WO2015046185A1 - Series hybrid combine - Google Patents

Series hybrid combine Download PDF

Info

Publication number
WO2015046185A1
WO2015046185A1 PCT/JP2014/075164 JP2014075164W WO2015046185A1 WO 2015046185 A1 WO2015046185 A1 WO 2015046185A1 JP 2014075164 W JP2014075164 W JP 2014075164W WO 2015046185 A1 WO2015046185 A1 WO 2015046185A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
speed
engine
rotation speed
unit
Prior art date
Application number
PCT/JP2014/075164
Other languages
French (fr)
Japanese (ja)
Inventor
山中 之史
仲島 鉄弥
押谷 誠
高尾 吉郎
池田 博
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2015046185A1 publication Critical patent/WO2015046185A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • A01D69/02Driving mechanisms or parts thereof for harvesters or mowers electric
    • A01D69/025Electric hybrid systems

Definitions

  • the present invention includes an engine, a generator driven by the output of the engine, a motor driven by electric power from the generator, a left crawler traveling body and a right driven independently of each other by rotational power from the motor.
  • a traveling device having a crawler traveling body, a vehicle speed setting operation device for setting a vehicle speed according to an operation position, an electric machine control unit for controlling the generator and the motor, and an engine for controlling the output of the engine
  • the present invention relates to a series hybrid combine equipped with a control unit.
  • An engine for transmitting power to the traveling device, an electric motor, a generator for generating electric power by driving the engine, a battery for storing electric power generated by the generator for driving the electric motor, and the electric motor or the internal combustion engine or its A hybrid combine comprising a working device driven by both is known from US Pat.
  • This hybrid combine selects either a charging mode in which the electric power generated by the generator is stored in the battery or an assist mode in which at least a part of the electric power stored in the battery is used as power for the work device. Can drive.
  • a smaller engine can be used.
  • reduction of combustion exhaust gas emissions and engine noise can be realized.
  • a large-capacity battery required for accumulating engine surplus power as electric power and a control device for feeding / charging control of the battery increase a cost burden.
  • An electric motor for driving and harvesting that drives a traveling device and a harvesting processing device that harvests and conveys the crops backward
  • an electric motor for threshing that drives a threshing device that threshs the harvested crops
  • power generation driven by an engine A hybrid combine equipped with a machine is known from US Pat.
  • a traveling apparatus, a cutting processing apparatus, and a threshing apparatus is driven with an electric motor, the outstanding drive characteristic which an electric motor has can be used effectively.
  • no effect can be expected in terms of reducing engine noise and fuel consumption.
  • the series hybrid combine according to the present invention includes an engine, a generator driven by the output of the engine, a motor driven by electric power from the generator, and a left crawler driven independently by the rotational power from the motor.
  • a traveling device having a traveling body and a right crawler traveling body, a vehicle speed setting operation device for setting a vehicle speed according to an operation position, an electric machine control unit that controls the generator and the motor, and an output of the engine
  • An engine control unit for controlling the plant and a farm work device for harvesting crops.
  • a motor rotation number setting unit that calculates a motor command rotation number that is a control target rotation number of the motor based on an operation position of the vehicle speed setting operation device, and outputs the motor command rotation number to the electric machine control unit;
  • a motor rotation speed correction unit that corrects the motor command rotation speed based on a turning degree derived from a difference in driving speed between the left crawler traveling body and the right crawler traveling body;
  • the motor command rotation speed is calculated based on the operation position with respect to the vehicle speed setting operation device, and the calculated motor command rotation speed is determined based on the degree of turn of the combine (such as sudden turn or slow turn). It is corrected by the turning degree representing).
  • the degree of turn of the combine such as sudden turn or slow turn. It is corrected by the turning degree representing.
  • this combine since a pair of left and right crawler traveling bodies is used as a traveling device, a large traveling that varies depending on the degree of turning when the vehicle is created due to the difference in driving speed between the left crawler traveling body and the right crawler traveling body. Resistance arises. Since this running resistance becomes a rotational load of the motor, the generator is required to increase the supply power in order to increase the motor torque. As a result, the engine load increases.
  • the motor rotation speed correction unit corrects the motor command rotation speed calculated from the operation position of the vehicle speed setting operation device based on the turning degree. In order to reduce the motor load and consequently the engine load, the motor speed is basically lowered. With the configuration of the present invention, problems such as engine stall can be avoided even if the engine is downsized to save energy.
  • the motor rotation speed correction unit does not correct the motor command rotation speed when the rotation degree is a predetermined value or less, and the rotation degree is When the predetermined value is exceeded, the motor command rotational speed is corrected with the rotational speed reduction amount calculated according to the excess.
  • a speed state determination unit that detects a speed state value representing a vehicle speed
  • the motor rotation number correction unit is configured to detect the speed state value and the turning degree. Based on this, the motor command rotational speed is corrected.
  • optimization of the motor rotation speed is realized in consideration of the load caused by the turning degree at that time and the vehicle speed at that time.
  • the speed state value required here can be detected by various methods, but the vehicle speed, which is the driving speed of the traveling device, depends on the motor speed, and can be replaced by the motor command speed. This contributes to simplification of the control because the motor command rotational speed is originally used in the motor rotational speed correction control.
  • the motor rotation speed correction unit is prohibited from correcting such that the motor command rotation speed is equal to or lower than a preset minimum rotation speed.
  • a target speed calculation unit that calculates a target rotational speed of the engine based on an operation position of the vehicle speed setting operation device, and a calculation based on the target rotational speed.
  • an engine command rotational speed calculation unit for outputting the engine command rotational speed to the engine control unit.
  • the maneuvering is more stable when the speed setting operation and the turning setting operation are clearly distinguished.
  • the vehicle speed setting operation device includes at least a speed setting lever and a turning setting lever.
  • this series hybrid combine is a battery-less serial hybrid vehicle, and since the vehicle cannot be driven by electric power from the battery, power is supplied from a generator that generates power with a constantly rotating engine. It travels with a motor.
  • FIG. 1 schematically shows power transmission and power control in a series hybrid combine (hereinafter simply referred to as a combine or vehicle) of the present invention.
  • the starting point of power transmission is an internal combustion engine, here a diesel engine (hereinafter simply referred to as an engine) 80.
  • the rotational speed of the engine 80 is controlled by an engine control unit 86 that employs an electronic governor system, a common rail system, or the like.
  • a generator 81 that generates electric power using rotational power output from the engine 80 is connected to the engine 80 serving as a rotational power source.
  • the electric power output from the generator 81 is converted into electric power by the electric power converter 84 controlled by the electric machine control unit 85, and drives the motor 82 as another rotational power source.
  • the rotation speed and torque of the motor 82 are controlled according to the power conversion by the power conversion unit 84.
  • the end point of the power transmission is the farm work device W composed of a device for harvesting crops and the traveling device 1 for running the combine.
  • the farm work device W includes an engine drive work device WE that receives power directly from the engine 80 and a motor drive work device WM that receives power directly from the motor 82.
  • the traveling device 1 includes a pair of left and right crawler traveling bodies driven independently of each other, that is, a left crawler traveling body 1a and a right crawler traveling body 1b. Between the motor 82 and the traveling device 1, there is provided a power transmission mechanism 50A including a transmission 47 capable of transmitting speed change power with different rotational speeds to the left crawler traveling body 1a and the right crawler traveling body 1b. .
  • the vehicle speed setting including turning (steering) of the vehicle due to the speed difference between the left crawler traveling body 1a and the right crawler traveling body 1b is performed by a vehicle speed setting operation device OD operated by the driver.
  • the vehicle speed setting operation device OD is constituted by a plurality of operation tools including a turning setting lever and a speed setting lever for setting turning (steering), but is constituted only by a common single operating tool. May be.
  • the operation position of the vehicle speed setting operation device OD, the shift state of the power transmission mechanism 50A, the drive state of the farm work device W, and the like are detected by the positions of various sensors and various switches. Thereby, the information indicating the driving state relating to traveling such as straight traveling, turning traveling, and traveling on the road, during the cutting operation, before and after the cutting operation, and the operation driving state such as grain discharge can be used at any time.
  • This operation position includes vehicle speed operation position information for vehicle speed setting and turning operation position information for turning setting for creating a difference in driving speed between the left crawler traveling body 1a and the right crawler traveling body 1b. .
  • a motor command rotation speed (indicated by MC-RPM in FIG. 1) that is a control target rotation speed of the motor 82 is calculated.
  • An operation position-motor command rotation speed map for deriving a motor command rotation speed using the operation position as an input parameter is used.
  • the driving speeds of the left crawler traveling body 1a and the right crawler traveling body 1b are calculated based on the turning operation position information for turning setting included in the operation position.
  • the operation positions are input parameters.
  • the operation position-left / right crawler driving speed map for deriving the driving speed of the left crawler traveling body 1a and the right crawler traveling body 1b is used.
  • the turning degree is calculated from the difference in driving speed between the left crawler traveling body 1a and the right crawler traveling body 1b.
  • the turning operation position information for turning setting included in the operation position is also used as a shift command of the turning transmission mechanism incorporated in the transmission 47, but its configuration is well known. Description of is omitted.
  • the motor command rotational speed calculated using the operation position-motor command rotational speed map is corrected by a correction request determined based on the turning degree.
  • a control map is used in which a correction request is derived using the turning degree and the vehicle speed as input parameters.
  • the vehicle speed depends on the motor command rotational speed.
  • the transmission 47 is provided with a speed change mechanism such as an auxiliary speed change device, the output speed of the motor 82 can be obtained as an accurate vehicle speed that is the driving speed of the traveling device 1 by taking the speed ratio into consideration. .
  • the motor command rotational speed is corrected by this correction coefficient when correction is necessary.
  • the corrected motor command rotational speed may of course not be corrected, but is sent to the electric machine control unit 85 as a motor control command.
  • the amount of rotation speed reduction amount can be derived with a simple control map by dividing the excess amount in stages and assigning the amount of rotation speed reduction amount to each. Control is easy.
  • the correction that the motor command rotational speed is set to be equal to or lower than a preset minimum rotational speed is prohibited. Since the correction of the motor command rotational speed based on the turning degree is particularly necessary during high-speed running, a condition that functions only when the sub-transmission device is set to the high speed stage may be introduced.
  • the calculation of the motor command rotation speed, the calculation of the crawler drive speed, the calculation of the turning degree, and the correction of the motor command rotation speed have been divided, but can be arbitrarily integrated. It is. In extreme cases, a map for directly deriving the motor command rotation speed and the correction coefficient from the operation position of the vehicle speed setting operation device OD, and further the final correction motor command rotation speed directly from the operation position of the vehicle speed setting operation device OD. A map for deriving (including the uncorrected motor command rotational speed) may be created and used.
  • the MC-RPM may be recalculated in consideration of the shift state of the transmission 47 to obtain the vehicle speed state value, or the vehicle speed state value may be obtained from the vehicle speed detection unit.
  • the left crawler drive speed is CL
  • the right crawler drive speed is CR
  • the operation position-crawler drive speed map is expressed by the functions Gleft and Gright
  • CR Gright (Z) Is required.
  • each function described above is not a function with a strict meaning, does not need to be linear or non-linear, and may represent a discrete relationship, or simply represents a relationship that connects an input parameter and an output parameter. It's okay.
  • Such a function is obtained from empirical and experimental considerations based on the specifications of the engine 80, the generator 81, and the motor 82.
  • the engine command rotational speed commanded to the engine control unit 86 is switched according to the operation position of the vehicle speed setting operation device OD.
  • the maximum rotation speed is set when a heavy load occurs
  • the medium rotation speed is set when a medium load occurs
  • the low rotation speed is set when a low load occurs, This improves fuel consumption.
  • the ECU is also provided with an operation position-engine command rotation speed map for deriving the engine command rotation speed from the operation position.
  • FIG. 2 is a side view of the combine
  • FIG. 3 is a plan view.
  • This combine includes a crawler type traveling device 1 including a left crawler traveling body 1a and a right crawler traveling body 1b, and an airframe 2 supported by the traveling device 1 on the ground.
  • a cutting processing unit 3 is disposed in the front of the machine body 2.
  • a threshing device 4 and a grain tank 5 are arranged side by side in the machine body crossing direction on the left and right sides in the machine body advance direction.
  • a boarding operation unit 7 is disposed in front of the grain tank 5.
  • the cocoon cutting processing unit 3 can swing up and down around the horizontal axis P1 by operating the cylinder CY.
  • the crops harvested by the mowing processing unit 3 are threshed by the threshing device 4, and the grains obtained by the threshing device 4 are stored in the grain tank 5.
  • the harvesting processing unit 3, the threshing device 4, and the boarding operation unit 7 are attached to a body frame 6 constituting the body 2.
  • the cocoon cutting processing unit 3 includes a cutting unit 8 located at the front of the vehicle body, and a vertical transfer device 9 as a crop transfer unit that transfers the crops harvested by the cutting unit 8 toward the rear upper side of the vehicle body.
  • the vertical conveying device 9 conveys the harvested cereal meal backward and delivers it to the feed chain 18.
  • the cutting unit 8 includes a weeding tool 10 for weeding the harvested culm, a pulling device 11 for causing the planted culm to fall in a standing position, and a clipper for cutting the planted culm planted It has a type mowing device 12.
  • the cutting processing unit 3 is supported by the body frame 6 so as to be swingable up and down around the horizontal axis P1, and the vehicle body so as to open the normal working posture located at the front of the body 2 and the vehicle body front side of the body 2.
  • the posture can be changed around the vertical axis Y1 (see FIG. 3) over the maintenance posture retracted laterally outward.
  • the cutting unit frame 13 provided in the cutting processing unit 3 is supported around the horizontal axis P1 by the relay support member 15 supported by the left and right support members 14R and 14L provided upright from the body frame 6. Is supported so as to be swingable up and down.
  • the relay support member 15 that supports the reaper part frame 13 is supported by the machine body 2 so as to be rotatable about a longitudinal axis Y1 on a support body 14L located on the left side. That is, as a result, the entire cutting processing unit 3 is supported by the body 2 so as to be swingable around the longitudinal axis Y1.
  • the longitudinal axis Y ⁇ b> 1 on which the harvesting processing unit 3 is rotated to change the posture is located on the outer side in the vehicle body width direction on the opposite side of the boarding operation unit 7 in the vertical transfer device 9. Located in.
  • the threshing device 4 includes a threshing unit 16 that threshs the harvested cereal and a sorting unit 17 that sorts a processed product threshed by the threshing unit 16 into grains and dust. .
  • the harvested cereal is transported in a sideways posture in which the stock side is sandwiched by the feed chain 18. Further, in the handling chamber 19 through which the head side of the harvested cereal rice cake passes, a handling cylinder 20 that performs a handling process on the tip side of the harvested grain rice cake by being rotationally driven around the longitudinal axis of the machine body, and this handling processing.
  • a receiving network 21 is disposed for allowing the obtained processed material to leak downward.
  • a dust feed port 22 is formed on the lower side of the receiving net 21 in the processed material transfer direction to allow the processed material that has not leaked through the receiving net 21 to flow downward toward the lower side (rear side) of the sorting unit 17. Has been.
  • the sorting unit 17 is located below the threshing unit 16 and has a swing sorting mechanism 23 that swings and sorts the processed material leaked from the receiving net 21, a drive shaft 24a, and a tang ridge 24 that generates a sorting wind.
  • a collection unit 27, a second collection unit 30 and the like are provided.
  • the No. 1 recovery unit 27 recovers the selected grain (No. 1) and the right end of the recovered No. 1 by the No. 1 screw 25 arranged at the bottom along the vehicle body width direction (left and right direction). It is conveyed toward the lifting screw conveyor 26 that is connected in communication.
  • the No. 2 recovery unit 30 recovers a mixture (No. 2) such as cereal grains and straw scraps, and the No. 2 screw 28 provided at the bottom of the recovered No. 2 along the lateral direction of the vehicle body. Is conveyed toward the second reduction device 29 connected to the right end thereof.
  • the swing sorting mechanism 23 is provided with a swing sorting case 33, a precision sorting chaff sheave 34 disposed inside the swing sorting case 33, a Glen sheave 35, a Strollac 36, and the like.
  • the swing sorting case 33 is driven by an eccentric crank mechanism 32 whose front side is supported by a swing arm 31 and whose rear side is rotationally driven. Thereby, the swing sorting case 33 swings back and forth.
  • Glen sieve 35 sorts grain from the leaked processed material.
  • the Strollac 36 swings and transfers the straw scraps backward.
  • the first thing conveyed by the No. 1 screw 25 is lifted by the lifting screw conveyor 26, supplied to the grain tank 5, and stored.
  • the second product conveyed by the second screw 28 is rethreshed by the second reduction device 29 and then lifted and reduced to the swing sorting mechanism 23.
  • a grain discharging device 37 that discharges the grains stored in the grain tank 5 to the outside is provided.
  • the grain discharging device 37 includes a bottom screw 38, a vertical screw conveyor 39, and a horizontal screw conveyor 41.
  • the bottom screw 38 is provided along the groove-shaped bottom 5 a at the lower part of the grain tank 5.
  • the vertical screw conveyor 39 conveys the grain upward from the conveyance terminal end of the bottom screw 38.
  • the horizontal screw conveyor 41 conveys the grains in the horizontal direction from the upper part of the vertical screw conveyor 39 and discharges the grains from the discharge port 40 at the tip to a truck bed (not shown).
  • the lifting position of the horizontal screw conveyor 41 is changed by expansion and contraction of the hydraulic cylinder 42 provided between the vertical screw conveyor 39 and the horizontal screw conveyor 41. Furthermore, the vertical screw conveyor 39 can be swung around the vertical axis Y2 by a swivel motor 43 provided in the lower part thereof.
  • the bottom screw 38 and the vertical screw conveyor 39 and the vertical screw conveyor 39 and the horizontal screw conveyor 41 are connected to each other by bevel gear mechanisms 44 and 45, respectively. Accordingly, these conveyors are integrally rotated when power is supplied to the input pulley 46 provided at the front end of the bottom screw 38. As a result, the grain in the grain tank 5 is carried out to the outside.
  • FIG. 5 shows a first power transmission mechanism that supplies rotational power from the engine 80 to the handling cylinder 20, the sorting unit 17, and the like.
  • a traveling device 1 is composed of a left crawler traveling body 1 a and a right crawler traveling body 1 b that are arranged to rotate the rotational power from an electric motor (hereinafter simply abbreviated as “motor”) 82 on the left and right in the lateral direction of the vehicle body.
  • motor electric motor
  • the traveling transmission 47 included in the second power transmission mechanism is unevenly arranged in the lateral direction of the boarding operation unit 7 at the center in the lateral direction of the vehicle body, and a pair of left and right Power is transmitted to the traveling device 1.
  • a travel cutting motor 82 that supplies power to the travel transmission 47 is disposed at a lower position of the driving unit step 48 in the boarding driving unit 7.
  • the output shaft 49a of the motor 82 and the input shaft 49b of the traveling transmission 47 are interlocked and connected via a joint.
  • the transmission case 47 of the traveling transmission 47 there are a gear-type reduction mechanism 53, a hydraulically operated and gear-meshing auxiliary transmission 54, and left and right crawler traveling bodies 1a and 1b.
  • a turning transmission mechanism 55 and the like for turning traveling due to a speed difference are provided. Further, power is transmitted from the traveling transmission 47 to the cutting processing unit 3.
  • a one-way clutch 63 that transmits only power for forward travel and a belt tension type cutting clutch 64 that intermittently transmits power are interposed in the power transmission path.
  • the motor 82 is a power source for the pair of left and right traveling devices 1, 1 and the cutting processing unit 3.
  • the command rotational speed for the motor 82 is calculated based on the operation position of the vehicle speed setting operation device OD.
  • the vehicle speed setting operation device OD includes a stroke operation type main transmission lever 66 that functions as a vehicle speed setting lever and an operation lever 61 that functions as a turning setting lever. include. If the stroke operation type main transmission lever 66 is in the neutral position, the main transmission lever 66 is stopped, and the forward movement speed increases as the operation displacement of the main transmission lever 66 toward the front increases, and the operation displacement toward the rear of the main transmission lever 66 increases. The reverse travel speed increases as the value increases.
  • the operation position of the main transmission lever 66 is detected by the stroke sensor S4.
  • a negative brake 67 that brakes when the driving of the eaves motor 82 is stopped is disposed at the end of the input shaft 49b of the traveling transmission 47 that is opposite to the connection portion of the motor 82.
  • the negative brake 67 is urged into a braking state by a spring (not shown), and releases the braking state against an urging force of the spring by an electric or hydraulic actuator.
  • the negative brake 67 is controlled by the main electronic unit 100 to be in a braking state when the motor 82 is in an operation stop state (a state where no running torque is generated), and to a brake release state when the motor 82 is in an operation state. .
  • the negative brake 67 is switched from the braking release state to the braking state, the braking force is gradually increased and the impact during braking is suppressed.
  • the sub-transmission device 54 has two gear positions in order to create three speed states of high speed, medium speed, and low speed in combination with the speed switching of the motor 82 described later.
  • the medium speed condition is selected when cutting on a standard field
  • the low speed condition is selected when the crop is lying down or when the driving load is large in a deep wet field
  • the high speed condition is selected when traveling on the road. Selected.
  • the shift speed of the auxiliary transmission 54 is switched by a third operating tool 56 that is one of the vehicle speed setting operating tools provided in the boarding operation unit 7.
  • the turning transmission mechanism 55 includes a slow turning clutch 58 for transmitting deceleration power to one of the left crawler traveling body 1a and the right crawler traveling body 1b, a deceleration brake 59 for applying a braking force to either one,
  • the steering clutch 60 etc. which switch the power transmission state with respect to either to a straight-ahead state and a turning state (a deceleration state or a braking state) are included.
  • the saddle turning transmission mechanism 55 is linked to an operation lever 61 provided in the boarding operation unit 7. Depending on the inclination angle from the neutral position of the operation lever 61 in the left-right direction, a turn from the straight traveling state of the traveling machine body 2 to the right or left is created.
  • a turning lever sensor S3 is provided to detect the inclination angle from the neutral position of the operation lever 61 to the left and right. That is, the turning degree of the combine is calculated based on the operation displacement of the operating lever 61, and the detection signal of the turning lever sensor S3 is used for calculating the turning degree.
  • the operation lever 61 is swingable in the front-rear direction, and the lifting operation and the lowering operation of the cutting processing unit 3 are realized by the swinging operation in the front-rear direction.
  • the intermediate speed state used when cutting in a standard field is achieved through switching of the gear position of the sub-transmission device 54 and shifting of the motor 82, and when the crop is lying down, It is possible to create a low-speed state that is used when the traveling load is large in a deep marsh and a high-speed state that is used when traveling on the road.
  • Switching of the auxiliary transmission 54 is performed by the third operation tool 56.
  • a second operating tool 57 is also provided to temporarily change the vehicle speed during the cutting operation, and the second operating tool 57 also switches the auxiliary transmission 54 under specific conditions.
  • the third operation tool 56 and the second operation tool 57 are formed as a switch, and particularly preferably as a momentary switch operated by a driver's finger. Switch off.
  • the third operating tool 56 is provided in the grip portion of the main transmission lever 66 that is one of the speed setting operating tools of the motor 82
  • the second operating tool 57 is the grip portion of the operating lever 61. Is provided.
  • the 3rd operation tool 56 and the 2nd operation tool 57 can also be provided in other positions, for example, a control panel etc.
  • the operation state signals of the third operation tool 56 and the second operation tool 57 and the operation position signal of the main transmission lever 66 by the stroke sensor S4 are input to the main electronic unit 100 to control the motor 82 and the auxiliary transmission device 54. Used.
  • the power system for the sorting unit 17 receives rotational power directly from the engine 80.
  • the power from the engine 80 is transmitted to the sorting section 17, specifically, the drive shaft 24 a of the carp 24 through the belt tension type sorting on / off clutch 71. Further, power is transmitted from the drive shaft 24 a of the carp 24 to the first screw 25, the second screw 28, the swing sorting mechanism 23, the feed chain 18, and the like via the transmission belt 72.
  • the power from the engine 80 is supplied to the grain discharging device 37, specifically the bottom screw 38, via the belt tension type discharging on / off clutch 73, the bevel gear mechanism 74, and the belt transmission mechanism 75. It is transmitted to an input pulley 46 provided at the front side end.
  • the sorting on / off clutch 71 is switched between the on state and the off state by a sorting clutch motor (not shown).
  • the discharge on / off clutch 73 is switched between an on state and an off state by a discharge clutch motor (not shown).
  • the output shaft 80 a of the engine 80 is connected to a power transmission mechanism 50 ⁇ / b> B that functions as a power supply mechanism to the threshing unit 16 and the grain discharging device 37, and generates power.
  • the power generation rotary shaft 81a of the machine 81 is also connected.
  • the generator 81 and the motor 82 are connected to the electric machine control unit 85 via the power converter 84.
  • the motor 82 is a known three-phase AC induction electric motor that is used as a motor for driving the vehicle.
  • the power converter 84 includes a power generating inverter that converts AC power generated by the generator 81 into DC power, a converter that converts DC power converted by the power generating inverter into AC power suitable for the motor 82, and the like. Power electronics equipment is included. On the basis of a command from a main electronic unit (generally called ECU) 100 that internally constructs a control algorithm for appropriately controlling the power electronics device, the electric machine control unit 85 includes a power conversion unit 84. Is given a control signal.
  • ECU main electronic unit
  • the engine control unit 86 controls the output (rotation speed and torque) of the engine 80 by changing the fuel supply amount to the engine 80 based on the command from the main electronic unit 100.
  • the signal from the engine rotation sensor S2 that detects the engine speed is sent to the engine control unit 86 and / or the main electronic unit 100 via the vehicle state detection unit 90.
  • the signal from the engine rotation sensor S2 including other signals, may be sent directly without passing through the vehicle state detection unit 90.
  • engine control is controlled by the engine control unit 86 in an electronic governor manner.
  • the engine control unit 86 is either droop control that slightly decreases the engine speed as the load of the engine 80 increases, or isochronous control that maintains the engine speed constant regardless of the load of the engine 80.
  • the engine 80 can be controlled.
  • the work device control unit 87 is incorporated in the engine drive work device W1 that uses the rotational power of the engine 80 as it is and the motor drive work device W2 that uses the rotational power of the motor 82 based on a command from the main electronic unit 100.
  • a control signal is given to operating devices such as a clutch operating device and a hydraulic cylinder.
  • the vehicle state detection unit 90 performs preprocessing such as conversion processing on signals input from various switches and sensors as necessary, and transfers the signals to the main electronic unit 100.
  • the main electronic unit 100 is connected to other ECUs such as an engine control unit 86, an electric machine control unit 85, a work device control unit 87, and a vehicle state detection unit 90 through an in-vehicle LAN. It should be noted that not only the main electronic unit 100 but also other ECUs are configured in an easy-to-understand manner for the purpose of explanation. Accordingly, in practice, each ECU may be appropriately integrated or may be appropriately divided. In this embodiment, the main electronic unit 100 constructs an engine management module 110, an electric appliance management module 120, a vehicle management module 130, and the like as those particularly related to the present invention by hardware and software (computer program). Yes.
  • the engine management module 110 sends various engine control commands to the engine control unit 86 to adjust the output of the engine 80 in cooperation with other management modules.
  • the electric machine management module 120 also cooperates with other management modules and sends an electric equipment control command to the electric machine control unit 85 so that the generator 81 and the motor 82 are appropriately driven via the power conversion unit 84.
  • the vehicle management module 130 executes the traveling state and working state of this combine. Confirm and manage.
  • a vehicle state determination unit 13a and a speed state determination unit 13b are constructed. Based on various state detection signals acquired from the vehicle state detection unit 90, the vehicle state determination unit 13a drives the left crawler traveling body 1a and the right crawler traveling body 1b, and the cutting processing unit 3, the threshing device 4, and the grain. The driving state of the agricultural work apparatus W such as the grain discharging apparatus 37 is determined.
  • the speed state determination unit 13b determines the vehicle speed based on various state detection signals related to the vehicle speed acquired from the vehicle state detection unit 90, or command information on the number of revolutions for the motor 82 handled by the electric machine management module 120 or the electric machine control unit 85. The speed state indicating is determined.
  • the stroke operation position in the front-rear direction of the main transmission lever 66 operated by the driver is detected by the stroke sensor S4 as a speed setting signal and sent to the main electronic unit 100.
  • the left / right inclination angle of the operation lever 61 operated by the driver is detected by the turning lever sensor S3 as a turning degree calculation signal indicating turning (steering) of the airframe 2 and is sent to the main electronic unit 100. It is done.
  • the electric machine management module 120 determines the number of rotations of the motor 82 based on the operation positions of the main transmission lever 66 and the operation lever 61, that is, based on the detection signals from the stroke sensor S4 and the turning lever sensor S3, and as a result A command for controlling the driving speed of the crawler traveling body 1a and the right crawler traveling body 1b is given to the electric machine control unit 85.
  • the electric machine control unit 85 controls power electronics devices such as an inverter and a converter included in the power conversion unit 84 based on a command from the electric machine management module 120. At that time, the output of the generator 81 and the motor 82 is changed and adjusted by controlling on / off the switching transistors provided in the three phases (u phase, v phase, w phase).
  • a motor rotation number setting unit 12c calculates a motor command rotation speed that is a control target rotation speed of the motor 82 based on the operation position of the main transmission lever 66 and the operation lever 61, and outputs the motor command rotation speed to the electric machine control unit 85.
  • the motor rotation speed correction unit 12b corrects the motor command rotation speed calculated by the motor rotation speed setting unit 12c based on the turning degree derived from the difference in driving speed between the left crawler traveling body 1a and the right crawler traveling body 1b. To do.
  • the turning degree calculation unit 12z calculates the turning degree based on the operation position (detection signal from the turning lever sensor S3) regarding the turning setting of the operation lever 61.
  • This motor command rotation speed correction process is based on the basic principle described with reference to FIG. That is, the motor rotation speed setting unit 12c calculates the motor command rotation speed using the operation position-motor command rotation speed map.
  • the turning degree calculation unit 12z sets the difference between the left crawler driving speed and the right crawler driving speed that generates the minimum turning radius as 100%, and 0 when the left crawler driving speed and the right crawler driving speed are the same.
  • the ratio of% is calculated as the turning degree.
  • the motor rotation speed correction unit 12b corrects the motor command rotation speed calculated by the motor rotation speed setting unit 12c using a correction algorithm using this ratio.
  • the modification algorithm is structured as follows: (1) Correction is performed when the auxiliary transmission 54 is at a high speed.
  • the engine management module 110 appropriately manages the operation of the engine 80 in consideration of the engine load.
  • the load estimation unit 11d constructed in the engine management module 110 is an engine load estimated from the driving state of the left crawler traveling body 1a and the right crawler traveling body 1b determined by the vehicle state determining unit 13a and the driving state of the agricultural work device W. Is also calculated as an estimated load.
  • an engine command rotational speed calculation unit 11b constructed in the engine management module 110 calculates an engine command rotational speed based on the estimated load calculated by the load estimation unit 11d and an engine control command based on the engine command rotational speed. Is output to the engine control unit 86.
  • the load estimation unit 11d and the engine control unit 86 operate integrally.
  • the following 8 Specifies two modes. (1) Stop mode: No work or running. (2) Before / after mowing operation + straight-forward mode: The machine body 2 is traveling straight ahead for a predetermined time immediately before entering the mowing operation or for a predetermined time after the mowing operation is completed.
  • the engine control unit 86 calculates the engine command rotational speed according to the operation mode. In this embodiment, since an engine performance curve as schematically shown in FIG. 8 is defined, the engine command rotational speed based on this is calculated.
  • the engine 80 has a maximum output of 18.5 KW and a maximum rotational speed of 2500 rpm, and the engine control characteristics schematically shown in FIG. 8 are represented by three lines. That is, a high rotational speed Nh (for example, a rotational speed slightly lower than 2500 rpm) is set at a high load, a medium rotational speed Nm (for example, a rotational speed slightly lower than 2000 rpm) is set at a medium load, and a low rotational speed at a low load.
  • Nh for example, a rotational speed slightly lower than 2500 rpm
  • Nm for example, a rotational speed slightly lower than 2000 rpm
  • Nl for example, a low rotational speed slightly higher than 1500 rpm
  • the idling speed of the engine 80 is slightly higher than 1000 rpm. From this, in practice, (1) In stop mode, idling speed is set, (2) Before / after mowing operation + straight running mode, the region from idling speed to low speed is set, (3) Before / after mowing operation + turning mode, a slightly lower rotational speed than the high rotational speed is set, (4) In the cutting and straight running mode, the area from the low speed to the maximum speed is set. (5) During cutting and turning mode, the maximum number of revolutions is set.
  • the maximum number of revolutions was set regardless of the load.
  • the maximum number of revolutions is set even at low loads, so the low load continues. In some cases, energy saving is insufficient.
  • the engine speed setting is constantly adjusted in accordance with the load fluctuation, in the situation where the load fluctuates finely, there arises an inconvenience related to energy saving and noise that the engine is repeatedly puffed.
  • the engine speed is set according to the load, such as high speed at high load, air speed at medium load, and low speed at low load. At that time, the maximum rotation speed is set since the cutting operation + turning mode and road traveling + turning mode are the operating states in which the greatest load is generated.
  • the traveling device 1 is composed of a pair of left and right crawler traveling bodies 1a and 1b. However, a combined configuration of wheels and crawler traveling bodies, or a configuration including only wheels may be employed.
  • the third operation tool 56 and the second operation tool 57 may be configured by an operation lever operated by a driver and a sensor that detects an operation displacement of the operation lever.
  • the engine command rotational speed is calculated by the engine command rotational speed calculation unit 11b based on the load of the load estimation unit 11d. However, since the motor load, and consequently the engine load, is also calculated in the calculation of the motor command rotation speed by the electric appliance management module 120, the engine command rotation speed calculation unit 11b calculates the engine command rotation speed from the motor command rotation speed. It may be derived.
  • the present invention can be applied to a self-removal type or a normal type combine in which crops are harvested and threshed as the vehicle runs.
  • traveling device 1a left crawler traveling body 1b: right crawler traveling body 2: traveling machine body 3: reaping processing unit 4: threshing device 5: grain tank 7: boarding operation unit 8: reaping unit 12: reaping device 54: sub Transmission 56: Third operation tool 57: Second operation tool 61: Operation lever (turning setting lever) 66: Main transmission lever (speed setting lever) 80: Engine 81: Generator 82: Motor (electric motor) 84: Power conversion unit 85: Electric control unit 86: Engine control unit 87: Work device control unit 90: Vehicle state detection unit 100: Main electronic unit 110: Engine management module 11b: Engine command rotational speed calculation unit 11d: Load estimation unit 120: Electricity management module 12b: Motor rotation speed correction section 12c: Motor rotation speed setting section 12z: Turning degree calculation section 130: Vehicle management module 13a: Vehicle state determination section 13b: Speed state determination section S2: Engine rotation speed sensor S3: Swivel lever sensor S4: Stroke sensor OD: Vehicle speed setting operation device

Abstract

[Problem] To provide a series hybrid combine wherein a traveling device is driven by a motor with superior shift characteristics, and wherein a small engine having good fuel consumption is mounted as a drive source for the motor. [Solution] A series hybrid combine is provided with: a motor (82) that is driven by electricity from a generator (81) driven by an engine output; a traveling device (1) having a left crawler traveling body (1a) and a right crawler traveling body (1b) that are driven independently of each other by rotational power from the motor (82); and a vehicle speed setting operating device for setting vehicle speed according to an operating position. The series hybrid combine is further provided with: a motor rotational speed calculation unit for calculating, on the basis of the operating position, a motor command rotational speed forming a control target rotational speed for the motor; and a motor rotational speed modification unit for modifying the motor command rotational speed on the basis of a degree of turning derived from the difference in drive speed for the left crawler traveling body (1a) and the right crawler traveling body (1b).

Description

シリーズハイブリッドコンバインSeries hybrid combine
  本発明は、エンジンと、前記エンジンの出力によって駆動する発電機と、前記発電機からの電力によって駆動するモータと、前記モータからの回転動力によって互いに独立して駆動される左クローラ走行体と右クローラ走行体とを有する走行装置と、操作位置に応じた車速を設定するために車速設定操作装置と、前記発電機と前記モータとを制御する電機制御ユニットと、前記エンジンの出力を制御するエンジン制御ユニットとを備えたシリーズハイブリッドコンバインに関する。 The present invention includes an engine, a generator driven by the output of the engine, a motor driven by electric power from the generator, a left crawler traveling body and a right driven independently of each other by rotational power from the motor. A traveling device having a crawler traveling body, a vehicle speed setting operation device for setting a vehicle speed according to an operation position, an electric machine control unit for controlling the generator and the motor, and an engine for controlling the output of the engine The present invention relates to a series hybrid combine equipped with a control unit.
  走行装置に動力を伝達するエンジンと、電動モータと、エンジンの駆動で発電する発電機と、この発電機で発電された電力を電動モータ駆動用に蓄えるバッテリと、この電動モータまたは内燃機関あるいはその両方により駆動される作業用装置とを備えたハイブリッドコンバインが、特許文献1から知られている。このハイブリッドコンバインは、発電機で発電された電力をバッテリに蓄える充電モードと、バッテリに蓄えられた電力の少なくとも一部を作業用装置の動力として利用するアシストモードとのいずれかのモードを選択して運転できる。このようなハイブリッドコンバインでは、エンジンに余力のある際に充電されたバッテリからの電力によって駆動される電動モータが、エンジン出力を補うことができるので、より小型のエンジンを使用することができる。その結果、燃焼排ガスの排出量削減、エンジン騒音の低減が実現する。しかしながら、エンジン余力を電力として蓄積するために要求される大容量のバッテリ、及びこのバッテリの給電・充電制御のための制御機器によって、コスト的な負担が大きくなる。 An engine for transmitting power to the traveling device, an electric motor, a generator for generating electric power by driving the engine, a battery for storing electric power generated by the generator for driving the electric motor, and the electric motor or the internal combustion engine or its A hybrid combine comprising a working device driven by both is known from US Pat. This hybrid combine selects either a charging mode in which the electric power generated by the generator is stored in the battery or an assist mode in which at least a part of the electric power stored in the battery is used as power for the work device. Can drive. In such a hybrid combine, since the electric motor driven by the electric power from the battery charged when the engine has sufficient capacity can supplement the engine output, a smaller engine can be used. As a result, reduction of combustion exhaust gas emissions and engine noise can be realized. However, a large-capacity battery required for accumulating engine surplus power as electric power and a control device for feeding / charging control of the battery increase a cost burden.
  走行装置及び作物を刈り取って後方に搬送する刈取処理装置を駆動する走行刈取用の電動モータと、刈り取った作物を脱穀処理する脱穀装置を駆動する脱穀用の電動モータと、エンジンによって駆動される発電機とを備えたハイブリッドコンバインが特許文献2から知られている。このコンバインでは、走行装置、刈取処理装置及び脱穀装置の夫々が電動モータによって駆動されるので、電動モータが有する優れた駆動特性を有効利用することができる。しかしながら、従来通りのエンジンを搭載して、エンジンによって発電機を駆動する限り、エンジン騒音の低減や燃料消費の抑制の点では、効果が期待できない。逆に、エンジンを最も燃費のよい条件で駆動して得られる発電機からの電力を大型のバッテリに蓄積し、このバッテリから電動モータを給電する場合、燃料消費の抑制は可能であっても、バッテリ自体のコストやバッテリの充電・給電制御のコストは、大きな負担となる。 An electric motor for driving and harvesting that drives a traveling device and a harvesting processing device that harvests and conveys the crops backward, an electric motor for threshing that drives a threshing device that threshs the harvested crops, and power generation driven by an engine A hybrid combine equipped with a machine is known from US Pat. In this combine, since each of a traveling apparatus, a cutting processing apparatus, and a threshing apparatus is driven with an electric motor, the outstanding drive characteristic which an electric motor has can be used effectively. However, as long as the conventional engine is mounted and the generator is driven by the engine, no effect can be expected in terms of reducing engine noise and fuel consumption. On the contrary, when the electric power from the generator obtained by driving the engine under the most fuel-efficient condition is stored in a large battery and the electric motor is fed from this battery, even if the fuel consumption can be suppressed, The cost of the battery itself and the cost of battery charging / power feeding control are significant burdens.
  乗用車の分野では、走行装置がエンジンからの回転動力を利用するに与えるエンジン駆動モードとモータによる回転動力を利用するモータ駆動モードとを状況に応じて切り替えるパラレルハイブリットが普及している。しかしながら、パラレルハイブリットでは、エンジン駆動モードとモータ駆動モードと間の動力切替機構が複雑となり、動力伝達機構(トランスミッション)のコストが上昇するという問題点がある。 In the field of passenger cars, parallel hybrids that switch between the engine drive mode that the traveling device gives when using the rotational power from the engine and the motor drive mode that uses the rotational power of the motor are widely used. However, the parallel hybrid has a problem that the power switching mechanism between the engine driving mode and the motor driving mode becomes complicated, and the cost of the power transmission mechanism (transmission) increases.
特開2004-242558号公報JP 2004-242558 A 特開2013-70642号公報JP 2013-70642 A
  上述したような従来のハイブリッドコンバインに鑑み、変速特性に優れたモータによって走行装置を駆動させる利点のさらなる追求、モータ給電用の大型バッテリがもたらす不都合の解消等を実現するハイブリッドコンバインが要望されている。さらに、モータの駆動源となるエンジンの燃料消費を改善するため、できるだけ小型(小出力)のエンジンが搭載できるようなモータ制御も要求される。 In view of the conventional hybrid combine as described above, there is a demand for a hybrid combine that realizes further pursuit of the advantage of driving the traveling device with a motor having excellent speed change characteristics, elimination of inconvenience caused by a large battery for motor power supply, and the like. . Furthermore, in order to improve the fuel consumption of the engine serving as the motor drive source, motor control is required so that the engine as small as possible (small output) can be mounted.
  本発明によるシリーズハイブリッドコンバインは、エンジンと、前記エンジンの出力によって駆動する発電機と、前記発電機からの電力によって駆動するモータと、前記モータからの回転動力によって互いに独立して駆動される左クローラ走行体と右クローラ走行体とを有する走行装置と、操作位置に応じた車速を設定するために車速設定操作装置と、前記発電機と前記モータとを制御する電機制御ユニットと、前記エンジンの出力を制御するエンジン制御ユニットと、農作物を収穫する農作業装置とを備えている。さらに、制御機能部として、前記車速設定操作装置の操作位置に基づいて前記モータの制御目標回転数となるモータ指令回転数を算定して、前記電機制御ユニットに出力するモータ回転数設定部と、前記左クローラ走行体と右クローラ走行体との駆動速度の違いから導かれる旋回度に基づいて前記モータ指令回転数を修正するモータ回転数修正部とが備えられている。 The series hybrid combine according to the present invention includes an engine, a generator driven by the output of the engine, a motor driven by electric power from the generator, and a left crawler driven independently by the rotational power from the motor. A traveling device having a traveling body and a right crawler traveling body, a vehicle speed setting operation device for setting a vehicle speed according to an operation position, an electric machine control unit that controls the generator and the motor, and an output of the engine An engine control unit for controlling the plant and a farm work device for harvesting crops. Furthermore, as a control function unit, a motor rotation number setting unit that calculates a motor command rotation number that is a control target rotation number of the motor based on an operation position of the vehicle speed setting operation device, and outputs the motor command rotation number to the electric machine control unit; A motor rotation speed correction unit that corrects the motor command rotation speed based on a turning degree derived from a difference in driving speed between the left crawler traveling body and the right crawler traveling body;
  この構成によれば、車速設定操作装置に対する操作位置に基づいて、モータ指令回転数が算定されるが、この算定されたモータ指令回転数は、このコンバインの旋回の程度(急旋回や緩旋回など)を表す旋回度によって、修正される。このコンバインでは、走行装置として左右一対のクローラ走行体が用いられているため、左クローラ走行体と右クローラ走行体との駆動速度の違いから作り出される車両旋回時に、その旋回度によって変動する大きな走行抵抗が生じる。この走行抵抗はモータの回転負荷となるので、モータトルクを大きくするため発電機に対して供給電力の増大を要求することになる。その結果、エンジン負荷が大きくなる。エンジンの燃料消費を改善するために小型のエンジンを採用している場合、急激なエンジン負荷は、エンジン回転数のドロップ、最悪の場合エンジンストールを引き起こす。このような問題を回避するため、モータ回転数修正部は、車速設定操作装置の操作位置から算定されたモータ指令回転数を、旋回度に基づいて修正する。モータの負荷、結果的にエンジン負荷を減らすためには、基本的にはモータ回転数を下げることになる。この本発明の構成により、省エネ対策のためにエンジンを小型化しても、エンジンストールなどの問題を避けることができる。 According to this configuration, the motor command rotation speed is calculated based on the operation position with respect to the vehicle speed setting operation device, and the calculated motor command rotation speed is determined based on the degree of turn of the combine (such as sudden turn or slow turn). It is corrected by the turning degree representing). In this combine, since a pair of left and right crawler traveling bodies is used as a traveling device, a large traveling that varies depending on the degree of turning when the vehicle is created due to the difference in driving speed between the left crawler traveling body and the right crawler traveling body. Resistance arises. Since this running resistance becomes a rotational load of the motor, the generator is required to increase the supply power in order to increase the motor torque. As a result, the engine load increases. If a small engine is employed to improve engine fuel consumption, a sudden engine load will cause a drop in engine speed and, in the worst case, engine stall. In order to avoid such a problem, the motor rotation speed correction unit corrects the motor command rotation speed calculated from the operation position of the vehicle speed setting operation device based on the turning degree. In order to reduce the motor load and consequently the engine load, the motor speed is basically lowered. With the configuration of the present invention, problems such as engine stall can be avoided even if the engine is downsized to save energy.
  旋回度によってエンジンが不安定になる現象を回避する際、車速設定操作装置を操作することで操縦されるコンバインの運転性(ドライバービリティ)を出来るだけ悪くしないことが必要である。この目的のため、本発明の好適な実施形態の1つでは、前記モータ回転数修正部は、前記旋回度が所定値以下の場合、前記モータ指令回転数に対する修正を行わず、前記旋回度が所定値を超えた場合、その超過分に応じて算定される回転数低下量で前記モータ指令回転数に対する修正を行う。 回避 When avoiding the phenomenon of engine instability due to the degree of turning, it is necessary to minimize the drivability of the combine operated by operating the vehicle speed setting operation device as much as possible. For this purpose, in one preferred embodiment of the present invention, the motor rotation speed correction unit does not correct the motor command rotation speed when the rotation degree is a predetermined value or less, and the rotation degree is When the predetermined value is exceeded, the motor command rotational speed is corrected with the rotational speed reduction amount calculated according to the excess.
  さらに、旋回時に生じるモータ負荷は、車速が大きくなるほど大きなものとなる。このため、本発明の好適な実施形態の1つでは、車速を表す速度状態値を検出する速度状態決定部が備えられ、前記モータ回転数修正部は、前記速度状態値と前記旋回度とに基づいて前記モータ指令回転数を修正するように構成されている。この構成により、旋回走行時にはその時の旋回度とその時の車速とによって生じる負荷を考慮した、モータ回転数の最適化が実現する。ここで必要となる速度状態値は、種々の方法で検知することができるが、走行装置の駆動速度である車速はモータの回転数に依存するので、モータ指令回転数で代替することができる。このことは、モータ指令回転数がもともとモータ回転数修正制御で使用されていることから、制御の簡単化に貢献する。 Furthermore, the motor load generated during turning increases as the vehicle speed increases. For this reason, in a preferred embodiment of the present invention, a speed state determination unit that detects a speed state value representing a vehicle speed is provided, and the motor rotation number correction unit is configured to detect the speed state value and the turning degree. Based on this, the motor command rotational speed is corrected. With this configuration, optimization of the motor rotation speed is realized in consideration of the load caused by the turning degree at that time and the vehicle speed at that time. The speed state value required here can be detected by various methods, but the vehicle speed, which is the driving speed of the traveling device, depends on the motor speed, and can be replaced by the motor command speed. This contributes to simplification of the control because the motor command rotational speed is originally used in the motor rotational speed correction control.
  なお、車速設定操作装置に対する運転者の操作に基づくモータ指令回転数のモータ回転数修正部による修正量が大きすぎると、運転者の意図しない大きな減速が生じてしまう。また、必要以上のモータ回転数の下げは、モータ負荷の解消に貢献しない。このため、本発明の好適な実施形態では、前記モータ回転数修正部では、前記モータ指令回転数が予め設定された最低回転数以下になるような修正が禁止されている Note that if the correction amount by the motor rotation speed correction unit for the motor command rotation speed based on the driver's operation on the vehicle speed setting operation device is too large, a large deceleration unintended by the driver occurs. Moreover, lowering the motor speed more than necessary does not contribute to eliminating the motor load. For this reason, in a preferred embodiment of the present invention, the motor rotation speed correction unit is prohibited from correcting such that the motor command rotation speed is equal to or lower than a preset minimum rotation speed.
  大きなモータ負荷を避けるために、車速設定操作装置に対する運転者の操作に基づくモータ指令回転数を修正(減少)させるだけでは不十分なことがある。このため、本発明の好適な実施形態の1つでは、前記車速設定操作装置の操作位置に基づいて前記エンジンの目標回転速度を算定する目標速度算定部と、前記目標回転速度に基づいて算定されたエンジン指令回転数を前記エンジン制御ユニットに出力するエンジン指令回転数算定部とが備えられている。これにより、車速設定操作装置に対する運転者の操作がモータ及びエンジンに大きな負荷を与える場合、そのモータ指令回転数を修正するだけでなく、エンジン指令回転数も生じうるエンジン負荷に適応すべく選択することで、より安定した運転が実現する。 避 け る In order to avoid a large motor load, it may be insufficient to only correct (decrease) the motor command rotational speed based on the driver's operation on the vehicle speed setting operation device. Therefore, in a preferred embodiment of the present invention, a target speed calculation unit that calculates a target rotational speed of the engine based on an operation position of the vehicle speed setting operation device, and a calculation based on the target rotational speed. And an engine command rotational speed calculation unit for outputting the engine command rotational speed to the engine control unit. As a result, when the driver's operation on the vehicle speed setting operation device gives a large load to the motor and the engine, not only the motor command rotation speed is corrected, but also the engine command rotation speed is selected to be adapted to the engine load that can be generated. As a result, more stable operation is realized.
  本発明の対象となるようなコンバインでは、速度設定の操作と旋回設定の操作を明確に区別した方が、操縦が安定する。このため、前記車速設定操作装置は、少なくとも速度設定用レバーと旋回設定用レバーとからなることが好ましい。 で は In a combine that is an object of the present invention, the maneuvering is more stable when the speed setting operation and the turning setting operation are clearly distinguished. For this reason, it is preferable that the vehicle speed setting operation device includes at least a speed setting lever and a turning setting lever.
本発明の基本的な原理を説明する模式図である。It is a schematic diagram explaining the basic principle of this invention. 本発明の具体的な実施形態の1つであるコンバインの全体側面図である。It is a whole side view of a combine which is one of the concrete embodiments of the present invention. コンバインの全体平面図である。It is a whole top view of a combine. 脱穀装置の縦断側面図である。It is a vertical side view of a threshing apparatus. エンジンからの回転動力を扱胴や選別部に供給する動力伝達機構を示す模式図である。It is a schematic diagram which shows the power transmission mechanism which supplies the rotational power from an engine to a handling cylinder and a selection part. モータからの回転動力を、車体横幅方向の左と右に配置されたクローラ走行体と刈取処理部とに供給する動力伝達機構を示す模式図である。It is a schematic diagram which shows the power transmission mechanism which supplies the rotational power from a motor to the crawler traveling body arrange | positioned at the left and right of a vehicle body width direction, and a cutting process part. 動力制御系統を示す機能ブロック図である。It is a functional block diagram which shows a power control system. エンジン負荷に応じたエンジン回転数制御(パワーオンデマンド制御)を説明する模式図である。It is a schematic diagram explaining the engine speed control (power on demand control) according to engine load.
  本発明によるシリーズハイブリッドコンバインの具体的な実施形態を説明する前に、図1を用いて本発明の基本原理を説明する。
  なお、このシリーズハイブリッドコンバインは、バッテリレスのシリアルハイブリッド車両であり、バッテリからの電力で車両を走行させることはできないので、定常的に回転しているエンジンによって発電している発電機から給電されるモータによって走行する。
Before describing a specific embodiment of a series hybrid combine according to the present invention, the basic principle of the present invention will be described with reference to FIG.
Note that this series hybrid combine is a battery-less serial hybrid vehicle, and since the vehicle cannot be driven by electric power from the battery, power is supplied from a generator that generates power with a constantly rotating engine. It travels with a motor.
  図1には、本発明のシリーズハイブリッドコンバイン(以下単にコンバインまたは車両と略称される)における動力伝達と動力制御とが模式的に示されている。動力伝達の出発点は、内燃機関、ここではディーゼルエンジン(以下単にエンジンと称する)80である。エンジン80の回転数は、電子ガバナー方式やコモンレール方式などを採用するエンジン制御ユニット86によって制御される。回転動力源としてのエンジン80には、エンジン80から出力される回転動力によって発電する発電機81が連結されている。この発電機81から出力された電力は、電機制御ユニット85によって制御される電力変換部84によって電力変換され、もう1つの回転動力源となるモータ82を駆動する。電力変換部84による電力変換に応じて、モータ82の回転数やトルクが制御される。動力伝達の終点は、農作物を収穫するための機器からなる農作業装置Wとこのコンバインを走行させる走行装置1である。 FIG. 1 schematically shows power transmission and power control in a series hybrid combine (hereinafter simply referred to as a combine or vehicle) of the present invention. The starting point of power transmission is an internal combustion engine, here a diesel engine (hereinafter simply referred to as an engine) 80. The rotational speed of the engine 80 is controlled by an engine control unit 86 that employs an electronic governor system, a common rail system, or the like. A generator 81 that generates electric power using rotational power output from the engine 80 is connected to the engine 80 serving as a rotational power source. The electric power output from the generator 81 is converted into electric power by the electric power converter 84 controlled by the electric machine control unit 85, and drives the motor 82 as another rotational power source. The rotation speed and torque of the motor 82 are controlled according to the power conversion by the power conversion unit 84. The end point of the power transmission is the farm work device W composed of a device for harvesting crops and the traveling device 1 for running the combine.
  農作業装置Wには、エンジン80から直接動力を受けるエンジン駆動作業装置WEと、モータ82から直接動力を受けるモータ駆動作業装置WMが含まれている。走行装置1は、互いに独立して駆動される左右一対のクローラ走行体、つまり左クローラ走行体1aと右クローラ走行体1bとからなる。モータ82と走行装置1との間には、左クローラ走行体1aと右クローラ走行体1bとに異なる回転数の変速動力を伝達することができるトランスミッション47を含む動力伝達機構50Aが備えられている。 The farm work device W includes an engine drive work device WE that receives power directly from the engine 80 and a motor drive work device WM that receives power directly from the motor 82. The traveling device 1 includes a pair of left and right crawler traveling bodies driven independently of each other, that is, a left crawler traveling body 1a and a right crawler traveling body 1b. Between the motor 82 and the traveling device 1, there is provided a power transmission mechanism 50A including a transmission 47 capable of transmitting speed change power with different rotational speeds to the left crawler traveling body 1a and the right crawler traveling body 1b. .
  左クローラ走行体1aと右クローラ走行体1bとの速度差による車両の旋回(操向)を含む車速の設定は、運転者によって操作される車速設定操作装置ODによって行われる。ここでは、車速設定操作装置ODは、旋回(操向)を設定する旋回設定用レバーと速度設定用レバーとを含む複数の操作具で構成されているが、共通の単一操作具だけで構成してもよい。車速設定操作装置ODの操作位置、動力伝達機構50Aの変速状態、農作業装置Wの駆動状態などは、各種センサや各種スイッチの位置によって検出される。これにより、直進走行、旋回走行、路上走行などの走行に関する走行駆動状態、刈取り作業中、刈取り作業前後、穀粒排出などの作業駆動状態を示す情報は、随時利用可能である。 The vehicle speed setting including turning (steering) of the vehicle due to the speed difference between the left crawler traveling body 1a and the right crawler traveling body 1b is performed by a vehicle speed setting operation device OD operated by the driver. Here, the vehicle speed setting operation device OD is constituted by a plurality of operation tools including a turning setting lever and a speed setting lever for setting turning (steering), but is constituted only by a common single operating tool. May be. The operation position of the vehicle speed setting operation device OD, the shift state of the power transmission mechanism 50A, the drive state of the farm work device W, and the like are detected by the positions of various sensors and various switches. Thereby, the information indicating the driving state relating to traveling such as straight traveling, turning traveling, and traveling on the road, during the cutting operation, before and after the cutting operation, and the operation driving state such as grain discharge can be used at any time.
  クローラ式の走行装置1を採用している場合、左クローラ走行体1aと右クローラ走行体1bとの駆動速度の違いによって作り出される車両旋回時に、大きな負荷が生じる。そのような負荷は、旋回の程度を表す旋回度によって異なるので、旋回度に依存して、モータ82の回転数を、エンジン80がその負荷を受け入れることができる程度に修正する。このような制御の基本的な流れが、図1に模式的示されているので、図1を用いて以下に説明する。 When the crawler type traveling device 1 is employed, a large load is generated when the vehicle is turned by the difference in driving speed between the left crawler traveling body 1a and the right crawler traveling body 1b. Since such a load varies depending on the degree of turning representing the degree of turning, the number of revolutions of the motor 82 is corrected to such an extent that the engine 80 can accept the load depending on the degree of turning. The basic flow of such control is schematically shown in FIG. 1, and will be described below with reference to FIG.
  まず、車速設定操作装置ODを構成する車速設定用操作レバー及び旋回設定用操作レバーの操作位置が検知される。この操作位置には、車速設定用の車速操作位置情報と、左クローラ走行体1aと右クローラ走行体1bとの駆動速度の違いを作り出すための旋回設定用の旋回操作位置情報が含まれている。 First, the operation positions of the vehicle speed setting operation lever and the turning setting operation lever constituting the vehicle speed setting operation device OD are detected. This operation position includes vehicle speed operation position information for vehicle speed setting and turning operation position information for turning setting for creating a difference in driving speed between the left crawler traveling body 1a and the right crawler traveling body 1b. .
  この操作位置に含まれている車速操作位置情報に基づいて、モータ82の制御目標回転数となるモータ指令回転数(図1ではMC-RPMで示されている)が算定されるが、ここでは、操作位置を入力パラメータとしてモータ指令回転数を導出する操作位置-モータ指令回転数マップが用いられている。また、この操作位置に含まれている旋回設定用の旋回操作位置情報に基づいて、左クローラ走行体1a及び右クローラ走行体1bの駆動速度が算定されるが、ここでは、操作位置を入力パラメータとして左クローラ走行体1a及び右クローラ走行体1bの駆動速度を導出する操作位置-左右クローラ駆動速度マップが用いられている。さらに、左クローラ走行体1a及び右クローラ走行体1bの駆動速度の違いから旋回度が算定される。ここでは制御マップが用いられているが、制御演算式や制御論理式を用いてもよい。 Based on the vehicle speed operation position information included in the operation position, a motor command rotation speed (indicated by MC-RPM in FIG. 1) that is a control target rotation speed of the motor 82 is calculated. An operation position-motor command rotation speed map for deriving a motor command rotation speed using the operation position as an input parameter is used. Further, the driving speeds of the left crawler traveling body 1a and the right crawler traveling body 1b are calculated based on the turning operation position information for turning setting included in the operation position. Here, the operation positions are input parameters. The operation position-left / right crawler driving speed map for deriving the driving speed of the left crawler traveling body 1a and the right crawler traveling body 1b is used. Further, the turning degree is calculated from the difference in driving speed between the left crawler traveling body 1a and the right crawler traveling body 1b. Although a control map is used here, a control arithmetic expression or a control logical expression may be used.
  なお、操作位置に含まれている旋回設定用の旋回操作位置情報は、トランスミッション47に組み込まれている旋回変速機構の変速指令としても用いられるが、その構成はよく知られているので、ここでの説明は省略する。 Note that the turning operation position information for turning setting included in the operation position is also used as a shift command of the turning transmission mechanism incorporated in the transmission 47, but its configuration is well known. Description of is omitted.
  操作位置-モータ指令回転数マップを用いて算定されたモータ指令回転数は、旋回度に基づいて決定される修正要求によって修正される。この修正のための条件として、ここでは旋回度だけでなく、車速も用いられる。旋回度と車速とを入力パラメータとして修正要求が導出されるような制御マップが用いられる。なお、車速はモータ指令回転数に依存している。但し、モータ82の出力回転数は、トランスミッション47に副変速装置などの変速機構が設けられている場合は、その変速比を考慮することで正確な走行装置1の駆動速度である車速が得られる。ここでは、修正要求に修正係数が含まれているので、修正が必要な場合は、この修正係数によってモータ指令回転数が修正される。修正されたモータ指令回転数は、もちろん修正されない場合もあるが、モータ制御指令として電機制御ユニット85に送られる。 The motor command rotational speed calculated using the operation position-motor command rotational speed map is corrected by a correction request determined based on the turning degree. As a condition for this correction, not only the turning degree but also the vehicle speed is used here. A control map is used in which a correction request is derived using the turning degree and the vehicle speed as input parameters. The vehicle speed depends on the motor command rotational speed. However, when the transmission 47 is provided with a speed change mechanism such as an auxiliary speed change device, the output speed of the motor 82 can be obtained as an accurate vehicle speed that is the driving speed of the traveling device 1 by taking the speed ratio into consideration. . Here, since the correction coefficient is included in the correction request, the motor command rotational speed is corrected by this correction coefficient when correction is necessary. The corrected motor command rotational speed may of course not be corrected, but is sent to the electric machine control unit 85 as a motor control command.
  なお、旋回度を小さい場合には、モータ82にかかる負荷は、直進走行時とあまり変わらない。このため、モータ指令回転数の修正において、前記旋回度が所定値以下の場合、前記モータ指令回転数に対する修正を行わず、前記旋回度が所定値を超えた場合、その超過分に応じて算定される回転数低下量で前記モータ指令回転数に対する修正を行うように、条件設定されている。回転数低下量を超過分に応じて算定する際、超過分を段階的に区分けして、それぞれに回転数低下量を割り当てるようにすれば、簡単な制御マップで回転数低下量が導出できるので制御が簡単となる。さらに、モータ82を所定以下で回転させると効率が悪くなるので、前記モータ指令回転数が予め設定された最低回転数以下になるような修正は禁止される。この旋回度によるモータ指令回転数の修正は、高速走行時に特に必要となるので、副変速装置が高速段に設定されているときのみ、機能するような条件を導入してもよい。 Note that when the turning degree is small, the load applied to the motor 82 is not so different from that during straight running. For this reason, in the correction of the motor command rotational speed, when the turning degree is less than or equal to a predetermined value, the correction to the motor command rotational speed is not performed, and when the turning degree exceeds the predetermined value, the calculation is made according to the excess. The condition is set so that the motor command rotational speed is corrected with the rotational speed reduction amount. When calculating the amount of rotation speed reduction according to the excess amount, the amount of rotation speed reduction amount can be derived with a simple control map by dividing the excess amount in stages and assigning the amount of rotation speed reduction amount to each. Control is easy. Further, if the motor 82 is rotated at a predetermined value or less, the efficiency is deteriorated. Therefore, the correction that the motor command rotational speed is set to be equal to or lower than a preset minimum rotational speed is prohibited. Since the correction of the motor command rotational speed based on the turning degree is particularly necessary during high-speed running, a condition that functions only when the sub-transmission device is set to the high speed stage may be introduced.
  ここでは、説明上の観点から、モータ指令回転数の算定、クローラ駆動速度の算定、旋回度の算定、モータ指令回転数の修正の処理は、区分けされていたが、任意に統合することが可能である。極端な場合、車速設定操作装置ODの操作位置から、直接モータ指令回転数と修正係数を導出するマップや、さらには、車速設定操作装置ODの操作位置から、直接最終的な修正モータ指令回転数(非修正モータ指令回転数を含む)を導出するマップを作成して、利用してもよい。 Here, from the viewpoint of explanation, the calculation of the motor command rotation speed, the calculation of the crawler drive speed, the calculation of the turning degree, and the correction of the motor command rotation speed have been divided, but can be arbitrarily integrated. It is. In extreme cases, a map for directly deriving the motor command rotation speed and the correction coefficient from the operation position of the vehicle speed setting operation device OD, and further the final correction motor command rotation speed directly from the operation position of the vehicle speed setting operation device OD. A map for deriving (including the uncorrected motor command rotational speed) may be created and used.
  以上に説明した、車速設定操作装置ODの操作位置を出発点として、最終的にモータ指令回転数を求める制御プロセスは、コンバインに搭載されているECUにインストールされるコンピュータプログラムによって実現可能であり、簡単には、以下のように数式化することができる。
  車速を設定する操作位置のデータ値をX、算定されるモータ指令回転数をMC-RPMとし、操作位置-モータ指令回転数マップを関数:Fで表現すると、モータ指令回転数は、
MC-RPM=F(X)
で求められる。このMC-RPMにトランスミッション47の変速状態を考慮して再算定して車速状態値を求めてもよいし、車速検出部から車速状態値を取得することもできる。
  また、旋回を設定する操作位置のデータ値をZ、左クローラ駆動速度をCL、右クローラ駆動速度をCR、操作位置-クローラ駆動速度マップを関数:Gleft、Grightで表現すると、左クローラ駆動速度は、
CL=Gleft(Z)
CR=Gright(Z)
で求められる。
  2つの駆動速度の差をとることで、左右のクローラ走行体の速度差:ΔCが得られるが、操作位置-クローラ駆動速度差マップを作成して、それを関数:Gで表現すると、左右のクローラ走行体の速度差は、
ΔC=G(Z)
で求められる。旋回度:SLを、速度差:ΔCから導出される関数(好ましくはマップまたは条件式)をMで表現すると、旋回度は、
SL=M(ΔC)
で求められる。
  修正係数(修正要求)をkとし、車速状態値:SPと旋回度:SLと上述した条件とから修正係数を導出する関数をJで表現すると、修正係数は、
k=J(SP、SL)
で求められる。
  モータ指令回転数:MC-RPMの修正値は、修正関数をKと表現すると、
修正MC-RPM=K(MC-RPM、k)
で得られる。
  なお、上述した各関数は、厳密な意味の関数ではなく、線形や非線形である必要もなく、離散的な関係を表すものであってもよく、単に入力パラメータと出力パラメータを結び付ける関係を表すものでよい。また、このような関数は、エンジン80や発電機81やモータ82の仕様に基づいて、経験的かつ実験的な考察から求められる。
The above-described control process for finally obtaining the motor command rotational speed starting from the operation position of the vehicle speed setting operation device OD can be realized by a computer program installed in the ECU mounted on the combine. Simply, it can be mathematically expressed as follows.
If the data value of the operation position for setting the vehicle speed is X, the calculated motor command rotation speed is MC-RPM, and the operation position-motor command rotation speed map is expressed by the function F, the motor command rotation speed is
MC-RPM = F (X)
Is required. The MC-RPM may be recalculated in consideration of the shift state of the transmission 47 to obtain the vehicle speed state value, or the vehicle speed state value may be obtained from the vehicle speed detection unit.
In addition, if the data value of the operation position for setting the turn is Z, the left crawler drive speed is CL, the right crawler drive speed is CR, and the operation position-crawler drive speed map is expressed by the functions Gleft and Gright, the left crawler drive speed is ,
CL = Gleft (Z)
CR = Gright (Z)
Is required.
By calculating the difference between the two driving speeds, the speed difference between the left and right crawler traveling bodies: ΔC can be obtained, but if the operation position-crawler driving speed difference map is created and expressed as a function: G, The speed difference of the crawler traveling body
ΔC = G (Z)
Is required. When the turning degree: SL is expressed by M and a function (preferably a map or a conditional expression) derived from the speed difference: ΔC is expressed by M, the turning degree is
SL = M (ΔC)
Is required.
When the correction coefficient (correction request) is k, and the function for deriving the correction coefficient from the vehicle speed state value: SP and the turning degree: SL and the above-described conditions is represented by J, the correction coefficient is
k = J (SP, SL)
Is required.
Motor command rotation speed: MC-RPM correction value is expressed as K
Modified MC-RPM = K (MC-RPM, k)
It is obtained by.
Note that each function described above is not a function with a strict meaning, does not need to be linear or non-linear, and may represent a discrete relationship, or simply represents a relationship that connects an input parameter and an output parameter. It's okay. Such a function is obtained from empirical and experimental considerations based on the specifications of the engine 80, the generator 81, and the motor 82.
  上述したような本発明のコンバインでは、モータ82に負荷がかかると、それに応じた電力が発電機81からモータ82に供給されることになるが、発電機81がそのような電力を発電するために、それに相当する負荷がエンジン80にかかることになる。つまり、モータ82に負荷がかかることは、エンジン80に負荷がかかることを意味する。このため、予想される最も大きな負荷に適用できるような出力の大きなエンジン80を搭載すればよいが、そのようなエンジン80は、重量が大きく、燃料消費が悪くなるので、省エネに関して不都合となる。本発明では、省エネを考慮して、小さくて、軽量のエンジン80が搭載されている。 In the combine according to the present invention as described above, when a load is applied to the motor 82, electric power corresponding to the load is supplied from the generator 81 to the motor 82. This is because the generator 81 generates such electric power. In addition, a load corresponding to that is applied to the engine 80. That is, applying a load to the motor 82 means applying a load to the engine 80. For this reason, an engine 80 having a large output that can be applied to the largest anticipated load may be mounted. However, such an engine 80 is heavy and has a low fuel consumption, which is disadvantageous in terms of energy saving. In the present invention, a small and lightweight engine 80 is mounted in consideration of energy saving.
  基本的には、エンジン80は回転数によって出力が大きくなるので、エンジン80を定格の最大回転数で回転させるとエンジンの性能を使い切ることができるが、燃料消費が大きくなる。したがって、ここでは、車速設定操作装置ODの操作位置によって、エンジン制御ユニット86に指令するエンジン指令回転数を切り替えている。例えば、大負荷が生じている場合には最大回転数が設定され、中負荷が生じている場合には中回転数が設定され、低負荷が生じている場合には低回転数が設定され、これにより燃料消費を改善している。このため、操作位置からエンジン指令回転数を導出する操作位置-エンジン指令回転数マップもECUに備えられている。 Basically, since the output of the engine 80 increases with the rotational speed, the engine performance can be used up when the engine 80 is rotated at the rated maximum rotational speed, but the fuel consumption increases. Therefore, here, the engine command rotational speed commanded to the engine control unit 86 is switched according to the operation position of the vehicle speed setting operation device OD. For example, the maximum rotation speed is set when a heavy load occurs, the medium rotation speed is set when a medium load occurs, and the low rotation speed is set when a low load occurs, This improves fuel consumption. For this reason, the ECU is also provided with an operation position-engine command rotation speed map for deriving the engine command rotation speed from the operation position.
  次に、図面を用いて、本発明によるシリーズハイブリッドコンバイン(以下コンバインと略称する)の具体的な実施形態の1つを説明する。図2は、コンバインの側面図であり、図3は平面図である。 Next, one specific embodiment of a series hybrid combine (hereinafter abbreviated as a combine) according to the present invention will be described with reference to the drawings. FIG. 2 is a side view of the combine, and FIG. 3 is a plan view.
  このコンバインは、左クローラ走行体1aと右クローラ走行体1bとを含むクローラ式走行装置1と、この走行装置1によって対地支持されている機体2とを備えている。機体2の前部には、刈取処理部3が配置されている。機体2の後部には、脱穀装置4と、穀粒タンク5とが、それぞれ機体前進方向で左側と右側に、機体横断方向に並んで、配置されている。さらに、穀粒タンク5の前方に搭乗運転部7が配置されている。 This combine includes a crawler type traveling device 1 including a left crawler traveling body 1a and a right crawler traveling body 1b, and an airframe 2 supported by the traveling device 1 on the ground. A cutting processing unit 3 is disposed in the front of the machine body 2. At the rear of the machine body 2, a threshing device 4 and a grain tank 5 are arranged side by side in the machine body crossing direction on the left and right sides in the machine body advance direction. Further, a boarding operation unit 7 is disposed in front of the grain tank 5.
  刈取処理部3は、シリンダCYの操作により横軸芯P1周りに昇降揺動自在である。刈取処理部3にて刈り取られた農作物は脱穀装置4によって脱穀処理され、脱穀装置4にて得られた穀粒は穀粒タンク5に貯留される。刈取処理部3、脱穀装置4、搭乗運転部7は、機体2を構成する機体フレーム6に取り付けられている。 The cocoon cutting processing unit 3 can swing up and down around the horizontal axis P1 by operating the cylinder CY. The crops harvested by the mowing processing unit 3 are threshed by the threshing device 4, and the grains obtained by the threshing device 4 are stored in the grain tank 5. The harvesting processing unit 3, the threshing device 4, and the boarding operation unit 7 are attached to a body frame 6 constituting the body 2.
  刈取処理部3は、車体前部に位置する刈取部8と、その刈取部8にて刈り取った農作物を車体後方上方側に向けて搬送する農作物搬送部としての縦搬送装置9とを含む。縦搬送装置9は、刈取穀稈を後方へ搬送し、フィードチェーン18に受け渡す。刈取部8は、刈取対象穀稈を分草する分草具10、倒伏姿勢の植立穀稈を立姿勢に引起す引起し装置11、引起された植立穀稈の株元を切断するバリカン型の刈取装置12を有する。 The cocoon cutting processing unit 3 includes a cutting unit 8 located at the front of the vehicle body, and a vertical transfer device 9 as a crop transfer unit that transfers the crops harvested by the cutting unit 8 toward the rear upper side of the vehicle body. The vertical conveying device 9 conveys the harvested cereal meal backward and delivers it to the feed chain 18. The cutting unit 8 includes a weeding tool 10 for weeding the harvested culm, a pulling device 11 for causing the planted culm to fall in a standing position, and a clipper for cutting the planted culm planted It has a type mowing device 12.
  又、刈取処理部3は、横軸芯P1周りに昇降揺動自在に機体フレーム6に支持され、機体2の前部に位置する通常作業姿勢と機体2の車体前方側を開放するように車体横外方に退避するメンテナンス用姿勢とに亘って縦向き軸芯Y1(図3参照)周りで姿勢変更可能である。 Further, the cutting processing unit 3 is supported by the body frame 6 so as to be swingable up and down around the horizontal axis P1, and the vehicle body so as to open the normal working posture located at the front of the body 2 and the vehicle body front side of the body 2. The posture can be changed around the vertical axis Y1 (see FIG. 3) over the maintenance posture retracted laterally outward.
  さらに、刈取処理部3に備えられる刈取部フレーム13が、機体フレーム6から立設された左右両側の支持体14R,14Lにより受止め支持されている中継用支持部材15にて横軸芯P1周りに昇降揺動自在に支持されている。刈取部フレーム13を支持する中継用支持部材15は、左側に位置する支持体14Lに縦向き軸芯Y1周りで回動自在に機体2に支持されている。つまり結果的には、刈取処理部3全体が縦向き軸芯Y1周りで揺動自在に機体2に支持されている。図3に示すように、刈取処理部3が姿勢変更のために回動操作される縦向き軸芯Y1は、縦搬送装置9における搭乗運転部7とは反対側の車体横幅方向外端側箇所に位置する。 Further, the cutting unit frame 13 provided in the cutting processing unit 3 is supported around the horizontal axis P1 by the relay support member 15 supported by the left and right support members 14R and 14L provided upright from the body frame 6. Is supported so as to be swingable up and down. The relay support member 15 that supports the reaper part frame 13 is supported by the machine body 2 so as to be rotatable about a longitudinal axis Y1 on a support body 14L located on the left side. That is, as a result, the entire cutting processing unit 3 is supported by the body 2 so as to be swingable around the longitudinal axis Y1. As shown in FIG. 3, the longitudinal axis Y <b> 1 on which the harvesting processing unit 3 is rotated to change the posture is located on the outer side in the vehicle body width direction on the opposite side of the boarding operation unit 7 in the vertical transfer device 9. Located in.
  図4に示すように、脱穀装置4は、刈り取った穀稈を脱穀処理する脱穀部16と、脱穀部16で脱穀処理された処理物を穀粒と塵埃とに選別する選別部17とを含む。 As shown in FIG. 4, the threshing device 4 includes a threshing unit 16 that threshs the harvested cereal and a sorting unit 17 that sorts a processed product threshed by the threshing unit 16 into grains and dust. .
  脱穀部16では、刈取穀稈がその株元側をフィードチェーン18により挟持された横向きの姿勢で搬送される。さらに、刈取穀稈の穂先側が通過する扱室19には、機体前後向き軸芯周りで回転駆動されることで刈取穀稈の穂先側に扱き処理を施す扱胴20、及び、この扱き処理で得られた処理物を下方に向けて漏下させる受網21が配置されている。又、受網21の処理物移送方向下手側には、受網21を通じて漏下しなかった処理物を選別部17の選別方向下手側(後部側)に向けて流下させる送塵口22が形成されている。 In the threshing unit 16, the harvested cereal is transported in a sideways posture in which the stock side is sandwiched by the feed chain 18. Further, in the handling chamber 19 through which the head side of the harvested cereal rice cake passes, a handling cylinder 20 that performs a handling process on the tip side of the harvested grain rice cake by being rotationally driven around the longitudinal axis of the machine body, and this handling processing. A receiving network 21 is disposed for allowing the obtained processed material to leak downward. In addition, a dust feed port 22 is formed on the lower side of the receiving net 21 in the processed material transfer direction to allow the processed material that has not leaked through the receiving net 21 to flow downward toward the lower side (rear side) of the sorting unit 17. Has been.
  選別部17は、脱穀部16の下方に位置して受網21から漏下した処理物を揺動選別する揺動選別機構23、駆動軸24aを有するとともに選別風を生起する唐箕24、1番回収部27、2番回収部30等を備えている。1番回収部27は、選別された穀粒(1番物)を回収するとともに、回収した1番物をその底部に車体横幅方向(左右方向)に沿って配備した1番スクリュー25によってその右端に連通接続した揚送スクリューコンベア26に向けて搬送する。2番回収部30は、枝梗付き穀粒やワラ屑などの混在物(2番物)を回収するとともに、回収した2番物をその底部に車体横幅方向に沿って配備した2番スクリュー28によって、その右端に連通接続した2番還元装置29に向けて搬送する。 The sorting unit 17 is located below the threshing unit 16 and has a swing sorting mechanism 23 that swings and sorts the processed material leaked from the receiving net 21, a drive shaft 24a, and a tang ridge 24 that generates a sorting wind. A collection unit 27, a second collection unit 30 and the like are provided. The No. 1 recovery unit 27 recovers the selected grain (No. 1) and the right end of the recovered No. 1 by the No. 1 screw 25 arranged at the bottom along the vehicle body width direction (left and right direction). It is conveyed toward the lifting screw conveyor 26 that is connected in communication. The No. 2 recovery unit 30 recovers a mixture (No. 2) such as cereal grains and straw scraps, and the No. 2 screw 28 provided at the bottom of the recovered No. 2 along the lateral direction of the vehicle body. Is conveyed toward the second reduction device 29 connected to the right end thereof.
  揺動選別機構23には、揺動選別ケース33と、この揺動選別ケース33の内部に配置された精選別用のチャフシーブ34と、グレンシーブ35と、ストローラック36等が配置されている。揺動選別ケース33は、その機体前部側が揺動アーム31にて吊り下げ支持され、かつその機体後部側が回転駆動される偏芯クランク機構32によって駆動される。これにより、揺動選別ケース33は前後揺動する。グレンシーブ35は、漏下した処理物から穀粒を選別する。ストローラック36はワラ屑を後方に向けて揺動移送する。 The swing sorting mechanism 23 is provided with a swing sorting case 33, a precision sorting chaff sheave 34 disposed inside the swing sorting case 33, a Glen sheave 35, a Strollac 36, and the like. The swing sorting case 33 is driven by an eccentric crank mechanism 32 whose front side is supported by a swing arm 31 and whose rear side is rotationally driven. Thereby, the swing sorting case 33 swings back and forth. Glen sieve 35 sorts grain from the leaked processed material. The Strollac 36 swings and transfers the straw scraps backward.
  1番スクリュー25によって搬送された1番物は、揚送スクリューコンベア26により揚送されて穀粒タンク5に供給されて貯留される。又、2番スクリュー28によって搬送された2番物は、2番還元装置29により再脱穀処理を施した後に揚送して揺動選別機構23に還元される。 The first thing conveyed by the No. 1 screw 25 is lifted by the lifting screw conveyor 26, supplied to the grain tank 5, and stored. The second product conveyed by the second screw 28 is rethreshed by the second reduction device 29 and then lifted and reduced to the swing sorting mechanism 23.
  図2と図3とに示すように、穀粒タンク5に貯留される穀粒を外部に排出させる穀粒排出装置37が備えられている。この穀粒排出装置37は、底部スクリュー38と、縦スクリューコンベア39と、横スクリューコンベア41とを備えている。底部スクリュー38は、穀粒タンク5下部における凹溝状の底部5aに沿って設けられている。縦スクリューコンベア39は、底部スクリュー38の搬送終端部から上方に向けて穀粒を搬送する。横スクリューコンベア41は、縦スクリューコンベア39の上部から穀粒を横方向に搬送して先端の排出口40からトラックの荷台等(図示せず)に排出する。 穀 As shown in FIGS. 2 and 3, a grain discharging device 37 that discharges the grains stored in the grain tank 5 to the outside is provided. The grain discharging device 37 includes a bottom screw 38, a vertical screw conveyor 39, and a horizontal screw conveyor 41. The bottom screw 38 is provided along the groove-shaped bottom 5 a at the lower part of the grain tank 5. The vertical screw conveyor 39 conveys the grain upward from the conveyance terminal end of the bottom screw 38. The horizontal screw conveyor 41 conveys the grains in the horizontal direction from the upper part of the vertical screw conveyor 39 and discharges the grains from the discharge port 40 at the tip to a truck bed (not shown).
  縦スクリューコンベア39と横スクリューコンベア41とに亘って設けた油圧シリンダ42の伸縮により、横スクリューコンベア41の昇降位置が変更される。さらに、縦スクリューコンベア39は、その下部に設けられた旋回モータ43によって縦軸芯Y2周りで旋回可能である。 The lifting position of the horizontal screw conveyor 41 is changed by expansion and contraction of the hydraulic cylinder 42 provided between the vertical screw conveyor 39 and the horizontal screw conveyor 41. Furthermore, the vertical screw conveyor 39 can be swung around the vertical axis Y2 by a swivel motor 43 provided in the lower part thereof.
  底部スクリュー38と縦スクリューコンベア39との間、及び、縦スクリューコンベア39と横スクリューコンベア41との間が、夫々、ベベルギア機構44,45により連動連結されている。従って、これらのコンベアは、底部スクリュー38の前部側端部に設けられた入力プーリ46に動力が供給されると、一体的に回転駆動される。その結果、穀粒タンク5内の穀粒が外部に搬出される。 The bottom screw 38 and the vertical screw conveyor 39 and the vertical screw conveyor 39 and the horizontal screw conveyor 41 are connected to each other by bevel gear mechanisms 44 and 45, respectively. Accordingly, these conveyors are integrally rotated when power is supplied to the input pulley 46 provided at the front end of the bottom screw 38. As a result, the grain in the grain tank 5 is carried out to the outside.
  次に、このシリーズハイブリッドコンバインに搭載されている2つの動力伝達機構について、図5と図6とを用いて説明する。
  図5には、エンジン80からの回転動力を、扱胴20や選別部17等に供給する第1の動力伝達機構が示されている。図6には、電動モータ(以下単にモータと略称する)82からの回転動力を、車体横幅方向の左と右に配置された左クローラ走行体1aと右クローラ走行体1bとからなる走行装置1と刈取処理部3とに供給する第2の動力伝達機構が示されている。
Next, two power transmission mechanisms mounted on the series hybrid combine will be described with reference to FIGS. 5 and 6.
FIG. 5 shows a first power transmission mechanism that supplies rotational power from the engine 80 to the handling cylinder 20, the sorting unit 17, and the like. In FIG. 6, a traveling device 1 is composed of a left crawler traveling body 1 a and a right crawler traveling body 1 b that are arranged to rotate the rotational power from an electric motor (hereinafter simply abbreviated as “motor”) 82 on the left and right in the lateral direction of the vehicle body. The 2nd power transmission mechanism supplied to the cutting processing part 3 is shown.
  なお、図では明らかにされていないが、第2の動力伝達機構に含まれる走行用トランスミッション47は、車体横幅方向中央部であって且つ搭乗運転部7の横幅方向で偏在配置され、左右一対の走行装置1に動力を伝達する。図2及び図3から明らかなように、走行用トランスミッション47に動力を供給する走行刈取用のモータ82が搭乗運転部7における運転部ステップ48の下方側箇所に配置されている。モータ82の出力軸49aと走行用トランスミッション47の入力軸49bとは継手を介して連動連結されている。 Although not clearly shown in the figure, the traveling transmission 47 included in the second power transmission mechanism is unevenly arranged in the lateral direction of the boarding operation unit 7 at the center in the lateral direction of the vehicle body, and a pair of left and right Power is transmitted to the traveling device 1. As is clear from FIG. 2 and FIG. 3, a travel cutting motor 82 that supplies power to the travel transmission 47 is disposed at a lower position of the driving unit step 48 in the boarding driving unit 7. The output shaft 49a of the motor 82 and the input shaft 49b of the traveling transmission 47 are interlocked and connected via a joint.
  図6に示すように、走行用トランスミッション47のミッションケース52内に、ギア式の減速機構53や油圧操作式かつギア咬み合い式の副変速装置54、及び、左右のクローラ走行体1a,1bの速度差による旋回走行のための旋回用伝動機構55等が備えられている。さらに、この走行用トランスミッション47から刈取処理部3に動力が伝達される。この動力伝達経路に、前進走行のための動力のみを伝達するワンウェイクラッチ63及び動力伝達を断続するベルトテンション式の刈取クラッチ64が介装されている。 As shown in FIG. 6, in the transmission case 47 of the traveling transmission 47, there are a gear-type reduction mechanism 53, a hydraulically operated and gear-meshing auxiliary transmission 54, and left and right crawler traveling bodies 1a and 1b. A turning transmission mechanism 55 and the like for turning traveling due to a speed difference are provided. Further, power is transmitted from the traveling transmission 47 to the cutting processing unit 3. A one-way clutch 63 that transmits only power for forward travel and a belt tension type cutting clutch 64 that intermittently transmits power are interposed in the power transmission path.
  つまり、モータ82が、左右一対の走行装置1,1と刈取処理部3との動力源である。モータ82の出力制御については後述するが、基本的には、車速設定操作装置ODの操作位置に基づいてモータ82に対する指令回転数が算定される。この実施形態では、車速設定操作装置ODには、搭乗運転部7に備えられた、車速設定用レバーとして機能するストローク操作式の主変速レバー66及び、旋回設定用レバーとして機能する操作レバー61が含まれている。ストローク操作式の主変速レバー66が中立位置にあれば停止状態となり、主変速レバー66の前側への操作変位が大きいほど前進走行速度が大きくなり、主変速レバー66の後側への操作変位が大きいほど後進走行速度が大きくなるように構成されている。主変速レバー66の操作位置は、ストロークセンサS4によって検出される。 That is, the motor 82 is a power source for the pair of left and right traveling devices 1, 1 and the cutting processing unit 3. Although the output control of the motor 82 will be described later, basically, the command rotational speed for the motor 82 is calculated based on the operation position of the vehicle speed setting operation device OD. In this embodiment, the vehicle speed setting operation device OD includes a stroke operation type main transmission lever 66 that functions as a vehicle speed setting lever and an operation lever 61 that functions as a turning setting lever. include. If the stroke operation type main transmission lever 66 is in the neutral position, the main transmission lever 66 is stopped, and the forward movement speed increases as the operation displacement of the main transmission lever 66 toward the front increases, and the operation displacement toward the rear of the main transmission lever 66 increases. The reverse travel speed increases as the value increases. The operation position of the main transmission lever 66 is detected by the stroke sensor S4.
  モータ82の駆動停止状態で制動作用するネガティブブレーキ67が、走行用トランスミッション47の入力軸49bにおけるモータ82の接続箇所とは反対側の端部に配置されている。ネガティブブレーキ67は、図示しないバネにより制動状態に付勢され、且つ、電気式あるいは油圧式アクチュエータにてバネの付勢力に抗して制動状態を解除する。ネガティブブレーキ67は、メイン電子ユニット100によって、モータ82が作動停止状態(走行用トルクが発生していない状態)であるときは制動状態に、モータ82が作動状態になると制動解除状態に制御される。ネガティブブレーキ67を制動解除状態から制動状態に切り換える際は、制動力が漸増され、制動時の衝撃が抑制される。 A negative brake 67 that brakes when the driving of the eaves motor 82 is stopped is disposed at the end of the input shaft 49b of the traveling transmission 47 that is opposite to the connection portion of the motor 82. The negative brake 67 is urged into a braking state by a spring (not shown), and releases the braking state against an urging force of the spring by an electric or hydraulic actuator. The negative brake 67 is controlled by the main electronic unit 100 to be in a braking state when the motor 82 is in an operation stop state (a state where no running torque is generated), and to a brake release state when the motor 82 is in an operation state. . When the negative brake 67 is switched from the braking release state to the braking state, the braking force is gradually increased and the impact during braking is suppressed.
  この実施形態では、副変速装置54は、後述するモータ82の速度切替との組み合わせで、高速、中速、低速の3段の速度状態を作り出すために、2つの変速段を有する。標準的な圃場で刈取作業する場合には中速状態が選択され、作物が倒伏しているときや深い湿田で走行負荷が大きいときは低速状態が選択され、路上走行する場合には高速状態が選択される。副変速装置54の変速段は、搭乗運転部7に備えられた、車速設定操作具の1つである第3操作具56により切り換えるようになっている。 で は In this embodiment, the sub-transmission device 54 has two gear positions in order to create three speed states of high speed, medium speed, and low speed in combination with the speed switching of the motor 82 described later. The medium speed condition is selected when cutting on a standard field, the low speed condition is selected when the crop is lying down or when the driving load is large in a deep wet field, and the high speed condition is selected when traveling on the road. Selected. The shift speed of the auxiliary transmission 54 is switched by a third operating tool 56 that is one of the vehicle speed setting operating tools provided in the boarding operation unit 7.
  旋回用伝動機構55は、左クローラ走行体1aと右クローラ走行体1bとのどちらか一方に減速動力を伝えるための緩旋回用クラッチ58、どちらか一方に制動力を付与する減速用ブレーキ59、どちらか一方に対する動力伝達状態を直進状態と旋回状態(減速状態や制動状態)に切り換える操向クラッチ60等を含む。 The turning transmission mechanism 55 includes a slow turning clutch 58 for transmitting deceleration power to one of the left crawler traveling body 1a and the right crawler traveling body 1b, a deceleration brake 59 for applying a braking force to either one, The steering clutch 60 etc. which switch the power transmission state with respect to either to a straight-ahead state and a turning state (a deceleration state or a braking state) are included.
  旋回用伝動機構55は、搭乗運転部7に備えられた操作レバー61と連動連係されている。操作レバー61の中立位置から左右方向への傾斜角に応じて、走行機体2の直進状態から右方向又は左方向への旋回が作り出される。操作レバー61の中立位置から左右への傾斜角の大きさを検出するために旋回レバーセンサS3が設けられている。つまり、この操作レバー61の操作変位によりこのコンバインの旋回度が算定されるが、この旋回度の算定のために旋回レバーセンサS3の検出信号が利用される。尚、詳述はしないが、操作レバー61は、前後方向へも揺動操作自在であり、この前後方向の搖動操作により刈取処理部3の上昇操作及び下降操作が実現する。 The saddle turning transmission mechanism 55 is linked to an operation lever 61 provided in the boarding operation unit 7. Depending on the inclination angle from the neutral position of the operation lever 61 in the left-right direction, a turn from the straight traveling state of the traveling machine body 2 to the right or left is created. A turning lever sensor S3 is provided to detect the inclination angle from the neutral position of the operation lever 61 to the left and right. That is, the turning degree of the combine is calculated based on the operation displacement of the operating lever 61, and the detection signal of the turning lever sensor S3 is used for calculating the turning degree. Although not described in detail, the operation lever 61 is swingable in the front-rear direction, and the lifting operation and the lowering operation of the cutting processing unit 3 are realized by the swinging operation in the front-rear direction.
  この走行用トランスミッション47では、副変速装置54の変速段の切り替えと、モータ82の変速とを通じて、標準的な圃場で刈取作業する場合利用される中速状態とし、農作物が倒伏しているときや深い湿田で走行負荷が大きいときに利用される低速状態、路上走行する場合に利用される高速状態とを作り出すことができる。副変速装置54の切り替えは、第3操作具56によって行われる。また、刈取作業時において、一時的に車速を変更するために、第2操作具57も備えられおり、特定の条件においては、この第2操作具57は副変速装置54の切り替えも行う。 In this traveling transmission 47, the intermediate speed state used when cutting in a standard field is achieved through switching of the gear position of the sub-transmission device 54 and shifting of the motor 82, and when the crop is lying down, It is possible to create a low-speed state that is used when the traveling load is large in a deep marsh and a high-speed state that is used when traveling on the road. Switching of the auxiliary transmission 54 is performed by the third operation tool 56. A second operating tool 57 is also provided to temporarily change the vehicle speed during the cutting operation, and the second operating tool 57 also switches the auxiliary transmission 54 under specific conditions.
  第3操作具56及び第2操作具57は、この実施形態ではスイッチとして、特に好ましくは運転者の指によって操作されるモーメンタリスイッチとして形成されており、押し込み操作でスイッチONとなり、再度の押し込み操作でスイッチOFFとなる。この実施形態では、第3操作具56は、モータ82の速度設定操作具の1つである主変速レバー66のグリップ部に設けられており、第2操作具57は、操作レバー61のグリップ部に設けられている。もちろん、第3操作具56や第2操作具57は、その他の位置、例えば、操縦パネルなどに設けることも可能である。第3操作具56と第2操作具57との操作状態信号、及びストロークセンサS4による主変速レバー66の操作位置信号は、メイン電子ユニット100に入力され、モータ82や副変速装置54の制御に利用される。 In this embodiment, the third operation tool 56 and the second operation tool 57 are formed as a switch, and particularly preferably as a momentary switch operated by a driver's finger. Switch off. In this embodiment, the third operating tool 56 is provided in the grip portion of the main transmission lever 66 that is one of the speed setting operating tools of the motor 82, and the second operating tool 57 is the grip portion of the operating lever 61. Is provided. Of course, the 3rd operation tool 56 and the 2nd operation tool 57 can also be provided in other positions, for example, a control panel etc. The operation state signals of the third operation tool 56 and the second operation tool 57 and the operation position signal of the main transmission lever 66 by the stroke sensor S4 are input to the main electronic unit 100 to control the motor 82 and the auxiliary transmission device 54. Used.
  次に、エンジン80からの回転動力を直接、扱胴20や選別部17等に供給する第1の動力伝達機構について説明する。図4と図5とから理解できるように、選別部17のための動力系は、エンジン80から直接回転動力を受ける。その際、一方では、エンジン80からの動力は、ベルトテンション式の選別入切用クラッチ71を介して選別部17、具体的には、唐箕24の駆動軸24aに伝達される。さらに、唐箕24の駆動軸24aから、伝動ベルト72を介して、1番スクリュー25、2番スクリュー28、揺動選別機構23、フィードチェーン18等に動力が伝達される。 Next, a first power transmission mechanism that supplies the rotational power from the engine 80 directly to the handling cylinder 20 and the sorting unit 17 will be described. As can be understood from FIGS. 4 and 5, the power system for the sorting unit 17 receives rotational power directly from the engine 80. At that time, on the other hand, the power from the engine 80 is transmitted to the sorting section 17, specifically, the drive shaft 24 a of the carp 24 through the belt tension type sorting on / off clutch 71. Further, power is transmitted from the drive shaft 24 a of the carp 24 to the first screw 25, the second screw 28, the swing sorting mechanism 23, the feed chain 18, and the like via the transmission belt 72.
  他方では、エンジン80からの動力は、ベルトテンション式の排出入切用クラッチ73、ベベルギア機構74、及び、ベルト伝動機構75を介して、穀粒排出装置37、具体的には、底部スクリュー38の前部側端部に設けられた入力プーリ46に伝達される。入力プーリ46に供給された動力により、底部スクリュー38、縦スクリューコンベア39、及び、横スクリューコンベア41(第1横スクリューコンベア41aと第2横スクリューコンベア41bに分割されている)が回転駆動され、その結果、穀粒タンク5内の穀粒が外部に搬出される。選別入切用クラッチ71は、図示されていない選別用クラッチモータにより入り状態と切り状態とに切り換えられる。排出入切用クラッチ73は、図示されていない排出用クラッチモータにより入り状態と切り状態とに切り換えられる。 On the other hand, the power from the engine 80 is supplied to the grain discharging device 37, specifically the bottom screw 38, via the belt tension type discharging on / off clutch 73, the bevel gear mechanism 74, and the belt transmission mechanism 75. It is transmitted to an input pulley 46 provided at the front side end. By the power supplied to the input pulley 46, the bottom screw 38, the vertical screw conveyor 39, and the horizontal screw conveyor 41 (divided into the first horizontal screw conveyor 41a and the second horizontal screw conveyor 41b) are rotationally driven, As a result, the grain in the grain tank 5 is carried out to the outside. The sorting on / off clutch 71 is switched between the on state and the off state by a sorting clutch motor (not shown). The discharge on / off clutch 73 is switched between an on state and an off state by a discharge clutch motor (not shown).
  図7に、模式的に示されているように、エンジン80の出力軸80aは、脱穀部16や穀粒排出装置37への動力供給機構として機能する動力伝達機構50Bに連結されるともに、発電機81の発電用回転軸81aとも連結されている。発電機81とモータ82とは電力変換部84を介して電機制御ユニット85に接続されている。モータ82は、この実施形態では、車両の走行駆動用のモータとして用いられる周知の三相交流式誘導電動モータである。電力変換部84には、発電機81にて発電された交流電力を直流電力に変換する発電用インバータや当該発電用インバータで変換された直流電力をモータ82に適した交流電力に変換するコンバータなどのパワーエレクトロニクス機器が含まれている。このパワーエレクトロニクス機器を適切に制御するための制御アルゴリズムを内部に構築しているメイン電子ユニット(一般にECUと呼ばれている)100からの指令に基づいて、電機制御ユニット85は、電力変換部84に制御信号を与える。 As schematically shown in FIG. 7, the output shaft 80 a of the engine 80 is connected to a power transmission mechanism 50 </ b> B that functions as a power supply mechanism to the threshing unit 16 and the grain discharging device 37, and generates power. The power generation rotary shaft 81a of the machine 81 is also connected. The generator 81 and the motor 82 are connected to the electric machine control unit 85 via the power converter 84. In this embodiment, the motor 82 is a known three-phase AC induction electric motor that is used as a motor for driving the vehicle. The power converter 84 includes a power generating inverter that converts AC power generated by the generator 81 into DC power, a converter that converts DC power converted by the power generating inverter into AC power suitable for the motor 82, and the like. Power electronics equipment is included. On the basis of a command from a main electronic unit (generally called ECU) 100 that internally constructs a control algorithm for appropriately controlling the power electronics device, the electric machine control unit 85 includes a power conversion unit 84. Is given a control signal.
  エンジン制御ユニット86は、メイン電子ユニット100からの指令に基づいて、エンジン80に対する燃料供給量を変更することによりエンジン80の出力(回転数及びトルク)を制御する。エンジン回転数を検出するエンジン回転センサS2からの信号は、この実施形態では車両状態検出ユニット90を介してエンジン制御ユニット86またはメイン電子ユニット100あるいはその両方に送られる。もちろん、エンジン回転センサS2からの信号は、その他の信号も含めて、車両状態検出ユニット90を介さずに直接送られてもよい。 The engine control unit 86 controls the output (rotation speed and torque) of the engine 80 by changing the fuel supply amount to the engine 80 based on the command from the main electronic unit 100. In this embodiment, the signal from the engine rotation sensor S2 that detects the engine speed is sent to the engine control unit 86 and / or the main electronic unit 100 via the vehicle state detection unit 90. Of course, the signal from the engine rotation sensor S2, including other signals, may be sent directly without passing through the vehicle state detection unit 90.
  このコンバインでは、発電機81とモータ82との間の給電ラインには、バッテリ(大型コンデンサを含む)が備えられていないので、モータ82は発電機81によって生み出された電力を直接利用する。このため、エンジン停止は、直接発電機81の停止、結果的にはモータ82の停止を導くので、不用意なエンジン停止が発生しないように、省エネとエンジン負荷との両者をバランスよく考慮して、エンジン制御を実行する必要がある。この実施形態では、エンジン制御は、エンジン制御ユニット86によって電子ガバナー方式で制御される。エンジン制御ユニット86は、エンジン80の負荷が増加するにつれてエンジン回転数をわずかに減少させていくドループ制御と、エンジン80の負荷にかかわらずエンジン回転数を一定に維持しようとするアイソクロナス制御のいずれかでエンジン80を制御することが可能である。 In this combine, the power supply line between the generator 81 and the motor 82 is not provided with a battery (including a large capacitor), so the motor 82 directly uses the power generated by the generator 81. For this reason, the engine stop directly leads to the stop of the generator 81 and consequently the stop of the motor 82. Therefore, in order to prevent an inadvertent engine stop, both energy saving and engine load are considered in a balanced manner. Need to perform engine control. In this embodiment, engine control is controlled by the engine control unit 86 in an electronic governor manner. The engine control unit 86 is either droop control that slightly decreases the engine speed as the load of the engine 80 increases, or isochronous control that maintains the engine speed constant regardless of the load of the engine 80. Thus, the engine 80 can be controlled.
  作業装置制御ユニット87は、メイン電子ユニット100からの指令に基づいて、エンジン80の回転動力をそのまま利用するエンジン駆動作業装置W1及びモータ82の回転動力を利用するモータ駆動作業装置W2に組み込まれたクラッチ操作機器や油圧シリンダなどの動作機器に制御信号を与える。車両状態検出ユニット90は、各種スイッチやセンサから入力される信号に対して、必要に応じて変換処理等の前処理を施し、メイン電子ユニット100に転送する。 The work device control unit 87 is incorporated in the engine drive work device W1 that uses the rotational power of the engine 80 as it is and the motor drive work device W2 that uses the rotational power of the motor 82 based on a command from the main electronic unit 100. A control signal is given to operating devices such as a clutch operating device and a hydraulic cylinder. The vehicle state detection unit 90 performs preprocessing such as conversion processing on signals input from various switches and sensors as necessary, and transfers the signals to the main electronic unit 100.
  メイン電子ユニット100は、エンジン制御ユニット86、電機制御ユニット85、作業装置制御ユニット87、車両状態検出ユニット90などの他のECUと車載LANを通じて接続されている。なお、このメイン電子ユニット100だけでなく、他のECUも含め、その構成は、説明目的のためにわかりやすく区分けされている。したがって、実際においては、各ECUは適当に統合化されてもよいし、適当に分割化されてもよい。この実施形態では、メイン電子ユニット100は、ハードウエア及びソフトウエア(コンピュータプログラム)によって、特に本発明に関係するものとして、エンジン管理モジュール110、電機管理モジュール120、車両管理モジュール130などを構築している。 The main electronic unit 100 is connected to other ECUs such as an engine control unit 86, an electric machine control unit 85, a work device control unit 87, and a vehicle state detection unit 90 through an in-vehicle LAN. It should be noted that not only the main electronic unit 100 but also other ECUs are configured in an easy-to-understand manner for the purpose of explanation. Accordingly, in practice, each ECU may be appropriately integrated or may be appropriately divided. In this embodiment, the main electronic unit 100 constructs an engine management module 110, an electric appliance management module 120, a vehicle management module 130, and the like as those particularly related to the present invention by hardware and software (computer program). Yes.
  エンジン管理モジュール110は、他の管理モジュールと相互連携し、エンジン80の出力を調整するために、エンジン制御ユニット86に種々のエンジン制御指令を送る。電機管理モジュール120も、他の管理モジュールと相互連携し、電力変換部84を介して発電機81とモータ82とが適切に駆動されるように、電機制御ユニット85に電機機器制御指令を送る。車両管理モジュール130は、エンジン制御ユニット86、電機制御ユニット85、作業装置制御ユニット87、車両状態検出ユニット90から送られてくる情報(信号・データ)に基づいて、このコンバインの走行状態や作業状態を確認して管理する。 The engine management module 110 sends various engine control commands to the engine control unit 86 to adjust the output of the engine 80 in cooperation with other management modules. The electric machine management module 120 also cooperates with other management modules and sends an electric equipment control command to the electric machine control unit 85 so that the generator 81 and the motor 82 are appropriately driven via the power conversion unit 84. Based on the information (signal / data) sent from the engine control unit 86, the electric machine control unit 85, the work device control unit 87, and the vehicle state detection unit 90, the vehicle management module 130 executes the traveling state and working state of this combine. Confirm and manage.
  図7の車両管理モジュール130には、車両状態決定部13aと速度状態決定部13bとが構築されている。車両状態決定部13aは、車両状態検出ユニット90から取得した各種の状態検出信号に基づいて、左クローラ走行体1aと右クローラ走行体1bの駆動状態及び、刈取処理部3や脱穀装置4や穀粒排出装置37などの農作業装置Wの駆動状態を決定する。速度状態決定部13bは、車両状態検出ユニット90から取得した車速に関する各種状態検出信号、あるいは電機管理モジュール120や電機制御ユニット85で取り扱われているモータ82に対する回転数の指令情報などに基づいて車速を示す速度状態を決定する。 In the vehicle management module 130 of FIG. 7, a vehicle state determination unit 13a and a speed state determination unit 13b are constructed. Based on various state detection signals acquired from the vehicle state detection unit 90, the vehicle state determination unit 13a drives the left crawler traveling body 1a and the right crawler traveling body 1b, and the cutting processing unit 3, the threshing device 4, and the grain. The driving state of the agricultural work apparatus W such as the grain discharging apparatus 37 is determined. The speed state determination unit 13b determines the vehicle speed based on various state detection signals related to the vehicle speed acquired from the vehicle state detection unit 90, or command information on the number of revolutions for the motor 82 handled by the electric machine management module 120 or the electric machine control unit 85. The speed state indicating is determined.
  メイン電子ユニット100の電機管理モジュール120と電機制御ユニット85とによるモータ82の制御について具体的に説明する。 The control of the motor 82 by the electric machine management module 120 and the electric machine control unit 85 of the main electronic unit 100 will be specifically described.
  運転者によって操作される主変速レバー66の前後方向のストローク操作位置は、速度設定用信号としてストロークセンサS4によって検出され、メイン電子ユニット100に送られる。同様に、運転者によって操作される操作レバー61の左右方向の傾斜角は、機体2の旋回(操向)を示す旋回度算定用信号として旋回レバーセンサS3によって検出され、メイン電子ユニット100に送られる。電機管理モジュール120は、主変速レバー66と操作レバー61との操作位置に基づいて、つまりストロークセンサS4及び旋回レバーセンサS3からの検出信号に基づいて、モータ82の回転数、結果的には左クローラ走行体1aと右クローラ走行体1bとの駆動速度を制御するための指令を電機制御ユニット85に与える。 The stroke operation position in the front-rear direction of the main transmission lever 66 operated by the driver is detected by the stroke sensor S4 as a speed setting signal and sent to the main electronic unit 100. Similarly, the left / right inclination angle of the operation lever 61 operated by the driver is detected by the turning lever sensor S3 as a turning degree calculation signal indicating turning (steering) of the airframe 2 and is sent to the main electronic unit 100. It is done. The electric machine management module 120 determines the number of rotations of the motor 82 based on the operation positions of the main transmission lever 66 and the operation lever 61, that is, based on the detection signals from the stroke sensor S4 and the turning lever sensor S3, and as a result A command for controlling the driving speed of the crawler traveling body 1a and the right crawler traveling body 1b is given to the electric machine control unit 85.
  電機制御ユニット85は、電機管理モジュール120からの指令に基づいて、電力変換部84に含まれているインバータやコンバータなどのパワーエレクトロニクス機器を制御する。その際、三相(u相,v相,w相)の各相に設けられているスイッチングトランジスタをオンオフ制御することで発電機81及びモータ82の出力を変更調整する。 The electric machine control unit 85 controls power electronics devices such as an inverter and a converter included in the power conversion unit 84 based on a command from the electric machine management module 120. At that time, the output of the generator 81 and the motor 82 is changed and adjusted by controlling on / off the switching transistors provided in the three phases (u phase, v phase, w phase).
  電機管理モジュール120には、本発明に特に関係する機能部として、モータ回転数設定部12cとモータ回転数修正部12bと旋回度算定部12zとがコンピュータプログラムで構築されている。モータ回転数設定部12cは、主変速レバー66と操作レバー61との操作位置に基づいて、モータ82の制御目標回転数となるモータ指令回転数を算定して、電機制御ユニット85に出力する。モータ回転数修正部12bは、左クローラ走行体1aと右クローラ走行体1bとの駆動速度の違いから導かれる旋回度に基づいて、モータ回転数設定部12cによって算定されたモータ指令回転数を修正する。旋回度算定部12zは、操作レバー61の旋回設定に関する操作位置(旋回レバーセンサS3からの検出信号)に基づいて、旋回度を算定する。 In the electrical machinery management module 120, a motor rotation number setting unit 12c, a motor rotation number correction unit 12b, and a turning degree calculation unit 12z are constructed by a computer program as functional units particularly related to the present invention. The motor rotation speed setting unit 12 c calculates a motor command rotation speed that is a control target rotation speed of the motor 82 based on the operation position of the main transmission lever 66 and the operation lever 61, and outputs the motor command rotation speed to the electric machine control unit 85. The motor rotation speed correction unit 12b corrects the motor command rotation speed calculated by the motor rotation speed setting unit 12c based on the turning degree derived from the difference in driving speed between the left crawler traveling body 1a and the right crawler traveling body 1b. To do. The turning degree calculation unit 12z calculates the turning degree based on the operation position (detection signal from the turning lever sensor S3) regarding the turning setting of the operation lever 61.
  このモータ指令回転数の修正プロセスは、図1を用いて説明した基本原理に基づいている。つまり、モータ回転数設定部12cは、操作位置-モータ指令回転数マップを用いてモータ指令回転数を算定する。この実施形態での旋回度算定部12zは、最小旋回半径を作り出す左クローラ駆動速度と右クローラ駆動速度との差を100%とし、左クローラ駆動速度と右クローラ駆動速度とが同じ場合には0%となる比率を、旋回度として算定する。モータ回転数修正部12bは、この比率を使った修正アルゴリズムを用いて、モータ回転数設定部12cで算定されたモータ指令回転数を修正する。
  この修正アルゴリズムは次のように構成されている、
(1)副変速装置54が高速段であるときに修正が実行される、
(2)旋回度が0%から50%では修正は実行されない、
(3)モータ指令回転数が2000rpm以下では修正は実行されない、
(4)旋回率が50%を超えて80%までで、かつモータ指令回転数が2000rpmを超えている場合には、以下の式を用いる、
修正モータ指令回転数=(N-2000)/30%×(p-50%)、
ここで、Nは修正前モータ指令回転数、pは旋回度、
(5)旋回率が80%を超えており、かつモータ指令回転数が2000rpmを超えている場合には、修正モータ指令回転数は2000rpmに設定される。
This motor command rotation speed correction process is based on the basic principle described with reference to FIG. That is, the motor rotation speed setting unit 12c calculates the motor command rotation speed using the operation position-motor command rotation speed map. In this embodiment, the turning degree calculation unit 12z sets the difference between the left crawler driving speed and the right crawler driving speed that generates the minimum turning radius as 100%, and 0 when the left crawler driving speed and the right crawler driving speed are the same. The ratio of% is calculated as the turning degree. The motor rotation speed correction unit 12b corrects the motor command rotation speed calculated by the motor rotation speed setting unit 12c using a correction algorithm using this ratio.
The modification algorithm is structured as follows:
(1) Correction is performed when the auxiliary transmission 54 is at a high speed.
(2) If the turning degree is 0% to 50%, the correction is not executed.
(3) Correction is not executed when the motor command rotational speed is 2000 rpm or less.
(4) When the turning rate exceeds 50% and reaches 80%, and the motor command rotational speed exceeds 2000 rpm, the following formula is used:
Corrected motor command speed = (N-2000) / 30% x (p-50%)
Here, N is the motor command rotational speed before correction, p is the turning degree,
(5) When the turning rate exceeds 80% and the motor command rotational speed exceeds 2000 rpm, the corrected motor command rotational speed is set to 2000 rpm.
  このコンバインは、バッテリレスのシリアルハイブリッド車両であり、バッテリからの電力で車両を走行させることはできないので、通常は、定常的に回転しているエンジンによって発電している発電機からの電力で駆動するモータによって走行する。したがって、エンジン80の過負荷などで停止することを避けなければならないが、必要以上の出力でエンジン80を運転することは燃費の悪化を導く。このことから、エンジン管理モジュール110は、エンジン負荷を考慮して、適切にエンジン80の運転を管理する。エンジン管理モジュール110に構築された負荷推定部11dは、車両状態決定部13aによって決定された左クローラ走行体1aと右クローラ走行体1bの駆動状態及び農作業装置Wの駆動状態から推定されるエンジン負荷も推定負荷として算定する。その際、左クローラ走行体1aと右クローラ走行体1bの速度差から推定されるエンジン負荷も考慮される。同様にエンジン管理モジュール110に構築されたエンジン指令回転数算定部11bは、負荷推定部11dによって算定された推定負荷に基づいてエンジン指令回転数を算定するとともに当該エンジン指令回転数に基づくエンジン制御指令をエンジン制御ユニット86に出力する。 This combine is a battery-less serial hybrid vehicle and cannot be driven by the power from the battery, so it is usually driven by the power from the generator that generates power from the engine that is constantly rotating. It travels with the motor. Therefore, it must be avoided that the engine 80 is stopped due to overload or the like, but driving the engine 80 with an output more than necessary leads to deterioration of fuel consumption. From this, the engine management module 110 appropriately manages the operation of the engine 80 in consideration of the engine load. The load estimation unit 11d constructed in the engine management module 110 is an engine load estimated from the driving state of the left crawler traveling body 1a and the right crawler traveling body 1b determined by the vehicle state determining unit 13a and the driving state of the agricultural work device W. Is also calculated as an estimated load. At that time, the engine load estimated from the speed difference between the left crawler traveling body 1a and the right crawler traveling body 1b is also taken into consideration. Similarly, an engine command rotational speed calculation unit 11b constructed in the engine management module 110 calculates an engine command rotational speed based on the estimated load calculated by the load estimation unit 11d and an engine control command based on the engine command rotational speed. Is output to the engine control unit 86.
  この負荷推定部11dとエンジン制御ユニット86とによる、エンジン負荷に応じたエンジン回転数制御(パワーオンデマンド制御)の簡単なアルゴリズムの具体例の1つを、図8を用いて、説明する。この具体例では、負荷推定部11dとエンジン制御ユニット86とは一体的に動作するが、まず、車両状態決定部13aからの情報に基づいて、エンジン負荷に影響を与える運転モードとして、次の8つのモードを規定する。
(1)停止モード:作業も走行も行われていない。
(2)刈取り作業前後+直進モード:刈取作業に入る直前の所定時間、または刈取作業が終了した後の所定時間で、機体2は直進している。
(3)刈取り作業前後+旋回モード:刈取作業に入る直前の所定時間、または刈取作業が終了した後の所定時間で、機体2は旋回している(左右のクローラ走行体1a、1bの速度が異なっている)。
(4)刈取り作業中+直進モード:刈取作業中で、機体2は直進している。
(5)刈取り作業中+旋回モード:刈取作業中で、機体2は旋回している。
(6)路上走行+直進モード:副変速装置54を高速段にしての走行で、機体2は直進している。
(7)路上走行+旋回モード:副変速装置54を高速段にしての走行で、機体2は旋回している。
(8)穀粒排出モード:穀粒排出装置37を用いて穀粒タンク5から穀粒を排出している。
エンジン制御ユニット86は、上記運転モードに応じてエンジン指令回転数を算定する。この実施形態では、図8で模式的に示されたようなエンジン性能曲線が規定されているので、これに基づいたエンジン指令回転数が算定される。このエンジン80の最大出力が18.5KWで、最高回転数が2500rpmであり、図8で模式的に示されたエンジン制御特性は、3つの線で表されている。つまり、高負荷時には高回転数Nh(例えば、2500rpmより少し低い回転数)が設定され、中負荷時には中回転数Nm(例えば、2000rpmより少し低い回転数)が設定され、低負荷時には低回転数Nl(例えば、1500rpmより少し高い低回転数)が設定され、ドループ制御される。またこのエンジン80のアイドリング回転数は1000rpmより少し高い回転数となっている。
このことから、実際的には、
(1)停止モードでは、アイドリング回転数が設定され、
(2)刈取り作業前後+直進モードでは、アイドリング回転数から低回転数までの領域が設定され、
(3)刈取り作業前後+旋回モードでは、高回転数よりやや低い回転数が設定され、
(4)刈取り作業中+直進モードでは、低回転数から最高回転数までの領域が設定され、
(5)刈取り作業中+旋回モードでは、最高回転数が設定され、
(6)路上走行+直進モードでは、低回転数から中回転数までの領域が設定され、
(7)路上走行+旋回モードでは、最高回転数が設定され、
(8)穀粒排出モードでは、アイドリング回転数よりやや高い回転数が設定される。
One specific example of a simple algorithm for engine speed control (power on demand control) according to the engine load by the load estimation unit 11d and the engine control unit 86 will be described with reference to FIG. In this specific example, the load estimation unit 11d and the engine control unit 86 operate integrally. First, based on the information from the vehicle state determination unit 13a, as the operation mode that affects the engine load, the following 8 Specifies two modes.
(1) Stop mode: No work or running.
(2) Before / after mowing operation + straight-forward mode: The machine body 2 is traveling straight ahead for a predetermined time immediately before entering the mowing operation or for a predetermined time after the mowing operation is completed.
(3) Before / after cutting operation + turning mode: The machine body 2 is turning at a predetermined time immediately before entering the cutting operation or a predetermined time after the cutting operation is finished (the speeds of the left and right crawler traveling bodies 1a, 1b are Different).
(4) Cutting operation + straight running mode: During cutting operation, the airframe 2 goes straight.
(5) Cutting operation + turning mode: Aircraft 2 is turning during cutting operation.
(6) Road running + straight running mode: The vehicle body 2 is running straight in the running with the auxiliary transmission 54 at a high speed.
(7) Road traveling + turning mode: In the traveling with the auxiliary transmission 54 at a high speed, the body 2 is turning.
(8) Kernel discharge mode: The kernel is discharged from the kernel tank 5 using the kernel discharge device 37.
The engine control unit 86 calculates the engine command rotational speed according to the operation mode. In this embodiment, since an engine performance curve as schematically shown in FIG. 8 is defined, the engine command rotational speed based on this is calculated. The engine 80 has a maximum output of 18.5 KW and a maximum rotational speed of 2500 rpm, and the engine control characteristics schematically shown in FIG. 8 are represented by three lines. That is, a high rotational speed Nh (for example, a rotational speed slightly lower than 2500 rpm) is set at a high load, a medium rotational speed Nm (for example, a rotational speed slightly lower than 2000 rpm) is set at a medium load, and a low rotational speed at a low load. Nl (for example, a low rotational speed slightly higher than 1500 rpm) is set, and droop control is performed. The idling speed of the engine 80 is slightly higher than 1000 rpm.
From this, in practice,
(1) In stop mode, idling speed is set,
(2) Before / after mowing operation + straight running mode, the region from idling speed to low speed is set,
(3) Before / after mowing operation + turning mode, a slightly lower rotational speed than the high rotational speed is set,
(4) In the cutting and straight running mode, the area from the low speed to the maximum speed is set.
(5) During cutting and turning mode, the maximum number of revolutions is set.
(6) In the road running + straight running mode, an area from a low speed to a medium speed is set.
(7) In road driving + turning mode, the maximum speed is set,
(8) In the grain discharging mode, a rotational speed slightly higher than the idling rotational speed is set.
  従来のシリーズハイブリッドでは、エンジンの高効率運転による省エネを図るため、負荷にかかわらず最高回転数に設定していたが、低負荷でも最高回転数が設定されることになるので、低負荷が続く場合には、省エネが不充分となる。また、負荷変動に合わせて、常にエンジン回転数の設定を調整する場合、負荷が細かく変動する状況では、エンジンのふかしが繰り返されるという、省エネや騒音に関する不都合が生じる。このようなことを考慮し、上記の具体例では、高負荷で高回転数、中負荷で宙回転数、低負荷で低回転数というように負荷に応じてエンジン回転数を設定している。その際、刈取り作業中+旋回モード及び路上走行+旋回モードは最も大きな負荷が生じる運転状態なので最大回転数が設定されている。 In the conventional series hybrid, in order to save energy by high-efficiency operation of the engine, the maximum number of revolutions was set regardless of the load. However, the maximum number of revolutions is set even at low loads, so the low load continues. In some cases, energy saving is insufficient. Further, when the engine speed setting is constantly adjusted in accordance with the load fluctuation, in the situation where the load fluctuates finely, there arises an inconvenience related to energy saving and noise that the engine is repeatedly puffed. In consideration of the above, in the above specific example, the engine speed is set according to the load, such as high speed at high load, air speed at medium load, and low speed at low load. At that time, the maximum rotation speed is set since the cutting operation + turning mode and road traveling + turning mode are the operating states in which the greatest load is generated.
〔別実施形態〕 [Another embodiment]
(1)上述した実施形態では走行装置1は左右一対のクローラ走行体1a、1bから構成されていたが、車輪とクローラ走行体の複合構成、あるいは車輪のみの構成を採用してもよい。
(2)第3操作具56及び第2操作具57は、運転者によって操作される操作レバーと当該操作レバーの操作変位を検出するセンサとから構成してもよい。
(3)上述した実施形態では、エンジン指令回転数は、負荷推定部11dの負荷に基づいてエンジン指令回転数算定部11bで算定された。しかしながら、電機管理モジュール120によるモータ指令回転数の算定にもモータ負荷、結果的にはエンジン負荷がされていることから、エンジン指令回転数算定部11bがこのモータ指令回転数からエンジン指令回転数を導出するようにしてもよい。
(1) In the embodiment described above, the traveling device 1 is composed of a pair of left and right crawler traveling bodies 1a and 1b. However, a combined configuration of wheels and crawler traveling bodies, or a configuration including only wheels may be employed.
(2) The third operation tool 56 and the second operation tool 57 may be configured by an operation lever operated by a driver and a sensor that detects an operation displacement of the operation lever.
(3) In the above-described embodiment, the engine command rotational speed is calculated by the engine command rotational speed calculation unit 11b based on the load of the load estimation unit 11d. However, since the motor load, and consequently the engine load, is also calculated in the calculation of the motor command rotation speed by the electric appliance management module 120, the engine command rotation speed calculation unit 11b calculates the engine command rotation speed from the motor command rotation speed. It may be derived.
  本発明は、車体の走行に伴って農作物を刈り取って脱穀処理するようにした自脱型又は普通型のコンバインに適用できる。 The present invention can be applied to a self-removal type or a normal type combine in which crops are harvested and threshed as the vehicle runs.
  1:走行装置
1a:左クローラ走行体
1b:右クローラ走行体
  2:走行機体
  3:刈取処理部
  4:脱穀装置
  5:穀粒タンク
  7:搭乗運転部
  8:刈取部
12:刈取装置
54:副変速装置
56:第3操作具
57:第2操作具
61:操作レバー(旋回設定用レバー)
66:主変速レバー(速度設定用レバー)
80:エンジン
81:発電機
82:モータ(電動モータ)
84:電力変換部
85:電機制御ユニット
86:エンジン制御ユニット
87:作業装置制御ユニット
90:車両状態検出ユニット
100:メイン電子ユニット
110:エンジン管理モジュール
11b:エンジン指令回転数算定部
11d:負荷推定部
120:電機管理モジュール
12b:モータ回転数修正部
12c:モータ回転数設定部
12z:旋回度算定部
130:車両管理モジュール
13a:車両状態決定部
13b:速度状態決定部
S2:エンジン回転数センサ
S3:旋回レバーセンサ
S4:ストロークセンサ
OD:車速設定操作装置
1: traveling device 1a: left crawler traveling body 1b: right crawler traveling body 2: traveling machine body 3: reaping processing unit 4: threshing device 5: grain tank 7: boarding operation unit 8: reaping unit 12: reaping device 54: sub Transmission 56: Third operation tool 57: Second operation tool 61: Operation lever (turning setting lever)
66: Main transmission lever (speed setting lever)
80: Engine 81: Generator 82: Motor (electric motor)
84: Power conversion unit 85: Electric control unit 86: Engine control unit 87: Work device control unit 90: Vehicle state detection unit 100: Main electronic unit 110: Engine management module 11b: Engine command rotational speed calculation unit 11d: Load estimation unit 120: Electricity management module 12b: Motor rotation speed correction section 12c: Motor rotation speed setting section 12z: Turning degree calculation section 130: Vehicle management module 13a: Vehicle state determination section 13b: Speed state determination section S2: Engine rotation speed sensor S3: Swivel lever sensor S4: Stroke sensor OD: Vehicle speed setting operation device

Claims (7)

  1.   エンジンと、前記エンジンの出力によって駆動する発電機と、前記発電機からの電力によって駆動するモータと、前記モータからの回転動力によって互いに独立して駆動される左クローラ走行体と右クローラ走行体とを有する走行装置と、操作位置に応じた車速を設定するために車速設定操作装置と、前記発電機と前記モータとを制御する電機制御ユニットと、前記エンジンの出力を制御するエンジン制御ユニットと、農作物を収穫する農作業装置とを備えた、シリーズハイブリッドコンバインであって、
      前記操作位置に基づいて前記モータの制御目標回転数となるモータ指令回転数を算定して、前記電機制御ユニットに出力するモータ回転数算定部と、
      前記左クローラ走行体と右クローラ走行体との駆動速度の違いから導かれる旋回度に基づいて前記モータ指令回転数を修正するモータ回転数修正部と、
    を備えたシリーズハイブリッドコンバイン。
    An engine, a generator driven by the output of the engine, a motor driven by electric power from the generator, a left crawler traveling body and a right crawler traveling body driven independently from each other by rotational power from the motor A vehicle speed setting operation device for setting the vehicle speed according to the operation position, an electric machine control unit for controlling the generator and the motor, an engine control unit for controlling the output of the engine, A series hybrid combine equipped with a farm work device for harvesting crops,
    A motor rotation speed calculation unit that calculates a motor command rotation speed that is a control target rotation speed of the motor based on the operation position, and outputs the motor command rotation speed to the electric machine control unit;
    A motor rotation number correction unit that corrects the motor command rotation number based on a turning degree derived from a difference in driving speed between the left crawler traveling body and the right crawler traveling body;
    Series hybrid combine equipped with.
  2.   前記モータ回転数修正部は、前記旋回度が所定値以下の場合、前記モータ指令回転数に対する修正を行わず、前記旋回度が所定値を超えた場合、その超過分に応じて算定される回転数低下量で前記モータ指令回転数に対する修正を行う請求項1に記載のシリーズハイブリッドコンバイン。 The motor rotation speed correction unit does not correct the motor command rotation speed when the turning degree is equal to or less than a predetermined value, and when the turning degree exceeds a predetermined value, the rotation calculated according to the excess The series hybrid combine according to claim 1, wherein the motor command rotational speed is corrected with a number reduction amount.
  3.   車速を表す速度状態値を検出する速度状態検出部が備えられ、前記モータ回転数修正部は、前記速度状態値と前記旋回度とに基づいて前記モータ指令回転数を修正する請求項1または2に記載のシリーズハイブリッドコンバイン。 The speed state detection part which detects the speed state value showing a vehicle speed is provided, The said motor rotation speed correction part corrects the said motor command rotation speed based on the said speed state value and the said turning degree. Series hybrid combine described in.
  4.   前記速度状態値がモータ指令回転数である請求項3に記載のシリーズハイブリッドコンバイン。 The series hybrid combine according to claim 3, wherein the speed state value is a motor command rotational speed.
  5.   前記モータ回転数修正部では、前記モータ指令回転数が予め設定された最低回転数以下になるような修正が禁止されている請求項1から4のいずれか一項に記載のシリーズハイブリッドコンバイン。 The series hybrid combine according to any one of claims 1 to 4, wherein the motor rotation speed correction unit is prohibited from correcting the motor command rotation speed to be equal to or lower than a preset minimum rotation speed.
  6.   前記操作位置に基づいて前記エンジンの目標回転速度を算定する目標速度算定部と、前記目標回転速度に基づいて算定されたエンジン指令回転数を前記エンジン制御ユニットに出力するエンジン指令回転数算定部とが備えられている請求項1から5のいずれか一項に記載のシリーズハイブリッドコンバイン。 A target speed calculator for calculating a target rotational speed of the engine based on the operation position; an engine command rotational speed calculator for outputting an engine command rotational speed calculated based on the target rotational speed to the engine control unit; The series hybrid combine according to any one of claims 1 to 5, further comprising:
  7.   前記車速設定操作装置は、速度設定用レバーと旋回設定用レバーとからなる請求項1から6のいずれか一項に記載のシリーズハイブリッドコンバイン。 The series hybrid combine according to any one of claims 1 to 6, wherein the vehicle speed setting operation device includes a speed setting lever and a turning setting lever.
PCT/JP2014/075164 2013-09-27 2014-09-24 Series hybrid combine WO2015046185A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013202784A JP6129046B2 (en) 2013-09-27 2013-09-27 Series hybrid combine
JP2013-202784 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015046185A1 true WO2015046185A1 (en) 2015-04-02

Family

ID=52743321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075164 WO2015046185A1 (en) 2013-09-27 2014-09-24 Series hybrid combine

Country Status (2)

Country Link
JP (1) JP6129046B2 (en)
WO (1) WO2015046185A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114228511A (en) * 2021-12-31 2022-03-25 江苏英拓动力科技有限公司 Self-learning-based deviation correction control method for double-side independent electrically-driven tracked vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200119439A (en) * 2019-04-09 2020-10-20 엘에스엠트론 주식회사 Apparatus and Method for Controlling Traveling Speed of Agricultural Vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206807A (en) * 1988-02-09 1989-08-21 Toyota Central Res & Dev Lab Inc Driving force controller for motor vehicle
JP2005262909A (en) * 2004-03-16 2005-09-29 Yanmar Co Ltd Transmission for working vehicle
JP2006207738A (en) * 2005-01-28 2006-08-10 Yanmar Co Ltd Control method for transmission of working vehicle
JP2010193795A (en) * 2009-02-25 2010-09-09 Iseki & Co Ltd Hybrid combine harvester
JP2011045324A (en) * 2009-08-28 2011-03-10 Iseki & Co Ltd Hybrid type combine harvester
JP2011147366A (en) * 2010-01-20 2011-08-04 Yanmar Co Ltd Traveling vehicle
JP2012143178A (en) * 2011-01-11 2012-08-02 Yanmar Co Ltd Combine harvester

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155333A (en) * 1996-12-02 1998-06-16 Yanmar Agricult Equip Co Ltd Crawler type moving farm machine
JP4097100B2 (en) * 1998-07-10 2008-06-04 ヤンマー農機株式会社 Mobile farm machine
JP2002274422A (en) * 2001-03-14 2002-09-25 Iseki & Co Ltd Traveling device
JP2003325025A (en) * 2002-05-10 2003-11-18 Mitsubishi Agricult Mach Co Ltd Combine
JP2004074970A (en) * 2002-08-21 2004-03-11 Iseki & Co Ltd Turning controller for combine harvester travel transmitter
JP4685564B2 (en) * 2005-09-13 2011-05-18 ヤンマー株式会社 Combine
JP4973156B2 (en) * 2006-11-30 2012-07-11 井関農機株式会社 Combine
JP2010252695A (en) * 2009-04-24 2010-11-11 Iseki & Co Ltd Combined harvester
JP5418766B2 (en) * 2009-04-27 2014-02-19 井関農機株式会社 Combine
JP2011067155A (en) * 2009-09-28 2011-04-07 Iseki & Co Ltd Combine harvester
JP2011067170A (en) * 2009-09-28 2011-04-07 Iseki & Co Ltd Combine harvester
JP5745985B2 (en) * 2011-09-27 2015-07-08 株式会社クボタ Combine
JP5676404B2 (en) * 2011-09-27 2015-02-25 株式会社クボタ Combine
JP2013153696A (en) * 2012-01-31 2013-08-15 Iseki & Co Ltd Combine harvester

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206807A (en) * 1988-02-09 1989-08-21 Toyota Central Res & Dev Lab Inc Driving force controller for motor vehicle
JP2005262909A (en) * 2004-03-16 2005-09-29 Yanmar Co Ltd Transmission for working vehicle
JP2006207738A (en) * 2005-01-28 2006-08-10 Yanmar Co Ltd Control method for transmission of working vehicle
JP2010193795A (en) * 2009-02-25 2010-09-09 Iseki & Co Ltd Hybrid combine harvester
JP2011045324A (en) * 2009-08-28 2011-03-10 Iseki & Co Ltd Hybrid type combine harvester
JP2011147366A (en) * 2010-01-20 2011-08-04 Yanmar Co Ltd Traveling vehicle
JP2012143178A (en) * 2011-01-11 2012-08-02 Yanmar Co Ltd Combine harvester

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114228511A (en) * 2021-12-31 2022-03-25 江苏英拓动力科技有限公司 Self-learning-based deviation correction control method for double-side independent electrically-driven tracked vehicle
CN114228511B (en) * 2021-12-31 2023-09-08 江苏英拓动力科技有限公司 Self-learning-based bilateral independent electric drive tracked vehicle deviation correction control method

Also Published As

Publication number Publication date
JP2015065894A (en) 2015-04-13
JP6129046B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
US7779616B2 (en) Vehicle with electric hybrid powering of external loads and engine-off capability
JP5676404B2 (en) Combine
RU2514412C2 (en) Agricultural machine (versions) and method of implementation of harvesting operations
JP5745985B2 (en) Combine
KR101801507B1 (en) Hybrid working vehicle
EP2253192B1 (en) Harvester load control system
JP6066880B2 (en) Series hybrid combine
US8626402B2 (en) Drive arrangement and method for a work machine with two internal combustion engines
JP6129046B2 (en) Series hybrid combine
KR102307094B1 (en) Series hybrid combine
JPH04278828A (en) Combine
JP5138437B2 (en) Combine
JP6129045B2 (en) Series hybrid combine
JP6161499B2 (en) Series hybrid combine
JP6104119B2 (en) Series hybrid combine
JP5681602B2 (en) Combine
JP4207681B2 (en) Combine
JP4795563B2 (en) Auxiliary output device for work section of mobile agricultural machine
JP2004073006A (en) Driving force apparatus of combine harvester or the like
JP5735389B2 (en) Combine
JP5764024B2 (en) Combine
JP5764022B2 (en) Combine
CN117598092A (en) Power system and method of soybean and corn harvesting machine and harvester
JP2010190086A (en) Work vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847793

Country of ref document: EP

Kind code of ref document: A1