WO2015046186A1 - Series hybrid combine - Google Patents

Series hybrid combine Download PDF

Info

Publication number
WO2015046186A1
WO2015046186A1 PCT/JP2014/075165 JP2014075165W WO2015046186A1 WO 2015046186 A1 WO2015046186 A1 WO 2015046186A1 JP 2014075165 W JP2014075165 W JP 2014075165W WO 2015046186 A1 WO2015046186 A1 WO 2015046186A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
motor
relationship
tool
transmission
Prior art date
Application number
PCT/JP2014/075165
Other languages
French (fr)
Japanese (ja)
Inventor
山中 之史
仲島 鉄弥
友希 藏前
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2015046186A1 publication Critical patent/WO2015046186A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • A01D69/02Driving mechanisms or parts thereof for harvesters or mowers electric

Definitions

  • the present invention includes an engine, a generator driven by the output of the engine, a motor (electric motor) driven by electric power from the generator, a traveling device that causes the vehicle to travel by rotational power from the motor,
  • the present invention relates to a hybrid combine that includes a reaping device that is driven by rotational power from a motor and performs a crop harvesting operation as the vehicle travels, and an electric motor control unit that controls the generator and the motor.
  • An engine for transmitting power to the traveling device, an electric motor, a generator for generating electric power by driving the engine, a battery for storing electric power generated by the generator for driving the electric motor, and the electric motor or the internal combustion engine or its A hybrid combine comprising a working device driven by both is known from US Pat.
  • This hybrid combine selects either a charging mode in which the electric power generated by the generator is stored in the battery or an assist mode in which at least a part of the electric power stored in the battery is used as power for the work device. Can drive.
  • a smaller engine can be used.
  • reduction of combustion exhaust gas emissions and engine noise can be realized.
  • a large-capacity battery required for accumulating engine surplus power as electric power and a control device for feeding / charging control of the battery increase a cost burden.
  • An electric motor for driving and harvesting that drives a traveling device and a harvesting processing device that harvests and conveys the crops backward
  • an electric motor for threshing that drives a threshing device that threshs the harvested crops
  • power generation driven by an engine A hybrid combine equipped with a machine is known from US Pat.
  • a traveling apparatus, a cutting processing apparatus, and a threshing apparatus is driven with an electric motor, the outstanding drive characteristic which an electric motor has can be used effectively.
  • no effect can be expected in terms of reducing engine noise and fuel consumption.
  • the hybrid combine according to the present invention includes an engine, a generator driven by the output of the engine, a motor driven by electric power from the generator, a traveling device that causes the vehicle to travel by rotational power from the motor, and the motor
  • a battery for motor power supply which includes a mowing device that is driven by rotational power from the vehicle and that performs crop mowing work as the vehicle travels, and an electric motor control unit that controls the generator and the motor. It is configured as a series hybrid combine that is not.
  • a motor rotational speed setting unit that assigns a motor command rotational speed for the motor to an operation position of the first operating tool, and the first relation is configured to assign a motor command rotational speed that is faster than the second relation.
  • the driving speed of the traveling device, and consequently, the motor command rotational speed for the motor for setting the vehicle speed to a desired value is determined by operating the first operating tool to a specific operating position, It is given to the electric control unit.
  • the specific operation position of the first operating tool can be changed by operating the second operating tool. That is, even if the operation position of the first operating tool is the same, the motor command rotational speed commanded to the electric machine control unit can be changed by operating the second operating tool.
  • the relationship for deriving the motor command rotational speed using the operation position of the first operation tool as an input parameter (usually a control map or a relational expression is used) is changed by the operation of the second operation tool.
  • the vehicle speed can be changed at a stroke only by operating the second operating tool when operating the first operating tool to drive the combine at a predetermined speed.
  • this vehicle speed change has the advantage that it can be performed smoothly because it directly changes the motor command rotational speed for the motor.
  • a power transmission mechanism that transmits power from a power source (here, a motor) to a travel device has a transmission (generally called a sub-transmission) having a plurality of shift stages.
  • the gear stage is configured to be switched based on the operation of the third operating tool.
  • the setting range of the vehicle speed can be mechanically expanded.
  • the vehicle speed range obtained by switching the transmission to the low speed stage when the first relation that causes high-speed running is selected as compared with the second relation indicates that the speed change of the transmission is high when the second relation is selected. It may be similar to the vehicle speed range obtained by switching to the stage. Such a similar setting of the vehicle speed range makes the driving operation troublesome.
  • the second operation tool performs the second operation in a state where the transmission is switched to a low speed stage and the second relationship is selected.
  • the selection from the second relationship to the first relationship is ignored, and the high speed of the transmission by the third operating tool in a state where the transmission is switched to a high speed stage and the first relationship is selected.
  • the selection from the stage to the low speed stage is configured to be ignored. Thereby, setting of an unnecessary speed range is omitted.
  • the transmission apparatus is switched from the high speed stage to the low speed stage. Is ignored and the second relationship is automatically selected. Thereby, the setting of the vehicle speed range desired by the driver is further simplified.
  • a stroke operation tool arranged on the operation panel preferably displaced in the longitudinal direction of the fuselage, is often used for adjusting the vehicle speed by the driver. It is difficult to ensure a long operation stroke.
  • the second relationship is from zero to the operating position in the entire stroke of the first operating tool. 1 is configured to allocate a motor command rotational speed up to a predetermined rotational speed, and the first relationship is configured to allocate a motor command rotational speed from zero to a second predetermined rotational speed exceeding the first predetermined rotational speed. ing.
  • the transmission is at a low speed and the second relationship is selected, so that the full stroke operation range of the first operating tool becomes a low-speed traveling operation range, and the transmission Is the high speed stage and the second relationship is selected, the full stroke operation area of the first operating tool becomes a medium speed traveling operation area having an operation area faster than the low speed traveling operation area,
  • the transmission is at a high speed and the first relationship is selected, the full stroke operation area of the first operating tool becomes a high-speed travel operation area having an operation area faster than the medium-speed travel operation area.
  • these operating tools may be used as momentary switches. Further, if the second operating tool and / or the third operating tool is provided in the operation grip portion of the first operating tool formed as a lever body, the finger of the hand operating the first operating tool is used. It is convenient to operate with.
  • this series hybrid combine is a battery-less serial hybrid vehicle, and since the vehicle cannot be driven by electric power from the battery, power is supplied from a generator that generates power with a constantly rotating engine. It travels with a motor.
  • FIG. 1 schematically shows power transmission and power control in a series hybrid combine (hereinafter simply referred to as a combine or vehicle) of the present invention.
  • the starting point of power transmission is an internal combustion engine, here a diesel engine (hereinafter simply referred to as an engine) 80.
  • the rotational speed of the engine 80 is controlled by an engine control unit 86 that employs an electronic governor system, a common rail system, or the like.
  • a generator 81 that generates electric power using rotational power output from the engine 80 is connected to the engine 80 serving as a rotational power source.
  • the electric power output from the generator 81 is converted into electric power by the electric power converter 84 controlled by the electric machine control unit 85, and drives the motor 82 as another rotational power source.
  • the rotation speed and torque of the motor 82 are controlled according to the power conversion by the power conversion unit 84.
  • the end point of the power transmission is the farm work device W composed of a device for harvesting crops and the traveling device 1 for running the combine.
  • the farm work device W includes an engine drive work device WE that receives power directly from the engine 80 and a motor drive work device WM that receives power directly from the motor 82.
  • a crawler type, a wheel type, or a sub crawler type including a crawler and a wheel is used as the traveling device 1.
  • a transmission 47 including an auxiliary transmission 54 is provided between the motor 82 and the traveling device 1.
  • the engine-driven work device WE that receives the rotational power directly from the engine 80 and the motor-driven work device WM that receives the rotational power from the motor 82 are configured so that all the agricultural work devices W receive the rotational power from the motor 82.
  • the traveling apparatus 1 employs a configuration that receives rotational power from the motor 82 because rapid acceleration / deceleration is required. Therefore, an agricultural machine that requires a driving speed according to the vehicle speed as much as possible, for example, a mowing work device, is configured as a motor-driven work device WM.
  • the vehicle speed is changed by changing the drive speed of the motor 82 that is the drive source of the traveling device 1.
  • the setting of the rotation speed of the motor 82 and, consequently, the setting of the vehicle speed, which is the driving speed of the traveling device 1 is performed by an operating tool operated by the driver, in this combine, as an operating tool related to the vehicle speed, A first operating tool 66, a second operating tool 57, and a third operating tool 56 are provided.
  • the motor command rotational speed for the motor 82 is assigned based on the operation position (stroke operation position) of the first operation tool 66 configured in a stroke operation type.
  • the assignment of the motor command rotational speed is performed by the motor rotational speed setting unit 12c constructed in the main electronic unit 100.
  • the motor rotation speed setting unit 12 c uses either the first relationship or the second relationship selected based on the operation (second operation position) of the second operation tool 57.
  • the first relation and the second relation are configured as a control map, a control logical expression, or a control arithmetic expression, and the first relation assigns a motor command rotational speed that is faster than the second relation.
  • the assigned motor command rotational speed is s
  • the operation position of the first operating tool 66 is x
  • the first relation and the second relation are derived
  • the operation position in the F (x) and G (x) definition area: x is -100 to 0 to +100 (%: the forward full stroke is + 100% and the reverse full stroke is -100%)
  • the range of F (x) (the range of the motor command rotational speed to be assigned) is ⁇ 3000 (reverse) to 0 to +3000 (forward) rpm
  • the range of G (x) is ⁇ 1500 (reverse) to 0 +1500 (forward) rpm.
  • the first operation tool 66 performs a + 70% stroke operation, if the first relationship is selected, the derived motor command rotational speed is 1400 rpm, and if the second relationship is selected.
  • the derived motor command rotational speed is 700 rpm.
  • the selection of the first relationship and the second relationship is performed by the second operation tool 57. That is, depending on the operation state (second operation position) of the second operation tool 57, even if the first operation tool 66 is at the same stroke operation position, different motor command rotation speeds are assigned, resulting in different vehicle speeds. To do.
  • the auxiliary transmission 54 is configured to be switchable between the low speed stage and the high speed stage by the third operating tool 56.
  • the auxiliary transmission 54 can be switched between the low speed stage and the high speed stage also by the second operating tool 57 under specific conditions. Since the auxiliary transmission 54 can also switch the vehicle speed, the vehicle speed of this combine is determined by the operation positions of the first operation tool 66, the second operation tool 57, and the third operation tool 56. .
  • the omitted speed setting state among the four speed setting states created according to the operation states of the first operation tool 66, the second operation tool 57, and the third operation tool 56 is “first relation + low speed”. It is "dan”. Therefore, the operation of the second operation tool 57 or the third operation tool 56 that causes the transition from the speed setting state in any one of the above (a), (b), and (c) to the “first relation + low speed stage” is ignored. Will be configured.
  • the second relation is automatically selected from the first relation. It is also possible to configure so as to satisfy the demand of the driver who wants to increase the vehicle speed.
  • the transition from the low-speed state (c) having utility value to the high-speed state (a) can be assigned to, for example, the second operation tool 57 at once.
  • the vehicle speed is changed at a stroke by the operation of the second operation tool 57 and the third operation tool 56, it is convenient that the vehicle can be operated at the discretion of the driver of the kite during traveling. For this reason, it is preferable that the 2nd operation tool 57 and the 3rd operation tool 56 are comprised as a momentary switch.
  • the second operation tool 57 and the third operation tool 56 may be provided in a grip portion of the first operation tool 66 formed as a stroke operation tool.
  • the maximum rotation speed is set when a heavy load occurs
  • the medium rotation speed is set when a medium load occurs
  • the low rotation speed is set when a low load occurs, This improves fuel consumption.
  • Such control of the engine 80 is realized by giving the engine command rotational speed calculated according to the load by the main electronic unit 100 to the engine control unit 86.
  • FIG. 2 is a side view of the combine
  • FIG. 3 is a plan view.
  • This combine includes a crawler type traveling device 1 including a left crawler traveling body 1a and a right crawler traveling body 1b, and an airframe 2 supported by the traveling device 1 on the ground.
  • a cutting processing unit 3 is disposed in the front of the machine body 2.
  • a threshing device 4 and a grain tank 5 are arranged side by side in the machine body crossing direction on the left and right sides in the machine body advance direction.
  • a boarding operation unit 7 is disposed in front of the grain tank 5.
  • the cocoon cutting processing unit 3 can swing up and down around the horizontal axis P1 by operating the cylinder CY.
  • the crops harvested by the mowing processing unit 3 are threshed by the threshing device 4, and the grains obtained by the threshing device 4 are stored in the grain tank 5.
  • the harvesting processing unit 3, the threshing device 4, and the boarding operation unit 7 are attached to a body frame 6 constituting the body 2.
  • the cocoon cutting processing unit 3 includes a cutting unit 8 located at the front of the vehicle body, and a vertical transfer device 9 as a crop transfer unit that transfers the crops harvested by the cutting unit 8 toward the rear upper side of the vehicle body.
  • the vertical conveying device 9 conveys the harvested cereal meal backward and delivers it to the feed chain 18.
  • the cutting unit 8 includes a weeding tool 10 for weeding the harvested culm, a pulling device 11 for causing the planted culm to fall in a standing position, and a clipper for cutting the planted culm planted It has a type mowing device 12.
  • the cutting processing unit 3 is supported by the body frame 6 so as to be swingable up and down around the horizontal axis P1, and the vehicle body so as to open the normal working posture located at the front of the body 2 and the vehicle body front side of the body 2.
  • the posture can be changed around the vertical axis Y1 (see FIG. 3) over the maintenance posture retracted laterally outward.
  • the cutting unit frame 13 provided in the cutting processing unit 3 is supported around the horizontal axis P1 by the relay support member 15 supported by the left and right support members 14R and 14L provided upright from the body frame 6. Is supported so as to be swingable up and down.
  • the relay support member 15 that supports the reaper part frame 13 is supported by the machine body 2 so as to be rotatable about a longitudinal axis Y1 on a support body 14L located on the left side. That is, as a result, the entire cutting processing unit 3 is supported by the body 2 so as to be swingable around the longitudinal axis Y1.
  • the longitudinal axis Y ⁇ b> 1 on which the harvesting processing unit 3 is rotated to change the posture is located on the outer side in the vehicle body width direction on the opposite side of the boarding operation unit 7 in the vertical transfer device 9. Located in.
  • the threshing device 4 includes a threshing unit 16 that threshs the harvested cereal and a sorting unit 17 that sorts a processed product threshed by the threshing unit 16 into grains and dust. .
  • the harvested cereal is transported in a sideways posture in which the stock side is sandwiched by the feed chain 18. Further, in the handling chamber 19 through which the head side of the harvested cereal rice cake passes, a handling cylinder 20 that performs a handling process on the tip side of the harvested grain rice cake by being rotationally driven around the longitudinal axis of the machine body, and this handling processing.
  • a receiving network 21 is disposed for allowing the obtained processed material to leak downward.
  • a dust feed port 22 is formed on the lower side of the receiving net 21 in the processed material transfer direction to allow the processed material that has not leaked through the receiving net 21 to flow downward toward the lower side (rear side) of the sorting unit 17. Has been.
  • the sorting unit 17 is located below the threshing unit 16 and has a swing sorting mechanism 23 that swings and sorts the processed material leaked from the receiving net 21, a drive shaft 24a, and a tang ridge 24 that generates a sorting wind.
  • a collection unit 27, a second collection unit 30 and the like are provided.
  • the No. 1 recovery unit 27 recovers the selected grain (No. 1) and the right end of the recovered No. 1 by the No. 1 screw 25 arranged at the bottom along the vehicle body width direction (left and right direction). It is conveyed toward the lifting screw conveyor 26 that is connected in communication.
  • the No. 2 recovery unit 30 recovers a mixture (No. 2) such as cereal grains and straw scraps, and the No. 2 screw 28 provided at the bottom of the recovered No. 2 along the lateral direction of the vehicle body. Is conveyed toward the second reduction device 29 connected to the right end thereof.
  • the swing sorting mechanism 23 is provided with a swing sorting case 33, a precision sorting chaff sheave 34 disposed inside the swing sorting case 33, a Glen sheave 35, a Strollac 36, and the like.
  • the swing sorting case 33 is driven by an eccentric crank mechanism 32 whose front side is supported by a swing arm 31 and whose rear side is rotationally driven. Thereby, the swing sorting case 33 swings back and forth.
  • Glen sieve 35 sorts grain from the leaked processed material.
  • the Strollac 36 swings and transfers the straw scraps backward.
  • the first thing conveyed by the No. 1 screw 25 is lifted by the lifting screw conveyor 26, supplied to the grain tank 5, and stored.
  • the second product conveyed by the second screw 28 is rethreshed by the second reduction device 29 and then lifted and reduced to the swing sorting mechanism 23.
  • a grain discharging device 37 that discharges the grains stored in the grain tank 5 to the outside is provided.
  • the grain discharging device 37 includes a bottom screw 38, a vertical screw conveyor 39, and a horizontal screw conveyor 41.
  • the bottom screw 38 is provided along the groove-shaped bottom 5 a at the lower part of the grain tank 5.
  • the vertical screw conveyor 39 conveys the grain upward from the conveyance terminal end of the bottom screw 38.
  • the horizontal screw conveyor 41 conveys the grains in the horizontal direction from the upper part of the vertical screw conveyor 39 and discharges the grains from the discharge port 40 at the tip to a truck bed (not shown).
  • the lifting position of the horizontal screw conveyor 41 is changed by expansion and contraction of the hydraulic cylinder 42 provided between the vertical screw conveyor 39 and the horizontal screw conveyor 41. Furthermore, the vertical screw conveyor 39 can be swung around the vertical axis Y2 by a swivel motor 43 provided in the lower part thereof.
  • the bottom screw 38 and the vertical screw conveyor 39 and the vertical screw conveyor 39 and the horizontal screw conveyor 41 are connected to each other by bevel gear mechanisms 44 and 45, respectively. Accordingly, these conveyors are integrally rotated when power is supplied to the input pulley 46 provided at the front end of the bottom screw 38. As a result, the grain in the grain tank 5 is carried out to the outside.
  • FIG. 5 shows a first power transmission mechanism that supplies rotational power from the engine 80 to the handling cylinder 20, the sorting unit 17, and the like.
  • a traveling device 1 is composed of a left crawler traveling body 1 a and a right crawler traveling body 1 b that are arranged to rotate the rotational power from an electric motor (hereinafter simply abbreviated as “motor”) 82 on the left and right in the vehicle body width direction.
  • motor an electric motor
  • the traveling transmission 47 included in the second power transmission mechanism is unevenly arranged in the lateral direction of the boarding operation unit 7 at the center in the lateral direction of the vehicle body, and a pair of left and right Power is transmitted to the traveling device 1.
  • a travel cutting motor 82 that supplies power to the travel transmission 47 is disposed at a lower position of the driving unit step 48 in the boarding driving unit 7.
  • the output shaft 49a of the motor 82 and the input shaft 49b of the traveling transmission 47 are interlocked and connected via a joint.
  • the transmission case 47 of the traveling transmission 47 there are a gear-type reduction mechanism 53, a hydraulically operated and gear-meshing auxiliary transmission 54, and left and right crawler traveling bodies 1a and 1b.
  • a turning transmission mechanism 55 and the like for turning traveling due to a speed difference are provided. Further, power is transmitted from the traveling transmission 47 to the cutting processing unit 3.
  • a one-way clutch 63 that transmits only power for forward travel and a belt tension type cutting clutch 64 that intermittently transmits power are interposed in the power transmission path.
  • the motor 82 is a power source for the pair of left and right traveling devices 1, 1 and the cutting processing unit 3.
  • a command rotation for the motor 82 is provided based on the operation position of the stroke operation type main transmission lever 66 that functions as the first operation tool in the present invention and is provided in the boarding operation unit 7. The number is calculated. That is, when the stroke operation type main transmission lever 66 is in the neutral position, the main transmission lever 66 is stopped, and the forward travel speed increases as the operation displacement of the main transmission lever 66 toward the front increases. The reverse travel speed increases as the displacement increases.
  • the operation position of the main transmission lever 66 is detected by the stroke sensor S4.
  • a negative brake 67 that brakes when the driving of the eaves motor 82 is stopped is disposed at the end of the input shaft 49b of the traveling transmission 47 that is opposite to the connection portion of the motor 82.
  • the negative brake 67 is urged into a braking state by a spring (not shown), and releases the braking state against an urging force of the spring by an electric or hydraulic actuator.
  • the negative brake 67 is controlled by the main electronic unit 100 to be in a braking state when the motor 82 is in an operation stop state (a state where no running torque is generated), and to a brake release state when the motor 82 is in an operation state. .
  • the negative brake 67 is switched from the braking release state to the braking state, the braking force is gradually increased and the impact during braking is suppressed.
  • the sub-transmission device 54 is combined with speed switching of the motor 82, which will be described later, in order to create three speed states of high speed, medium speed, and low speed.
  • Low speed stage Due to the speed change of the motor 82 and the two speed stages of the auxiliary transmission 54, a medium speed state can be adopted when cutting in a standard farm field, and when the crop is lying down or when the crop is in a deep wet field, When it is large, the low speed state can be adopted, and when traveling on the road, the high speed state can be adopted.
  • the gear position of the auxiliary transmission 54 can be selected by a second operating tool 57 and a third operating tool 56 which are one of the vehicle speed setting operating tools provided in the boarding operation unit 7 (see FIG. 3).
  • the three speed states are selected according to the operation states of the second operation tool 57 and the third operation tool 56.
  • both the second operation tool 57 and the third operation tool 56 are formed as operation switches.
  • the second operation tool 57 is also called a cutting shift switch
  • the third operation tool 56 is also called an auxiliary transmission switch.
  • the auxiliary transmission 54 is a hydraulically operated transmission.
  • the sub-transmission device 54 has two gear positions in order to create three speed states of high speed, medium speed, and low speed in combination with speed switching of the motor 82 described later.
  • the medium speed condition is selected when cutting on a standard field, the low speed condition is selected when the crop is lying down or when the driving load is large in a deep wet field, and the high speed condition is selected when traveling on the road. Selected.
  • the shift speed of the auxiliary transmission 54 is switched by a third operating tool 56 that is one of the vehicle speed setting operating tools provided in the boarding operation unit 7.
  • the turning transmission mechanism 55 includes a slow turning clutch 58 for transmitting deceleration power to one of the left crawler traveling body 1a and the right crawler traveling body 1b, a deceleration brake 59 for applying a braking force to either one,
  • the steering clutch 60 etc. which switch the power transmission state with respect to either to a straight-ahead state and a turning state (a deceleration state or a braking state) are included.
  • the saddle turning transmission mechanism 55 is linked to an operation lever 61 that is one of the vehicle speed setting operation tools provided in the boarding operation unit 7.
  • an operation lever 61 that is one of the vehicle speed setting operation tools provided in the boarding operation unit 7.
  • a turning lever sensor S3 is provided to detect the inclination angle from the neutral position of the operation lever 61 to the left and right. That is, the turning degree of the combine is calculated based on the operation displacement of the operating lever 61, and the detection signal of the turning lever sensor S3 is used for calculating the turning degree.
  • the operation lever 61 is swingable in the front-rear direction, and the lifting operation and the lowering operation of the cutting processing unit 3 are realized by the swinging operation in the front-rear direction.
  • the intermediate speed state used when cutting in a standard field is achieved through switching of the gear position of the sub-transmission device 54 and shifting of the motor 82, and when the crop is lying down, It is possible to create a low-speed state that is used when the traveling load is large in a deep marsh and a high-speed state that is used when traveling on the road.
  • These shift states are selected according to the operation state of the second operation tool 57 that functions as the second operation tool in the present invention and the operation state of the third operation tool 56 that functions as the third operation tool in the present invention.
  • the third operating tool 56 and the second operating tool 57 are momentary switches operated by the driver's finger, and the switch is turned on by the pushing operation and turned off by the pushing operation again.
  • the third operating tool 56 is provided in the grip portion of the main transmission lever 66 that is one of the speed setting operating tools of the motor 82
  • the second operating tool 57 is the grip portion of the operating lever 61. Is provided.
  • the 3rd operation tool 56 and the 2nd operation tool 57 can also be provided in other positions, for example, a control panel etc.
  • the operation state signals of the third operation tool 56 and the second operation tool 57 and the operation position signal of the main transmission lever 66 by the stroke sensor S4 are input to the main electronic unit 100 and, as will be described later, the motor 82 and the auxiliary transmission. Used to control the device 54.
  • the power system for the sorting unit 17 receives rotational power directly from the engine 80.
  • the power from the engine 80 is transmitted to the sorting section 17, specifically, the drive shaft 24 a of the carp 24 through the belt tension type sorting on / off clutch 71. Further, power is transmitted from the drive shaft 24 a of the carp 24 to the first screw 25, the second screw 28, the swing sorting mechanism 23, the feed chain 18, and the like via the transmission belt 72.
  • the power from the engine 80 is supplied to the grain discharging device 37, specifically the bottom screw 38, via the belt tension type discharging on / off clutch 73, the bevel gear mechanism 74, and the belt transmission mechanism 75. It is transmitted to an input pulley 46 provided at the front side end.
  • the sorting on / off clutch 71 is switched between the on state and the off state by a sorting clutch motor (not shown).
  • the discharge on / off clutch 73 is switched between an on state and an off state by a discharge clutch motor (not shown).
  • the output shaft 80 a of the engine 80 is connected to a power transmission mechanism 50 ⁇ / b> B that functions as a power supply mechanism to the threshing unit 16 and the grain discharging device 37, and generates power.
  • the power generation rotary shaft 81a of the machine 81 is also connected.
  • the generator 81 and the motor 82 are connected to the electric machine control unit 85 via the power converter 84.
  • the motor 82 is a known three-phase AC induction electric motor that is used as a motor for driving the vehicle.
  • the power converter 84 includes a power generating inverter that converts AC power generated by the generator 81 into DC power, a converter that converts DC power converted by the power generating inverter into AC power suitable for the motor 82, and the like. Power electronics equipment is included. Based on a command from a main electronic unit 100 (generally called an ECU) that has built a control algorithm for appropriately controlling this power electronics device, the electric machine control unit 85 sends a control signal to the power conversion unit 84. give.
  • a main electronic unit 100 generally called an ECU
  • the engine control unit 86 controls the output (rotation speed and torque) of the engine 80 by changing the fuel supply amount to the engine 80 based on the command from the main electronic unit 100.
  • the signal from the engine rotation sensor S2 that detects the engine speed is sent to the engine control unit 86 and / or the main electronic unit 100 via the vehicle state detection unit 90.
  • the signal from the engine rotation sensor S2 including other signals, may be sent directly without passing through the vehicle state detection unit 90.
  • engine control is controlled by the engine control unit 86 in an electronic governor manner.
  • the engine control unit 86 is either droop control that slightly decreases the engine speed as the load of the engine 80 increases, or isochronous control that maintains the engine speed constant regardless of the load of the engine 80.
  • the engine 80 can be controlled.
  • the work device control unit 87 is incorporated in the engine drive work device W1 that uses the rotational power of the engine 80 as it is and the motor drive work device W2 that uses the rotational power of the motor 82 based on a command from the main electronic unit 100.
  • a control signal is given to operating devices such as a clutch operating device and a hydraulic cylinder.
  • the vehicle state detection unit 90 performs preprocessing such as conversion processing on signals input from various switches and sensors as necessary, and transfers the signals to the main electronic unit 100.
  • the main electronic unit 100 is connected to other ECUs such as an engine control unit 86, an electric machine control unit 85, a work device control unit 87, and a vehicle state detection unit 90 through an in-vehicle LAN. It should be noted that not only the main electronic unit 100 but also other ECUs are configured in an easy-to-understand manner for the purpose of explanation. Accordingly, in practice, each ECU may be appropriately integrated or may be appropriately divided. In this embodiment, the main electronic unit 100 constructs an engine management module 110, an electric appliance management module 120, a vehicle management module 130, and the like as those particularly related to the present invention by hardware and software (computer program). Yes.
  • the engine management module 110 sends various engine control commands to the engine control unit 86 to adjust the output of the engine 80 in cooperation with other management modules.
  • the electric machine management module 120 also cooperates with other management modules and sends an electric equipment control command to the electric machine control unit 85 so that the generator 81 and the motor 82 are appropriately driven via the power conversion unit 84.
  • the vehicle management module 130 executes the traveling state and working state of this combine. Confirm and manage.
  • a vehicle state determination unit 13a is constructed. Based on various state detection signals acquired from the vehicle state detection unit 90, the vehicle state determination unit 13a drives the left crawler traveling body 1a and the right crawler traveling body 1b, and the cutting processing unit 3, the threshing device 4, and the grain. The driving state of the agricultural work apparatus W such as the grain discharging apparatus 37 is determined.
  • the stroke operation position in the front-rear direction of the main transmission lever 66 operated by the driver is detected by the stroke sensor S4 as a speed setting signal and sent to the main electronic unit 100.
  • the left / right inclination angle of the operation lever 61 operated by the driver is detected by the turning lever sensor S3 as a turning degree calculation signal indicating turning (steering) of the airframe 2 and is sent to the main electronic unit 100. It is done.
  • the electric machine management module 120 determines the number of rotations of the motor 82 based on the operation position of the main transmission lever 66 and the operation lever 61, that is, based on the detection signals from the stroke sensor S4 and the turning lever sensor S3.
  • a command for controlling the driving speed of the traveling body 1a and the right crawler traveling body 1b is given to the electric machine control unit 85.
  • the electric machine control unit 85 controls power electronics devices such as an inverter and a converter included in the power conversion unit 84 based on a command from the electric machine management module 120. At that time, the output of the generator 81 and the motor 82 is changed and adjusted by controlling on / off the switching transistors provided in the three phases (u phase, v phase, w phase).
  • the motor speed setting unit 12c built in the electric appliance management module 120 is selected based on the first relationship selected by the traveling state that is the first operation state of the second operation tool 57 or the work state that is the second operation state. Using the second relationship, the motor command rotational speed is assigned to the operation position of the main transmission lever 66.
  • the first relationship is configured to be assigned a motor command rotational speed that is faster than the second relationship.
  • the actual vehicle speed also depends on the operating state of the auxiliary transmission 54 as described below.
  • the motor speed setting unit 12c built in the electric appliance management module 120 is selected based on the first relationship selected by the traveling state that is the first operation state of the second operation tool 57 or the work state that is the second operation state. Using the second relationship, the motor command rotational speed is assigned to the operation position of the main transmission lever 66.
  • the first relationship is configured to be assigned a motor command rotational speed that is faster than the second relationship.
  • the actual vehicle speed also depends on the operating state of the auxiliary transmission 54 as described below.
  • the speed setting of the traveling machine body 2 performed by the operation of the main speed change lever 66, the third operation tool 56, and the second operation tool 57, which is executed by the motor rotation speed setting unit 12c, will be described again with reference to FIG.
  • the speed setting for the forward travel and the speed setting for the reverse travel are basically the same, and therefore, in order to simplify the description, only the forward travel is handled in this description.
  • the stroke operation position of the main transmission lever 66 is x
  • the range taken by x is 0 to 100.
  • the set speed of the motor 82 is assigned to an arbitrary stroke operation position: x, there are two types of assignment methods that can be switched by the second operation tool 57.
  • the two allocation methods are F (x) as the first relation (here function) and G (x) as the second relation (here function)
  • s F (x)
  • the range taken by G (x) is 0 to 1500 rpm.
  • the vehicle speed can be doubled or halved.
  • the two operating states of the second operating tool 57 are a working state (low speed) and a traveling state (high speed).
  • F (x) is selected, and in the traveling state, G (x) is Selected.
  • F (x) and G (x) are not limited to linear, and may be nonlinear. Further, in the main electronic unit 100, it may be handled as an arithmetic expression or a map (table).
  • the following four items are selected according to the operation states of the third operating tool 56 and the second operating tool 57 at an arbitrary stroke operation position of the main transmission lever 66.
  • Three different speed settings are realized (see table in FIG. 1). (1) The speed assignment is the first relationship, and the auxiliary transmission 54 is a high speed stage. (2) The speed assignment is the first relationship, and the auxiliary transmission 54 is in the low speed stage. (3) The speed assignment is the second relation, and the auxiliary transmission 54 is the high speed stage. (4) The speed allocation is the second relationship, and the auxiliary transmission 54 is in the low speed stage. However, in this embodiment, since (2) is practically unnecessary, its use is omitted.
  • Transition A In the low speed state, the second operating tool 57 is switched to shift from the low speed state to the high speed state.
  • Transition B In the medium speed state, the second operating tool 57 is switched to shift from the medium speed state to the high speed state.
  • Transition C In the high speed state, the second operating tool 57 is switched to shift from the high speed state to the medium speed state.
  • Transition D In the medium speed state, the third operating tool 56 is switched to shift from the medium speed state to the low speed state.
  • Transition E In the low speed state, the third operating tool 56 is switched to shift from the low speed state to the medium speed state. It should be noted here that, in the transition A, the second operation tool 57 is switched from the second relationship to the first relationship by the switch operation and the auxiliary transmission device 54 is simultaneously switched from the low speed stage to the high speed stage. It is that.
  • This combine is a battery-less serial hybrid vehicle, and since the vehicle cannot be driven by power from the battery, it is driven by a motor that is driven by power from a generator that is generating power by a constantly rotating engine. Run. Therefore, it must be avoided that the engine 80 is stopped due to overload or the like, but driving the engine 80 with an output more than necessary leads to deterioration of fuel consumption. From this, the engine management module 110 appropriately manages the operation of the engine 80 in consideration of the engine load.
  • the load estimation unit 11d constructed in the engine management module 110 is estimated based on the driving state of the left crawler traveling body 1a and the right crawler traveling body 1b and the driving state of the agricultural work device W determined by the vehicle state determination unit 13a. The load on the engine is calculated as the estimated load.
  • an engine command rotational speed calculation unit 11b constructed in the engine management module 110 calculates an engine command rotational speed based on the estimated load calculated by the load estimation unit 11d and an engine control command based on the engine command rotational speed. Is output to the engine control unit 86.
  • the load estimation unit 11d and the engine control unit 86 operate integrally.
  • the following 8 Specifies two modes. (1) Stop mode: No work or running. (2) Before / after mowing operation + straight-forward mode: The machine body 2 is traveling straight ahead for a predetermined time immediately before entering the mowing operation or for a predetermined time after the mowing operation is completed.
  • the engine control unit 86 calculates the engine command rotational speed according to the operation mode.
  • the engine command rotational speed is calculated based on the engine performance curve.
  • the engine 80 has a maximum output of 18.5 KW and a maximum rotational speed of 2500 rpm, and the engine control characteristics schematically shown in FIG. 8 are represented by three lines. That is, a high rotational speed Nh (for example, a rotational speed slightly lower than 2500 rpm) is set at a high load, a medium rotational speed Nm (for example, a rotational speed slightly lower than 2000 rpm) is set at a medium load, and a low rotational speed at a low load.
  • Nh for example, a rotational speed slightly lower than 2500 rpm
  • Nm for example, a rotational speed slightly lower than 2000 rpm
  • Nl for example, a low rotational speed slightly higher than 1500 rpm
  • the idling speed of the engine 80 is slightly higher than 1000 rpm. From this, in practice, (1) In stop mode, idling speed is set, (2) Before / after mowing operation + straight running mode, the region from idling speed to low speed is set, (3) Before / after mowing operation + turning mode, a slightly lower rotational speed than the high rotational speed is set, (4) In the cutting and straight running mode, the area from the low speed to the maximum speed is set. (5) During cutting and turning mode, the maximum number of revolutions is set.
  • the maximum number of revolutions was set regardless of the load.
  • the maximum number of revolutions is set even at low loads, so the low load continues. In some cases, energy saving is insufficient.
  • the engine speed setting is constantly adjusted in accordance with the load fluctuation, in the situation where the load fluctuates finely, there arises an inconvenience related to energy saving and noise that the engine is repeatedly puffed.
  • the engine speed is set according to the load, such as high speed at high load, air speed at medium load, and low speed at low load. At that time, the maximum rotation speed is set since the cutting operation + turning mode and road traveling + turning mode are the operating states in which the greatest load is generated.
  • the traveling device 1 is composed of a pair of left and right crawler traveling bodies 1a and 1b.
  • a combined configuration of wheels and crawler traveling bodies or a configuration including only wheels may be employed.
  • the second operation tool 57 and the third operation tool 56 are formed as switches, but an operation lever operated by the driver and a sensor for detecting an operation displacement of the operation lever. You may comprise.
  • the present invention can be applied to a self-removal type or a normal type combine in which crops are harvested and threshed as the vehicle runs.
  • traveling device 2 traveling machine body 3: reaping processing unit 4: threshing device 5: grain tank 7: boarding operation unit 8: reaping unit 12: reaping device 16: threshing unit 17: sorting unit 37: grain discharging device 54 : Sub-transmission device 56: Third operation tool 57: Second operation tool 61: Operation lever 66: Main transmission lever (first operation tool) 80: Engine 81: Generator 82: Motor (electric motor) 84: Power conversion unit 85: Electric control unit 86: Engine control unit 87: Work device control unit 90: Vehicle state detection unit 100: Main electronic unit 110: Engine management module 11b: Engine command rotational speed calculation unit 11d: Load estimation unit 120: Electricity management module 12c: Motor rotation speed setting unit 130: Vehicle management module 13a: Vehicle state determination unit WE: Engine drive work device WM: Motor drive work device S2: Engine rotation speed sensor S3: Swivel lever sensor S4: Stroke sensor

Abstract

[Problem] To improve energy consumption in a hybrid combine wherein a traveling device is driven by a motor. [Solution] The series hybrid combine is provided with: a traveling device (1) that makes a vehicle travel by rotary power from a motor (82) driven by electric power from a generator (81) driven by the output of an engine (80); a cutting and processing unit driven by the rotary power from the motor (82); and an electrical machinery control unit (85) that controls the generator (81) and the motor (82). There is also provided a motor rotational speed setting unit (12c) that uses a first relationship or a second relationship, selected on the basis of an operation performed on a second operating tool (57), to assign a motor command rotational speed for the motor (82) to an operating position of a first operating tool (66) that regulates drive speed for the traveling device (1). The first relationship assigns a motor command rotational speed that is faster than that for the second relationship.

Description

シリーズハイブリッドコンバインSeries hybrid combine
  本発明は、エンジンと、前記エンジンの出力によって駆動する発電機と、前記発電機からの電力によって駆動するモータ(電動モータ)と、前記モータからの回転動力によって車両を走行させる走行装置と、前記モータからの回転動力によって駆動されるともに車両の走行に伴って農作物の刈り取り作業を行う刈取装置と、前記発電機と前記モータとを制御する電機制御ユニットとを備えたハイブリッドコンバインに関する。 The present invention includes an engine, a generator driven by the output of the engine, a motor (electric motor) driven by electric power from the generator, a traveling device that causes the vehicle to travel by rotational power from the motor, The present invention relates to a hybrid combine that includes a reaping device that is driven by rotational power from a motor and performs a crop harvesting operation as the vehicle travels, and an electric motor control unit that controls the generator and the motor.
  走行装置に動力を伝達するエンジンと、電動モータと、エンジンの駆動で発電する発電機と、この発電機で発電された電力を電動モータ駆動用に蓄えるバッテリと、この電動モータまたは内燃機関あるいはその両方により駆動される作業用装置とを備えたハイブリッドコンバインが、特許文献1から知られている。このハイブリッドコンバインは、発電機で発電された電力をバッテリに蓄える充電モードと、バッテリに蓄えられた電力の少なくとも一部を作業用装置の動力として利用するアシストモードとのいずれかのモードを選択して運転できる。このようなハイブリッドコンバインでは、エンジンに余力のある際に充電されたバッテリからの電力によって駆動される電動モータが、エンジン出力を補うことができるので、より小型のエンジンを使用することができる。その結果、燃焼排ガスの排出量削減、エンジン騒音の低減が実現する。しかしながら、エンジン余力を電力として蓄積するために要求される大容量のバッテリ、及びこのバッテリの給電・充電制御のための制御機器によって、コスト的な負担が大きくなる。 An engine for transmitting power to the traveling device, an electric motor, a generator for generating electric power by driving the engine, a battery for storing electric power generated by the generator for driving the electric motor, and the electric motor or the internal combustion engine or its A hybrid combine comprising a working device driven by both is known from US Pat. This hybrid combine selects either a charging mode in which the electric power generated by the generator is stored in the battery or an assist mode in which at least a part of the electric power stored in the battery is used as power for the work device. Can drive. In such a hybrid combine, since the electric motor driven by the electric power from the battery charged when the engine has sufficient capacity can supplement the engine output, a smaller engine can be used. As a result, reduction of combustion exhaust gas emissions and engine noise can be realized. However, a large-capacity battery required for accumulating engine surplus power as electric power and a control device for feeding / charging control of the battery increase a cost burden.
  走行装置及び作物を刈り取って後方に搬送する刈取処理装置を駆動する走行刈取用の電動モータと、刈り取った作物を脱穀処理する脱穀装置を駆動する脱穀用の電動モータと、エンジンによって駆動される発電機とを備えたハイブリッドコンバインが特許文献2から知られている。このコンバインでは、走行装置、刈取処理装置及び脱穀装置の夫々が電動モータによって駆動されるので、電動モータが有する優れた駆動特性を有効利用することができる。しかしながら、従来通りのエンジンを搭載して、エンジンによって発電機を駆動する限り、エンジン騒音の低減や燃料消費の抑制の点では、効果が期待できない。逆に、エンジンを最も燃費のよい条件で駆動して得られる発電機からの電力を大型のバッテリに蓄積し、このバッテリから電動モータを給電する場合、燃料消費の抑制は可能であっても、バッテリ自体のコストやバッテリの充電・給電制御のコストは、大きな負担となる。 An electric motor for driving and harvesting that drives a traveling device and a harvesting processing device that harvests and conveys the crops backward, an electric motor for threshing that drives a threshing device that threshs the harvested crops, and power generation driven by an engine A hybrid combine equipped with a machine is known from US Pat. In this combine, since each of a traveling apparatus, a cutting processing apparatus, and a threshing apparatus is driven with an electric motor, the outstanding drive characteristic which an electric motor has can be used effectively. However, as long as the conventional engine is mounted and the generator is driven by the engine, no effect can be expected in terms of reducing engine noise and fuel consumption. On the contrary, when the electric power from the generator obtained by driving the engine under the most fuel-efficient condition is stored in a large battery and the electric motor is fed from this battery, even if the fuel consumption can be suppressed, The cost of the battery itself and the cost of battery charging / power feeding control are significant burdens.
  乗用車の分野では、走行装置がエンジンからの回転動力を利用するに与えるエンジン駆動モードとモータによる回転動力を利用するモータ駆動モードとを状況に応じて切り替えるパラレルハイブリットが普及している。しかしながら、パラレルハイブリットでは、エンジン駆動モードとモータ駆動モードと間の動力切替機構が複雑となり、動力伝達機構(トランスミッション)のコストが上昇するという問題点がある。 In the field of passenger cars, parallel hybrids that switch between the engine drive mode that the traveling device gives when using the rotational power from the engine and the motor drive mode that uses the rotational power of the motor are widely used. However, the parallel hybrid has a problem that the power switching mechanism between the engine driving mode and the motor driving mode becomes complicated, and the cost of the power transmission mechanism (transmission) increases.
特開2004-242558号公報JP 2004-242558 A 特開2013-70642号公報JP 2013-70642 A
  上述したような従来のハイリッドコンバインに鑑み、変速特性に優れたモータによって走行装置を駆動させる利点のさらなる追求、モータ給電用の大型バッテリがもたらす不都合の解消等を実現するハイブリッドコンバインが要望されている。 In view of the conventional hybrid combine as described above, there is a demand for a hybrid combine that realizes further pursuit of the advantage of driving the traveling device with a motor having excellent speed change characteristics, elimination of inconvenience caused by a large battery for motor power supply, etc. Yes.
  本発明によるハイブリッドコンバインは、エンジンと、前記エンジンの出力によって駆動する発電機と、前記発電機からの電力によって駆動するモータと、前記モータからの回転動力によって車両を走行させる走行装置と、前記モータからの回転動力によって駆動されるともに車両の走行に伴って農作物の刈り取り作業を行う刈取装置と、前記発電機と前記モータとを制御する電機制御ユニットとを備えた、モータ給電用のバッテリが備えられていないシリーズハイブリッドコンバインとして構成されている。さらには、前記走行装置の駆動速度を調節する第1操作具及び第2操作具と、前記第2操作具の操作に基づいて選択される第1関係または第2関係のいずれかを用いて、前記第1操作具の操作位置に前記モータに対するモータ指令回転数を割り当てるモータ回転数設定部とが備えられ、前記第1関係は前記第2関係に比べて速いモータ指令回転数を割り当てるように構成されている。 The hybrid combine according to the present invention includes an engine, a generator driven by the output of the engine, a motor driven by electric power from the generator, a traveling device that causes the vehicle to travel by rotational power from the motor, and the motor A battery for motor power supply, which includes a mowing device that is driven by rotational power from the vehicle and that performs crop mowing work as the vehicle travels, and an electric motor control unit that controls the generator and the motor. It is configured as a series hybrid combine that is not. Furthermore, using either the first operation tool and the second operation tool for adjusting the drive speed of the traveling device, and the first relationship or the second relationship selected based on the operation of the second operation tool, A motor rotational speed setting unit that assigns a motor command rotational speed for the motor to an operation position of the first operating tool, and the first relation is configured to assign a motor command rotational speed that is faster than the second relation. Has been.
  この構成によれば、走行装置の駆動速度、結果的には車速を所望の値にするためのモータに対するモータ指令回転数は、第1操作具を特定の操作位置に操作することによって決定され、電機制御ユニットに与えられる。その際、第1操作具のこの特定の操作位置は、第2操作具の操作によって変更することができる。つまり、第1操作具の操作位置が同じであっても、第2操作具の操作によって、電機制御ユニットに指令するモータ指令回転数を変更することができる。具体的には、第1操作具の操作位置を入力パラメータとしてモータ指令回転数を導出する関係(通常制御マップや関係式が用いられる)が、第2操作具の操作によって変えられる。これにより、第1操作具を操作して所定速度でコンバインを走行させている際に、第2操作具を操作するだけで、車速を一挙に変えることができる。しかもこの車速変更は、直接モータに対するモータ指令回転数を変えることから、スムーズに行えるという利点がある。 According to this configuration, the driving speed of the traveling device, and consequently, the motor command rotational speed for the motor for setting the vehicle speed to a desired value is determined by operating the first operating tool to a specific operating position, It is given to the electric control unit. At this time, the specific operation position of the first operating tool can be changed by operating the second operating tool. That is, even if the operation position of the first operating tool is the same, the motor command rotational speed commanded to the electric machine control unit can be changed by operating the second operating tool. Specifically, the relationship for deriving the motor command rotational speed using the operation position of the first operation tool as an input parameter (usually a control map or a relational expression is used) is changed by the operation of the second operation tool. As a result, the vehicle speed can be changed at a stroke only by operating the second operating tool when operating the first operating tool to drive the combine at a predetermined speed. Moreover, this vehicle speed change has the advantage that it can be performed smoothly because it directly changes the motor command rotational speed for the motor.
  本発明の好適な実施形態の1つでは、動力源(ここではモータ)から走行装置に動力を伝達する動力伝達機構には複数の変速段を有する変速装置(一般には副変速装置と呼ばれる形態のものが多い)が備えられており、その変速段は第3操作具の操作に基づいて切り替えられるように構成されている。これにより、第2操作具及び第3操作具の操作を通じて、第1操作具によって設定されている車速を簡単かつ迅速に変更することができる。 In one preferred embodiment of the present invention, a power transmission mechanism that transmits power from a power source (here, a motor) to a travel device has a transmission (generally called a sub-transmission) having a plurality of shift stages. The gear stage is configured to be switched based on the operation of the third operating tool. Thus, the vehicle speed set by the first operating tool can be changed easily and quickly through the operation of the second operating tool and the third operating tool.
  変速装置が少なくとも高速段と低速段を有する場合、車速の設定範囲は機械的に拡大させることができる。しかしながら、第2関係に比べて高速走行をもたらす第1関係が選択されている場合に変速装置を低速段に切り替えて得られる車速範囲は、第2関係が選択されている場合に変速装置を高速段に切り替えて得られる車速範囲と類似することがある。そのような類似するような車速範囲の設定は、却って運転操作をわずらわしくさせる。この問題を避けるため、本発明の好適な実施形態の1つでは、前記変速装置が低速段に切り替えられているとともに前記第2関係が選択されている状態における、前記第2操作具による前記第2関係から前記第1関係への選択は無視され、かつ前記変速装置が高速段に切り替えられているとともに前記第1関係が選択されている状態における、前記第3操作具による前記変速装置の高速段から低速段への選択は無視されるように構成されている。これにより、不要な速度範囲の設定が割愛される。さらに、好ましい実施形態として、前記第1関係が選択されている状態における前記第3操作具による前記変速装置の高速段から低速段への切り替え時には、当該変速装置の高速段から低速段への切り替えが無視されるとともに、自動的に前記第2関係が選択されることが提案される。これにより、運転者の所望の車速範囲の設定がさらに簡単となる。 When the transmission has at least a high speed stage and a low speed stage, the setting range of the vehicle speed can be mechanically expanded. However, the vehicle speed range obtained by switching the transmission to the low speed stage when the first relation that causes high-speed running is selected as compared with the second relation indicates that the speed change of the transmission is high when the second relation is selected. It may be similar to the vehicle speed range obtained by switching to the stage. Such a similar setting of the vehicle speed range makes the driving operation troublesome. In order to avoid this problem, in a preferred embodiment of the present invention, the second operation tool performs the second operation in a state where the transmission is switched to a low speed stage and the second relationship is selected. The selection from the second relationship to the first relationship is ignored, and the high speed of the transmission by the third operating tool in a state where the transmission is switched to a high speed stage and the first relationship is selected. The selection from the stage to the low speed stage is configured to be ignored. Thereby, setting of an unnecessary speed range is omitted. Further, as a preferred embodiment, when the transmission device is switched from the high speed stage to the low speed stage by the third operating tool in a state where the first relationship is selected, the transmission apparatus is switched from the high speed stage to the low speed stage. Is ignored and the second relationship is automatically selected. Thereby, the setting of the vehicle speed range desired by the driver is further simplified.
  コンバインのような作業車両では、運転者による車速調整には操作パネル上に配置された好ましくは機体前後方向に変位するストローク操作具がよく利用されているが、操作パネルのスペースの制限から、あまり長い操作ストロークを確保することが難しい。このため、前記第1操作具がストローク操作具である、本発明の好適な実施形態の1つでは、第1操作具の全ストロークにおける操作位置に対して、前記第2関係は、ゼロから第1所定回転数までのモータ指令回転数を割り当てるように構成され、前記第1関係は、ゼロから前記第1所定回転数を超える第2所定回転数までのモータ指令回転数を割り当てるように構成されている。これにより、短い操作ストロークであっても、2種類の車速レンジを利用できるので好都合である。このような2種類の車速レンジは、低速段と高速段を有する変速装置と適切に組み合わせることで、車速調整幅の拡大が実現する。そのような実施形態の1つでは、前記変速装置が低速段で、かつ前記第2関係が選択されることで、前記第1操作具の全ストローク操作域は低速走行操作域となり、前記変速装置が高速段で、かつ前記第2関係が選択されることで、前記第1操作具の全ストローク操作域は、前記低速走行操作域よりさらに高速の操作領域を有する中速走行操作域となり、前記変速装置が高速段で、かつ前記第1関係が選択されることで、前記第1操作具の全ストローク操作域は前記中速走行操作域よりさらに高速の操作領域を有する高速走行操作域となる。 In a work vehicle such as a combine, a stroke operation tool arranged on the operation panel, preferably displaced in the longitudinal direction of the fuselage, is often used for adjusting the vehicle speed by the driver. It is difficult to ensure a long operation stroke. For this reason, in one of the preferred embodiments of the present invention in which the first operating tool is a stroke operating tool, the second relationship is from zero to the operating position in the entire stroke of the first operating tool. 1 is configured to allocate a motor command rotational speed up to a predetermined rotational speed, and the first relationship is configured to allocate a motor command rotational speed from zero to a second predetermined rotational speed exceeding the first predetermined rotational speed. ing. Thereby, even if it is a short operation stroke, since two types of vehicle speed ranges can be utilized, it is convenient. Such two types of vehicle speed ranges are appropriately combined with a transmission having a low speed stage and a high speed stage, thereby realizing an increase in the vehicle speed adjustment range. In one of such embodiments, the transmission is at a low speed and the second relationship is selected, so that the full stroke operation range of the first operating tool becomes a low-speed traveling operation range, and the transmission Is the high speed stage and the second relationship is selected, the full stroke operation area of the first operating tool becomes a medium speed traveling operation area having an operation area faster than the low speed traveling operation area, When the transmission is at a high speed and the first relationship is selected, the full stroke operation area of the first operating tool becomes a high-speed travel operation area having an operation area faster than the medium-speed travel operation area. .
  一挙に車速を変更する第2操作具や第3操作具の操作性を良好にするために、これらの操作具をモーメンタリスイッチとするとよい。さらには、第2操作具または第3操作具あるいはその両方が、レバー体として形成された前記第1操作具の操作グリップ部に設けられるならば、第1操作具を操作している手の指で操作可能となって便利である。 操作 In order to improve the operability of the second operating tool and the third operating tool that change the vehicle speed at once, these operating tools may be used as momentary switches. Further, if the second operating tool and / or the third operating tool is provided in the operation grip portion of the first operating tool formed as a lever body, the finger of the hand operating the first operating tool is used. It is convenient to operate with.
本発明の基本的な原理を説明する模式図である。It is a schematic diagram explaining the basic principle of this invention. 本発明の具体的な実施形態の1つであるコンバインの全体側面図である。It is a whole side view of a combine which is one of the concrete embodiments of the present invention. コンバインの全体平面図である。It is a whole top view of a combine. 脱穀装置の縦断側面図である。It is a vertical side view of a threshing apparatus. エンジンからの回転動力を扱胴や選別部に供給する動力伝達機構を示す模式図である。It is a schematic diagram which shows the power transmission mechanism which supplies the rotational power from an engine to a handling cylinder and a selection part. モータからの回転動力を、車体横幅方向の左と右に配置されたクローラ走行体と刈取処理部とに供給する動力伝達機構を示す模式図である。It is a schematic diagram which shows the power transmission mechanism which supplies the rotational power from a motor to the crawler traveling body arrange | positioned at the left and right of a vehicle body width direction, and a cutting process part. 動力制御系統を示す機能ブロック図である。It is a functional block diagram which shows a power control system. エンジン負荷に応じたエンジン回転数制御(パワーオンデマンド制御)説明する模式図である。It is a schematic diagram explaining the engine speed control (power on demand control) according to engine load.
  本発明によるシリーズハイブリッドコンバインの具体的な実施形態を説明する前に、図1を用いて本発明の基本原理を説明する。
  なお、このシリーズハイブリッドコンバインは、バッテリレスのシリアルハイブリッド
車両であり、バッテリからの電力で車両を走行させることはできないので、定常的に回転しているエンジンによって発電している発電機から給電されるモータによって走行する。
Before describing a specific embodiment of a series hybrid combine according to the present invention, the basic principle of the present invention will be described with reference to FIG.
Note that this series hybrid combine is a battery-less serial hybrid vehicle, and since the vehicle cannot be driven by electric power from the battery, power is supplied from a generator that generates power with a constantly rotating engine. It travels with a motor.
  図1には、本発明のシリーズハイブリッドコンバイン(以下単にコンバインまたは車両と略称される)における動力伝達と動力制御とが模式的に示されている。動力伝達の出発点は、内燃機関、ここではディーゼルエンジン(以下単にエンジンと称する)80である。エンジン80の回転数は、電子ガバナー方式やコモンレール方式などを採用するエンジン制御ユニット86によって制御される。回転動力源としてのエンジン80には、エンジン80から出力される回転動力によって発電する発電機81が連結されている。この発電機81から出力された電力は、電機制御ユニット85によって制御される電力変換部84によって電力変換され、もう1つの回転動力源となるモータ82を駆動する。電力変換部84による電力変換に応じて、モータ82の回転数やトルクが制御される。動力伝達の終点は、農作物を収穫するための機器からなる農作業装置Wとこのコンバインを走行させる走行装置1である。 FIG. 1 schematically shows power transmission and power control in a series hybrid combine (hereinafter simply referred to as a combine or vehicle) of the present invention. The starting point of power transmission is an internal combustion engine, here a diesel engine (hereinafter simply referred to as an engine) 80. The rotational speed of the engine 80 is controlled by an engine control unit 86 that employs an electronic governor system, a common rail system, or the like. A generator 81 that generates electric power using rotational power output from the engine 80 is connected to the engine 80 serving as a rotational power source. The electric power output from the generator 81 is converted into electric power by the electric power converter 84 controlled by the electric machine control unit 85, and drives the motor 82 as another rotational power source. The rotation speed and torque of the motor 82 are controlled according to the power conversion by the power conversion unit 84. The end point of the power transmission is the farm work device W composed of a device for harvesting crops and the traveling device 1 for running the combine.
  農作業装置Wには、エンジン80から直接動力を受けるエンジン駆動作業装置WEと、モータ82から直接動力を受けるモータ駆動作業装置WMが含まれている。走行装置1として、クローラタイプや車輪タイプあるいはクローラと車輪とからなるサブクローラタイプが用いられる。モータ82と走行装置1との間には、副変速装置54を含むトランスミッション47が備えられている。エンジン80から直接回転動力を受けるエンジン駆動作業装置WEと、モータ82から回転動力を受けるモータ駆動作業装置WMに分けられているのは、もしすべての農作業装置Wがモータ82から回転動力を受ける構成を採用すると、モータ82の容量が大きくなり、結果的に発電機81の容量も大きくなり、機体重量が重くなりすぎたり、コストバランスが悪化したりするためである。走行装置1は、迅速な加減速が要求されることから、モータ82から回転動力を受ける構成を採用している。このことから、できる限り車速に応じた駆動速度が要求される農作業機、例えば、刈取り作業装置などは、モータ駆動作業装置WMとして構成される。 The farm work device W includes an engine drive work device WE that receives power directly from the engine 80 and a motor drive work device WM that receives power directly from the motor 82. As the traveling device 1, a crawler type, a wheel type, or a sub crawler type including a crawler and a wheel is used. A transmission 47 including an auxiliary transmission 54 is provided between the motor 82 and the traveling device 1. The engine-driven work device WE that receives the rotational power directly from the engine 80 and the motor-driven work device WM that receives the rotational power from the motor 82 are configured so that all the agricultural work devices W receive the rotational power from the motor 82. This is because the capacity of the motor 82 is increased, and as a result, the capacity of the generator 81 is also increased, and the weight of the body becomes too heavy or the cost balance is deteriorated. The traveling apparatus 1 employs a configuration that receives rotational power from the motor 82 because rapid acceleration / deceleration is required. Therefore, an agricultural machine that requires a driving speed according to the vehicle speed as much as possible, for example, a mowing work device, is configured as a motor-driven work device WM.
  このコンバインでは、走行装置1の駆動源であるモータ82の駆動回転数を変化させることで車速が変化する。モータ82の回転数の設定、結果的には走行装置1の駆動速度である車速の設定は、運転者によって操作される操作具によって行われるが、このコンバインでは、車速に関係する操作具として、第1操作具66、第2操作具57、第3操作具56が備えられている。図1の例では、ストローク操作式に構成されている第1操作具66の操作位置(ストローク操作位置)に基づいて、モータ82に対するモータ指令回転数が割り当てられる。このモータ指令回転数の割り当ては、メイン電子ユニット100に構築されたモータ回転数設定部12cによって行われる。その際、モータ回転数設定部12cは、第2操作具57の操作(第2操作位置)に基づいて選択される第1関係または第2関係のいずれかを用いる。第1関係及び第2関係は、制御マップまたは制御論理式あるいは制御演算式として構成されるものであり、第1関係は第2関係に比べて速いモータ指令回転数を割り当てる。 で は In this combine, the vehicle speed is changed by changing the drive speed of the motor 82 that is the drive source of the traveling device 1. Although the setting of the rotation speed of the motor 82 and, consequently, the setting of the vehicle speed, which is the driving speed of the traveling device 1, is performed by an operating tool operated by the driver, in this combine, as an operating tool related to the vehicle speed, A first operating tool 66, a second operating tool 57, and a third operating tool 56 are provided. In the example of FIG. 1, the motor command rotational speed for the motor 82 is assigned based on the operation position (stroke operation position) of the first operation tool 66 configured in a stroke operation type. The assignment of the motor command rotational speed is performed by the motor rotational speed setting unit 12c constructed in the main electronic unit 100. At that time, the motor rotation speed setting unit 12 c uses either the first relationship or the second relationship selected based on the operation (second operation position) of the second operation tool 57. The first relation and the second relation are configured as a control map, a control logical expression, or a control arithmetic expression, and the first relation assigns a motor command rotational speed that is faster than the second relation.
  上記のモータ指令回転数の割り当てを説明する。簡単な例として、割り当てられるモータ指令回転数をsとし、第1操作具66の操作位置をxとし、第1関係と第2関係をそれぞれ、操作位置を入力パラメータとしてモータ指令回転数を導出する一次関数F(x):s=20xと、一次関数G(x):s=10xとする。その際、F(x)とG(x)定義域である操作位置:xを-100~0~+100(%:前進側フルストロークを+100%と、後進側フルストロークを-100%とする)とすると、F(x)の値域(割り当てられるモータ指令回転数の範囲)は、-3000(後進)~0~+3000(前進)rpm、G(x)の値域は、-1500(後進)~0~+1500(前進)rpmとなる。
  ここで、第1操作具66が、+70%のストローク操作を行った場合、第1関係が選択されていれば、導出されるモータ指令回転数が1400rpmとなり、第2関係が選択されていれば、導出されるモータ指令回転数が700rpmとなる。この第1関係と第2関係の選択は、第2操作具57によって行われる。つまり、第2操作具57の操作状態(第2操作位置)によって、第1操作具66が同一のストローク操作位置であっても、異なるモータ指令回転数が割り当てられ、結果的に異なる車速が実現する。
The assignment of the motor command rotational speed will be described. As a simple example, the assigned motor command rotational speed is s, the operation position of the first operating tool 66 is x, the first relation and the second relation are derived, and the motor position is derived using the operation position as an input parameter. It is assumed that the linear function F (x): s = 20x and the linear function G (x): s = 10x. At this time, the operation position in the F (x) and G (x) definition area: x is -100 to 0 to +100 (%: the forward full stroke is + 100% and the reverse full stroke is -100%) Then, the range of F (x) (the range of the motor command rotational speed to be assigned) is −3000 (reverse) to 0 to +3000 (forward) rpm, and the range of G (x) is −1500 (reverse) to 0 +1500 (forward) rpm.
Here, when the first operation tool 66 performs a + 70% stroke operation, if the first relationship is selected, the derived motor command rotational speed is 1400 rpm, and if the second relationship is selected. The derived motor command rotational speed is 700 rpm. The selection of the first relationship and the second relationship is performed by the second operation tool 57. That is, depending on the operation state (second operation position) of the second operation tool 57, even if the first operation tool 66 is at the same stroke operation position, different motor command rotation speeds are assigned, resulting in different vehicle speeds. To do.
  さらに、この例では、副変速装置54が、第3操作具56により、低速段と高速段との間で切り替え可能に構成されている。なお、副変速装置54は、特定の条件では、第2操作具57によっても低速段と高速段との間の切り替えが可能である。副変速装置54によっても、車速の切り替えが可能であので、このコンバインの車速は、第1操作具66、第2操作具57、第3操作具56の各操作位置によって決定されることになる。 Furthermore, in this example, the auxiliary transmission 54 is configured to be switchable between the low speed stage and the high speed stage by the third operating tool 56. Note that the auxiliary transmission 54 can be switched between the low speed stage and the high speed stage also by the second operating tool 57 under specific conditions. Since the auxiliary transmission 54 can also switch the vehicle speed, the vehicle speed of this combine is determined by the operation positions of the first operation tool 66, the second operation tool 57, and the third operation tool 56. .
  従って、理論的には、第1操作具66の任意のストローク操作位置において、第2操作具57の操作状態(第2操作位置)及び第3操作具56の操作状態(第3操作位置)に応じて、4つの異なる速度が実現することになる。しかしながら、ここでは、操作を簡単化するため、第2操作具57の操作状態が第1関係を選択する状態でかつ第3操作具56が高速段に切り替える操作状態の場合、モータ指令回転数を割り当てないようにしている。
  このため、図1で示された例では、図1の表から明らかなように、以下の走行が実現する。(a)第1関係が選択され、かつ副変速装置54の高速段が選択されている場合、前進走行において第1操作具66の操作位置との組み合わせで、0~3000rpmのモータ指令回転数が割り当てられる。これは、コンバインの路上走行に適している。一般的には、そのような車速は0~18km/hである。(b)第2関係が選択され、かつ副変速装置54の高速段が選択されている場合、前進走行において第1操作具66の操作位置との組み合わせで、0~1500rpmのモータ指令回転数が割り当てられる。これは、コンバインの通常作業走行に適している。一般的には、そのような車速は0~10km/hである。(c)第2関係が選択され、かつ副変速装置54の低速段が選択されている場合、前進走行において第1操作具66の操作位置との組み合わせで、0~1500rpmのモータ指令回転数が割り当てられるが、副変速装置54は低速段であるので、車速は(b)に比べて低速となる。これは、コンバインの作業走行において突発的に生じる圃場の凸部との干渉を回避するための倒伏作業走行などに適している。一般的には、そのような車速は0~6km/hである。
Therefore, theoretically, at an arbitrary stroke operation position of the first operation tool 66, the operation state of the second operation tool 57 (second operation position) and the operation state of the third operation tool 56 (third operation position) are obtained. Accordingly, four different speeds will be realized. However, here, in order to simplify the operation, when the operation state of the second operation tool 57 is in the state of selecting the first relationship and the third operation tool 56 is in the operation state of switching to the high speed stage, the motor command rotational speed is It is not assigned.
For this reason, in the example shown in FIG. 1, as will be apparent from the table of FIG. (A) When the first relationship is selected and the high speed stage of the auxiliary transmission 54 is selected, the motor command rotational speed of 0 to 3000 rpm is combined with the operating position of the first operating tool 66 in forward traveling. Assigned. This is suitable for traveling on the road of a combine. Generally, such a vehicle speed is 0 to 18 km / h. (B) When the second relationship is selected and the high speed stage of the auxiliary transmission 54 is selected, a motor command rotational speed of 0 to 1500 rpm is combined with the operating position of the first operating tool 66 in forward traveling. Assigned. This is suitable for the normal work traveling of the combine. Generally, such a vehicle speed is 0 to 10 km / h. (C) When the second relationship is selected and the low speed stage of the auxiliary transmission 54 is selected, a motor command rotational speed of 0 to 1500 rpm is combined with the operating position of the first operating tool 66 in forward traveling. Although assigned, since the auxiliary transmission 54 is in the low speed stage, the vehicle speed is lower than that in (b). This is suitable for, for example, an overturning work traveling for avoiding the interference with the convex portion of the field that suddenly occurs during the working traveling of the combine. Generally, such a vehicle speed is 0 to 6 km / h.
  つまり、第1操作具66と第2操作具57と第3操作具56との操作状態に応じて、作り出される4つの速度設定状態のうち割愛された速度設定状態は、「第1関係+低速段」となっている。したがって、上記(a)(b)(c)のいずれかの速度設定状態から、「第1関係+低速段」への移行をもたらす、第2操作具57や第3操作具56の操作は無視されるように構成されることになる。その際、例えば、(a)の速度設定状態において、高速段から低速段に切り替える第3操作具56による操作指令を無視する代わりに、自動的に第1関係から第2関係を選択することで車速をアップしようとする運転者の要求を満たすように構成することも可能である。
  さらには、コンバインでは、利用価値のある(c)の低速状態から、一気に(a)の高速状態への移行を、例えば第2操作具57に割りふることも可能である。
That is, the omitted speed setting state among the four speed setting states created according to the operation states of the first operation tool 66, the second operation tool 57, and the third operation tool 56 is “first relation + low speed”. It is "dan". Therefore, the operation of the second operation tool 57 or the third operation tool 56 that causes the transition from the speed setting state in any one of the above (a), (b), and (c) to the “first relation + low speed stage” is ignored. Will be configured. At this time, for example, in the speed setting state of (a), instead of ignoring the operation command by the third operating tool 56 for switching from the high speed stage to the low speed stage, the second relation is automatically selected from the first relation. It is also possible to configure so as to satisfy the demand of the driver who wants to increase the vehicle speed.
Furthermore, in the combine, the transition from the low-speed state (c) having utility value to the high-speed state (a) can be assigned to, for example, the second operation tool 57 at once.
  第2操作具57及び第3操作具56の操作により、車速は一挙に変更することになるので、走行中において、咄嗟の運転者の判断で操作できることが好都合である。このため、第2操作具57及び第3操作具56はモーメンタリスイッチとして構成されることが好ましい。特に、第2操作具57や第3操作具56は、ストローク操作具として形成された第1操作具66のグリップ部に設けられるとよい。 Since the vehicle speed is changed at a stroke by the operation of the second operation tool 57 and the third operation tool 56, it is convenient that the vehicle can be operated at the discretion of the driver of the kite during traveling. For this reason, it is preferable that the 2nd operation tool 57 and the 3rd operation tool 56 are comprised as a momentary switch. In particular, the second operation tool 57 and the third operation tool 56 may be provided in a grip portion of the first operation tool 66 formed as a stroke operation tool.
  このコンバインでは、モータ82に負荷がかかると、それに応じた電力が発電機81からモータ82に供給されることになるが、発電機81がそのような電力を発電するために、それに相当する負荷がエンジン80にかかることになる。つまり、モータ82に負荷がかかることは、エンジン80に負荷がかかることを意味する。基本的には、エンジン80は回転数が大きくなるほど、その出力も大きくなるので、エンジン80を定格の最大回転数で回転させるとよいが、その反面、燃料消費が大きくなってしまう。したがって、ここでは負荷に合わせてエンジン80の回転数を切り替えている。つまり、大負荷が生じている場合には最大回転数が設定され、中負荷が生じている場合には中回転数が設定され、低負荷が生じている場合には低回転数が設定され、これにより燃料消費を改善している。このようなエンジン80に対する制御は、メイン電子ユニット100で負荷に応じて算定されたエンジン指令回転数を、エンジン制御ユニット86に与えることで、実現している。 In this combine, when a load is applied to the motor 82, electric power corresponding to the load is supplied from the generator 81 to the motor 82. In order for the generator 81 to generate such electric power, Is applied to the engine 80. That is, applying a load to the motor 82 means applying a load to the engine 80. Basically, since the output of the engine 80 increases as the rotational speed increases, the engine 80 may be rotated at the rated maximum rotational speed. However, on the other hand, fuel consumption increases. Therefore, here, the rotational speed of the engine 80 is switched in accordance with the load. That is, the maximum rotation speed is set when a heavy load occurs, the medium rotation speed is set when a medium load occurs, and the low rotation speed is set when a low load occurs, This improves fuel consumption. Such control of the engine 80 is realized by giving the engine command rotational speed calculated according to the load by the main electronic unit 100 to the engine control unit 86.
  次に、図面を用いて、本発明によるシリーズハイブリッドコンバイン(以下コンバインと略称する)の具体的な実施形態の1つを説明する。図2は、コンバインの側面図であり、図3は平面図である。 Next, one specific embodiment of a series hybrid combine (hereinafter abbreviated as a combine) according to the present invention will be described with reference to the drawings. FIG. 2 is a side view of the combine, and FIG. 3 is a plan view.
  このコンバインは、左クローラ走行体1aと右クローラ走行体1bとを含むクローラ式走行装置1と、この走行装置1によって対地支持されている機体2とを備えている。機体2の前部には、刈取処理部3が配置されている。機体2の後部には、脱穀装置4と、穀粒タンク5とが、それぞれ機体前進方向で左側と右側に、機体横断方向に並んで、配置されている。さらに、穀粒タンク5の前方に搭乗運転部7が配置されている。 This combine includes a crawler type traveling device 1 including a left crawler traveling body 1a and a right crawler traveling body 1b, and an airframe 2 supported by the traveling device 1 on the ground. A cutting processing unit 3 is disposed in the front of the machine body 2. At the rear of the machine body 2, a threshing device 4 and a grain tank 5 are arranged side by side in the machine body crossing direction on the left and right sides in the machine body advance direction. Further, a boarding operation unit 7 is disposed in front of the grain tank 5.
  刈取処理部3は、シリンダCYの操作により横軸芯P1周りに昇降揺動自在である。刈取処理部3にて刈り取られた農作物は脱穀装置4によって脱穀処理され、脱穀装置4にて得られた穀粒は穀粒タンク5に貯留される。刈取処理部3、脱穀装置4、搭乗運転部7は、機体2を構成する機体フレーム6に取り付けられている。 The cocoon cutting processing unit 3 can swing up and down around the horizontal axis P1 by operating the cylinder CY. The crops harvested by the mowing processing unit 3 are threshed by the threshing device 4, and the grains obtained by the threshing device 4 are stored in the grain tank 5. The harvesting processing unit 3, the threshing device 4, and the boarding operation unit 7 are attached to a body frame 6 constituting the body 2.
  刈取処理部3は、車体前部に位置する刈取部8と、その刈取部8にて刈り取った農作物を車体後方上方側に向けて搬送する農作物搬送部としての縦搬送装置9とを含む。縦搬送装置9は、刈取穀稈を後方へ搬送し、フィードチェーン18に受け渡す。刈取部8は、刈取対象穀稈を分草する分草具10、倒伏姿勢の植立穀稈を立姿勢に引起す引起し装置11、引起された植立穀稈の株元を切断するバリカン型の刈取装置12を有する。 The cocoon cutting processing unit 3 includes a cutting unit 8 located at the front of the vehicle body, and a vertical transfer device 9 as a crop transfer unit that transfers the crops harvested by the cutting unit 8 toward the rear upper side of the vehicle body. The vertical conveying device 9 conveys the harvested cereal meal backward and delivers it to the feed chain 18. The cutting unit 8 includes a weeding tool 10 for weeding the harvested culm, a pulling device 11 for causing the planted culm to fall in a standing position, and a clipper for cutting the planted culm planted It has a type mowing device 12.
  又、刈取処理部3は、横軸芯P1周りに昇降揺動自在に機体フレーム6に支持され、機体2の前部に位置する通常作業姿勢と機体2の車体前方側を開放するように車体横外方に退避するメンテナンス用姿勢とに亘って縦向き軸芯Y1(図3参照)周りで姿勢変更可能である。 Further, the cutting processing unit 3 is supported by the body frame 6 so as to be swingable up and down around the horizontal axis P1, and the vehicle body so as to open the normal working posture located at the front of the body 2 and the vehicle body front side of the body 2. The posture can be changed around the vertical axis Y1 (see FIG. 3) over the maintenance posture retracted laterally outward.
  さらに、刈取処理部3に備えられる刈取部フレーム13が、機体フレーム6から立設された左右両側の支持体14R,14Lにより受止め支持されている中継用支持部材15にて横軸芯P1周りに昇降揺動自在に支持されている。刈取部フレーム13を支持する中継用支持部材15は、左側に位置する支持体14Lに縦向き軸芯Y1周りで回動自在に機体2に支持されている。つまり結果的には、刈取処理部3全体が縦向き軸芯Y1周りで揺動自在に機体2に支持されている。図3に示すように、刈取処理部3が姿勢変更のために回動操作される縦向き軸芯Y1は、縦搬送装置9における搭乗運転部7とは反対側の車体横幅方向外端側箇所に位置する。 Further, the cutting unit frame 13 provided in the cutting processing unit 3 is supported around the horizontal axis P1 by the relay support member 15 supported by the left and right support members 14R and 14L provided upright from the body frame 6. Is supported so as to be swingable up and down. The relay support member 15 that supports the reaper part frame 13 is supported by the machine body 2 so as to be rotatable about a longitudinal axis Y1 on a support body 14L located on the left side. That is, as a result, the entire cutting processing unit 3 is supported by the body 2 so as to be swingable around the longitudinal axis Y1. As shown in FIG. 3, the longitudinal axis Y <b> 1 on which the harvesting processing unit 3 is rotated to change the posture is located on the outer side in the vehicle body width direction on the opposite side of the boarding operation unit 7 in the vertical transfer device 9. Located in.
  図4に示すように、脱穀装置4は、刈り取った穀稈を脱穀処理する脱穀部16と、脱穀部16で脱穀処理された処理物を穀粒と塵埃とに選別する選別部17とを含む。   As shown in FIG. 4, the threshing device 4 includes a threshing unit 16 that threshs the harvested cereal and a sorting unit 17 that sorts a processed product threshed by the threshing unit 16 into grains and dust. .
  脱穀部16では、刈取穀稈がその株元側をフィードチェーン18により挟持された横向きの姿勢で搬送される。さらに、刈取穀稈の穂先側が通過する扱室19には、機体前後向き軸芯周りで回転駆動されることで刈取穀稈の穂先側に扱き処理を施す扱胴20、及び、この扱き処理で得られた処理物を下方に向けて漏下させる受網21が配置されている。又、受網21の処理物移送方向下手側には、受網21を通じて漏下しなかった処理物を選別部17の選別方向下手側(後部側)に向けて流下させる送塵口22が形成されている。 In the threshing unit 16, the harvested cereal is transported in a sideways posture in which the stock side is sandwiched by the feed chain 18. Further, in the handling chamber 19 through which the head side of the harvested cereal rice cake passes, a handling cylinder 20 that performs a handling process on the tip side of the harvested grain rice cake by being rotationally driven around the longitudinal axis of the machine body, and this handling processing. A receiving network 21 is disposed for allowing the obtained processed material to leak downward. In addition, a dust feed port 22 is formed on the lower side of the receiving net 21 in the processed material transfer direction to allow the processed material that has not leaked through the receiving net 21 to flow downward toward the lower side (rear side) of the sorting unit 17. Has been.
  選別部17は、脱穀部16の下方に位置して受網21から漏下した処理物を揺動選別する揺動選別機構23、駆動軸24aを有するとともに選別風を生起する唐箕24、1番回収部27、2番回収部30等を備えている。1番回収部27は、選別された穀粒(1番物)を回収するとともに、回収した1番物をその底部に車体横幅方向(左右方向)に沿って配備した1番スクリュー25によってその右端に連通接続した揚送スクリューコンベア26に向けて搬送する。2番回収部30は、枝梗付き穀粒やワラ屑などの混在物(2番物)を回収するとともに、回収した2番物をその底部に車体横幅方向に沿って配備した2番スクリュー28によって、その右端に連通接続した2番還元装置29に向けて搬送する。 The sorting unit 17 is located below the threshing unit 16 and has a swing sorting mechanism 23 that swings and sorts the processed material leaked from the receiving net 21, a drive shaft 24a, and a tang ridge 24 that generates a sorting wind. A collection unit 27, a second collection unit 30 and the like are provided. The No. 1 recovery unit 27 recovers the selected grain (No. 1) and the right end of the recovered No. 1 by the No. 1 screw 25 arranged at the bottom along the vehicle body width direction (left and right direction). It is conveyed toward the lifting screw conveyor 26 that is connected in communication. The No. 2 recovery unit 30 recovers a mixture (No. 2) such as cereal grains and straw scraps, and the No. 2 screw 28 provided at the bottom of the recovered No. 2 along the lateral direction of the vehicle body. Is conveyed toward the second reduction device 29 connected to the right end thereof.
  揺動選別機構23には、揺動選別ケース33と、この揺動選別ケース33の内部に配置された精選別用のチャフシーブ34と、グレンシーブ35と、ストローラック36等が配置されている。揺動選別ケース33は、その機体前部側が揺動アーム31にて吊り下げ支持され、かつその機体後部側が回転駆動される偏芯クランク機構32によって駆動される。これにより、揺動選別ケース33は前後揺動する。グレンシーブ35は、漏下した処理物から穀粒を選別する。ストローラック36はワラ屑を後方に向けて揺動移送する。   The swing sorting mechanism 23 is provided with a swing sorting case 33, a precision sorting chaff sheave 34 disposed inside the swing sorting case 33, a Glen sheave 35, a Strollac 36, and the like. The swing sorting case 33 is driven by an eccentric crank mechanism 32 whose front side is supported by a swing arm 31 and whose rear side is rotationally driven. Thereby, the swing sorting case 33 swings back and forth. Glen sieve 35 sorts grain from the leaked processed material. The Strollac 36 swings and transfers the straw scraps backward.
  1番スクリュー25によって搬送された1番物は、揚送スクリューコンベア26により揚送されて穀粒タンク5に供給されて貯留される。又、2番スクリュー28によって搬送された2番物は、2番還元装置29により再脱穀処理を施した後に揚送して揺動選別機構23に還元される。 The first thing conveyed by the No. 1 screw 25 is lifted by the lifting screw conveyor 26, supplied to the grain tank 5, and stored. The second product conveyed by the second screw 28 is rethreshed by the second reduction device 29 and then lifted and reduced to the swing sorting mechanism 23.
  図2と図3とに示すように、穀粒タンク5に貯留される穀粒を外部に排出させる穀粒排出装置37が備えられている。この穀粒排出装置37は、底部スクリュー38と、縦スクリューコンベア39と、横スクリューコンベア41とを備えている。底部スクリュー38は、穀粒タンク5下部における凹溝状の底部5aに沿って設けられている。縦スクリューコンベア39は、底部スクリュー38の搬送終端部から上方に向けて穀粒を搬送する。横スクリューコンベア41は、縦スクリューコンベア39の上部から穀粒を横方向に搬送して先端の排出口40からトラックの荷台等(図示せず)に排出する。 穀 As shown in FIGS. 2 and 3, a grain discharging device 37 that discharges the grains stored in the grain tank 5 to the outside is provided. The grain discharging device 37 includes a bottom screw 38, a vertical screw conveyor 39, and a horizontal screw conveyor 41. The bottom screw 38 is provided along the groove-shaped bottom 5 a at the lower part of the grain tank 5. The vertical screw conveyor 39 conveys the grain upward from the conveyance terminal end of the bottom screw 38. The horizontal screw conveyor 41 conveys the grains in the horizontal direction from the upper part of the vertical screw conveyor 39 and discharges the grains from the discharge port 40 at the tip to a truck bed (not shown).
  縦スクリューコンベア39と横スクリューコンベア41とに亘って設けた油圧シリンダ42の伸縮により、横スクリューコンベア41の昇降位置が変更される。さらに、縦スクリューコンベア39は、その下部に設けられた旋回モータ43によって縦軸芯Y2周りで旋回可能である。 The lifting position of the horizontal screw conveyor 41 is changed by expansion and contraction of the hydraulic cylinder 42 provided between the vertical screw conveyor 39 and the horizontal screw conveyor 41. Furthermore, the vertical screw conveyor 39 can be swung around the vertical axis Y2 by a swivel motor 43 provided in the lower part thereof.
  底部スクリュー38と縦スクリューコンベア39との間、及び、縦スクリューコンベア39と横スクリューコンベア41との間が、夫々、ベベルギア機構44,45により連動連結されている。従って、これらのコンベアは、底部スクリュー38の前部側端部に設けられた入力プーリ46に動力が供給されると、一体的に回転駆動される。その結果、穀粒タンク5内の穀粒が外部に搬出される。 The bottom screw 38 and the vertical screw conveyor 39 and the vertical screw conveyor 39 and the horizontal screw conveyor 41 are connected to each other by bevel gear mechanisms 44 and 45, respectively. Accordingly, these conveyors are integrally rotated when power is supplied to the input pulley 46 provided at the front end of the bottom screw 38. As a result, the grain in the grain tank 5 is carried out to the outside.
  次に、このシリーズハイブリッドコンバインに搭載されている2つの動力伝達機構について説明する。図5には、エンジン80からの回転動力を、扱胴20や選別部17等に供給する第1の動力伝達機構が示されている。図6には、電動モータ(以下単にモータと略称する)82からの回転動力を、車体横幅方向の左と右に配置された左クローラ走行体1aと右クローラ走行体1bとからなる走行装置1と刈取処理部3とに供給する第2の動力伝達機構が示されている。 Next, two power transmission mechanisms mounted on this series hybrid combine will be described. FIG. 5 shows a first power transmission mechanism that supplies rotational power from the engine 80 to the handling cylinder 20, the sorting unit 17, and the like. In FIG. 6, a traveling device 1 is composed of a left crawler traveling body 1 a and a right crawler traveling body 1 b that are arranged to rotate the rotational power from an electric motor (hereinafter simply abbreviated as “motor”) 82 on the left and right in the vehicle body width direction. The 2nd power transmission mechanism supplied to the cutting processing part 3 is shown.
  なお、図では明らかにされていないが、第2の動力伝達機構に含まれる走行用トランスミッション47は、車体横幅方向中央部であって且つ搭乗運転部7の横幅方向で偏在配置され、左右一対の走行装置1に動力を伝達する。図2及び図3から明らかなように、走行用トランスミッション47に動力を供給する走行刈取用のモータ82が搭乗運転部7における運転部ステップ48の下方側箇所に配置されている。モータ82の出力軸49aと走行用トランスミッション47の入力軸49bとは継手を介して連動連結されている。 Although not clearly shown in the figure, the traveling transmission 47 included in the second power transmission mechanism is unevenly arranged in the lateral direction of the boarding operation unit 7 at the center in the lateral direction of the vehicle body, and a pair of left and right Power is transmitted to the traveling device 1. As is clear from FIG. 2 and FIG. 3, a travel cutting motor 82 that supplies power to the travel transmission 47 is disposed at a lower position of the driving unit step 48 in the boarding driving unit 7. The output shaft 49a of the motor 82 and the input shaft 49b of the traveling transmission 47 are interlocked and connected via a joint.
  図6に示すように、走行用トランスミッション47のミッションケース52内に、ギア
式の減速機構53や油圧操作式かつギア咬み合い式の副変速装置54、及び、左右のクローラ走行体1a,1bの速度差による旋回走行のための旋回用伝動機構55等が備えられている。さらに、この走行用トランスミッション47から刈取処理部3に動力が伝達される。この動力伝達経路に、前進走行のための動力のみを伝達するワンウェイクラッチ63及び動力伝達を断続するベルトテンション式の刈取クラッチ64が介装されている。
As shown in FIG. 6, in the transmission case 47 of the traveling transmission 47, there are a gear-type reduction mechanism 53, a hydraulically operated and gear-meshing auxiliary transmission 54, and left and right crawler traveling bodies 1a and 1b. A turning transmission mechanism 55 and the like for turning traveling due to a speed difference are provided. Further, power is transmitted from the traveling transmission 47 to the cutting processing unit 3. A one-way clutch 63 that transmits only power for forward travel and a belt tension type cutting clutch 64 that intermittently transmits power are interposed in the power transmission path.
  つまり、モータ82が、左右一対の走行装置1,1と刈取処理部3との動力源である。モータ82の出力制御については後述するが、搭乗運転部7に備えられた、本発明における第1操作具として機能する、ストローク操作式の主変速レバー66の操作位置に基づいてモータ82に対する指令回転数が算定される。つまり、ストローク操作式の主変速レバー66が中立位置にあれば停止状態となり、主変速レバー66の前側への操作変位が大きいほど前進走行速度が大きくなり、主変速レバー66の後側への操作変位が大きいほど後進走行速度が大きくなるように構成されている。主変速レバー66の操作位置は、ストロークセンサS4によって検出される。 That is, the motor 82 is a power source for the pair of left and right traveling devices 1, 1 and the cutting processing unit 3. Although the output control of the motor 82 will be described later, a command rotation for the motor 82 is provided based on the operation position of the stroke operation type main transmission lever 66 that functions as the first operation tool in the present invention and is provided in the boarding operation unit 7. The number is calculated. That is, when the stroke operation type main transmission lever 66 is in the neutral position, the main transmission lever 66 is stopped, and the forward travel speed increases as the operation displacement of the main transmission lever 66 toward the front increases. The reverse travel speed increases as the displacement increases. The operation position of the main transmission lever 66 is detected by the stroke sensor S4.
  モータ82の駆動停止状態で制動作用するネガティブブレーキ67が、走行用トランスミッション47の入力軸49bにおけるモータ82の接続箇所とは反対側の端部に配置されている。ネガティブブレーキ67は、図示しないバネにより制動状態に付勢され、且つ、電気式あるいは油圧式アクチュエータにてバネの付勢力に抗して制動状態を解除する。ネガティブブレーキ67は、メイン電子ユニット100によって、モータ82が作動停止状態(走行用トルクが発生していない状態)であるときは制動状態に、モータ82が作動状態になると制動解除状態に制御される。ネガティブブレーキ67を制動解除状態から制動状態に切り換える際は、制動力が漸増され、制動時の衝撃が抑制される。 A negative brake 67 that brakes when the driving of the eaves motor 82 is stopped is disposed at the end of the input shaft 49b of the traveling transmission 47 that is opposite to the connection portion of the motor 82. The negative brake 67 is urged into a braking state by a spring (not shown), and releases the braking state against an urging force of the spring by an electric or hydraulic actuator. The negative brake 67 is controlled by the main electronic unit 100 to be in a braking state when the motor 82 is in an operation stop state (a state where no running torque is generated), and to a brake release state when the motor 82 is in an operation state. . When the negative brake 67 is switched from the braking release state to the braking state, the braking force is gradually increased and the impact during braking is suppressed.
  図7に示すように、副変速装置54は、後述するモータ82の速度切替との組み合わせで、高速、中速、低速の3段の速度状態を作り出すために、2つの変速段(高速段、低速段)を有する。モータ82の速度切替と副変速装置54の2つの変速段により、標準的な圃場で刈取作業する場合には中速状態が採用可能で、作物が倒伏しているときや深い湿田で走行負荷が大きいときは低速状態が採用可能で、路上走行する場合には高速状態が採用可能である。
  副変速装置54の変速段は、搭乗運転部7に備えられた、車速設定操作具の1つである第2操作具57と第3操作具56とにより選択できる(図3参照)。つまり、上記3つの速度状態は、第2操作具57及び第3操作具56の操作状態によって選択される。この実施形態では、第2操作具57と第3操作具56とはともに操作スイッチとして形成されている。コンバインにおいては、第2操作具57は刈取変速スイッチ、第3操作具56は副変速スイッチとも呼ばれる。
  副変速装置54は、油圧操作式の変速装置である。この実施形態では、副変速装置54は、後述するモータ82の速度切替との組み合わせで、高速、中速、低速の3段の速度状態を作り出すために、2つの変速段を有する。標準的な圃場で刈取作業する場合には中速状態が選択され、作物が倒伏しているときや深い湿田で走行負荷が大きいときは低速状態が選択され、路上走行する場合には高速状態が選択される。副変速装置54の変速段は、搭乗運転部7に備えられた、車速設定操作具の1つである第3操作具56により切り換えるようになっている。
As shown in FIG. 7, the sub-transmission device 54 is combined with speed switching of the motor 82, which will be described later, in order to create three speed states of high speed, medium speed, and low speed. Low speed stage). Due to the speed change of the motor 82 and the two speed stages of the auxiliary transmission 54, a medium speed state can be adopted when cutting in a standard farm field, and when the crop is lying down or when the crop is in a deep wet field, When it is large, the low speed state can be adopted, and when traveling on the road, the high speed state can be adopted.
The gear position of the auxiliary transmission 54 can be selected by a second operating tool 57 and a third operating tool 56 which are one of the vehicle speed setting operating tools provided in the boarding operation unit 7 (see FIG. 3). That is, the three speed states are selected according to the operation states of the second operation tool 57 and the third operation tool 56. In this embodiment, both the second operation tool 57 and the third operation tool 56 are formed as operation switches. In the combine, the second operation tool 57 is also called a cutting shift switch, and the third operation tool 56 is also called an auxiliary transmission switch.
The auxiliary transmission 54 is a hydraulically operated transmission. In this embodiment, the sub-transmission device 54 has two gear positions in order to create three speed states of high speed, medium speed, and low speed in combination with speed switching of the motor 82 described later. The medium speed condition is selected when cutting on a standard field, the low speed condition is selected when the crop is lying down or when the driving load is large in a deep wet field, and the high speed condition is selected when traveling on the road. Selected. The shift speed of the auxiliary transmission 54 is switched by a third operating tool 56 that is one of the vehicle speed setting operating tools provided in the boarding operation unit 7.
  旋回用伝動機構55は、左クローラ走行体1aと右クローラ走行体1bとのどちらか一方に減速動力を伝えるための緩旋回用クラッチ58、どちらか一方に制動力を付与する減速用ブレーキ59、どちらか一方に対する動力伝達状態を直進状態と旋回状態(減速状態や制動状態)に切り換える操向クラッチ60等を含む。 The turning transmission mechanism 55 includes a slow turning clutch 58 for transmitting deceleration power to one of the left crawler traveling body 1a and the right crawler traveling body 1b, a deceleration brake 59 for applying a braking force to either one, The steering clutch 60 etc. which switch the power transmission state with respect to either to a straight-ahead state and a turning state (a deceleration state or a braking state) are included.
  旋回用伝動機構55は、搭乗運転部7に備えられた、車速設定操作具の1つである、操作レバー61と連動連係されている。操作レバー61の中立位置から左右方向への傾斜角に応じて、走行機体2の直進状態から右方向又は左方向への旋回が作り出される。操作レバー61の中立位置から左右への傾斜角の大きさを検出するために旋回レバーセンサS3が設けられている。つまり、この操作レバー61の操作変位によりこのコンバインの旋回度が算定されるが、この旋回度の算定のために旋回レバーセンサS3の検出信号が利用される。尚、詳述はしないが、操作レバー61は、前後方向へも揺動操作自在であり、この前後方向の搖動操作により刈取処理部3の上昇操作及び下降操作が実現する。 The saddle turning transmission mechanism 55 is linked to an operation lever 61 that is one of the vehicle speed setting operation tools provided in the boarding operation unit 7. Depending on the inclination angle from the neutral position of the operation lever 61 in the left-right direction, a turn from the straight traveling state of the traveling machine body 2 to the right or left is created. A turning lever sensor S3 is provided to detect the inclination angle from the neutral position of the operation lever 61 to the left and right. That is, the turning degree of the combine is calculated based on the operation displacement of the operating lever 61, and the detection signal of the turning lever sensor S3 is used for calculating the turning degree. Although not described in detail, the operation lever 61 is swingable in the front-rear direction, and the lifting operation and the lowering operation of the cutting processing unit 3 are realized by the swinging operation in the front-rear direction.
  この走行用トランスミッション47では、副変速装置54の変速段の切り替えと、モータ82の変速とを通じて、標準的な圃場で刈取作業する場合利用される中速状態とし、農作物が倒伏しているときや深い湿田で走行負荷が大きいときに利用される低速状態、路上走行する場合に利用される高速状態とを作り出すことができる。これらの変速状態は、本発明における第2操作具として機能する第2操作具57の操作状態と、本発明における第3操作具として機能する第3操作具56の操作状態とによって選択される。 In this traveling transmission 47, the intermediate speed state used when cutting in a standard field is achieved through switching of the gear position of the sub-transmission device 54 and shifting of the motor 82, and when the crop is lying down, It is possible to create a low-speed state that is used when the traveling load is large in a deep marsh and a high-speed state that is used when traveling on the road. These shift states are selected according to the operation state of the second operation tool 57 that functions as the second operation tool in the present invention and the operation state of the third operation tool 56 that functions as the third operation tool in the present invention.
  第3操作具56及び第2操作具57は、運転者の指によって操作されるモーメンタリスイッチであり、押し込み操作でスイッチONとなり、再度の押し込み操作でスイッチOFFとなる。この実施形態では、第3操作具56は、モータ82の速度設定操作具の1つである主変速レバー66のグリップ部に設けられており、第2操作具57は、操作レバー61のグリップ部に設けられている。もちろん、第3操作具56や第2操作具57は、その他の位置、例えば、操縦パネルなどに設けることも可能である。第3操作具56と第2操作具57との操作状態信号、及びストロークセンサS4による主変速レバー66の操作位置信号は、メイン電子ユニット100に入力され、後述するように、モータ82や副変速装置54の制御に利用される。 3The third operating tool 56 and the second operating tool 57 are momentary switches operated by the driver's finger, and the switch is turned on by the pushing operation and turned off by the pushing operation again. In this embodiment, the third operating tool 56 is provided in the grip portion of the main transmission lever 66 that is one of the speed setting operating tools of the motor 82, and the second operating tool 57 is the grip portion of the operating lever 61. Is provided. Of course, the 3rd operation tool 56 and the 2nd operation tool 57 can also be provided in other positions, for example, a control panel etc. The operation state signals of the third operation tool 56 and the second operation tool 57 and the operation position signal of the main transmission lever 66 by the stroke sensor S4 are input to the main electronic unit 100 and, as will be described later, the motor 82 and the auxiliary transmission. Used to control the device 54.
  次に、エンジン80からの回転動力を直接、扱胴20や選別部17等に供給する第1の動力伝達機構について説明する。図4と図5とから理解できるように、選別部17のための動力系は、エンジン80から直接回転動力を受ける。その際、一方では、エンジン80からの動力は、ベルトテンション式の選別入切用クラッチ71を介して選別部17、具体的には、唐箕24の駆動軸24aに伝達される。さらに、唐箕24の駆動軸24aから、伝動ベルト72を介して、1番スクリュー25、2番スクリュー28、揺動選別機構23、フィードチェーン18等に動力が伝達される。 Next, a first power transmission mechanism that supplies the rotational power from the engine 80 directly to the handling cylinder 20 and the sorting unit 17 will be described. As can be understood from FIGS. 4 and 5, the power system for the sorting unit 17 receives rotational power directly from the engine 80. At that time, on the other hand, the power from the engine 80 is transmitted to the sorting section 17, specifically, the drive shaft 24 a of the carp 24 through the belt tension type sorting on / off clutch 71. Further, power is transmitted from the drive shaft 24 a of the carp 24 to the first screw 25, the second screw 28, the swing sorting mechanism 23, the feed chain 18, and the like via the transmission belt 72.
  他方では、エンジン80からの動力は、ベルトテンション式の排出入切用クラッチ73、ベベルギア機構74、及び、ベルト伝動機構75を介して、穀粒排出装置37、具体的には、底部スクリュー38の前部側端部に設けられた入力プーリ46に伝達される。入力プーリ46に供給された動力により、底部スクリュー38、縦スクリューコンベア39、及び、横スクリューコンベア41(第1横スクリューコンベア41aと第2横スクリューコンベア41bに分割されている)が回転駆動され、その結果、穀粒タンク5内の穀粒が外部に搬出される。選別入切用クラッチ71は、図示されていない選別用クラッチモータにより入り状態と切り状態とに切り換えられる。排出入切用クラッチ73は、図示されていない排出用クラッチモータにより入り状態と切り状態とに切り換えられる。 On the other hand, the power from the engine 80 is supplied to the grain discharging device 37, specifically the bottom screw 38, via the belt tension type discharging on / off clutch 73, the bevel gear mechanism 74, and the belt transmission mechanism 75. It is transmitted to an input pulley 46 provided at the front side end. By the power supplied to the input pulley 46, the bottom screw 38, the vertical screw conveyor 39, and the horizontal screw conveyor 41 (divided into the first horizontal screw conveyor 41a and the second horizontal screw conveyor 41b) are rotationally driven, As a result, the grain in the grain tank 5 is carried out to the outside. The sorting on / off clutch 71 is switched between the on state and the off state by a sorting clutch motor (not shown). The discharge on / off clutch 73 is switched between an on state and an off state by a discharge clutch motor (not shown).
  図7に、模式的に示されているように、エンジン80の出力軸80aは、脱穀部16や穀粒排出装置37への動力供給機構として機能する動力伝達機構50Bに連結されるともに、発電機81の発電用回転軸81aとも連結されている。発電機81とモータ82とは電力変換部84を介して電機制御ユニット85に接続されている。モータ82は、この実施形態では、車両の走行駆動用のモータとして用いられる周知の三相交流式誘導電動モータである。電力変換部84には、発電機81にて発電された交流電力を直流電力に変換する発電用インバータや当該発電用インバータで変換された直流電力をモータ82に適した交流電力に変換するコンバータなどのパワーエレクトロニクス機器が含まれている。このパワーエレクトロニクス機器を適切に制御するための制御アルゴリズムを内部に構築しているメイン電子ユニット100(一般にECUと呼ばれる)からの指令に基づいて、電機制御ユニット85は、電力変換部84に制御信号を与える。 As schematically shown in FIG. 7, the output shaft 80 a of the engine 80 is connected to a power transmission mechanism 50 </ b> B that functions as a power supply mechanism to the threshing unit 16 and the grain discharging device 37, and generates power. The power generation rotary shaft 81a of the machine 81 is also connected. The generator 81 and the motor 82 are connected to the electric machine control unit 85 via the power converter 84. In this embodiment, the motor 82 is a known three-phase AC induction electric motor that is used as a motor for driving the vehicle. The power converter 84 includes a power generating inverter that converts AC power generated by the generator 81 into DC power, a converter that converts DC power converted by the power generating inverter into AC power suitable for the motor 82, and the like. Power electronics equipment is included. Based on a command from a main electronic unit 100 (generally called an ECU) that has built a control algorithm for appropriately controlling this power electronics device, the electric machine control unit 85 sends a control signal to the power conversion unit 84. give.
  エンジン制御ユニット86は、メイン電子ユニット100からの指令に基づいて、エンジン80に対する燃料供給量を変更することによりエンジン80の出力(回転数及びトルク)を制御する。エンジン回転数を検出するエンジン回転センサS2からの信号は、この実施形態では車両状態検出ユニット90を介してエンジン制御ユニット86またはメイン電子ユニット100あるいはその両方に送られる。もちろん、エンジン回転センサS2からの信号は、その他の信号も含めて、車両状態検出ユニット90を介さずに直接送られてもよい。 The engine control unit 86 controls the output (rotation speed and torque) of the engine 80 by changing the fuel supply amount to the engine 80 based on the command from the main electronic unit 100. In this embodiment, the signal from the engine rotation sensor S2 that detects the engine speed is sent to the engine control unit 86 and / or the main electronic unit 100 via the vehicle state detection unit 90. Of course, the signal from the engine rotation sensor S2, including other signals, may be sent directly without passing through the vehicle state detection unit 90.
  このコンバインでは、発電機81とモータ82との間の給電ラインには、バッテリ(大型コンデンサを含む)が備えられていないので、モータ82は発電機81によって生み出された電力を直接利用する。このため、エンジン停止は、直接発電機81の停止、結果的にはモータ82の停止を導くので、不用意なエンジン停止が発生しないように、省エネとエンジン負荷との両者をバランスよく考慮して、エンジン制御を実行する必要がある。この実施形態では、エンジン制御は、エンジン制御ユニット86によって電子ガバナー方式で制御される。エンジン制御ユニット86は、エンジン80の負荷が増加するにつれてエンジン回転数をわずかに減少させていくドループ制御と、エンジン80の負荷にかかわらずエンジン回転数を一定に維持しようとするアイソクロナス制御のいずれかでエンジン80を制御することが可能である。 In this combine, the power supply line between the generator 81 and the motor 82 is not provided with a battery (including a large capacitor), so the motor 82 directly uses the power generated by the generator 81. For this reason, the engine stop directly leads to the stop of the generator 81 and consequently the stop of the motor 82. Therefore, in order to prevent an inadvertent engine stop, both energy saving and engine load are considered in a balanced manner. Need to perform engine control. In this embodiment, engine control is controlled by the engine control unit 86 in an electronic governor manner. The engine control unit 86 is either droop control that slightly decreases the engine speed as the load of the engine 80 increases, or isochronous control that maintains the engine speed constant regardless of the load of the engine 80. Thus, the engine 80 can be controlled.
  作業装置制御ユニット87は、メイン電子ユニット100からの指令に基づいて、エンジン80の回転動力をそのまま利用するエンジン駆動作業装置W1及びモータ82の回転動力を利用するモータ駆動作業装置W2に組み込まれたクラッチ操作機器や油圧シリンダなどの動作機器に制御信号を与える。車両状態検出ユニット90は、各種スイッチやセンサから入力される信号に対して、必要に応じて変換処理等の前処理を施し、メイン電子ユニット100に転送する。 The work device control unit 87 is incorporated in the engine drive work device W1 that uses the rotational power of the engine 80 as it is and the motor drive work device W2 that uses the rotational power of the motor 82 based on a command from the main electronic unit 100. A control signal is given to operating devices such as a clutch operating device and a hydraulic cylinder. The vehicle state detection unit 90 performs preprocessing such as conversion processing on signals input from various switches and sensors as necessary, and transfers the signals to the main electronic unit 100.
  メイン電子ユニット100は、エンジン制御ユニット86、電機制御ユニット85、作業装置制御ユニット87、車両状態検出ユニット90などの他のECUと車載LANを通じて接続されている。なお、このメイン電子ユニット100だけでなく、他のECUも含め、その構成は、説明目的のためにわかりやすく区分けされている。したがって、実際においては、各ECUは適当に統合化されてもよいし、適当に分割化されてもよい。この実施形態では、メイン電子ユニット100は、ハードウエア及びソフトウエア(コンピュータプログラム)によって、特に本発明に関係するものとして、エンジン管理モジュール110、電機管理モジュール120、車両管理モジュール130などを構築している。 The main electronic unit 100 is connected to other ECUs such as an engine control unit 86, an electric machine control unit 85, a work device control unit 87, and a vehicle state detection unit 90 through an in-vehicle LAN. It should be noted that not only the main electronic unit 100 but also other ECUs are configured in an easy-to-understand manner for the purpose of explanation. Accordingly, in practice, each ECU may be appropriately integrated or may be appropriately divided. In this embodiment, the main electronic unit 100 constructs an engine management module 110, an electric appliance management module 120, a vehicle management module 130, and the like as those particularly related to the present invention by hardware and software (computer program). Yes.
  エンジン管理モジュール110は、他の管理モジュールと相互連携し、エンジン80の出力を調整するために、エンジン制御ユニット86に種々のエンジン制御指令を送る。電機管理モジュール120も、他の管理モジュールと相互連携し、電力変換部84を介して発電機81とモータ82とが適切に駆動されるように、電機制御ユニット85に電機機器制御指令を送る。車両管理モジュール130は、エンジン制御ユニット86、電機制御ユニット85、作業装置制御ユニット87、車両状態検出ユニット90から送られてくる情報(信号・データ)に基づいて、このコンバインの走行状態や作業状態を確認して管理する。 The engine management module 110 sends various engine control commands to the engine control unit 86 to adjust the output of the engine 80 in cooperation with other management modules. The electric machine management module 120 also cooperates with other management modules and sends an electric equipment control command to the electric machine control unit 85 so that the generator 81 and the motor 82 are appropriately driven via the power conversion unit 84. Based on the information (signal / data) sent from the engine control unit 86, the electric machine control unit 85, the work device control unit 87, and the vehicle state detection unit 90, the vehicle management module 130 executes the traveling state and working state of this combine. Confirm and manage.
  図7の車両管理モジュール130には、車両状態決定部13aが構築されている。車両状態決定部13aは、車両状態検出ユニット90から取得した各種の状態検出信号に基づいて、左クローラ走行体1aと右クローラ走行体1bの駆動状態及び、刈取処理部3や脱穀装置4や穀粒排出装置37などの農作業装置Wの駆動状態を決定する。 In the vehicle management module 130 of FIG. 7, a vehicle state determination unit 13a is constructed. Based on various state detection signals acquired from the vehicle state detection unit 90, the vehicle state determination unit 13a drives the left crawler traveling body 1a and the right crawler traveling body 1b, and the cutting processing unit 3, the threshing device 4, and the grain. The driving state of the agricultural work apparatus W such as the grain discharging apparatus 37 is determined.
  メイン電子ユニット100の電機管理モジュール120と電機制御ユニット85とによるモータ82の制御について具体的に説明する。 The control of the motor 82 by the electric machine management module 120 and the electric machine control unit 85 of the main electronic unit 100 will be specifically described.
  運転者によって操作される主変速レバー66の前後方向のストローク操作位置は、速度設定用信号としてストロークセンサS4によって検出され、メイン電子ユニット100に送られる。同様に、運転者によって操作される操作レバー61の左右方向の傾斜角は、機体2の旋回(操向)を示す旋回度算定用信号として旋回レバーセンサS3によって検出され、メイン電子ユニット100に送られる。電機管理モジュール120は、主変速レバー66と操作レバー61との操作位置に基づいて、つまりストロークセンサS4及び旋回レバーセンサS3からの検出信号に基づいてモータ82の回転数、結果的には左クローラ走行体1aと右クローラ走行体1bとの駆動速度を制御するための指令を電機制御ユニット85に与える。 The stroke operation position in the front-rear direction of the main transmission lever 66 operated by the driver is detected by the stroke sensor S4 as a speed setting signal and sent to the main electronic unit 100. Similarly, the left / right inclination angle of the operation lever 61 operated by the driver is detected by the turning lever sensor S3 as a turning degree calculation signal indicating turning (steering) of the airframe 2 and is sent to the main electronic unit 100. It is done. The electric machine management module 120 determines the number of rotations of the motor 82 based on the operation position of the main transmission lever 66 and the operation lever 61, that is, based on the detection signals from the stroke sensor S4 and the turning lever sensor S3. A command for controlling the driving speed of the traveling body 1a and the right crawler traveling body 1b is given to the electric machine control unit 85.
  電機制御ユニット85は、電機管理モジュール120からの指令に基づいて、電力変換部84に含まれているインバータやコンバータなどのパワーエレクトロニクス機器を制御する。その際、三相(u相,v相,w相)の各相に設けられているスイッチングトランジスタをオンオフ制御することで発電機81及びモータ82の出力を変更調整する。 The electric machine control unit 85 controls power electronics devices such as an inverter and a converter included in the power conversion unit 84 based on a command from the electric machine management module 120. At that time, the output of the generator 81 and the motor 82 is changed and adjusted by controlling on / off the switching transistors provided in the three phases (u phase, v phase, w phase).
  電機管理モジュール120に構築されているモータ回転数設定部12cは、第2操作具57の第1操作状態である走行状態により選択される第1関係、または第2操作状態である作業状態により選択される第2関係を用いて、主変速レバー66の操作位置に対してモータ指令回転数を割り当てる。第1関係は第2関係に比べて速いモータ指令回転数を割り当てられるように構成されている。但し、実際の車速は、以下に説明するように、副変速装置54の操作状態にも依存する。 The motor speed setting unit 12c built in the electric appliance management module 120 is selected based on the first relationship selected by the traveling state that is the first operation state of the second operation tool 57 or the work state that is the second operation state. Using the second relationship, the motor command rotational speed is assigned to the operation position of the main transmission lever 66. The first relationship is configured to be assigned a motor command rotational speed that is faster than the second relationship. However, the actual vehicle speed also depends on the operating state of the auxiliary transmission 54 as described below.
  電機管理モジュール120に構築されているモータ回転数設定部12cは、第2操作具57の第1操作状態である走行状態により選択される第1関係、または第2操作状態である作業状態により選択される第2関係を用いて、主変速レバー66の操作位置に対してモータ指令回転数を割り当てる。第1関係は第2関係に比べて速いモータ指令回転数を割り当てられるように構成されている。但し、実際の車速は、以下に説明するように、副変速装置54の操作状態にも依存する。 The motor speed setting unit 12c built in the electric appliance management module 120 is selected based on the first relationship selected by the traveling state that is the first operation state of the second operation tool 57 or the work state that is the second operation state. Using the second relationship, the motor command rotational speed is assigned to the operation position of the main transmission lever 66. The first relationship is configured to be assigned a motor command rotational speed that is faster than the second relationship. However, the actual vehicle speed also depends on the operating state of the auxiliary transmission 54 as described below.
  モータ回転数設定部12cで実行される、主変速レバー66と第3操作具56と第2操作具57とに対する操作による走行機体2の速度設定について、再び、図1を用いて説明する。なお、前進走行の速度設定と後進走行の速度設定とは、基本的には同じであるので、説明を簡単にするため、この説明では前進走行だけを取り扱う。
  まず、主変速レバー66のストローク操作位置をxとして、xのとる範囲(ストローク操作範囲)を0~100と仮定する。任意のストローク操作位置:xに対してモータ82の設定速度が割り当てられるが、この割り当て方法が二種類あり、第2操作具57によって切り替えることができる。つまり、設定速度をs、2つの割り当て方法(第1関係)を第1関係(ここでは関数)としてのF(x)と第2関係(ここでは関数)としてのG(x)にすれば、モータ82の設定速度は、s=F(x)とs=G(x)で表すことができる。例えば、x=0~100において、F(x)のとる範囲を0~3000rpm、G(x)のとる範囲を0~1500rpmとすれば、同じ主変速レバー66のストローク操作位置において、第2操作具57の操作状態によって、車速を2倍、または1/2にすることができる。ここでは、第2操作具57の2つの操作状態は、作業状態(低速)と走行状態(高速)であり、作業状態では、F(x)が選択され、走行状態では、G(x)が選択される。なおF(x)とG(x)は線形に限定されるわけではなく、非線形であってもよい。またメイン電子ユニット100においては、演算式として取り扱ってもよいし、マップ(テーブル)として取り扱ってもよい。
The speed setting of the traveling machine body 2 performed by the operation of the main speed change lever 66, the third operation tool 56, and the second operation tool 57, which is executed by the motor rotation speed setting unit 12c, will be described again with reference to FIG. The speed setting for the forward travel and the speed setting for the reverse travel are basically the same, and therefore, in order to simplify the description, only the forward travel is handled in this description.
First, it is assumed that the stroke operation position of the main transmission lever 66 is x, and the range taken by x (stroke operation range) is 0 to 100. Although the set speed of the motor 82 is assigned to an arbitrary stroke operation position: x, there are two types of assignment methods that can be switched by the second operation tool 57. In other words, if the set speed is s, the two allocation methods (first relation) are F (x) as the first relation (here function) and G (x) as the second relation (here function), The set speed of the motor 82 can be expressed by s = F (x) and s = G (x). For example, when x = 0 to 100, the range taken by F (x) is 0 to 3000 rpm, and the range taken by G (x) is 0 to 1500 rpm. Depending on the operating state of the tool 57, the vehicle speed can be doubled or halved. Here, the two operating states of the second operating tool 57 are a working state (low speed) and a traveling state (high speed). In the working state, F (x) is selected, and in the traveling state, G (x) is Selected. Note that F (x) and G (x) are not limited to linear, and may be nonlinear. Further, in the main electronic unit 100, it may be handled as an arithmetic expression or a map (table).
  さらに、副変速装置54の高速段と低速段とを組み合わせると、主変速レバー66の任意のストローク操作位置において、第3操作具56と第2操作具57の操作状態に応じて、以下の4つの異なる速度設定が実現する(図1の表参照)。
(1)速度割り当てが第1関係、かつ副変速装置54が高速段。
(2)速度割り当てが第1関係、かつ副変速装置54が低速段。
(3)速度割り当てが第2関係、かつ副変速装置54が高速段。
(4)速度割り当てが第2関係、かつ副変速装置54が低速段。
  但し、この実施形態では、(2)は実用的に不必要であるため、その使用は割愛されている。つまり、(1)(3)(4)のいずれもの速度設定態から、(2)の速度設定への移行が禁止されている。その結果、(1)での高速状態、(3)での中速状態、(4)での低速状態が実現可能である。  この3つの速度状態(高速状態、中速状態、低速状態)の変移は、図9から模式化されている。つまり、
変移A:低速状態において、第2操作具57をスイッチ操作することにより、低速状態から高速状態に移行する。
変移B:中速状態において、第2操作具57をスイッチ操作することにより、中速状態から高速状態に移行する。
変移C:高速状態において、第2操作具57をスイッチ操作することにより、高速状態から中速状態に移行する。
変移D:中速状態において、第3操作具56をスイッチ操作することにより、中速状態から低速状態に移行する。
変移E:低速状態において、第3操作具56をスイッチ操作することにより、低速状態から中速状態に移行する。
  ここで注記したいことは、変移Aにおいては、第2操作具57をスイッチ操作によって、第2関係から第1関係への切り替えと、副変速装置54の低速段から高速段への切り替えが同時に行われていることである。
Further, when the high speed stage and the low speed stage of the auxiliary transmission device 54 are combined, the following four items are selected according to the operation states of the third operating tool 56 and the second operating tool 57 at an arbitrary stroke operation position of the main transmission lever 66. Three different speed settings are realized (see table in FIG. 1).
(1) The speed assignment is the first relationship, and the auxiliary transmission 54 is a high speed stage.
(2) The speed assignment is the first relationship, and the auxiliary transmission 54 is in the low speed stage.
(3) The speed assignment is the second relation, and the auxiliary transmission 54 is the high speed stage.
(4) The speed allocation is the second relationship, and the auxiliary transmission 54 is in the low speed stage.
However, in this embodiment, since (2) is practically unnecessary, its use is omitted. That is, the transition from the speed setting states (1), (3), and (4) to the speed setting of (2) is prohibited. As a result, a high speed state in (1), a medium speed state in (3), and a low speed state in (4) can be realized. The transition of these three speed states (high speed state, medium speed state, and low speed state) is schematically shown in FIG. That means
Transition A: In the low speed state, the second operating tool 57 is switched to shift from the low speed state to the high speed state.
Transition B: In the medium speed state, the second operating tool 57 is switched to shift from the medium speed state to the high speed state.
Transition C: In the high speed state, the second operating tool 57 is switched to shift from the high speed state to the medium speed state.
Transition D: In the medium speed state, the third operating tool 56 is switched to shift from the medium speed state to the low speed state.
Transition E: In the low speed state, the third operating tool 56 is switched to shift from the low speed state to the medium speed state.
It should be noted here that, in the transition A, the second operation tool 57 is switched from the second relationship to the first relationship by the switch operation and the auxiliary transmission device 54 is simultaneously switched from the low speed stage to the high speed stage. It is that.
  このコンバインは、バッテリレスのシリアルハイブリッド車両であり、バッテリからの電力で車両を走行させることはできないので、定常的に回転しているエンジンによって発電している発電機からの電力で駆動するモータによって走行する。したがって、エンジン80の過負荷などで停止することを避けなければならないが、必要以上の出力でエンジン80を運転することは燃費の悪化を導く。このことから、エンジン管理モジュール110は、エンジン負荷を考慮して、適切にエンジン80の運転を管理する。エンジン管理モジュール110に構築された負荷推定部11dは、車両状態決定部13aによって決定された左クローラ走行体1aと右クローラ走行体1bの駆動状態及び農作業装置Wの駆動状態に基づいて、推定されるエンジンにかかる負荷を推定負荷として算定する。同様にエンジン管理モジュール110に構築されたエンジン指令回転数算定部11bは、負荷推定部11dによって算定された推定負荷に基づいてエンジン指令回転数を算定するとともに当該エンジン指令回転数に基づくエンジン制御指令をエンジン制御ユニット86に出力する。 This combine is a battery-less serial hybrid vehicle, and since the vehicle cannot be driven by power from the battery, it is driven by a motor that is driven by power from a generator that is generating power by a constantly rotating engine. Run. Therefore, it must be avoided that the engine 80 is stopped due to overload or the like, but driving the engine 80 with an output more than necessary leads to deterioration of fuel consumption. From this, the engine management module 110 appropriately manages the operation of the engine 80 in consideration of the engine load. The load estimation unit 11d constructed in the engine management module 110 is estimated based on the driving state of the left crawler traveling body 1a and the right crawler traveling body 1b and the driving state of the agricultural work device W determined by the vehicle state determination unit 13a. The load on the engine is calculated as the estimated load. Similarly, an engine command rotational speed calculation unit 11b constructed in the engine management module 110 calculates an engine command rotational speed based on the estimated load calculated by the load estimation unit 11d and an engine control command based on the engine command rotational speed. Is output to the engine control unit 86.
  この負荷推定部11dとエンジン制御ユニット86とによる、エンジン負荷に応じたエンジン回転数制御(パワーオンデマンド制御)の簡単なアルゴリズムの具体例の1つを、図8を用いて、説明する。この具体例では、負荷推定部11dとエンジン制御ユニット86とは一体的に動作するが、まず、車両状態決定部13aからの情報に基づいて、エンジン負荷に影響を与える運転モードとして、次の8つのモードを規定する。
(1)停止モード:作業も走行も行われていない。
(2)刈取り作業前後+直進モード:刈取作業に入る直前の所定時間、または刈取作業が終了した後の所定時間で、機体2は直進している。
(3)刈取り作業前後+旋回モード:刈取作業に入る直前の所定時間、または刈取作業が終了した後の所定時間で、機体2は旋回している(左右のクローラ走行体1a、1bの速度が異なっている)。
(4)刈取り作業中+直進モード:刈取作業中で、機体2は直進している。
(5)刈取り作業中+旋回モード:刈取作業中で、機体2は旋回している。
(6)路上走行+直進モード:副変速装置54を高速段にしての走行で、機体2は直進している。
(7)路上走行+旋回モード:副変速装置54を高速段にしての走行で、機体2は旋回している。
(8)穀粒排出モード:穀粒排出装置37を用いて穀粒タンク5から穀粒を排出している。
  エンジン制御ユニット86は、上記運転モードに応じてエンジン指令回転数を算定する。この実施形態では、図8で示されたようなエンジン性能曲線が規定されているので、これに基づいたエンジン指令回転数が算定される。このエンジン80の最大出力が18.5KWで、最高回転数が2500rpmであり、図8で模式的に示されたエンジン制御特性は、3つの線で表されている。つまり、高負荷時には高回転数Nh(例えば、2500rpmより少し低い回転数)が設定され、中負荷時には中回転数Nm(例えば、2000rpmより少し低い回転数)が設定され、低負荷時には低回転数Nl(例えば、1500rpmより少し高い低回転数)が設定され、ドループ制御される。またこのエンジン80のアイドリング回転数は1000rpmより少し高い回転数となっている。
  このことから、実際的には、
(1)停止モードでは、アイドリング回転数が設定され、
(2)刈取り作業前後+直進モードでは、アイドリング回転数から低回転数までの領域が設定され、
(3)刈取り作業前後+旋回モードでは、高回転数よりやや低い回転数が設定され、
(4)刈取り作業中+直進モードでは、低回転数から最高回転数までの領域が設定され、
(5)刈取り作業中+旋回モードでは、最高回転数が設定され、
(6)路上走行+直進モードでは、低回転数から中回転数までの領域が設定され、
(7)路上走行+旋回モードでは、最高回転数が設定され、
(8)穀粒排出モードでは、アイドリング回転数よりやや高い回転数が設定される。
One specific example of a simple algorithm for engine speed control (power on demand control) according to the engine load by the load estimation unit 11d and the engine control unit 86 will be described with reference to FIG. In this specific example, the load estimation unit 11d and the engine control unit 86 operate integrally. First, based on the information from the vehicle state determination unit 13a, as the operation mode that affects the engine load, the following 8 Specifies two modes.
(1) Stop mode: No work or running.
(2) Before / after mowing operation + straight-forward mode: The machine body 2 is traveling straight ahead for a predetermined time immediately before entering the mowing operation or for a predetermined time after the mowing operation is completed.
(3) Before / after cutting operation + turning mode: The machine body 2 is turning at a predetermined time immediately before entering the cutting operation or a predetermined time after the cutting operation is finished (the speeds of the left and right crawler traveling bodies 1a, 1b are Different).
(4) Cutting operation + straight running mode: During cutting operation, the airframe 2 goes straight.
(5) Cutting operation + turning mode: Aircraft 2 is turning during cutting operation.
(6) Road running + straight running mode: The vehicle body 2 is running straight in the running with the auxiliary transmission 54 at a high speed.
(7) Road traveling + turning mode: In the traveling with the auxiliary transmission 54 at a high speed, the body 2 is turning.
(8) Kernel discharge mode: The kernel is discharged from the kernel tank 5 using the kernel discharge device 37.
The engine control unit 86 calculates the engine command rotational speed according to the operation mode. In this embodiment, since an engine performance curve as shown in FIG. 8 is defined, the engine command rotational speed is calculated based on the engine performance curve. The engine 80 has a maximum output of 18.5 KW and a maximum rotational speed of 2500 rpm, and the engine control characteristics schematically shown in FIG. 8 are represented by three lines. That is, a high rotational speed Nh (for example, a rotational speed slightly lower than 2500 rpm) is set at a high load, a medium rotational speed Nm (for example, a rotational speed slightly lower than 2000 rpm) is set at a medium load, and a low rotational speed at a low load. Nl (for example, a low rotational speed slightly higher than 1500 rpm) is set, and droop control is performed. The idling speed of the engine 80 is slightly higher than 1000 rpm.
From this, in practice,
(1) In stop mode, idling speed is set,
(2) Before / after mowing operation + straight running mode, the region from idling speed to low speed is set,
(3) Before / after mowing operation + turning mode, a slightly lower rotational speed than the high rotational speed is set,
(4) In the cutting and straight running mode, the area from the low speed to the maximum speed is set.
(5) During cutting and turning mode, the maximum number of revolutions is set.
(6) In the road running + straight running mode, an area from a low speed to a medium speed is set.
(7) In road driving + turning mode, the maximum speed is set,
(8) In the grain discharging mode, a rotational speed slightly higher than the idling rotational speed is set.
  従来のシリーズハイブリッドでは、エンジンの高効率運転による省エネを図るため、負荷にかかわらず最高回転数に設定していたが、低負荷でも最高回転数が設定されることになるので、低負荷が続く場合には、省エネが不充分となる。また、負荷変動に合わせて、常にエンジン回転数の設定を調整する場合、負荷が細かく変動する状況では、エンジンのふかしが繰り返されるという、省エネや騒音に関する不都合が生じる。このようなことを考慮し、上記の具体例では、高負荷で高回転数、中負荷で宙回転数、低負荷で低回転数というように負荷に応じてエンジン回転数を設定している。その際、刈取り作業中+旋回モード及び路上走行+旋回モードは最も大きな負荷が生じる運転状態なので最大回転数が設定されている。 In the conventional series hybrid, in order to save energy by high-efficiency operation of the engine, the maximum number of revolutions was set regardless of the load. However, the maximum number of revolutions is set even at low loads, so the low load continues. In some cases, energy saving is insufficient. Further, when the engine speed setting is constantly adjusted in accordance with the load fluctuation, in the situation where the load fluctuates finely, there arises an inconvenience related to energy saving and noise that the engine is repeatedly puffed. In consideration of the above, in the above specific example, the engine speed is set according to the load, such as high speed at high load, air speed at medium load, and low speed at low load. At that time, the maximum rotation speed is set since the cutting operation + turning mode and road traveling + turning mode are the operating states in which the greatest load is generated.
〔別実施形態〕 [Another embodiment]
(1)上述した実施形態では、走行装置1は左右一対のクローラ走行体1a、1bから構
成されていたが、車輪とクローラ走行体の複合構成、あるいは車輪のみの構成を採用してもよい。
(2)上述した実施形態では、第2操作具57及び第3操作具56は、スイッチとして形
成されていたが、運転者によって操作される操作レバーと当該操作レバーの操作変位を検出するセンサとから構成してもよい。
(1) In the above-described embodiment, the traveling device 1 is composed of a pair of left and right crawler traveling bodies 1a and 1b. However, a combined configuration of wheels and crawler traveling bodies or a configuration including only wheels may be employed.
(2) In the embodiment described above, the second operation tool 57 and the third operation tool 56 are formed as switches, but an operation lever operated by the driver and a sensor for detecting an operation displacement of the operation lever. You may comprise.
  本発明は、車体の走行に伴って農作物を刈り取って脱穀処理するようにした自脱型又は普通型のコンバインに適用できる。 The present invention can be applied to a self-removal type or a normal type combine in which crops are harvested and threshed as the vehicle runs.
  1:走行装置
  2:走行機体
  3:刈取処理部
  4:脱穀装置
  5:穀粒タンク
  7:搭乗運転部
  8:刈取部
12:刈取装置
16:脱穀部
17:選別部
37:穀粒排出装置
54:副変速装置
56:第3操作具
57:第2操作具
61:操作レバー
66:主変速レバー(第1操作具)
80:エンジン
81:発電機
82:モータ(電動モータ)
84:電力変換部
85:電機制御ユニット
86:エンジン制御ユニット
87:作業装置制御ユニット
90:車両状態検出ユニット
100:メイン電子ユニット
110:エンジン管理モジュール
11b:エンジン指令回転数算定部
11d:負荷推定部
120:電機管理モジュール
12c:モータ回転数設定部
130:車両管理モジュール
13a:車両状態決定部
WE:エンジン駆動作業装置
WM:モータ駆動作業装置
S2:エンジン回転数センサ
S3:旋回レバーセンサ
S4:ストロークセンサ
1: traveling device 2: traveling machine body 3: reaping processing unit 4: threshing device 5: grain tank 7: boarding operation unit 8: reaping unit 12: reaping device 16: threshing unit 17: sorting unit 37: grain discharging device 54 : Sub-transmission device 56: Third operation tool 57: Second operation tool 61: Operation lever 66: Main transmission lever (first operation tool)
80: Engine 81: Generator 82: Motor (electric motor)
84: Power conversion unit 85: Electric control unit 86: Engine control unit 87: Work device control unit 90: Vehicle state detection unit 100: Main electronic unit 110: Engine management module 11b: Engine command rotational speed calculation unit 11d: Load estimation unit 120: Electricity management module 12c: Motor rotation speed setting unit 130: Vehicle management module 13a: Vehicle state determination unit WE: Engine drive work device WM: Motor drive work device S2: Engine rotation speed sensor S3: Swivel lever sensor S4: Stroke sensor

Claims (10)

  1.   エンジンと、前記エンジンの出力によって駆動する発電機と、前記発電機からの電力によって駆動するモータと、前記モータからの回転動力によって車両を走行させる走行装置と、前記モータからの回転動力によって駆動されるともに車両の走行に伴って農作物の刈り取り作業を行う刈取装置と、前記発電機と前記モータとを制御する電機制御ユニットとを備えたシリーズハイブリッドコンバインであって、
      前記走行装置の駆動速度を調節する第1操作具及び第2操作具と、
      前記第2操作具の操作に基づいて選択される第1関係または第2関係のいずれかを用いて、前記第1操作具の操作位置に前記モータに対するモータ指令回転数を割り当てるモータ回転数設定部とが備えられ、
      前記第1関係は前記第2関係に比べて速いモータ指令回転数を割り当てるように構成されているシリーズハイブリッドコンバイン。
    An engine, a generator driven by the output of the engine, a motor driven by electric power from the generator, a traveling device for running the vehicle by rotational power from the motor, and driven by rotational power from the motor In addition, a series hybrid combine including a reaping device that performs crop harvesting as the vehicle travels, and an electric control unit that controls the generator and the motor,
    A first operating tool and a second operating tool for adjusting the driving speed of the traveling device;
    A motor speed setting unit that assigns a motor command speed for the motor to the operation position of the first operating tool using either the first relationship or the second relationship selected based on the operation of the second operating tool. And
    The series hybrid combine in which the first relationship is configured to assign a motor command rotational speed that is faster than the second relationship.
  2.   前記モータと前記走行装置との間の動力伝達機構に複数の変速段を有する変速装置が設けられ、前記変速段は第3操作具の操作に基づいて切り替えられる請求項1に記載のシリーズハイブリッドコンバイン。 The series hybrid combine according to claim 1, wherein a transmission having a plurality of shift stages is provided in a power transmission mechanism between the motor and the traveling apparatus, and the shift stages are switched based on an operation of a third operation tool. .
  3.   前記変速装置は高速段と低速段との間で切り替えられるように構成されており、
      前記変速装置が低速段に切り替えられているとともに前記第2関係が選択されている状態における、前記第2操作具による前記第2関係から前記第1関係への選択は無視され、かつ
      前記変速装置が高速段に切り替えられているとともに前記第1関係が選択されている状態における、前記第3操作具による前記変速装置の高速段から低速段への選択は無視される請求項2に記載のシリーズハイブリッドコンバイン。
    The transmission is configured to be switched between a high speed stage and a low speed stage,
    In the state where the transmission is switched to the low speed stage and the second relationship is selected, the selection from the second relationship to the first relationship by the second operation tool is ignored, and the transmission The series according to claim 2, wherein selection from the high speed stage to the low speed stage of the transmission by the third operating tool is ignored in a state where the first relation is selected while the gear is switched to a high speed stage. Hybrid combine.
  4.   前記第1関係が選択されている状態における前記第3操作具による前記変速装置の高速段から低速段への切り替え時には、当該変速装置の高速段から低速段への切り替えが無視されるとともに、自動的に前記第2関係が選択される請求項3に記載のシリーズハイブリッドコンバイン。 When the transmission device is switched from the high speed stage to the low speed stage by the third operating tool in the state where the first relationship is selected, the switching from the high speed stage to the low speed stage of the transmission apparatus is ignored and automatic 4. The series hybrid combine according to claim 3, wherein the second relationship is selected.
  5.   前記第1操作具はストローク操作具であり、その全ストロークにおける操作位置に対して、前記第2関係は、ゼロから第1所定回転数までのモータ指令回転数を割り当てるように構成され、
      前記第1関係は、ゼロから前記第1所定回転数を超える第2所定回転数までのモータ指令回転数を割り当てるように構成されている請求項3または4に記載のシリーズハイブリッドコンバイン。
    The first operation tool is a stroke operation tool, and the second relationship is configured to assign a motor command rotation speed from zero to a first predetermined rotation speed with respect to operation positions in all strokes;
    5. The series hybrid combine according to claim 3, wherein the first relationship is configured to assign a motor command rotational speed from zero to a second predetermined rotational speed exceeding the first predetermined rotational speed.
  6.   前記変速装置が低速段で、かつ前記第2関係が選択されることで、前記第1操作具の全ストローク操作域は低速走行操作域となり、  前記変速装置が高速段で、かつ前記第2関係が選択されることで、前記第1操作具の全ストローク操作域は、前記低速走行操作域よりさらに高速の操作領域を有する中速走行操作域となり、
      前記変速装置が高速段で、かつ前記第1関係が選択されることで、前記第1操作具の全ストローク操作域は前記中速走行操作域よりさらに高速の操作領域を有する高速走行操作域となる請求項5に記載のシリーズハイブリッドコンバイン。
    When the transmission is at a low speed and the second relationship is selected, the full stroke operation range of the first operating tool becomes a low speed operation range, the transmission is at a high speed and the second relationship Is selected, the full stroke operation area of the first operating tool becomes a medium speed traveling operation area having a higher speed operation area than the low speed traveling operation area,
    When the transmission is in a high speed stage and the first relationship is selected, the full stroke operation area of the first operating tool is a high speed traveling operation area having an operation area that is faster than the medium speed traveling operation area. The series hybrid combine according to claim 5.
  7.   前記第3操作具がモーメンタリスイッチである請求項2から6のいずれか一項に記載のシリーズハイブリッドコンバイン。 The series hybrid combine according to any one of claims 2 to 6, wherein the third operation tool is a momentary switch.
  8.   前記第2操作具がモーメンタリスイッチである請求項2から7のいずれか一項に記載のシリーズハイブリッドコンバイン。 The series hybrid combine according to any one of claims 2 to 7, wherein the second operation tool is a momentary switch.
  9.   前記第2操作具または第3操作具あるいはその両方が、レバー体として形成された前記第1操作具の操作グリップ部に設けられている請求項7または8に記載のシリーズハイブリッドコンバイン。 The series hybrid combine according to claim 7 or 8, wherein the second operation tool and / or the third operation tool are provided in an operation grip portion of the first operation tool formed as a lever body.
  10.   前記第1操作具はストローク操作具であり、その全ストロークにおける操作位置に対して、前記第1関係は、ゼロから第1所定回転数までのモータ指令回転数を割り当てるように構成され、
      前記第2関係は、ゼロから前記第1所定回転数を超える第2所定回転数までのモータ指令回転数を割り当てるように構成されている請求項1または2に記載のシリーズハイブリッドコンバイン。
    The first operation tool is a stroke operation tool, and the first relationship is configured to allocate a motor command rotation speed from zero to a first predetermined rotation speed with respect to operation positions in all strokes;
    3. The series hybrid combine according to claim 1, wherein the second relationship is configured to assign a motor command rotational speed from zero to a second predetermined rotational speed exceeding the first predetermined rotational speed.
PCT/JP2014/075165 2013-09-27 2014-09-24 Series hybrid combine WO2015046186A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013202785A JP6104119B2 (en) 2013-09-27 2013-09-27 Series hybrid combine
JP2013-202785 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015046186A1 true WO2015046186A1 (en) 2015-04-02

Family

ID=52743322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075165 WO2015046186A1 (en) 2013-09-27 2014-09-24 Series hybrid combine

Country Status (2)

Country Link
JP (1) JP6104119B2 (en)
WO (1) WO2015046186A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003000035A (en) * 2001-06-21 2003-01-07 Iseki & Co Ltd Apparatus for supplying power to combine and the like
JP3436665B2 (en) * 1997-10-16 2003-08-11 日本輸送機株式会社 Electric vehicle speed control device
JP2007083907A (en) * 2005-09-22 2007-04-05 Kubota Corp Operating device for work vehicle
JP2007195491A (en) * 2006-01-27 2007-08-09 Yanmar Co Ltd Combine harvester
JP2013070656A (en) * 2011-09-27 2013-04-22 Kubota Corp Combined harvester

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3436665B2 (en) * 1997-10-16 2003-08-11 日本輸送機株式会社 Electric vehicle speed control device
JP2003000035A (en) * 2001-06-21 2003-01-07 Iseki & Co Ltd Apparatus for supplying power to combine and the like
JP2007083907A (en) * 2005-09-22 2007-04-05 Kubota Corp Operating device for work vehicle
JP2007195491A (en) * 2006-01-27 2007-08-09 Yanmar Co Ltd Combine harvester
JP2013070656A (en) * 2011-09-27 2013-04-22 Kubota Corp Combined harvester

Also Published As

Publication number Publication date
JP2015065895A (en) 2015-04-13
JP6104119B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
US7779616B2 (en) Vehicle with electric hybrid powering of external loads and engine-off capability
JP5676404B2 (en) Combine
JP5745985B2 (en) Combine
JP2004242558A (en) Self-propelled type agricultural working machine
JP2008206467A (en) Combine
EP2253192B1 (en) Harvester load control system
US8626402B2 (en) Drive arrangement and method for a work machine with two internal combustion engines
JP6066880B2 (en) Series hybrid combine
KR102307094B1 (en) Series hybrid combine
JP6129046B2 (en) Series hybrid combine
JPH04278828A (en) Combine
JP5138437B2 (en) Combine
JP6104119B2 (en) Series hybrid combine
JP6161499B2 (en) Series hybrid combine
JP5681602B2 (en) Combine
JP6129045B2 (en) Series hybrid combine
JP4795563B2 (en) Auxiliary output device for work section of mobile agricultural machine
JP4207681B2 (en) Combine
JP5735389B2 (en) Combine
JP2004073006A (en) Driving force apparatus of combine harvester or the like
JP5764024B2 (en) Combine
JP5764022B2 (en) Combine
KR101241072B1 (en) Electric multi-purpose utility vehicle
US20220325501A1 (en) Power system for a machine
JP2010104288A (en) Combine harvester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847832

Country of ref document: EP

Kind code of ref document: A1