WO2015046458A1 - Discharge lamp device - Google Patents

Discharge lamp device Download PDF

Info

Publication number
WO2015046458A1
WO2015046458A1 PCT/JP2014/075700 JP2014075700W WO2015046458A1 WO 2015046458 A1 WO2015046458 A1 WO 2015046458A1 JP 2014075700 W JP2014075700 W JP 2014075700W WO 2015046458 A1 WO2015046458 A1 WO 2015046458A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
discharge lamp
wave shielding
electromagnetic
lamp device
Prior art date
Application number
PCT/JP2014/075700
Other languages
French (fr)
Japanese (ja)
Inventor
基 松永
耕生 玉木
正士 神藤
ヤン フサリク
マーティン クラル
Original Assignee
東京計器株式会社
株式会社プラズマアプリケーションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京計器株式会社, 株式会社プラズマアプリケーションズ filed Critical 東京計器株式会社
Publication of WO2015046458A1 publication Critical patent/WO2015046458A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/044Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by a separate microwave unit

Definitions

  • the present invention belongs to a discharge lamp device, and more particularly relates to an electromagnetic wave shielding unit surrounding the discharge lamp.
  • Patent Document 1 As an antenna excitation type microwave discharge lamp realizing high luminous efficiency and long life, the one shown in Patent Document 1 is known.
  • Microwaves contribute to the light emission phenomenon of discharge lamps, but some of them are radiated to the outside as electromagnetic waves. Since such leaked electromagnetic waves adversely affect other electronic devices, it is necessary to shield them to a certain amount or less.
  • a means for shielding leaked electromagnetic waves for example, as shown in Patent Document 2, a type of covering all discharge lamps with a mesh-like member is generally used.
  • the electromagnetic wave shielding mesh used in the conventional discharge lamp device has a fine mesh shape such as a square, and there is a problem that the emitted light of the discharge lamp is also shielded. Further, the conventional electromagnetic wave shielding mesh requires a ceiling portion to cover all the discharge lamps, and there is a problem that processing and forming the ceiling portion is complicated.
  • the present invention has been made in view of the above-described problems, and provides a discharge lamp device having an electromagnetic wave shielding part that shields electromagnetic wave leakage from a discharge lamp, has little shielding of radiated light, and does not require a ceiling part. This is the issue.
  • Another object of the present invention is to provide a discharge lamp device having an electromagnetic wave shielding unit having a function of shielding electromagnetic wave leakage and increasing the luminous flux of the discharge lamp.
  • an electromagnetic wave generating unit a discharge lamp that emits light by forming an electromagnetic field
  • a coaxial waveguide that guides the electromagnetic wave from the electromagnetic wave generating unit to the discharge lamp
  • an electromagnetic wave blocking unit that surrounds the discharge lamp
  • the electromagnetic wave shielding part is formed in a cylindrical shape by a plurality of conductive members extending in the axial direction of the coaxial waveguide, and the length of the part not including the discharge lamp of the electromagnetic wave shielding part is 4 of the wavelength of the electromagnetic wave.
  • the discharge lamp is preferably an antenna excited microwave discharge lamp.
  • the electromagnetic wave shielding unit may be installed such that the antenna axis of the antenna excitation type microwave discharge lamp and the axis of the electromagnetic wave shielding unit are in the same direction. preferable.
  • the electromagnetic wave shielding part may be formed in a cylindrical shape, and when F is the frequency of the electromagnetic wave and ⁇ is the diameter of the electromagnetic wave shielding part, F and ⁇ are: .705 ⁇ ⁇ 300 / F is preferably satisfied.
  • the opening ratio in the circumferential direction of the electromagnetic wave shielding portion may be 91% or less.
  • the relative permeability of the conductive member may be 1.1 or less.
  • the conductive member may be formed in a mirror shape.
  • the discharge lamp and the electromagnetic wave shielding unit may be installed inside the reflection mirror.
  • an electromagnetic wave shielding unit that shields electromagnetic wave leakage, has little shielding of radiated light, does not require a ceiling part, and can increase the luminous flux of a discharge lamp, and a discharge lamp device using the electromagnetic wave shielding unit are provided. can do.
  • FIG. 6 is a diagram showing a relationship between display colors of [FIGS. 6A] to [FIG. 6D] and electric field strength. It is the simulation figure calculated using the electromagnetic field simulator HFSS of ANSYS about the relationship between the length of the electromagnetic wave shielding part 50 concerning one embodiment of the present invention, and electromagnetic shielding characteristics, and shows the simulation result of TrialMesh4. is there.
  • FIG. 3 is a diagram illustrating a relationship between the light reflectance of the electromagnetic wave shielding unit and the intensity of light emitted from the electromagnetic wave shielding unit in one embodiment of the present invention, and shows an outline of the electromagnetic wave shielding unit to be calculated. It is a thing.
  • the relationship between the light reflectance of the electromagnetic wave shielding part and the intensity of light emitted from the electromagnetic wave shielding part in one embodiment of the present invention is calculated, and the set light source 920 is shown.
  • released outside from an electromagnetic wave shielding part is shown.
  • the electromagnetic wave shielding part 50 which concerns on one Embodiment of this invention.
  • the discharge lamp apparatus which has a reflective mirror which concerns on one Embodiment of this invention.
  • FIG. 1 is a schematic diagram of a discharge lamp device according to an embodiment of the present invention.
  • a discharge lamp device includes a discharge lamp 10 in which a discharge gas is sealed in an ellipsoidal discharge vessel 11, and a pair of antenna conductors 12 and 13 are provided. It is done. The front ends of the antenna conductors 12 and 13 are installed so as to project into the hollow portion in the discharge vessel 11, and the other ends are installed so as to project outside the discharge vessel 11. The antenna conductors 12 and 13 are held at predetermined intervals in the discharge vessel 11.
  • the launcher 20 is a coaxial waveguide in which an inner cylindrical member 21 and an outer cylindrical member 22 made of a conductive metal are coaxially fitted with a predetermined gap.
  • One antenna conductor 13 is fitted and connected to the inner cylindrical member 21 on one end side of the launcher 20.
  • the other end of the launcher 20 is connected to the microwave oscillation source 30 via a coaxial cable 40 as a microwave transmission path.
  • the microwave oscillated by the microwave oscillation source 30 propagates through the coaxial waveguide of the launcher 20 through the coaxial cable 40 and forms a strong microwave electric field in the gap portion of the antenna conductors 12 and 13. By this electric field, an arc-shaped plasma column is formed in the gap portion, and high luminance light emission is realized.
  • FIG. 2 is a diagram showing a simulation of electric field distribution when the discharge lamp 10 and the launcher 20 are installed in the center.
  • Microwaves contribute to the light emission phenomenon, but some of them are emitted to the outside as electromagnetic waves.
  • FIG. 2 it is considered that when the discharge lamp 10 is lit, an electromagnetic wave similar to a monopole antenna is emitted.
  • the discharge lamp 10 is installed in the coaxial direction of the launcher 20. Therefore, the emitted electromagnetic wave has an electric field component in the axial direction.
  • FIG. 3 is a perspective view of the electromagnetic wave shielding unit 50 of the discharge lamp device according to the embodiment of the present invention.
  • the electromagnetic wave shielding unit 50 is formed in a cylindrical shape by a plurality of axially conductive members 51 and surrounds the discharge lamp 10.
  • One end side of the electromagnetic wave shielding unit 50 includes a fixing unit 53 and is fixed around the discharge lamp 10.
  • the fixing portion 53 is connected to a grounded reflection mirror.
  • the other end side of the electromagnetic wave shielding part 50 becomes an open part 55 and may be provided with a reinforcing part 54.
  • the electromagnetic wave shielding unit 50 may include a circumferential conductive member 52.
  • the axially conductive member 51 mainly contributes to the shielding effect of leakage electromagnetic waves and the luminous flux increasing effect of the discharge lamp 10. Therefore, the circumferential conductive member 52 is mainly used as reinforcement for maintaining the mechanical strength of the electromagnetic wave shielding unit 50.
  • the embodiment of the present invention is not limited to this, and may be formed in a prismatic column or other columnar shape.
  • the widths of the conductive member 51 in the axial direction and the conductive member 52 in the circumferential direction shown in FIG. 3 may not be the same.
  • the width may be different between the conductive member 51 in the axial direction and the conductive member 52 in the circumferential direction.
  • variety may differ about some electroconductive members 51 of an axial direction.
  • FIG. 4 is a side view of the electromagnetic wave shielding unit 50 of the discharge lamp device according to the embodiment of the present invention.
  • the portion including the discharge lamp 10 of the electromagnetic wave shielding unit 50 is a coaxial tube structure A.
  • the conductive member 51 in the axial direction contributes to the electromagnetic wave shielding effect.
  • the circumferential conductive member 52 is orthogonal to the electric field vector radiated from the discharge lamp 10 and thus does not contribute to the shielding effect. Therefore, the conductive member 52 in the circumferential direction only needs to be installed in order to maintain the mechanical strength of the electromagnetic wave shielding unit 50. Therefore, the circumferentially conductive member 52 is configured with a smaller number than the electromagnetic wave shielding units used in the prior art. Is possible. This means that the aperture ratio of the electromagnetic wave blocking portion is improved while having an electromagnetic wave blocking effect, and thus it is possible to increase the amount of light emitted as compared with the discharge lamp device in the prior art.
  • the portion of the electromagnetic wave shielding unit 50 that does not include the discharge lamp 10 can be regarded as the circular waveguide structure B.
  • the cutoff frequency ⁇ c of the TE11 wave which is the dominant mode of the circular waveguide
  • the diameter ⁇ of the circular waveguide
  • the leaked electromagnetic wave is in the evanescent mode (attenuation mode) and cannot be emitted to the outside of the electromagnetic wave shielding unit 50.
  • the electromagnetic wave does not arrive at the end face of the open portion 55 of the electromagnetic wave shielding unit 50, so that it is not necessary to install a conductive member or the like, and an open shape can be taken.
  • the frequency of the microwave is 2.45 GHz
  • the wavelength of the microwave is about 122 mm. Therefore, when the diameter of the electromagnetic wave shielding unit 50 is set to about 71.55 mm or less, the evanescent mode is realized. Is possible.
  • the length of the circular waveguide structure B of the electromagnetic wave shielding unit 50 is proportional to the amount of attenuation, it is preferably at least one quarter of the wavelength of the microwave.
  • the notable point of the present invention is that the discharge lamp 10 is surrounded by the electromagnetic wave shielding unit 50 according to the embodiment of the present invention, so that the luminous flux of the discharge lamp 10 is increased as compared with the case where the electromagnetic wave shielding unit 50 is not installed. That is.
  • FIG. 5 is a graph showing the relationship between the emitted light intensity of the discharge lamp 10 and the presence / absence and diameter of the electromagnetic wave shielding unit 50.
  • the vertical axis in FIG. 5 represents the emitted light intensity (light flux [lm]) of the discharge lamp 10, and the horizontal axis represents the diameter [mm] of the electromagnetic wave shielding unit 50.
  • the part perpendicular to the vertical axis of the horizontal axis represents the case where the electromagnetic wave shielding unit 50 is not installed.
  • the frequency of the microwave is 2.45 GHz (constant)
  • the electromagnetic wave shielding part is composed of a copper wire having a diameter of 0.2 mm
  • the length of the electromagnetic wave shielding part is 90 mm
  • from the center of the copper wire adjacent in the circumferential direction to the center. was set at 2 mm.
  • the measurement of the radiated light intensity was performed so that a copper wire would not enter between the discharge lamp and the measuring device and become a shadow.
  • the luminous flux was about 3100 [lm].
  • the luminous flux changes from approximately 4500 [lm] to 4900 [lm], and the luminous flux is approximately compared to when the electromagnetic wave shielding unit 50 is not installed. It can be seen that there has been a 1.5-fold increase. This effect is presumed to be because the microwaves that were not consumed in the discharge formation of the discharge lamp 10 are confined in the electromagnetic wave shielding unit 50 and contribute to the discharge formation again.
  • FIG. 11 A specific example of the electromagnetic wave shielding unit of the discharge lamp device according to the embodiment of the present invention is shown in FIG.
  • the electromagnetic wave shielding part shown in FIG. 11 has a total length of 70 mm, a diameter of 22 mm, a fixing part on the lower side of the drawing, a reinforcing part on the upper side, and two conductive members in the circumferential direction.
  • the intervals between the fixed portion and the lower conductive member, between the two conductive members, and between the upper conductive member and the reinforcing portion are each 20 mm.
  • the thickness of the conductive member is 0.3 mm, and the interval between the conductive members in the axial direction is 2 mm.
  • a wide portion is provided in the depth direction of the drawing. This is a welded portion for forming an electromagnetic wave shielding portion manufactured in a planar shape into a cylindrical shape. Since this wide portion prevents light emission, the lower discharge lamp installation portion can be removed.
  • the discharge lamp device may have a structure in which an electromagnetic wave shielding unit 50 surrounding the discharge lamp 10 is installed inside the reflection mirror 60, as shown in FIG. .
  • the simulation 1 is calculated using the electromagnetic field simulator HFSS of ANSYS about the relationship between the structure of the electromagnetic wave shielding unit 50 and electromagnetic wave leakage.
  • a conventional electromagnetic wave leakage means for covering a metal mesh cylinder around a discharge lamp and a pattern in which the number of conductive members in the circumferential direction is mainly changed in the electromagnetic wave shielding unit according to the embodiment of the present invention were compared. .
  • the calculation procedure of HFSS is 1. 1. Calculate the antenna length at which the monopole set in space has maximum radiation at 2.45 GHz. A metal mesh was set around the antenna, and the time average distribution of the electric field vector in space was calculated. In the calculation, for a three-dimensional metal wire, a perfect conductor boundary condition was set for two-dimensional elements of a rectangle (longitudinal direction) and a ribbon (circumferential direction). The number of calculation iterations was 4 times, and the number of calculation elements was 60,000 to 300,000.
  • a metal mesh having a metal wire width of 0.2 mm, a circumferential metal wire interval of 1.53 mm, an axial metal wire interval of 1.59 mm, a cylinder diameter of 22 mm, and a cylinder length of 98.4 mm Set the cylinder.
  • the upper end of the metal mesh cylinder has an open shape.
  • a copper mesh cylinder was actually created with each of the above set values, attached to a discharge lamp, and measured with a simple electromagnetic leakage detector. The result was 1 mW / cm 2 or less at a distance of about 5 cm from the object. Therefore, the metal mesh cylinder (hereinafter referred to as “FullMesh”) having the above set value is used as a reference for the simulation 1.
  • FIG. 6a is a diagram showing the simulation result of FullMesh, in which the electric field strength of 0 to 10 V / m is represented by 19 color distribution (see FIG. 6 (e)).
  • a region 611 around the cylinder and a region 612 at the top of the cylinder indicate 9 to 10 V / m
  • an upper region 613 inside the cylinder indicates 0 to 2 V / m
  • the other region 614 indicates 3 to 6 V / m.
  • FIG. 6B shows a case where the circumferential metal wire interval is 3.84 mm (equivalent to 18 wires every 20 degrees), the axial metal wire interval is 10 mm, and the other conditions are the same as FullMesh (hereinafter, This is a simulation result of “TrialMesh1”.
  • the upper area 621 inside the cylinder shows 0 to 7 V / m, and the other area 622 shows 10 V / m. Therefore, in TrialMesh1, although the electromagnetic leakage suppression effect is recognized at the upper part of the cylinder, it can be said that the leakage is slightly larger than that of FullMesh.
  • FIG. 6c shows a case in which the circumferential metal wire spacing is 2.3 mm (corresponding to 30 per 12 degrees), the axial metal wire spacing is 10 mm, and the other conditions are the same as FullMesh (hereinafter, This is a simulation result of “TrialMesh2”.
  • An area 631 around the cylinder and an area 632 above the cylinder indicate 9 to 10 V / m, an upper area 633 inside the cylinder indicates 0 to 2 V / m, and the other area 634 indicates 3 to 6 V / m. Comparing FIG. 6a and FIG. 6c, it can be said that TrialMesh2 shows the same electromagnetic shielding characteristic as FullMesh.
  • FIG. 6d shows a case where the interval between the metal wires in the circumferential direction is 1.92 mm (corresponding to 36 lines every 10 degrees), the interval between the metal wires in the axial direction is 10 mm, and the other conditions are set to the same conditions as FullMesh (hereinafter, This is a simulation result of “TrialMesh3”.
  • An area 641 around the cylinder and an area 642 above the cylinder indicate 9 to 10 V / m
  • an upper area 643 inside the cylinder indicates 0 to 2 V / m
  • the other area 644 indicates 3 to 6 V / m. Comparing FIG. 6a and FIG. 6d, the distribution of electromagnetic wave leakage was almost the same in both cases, and it was confirmed that TrialMesh3 has an electromagnetic shielding characteristic equivalent to FullMesh.
  • FIG. 7a shows a simulation result when the cylinder length is 70.2 mm and the other conditions are the same as those of the TrialMesh3 (hereinafter referred to as “TrialMesh4”).
  • An area 711 around the cylinder and an area 712 above the cylinder indicate 9 to 10 V / m
  • an upper area 713 inside the cylinder indicates 0 to 2 V / m
  • the other area 714 indicates 3 to 6 V / m.
  • the upper region 713 inside the cylinder corresponds to a position of about 60 mm from the bottom surface of the cylinder.
  • FIG. 7b shows a simulation result when the cylinder length is 60.2 mm and the other conditions are the same as those of the TrialMesh3 (hereinafter referred to as “TrialMesh5”).
  • a region 721 in and around the cylinder indicates 9 to 10 V / m, and another region 724 indicates 0 to 8 V / m.
  • the frequency of the microwave in simulation 2 is 2.45 GHz, and the wavelength is about 122 mm. Then, as shown in FIG. 7b, it was confirmed that even when the cylinder length was 60.2 mm, which is about a half of the wavelength of the microwave, it had the same electromagnetic shielding characteristics as FullMesh. . Therefore, the simulation 2 shows that when the length of the electromagnetic wave blocking unit 50 is at least one-half of the wavelength, the electromagnetic wave blocking unit 50 has an effect of suppressing microwave leakage.
  • the length of the circular waveguide structure B of the electromagnetic wave shielding unit 50 excluding the length of the monopole antenna having a quarter wavelength from the length of the wavelength is at least a quarter of the wavelength, microwave leakage It has shown that there exists an effect which suppresses.
  • FIG. 8a is a model diagram used in the simulation 3 calculation.
  • a monopole antenna 811 with a calculation frequency of 2.45 GHz and a quarter-wavelength in the Z-axis direction from the origin is set up.
  • a cylindrical base 812 with a complete conductor is placed around it, and a line 813 is arranged around the outer periphery of the base 812.
  • the wave tube 814 is set to receive radio waves from the monopole antenna 811.
  • the opening of the waveguide 814 is 140 ⁇ 90 mm
  • the distance from the monopole antenna 811 to the waveguide 814 is 85 mm
  • the boundary (radiation boundary) 815 for obtaining the electromagnetic field distribution required for antenna pattern calculation is 200 mm
  • the length is long.
  • the thickness was 160 mm. Under the above conditions, the diameter ⁇ of the table 812, the number N of lines 813, and the line width W of the lines 813 were changed, and the characteristics were calculated.
  • the horizontal axis is the line width W of the line 813, and W is changed from 0.1 mm to 3.0 mm every 0.1 mm.
  • the vertical axis represents the shielding characteristic [dB].
  • the shielding characteristic is obtained by subtracting the waveguide receiving ability when the electromagnetic wave shielding unit is present from the waveguide receiving ability when the electromagnetic wave shielding unit is not present. The larger the numerical value, the better the shielding characteristics.
  • the number N of lines 813 was calculated for 6, 18, and 36 cases.
  • the shielding characteristic increases as the number N of the lines 813 increases. It turns out that becomes good. Further, since the shielding characteristic increases as the line width W of the line 813 increases, it can be seen that the shielding characteristic becomes better as the line width W of the line 813 increases. Furthermore, when the number N of the wires 813 and the line width W of the wires 813 are the same, the diameter ⁇ of the table 812 is higher in the order of shielding properties in the order of 18 mm, 22 mm, 30 mm, and 40 mm. It can be seen that the shielding properties are improved.
  • the values of the diameter ⁇ of the base 812, the number N of lines 813, and the line width W of the lines 813 are all parameters that determine the aperture ratio of the electromagnetic wave shielding unit. Therefore, according to the simulation 3 described above, the smaller the aperture ratio, the better the shielding characteristics. However, since there is a relationship that the light flux is reduced when the aperture ratio is reduced, the diameter ⁇ of the base 812, the number N of the lines 813, and the line are within the desired shielding characteristics and the range of the light flux. It is necessary to set a line width W value of 813.
  • TrialMesh2 (see FIG. 6c) of Simulation 1 showed an electromagnetic shielding characteristic equivalent to FullMesh.
  • the aperture ratio was calculated from the set value in TrialMesh2, it was about 91%.
  • the opening ratio of TrialMesh3 (see FIG. 6d), which has better electromagnetic shielding properties than TrialMesh2, was about 79%. Therefore, it was shown that an electromagnetic wave shielding part having a certain degree of electromagnetic shielding characteristics can be realized when the aperture ratio is 91% or more.
  • the simulation 4 is calculated using the electromagnetic field simulator HFSS of ANSYS about the relationship between the electrical conductivity and the relative magnetic permeability of the conductive member constituting the electromagnetic wave shielding unit and the electromagnetic wave leakage.
  • the conductive member 51 is made of a perfect conductor, silver, aluminum, and iron, and the diameter ⁇ of the base 812 is 22 mm, the number N of the wires 813 is 36, and the line width W of the wire 813 is 0.
  • the thickness was set to 2 mm, the frequency was changed from 2 GHz to 3 GHz, other conditions were set in the same manner as in Simulation 3, and the shielding characteristics were measured.
  • the conductivity [S / m] and relative permeability [ ⁇ / ⁇ o] of the perfect conductor, silver, aluminum and iron set in the simulation 4 are as shown in FIG. 9b.
  • the complete conductor (solid line), silver (long broken line), and aluminum (dotted line) show shielding characteristics of about 34 dB to about 40 dB at all simulated frequencies. Comparing the shielding characteristics of perfect conductor, silver and aluminum at the same frequency, it is recognized that the characteristics are good in this order, but the difference is within about 1 dB, and the shielding characteristics are almost equivalent. On the other hand, with respect to iron (broken line), the shielding characteristic changes from about 15 dB to about 20 dB, and the shielding characteristic is inferior to that of perfect conductor, silver, and aluminum.
  • the relative permeability of perfect conductor, silver and aluminum is 0.99998 to 1.00002, whereas the relative permeability of iron is 4000. This is thought to be due to the difference in magnetic permeability. Therefore, the conductive member in the embodiment of the present invention is desirable as the relative permeability is low, and it is considered that sufficient performance can be obtained if the relative permeability is 1.1 or less.
  • Simulation 5 is a calculation of the relationship between the light reflectance of the electromagnetic wave shielding unit and the intensity of light emitted from the electromagnetic wave shielding unit in one embodiment of the present invention.
  • FIG. 1 An outline of the electromagnetic wave shielding unit that is the object of calculation in simulation 5 is shown in FIG.
  • the total length of the electromagnetic wave shielding part is 70 mm
  • the length of the base part corresponding to the fixed part is 10 mm
  • the thickness of the conductive member is 0.3 mm
  • the interval between the conductive members is 2 mm
  • the width of a part of the conductive member was set to 0.2 mm.
  • Best Media “Lighting Simulator” CAD Ver1.1 was used for the numerical analysis.
  • FIG. 10 b shows the light source 920 set in the simulation 5.
  • the antennas 921 and 922 were each 10 mm, and the light source 923 between the antennas 921 and 922 was 5 mm long and 1 mm wide.
  • FIG. 10c is a table showing the results of simulation 5. As can be seen, when the light reflectivity of the electromagnetic wave shielding part is 0%, 68% of the light source is emitted. On the other hand, when the light reflectance of the electromagnetic wave shielding part was 70%, 90%, and 100%, 84.5%, 90%, and 92.9% of the light source were emitted, respectively. Therefore, it is desirable to use a member that improves the light reflectivity by forming the electromagnetic wave shielding unit in the embodiment of the present invention in a mirror shape.

Abstract

In a discharge lamp device according to the present invention having a discharge lamp, a coaxial wave guide tube guiding an electromagnetic wave to the discharge lamp, and an electromagnetic wave shielding part surrounding the discharge lamp, the electromagnetic wave shielding part is provided so as to prevent leakage of electromagnetic waves with little blockage of radiated light, not require a ceiling part, and be able to increase the light flux of the discharge lamp. The electromagnetic wave shielding part (50) is formed into a cylindrical shape by a plurality of conductive members (51) extending in the axial direction of the coaxial wave guide tube, the length of the portion of the electromagnetic wave shielding part (50) not containing the discharge lamp (10) being one-fourth of the wavelength of the electromagnetic waves or longer.

Description

放電ランプ装置Discharge lamp device
 本発明は、放電ランプ装置に属し、より詳細には、放電ランプを包囲する電磁波遮断部に関する。 The present invention belongs to a discharge lamp device, and more particularly relates to an electromagnetic wave shielding unit surrounding the discharge lamp.
 近年、マイクロ波放電ランプ装置の開発が盛んになってきている。高発光効率と長寿命化を実現したアンテナ励起型マイクロ波放電ランプとして、特許文献1に示すものが知られている。 In recent years, development of microwave discharge lamp devices has become active. As an antenna excitation type microwave discharge lamp realizing high luminous efficiency and long life, the one shown in Patent Document 1 is known.
 マイクロ波は放電ランプの発光現象に寄与するが、その一部は電磁波として外部へ放射される。このような漏洩電磁波は、他の電子機器に悪影響を及ぼすため、一定量以下に遮蔽する必要がある。漏洩電磁波を遮蔽する手段としては、例えば特許文献2に示すように、メッシュ状の部材で放電ランプを全て覆うタイプのものが一般的である。 ∙ Microwaves contribute to the light emission phenomenon of discharge lamps, but some of them are radiated to the outside as electromagnetic waves. Since such leaked electromagnetic waves adversely affect other electronic devices, it is necessary to shield them to a certain amount or less. As a means for shielding leaked electromagnetic waves, for example, as shown in Patent Document 2, a type of covering all discharge lamps with a mesh-like member is generally used.
特許第4714868号公報Japanese Patent No. 4714868 特開2002-279938公報JP 2002-279938
 しかしながら、従来の放電ランプ装置に用いられている電磁波遮蔽メッシュは、正方形等の細かい網目状となっており、放電ランプの放射光も遮蔽してしまうという問題があった。また、従来の電磁波遮蔽メッシュは、放電ランプを全て覆うために天井部が必要であり、天井部の加工成形が複雑になるという問題もあった。 However, the electromagnetic wave shielding mesh used in the conventional discharge lamp device has a fine mesh shape such as a square, and there is a problem that the emitted light of the discharge lamp is also shielded. Further, the conventional electromagnetic wave shielding mesh requires a ceiling portion to cover all the discharge lamps, and there is a problem that processing and forming the ceiling portion is complicated.
 本発明は、上述の課題を鑑みてなされたものであり、放電ランプからの電磁波漏洩を遮蔽するとともに、放射光の遮蔽が少なく、天井部が不要な電磁波遮断部を有する放電ランプ装置を提供することを課題とする。 The present invention has been made in view of the above-described problems, and provides a discharge lamp device having an electromagnetic wave shielding part that shields electromagnetic wave leakage from a discharge lamp, has little shielding of radiated light, and does not require a ceiling part. This is the issue.
 さらに、本発明は、電磁波漏洩を遮蔽するとともに、放電ランプの光束を増加させる機能を備えた電磁波遮断部を有する放電ランプ装置を提供することも、その課題とする。 Furthermore, another object of the present invention is to provide a discharge lamp device having an electromagnetic wave shielding unit having a function of shielding electromagnetic wave leakage and increasing the luminous flux of the discharge lamp.
 本発明の一実施形態によると、電磁波発生部と、電磁波電界を形成して発光する放電ランプと、電磁波発生部から放電ランプに電磁波を導く同軸導波管と、放電ランプを包囲する電磁波遮断部とを有し、電磁波遮断部は、同軸導波管の軸方向に伸びる複数の導電性部材によって筒状に形成され、電磁波遮断部の放電ランプを含まない部分の長さは電磁波の波長の4分の1以上であることを特徴とする放電灯装置が提供される。 According to an embodiment of the present invention, an electromagnetic wave generating unit, a discharge lamp that emits light by forming an electromagnetic field, a coaxial waveguide that guides the electromagnetic wave from the electromagnetic wave generating unit to the discharge lamp, and an electromagnetic wave blocking unit that surrounds the discharge lamp The electromagnetic wave shielding part is formed in a cylindrical shape by a plurality of conductive members extending in the axial direction of the coaxial waveguide, and the length of the part not including the discharge lamp of the electromagnetic wave shielding part is 4 of the wavelength of the electromagnetic wave. There is provided a discharge lamp device characterized in that it is a fraction of a fraction.
 本発明の一実施形態に係る放電灯装置は、放電ランプがアンテナ励起型マイクロ波放電ランプであるのが好ましい。また、本発明の一実施形態に係る放電灯装置では、電磁波遮断部は、アンテナ励起型マイクロ波放電ランプのアンテナ軸と、電磁波遮断部の軸が、同方向になるように設置されることが好ましい。 In the discharge lamp device according to an embodiment of the present invention, the discharge lamp is preferably an antenna excited microwave discharge lamp. Further, in the discharge lamp device according to one embodiment of the present invention, the electromagnetic wave shielding unit may be installed such that the antenna axis of the antenna excitation type microwave discharge lamp and the axis of the electromagnetic wave shielding unit are in the same direction. preferable.
 本発明の一実施形態に係る放電灯装置は、電磁波遮断部が円筒状に形成されてもよく、Fを電磁波の周波数とし、Φを電磁波遮断部の直径としたとき、F及びΦは、 1.705Φ < 300/F を満たすことが好ましい。 In the discharge lamp device according to an embodiment of the present invention, the electromagnetic wave shielding part may be formed in a cylindrical shape, and when F is the frequency of the electromagnetic wave and Φ is the diameter of the electromagnetic wave shielding part, F and Φ are: .705Φ <300 / F is preferably satisfied.
 本発明の一実施形態に係る放電灯装置は、電磁波遮断部の周方向の開口率が91%以下であってもよい。 In the discharge lamp device according to an embodiment of the present invention, the opening ratio in the circumferential direction of the electromagnetic wave shielding portion may be 91% or less.
 本発明の一実施形態に係る放電灯装置は、導電性部材の比透磁率が1.1以下であってもよい。 In the discharge lamp device according to an embodiment of the present invention, the relative permeability of the conductive member may be 1.1 or less.
 本発明の一実施形態に係る放電灯装置は、導電性部材が鏡面状に形成されてもよい。 In the discharge lamp device according to an embodiment of the present invention, the conductive member may be formed in a mirror shape.
 本発明の一実施形態に係る放電灯装置は、放電ランプ及び電磁波遮断部が反射ミラー内部に設置されてもよい。 In the discharge lamp device according to an embodiment of the present invention, the discharge lamp and the electromagnetic wave shielding unit may be installed inside the reflection mirror.
 本発明によれば、電磁波漏洩を遮蔽するとともに、放射光の遮蔽が少なく、天井部が不要であり、放電ランプの光束を増加させることのできる電磁波遮断部及びそれを用いた放電ランプ装置を提供することができる。 According to the present invention, an electromagnetic wave shielding unit that shields electromagnetic wave leakage, has little shielding of radiated light, does not require a ceiling part, and can increase the luminous flux of a discharge lamp, and a discharge lamp device using the electromagnetic wave shielding unit are provided. can do.
本発明の一実施形態に係る放電ランプ装置の概要図である。It is a schematic diagram of the discharge lamp device concerning one embodiment of the present invention. 本発明の一実施形態に係る放電ランプ10とラーンチャ20を設置した場合の、電界分布のシミュレーション図である。It is a simulation figure of electric field distribution at the time of installing discharge lamp 10 and launcher 20 concerning one embodiment of the present invention. 本発明の一実施形態に係る放電ランプ装置の、電磁波遮断部50の斜視図である。It is a perspective view of the electromagnetic wave shielding part 50 of the discharge lamp apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る放電ランプ装置の、電磁波遮断部50の側面図である。It is a side view of the electromagnetic wave shielding part 50 of the discharge lamp apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る放電ランプ10の放射光強度と、電磁波遮断部50の有無及び直径との関係を示したグラフである。It is the graph which showed the relationship between the emitted light intensity of the discharge lamp 10 which concerns on one Embodiment of this invention, the presence or absence of the electromagnetic wave shielding part 50, and a diameter. 本発明の一実施形態に係る電磁波遮断部50の構造と、電磁波漏洩との関係について、ANSYS社の電磁界シミュレータHFSSを用いて計算したシミュレーション図であり、FullMeshのシミュレーション結果を示したものである。It is the simulation figure calculated using the electromagnetic field simulator HFSS of ANSYS about the structure of the electromagnetic wave shielding part 50 which concerns on one Embodiment of this invention, and electromagnetic wave leakage, and shows the simulation result of FullMesh. . 本発明の一実施形態に係る電磁波遮断部50の構造と、電磁波漏洩との関係について、ANSYS社の電磁界シミュレータHFSSを用いて計算したシミュレーション図であり、TrialMesh1のシミュレーション結果を示したものである。It is the simulation figure calculated using the electromagnetic field simulator HFSS of ANSYS about the structure of the electromagnetic wave shielding part 50 which concerns on one Embodiment of this invention, and electromagnetic wave leakage, and shows the simulation result of TrialMesh1. . 本発明の一実施形態に係る電磁波遮断部50の構造と、電磁波漏洩との関係について、ANSYS社の電磁界シミュレータHFSSを用いて計算したシミュレーション図であり、TrialMesh2のシミュレーション結果を示したものである。It is the simulation figure calculated using the electromagnetic field simulator HFSS of ANSYS about the structure of the electromagnetic wave shielding part 50 which concerns on one Embodiment of this invention, and electromagnetic wave leakage, and shows the simulation result of TrialMesh2. . 本発明の一実施形態に係る電磁波遮断部50の構造と、電磁波漏洩との関係について、ANSYS社の電磁界シミュレータHFSSを用いて計算したシミュレーション図であり、TrialMesh3のシミュレーション結果を示したものである。It is the simulation figure calculated using the electromagnetic field simulator HFSS of ANSYS about the structure of the electromagnetic wave shielding part 50 which concerns on one Embodiment of this invention, and electromagnetic wave leakage, and shows the simulation result of TrialMesh3. . [図6a]~[図6d]の表示色と、電界強度との関係を示した図である。FIG. 6 is a diagram showing a relationship between display colors of [FIGS. 6A] to [FIG. 6D] and electric field strength. 本発明の一実施形態に係る電磁波遮断部50の長さと、電磁遮蔽特性との関係について、ANSYS社の電磁界シミュレータHFSSを用いて計算したシミュレーション図であり、TrialMesh4のシミュレーション結果を示したものである。It is the simulation figure calculated using the electromagnetic field simulator HFSS of ANSYS about the relationship between the length of the electromagnetic wave shielding part 50 concerning one embodiment of the present invention, and electromagnetic shielding characteristics, and shows the simulation result of TrialMesh4. is there. 本発明の一実施形態に係る電磁波遮断部50の長さと、電磁遮蔽特性との関係について、ANSYS社の電磁界シミュレータHFSSを用いて計算したシミュレーション図であり、TrialMesh5のシミュレーション結果を示したものである。It is the simulation figure calculated using the electromagnetic field simulator HFSS of ANSYS about the relationship between the length of the electromagnetic wave shielding part 50 which concerns on one Embodiment of this invention, and an electromagnetic shielding characteristic, and shows the simulation result of TrialMesh5. is there. 本発明の一実施形態に係る電磁波遮断部50を構成する導電性部材51の線幅、本数および直径と、電磁波漏洩との関係について、ANSYS社の電磁界シミュレータHFSSを用いて計算したシミュレーションにおいて、計算で使用したモデル図である。In the simulation calculated using the electromagnetic field simulator HFSS of ANSYS about the relationship between the line width, number and diameter of the conductive member 51 constituting the electromagnetic wave shielding unit 50 according to the embodiment of the present invention, and electromagnetic wave leakage, It is the model figure used by calculation. 本発明の一実施形態に係る電磁波遮断部50を構成する導電性部材51の線幅、本数および直径と、電磁波漏洩との関係について、ANSYS社の電磁界シミュレータHFSSを用いて計算したシミュレーション図であり、台812の直径Φを18mmに設定した場合のシミュレーション結果である。In the simulation figure which calculated the line width of the electroconductive member 51 which comprises the electromagnetic wave shielding part 50 which concerns on one Embodiment of this invention, the number and diameter, and the relationship with electromagnetic wave leakage using the electromagnetic field simulator HFSS of ANSYS. There is a simulation result when the diameter Φ of the base 812 is set to 18 mm. 本発明の一実施形態に係る電磁波遮断部50を構成する導電性部材51の線幅、本数および直径と、電磁波漏洩との関係について、ANSYS社の電磁界シミュレータHFSSを用いて計算したシミュレーション図であり、台812の直径Φを22mmに設定した場合のシミュレーション結果である。In the simulation figure which calculated the line width of the electroconductive member 51 which comprises the electromagnetic wave shielding part 50 which concerns on one Embodiment of this invention, the number and diameter, and the relationship with electromagnetic wave leakage using the electromagnetic field simulator HFSS of ANSYS. There is a simulation result when the diameter Φ of the base 812 is set to 22 mm. 本発明の一実施形態に係る電磁波遮断部50を構成する導電性部材51の線幅、本数および直径と、電磁波漏洩との関係について、ANSYS社の電磁界シミュレータHFSSを用いて計算したシミュレーション図であり、台812の直径Φを30mmに設定した場合のシミュレーション結果である。In the simulation figure which calculated the line width of the electroconductive member 51 which comprises the electromagnetic wave shielding part 50 which concerns on one Embodiment of this invention, the number and diameter, and the relationship with electromagnetic wave leakage using the electromagnetic field simulator HFSS of ANSYS. There is a simulation result when the diameter Φ of the base 812 is set to 30 mm. 本発明の一実施形態に係る電磁波遮断部50を構成する導電性部材51の線幅、本数および直径と、電磁波漏洩との関係について、ANSYS社の電磁界シミュレータHFSSを用いて計算したシミュレーション図であり、台812の直径Φを40mmに設定した場合のシミュレーション結果である。In the simulation figure which calculated the line width of the electroconductive member 51 which comprises the electromagnetic wave shielding part 50 which concerns on one Embodiment of this invention, the number and diameter, and the relationship with electromagnetic wave leakage using the electromagnetic field simulator HFSS of ANSYS. There is a simulation result when the diameter Φ of the base 812 is set to 40 mm. 本発明の一実施形態に係る電磁波遮断部を構成する導電性部材の導電率及び比透磁率と、電磁波漏洩との関係について、ANSYS社の電磁界シミュレータHFSSを用いて計算したシミュレーション図である。It is the simulation figure calculated using the electromagnetic field simulator HFSS of ANSYS about the relationship between the electrical conductivity and relative magnetic permeability of the electroconductive member which comprises the electromagnetic wave shielding part which concerns on one Embodiment of this invention, and electromagnetic wave leakage. 導電性部材の導電率と比透磁率との関係を示した表である。It is the table | surface which showed the relationship between the electrical conductivity of an electroconductive member, and a relative magnetic permeability. 本発明の一実施形態における電磁波遮断部の光反射率と、電磁波遮断部から外に放出される光の強さとの関係を計算したものであり、計算の対象とした電磁波遮断部の概要を示したものである。FIG. 3 is a diagram illustrating a relationship between the light reflectance of the electromagnetic wave shielding unit and the intensity of light emitted from the electromagnetic wave shielding unit in one embodiment of the present invention, and shows an outline of the electromagnetic wave shielding unit to be calculated. It is a thing. 本発明の一実施形態における電磁波遮断部の光反射率と、電磁波遮断部から外に放出される光の強さとの関係を計算したものであり、設定した光源920を示したものである。The relationship between the light reflectance of the electromagnetic wave shielding part and the intensity of light emitted from the electromagnetic wave shielding part in one embodiment of the present invention is calculated, and the set light source 920 is shown. 本発明の一実施形態における電磁波遮断部の光反射率と、電磁波遮断部から外に放出される光の強さとの関係を計算した結果を示したものである。The result of having calculated the relationship between the light reflectivity of the electromagnetic wave shielding part in one Embodiment of this invention and the intensity | strength of the light discharge | released outside from an electromagnetic wave shielding part is shown. 本発明の一実施形態に係る電磁波遮断部50の具体例である。It is a specific example of the electromagnetic wave shielding part 50 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る反射ミラーを有する放電ランプ装置の具体例である。It is a specific example of the discharge lamp apparatus which has a reflective mirror which concerns on one Embodiment of this invention.
 以下、本発明の実施形態について図面等を参照しながら説明する。ただし、本発明は多くの異なる態様で実施することが可能であり、以下に例示する実施形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention can be implemented in many different modes, and should not be construed as being limited to the description of the embodiments exemplified below.
 なお、以下に説明する発明の内容については、同一部分又は同様な機能を有する部分については同一の符号を異なる図面間で共通して用い、その場合において特段の事情がない限り繰り返しの説明は省略する。 Note that, for the contents of the invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and repeated explanation is omitted unless there are special circumstances in that case. To do.
 図1は、本発明の一実施形態に係る放電ランプ装置の概要図である。 FIG. 1 is a schematic diagram of a discharge lamp device according to an embodiment of the present invention.
 図1を参照すると、本発明の一実施形態に係る放電ランプ装置は、楕円体状の放電容器11内に放電ガスを封入した放電ランプ10を備えており、一対のアンテナ導体12及び13が設けられる。各アンテナ導体12及び13の先端は放電容器11内の空洞部分に突出して設置され、他端は放電容器11の外部に突出して設置される。各アンテナ導体12及び13は、放電容器内11で所定の間隔で保持される。 Referring to FIG. 1, a discharge lamp device according to an embodiment of the present invention includes a discharge lamp 10 in which a discharge gas is sealed in an ellipsoidal discharge vessel 11, and a pair of antenna conductors 12 and 13 are provided. It is done. The front ends of the antenna conductors 12 and 13 are installed so as to project into the hollow portion in the discharge vessel 11, and the other ends are installed so as to project outside the discharge vessel 11. The antenna conductors 12 and 13 are held at predetermined intervals in the discharge vessel 11.
ラーンチャ20は、導体金属製の内部円筒部材21と外部円筒部材22とが、所定の間隙を保持して同軸に嵌合された同軸導波管である。一方のアンテナ導体13は、ラーンチャ20の一端側の内部円筒部材21に嵌合され、接続される。ラーンチャ20の他端側は、マイクロ波伝送経路としての同軸ケーブル40を介して、マイクロ波発振源30に接続される。 The launcher 20 is a coaxial waveguide in which an inner cylindrical member 21 and an outer cylindrical member 22 made of a conductive metal are coaxially fitted with a predetermined gap. One antenna conductor 13 is fitted and connected to the inner cylindrical member 21 on one end side of the launcher 20. The other end of the launcher 20 is connected to the microwave oscillation source 30 via a coaxial cable 40 as a microwave transmission path.
 マイクロ波発振源30で発振されたマイクロ波は、同軸ケーブル40を介してラーンチャ20の同軸導波路を伝搬し、アンテナ導体12及び13のギャップ部分に強いマイクロ波電界を形成する。この電界によって、ギャップ部分にアーク状プラズマ柱が形成され、高輝度発光が実現される。 The microwave oscillated by the microwave oscillation source 30 propagates through the coaxial waveguide of the launcher 20 through the coaxial cable 40 and forms a strong microwave electric field in the gap portion of the antenna conductors 12 and 13. By this electric field, an arc-shaped plasma column is formed in the gap portion, and high luminance light emission is realized.
 図2は、中央に放電ランプ10とラーンチャ20を設置した場合の、電界分布のシミュレーションを示した図である。 FIG. 2 is a diagram showing a simulation of electric field distribution when the discharge lamp 10 and the launcher 20 are installed in the center.
 マイクロ波は発光現象に寄与するが、その一部は電磁波として外部へ放射される。図2を参照すると、放電ランプ10が点灯した際にはモノポールアンテナと同じような電磁波を放出すると考えられる。本発明の一実施形態によると、放電ランプ10はラーンチャ20の同軸方向に設置されている。従って放出される電磁波は軸方向に電界成分を持つ。 ∙ Microwaves contribute to the light emission phenomenon, but some of them are emitted to the outside as electromagnetic waves. Referring to FIG. 2, it is considered that when the discharge lamp 10 is lit, an electromagnetic wave similar to a monopole antenna is emitted. According to one embodiment of the present invention, the discharge lamp 10 is installed in the coaxial direction of the launcher 20. Therefore, the emitted electromagnetic wave has an electric field component in the axial direction.
 図3は、本発明の一実施形態に係る放電ランプ装置の、電磁波遮断部50の斜視図である。 FIG. 3 is a perspective view of the electromagnetic wave shielding unit 50 of the discharge lamp device according to the embodiment of the present invention.
 図3を参照すると、電磁波遮断部50は、複数の軸方向の導電性部材51によって筒状に形成され、放電ランプ10を包囲している。電磁波遮断部50の一端側は固定部53を備え、放電ランプ10の周囲に固定される。図3では図示しないが、固定部53は接地された反射ミラーに接続される。電磁波遮断部50の他端側は開放部55となり、補強部54を備えてもよい。 Referring to FIG. 3, the electromagnetic wave shielding unit 50 is formed in a cylindrical shape by a plurality of axially conductive members 51 and surrounds the discharge lamp 10. One end side of the electromagnetic wave shielding unit 50 includes a fixing unit 53 and is fixed around the discharge lamp 10. Although not shown in FIG. 3, the fixing portion 53 is connected to a grounded reflection mirror. The other end side of the electromagnetic wave shielding part 50 becomes an open part 55 and may be provided with a reinforcing part 54.
 電磁波遮断部50は、周方向の導電性部材52を備えても良い。後述するように、漏洩電磁波の遮断効果及び放電ランプ10の光束増加効果は、主として軸方向の導電性部材51が寄与する。したがって、周方向の導電性部材52は、主として電磁波遮断部50の機械的強度を保つための補強として用いられる。 The electromagnetic wave shielding unit 50 may include a circumferential conductive member 52. As will be described later, the axially conductive member 51 mainly contributes to the shielding effect of leakage electromagnetic waves and the luminous flux increasing effect of the discharge lamp 10. Therefore, the circumferential conductive member 52 is mainly used as reinforcement for maintaining the mechanical strength of the electromagnetic wave shielding unit 50.
 図3に示した電磁波遮断部50は円柱状に形成されているが、本件発明の実施形態はこれに限られず、角柱その他の柱状に形成してもよい。 3 is formed in a columnar shape, but the embodiment of the present invention is not limited to this, and may be formed in a prismatic column or other columnar shape.
 また、図3に示した軸方向の導電性部材51及び周方向の導電性部材52の幅は、同一でなくてもよい。軸方向の導電性部材51と周方向の導電性部材52で幅が異なってもよい。また、図10に示すように、軸方向の導電性部材51の一部について幅が異なってもよい。 Further, the widths of the conductive member 51 in the axial direction and the conductive member 52 in the circumferential direction shown in FIG. 3 may not be the same. The width may be different between the conductive member 51 in the axial direction and the conductive member 52 in the circumferential direction. Moreover, as shown in FIG. 10, the width | variety may differ about some electroconductive members 51 of an axial direction.
 図4は、本発明の一実施形態に係る放電ランプ装置の、電磁波遮断部50の側面図である。 FIG. 4 is a side view of the electromagnetic wave shielding unit 50 of the discharge lamp device according to the embodiment of the present invention.
 図4を参照すると、電磁波遮断部50の放電ランプ10を含む部分は、同軸管構造Aとなる。このとき、放電ランプ10から放射される電界は、電磁波遮断部50の軸方向であるため、軸方向の導電性部材51が電磁波の遮蔽効果に寄与する。 Referring to FIG. 4, the portion including the discharge lamp 10 of the electromagnetic wave shielding unit 50 is a coaxial tube structure A. At this time, since the electric field radiated from the discharge lamp 10 is in the axial direction of the electromagnetic wave shielding unit 50, the conductive member 51 in the axial direction contributes to the electromagnetic wave shielding effect.
 これに対して、周方向の導電性部材52は、放電ランプ10から放射される電界ベクトルと直行するため、遮蔽効果には寄与しない。したがって、周方向の導電性部材52は、電磁波遮断部50の機械的強度を保つために設置すればよいので、従来技術で使用されている電磁波遮断部と比較して、少ない本数で構成することが可能となる。これは、電磁波遮断効果を有しながら、電磁波遮断部の開口率を向上させることを意味するので、従来技術における放電ランプ装置よりも、光の放射量を増加させることが可能となる。 In contrast, the circumferential conductive member 52 is orthogonal to the electric field vector radiated from the discharge lamp 10 and thus does not contribute to the shielding effect. Therefore, the conductive member 52 in the circumferential direction only needs to be installed in order to maintain the mechanical strength of the electromagnetic wave shielding unit 50. Therefore, the circumferentially conductive member 52 is configured with a smaller number than the electromagnetic wave shielding units used in the prior art. Is possible. This means that the aperture ratio of the electromagnetic wave blocking portion is improved while having an electromagnetic wave blocking effect, and thus it is possible to increase the amount of light emitted as compared with the discharge lamp device in the prior art.
 電磁波遮断部50の放電ランプ10を含まない部分は、円形導波管構造Bとみなすことができる。ここで、円形導波管の優勢なモードであるTE11波のカットオフ周波数λcと、円形導波管の直径Φとの間に、 The portion of the electromagnetic wave shielding unit 50 that does not include the discharge lamp 10 can be regarded as the circular waveguide structure B. Here, between the cutoff frequency λc of the TE11 wave, which is the dominant mode of the circular waveguide, and the diameter Φ of the circular waveguide,
Figure JPOXMLDOC01-appb-M000002

の関係が成立する。したがって、放電ランプ10に供給されるマイクロ波の波長をλとした場合に、
Figure JPOXMLDOC01-appb-M000002

The relationship is established. Therefore, when the wavelength of the microwave supplied to the discharge lamp 10 is λ,
Figure JPOXMLDOC01-appb-M000003

の関係を満たす場合には、漏洩電磁波はエバネッセントモード(減衰モード)となり、電磁波遮断部50の外部への放射することができなくなる。エバネッセントモードの場合には、電磁波遮断部50の開放部55の端面には、電磁波が到着しないので、導電性部材等を設置する必要がなく、開放した形状をとることができる。
Figure JPOXMLDOC01-appb-M000003

If the above relationship is satisfied, the leaked electromagnetic wave is in the evanescent mode (attenuation mode) and cannot be emitted to the outside of the electromagnetic wave shielding unit 50. In the evanescent mode, the electromagnetic wave does not arrive at the end face of the open portion 55 of the electromagnetic wave shielding unit 50, so that it is not necessary to install a conductive member or the like, and an open shape can be taken.
 一例として、マイクロ波の周波数を2.45GHzとした場合には、マイクロ波の波長は約122mmとなるので、電磁波遮断部50の直径を約71.55mm以下に設定すると、エバネッセントモードを実現することが可能となる。 As an example, when the frequency of the microwave is 2.45 GHz, the wavelength of the microwave is about 122 mm. Therefore, when the diameter of the electromagnetic wave shielding unit 50 is set to about 71.55 mm or less, the evanescent mode is realized. Is possible.
 一方、電磁波遮断部50の円形導波管構造Bの長さは減衰量に比例するため、マイクロ
波の波長の4分の1以上が望ましい。
On the other hand, since the length of the circular waveguide structure B of the electromagnetic wave shielding unit 50 is proportional to the amount of attenuation, it is preferably at least one quarter of the wavelength of the microwave.
<放電ランプの光束が増加する効果について>
 本発明の特筆すべき点は、本発明の実施形態に係る電磁波遮断部50で放電ランプ10を囲むことによって、電磁波遮断部50を設置しなかった場合よりも、放電ランプ10の光束を増加させることである。
<Effect of increasing luminous flux of discharge lamp>
The notable point of the present invention is that the discharge lamp 10 is surrounded by the electromagnetic wave shielding unit 50 according to the embodiment of the present invention, so that the luminous flux of the discharge lamp 10 is increased as compared with the case where the electromagnetic wave shielding unit 50 is not installed. That is.
 図5は、放電ランプ10の放射光強度と、電磁波遮断部50の有無及び直径との関係を示したグラフである。図5の縦軸は、放電ランプ10の放射光強度(光束[lm])を表し、横軸は電磁波遮断部50の直径[mm]を表している。ただし、横軸の縦軸との直行部分は、電磁波遮断部50を設置しなかった場合を表している。また、マイクロ波の周波数は2.45GHz(一定)、電磁波遮断部は直径0.2mmの銅線で構成し、電磁波遮断部の長さを90mm、周方向に隣り合う銅線の中心から中心までの間隔を2mmとした。放射光強度の測定は、放電ランプと測定装置との間に銅線が入り影とならないように行った。 FIG. 5 is a graph showing the relationship between the emitted light intensity of the discharge lamp 10 and the presence / absence and diameter of the electromagnetic wave shielding unit 50. The vertical axis in FIG. 5 represents the emitted light intensity (light flux [lm]) of the discharge lamp 10, and the horizontal axis represents the diameter [mm] of the electromagnetic wave shielding unit 50. However, the part perpendicular to the vertical axis of the horizontal axis represents the case where the electromagnetic wave shielding unit 50 is not installed. The frequency of the microwave is 2.45 GHz (constant), the electromagnetic wave shielding part is composed of a copper wire having a diameter of 0.2 mm, the length of the electromagnetic wave shielding part is 90 mm, and from the center of the copper wire adjacent in the circumferential direction to the center. Was set at 2 mm. The measurement of the radiated light intensity was performed so that a copper wire would not enter between the discharge lamp and the measuring device and become a shadow.
 図5によれば、電磁波遮断部50を設置しなかったときは、光束が約3100[lm]であった。これに対して、電磁波遮断部50を設置したときは、光束が約4500[lm]から4900[lm]を推移しており、電磁波遮断部50を設置しなかったときと比べて、光束が約1.5倍増加したことが認められる。この効果は、放電ランプ10の放電形成に消費されなかったマイクロ波が電磁波遮断部50の内部に閉じ込められ、再度放電形成に寄与するためと推測される。 According to FIG. 5, when the electromagnetic wave shielding unit 50 was not installed, the luminous flux was about 3100 [lm]. On the other hand, when the electromagnetic wave shielding unit 50 is installed, the luminous flux changes from approximately 4500 [lm] to 4900 [lm], and the luminous flux is approximately compared to when the electromagnetic wave shielding unit 50 is not installed. It can be seen that there has been a 1.5-fold increase. This effect is presumed to be because the microwaves that were not consumed in the discharge formation of the discharge lamp 10 are confined in the electromagnetic wave shielding unit 50 and contribute to the discharge formation again.
<実施例>
 本発明の一実施形態に係る放電ランプ装置の、電磁波遮断部の具体例を図11に示す。図11に示す電磁波遮断部は、全長70mm、直径22mm、図面下側の固定部と、上側に補強部を備え、周方向の導電性部材は2本備える。固定部と下側の導電性部材間、2本の導電性部材間、上側の導電性部材と補強部間の間隔は、それぞれ20mmである。導電性部材の厚さは0.3mmであり、軸方向の導電性部材の間隔は2mmである。図面の奥行方向には幅の広い部分を設けている。これは平面状に製作した電磁波遮蔽部を円筒状に形成するための溶接部分である。この幅の広い部分は光の放射を妨げるため、下側の放電ランプ設置部分を取り除く事もできる。
<Example>
A specific example of the electromagnetic wave shielding unit of the discharge lamp device according to the embodiment of the present invention is shown in FIG. The electromagnetic wave shielding part shown in FIG. 11 has a total length of 70 mm, a diameter of 22 mm, a fixing part on the lower side of the drawing, a reinforcing part on the upper side, and two conductive members in the circumferential direction. The intervals between the fixed portion and the lower conductive member, between the two conductive members, and between the upper conductive member and the reinforcing portion are each 20 mm. The thickness of the conductive member is 0.3 mm, and the interval between the conductive members in the axial direction is 2 mm. A wide portion is provided in the depth direction of the drawing. This is a welded portion for forming an electromagnetic wave shielding portion manufactured in a planar shape into a cylindrical shape. Since this wide portion prevents light emission, the lower discharge lamp installation portion can be removed.
 また、本発明の一実施形態に係る放電ランプ装置は、図12に示すように、放電ランプ10を包囲する電磁波遮断部50が、反射ミラー60の内部に設置された構造を有してもよい。 In addition, the discharge lamp device according to the embodiment of the present invention may have a structure in which an electromagnetic wave shielding unit 50 surrounding the discharge lamp 10 is installed inside the reflection mirror 60, as shown in FIG. .
<シミュレーション1>
 以下、本件発明に関して実施した各シミュレーション結果を示す。シミュレーション1は、電磁波遮断部50の構造と、電磁波漏洩との関係について、ANSYS社の電磁界シミュレータHFSSを用いて計算したものである。放電ランプの周りに金属メッシュシリンダを被せる従来の電磁波漏洩手段と、本発明の実施形態に係る電磁波遮断部において、主に周方向の導電性部材の本数を変化させたパターンとを、比較検討した。
<Simulation 1>
Hereinafter, each simulation result carried out with respect to the present invention will be shown. The simulation 1 is calculated using the electromagnetic field simulator HFSS of ANSYS about the relationship between the structure of the electromagnetic wave shielding unit 50 and electromagnetic wave leakage. A conventional electromagnetic wave leakage means for covering a metal mesh cylinder around a discharge lamp and a pattern in which the number of conductive members in the circumferential direction is mainly changed in the electromagnetic wave shielding unit according to the embodiment of the present invention were compared. .
 HFSSの計算手順は、1.空間に設定したモノポールが2.45GHzで最大放射となるアンテナ長さを計算し、2.アンテナ周りに金属メッシュを設定し、空間の電界ベクトルの時間平均分布を計算した。なお、計算にあたっては、3次元金属線は線幅の長方形(長手方向)とリボン(周方向)の2次元要素に完全導体境界条件を設定した。計算繰り返し数は4回行い、計算要素数は6万~30万個となった。 The calculation procedure of HFSS is 1. 1. Calculate the antenna length at which the monopole set in space has maximum radiation at 2.45 GHz. A metal mesh was set around the antenna, and the time average distribution of the electric field vector in space was calculated. In the calculation, for a three-dimensional metal wire, a perfect conductor boundary condition was set for two-dimensional elements of a rectangle (longitudinal direction) and a ribbon (circumferential direction). The number of calculation iterations was 4 times, and the number of calculation elements was 60,000 to 300,000.
 従来の電磁波漏洩手段としては、金属線幅0.2mm、周方向の金属線の間隔1.53mm、軸方向の金属線の間隔1.59mm、シリンダ径22mm、シリンダ長98.4mmの、金属メッシュシリンダを設定した。ただし、金属メッシュシリンダの上端は開放した形状としている。上記各設定値で実際に銅線メッシュシリンダを作成し、放電ランプに取り付け、簡易電磁漏洩検知器で測定したところ、対象から約5cmの距離で1mW/cm以下であった。よって、上記設定値を有する金属メッシュシリンダ(以下、「FullMesh」とする。)をシミュレーション1の基準とすることにした。 As a conventional electromagnetic wave leakage means, a metal mesh having a metal wire width of 0.2 mm, a circumferential metal wire interval of 1.53 mm, an axial metal wire interval of 1.59 mm, a cylinder diameter of 22 mm, and a cylinder length of 98.4 mm Set the cylinder. However, the upper end of the metal mesh cylinder has an open shape. A copper mesh cylinder was actually created with each of the above set values, attached to a discharge lamp, and measured with a simple electromagnetic leakage detector. The result was 1 mW / cm 2 or less at a distance of about 5 cm from the object. Therefore, the metal mesh cylinder (hereinafter referred to as “FullMesh”) having the above set value is used as a reference for the simulation 1.
 図6aは、FullMeshのシミュレーション結果を表した図であり、電界強度0~10V/mを19色分布で表している(図6(e)参照)。シリンダ周囲の領域611及びシリンダ上部の領域612は9~10V/mを示し、シリンダ内部の上側の領域613は0~2V/mを示し、その他領域614は3~6V/mを示している。 FIG. 6a is a diagram showing the simulation result of FullMesh, in which the electric field strength of 0 to 10 V / m is represented by 19 color distribution (see FIG. 6 (e)). A region 611 around the cylinder and a region 612 at the top of the cylinder indicate 9 to 10 V / m, an upper region 613 inside the cylinder indicates 0 to 2 V / m, and the other region 614 indicates 3 to 6 V / m.
 図6bは、周方向の金属線の間隔を3.84mm(20度ごとに18本に相当)、軸方向の金属線の間隔を10mmとし、他はFullMeshと同じ条件に設定した場合(以下、「TrialMesh1」とする。)の、シミュレーション結果である。シリンダ内部の上側の領域621は0~7V/mを示し、他の領域622は10V/mを示している。したがって、TrialMesh1では、シリンダ上部で電磁漏洩抑制効果が認められるものの、FullMeshと比較して漏洩が若干大きいといえる。 FIG. 6B shows a case where the circumferential metal wire interval is 3.84 mm (equivalent to 18 wires every 20 degrees), the axial metal wire interval is 10 mm, and the other conditions are the same as FullMesh (hereinafter, This is a simulation result of “TrialMesh1”. The upper area 621 inside the cylinder shows 0 to 7 V / m, and the other area 622 shows 10 V / m. Therefore, in TrialMesh1, although the electromagnetic leakage suppression effect is recognized at the upper part of the cylinder, it can be said that the leakage is slightly larger than that of FullMesh.
 図6cは、周方向の金属線の間隔を2.3mm(12度ごとに30本に相当)、軸方向の金属線の間隔を10mmとし、他はFullMeshと同じ条件に設定した場合(以下、「TrialMesh2」とする。)の、シミュレーション結果である。シリンダ周囲の領域631及びシリンダ上部の領域632は9~10V/mを示し、シリンダ内部の上側の領域633は0~2V/mを示し、その他領域634は3~6V/mを示している。図6aと図6cを比較すると、TrialMesh2は、FullMeshと同様の電磁遮蔽特性を示しているといえる。しかし、電界強度が9~10V/mの領域611及び612と、領域631及び632を比較すると、後者のほうがその領域が広いので、TrialMesh2の電磁遮蔽特性は、FullMeshよりもやや劣るといえる。 FIG. 6c shows a case in which the circumferential metal wire spacing is 2.3 mm (corresponding to 30 per 12 degrees), the axial metal wire spacing is 10 mm, and the other conditions are the same as FullMesh (hereinafter, This is a simulation result of “TrialMesh2”. An area 631 around the cylinder and an area 632 above the cylinder indicate 9 to 10 V / m, an upper area 633 inside the cylinder indicates 0 to 2 V / m, and the other area 634 indicates 3 to 6 V / m. Comparing FIG. 6a and FIG. 6c, it can be said that TrialMesh2 shows the same electromagnetic shielding characteristic as FullMesh. However, when comparing the regions 611 and 612 having an electric field strength of 9 to 10 V / m and the regions 631 and 632, the latter is wider, and therefore the electromagnetic shielding characteristic of TrialMesh 2 is slightly inferior to that of FullMesh.
 図6dは、周方向の金属線の間隔を1.92mm(10度ごとに36本に相当)、軸方向の金属線の間隔を10mmとし、他はFullMeshと同じ条件に設定した場合(以下、「TrialMesh3」とする。)の、シミュレーション結果である。シリンダ周囲の領域641及びシリンダ上部の領域642は9~10V/mを示し、シリンダ内部の上側の領域643は0~2V/mを示し、その他領域644は3~6V/mを示している。図6aと図6dを比較すると、電磁波漏洩の分布が両者でほぼ同じであり、TrialMesh3はFullMeshと同等の電磁遮蔽特性を有することが確認できた。 FIG. 6d shows a case where the interval between the metal wires in the circumferential direction is 1.92 mm (corresponding to 36 lines every 10 degrees), the interval between the metal wires in the axial direction is 10 mm, and the other conditions are set to the same conditions as FullMesh (hereinafter, This is a simulation result of “TrialMesh3”. An area 641 around the cylinder and an area 642 above the cylinder indicate 9 to 10 V / m, an upper area 643 inside the cylinder indicates 0 to 2 V / m, and the other area 644 indicates 3 to 6 V / m. Comparing FIG. 6a and FIG. 6d, the distribution of electromagnetic wave leakage was almost the same in both cases, and it was confirmed that TrialMesh3 has an electromagnetic shielding characteristic equivalent to FullMesh.
<シミュレーション2>
 シミュレーション2は、電磁波遮断部50の長さと、電磁遮蔽特性との関係について、シミュレーション1と同様に電磁界シミュレータHFSSを用いて計算したものである。
<Simulation 2>
In the simulation 2, the relationship between the length of the electromagnetic wave shielding unit 50 and the electromagnetic shielding characteristics is calculated using the electromagnetic field simulator HFSS similarly to the simulation 1.
 図7aは、シリンダ長を70.2mmとし、他は上記TrialMesh3と同じ条件に設定した場合(以下、「TrialMesh4」とする。)の、シミュレーション結果である。シリンダ周囲の領域711及びシリンダ上部の領域712は9~10V/mを示し、シリンダ内部の上側の領域713は0~2V/mを示し、その他領域714は3~6V/mを示している。シリンダ内部の上側の領域713は、シリンダ底面から約60mmの位置にあたる。この領域713で急速に電磁界が減衰しているのは、アンテナ長さ分(約30mm)から先の構造がカットオフ導波管として動作し、電波が30mm進むうちにエバネッセント減衰が起こるためである。 FIG. 7a shows a simulation result when the cylinder length is 70.2 mm and the other conditions are the same as those of the TrialMesh3 (hereinafter referred to as “TrialMesh4”). An area 711 around the cylinder and an area 712 above the cylinder indicate 9 to 10 V / m, an upper area 713 inside the cylinder indicates 0 to 2 V / m, and the other area 714 indicates 3 to 6 V / m. The upper region 713 inside the cylinder corresponds to a position of about 60 mm from the bottom surface of the cylinder. The reason why the electromagnetic field is rapidly attenuated in this region 713 is that the structure ahead of the antenna length (about 30 mm) operates as a cut-off waveguide, and evanescent attenuation occurs as the radio wave travels 30 mm. is there.
 図7bは、シリンダ長を60.2mmとし、他は上記TrialMesh3と同じ条件に設定した場合(以下、「TrialMesh5」とする。)の、シミュレーション結果である。シリンダ内部及び周辺の領域721は9~10V/mを示し、他の領域724は0~8V/mを示している。TrialMesh5とTrialMesh4を比較すると、遮蔽特性に大きな違いは見られず、シリンダ長を60.2mmとしてもFullMeshと同様の電磁遮蔽特性を有していることがわかる。 FIG. 7b shows a simulation result when the cylinder length is 60.2 mm and the other conditions are the same as those of the TrialMesh3 (hereinafter referred to as “TrialMesh5”). A region 721 in and around the cylinder indicates 9 to 10 V / m, and another region 724 indicates 0 to 8 V / m. When comparing TrialMesh5 and TrialMesh4, it can be seen that there is no significant difference in the shielding characteristics, and that the electromagnetic shielding characteristics are the same as those of FullMesh even if the cylinder length is 60.2 mm.
 シミュレーション2におけるマイクロ波の周波数は2.45GHzであり、波長は約122mmとなる。そして、図7bで示されたように、シリンダ長がマイクロ波の波長の約2分の1である60.2mmの場合でも、FullMeshと同様の電磁遮蔽特性を有していることが確認できた。よって、シミュレーション2より、電磁波遮断部50の長さが、少なくとも波長の2分の1以上あるときは、マイクロ波漏洩を抑制する効果があることが示されており、このことは電磁波遮断部50の長さから4分の1波長のモノポールアンテナの長さを除いた電磁波遮断部50の円形導波管構造Bの長さが、少なくとも波長の4分の1以上あるときは、マイクロ波漏洩を抑制する効果があることを示している。 The frequency of the microwave in simulation 2 is 2.45 GHz, and the wavelength is about 122 mm. Then, as shown in FIG. 7b, it was confirmed that even when the cylinder length was 60.2 mm, which is about a half of the wavelength of the microwave, it had the same electromagnetic shielding characteristics as FullMesh. . Therefore, the simulation 2 shows that when the length of the electromagnetic wave blocking unit 50 is at least one-half of the wavelength, the electromagnetic wave blocking unit 50 has an effect of suppressing microwave leakage. When the length of the circular waveguide structure B of the electromagnetic wave shielding unit 50 excluding the length of the monopole antenna having a quarter wavelength from the length of the wavelength is at least a quarter of the wavelength, microwave leakage It has shown that there exists an effect which suppresses.
<シミュレーション3>
 シミュレーション3は、電磁波遮断部50を構成する導電性部材51の線幅、本数および直径と、電磁波漏洩との関係について、ANSYS社の電磁界シミュレータHFSSを用いて計算したものである。
<Simulation 3>
In the simulation 3, the relationship between the line width, the number and diameter of the conductive members 51 constituting the electromagnetic wave shielding unit 50, and the electromagnetic wave leakage is calculated using an electromagnetic field simulator HFSS manufactured by ANSYS.
 図8aは、シミュレーション3の計算で使用したモデル図である。計算周波数を2.45GHz、原点からZ軸方向に4分の1波長のモノポールアンテナ811を立て、周囲に完全導体の円柱状の台812と、台812の外周に線813を配置し、導波管814でモノポールアンテナ811からの電波を受信する設定とした。導波管814の開口は140×90mm、モノポールアンテナ811から導波管814の距離を85mm、アンテナパターン計算等で必要となる電磁界分布を求める境界(放射境界)815の直径を200mm、長さ160mmとした。以上の条件のもと、台812の直径Φ、線813の数N、および、線813の線幅Wを変化させ、その特性を計算した。 FIG. 8a is a model diagram used in the simulation 3 calculation. A monopole antenna 811 with a calculation frequency of 2.45 GHz and a quarter-wavelength in the Z-axis direction from the origin is set up. A cylindrical base 812 with a complete conductor is placed around it, and a line 813 is arranged around the outer periphery of the base 812. The wave tube 814 is set to receive radio waves from the monopole antenna 811. The opening of the waveguide 814 is 140 × 90 mm, the distance from the monopole antenna 811 to the waveguide 814 is 85 mm, the boundary (radiation boundary) 815 for obtaining the electromagnetic field distribution required for antenna pattern calculation is 200 mm, and the length is long. The thickness was 160 mm. Under the above conditions, the diameter Φ of the table 812, the number N of lines 813, and the line width W of the lines 813 were changed, and the characteristics were calculated.
 図8bないし図8eは、それぞれ台812の直径Φを18mm、22mm、30mm、40mmに設定した場合のシミュレーション結果である。いずれも、横軸は線813の線幅Wとし、Wを0.1mmから3.0mmまで、0.1mmごとに変化させた。縦軸は、遮蔽特性[dB]を表しており、遮蔽特性は、電磁波遮断部が存在しない時の導波管受信能力から、電磁波遮断部が存在する時の導波管受信能力を引いたものであり、数値が大きいほど遮蔽特性が良好であることを示している。線813の数Nは、6本、18本及び36本の場合について計算した。 8b to 8e show simulation results when the diameter Φ of the base 812 is set to 18 mm, 22 mm, 30 mm, and 40 mm, respectively. In either case, the horizontal axis is the line width W of the line 813, and W is changed from 0.1 mm to 3.0 mm every 0.1 mm. The vertical axis represents the shielding characteristic [dB]. The shielding characteristic is obtained by subtracting the waveguide receiving ability when the electromagnetic wave shielding unit is present from the waveguide receiving ability when the electromagnetic wave shielding unit is not present. The larger the numerical value, the better the shielding characteristics. The number N of lines 813 was calculated for 6, 18, and 36 cases.
 図8bないし図8eを参照すると、いずれの場合においても、線813の数Nが36本、18本、6本の順に遮蔽特性の数値が高いことから、線813の数Nが多いほど遮蔽特性が良好になることがわかる。また、線813の線幅Wが増加するに従い、遮蔽特性も増加していることから、線813の線幅Wが大きいほど、遮蔽特性が良好になることがわかる。さらに、線813の数Nと線813の線幅Wが同じ場合、台812の直径Φが18mm、22mm、30mm、40mmの順に遮蔽特性の数値が高いことから、台812の直径Φが小さいほど、遮蔽特性が良好になることがわかる。 Referring to FIGS. 8b to 8e, in any case, since the numerical value of the shielding characteristic is higher in the order of the number N of the lines 813 in the order of 36, 18, and 6, the shielding characteristic increases as the number N of the lines 813 increases. It turns out that becomes good. Further, since the shielding characteristic increases as the line width W of the line 813 increases, it can be seen that the shielding characteristic becomes better as the line width W of the line 813 increases. Furthermore, when the number N of the wires 813 and the line width W of the wires 813 are the same, the diameter Φ of the table 812 is higher in the order of shielding properties in the order of 18 mm, 22 mm, 30 mm, and 40 mm. It can be seen that the shielding properties are improved.
 台812の直径Φ、線813の数N、および、線813の線幅Wの値は、いずれも電磁波遮断部の開口率を決定するパラメタである。したがって上述のシミュレーション3によると、開口率が小さいほど遮蔽特性が良好になることを示している。ただし、開口率を小さくすると、光束が小さくなる関係があるので、本発明を実施するにあたっては、所望の遮蔽特性と光束の範囲で、台812の直径Φ、線813の数N、および、線813の線幅Wの値を設定する必要がある。 The values of the diameter Φ of the base 812, the number N of lines 813, and the line width W of the lines 813 are all parameters that determine the aperture ratio of the electromagnetic wave shielding unit. Therefore, according to the simulation 3 described above, the smaller the aperture ratio, the better the shielding characteristics. However, since there is a relationship that the light flux is reduced when the aperture ratio is reduced, the diameter Φ of the base 812, the number N of the lines 813, and the line are within the desired shielding characteristics and the range of the light flux. It is necessary to set a line width W value of 813.
 例えば、上述したように、シミュレーション1のTrialMesh2(図6c参照)は、FullMeshと同等の電磁遮蔽特性を示した。TrialMesh2における設定値から開口率を計算すると、約91%であった。なお、TrialMesh2よりも電磁遮蔽特性が良好なTrialMesh3(図6d参照)の開口率は、約79%であった。したがって、開口率を91%以上にすると、一定程度の電磁遮蔽特性を有する電磁波遮断部を実現可能であることが示された。 For example, as described above, TrialMesh2 (see FIG. 6c) of Simulation 1 showed an electromagnetic shielding characteristic equivalent to FullMesh. When the aperture ratio was calculated from the set value in TrialMesh2, it was about 91%. Note that the opening ratio of TrialMesh3 (see FIG. 6d), which has better electromagnetic shielding properties than TrialMesh2, was about 79%. Therefore, it was shown that an electromagnetic wave shielding part having a certain degree of electromagnetic shielding characteristics can be realized when the aperture ratio is 91% or more.
<シミュレーション4>
 シミュレーション4は、電磁波遮断部を構成する導電性部材の導電率及び比透磁率と、電磁波漏洩との関係について、ANSYS社の電磁界シミュレータHFSSを用いて計算したものである。
<Simulation 4>
The simulation 4 is calculated using the electromagnetic field simulator HFSS of ANSYS about the relationship between the electrical conductivity and the relative magnetic permeability of the conductive member constituting the electromagnetic wave shielding unit and the electromagnetic wave leakage.
 シミュレーション4では、導電性部材51の材質を完全導体、銀、アルミ及び鉄の各材質について、台812の直径Φを22mm、線813の数Nを36本、線813の線幅Wを0.2mmとし、周波数を2GHzから3GHzまで変化させ、その他の諸条件をシミュレーション3と同様に設定し、遮蔽特性を測定した。シミュレーション4で設定した完全導体、銀、アルミ及び鉄の、導電率[S/m]と比透磁率[μ/μo]は、図9bの通りである。 In the simulation 4, the conductive member 51 is made of a perfect conductor, silver, aluminum, and iron, and the diameter Φ of the base 812 is 22 mm, the number N of the wires 813 is 36, and the line width W of the wire 813 is 0. The thickness was set to 2 mm, the frequency was changed from 2 GHz to 3 GHz, other conditions were set in the same manner as in Simulation 3, and the shielding characteristics were measured. The conductivity [S / m] and relative permeability [μ / μo] of the perfect conductor, silver, aluminum and iron set in the simulation 4 are as shown in FIG. 9b.
 図9aを参照すると、完全導体(実線)、銀(長破線)及びアルミ(点線)は、シミュレーションした全ての周波数において、遮蔽特性が約34dBから約40dBを示している。同一周波数で完全導体、銀及びアルミの遮蔽特性を比較すると、この順で特性が良好であることが認められるが、差は約1dB程度以内であり、ほぼ同等の遮蔽特性を有している。一方、鉄(破線)については、遮蔽特性が約15dBから約20dBで推移しており、完全導体、銀及びアルミと比較して遮蔽特性が劣る。 Referring to FIG. 9a, the complete conductor (solid line), silver (long broken line), and aluminum (dotted line) show shielding characteristics of about 34 dB to about 40 dB at all simulated frequencies. Comparing the shielding characteristics of perfect conductor, silver and aluminum at the same frequency, it is recognized that the characteristics are good in this order, but the difference is within about 1 dB, and the shielding characteristics are almost equivalent. On the other hand, with respect to iron (broken line), the shielding characteristic changes from about 15 dB to about 20 dB, and the shielding characteristic is inferior to that of perfect conductor, silver, and aluminum.
 図9bを参照すると、完全導体、銀及びアルミの比透磁率が0.99998~1.00002であるのに対し、鉄の比透磁率が4000であることから、上記シミュレーション結果の差異は、比透磁率の差に起因するものと考えられる。したがって、本発明の実施形態における導電性部材は、比透磁率が低いほど望ましく、比透磁率が1.1以下であれば十分な性能が得られると考えられる。 Referring to FIG. 9b, the relative permeability of perfect conductor, silver and aluminum is 0.99998 to 1.00002, whereas the relative permeability of iron is 4000. This is thought to be due to the difference in magnetic permeability. Therefore, the conductive member in the embodiment of the present invention is desirable as the relative permeability is low, and it is considered that sufficient performance can be obtained if the relative permeability is 1.1 or less.
<シミュレーション5>
 シミュレーション5は、本発明の一実施形態における電磁波遮断部の光反射率と、電磁波遮断部から外に放出される光の強さとの関係を計算したものである。
<Simulation 5>
Simulation 5 is a calculation of the relationship between the light reflectance of the electromagnetic wave shielding unit and the intensity of light emitted from the electromagnetic wave shielding unit in one embodiment of the present invention.
 シミュレーション5で計算の対象とした電磁波遮断部の概要を、図10aに示した。電磁波遮断部の各構成要素については、電磁波遮断部の全長を70mm、固定部に相当する台部分の長さを10mm、導電性部材の厚さを0.3mm、導電性部材の間隔を2mm、導電性部材の一部の幅を0.2mmと設定した。なお、数値解析には(株)ベストメディア「照明シミュレータ」CAD Ver1.1を使用した。 An outline of the electromagnetic wave shielding unit that is the object of calculation in simulation 5 is shown in FIG. About each component of the electromagnetic wave shielding part, the total length of the electromagnetic wave shielding part is 70 mm, the length of the base part corresponding to the fixed part is 10 mm, the thickness of the conductive member is 0.3 mm, the interval between the conductive members is 2 mm, The width of a part of the conductive member was set to 0.2 mm. For the numerical analysis, Best Media “Lighting Simulator” CAD Ver1.1 was used.
 図10bは、シミュレーション5で設定した光源920を示したものである。アンテナ921及び922は、それぞれ10mmとし、アンテナ921及び922間の光源923は、長さ5mm、幅1mmとした。 FIG. 10 b shows the light source 920 set in the simulation 5. The antennas 921 and 922 were each 10 mm, and the light source 923 between the antennas 921 and 922 was 5 mm long and 1 mm wide.
 図10cは、シミュレーション5の結果を示した表である。これを見ると、電磁波遮断部の光反射率を0%とした場合には、光源の68%が放出された。これに対し、電磁波遮断部の光反射率を70%、90%、100%とした場合には、それぞれ光源の84.5%、90%、92.9%が放出された。したがって、本発明の実施形態における電磁波遮断部は、鏡面状に形成する等して、光反射率を向上させた部材を用いることが望ましい。 FIG. 10c is a table showing the results of simulation 5. As can be seen, when the light reflectivity of the electromagnetic wave shielding part is 0%, 68% of the light source is emitted. On the other hand, when the light reflectance of the electromagnetic wave shielding part was 70%, 90%, and 100%, 84.5%, 90%, and 92.9% of the light source were emitted, respectively. Therefore, it is desirable to use a member that improves the light reflectivity by forming the electromagnetic wave shielding unit in the embodiment of the present invention in a mirror shape.
10 放電ランプ
11 放電容器
12、13 アンテナ導体
20 ラーンチャ
21 内部円筒部材
22 外部円筒部材
30 マイクロ波発振源
40 同軸ケーブル
50 電磁波遮断部
51 軸方向の導電性部材
52 周方向の導電性部材
60 反射ミラー
DESCRIPTION OF SYMBOLS 10 Discharge lamp 11 Discharge container 12, 13 Antenna conductor 20 Launcher 21 Inner cylindrical member 22 Outer cylindrical member 30 Microwave oscillation source 40 Coaxial cable 50 Electromagnetic wave shielding part 51 Axial conductive member 52 Circumferential conductive member 60 Reflective mirror

Claims (7)

  1.  電磁波発生部と、
     電磁波電界を形成して発光する放電ランプと、
     前記電磁波発生部から前記放電ランプに電磁波を導く同軸導波管と、
     前記放電ランプを包囲する電磁波遮断部とを有し、
     前記電磁波遮断部は、前記同軸導波管の軸方向に伸びる複数の導電性部材によって筒状に形成され、
     前記電磁波遮断部の前記放電ランプを含まない部分の長さは前記電磁波の波長の4分の1以上である、
     ことを特徴とする放電灯装置。
    An electromagnetic wave generator,
    A discharge lamp that emits light by forming an electromagnetic field;
    A coaxial waveguide for guiding an electromagnetic wave from the electromagnetic wave generating section to the discharge lamp;
    An electromagnetic wave shielding portion surrounding the discharge lamp,
    The electromagnetic wave shielding portion is formed in a cylindrical shape by a plurality of conductive members extending in the axial direction of the coaxial waveguide,
    The length of the portion that does not include the discharge lamp of the electromagnetic wave shielding unit is one quarter or more of the wavelength of the electromagnetic wave.
    A discharge lamp device characterized by that.
  2.  前記放電ランプは、アンテナ励起型マイクロ波放電ランプであり、
     前記電磁波遮断部は、前記アンテナ励起型マイクロ波放電ランプのアンテナ軸と、前記電磁波遮断部の軸が、同方向になるように設置される、
     ことを特徴とする、請求項1に記載の放電灯装置。
    The discharge lamp is an antenna excited microwave discharge lamp,
    The electromagnetic wave shielding part is installed so that the antenna axis of the antenna excitation type microwave discharge lamp and the axis of the electromagnetic wave shielding part are in the same direction.
    The discharge lamp device according to claim 1, wherein
  3.  前記電磁波遮断部は円筒状に形成され、
    Fは前記電磁波の周波数であり、
     Φは前記電磁波遮断部の直径であり、
     F及びΦは、
    Figure JPOXMLDOC01-appb-I000001

     を満たすことを特徴とする、請求項1又は2に記載の放電灯装置。
    The electromagnetic wave shielding part is formed in a cylindrical shape,
    F is the frequency of the electromagnetic wave,
    Φ is the diameter of the electromagnetic wave shielding part,
    F and Φ are
    Figure JPOXMLDOC01-appb-I000001

    The discharge lamp device according to claim 1 or 2, wherein:
  4.  前記電磁波遮断部の周方向の開口率が91%以下であることを特徴とする、請求項3に記載の放電灯装置。 The discharge lamp device according to claim 3, wherein an opening ratio in a circumferential direction of the electromagnetic wave shielding portion is 91% or less.
  5.  前記導電性部材の比透磁率が1.1以下であることを特徴とする、請求項1に記載の放電灯装置。 The discharge lamp device according to claim 1, wherein the conductive member has a relative magnetic permeability of 1.1 or less.
  6.  前記導電性部材は鏡面状に形成されていることを特徴とする、請求項1に記載の放電灯装置。 The discharge lamp device according to claim 1, wherein the conductive member is formed in a mirror shape.
  7.  前記放電ランプ及び前記電磁波遮断部が反射ミラー内部に設置されることを特徴とする、請求項1に記載の放電灯装置。 The discharge lamp device according to claim 1, wherein the discharge lamp and the electromagnetic wave shielding unit are installed inside a reflection mirror.
PCT/JP2014/075700 2013-09-27 2014-09-26 Discharge lamp device WO2015046458A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013200951A JP6200256B2 (en) 2013-09-27 2013-09-27 Discharge lamp device
JP2013-200951 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015046458A1 true WO2015046458A1 (en) 2015-04-02

Family

ID=52743583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075700 WO2015046458A1 (en) 2013-09-27 2014-09-26 Discharge lamp device

Country Status (2)

Country Link
JP (1) JP6200256B2 (en)
WO (1) WO2015046458A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736364B1 (en) * 2016-09-13 2017-05-18 알에프에이치아이씨 주식회사 Electrodeless lighting system including reflector
US9859107B1 (en) 2016-09-13 2018-01-02 Rfhic Corporation Electrodeless lighting system including reflector
KR102040922B1 (en) * 2018-02-13 2019-11-05 김형석 Coaxial cable type plasma lamp device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135285A (en) * 1997-10-28 1999-05-21 Matsushita Electric Works Ltd Lighting device for electrodeless discharge lamp
JP4714868B2 (en) * 2005-10-20 2011-06-29 国立大学法人静岡大学 Discharge lamp equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022786A (en) * 2001-07-09 2003-01-24 Matsushita Electric Works Ltd Microwave electrodeless discharge lamp device
JP2009181735A (en) * 2008-01-29 2009-08-13 Seiko Epson Corp Light source device and projector equipped with the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135285A (en) * 1997-10-28 1999-05-21 Matsushita Electric Works Ltd Lighting device for electrodeless discharge lamp
JP4714868B2 (en) * 2005-10-20 2011-06-29 国立大学法人静岡大学 Discharge lamp equipment

Also Published As

Publication number Publication date
JP2015069740A (en) 2015-04-13
JP6200256B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
US20170214150A1 (en) Apparatus comprising antenna and heat sink
JPH03152854A (en) Discharge tube device
WO2015046458A1 (en) Discharge lamp device
EP3419113A1 (en) Dual-frequency antenna
EP1564788A2 (en) Electrodeless lighting system
US8981644B2 (en) Lucent waveguide electromagnetic wave plasma light source
Barro et al. Reconfigurable patch antenna radiations using plasma faraday shield effect
US9299554B2 (en) Lucent waveguide electromagnetic wave
KR101943321B1 (en) Lighting apparatus
JP5959368B2 (en) Radar antenna
EP3339872B1 (en) Epr resonator with extended transparency and homogeneity in rf range
JPWO2007017959A1 (en) Reference oscillator
Pour et al. A Novel Impedance Matched Mode Generator for Excitation of the TE $ _ {21} $ Mode in Compact Dual-Mode Circular Waveguide Feeds
JP5968556B1 (en) Antenna device
JP6051904B2 (en) Primary radiator for antenna device and antenna device
JPH02299198A (en) Discharge tube device
EP2731124B1 (en) Lighting apparatus
JP4259274B2 (en) Microwave electrodeless discharge lamp device
KR20070035888A (en) Resonator of plasma lighting system having different aperture
US20200388482A1 (en) Electrodeless plasma lamp
EP3525228B1 (en) Magnetron having enhanced harmonics shielding performance
JP4795130B2 (en) Light source device
JP6327928B2 (en) Primary radiator and multi-frequency antenna
JP2005150590A (en) Electromagnetic wave shield
JP2006074328A (en) Te01 mode microwave exciter in circular waveguide tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849643

Country of ref document: EP

Kind code of ref document: A1