WO2015046392A1 - Production method for conjugated diene-based rubber - Google Patents

Production method for conjugated diene-based rubber Download PDF

Info

Publication number
WO2015046392A1
WO2015046392A1 PCT/JP2014/075550 JP2014075550W WO2015046392A1 WO 2015046392 A1 WO2015046392 A1 WO 2015046392A1 JP 2014075550 W JP2014075550 W JP 2014075550W WO 2015046392 A1 WO2015046392 A1 WO 2015046392A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
group
diene rubber
rubber
general formula
Prior art date
Application number
PCT/JP2014/075550
Other languages
French (fr)
Japanese (ja)
Inventor
飯塚 崇
英順 植田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2015539363A priority Critical patent/JP6332279B2/en
Publication of WO2015046392A1 publication Critical patent/WO2015046392A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to a method for producing a conjugated diene rubber, and more particularly, to a method for producing a conjugated diene rubber capable of providing a crosslinked rubber having excellent low heat buildup and wet grip properties.
  • a tire obtained from a rubber composition blended with silica is superior in low heat build-up compared to a tire obtained from a rubber composition blended with commonly used carbon black. can do.
  • Patent Document 1 silica and a silane coupling agent are blended into a conjugated diene polymer obtained by copolymerizing a vinyl compound having a predetermined heteroatom-containing functional group together with a conjugated diene and an aromatic vinyl compound.
  • a tire rubber composition is disclosed.
  • the vinyl compound having a heteroatom-containing functional group is copolymerized to improve the affinity of the conjugated diene polymer for silica.
  • the effect of improving the affinity for silica by introducing a vinyl compound having a heteroatom-containing functional group was limited. Therefore, in the technique of Patent Document 1, the performance expected to be improved by improving the affinity for silica, specifically, low exothermic property and wet grip property, is not always sufficient.
  • the present invention has been made in view of such a situation, and provides a method for producing a conjugated diene rubber capable of providing a rubber cross-linked product excellent in low heat buildup and wet grip properties. Objective.
  • the present inventors have an active terminal by polymerizing an aromatic vinyl compound having an amino group protected with a protective group, using a polymerization initiator, A polymer block of an aromatic vinyl compound having an amino group protected by a protecting group is obtained, and a monomer containing at least a conjugated diene compound is polymerized from the active end of the polymer block, thereby reducing heat generation.
  • the present inventors have found that a conjugated diene rubber can be obtained that can give a rubber cross-linked product having excellent properties and wet grip properties.
  • a compound represented by the following general formula (1) is polymerized to obtain a polymer block of the compound represented by the general formula (1) having an active end.
  • a method for producing a conjugated diene rubber comprising: a first step to be obtained; and a second step in which a monomer comprising at least a conjugated diene compound is polymerized from an active end of the polymer block.
  • R 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and at least one of X 1 and X 2 is a protecting group for an amino group.
  • gum obtained by said manufacturing method is provided.
  • the compound represented by the general formula (1) is polymerized to obtain a polymer block of the compound represented by the general formula (1) having an active terminal.
  • a method for producing a modified conjugated diene rubber comprising a third step of reacting an active end with a silane compound having a functional group capable of reacting with the active end.
  • the amino-protecting group is preferably a group represented by the following general formula (2).
  • R 2 to R 4 are each independently a group selected from a hydrogen atom and an optionally substituted hydrocarbon group having 1 to 18 carbon atoms.
  • the compound represented by the general formula (1) is p- [N, N-bis (trimethylsilyl) amino] styrene or p- [N, N-bis (trimethylsilyl) amino]. - ⁇ -methylstyrene is preferred.
  • a modified conjugated diene rubber obtained by the method for producing a modified conjugated diene rubber.
  • a rubber composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of the rubber component containing the conjugated diene rubber or the modified conjugated diene rubber.
  • the rubber composition of the present invention preferably contains a crosslinking agent.
  • a crosslinked rubber obtained by crosslinking the rubber composition, and a tire comprising the crosslinked rubber.
  • a conjugated diene rubber and a modified conjugated diene rubber a rubber composition containing the conjugated diene rubber and a modified conjugated diene rubber capable of providing a rubber cross-linked product excellent in low heat buildup and wet grip properties.
  • a rubber cross-linked product having a low heat build-up and a wet grip property obtained by cross-linking the rubber composition and a tire comprising the rubber cross-linked product.
  • the method for producing a conjugated diene rubber according to the present invention comprises using a polymerization initiator to polymerize a compound represented by the general formula (1) described later to obtain a compound represented by the general formula (1) having an active terminal. And a second step of polymerizing a monomer comprising at least a conjugated diene compound from an active end of the polymer block.
  • the 1st process in the manufacturing method of this invention is demonstrated.
  • the compound represented by the following general formula (1) is polymerized using a polymerization initiator to form a compound represented by the general formula (1) having an active terminal.
  • This is a step of obtaining a polymer block.
  • the polymer block of the compound represented by the general formula (1) formed in the first step is higher than the filler such as silica in the conjugated diene rubber obtained by the production method of the present invention. It acts as a segment showing affinity, and according to the present invention, the affinity for fillers such as silica can be improved.
  • R 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrogen atom or a methyl group, more preferably a hydrogen atom.
  • At least one of X 1 and X 2 is an amino-protecting group.
  • a protective group for an amino group an amino group that can be deprotected with an acid, a base, or the like, and has at least one hydrogen atom bonded directly to a nitrogen atom by deprotection.
  • the groups represented by X 1 and X 2 may be bonded to each other to form a ring.
  • the amino-protecting group contains a silicon atom as an atom directly bonded to the nitrogen atom represented by the general formula (1), and may contain other heteroatoms. It is preferable that it is a group represented by the following general formula (2).
  • R 2 to R 4 are each independently a group selected from a hydrogen atom and a hydrocarbon group having 1 to 18 carbon atoms which may have a substituent, Is a group selected from an alkyl group having 1 to 18 carbon atoms and an aryl group having 6 to 18 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • protecting groups include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, tributylsilyl group, ethyldimethylsilyl group, dimethylpropylsilyl group, dimethylisopropylsilyl group, butyldimethylsilyl group.
  • a trialkylsilyl group such as tert-butyldimethylsilyl group, dimethylhexylsilyl group, dimethyloctylsilyl group, decyldimethylsilyl group, dodecyldimethylsilyl group, heptadecyldimethylsilyl group, diethylisopropylsilyl group; Monoalkenyldialkylsilyl groups such as 2- (3-cyclohexen-1-yl) ethyldimethylsilyl group; dimethylphenylsilyl group, benzyldimethylsilyl group, dimethyl-3-phenyl Dialkylmonoarylsilyl groups such as propylsilyl group; monoalkyldiarylsilyl groups such as methyldiphenylsilyl group and tert-butyldiphenylsilyl group; triarylsilyl groups such as triphenylsilyl group; dial
  • examples of the groups represented by X 1 and X 2 that are bonded to each other to form a ring include 1,4-disila-1, And divalent silicon-containing hydrocarbylene groups such as 4,4-tetramethyl-butylene group, 1,4-phenylenebis (dimethylsilyl) group, 1-sila-1,1-dimethyl-ethylene group, and the like.
  • At least one of X 1 and X 2 may be any amino-protecting group described above, and therefore one of X 1 and X 2
  • a group other than an amino-protecting group may be used.
  • Such a group other than an amino-protecting group is not particularly limited as long as it is a group that is not deprotected by an acid, a base, or the like, but is preferably a group other than a hydrogen atom, and a hetero group other than silicon.
  • An organic group having 1 to 30 carbon atoms which may contain an atom is more preferable, and a hydrocarbon group having 1 to 20 carbon atoms is more preferable.
  • the group other than the amino-protecting group include a methyl group and an ethyl group.
  • one of X 1 and X 2 is a compound in which one is a protecting group for an amino group and the other is a group other than a protecting group for an amino group
  • X 1 and X 2 may both be compounds that are amino-protecting groups, but the resulting conjugated diene rubber can be made more highly compatible with fillers such as silica.
  • a compound in which both of X 1 and X 2 are amino-protecting groups is preferred.
  • X 1 and X 2 may be the same group or different groups.
  • the introduction position of the group represented by —NX 1 X 2 is any of the para position, the meta position, and the ortho position of the group represented by —CR 1 ⁇ CH 2.
  • the para position is preferable from the viewpoint that the affinity of the resulting conjugated diene rubber with respect to a filler such as silica can be further increased.
  • the compound represented by the general formula (1) used for constituting the polymer block include p- [N, N-bis (trimethylsilyl) amino] styrene, p- [N, N-bis ( Examples include, but are not limited to, trimethylsilyl) amino] - ⁇ -methylstyrene.
  • the compound represented by these general formula (1) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the general formula (1) having an active terminal is used. It will not specifically limit if the polymer block of the compound represented can be given.
  • a polymerization initiator mainly containing an organic alkali metal compound, an organic alkaline earth metal compound, a lanthanum series metal compound, or the like is preferably used.
  • organic alkali metal compound examples include organic monolithium compounds such as n-butyllithium, sec-butyllithium, tert-butyllithium, hexyllithium, phenyllithium, and stilbenelithium; dilithiomethane, 1,4-dilithiobutane, 1,4 -Organic polyvalent lithium compounds such as dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene, 1,3,5-tris (lithiomethyl) benzene; organic sodium compounds such as sodium naphthalene; organic such as potassium naphthalene Potassium compounds; and the like.
  • organic monolithium compounds such as n-butyllithium, sec-butyllithium, tert-butyllithium, hexyllithium, phenyllithium, and stilbenelithium
  • dilithiomethane 1,4-dilithiobutane
  • organic alkaline earth metal compound examples include di-n-butylmagnesium, di-n-hexylmagnesium, diethoxycalcium, calcium distearate, di-tert-butoxystrontium, diethoxybarium, and diisopropoxybarium. Diethyl mercaptobarium, di-tert-butoxybarium, diphenoxybarium, diethylaminobarium, barium distearate, diketylbarium and the like.
  • a polymerization initiator having a lanthanum series metal compound as a main catalyst for example, a lanthanum series metal comprising a lanthanum series metal such as lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, a carboxylic acid, and a phosphorus-containing organic acid.
  • a polymerization initiator composed of this salt and a cocatalyst such as an alkylaluminum compound, an organoaluminum hydride compound, and an organoaluminum halide compound.
  • an organic monolithium compound and an organic polyvalent lithium compound are preferable, an organic monolithium compound is more preferable, and n-butyllithium is particularly preferable.
  • the organic alkali metal compound is used as an organic alkali metal amide compound by previously reacting with a secondary amine such as dibutylamine, dihexylamine, dibenzylamine, pyrrolidine, hexamethyleneimine, and heptamethyleneimine. Also good.
  • These polymerization initiators may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polymerization reaction of the compound represented by the said General formula (1) advances with a living property, it represents with a polymerization initiator and the said General formula (1).
  • the use ratio with the compound may be determined according to the molecular weight of the target polymer block, but the use amount of the polymerization initiator with respect to 1 mol of the compound represented by the general formula (1) is preferably 0. It is selected in the range of 0.01 to 0.5 mol, more preferably 0.02 to 0.5 mol, particularly preferably 0.05 to 0.5 mol.
  • the amount of the polymerization initiator used is too small, the molecular weight of the resulting polymer block of the compound represented by the general formula (1) becomes too high, the viscosity of the conjugated diene rubber becomes high, and the processability is poor. There is a risk.
  • the amount of the polymerization initiator used is too large, the molecular weight of the resulting polymer block of the compound represented by the general formula (1) becomes too low, and the affinity for the filler of the conjugated diene rubber is low. There is a possibility that the improvement effect is difficult to obtain.
  • the polymerization mode of the compound represented by the general formula (1) is preferably a solution polymerization method.
  • the solvent used in the solution polymerization method is usually used in solution polymerization and is not particularly limited as long as it does not inhibit the polymerization reaction.
  • the inert solvent include chain aliphatic hydrocarbons such as butane, pentane, hexane, heptane, 2-butene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, cyclohexene; benzene, toluene, xylene, etc. Aromatic hydrocarbons; and the like.
  • these solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the concentration of the compound represented by the general formula (1) in the polymerization solution in the solution polymerization method is not particularly limited, but is usually 0.1 to 50% by weight, preferably 0.5 to 45% by weight, more preferably It is selected in the range of 1 to 40% by weight. If the concentration of the compound represented by the general formula (1) in the solution is too low, the productivity of the conjugated diene rubber may be deteriorated. If the concentration is too high, the viscosity of the solution becomes too high. It may be difficult to handle.
  • the polymerization temperature is not particularly limited, but is usually in the range of ⁇ 30 ° C. to + 200 ° C., preferably 0 ° C. to + 180 ° C.
  • the polymerization time is not particularly limited, and is usually in the range of 1 minute to 100 hours. As the polymerization mode, any mode such as batch mode or continuous mode can be adopted.
  • a polar compound may be added to the polymerization reaction system for the purpose of promoting the polymerization reaction.
  • the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and 2,2-di (tetrahydrofuryl) propane; tertiary amines such as tetramethylethylenediamine; alkali metal alkoxides; phosphine compounds; Among these, ether compounds and tertiary amines are preferable, and 2,2-di (tetrahydrofuryl) propane and tetramethylethylenediamine are particularly preferable because they can form a chelate structure with the metal contained in the polymerization initiator. Is particularly preferred.
  • polar compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the polar compound used is not particularly limited, but is preferably 0.001 to 100 mol, more preferably 0.01 to 10 mol, relative to 1 mol of the polymerization initiator. By making the usage-amount of the compound which has the coordination ability to an active metal atom into the said range, the addition effect can be made more suitable.
  • the weight average molecular weight (Mw) of the polymer block of the compound represented by the general formula (1) obtained is preferably 400 to 60 as a value in terms of polystyrene. , 000, more preferably 450 to 30,000, still more preferably 500 to 10,000.
  • the weight average molecular weight (Mw) is too small, the effect of improving the affinity of the conjugated diene rubber with respect to a filler such as silica is obtained by introducing the polymer block of the compound represented by the general formula (1).
  • the weight average molecular weight (Mw) is too large, the viscosity of the conjugated diene rubber may increase and the processability may deteriorate.
  • the compound represented by the general formula (1) having an active end is polymerized by polymerizing the compound represented by the general formula (1). Combined blocks can be obtained.
  • the polymer block of the compound represented by the general formula (1) having an active terminal is preferably composed only of the compound represented by the general formula (1). The block in which other compounds are copolymerized is not excluded as long as it is not impaired.
  • the second step includes at least a conjugated diene compound from the active end of the polymer block of the compound represented by the general formula (1) having the active end obtained in the first step. It is a step of polymerizing the monomer comprising. That is, in the second step of the production method of the present invention, the active end of the polymer block of the compound represented by the general formula (1) having the active end obtained in the first step is used as the polymerization start end. This is a step of polymerizing a monomer containing at least a conjugated diene compound to obtain a polymer chain containing a monomer unit derived from a conjugated diene compound constituting a conjugated diene rubber.
  • the conjugated diene compound used for the polymerization is not particularly limited.
  • examples thereof include 1,3-butadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-cyclohexadiene and the like.
  • 1,3-butadiene, isoprene or 1,3-pentadiene is preferable, and 1,3-butadiene and isoprene are particularly preferable.
  • these conjugated diene compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the conjugated diene rubber produced by the production method of the present invention is preferably obtained by copolymerizing an aromatic vinyl compound in addition to the conjugated diene compound.
  • the aromatic vinyl compound is not particularly limited, and for example, styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-tert-butylstyrene, 5-tert-butyl-2-methylstyrene, vinylnaphthalene, dimethylaminomethylstyrene, dimethylaminoethylstyrene, the above general formula ( Examples thereof include compounds represented by 1).
  • styrene, ⁇ -methylstyrene, or 4-methylstyrene is preferable, and styrene is particularly preferable.
  • aromatic vinyl compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the ratio of monomer units derived from (conjugated diene monomer units) and monomer units derived from aromatic vinyl compounds (aromatic vinyl monomer units) is preferably conjugated diene monomer units. It is 50 to 100% by weight, more preferably 55 to 95% by weight, and the aromatic vinyl monomer unit is preferably 0 to 50% by weight, more preferably 5 to 45% by weight.
  • copolymerizable compounds include, for example, ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids or acid anhydrides such as acrylic acid, methacrylic acid and maleic anhydride; methyl methacrylate , Unsaturated carboxylic acid esters such as ethyl acrylate and butyl acrylate; non-conjugated dienes such as 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, dicyclopentadiene, 5-ethylidene-2-norbornene And the like.
  • These other copolymerizable compounds are polymer chains containing a conjugated diene compound of the conjugated diene rubber produced by the production method of the present invention (that is, a polymer block of a compound represented by the above general formula (1))
  • the monomer unit is preferably 10% by weight or less, and more preferably 5% by weight or less.
  • the mode of copolymerization in the case of obtaining a copolymer using two or more types of monomers is not particularly limited, and any of random shape, block shape, taper shape, etc. However, it is preferably a random binding mode. By making it random, the resulting rubber cross-linked product is excellent in low heat build-up.
  • the above-mentioned general having the active terminal obtained in the first step described above since the polymerization reaction of the monomer comprising the conjugated diene compound proceeds with living properties, the above-mentioned general having the active terminal obtained in the first step described above.
  • the use ratio of the polymer block of the compound represented by the formula (1) and the monomer comprising the conjugated diene compound may be determined according to the molecular weight of the target conjugated diene rubber, but the conjugated diene
  • the amount of the polymer block of the compound represented by the above general formula (1) having an active terminal with respect to 1 mol of the monomer containing the compound Is preferably selected in the range of 0.05 to 0.8 mmol, more preferably 0.07 to 0.7 mmol, and particularly preferably 0.1 to 0.6 mmol.
  • the amount of the polymer block of the compound represented by the above general formula (1) having an active terminal with respect to the amount of the monomer used is too small, the molecular weight of the resulting conjugated diene rubber becomes too high to handle. It may be difficult or the polymerization reaction may not proceed sufficiently. On the other hand, if the amount is too large, the molecular weight of the resulting conjugated diene rubber may be too low, and the properties as a rubber material may be deteriorated.
  • a solution polymerization method is preferably used as the polymerization mode of the monomer containing the conjugated diene compound.
  • the same solvent as in the first step described above can be used.
  • the solvent containing the conjugated diene compound is dissolved in the solution. It is preferable to add a polymer block of the compound represented by the general formula (1) having an active terminal obtained in the first step.
  • the above-mentioned polar compound is added to the polymerization reaction system in order to adjust the polymerization rate and the microstructure of the resulting conjugated diene rubber, specifically the vinyl bond content. Also good.
  • a polar compound in an amount sufficient to adjust the vinyl bond content of the conjugated diene rubber is added to the inert solvent. When added, it is not necessary to newly add a polar compound.
  • the amount of the polar compound used may be determined according to the target vinyl bond content, and is preferably based on 1 mol of the active terminal of the polymer block of the compound represented by the general formula (1) having an active terminal.
  • the amount of the polar compound used is within this range, it is easy to adjust the vinyl bond content in the conjugated diene monomer unit, and problems due to the deactivation of the active terminal are unlikely to occur.
  • the concentration of the monomer comprising the conjugated diene compound in the polymerization solution in the polymerization reaction is not particularly limited, but is usually 1 to 50% by weight, preferably 2 to 45% by weight, more preferably 5 to 40% by weight. Selected by range. If the concentration of the monomer comprising the conjugated diene compound in the solution is too low, the productivity of the conjugated diene rubber may be deteriorated. If the concentration is too high, the viscosity of the solution becomes too high. Handling may be difficult.
  • the polymerization temperature is not particularly limited, but is usually in the range of ⁇ 30 ° C. to + 200 ° C., preferably 0 ° C. to + 180 ° C.
  • the polymerization time is not particularly limited, and is usually in the range of 1 minute to 100 hours.
  • the polymerization mode any of batch mode and continuous mode can be adopted. However, when random copolymerization of a conjugated diene compound and an aromatic vinyl compound, a conjugated diene monomer unit and an aromatic vinyl monomer are used.
  • the batch method is preferable because the randomness of the bond with the unit is easy to control.
  • a conjugated diene rubber can be obtained by polymerizing a monomer comprising a conjugated diene compound.
  • the weight average molecular weight (Mw) of the conjugated diene rubber obtained in the second step described above is preferably from 100,000 to 1,000,000 as a polystyrene equivalent value measured by gel permeation chromatography, 000 to 700,000 is more preferable, and 150,000 to 500,000 is particularly preferable.
  • Mw weight average molecular weight
  • the polymerization reaction of the monomer comprising at least the conjugated diene compound proceeds with a living property, and thus a conjugated diene rubber polymer obtained thereby.
  • the chain will also have an active end. Therefore, in the method for producing a conjugated diene rubber of the present invention, the active terminal of the polymer chain of such a conjugated diene rubber is conventionally used except for silane compounds such as tin tetrachloride, which will be described later. Adding a deactivation step by adding a terminal modifier other than a silane compound described later such as N-methyl- ⁇ -caprolactam or a polymerization terminator such as methanol into the polymerization system. Is preferred.
  • ⁇ Third step> for the polymer chain of the conjugated diene rubber having an active end obtained in the second step, without providing a step of inactivating the active end of the polymer chain of the conjugated diene rubber, or the conjugated diene Inactivate only part of the active end of the polymer chain of the base rubber, and react with the active end contained in the polymer chain of the conjugated diene rubber with a silane compound having a functional group capable of reacting with the active end A modified conjugated diene rubber may be obtained.
  • silane compound having a functional group capable of reacting with the active terminal at the active terminal of the polymer chain of the conjugated diene rubber obtained in the second step described above.
  • a polymer composed of repeating units represented by the following general formula (3) may be provided.
  • a modified conjugated diene rubber having a block and having a group containing a silicon atom at the other end can be obtained.
  • R 1 , X 1 and X 2 are the same as those in the general formula (1).
  • the functional group capable of reacting with the active terminal of the polymer chain of the conjugated diene rubber is not particularly limited as long as it can react with the active terminal, but from the viewpoint of reactivity with the active terminal, a halogen atom,
  • a functional group selected from the group consisting of 2-pyrrolidonyl group, vinyl group, alkoxy group, amino group and epoxy group is preferred, and a functional group selected from the group consisting of 2-pyrrolidonyl group, epoxy group and alkoxy group More preferably, an epoxy group is particularly preferable.
  • Examples of the silane compound used in the present invention include polyorganosiloxane and hydrocarbyloxysilane compounds.
  • the polyorganosiloxane is not particularly limited as long as it has a functional group capable of reacting with the active terminal of the polymer chain of the conjugated diene rubber, and a specific example thereof is represented by the following general formula (4).
  • Examples thereof include polyorganosiloxane.
  • the hydrocarbyloxysilane compound is not particularly limited as long as it has a functional group capable of reacting with the active terminal of the polymer chain of the conjugated diene rubber. Specific examples thereof include the following general formula (5).
  • examples of the silane compound used in the present invention include tetrahalogenated silane compounds such as tetrachlorosilane.
  • a polyorganosiloxane represented by the following general formula (4) and a hydrocarbyloxysilane compound represented by the following general formula (5) are preferable.
  • R 5 to R 12 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • Y 1 and Y 4 are each independently, the conjugated diene rubber of the polymer chain active terminal functional groups capable of reacting with the alkyl group having 1 to 6 carbon atoms or .
  • Y 2 is an aryl group having 6 to 12 carbon atoms, a conjugated diene A functional group capable of reacting with the active end of the polymer chain of the rubber, and a plurality of Y 2 may be the same or different from each other, and Y 3 contains 2 to 20 alkylene glycol repeating units. And when there are a plurality of Y 3 , they may be the same or different from each other, p is an integer of 3 to 200, q is an integer of 0 to 200, and r is 0 to 200. (It is an integer.)
  • R 13 is an alkylene group having 1 to 12 carbon atoms, when R 13 is plural, they mutually identical a good .R 14 be different even ⁇ R 22 is independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, s is an integer of 1 to 10, and t is an integer of 0 to 2.
  • examples of the alkyl group having 1 to 6 carbon atoms constituting R 5 to R 12 , Y 1 , and Y 4 include, for example, methyl group, ethyl group, n -Propyl group, isopropyl group, butyl group, pentyl group, hexyl group, cyclohexyl group and the like.
  • examples of the aryl group having 6 to 12 carbon atoms include a phenyl group and a methylphenyl group. Among these, a methyl group and an ethyl group are preferable from the viewpoint of ease of production of the polyorganosiloxane itself.
  • the functional group capable of reacting with the active terminal of the polymer chain of the conjugated diene rubber constituting Y 1 , Y 2 and Y 4 has 1 carbon atom.
  • a group having 4 to 12 carbon atoms containing an alkoxy group having 5 to 5 carbon atoms, a hydrocarbon group containing 2-pyrrolidonyl group and an epoxy group is preferred, and a group having 4 to 12 carbon atoms containing an epoxy group is more preferred.
  • Examples of the alkoxy group having 1 to 5 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, and a butoxy group.
  • a methoxy group and an ethoxy group are preferable from the viewpoint of reactivity with the active terminal of the polymer chain of the conjugated diene rubber.
  • hydrocarbon group containing a 2-pyrrolidonyl group examples include those represented by the following general formula (6).
  • u is an integer of 2 to 10, and is preferably 2.
  • Examples of the group having 4 to 12 carbon atoms containing an epoxy group include those represented by the following general formula (7). -Z 1 -Z 2 -E (7) (In the above general formula (7), Z 1 is an alkylene group or alkylarylene group having 1 to 10 carbon atoms, Z 2 is a methylene group, a sulfur atom, or an oxygen atom, and E is a carbon having an epoxy group. a substituted hydrocarbon group having 2-10.
  • Z 2 is an oxygen atom
  • Z 2 is an oxygen atom
  • E is a glycidyl group
  • Z 1 Is particularly preferably an alkylene group having 3 carbon atoms
  • Z 2 is an oxygen atom
  • E is a glycidyl group.
  • R 5 to R 12 are preferably an alkyl group having 1 to 6 carbon atoms, and Y 1 and Y 4 are Of these, an alkyl group having 1 to 6 carbon atoms is preferable, and Y 2 is preferably a group having 4 to 12 carbon atoms containing an epoxy group.
  • examples of the group containing a repeating unit of Y 3 that is, an alkylene glycol of 2 to 20, include those represented by the following general formula (8). .
  • v is an integer of 2 to 20
  • P is an alkylene group or alkylarylene group having 2 to 10 carbon atoms
  • R 23 is a hydrogen atom or a methyl group, and there are a plurality of them.
  • R 23 may be the same or different from each other, Q is an alkoxy group having 1 to 10 carbon atoms or an aryloxy group, among which v is an integer of 2 to 8 and P is a carbon number 3 is an alkylene group, R 23 is a hydrogen atom, and Q is a methoxy group.
  • p is an integer of 3 to 200, preferably 3 to 150, more preferably 3 to 120.
  • the number p is in the above range, the low exothermic property of the obtained rubber cross-linked product can be further improved.
  • q is an integer of 0 to 200, preferably 0 to 150, more preferably 0 to 120.
  • r is an integer of 0 to 200, preferably 0 to 150, more preferably 0 to 120.
  • the total number of p, q, and r is preferably 3 to 400, more preferably 3 to 300, and particularly preferably 3 to 250. If the total number of p, q, and r is too large, the viscosity of the polymerization solution during the reaction becomes too high, and it may be difficult to produce a modified conjugated diene rubber.
  • the epoxy group in the polyorganosiloxane reacts with the active terminal of the polymer chain of the unmodified conjugated diene rubber, at least the polyorganosiloxane in the polyorganosiloxane. It is considered that when a part of the epoxy group is ring-opened, a bond is formed between the carbon atom of the part where the epoxy group is opened and the atom having the active terminal of the polymer chain of the conjugated diene rubber.
  • the polyorganosiloxane when the alkoxy group in the polyorganosiloxane reacts with the active terminal of the polymer chain of the conjugated diene rubber, the polyorganosiloxane contains by elimination of at least a part of the alkoxy group in the polyorganosiloxane. It is considered that a bond is formed between the silicon atom and an atom having an active terminal of the polymer chain of the conjugated diene rubber. Further, when the 2-pyrrolidonyl group in the polyorganosiloxane reacts with the active end of the conjugated diene rubber, the carbon-oxygen bond of the carbonyl group constituting at least a part of the 2-pyrrolidonyl group in the polyorganosiloxane is cleaved. Thus, it is considered that a bond is formed between the carbon atom and an atom having an active terminal of the polymer chain of the conjugated diene rubber.
  • the alkyl group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms are those described for the polyorganosiloxane of the general formula (4). It is the same.
  • examples of the alkylene group having 1 to 12 carbon atoms include a methylene group, an ethylene group, and a propylene group. Among these, a propylene group is preferable.
  • hydrocarbyloxysilane compound represented by the general formula (5) examples include N, N-bis (trimethylsilyl) -3-aminopropyltrimethoxysilane and N, N-bis (trimethylsilyl) -3-aminopropyl.
  • examples include triethoxysilane, N, N-bis (trimethylsilyl) aminoethyltrimethoxysilane, and N, N-bis (trimethylsilyl) aminoethyltriethoxysilane.
  • the amount of the silane compound used is not particularly limited, but the amount of the group having reactivity with respect to the active terminal with respect to 1 mol of the active terminal of the conjugated diene rubber having the active terminal obtained in the second step described above is 0.00.
  • the amount is preferably in the range of 05 to 5 mol, more preferably 0.1 to 3 mol, and particularly preferably 0.3 to 1.5 mol.
  • a silane compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the method for reacting the silane compound with the active terminal of the polymer chain of the conjugated diene rubber obtained in the second step described above is not particularly limited, but a conjugated diene rubber having an active terminal and a silane compound are used. And a method of mixing them in a solvent capable of dissolving them.
  • a solvent capable of dissolving them As the solvent used in this case, those exemplified as the solvent used in the first step and the second step described above can be used.
  • the method of adding the silane compound to the conjugated diene rubber having an active end obtained in the second step as described above is kept in the state of the polymerization solution used for the polymerization. Yes, it is preferable.
  • the silane compound is preferably dissolved in the inert solvent used for the polymerization and added to the polymerization system, and the solution concentration is preferably in the range of 1 to 50% by weight.
  • the reaction temperature in the modification reaction is not particularly limited, but is usually 0 to 120 ° C., and the reaction time is not particularly limited, but is usually 1 minute to 1 hour.
  • the timing of adding the silane compound to the solution containing the conjugated diene rubber having an active terminal obtained in the second step is not particularly limited, but the polymerization reaction is not completed and the conjugated diene having an active terminal is not completed.
  • the state in which the solution containing the rubber system also contains the monomer, more specifically, the solution containing the conjugated diene rubber having an active terminal is 100 ppm or more, more preferably 300 to 50,000 ppm. It is desirable to add a silane compound to this solution in a state containing monomers. By adding the silane compound in this way, side reactions between the conjugated diene rubber having an active terminal and impurities contained in the polymerization system can be suppressed, and the reaction can be controlled well.
  • a step of coupling a part of the polymer chain of the conjugated diene rubber having an active end by adding a coupling agent such as tin tetrachloride which has been conventionally used in the polymerization system may be added.
  • a coupling agent such as tin tetrachloride which has been conventionally used in the polymerization system
  • a step of adding a terminal modifier other than a silane compound such as N-methyl- ⁇ -caprolactam into the polymerization system and modifying a part of the polymer chain of the conjugated diene rubber having an active terminal with a compound other than the silane compound is added. May be.
  • the polymer chain of the conjugated diene rubber having an active end is in the polymerization system.
  • it is preferable to deactivate the active terminal of the conjugated diene rubber having an active terminal by adding a conventionally used polymerization terminator such as methanol into the polymerization system.
  • the modified conjugated diene rubber in the third step after obtaining the conjugated diene rubber in the second step described above, or when further reacting with the silane compound in the third step, the modified conjugated diene rubber in the third step.
  • an amino group protecting group represented by X 1 and X 2 in the general formula (1) is obtained.
  • a deprotection reaction for deprotection may be performed.
  • a method using a general acid such as hydrochloric acid or a base such as tetrabutylammonium fluoride can be used without limitation.
  • an amino group in which at least one hydrogen atom is bonded directly to a nitrogen atom is introduced into the polymer block of the compound represented by the general formula (1).
  • the reaction temperature in the deprotection reaction is not particularly limited, but is usually 0 to 120 ° C.
  • the reaction time is not particularly limited, but is usually 5 minutes to 10 hours.
  • the deprotection reaction for deprotecting the protecting group of the amino group is carried out, for example, by kneading with various compounding agents such as silica to produce a rubber composition. It is good also as an aspect which advances.
  • an anti-aging agent such as a phenol stabilizer, a phosphorus stabilizer, or a sulfur stabilizer may be added to the solution of the conjugated diene rubber and modified conjugated diene rubber obtained as described above. . What is necessary is just to determine suitably the addition amount of an anti-aging agent according to the kind etc.
  • an extension oil may be blended so that the conjugated diene rubber or the modified conjugated diene rubber may be used as the oil extended rubber.
  • the extender oil include paraffinic, aromatic and naphthenic petroleum softeners, plant softeners, and fatty acids.
  • the content of polycyclic aromatics extracted by the method of IP346 is less than 3%.
  • the amount used is usually 5 to 100 parts by weight with respect to 100 parts by weight of the conjugated diene rubber or the modified conjugated diene rubber.
  • the conjugated diene rubber and modified conjugated diene rubber thus obtained are separated from the reaction mixture by removing the solvent by steam stripping or the like, so that a solid conjugated diene rubber is obtained.
  • a modified conjugated diene rubber can be obtained.
  • the weight average molecular weight (Mw) of the conjugated diene rubber and modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited, but is usually 100, as a value measured by gel permeation chromatography in terms of polystyrene.
  • the range is from 000 to 3,000,000, preferably from 120,000 to 2,000,000, more preferably from 150,000 to 1,500,000.
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the conjugated diene rubber and modified conjugated diene rubber obtained by the production method of the present invention is also particularly Although not limited, it is preferably 1.0 to 5.0, particularly preferably 1.0 to 3.0.
  • the Mooney viscosity (ML 1 + 4, 100 ° C.) of the conjugated diene rubber and modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited, but is usually in the range of 20 to 200, preferably 30 to 150. It is. By setting the Mooney viscosity of the conjugated diene rubber and the modified conjugated diene rubber within the above range, the processability is excellent.
  • the conjugated diene rubber or the modified conjugated diene rubber is an oil extended rubber
  • the Mooney viscosity of the oil extended rubber is preferably set in the above range.
  • the vinyl bond content in the conjugated diene unit portion of the conjugated diene rubber and modified conjugated diene rubber obtained by the production method of the present invention is usually 1 to 80% by weight, preferably 5 to 75% by weight. .
  • the obtained rubber cross-linked product has excellent low heat build-up.
  • the rubber composition of the present invention is a conjugated diene rubber or a modified conjugated diene rubber obtained by the production method of the present invention described above (hereinafter, these are collectively referred to as “(modified) conjugated diene rubber”).
  • a composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing.
  • silica used in the present invention examples include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica.
  • wet method white carbon mainly containing hydrous silicic acid is preferable.
  • a carbon-silica dual phase filler in which silica is supported on the carbon black surface may be used.
  • These silicas can be used alone or in combination of two or more.
  • nitrogen adsorption specific surface area of silica used is preferably 50 ⁇ 300m 2 / g, more preferably 80 ⁇ 220m 2 / g, particularly preferably 100 ⁇ 170m 2 / g.
  • the pH of silica is preferably 5-10.
  • the compounding amount of silica in the rubber composition of the present invention is 10 to 200 parts by weight, preferably 30 to 150 parts by weight, more preferably 50 to 100 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part.
  • the rubber composition has excellent processability, and the resulting rubber cross-linked product has excellent wet grip properties and low exothermic properties.
  • the rubber composition of the present invention may further contain a silane coupling agent from the viewpoint of further improving the low heat build-up.
  • a silane coupling agent examples include vinyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, 3-octathio- 1-propyl-triethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (triethoxysilyl) propyl) tetrasulfide, ⁇ -trimethoxysilylpropyldimethylthiocarbamyl tetrasulfide, and ⁇ -Trimethoxysilylpropylbenzothiazyl tetrasulfide and the like.
  • These silane coupling agents can be used alone
  • the rubber composition of the present invention may further contain carbon black such as furnace black, acetylene black, thermal black, channel black, and graphite. Among these, furnace black is preferable. These carbon blacks can be used alone or in combination of two or more.
  • the compounding amount of carbon black is usually 120 parts by weight or less with respect to 100 parts by weight of the rubber component in the rubber composition.
  • the method of adding silica to the rubber component containing the (modified) conjugated diene rubber of the present invention is not particularly limited, and a method of adding and kneading the solid rubber component (dry kneading method) or ( Modification) A method of adding to a solution containing a conjugated diene rubber and coagulating and drying (wet kneading method) can be applied.
  • the rubber composition of the present invention preferably further contains a cross-linking agent.
  • the crosslinking agent include sulfur-containing compounds such as sulfur and sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group. Among these, sulfur is preferably used.
  • the amount of the crosslinking agent is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. It is.
  • the rubber composition of the present invention includes a crosslinking accelerator, a crosslinking activator, an anti-aging agent, a filler (excluding silica and carbon black), an activator, and a process oil in accordance with conventional methods.
  • a crosslinking accelerator excluding silica and carbon black
  • a filler excluding silica and carbon black
  • an activator excluding silica and carbon black
  • a process oil in accordance with conventional methods.
  • Plasticizers, lubricants, tackifiers and the like can be blended in the required amounts.
  • crosslinking accelerator When sulfur or a sulfur-containing compound is used as the crosslinking agent, it is preferable to use a crosslinking accelerator and a crosslinking activator in combination.
  • the crosslinking accelerator include sulfenamide-based crosslinking accelerators; guanidine-based crosslinking accelerators; thiourea-based crosslinking accelerators; thiazole-based crosslinking accelerators; thiuram-based crosslinking accelerators; dithiocarbamic acid-based crosslinking accelerators; A crosslinking accelerator; and the like. Among these, those containing a sulfenamide-based crosslinking accelerator are preferable. These crosslinking accelerators are used alone or in combination of two or more.
  • the amount of the crosslinking accelerator is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part.
  • crosslinking activator examples include higher fatty acids such as stearic acid; zinc oxide. These crosslinking activators are used alone or in combination of two or more.
  • the amount of the crosslinking activator is preferably 0.05 to 20 parts by weight, particularly preferably 0.5 to 15 parts by weight based on 100 parts by weight of the rubber component in the rubber composition.
  • the rubber composition of the present invention may be blended with other rubbers other than the (modified) conjugated diene rubber obtained by the production method of the present invention described above.
  • examples of other rubbers include natural rubber, polyisoprene rubber, emulsion polymerization styrene-butadiene copolymer rubber, solution polymerization styrene-butadiene copolymer rubber, and polybutadiene rubber (high cis-BR and low cis BR).
  • copolymer rubbers acrylonitrile-styrene-butadiene copolymer rubbers, etc., those other than the above-mentioned (modified) conjugated diene rubbers.
  • natural rubber, polyisoprene rubber, polybutadiene rubber, and solution-polymerized styrene-butadiene copolymer rubber are preferable. These rubbers can be used alone or in combination of two or more.
  • the (modified) conjugated diene rubber obtained by the production method of the present invention preferably accounts for 10 to 100% by weight, and 50 to 100% by weight of the rubber component in the rubber composition. It is particularly preferred to occupy.
  • the (modified) conjugated diene rubber obtained by the production method of the present invention in the rubber component at such a ratio, a crosslinked rubber product excellent in low heat buildup and wet grip properties can be obtained.
  • each component may be kneaded according to a conventional method.
  • a component excluding a thermally unstable component such as a crosslinking agent or a crosslinking accelerator and a (modified) conjugated diene rubber And then kneaded with a thermally unstable component such as a crosslinking agent or a crosslinking accelerator to obtain the desired composition.
  • the kneading temperature of the component excluding the heat labile component and the (modified) conjugated diene rubber is preferably 80 to 200 ° C., more preferably 120 to 180 ° C., and the kneading time is preferably 30 seconds to 30 minutes.
  • the kneaded product and the thermally unstable component are usually mixed after cooling to 100 ° C. or lower, preferably 80 ° C. or lower.
  • the rubber cross-linked product of the present invention is obtained by cross-linking the rubber composition of the present invention described above.
  • the rubber cross-linked product of the present invention uses the rubber composition of the present invention, for example, is molded by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, and heated. Can be produced by carrying out a crosslinking reaction and fixing the shape as a crosslinked product.
  • crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding.
  • the molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C.
  • the crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C.
  • the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 12 hours, particularly preferably 3 minutes to 6 hours. .
  • a heating method a general method used for crosslinking of rubber such as press heating, steam heating, oven heating, hot air heating, etc. may be appropriately selected.
  • the rubber cross-linked product of the present invention thus obtained is obtained by using the (modified) conjugated diene rubber obtained by the above-described production method of the present invention, and thus is excellent in low heat buildup and wet grip properties. It is a thing.
  • the (modified) conjugated diene rubber obtained by the production method of the present invention comprises a polymer block of the compound represented by the general formula (1) on the polymerization initiation terminal side of the polymer chain. It has a high affinity for fillers such as silica.
  • the modified conjugated diene rubber modified with a silane compound has a polymer block of the compound represented by the general formula (1) on the polymerization initiation terminal side of the polymer chain, and at the polymerization termination side terminal.
  • the affinity for a filler such as silica is further enhanced.
  • the compound represented by the general formula (1) is preferably polymerized alone, and the compound represented by the general formula (1) is introduced in the form of a polymer block.
  • the rubber cross-linked product of the present invention makes use of such characteristics, and for example, in tires, materials for tire parts such as cap treads, base treads, carcass, sidewalls and bead parts; hoses, belts, mats, It can be used in various applications such as vibration rubber and other various industrial article materials; resin impact resistance improvers; resin film buffers; shoe soles; rubber shoes; golf balls;
  • the rubber cross-linked product of the present invention is excellent in low heat buildup and wet grip properties, it can be suitably used as a tire material, particularly a low fuel consumption tire material, and is optimal for tread applications.
  • the molecular weight of the rubber was determined as a molecular weight in terms of polystyrene by gel permeation chromatography (GPC). Specific measurement conditions were as follows. Measuring instrument: High-performance liquid chromatograph (trade name “HLC-8220” manufactured by Tosoh Corporation) Column: A product manufactured by Tosoh Corporation and having two trade names “GMH-HR-H” connected in series was used. Detector: differential refractometer (trade name “RI-8220” manufactured by Tosoh Corporation) Eluent: Tetrahydrofuran Column temperature: 40 ° C
  • the deprotection rate of the conjugated diene rubber and the modified conjugated diene rubber was measured by 1 H-NMR using a deuterated chloroform solution of the conjugated diene rubber and the modified conjugated diene rubber before and after the deprotection reaction. Specifically, the deprotection rate was determined from the change in intensity ratio between the peak derived from the methyl group bonded to silicon in the vicinity of 0.2 ppm and the peak derived from the vinyl structure at 4.5 to 6.0 ppm.
  • Example 1 [Preparation of Conjugated Diene Rubber 1] To a 100 ml ampoule bottle purged with nitrogen, 23.4 g of cyclohexane and 1.44 mmol of tetramethylethylenediamine were added, and p- [N, N-bis (trimethylsilyl) amino] styrene 0 obtained in Production Example 1 was added. .6 g was added.
  • Irganox 1520L manufactured by Ciba Specialty Chemicals
  • an anti-aging agent was added to 100 parts of the resulting conjugated diene rubber 1 in an autoclave containing a solution containing the conjugated diene rubber 1 obtained.
  • the solvent was removed by steam stripping, and the solid conjugated diene rubber 1 was obtained by vacuum drying at 60 ° C. for 24 hours.
  • the obtained conjugated diene rubber 1 was measured for weight average molecular weight (Mw), styrene unit content, vinyl bond content, and p- [N, N-bis (trimethylsilyl) amino] styrene unit content. did. The results are shown in Table 1.
  • the temperature of the kneaded product at the end of kneading was 150 ° C.
  • the obtained kneaded product was cooled to room temperature and then kneaded again in a Brabender type mixer at 110 ° C. for 2 minutes, and then the kneaded product was discharged from the mixer.
  • the obtained kneaded product 1.7 parts of sulfur and a crosslinking accelerator (N-cyclohexyl-2-benzothiazolylsulfenamide (trade name “Noxeller CZ-G”, Ouchi) After kneading 1.8 parts of Shinsei Chemical Industry Co., Ltd.
  • Example 2 [Preparation of Conjugated Diene Rubber 2] P- [N, N-bis (trimethylsilyl) amino] styrene obtained in Production Example 1 was prepared in the same manner as in Example 1 except that the amount used was changed from 0.6 g to 1.2 g.
  • [N, N-bis (trimethylsilyl) amino] styrene polymer block 2A (p- [N, N-bis (trimethylsilyl) amino] styrene polymer block is a polymer block in which hydrocarbyl lithium has been introduced as an active end. Combined) was obtained. About obtained polymer block 2A, after taking out a very small part, the thing which added methanol to it and deactivated the active terminal was made into the sample, and the weight average molecular weight (Mw) was measured. The results are shown in Table 1.
  • the solid conjugated diene rubber 2 was obtained in the same manner as in Example 1 except that the polymer block 2A obtained in this way was used.
  • the average molecular weight (Mw), styrene unit content, vinyl bond content, and p- [N, N-bis (trimethylsilyl) amino] styrene unit content were measured. The results are shown in Table 1.
  • Example 3 [Preparation of Conjugated Diene Rubber 3] P- [N, N-bis (trimethylsilyl) amino] styrene obtained in Production Example 1 was prepared in the same manner as in Example 1 except that the amount used was changed from 0.6 g to 6.3 g.
  • [N, N-bis (trimethylsilyl) amino] styrene polymer block 3A (p- [N, N-bis (trimethylsilyl) amino] styrene polymer block is a polymer block in which hydrocarbyl lithium is introduced as an active end. Combined) was obtained. About obtained polymer block 3A, after taking out a very small part, methanol was added to it and the thing which deactivated the active terminal was made into the sample, and the weight average molecular weight (Mw) was measured. The results are shown in Table 1.
  • the polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95 to 100%, 0.044 mmol of tin tetrachloride was added in the form of a 20% strength cyclohexane solution, and 10 minutes. Reacted. Thereafter, as a polymerization terminator, an amount of methanol corresponding to 2 moles of n-butyllithium used was added to obtain a solution containing the conjugated diene rubber 4.
  • Irganox 1520L manufactured by Ciba Specialty Chemicals
  • Irganox 1520L manufactured by Ciba Specialty Chemicals
  • the solvent was removed by steam stripping, followed by vacuum drying at 60 ° C. for 24 hours to obtain a solid conjugated diene rubber 4.
  • the obtained conjugated diene rubber 4 was measured for weight average molecular weight (Mw), styrene unit content, vinyl bond content, and p- [N, N-bis (trimethylsilyl) amino] styrene unit content. did. The results are shown in Table 1.
  • polymer block 1B of p- (dimethylamino) styrene (polymer having hydrocarbyl lithium introduced as an active end at the end of p- (dimethylamino) styrene polymer block )
  • polymer block 1B of p- (dimethylamino) styrene (polymer having hydrocarbyl lithium introduced as an active end at the end of p- (dimethylamino) styrene polymer block )
  • Mw weight average molecular weight
  • a solid conjugated diene rubber 6 was obtained in the same manner as in Example 1 except that the polymer block 1B obtained in this way was used. Average molecular weight (Mw), styrene unit content, vinyl bond content, and p- (dimethylamino) styrene unit content were measured. The results are shown in Table 1.
  • Examples 1 to 3 and Comparative Examples 1 to 5 the evaluation results of low heat build-up and wet grip properties are shown with the result of Comparative Example 1 being 100.
  • amino group-containing monomer means p- [N, N-bis (trimethylsilyl) amino] styrene or p- (dimethylamino) styrene.
  • body unit means a p- [N, N-bis (trimethylsilyl) amino] styrene unit or a p- (dimethylamino) styrene unit.
  • the rubber cross-linked product obtained using the conjugated diene rubber produced by the production method of the present invention was excellent in low exothermic property and wet grip property (Examples 1 to 3).
  • the rubber cross-linked product obtained by using the conjugated diene rubber obtained by polymerizing the compound represented by the general formula (1) in a random manner without passing through the first step in the present invention has low exothermic property and It was inferior to both wet grip properties (Comparative Examples 1 and 2).
  • Example 4 [Preparation of Modified Conjugated Diene Rubber 9] To a 100 ml ampoule bottle purged with nitrogen, 23.4 g of cyclohexane and 1.44 mmol of tetramethylethylenediamine were added, and p- [N, N-bis (trimethylsilyl) amino] styrene 1 obtained in Production Example 1 was added. .2 g was added.
  • the polyorganosiloxane represented by the following formula (11) is converted into a 20% concentration xylene solution so that the epoxy group is in an amount corresponding to 0.5 mol of n-butyllithium used. And allowed to react for 30 minutes. Thereafter, as a polymerization terminator, an amount of methanol corresponding to twice the mole of n-butyllithium used was added to obtain a solution containing the modified conjugated diene rubber 9.
  • tetrabutylammonium fluoride / tetrahydrofuran solution (manufactured by Stream Chemicals) was added to the autoclave containing the resulting solution containing the modified conjugated diene rubber 9 as tetrabutylammonium fluoride in an amount of 25.0 mmol.
  • a solution containing the deprotected modified conjugated diene rubber 9 was obtained.
  • the modified conjugated diene rubber 9 thus obtained has a weight average molecular weight (Mw), a styrene unit content, a vinyl bond content, and a p- [N, N-bis (trimethylsilyl) amino] styrene unit and its origin.
  • Mw weight average molecular weight
  • styrene unit content a styrene unit content
  • vinyl bond content a vinyl bond content
  • p- [N, N-bis (trimethylsilyl) amino] styrene unit and its origin The content of the unit to be measured was measured. The results are shown in Table 2. Further, the deprotection rate of the resulting modified conjugated diene rubber 9 was 96%.
  • the temperature of the kneaded product at the end of kneading was 150 ° C.
  • the obtained kneaded product was cooled to room temperature and then kneaded again in a Brabender type mixer at 110 ° C. for 2 minutes, and then the kneaded product was discharged from the mixer.
  • the obtained kneaded product 1.7 parts of sulfur and a crosslinking accelerator (N-cyclohexyl-2-benzothiazolylsulfenamide (trade name “Noxeller CZ-G”, Ouchi) After kneading 1.8 parts of Shinsei Chemical Industry Co., Ltd.
  • Example 5 [Preparation of Modified Conjugated Diene Rubber 10] P- [N, N-bis (trimethylsilyl) amino] styrene obtained in Production Example 1 was prepared in the same manner as in Example 4 except that the amount used was changed from 1.2 g to 2.6 g.
  • [N, N-bis (trimethylsilyl) amino] styrene polymer block 5A (p- [N, N-bis (trimethylsilyl) amino] styrene polymer block is a polymer block in which hydrocarbyl lithium has been introduced as an active end. Combined) was obtained. About obtained polymer block 5A, after taking out a very small part, methanol was added to it and the thing which deactivated the active terminal was made into the sample, and the weight average molecular weight (Mw) was measured. The results are shown in Table 2.
  • Example 6 [Preparation of Modified Conjugated Diene Rubber 11] An autoclave was charged with 760 g of cyclohexane, 94.8 g of 1,3-butadiene, and 25.2 g of styrene in a nitrogen atmosphere, and then p- [N, N-bis (trimethylsilyl) obtained in the same manner as in Example 5. Amino] styrene polymer block 5A was added in the same amount as in Example 5, and polymerization was started at 60 ° C.
  • the polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95 to 100%, 0.044 mmol of tin tetrachloride was added in the form of a 20% strength cyclohexane solution, and 10 minutes. Reacted.
  • the polyorganosiloxane represented by the above formula (11) is brought into a 20% concentration xylene solution state so that the epoxy group is in an amount corresponding to 0.5 mol of n-butyllithium used. And allowed to react for 30 minutes. Thereafter, as a polymerization terminator, a solution containing the modified conjugated diene rubber 11 was obtained by adding an amount of methanol corresponding to twice the mole of n-butyllithium used.
  • Irganox 1520L (manufactured by Ciba Specialty Chemicals) was added as an anti-aging agent to the resulting solution containing the modified conjugated diene rubber 11 in an amount of 0.000 with respect to 100 parts of the resulting modified conjugated diene rubber 11. After the addition of 2 parts, the solvent was removed by steam stripping and vacuum-dried at 60 ° C. for 24 hours to obtain a solid modified conjugated diene rubber 11.
  • the resulting modified conjugated diene rubber 11 has a weight average molecular weight (Mw), a styrene unit content, a vinyl bond content, and a p- [N, N-bis (trimethylsilyl) amino] styrene unit and its origin.
  • Mw weight average molecular weight
  • styrene unit content a styrene unit content
  • vinyl bond content a vinyl bond content
  • p- [N, N-bis (trimethylsilyl) amino] styrene unit and its origin The content of the unit to be measured was measured. The results are shown in Table 2.
  • Example 7 [Preparation of Modified Conjugated Diene Rubber 12] A solid solution was obtained in the same manner as in Example 4 except that 0.4 mmol of N, N-bis (trimethylsilyl) -3-aminopropyltriethoxysilane was used instead of the polyorganosiloxane represented by the above formula (11). A modified conjugated diene rubber 12 having a shape was obtained, and the resulting modified conjugated diene rubber 12 was obtained. The weight average molecular weight (Mw), styrene unit content, vinyl bond content, and p- [N, N-bis ( The contents of trimethylsilyl) amino] styrene units and units derived therefrom were measured. The results are shown in Table 2.
  • the polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95 to 100%, 0.044 mmol of tin tetrachloride was added in the form of a 20% strength cyclohexane solution, and 10 minutes. Reacted.
  • the polyorganosiloxane represented by the above formula (11) is brought into a 20% concentration xylene solution state so that the epoxy group is in an amount corresponding to 0.5 mol of n-butyllithium used. And allowed to react for 30 minutes. Thereafter, as a polymerization terminator, an amount of methanol corresponding to twice the mole of n-butyllithium used was added to obtain a solution containing the modified conjugated diene rubber 13.
  • Irganox 1520L manufactured by Ciba Specialty Chemicals
  • the solvent was removed by steam stripping, followed by vacuum drying at 60 ° C. for 24 hours to obtain a solid modified conjugated diene rubber 13.
  • the resulting modified conjugated diene rubber 13 has a weight average molecular weight (Mw), a styrene unit content, a vinyl bond content, and a p- [N, N-bis (trimethylsilyl) amino] styrene unit and its origin.
  • Mw weight average molecular weight
  • styrene unit content a styrene unit content
  • vinyl bond content a vinyl bond content
  • p- [N, N-bis (trimethylsilyl) amino] styrene unit and its origin The content of the unit to be measured was measured. The results are shown in Table 2.
  • polymer block 2B of p- (dimethylamino) styrene (polymer in which hydrocarbyl lithium was introduced as an active terminal at the terminal of the p- (dimethylamino) styrene polymer block )
  • polymer block 2B After taking out a very small part, methanol was added to it and the thing which deactivated the active terminal was made into the sample, and the weight average molecular weight (Mw) was measured.
  • Mw weight average molecular weight
  • a solid modified conjugated diene rubber 15 was obtained in the same manner as in Example 4 except that the polymer block 2B thus obtained was used, and the resulting modified conjugated diene rubber 15 was obtained.
  • Weight average molecular weight (Mw), styrene unit content, vinyl bond content, and p- (dimethylamino) styrene unit content were measured. The results are shown in Table 2.
  • amino group-containing monomer means p- [N, N-bis (trimethylsilyl) amino] styrene or p- (dimethylamino) styrene.
  • body unit means a p- [N, N-bis (trimethylsilyl) amino] styrene unit and a unit derived therefrom (p- [N, N-bis (trimethylsilyl) amino] styrene unit protecting group (trimethylsilyl group) Or a p- (dimethylamino) styrene unit.
  • the rubber cross-linked product obtained using the modified conjugated diene rubber produced by the production method of the present invention was excellent in low exothermic property and wet grip property (Examples 4 to 7).
  • the rubber cross-linked product obtained by using the modified conjugated diene rubber obtained by polymerizing the compound represented by the general formula (1) in a random manner without passing through the first step in the present invention has a low exothermic property. It was inferior to both wet grip properties (Comparative Examples 6 and 7).
  • Examples 5 and 6 are examples in which the same operation was performed except that deprotection was performed using a tetrabutylammonium fluoride / tetrahydrofuran solution. 5 and Example 6 are equivalent in the results of low exothermic property and wet grip property. Therefore, the deprotection in the polymer block composed of the compound represented by the general formula (1) prepared a rubber composition. This is also considered to occur during the kneading by the Brabender type mixer, and this is also considered to be the same in Examples 1 to 3 described above. In addition, it is thought that this reason is because the stearic acid mix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

[Problem] To provide a production method for a conjugated diene-based rubber with which crosslinked rubber products exhibiting excellent low heat build-up properties and excellent wet grip properties can be achieved. [Solution] Provided is a production method for a conjugated diene-based rubber, said production method being provided with: a first step in which a polymerization initiator is used to polymerize a compound represented by general formula (1) to obtain a polymer block of the compound represented by general formula (1), said polymer block being provided with active terminals (in general formula (1), R1 represents hydrogen or a C1-20 hydrocarbon group, and at least one from among X1 and X2 represents an amino-group-protecting group); and a second step in which a monomer including at least a conjugated diene compound is polymerized from the active terminals of the polymer block.

Description

共役ジエン系ゴムの製造方法Method for producing conjugated diene rubber
 本発明は、共役ジエン系ゴムの製造方法に関し、より詳しくは、低発熱性およびウェットグリップ性に優れたゴム架橋物を与えることのできる共役ジエン系ゴムを製造するための方法に関する。 The present invention relates to a method for producing a conjugated diene rubber, and more particularly, to a method for producing a conjugated diene rubber capable of providing a crosslinked rubber having excellent low heat buildup and wet grip properties.
 近年、環境問題や資源問題から、自動車用のタイヤに低燃費性が強く求められており、さらに安全性の面からは優れたウェットグリップ性が求められている。シリカを配合したゴム組成物から得られるタイヤは、通常使用されるカーボンブラックを配合したゴム組成物から得られるタイヤに比べて低発熱性に優れるため、これを用いることにより低燃費なタイヤを製造することができる。 In recent years, due to environmental problems and resource problems, automobile tires are strongly required to have low fuel consumption, and from the viewpoint of safety, excellent wet grip properties are also required. A tire obtained from a rubber composition blended with silica is superior in low heat build-up compared to a tire obtained from a rubber composition blended with commonly used carbon black. can do.
 たとえば、特許文献1には、共役ジエンおよび芳香族ビニル化合物とともに、所定のヘテロ原子含有官能基を有するビニル化合物を共重合してなる共役ジエン系重合体に、シリカおよびシランカップリング剤を配合してなるタイヤ用ゴム組成物が開示されている。しかしながら、上記特許文献1では、ヘテロ原子含有官能基を有するビニル化合物を共重合することで、共役ジエン系重合体のシリカに対する親和性の向上を図っているものの、上記特許文献1の技術では、ヘテロ原子含有官能基を有するビニル化合物を導入したことによる、シリカに対する親和性の向上効果は限定的なものであった。そのため、上記特許文献1の技術では、シリカに対する親和性を向上させることにより向上が期待される性能、具体的には、低発熱性およびウェットグリップ性が必ずしも十分なものではなかった。 For example, in Patent Document 1, silica and a silane coupling agent are blended into a conjugated diene polymer obtained by copolymerizing a vinyl compound having a predetermined heteroatom-containing functional group together with a conjugated diene and an aromatic vinyl compound. A tire rubber composition is disclosed. However, in Patent Document 1, although the vinyl compound having a heteroatom-containing functional group is copolymerized to improve the affinity of the conjugated diene polymer for silica, The effect of improving the affinity for silica by introducing a vinyl compound having a heteroatom-containing functional group was limited. Therefore, in the technique of Patent Document 1, the performance expected to be improved by improving the affinity for silica, specifically, low exothermic property and wet grip property, is not always sufficient.
特開2011-132411号公報JP 2011-132411 A
 本発明は、このような実状に鑑みてなされたものであり、低発熱性およびウェットグリップ性に優れたゴム架橋物を与えることのできる共役ジエン系ゴムを製造するための方法を提供することを目的とする。 The present invention has been made in view of such a situation, and provides a method for producing a conjugated diene rubber capable of providing a rubber cross-linked product excellent in low heat buildup and wet grip properties. Objective.
 本発明者等は、上記目的を達成するために鋭意研究した結果、重合開始剤を用いて、保護基で保護されたアミノ基を備える芳香族ビニル化合物を重合することで、活性末端を有する、保護基で保護されたアミノ基を備える芳香族ビニル化合物の重合体ブロックを得て、該重合体ブロックの活性末端から、少なくとも共役ジエン化合物を含んでなる単量体を重合することで、低発熱性およびウェットグリップ性に優れたゴム架橋物を与えることのできる共役ジエン系ゴムが得られることを見出し、本発明を完成させるに至った。 As a result of earnest research to achieve the above object, the present inventors have an active terminal by polymerizing an aromatic vinyl compound having an amino group protected with a protective group, using a polymerization initiator, A polymer block of an aromatic vinyl compound having an amino group protected by a protecting group is obtained, and a monomer containing at least a conjugated diene compound is polymerized from the active end of the polymer block, thereby reducing heat generation. The present inventors have found that a conjugated diene rubber can be obtained that can give a rubber cross-linked product having excellent properties and wet grip properties.
 すなわち、本発明によれば、重合開始剤を用いて、下記一般式(1)で表される化合物を重合して、活性末端を有する一般式(1)で表される化合物の重合体ブロックを得る第1工程と、前記重合体ブロックの活性末端から、少なくとも共役ジエン化合物を含んでなる単量体を重合する第2工程と、を備える共役ジエン系ゴムの製造方法が提供される。
Figure JPOXMLDOC01-appb-C000005
 (上記一般式(1)において、Rは、水素原子または炭素数1~20の炭化水素基、X、Xは、少なくとも一方が、アミノ基の保護基である。)
That is, according to the present invention, using a polymerization initiator, a compound represented by the following general formula (1) is polymerized to obtain a polymer block of the compound represented by the general formula (1) having an active end. There is provided a method for producing a conjugated diene rubber comprising: a first step to be obtained; and a second step in which a monomer comprising at least a conjugated diene compound is polymerized from an active end of the polymer block.
Figure JPOXMLDOC01-appb-C000005
(In the general formula (1), R 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and at least one of X 1 and X 2 is a protecting group for an amino group.)
 また、本発明によれば、上記の製造方法により得られる共役ジエン系ゴムが提供される。
 あるいは、本発明によれば、重合開始剤を用いて、上記一般式(1)で表される化合物を重合して、活性末端を有する一般式(1)で表される化合物の重合体ブロックを得る第1工程と、前記重合体ブロックの活性末端から、少なくとも共役ジエン化合物を含んでなる単量体を重合する第2工程と、第2工程において得られた共役ジエン系ゴムの重合体鎖の活性末端に、該活性末端と反応可能な官能基を有するシラン化合物を反応させる第3工程と、を備える変性共役ジエン系ゴムの製造方法が提供される。
 本発明の製造方法において、前記アミノ基の保護基が、下記一般式(2)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 (上記一般式(2)中、R~Rは、それぞれ独立に、水素原子、および置換基を有していてもよい炭素数1~18の炭化水素基から選択される基である。)
 本発明の製造方法において、前記一般式(1)で表される化合物が、p-[N,N-ビス(トリメチルシリル)アミノ]スチレン、または、p-[N,N-ビス(トリメチルシリル)アミノ]-α-メチルスチレンであることが好ましい。
 本発明の製造方法において、前記単量体として、芳香族ビニル化合物を0~50重量%含有するものを用いることが好ましい。
Moreover, according to this invention, the conjugated diene type rubber | gum obtained by said manufacturing method is provided.
Alternatively, according to the present invention, using a polymerization initiator, the compound represented by the general formula (1) is polymerized to obtain a polymer block of the compound represented by the general formula (1) having an active terminal. A first step of obtaining, a second step of polymerizing a monomer comprising at least a conjugated diene compound from an active end of the polymer block, and a polymer chain of the conjugated diene rubber obtained in the second step. There is provided a method for producing a modified conjugated diene rubber comprising a third step of reacting an active end with a silane compound having a functional group capable of reacting with the active end.
In the production method of the present invention, the amino-protecting group is preferably a group represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000006
(In the above general formula (2), R 2 to R 4 are each independently a group selected from a hydrogen atom and an optionally substituted hydrocarbon group having 1 to 18 carbon atoms. )
In the production method of the present invention, the compound represented by the general formula (1) is p- [N, N-bis (trimethylsilyl) amino] styrene or p- [N, N-bis (trimethylsilyl) amino]. -Α-methylstyrene is preferred.
In the production method of the present invention, it is preferable to use a monomer containing 0 to 50% by weight of an aromatic vinyl compound as the monomer.
 さらに、本発明によれば、上記の変性共役ジエン系ゴムの製造方法により得られる変性共役ジエン系ゴムが提供される。 Furthermore, according to the present invention, there is provided a modified conjugated diene rubber obtained by the method for producing a modified conjugated diene rubber.
 また、本発明によれば、上記共役ジエン系ゴム、または上記変性共役ジエン系ゴムを含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなるゴム組成物が提供される。
 本発明のゴム組成物は、架橋剤をさらに含有してなるものであることが好ましい。
Further, according to the present invention, there is provided a rubber composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of the rubber component containing the conjugated diene rubber or the modified conjugated diene rubber. .
The rubber composition of the present invention preferably contains a crosslinking agent.
 さらに、本発明によれば、上記ゴム組成物を架橋してなるゴム架橋物、および該ゴム架橋物を含んでなるタイヤが提供される。 Furthermore, according to the present invention, there are provided a crosslinked rubber obtained by crosslinking the rubber composition, and a tire comprising the crosslinked rubber.
 本発明によれば、低発熱性およびウェットグリップ性に優れたゴム架橋物を与えることのできる共役ジエン系ゴムおよび変性共役ジエンゴム、該共役ジエン系ゴムおよび変性共役ジエン系ゴムを含有するゴム組成物、該ゴム組成物を架橋してなる、低発熱性およびウェットグリップ性を備えたゴム架橋物、および該ゴム架橋物を含んでなるタイヤを提供することができる。 According to the present invention, a conjugated diene rubber and a modified conjugated diene rubber, a rubber composition containing the conjugated diene rubber and a modified conjugated diene rubber capable of providing a rubber cross-linked product excellent in low heat buildup and wet grip properties. There can be provided a rubber cross-linked product having a low heat build-up and a wet grip property obtained by cross-linking the rubber composition, and a tire comprising the rubber cross-linked product.
<共役ジエン系ゴムの製造方法>
 本発明の共役ジエン系ゴムの製造方法は、重合開始剤を用いて、後述する一般式(1)で表される化合物を重合して、活性末端を有する一般式(1)で表される化合物の重合体ブロックを得る第1工程と、前記重合体ブロックの活性末端から、少なくとも共役ジエン化合物を含んでなる単量体を重合する第2工程と、を備える。
<Method for producing conjugated diene rubber>
The method for producing a conjugated diene rubber according to the present invention comprises using a polymerization initiator to polymerize a compound represented by the general formula (1) described later to obtain a compound represented by the general formula (1) having an active terminal. And a second step of polymerizing a monomer comprising at least a conjugated diene compound from an active end of the polymer block.
<第1工程>
 まず、本発明の製造方法における、第1工程について説明する。本発明の製造方法における、第1工程は、重合開始剤を用いて、下記一般式(1)で表される化合物を重合して、活性末端を有する一般式(1)で表される化合物の重合体ブロックを得る工程である。なお、第1工程で形成される、一般式(1)で表される化合物の重合体ブロックは、本発明の製造方法により得られる共役ジエン系ゴム中において、シリカなどの充填剤に対して高い親和性を示すセグメントとして作用し、これにより、本発明によれば、シリカなどの充填剤に対する親和性を向上させることができる。
Figure JPOXMLDOC01-appb-C000007
<First step>
First, the 1st process in the manufacturing method of this invention is demonstrated. In the first step of the production method of the present invention, the compound represented by the following general formula (1) is polymerized using a polymerization initiator to form a compound represented by the general formula (1) having an active terminal. This is a step of obtaining a polymer block. In addition, the polymer block of the compound represented by the general formula (1) formed in the first step is higher than the filler such as silica in the conjugated diene rubber obtained by the production method of the present invention. It acts as a segment showing affinity, and according to the present invention, the affinity for fillers such as silica can be improved.
Figure JPOXMLDOC01-appb-C000007
 上記一般式(1)中において、Rは、水素原子または炭素数1~20の炭化水素基であり、好ましくは水素原子またはメチル基、より好ましくは水素原子である。 In the general formula (1), R 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrogen atom or a methyl group, more preferably a hydrogen atom.
 また、上記一般式(1)中において、X、Xは、少なくとも一方が、アミノ基の保護基である。なお、このようなアミノ基の保護基としては、酸や塩基などにより脱保護可能であり、かつ、脱保護することにより、窒素原子に直接、少なくとも1つの水素原子が結合してなるアミノ基を与える基であればよく、特に限定されない。また、X、Xで表される基は、互い結合して、環を形成していてもよい。アミノ基の保護基としては、ケイ素原子を一般式(1)に表されている窒素原子と直接結合する原子として含有し、かつ、他のヘテロ原子を含有していてもよい炭素数1~30の有機基であることが好ましく、下記一般式(2)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000008
In the general formula (1), at least one of X 1 and X 2 is an amino-protecting group. In addition, as such a protective group for an amino group, an amino group that can be deprotected with an acid, a base, or the like, and has at least one hydrogen atom bonded directly to a nitrogen atom by deprotection. There is no particular limitation as long as it is a group to be given. In addition, the groups represented by X 1 and X 2 may be bonded to each other to form a ring. The amino-protecting group contains a silicon atom as an atom directly bonded to the nitrogen atom represented by the general formula (1), and may contain other heteroatoms. It is preferable that it is a group represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000008
 上記一般式(2)中、R~Rは、それぞれ独立に、水素原子、および置換基を有していてもよい炭素数1~18の炭化水素基から選択される基であり、好ましくは炭素数1~18のアルキル基および炭素数6~18のアリール基から選択される基であり、より好ましくは置換基を有していてもよい炭素数1~6のアルキル基である。 In the general formula (2), R 2 to R 4 are each independently a group selected from a hydrogen atom and a hydrocarbon group having 1 to 18 carbon atoms which may have a substituent, Is a group selected from an alkyl group having 1 to 18 carbon atoms and an aryl group having 6 to 18 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms which may have a substituent.
 このような保護基としては、たとえば、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、トリブチルシリル基、エチルジメチルシリル基、ジメチルプロピルシリル基、ジメチルイソプロピルシリル基、ブチルジメチルシリル基、tert-ブチルジメチルシリル基、ジメチルヘキシルシリル基、ジメチルオクチルシリル基、デシルジメチルシリル基、ドデシルジメチルシリル基、ヘプタデシルジメチルシリル基、ジエチルイソプロピルシリル基などのトリアルキルシリル基;アリルジメチルシリル基、2-(3-シクロヘキセン-1-イル)エチルジメチルシリル基などのモノアルケニルジアルキルシリル基;ジメチルフェニルシリル基、ベンジルジメチルシリル基、ジメチル-3-フェニルプロピルシリル基などのジアルキルモノアリールシリル基;メチルジフェニルシリル基、tert-ブチルジフェニルシリル基などのモノアルキルジアリールシリル基;トリフェニルシリル基などのトリアリールシリル基;ジ-tert-ブチルシリル基などのジアルキルシリル基;ジフェニルシリル基などのジアリールシリル基などが挙げられる。これらのなかでも、脱保護を行い易いという観点より、トリメチルシリル基が好ましい。また、上記一般式(1)中において、X、Xで表される基が、互い結合して環を形成する場合のその基の例としては、1,4-ジシラ-1、1、4、4-テトラメチル-ブチレン基、1,4-フェニレンビス(ジメチルシリル)基、1-シラ-1,1-ジメチル-エチレン基などの2価のケイ素含有ヒドロカルビレン基などが挙げられる。 Examples of such protecting groups include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, tributylsilyl group, ethyldimethylsilyl group, dimethylpropylsilyl group, dimethylisopropylsilyl group, butyldimethylsilyl group. A trialkylsilyl group such as tert-butyldimethylsilyl group, dimethylhexylsilyl group, dimethyloctylsilyl group, decyldimethylsilyl group, dodecyldimethylsilyl group, heptadecyldimethylsilyl group, diethylisopropylsilyl group; Monoalkenyldialkylsilyl groups such as 2- (3-cyclohexen-1-yl) ethyldimethylsilyl group; dimethylphenylsilyl group, benzyldimethylsilyl group, dimethyl-3-phenyl Dialkylmonoarylsilyl groups such as propylsilyl group; monoalkyldiarylsilyl groups such as methyldiphenylsilyl group and tert-butyldiphenylsilyl group; triarylsilyl groups such as triphenylsilyl group; dialkylsilyl such as di-tert-butylsilyl group A group; a diarylsilyl group such as a diphenylsilyl group; Among these, a trimethylsilyl group is preferable from the viewpoint of easy deprotection. In the general formula (1), examples of the groups represented by X 1 and X 2 that are bonded to each other to form a ring include 1,4-disila-1, And divalent silicon-containing hydrocarbylene groups such as 4,4-tetramethyl-butylene group, 1,4-phenylenebis (dimethylsilyl) group, 1-sila-1,1-dimethyl-ethylene group, and the like.
 また、上記一般式(1)で表される化合物において、X、Xのうち、少なくとも一方が、上述したアミノ基の保護基であればよく、そのため、X、Xのうち、一方については、アミノ基の保護基以外の基であってもよい。このようなアミノ基の保護基以外の基としては、酸や塩基などにより脱保護しないような基であればよく、特に限定されないが、水素原子以外の基であることが好ましく、ケイ素以外のヘテロ原子を含有していてもよい炭素数1~30の有機基であることがより好ましく、炭素数1~20の炭化水素基であることがさらに好ましい。このアミノ基の保護基以外の基の具体例としては、メチル基やエチル基を挙げることができる。なお、上記一般式(1)で表される化合物としては、X、Xのうち、一方が、アミノ基の保護基であり、他方がアミノ基の保護基以外の基である化合物、X、Xのうち、両方が、アミノ基の保護基である化合物のいずれであってもよいが、得られる共役ジエン系ゴムのシリカなどの充填剤に対する親和性をより高くすることができるという点より、X、Xのうち、両方が、アミノ基の保護基である化合物が好ましい。なお、この際において、Xと、Xとは互いに同じ基であってもよいし、互いに異なる基であってもよい。 Moreover, in the compound represented by the general formula (1), at least one of X 1 and X 2 may be any amino-protecting group described above, and therefore one of X 1 and X 2 For, a group other than an amino-protecting group may be used. Such a group other than an amino-protecting group is not particularly limited as long as it is a group that is not deprotected by an acid, a base, or the like, but is preferably a group other than a hydrogen atom, and a hetero group other than silicon. An organic group having 1 to 30 carbon atoms which may contain an atom is more preferable, and a hydrocarbon group having 1 to 20 carbon atoms is more preferable. Specific examples of the group other than the amino-protecting group include a methyl group and an ethyl group. As the compound represented by the general formula (1), one of X 1 and X 2 is a compound in which one is a protecting group for an amino group and the other is a group other than a protecting group for an amino group, X 1 and X 2 may both be compounds that are amino-protecting groups, but the resulting conjugated diene rubber can be made more highly compatible with fillers such as silica. From the viewpoint, a compound in which both of X 1 and X 2 are amino-protecting groups is preferred. In this case, X 1 and X 2 may be the same group or different groups.
 また、上記一般式(1)中において、-NXで表される基の導入位置は、-CR=CHで表される基のパラ位、メタ位、およびオルト位のいずれであってもよいが、得られる共役ジエン系ゴムのシリカなどの充填剤に対する親和性をより高くすることができるという観点より、パラ位が好ましい。 In the general formula (1), the introduction position of the group represented by —NX 1 X 2 is any of the para position, the meta position, and the ortho position of the group represented by —CR 1 ═CH 2. The para position is preferable from the viewpoint that the affinity of the resulting conjugated diene rubber with respect to a filler such as silica can be further increased.
 重合体ブロックを構成するために用いられる一般式(1)で表される化合物の具体例としては、p-[N,N-ビス(トリメチルシリル)アミノ]スチレン、p-[N,N-ビス(トリメチルシリル)アミノ]-α-メチルスチレンを挙げることができるが、これらに限定されるものではない。なお、これらの一般式(1)で表される化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Specific examples of the compound represented by the general formula (1) used for constituting the polymer block include p- [N, N-bis (trimethylsilyl) amino] styrene, p- [N, N-bis ( Examples include, but are not limited to, trimethylsilyl) amino] -α-methylstyrene. In addition, the compound represented by these general formula (1) may be used individually by 1 type, and may be used in combination of 2 or more type.
 上記一般式(1)で表される化合物を重合させる際に用いる重合開始剤としては、上記一般式(1)で表される化合物を重合させることにより、活性末端を有する一般式(1)で表される化合物の重合体ブロックを与えることができるものであれば、特に限定されない。その具体例としては、有機アルカリ金属化合物、有機アルカリ土類金属化合物、およびランタン系列金属化合物などを主触媒とする重合開始剤が好ましく使用される。有機アルカリ金属化合物としては、たとえば、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン、1,3,5-トリス(リチオメチル)ベンゼンなどの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機カリウム化合物;などが挙げられる。また、有機アルカリ土類金属化合物としては、たとえば、ジ-n-ブチルマグネシウム、ジ-n-ヘキシルマグネシウム、ジエトキシカルシウム、ジステアリン酸カルシウム、ジ-tert-ブトキシストロンチウム、ジエトキシバリウム、ジイソプロポキシバリウム、ジエチルメルカプトバリウム、ジ-tert-ブトキシバリウム、ジフェノキシバリウム、ジエチルアミノバリウム、ジステアリン酸バリウム、ジケチルバリウムなどが挙げられる。ランタン系列金属化合物を主触媒とする重合開始剤としては、たとえば、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウムなどのランタン系列金属と、カルボン酸、およびリン含有有機酸などとからなるランタン系列金属の塩を主触媒とし、これと、アルキルアルミニウム化合物、有機アルミニウムハイドライド化合物、有機アルミニウムハライド化合物などの助触媒とからなる重合開始剤などが挙げられる。これらの重合開始剤の中でも、有機モノリチウム化合物、および有機多価リチウム化合物が好ましく、有機モノリチウム化合物がより好ましく、n-ブチルリチウムが特に好ましい。なお、有機アルカリ金属化合物は、予め、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン、ピロリジン、ヘキサメチレンイミン、およびヘプタメチレンイミンなどの第2級アミンと反応させて、有機アルカリ金属アミド化合物として使用してもよい。これらの重合開始剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As a polymerization initiator used when polymerizing the compound represented by the above general formula (1), by polymerizing the compound represented by the above general formula (1), the general formula (1) having an active terminal is used. It will not specifically limit if the polymer block of the compound represented can be given. As a specific example thereof, a polymerization initiator mainly containing an organic alkali metal compound, an organic alkaline earth metal compound, a lanthanum series metal compound, or the like is preferably used. Examples of the organic alkali metal compound include organic monolithium compounds such as n-butyllithium, sec-butyllithium, tert-butyllithium, hexyllithium, phenyllithium, and stilbenelithium; dilithiomethane, 1,4-dilithiobutane, 1,4 -Organic polyvalent lithium compounds such as dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene, 1,3,5-tris (lithiomethyl) benzene; organic sodium compounds such as sodium naphthalene; organic such as potassium naphthalene Potassium compounds; and the like. Examples of the organic alkaline earth metal compound include di-n-butylmagnesium, di-n-hexylmagnesium, diethoxycalcium, calcium distearate, di-tert-butoxystrontium, diethoxybarium, and diisopropoxybarium. Diethyl mercaptobarium, di-tert-butoxybarium, diphenoxybarium, diethylaminobarium, barium distearate, diketylbarium and the like. As a polymerization initiator having a lanthanum series metal compound as a main catalyst, for example, a lanthanum series metal comprising a lanthanum series metal such as lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, a carboxylic acid, and a phosphorus-containing organic acid. And a polymerization initiator composed of this salt and a cocatalyst such as an alkylaluminum compound, an organoaluminum hydride compound, and an organoaluminum halide compound. Among these polymerization initiators, an organic monolithium compound and an organic polyvalent lithium compound are preferable, an organic monolithium compound is more preferable, and n-butyllithium is particularly preferable. The organic alkali metal compound is used as an organic alkali metal amide compound by previously reacting with a secondary amine such as dibutylamine, dihexylamine, dibenzylamine, pyrrolidine, hexamethyleneimine, and heptamethyleneimine. Also good. These polymerization initiators may be used individually by 1 type, and may be used in combination of 2 or more type.
 本発明の製造方法の第1工程では、上記一般式(1)で表される化合物の重合反応は、リビング性を伴って進行するので、重合開始剤と上記一般式(1)で表される化合物との使用割合は、目的とする重合体ブロックの分子量に応じて決定すればよいが、上記一般式(1)で表される化合物1モルに対する、重合開始剤の使用量が、好ましくは0.01~0.5モル、より好ましくは0.02~0.5モル、特に好ましくは0.05~0.5モルとなる範囲で選択される。重合開始剤の使用量が少なすぎると、得られる上記一般式(1)で表される化合物の重合体ブロックの分子量が高くなり過ぎてしまい、共役ジエン系ゴムの粘度が高くなり加工性が悪くなるおそれがある。一方、重合開始剤の使用量が多すぎると、得られる上記一般式(1)で表される化合物の重合体ブロックの分子量が低くなり過ぎてしまい、共役ジエン系ゴムの充填剤に対する親和性の向上効果が得難くなるおそれがある。 In the 1st process of the manufacturing method of this invention, since the polymerization reaction of the compound represented by the said General formula (1) advances with a living property, it represents with a polymerization initiator and the said General formula (1). The use ratio with the compound may be determined according to the molecular weight of the target polymer block, but the use amount of the polymerization initiator with respect to 1 mol of the compound represented by the general formula (1) is preferably 0. It is selected in the range of 0.01 to 0.5 mol, more preferably 0.02 to 0.5 mol, particularly preferably 0.05 to 0.5 mol. If the amount of the polymerization initiator used is too small, the molecular weight of the resulting polymer block of the compound represented by the general formula (1) becomes too high, the viscosity of the conjugated diene rubber becomes high, and the processability is poor. There is a risk. On the other hand, when the amount of the polymerization initiator used is too large, the molecular weight of the resulting polymer block of the compound represented by the general formula (1) becomes too low, and the affinity for the filler of the conjugated diene rubber is low. There is a possibility that the improvement effect is difficult to obtain.
 本発明の製造方法における、上記一般式(1)で表される化合物の重合様式は、溶液重合法を用いることが好ましい。 In the production method of the present invention, the polymerization mode of the compound represented by the general formula (1) is preferably a solution polymerization method.
 溶液重合法にて用いる溶媒は、溶液重合において通常使用されるものであり、重合反応を阻害しないものであれば特に限定されない。不活性溶媒の具体例としては、ブタン、ペンタン、ヘキサン、ヘプタン、2-ブテン等の鎖状脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘキセン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;等が挙げられる。なお、これらの溶媒は、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。 The solvent used in the solution polymerization method is usually used in solution polymerization and is not particularly limited as long as it does not inhibit the polymerization reaction. Specific examples of the inert solvent include chain aliphatic hydrocarbons such as butane, pentane, hexane, heptane, 2-butene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, cyclohexene; benzene, toluene, xylene, etc. Aromatic hydrocarbons; and the like. In addition, these solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.
 溶液重合法における重合溶液中の上記一般式(1)で表される化合物の濃度は、特に限定されないが、通常0.1~50重量%、好ましくは0.5~45重量%、より好ましくは1~40重量%の範囲で選択される。溶液中の上記一般式(1)で表される化合物の濃度が低すぎると、共役ジエン系ゴムの生産性が悪くなるおそれがあり、濃度が高すぎると、溶液の粘度が高くなりすぎて、その取り扱いが困難となる場合がある。また、重合温度にも特に制限はないが、通常-30℃~+200℃、好ましくは0℃~+180℃の範囲である。重合時間にも特に制限は無く、通常1分~100時間の範囲である。重合様式としては、回分式、連続式などいずれの様式をも採用できる。 The concentration of the compound represented by the general formula (1) in the polymerization solution in the solution polymerization method is not particularly limited, but is usually 0.1 to 50% by weight, preferably 0.5 to 45% by weight, more preferably It is selected in the range of 1 to 40% by weight. If the concentration of the compound represented by the general formula (1) in the solution is too low, the productivity of the conjugated diene rubber may be deteriorated. If the concentration is too high, the viscosity of the solution becomes too high. It may be difficult to handle. The polymerization temperature is not particularly limited, but is usually in the range of −30 ° C. to + 200 ° C., preferably 0 ° C. to + 180 ° C. The polymerization time is not particularly limited, and is usually in the range of 1 minute to 100 hours. As the polymerization mode, any mode such as batch mode or continuous mode can be adopted.
 また、重合反応に際しては、重合反応を促進させる目的で、重合反応系に、極性化合物を添加してもよい。極性化合物としては、ジブチルエーテル、テトラヒドロフラン、2,2-ジ(テトラヒドロフリル)プロパン等のエーテル化合物;テトラメチルエチレンジアミン等の第三級アミン;アルカリ金属アルコキシド;ホスフィン化合物;等が挙げられる。これらの中でも、エーテル化合物、および第三級アミンが好ましく、特に、重合開始剤に含まれる金属とキレート構造を形成し得るという点より、2,2-ジ(テトラヒドロフリル)プロパン、およびテトラメチルエチレンジアミンが特に好ましい。これらの極性化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。極性化合物の使用量は、特に限定されないが、重合開始剤1モルに対して、好ましくは0.001~100モル、より好ましくは0.01~10モルである。活性金属原子への配位能を有する化合物の使用量を上記範囲とすることにより、その添加効果をより好適なものとすることができる。 In the polymerization reaction, a polar compound may be added to the polymerization reaction system for the purpose of promoting the polymerization reaction. Examples of the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and 2,2-di (tetrahydrofuryl) propane; tertiary amines such as tetramethylethylenediamine; alkali metal alkoxides; phosphine compounds; Among these, ether compounds and tertiary amines are preferable, and 2,2-di (tetrahydrofuryl) propane and tetramethylethylenediamine are particularly preferable because they can form a chelate structure with the metal contained in the polymerization initiator. Is particularly preferred. These polar compounds may be used individually by 1 type, and may be used in combination of 2 or more type. The amount of the polar compound used is not particularly limited, but is preferably 0.001 to 100 mol, more preferably 0.01 to 10 mol, relative to 1 mol of the polymerization initiator. By making the usage-amount of the compound which has the coordination ability to an active metal atom into the said range, the addition effect can be made more suitable.
 なお、本発明の製造方法の第1工程において、得られる上記一般式(1)で表される化合物の重合体ブロックの重量平均分子量(Mw)は、ポリスチレン換算の値として、好ましくは400~60,000、より好ましくは450~30,000、さらに好ましくは500~10,000である。重量平均分子量(Mw)が小さすぎると、上記一般式(1)で表される化合物の重合体ブロックを導入したことによる、共役ジエン系ゴムのシリカなどの充填剤に対する親和性の向上効果が得難くなるおそれがあり、一方、重量平均分子量(Mw)が大きすぎると、共役ジエン系ゴムの粘度が高くなり加工性が悪くなるおそれがある。 In the first step of the production method of the present invention, the weight average molecular weight (Mw) of the polymer block of the compound represented by the general formula (1) obtained is preferably 400 to 60 as a value in terms of polystyrene. , 000, more preferably 450 to 30,000, still more preferably 500 to 10,000. When the weight average molecular weight (Mw) is too small, the effect of improving the affinity of the conjugated diene rubber with respect to a filler such as silica is obtained by introducing the polymer block of the compound represented by the general formula (1). On the other hand, if the weight average molecular weight (Mw) is too large, the viscosity of the conjugated diene rubber may increase and the processability may deteriorate.
 以上のような本発明の製造方法における第1工程によれば、上記一般式(1)で表される化合物を重合することで、活性末端を有する一般式(1)で表される化合物の重合体ブロックを得ることができる。なお、本発明において、活性末端を有する一般式(1)で表される化合物の重合体ブロックは、一般式(1)で表される化合物のみからなることが好ましいが、本発明の効果を本質的に損なわない範囲で、その他の化合物が共重合されているブロックを排除するものではない。 According to the first step in the production method of the present invention as described above, the compound represented by the general formula (1) having an active end is polymerized by polymerizing the compound represented by the general formula (1). Combined blocks can be obtained. In the present invention, the polymer block of the compound represented by the general formula (1) having an active terminal is preferably composed only of the compound represented by the general formula (1). The block in which other compounds are copolymerized is not excluded as long as it is not impaired.
<第2工程>
 次いで、本発明の製造方法における、第2工程について説明する。
 本発明の製造方法における、第2工程は、上述した第1工程で得られた活性末端を有する上記一般式(1)で表される化合物の重合体ブロックの活性末端から、少なくとも共役ジエン化合物を含んでなる単量体を重合する工程である。すなわち、本発明の製造方法の第2工程は、上述した第1工程で得られた活性末端を有する上記一般式(1)で表される化合物の重合体ブロックの活性末端を重合開始末端として、少なくとも共役ジエン化合物を含んでなる単量体を重合させて、共役ジエン系ゴムを構成する共役ジエン化合物由来する単量体単位を含んでなる重合体鎖を得る工程である。
<Second step>
Next, the second step in the production method of the present invention will be described.
In the production method of the present invention, the second step includes at least a conjugated diene compound from the active end of the polymer block of the compound represented by the general formula (1) having the active end obtained in the first step. It is a step of polymerizing the monomer comprising. That is, in the second step of the production method of the present invention, the active end of the polymer block of the compound represented by the general formula (1) having the active end obtained in the first step is used as the polymerization start end. This is a step of polymerizing a monomer containing at least a conjugated diene compound to obtain a polymer chain containing a monomer unit derived from a conjugated diene compound constituting a conjugated diene rubber.
 重合に用いる共役ジエン化合物としては、特に限定されず、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-3-エチル-1,3-ブタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-シクロヘキサジエンなどを挙げることができる。これらのなかでも、1,3-ブタジエン、イソプレンまたは1,3-ペンタジエンが好ましく、1,3-ブタジエン、イソプレンが特に好ましい。なお、これらの共役ジエン化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The conjugated diene compound used for the polymerization is not particularly limited. For example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 2-methyl-3-ethyl- Examples thereof include 1,3-butadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-cyclohexadiene and the like. Among these, 1,3-butadiene, isoprene or 1,3-pentadiene is preferable, and 1,3-butadiene and isoprene are particularly preferable. In addition, these conjugated diene compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、本発明の製造方法で製造する共役ジエン系ゴムとしては、共役ジエン化合物に加えて芳香族ビニル化合物を共重合してなるものであることが好ましい。芳香族ビニル化合物としては、特に限定されず、たとえば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-tert-ブチルスチレン、5-tert-ブチル-2-メチルスチレン、ビニルナフタレン、ジメチルアミノメチルスチレン、ジメチルアミノエチルスチレン、上記一般式(1)で表される化合物などを挙げることができる。これらのなかでも、スチレン、α-メチルスチレン、または4-メチルスチレンが好ましく、スチレンが特に好ましい。なお。これらの芳香族ビニル化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。本発明の製造方法で製造する共役ジエン系ゴムの、共役ジエン化合物を含む重合体鎖(すなわち、上記一般式(1)で表される化合物の重合体ブロックを除く部分)中における、共役ジエン化合物に由来する単量体単位(共役ジエン単量体単位)および芳香族ビニル化合物に由来する単量体単位(芳香族ビニル単量体単位)の割合は、共役ジエン単量体単位が、好ましくは50~100重量%、より好ましくは55~95重量%であり、また、芳香族ビニル単量体単位が、好ましくは0~50重量%、より好ましくは5~45重量%である。 Further, the conjugated diene rubber produced by the production method of the present invention is preferably obtained by copolymerizing an aromatic vinyl compound in addition to the conjugated diene compound. The aromatic vinyl compound is not particularly limited, and for example, styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-tert-butylstyrene, 5-tert-butyl-2-methylstyrene, vinylnaphthalene, dimethylaminomethylstyrene, dimethylaminoethylstyrene, the above general formula ( Examples thereof include compounds represented by 1). Among these, styrene, α-methylstyrene, or 4-methylstyrene is preferable, and styrene is particularly preferable. Note that. These aromatic vinyl compounds may be used individually by 1 type, and may be used in combination of 2 or more type. Conjugated diene compound in a polymer chain containing a conjugated diene compound (that is, a portion excluding the polymer block of the compound represented by the general formula (1)) of the conjugated diene rubber produced by the production method of the present invention The ratio of monomer units derived from (conjugated diene monomer units) and monomer units derived from aromatic vinyl compounds (aromatic vinyl monomer units) is preferably conjugated diene monomer units. It is 50 to 100% by weight, more preferably 55 to 95% by weight, and the aromatic vinyl monomer unit is preferably 0 to 50% by weight, more preferably 5 to 45% by weight.
 また、本発明の製造方法の第2工程においては、本発明の目的を損なわない範囲において、所望により、共役ジエン化合物、および芳香族ビニル化合物に加えて、これらと共重合可能な他の化合物を共重合してもよい。共重合可能な他の化合物としては、たとえば、アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル;アクリル酸、メタクリル酸、無水マレイン酸などの不飽和カルボン酸または酸無水物;メタクリル酸メチル、アクリル酸エチル、アクリル酸ブチルなどの不飽和カルボン酸エステル;1,5-ヘキサジエン、1,6-ヘプタジエン、1,7-オクタジエン、ジシクロペンタジエン、5-エチリデン-2-ノルボルネンなどの非共役ジエン;などを挙げることができる。これら共重合可能な他の化合物は、本発明の製造方法で製造する共役ジエン系ゴムの、共役ジエン化合物を含む重合体鎖(すなわち、上記一般式(1)で表される化合物の重合体ブロックを除く部分)中において、単量体単位として、10重量%以下とするのが好ましく、5重量%以下とするのがより好ましい。 In addition, in the second step of the production method of the present invention, as long as the object of the present invention is not impaired, if desired, in addition to the conjugated diene compound and the aromatic vinyl compound, other compounds copolymerizable with these are added. It may be copolymerized. Other copolymerizable compounds include, for example, α, β-unsaturated nitriles such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids or acid anhydrides such as acrylic acid, methacrylic acid and maleic anhydride; methyl methacrylate , Unsaturated carboxylic acid esters such as ethyl acrylate and butyl acrylate; non-conjugated dienes such as 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, dicyclopentadiene, 5-ethylidene-2-norbornene And the like. These other copolymerizable compounds are polymer chains containing a conjugated diene compound of the conjugated diene rubber produced by the production method of the present invention (that is, a polymer block of a compound represented by the above general formula (1)) In the portion excluding), the monomer unit is preferably 10% by weight or less, and more preferably 5% by weight or less.
 本発明の製造方法の第2工程において、2種以上の単量体を用いて共重合体を得る場合の、共重合の様式は特に限定されず、ランダム状、ブロック状、テーパー状などのいずれであってもよいが、ランダム状の結合様式であることが好ましい。ランダム状にすることにより、得られるゴム架橋物は低発熱性に優れたものとなる。 In the second step of the production method of the present invention, the mode of copolymerization in the case of obtaining a copolymer using two or more types of monomers is not particularly limited, and any of random shape, block shape, taper shape, etc. However, it is preferably a random binding mode. By making it random, the resulting rubber cross-linked product is excellent in low heat build-up.
 本発明の製造方法の第2工程では、共役ジエン化合物を含んでなる単量体の重合反応は、リビング性を伴って進行するので、上述した第1工程において得られた活性末端を有する上記一般式(1)で表される化合物の重合体ブロックと共役ジエン化合物を含んでなる単量体との使用割合は、目的とする共役ジエン系ゴムの分子量に応じて決定すればよいが、共役ジエン化合物を含んでなる単量体1モルに対する、活性末端を有する上記一般式(1)で表される化合物の重合体ブロックの量(通常、第1工程での重合開始剤の使用量と実質的に同じである)が、好ましくは0.05~0.8ミリモル、より好ましくは0.07~0.7ミリモル、特に好ましくは0.1~0.6ミリモルとなる範囲で選択される。単量体の使用量に対して活性末端を有する上記一般式(1)で表される化合物の重合体ブロックの量が少なすぎると、得られる共役ジエン系ゴムの分子量が高くなりすぎて取り扱いが困難となったり、重合反応が十分に進行しなかったりするおそれがある。一方、多すぎると、得られる共役ジエン系ゴムの分子量が低くなりすぎて、ゴム材料としての特性に劣るものとなるおそれがある。 In the second step of the production method of the present invention, since the polymerization reaction of the monomer comprising the conjugated diene compound proceeds with living properties, the above-mentioned general having the active terminal obtained in the first step described above. The use ratio of the polymer block of the compound represented by the formula (1) and the monomer comprising the conjugated diene compound may be determined according to the molecular weight of the target conjugated diene rubber, but the conjugated diene The amount of the polymer block of the compound represented by the above general formula (1) having an active terminal with respect to 1 mol of the monomer containing the compound (usually substantially the same as the amount of the polymerization initiator used in the first step) Is preferably selected in the range of 0.05 to 0.8 mmol, more preferably 0.07 to 0.7 mmol, and particularly preferably 0.1 to 0.6 mmol. When the amount of the polymer block of the compound represented by the above general formula (1) having an active terminal with respect to the amount of the monomer used is too small, the molecular weight of the resulting conjugated diene rubber becomes too high to handle. It may be difficult or the polymerization reaction may not proceed sufficiently. On the other hand, if the amount is too large, the molecular weight of the resulting conjugated diene rubber may be too low, and the properties as a rubber material may be deteriorated.
 本発明の製造方法における、共役ジエン化合物を含んでなる単量体の重合様式は、溶液重合法を用いることが好ましい。 In the production method of the present invention, a solution polymerization method is preferably used as the polymerization mode of the monomer containing the conjugated diene compound.
 溶液重合法にて用いる溶媒としては、上述した第1工程と同様のものを用いることができ、重合の制御の観点より、共役ジエン化合物を含んでなる単量体が溶解している溶液中に、上述した第1工程において得られた活性末端を有する一般式(1)で表される化合物の重合体ブロックを加えることが好ましい。 As the solvent used in the solution polymerization method, the same solvent as in the first step described above can be used. From the viewpoint of controlling the polymerization, the solvent containing the conjugated diene compound is dissolved in the solution. It is preferable to add a polymer block of the compound represented by the general formula (1) having an active terminal obtained in the first step.
 また、重合反応を行うに際しては、重合速度や得られる共役ジエン系ゴムのミクロ構造、具体的には、ビニル結合含有量を調節するために、重合反応系に、上述した極性化合物を添加してもよい。ただし、活性末端を有する一般式(1)で表される化合物の重合体ブロックの調製時に、不活性溶媒に、共役ジエン系ゴムのビニル結合含有量を調節するのに十分な量の極性化合物を添加している場合は、新たに極性化合物を添加しなくてもよい。極性化合物の使用量は、目的とするビニル結合含有量に応じて決定すればよく、活性末端を有する一般式(1)で表される化合物の重合体ブロックの活性末端1モルに対して、好ましくは0.001~100モル、より好ましくは0.01~10モルである。極性化合物の使用量がこの範囲にあると、共役ジエン単量体単位中のビニル結合含有量の調節が容易であり、かつ活性末端の失活による不具合も発生し難い。 In conducting the polymerization reaction, the above-mentioned polar compound is added to the polymerization reaction system in order to adjust the polymerization rate and the microstructure of the resulting conjugated diene rubber, specifically the vinyl bond content. Also good. However, at the time of preparing the polymer block of the compound represented by the general formula (1) having an active end, a polar compound in an amount sufficient to adjust the vinyl bond content of the conjugated diene rubber is added to the inert solvent. When added, it is not necessary to newly add a polar compound. The amount of the polar compound used may be determined according to the target vinyl bond content, and is preferably based on 1 mol of the active terminal of the polymer block of the compound represented by the general formula (1) having an active terminal. Is 0.001 to 100 mol, more preferably 0.01 to 10 mol. When the amount of the polar compound used is within this range, it is easy to adjust the vinyl bond content in the conjugated diene monomer unit, and problems due to the deactivation of the active terminal are unlikely to occur.
 重合反応における重合溶液中の共役ジエン化合物を含んでなる単量体の濃度は、特に限定されないが、通常1~50重量%、好ましくは2~45重量%、より好ましくは5~40重量%の範囲で選択される。溶液中の共役ジエン化合物を含んでなる単量体の濃度が低すぎると、共役ジエン系ゴムの生産性が悪くなるおそれがあり、濃度が高すぎると、溶液の粘度が高くなりすぎて、その取り扱いが困難となる場合がある。また、重合温度にも特に制限はないが、通常-30℃~+200℃、好ましくは0℃~+180℃の範囲である。重合時間にも特に制限は無く、通常1分~100時間の範囲である。重合様式としては、回分式、連続式などいずれの様式をも採用できるが、共役ジエン化合物と芳香族ビニル化合物とをランダム共重合させる場合は、共役ジエン単量体単位と芳香族ビニル単量体単位との結合のランダム性を制御しやすいという点より、回分式が好ましい。 The concentration of the monomer comprising the conjugated diene compound in the polymerization solution in the polymerization reaction is not particularly limited, but is usually 1 to 50% by weight, preferably 2 to 45% by weight, more preferably 5 to 40% by weight. Selected by range. If the concentration of the monomer comprising the conjugated diene compound in the solution is too low, the productivity of the conjugated diene rubber may be deteriorated. If the concentration is too high, the viscosity of the solution becomes too high. Handling may be difficult. The polymerization temperature is not particularly limited, but is usually in the range of −30 ° C. to + 200 ° C., preferably 0 ° C. to + 180 ° C. The polymerization time is not particularly limited, and is usually in the range of 1 minute to 100 hours. As the polymerization mode, any of batch mode and continuous mode can be adopted. However, when random copolymerization of a conjugated diene compound and an aromatic vinyl compound, a conjugated diene monomer unit and an aromatic vinyl monomer are used. The batch method is preferable because the randomness of the bond with the unit is easy to control.
 本発明の製造方法の第2工程によれば、以上のようにして、上述した第1工程で得られた活性末端を有する一般式(1)で表される化合物の重合体ブロックを用いて、共役ジエン化合物を含んでなる単量体を重合することで、共役ジエン系ゴムを得ることができる。 According to the second step of the production method of the present invention, using the polymer block of the compound represented by the general formula (1) having an active terminal obtained in the first step as described above, A conjugated diene rubber can be obtained by polymerizing a monomer comprising a conjugated diene compound.
 上述した第2工程において得られた共役ジエン系ゴムの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィによって測定されるポリスチレン換算の値として、100,000~1,000,000が好ましく、120,000~700,000がより好ましく、150,000~500,000が特に好ましい。共役ジエン系ゴムの重量平均分子量(Mw)が上記範囲内にあるとき、得られるゴム架橋物は、強度と低発熱性とのバランスが良好となる。 The weight average molecular weight (Mw) of the conjugated diene rubber obtained in the second step described above is preferably from 100,000 to 1,000,000 as a polystyrene equivalent value measured by gel permeation chromatography, 000 to 700,000 is more preferable, and 150,000 to 500,000 is particularly preferable. When the weight average molecular weight (Mw) of the conjugated diene rubber is within the above range, the resulting rubber cross-linked product has a good balance between strength and low heat build-up.
 また、本発明の製造方法の第2工程においては、少なくとも共役ジエン化合物を含んでなる単量体の重合反応は、リビング性を伴って進行するので、これにより得られる共役ジエン系ゴムの重合体鎖も活性末端を有するものとなる。そのため、本発明の共役ジエン系ゴムの製造方法においては、このような共役ジエン系ゴムの重合体鎖が有する活性末端について、従来から通常使用されている、四塩化錫などの後述するシラン化合物以外のカップリング剤、N-メチル-ε-カプロラクタムなどの後述するシラン化合物以外の末端変性剤、またはメタノールなどの重合停止剤などを重合系内に添加することで、不活性化する工程を加えることが好ましい。 Further, in the second step of the production method of the present invention, the polymerization reaction of the monomer comprising at least the conjugated diene compound proceeds with a living property, and thus a conjugated diene rubber polymer obtained thereby. The chain will also have an active end. Therefore, in the method for producing a conjugated diene rubber of the present invention, the active terminal of the polymer chain of such a conjugated diene rubber is conventionally used except for silane compounds such as tin tetrachloride, which will be described later. Adding a deactivation step by adding a terminal modifier other than a silane compound described later such as N-methyl-ε-caprolactam or a polymerization terminator such as methanol into the polymerization system. Is preferred.
<第3工程>
 あるいは、第2工程において得られた活性末端を有する共役ジエン系ゴムの重合体鎖について、共役ジエン系ゴムの重合体鎖が有する活性末端を不活性化する工程を設けずに、あるいは、共役ジエン系ゴムの重合体鎖が有する活性末端の一部のみを不活性化させ、共役ジエン系ゴムの重合体鎖に含まれる活性末端に、該活性末端と反応可能な官能基を有するシラン化合物を反応させることにより、変性共役ジエン系ゴムを得てもよい。すなわち、本発明においては、上述した第2工程で得られた共役ジエン系ゴムの重合体鎖の活性末端に、該活性末端と反応可能な官能基を有するシラン化合物(以下、単に「シラン化合物」とする。)を反応させることにより、変性共役ジエン系ゴムを得る第3工程をさらに設けてもよく、この場合には、下記一般式(3)で表される繰り返し単位で構成された重合体ブロックを有し、他方の末端に、ケイ素原子を含有する基を有する変性共役ジエン系ゴムを得ることができる。
Figure JPOXMLDOC01-appb-C000009
 (上記一般式(3)において、R、X、Xは、上記一般式(1)と同様である。)
<Third step>
Alternatively, for the polymer chain of the conjugated diene rubber having an active end obtained in the second step, without providing a step of inactivating the active end of the polymer chain of the conjugated diene rubber, or the conjugated diene Inactivate only part of the active end of the polymer chain of the base rubber, and react with the active end contained in the polymer chain of the conjugated diene rubber with a silane compound having a functional group capable of reacting with the active end A modified conjugated diene rubber may be obtained. That is, in the present invention, a silane compound (hereinafter simply referred to as “silane compound”) having a functional group capable of reacting with the active terminal at the active terminal of the polymer chain of the conjugated diene rubber obtained in the second step described above. In this case, a polymer composed of repeating units represented by the following general formula (3) may be provided. A modified conjugated diene rubber having a block and having a group containing a silicon atom at the other end can be obtained.
Figure JPOXMLDOC01-appb-C000009
(In the general formula (3), R 1 , X 1 and X 2 are the same as those in the general formula (1).)
 共役ジエン系ゴムの重合体鎖の活性末端と反応可能な官能基としては、該活性末端と反応することができるものであれば特に限定されないが、活性末端に対する反応性の観点より、ハロゲン原子、2-ピロリドニル基、ビニル基、アルコキシ基、アミノ基およびエポキシ基からなる群より選ばれる官能基であることが好ましく、2-ピロリドニル基、エポキシ基およびアルコキシ基からなる群より選ばれる官能基であることがより好ましく、エポキシ基が特に好ましい。 The functional group capable of reacting with the active terminal of the polymer chain of the conjugated diene rubber is not particularly limited as long as it can react with the active terminal, but from the viewpoint of reactivity with the active terminal, a halogen atom, A functional group selected from the group consisting of 2-pyrrolidonyl group, vinyl group, alkoxy group, amino group and epoxy group is preferred, and a functional group selected from the group consisting of 2-pyrrolidonyl group, epoxy group and alkoxy group More preferably, an epoxy group is particularly preferable.
 本発明で用いられるシラン化合物としては、例えば、ポリオルガノシロキサンおよびヒドロカルビルオキシシラン化合物などが挙げられる。ポリオルガノシロキサンとしては、共役ジエン系ゴムの重合体鎖の活性末端と反応可能な官能基を有していれば特に限定されないが、その具体例としては、下記一般式(4)で表されるポリオルガノシロキサンなどを挙げることができる。また、ヒドロカルビルオキシシラン化合物としては、共役ジエン系ゴムの重合体鎖の活性末端と反応可能な官能基を有していれば特に限定されないが、その具体例としては、下記一般式(5)で表されるヒドロカルビルオキシシラン化合物;テトラメトキシシラン、テトラエトキシシランなどのテトラアルコキシシラン化合物;ビス(トリメトキシシリル)エタン、ビス(トリメトキシシリル)ヘキサンなどのヘキサアルコキシシラン化合物;メチルトリエトキシシランなどのアルキルアルコキシシラン化合物;ビニルトリメトキシシランなどのビニルアルコキシシラン化合物;フェニルトリメトキシシランなどのアリールアルコキシシラン化合物;トリエトキシクロロシランなどのハロゲノアルコキシシラン化合物;3-グリシドキシエチルトリメトキシシラン、3-グリシドキシブチルプロピルトリメトキシシラン、ビス(3-グリシドキシプロピル)ジメトキシシランなどのエポキシ基含有アルコキシシラン化合物;ビス(3-(トリエトキシシリル)プロピル)ジスルフィドなどの硫黄含有アルコキシシラン化合物;ビス(3-トリメトキシシリルプロピル)メチルアミンなどのアミノ基含有アルコキシシラン化合物;トリス(3-トリメトキシシリルプロピル)イソシアヌレートなどのイソシアネート基含有アルコキシシラン化合物;などを挙げることができる。その他、本発明で用いられるシラン化合物としては、テトラクロロシランなどのテトラハロゲン化シラン化合物;などを挙げることができる。これらの中でも、下記一般式(4)で示されるポリオルガノシロキサン、および下記一般式(5)で示されるヒドロカルビルオキシシラン化合物が好ましい。特に、下記一般式(4)で示されるポリオルガノシロキサンを用いることにより、得られるゴム架橋物を、低発熱性およびウェットグリップ性により優れたものとすることができる。
Figure JPOXMLDOC01-appb-C000010
 (上記一般式(4)中、R~R12は、それぞれ独立して、炭素数1~6のアルキル基、または炭素数6~12のアリール基である。YおよびYは、それぞれ独立して、共役ジエン系ゴムの重合体鎖の活性末端と反応可能な官能基、炭素数1~6のアルキル基、または炭素数6~12のアリール基である。Yは、共役ジエン系ゴムの重合体鎖の活性末端と反応可能な官能基であり、複数あるYは互いに同一であっても相違していてもよい。Yは、2~20のアルキレングリコールの繰返し単位を含有する基であり、Yが複数あるときは、それらは互いに同一であっても相違していてもよい。pは3~200の整数、qは0~200の整数、rは0~200の整数である。)
Examples of the silane compound used in the present invention include polyorganosiloxane and hydrocarbyloxysilane compounds. The polyorganosiloxane is not particularly limited as long as it has a functional group capable of reacting with the active terminal of the polymer chain of the conjugated diene rubber, and a specific example thereof is represented by the following general formula (4). Examples thereof include polyorganosiloxane. The hydrocarbyloxysilane compound is not particularly limited as long as it has a functional group capable of reacting with the active terminal of the polymer chain of the conjugated diene rubber. Specific examples thereof include the following general formula (5). Hydrocarbyloxysilane compounds represented; tetraalkoxysilane compounds such as tetramethoxysilane and tetraethoxysilane; hexaalkoxysilane compounds such as bis (trimethoxysilyl) ethane and bis (trimethoxysilyl) hexane; methyltriethoxysilane and the like Alkylalkoxysilane compounds; vinylalkoxysilane compounds such as vinyltrimethoxysilane; arylalkoxysilane compounds such as phenyltrimethoxysilane; halogenoalkoxysilane compounds such as triethoxychlorosilane; 3-glycidoxyethyl Epoxy group-containing alkoxysilane compounds such as trimethoxysilane, 3-glycidoxybutylpropyltrimethoxysilane, and bis (3-glycidoxypropyl) dimethoxysilane; sulfur such as bis (3- (triethoxysilyl) propyl) disulfide -Containing alkoxysilane compounds; amino group-containing alkoxysilane compounds such as bis (3-trimethoxysilylpropyl) methylamine; isocyanate group-containing alkoxysilane compounds such as tris (3-trimethoxysilylpropyl) isocyanurate; it can. In addition, examples of the silane compound used in the present invention include tetrahalogenated silane compounds such as tetrachlorosilane. Among these, a polyorganosiloxane represented by the following general formula (4) and a hydrocarbyloxysilane compound represented by the following general formula (5) are preferable. In particular, by using a polyorganosiloxane represented by the following general formula (4), the resulting rubber cross-linked product can be made more excellent in low heat buildup and wet grip properties.
Figure JPOXMLDOC01-appb-C000010
(In the general formula (4), R 5 to R 12 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms. Y 1 and Y 4 are each independently, the conjugated diene rubber of the polymer chain active terminal functional groups capable of reacting with the alkyl group having 1 to 6 carbon atoms or .Y 2 is an aryl group having 6 to 12 carbon atoms, a conjugated diene A functional group capable of reacting with the active end of the polymer chain of the rubber, and a plurality of Y 2 may be the same or different from each other, and Y 3 contains 2 to 20 alkylene glycol repeating units. And when there are a plurality of Y 3 , they may be the same or different from each other, p is an integer of 3 to 200, q is an integer of 0 to 200, and r is 0 to 200. (It is an integer.)
Figure JPOXMLDOC01-appb-C000011
 (上記一般式(5)中、R13は、炭素数1~12のアルキレン基であり、R13が複数あるときは、それらは互いに同一であっても相違していてもよい。R14~R22は、それぞれ独立して、炭素数1~6のアルキル基、または炭素数6~12のアリール基である。sは1~10の整数、tは0~2の整数である。)
Figure JPOXMLDOC01-appb-C000011
In (the general formula (5), R 13 is an alkylene group having 1 to 12 carbon atoms, when R 13 is plural, they mutually identical a good .R 14 be different even ~ R 22 is independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, s is an integer of 1 to 10, and t is an integer of 0 to 2.)
 上記一般式(4)で表されるポリオルガノシロキサンにおいて、R~R12、Y、およびYを構成する炭素数1~6のアルキル基としては、たとえば、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、およびシクロヘキシル基などが挙げられる。炭素数6~12のアリール基としては、例えば、フェニル基、およびメチルフェニル基などが挙げられる。これらの中でも、ポリオルガノシロキサン自体の製造容易性の観点から、メチル基およびエチル基が好ましい。 In the polyorganosiloxane represented by the general formula (4), examples of the alkyl group having 1 to 6 carbon atoms constituting R 5 to R 12 , Y 1 , and Y 4 include, for example, methyl group, ethyl group, n -Propyl group, isopropyl group, butyl group, pentyl group, hexyl group, cyclohexyl group and the like. Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group and a methylphenyl group. Among these, a methyl group and an ethyl group are preferable from the viewpoint of ease of production of the polyorganosiloxane itself.
 上記一般式(4)で表されるポリオルガノシロキサンにおいて、Y、Y、およびYを構成する共役ジエン系ゴムの重合体鎖の活性末端と反応可能な官能基としては、炭素数1~5のアルコキシ基、2-ピロリドニル基を含有する炭化水素基、およびエポキシ基を含有する炭素数4~12の基が好ましく、エポキシ基を含有する炭素4~12の基がより好ましい。 In the polyorganosiloxane represented by the general formula (4), the functional group capable of reacting with the active terminal of the polymer chain of the conjugated diene rubber constituting Y 1 , Y 2 and Y 4 has 1 carbon atom. A group having 4 to 12 carbon atoms containing an alkoxy group having 5 to 5 carbon atoms, a hydrocarbon group containing 2-pyrrolidonyl group and an epoxy group is preferred, and a group having 4 to 12 carbon atoms containing an epoxy group is more preferred.
 炭素数1~5のアルコキシ基としては、たとえば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、およびブトキシ基などが挙げられる。これらの中でも、共役ジエン系ゴムの重合体鎖の活性末端との反応性の観点から、メトキシ基およびエトキシ基が好ましい。 Examples of the alkoxy group having 1 to 5 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, and a butoxy group. Among these, a methoxy group and an ethoxy group are preferable from the viewpoint of reactivity with the active terminal of the polymer chain of the conjugated diene rubber.
 2-ピロリドニル基を含有する炭化水素基としては、例えば、下記一般式(6)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000012
 (上記一般式(6)中、uは2~10の整数であり、2であることが好ましい。)
Examples of the hydrocarbon group containing a 2-pyrrolidonyl group include those represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000012
(In the general formula (6), u is an integer of 2 to 10, and is preferably 2.)
 エポキシ基を含有する炭素数4~12の基としては、例えば、下記一般式(7)で表されるものが挙げられる。
 -Z-Z-E   (7)
 (上記一般式(7)中、Zは、炭素数1~10のアルキレン基またはアルキルアリーレン基であり、Zはメチレン基、硫黄原子、または酸素原子であり、Eはエポキシ基を有する炭素数2~10の置換炭化水素基である。これらの中でも、Zが酸素原子であるものが好ましく、Zが酸素原子であり、かつ、Eがグリシジル基であるものがより好ましく、Zが炭素数3のアルキレン基であり、Zが酸素原子であり、かつ、Eがグリシジル基であるものが特に好ましい。
Examples of the group having 4 to 12 carbon atoms containing an epoxy group include those represented by the following general formula (7).
-Z 1 -Z 2 -E (7)
(In the above general formula (7), Z 1 is an alkylene group or alkylarylene group having 1 to 10 carbon atoms, Z 2 is a methylene group, a sulfur atom, or an oxygen atom, and E is a carbon having an epoxy group. a substituted hydrocarbon group having 2-10. among these, preferable Z 2 is an oxygen atom, Z 2 is an oxygen atom, and is more preferable E is a glycidyl group, Z 1 Is particularly preferably an alkylene group having 3 carbon atoms, Z 2 is an oxygen atom, and E is a glycidyl group.
 一般式(4)で表されるポリオルガノシロキサンにおいて、R~R12としては、上記の中でも、炭素数1~6のアルキル基であることが好ましく、YおよびYとしては、上記の中でも、炭素数1~6のアルキル基であることが好ましく、Yとしては、上記の中でも、エポキシ基を含有する炭素数4~12の基であることが好ましい。 In the polyorganosiloxane represented by the general formula (4), R 5 to R 12 are preferably an alkyl group having 1 to 6 carbon atoms, and Y 1 and Y 4 are Of these, an alkyl group having 1 to 6 carbon atoms is preferable, and Y 2 is preferably a group having 4 to 12 carbon atoms containing an epoxy group.
 一般式(4)で表されるポリオルガノシロキサンにおいて、Y、すなわち2~20のアルキレングリコールの繰返し単位を含有する基としては、たとえば、下記一般式(8)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000013
 (上記一般式(8)中、vは2~20の整数であり、Pは炭素数2~10のアルキレン基またはアルキルアリーレン基であり、R23は、水素原子またはメチル基であり、複数あるR23は互いに同一であっても相違していてもよい。Qは炭素数1~10のアルコキシ基またはアリーロキシ基である。これらの中でも、vが2~8の整数であり、Pが炭素数3のアルキレン基であり、R23が水素原子であり、かつQがメトキシ基であるものが好ましい。)
In the polyorganosiloxane represented by the general formula (4), examples of the group containing a repeating unit of Y 3 , that is, an alkylene glycol of 2 to 20, include those represented by the following general formula (8). .
Figure JPOXMLDOC01-appb-C000013
(In the above general formula (8), v is an integer of 2 to 20, P is an alkylene group or alkylarylene group having 2 to 10 carbon atoms, R 23 is a hydrogen atom or a methyl group, and there are a plurality of them. R 23 may be the same or different from each other, Q is an alkoxy group having 1 to 10 carbon atoms or an aryloxy group, among which v is an integer of 2 to 8 and P is a carbon number 3 is an alkylene group, R 23 is a hydrogen atom, and Q is a methoxy group.)
 上記一般式(4)で表されるポリオルガノシロキサンにおいて、pは3~200、好ましくは3~150、より好ましくは3~120の整数である。pの数が上記範囲内にあると、得られるゴム架橋物の低発熱性をより向上させることができる。 In the polyorganosiloxane represented by the general formula (4), p is an integer of 3 to 200, preferably 3 to 150, more preferably 3 to 120. When the number p is in the above range, the low exothermic property of the obtained rubber cross-linked product can be further improved.
 上記一般式(4)で表されるポリオルガノシロキサンにおいて、qは0~200、好ましくは0~150、より好ましくは0~120の整数である。rは0~200、好ましくは0~150、より好ましくは0~120の整数である。p、q、およびrの合計数は、3~400であることが好ましく、3~300であることがより好ましく、3~250であることが特に好ましい。p、q、およびrの合計数が多すぎると、反応中の重合溶液の粘度が高くなりすぎ、変性共役ジエン系ゴムの製造が困難となるおそれがある。 In the polyorganosiloxane represented by the general formula (4), q is an integer of 0 to 200, preferably 0 to 150, more preferably 0 to 120. r is an integer of 0 to 200, preferably 0 to 150, more preferably 0 to 120. The total number of p, q, and r is preferably 3 to 400, more preferably 3 to 300, and particularly preferably 3 to 250. If the total number of p, q, and r is too large, the viscosity of the polymerization solution during the reaction becomes too high, and it may be difficult to produce a modified conjugated diene rubber.
 なお、上記一般式(4)で示されるポリオルガノシロキサンにおいて、ポリオルガノシロキサン中のエポキシ基が、未変性の共役ジエン系ゴムの重合体鎖の活性末端と反応する場合、ポリオルガノシロキサン中の少なくとも一部のエポキシ基が開環することにより、エポキシ基が開環した部分の炭素原子と共役ジエン系ゴムの重合体鎖の活性末端を有する原子との結合が形成されると考えられる。また、ポリオルガノシロキサン中のアルコキシ基が共役ジエン系ゴムの重合体鎖の活性末端と反応する場合、ポリオルガノシロキサン中の少なくとも一部のアルコキシ基が脱離することにより、ポリオルガノシロキサンが含有するケイ素原子と共役ジエン系ゴムの重合体鎖の活性末端を有する原子との結合が形成されると考えられる。また、ポリオルガノシロキサン中の2-ピロリドニル基が共役ジエン系ゴムの活性末端と反応する場合、ポリオルガノシロキサン中の少なくとも一部の2-ピロリドニル基を構成するカルボニル基の炭素―酸素結合が開裂して、その炭素原子と共役ジエン系ゴムの重合体鎖の活性末端を有する原子との結合が形成されると考えられる。 In the polyorganosiloxane represented by the general formula (4), when the epoxy group in the polyorganosiloxane reacts with the active terminal of the polymer chain of the unmodified conjugated diene rubber, at least the polyorganosiloxane in the polyorganosiloxane. It is considered that when a part of the epoxy group is ring-opened, a bond is formed between the carbon atom of the part where the epoxy group is opened and the atom having the active terminal of the polymer chain of the conjugated diene rubber. Further, when the alkoxy group in the polyorganosiloxane reacts with the active terminal of the polymer chain of the conjugated diene rubber, the polyorganosiloxane contains by elimination of at least a part of the alkoxy group in the polyorganosiloxane. It is considered that a bond is formed between the silicon atom and an atom having an active terminal of the polymer chain of the conjugated diene rubber. Further, when the 2-pyrrolidonyl group in the polyorganosiloxane reacts with the active end of the conjugated diene rubber, the carbon-oxygen bond of the carbonyl group constituting at least a part of the 2-pyrrolidonyl group in the polyorganosiloxane is cleaved. Thus, it is considered that a bond is formed between the carbon atom and an atom having an active terminal of the polymer chain of the conjugated diene rubber.
 上記一般式(5)で表されるヒドロカルビルオキシシラン化合物において、炭素数1~6のアルキル基、および炭素数6~12のアリール基は、上記一般式(4)のポリオルガノシロキサンについて説明したものと同様である。 In the hydrocarbyloxysilane compound represented by the general formula (5), the alkyl group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms are those described for the polyorganosiloxane of the general formula (4). It is the same.
 上記一般式(5)で表されるヒドロカルビルオキシシラン化合物において、炭素数1~12のアルキレン基としては、たとえば、メチレン基、エチレン基、およびプロピレン基などが挙げられる。これらの中でも、プロピレン基が好ましい。 In the hydrocarbyloxysilane compound represented by the general formula (5), examples of the alkylene group having 1 to 12 carbon atoms include a methylene group, an ethylene group, and a propylene group. Among these, a propylene group is preferable.
 上記一般式(5)で表されるヒドロカルビルオキシシラン化合物の具体例としては、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリメトキシシラン、およびN,N-ビス(トリメチルシリル)アミノエチルトリエトキシシランなどが挙げられる。 Specific examples of the hydrocarbyloxysilane compound represented by the general formula (5) include N, N-bis (trimethylsilyl) -3-aminopropyltrimethoxysilane and N, N-bis (trimethylsilyl) -3-aminopropyl. Examples include triethoxysilane, N, N-bis (trimethylsilyl) aminoethyltrimethoxysilane, and N, N-bis (trimethylsilyl) aminoethyltriethoxysilane.
 シラン化合物の使用量は、特に限定されないが、上述した第2工程で得られた活性末端を有する共役ジエン系ゴムの活性末端1モルに対する、活性末端に対する反応性を有する基の量が、0.05~5モルの範囲となる量とすることが好ましく、0.1~3モルとなる量とすることがより好ましく、0.3~1.5モルとなる量とすることが特に好ましい。シラン化合物の使用量を上記範囲とすることにより、その添加効果をより顕著なものとすることができる。なお、シラン化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The amount of the silane compound used is not particularly limited, but the amount of the group having reactivity with respect to the active terminal with respect to 1 mol of the active terminal of the conjugated diene rubber having the active terminal obtained in the second step described above is 0.00. The amount is preferably in the range of 05 to 5 mol, more preferably 0.1 to 3 mol, and particularly preferably 0.3 to 1.5 mol. By making the usage-amount of a silane compound into the said range, the addition effect can be made more remarkable. In addition, a silane compound may be used individually by 1 type, and may be used in combination of 2 or more type.
 上述した第2工程で得られた共役ジエン系ゴムの重合体鎖の活性末端に、シラン化合物を反応させる方法としては、特に限定されないが、活性末端を有する共役ジエン系ゴムと、シラン化合物とを、これらを溶解可能な溶媒中で、混合する方法などが挙げられる。この際に用いる溶媒としては、上述した第1工程および第2工程に用いる溶媒として例示したものなどを用いることができる。また、この際においては、上述した第2工程で得られた活性末端を有する共役ジエン系ゴムを、その重合に用いた重合溶液のままの状態とし、ここにシラン化合物を添加する方法が簡便であり、好ましい。また、この際においては、シラン化合物は、上述した重合に用いる不活性溶媒に溶解して重合系内に添加することが好ましく、その溶液濃度は、1~50重量%の範囲とすることが好ましい。変性反応における反応温度は、特に限定されないが、通常、0~120℃であり、反応時間は、特に限定されないが、通常、1分~1時間である。 The method for reacting the silane compound with the active terminal of the polymer chain of the conjugated diene rubber obtained in the second step described above is not particularly limited, but a conjugated diene rubber having an active terminal and a silane compound are used. And a method of mixing them in a solvent capable of dissolving them. As the solvent used in this case, those exemplified as the solvent used in the first step and the second step described above can be used. In this case, the method of adding the silane compound to the conjugated diene rubber having an active end obtained in the second step as described above is kept in the state of the polymerization solution used for the polymerization. Yes, it is preferable. In this case, the silane compound is preferably dissolved in the inert solvent used for the polymerization and added to the polymerization system, and the solution concentration is preferably in the range of 1 to 50% by weight. . The reaction temperature in the modification reaction is not particularly limited, but is usually 0 to 120 ° C., and the reaction time is not particularly limited, but is usually 1 minute to 1 hour.
 上述した第2工程で得られた活性末端を有する共役ジエン系ゴムを含有する溶液に、シラン化合物を添加する時期は特に限定されないが、重合反応が完結しておらず、活性末端を有する共役ジエン系ゴムを含有する溶液が単量体をも含有している状態、より具体的には、活性末端を有する共役ジエン系ゴムを含有する溶液が、100ppm以上、より好ましくは300~50,000ppmの単量体を含有している状態で、この溶液にシラン化合物を添加することが望ましい。シラン化合物の添加をこのように行なうことにより、活性末端を有する共役ジエン系ゴムと重合系中に含まれる不純物等との副反応を抑制して、反応を良好に制御することが可能となる。 The timing of adding the silane compound to the solution containing the conjugated diene rubber having an active terminal obtained in the second step is not particularly limited, but the polymerization reaction is not completed and the conjugated diene having an active terminal is not completed. The state in which the solution containing the rubber system also contains the monomer, more specifically, the solution containing the conjugated diene rubber having an active terminal is 100 ppm or more, more preferably 300 to 50,000 ppm. It is desirable to add a silane compound to this solution in a state containing monomers. By adding the silane compound in this way, side reactions between the conjugated diene rubber having an active terminal and impurities contained in the polymerization system can be suppressed, and the reaction can be controlled well.
 なお、第3工程の前後(上述した第2工程で得られた共役ジエン系ゴムに、シラン化合物を反応させる前後)、好ましくは第3工程の前において、本発明の効果を阻害しない範囲で、従来から通常使用されている四塩化錫などのカップリング剤を重合系内に添加して、活性末端を有する共役ジエン系ゴムの重合体鎖の一部をカップリングする工程を加えてもよい。また、第3工程の前後(上述した第2工程で得られた共役ジエン系ゴムに、シラン化合物を反応させる前後)において、本発明の効果を阻害しない範囲で、従来から通常使用されている、N-メチル-ε-カプロラクタムなどのシラン化合物以外の末端変性剤を重合系内に添加して、活性末端を有する共役ジエン系ゴムの重合体鎖の一部をシラン化合物以外で変性する工程を加えてもよい。また、第3工程の後(上述した第2工程で得られた共役ジエン系ゴムに、シラン化合物を反応させた後)において、活性末端を有する共役ジエン系ゴムの重合体鎖が重合系内に残存している場合には、従来から通常使用されているメタノールなどの重合停止剤を重合系内に添加して、活性末端を有する共役ジエン系ゴムの活性末端を失活させることが好ましい。 In addition, before and after the third step (before and after the silane compound is reacted with the conjugated diene rubber obtained in the second step described above), preferably before the third step, in a range that does not impair the effects of the present invention, A step of coupling a part of the polymer chain of the conjugated diene rubber having an active end by adding a coupling agent such as tin tetrachloride which has been conventionally used in the polymerization system may be added. In addition, before and after the third step (before and after the silane compound is reacted with the conjugated diene rubber obtained in the second step described above), it has been conventionally used as long as the effect of the present invention is not impaired. A step of adding a terminal modifier other than a silane compound such as N-methyl-ε-caprolactam into the polymerization system and modifying a part of the polymer chain of the conjugated diene rubber having an active terminal with a compound other than the silane compound is added. May be. In addition, after the third step (after the silane compound is reacted with the conjugated diene rubber obtained in the second step described above), the polymer chain of the conjugated diene rubber having an active end is in the polymerization system. When remaining, it is preferable to deactivate the active terminal of the conjugated diene rubber having an active terminal by adding a conventionally used polymerization terminator such as methanol into the polymerization system.
 また、本発明の製造方法においては、上述した第2工程において共役ジエン系ゴムを得た後、あるいは、さらに第3工程においてシラン化合物と反応させる場合には、第3工程において変性共役ジエン系ゴムを得た後に、上述した第1工程で導入した一般式(1)で表される化合物の重合体ブロックについて、一般式(1)中のX、Xで示されるアミノ基の保護基を脱保護する脱保護反応を行ってもよい。脱保護反応としては、塩酸などの一般的な酸、あるいはテトラブチルアンモニウムフルオリドなどの塩基を用いる方法を制限なく用いることができる。特に、このような脱保護反応を行うことにより、一般式(1)で表される化合物の重合体ブロックに、窒素原子に直接、少なくとも1つの水素原子が結合してなるアミノ基を導入することができ、これにより、シリカなどの充填剤との親和性をより高めることができる。脱保護反応における反応温度は、特に限定されないが、通常、0~120℃であり、反応時間は、特に限定されないが、通常、5分~10時間である。また、本発明において、アミノ基の保護基を脱保護する脱保護反応は、たとえば、シリカなどの各種配合剤と混練することで、ゴム組成物とする際に、混練と同時に、脱保護反応を進行させるような態様としてもよい。 Further, in the production method of the present invention, after obtaining the conjugated diene rubber in the second step described above, or when further reacting with the silane compound in the third step, the modified conjugated diene rubber in the third step. In the polymer block of the compound represented by the general formula (1) introduced in the first step described above, an amino group protecting group represented by X 1 and X 2 in the general formula (1) is obtained. A deprotection reaction for deprotection may be performed. As the deprotection reaction, a method using a general acid such as hydrochloric acid or a base such as tetrabutylammonium fluoride can be used without limitation. In particular, by carrying out such a deprotection reaction, an amino group in which at least one hydrogen atom is bonded directly to a nitrogen atom is introduced into the polymer block of the compound represented by the general formula (1). Thereby, the affinity with a filler such as silica can be further increased. The reaction temperature in the deprotection reaction is not particularly limited, but is usually 0 to 120 ° C., and the reaction time is not particularly limited, but is usually 5 minutes to 10 hours. Further, in the present invention, the deprotection reaction for deprotecting the protecting group of the amino group is carried out, for example, by kneading with various compounding agents such as silica to produce a rubber composition. It is good also as an aspect which advances.
 以上のようにして得られる共役ジエン系ゴム、変性共役ジエン系ゴムの溶液には、所望により、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤を添加してもよい。老化防止剤の添加量は、その種類などに応じて適宜決定すればよい。さらに、所望により、伸展油を配合して、共役ジエン系ゴム、変性共役ジエン系ゴムを油展ゴムとしてもよい。伸展油としては、たとえば、パラフィン系、芳香族系及びナフテン系の石油系軟化剤、植物系軟化剤、ならびに脂肪酸等が挙げられる。石油系軟化剤を用いる場合には、IP346の方法(英国のTHE INSTITUTE PETROLEUMの検査方法)により抽出される多環芳香族の含有量が3%未満であることが好ましい。伸展油を使用する場合、その使用量は、共役ジエン系ゴムまたは変性共役ジエン系ゴム100重量部に対して、通常5~100重量部である。 If desired, an anti-aging agent such as a phenol stabilizer, a phosphorus stabilizer, or a sulfur stabilizer may be added to the solution of the conjugated diene rubber and modified conjugated diene rubber obtained as described above. . What is necessary is just to determine suitably the addition amount of an anti-aging agent according to the kind etc. Furthermore, if desired, an extension oil may be blended so that the conjugated diene rubber or the modified conjugated diene rubber may be used as the oil extended rubber. Examples of the extender oil include paraffinic, aromatic and naphthenic petroleum softeners, plant softeners, and fatty acids. When using a petroleum softener, it is preferable that the content of polycyclic aromatics extracted by the method of IP346 (the inspection method of THE INSTITUTE PETROLEUM in the UK) is less than 3%. When the extender oil is used, the amount used is usually 5 to 100 parts by weight with respect to 100 parts by weight of the conjugated diene rubber or the modified conjugated diene rubber.
 そして、このようにして得られた共役ジエン系ゴム、変性共役ジエン系ゴムは、スチームストリッピングなどにより、溶媒を除去することにより、反応混合物から分離することで、固形状の共役ジエン系ゴム、変性共役ジエン系ゴムを得ることができる。 The conjugated diene rubber and modified conjugated diene rubber thus obtained are separated from the reaction mixture by removing the solvent by steam stripping or the like, so that a solid conjugated diene rubber is obtained. A modified conjugated diene rubber can be obtained.
 本発明の製造方法により得られる共役ジエン系ゴム、変性共役ジエン系ゴムの重量平均分子量(Mw)は、特に限定されないが、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値として、通常、100,000~3,000,000、好ましくは120,000~2,000,000、より好ましくは150,000~1,500,000の範囲である。共役ジエン系ゴム、変性共役ジエン系ゴムの重量平均分子量を上記範囲とすることにより、共役ジエン系ゴム、変性共役ジエン系ゴムへのシリカなどの充填剤の配合が容易となり、ゴム組成物は加工性に優れたものとなる。 The weight average molecular weight (Mw) of the conjugated diene rubber and modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited, but is usually 100, as a value measured by gel permeation chromatography in terms of polystyrene. The range is from 000 to 3,000,000, preferably from 120,000 to 2,000,000, more preferably from 150,000 to 1,500,000. By setting the weight average molecular weight of the conjugated diene rubber and modified conjugated diene rubber within the above range, it becomes easy to add a filler such as silica to the conjugated diene rubber and modified conjugated diene rubber, and the rubber composition is processed. Excellent in properties.
 また、本発明の製造方法により得られる共役ジエン系ゴム、変性共役ジエン系ゴムの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布も、特に限定されないが、好ましくは1.0~5.0、特に好ましくは1.0~3.0である。共役ジエン系ゴム、変性共役ジエン系ゴムの分子量分布を上記範囲とすることにより、得られるゴム架橋物は低発熱性により優れたものとなる。 The molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the conjugated diene rubber and modified conjugated diene rubber obtained by the production method of the present invention is also particularly Although not limited, it is preferably 1.0 to 5.0, particularly preferably 1.0 to 3.0. By setting the molecular weight distribution of the conjugated diene rubber and the modified conjugated diene rubber within the above range, the resulting rubber cross-linked product becomes more excellent in low heat buildup.
 また、本発明の製造方法により得られる共役ジエン系ゴム、変性共役ジエン系ゴムのムーニー粘度(ML1+4,100℃)も、特に限定されないが、通常、20~200、好ましくは30~150の範囲である。共役ジエン系ゴム、変性共役ジエン系ゴムのムーニー粘度を上記範囲とすることにより、加工性が優れたものとなる。なお、共役ジエン系ゴム、変性共役ジエン系ゴムを油展ゴムとする場合は、その油展ゴムのムーニー粘度を上記の範囲とすることが好ましい。 The Mooney viscosity (ML 1 + 4, 100 ° C.) of the conjugated diene rubber and modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited, but is usually in the range of 20 to 200, preferably 30 to 150. It is. By setting the Mooney viscosity of the conjugated diene rubber and the modified conjugated diene rubber within the above range, the processability is excellent. When the conjugated diene rubber or the modified conjugated diene rubber is an oil extended rubber, the Mooney viscosity of the oil extended rubber is preferably set in the above range.
 また、本発明の製造方法により得られる共役ジエン系ゴム、変性共役ジエン系ゴムの共役ジエン単位部分におけるビニル結合含有量は、通常1~80重量%であり、好ましくは5~75重量%である。ビニル結合量を上記範囲とすることにより、得られるゴム架橋物は低発熱性に優れたものとなる。 The vinyl bond content in the conjugated diene unit portion of the conjugated diene rubber and modified conjugated diene rubber obtained by the production method of the present invention is usually 1 to 80% by weight, preferably 5 to 75% by weight. . By setting the vinyl bond amount within the above range, the obtained rubber cross-linked product has excellent low heat build-up.
<ゴム組成物>
 本発明のゴム組成物は、上述した本発明の製造方法により得られる共役ジエン系ゴム、または変性共役ジエン系ゴム(以下、これらをまとめて、「(変性)共役ジエン系ゴム」とする。)を含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなる組成物である。
<Rubber composition>
The rubber composition of the present invention is a conjugated diene rubber or a modified conjugated diene rubber obtained by the production method of the present invention described above (hereinafter, these are collectively referred to as “(modified) conjugated diene rubber”). A composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing.
 本発明で用いるシリカとしては、たとえば、乾式法ホワイトカーボン、湿式法ホワイトカーボン、コロイダルシリカ、沈降シリカなどが挙げられる。これらの中でも、含水ケイ酸を主成分とする湿式法ホワイトカーボンが好ましい。また、カーボンブラック表面にシリカを担持させたカーボン-シリカデュアル・フェイズ・フィラーを用いてもよい。これらのシリカは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。用いるシリカの窒素吸着比表面積(ASTM  D3037-81に準じBET法で測定される)は、好ましくは50~300m/g、より好ましくは80~220m/g、特に好ましくは100~170m/gである。また、シリカのpHは、5~10であることが好ましい。 Examples of the silica used in the present invention include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica. Among these, wet method white carbon mainly containing hydrous silicic acid is preferable. Alternatively, a carbon-silica dual phase filler in which silica is supported on the carbon black surface may be used. These silicas can be used alone or in combination of two or more. Is (measured by the BET method according to ASTM D3037-81) nitrogen adsorption specific surface area of silica used is preferably 50 ~ 300m 2 / g, more preferably 80 ~ 220m 2 / g, particularly preferably 100 ~ 170m 2 / g. The pH of silica is preferably 5-10.
 本発明のゴム組成物におけるシリカの配合量は、ゴム組成物中のゴム成分100重量部に対して、10~200重量部であり、好ましくは30~150重量部、より好ましくは50~100重量部である。シリカの配合量を上記範囲とすることにより、ゴム組成物の加工性が優れたものとなり、得られるゴム架橋物のウェットグリップ性および低発熱性が優れたものとなる。 The compounding amount of silica in the rubber composition of the present invention is 10 to 200 parts by weight, preferably 30 to 150 parts by weight, more preferably 50 to 100 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part. By setting the blending amount of silica within the above range, the rubber composition has excellent processability, and the resulting rubber cross-linked product has excellent wet grip properties and low exothermic properties.
 本発明のゴム組成物には、低発熱性をさらに改良するという観点より、さらにシランカップリング剤を配合してもよい。シランカップリング剤としては、たとえば、ビニルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、3-オクタチオ-1-プロピル-トリエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、およびγ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドなどを挙げることができる。これらのシランカップリング剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。シランカップリング剤の配合量は、シリカ100重量部に対して、好ましくは0.1~30重量部、より好ましくは1~15重量部である。 The rubber composition of the present invention may further contain a silane coupling agent from the viewpoint of further improving the low heat build-up. Examples of the silane coupling agent include vinyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, 3-octathio- 1-propyl-triethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (triethoxysilyl) propyl) tetrasulfide, γ-trimethoxysilylpropyldimethylthiocarbamyl tetrasulfide, and γ -Trimethoxysilylpropylbenzothiazyl tetrasulfide and the like. These silane coupling agents can be used alone or in combination of two or more. The amount of the silane coupling agent is preferably 0.1 to 30 parts by weight, more preferably 1 to 15 parts by weight with respect to 100 parts by weight of silica.
 また、本発明のゴム組成物には、さらに、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、およびグラファイトなどのカーボンブラックを配合してもよい。これらのなかでも、ファーネスブラックが好ましい。これらのカーボンブラックは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。カーボンブラックの配合量は、ゴム組成物中のゴム成分100重量部に対して、通常、120重量部以下である。 Further, the rubber composition of the present invention may further contain carbon black such as furnace black, acetylene black, thermal black, channel black, and graphite. Among these, furnace black is preferable. These carbon blacks can be used alone or in combination of two or more. The compounding amount of carbon black is usually 120 parts by weight or less with respect to 100 parts by weight of the rubber component in the rubber composition.
 なお、本発明の(変性)共役ジエン系ゴムを含むゴム成分に、シリカを添加する方法としては特に限定されず、固形のゴム成分に対して添加して混練する方法(乾式混練法)や(変性)共役ジエン系ゴムを含む溶液に対して添加して凝固・乾燥させる方法(湿式混練法)などを適用することができる。 The method of adding silica to the rubber component containing the (modified) conjugated diene rubber of the present invention is not particularly limited, and a method of adding and kneading the solid rubber component (dry kneading method) or ( Modification) A method of adding to a solution containing a conjugated diene rubber and coagulating and drying (wet kneading method) can be applied.
 また、本発明のゴム組成物は、架橋剤をさらに含有していることが好ましい。架橋剤としては、たとえば、硫黄、ハロゲン化硫黄などの含硫黄化合物、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂などが挙げられる。これらの中でも、硫黄が好ましく使用される。架橋剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.5~5重量部、特に好ましくは1~4重量部である。 The rubber composition of the present invention preferably further contains a cross-linking agent. Examples of the crosslinking agent include sulfur-containing compounds such as sulfur and sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group. Among these, sulfur is preferably used. The amount of the crosslinking agent is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. It is.
 さらに、本発明のゴム組成物には、上記成分以外に、常法に従って、架橋促進剤、架橋活性化剤、老化防止剤、充填剤(上記シリカおよびカーボンブラックを除く)、活性剤、プロセス油、可塑剤、滑剤、粘着付与剤などの配合剤をそれぞれ必要量配合できる。 Further, in addition to the above components, the rubber composition of the present invention includes a crosslinking accelerator, a crosslinking activator, an anti-aging agent, a filler (excluding silica and carbon black), an activator, and a process oil in accordance with conventional methods. , Plasticizers, lubricants, tackifiers and the like can be blended in the required amounts.
 架橋剤として、硫黄または含硫黄化合物を用いる場合には、架橋促進剤および架橋活性化剤を併用することが好ましい。架橋促進剤としては、たとえば、スルフェンアミド系架橋促進剤;グアニジン系架橋促進剤;チオウレア系架橋促進剤;チアゾール系架橋促進剤;チウラム系架橋促進剤;ジチオカルバミン酸系架橋促進剤;キサントゲン酸系架橋促進剤;などが挙げられる。これらのなかでも、スルフェンアミド系架橋促進剤を含むものが好ましい。これらの架橋促進剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋促進剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.5~5重量部、特に好ましくは1~4重量部である。 When sulfur or a sulfur-containing compound is used as the crosslinking agent, it is preferable to use a crosslinking accelerator and a crosslinking activator in combination. Examples of the crosslinking accelerator include sulfenamide-based crosslinking accelerators; guanidine-based crosslinking accelerators; thiourea-based crosslinking accelerators; thiazole-based crosslinking accelerators; thiuram-based crosslinking accelerators; dithiocarbamic acid-based crosslinking accelerators; A crosslinking accelerator; and the like. Among these, those containing a sulfenamide-based crosslinking accelerator are preferable. These crosslinking accelerators are used alone or in combination of two or more. The amount of the crosslinking accelerator is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part.
 架橋活性化剤としては、たとえば、ステアリン酸などの高級脂肪酸;酸化亜鉛;などを挙げることができる。これらの架橋活性化剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋活性化剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.05~20重量部、特に好ましくは0.5~15重量部である。 Examples of the crosslinking activator include higher fatty acids such as stearic acid; zinc oxide. These crosslinking activators are used alone or in combination of two or more. The amount of the crosslinking activator is preferably 0.05 to 20 parts by weight, particularly preferably 0.5 to 15 parts by weight based on 100 parts by weight of the rubber component in the rubber composition.
 また、本発明のゴム組成物には、上述した本発明の製造方法によって得られる(変性)共役ジエン系ゴム以外のその他のゴムを配合してもよい。その他のゴムとしては、たとえば、天然ゴム、ポリイソプレンゴム、乳化重合スチレン-ブタジエン共重合ゴム、溶液重合スチレン-ブタジエン共重合ゴム、ポリブタジエンゴム(高シス-BR、低シスBRであってもよい。また、1,2-ポリブタジエン重合体からなる結晶繊維を含むポリブタジエンゴムであってもよい)、スチレン-イソプレン共重合ゴム、ブタジエン-イソプレン共重合ゴム、スチレン-イソプレン-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、アクリロニトリル-スチレン-ブタジエン共重合ゴムなどのうち、上述した(変性)共役ジエン系ゴム以外のものをいう。これらのなかでも、天然ゴム、ポリイソプレンゴム、ポリブタジエンゴム、溶液重合スチレン-ブタジエン共重合ゴムが好ましい。これらのゴムは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。 Further, the rubber composition of the present invention may be blended with other rubbers other than the (modified) conjugated diene rubber obtained by the production method of the present invention described above. Examples of other rubbers include natural rubber, polyisoprene rubber, emulsion polymerization styrene-butadiene copolymer rubber, solution polymerization styrene-butadiene copolymer rubber, and polybutadiene rubber (high cis-BR and low cis BR). It may also be a polybutadiene rubber containing crystal fibers made of 1,2-polybutadiene polymer), styrene-isoprene copolymer rubber, butadiene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, acrylonitrile-butadiene. Of copolymer rubbers, acrylonitrile-styrene-butadiene copolymer rubbers, etc., those other than the above-mentioned (modified) conjugated diene rubbers. Of these, natural rubber, polyisoprene rubber, polybutadiene rubber, and solution-polymerized styrene-butadiene copolymer rubber are preferable. These rubbers can be used alone or in combination of two or more.
 本発明のゴム組成物において、本発明の製造方法により得られる(変性)共役ジエン系ゴムは、ゴム組成物中のゴム成分の10~100重量%を占めることが好ましく、50~100重量%を占めることが特に好ましい。このような割合で、本発明の製造方法により得られる(変性)共役ジエン系ゴムをゴム成分中に含めることにより、低発熱性およびウェットグリップ性に優れたゴム架橋物を得ることができる。 In the rubber composition of the present invention, the (modified) conjugated diene rubber obtained by the production method of the present invention preferably accounts for 10 to 100% by weight, and 50 to 100% by weight of the rubber component in the rubber composition. It is particularly preferred to occupy. By including the (modified) conjugated diene rubber obtained by the production method of the present invention in the rubber component at such a ratio, a crosslinked rubber product excellent in low heat buildup and wet grip properties can be obtained.
 本発明のゴム組成物を得るためには、常法に従って各成分を混練すればよく、たとえば、架橋剤や架橋促進剤などの熱に不安定な成分を除く成分と(変性)共役ジエン系ゴムとを混練後、その混練物に架橋剤や架橋促進剤などの熱に不安定な成分を混合して目的の組成物を得ることができる。熱に不安定な成分を除く成分と(変性)共役ジエン系ゴムとの混練温度は、好ましくは80~200℃、より好ましくは120~180℃であり、その混練時間は、好ましくは30秒~30分である。また、その混練物と熱に不安定な成分との混合は、通常100℃以下、好ましくは80℃以下まで冷却した後に行われる。 In order to obtain the rubber composition of the present invention, each component may be kneaded according to a conventional method. For example, a component excluding a thermally unstable component such as a crosslinking agent or a crosslinking accelerator and a (modified) conjugated diene rubber And then kneaded with a thermally unstable component such as a crosslinking agent or a crosslinking accelerator to obtain the desired composition. The kneading temperature of the component excluding the heat labile component and the (modified) conjugated diene rubber is preferably 80 to 200 ° C., more preferably 120 to 180 ° C., and the kneading time is preferably 30 seconds to 30 minutes. The kneaded product and the thermally unstable component are usually mixed after cooling to 100 ° C. or lower, preferably 80 ° C. or lower.
<ゴム架橋物>
 本発明のゴム架橋物は、上述した本発明のゴム組成物を架橋してなるものである。
 本発明のゴム架橋物は、本発明のゴム組成物を用い、たとえば、所望の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、加熱することにより架橋反応を行い、架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10~200℃、好ましくは25~120℃である。架橋温度は、通常、100~200℃、好ましくは130~190℃であり、架橋時間は、通常、1分~24時間、好ましくは2分~12時間、特に好ましくは3分~6時間である。
<Rubber cross-linked product>
The rubber cross-linked product of the present invention is obtained by cross-linking the rubber composition of the present invention described above.
The rubber cross-linked product of the present invention uses the rubber composition of the present invention, for example, is molded by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, and heated. Can be produced by carrying out a crosslinking reaction and fixing the shape as a crosslinked product. In this case, crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding. The molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C. The crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C., and the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 12 hours, particularly preferably 3 minutes to 6 hours. .
 また、ゴム架橋物の形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。 In addition, depending on the shape and size of the rubber cross-linked product, even if the surface is cross-linked, it may not be sufficiently cross-linked to the inside. Therefore, secondary cross-linking may be performed by heating.
 加熱方法としては、プレス加熱、スチーム加熱、オーブン加熱、熱風加熱などのゴムの架橋に用いられる一般的な方法を適宜選択すればよい。 As a heating method, a general method used for crosslinking of rubber such as press heating, steam heating, oven heating, hot air heating, etc. may be appropriately selected.
 このようにして得られる本発明のゴム架橋物は、上述した本発明の製造方法により得られる(変性)共役ジエン系ゴムを用いて得られるものであるため、低発熱性およびウェットグリップ性に優れたものである。特に、本発明の製造方法により得られる(変性)共役ジエン系ゴムは、重合体鎖の重合開始末端側に、一般式(1)で表される化合物の重合体ブロックを備えるものであるため、シリカなどの充填剤に対する親和性が高いものである。また、シラン化合物で変性してなる変性共役ジエン系ゴムは、重合体鎖の重合開始末端側に、一般式(1)で表される化合物の重合体ブロックを備えるとともに、重合停止側末端に、シラン化合物を用いた変性反応による変性基を備えるものであるため、シリカなどの充填剤に対する親和性がより高められたものである。特に、本発明の製造方法においては、好ましくは上記一般式(1)で表される化合物を単独で重合させて、上記一般式(1)で表される化合物を重合体ブロックの形態で導入することにより、シリカなどの充填剤に対する親和性をより有効に高めることができるものである。したがって、このような本発明の製造方法により得られる(変性)共役ジエン系ゴムを用いて得られる、本発明のゴム架橋物は、(変性)共役ジエン系ゴムと充填剤としてのシリカとの親和性が高く、そのため、低発熱性およびウェットグリップ性に優れたものとなる。 The rubber cross-linked product of the present invention thus obtained is obtained by using the (modified) conjugated diene rubber obtained by the above-described production method of the present invention, and thus is excellent in low heat buildup and wet grip properties. It is a thing. In particular, the (modified) conjugated diene rubber obtained by the production method of the present invention comprises a polymer block of the compound represented by the general formula (1) on the polymerization initiation terminal side of the polymer chain. It has a high affinity for fillers such as silica. The modified conjugated diene rubber modified with a silane compound has a polymer block of the compound represented by the general formula (1) on the polymerization initiation terminal side of the polymer chain, and at the polymerization termination side terminal. Since it is provided with a modifying group by a modification reaction using a silane compound, the affinity for a filler such as silica is further enhanced. In particular, in the production method of the present invention, the compound represented by the general formula (1) is preferably polymerized alone, and the compound represented by the general formula (1) is introduced in the form of a polymer block. Thus, the affinity for a filler such as silica can be more effectively increased. Therefore, the rubber cross-linked product of the present invention obtained by using the (modified) conjugated diene rubber obtained by the production method of the present invention has an affinity between the (modified) conjugated diene rubber and silica as a filler. Therefore, it is excellent in low exothermic property and wet grip property.
 そして、本発明のゴム架橋物は、このような特性を活かし、たとえば、タイヤにおいて、キャップトレッド、ベーストレッド、カーカス、サイドウォール、ビード部などのタイヤ各部位の材料;ホース、ベルト、マット、防振ゴム、その他の各種工業用品の材料;樹脂の耐衝撃性改良剤;樹脂フィルム緩衝剤;靴底;ゴム靴;ゴルフボール;玩具;などの各種用途に用いることができる。とりわけ、本発明のゴム架橋物は、低発熱性およびウェットグリップ性に優れることから、タイヤの材料、特に低燃費タイヤの材料として好適に用いることができ、トレッド用途に最適である。 The rubber cross-linked product of the present invention makes use of such characteristics, and for example, in tires, materials for tire parts such as cap treads, base treads, carcass, sidewalls and bead parts; hoses, belts, mats, It can be used in various applications such as vibration rubber and other various industrial article materials; resin impact resistance improvers; resin film buffers; shoe soles; rubber shoes; golf balls; In particular, since the rubber cross-linked product of the present invention is excellent in low heat buildup and wet grip properties, it can be suitably used as a tire material, particularly a low fuel consumption tire material, and is optimal for tread applications.
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。なお、以下において、「部」は、特に断りのない限り重量基準である。また、試験および評価は下記に従った。 Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples. In the following, “part” is based on weight unless otherwise specified. Moreover, the test and evaluation followed the following.
〔ゴムの分子量〕
 ゴムの分子量は、ゲルパーミエーションクロマトグラフィ(GPC)によりポリスチレン換算分子量として求めた。具体的な測定条件は、以下のとおりとした。
  測定器:高速液体クロマトグラフ(東ソー社製、商品名「HLC-8220」)
  カラム:東ソー社製、商品名「GMH-HR-H」を二本直列に連結したものを用いた。
  検出器:示差屈折計(東ソー社製、商品名「RI-8220」)
  溶離液:テトラヒドロフラン
  カラム温度:40℃
[Molecular weight of rubber]
The molecular weight of the rubber was determined as a molecular weight in terms of polystyrene by gel permeation chromatography (GPC). Specific measurement conditions were as follows.
Measuring instrument: High-performance liquid chromatograph (trade name “HLC-8220” manufactured by Tosoh Corporation)
Column: A product manufactured by Tosoh Corporation and having two trade names “GMH-HR-H” connected in series was used.
Detector: differential refractometer (trade name “RI-8220” manufactured by Tosoh Corporation)
Eluent: Tetrahydrofuran Column temperature: 40 ° C
〔ゴムのミクロ構造〕
 H-NMRにより測定した。
  測定器:JEOL社製、商品名「JNM-ECA-400WB」
  測定溶媒:重クロロホルム
[Rubber microstructure]
It was measured by 1 H-NMR.
Measuring instrument: Product name “JNM-ECA-400WB” manufactured by JEOL
Measuring solvent: deuterated chloroform
〔脱保護率〕
 共役ジエン系ゴム、変性共役ジエン系ゴムの脱保護率は、脱保護反応前後の共役ジエン系ゴム、変性共役ジエン系ゴムの重クロロホルム溶液を用いてH-NMRにより測定した。具体的には、0.2ppm付近のケイ素に結合したメチル基由来のピークと、4.5~6.0ppmのビニル構造由来のピークとの強度比の変化から脱保護率を求めた。
[Deprotection rate]
The deprotection rate of the conjugated diene rubber and the modified conjugated diene rubber was measured by 1 H-NMR using a deuterated chloroform solution of the conjugated diene rubber and the modified conjugated diene rubber before and after the deprotection reaction. Specifically, the deprotection rate was determined from the change in intensity ratio between the peak derived from the methyl group bonded to silicon in the vicinity of 0.2 ppm and the peak derived from the vinyl structure at 4.5 to 6.0 ppm.
〔低発熱性〕
 長さ50mm、幅12.7mm、厚さ2mmの試験片について、粘弾性測定装置(レオメトリックス社製、製品名「ARES」)を用い、動的歪み2.5%、周波数10Hzの条件で60℃におけるtanδを測定した。この特性については、比較例1の測定値を100とする指数で示した。この指数が低いものほど、低発熱性に優れる。
[Low heat generation]
A test piece having a length of 50 mm, a width of 12.7 mm, and a thickness of 2 mm was measured using a viscoelasticity measuring device (manufactured by Rheometrics, product name “ARES”) under the conditions of a dynamic strain of 2.5% and a frequency of 10 Hz. Tan δ at 0 ° C. was measured. About this characteristic, it showed with the index | exponent which sets the measured value of the comparative example 1 to 100. The lower this index, the better the low heat buildup.
〔ウェットグリップ性〕
 長さ50mm、幅12.7mm、厚さ2mmの試験片を、粘弾性測定装置(レオメトリックス社製、製品名「ARES」)を用い、動的歪み0.5%、10Hzの条件で0℃におけるtanδを測定した。この特性については、比較例1または比較例6の測定値を100とする指数で示した。この指数が高いものほど、ウェットグリップ性に優れる。
[Wet grip]
A test piece having a length of 50 mm, a width of 12.7 mm, and a thickness of 2 mm was measured using a viscoelasticity measuring device (manufactured by Rheometrics, product name “ARES”) at a dynamic strain of 0.5% and 10 Hz at 0 ° C. The tan δ was measured. About this characteristic, it showed with the index | exponent which sets the measured value of the comparative example 1 or the comparative example 6 to 100. The higher this index, the better the wet grip.
〔製造例1:p-[N,N-ビス(トリメチルシリル)アミノ]スチレンの合成〕
 p-[N,N-ビス(トリメチルシリル)アミノ]スチレン(下記式(9)で表される化合物)を、「Macromol. Chem. Phys.2000,201,2699-2704」に記載の方法に準じて合成した。得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレンの構造は、H-NMRにより確認した。
Figure JPOXMLDOC01-appb-C000014
[Production Example 1: Synthesis of p- [N, N-bis (trimethylsilyl) amino] styrene]
p- [N, N-bis (trimethylsilyl) amino] styrene (a compound represented by the following formula (9)) was prepared according to the method described in “Macromol. Chem. Phys. 2000, 201, 2699-2704”. Synthesized. The structure of the obtained p- [N, N-bis (trimethylsilyl) amino] styrene was confirmed by 1 H-NMR.
Figure JPOXMLDOC01-appb-C000014
〔製造例2:p-(ジメチルアミノ)スチレンの合成〕
 p-(ジメチルアミノ)スチレン(下記式(10)で表される化合物)を、「Polymer J. 1988, 20, 791-799」に記載の方法に準じて合成した。得られたp-(ジメチルアミノ)スチレンの構造は、H-NMRにより確認した。
Figure JPOXMLDOC01-appb-C000015
[Production Example 2: Synthesis of p- (dimethylamino) styrene]
p- (Dimethylamino) styrene (compound represented by the following formula (10)) was synthesized according to the method described in “Polymer J. 1988, 20, 791-799”. The structure of the obtained p- (dimethylamino) styrene was confirmed by 1 H-NMR.
Figure JPOXMLDOC01-appb-C000015
〔実施例1〕
〔共役ジエン系ゴム1の調製〕
 窒素置換された100mlアンプル瓶に、シクロヘキサン23.4g、およびテトラメチルエチレンジアミン1.44mmolを添加し、さらに、製造例1にて得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレン0.6gを添加した。次いで、n-ブチルリチウム1.0mmolを撹拌下で添加し、室温で120分間反応させることにより、p-[N,N-ビス(トリメチルシリル)アミノ]スチレンの重合体ブロック1A(p-[N,N-ビス(トリメチルシリル)アミノ]スチレン重合体ブロックの末端に、活性末端として、ヒドロカルビルリチウムが導入された重合体)を得た。得られた重合体ブロック1Aについては、ごく一部を取り出した上で、それにメタノールを加えて活性末端を失活させたものを試料として、重量平均分子量(Mw)を測定した。結果を表1に示す。
[Example 1]
[Preparation of Conjugated Diene Rubber 1]
To a 100 ml ampoule bottle purged with nitrogen, 23.4 g of cyclohexane and 1.44 mmol of tetramethylethylenediamine were added, and p- [N, N-bis (trimethylsilyl) amino] styrene 0 obtained in Production Example 1 was added. .6 g was added. Next, 1.0 mmol of n-butyllithium was added under stirring and reacted at room temperature for 120 minutes, whereby polymer block 1A of p- [N, N-bis (trimethylsilyl) amino] styrene (p- [N, N-bis (trimethylsilyl) amino] styrene polymer block was obtained at the end of the polymer having hydrocarbyl lithium introduced as the active end. About obtained polymer block 1A, after taking out a very small part, methanol was added to it and the thing which deactivated the active terminal was made into the sample, and the weight average molecular weight (Mw) was measured. The results are shown in Table 1.
 次いで、オートクレーブに、窒素雰囲気下、シクロヘキサン760g、1,3-ブタジエン94.8g、およびスチレン25.2gを仕込んだ後、上記にて得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレンの重合体ブロック1Aを全量加え、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95~100%の範囲になったことを確認してから、四塩化錫0.044mmolを20%濃度のシクロヘキサン溶液の状態にて添加し、10分間反応させた。その後、重合停止剤として、使用したn-ブチルリチウムの2倍モルに相当する量のメタノールを添加することで、共役ジエン系ゴム1を含む溶液を得た。 Next, 760 g of cyclohexane, 94.8 g of 1,3-butadiene, and 25.2 g of styrene were charged in an autoclave, and then p- [N, N-bis (trimethylsilyl) amino] obtained above was charged. The whole amount of styrene polymer block 1A was added, and polymerization was started at 60 ° C. The polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95 to 100%, 0.044 mmol of tin tetrachloride was added in the form of a 20% strength cyclohexane solution, and 10 minutes. Reacted. Thereafter, as a polymerization terminator, an amount of methanol corresponding to twice the mole of n-butyllithium used was added to obtain a solution containing the conjugated diene rubber 1.
 続いて、得られた共役ジエン系ゴム1を含有する溶液の入ったオートクレーブに、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、得られた共役ジエン系ゴム1 100部に対して0.2部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥することで、固形状の共役ジエン系ゴム1を得た。 Subsequently, Irganox 1520L (manufactured by Ciba Specialty Chemicals) as an anti-aging agent was added to 100 parts of the resulting conjugated diene rubber 1 in an autoclave containing a solution containing the conjugated diene rubber 1 obtained. On the other hand, after adding 0.2 part, the solvent was removed by steam stripping, and the solid conjugated diene rubber 1 was obtained by vacuum drying at 60 ° C. for 24 hours.
 そして、得られた共役ジエン系ゴム1について、重量平均分子量(Mw)、スチレン単位含有量、ビニル結合含有量、およびp-[N,N-ビス(トリメチルシリル)アミノ]スチレン単位の含有量を測定した。結果を表1に示す。 The obtained conjugated diene rubber 1 was measured for weight average molecular weight (Mw), styrene unit content, vinyl bond content, and p- [N, N-bis (trimethylsilyl) amino] styrene unit content. did. The results are shown in Table 1.
〔ゴム組成物、ゴム架橋物の調製〕
 容量250mlのブラベンダータイプミキサー中で、上記にて得られた共役ジエン系ゴム1 100部を30秒素練りし、次いでシリカ(ローディア社製、商品名「Zeosil1165MP」)50部、プロセスオイル(新日本石油社製、商品名「アロマックス T-DAE」)25部、およびシランカップリング剤:ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド(デグッサ社製、商品名「Si69」)6.4部を添加して、110℃を開始温度として1.5分間混練後、シリカ(ローディア社製、商品名「Zeosil1165MP」)30部、酸化亜鉛3.0部、ステアリン酸2.0部および老化防止剤:N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(大内新興化学工業社製、商品名「ノクラック6C」)2.0部を添加し、更に2.5分間混練し、ミキサーから混練物を排出させた。混錬終了時の混練物の温度は150℃であった。次いで、得られた混練物を、室温まで冷却した後、再度ブラベンダータイプミキサー中で、110℃を開始温度として2分間混練した後、ミキサーから混練物を排出させた。次いで、50℃のオープンロールで、得られた混練物と、硫黄1.7部および架橋促進剤(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(商品名「ノクセラーCZ-G」、大内新興化学工業社製)1.8部とジフェニルグアニジン(商品名「ノクセラーD」、大内新興化学工業社製)1.1部)とを混練した後、シート状のゴム組成物を取り出した。そして、得られたゴム組成物を、160℃で25分間プレス架橋してゴム架橋物(試験片)を作製し、この試験片を用いて、低発熱性、およびウェットグリップ性の評価を行なった。結果を表1に示す。
[Preparation of rubber composition and rubber cross-linked product]
In a Brabender type mixer with a capacity of 250 ml, 100 parts of the conjugated diene rubber 1 obtained above is masticated for 30 seconds, and then 50 parts of silica (trade name “Zeosil 1165MP”, manufactured by Rhodia), process oil (new) 5. 25 parts by Nippon Oil Co., Ltd., trade name “Aromax T-DAE”), and silane coupling agent: bis (3- (triethoxysilyl) propyl) tetrasulfide (trade name “Si69”, manufactured by Degussa) After adding 4 parts and kneading for 1.5 minutes starting at 110 ° C., 30 parts of silica (trade name “Zeosil 1165MP” manufactured by Rhodia), 3.0 parts of zinc oxide, 2.0 parts of stearic acid and aging Inhibitor: N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine (manufactured by Ouchi Shinsei Chemical Co., Ltd., trade name “ It was added crack 6C ") 2.0 parts, and kneaded further 2.5 minutes and drained a kneaded material from the mixer. The temperature of the kneaded product at the end of kneading was 150 ° C. Next, the obtained kneaded product was cooled to room temperature and then kneaded again in a Brabender type mixer at 110 ° C. for 2 minutes, and then the kneaded product was discharged from the mixer. Next, with an open roll at 50 ° C., the obtained kneaded product, 1.7 parts of sulfur and a crosslinking accelerator (N-cyclohexyl-2-benzothiazolylsulfenamide (trade name “Noxeller CZ-G”, Ouchi) After kneading 1.8 parts of Shinsei Chemical Industry Co., Ltd. and 1.1 parts of diphenylguanidine (trade name “Noxeller D”, manufactured by Ouchi Shinsei Chemical Co., Ltd.), a sheet-like rubber composition was taken out. Then, the obtained rubber composition was press-crosslinked at 160 ° C. for 25 minutes to produce a rubber cross-linked product (test piece), and low exothermic properties and wet grip properties were evaluated using this test piece. . The results are shown in Table 1.
〔実施例2〕
〔共役ジエン系ゴム2の調製〕
 製造例1にて得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレンの使用量を、0.6gから1.2gに変更した以外は、実施例1と同様にして、p-[N,N-ビス(トリメチルシリル)アミノ]スチレンの重合体ブロック2A(p-[N,N-ビス(トリメチルシリル)アミノ]スチレン重合体ブロックの末端に、活性末端として、ヒドロカルビルリチウムが導入された重合体)を得た。得られた重合体ブロック2Aについては、ごく一部を取り出した上で、それにメタノールを加えて活性末端を失活させたものを試料として、重量平均分子量(Mw)を測定した。結果を表1に示す。
[Example 2]
[Preparation of Conjugated Diene Rubber 2]
P- [N, N-bis (trimethylsilyl) amino] styrene obtained in Production Example 1 was prepared in the same manner as in Example 1 except that the amount used was changed from 0.6 g to 1.2 g. [N, N-bis (trimethylsilyl) amino] styrene polymer block 2A (p- [N, N-bis (trimethylsilyl) amino] styrene polymer block is a polymer block in which hydrocarbyl lithium has been introduced as an active end. Combined) was obtained. About obtained polymer block 2A, after taking out a very small part, the thing which added methanol to it and deactivated the active terminal was made into the sample, and the weight average molecular weight (Mw) was measured. The results are shown in Table 1.
 そして、このようにして得られた重合体ブロック2Aを用いた以外は、実施例1と同様にして、固形状の共役ジエン系ゴム2を得て、得られた共役ジエン系ゴム2について、重量平均分子量(Mw)、スチレン単位含有量、ビニル結合含有量、およびp-[N,N-ビス(トリメチルシリル)アミノ]スチレン単位の含有量を測定した。結果を表1に示す。 The solid conjugated diene rubber 2 was obtained in the same manner as in Example 1 except that the polymer block 2A obtained in this way was used. The average molecular weight (Mw), styrene unit content, vinyl bond content, and p- [N, N-bis (trimethylsilyl) amino] styrene unit content were measured. The results are shown in Table 1.
〔ゴム組成物、ゴム架橋物の調製〕
 また、上記にて得られた共役ジエン系ゴム2を用いた以外は、実施例1と同様にして、ゴム組成物、およびゴム架橋物(試験片)を得て、同様に、低発熱性およびウェットグリップ性の評価を行った。結果を表1に示す。
[Preparation of rubber composition and rubber cross-linked product]
In addition, a rubber composition and a crosslinked rubber product (test piece) were obtained in the same manner as in Example 1 except that the conjugated diene rubber 2 obtained above was used. The wet grip property was evaluated. The results are shown in Table 1.
〔実施例3〕
〔共役ジエン系ゴム3の調製〕
 製造例1にて得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレンの使用量を、0.6gから6.3gに変更した以外は、実施例1と同様にして、p-[N,N-ビス(トリメチルシリル)アミノ]スチレンの重合体ブロック3A(p-[N,N-ビス(トリメチルシリル)アミノ]スチレン重合体ブロックの末端に、活性末端として、ヒドロカルビルリチウムが導入された重合体)を得た。得られた重合体ブロック3Aについては、ごく一部を取り出した上で、それにメタノールを加えて活性末端を失活させたものを試料として、重量平均分子量(Mw)を測定した。結果を表1に示す。
Example 3
[Preparation of Conjugated Diene Rubber 3]
P- [N, N-bis (trimethylsilyl) amino] styrene obtained in Production Example 1 was prepared in the same manner as in Example 1 except that the amount used was changed from 0.6 g to 6.3 g. [N, N-bis (trimethylsilyl) amino] styrene polymer block 3A (p- [N, N-bis (trimethylsilyl) amino] styrene polymer block is a polymer block in which hydrocarbyl lithium is introduced as an active end. Combined) was obtained. About obtained polymer block 3A, after taking out a very small part, methanol was added to it and the thing which deactivated the active terminal was made into the sample, and the weight average molecular weight (Mw) was measured. The results are shown in Table 1.
 そして、このようにして得られた重合体ブロック3Aを用いた以外は、実施例1と同様にして、固形状の共役ジエン系ゴム3を得て、得られた共役ジエン系ゴム3について、重量平均分子量(Mw)、スチレン単位含有量、ビニル結合含有量、およびp-[N,N-ビス(トリメチルシリル)アミノ]スチレン単位の含有量を測定した。結果を表1に示す。 Then, a solid conjugated diene rubber 3 was obtained in the same manner as in Example 1 except that the polymer block 3A thus obtained was used. The average molecular weight (Mw), styrene unit content, vinyl bond content, and p- [N, N-bis (trimethylsilyl) amino] styrene unit content were measured. The results are shown in Table 1.
〔ゴム組成物、ゴム架橋物の調製〕
 また、上記にて得られた共役ジエン系ゴム3を用いた以外は、実施例1と同様にして、ゴム組成物、およびゴム架橋物(試験片)を得て、同様に、低発熱性およびウェットグリップ性の評価を行った。結果を表1に示す。
[Preparation of rubber composition and rubber cross-linked product]
In addition, a rubber composition and a crosslinked rubber product (test piece) were obtained in the same manner as in Example 1 except that the conjugated diene rubber 3 obtained above was used. The wet grip property was evaluated. The results are shown in Table 1.
〔比較例1〕
〔共役ジエン系ゴム4の調製〕
 オートクレーブに、窒素雰囲気下、シクロヘキサン760g、1,3-ブタジエン94.8g、スチレン25.2g、および製造例1にて得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレン1.5gを仕込んだ後、n-ブチルリチウム0.8mmolを加え、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95~100%の範囲になったことを確認してから、四塩化錫0.044mmolを20%濃度のシクロヘキサン溶液の状態にて添加し、10分間反応させた。その後、重合停止剤として、使用したn-ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴム4を含有する溶液を得た。
[Comparative Example 1]
[Preparation of Conjugated Diene Rubber 4]
In a nitrogen atmosphere, 760 g of cyclohexane, 94.8 g of 1,3-butadiene, 25.2 g of styrene, and 1.5 g of p- [N, N-bis (trimethylsilyl) amino] styrene obtained in Production Example 1 were placed in an autoclave. Then, 0.8 mmol of n-butyllithium was added, and polymerization was started at 60 ° C. The polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95 to 100%, 0.044 mmol of tin tetrachloride was added in the form of a 20% strength cyclohexane solution, and 10 minutes. Reacted. Thereafter, as a polymerization terminator, an amount of methanol corresponding to 2 moles of n-butyllithium used was added to obtain a solution containing the conjugated diene rubber 4.
 続いて、得られた共役ジエン系ゴム4を含有する溶液の入ったオートクレーブに、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、共役ジエン系ゴム4 100部に対して0.2部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴム4を得た。 Subsequently, Irganox 1520L (manufactured by Ciba Specialty Chemicals) was added as an anti-aging agent to the autoclave containing the solution containing the conjugated diene rubber 4 thus obtained in an amount of 0 with respect to 100 parts of the conjugated diene rubber 4. After adding 2 parts, the solvent was removed by steam stripping, followed by vacuum drying at 60 ° C. for 24 hours to obtain a solid conjugated diene rubber 4.
 そして、得られた共役ジエン系ゴム4について、重量平均分子量(Mw)、スチレン単位含有量、ビニル結合含有量、およびp-[N,N-ビス(トリメチルシリル)アミノ]スチレン単位の含有量を測定した。結果を表1に示す。 The obtained conjugated diene rubber 4 was measured for weight average molecular weight (Mw), styrene unit content, vinyl bond content, and p- [N, N-bis (trimethylsilyl) amino] styrene unit content. did. The results are shown in Table 1.
〔ゴム組成物、ゴム架橋物の調製〕
 また、上記にて得られた共役ジエン系ゴム4を用いた以外は、実施例1と同様にして、ゴム組成物、およびゴム架橋物(試験片)を得て、同様に、低発熱性およびウェットグリップ性の評価を行った。結果を表1に示す。
[Preparation of rubber composition and rubber cross-linked product]
Further, a rubber composition and a crosslinked rubber product (test piece) were obtained in the same manner as in Example 1 except that the conjugated diene rubber 4 obtained above was used. The wet grip property was evaluated. The results are shown in Table 1.
〔比較例2〕
〔共役ジエン系ゴム5の調製〕
 製造例1にて得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレンの使用量を、1.5gから3.7gに変更した以外は、比較例1と同様にして、固形状の共役ジエン系ゴム5を得た。そして、得られた共役ジエン系ゴム5について、重量平均分子量(Mw)、スチレン単位含有量、ビニル結合含有量、およびp-[N,N-ビス(トリメチルシリル)アミノ]スチレン単位の含有量を測定した。結果を表1に示す。
[Comparative Example 2]
[Preparation of Conjugated Diene Rubber 5]
In the same manner as in Comparative Example 1, except that the amount of p- [N, N-bis (trimethylsilyl) amino] styrene obtained in Production Example 1 was changed from 1.5 g to 3.7 g, The conjugated diene rubber 5 was obtained. The obtained conjugated diene rubber 5 was measured for weight average molecular weight (Mw), styrene unit content, vinyl bond content, and p- [N, N-bis (trimethylsilyl) amino] styrene unit content. did. The results are shown in Table 1.
〔ゴム組成物、ゴム架橋物の調製〕
 また、上記にて得られた共役ジエン系ゴム5を用いた以外は、実施例1と同様にして、ゴム組成物、およびゴム架橋物(試験片)を得て、同様に、低発熱性およびウェットグリップ性の評価を行った。結果を表1に示す。
[Preparation of rubber composition and rubber cross-linked product]
Further, a rubber composition and a crosslinked rubber product (test piece) were obtained in the same manner as in Example 1 except that the conjugated diene rubber 5 obtained above was used. The wet grip property was evaluated. The results are shown in Table 1.
〔比較例3〕
〔共役ジエン系ゴム6の調製〕
 製造例1にて得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレン0.6gに代えて、製造例2にて得られたp-(ジメチルアミノ)スチレン1.2gを使用した以外は、実施例1と同様にして、p-(ジメチルアミノ)スチレンの重合体ブロック1B(p-(ジメチルアミノ)スチレン重合体ブロックの末端に、活性末端として、ヒドロカルビルリチウムが導入された重合体)を得た。得られた重合体ブロック1Bについては、ごく一部を取り出した上で、それにメタノールを加えて活性末端を失活させたものを試料として、重量平均分子量(Mw)を測定した。結果を表1に示す。
[Comparative Example 3]
[Preparation of Conjugated Diene Rubber 6]
Instead of 0.6 g of p- [N, N-bis (trimethylsilyl) amino] styrene obtained in Production Example 1, 1.2 g of p- (dimethylamino) styrene obtained in Production Example 2 was used. Except for the above, in the same manner as in Example 1, polymer block 1B of p- (dimethylamino) styrene (polymer having hydrocarbyl lithium introduced as an active end at the end of p- (dimethylamino) styrene polymer block ) About the obtained polymer block 1B, after taking out a very small part, the thing which added methanol to it and deactivated the active terminal was made into the sample, and the weight average molecular weight (Mw) was measured. The results are shown in Table 1.
 そして、このようにして得られた重合体ブロック1Bを用いた以外は、実施例1と同様にして、固形状の共役ジエン系ゴム6を得て、得られた共役ジエン系ゴム6について、重量平均分子量(Mw)、スチレン単位含有量、ビニル結合含有量、およびp-(ジメチルアミノ)スチレン単位の含有量を測定した。結果を表1に示す。 Then, a solid conjugated diene rubber 6 was obtained in the same manner as in Example 1 except that the polymer block 1B obtained in this way was used. Average molecular weight (Mw), styrene unit content, vinyl bond content, and p- (dimethylamino) styrene unit content were measured. The results are shown in Table 1.
〔ゴム組成物、ゴム架橋物の調製〕
 また、上記にて得られた共役ジエン系ゴム6を用いた以外は、実施例1と同様にして、ゴム組成物、およびゴム架橋物(試験片)を得て、同様に、低発熱性およびウェットグリップ性の評価を行った。結果を表1に示す。
[Preparation of rubber composition and rubber cross-linked product]
A rubber composition and a crosslinked rubber product (test piece) were obtained in the same manner as in Example 1 except that the conjugated diene rubber 6 obtained above was used. The wet grip property was evaluated. The results are shown in Table 1.
〔比較例4〕
〔共役ジエン系ゴム7の調製〕
 製造例1にて得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレン1.5gに代えて、製造例2にて得られたp-(ジメチルアミノ)スチレン1.5gを使用した以外は、比較例1と同様にして、固形状の共役ジエン系ゴム7を得た。そして、得られた共役ジエン系ゴム7について、重量平均分子量(Mw)、スチレン単位含有量、ビニル結合含有量、およびp-(ジメチルアミノ)スチレン単位の含有量を測定した。結果を表1に示す。
[Comparative Example 4]
[Preparation of Conjugated Diene Rubber 7]
Instead of 1.5 g of p- [N, N-bis (trimethylsilyl) amino] styrene obtained in Production Example 1, 1.5 g of p- (dimethylamino) styrene obtained in Production Example 2 was used. Otherwise, a solid conjugated diene rubber 7 was obtained in the same manner as in Comparative Example 1. Then, the obtained conjugated diene rubber 7 was measured for weight average molecular weight (Mw), styrene unit content, vinyl bond content, and p- (dimethylamino) styrene unit content. The results are shown in Table 1.
〔ゴム組成物、ゴム架橋物の調製〕
 また、上記にて得られた共役ジエン系ゴム7を用いた以外は、実施例1と同様にして、ゴム組成物、およびゴム架橋物(試験片)を得て、同様に、低発熱性およびウェットグリップ性の評価を行った。結果を表1に示す。
[Preparation of rubber composition and rubber cross-linked product]
In addition, a rubber composition and a crosslinked rubber product (test piece) were obtained in the same manner as in Example 1 except that the conjugated diene rubber 7 obtained above was used. The wet grip property was evaluated. The results are shown in Table 1.
〔比較例5〕
〔共役ジエン系ゴム8の調製〕
 製造例1にて得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレンを使用しなかった以外は、比較例1と同様にして、固形状の共役ジエン系ゴム8を得た。そして、得られた共役ジエン系ゴム8について、重量平均分子量(Mw)、スチレン単位含有量、およびビニル結合含有量を測定した。結果を表1に示す。
[Comparative Example 5]
[Preparation of Conjugated Diene Rubber 8]
A solid conjugated diene rubber 8 was obtained in the same manner as in Comparative Example 1 except that p- [N, N-bis (trimethylsilyl) amino] styrene obtained in Production Example 1 was not used. And about the obtained conjugated diene rubber 8, the weight average molecular weight (Mw), styrene unit content, and vinyl bond content were measured. The results are shown in Table 1.
〔ゴム組成物、ゴム架橋物の調製〕
 また、上記にて得られた共役ジエン系ゴム8を用いた以外は、実施例1と同様にして、ゴム組成物、およびゴム架橋物(試験片)を得て、同様に、低発熱性およびウェットグリップ性の評価を行った。結果を表1に示す。
[Preparation of rubber composition and rubber cross-linked product]
Further, a rubber composition and a crosslinked rubber product (test piece) were obtained in the same manner as in Example 1 except that the conjugated diene rubber 8 obtained above was used. The wet grip property was evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000016
 なお、表1中、実施例1~3、比較例1~5において、低発熱性およびウェットグリップ性の評価結果は、比較例1の結果を100として示した。また、表1中、「アミノ基含有単量体」とは、p-[N,N-ビス(トリメチルシリル)アミノ]スチレン、またはp-(ジメチルアミノ)スチレンを意味し、「アミノ基含有単量体単位」とは、p-[N,N-ビス(トリメチルシリル)アミノ]スチレン単位、またはp-(ジメチルアミノ)スチレン単位を意味する。
Figure JPOXMLDOC01-appb-T000016
In Table 1, in Examples 1 to 3 and Comparative Examples 1 to 5, the evaluation results of low heat build-up and wet grip properties are shown with the result of Comparative Example 1 being 100. In Table 1, “amino group-containing monomer” means p- [N, N-bis (trimethylsilyl) amino] styrene or p- (dimethylamino) styrene. The “body unit” means a p- [N, N-bis (trimethylsilyl) amino] styrene unit or a p- (dimethylamino) styrene unit.
 表1より、本発明の製造方法により製造された共役ジエン系ゴムを用いて得られるゴム架橋物は、低発熱性およびウェットグリップ性に優れるものであった(実施例1~3)。
 一方、本発明における第1工程を経ずに、上記一般式(1)で表される化合物をランダム様式で重合してなる共役ジエン系ゴムを用いて得られるゴム架橋物は、低発熱性およびウェットグリップ性のいずれにも劣るものであった(比較例1,2)。
 さらに、上記一般式(1)で表される化合物とは異なるアミノ基含有化合物を用いて製造された共役ジエン系ゴム、あるいは、アミノ基含有化合物を使用せずに製造された共役ジエン系ゴムを用いて得られるゴム架橋物も、低発熱性およびウェットグリップ性のいずれにも劣るものであった(比較例3~5)。
From Table 1, the rubber cross-linked product obtained using the conjugated diene rubber produced by the production method of the present invention was excellent in low exothermic property and wet grip property (Examples 1 to 3).
On the other hand, the rubber cross-linked product obtained by using the conjugated diene rubber obtained by polymerizing the compound represented by the general formula (1) in a random manner without passing through the first step in the present invention has low exothermic property and It was inferior to both wet grip properties (Comparative Examples 1 and 2).
Further, a conjugated diene rubber produced using an amino group-containing compound different from the compound represented by the general formula (1) or a conjugated diene rubber produced without using an amino group-containing compound The rubber cross-linked product obtained by use was also inferior in both low heat generation properties and wet grip properties (Comparative Examples 3 to 5).
〔実施例4〕
〔変性共役ジエン系ゴム9の調製〕
 窒素置換された100mlアンプル瓶に、シクロヘキサン23.4g、およびテトラメチルエチレンジアミン1.44mmolを添加し、さらに、製造例1にて得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレン1.2gを添加した。次いで、n-ブチルリチウム1.0mmolを撹拌下で添加し、室温で120分間反応させることにより、p-[N,N-ビス(トリメチルシリル)アミノ]スチレンの重合体ブロック4A(p-[N,N-ビス(トリメチルシリル)アミノ]スチレン重合体ブロックの末端に、活性末端として、ヒドロカルビルリチウムが導入された重合体)を得た。得られた重合体ブロック4Aについては、ごく一部を取り出した上で、それにメタノールを加えて活性末端を失活させたものを試料として、重量平均分子量(Mw)を測定した。結果を表2に示す。
Example 4
[Preparation of Modified Conjugated Diene Rubber 9]
To a 100 ml ampoule bottle purged with nitrogen, 23.4 g of cyclohexane and 1.44 mmol of tetramethylethylenediamine were added, and p- [N, N-bis (trimethylsilyl) amino] styrene 1 obtained in Production Example 1 was added. .2 g was added. Next, 1.0 mmol of n-butyllithium was added with stirring and reacted at room temperature for 120 minutes, whereby polymer block 4A of p- [N, N-bis (trimethylsilyl) amino] styrene (p- [N, N-bis (trimethylsilyl) amino] styrene polymer block was obtained at the end of the polymer having hydrocarbyl lithium introduced as the active end. About obtained polymer block 4A, after taking out a very small part, methanol was added to it and the thing which deactivated the active terminal was made into the sample, and the weight average molecular weight (Mw) was measured. The results are shown in Table 2.
 次いで、オートクレーブに、窒素雰囲気下、シクロヘキサン760g、1,3-ブタジエン94.8g、およびスチレン25.2gを仕込んだ後、上記にて得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレンの重合体ブロック4Aを全量加え、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95~100%の範囲になったことを確認してから、四塩化錫0.044mmolを20%濃度のシクロヘキサン溶液の状態にて添加し、10分間反応させた。次いで、下記式(11)で表されるポリオルガノシロキサンを、エポキシ基が、使用したn-ブチルリチウムの0.5倍モルに相当する量となるように、20%濃度のキシレン溶液の状態にて添加し、30分間反応させた。その後、重合停止剤として、使用したn-ブチルリチウムの2倍モルに相当する量のメタノールを添加することで、変性共役ジエン系ゴム9を含む溶液を得た。
Figure JPOXMLDOC01-appb-C000017
Next, 760 g of cyclohexane, 94.8 g of 1,3-butadiene, and 25.2 g of styrene were charged in an autoclave, and then p- [N, N-bis (trimethylsilyl) amino] obtained above was charged. The whole amount of the styrene polymer block 4A was added, and polymerization was started at 60 ° C. The polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95 to 100%, 0.044 mmol of tin tetrachloride was added in the form of a 20% strength cyclohexane solution, and 10 minutes. Reacted. Next, the polyorganosiloxane represented by the following formula (11) is converted into a 20% concentration xylene solution so that the epoxy group is in an amount corresponding to 0.5 mol of n-butyllithium used. And allowed to react for 30 minutes. Thereafter, as a polymerization terminator, an amount of methanol corresponding to twice the mole of n-butyllithium used was added to obtain a solution containing the modified conjugated diene rubber 9.
Figure JPOXMLDOC01-appb-C000017
 続いて、得られた変性共役ジエン系ゴム9を含む溶液の入ったオートクレーブにテトラブチルアンモニウムフルオリド/テトラヒドロフラン溶液(Stream Chemicals社製)をテトラブチルアンモニウムフルオリドの量として25.0mmolを添加して、60℃で100分間脱保護反応を行うことで、脱保護された変性共役ジエン系ゴム9を含有する溶液を得た。そして、この溶液に、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、変性共役ジエン系ゴム9 100部に対して0.2部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥することで、固形状の変性共役ジエン系ゴム9を得た。 Subsequently, tetrabutylammonium fluoride / tetrahydrofuran solution (manufactured by Stream Chemicals) was added to the autoclave containing the resulting solution containing the modified conjugated diene rubber 9 as tetrabutylammonium fluoride in an amount of 25.0 mmol. By performing a deprotection reaction at 60 ° C. for 100 minutes, a solution containing the deprotected modified conjugated diene rubber 9 was obtained. To this solution, 0.2 part of Irganox 1520L (manufactured by Ciba Specialty Chemicals) as an anti-aging agent is added to 100 parts of the modified conjugated diene rubber 9, and the solvent is removed by steam stripping. The solid modified conjugated diene rubber 9 was obtained by vacuum drying at 60 ° C. for 24 hours.
 そして、得られた変性共役ジエン系ゴム9について、重量平均分子量(Mw)、スチレン単位含有量、ビニル結合含有量、ならびにp-[N,N-ビス(トリメチルシリル)アミノ]スチレン単位およびこれに由来する単位の含有量を測定した。結果を表2に示す。また、得られた変性共役ジエン系ゴム9の脱保護率は、96%であった。 The modified conjugated diene rubber 9 thus obtained has a weight average molecular weight (Mw), a styrene unit content, a vinyl bond content, and a p- [N, N-bis (trimethylsilyl) amino] styrene unit and its origin. The content of the unit to be measured was measured. The results are shown in Table 2. Further, the deprotection rate of the resulting modified conjugated diene rubber 9 was 96%.
〔ゴム組成物、ゴム架橋物の調製〕
 容量250mlのブラベンダータイプミキサー中で、上記にて得られた変性共役ジエン系ゴム9 100部を30秒素練りし、次いでシリカ(ローディア社製、商品名「Zeosil1165MP」)50部、プロセスオイル(新日本石油社製、商品名「アロマックス T-DAE」)25部、およびシランカップリング剤:ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド(デグッサ社製、商品名「Si69」)6.4部を添加して、110℃を開始温度として1.5分間混練後、シリカ(ローディア社製、商品名「Zeosil1165MP」)30部、酸化亜鉛3.0部、ステアリン酸2.0部および老化防止剤:N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(大内新興化学工業社製、商品名「ノクラック6C」)2.0部を添加し、更に2.5分間混練し、ミキサーから混練物を排出させた。混錬終了時の混練物の温度は150℃であった。次いで、得られた混練物を、室温まで冷却した後、再度ブラベンダータイプミキサー中で、110℃を開始温度として2分間混練した後、ミキサーから混練物を排出させた。次いで、50℃のオープンロールで、得られた混練物と、硫黄1.7部および架橋促進剤(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(商品名「ノクセラーCZ-G」、大内新興化学工業社製)1.8部とジフェニルグアニジン(商品名「ノクセラーD」、大内新興化学工業社製)1.1部)とを混練した後、シート状のゴム組成物を取り出した。そして、得られたゴム組成物を、160℃で25分間プレス架橋してゴム架橋物(試験片)を作製し、この試験片を用いて、低発熱性、およびウェットグリップ性の評価を行なった。結果を表2に示す。
[Preparation of rubber composition and rubber cross-linked product]
In a Brabender type mixer with a capacity of 250 ml, 100 parts of the modified conjugated diene rubber 9 obtained above was masticated for 30 seconds, and then 50 parts of silica (trade name “Zeosil 1165MP”, manufactured by Rhodia), process oil ( 25 parts by Nippon Oil Corporation, trade name “Aromax T-DAE”), and silane coupling agent: bis (3- (triethoxysilyl) propyl) tetrasulfide (trade name “Si69”, manufactured by Degussa) 6 .4 parts was added and kneaded for 1.5 minutes starting at 110 ° C., then 30 parts of silica (trade name “Zeosil 1165MP” manufactured by Rhodia), 3.0 parts of zinc oxide, 2.0 parts of stearic acid and Anti-aging agent: N-phenyl-N '-(1,3-dimethylbutyl) -p-phenylenediamine (manufactured by Ouchi Shinsei Chemical Co., Ltd., product) "NOCRAC 6C") 2.0 parts were added and kneaded further 2.5 minutes and drained a kneaded material from the mixer. The temperature of the kneaded product at the end of kneading was 150 ° C. Next, the obtained kneaded product was cooled to room temperature and then kneaded again in a Brabender type mixer at 110 ° C. for 2 minutes, and then the kneaded product was discharged from the mixer. Next, with an open roll at 50 ° C., the obtained kneaded product, 1.7 parts of sulfur and a crosslinking accelerator (N-cyclohexyl-2-benzothiazolylsulfenamide (trade name “Noxeller CZ-G”, Ouchi) After kneading 1.8 parts of Shinsei Chemical Industry Co., Ltd. and 1.1 parts of diphenylguanidine (trade name “Noxeller D”, manufactured by Ouchi Shinsei Chemical Co., Ltd.), a sheet-like rubber composition was taken out. Then, the obtained rubber composition was press-crosslinked at 160 ° C. for 25 minutes to produce a rubber cross-linked product (test piece), and low exothermic properties and wet grip properties were evaluated using this test piece. . The results are shown in Table 2.
〔実施例5〕
〔変性共役ジエン系ゴム10の調製〕
 製造例1にて得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレンの使用量を、1.2gから2.6gに変更した以外は、実施例4と同様にして、p-[N,N-ビス(トリメチルシリル)アミノ]スチレンの重合体ブロック5A(p-[N,N-ビス(トリメチルシリル)アミノ]スチレン重合体ブロックの末端に、活性末端として、ヒドロカルビルリチウムが導入された重合体)を得た。得られた重合体ブロック5Aについては、ごく一部を取り出した上で、それにメタノールを加えて活性末端を失活させたものを試料として、重量平均分子量(Mw)を測定した。結果を表2に示す。
Example 5
[Preparation of Modified Conjugated Diene Rubber 10]
P- [N, N-bis (trimethylsilyl) amino] styrene obtained in Production Example 1 was prepared in the same manner as in Example 4 except that the amount used was changed from 1.2 g to 2.6 g. [N, N-bis (trimethylsilyl) amino] styrene polymer block 5A (p- [N, N-bis (trimethylsilyl) amino] styrene polymer block is a polymer block in which hydrocarbyl lithium has been introduced as an active end. Combined) was obtained. About obtained polymer block 5A, after taking out a very small part, methanol was added to it and the thing which deactivated the active terminal was made into the sample, and the weight average molecular weight (Mw) was measured. The results are shown in Table 2.
 そして、このようにして得られた重合体ブロック5Aを用いるとともに、テトラブチルアンモニウムフルオリド/テトラヒドロフラン溶液のテトラブチルアンモニウムフルオリドの量としての添加量を、25.0mmolから50.0mmolに変更した以外は、実施例4と同様にして、変性共役ジエン系ゴム10を得て、得られた変性共役ジエン系ゴム10について、重量平均分子量(Mw)、スチレン単位含有量、ビニル結合含有量、ならびにp-[N,N-ビス(トリメチルシリル)アミノ]スチレン単位およびこれに由来する単位の含有量を測定した。結果を表2に示す。また、得られた変性共役ジエン系ゴム10の脱保護率は、93%であった。 And while using the polymer block 5A obtained in this way, the addition amount as the amount of tetrabutylammonium fluoride in the tetrabutylammonium fluoride / tetrahydrofuran solution was changed from 25.0 mmol to 50.0 mmol. In the same manner as in Example 4, a modified conjugated diene rubber 10 was obtained, and the resulting modified conjugated diene rubber 10 was obtained with respect to weight average molecular weight (Mw), styrene unit content, vinyl bond content, and p. The content of-[N, N-bis (trimethylsilyl) amino] styrene units and units derived therefrom was measured. The results are shown in Table 2. Moreover, the deprotection rate of the obtained modified conjugated diene rubber 10 was 93%.
〔ゴム組成物、ゴム架橋物の調製〕
 また、上記にて得られた変性共役ジエン系ゴム10を用いた以外は、実施例4と同様にして、ゴム組成物、およびゴム架橋物(試験片)を得て、同様に、低発熱性およびウェットグリップ性の評価を行った。結果を表2に示す。
[Preparation of rubber composition and rubber cross-linked product]
Further, a rubber composition and a crosslinked rubber product (test piece) were obtained in the same manner as in Example 4 except that the modified conjugated diene rubber 10 obtained above was used. Similarly, low exothermic property was obtained. And the wet grip property was evaluated. The results are shown in Table 2.
〔実施例6〕
〔変性共役ジエン系ゴム11の調製〕
 オートクレーブに、窒素雰囲気下、シクロヘキサン760g、1,3-ブタジエン94.8g、およびスチレン25.2gを仕込んだ後、実施例5と同様にして得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレンの重合体ブロック5Aを実施例5と同量加えて、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95~100%の範囲になったことを確認してから、四塩化錫0.044mmolを20%濃度のシクロヘキサン溶液の状態にて添加し、10分間反応させた。次いで、上記式(11)で表されるポリオルガノシロキサンを、エポキシ基が、使用したn-ブチルリチウムの0.5倍モルに相当する量となるように、20%濃度のキシレン溶液の状態にて添加し、30分間反応させた。その後、重合停止剤として、使用したn-ブチルリチウムの2倍モルに相当する量のメタノールを添加することで、変性共役ジエン系ゴム11を含む溶液を得た。
Example 6
[Preparation of Modified Conjugated Diene Rubber 11]
An autoclave was charged with 760 g of cyclohexane, 94.8 g of 1,3-butadiene, and 25.2 g of styrene in a nitrogen atmosphere, and then p- [N, N-bis (trimethylsilyl) obtained in the same manner as in Example 5. Amino] styrene polymer block 5A was added in the same amount as in Example 5, and polymerization was started at 60 ° C. The polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95 to 100%, 0.044 mmol of tin tetrachloride was added in the form of a 20% strength cyclohexane solution, and 10 minutes. Reacted. Next, the polyorganosiloxane represented by the above formula (11) is brought into a 20% concentration xylene solution state so that the epoxy group is in an amount corresponding to 0.5 mol of n-butyllithium used. And allowed to react for 30 minutes. Thereafter, as a polymerization terminator, a solution containing the modified conjugated diene rubber 11 was obtained by adding an amount of methanol corresponding to twice the mole of n-butyllithium used.
 次いで、得られた変性共役ジエン系ゴム11を含む溶液に、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、得られた変性共役ジエン系ゴム11 100部に対して0.2部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥することで、固形状の変性共役ジエン系ゴム11を得た。 Next, Irganox 1520L (manufactured by Ciba Specialty Chemicals) was added as an anti-aging agent to the resulting solution containing the modified conjugated diene rubber 11 in an amount of 0.000 with respect to 100 parts of the resulting modified conjugated diene rubber 11. After the addition of 2 parts, the solvent was removed by steam stripping and vacuum-dried at 60 ° C. for 24 hours to obtain a solid modified conjugated diene rubber 11.
 そして、得られた変性共役ジエン系ゴム11について、重量平均分子量(Mw)、スチレン単位含有量、ビニル結合含有量、ならびにp-[N,N-ビス(トリメチルシリル)アミノ]スチレン単位およびこれに由来する単位の含有量を測定した。結果を表2に示す。 The resulting modified conjugated diene rubber 11 has a weight average molecular weight (Mw), a styrene unit content, a vinyl bond content, and a p- [N, N-bis (trimethylsilyl) amino] styrene unit and its origin. The content of the unit to be measured was measured. The results are shown in Table 2.
〔ゴム組成物、ゴム架橋物の調製〕
 また、上記にて得られた変性共役ジエン系ゴム11を用いた以外は、実施例4と同様にして、ゴム組成物、およびゴム架橋物(試験片)を得て、同様に、低発熱性およびウェットグリップ性の評価を行った。結果を表2に示す。
[Preparation of rubber composition and rubber cross-linked product]
Further, a rubber composition and a crosslinked rubber product (test piece) were obtained in the same manner as in Example 4 except that the modified conjugated diene rubber 11 obtained above was used. And the wet grip property was evaluated. The results are shown in Table 2.
〔実施例7〕
〔変性共役ジエン系ゴム12の調製〕
 上記式(11)で表されるポリオルガノシロキサンの代わりに、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリエトキシシラン0.4mmolを使用した以外は、実施例4と同様にして、固形状の変性共役ジエン系ゴム12を得て、得られた変性共役ジエン系ゴム12について、重量平均分子量(Mw)、スチレン単位含有量、ビニル結合含有量、ならびにp-[N,N-ビス(トリメチルシリル)アミノ]スチレン単位およびこれに由来する単位の含有量を測定した。結果を表2に示す。
Example 7
[Preparation of Modified Conjugated Diene Rubber 12]
A solid solution was obtained in the same manner as in Example 4 except that 0.4 mmol of N, N-bis (trimethylsilyl) -3-aminopropyltriethoxysilane was used instead of the polyorganosiloxane represented by the above formula (11). A modified conjugated diene rubber 12 having a shape was obtained, and the resulting modified conjugated diene rubber 12 was obtained. The weight average molecular weight (Mw), styrene unit content, vinyl bond content, and p- [N, N-bis ( The contents of trimethylsilyl) amino] styrene units and units derived therefrom were measured. The results are shown in Table 2.
〔ゴム組成物、ゴム架橋物の調製〕
 また、上記にて得られた変性共役ジエン系ゴム12を用いた以外は、実施例4と同様にして、ゴム組成物、およびゴム架橋物(試験片)を得て、同様に、低発熱性およびウェットグリップ性の評価を行った。結果を表2に示す。
[Preparation of rubber composition and rubber cross-linked product]
Further, a rubber composition and a crosslinked rubber product (test piece) were obtained in the same manner as in Example 4 except that the modified conjugated diene rubber 12 obtained above was used. And the wet grip property was evaluated. The results are shown in Table 2.
〔比較例6〕
〔変性共役ジエン系ゴム13の調製〕
 オートクレーブに、窒素雰囲気下、シクロヘキサン760g、1,3-ブタジエン94.8g、スチレン25.2g、および製造例1にて得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレン1.7gを仕込んだ後、n-ブチルリチウム0.8mmolを加え、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95~100%の範囲になったことを確認してから、四塩化錫0.044mmolを20%濃度のシクロヘキサン溶液の状態にて添加し、10分間反応させた。次いで、上記式(11)で表されるポリオルガノシロキサンを、エポキシ基が、使用したn-ブチルリチウムの0.5倍モルに相当する量となるように、20%濃度のキシレン溶液の状態にて添加し、30分間反応させた。その後、重合停止剤として、使用したn-ブチルリチウムの2倍モルに相当する量のメタノールを添加して、変性共役ジエン系ゴム13を含有する溶液を得た。
[Comparative Example 6]
[Preparation of Modified Conjugated Diene Rubber 13]
In a nitrogen atmosphere, 760 g of cyclohexane, 94.8 g of 1,3-butadiene, 25.2 g of styrene, and 1.7 g of p- [N, N-bis (trimethylsilyl) amino] styrene obtained in Production Example 1 were placed in an autoclave. Then, 0.8 mmol of n-butyllithium was added, and polymerization was started at 60 ° C. The polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95 to 100%, 0.044 mmol of tin tetrachloride was added in the form of a 20% strength cyclohexane solution, and 10 minutes. Reacted. Next, the polyorganosiloxane represented by the above formula (11) is brought into a 20% concentration xylene solution state so that the epoxy group is in an amount corresponding to 0.5 mol of n-butyllithium used. And allowed to react for 30 minutes. Thereafter, as a polymerization terminator, an amount of methanol corresponding to twice the mole of n-butyllithium used was added to obtain a solution containing the modified conjugated diene rubber 13.
 続いて、得られた変性共役ジエン系ゴム13を含有する溶液の入ったオートクレーブに、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、変性共役ジエン系ゴム13 100部に対して0.2部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の変性共役ジエン系ゴム13を得た。 Subsequently, Irganox 1520L (manufactured by Ciba Specialty Chemicals) as an anti-aging agent was added to 100 parts of the modified conjugated diene rubber 13 in the autoclave containing the solution containing the modified conjugated diene rubber 13 obtained. After adding 0.2 parts, the solvent was removed by steam stripping, followed by vacuum drying at 60 ° C. for 24 hours to obtain a solid modified conjugated diene rubber 13.
 そして、得られた変性共役ジエン系ゴム13について、重量平均分子量(Mw)、スチレン単位含有量、ビニル結合含有量、ならびにp-[N,N-ビス(トリメチルシリル)アミノ]スチレン単位およびこれに由来する単位の含有量を測定した。結果を表2に示す。 The resulting modified conjugated diene rubber 13 has a weight average molecular weight (Mw), a styrene unit content, a vinyl bond content, and a p- [N, N-bis (trimethylsilyl) amino] styrene unit and its origin. The content of the unit to be measured was measured. The results are shown in Table 2.
〔ゴム組成物、ゴム架橋物の調製〕
 また、上記にて得られた変性共役ジエン系ゴム13を用いた以外は、実施例4と同様にして、ゴム組成物、およびゴム架橋物(試験片)を得て、同様に、低発熱性およびウェットグリップ性の評価を行った。結果を表2に示す。
[Preparation of rubber composition and rubber cross-linked product]
Further, a rubber composition and a crosslinked rubber product (test piece) were obtained in the same manner as in Example 4 except that the modified conjugated diene rubber 13 obtained above was used. Similarly, low exothermic property was obtained. And the wet grip property was evaluated. The results are shown in Table 2.
〔比較例7〕
〔変性共役ジエン系ゴム14の調製〕
 上記式(11)で表されるポリオルガノシロキサンの代わりに、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリエトキシシラン0.4mmolを使用した以外は、比較例6と同様にして、固形状の変性共役ジエン系ゴム14を得た。そして、得られた変性共役ジエン系ゴム14について、重量平均分子量(Mw)、スチレン単位含有量、ビニル結合含有量、およびp-[N,N-ビス(トリメチルシリル)アミノ]スチレン単位の含有量を測定した。結果を表2に示す。
[Comparative Example 7]
[Preparation of Modified Conjugated Diene Rubber 14]
A solid solution was prepared in the same manner as in Comparative Example 6 except that 0.4 mmol of N, N-bis (trimethylsilyl) -3-aminopropyltriethoxysilane was used instead of the polyorganosiloxane represented by the above formula (11). A modified conjugated diene rubber 14 having a shape was obtained. The resulting modified conjugated diene rubber 14 has a weight average molecular weight (Mw), a styrene unit content, a vinyl bond content, and a p- [N, N-bis (trimethylsilyl) amino] styrene unit content. It was measured. The results are shown in Table 2.
〔ゴム組成物、ゴム架橋物の調製〕
 また、上記にて得られた変性共役ジエン系ゴム14を用いた以外は、実施例4と同様にして、ゴム組成物、およびゴム架橋物(試験片)を得て、同様に、低発熱性およびウェットグリップ性の評価を行った。結果を表2に示す。
[Preparation of rubber composition and rubber cross-linked product]
Further, a rubber composition and a crosslinked rubber product (test piece) were obtained in the same manner as in Example 4 except that the modified conjugated diene rubber 14 obtained above was used. Similarly, low exothermic property was obtained. And the wet grip property was evaluated. The results are shown in Table 2.
〔比較例8〕
〔変性共役ジエン系ゴム15の調製〕
 製造例1にて得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレン1.2gに代えて、製造例2にて得られたp-(ジメチルアミノ)スチレン1.2gを使用した以外は、実施例4と同様にして、p-(ジメチルアミノ)スチレンの重合体ブロック2B(p-(ジメチルアミノ)スチレン重合体ブロックの末端に、活性末端として、ヒドロカルビルリチウムが導入された重合体)を得た。得られた重合体ブロック2Bについては、ごく一部を取り出した上で、それにメタノールを加えて活性末端を失活させたものを試料として、重量平均分子量(Mw)を測定した。結果を表2に示す。
[Comparative Example 8]
[Preparation of Modified Conjugated Diene Rubber 15]
Instead of 1.2 g of p- [N, N-bis (trimethylsilyl) amino] styrene obtained in Production Example 1, 1.2 g of p- (dimethylamino) styrene obtained in Production Example 2 was used. Except for the above, in the same manner as in Example 4, polymer block 2B of p- (dimethylamino) styrene (polymer in which hydrocarbyl lithium was introduced as an active terminal at the terminal of the p- (dimethylamino) styrene polymer block ) About the obtained polymer block 2B, after taking out a very small part, methanol was added to it and the thing which deactivated the active terminal was made into the sample, and the weight average molecular weight (Mw) was measured. The results are shown in Table 2.
 そして、このようにして得られた重合体ブロック2Bを用いた以外は、実施例4と同様にして、固形状の変性共役ジエン系ゴム15を得て、得られた変性共役ジエン系ゴム15について、重量平均分子量(Mw)、スチレン単位含有量、ビニル結合含有量、およびp-(ジメチルアミノ)スチレン単位の含有量を測定した。結果を表2に示す。 Then, a solid modified conjugated diene rubber 15 was obtained in the same manner as in Example 4 except that the polymer block 2B thus obtained was used, and the resulting modified conjugated diene rubber 15 was obtained. , Weight average molecular weight (Mw), styrene unit content, vinyl bond content, and p- (dimethylamino) styrene unit content were measured. The results are shown in Table 2.
〔ゴム組成物、ゴム架橋物の調製〕
 また、上記にて得られた変性共役ジエン系ゴム15を用いた以外は、実施例4と同様にして、ゴム組成物、およびゴム架橋物(試験片)を得て、同様に、低発熱性およびウェットグリップ性の評価を行った。結果を表2に示す。
[Preparation of rubber composition and rubber cross-linked product]
Further, a rubber composition and a crosslinked rubber product (test piece) were obtained in the same manner as in Example 4 except that the modified conjugated diene rubber 15 obtained above was used. And the wet grip property was evaluated. The results are shown in Table 2.
〔比較例9〕
〔変性共役ジエン系ゴム16の調製〕
 製造例1にて得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレン1.7gに代えて、製造例2にて得られたp-(ジメチルアミノ)スチレン1.7gを使用した以外は、比較例6と同様にして、固形状の変性共役ジエン系ゴム16を得て、得られた変性共役ジエン系ゴム16について、重量平均分子量(Mw)、スチレン単位含有量、ビニル結合含有量、およびp-(ジメチルアミノ)スチレン単位の含有量を測定した。結果を表2に示す。
[Comparative Example 9]
[Preparation of Modified Conjugated Diene Rubber 16]
Instead of 1.7 g of p- [N, N-bis (trimethylsilyl) amino] styrene obtained in Production Example 1, 1.7 g of p- (dimethylamino) styrene obtained in Production Example 2 was used. Except for the above, a solid modified conjugated diene rubber 16 was obtained in the same manner as in Comparative Example 6, and the resulting modified conjugated diene rubber 16 was weight average molecular weight (Mw), styrene unit content, vinyl bond contained. The amount and content of p- (dimethylamino) styrene units were measured. The results are shown in Table 2.
〔ゴム組成物、ゴム架橋物の調製〕
 また、上記にて得られた変性共役ジエン系ゴム16を用いた以外は、実施例4と同様にして、ゴム組成物、およびゴム架橋物(試験片)を得て、同様に、低発熱性およびウェットグリップ性の評価を行った。結果を表2に示す。
[Preparation of rubber composition and rubber cross-linked product]
A rubber composition and a crosslinked rubber product (test piece) were obtained in the same manner as in Example 4 except that the modified conjugated diene rubber 16 obtained above was used. And the wet grip property was evaluated. The results are shown in Table 2.
〔比較例10〕
〔変性共役ジエン系ゴム17の調製〕
 製造例1にて得られたp-[N,N-ビス(トリメチルシリル)アミノ]スチレンを使用しなかった以外は、比較例6と同様にして、固形状の変性共役ジエン系ゴム17を得た。そして、得られた変性共役ジエン系ゴム17について、重量平均分子量(Mw)、スチレン単位含有量、およびビニル結合含有量を測定した。結果を表2に示す。
[Comparative Example 10]
[Preparation of Modified Conjugated Diene Rubber 17]
A solid modified conjugated diene rubber 17 was obtained in the same manner as in Comparative Example 6 except that p- [N, N-bis (trimethylsilyl) amino] styrene obtained in Production Example 1 was not used. . The resulting modified conjugated diene rubber 17 was measured for weight average molecular weight (Mw), styrene unit content, and vinyl bond content. The results are shown in Table 2.
〔ゴム組成物、ゴム架橋物の調製〕
 また、上記にて得られた変性共役ジエン系ゴム17を用いた以外は、実施例4と同様にして、ゴム組成物、およびゴム架橋物(試験片)を得て、同様に、低発熱性およびウェットグリップ性の評価を行った。結果を表2に示す。
[Preparation of rubber composition and rubber cross-linked product]
Further, a rubber composition and a crosslinked rubber product (test piece) were obtained in the same manner as in Example 4 except that the modified conjugated diene rubber 17 obtained above was used. And the wet grip property was evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000018
 なお、表2中、実施例4~7、比較例6~10において、低発熱性およびウェットグリップ性の評価結果は、比較例6の結果を100として示した。また、表2中、「アミノ基含有単量体」とは、p-[N,N-ビス(トリメチルシリル)アミノ]スチレン、またはp-(ジメチルアミノ)スチレンを意味し、「アミノ基含有単量体単位」とは、p-[N,N-ビス(トリメチルシリル)アミノ]スチレン単位およびこれに由来する単位(p-[N,N-ビス(トリメチルシリル)アミノ]スチレン単位の保護基(トリメチルシリル基)の少なくとも一部が脱保護されてなる単位)、あるいはp-(ジメチルアミノ)スチレン単位を意味する。
Figure JPOXMLDOC01-appb-T000018
In Table 2, in Examples 4 to 7 and Comparative Examples 6 to 10, the evaluation results of low heat build-up and wet grip properties are shown with the result of Comparative Example 6 being 100. In Table 2, “amino group-containing monomer” means p- [N, N-bis (trimethylsilyl) amino] styrene or p- (dimethylamino) styrene. The term “body unit” means a p- [N, N-bis (trimethylsilyl) amino] styrene unit and a unit derived therefrom (p- [N, N-bis (trimethylsilyl) amino] styrene unit protecting group (trimethylsilyl group) Or a p- (dimethylamino) styrene unit.
 表2より、本発明の製造方法により製造された変性共役ジエン系ゴムを用いて得られるゴム架橋物は、低発熱性およびウェットグリップ性に優れるものであった(実施例4~7)。
 一方、本発明における第1工程を経ずに、上記一般式(1)で表される化合物をランダム様式で重合してなる変性共役ジエン系ゴムを用いて得られるゴム架橋物は、低発熱性およびウェットグリップ性のいずれにも劣るものであった(比較例6,7)。
 さらに、上記一般式(1)で表される化合物とは異なるアミノ基含有化合物を用いて製造された変性共役ジエン系ゴム、あるいは、アミノ基含有化合物を使用せずに製造された変性共役ジエン系ゴムを用いて得られるゴム架橋物も、低発熱性およびウェットグリップ性のいずれにも劣るものであった(比較例8~10)。
From Table 2, the rubber cross-linked product obtained using the modified conjugated diene rubber produced by the production method of the present invention was excellent in low exothermic property and wet grip property (Examples 4 to 7).
On the other hand, the rubber cross-linked product obtained by using the modified conjugated diene rubber obtained by polymerizing the compound represented by the general formula (1) in a random manner without passing through the first step in the present invention has a low exothermic property. It was inferior to both wet grip properties (Comparative Examples 6 and 7).
Furthermore, a modified conjugated diene rubber produced using an amino group-containing compound different from the compound represented by the general formula (1), or a modified conjugated diene system produced without using an amino group-containing compound The crosslinked rubber obtained using rubber was also inferior in both low heat build-up and wet grip properties (Comparative Examples 8 to 10).
 なお、実施例5と実施例6とは、テトラブチルアンモニウムフルオリド/テトラヒドロフラン溶液を用いた脱保護を行ったか否かという点以外は、同様の操作を行った実施例であるが、これら実施例5と実施例6とは、低発熱性およびウェットグリップ性の結果が同等であることから、上記一般式(1)で表される化合物からなる重合ブロックにおける、脱保護は、ゴム組成物を調製する際のブラベンダータイプミキサーによる混練中にも起こっていると考えられ、このことは、上述した実施例1~3においても同様であると考えられる。なお、この理由としては、たとえば、ブラベンダータイプミキサーによる混練中に、配合剤として配合しているステアリン酸が作用していることによると考えられる。 Examples 5 and 6 are examples in which the same operation was performed except that deprotection was performed using a tetrabutylammonium fluoride / tetrahydrofuran solution. 5 and Example 6 are equivalent in the results of low exothermic property and wet grip property. Therefore, the deprotection in the polymer block composed of the compound represented by the general formula (1) prepared a rubber composition. This is also considered to occur during the kneading by the Brabender type mixer, and this is also considered to be the same in Examples 1 to 3 described above. In addition, it is thought that this reason is because the stearic acid mix | blended as a compounding agent is acting during the kneading | mixing by a Brabender type mixer, for example.

Claims (13)

  1.  重合開始剤を用いて、下記一般式(1)で表される化合物を重合して、活性末端を有する一般式(1)で表される化合物の重合体ブロックを得る第1工程と、
     前記重合体ブロックの活性末端から、少なくとも共役ジエン化合物を含んでなる単量体を重合する第2工程と、を備える共役ジエン系ゴムの製造方法。
    Figure JPOXMLDOC01-appb-C000001
     (上記一般式(1)において、Rは、水素原子または炭素数1~20の炭化水素基、X、Xは、少なくとも一方が、アミノ基の保護基である。)
    A first step of polymerizing a compound represented by the following general formula (1) using a polymerization initiator to obtain a polymer block of the compound represented by the general formula (1) having an active end;
    And a second step of polymerizing a monomer comprising at least a conjugated diene compound from an active end of the polymer block.
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), R 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and at least one of X 1 and X 2 is a protecting group for an amino group.)
  2.  前記アミノ基の保護基が、下記一般式(2)で表される基である請求項1に記載の共役ジエン系ゴムの製造方法。
    Figure JPOXMLDOC01-appb-C000002
     (上記一般式(2)中、R~Rは、それぞれ独立に、水素原子、および置換基を有していてもよい炭素数1~18の炭化水素基から選択される基である。)
    The method for producing a conjugated diene rubber according to claim 1, wherein the amino-protecting group is a group represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the above general formula (2), R 2 to R 4 are each independently a group selected from a hydrogen atom and an optionally substituted hydrocarbon group having 1 to 18 carbon atoms. )
  3.  前記一般式(1)で表される化合物が、p-[N,N-ビス(トリメチルシリル)アミノ]スチレン、または、p-[N,N-ビス(トリメチルシリル)アミノ]-α-メチルスチレンである請求項1または2に記載の共役ジエン系ゴムの製造方法。 The compound represented by the general formula (1) is p- [N, N-bis (trimethylsilyl) amino] styrene or p- [N, N-bis (trimethylsilyl) amino] -α-methylstyrene. A method for producing a conjugated diene rubber according to claim 1 or 2.
  4.  前記単量体として、芳香族ビニル化合物を0~50重量%含有するものを用いる請求項1~3のいずれかに記載の共役ジエン系ゴムの製造方法。 The method for producing a conjugated diene rubber according to any one of claims 1 to 3, wherein a monomer containing 0 to 50% by weight of an aromatic vinyl compound is used as the monomer.
  5.  請求項1~4のいずれかに記載の製造方法により得られる共役ジエン系ゴム。 A conjugated diene rubber obtained by the production method according to any one of claims 1 to 4.
  6.  重合開始剤を用いて、下記一般式(1)で表される化合物を重合して、活性末端を有する一般式(1)で表される化合物の重合体ブロックを得る第1工程と、
     前記重合体ブロックの活性末端から、少なくとも共役ジエン化合物を含んでなる単量体を重合する第2工程と、
     第2工程において得られた共役ジエン系ゴムの重合体鎖の活性末端に、該活性末端と反応可能な官能基を有するシラン化合物を反応させる第3工程と、を備える変性共役ジエン系ゴムの製造方法。
    Figure JPOXMLDOC01-appb-C000003
     (上記一般式(1)において、Rは、水素原子または炭素数1~20の炭化水素基、X、Xは、少なくとも一方が、アミノ基の保護基である。)
    A first step of polymerizing a compound represented by the following general formula (1) using a polymerization initiator to obtain a polymer block of the compound represented by the general formula (1) having an active end;
    A second step of polymerizing a monomer comprising at least a conjugated diene compound from an active end of the polymer block;
    A third step of reacting the active end of the polymer chain of the conjugated diene rubber obtained in the second step with a silane compound having a functional group capable of reacting with the active end, and manufacturing a modified conjugated diene rubber Method.
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula (1), R 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and at least one of X 1 and X 2 is a protecting group for an amino group.)
  7.  前記アミノ基の保護基が、下記一般式(2)で表される基である請求項6に記載の変性共役ジエン系ゴムの製造方法。
    Figure JPOXMLDOC01-appb-C000004
     (上記一般式(2)中、R~Rは、それぞれ独立に、水素原子、および置換基を有していてもよい炭素数1~18の炭化水素基から選択される基である。)
    The method for producing a modified conjugated diene rubber according to claim 6, wherein the amino-protecting group is a group represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000004
    (In the above general formula (2), R 2 to R 4 are each independently a group selected from a hydrogen atom and an optionally substituted hydrocarbon group having 1 to 18 carbon atoms. )
  8.  前記一般式(1)で表される化合物が、p-[N,N-ビス(トリメチルシリル)アミノ]スチレン、または、p-[N,N-ビス(トリメチルシリル)アミノ]-α-メチルスチレンである請求項6または7に記載の変性共役ジエン系ゴムの製造方法。 The compound represented by the general formula (1) is p- [N, N-bis (trimethylsilyl) amino] styrene or p- [N, N-bis (trimethylsilyl) amino] -α-methylstyrene. A method for producing a modified conjugated diene rubber according to claim 6 or 7.
  9.  請求項6~8のいずれかに記載の製造方法により得られる変性共役ジエン系ゴム。 A modified conjugated diene rubber obtained by the production method according to any one of claims 6 to 8.
  10.  請求項5に記載の共役ジエン系ゴム、または請求項9に記載の変性共役ジエン系ゴムを含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなるゴム組成物。 A rubber composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the conjugated diene rubber according to claim 5 or the modified conjugated diene rubber according to claim 9.
  11.  架橋剤をさらに含有してなる請求項10に記載のゴム組成物。 The rubber composition according to claim 10, further comprising a crosslinking agent.
  12.  請求項11に記載のゴム組成物を架橋してなるゴム架橋物。 A crosslinked rubber product obtained by crosslinking the rubber composition according to claim 11.
  13.  請求項12に記載のゴム架橋物を含んでなるタイヤ。 A tire comprising the rubber cross-linked product according to claim 12.
PCT/JP2014/075550 2013-09-30 2014-09-26 Production method for conjugated diene-based rubber WO2015046392A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015539363A JP6332279B2 (en) 2013-09-30 2014-09-26 Method for producing conjugated diene rubber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013204950 2013-09-30
JP2013-204950 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015046392A1 true WO2015046392A1 (en) 2015-04-02

Family

ID=52743518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075550 WO2015046392A1 (en) 2013-09-30 2014-09-26 Production method for conjugated diene-based rubber

Country Status (2)

Country Link
JP (1) JP6332279B2 (en)
WO (1) WO2015046392A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135398A1 (en) * 2016-02-04 2017-08-10 日産化学工業株式会社 Polymer production method
JP2018119105A (en) * 2017-01-27 2018-08-02 Jsr株式会社 Modified conjugated diene polymer and method for producing the same, polymer composition, crosslinked polymer and tire
JP2018119104A (en) * 2017-01-27 2018-08-02 Jsr株式会社 Method for producing modified conjugated diene polymer, polymer composition, crosslinked polymer and tire
WO2019073829A1 (en) * 2017-10-13 2019-04-18 日本ゼオン株式会社 Modified conjugated diene rubber
US11124593B2 (en) 2017-05-12 2021-09-21 Asahi Kasei Kabushiki Kaisha Modified block copolymer, method for producing modified block copolymer, and resin composition
US12006422B2 (en) 2017-12-14 2024-06-11 Bridgestone Corporation Coupled polymer products, methods of making and compositions containing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337614A (en) * 1995-06-09 1996-12-24 Bridgestone Corp Copolymer and rubber composition containing the same
WO2011105362A1 (en) * 2010-02-26 2011-09-01 日本ゼオン株式会社 Conjugated diene rubber, rubber composition, crosslinked rubber, tire, and process for production of conjugated diene rubber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337614A (en) * 1995-06-09 1996-12-24 Bridgestone Corp Copolymer and rubber composition containing the same
WO2011105362A1 (en) * 2010-02-26 2011-09-01 日本ゼオン株式会社 Conjugated diene rubber, rubber composition, crosslinked rubber, tire, and process for production of conjugated diene rubber

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
K.SUZUKI ET AL.: "Protection and Polymerization of Functional Monomers. Synthesis of Well-Defined Poly(4- aminostyrene) by Means of Anionic Living Polymerization of 4-(N,N-Bis(trimethylsilyl) amino)styrene", MACROMOLECULES, vol. 22, 1989, pages 2607 - 2611 *
MASANARI INAGAKI ET AL., DEVELOPMENT OF THE SOLUTION SBRS FOR HIGH- PERFORMANCE TIRES, January 2004 (2004-01-01), pages 13 - 23 *
W.H.DICKSTEIN ET AL.: "Blocked Amine Functional Initiator for Anionic Polymerization", MACROMOLECULES, vol. 22, 1989, pages 3882 - 3885 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135398A1 (en) * 2016-02-04 2017-08-10 日産化学工業株式会社 Polymer production method
JPWO2017135398A1 (en) * 2016-02-04 2018-11-29 日産化学株式会社 Method for producing polymer
US11059912B2 (en) 2016-02-04 2021-07-13 Nissan Chemical Corporation Polymer production method
JP2018119105A (en) * 2017-01-27 2018-08-02 Jsr株式会社 Modified conjugated diene polymer and method for producing the same, polymer composition, crosslinked polymer and tire
JP2018119104A (en) * 2017-01-27 2018-08-02 Jsr株式会社 Method for producing modified conjugated diene polymer, polymer composition, crosslinked polymer and tire
US11124593B2 (en) 2017-05-12 2021-09-21 Asahi Kasei Kabushiki Kaisha Modified block copolymer, method for producing modified block copolymer, and resin composition
WO2019073829A1 (en) * 2017-10-13 2019-04-18 日本ゼオン株式会社 Modified conjugated diene rubber
CN111479856A (en) * 2017-10-13 2020-07-31 日本瑞翁株式会社 Modified conjugated diene rubber
JPWO2019073829A1 (en) * 2017-10-13 2020-11-05 日本ゼオン株式会社 Modified conjugated diene rubber
EP3696211A4 (en) * 2017-10-13 2021-07-07 Zeon Corporation Modified conjugated diene rubber
US11566094B2 (en) 2017-10-13 2023-01-31 Zeon Corporation Modified conjugated diene rubber
US12006422B2 (en) 2017-12-14 2024-06-11 Bridgestone Corporation Coupled polymer products, methods of making and compositions containing

Also Published As

Publication number Publication date
JP6332279B2 (en) 2018-05-30
JPWO2015046392A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5716736B2 (en) Conjugated diene rubber, rubber composition, rubber cross-linked product, tire, and method for producing conjugated diene rubber
KR102602901B1 (en) Method for producing conjugated diene rubber
JP5845883B2 (en) Method for producing modified conjugated diene rubber composition, method for producing rubber composition, method for producing crosslinked rubber, and method for producing tire
WO2016208739A1 (en) Method for producing conjugated diene rubber
JP2016037543A (en) Method for producing conjugated diene-based rubber
JP6332279B2 (en) Method for producing conjugated diene rubber
JP6597600B2 (en) Method for producing conjugated diene rubber
JP6421521B2 (en) Conjugated diene polymer and rubber composition
JP2016011334A (en) Composition of modified conjugated diene rubber
JP6205788B2 (en) Process for producing modified conjugated diene rubber
JP6511872B2 (en) Conjugated diene polymer
JP2014208805A (en) Method for producing modified conjugated diene-based rubber
JP7108460B2 (en) Method for producing conjugated diene rubber
JP7244244B2 (en) Method for producing conjugated diene rubber
JP2019172808A (en) Conjugated diene polymer
JP7370734B2 (en) Manufacturing method of polybutadiene rubber
JP7225802B2 (en) Method for producing modified conjugated diene rubber
JP7020423B2 (en) Method for manufacturing modified conjugated diene rubber
TW202407017A (en) Rubber composition, rubber crosslinked product, tire, and rubber crosslinked product manufacturing method
JP2019172806A (en) Conjugated diene rubber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539363

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847031

Country of ref document: EP

Kind code of ref document: A1