라서, 화석연료에 기반을 두지 않는 재생 가능한 원료를 사용하여 아크를레인을 합성하는 방법에 관한 연구가 다수 진행되었다.  Such acrolein has been produced through the selective gas phase oxidation reaction with atmospheric oxygen mainly using propylene synthesized in the petroleum process as a starting material. However, as environmental problems such as the reduction of fossil fuels and the greenhouse effect are gradually raised, a great deal of research has been conducted on how to synthesize acrolein using renewable raw materials that are not based on fossil fuels.
이에 따라, 천연생산물로서 바이오디젤을 합성하는 공정의 부산물로 수득할 수 있는 글리세린이 아크를레인 제조의 원료 물질로 많은 관심을 받고 있다. 특히, 글리세린의 시장규모는 바이오디젤의 생산량에 따라서 증가되고 있으며, 글리세린의 가격 하락으로 인하여 이를 산업적으로 적용할 수 있는 방법이 연구되고 있다.  Accordingly, glycerin, which can be obtained as a by-product of the process of synthesizing biodiesel as a natural product, has received much attention as a raw material for producing acrolein. In particular, the market size of glycerin is increasing according to the production of biodiesel, and the method of applying it industrially due to the price drop of glycerin is being studied.
일례로, 글리세린을 촉매의 존재 하에 탈수화시켜 아크를레인을 수득하는 방법이 알려져 있으며, 제을라이트, 인산화물, 텅스토인산 (H3PW1204)과 같은 산촉매를 이용하여 수행되는 것이 알려져 있다. 그러나, 아크를레인을 제조하기 위하여 사용되던 이전의 촉매들은 하이드록시 아세톤, 하이드록시 프로판은, 프로판 알데히드, 아세트 알데히드, 아세톤, 글리세린의 중축합 생성물과 같은 부산물을 생성하여 높은 순도의 아크롤레인을 합성하는 공정에 사용하기에는 한계가 있었다. 이에, 부산물의 생성을 최소화하여 아크를레인의 선택도 및 순도를 높이고, 글리세린의 전환율과 반웅 수율을 개선할 수 있는 고 활성의 촉매 시스템의 개발이 요구되고 있다 . For example, a method for obtaining acrolein by dehydrating glycerin in the presence of a catalyst is known, and it is known to be carried out using an acid catalyst such as zeolite, phosphate, tungstophosphoric acid (H 3 PW 12 0 4 ). have. However, previous catalysts used to make acrolein produced byproducts such as hydroxy acetone, hydroxy propane, polycondensation products of propane aldehyde, acetaldehyde, acetone, and glycerin to synthesize high purity acrolein. There was a limit to use in the process. Accordingly, there is a need to develop a highly active catalyst system capable of minimizing the formation of by-products to increase the selectivity and purity of acrolein, and to improve the conversion and reaction yield of glycerin.
【발명의 내용】 [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
본 발명은, 부산물의 생성을 최소화하여 제조되는 아크를레인의 선택도 및 순도를 향상시킬 수 있으며, 고 활성인 글리세린 탈수반응용 촉매를 제공하기 위한 것이다.  The present invention can improve the selectivity and purity of acrolein prepared by minimizing the production of by-products, and to provide a catalyst for glycerin dehydration that is highly active.
또한, 본 발명은 상기 글리세린 탈수반응용 촉매의 제조 방법을 제공하기 위한 것이다.  The present invention also provides a method for preparing the catalyst for glycerin dehydration.
본 발명은 또한, 상기 글리세린 탈수반웅용 촉매를 이용한 아크를레인의 제조 방법에 관한 것이다.  The present invention also relates to a method for producing acrolein using the catalyst for glycerin dehydration reaction.
【과제의 해결 수단】 [Measures of problem]
본 발명은, 인 (P) 및 실리콘 (Si )으로 이루어진 군에서 선택된 The present invention is selected from the group consisting of phosphorus (P) and silicon (Si)
1 이상의 원소와, 구리 (Cu) 및 텅스텐 (W)을 포함하는 헤테로폴리산 화합물을 포함하는 글리세린 탈수반응용 촉매를 제공한다. Provided is a catalyst for glycerin dehydration comprising at least one element and a heteropolyacid compound comprising copper (Cu) and tungsten (W).
그리고, 본 발명은 인 (P) 및 실리콘 (Si )으로 이루어진 군에서 선택된 1 이상의 원소와, 텅스텐 (W)을 포함하는 헤테로폴리산 화합물을 바륨 화합물과 구리 화합물로 순차적으로 반웅시키는 단계를 포함하는 글리세린 탈수반응용 촉매의 제조방법을 제공한다.  In addition, the present invention includes a step of sequentially reacting a heteropolyacid compound containing tungsten (W) with at least one element selected from the group consisting of phosphorus (P) and silicon (Si) with a barium compound and a copper compound, and glycerin dehydration. It provides a method for producing a catalyst for reaction.
또한, 본 발명은 상기 글리세린 탈수반웅용 촉매의 존재 하에, 글리세린을 반웅시키는 단계를 포함하는 아크를레인의 제조 방법을 제공한다. 이하, 발명의 구체적인 구현예에 따른 글리,;세린 탈수반응용 촉매, 이의 제조 방법 및 아크를레인의 제조 방법에 관하여 보다 상세하게 설명하기로 한다 . 본 명세서에서 "글리세린 탈수반응"은 글리세린 분자 내에서 물이 분리되는 반응이 이루어지는 전 과정을 의미하며, 이러한 글리세린 탈수반응을 통하여 글리세린이 아크롤레인으로 전환될 수 있다. In addition, the present invention provides a method for producing acrolein comprising the step of reacting glycerin in the presence of the catalyst for glycerin dehydration reaction. Hereinafter, a glyc , a serine dehydration catalyst, a method for preparing the same, and a method for preparing acrolein according to a specific embodiment of the present invention will be described in more detail. In the present specification, "glycerine dehydration reaction" means the whole process of the reaction in which water is separated in the glycerin molecule, and glycerin can be converted into acrolein through such glycerin dehydration.
본 명세서에서 "헤테로폴리산 (heteropolyaci d)"은 2 종 이상의 서로 다른 원소의 옥소산이 구성 요소가 되고 이러한 분자가 결합하여 형성되는 다핵 구조의 다중산을 의미하고, 중심 원자를 기준으로 다른 원자가 축구공 모양 (Keggin형 )으로 결합된 형태일 수 있다. 발명의 일 구현예에 따르면, 인 (P) 및 실리콘 (Si )으로 이루어진 군에서 선택된 1 이상의 원소와, 구리 (Cu) 및 텅스텐 (W)을 포함하는 헤테로폴리산 화합물을 포함하는 글리세린 탈수반웅용 촉매가 제공될 수 있다.  As used herein, "heteropolyacid" refers to a multi-nucleic acid multi-acid formed by combining two or more different elements of oxo acid as a component and forming these molecules, and having different valence soccer ball shapes based on a central atom. (Keggin type) may be combined form. According to an embodiment of the present invention, a catalyst for glycerin dehydration comprising one or more elements selected from the group consisting of phosphorus (P) and silicon (Si) and a heteropolyacid compound including copper (Cu) and tungsten (W) Can be provided.
본 발명자들은, 기존의 프로필렌을 출발물질로 사용하여 기상 산화반응을 통해 아크를레인을 제조하던 방법이 화석 연료 저장량의 감소 및 온실효과와 같은 환경 문제의 대두 등으로 인하여 한계가 있음을 인식하고, 친환경적이고 재생 가능한 원료를 사용하여 아크를레인을 제조하는 방법에 관하여 연구를 진행하였다. 이에 따라, 인 및 실리콘으로 이루어진 군에서 선택된 1 이상의 원소와 구리 및 텅스텐을 함유한 헤테로폴리산 화합물을 포함하는 촉매의 존재 하에 글리세린을 탈수반응 시키는 경우, 부산물의 형성을 최소화 하면서도 아크를레인이 높은 수율 및 높은 전환율로 제조됨을 실험을 통하여 확인하고 발명을 완성하였다.  The present inventors recognize that the conventional method of producing acrolein through gas phase oxidation using propylene as a starting material is limited due to the reduction of fossil fuel storage and the rise of environmental problems such as greenhouse effect. Research was conducted on the production of acrolein using environmentally friendly and renewable raw materials. Accordingly, when dehydration of glycerin in the presence of a catalyst comprising a heteropolyacid compound containing copper and tungsten with at least one element selected from the group consisting of phosphorus and silicon, high yields of acrolein can be achieved while minimizing the formation of by-products. It was confirmed through experimentation that the high conversion was made to complete the invention.
상기 헤테로폴리산 화합물은 인 또는 실리콘 원자를 중심으로 주변에 산소 원자와 텅스텐 원자가 축구공 모양 (Keggin 형)으로 결합된 형태이며, 상기 결합된 분자들 사이에 구리 및 /또는 수소 이온이 결합되어 있는 상태로 존재할 수 있다. 특히, 상기와 같은 형태의 헤테로폴리산 화합물은 브뢴스테드 산점 또는 루이스 산점의 양과 세기를 조절할 수 있으며, 이에 따라 보다 효율적으로 글리세린을 탈수반응 시킬 수 있다 . The heteropolyacid compound is a form in which oxygen atoms and tungsten atoms are bonded in a soccer ball shape (Keggin type) around phosphorus or silicon atoms, and copper and / or hydrogen ions are bonded between the bonded molecules. May exist. In particular, the heteropolyacid compound of the above type The amount and strength of Brönsted or Lewis acid points can be controlled, thus allowing the glycerin to dehydrate more efficiently.
특히, 상기 글리세린 탈수반응용 촉매는 ¾PW1204 또는 H4SiW1204 를 구조를 갖는 헤테로폴리산의 H+양 이온을 Cs, Rb, Ca, Fe, Zr, La, Hf , Bi 등의 양이온으로 치환한 촉매와 비교하여서도 높은 아크를레인 선택도와 낮은 부산물의 생성량을 나타낼 수 있다. Particularly, the catalyst for glycerin dehydration is a cation such as Cs, Rb, Ca, Fe, Zr, La, Hf, Bi, etc. of H + cations of heteropolyacids having a structure of ¾PW 12 0 4 or H 4 SiW 12 0 4 . Compared with the substituted catalyst, it can show high acrolein selectivity and low byproducts.
이러한 글리세린 탈수반웅용 촉매가 포함하는 상기 헤테로폴리산 화합물에서 구리와 텅스텐의 몰비율은 1:5 내지 1:10,000 일 수 있다. 그리고, 상기 헤테로폴리산 화합물에서 산소의 함량은 인 및 실리콘으로 이루어진 군에서 선택된 1 이상의 원소와 텅스텐 및 추가로 포함될 수 있는 성분의 함량과 성분비에 따라 적절하게 조절될 수 있으나, 바람직하게는 인 및 실리콘으로 이루어진 군에서 선택된 1 이상의 원소, 구리 및 텅스텐의 총 몰수에 대한 산소의 몰수의 비율이 2 내지 5, 바람직하게는 2 내지 4 일 수 있다. 상기 산소의 함량이 너무 적거나 많은 경우, 축구공 모양 (Keggin형)의 헤테로폴리산 구조가 형성될 수 없으므로, 상술한 범위의 함량으로 산소를 포함하는 것이 바람직하다.  The molar ratio of copper and tungsten in the heteropolyacid compound included in the glycerin dehydration reaction catalyst may be 1: 5 to 1: 10,000. In addition, the content of oxygen in the heteropolyacid compound may be appropriately adjusted according to the content and ratio of one or more elements selected from the group consisting of phosphorus and silicon, tungsten, and components which may be further included, but preferably phosphorus and silicon. The ratio of the number of moles of oxygen to the total number of moles of one or more elements selected from the group consisting of copper and tungsten may be 2 to 5, preferably 2 to 4. If the content of oxygen is too small or too large, a soccer ball shape (eg, Keggin type) heteropoly acid structure cannot be formed, and it is preferable to include oxygen in the above-described content.
또한, 상기 헤테로폴리산 화합물은 인 및 실리콘으로 이루어진 군에서 선택된 1 이상의 원소와 구리 및 텅스텐 이외에 Zr, Ti, Ce, V, Nb, Cr, Mo, Mn, Zn, B, 및 Cu 로 이루어진 군에서 선택되는 1 종 이상의 제 2 금속을 더 포함할 수 있다. 상기 "제 2"의 표현은 상기 금속들을 인, 실리콘, 구리 및 텅스텐과 구분하기 위한 용어로, 반응 순서나 중요도를 나타내지는 않는다.  In addition, the heteropolyacid compound is selected from the group consisting of Zr, Ti, Ce, V, Nb, Cr, Mo, Mn, Zn, B, and Cu in addition to at least one element selected from the group consisting of phosphorus and silicon and copper and tungsten It may further comprise at least one second metal. The expression "second" is a term used to distinguish the metals from phosphorus, silicon, copper, and tungsten, and does not indicate a reaction order or importance.
상기 제 2금속은 상기 헤테로폴리산 화합물 내에서 인 및 실리콘으로 이루어진 군에서 선택된 1 이상의 원소, 구리, 및 /또는 텅스텐과 산소를 공유한 형태로 결합한 상태일 수 있다. 상기 헤테로폴리산 화합물은 상기 제 2 금속을 더 포함함으로써 아크롤레인의 선택도를 개선시킬 수 있으며, 부산물인 하이드록시 아세톤, 하이드록시 프로판온 등의 생성을 억제하는 작용을 할 수 있다.  The second metal may be in a state in which the oxygen is shared with one or more elements selected from the group consisting of phosphorus and silicon, copper, and / or tungsten and oxygen in the heteropolyacid compound. The heteropolyacid compound may further improve the selectivity of acrolein by further including the second metal, and may act to inhibit the production of by-product hydroxy acetone, hydroxy propanone, and the like.
그리고, 상기 제 2 금속은 각각 텅스텐 대비 0.1 몰 내지 10 몰의 함량으로 포함할 수 있다. 상기 제 2 금속이 너무 적게 포함되는 경우, 아크를레인의 선택도 개선 효과가 미미할 수 있고, 너무 많이 포함되는 경우 상기 금속의 함량 증가에 따른 촉매 활성 또는 선택도 개선 효과가 미미하여 경제성이 떨어질 수 있다. The second metal may be included in an amount of 0.1 mol to 10 mol relative to tungsten, respectively. When the second metal is included too little, The effect of improving the selectivity of acrolein may be insignificant, and if it is included too much, the catalytic activity or the selectivity improving effect due to the increase of the content of the metal may be insignificant, resulting in low economic efficiency.
한편, 이러한 상기 헤테로폴리산 화합물은 하기 화학식 1 로 표시될 수 있다.  On the other hand, such a heteropoly acid compound may be represented by the following formula (1).
[화학식 1]  [Formula 1]
(Cu)x(H)yAW(i2-Z)Bz04o (Cu) x (H) y AW (i 2 - Z) Bz04o
상기 화학식 1 에서, A 는 인 (P) 또는 실리콘 (Si)이고, B 는 Zr, Ti, Ce, V, Nb, Cr, Mo, Mn, Zn, B 및 Cu 로 이루어진 군에서 선택되고, x 는 0.(31내지 5이고, y는 0 내지 5이고, z는 0 내지 12이다.  In Formula 1, A is phosphorus (P) or silicon (Si), B is selected from the group consisting of Zr, Ti, Ce, V, Nb, Cr, Mo, Mn, Zn, B and Cu, x is 0. (31-5, y is 0-5, z is 0-12.
특히, 상기 화학식 1 로 표시되는 헤테로폴리산 화합물에서 X 는 0.01 내지 5 에 해당하는 값으로 수소 이온의 치환량에 따라 달라질 수 있다. 상기 X 값이 큰 경우, 산점의 양이 감소하는 특징이 있고, X 값이 작은 경우 산점의 양이 증가하는 특징이 있다.  In particular, in the heteropolyacid compound represented by Formula 1, X may vary depending on the substitution amount of hydrogen ions to a value corresponding to 0.01 to 5. When the value of X is large, the amount of scattering points is reduced, and when the value of X is small, the amount of scattering points is increased.
그리고, 상기 A 가 인 (P) 일때, y 는 3— 2x 이고, X 는 0.01 내지 And when A is (P), y is 3-2x, X is 0.01 to
1.5이며, y는 0 내지 2.98일 수 있다. 1.5 and y may be 0 to 2.98.
또는, 상기 A 가 실리콘 (S'i) 일때, y 는 4-2x 이고, X 는 0.01 내지 2이며, y는 0 내지 3.98일 수 있다. Or, A is the silicon (S 'i) when, and y is 4-2x, X = 0.01 to 2, y can be 0 to 3.98.
상기 화학식 1 로 표시되는 헤테로폴리산은 ¾PW1204 또는 H4SiW1204 형태의 헤테로폴리산에서 H+ 양 이온을 구리 이은으로 치환한 형태로, 후술할 글리세린 탈수반응용 촉매의 제조 방법에 따라 제조된 것일 수 있으며, 특히, 상기 구리 이온은 상대적으로 약산점의 분포량을 증가시키고 강산점을 감소시켜, 산세기를 아크를레인의 생성 반응에 적절한 세기로 조절하는 작용을 할 수 있으므로, 수소 이온을 Cs, Rb, Ca, Fe, Zr, La, Hf , Bi 둥의 원소로 치환한 촉매와 비교하여 보다 높은 아크를레인 선택도를 나타낼 수 있다. The heteropolyacid represented by Formula 1 is a form in which H + positive ions are substituted with copper silver in a heteropolyacid of ¾PW 12 0 4 or H 4 SiW 12 0 4 , and prepared according to a method for preparing a glycerin dehydration catalyst, which will be described later. In particular, the copper ions can increase the amount of distribution of the weak acid point and decrease the strong acid point, thereby controlling the acid strength to a strength suitable for the production reaction of acrolein, so that hydrogen ions are reduced to Cs, Compared with a catalyst substituted with elements of Rb, Ca, Fe, Zr, La, Hf and Bi, higher arc selectivity can be exhibited.
한편, 상기 화학식 1 로 표시되는 헤테로폴리산 화합물의 구체적인 예로는 Cu0.25H2.5PW12040, Cuo.5H2.oPW12040, CU0.75H1.5PW12O40, CLU.OHI.OPWA, CU1.5PW12O40, CU0.75H2.5S1W12O40, CU0.75H1.5PM012O40, CU0.75H2.5S1M012O40, Cuo.75H1.5PWe Mo6040등을 들 수 있다. 그리고, 상기 글리세린 탈수반웅용 촉매는 상기 헤테로폴리산 화합물이 고정되는 담체를 더 포함할 수 있다. 상기 담체는 통상의 촉매에 사용될 수 있는 것으로 알려진 것이면 큰 제한 없이 사용할 수 있다. 이러한 담체의 구체적인 예로는 실리카, 알루미나, 실리카 -알루미나, 티타니아, 제올라이트, 활성탄, 클레이, 지르코니아, 마그네시아, 마그네슘 알루미네이트, 칼슘 알루미네이트, 실리콘 카바이드, 지르코늄 인산화물, 또는 이들의 흔합물을 들 수 있으며, 바람직하게는 20nm 이상의 기공크기를 갖는 실리카를 사용할 수 있다. Meanwhile, specific examples of the heteropolyacid compound represented by Chemical Formula 1 may include Cu 0 . 25 H 2 . 5 PW 12 0 40 , Cuo. 5 H 2 .oPW 12 0 40 , CU0.75H1.5PW12O40, CLU.OHI.OPWA, CU1.5PW12O40, CU0.75H2.5S1W12O40, CU0.75H1.5PM012O40, CU0.75H2.5S1M012O40, Cuo.75H1.5PWe Mo 6 0 40 etc. are mentioned. In addition, the glycerin dehydration reaction catalyst may further include a carrier to which the heteropolyacid compound is fixed. The carrier can be used without any significant limitation as long as it is known that it can be used in a conventional catalyst. Specific examples of such a carrier include silica, alumina, silica-alumina, titania, zeolite, activated carbon, clay, zirconia, magnesia, magnesium aluminate, calcium aluminate, silicon carbide, zirconium phosphate, or a combination thereof. Preferably, silica having a pore size of 20 nm or more may be used.
상기 담체는 상기 인 및 실리콘으로 이루어진 군에서 선택된 1 이상의 원소와 구리 및 텅스텐을 함유한 헤테로폴리산 화합물을 고정하는 역할을 하는 것으로, 상기 헤테로폴리산 화합물이 큰 표면적을 가진 담체에 산소를 공유하는 형태로 고정되어 있을 수 있다. 상기와 같이 헤테로폴리산 화합물이 담체에 고정된 형태로 제조되면 보다 용이하게 저장 및 수송미 가능하고, 큰 표면적으로 인해 다량의 글리세린을 효율적으로 반웅시킬 수 있다.  The carrier serves to fix a heteropolyacid compound containing copper and tungsten with at least one element selected from the group consisting of phosphorus and silicon, and the heteropolyacid compound is fixed in a form of sharing oxygen to a carrier having a large surface area. There may be. When the heteropolyacid compound is prepared in a form fixed to the carrier as described above, it can be stored and transported more easily, and due to the large surface area, a large amount of glycerin can be efficiently reacted.
그리고, 상기 담체는 비표면적이 10 내지 500 mVg 일 수 있고, 바람직하게는 50 내지 200 mVg 일 수 있다. 특히, 상기 범위의 큰 비표면적을 갖는 담체에 상기 헤테로폴리산 화합물을 담지시켜 제조한 글리세린 탈수반응용 촉매는 적절한 기공크기를 가지므로 코크 침적 현상이 감소할 수 있고, 또한 충분한 촉매 활성을 제공할 수 있다.  And, the carrier may have a specific surface area of 10 to 500 mVg, preferably 50 to 200 mVg. In particular, the catalyst for glycerin dehydration prepared by supporting the heteropolyacid compound on a carrier having a large specific surface area in the above range has an appropriate pore size so that coke deposition may be reduced and sufficient catalyst activity may be provided. .
상기 글리세린 탈수반응용 촉매는 상기 담체 100 중량부에 대하여 인 및 실리콘으로 이루어진 군에서 선택된 1 이상의 원소와 구리 및 텅스텐을 함유한 헤테로폴리산 화합물을 1 내지 50 증량부 포함할 수 있다. 한편, 발명의 또 다른 구현예에 따르면, 인 (P) 및 실리콘 (Si )으로 이루어진 군에서 선택된 1 이상의 원소와, 텅스텐 (W)을 포함하는 해테로폴리산 화합물을 바륨 화합물과 구리 화합물로 순차적으로 반응시키는 단계를 포함하는 글리세린 탈수반응용 촉매의 제조방법이 제공될 수 있다. 이러한 제조 방법에 따르면, 상술한 발명의 일 구현예의 글리세린 탈수반응용 촉매가 제공될 수 있다. 상술한 바와 같이, 이러한 촉매는 글리세린의 탈수반웅에서의 부산물의 형성을 최소화하여 높은 선택도로 아크를레인을 제조할 수 있다. The catalyst for glycerin dehydration may include 1 to 50 parts by weight of a heteropolyacid compound containing one or more elements selected from the group consisting of phosphorus and silicon and copper and tungsten based on 100 parts by weight of the carrier. Meanwhile, according to another embodiment of the present invention, a heteropolyacid compound including tungsten (W) and at least one element selected from the group consisting of phosphorus (P) and silicon (Si) may be sequentially converted to a barium compound and a copper compound. It can be provided a method for producing a catalyst for glycerin dehydration comprising the step of reacting. According to this production method, a catalyst for glycerin dehydration of an embodiment of the present invention described above may be provided. As described above, this catalyst can minimize the formation of by-products in the dehydration reaction of glycerin to produce acrolein with high selectivity.
보다 구체적으로, 상기 글리세린 탈수반응용 촉매는 하기 화학식 More specifically, the glycerin dehydration catalyst is represented by the formula
2 로 표시되는 헤테로폴리산 화합물과 바륨 화합물을 반응시켜 하기 화학식By reacting a barium compound with a heteropolyacid compound represented by 2,
3 의 화합물을 제조하는 단계; 및 상기 제조된 화학식 3 의 화합물을 구리 화합물과 반응시켜 하기 화학식 1 와 화합물을 제조하는 단계;를 포함하여 제조될 수 있다. Preparing a compound of 3; And reacting the prepared compound of Chemical Formula 3 with a copper compound to prepare a compound represented by Chemical Formula 1 below.
[화학식 1]  [Formula 1]
(Cu)x(H)yAW( i2-z)Bz04o (Cu) x (H) y AW ( i2-z) B z 0 4 o
[화학식 2] [Formula 2]
Figure imgf000008_0001
Figure imgf000008_0001
[화학식 3]  [Formula 3]
(Ba)x(H)yA W(i2-z)Bz04o (Ba) x (H) y AW (i 2 - z ) B z 0 4 o
상기 화학식 1 내지 3에서, A는 인 (P) 또는 실리콘 (Si )이고, B는 Zr , Ti , Ce , V, Nb , Cr , Mo , Mn , Zn, B 및 Cu 로 이루어진 군에서 선택되고, X는 각각 독립적으로 O . Oi내지 5이고, y는 각각 독립적으로 0 내지 5이고, z는 0 내지 12이고, a는 0.01 내지 5이다.  In Formulas 1 to 3, A is phosphorus (P) or silicon (Si), B is selected from the group consisting of Zr, Ti, Ce, V, Nb, Cr, Mo, Mn, Zn, B and Cu, X is each independently O. Oi to 5, y is each independently 0 to 5, z is 0 to 12, and a is 0.01 to 5.
그리고, 상기 화학식 1및 3의 A가 인 (P) 일때, y는 3-2x이고, x는 And, when A in Formulas 1 and 3 is (P), y is 3-2x, x is
0.01 내지 1.5 이며, y 는 0 내지 2.98 일 수 있고, 상기 A 가 실리콘 (Si ) 일때, y는 4ᅳ 2x이고, X는 0.01 내지 2이며, y는 0 내지 3.98일 수 있다. 상기 화학식 3 의 화합물을 제조하는 단계와 화학식 1 의 화합물을 제조하는 단계는 용매의 존재 하에서 수행될 수 있다. 즉, 화학식 2 의 화합물과 바륨 화합물을 용매 하에서 반웅시킬 수 있고, 상기 제조된 화학식 3의 화합물과 구리 화합물을 용매 하에서 반응시켜 제조할 수 있다. 상기 용매의 예로는 물, 알코올류 또는 이들의 흔합물을 들 수 있다. 0.01 to 1.5, and y may be 0 to 2.98. When A is silicon (Si), y may be 4 × 2x, X may be 0.01 to 2, and y may be 0 to 3.98. The preparing of the compound of Formula 3 and the preparing of the compound of Formula 1 may be performed in the presence of a solvent. That is, the compound of Formula 2 and the barium compound may be reacted under a solvent, and the compound of Formula 3 and the copper compound prepared above may be reacted under a solvent. Examples of the solvent include water, alcohols or a mixture thereof.
상기 바륨 화합물로는 Ba(0H)2 , BaS04 , Ba(N03)2 , BaC03 , BaC.l2 또는 이들의 흔합물을 사용할 수 있고, 특히, Ba(0H)2를 사용하는 경우 부산물로 황산, 질산과 같은 강산이 아닌 물이 생성되기 때문에 제조되는 촉매의 활성에 영향을 주지 않으며 , 촉매의 정제과정이 따로 필요치 않아 보다 용이하게 글리세린 탈수반응용 촉매의 제조가 가능하다. As the barium compound, Ba (0H) 2 , BaS0 4 , Ba (N0 3 ) 2 , BaC0 3 , BaC.l 2, or a mixture thereof may be used, and in particular, by-products when Ba (0H) 2 is used. Because of the production of water rather than strong acids such as sulfuric acid and nitric acid. It does not affect the activity, and since the purification process of the catalyst is not necessary, it is possible to prepare the catalyst for glycerin dehydration reaction more easily.
또한, 상기 구리 화합물로는 CuS04 , Cu(N03)2 , CuC03 , CuCl2 또는 이들의 흔합물을 사용할 수 있다. 특히, 상기 이러한 구리 화합물 중에서 CuS04 를 사용하는 경우, 치환 되면서 발생한 BaS04 가 물에 녹지 않고 침전되어, 침전물의 분리가 용이하다. In addition, as the copper compound, CuS0 4 , Cu (N0 3 ) 2 , CuC0 3 , CuCl 2, or a mixture thereof may be used. In particular, the case of using the CuS0 4 Of these copper compounds, BaS0 4 occurs as substitution is precipitated rather insoluble in water, it is easy to remove the precipitate.
그리고, 상기 글리세린 탈수반웅용 촉매의 제조방법은 상기 헤테로폴리산 화합물을 바륨 화합물과 구리 화합물로 순차적으로 반응시키는 단계를 포함하여 생성된 상기 화학식 1 의 화합물을 건조 및 소성하는 단계를 더 포함할 수 있다.  In addition, the method for preparing a glycerin dehydration reaction catalyst may further include drying and calcining the compound of Chemical Formula 1 produced by sequentially reacting the heteropolyacid compound with a barium compound and a copper compound.
보다 구체적으로, 상기 건조하는 단계에서는 헤테로폴리산을 구리 화합물과 반응 시킨 후, 소성하기 전에 100°C 이상의 온도에서 10 분 내지 24 시간 동안 건조하여 용매를 제거할 수 있다. 이러한 건조 과정에서는 통상적으로 사용되는 것으로 알려진 건조 방법 및 건조 장치를 사용할 수 있으며, 예를 들어 열풍기, 오븐, 가열판 등의 열원을 사용하여 건조를 진행할 수 있다. More specifically, in the drying step, after reacting the heteropoly acid with a copper compound, it may be dried for 10 minutes to 24 hours at a temperature of 100 ° C or more before firing to remove the solvent. In this drying process, a drying method and a drying apparatus known to be commonly used may be used. For example, drying may be performed using a heat source such as a hot air fan, an oven, a heating plate, and the like.
또한, 상기 소성하는 단계는 반웅물을 고온에서 가열하여 경화성 물질을 만드는 일련의 과정을 의미하며, 100 내지 900°C , 바람직하게는 200 내지 5(xrc의 온도 범위에서 이루어질 수 있다. 상기 온도범위 미만인 경우, 촉매에 남아 있는 유기물의 제거가 제대로 이루어 지지 않아 반응 증 촉매 고유의 활성이 저하될 수 있으며, 상기 은도 범위를 초과하는 경우, 헤테로폴리산의 구조가 붕괴되어 고유의 산 특성을 상실할 수 있다. ^ 상기 건조 및 소성하는 단계는 각각 10 분 내지 10 시간 동안 수행될 수 있다. 건조 및 소성하는 시간이 너무 짧은 경우, 촉매가 완전히 건조 및 소성이 되지 않을 수 있고, 건조 및 소성하는 시간이 너무 긴 경우 촉매가 탄화되는 등의 여.러가지 부반응이 일어날 수 있다. In addition, the step of firing means a series of processes for making the curable material by heating the semi-coated water at a high temperature, it may be made in a temperature range of 100 to 900 ° C, preferably 200 to 5 (xrc. If less than, the organic matter remaining in the catalyst may not be properly removed, thereby reducing the activity of the reaction catalyst, and in the case of exceeding the silver range, the structure of the heteropoly acid may collapse and lose its inherent acid properties. ^ The drying and firing steps may be performed for 10 minutes to 10 hours, respectively.If the drying and firing time is too short, the catalyst may not be completely dried and calcined, and the drying and firing time is too long. In the long case, various side reactions such as carbonization of the catalyst can occur.
한편, 상기 화학식 1 의 화합물을 건조 및 소성하는 단계 이전에, 화학식 2 의 화합물을 바륨 화합물과 구리 화합물로 순차적으로 반응시켜 생성된 바륨 화합물의 침전물을 분리하는 단계를 더 포함할 수 있다. 상기 침전물의 분리 단계는 화학식 2 의 화합물을 바륨 화합물과 구리 화합물로 순차적으로 반응시켜 생성된 화학식 1 의 화합물이 녹아있는 용액에서 치환 부산물인 바륨 침전물을 제거하기 위한 것으로, 여과 또는 원심 분리를 통하여 분리 및 제거 할 수 있다. Meanwhile, before the drying and calcining of the compound of Formula 1, the method may further include separating the precipitate of the barium compound generated by sequentially reacting the compound of Formula 2 with the barium compound and the copper compound. Separation of the precipitate is a compound of formula 2 to a barium compound and a copper compound In order to remove the barium precipitate, which is a by-product of substitution, in a solution in which the compound of Chemical Formula 1 produced by sequentially reacting is dissolved, it may be separated and removed by filtration or centrifugation.
그리고, 상기 일 구현예의 글리세린 탈수반웅용 촉매의 제조방법은 상기 화학식 1 의 화합물을 담체에 담지시키는 단계를 더 포함할 수 있다. 상기 화합물을 담체에 담지시키는 단계는 당 기술분야에서 사용되는 것으로 알려진 방법을 제한 없이 사용할 수 있으며, 예를 들어 함침법 또는 분체 흔합법을 사용할 수 있다. 또한, 상기 담체의 구체적인 예 및 흔합 비율은 상술한 내용을 제한 없이 적용할 수 있다.  In addition, the method for preparing a glycerin dehydration reaction catalyst of one embodiment may further include supporting the compound of Formula 1 on a carrier. The step of supporting the compound on the carrier can be used without limitation methods known in the art, for example, impregnation method or powder mixing method can be used. In addition, the specific examples and the mixing ratio of the carrier can be applied to the above-described content without limitation.
상기 함침법은 담체를 분말 그대로 사용하거나, 구형이나 펠렛과 같은 형태로 제작한 후, 이를 상기 젤 상태의 침전물이 형성된 흔합액과 함께 숙성 및 소성하여 담지하는 공정이며 , 분체 흔합법은 상기 산화물 촉매의 제조공정에서 숙성 및 건조공정을 거쳐 얻어진 분말상의 결과물을 분말상의 담체와 함께 흔합하여 얻어진 흔합물에 대하여 소성하여 담지하는 공정이다. In the impregnation method, the carrier is used as it is, or is produced in the form of a sphere or pellet, and then aged and calcined together with the mixed solution in which the precipitate in the gel form is formed. The powder mixing method is It is a process of baking and supporting the powder obtained by mixing with a powder support | carrier the powdery result obtained through the aging and drying process in the manufacturing process of an oxide catalyst.
특히, 상기 일 구현예의 글리세린 탈수반웅용 촉매는 상기 해테로폴리산 화합물이 담체 상의 분산이 용이하기 때문에, 함침법을 사용하는 것이 보다 바람직하며, 이러한 함침법에서 용매로는 물, 메탄올 등의 알코을류, THF , 아세톤, 아세토 나이트릴 등의 극성 용매 등을 사용할 수 있다. 특히, 물 또는 메탄올 등의 알코을류를 담지 용매로 사용하는 경우., 제조되는 글리세린 탈수반웅용 촉매가 보다 높은 촉매 활성을 나타낼 수 있다. 한편, 발명의 또 다른 구현예에 따르면, 상술한 글리세린 탈수반웅용 촉매의 존재 하에 글리세린을 반웅시키는 단계를 포함하는 아크를레인의 제조 방법이 제공 될 수 있다.  In particular, the catalyst for glycerin dehydration reaction of the embodiment is more preferably used by impregnation because the heteropolyacid compound is easy to disperse on a carrier, and in this impregnation method, alcohol, such as water and methanol, is preferably used. And polar solvents such as acetone, THF, acetone and acetonitrile. In particular, when alcohols such as water or methanol are used as a supporting solvent, the produced glycerin dehydration reaction catalyst may exhibit higher catalytic activity. On the other hand, according to another embodiment of the present invention, there may be provided a method for producing acrolein comprising the step of reacting the glycerin in the presence of the above-mentioned catalyst for glycerin dehydration reaction.
상술한 바와 같이, 상기 발명의 일 구현예의 글리세린 탈수반응용 촉매를 이용하면 높은 아크를레인의 선택도를 갖는 글리세린의 탈수반응을 수행할 수 있으며, 특히 이전에 알려진 다른 촉매를 이용하는 것에 비하여 부산물의 생성을 최소화할 수 있다. 상기 글리세린 탈수반응용 촉매의 사용량은 반응물인 글리세린의 양과 농도에 따라 적절히 조절될 수 있으며, 예를 들어 상기 촉매를 10 내지 300隱 o l /h · gcat 의 중량공간속도로 층진 할 수 있고, 바람직하게는 10 내지 lOOmmo l /h · gcat 의 중량공간속도로 충진 할 수 있다. As described above, by using the catalyst for glycerin dehydration of the embodiment of the present invention, it is possible to perform dehydration of glycerin having a high acrolein selectivity, and in particular, by-products compared to other catalysts previously known. The production can be minimized. The amount of the catalyst for glycerin dehydration reaction can be appropriately adjusted according to the amount and concentration of glycerin as a reactant, for example, the catalyst can be layered at a weight space velocity of 10 to 300 kPa ol / h · g cat , preferably Preferably it can be filled at a weight space velocity of 10 to lOOmmol l / h · g cat .
또한, 상기 글리세린을 반웅시키는 단계는 200 내지 4(xrc의 온도에서 수행될 수 있다. 상기 글리세린을 반웅시키는 단계는 흡열반응으로, 높은 전환율 및 선택도로 아크를레인을 제조하기 위해서는 상기 범위의 온도에서 반응을 수행하는 것이 바람직하다. 【발명의 효과】  In addition, the step of reacting the glycerin may be carried out at a temperature of 200 to 4 (xrc. It is preferable to carry out the reaction.
본 발명에 따르면, 부산물의 생성을 최소화하여 아크롤레인의 선택도가 높고, 고 활성인 글리세린 탈수반응용 촉매, 이의 제조 방법 및 이를 이용한 아크를레인의 제조 방법이 제공될 수 있다. 【발명을 실시하기 위한 구체적인 내용】  According to the present invention, by minimizing the production of by-products, a high selectivity of acrolein, a highly active catalyst for glycerin dehydration, a method for preparing the same, and a method for preparing acrolein using the same can be provided. [Specific contents to carry out invention]
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. [실시예 및 비교예: 글리세린 탈수반웅용촉매의 제조]  The invention is explained in more detail in the following examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples. EXAMPLES AND COMPARATIVE EXAMPLES: Preparation of Glycerin Dehydration Anticoagulant Catalyst
[실시예 1]  Example 1
4g 의 텅스토인산 (H3PW12040 , WAK0 사)을 증류수 30ml 에 희석하여 텅스토인산 수용액을 만들었다. 0. 109g 의 수산화 바륨 (Ba(0H)2 · 8¾0, 순도 98% , KANT0 사)을 텅스토인산 수용액에 투입하였다. 상기 수산화 바륨이 완전히 치환되어 투명한 Ba0.25H2.5PW12040 수용액이 될 때까지 기다린 후, 별도의 비이커에 0.087g 의 황화구리 (CuS04 5¾0 , 순도 99% , DAEJUNG 사) 증류수 10ml 에 녹여 황화구리 수용액을 만들었다. 그 후 제조된 황화구리 수용액을 Ba0.25H2.5PW12040 수용액에 천천히 투입한 후 교반하여 CLI0.25H2.5PW12040수용액과 BaS04침전물을 얻었다. 생성된 BaS04는 원심분리를 통하여 분리하여 제거하고, 남은 Cu0.25H2.5PW12040수용액은 가열하여 증류수를 제거한 후 110 °C오븐에서 12 시간 동안 건조하고, 300°C에서 4 시간 동안 소성하여 Cu0.25H2.5PW12040촉매를 제조하였다. 4 g of tungstophosphoric acid (H 3 PW 12 0 40 , WAK0) was diluted in 30 ml of distilled water to prepare an aqueous solution of tungstoic acid. 109 g of barium hydroxide (Ba (0H) 2 8¾0, purity 98%, KANT0) was added to an aqueous tungstoic acid solution. The barium hydroxide is completely substituted to a transparent Ba 0 . 25 H 2 . After waiting for 5 PW 12 0 40 aqueous solution, 0.087 g of copper sulfide (CuS0 4 5¾0, purity 99%, manufactured by DAEJUNG) was dissolved in 10 ml of distilled water to prepare an aqueous solution of copper sulfide. Then, the prepared copper sulfide aqueous solution was Ba 0 . 25 H 2 . Slowly add 5 PW 12 0 40 to the aqueous solution and stir to CLI 0 . 25 H 2 . A 5 PW 12 0 40 aqueous solution and a BaS0 4 precipitate were obtained. The produced BaS0 4 was separated and removed by centrifugation, and the remaining Cu 0 . 25 H 2 . 5 PW 12 0 40 The aqueous solution is heated to distilled water After removing, drying at 110 ° C. oven for 12 hours, and calcined at 300 ° C. for 4 hours Cu 0 . 25 H 2 . 5 PW 12 0 40 catalyst was prepared.
[실시예 2]  Example 2
0.219g 의 수산화바륨과 0.17¾ 의 황화구리를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 Cu0.5H2.0PW12040촉매를 제조하였다. In the same manner as in Example 1, except that 0.219 g of barium hydroxide and 0.17¾ copper sulfide were used, Cu 0 . 5 H 2 . 0 PW 12 0 40 catalyst was prepared.
[실시예 3]  Example 3
0.329g 의 수산화바륨과 0.260g 의 황화구리를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 Cu0.75HL5PW12040촉매를 제조하였다. In the same manner as in Example 1, except that 0.329 g of barium hydroxide and 0.260 g of copper sulfide were used, Cu 0 . 75 H L5 PW 12 0 40 catalyst was prepared.
[실시예 4]  Example 4
0.438g 의 수산화바륨과 0.347g 의 황화구리를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 CULOHLOPW^C^O촉매를 제조하였다.  A CULOHLOPW ^ C ^ O catalyst was prepared in the same manner as in Example 1 except that 0.438 g of barium hydroxide and 0.347 g of copper sulfide were used.
[실시예 5]  Example 5
0.657g 의 수산화바륨과 0.520g 의 황화구리를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 CULSP^O^촉매를 제조하였다.  A CULSP ^ O ^ catalyst was prepared in the same manner as in Example 1 except that 0.657 g of barium hydroxide and 0.520 g of copper sulfide were used.
[실시예 6]  Example 6
4g 의 텅스토규산 (H4SiW12040, WAK0 사)을 증류수 30ml 에 회석하여 텅스토규산 수용액을 만들었다. 0.286g 의 수산화 바륨 (Ba(0H)2 · 8¾0, 순도 98%, KANT0 사)을 텅스토규산 수용액에 투입하였다. 수산화 바륨이 완전히 치환되어 투명한 Ba0.75¾.5SiW12040 수용액이 될 때까지 기다린 후, 별도의 비이커에 0.226g 의 황화구리 (CuS04. 5¾0, 순도 99%, DAEJUNG 사) 증류수 10ml 에 녹여 황화구리 수용.액을 만들었다. 그 후 제조된 황화구리 수용액을 Bao.75H2.5SiW1204o 수용액에 천천히 투입한 후 교반하여 Cu0.75H2.5SiW12040 수용액과 BaS04 침전물을 얻었다. 생성된 BaS04 는 원심분리를 통하여 분리하여 제거하고, 남은 Cu0.75H2.5SiW12040 수용액은 가열하여 증류수를 제거한 후 110°C오븐에서 12 시간 동안 건조하고, 30CTC에서 4 시간 동안 소성하여 Cu0.75H2.5SiW12040촉매를 제조하였다. 4 g of tungstosilicate (H 4 SiW 12 0 40 , WAK0) was distilled off in 30 ml of distilled water to prepare an aqueous tungstosilicate solution. 0.286 g of barium hydroxide (Ba (0H) 2 8¾0, purity 98%, KANT0) was added to an aqueous tungstosilicate solution. Barium hydroxide is completely substituted for transparent Ba 0 . 75 ¾. 5 SiW 12 0 40 wait until the aqueous solution, 0.226g of a separate beaker, copper sulfide (CuS0 4. 5¾0, purity 99%, DAEJUNG g) copper sulfide receiving dissolved in 10ml distilled water. I made a liquid. Then the mixture was stirred and then added slowly to the copper sulfate aqueous solution prepared in Bao.7 H2.5SiW 5 12 0 0 4 o aqueous solution of Cu. 75 H 2 . A 5 SiW 12 0 40 aqueous solution and a BaS0 4 precipitate were obtained. The produced BaS0 4 was separated and removed by centrifugation, and the remaining Cu 0 . 75 H 2 . 5 SiW 12 0 40 Aqueous solution was heated to remove distilled water, dried for 12 hours at 110 ° C. oven, calcined at 30 CTC for 4 hours, Cu 0 . 75 H 2 . 5 SiW 12 0 40 catalyst was prepared.
[실시예 7]  Example 7
실시예 3에서 제조된 촉매 0.2g을 증류수 7ml에 녹여 수용액을 만든 후, 실리카 (Q30, FUJI 사) 1.8g 을 투입하여 실리카 슬러리를 만들어 교반하였다. 그 후, 회전 농축기를 통하여 실리카 슬러리의 수분을 제거하였다. 그리고 나서, no°c 오븐에서 12 시간 동안 건조하고,0.2 g of the catalyst prepared in Example 3 was dissolved in 7 ml of distilled water to form an aqueous solution, and then 1.8 g of silica (Q30, FUJI Co., Ltd.) was added thereto to prepare a silica slurry, which was then stirred. After that, the moisture of the silica slurry is Removed. Then dry in a no ° c oven for 12 hours ,
300°C에서 4 시간 동안 소성하여 10 중량비로 담지된 0.75¾.52040/^02(030)촉매를 제조하였다. It was calcined at 300 ° C. for 4 hours and loaded at 10 weight ratio of 0. 75 ¾. 52 0 4 0 / ^ 0 2 (030) catalyst was prepared.
[실시예 8]  Example 8
실리카 (Q30 , FUJ I 사) 대신 Si — A1203(ALDRICH 사)를 담체로 사용한 것을 제외하고는 실시예 7 과 동일한 방법을 통하여 CUO. TOHL
Figure imgf000013_0001
The same method as in Example 7 was carried out except that Si — A1 2 0 3 (ALDRICH) was used as a carrier instead of silica (Q30, FUJ I). TOHL
Figure imgf000013_0001
A1203담지 촉매를 제조하였다. A1 2 0 3 supported catalyst was prepared.
[실시예 9]  Example 9
실리카 (Q30 , FUJ I 사) 대신 ST31116 (SAINT GOBAIN 사의 Ti02)를 담체로 사용한 것을 제외하고는 실시예 7 과 동일한 방법을 통하여 Cuo^HuPW^ to/ST담지 촉매를 제조하였다. A Cuo ^ HuPW ^ to / ST supported catalyst was prepared in the same manner as in Example 7, except that ST31116 (Ti0 2 from SAINT GOBAIN) was used as a carrier instead of silica (Q30, FUJ I).
[비교예 1]  Comparative Example 1
WM0사에서 구입한 H3PW12040를 사용하였다. H 3 PW 12 0 40 purchased from WM0 was used.
[비교예 2]  Comparative Example 2
WAK0사에서 구입한 H4SiW12040 를 사용하였다. H 4 SiW 12 0 40 purchased from WAK0 was used.
[비교예 3]  Comparative Example 3
질산세슘을 사용한 것을 제외하고는 실시예 1 과 유사하게 Cs2.5 .5PW12040의촉매를 제조하였다. Similar to Example 1 except that cesium nitrate was used, Cs 2 . 5 . A catalyst of 5 PW 12 0 40 was prepared.
[비교예 4]  [Comparative Example 4]
Cu0.75Hi.5PWi204o 대신. ¾PW12040( K0 사)를 사용한 것을 제외하고는 실시예 7과 동일한 방법으로 H3PW12040/Si02촉매를 제조하였다. Cu 0 .75Hi. 5 PWi 2 0 4 o instead. A H 3 PW 12 0 40 / Si0 2 catalyst was prepared in the same manner as in Example 7, except that ¾PW 12 0 40 (K0) was used.
[비교예 5]  [Comparative Example 5]
Cu0.75Hi.5PWi204o 대신 H4SiW12040( KO 사)를 사용한 것을 제외하고는 실시예 8과 동일한 방법으로 H4SiW12040/Si02-Al203촉매를 제조하였다. Cu 0 .75Hi. A H 4 SiW 12 0 40 / Si0 2 -Al 2 0 3 catalyst was prepared in the same manner as in Example 8 except that H 4 SiW 12 0 40 (KO) was used instead of 5 PWi 2 04o.
[비교예 6]  Comparative Example 6
담체로 Ti02(DEGUSSA 사)를 사용한 것을 제외하고는 비교예 5 와 동일한 방법으로 H4SiW12040/Ti02촉매를 제조하였다. A H 4 SiW 12 0 40 / Ti0 2 catalyst was prepared in the same manner as in Comparative Example 5 except that Ti0 2 (DEGUSSA) was used as the carrier.
[실험예: 글리세린의 전환을, 아크를레인 및 부산물의 선택도] 상기 실시예 및 비교예에 의해 제조된 촉매를 사용하여 하기 표 1 에 기재된 조건으로 짧은 시간에 적은 양의 촉매로 성능을 평가할 수 있도록 제작한 HTS(High-throughput screening)장치를 사용하여 글리세린으로부터 아크를레인을 생산하였고, in-s i tu 상태로 생성물을 GC로 분석하여 전환율, 선택도 및 수율을 계산하였다. 글리세린의 전환율 및 아크를레인의 선택도를 하기 표 2 및 표 3에 나타내었다. Experimental Example: Conversion of Glycerin, Selectivity of Acrolein and By-products Arc from glycerine using a high-throughput screening (HTS) device manufactured to evaluate the performance of the catalyst in a short time under the conditions shown in Table 1 using the catalyst prepared by the above Examples and Comparative Examples Relane was produced and the product was analyzed by GC in in-s i tu state to calculate conversion, selectivity and yield. The conversion of glycerin and the selectivity of acrolein are shown in Tables 2 and 3 below.
여기에서, 상기 글리세린의 전환율은 글리세린이 다른 화합물로 전환된 비율을 나타내고, 상기 아크를레인의 선택도는 전환된 화합물 중에서 아크롤레인이 차지하는 비율을 나타낸다.  Herein, the conversion rate of glycerin represents the ratio of glycerin to another compound, and the selectivity of acrolein represents the ratio of acrolein to the converted compound.
또한, 비교선택도 1 은 아크를레인의 선택도와 분자량 130 인 화합물의 선택도에 대한 하이드록시 아세톤의 선택도의 비교값을 나타내고, 비교선택도 2 는 아크를레인의 선택도와 분자량 130 인 화합물의 선택도에 대한 부산물의 선택도의 비교값을 나타낸다. 상기 비교선택도 1 및 2 에서, 하이드록시 아세톤은 글리세린 탈수 반웅의 주요 부산물이고, 상기 부산물은 하이드록시 아세톤, 아릴 알코을, 아세를, 프로피온산, 1 , 2- 프로판디올, 1, 3-프로판디을, 글리세린 분자간, 또는 아세를과 글리세린간의 이중합체 탈수 반응을 통해 생성된 고리형 아세탈 화합물 등을 포함한다. 그리고, 상기 분자량 130 화합물 선택도에서 분자량 130 인 화합물은 아크를레인과 글리세린의 탈수반응으로 생성된 고리형 아세탈 화합물로서 반응기 후단에서 2oo°c로 가열되면서 생성되는 부산물이다. In addition, Comparative selectivity 1 shows the comparison of the selectivity of the hydroxy acetone with respect to the selectivity of the acrolein and the compound of molecular weight 130, Comparative selectivity 2 is the selectivity of the compound of molecular weight 130 A comparison of the selectivity of by-products against selectivity is shown. In the comparative selectivity 1 and 2, hydroxy acetone is the main by-product of glycerin dehydration reaction, the by-product is hydroxy acetone, aryl alcohol, ace, propionic acid, 1, 2- propanediol, 1, 3-propanedi, Cyclic acetal compounds produced through depolymerization between intermolecular glycerin, or acer and glycerin, and the like. In addition, the compound having a molecular weight of 130 in the molecular weight 130 compound selectivity is a cyclic acetal compound produced by dehydration of acrolein and glycerin and is a by-product produced by heating to 2oo ° C. at the rear of the reactor.
[표 1] 글리세린 탈수반웅 조건 Table 1 Glycerin Dehydration Conditions
Figure imgf000014_0001
[표 2] 실시예 및 비교예에서 제조한 촉매의 화학식, 글리세린 전환율 및 선택도
Figure imgf000015_0001
Figure imgf000014_0001
TABLE 2 Formula, glycerin conversion and selectivity of catalysts prepared in Examples and Comparative Examples
Figure imgf000015_0001
[표 3] 하이드록시 아세톤의 선택도 및 비교선택도 TABLE 3 Selectivity and Comparative Selectivity of Hydroxy Acetone
Figure imgf000015_0002
비교예 3 21.31 1.21 3.92 비교예 4 19.51 1.41 5.33
Figure imgf000015_0002
Comparative Example 3 21.31 1.21 3.92 Comparative Example 4 19.51 1.41 5.33
비교예 5 24.60 2. 15 7. 11  Comparative Example 5 24.60 2. 15 7. 11
비교예 6 24.36 1.75 5.66  Comparative Example 6 24.36 1.75 5.66
*비교선택도 1 = 하이드록시 아세톤의 선택도 I (아크롤레인의 선택도+ 분자량 130 화합물의 선택도) * Comparative selectivity 1 = selectivity of hydroxy acetone I (selectivity of acrolein + selectivity of 130 molecular weight compounds)
비교선택도 2 = 부산물의 선택도 I (아크를레인의 선택도+ 분자량 130 화합물의 선택도) 상기 표 2 및 표 3 에 나타난 바와 같이, 상기 인 및 /또는 실리콘과, 구리 및 텅스텐을 포함하는 실시예의 촉매를 사용하여 글리세린을 반웅시키는 경우, 비교예의 촉매를 사용한 경우에 비하여 높은 글리세린 전환율 및 아크를레인의 선택도를 나타내었다. 또한, 상기 반응에서 목표로 하는 주산물인 아크를레인의 선택도에 대한 부산물의 선택도의 비율인 비교선택도 1 및 2 는 비교예의 촉매를 사용한 경우에 비하여 낮은 수치를 나타내었다.  Comparative selectivity 2 = selectivity I of the by-product (selectivity of acrolein + selectivity of 130 molecular weight compounds), as shown in Table 2 and Table 3, containing the phosphorus and / or silicon, copper and tungsten When glycerin was reacted using the catalyst of the example, the glycerin conversion and the acrolein selectivity were higher than those of the catalyst of the comparative example. In addition, the comparative selectivity 1 and 2, which is the ratio of the selectivity of the byproduct to the selectivity of the target main product, acrolein, were lower than those of the catalyst of the comparative example.
특히, 상기 실험 결과로부터 실시예에서 제조한 촉매는 H3PW1204 의 헤테로폴리산 화합물과, 상기 헤테로폴리산 화합물의 수소를 Cs 로 치환하여 제조한 비교예 3에 비해서도 아크를레인 선택도가 높고, 부산물의 선택도가 낮음을 확인할 수 있다. In particular, the catalyst prepared in Examples from the above experimental results has a higher selectivity of acrolein compared to a heteropolyacid compound of H 3 PW 12 0 4 and Comparative Example 3 prepared by substituting hydrogen of the heteropolyacid compound with Cs, and by-products. It can be seen that the selectivity of is low.
즉, 상기 결과로부터 실시예의 글리세린 탈수반웅용 촉매는 글리세린으로부터 높은 선택도 및 높은 순도로 아크를레인을 생성할 수 있으며, 하이드록시 아세톤과 같은 부산물의 생성은 억제할 수 있음을 확인할 수 있다.  That is, it can be seen from the above results that the catalyst for glycerin dehydration reaction of the embodiment can generate acrolein with high selectivity and high purity from glycerin, and can suppress the formation of by-products such as hydroxy acetone.

Claims

【특허청구범위】 【Patent Claims】
【청구항 1】 【Claim 1】
인 (P) 및 실리콘 (Si)으로 이루어진 군에서 선택된 1 이상의 원소와, 구리 (Cu) 및 텅스텐 (W)을 포함하는 헤테로폴리산 화합물을 포함하는, 글리세린 탈수 반웅용 촉매 . A catalyst for glycerin dehydration reaction, comprising one or more elements selected from the group consisting of phosphorus (P) and silicon (Si), and a heteropoly acid compound containing copper (Cu) and tungsten (W).
【청구항 2】 【Claim 2】
제 1항에 있어서, In clause 1,
상기 구리 및 텅스텐 간의 몰비율은 1:5 내지 1:10,000 인, 글리세린 탈수 반웅용 촉매 . The molar ratio between copper and tungsten is 1:5 to 1:10,000, glycerin dehydration banungyong catalyst.
【청구항 3】 【Claim 3】
제 1항에 있어서, In clause 1,
상기 혜테로폴리산 화합물은 Zr, Ti, Ce, V, Nb, Cr, Mo, Mn, Zn, B 및 Cu 로 이루어진 군에서 선택되는 1 종 이상의 제 2 금속을 더 포함하는, 글리세린 탈수반웅용 촉매 . The heteropoly acid compound further contains at least one second metal selected from the group consisting of Zr, Ti, Ce, V, Nb, Cr, Mo, Mn, Zn, B and Cu, a catalyst for glycerin dehydration banung .
【청구항 4】 【Claim 4】
제 3항에 있어서, In clause 3,
상기 제 2 금속은 각각 상기 텅스텐 대비 0.1 몰 내지 10 몰의 함량으로 포함되는, 글리세린 탈수 반응용 촉매 . A catalyst for glycerin dehydration reaction, wherein the second metal is contained in an amount of 0.1 mole to 10 mole relative to the tungsten.
【청구항 5] [Claim 5]
제 1항에 있어서, In clause 1,
상기 헤테로폴리산 화합물은 하기 화학식 Ί 로 표시되는, 글리세린 탈수 반응용 촉매 : The heteropoly acid compound is a catalyst for glycerin dehydration reaction, represented by the following formula Ί:
[화학식 1] [Formula 1]
(Cu)x(H)yAW(i2-z)Bz04o (Cu) x (H) y AW ( i2- z )B z 0 4 o
상기 화학식 1에서, In Formula 1,
A는 인 (P) 또는 실리콘 (Si)이고, B 는 Zr , Ti , Ce , V, Nb , Cr , Mo , Mn, Zn, B 및 Cu 로 이루어진 군에서 선택되고, A is phosphorus (P) or silicon (Si), B is selected from the group consisting of Zr, Ti, Ce, V, Nb, Cr, Mo, Mn, Zn, B and Cu,
X는 0.01내지 5이고, X is 0.01 to 5,
y는 0 내지 5이고, y is 0 to 5,
z는 0 내지 12이다. ᅳ z is 0 to 12. ᅳ
【청구항 6] [Claim 6]
제 5항에 있어서, In clause 5,
상기 A가 인 (P) 일때, y는 3-2x이고, X는 0.01 내지 1.5이며, y는 0 내지 2.98 인 글리세린 탈수 반웅용 촉매 . When A is phosphorus (P), y is 3-2x,
【청구항 7】 【Claim 7】
제 5항에 있어서, In clause 5,
상기 A가 실리콘 (Si ) 일때, y는 4— 2x이고, x는 0.01 내지 2 이며 y는 0 내지 3.98인, 글리세린 탈수 반웅용 촉매. When A is silicon (Si), y is 4—2x, x is 0.01 to 2, and y is 0 to 3.98, a catalyst for glycerin dehydration banung.
【청구항 8】 【Claim 8】
제 1항에 있어서, In clause 1,
상기 헤테로폴리산 화합물이 고정되는 담체를 더 포함하는, 글리세린 탈수반웅용 촉매 . A catalyst for glycerin dehydration banung, further comprising a carrier on which the heteropoly acid compound is fixed.
【청구항 9】 【Claim 9】
제 8항에 있어서, In clause 8,
상기 담체는 실리카, 알루미나, 실리카 -알루미나, 티타니아, 제올라이트, 활성탄, 클레이, 지르코니아, 마그네시아, 마그네슘 알루미네이트, 칼슘 알루미네이트, 실리콘 카바이드, 지르코늄 인산화물 및 이들의 혼합물로 이루어진 군에서 선택되는, 글리세린 탈수반응용 촉매. The carrier is glycerin dehydrated, selected from the group consisting of silica, alumina, silica-alumina, titania, zeolite, activated carbon, clay, zirconia, magnesia, magnesium aluminate, calcium aluminate, silicon carbide, zirconium phosphate and mixtures thereof. Catalyst for reaction.
【청구항 10] [Claim 10]
제 8항에 있어서, 상기 담체는 비표면적 (BET)이 10 내지 500 mVg 인, 글리세린 탈수반응용 촉매ᅳ In clause 8, The carrier has a specific surface area (BET) of 10 to 500 mVg, and is a catalyst for glycerin dehydration reaction.
【청구항 11】 【Claim 11】
제 8항에 있어서, In clause 8,
상기 담체 100 중량부에 대하여 상기 헤테로폴리산 화합물은 1 내지 50 중량부 포함하는, 글리세린 탈수반웅용 촉매 . A catalyst for glycerin dehydration banungyong, comprising 1 to 50 parts by weight of the heteropoly acid compound based on 100 parts by weight of the carrier.
【청구항 12] [Claim 12]
' 인 (P) 및 실리콘 (Si )으로 이루어진 군에서 선택된 1 이상의 원소와, 텅스텐 (W)을 포함하는 헤테로폴리산 화합물을 바륨 화합물과 구리 화합물로 순차적으로 반응시키는 단계를 포함하는 글리세린 탈수반웅용 촉매의 제조방법. 'Glycerin dehydration banungyong catalyst comprising the step of sequentially reacting a heteropoly acid compound containing one or more elements selected from the group consisting of phosphorus (P) and silicon (Si) and tungsten (W) with a barium compound and a copper compound. Manufacturing method.
【청구항 13】 【Claim 13】
제 12항에 있어서, In clause 12,
하기 화학식 2 로 표시되는 헤테로폴리산 화합물과 바륨 화합물을 반웅시켜 하기 화학식 3의 화합물을 제조하는 단계 ; 및 Preparing a compound of formula 3 by reacting a heteropoly acid compound represented by formula 2 and a barium compound; and
상기 제조된 화학식 3 의 화합물을 구리 화합물과 반응시켜 하기 화학식 1 의 화합물을 제조하는 단계;를 포함하는, 글리세린 탈수반웅용 촉매의 제조방법 : A method for producing a glycerin dehydration Banungyong catalyst, comprising the step of reacting the prepared compound of Chemical Formula 3 with a copper compound to prepare a compound of Chemical Formula 1:
[화학식 1] [Formula 1]
(Cu)x(H)yAW( i2-z)Bz04o (Cu) x (H) y AW ( i2-z)B z 0 4 o
[화학식 2] [Formula 2]
Figure imgf000019_0001
Figure imgf000019_0001
[화학식 3] [Formula 3]
(Ba)x(H)yA W( i2-2)Bz04o (Ba) x (H) y AW( i2- 2 )B z 0 4 o
상기 화학식 1 내지 3에서, In Formulas 1 to 3,
A는 인 (P) 또는 실리콘 (Si )이고, B 는 Zr, Ti, Ce, V, Nb, Cr, Mo, Mn, Zn, B 및 Cu 로 이루어진 군에서 선택되고, A is phosphorus (P) or silicon (Si), B is selected from the group consisting of Zr, Ti, Ce, V, Nb, Cr, Mo, Mn, Zn, B and Cu,
X는 각각 독립적으로 0.이내지 5이고, X is each independently within 0. to 5,
y는 각각 독립적으로 0 내지 5이고, z는 0 내지 12이고, y is each independently 0 to 5, z is 0 to 12,
a는 0.01 내지 5이다. a is 0.01 to 5.
【청구항 14】 【Claim 14】
제 12항에 있어서, According to clause 12,
상기 바륨 화합물은 Ba(0H)2, BaS04) Ba(N03)2, BaC03, 및 BaCl2 로 이루어잔군에서 선택된 1종 이상을 포함하는, 글리세린 탈수반웅용 촉매의 제조방법. The barium compound is Ba(0H) 2 , BaS0 4) Ba(N0 3 ) 2 , BaC0 3 , and BaCl 2. A method for producing a glycerin dehydration banungyong catalyst comprising at least one selected from the group consisting of.
【청구항 15】 【Claim 15】
제 12항에 있어서, According to clause 12,
상기 구리 화합물은 CuS04, Cu(N03)2, CuCOs, 또는 CuCl2 인, 글리세린 탈수반응용 촉매의 제조방법. The copper compound is CuS0 4 , Cu(N0 3 ) 2 , CuCOs, or CuCl 2. Method for producing a catalyst for glycerin dehydration reaction.
【청구항 16】 【Claim 16】
제 13항에 있어서, In clause 13,
상기 화학식 3 의 화합물을 제조하는 단계와 화학식 1 의 화합물을 제조하는 단계는 용매의 존재 하에서 수행되는, 글리세린 탈수반웅용 촉매의 제조방법 . The step of preparing the compound of Formula 3 and the step of preparing the compound of Formula 1 are performed in the presence of a solvent. Method for producing a glycerin dehydration banungyong catalyst.
【청구항 17] [Claim 17]
제 13항에 있어서, In clause 13,
상기 화학식 1 의 화합물을 건조 및 소성하는 단계;를 더 포함하는, 글리세린 탈수반응용 촉매의 제조방법. A method for producing a catalyst for glycerin dehydration reaction, further comprising drying and calcining the compound of Formula 1.
【청구항 18】 【Claim 18】
제 17항에 있어서 상기 소성하는 단계는 loo 내지 9(xrc의 온도 범위에서 수행되는, 글리세린 탈수반응용 촉매의 제조방법. In clause 17 The calcination step is performed in a temperature range of loo to 9 (xrc). A method for producing a catalyst for glycerin dehydration reaction.
[청구항 19】 [Claim 19]
제 13항에 있어서 , In clause 13,
상기 화학식 1 의 화합물을 담체에 담지시키는 단계를 더 포함하는, 글리세린 탈수반웅용 촉매의 제조방법 . A method for producing a catalyst for glycerin dehydration, further comprising the step of supporting the compound of Formula 1 on a carrier.
【청구항 20】 【Claim 20】
상기 제 1 항의 글리세린 탈수반웅용 촉매의 존재 하에, 글리세린을 반응시키는 단계를 포함하는, 아크를레인의 제조 방법 . A method for producing arclaine, comprising the step of reacting glycerin in the presence of the glycerin dehydration reaction catalyst of claim 1.
【청구항 21] [Claim 21]
제 20항에 있어서, According to clause 20,
상기 글리세린 탈수반응용 촉매는 10 내지 300隱 ol /h · gcat 의 중량공간속도로 층진하는, 아크를레인의 제조 방법. A method for producing arclaine, wherein the catalyst for the glycerin dehydration reaction advances at a weight space velocity of 10 to 300 ol / h · g cat .
【청구항 22】 【Claim 22】
제 20항에 있어서, In clause 20,
상기 글리세린을 반응시키는 단계는 200 내지 400°C의 온도에서 수행되는, 아크를레인의 제조 방법. The step of reacting glycerin is performed at a temperature of 200 to 400 ° C, a method for producing arclein.
PCT/KR2014/005485 2013-09-30 2014-06-20 Catalyst for glycerin dehydration reaction, preparation method therefor, and acrolein preparation method WO2015046716A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/442,992 US9321040B2 (en) 2013-09-30 2014-06-20 Catalyst for glycerin dehydration, preparation method thereof, and preparation method of acrolein

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0116835 2013-09-30
KR20130116835 2013-09-30
KR1020140057278A KR101606191B1 (en) 2013-09-30 2014-05-13 Catalyst for dehydration of glycerin, method of preparing the same, and preparing method of acrolein
KR10-2014-0057278 2014-05-13

Publications (1)

Publication Number Publication Date
WO2015046716A1 true WO2015046716A1 (en) 2015-04-02

Family

ID=52743806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005485 WO2015046716A1 (en) 2013-09-30 2014-06-20 Catalyst for glycerin dehydration reaction, preparation method therefor, and acrolein preparation method

Country Status (1)

Country Link
WO (1) WO2015046716A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110004872A (en) * 2008-04-16 2011-01-14 아르끄마 프랑스 Process for manufacturing acrolein or acrylic acid from glycerin
KR20110011603A (en) * 2008-04-16 2011-02-08 닛뽄 가야쿠 가부시키가이샤 Catalyst for producing acrolein and acrylic acid through glycerin dehydration and production method of same
KR20120093853A (en) * 2009-09-18 2012-08-23 아르끄마 프랑스 Catalyst and process for preparing acrolein and/or acrylic acid by dehydration reaction of glycerin
KR20130071224A (en) * 2011-12-20 2013-06-28 지에스칼텍스 주식회사 Heteropoly acid catalyst supported by silica sphere having open pore and preparing method of acrolein using thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110004872A (en) * 2008-04-16 2011-01-14 아르끄마 프랑스 Process for manufacturing acrolein or acrylic acid from glycerin
KR20110011603A (en) * 2008-04-16 2011-02-08 닛뽄 가야쿠 가부시키가이샤 Catalyst for producing acrolein and acrylic acid through glycerin dehydration and production method of same
KR20120093853A (en) * 2009-09-18 2012-08-23 아르끄마 프랑스 Catalyst and process for preparing acrolein and/or acrylic acid by dehydration reaction of glycerin
KR20130071224A (en) * 2011-12-20 2013-06-28 지에스칼텍스 주식회사 Heteropoly acid catalyst supported by silica sphere having open pore and preparing method of acrolein using thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LLEWELYN, PETER: "Supported heteropoly acids for acid catalysed reactions", PH .D, 2011, CARDIFF UNIVERSITY, pages 1 - 161 *

Similar Documents

Publication Publication Date Title
JP6417009B2 (en) Catalyst for glycerol dehydration reaction, method for producing the same, and method for producing acrolein
Behera et al. One-pot synthesis of 5-hydroxymethylfurfural: a significant biomass conversion over tin-promoted vanadium phosphate (Sn–VPO) catalyst
WO2012005348A1 (en) Novel glycerol dehydration catalyst and production method therefor
JP6091310B2 (en) Method for producing butadiene
WO2010047405A1 (en) Catalyst for production of acrolein and acrylic acid by means of dehydration reaction of glycerin, and process for producing same
CN108097286B (en) Catalyst for preparing acrylic acid and methyl acrylate
KR101606191B1 (en) Catalyst for dehydration of glycerin, method of preparing the same, and preparing method of acrolein
JP6504774B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP6533621B2 (en) Catalyst for glycerin dehydration reaction, method for producing the same, and method for producing acrolein using the catalyst
WO2015046716A1 (en) Catalyst for glycerin dehydration reaction, preparation method therefor, and acrolein preparation method
JP5721238B2 (en) Method for producing allyl alcohol and propylene from low grade glycerin and catalyst therefor
TW201629002A (en) Catalytic oxidation of but-3-ene-1,2-diol
US9259718B1 (en) Method for preparing catalyst for glycerin dehydration, and method for preparing acrolein
JP7441474B2 (en) Catalyst, method for producing isobutyraldehyde and methacrolein, method for producing methacrylic acid, and method for producing methacrylic acid ester
JP6384731B2 (en) Method for producing isobutyraldehyde
JP6267238B2 (en) Catalyst for glycerol dehydration reaction, method for producing the same, and method for producing acrolein
JP2013121946A (en) Method and apparatus for producing methacrolein and methacrylic acid from isobutanol
JP6384664B2 (en) Method for producing isobutanol
JP6189965B2 (en) Method for preparing acrolein from glycerol
KR20160070484A (en) Catalyst for dehydration of glycerin, method of preparing the same, and preparing method of acrolein
KR102210508B1 (en) Preparing method of catalyst for dehydration of glycerin, and preparing method of acrolein
KR102164613B1 (en) Catalyst for dehydration of glycerin, preparing method thereof and production method of acrolein using the catalyst
JP5785910B2 (en) Method for producing (meth) acrylic acid or ester thereof
WO2017111392A1 (en) Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst
KR20160074287A (en) Catalyst for dehydration of glycerin, and preparing method of acrolein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14442992

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848733

Country of ref document: EP

Kind code of ref document: A1