WO2015046121A1 - Polyester film, production method for polyester film, polarizing plate, and image display device - Google Patents
Polyester film, production method for polyester film, polarizing plate, and image display device Download PDFInfo
- Publication number
- WO2015046121A1 WO2015046121A1 PCT/JP2014/075028 JP2014075028W WO2015046121A1 WO 2015046121 A1 WO2015046121 A1 WO 2015046121A1 JP 2014075028 W JP2014075028 W JP 2014075028W WO 2015046121 A1 WO2015046121 A1 WO 2015046121A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyester film
- film
- clip
- polyester
- polarizing plate
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/04—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
- B29C55/08—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/20—Edge clamps
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
Definitions
- the present invention relates to a polyester film and a method for producing the same, a polarizing plate, and an image display device.
- a method for producing a preferably uniaxially oriented polyester film, a polyester film produced by the method for producing a polyester film, a polarizing plate and an image containing the polyester film which are preferably used as a liquid crystal display substrate for optical film applications
- the present invention relates to a display device.
- Image display devices such as liquid crystal display (LCD), plasma display (PDP), electroluminescence display (OELD or IELD), field emission display (FED), touch panel, and electronic paper have a polarizing plate on the display screen side of the image display panel. Is arranged.
- a liquid crystal display device has low power consumption, and its application is expanding year by year as a space-saving image display device.
- a liquid crystal display device has a major drawback that the viewing angle dependency of a display image is large.
- a wide viewing angle liquid crystal mode such as a VA mode and an IPS mode has been put into practical use.
- the demand for liquid crystal display devices is rapidly expanding even in the market where such images are required.
- a polarizing plate used in a liquid crystal display device is generally composed of a polarizer made of a polyvinyl alcohol film or the like on which iodine or dye is adsorbed and oriented, and a transparent protective film (polarizing plate protective film) on both sides of the polarizer. It has a configuration.
- the protective film on the surface (the side opposite to the display side) to be bonded to the liquid crystal cell is called an inner film, and the opposite side (display side) is called an outer film.
- Polyester, polycarbonate resin, and the like have advantages such as low cost, high mechanical strength, low moisture permeability, and the like, and are expected to be used as outer films.
- a uniaxially oriented polyester film is increasingly used as a base material for liquid crystal displays (such as a protective film for a polarizing plate) in place of a conventional biaxially oriented polyester resin film.
- An example is known in which rainbow unevenness is eliminated by making it inconspicuous to the extent that it cannot be performed (see Patent Document 1).
- Patent Document 1 also describes that the mechanical strength in the direction orthogonal to the orientation direction is significantly reduced in a complete uniaxial (uniaxial symmetry) film.
- the uniaxially or biaxially oriented polyester resin film having the optical properties as described above is produced by laterally uniaxially stretching at least an unstretched film while holding it with a clip using a tenter type stretching device.
- Patent Document 2 when a uniaxially oriented polyester film is produced by laterally uniaxially stretching an unstretched PET film, it is easily stretched along the orientation direction of the film because it is stretched only in the direction perpendicular to the film transport direction. Paying attention to that, when the film is released from the clip, the tenter rail width when releasing the film from the clip is expanded in the range of 0.1 to 10% of the minimum rail width after the heat setting zone. A method for suppressing breakage is described.
- FIG. 1 The problem to be solved by the present invention is a method for producing a polyester film capable of producing a polyester film having extremely good film surface flatness, which can extremely reduce the film breakage in the vicinity of the film opening from the clip at the tenter outlet. Can be provided.
- the film is oriented only in the horizontal direction, so the breaking strength in the vertical direction is weak, and the film breaks in the lateral direction around the clip separation part at the tenter outlet.
- the film film surface temperature at the opening part of the film from the clip is too low near the tenter outlet, the film released from the clip acts on the film released from the clip due to cooling of the film. was found to break.
- [1] including a step of laterally stretching an unstretched polyester film while holding the unstretched polyester film with the above-described clip using a tenter-type stretching device having a clip that travels along a pair of rails installed on both sides of the film conveyance path.
- a method for producing a polyester film wherein the film film surface temperature is controlled to 50 to 120 ° C. when the polyester film after transverse stretching is released from the clip.
- the method for producing a polyester film according to [1] includes the step of releasing the above-mentioned laterally stretched polyester film from the above-mentioned clip, and then 500 to 5000 kN / m with respect to the polyester film after being opened from the above-mentioned clip.
- the distance between a pair of rails when the polyester film after the transverse stretching is released from the clip is set as the transverse stretching zone. It is preferable to increase the distance within a range of 0.1 to 5% with respect to the shortest distance between the pair of rails thereafter.
- the method for producing a polyester film according to [4] includes a step of cooling the heat-fixed polyester film before releasing the heat-fixed polyester film from the clip. preferable.
- a refractive index in a longitudinal direction of the unstretched polyester film is 1.590 or less, and The crystallinity of the unstretched polyester film is preferably 5% or less.
- the unstretched polyester film preferably includes a polyethylene terephthalate resin as a main component.
- the polyester film according to [8] preferably has a heat shrinkage rate of 3% or less in the longitudinal direction after heating the above-described polyester film at 150 ° C. for 30 minutes.
- the polyester film according to [8] or [9] has a film thickness of 20 to 150 ⁇ m, Retardation Re in the in-plane direction of the film is 3000 to 30000 nm, The retardation Rth in the thickness direction is 3000 to 30000 nm, The Re / Rth ratio is preferably 0.5 to 2.5.
- the polyester film according to any one of [8] to [10] is preferably uniaxially oriented.
- the polyester film according to [11] has a refractive index in the longitudinal direction of the polyester film of 1.590 or less, and It is preferable that the degree of crystallinity of the polyester film exceeds 5%.
- a polarizing plate comprising a polarizer and the polyester film according to any one of [8] to [12].
- An image display device comprising the polyester film according to any one of [8] to [12] or the polarizing plate according to [13].
- the present invention it is possible to provide a method for producing a polyester film capable of producing a polyester film that can extremely reduce film breakage in the vicinity of an open portion of the film from a clip at a tenter outlet and that has good flatness on the film surface. it can.
- a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
- the polyester film manufacturing method of the present invention uses a tenter type stretching apparatus having clips that run along a pair of rails installed on both sides of a film transport path.
- the method includes a step of transverse stretching while holding the stretched polyester film with a clip, and the film film surface temperature when the polyester film after transverse stretching is released from the clip is controlled to 50 to 120 ° C.
- the method for producing a polyester film of the present invention can produce a polyester film with extremely low film breakage in the vicinity of the open portion of the film from the clip at the tenter outlet and good film surface flatness. .
- the preferable aspect of the manufacturing method of this invention is demonstrated.
- polyester resin The unstretched polyester film preferably contains a polyester resin as a main component and a polyethylene terephthalate resin as a main component.
- a main component means the component which occupies 50 mass% or more of a film.
- the polyester resin those having the composition of [0042] of WO2012 / 157762 are preferably used.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- PBT polybutylene terephthalate
- PCT polycyclohexanedimethylene terephthalate
- Polyester is most preferably polyethylene terephthalate, but polyethylene naphthalate can also be preferably used. For example, those described in JP-A-2008-39803 can be preferably used.
- Polyethylene terephthalate is a polyester having a structural unit derived from terephthalic acid as a dicarboxylic acid component and a structural unit derived from ethylene glycol as a diol component, and 80 mol% or more of all repeating units are preferably ethylene terephthalate.
- the structural unit derived from other copolymerization components may be included.
- copolymer components include isophthalic acid, p- ⁇ -oxyethoxybenzoic acid, 4,4′-dicarboxydiphenyl, 4,4′-dicarboxybenzophenone, bis (4-carboxyphenyl) ethane, adipic acid , Dicarboxylic acid components such as sebacic acid, 5-sodium sulfoisophthalic acid, 1,4-dicarboxycyclohexane, propylene glycol, butanediol, neopentyl glycol, diethylene glycol, cyclohexanediol, bisphenol A ethylene oxide adduct, polyethylene glycol And diol components such as polypropylene glycol and polytetramethylene glycol.
- Dicarboxylic acid components such as sebacic acid, 5-sodium sulfoisophthalic acid, 1,4-dicarboxycyclohexane, propylene glycol, butanediol
- dicarboxylic acid components and diol components can be used in combination of two or more if necessary.
- an oxycarboxylic acid such as p-oxybenzoic acid can be used in combination with the carboxylic acid component or diol component.
- a dicarboxylic acid component and / or a diol component containing a small amount of an amide bond, a urethane bond, an ether bond, a carbonate bond, or the like may be used.
- Polyethylene terephthalate can be produced by a direct polymerization method in which terephthalic acid and ethylene glycol and, if necessary, other dicarboxylic acid and / or other diol are directly reacted, dimethyl ester of terephthalic acid and ethylene glycol, and necessary
- any production method such as a so-called transesterification method in which a dimethyl ester of another dicarboxylic acid and / or another diol is transesterified can be applied.
- the intrinsic viscosity IV of the polyester resin is preferably 0.5 or more and 0.9 or less, more preferably 0.52 or more and 0.8 or less, and further preferably 0.54 or more and 0.7 or less. .
- solid phase polymerization may be used in combination with the melt polymerization described later when the polyester resin is synthesized.
- the acetaldehyde content of the polyester resin is preferably 50 ppm or less. More preferably, it is 40 ppm or less, Most preferably, it is 30 ppm or less. Acetaldehyde easily causes a condensation reaction between acetaldehydes, and water is generated as a side reaction product, which may cause hydrolysis of the polyester. The lower limit of the acetaldehyde content is practically about 1 ppm.
- Sb, Ge, Ti, Al-based catalysts are used, preferably Sb, Ti, Al-based catalysts, and more preferably Al-based catalysts. That is, it is preferable that the polyester resin used as the raw material resin is polymerized using an aluminum catalyst.
- an Al-based catalyst it becomes easier for Re to be expressed than when other catalysts (for example, Sb, Ti) are used, and PET can be thinned. That is, it means that the Al-based catalyst is more easily oriented. This is presumed to be due to the following reasons.
- Al-based catalyst Since the Al-based catalyst has a lower reactivity (polymerization activity) than Sb and Ti, the reaction is mild, and a by-product (diethylene glycol unit: DEG) is hardly generated. As a result, the regularity of PET increases, and it is easy to align and to express Re. (1-3-1) Al-based catalyst As the Al-based catalyst, those described in WO0013 / 040161 [0013] to [0148] (US2012 / 0183761 [0021] to [0123]) are used. The contents described in these publications are incorporated in the present specification.
- the method for polymerizing the polyester resin using the Al-based catalyst is not particularly limited, but specifically, [0091] to [0094] of WO2012 / 008488 ([0144] to [0094] of US2013 / 0112271). 0153]) can be used to polymerize according to these publications, and the contents described in these publications are incorporated herein.
- Such Al-based catalysts include, for example, [0052] to [0054], [0099] to [0104] of JP2012-122051 ([0045] to [0047], [0091] of WO2012 / 029725. To [0096]) can be prepared according to these publications, and the contents described in these publications are incorporated herein.
- the amount of the Al-based catalyst is preferably 3 to 80 ppm, more preferably 5 to 60 ppm, and still more preferably 5 to 40 ppm as the amount of Al element with respect to the mass of the polyester resin.
- Sb-based catalyst As the Sb-based catalyst, those described in [0050], [0052] to [0054] of JP 2012-41519 A can be used.
- the method for polymerizing the polyester resin using the Sb-based catalyst is not particularly limited, but specifically, the polymerization can be performed according to [0086] to [0087] of WO2012 / 157762.
- polyester film used for the polyester film of the present invention.
- a known additive include ultraviolet absorbers, particles, lubricants, antiblocking agents, heat stabilizers, antioxidants, antistatic agents, light resistance agents, impact resistance improvers, lubricants, dyes, pigments and the like.
- the polyester film generally requires transparency, it is preferable to keep the additive amount to a minimum.
- the unstretched polyester film used for the polyester film of the present invention can contain an ultraviolet absorber in order to prevent the liquid crystal of the liquid crystal display from being deteriorated by ultraviolet rays.
- the ultraviolet absorber is not particularly limited as long as it is a compound having ultraviolet absorbing ability and can withstand the heat applied in the production process of the polyester film.
- As the ultraviolet absorber there are an organic ultraviolet absorber and an inorganic ultraviolet absorber. From the viewpoint of transparency, an organic ultraviolet absorber is preferable. Those described in [0057] of WO2012 / 157762 and cyclic iminoester-based ultraviolet absorbers described later can be used.
- the cyclic imino ester-based ultraviolet absorber is not limited to the following, and examples thereof include 2-methyl-3,1-benzoxazin-4-one and 2-butyl-3,1-benzoxazine-4. -One, 2-phenyl-3,1-benzoxazin-4-one, 2- (1- or 2-naphthyl) -3,1-benzoxazin-4-one, 2- (4-biphenyl) -3, 1-benzoxazin-4-one, 2-p-nitrophenyl-3,1-benzoxazin-4-one, 2-m-nitrophenyl-3,1-benzoxazin-4-one, 2-p-benzoyl Phenyl-3,1-benzoxazin-4-one, 2-p-methoxyphenyl-3,1-benzoxazin-4-one, 2-o-methoxyphenyl-3,1-benzoxazin-4-one 2-cyclohexyl-3,1-benzoxazin-4-one, 2-
- a benzoxazinone-based compound which is difficult to be yellowed is preferably used.
- a compound represented by the following general formula (1) is more preferably used. It is done.
- R represents a divalent aromatic hydrocarbon group
- X 1 and X 2 are each independently selected from hydrogen or the following functional group group, but are not necessarily limited thereto. Absent.
- 2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazin-4-one) is particularly preferable in the present invention.
- the amount of the ultraviolet absorber contained in the polyester film of the present invention is usually 10.0% by mass or less, preferably 0.3 to 3.0% by mass.
- the ultraviolet absorber may bleed out on the surface, which may cause deterioration of surface functionality such as adhesion deterioration.
- the polyester film of the present invention having a multilayer structure, it is preferably at least a three-layer structure, and the ultraviolet absorber is preferably blended in the intermediate layer.
- the ultraviolet absorber is preferably blended in the intermediate layer.
- additives may be used for the unstretched polyester film used in the polyester film of the present invention, for example, those described in [0058] of WO2012 / 157762. The contents described in these publications are incorporated herein by reference.
- the unstretched polyester film is preferably formed into a film by melt-extruding a polyester resin. It is preferable to dry the polyester resin or the master batch of the polyester resin and additive produced by the above-described master batch method to a moisture content of 200 ppm or less, and then introduce the melt into a single or twin screw extruder and melt it. At this time, in order to suppress degradation of the polyester, it is also preferable to melt in nitrogen or vacuum.
- the detailed conditions can be implemented in accordance with these publications with the aid of Patent Nos. 4992661 [0051] to [0052] (US 2013/0100378 publication [0085] to [0086]) and are described in these publications. The contents are incorporated herein. Furthermore, it is also preferable to use a gear pump in order to increase the delivery accuracy of the molten resin (melt). It is also preferable to use a 3 ⁇ m to 20 ⁇ m filter for removing foreign substances.
- Extrusion, coextrusion Although it is preferable to extrude the melt containing the polyester resin melt-kneaded from the die, it may be extruded as a single layer or as a multilayer. When extruding in multiple layers, for example, a layer containing an ultraviolet grade agent (UV agent) and a layer not containing it may be laminated. In addition to suppressing deterioration, it is preferable to suppress bleeding out of the UV agent.
- the bleed-out UV agent is undesirably easily transferred to a pass roll in the film-forming process, increasing the coefficient of friction between the film and the roll, and causing scratches.
- the preferred inner layer thickness (ratio to the total layer) of the resulting polyester film is preferably 50% or more and 95% or less, more preferably 60% or more and 90% or less, Preferably they are 70% or more and 85% or less.
- Such lamination can be performed by using a feed block die or a multi-manifold die.
- the refractive index in the longitudinal direction of the unstretched polyester film is preferably 1.590 or less, more preferably 1.585 or less, and further preferably 1.580 or less.
- the crystallinity of the unstretched polyester film is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less.
- the crystallinity degree of the unstretched polyester film here means the crystallinity degree of the center part of a film width direction.
- a polymer layer On the melt-extruded unstretched polyester film, a polymer layer (preferably an easy-adhesion layer) may be formed by coating before or after stretching described later.
- the polymer layer generally include a functional layer that the polarizing plate may have, and among them, it is preferable to form an easy adhesion layer as the polymer layer.
- the easy-adhesion layer can be applied by the method described in [0062] to [0070] of WO2012 / 157762.
- the production method of the present invention uses a tenter-type stretching device having a clip that travels along a pair of rails installed on both sides of a film conveyance path, and horizontally stretches the unstretched polyester film while holding the clip with the clip.
- the film surface temperature when the polyester film after transverse stretching is released from the clip is controlled to 50 to 120 ° C.
- tenter type stretching device having a clip that travels along a pair of rails installed on both sides of the film conveyance path.
- a pair of endless rails is usually used as the pair of rails.
- the extruded film is stretched transversely. Transverse stretching is performed in a direction perpendicular to the film transport direction while transporting an unstretched polyester film along the film transport path.
- retardation Re in the in-plane direction of the film (hereinafter also referred to as the in-plane direction) can be greatly expressed.
- at least lateral stretching is performed.
- the stretching ratio of the lateral stretching may be increased among the longitudinal and lateral stretching ratios, and the stretching may be performed unbalanced.
- the stretching temperature in the stretching step is preferably 70 ° C. or higher and 170 ° C. or lower, more preferably 80 ° C. or higher and 160 ° C. or lower, and still more preferably 90 ° C. or higher and 150 ° C. or lower.
- the stretching temperature here refers to an average temperature from the start to the end of stretching.
- the transverse draw ratio is preferably 2 to 5.5 times, more preferably 2.5 to 5 times, and particularly preferably 3 to 4.5 times.
- the production method of the present invention preferably includes a heat setting step of heating the polyester film after transverse stretching to the maximum temperature in the tenter before releasing the polyester film after transverse stretching from the clip.
- a heat setting In order to promote crystallization after stretching, it is preferable to perform a heat treatment called “heat setting”. This can be performed at a temperature exceeding the stretching temperature to promote crystallization and increase the strength of the film.
- a heat fixing method several slits for sending hot air to the extending portion are provided in parallel to the width direction. This can be achieved by making the temperature of the gas blown out from the slit higher than the stretched portion. Further, a heat source (IR heater, halogen heater, etc.) may be installed near the drawing (part) exit to raise the temperature.
- the preferred temperature for heat setting is preferably from 100 ° C. to 250 ° C., more preferably from 150 ° C. to 245 ° C.
- TD transverse direction
- MD vertical direction
- Longitudinal relaxation is preferably performed at 120 ° C. or higher and 230 or lower, more preferably 130 ° C. or higher and 220 ° C. or lower, and further preferably 140 ° C. or higher and 210 ° C. or lower from the viewpoint of suppression of scratches. Longitudinal relaxation also has the effect of increasing Re / Rth in widthwise stretching.
- the amount of relaxation is preferably 1% or more and 10% or less from the viewpoint of suppressing generation of scratches on the polyester film, more preferably 2% or more and 8% or less, and even more preferably 3% or more and 7%. % Or less. If it is more than the lower limit value of this preferable range, the above-mentioned effect is difficult to occur and scratches are hardly generated. On the other hand, if it is less than or equal to the upper limit of this preferred range, it will be difficult for slack to occur, it will be difficult to come into contact with a stretching machine, and scratches will not easily occur.
- the lateral relaxation temperature is preferably in the range of the above-mentioned heat setting temperature, and may be the same as that of heat setting, or may be high or low.
- the lateral relaxation amount is preferably in the same range as the longitudinal relaxation amount. Lateral relaxation can be achieved by reducing the width of the widened click.
- Re, Rth and Re / Rth of the polyester film of the present invention can be easily achieved. That is, it is easy to form the polyester film of the present invention that exhibits the effect of reducing rainbow unevenness by performing stretching and heat setting by these methods.
- the manufacturing method of this invention includes the process of cooling the polyester film after heat setting, before releasing the polyester film after heat setting from a clip.
- the heat-set polyester film is cooled before being released from the clip, when the polyester film after transverse stretching is released from the clip, preferable.
- the cooling temperature of the polyester film after heat setting is preferably 80 ° C. or less, more preferably 70 ° C. or less, and particularly preferably 60 ° C. or less.
- Specific examples of the method for cooling the polyester film after heat setting include a method in which cold air is applied to the polyester film.
- the film surface temperature when the polyester film after transverse stretching is released from the clip is controlled to 50 to 120 ° C. When it is 50 ° C. or higher, the film is difficult to break at the tenter exit. When the temperature is 120 ° C. or lower, the film does not shrink too much after the clip is released, and the flatness of the film becomes good.
- the film film surface temperature when opening the polyester film after transverse stretching from the clip is preferably 55 ° C. or higher and 110 ° C. or lower, and more preferably 60 ° C. or higher and 100 ° C. or lower.
- the distance between the pair of rails when the polyester film after transverse stretching is released from the clip is 0.1 to 5% of the distance between the shortest pair of rails after the transverse stretching zone. It is preferable to widen the range.
- TD direction when the range in which the distance between the pair of rails when the polyester film after transverse stretching is released from the clip is wider than the shortest distance between the pair of rails after the transverse stretching zone is 0.1% or more It becomes easy to suppress breakage.
- the distance between the pair of rails when the polyester film after transverse stretching is released from the clip is 5% or less relative to the distance between the shortest pair of rails after the transverse stretching zone is 5% or less, It becomes easy to suppress breakage.
- the distance between the pair of rails when the polyester film after transverse stretching is released from the clip may be increased within a range of 0.2% to 4% with respect to the shortest distance between the pair of rails after the transverse stretching zone. More preferably, it is more preferably in the range of 0.3% to 3.5%, and most preferably in the range of 0.3% to 3%.
- the thickness of the polyester film after completion of film formation is preferably 20 to 150 ⁇ m, more preferably 30 to 130 ⁇ m, and further preferably 35 to 110 ⁇ m or less.
- the reason why this range is preferable is the same as the reason why the thickness of the polyester film of the present invention is preferably within this range.
- the film width after being released from the clip is preferably 1 to 8 m from the viewpoint of efficiently ensuring the width of the film product and preventing the apparatus size from becoming excessive, and more preferably 2 to 6 m. It is preferably 3 to 5 m.
- An optical film requiring accuracy is usually formed with a thickness of less than 3 m, but in the present invention, it is preferable to form a film with a wide width as described above.
- such a wide-film-formed film is preferably slit into 2 or more, 6 or less, more preferably 2 or more and 5 or less, and even more preferably 3 or more and 4 or less, and the film may be wound up. .
- the winding is preferably performed at a diameter of not less than 1000 m and not more than 10000 m on a core having a diameter of not less than 70 mm and not more than 600 mm.
- the tension per film cross-sectional area in the film transport direction of 500 to 5000 kN / m 2 is applied to the polyester film after being released from the clip. It is preferable to apply.
- the tension per cross-sectional area of the film in the film transport direction applied to the polyester film after opening from the clip is 500 kN / m 2 or more, the film does not loosen, the film flatness is improved, and the film surface Failures such as scratches can be improved.
- the tension per cross-sectional area of the film in the film transport direction applied to the polyester film after being released from the clip is 5000 kN / m 2 or more, the film is difficult to break.
- tension (winding tension) per cross-sectional area of the film to the film transport direction is more preferably 800kN / m 2 ⁇ 4000kN / m 2, 1000kN / m 2 ⁇ 3000kN / M 2 is more preferable.
- Examples of a method for applying tension per cross-sectional area of the film in the film transport direction include a method for controlling the winding tension.
- Winding tension can be adjusted by adjusting the weight of the weight of the dancer roll by installing a dancer roll upstream of the winder, or by installing a tension meter on the upstream side of the winder. Thus, it can be controlled by a method of adjusting the winding speed.
- the tension (winding tension) applied to the polyester film after being released from the clip can be appropriately adjusted according to the target winding tension and the thickness and width of the film.
- the polyester film of the present invention is a polyester film produced by the method for producing a polyester film of the present invention.
- the heat shrinkage (MD heat shrinkage) in the longitudinal direction (MD direction) after heating the polyester film of the present invention at 150 ° C. for 30 minutes is preferably 3% or less, more preferably 2.5% or less, and 2% or less. Is more preferable, and 1.5% or less is most preferable. If the polyester film of the present invention has a heat shrinkage in the longitudinal direction after heating at 150 ° C. for 30 minutes of 3% or less, the film is less likely to wrinkle in subsequent processing steps such as polarizing plate processing, and the film is warped. It is hard to occur.
- the in-plane retardation Re is preferably 3000 to 30000 nm, more preferably 3500 to 25000 nm, and still more preferably 4000 to 20000 nm or less.
- Re is less than 3000 nm, color unevenness on the screen is less likely to occur when a panel is used, which is preferable.
- it is difficult to produce a film exceeding 30000 nm. Even if Re of the polyester film exceeds 30000 nm, the effect of reducing rainbow unevenness is only saturated, and the effect of the present invention can be obtained.
- the polyester film of the present invention has a thickness direction retardation Rth of preferably 3000 to 30000 nm, more preferably 3500 to 25000 nm, and further preferably 4000 to 20000 nm.
- Rth a thickness direction retardation
- it is 30000 nm or less color unevenness on the screen hardly occurs when a panel is used, which is preferable.
- the ratio (Re / Rth) between the in-plane retardation Re and the thickness direction retardation Rth is preferably 0.5 to 2.5, more preferably 0.6 to 2.2. More preferably, it is 0.7 to 2.0.
- Re / Rth is 0.5 or more, color unevenness hardly occurs on the screen when the polyester film of the present invention is incorporated as a polarizing plate protective film in a liquid crystal panel, which is preferable. In principle, it is difficult to make a film exceeding 2.5. Moreover, even if Re / Rth exceeds 1.2, the effect of reducing the viewing angle dependency of rainbow spot is only saturated, and if Re / Rth is 1.2 or less, there is little decrease in mechanical properties, and there is no scratch. It is difficult to generate and is preferable.
- the in-plane retardation value Re of the polyester film of the present invention is represented by the following formula (4).
- nx is the refractive index in the in-plane slow axis direction of the polyester film
- ny is the refractive index in the in-plane fast axis direction (direction perpendicular to the in-plane slow axis direction) of the polyester film
- y 1 is the thickness of the polyester film.
- the retardation Rth in the thickness direction of the polyester film of the present invention is represented by the following formula (5).
- nz is the refractive index in the thickness direction of the polyester film.
- Nz value of the polyester film is represented by the following formula (6).
- Nz (nx ⁇ nz) / (nx ⁇ ny) (6)
- Re, Rth, and Nz at a wavelength ⁇ nm can be measured as follows. Using two polarizing plates, the orientation axis direction of the polyester film was determined, and a 4 cm ⁇ 2 cm rectangle was cut out so that the orientation axis directions were perpendicular to each other, and used as a measurement sample. For this sample, the biaxial refractive index (Nx, Ny) perpendicular to each other and the refractive index (Nz) in the thickness direction were determined by an Abbe refractometer (Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm).
- the absolute value of the refractive index difference (
- the thickness y 1 (nm) of the polyester film was measured using an electric micrometer (manufactured by Fine Reef, Millitron 1245D), and the unit was converted to nm. Measured Nx, Ny, Nz, Re from the value of y 1, Rth, Nz was calculated.
- the above Re and Rth can be adjusted by the type of polyester resin used in the film, the amount of the polyester resin and the additive, the addition of the retardation enhancer, the film thickness, the stretching direction and the stretching ratio of the film, and the like. .
- the method of controlling the polyester film of this invention to the range of said Re and Rth, For example, it can achieve by the drawing method.
- the thickness of the polyester film of the present invention is preferably from 20 to 150 ⁇ m, more preferably from 30 to 130 ⁇ m, still more preferably from 35 to 110 ⁇ m.
- the thickness is 20 ⁇ m or more, color unevenness is unlikely to occur on the panel, which is preferable. If it exceeds 150 ⁇ m, the cost is high and the profitability is not suitable.
- the polyester film of the present invention is preferably uniaxially oriented. Specifically, the polyester film of the present invention preferably has a longitudinal refractive index of 1.590 or less and a crystallinity of more than 5%.
- the preferable range of the refractive index in the longitudinal direction of the polyester film of the present invention is the same as the preferable range of the refractive index in the longitudinal direction of the unstretched polyester film.
- the degree of crystallinity of the polyester film of the present invention is preferably 5% or more, more preferably 20% or more, and still more preferably 30% or more.
- the polyester film of the present invention contains a polyester resin.
- the polyester film of the present invention may be a single layer film having a polyester resin as a main component or a multilayer film having at least one layer having a polyester resin as a main component.
- the surface treatment may be performed on both surfaces or one surface of these single layer films or multilayer films, and this surface treatment is performed by corona treatment, saponification treatment, heat treatment, ultraviolet irradiation, electron beam irradiation, or the like. Modification may be sufficient, and thin film formation by application
- the mass ratio of the polyester resin in the entire film is usually 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more.
- the polyester film of the present invention can be used as a polarizing plate protective film.
- the polarizing plate of the present invention includes a polarizer having polarizing performance and the polyester film of the present invention.
- the polarizing plate of the present invention may further contain a polarizing plate protective film such as a cellulose acylate film in addition to the polyester film of the present invention.
- the shape of the polarizing plate was not only a polarizing plate in the form of a film piece cut to a size that can be incorporated into a liquid crystal display device as it is, but also produced in a long shape by continuous production and rolled up into a roll shape.
- a polarizing plate of an embodiment (for example, an embodiment having a roll length of 2500 m or more or 3900 m or more) is also included.
- the width of the polarizing plate is preferably 1470 mm or more.
- a polarizer comprising PVA and the polyester film of the present invention can be bonded to prepare a polarizing plate. Under the present circumstances, it is preferable to make the said easily bonding layer contact PVA. Furthermore, it is also preferable to combine with a protective film having retardation as described in [0024] of WO2011 / 162198.
- the polyester film of this invention can be used for an image display apparatus, and the polarizing plate containing the polyester film of this invention can be used as a polarizing plate of an image display apparatus.
- the image display device of the present invention includes the polyester film of the present invention or the polarizing plate of the present invention.
- film scratches are also small.
- the image display device of the present invention using such a preferred embodiment of the polyester film of the present invention there are few bright spots due to film scratches.
- the image display device include a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (OELD or IELD), a field emission display (FED), a touch panel, and electronic paper.
- These image display devices preferably include the polarizing plate of the present invention on the display screen side of the image display panel.
- a method of bonding the polarizing plate to an image display device such as a liquid crystal display device a known method can be used.
- a roll-to-panel manufacturing method can be used, which is preferable for improving productivity and yield.
- the roll-to-panel manufacturing method is described in JP2011-48381, JP2009-175653, JP4628488, JP4729647, WO2012 / 014602, WO2012 / 014571, and the like. It is not limited.
- the image display device it is preferable to use a light source having an emission spectrum having a continuous emission spectrum as the light source. This is because it becomes easy to eliminate rainbow unevenness as described in [0019] to [0020] of WO2011 / 162198.
- a light source used in the image display device the one described in [0013] of WO2011 / 162198 is used.
- the light sources described in [0014] to [0015] of WO 2011/162198 are not continuous light sources and are not preferable.
- the image display device is an LCD
- the configuration described in [0011] to [0012] of WO2011 / 162198 can be used as the liquid crystal display device (LCD).
- the liquid crystal display device using the polyester film of the present invention and / or the polarizing plate of the present invention is preferably one using a white light source having a continuous emission spectrum, whereby a discontinuous (bright line) light source is used. Rainbow unevenness can be reduced more effectively. This is due to the reason similar to this reason, with the reason described in [0015] to [0027] of Patent No. 4888853 ([0029] to [0041] of US2012 / 0229732). The contents described in these publications are incorporated herein.
- the liquid crystal display device preferably includes the polarizing plate of the present invention and a liquid crystal display element.
- the liquid crystal display element is typically a liquid crystal panel having a liquid crystal cell in which liquid crystal is sealed between upper and lower substrates and displaying an image by changing the alignment state of the liquid crystal by applying a voltage.
- the polarizing plate of the present invention can be applied to various known displays such as a display panel, a CRT display, and an organic EL display.
- the polarizing plate which has a polyester film of this invention with high retardation is applied to a liquid crystal display element, the curvature of a liquid crystal display element can be prevented.
- the rainbow-like color spots are caused by the retardation of the polyester film having a high retardation and the emission spectrum of the backlight light source.
- a fluorescent tube such as a cold cathode tube or a hot cathode tube is used as a backlight source of a liquid crystal display device.
- the spectral distribution of a fluorescent lamp such as a cold cathode tube or a hot cathode tube shows an emission spectrum having a plurality of peaks, and these discontinuous emission spectra are combined to obtain a white light source.
- the transmitted light intensity varies depending on the wavelength. For this reason, when the backlight light source has a discontinuous emission spectrum, only a specific wavelength is strongly transmitted, and a rainbow-like color spot is generated.
- the image display device is a liquid crystal display device
- a backlight light source and a liquid crystal cell disposed between two polarizing plates as constituent members.
- the configuration of the backlight may be an edge light method using a light guide plate, a reflection plate, or the like, or a direct type, but in the present invention, white is used as the backlight light source of the liquid crystal display device. It is preferable to use a light emitting diode (white LED) from the viewpoint of improving rainbow unevenness.
- the white LED is an element that emits white by combining a phosphor with a phosphor system, that is, a light emitting diode that emits blue light or ultraviolet light using a compound semiconductor.
- the phosphor include yttrium / aluminum / garnet yellow phosphor and terbium / aluminum / garnet yellow phosphor.
- white light-emitting diodes which are composed of light-emitting elements that combine blue light-emitting diodes using compound semiconductors with yttrium, aluminum, and garnet-based yellow phosphors, have a continuous and broad emission spectrum and are also efficient in light emission Since it is excellent, it is suitable as a backlight light source of the image display device of the present invention.
- the continuous emission spectrum means that there is no wavelength at which the light intensity becomes zero at least in the visible light region.
- the white LED with low power consumption can be widely used according to the present invention, an effect of energy saving can be achieved.
- the mechanism by which the occurrence of rainbow-like color spots is suppressed by the above embodiment is described in International Publication No. WO2011 / 162198, and the contents of this publication are incorporated in the present invention.
- the arrangement of the polarizing plate of the present invention is not particularly limited.
- the polarizing plate of the present invention is preferably used as a polarizing plate for the viewing side in a liquid crystal display device.
- the arrangement of the polyester film of the present invention having a high retardation in the in-plane direction is not particularly limited, but is arranged on the polarizing plate arranged on the incident light side (light source side), the liquid crystal cell, and the outgoing light side (viewing side).
- the polarizer protective film on the incident light side of the polarizing plate arranged on the incident light side, or the polarizer on the outgoing light side of the polarizing plate arranged on the outgoing light side is preferably the polyester film of the present invention having a high in-plane retardation.
- a particularly preferred embodiment is an embodiment in which the polarizer protective film on the exit light side of the polarizing plate arranged on the exit light side is the polyester film of the present invention having a high retardation in the in-plane direction.
- the polyester film of the present invention having a high retardation in the in-plane direction is disposed at a position other than the above, the polarization characteristics of the liquid crystal cell may be changed. Since the polyester film of the present invention having a high retardation in the in-plane direction is preferably used in a place where no polarizing property is required, it is preferably used as a protective film for the polarizing plate at such a specific position.
- the liquid crystal cell of the liquid crystal display device preferably has a liquid crystal layer and two glass substrates provided on both sides of the liquid crystal layer.
- the thickness of the glass substrate is preferably 0.5 mm or less, more preferably 0.4 mm or less, and particularly preferably 0.3 mm or less.
- the liquid crystal cell of the liquid crystal display device is preferably IPS mode, VA mode, or FFS mode.
- the reaction product was transferred to a second esterification reaction vessel, and reacted with stirring at a temperature in the reaction vessel of 250 ° C. and an average residence time of 1.2 hours.
- an ethylene glycol solution of magnesium acetate and an ethylene glycol solution of trimethyl phosphate are continuously supplied so that the added amount of Mg and the added amount of P are 65 ppm and 35 ppm in terms of element, respectively. did.
- reaction tank temperature was 276 ° C.
- reaction tank pressure was 5 torr (6.67 ⁇ 10 ⁇ 4 MPa)
- residence time was about 1.2 hours.
- the reaction (polycondensation) was performed under the conditions.
- the reaction product (polyethylene terephthalate (PET)) was obtained by reaction (polycondensation) under the following conditions.
- polyester pellets cross section: major axis: about 4 mm, minor axis: about 2 mm, length: about 3 mm).
- This polymer was designated as raw material polyester 1 (hereinafter abbreviated as PET1).
- the raw material polyester 1 (PET1) was dried to a moisture content of 20 ppm or less and then charged into the hopper 1 of a single-screw kneading extruder 1 having a diameter of 50 mm.
- the raw material polyester 1 was melted at 300 ° C. and extruded from a die through a gear pump and a filter (pore diameter: 20 ⁇ m) under the following extrusion conditions.
- the molten resin was extruded from the die under the conditions that the pressure fluctuation was 1% and the temperature distribution of the molten resin was 2%.
- the back pressure was increased by 1% with respect to the average pressure in the barrel of the extruder, and the piping temperature of the extruder was heated at a temperature 2% higher than the average temperature in the barrel of the extruder.
- the molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C., and was brought into close contact with the cooling cast drum using an electrostatic application method. It peeled using the peeling roll arrange
- the refractive index of the unstretched polyester film was measured by the following method. Using two polarizing plates, the orientation axis direction of the unstretched polyester film was determined, and a 4 cm ⁇ 2 cm rectangle was cut out so that the orientation axis directions were perpendicular to each other, and used as a measurement sample.
- the biaxial refractive index (Nx, Ny) perpendicular to each other and the refractive index (Nz) in the thickness direction were determined by an Abbe refractometer (NAGO-4T manufactured by Atago Co., Ltd., measurement wavelength 589 nm).
- the preheating temperature was 90 ° C., and the mixture was heated to a temperature at which stretching was possible.
- Heat fixing part Next, a heat setting treatment was performed while controlling the film surface temperature of the polyester film within the following range. ⁇ Condition> ⁇ Heat setting temperature: 180 °C ⁇ Heat setting time: 15 seconds
- the polyester film after heat setting was heated to the following temperature to relax the film.
- -Thermal relaxation temperature 170 ° C
- TD direction film width direction
- Cooling temperature means the film film surface temperature in a cooling part, and actually cooled by applying 80 degreeC cold wind to a polyester film. Also in the other Examples and Comparative Examples, the cooling temperature was set to the same value as the film film surface temperature when the clip opened the film.
- the distance between the pair of rails when the clip opens the film is increased by 1.5% with respect to the shortest part of the distance between the pair of rails in the process downstream of the transverse stretching process in the tenter.
- the polyester film after transverse stretching was opened.
- the film width when the clip opened the film was 3.5 m.
- the film surface temperature when the clip opened the film was 85 ° C.
- the film film surface temperature when the clip opened the film was measured with a radiation thermometer (manufactured by Hayashi Denko, model number: RT61-2, used at an emissivity of 0.95).
- both ends of the polyester film were trimmed (ear cut) by 20 cm. Then, after extruding (knurling) with a width of 10 mm at both ends, it was wound up with a tension of 350 N. After releasing the laterally stretched polyester film from the clip, the cross-sectional area of the untrimmed film was determined from a width of 3.5 m and a thickness of 65 ⁇ 10 ⁇ 6 m to 2.275 ⁇ 10 ⁇ 4 m 2 . Based on the winding tension of 350 N, the tension (winding tension) per unit cross-sectional area of the polyester film after being released from the clip in the film transport direction was calculated as 1538 kN / m 2 . The winding tension was adjusted by changing the weight of the weight of the dancer roll installed on the upstream side of the winder. As described above, the polyester film of Example 1 having a thickness of 65 ⁇ m was manufactured.
- the above polarizer is sandwiched between the polyester film of each example and comparative example and the saponified cellulose acylate, and an aqueous PVA solution (fully saponified PVA5) is placed between the polarizer / polyester and between the cellulose acylate / polarizer. % Aqueous solution) was applied, these were pressure-bonded with a nip roll and bonded together, and then dried at 70 ° C. for 10 minutes to obtain a polarizing plate. The obtained polarizing plate was used as the polarizing plate of Example 1.
- the obtained two pairs of polarizing plates have the polyester film outside with respect to the liquid crystal cell, the absorption axis of the polarizer is orthogonally arranged, and a continuous light source (white LED) or a discontinuous light source (cold cathode tube) as a backlight. It was incorporated in a liquid crystal display device, and the light transmittance was adjusted to 50%.
- the obtained liquid crystal display device was used as the image display device of Example 1.
- Example 2 [Examples 2 to 5, Comparative Examples 2 and 3]
- Example 1 the temperature of the cold air in the cooling unit and the air volume were changed, and the film surface temperature when the clip opened the film was changed to the temperature shown in Table 1 below. Otherwise, in the same manner as in Example 1, polyester films, polarizing plates and image display devices of Examples 2 to 5 and Comparative Examples 2 and 3 were produced.
- Example 6 In Example 1, the tension at the time of winding was changed to the value described in Table 1 below, and the tension per unit cross-sectional area of the polyester film after being released from the clip per unit cross-sectional area of the film in the film transport direction was as follows. The values were changed to those shown in Table 1. Others were the same as in Example 1, and polyester films, polarizing plates and image display devices of Examples 6 to 9 were produced.
- Example 10 and 11 In Example 1, with respect to the shortest portion of the distance between the pair of rails in each step downstream of the transverse stretching step in the tenter, the expansion ratio of the distance between the pair of rails when the clip opens the film Changes were made as described in Table 1 below. Others were carried out similarly to Example 1, and manufactured the polyester film of Example 10 and 11, a polarizing plate, and an image display apparatus.
- Example 12 An unstretched polyester film 1A in which the width of the unstretched polyester film 1 was cut to 12/35 times was prepared.
- the unstretched polyester film 1A was used, the tension at the time of winding was changed to the values shown in Table 1 below, and the unit cross-sectional area of the polyester film after being released from the clip The tension per cross-sectional area of the film in the film conveyance direction was changed to the values shown in Table 1 below.
- Others were carried out similarly to Example 1, and manufactured the polyester film of Example 12, a polarizing plate, and an image display apparatus.
- Example 13 In Example 1, an unstretched polyester film in which the thickness of the unstretched polyester film 1 was adjusted so that the film thickness after lateral stretching was as shown in Table 1 below without changing the lateral stretch ratio was used. . Furthermore, the tension at the time of winding is changed to the value described in Table 1 below, and the tension per unit cross-sectional area of the polyester film after being released from the clip per unit cross-sectional area of the film in the film transport direction is shown in Table 1 below. Changed to the stated value. Others were carried out similarly to Example 1, and manufactured the polyester film of Example 13 and 14, a polarizing plate, and an image display apparatus.
- PET2 an ultraviolet absorber
- the back pressure was increased by 1% with respect to the average pressure in the barrel of the extruder, and the piping temperature of the extruder was heated at a temperature 2% higher than the average temperature in the barrel of the extruder.
- the molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C., and was brought into close contact with the cooling cast drum using an electrostatic application method. It peeled off using the peeling roll arrange
- the obtained unstretched polyester film 2 was horizontally stretched under the same conditions as in Example 1 to produce a polyester film of Example 15 having a thickness of 65 ⁇ m.
- a polarizing plate and an image display device of Example 15 were produced in the same manner as Example 1 except that the polyester film of Example 15 was used.
- Example 16 -Film forming process- After drying 90 parts by mass of the raw material polyester 1 (PET1) and 10 parts by mass of the raw material polyester 2 (PET2) containing an ultraviolet absorber to a moisture content of 20 ppm or less, the hopper 1 of the uniaxial kneading extruder 1 having a diameter of 50 mm is used. And melted to 300 ° C. with the extruder 1 (intermediate layer II layer). Moreover, after drying PET1 to a water content of 20 ppm or less, it was put into a hopper 2 of a single screw kneading extruder 2 having a diameter of 30 mm and melted at 300 ° C.
- the extruder 2 outer layer I layer, outer layer III layer.
- the extruder 1 in the two-type three-layer confluence block is transferred to the intermediate layer (II layer) from the extruder 2.
- the extruded polymer was laminated so as to be outer layers (I layer and III layer), and extruded from a die into a sheet.
- the molten resin was extruded from the die under the conditions that the pressure fluctuation was 1% and the temperature distribution of the molten resin was 2%.
- the back pressure was increased by 1% with respect to the average pressure in the barrel of the extruder, and the piping temperature of the extruder was heated at a temperature 2% higher than the average temperature in the barrel of the extruder.
- the molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C., and was brought into close contact with the cooling cast drum using an electrostatic application method. It peeled off using the peeling roll arrange
- the intrinsic viscosity, the refractive index in the longitudinal direction, and the crystallinity of the unstretched polyester film 3 that is a three-layer laminate can also be measured by the same method as in Example 1.
- the obtained unstretched polyester film 3 was transversely stretched under the same conditions as in Example 1 to produce a polyester film of Example 16 having a thickness of 65 ⁇ m.
- a polarizing plate and an image display device of Example 16 were produced in the same manner as in Example 1 except that the polyester film of Example 16 was used.
- Example 1 In Example 1, the temperature of the cold air in the cooling unit and the air volume were changed, and the film surface temperature when the clip opened the film was changed to the temperature shown in Table 1 below. Furthermore, the tension at the time of winding is changed to the value described in Table 1 below, and the tension per unit cross-sectional area of the polyester film after being released from the clip per unit cross-sectional area of the film in the film transport direction is shown in Table 1 below. Changed to the stated value. Others were carried out similarly to Example 1, and manufactured the polyester film, polarizing plate, and image display apparatus of the comparative example 1.
- Comparative Example 4 a polyester film of Comparative Example 4 was produced according to Example 1 of Japanese Patent No. 5021453. In addition, as a result of providing the cooling zone of 150 degreeC after heat setting according to Example 1 of patent 5021453, the film film surface temperature when a clip open
- the film surface temperature when the clip opens the film exceeds the upper limit of the present invention, the plane of the film surface It has been found that the characteristics are significantly deteriorated. It should be noted that the refractive index in the longitudinal direction of the polyester film produced by the method for producing a polyester film of the present invention is 1.590 or less, and the crystallinity exceeds 5%. It confirmed by the method similar to 3. Moreover, it confirmed that the polyester film manufactured with the manufacturing method of the polyester film of this invention was uniaxially oriented with the following method.
- the refractive index in the longitudinal direction, the width direction, and the thickness direction is measured with an Abbe refractometer, the refractive index in the longitudinal direction is 1.590 or less, the refractive index in the width direction is sufficiently large, and the thickness By confirming that the refractive index in the direction was sufficiently smaller than that, it was confirmed that the polyester film was uniaxially oriented.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Provided is a production method for a polyester film that comprises a step in which a tenter-type stretching device comprising a clip that travels along a pair of rails that are arranged on both sides of a film conveyance path is used to hold an unstretched polyester film by means of the clip while laterally stretching said polyester film. The film surface temperature at the time that the polyester film is released from the clip after lateral stretching is controlled so as to be 50-120 °C. The production method for a polyester film makes it possible to greatly reduce the breaking of a film in the vicinity of a section of said film that is released from the clip of a tenter outlet, and to produce a polyester film that has suitable flatness on the film surface thereof. Also provided are a polyester film, a polarizing plate, and an image display device.
Description
本発明は、ポリエステルフィルムおよびその製造方法、偏光板ならびに画像表示装置に関する。特に、光学フィルム用途、液晶ディスプレイ基材として好適に用いられる、好ましくは一軸配向のポリエステルフィルムの製造方法と、このポリエステルフィルムの製造方法により製造されるポリエステルフィルム、このポリエステルフィルムを含む偏光板および画像表示装置に関する。
The present invention relates to a polyester film and a method for producing the same, a polarizing plate, and an image display device. In particular, a method for producing a preferably uniaxially oriented polyester film, a polyester film produced by the method for producing a polyester film, a polarizing plate and an image containing the polyester film, which are preferably used as a liquid crystal display substrate for optical film applications The present invention relates to a display device.
液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(OELD又はIELD)、フィールドエミッションディスプレイ(FED)、タッチパネル、電子ペーパー等の画像表示装置は、画像表示パネルの表示画面側に偏光板が配置されている。例えば、液晶表示装置は、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。従来、液晶表示装置は表示画像の視野角依存性が大きいことが大きな欠点であったが、VAモード、IPSモード等の広視野角液晶モードが実用化されており、これによってテレビ等の高品位の画像が要求される市場でも液晶表示装置の需要が急速に拡大しつつある。
Image display devices such as liquid crystal display (LCD), plasma display (PDP), electroluminescence display (OELD or IELD), field emission display (FED), touch panel, and electronic paper have a polarizing plate on the display screen side of the image display panel. Is arranged. For example, a liquid crystal display device has low power consumption, and its application is expanding year by year as a space-saving image display device. Conventionally, a liquid crystal display device has a major drawback that the viewing angle dependency of a display image is large. However, a wide viewing angle liquid crystal mode such as a VA mode and an IPS mode has been put into practical use. The demand for liquid crystal display devices is rapidly expanding even in the market where such images are required.
液晶表示装置に用いられる偏光板は、一般にヨウ素や染料を吸着配向させたポリビニルアルコールフィルム等からなる偏光子と、その偏光子の表裏両側に透明な保護フィルム(偏光板保護フィルム)を貼り合わせた構成となっている。便宜上、液晶セルに貼合する面(表示側の反対側)の保護フィルムをインナーフィルム、対向側(表示側)をアウターフィルムと呼ぶ。ポリエステルやポリカーボネート樹脂などは、コストも安く、機械強度が高い、低透湿性を有する、などの利点を持つため、アウターフィルムとしての活用が期待されている。
近年、従来の二軸配向ポリエステル樹脂フィルムにかわり、一軸配向ポリエステルフィルムが液晶ディスプレイの基材(偏光板の保護フィルム等)として用いられることが増えている。例えば、虹ムラを改善した偏光板保護フィルムとして、Re=3000~30000nm、Re/Rth≧0.2の一軸配向または二軸配向ポリエステルフィルムを偏光子保護膜に使用することで、虹むらを視認できない程度に目立たなくして、虹ムラを解消している例が知られている(特許文献1参照)。なお、特許文献1には、完全な1軸性(1軸対称)フィルムでは配向方向と直交する方向の機械的強度が著しく低下することも記載されている。
上記のような光学特性を有する一軸配向または二軸配向ポリエステル樹脂フィルムは、少なくとも未延伸のフィルムをテンター式延伸装置を用いてクリップで把持しながら横一軸延伸することで製造される。 A polarizing plate used in a liquid crystal display device is generally composed of a polarizer made of a polyvinyl alcohol film or the like on which iodine or dye is adsorbed and oriented, and a transparent protective film (polarizing plate protective film) on both sides of the polarizer. It has a configuration. For convenience, the protective film on the surface (the side opposite to the display side) to be bonded to the liquid crystal cell is called an inner film, and the opposite side (display side) is called an outer film. Polyester, polycarbonate resin, and the like have advantages such as low cost, high mechanical strength, low moisture permeability, and the like, and are expected to be used as outer films.
In recent years, a uniaxially oriented polyester film is increasingly used as a base material for liquid crystal displays (such as a protective film for a polarizing plate) in place of a conventional biaxially oriented polyester resin film. For example, as a polarizing plate protective film with improved rainbow unevenness, rainbow unevenness can be visually recognized by using a uniaxially or biaxially oriented polyester film with Re = 3000 to 30000 nm and Re / Rth ≧ 0.2 as a polarizer protective film. An example is known in which rainbow unevenness is eliminated by making it inconspicuous to the extent that it cannot be performed (see Patent Document 1). Patent Document 1 also describes that the mechanical strength in the direction orthogonal to the orientation direction is significantly reduced in a complete uniaxial (uniaxial symmetry) film.
The uniaxially or biaxially oriented polyester resin film having the optical properties as described above is produced by laterally uniaxially stretching at least an unstretched film while holding it with a clip using a tenter type stretching device.
近年、従来の二軸配向ポリエステル樹脂フィルムにかわり、一軸配向ポリエステルフィルムが液晶ディスプレイの基材(偏光板の保護フィルム等)として用いられることが増えている。例えば、虹ムラを改善した偏光板保護フィルムとして、Re=3000~30000nm、Re/Rth≧0.2の一軸配向または二軸配向ポリエステルフィルムを偏光子保護膜に使用することで、虹むらを視認できない程度に目立たなくして、虹ムラを解消している例が知られている(特許文献1参照)。なお、特許文献1には、完全な1軸性(1軸対称)フィルムでは配向方向と直交する方向の機械的強度が著しく低下することも記載されている。
上記のような光学特性を有する一軸配向または二軸配向ポリエステル樹脂フィルムは、少なくとも未延伸のフィルムをテンター式延伸装置を用いてクリップで把持しながら横一軸延伸することで製造される。 A polarizing plate used in a liquid crystal display device is generally composed of a polarizer made of a polyvinyl alcohol film or the like on which iodine or dye is adsorbed and oriented, and a transparent protective film (polarizing plate protective film) on both sides of the polarizer. It has a configuration. For convenience, the protective film on the surface (the side opposite to the display side) to be bonded to the liquid crystal cell is called an inner film, and the opposite side (display side) is called an outer film. Polyester, polycarbonate resin, and the like have advantages such as low cost, high mechanical strength, low moisture permeability, and the like, and are expected to be used as outer films.
In recent years, a uniaxially oriented polyester film is increasingly used as a base material for liquid crystal displays (such as a protective film for a polarizing plate) in place of a conventional biaxially oriented polyester resin film. For example, as a polarizing plate protective film with improved rainbow unevenness, rainbow unevenness can be visually recognized by using a uniaxially or biaxially oriented polyester film with Re = 3000 to 30000 nm and Re / Rth ≧ 0.2 as a polarizer protective film. An example is known in which rainbow unevenness is eliminated by making it inconspicuous to the extent that it cannot be performed (see Patent Document 1). Patent Document 1 also describes that the mechanical strength in the direction orthogonal to the orientation direction is significantly reduced in a complete uniaxial (uniaxial symmetry) film.
The uniaxially or biaxially oriented polyester resin film having the optical properties as described above is produced by laterally uniaxially stretching at least an unstretched film while holding it with a clip using a tenter type stretching device.
一方、テンター式延伸装置を用いてフィルムを横延伸する際に、テンタークリップでフィルムを把持するときおよび開放するときに、クリップ近傍の故障を改善する方法が知られている。
特許文献2には、未延伸PETフィルムを横一軸延伸して一軸配向ポリエステルフィルムを製造する場合、フィルムの搬送方向と直交の方向のみに延伸しているためにフィルムの配向方向に沿って裂けやすいことに着目して、クリップからフィルムを開放する際のテンターレール幅を、熱固定ゾーン以降の最小レール幅に対し、0.1~10%の範囲で拡げることで、クリップからのフィルム開放時の破断を抑制する方法が記載されている。 On the other hand, when a film is stretched laterally using a tenter type stretching apparatus, a method for improving a failure in the vicinity of the clip is known when the film is gripped and released by a tenter clip.
In Patent Document 2, when a uniaxially oriented polyester film is produced by laterally uniaxially stretching an unstretched PET film, it is easily stretched along the orientation direction of the film because it is stretched only in the direction perpendicular to the film transport direction. Paying attention to that, when the film is released from the clip, the tenter rail width when releasing the film from the clip is expanded in the range of 0.1 to 10% of the minimum rail width after the heat setting zone. A method for suppressing breakage is described.
特許文献2には、未延伸PETフィルムを横一軸延伸して一軸配向ポリエステルフィルムを製造する場合、フィルムの搬送方向と直交の方向のみに延伸しているためにフィルムの配向方向に沿って裂けやすいことに着目して、クリップからフィルムを開放する際のテンターレール幅を、熱固定ゾーン以降の最小レール幅に対し、0.1~10%の範囲で拡げることで、クリップからのフィルム開放時の破断を抑制する方法が記載されている。 On the other hand, when a film is stretched laterally using a tenter type stretching apparatus, a method for improving a failure in the vicinity of the clip is known when the film is gripped and released by a tenter clip.
In Patent Document 2, when a uniaxially oriented polyester film is produced by laterally uniaxially stretching an unstretched PET film, it is easily stretched along the orientation direction of the film because it is stretched only in the direction perpendicular to the film transport direction. Paying attention to that, when the film is released from the clip, the tenter rail width when releasing the film from the clip is expanded in the range of 0.1 to 10% of the minimum rail width after the heat setting zone. A method for suppressing breakage is described.
ところが、特許文献1および2に記載の一軸配向ポリエステル樹脂フィルムの製造方法においては、本発明者が検討したところ、クリップからのフィルム開放時の破断が生じやすいことがわかった。特に特許文献2に記載のように、クリップから横延伸後のフィルムを開放するときのレール幅を拡げるだけではテンター出口部の破断を完全に解消することはできないことがわかった。また、特許文献2の実施例1に記載の製造条件では、フィルム平面性が著しく悪化してしまうことを新たに見出した。
本発明の解決しようとする課題は、テンター出口のクリップからのフィルムの開放部近傍でのフィルムの破断を極めて少なくでき、フィルム表面の平面性が良好なポリエステルフィルムを製造できるポリエステルフィルムの製造方法を提供することができる。 However, in the method for producing a uniaxially oriented polyester resin film described in Patent Documents 1 and 2, the present inventors have examined and found that breakage easily occurs when the film is released from the clip. In particular, as described in Patent Document 2, it has been found that the breakage of the tenter outlet cannot be completely eliminated simply by widening the rail width when the film after transverse stretching is opened from the clip. Moreover, it discovered newly that the film flatness will deteriorate remarkably on the manufacturing conditions as described in Example 1 of patent document 2. FIG.
The problem to be solved by the present invention is a method for producing a polyester film capable of producing a polyester film having extremely good film surface flatness, which can extremely reduce the film breakage in the vicinity of the film opening from the clip at the tenter outlet. Can be provided.
本発明の解決しようとする課題は、テンター出口のクリップからのフィルムの開放部近傍でのフィルムの破断を極めて少なくでき、フィルム表面の平面性が良好なポリエステルフィルムを製造できるポリエステルフィルムの製造方法を提供することができる。 However, in the method for producing a uniaxially oriented polyester resin film described in Patent Documents 1 and 2, the present inventors have examined and found that breakage easily occurs when the film is released from the clip. In particular, as described in Patent Document 2, it has been found that the breakage of the tenter outlet cannot be completely eliminated simply by widening the rail width when the film after transverse stretching is opened from the clip. Moreover, it discovered newly that the film flatness will deteriorate remarkably on the manufacturing conditions as described in Example 1 of patent document 2. FIG.
The problem to be solved by the present invention is a method for producing a polyester film capable of producing a polyester film having extremely good film surface flatness, which can extremely reduce the film breakage in the vicinity of the film opening from the clip at the tenter outlet. Can be provided.
上記課題を解決するために本発明者が鋭意検討した結果、フィルムが横方向にしか配向していないため、縦方向の破断強度が弱く、テンター出口のクリップ離脱部周辺でフィルム横方向に破断する問題が多く生じ、安定した生産が難しいことがわかった。
上記の課題に関して検討した結果、テンター出口付近ではクリップからのフィルムの開放部でのフィルム膜面温度が低過ぎると、フィルムの冷却により、クリップから開放されたフィルムに収縮応力が働き、それによりフィルムが破断することがわかった。さらに、テンター出口付近ではクリップからのフィルムの開放部でのフィルム膜面温度が高過ぎると、クリップから開放されたフィルムが大きく収縮してしまいフィルムの平面性が著しく悪化することがわかった。
これに対し、クリップから横延伸後のポリエステルフィルムを開放するときのフィルム膜面温度を特定の範囲内に制御することで、テンター出口のクリップからのフィルムの開放部近傍でのフィルムの破断を極めて少なくでき、フィルム表面の平面性が良好なポリエステルフィルムを製造できるポリエステルフィルムの製造方法を提供できることを見出し、上記課題を解決できることを見出した。
すなわち、上記課題は、以下の構成の本発明によって解決される。 As a result of intensive studies by the inventor in order to solve the above problems, the film is oriented only in the horizontal direction, so the breaking strength in the vertical direction is weak, and the film breaks in the lateral direction around the clip separation part at the tenter outlet. There were many problems and it was found that stable production was difficult.
As a result of examining the above problems, if the film film surface temperature at the opening part of the film from the clip is too low near the tenter outlet, the film released from the clip acts on the film released from the clip due to cooling of the film. Was found to break. Furthermore, it was found that if the film surface temperature at the opening portion of the film from the clip is too high near the exit of the tenter, the film released from the clip is greatly shrunk and the flatness of the film is significantly deteriorated.
On the other hand, by controlling the film film surface temperature when releasing the polyester film after transverse stretching from the clip within a specific range, the film breakage in the vicinity of the open part of the film from the clip at the tenter outlet is extremely reduced. It has been found that it is possible to provide a method for producing a polyester film that can be reduced and that can produce a polyester film having a good film surface flatness, and that the above-mentioned problems can be solved.
That is, the said subject is solved by this invention of the following structures.
上記の課題に関して検討した結果、テンター出口付近ではクリップからのフィルムの開放部でのフィルム膜面温度が低過ぎると、フィルムの冷却により、クリップから開放されたフィルムに収縮応力が働き、それによりフィルムが破断することがわかった。さらに、テンター出口付近ではクリップからのフィルムの開放部でのフィルム膜面温度が高過ぎると、クリップから開放されたフィルムが大きく収縮してしまいフィルムの平面性が著しく悪化することがわかった。
これに対し、クリップから横延伸後のポリエステルフィルムを開放するときのフィルム膜面温度を特定の範囲内に制御することで、テンター出口のクリップからのフィルムの開放部近傍でのフィルムの破断を極めて少なくでき、フィルム表面の平面性が良好なポリエステルフィルムを製造できるポリエステルフィルムの製造方法を提供できることを見出し、上記課題を解決できることを見出した。
すなわち、上記課題は、以下の構成の本発明によって解決される。 As a result of intensive studies by the inventor in order to solve the above problems, the film is oriented only in the horizontal direction, so the breaking strength in the vertical direction is weak, and the film breaks in the lateral direction around the clip separation part at the tenter outlet. There were many problems and it was found that stable production was difficult.
As a result of examining the above problems, if the film film surface temperature at the opening part of the film from the clip is too low near the tenter outlet, the film released from the clip acts on the film released from the clip due to cooling of the film. Was found to break. Furthermore, it was found that if the film surface temperature at the opening portion of the film from the clip is too high near the exit of the tenter, the film released from the clip is greatly shrunk and the flatness of the film is significantly deteriorated.
On the other hand, by controlling the film film surface temperature when releasing the polyester film after transverse stretching from the clip within a specific range, the film breakage in the vicinity of the open part of the film from the clip at the tenter outlet is extremely reduced. It has been found that it is possible to provide a method for producing a polyester film that can be reduced and that can produce a polyester film having a good film surface flatness, and that the above-mentioned problems can be solved.
That is, the said subject is solved by this invention of the following structures.
[1] フィルム搬送路の両側に設置された一対のレールに沿って走行するクリップを有するテンター式延伸装置を用いて、未延伸のポリエステルフィルムを前述のクリップで把持しながら横延伸する工程を含み、
前述のクリップから前述の横延伸後のポリエステルフィルムを開放するときのフィルム膜面温度を50~120℃に制御するポリエステルフィルムの製造方法。
[2] [1]に記載のポリエステルフィルムの製造方法は、前述のクリップから前述の横延伸後のポリエステルフィルムを開放した後に、前述のクリップから開放後のポリエステルフィルムに対して500~5000kN/m2のフィルム搬送方向へのフィルムの断面積あたりの張力をかけることが好ましい。
[3] [1]または[2]に記載のポリエステルフィルムの製造方法は、前述のクリップから前述の横延伸後のポリエステルフィルムを開放するときの一対のレール間の距離を、前述の横延伸ゾーン以降の最短の一対のレール間距離に対し、0.1~5%の範囲で広くすることが好ましい。
[4] [1]~[3]のいずれか一つに記載のポリエステルフィルムの製造方法は、前述の横延伸後のポリエステルフィルムを前述のクリップから開放する前に、前述の横延伸後のポリエステルフィルムをテンター内の最高温度まで加熱する熱固定工程を含むことが好ましい。
[5] [4]に記載のポリエステルフィルムの製造方法は、前述の熱固定後のポリエステルフィルムを前述のクリップから開放する前に、前述の熱固定後のポリエステルフィルムを冷却する工程を含むことが好ましい。
[6] [1]~[5]のいずれか一つに記載のポリエステルフィルムの製造方法は、前述の未延伸のポリエステルフィルムの長手方向の屈折率が1.590以下であり、かつ、
前述の未延伸のポリエステルフィルムの結晶化度が5%以下であることが好ましい。
[7] [1]~[6]のいずれか一つに記載のポリエステルフィルムの製造方法は、前述の未延伸のポリエステルフィルムが、ポリエチレンテレフタレート樹脂を主成分とすることが好ましい。
[8] [1]~[7]のいずれか一つに記載のポリエステルフィルムの製造方法で製造されたポリエステルフィルム。
[9] [8]に記載のポリエステルフィルムは、前述のポリエステルフィルムを150℃で30分加熱した後の長手方向の熱収縮率が3%以下であることが好ましい。
[10] [8]または[9]に記載のポリエステルフィルムは、フィルム厚みが20~150μmであり、
フィルム面内方向のレターデーションReが3000~30000nmであり、
厚み方向のレターデーションRthが3000~30000nmであり、
Re/Rth比率が0.5~2.5であることが好ましい。
[11] [8]~[10]のいずれか一つに記載のポリエステルフィルムは、一軸配向であることが好ましい。
[12] [11]に記載のポリエステルフィルムは、前述のポリエステルフィルムの長手方向の屈折率が1.590以下であり、かつ、
前述のポリエステルフィルムの結晶化度が5%を超えることが好ましい。
[13] 偏光子と、[8]~[12]のいずれか一つに記載のポリエステルフィルムとを含む偏光板。
[14] [8]~[12]のいずれか一つに記載のポリエステルフィルム、または、[13]に記載の偏光板を備える画像表示装置。 [1] including a step of laterally stretching an unstretched polyester film while holding the unstretched polyester film with the above-described clip using a tenter-type stretching device having a clip that travels along a pair of rails installed on both sides of the film conveyance path. ,
A method for producing a polyester film, wherein the film film surface temperature is controlled to 50 to 120 ° C. when the polyester film after transverse stretching is released from the clip.
[2] The method for producing a polyester film according to [1] includes the step of releasing the above-mentioned laterally stretched polyester film from the above-mentioned clip, and then 500 to 5000 kN / m with respect to the polyester film after being opened from the above-mentioned clip. It is preferable to apply a tension per cross-sectional area of the film in the film transport direction 2 .
[3] In the method for producing a polyester film according to [1] or [2], the distance between a pair of rails when the polyester film after the transverse stretching is released from the clip is set as the transverse stretching zone. It is preferable to increase the distance within a range of 0.1 to 5% with respect to the shortest distance between the pair of rails thereafter.
[4] The method for producing a polyester film according to any one of [1] to [3], wherein the polyester film after the transverse stretching is released before the polyester film after the transverse stretching is released from the clip. It is preferable to include a heat setting step of heating the film to the maximum temperature in the tenter.
[5] The method for producing a polyester film according to [4] includes a step of cooling the heat-fixed polyester film before releasing the heat-fixed polyester film from the clip. preferable.
[6] In the method for producing a polyester film according to any one of [1] to [5], a refractive index in a longitudinal direction of the unstretched polyester film is 1.590 or less, and
The crystallinity of the unstretched polyester film is preferably 5% or less.
[7] In the method for producing a polyester film according to any one of [1] to [6], the unstretched polyester film preferably includes a polyethylene terephthalate resin as a main component.
[8] A polyester film produced by the method for producing a polyester film according to any one of [1] to [7].
[9] The polyester film according to [8] preferably has a heat shrinkage rate of 3% or less in the longitudinal direction after heating the above-described polyester film at 150 ° C. for 30 minutes.
[10] The polyester film according to [8] or [9] has a film thickness of 20 to 150 μm,
Retardation Re in the in-plane direction of the film is 3000 to 30000 nm,
The retardation Rth in the thickness direction is 3000 to 30000 nm,
The Re / Rth ratio is preferably 0.5 to 2.5.
[11] The polyester film according to any one of [8] to [10] is preferably uniaxially oriented.
[12] The polyester film according to [11] has a refractive index in the longitudinal direction of the polyester film of 1.590 or less, and
It is preferable that the degree of crystallinity of the polyester film exceeds 5%.
[13] A polarizing plate comprising a polarizer and the polyester film according to any one of [8] to [12].
[14] An image display device comprising the polyester film according to any one of [8] to [12] or the polarizing plate according to [13].
前述のクリップから前述の横延伸後のポリエステルフィルムを開放するときのフィルム膜面温度を50~120℃に制御するポリエステルフィルムの製造方法。
[2] [1]に記載のポリエステルフィルムの製造方法は、前述のクリップから前述の横延伸後のポリエステルフィルムを開放した後に、前述のクリップから開放後のポリエステルフィルムに対して500~5000kN/m2のフィルム搬送方向へのフィルムの断面積あたりの張力をかけることが好ましい。
[3] [1]または[2]に記載のポリエステルフィルムの製造方法は、前述のクリップから前述の横延伸後のポリエステルフィルムを開放するときの一対のレール間の距離を、前述の横延伸ゾーン以降の最短の一対のレール間距離に対し、0.1~5%の範囲で広くすることが好ましい。
[4] [1]~[3]のいずれか一つに記載のポリエステルフィルムの製造方法は、前述の横延伸後のポリエステルフィルムを前述のクリップから開放する前に、前述の横延伸後のポリエステルフィルムをテンター内の最高温度まで加熱する熱固定工程を含むことが好ましい。
[5] [4]に記載のポリエステルフィルムの製造方法は、前述の熱固定後のポリエステルフィルムを前述のクリップから開放する前に、前述の熱固定後のポリエステルフィルムを冷却する工程を含むことが好ましい。
[6] [1]~[5]のいずれか一つに記載のポリエステルフィルムの製造方法は、前述の未延伸のポリエステルフィルムの長手方向の屈折率が1.590以下であり、かつ、
前述の未延伸のポリエステルフィルムの結晶化度が5%以下であることが好ましい。
[7] [1]~[6]のいずれか一つに記載のポリエステルフィルムの製造方法は、前述の未延伸のポリエステルフィルムが、ポリエチレンテレフタレート樹脂を主成分とすることが好ましい。
[8] [1]~[7]のいずれか一つに記載のポリエステルフィルムの製造方法で製造されたポリエステルフィルム。
[9] [8]に記載のポリエステルフィルムは、前述のポリエステルフィルムを150℃で30分加熱した後の長手方向の熱収縮率が3%以下であることが好ましい。
[10] [8]または[9]に記載のポリエステルフィルムは、フィルム厚みが20~150μmであり、
フィルム面内方向のレターデーションReが3000~30000nmであり、
厚み方向のレターデーションRthが3000~30000nmであり、
Re/Rth比率が0.5~2.5であることが好ましい。
[11] [8]~[10]のいずれか一つに記載のポリエステルフィルムは、一軸配向であることが好ましい。
[12] [11]に記載のポリエステルフィルムは、前述のポリエステルフィルムの長手方向の屈折率が1.590以下であり、かつ、
前述のポリエステルフィルムの結晶化度が5%を超えることが好ましい。
[13] 偏光子と、[8]~[12]のいずれか一つに記載のポリエステルフィルムとを含む偏光板。
[14] [8]~[12]のいずれか一つに記載のポリエステルフィルム、または、[13]に記載の偏光板を備える画像表示装置。 [1] including a step of laterally stretching an unstretched polyester film while holding the unstretched polyester film with the above-described clip using a tenter-type stretching device having a clip that travels along a pair of rails installed on both sides of the film conveyance path. ,
A method for producing a polyester film, wherein the film film surface temperature is controlled to 50 to 120 ° C. when the polyester film after transverse stretching is released from the clip.
[2] The method for producing a polyester film according to [1] includes the step of releasing the above-mentioned laterally stretched polyester film from the above-mentioned clip, and then 500 to 5000 kN / m with respect to the polyester film after being opened from the above-mentioned clip. It is preferable to apply a tension per cross-sectional area of the film in the film transport direction 2 .
[3] In the method for producing a polyester film according to [1] or [2], the distance between a pair of rails when the polyester film after the transverse stretching is released from the clip is set as the transverse stretching zone. It is preferable to increase the distance within a range of 0.1 to 5% with respect to the shortest distance between the pair of rails thereafter.
[4] The method for producing a polyester film according to any one of [1] to [3], wherein the polyester film after the transverse stretching is released before the polyester film after the transverse stretching is released from the clip. It is preferable to include a heat setting step of heating the film to the maximum temperature in the tenter.
[5] The method for producing a polyester film according to [4] includes a step of cooling the heat-fixed polyester film before releasing the heat-fixed polyester film from the clip. preferable.
[6] In the method for producing a polyester film according to any one of [1] to [5], a refractive index in a longitudinal direction of the unstretched polyester film is 1.590 or less, and
The crystallinity of the unstretched polyester film is preferably 5% or less.
[7] In the method for producing a polyester film according to any one of [1] to [6], the unstretched polyester film preferably includes a polyethylene terephthalate resin as a main component.
[8] A polyester film produced by the method for producing a polyester film according to any one of [1] to [7].
[9] The polyester film according to [8] preferably has a heat shrinkage rate of 3% or less in the longitudinal direction after heating the above-described polyester film at 150 ° C. for 30 minutes.
[10] The polyester film according to [8] or [9] has a film thickness of 20 to 150 μm,
Retardation Re in the in-plane direction of the film is 3000 to 30000 nm,
The retardation Rth in the thickness direction is 3000 to 30000 nm,
The Re / Rth ratio is preferably 0.5 to 2.5.
[11] The polyester film according to any one of [8] to [10] is preferably uniaxially oriented.
[12] The polyester film according to [11] has a refractive index in the longitudinal direction of the polyester film of 1.590 or less, and
It is preferable that the degree of crystallinity of the polyester film exceeds 5%.
[13] A polarizing plate comprising a polarizer and the polyester film according to any one of [8] to [12].
[14] An image display device comprising the polyester film according to any one of [8] to [12] or the polarizing plate according to [13].
本発明によれば、テンター出口のクリップからのフィルムの開放部近傍でのフィルムの破断を極めて少なくでき、フィルム表面の平面性が良好なポリエステルフィルムを製造できるポリエステルフィルムの製造方法を提供することができる。
According to the present invention, it is possible to provide a method for producing a polyester film capable of producing a polyester film that can extremely reduce film breakage in the vicinity of an open portion of the film from a clip at a tenter outlet and that has good flatness on the film surface. it can.
以下、本発明のポリエステルフィルムおよびその製造方法、偏光板ならびに画像表示装置について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。 Hereinafter, the polyester film of the present invention, the production method thereof, the polarizing plate and the image display device will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。 Hereinafter, the polyester film of the present invention, the production method thereof, the polarizing plate and the image display device will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[ポリエステルフィルムの製造方法]
本発明のポリエステルフィルムの製造方法(以下、本発明の製造方法とも言う)は、フィルム搬送路の両側に設置された一対のレールに沿って走行するクリップを有するテンター式延伸装置を用いて、未延伸のポリエステルフィルムをクリップで把持しながら横延伸する工程を含み、クリップから横延伸後のポリエステルフィルムを開放するときのフィルム膜面温度を50~120℃に制御する。
このような構成により、本発明のポリエステルフィルムの製造方法は、テンター出口のクリップからのフィルムの開放部近傍でのフィルムの破断を極めて少なくでき、フィルム表面の平面性が良好なポリエステルフィルムを製造できる。
以下、本発明の製造方法の好ましい態様を説明する。 [Production method of polyester film]
The polyester film manufacturing method of the present invention (hereinafter also referred to as the manufacturing method of the present invention) uses a tenter type stretching apparatus having clips that run along a pair of rails installed on both sides of a film transport path. The method includes a step of transverse stretching while holding the stretched polyester film with a clip, and the film film surface temperature when the polyester film after transverse stretching is released from the clip is controlled to 50 to 120 ° C.
With such a configuration, the method for producing a polyester film of the present invention can produce a polyester film with extremely low film breakage in the vicinity of the open portion of the film from the clip at the tenter outlet and good film surface flatness. .
Hereinafter, the preferable aspect of the manufacturing method of this invention is demonstrated.
本発明のポリエステルフィルムの製造方法(以下、本発明の製造方法とも言う)は、フィルム搬送路の両側に設置された一対のレールに沿って走行するクリップを有するテンター式延伸装置を用いて、未延伸のポリエステルフィルムをクリップで把持しながら横延伸する工程を含み、クリップから横延伸後のポリエステルフィルムを開放するときのフィルム膜面温度を50~120℃に制御する。
このような構成により、本発明のポリエステルフィルムの製造方法は、テンター出口のクリップからのフィルムの開放部近傍でのフィルムの破断を極めて少なくでき、フィルム表面の平面性が良好なポリエステルフィルムを製造できる。
以下、本発明の製造方法の好ましい態様を説明する。 [Production method of polyester film]
The polyester film manufacturing method of the present invention (hereinafter also referred to as the manufacturing method of the present invention) uses a tenter type stretching apparatus having clips that run along a pair of rails installed on both sides of a film transport path. The method includes a step of transverse stretching while holding the stretched polyester film with a clip, and the film film surface temperature when the polyester film after transverse stretching is released from the clip is controlled to 50 to 120 ° C.
With such a configuration, the method for producing a polyester film of the present invention can produce a polyester film with extremely low film breakage in the vicinity of the open portion of the film from the clip at the tenter outlet and good film surface flatness. .
Hereinafter, the preferable aspect of the manufacturing method of this invention is demonstrated.
<未延伸のポリエステルフィルムの調製>
(1)ポリエステル樹脂:
未延伸のポリエステルフィルムは主成分としてポリエステル樹脂を含み、ポリエチレンテレフタレート樹脂を主成分とすることが好ましい。主成分とは、フィルムの50質量%以上を占める成分のことを言う。ポリエステル樹脂としては、WO2012/157662号公報の[0042]の組成のものが好ましく用いられる。
ポリエステルとして、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレヒタレート(PBT)、ポリシクロヘキサンジメチレンテレフタレート(PCT)等を使用できるが、コスト、耐熱性からPET、PENがより好ましく、さらに好ましくはPETである(PENはややRe/Rthが小さくなりやすい)。
ポリエステルは、ポリエチレンテレフタレートが最も好ましいが、ポリエチレンナフタレートも好ましく用いることができ、例えば特開2008-39803号公報に記載のものを好ましく用いることができる。 <Preparation of unstretched polyester film>
(1) Polyester resin:
The unstretched polyester film preferably contains a polyester resin as a main component and a polyethylene terephthalate resin as a main component. A main component means the component which occupies 50 mass% or more of a film. As the polyester resin, those having the composition of [0042] of WO2012 / 157762 are preferably used.
As the polyester, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polycyclohexanedimethylene terephthalate (PCT), etc. can be used, but PET and PEN are more preferable because of cost and heat resistance. More preferably, it is PET (PEN tends to have a small Re / Rth).
Polyester is most preferably polyethylene terephthalate, but polyethylene naphthalate can also be preferably used. For example, those described in JP-A-2008-39803 can be preferably used.
(1)ポリエステル樹脂:
未延伸のポリエステルフィルムは主成分としてポリエステル樹脂を含み、ポリエチレンテレフタレート樹脂を主成分とすることが好ましい。主成分とは、フィルムの50質量%以上を占める成分のことを言う。ポリエステル樹脂としては、WO2012/157662号公報の[0042]の組成のものが好ましく用いられる。
ポリエステルとして、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレヒタレート(PBT)、ポリシクロヘキサンジメチレンテレフタレート(PCT)等を使用できるが、コスト、耐熱性からPET、PENがより好ましく、さらに好ましくはPETである(PENはややRe/Rthが小さくなりやすい)。
ポリエステルは、ポリエチレンテレフタレートが最も好ましいが、ポリエチレンナフタレートも好ましく用いることができ、例えば特開2008-39803号公報に記載のものを好ましく用いることができる。 <Preparation of unstretched polyester film>
(1) Polyester resin:
The unstretched polyester film preferably contains a polyester resin as a main component and a polyethylene terephthalate resin as a main component. A main component means the component which occupies 50 mass% or more of a film. As the polyester resin, those having the composition of [0042] of WO2012 / 157762 are preferably used.
As the polyester, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polycyclohexanedimethylene terephthalate (PCT), etc. can be used, but PET and PEN are more preferable because of cost and heat resistance. More preferably, it is PET (PEN tends to have a small Re / Rth).
Polyester is most preferably polyethylene terephthalate, but polyethylene naphthalate can also be preferably used. For example, those described in JP-A-2008-39803 can be preferably used.
ポリエチレンテレフタレートは、ジカルボン酸成分としてテレフタル酸に由来する構成単位と、ジオール成分としてエチレングリコールに由来する構成単位とを有するポリエステルであり、全繰り返し単位の80モル%以上がエチレンテレフタレートであるのがよく、他の共重合成分に由来する構成単位を含んでいてもよい。他の共重合成分としては、イソフタル酸、p-β-オキシエトキシ安息香酸、4,4’-ジカルボキシジフェニール、4,4’-ジカルボキシベンゾフェノン、ビス(4-カルボキシフェニル)エタン、アジピン酸、セバシン酸、5-ナトリウムスルホイソフタル酸、1,4-ジカルボキシシクロヘキサン等のジカルボン酸成分や、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ジエチレングリコール、シクロヘキサンジオール、ビスフェノールAのエチレンオキサイド付加物、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のジオール成分が挙げられる。これらのジカルボン酸成分やジオール成分は、必要により2種類以上を組み合わせて使用することができる。また、上記カルボン酸成分やジオール成分と共に、p-オキシ安息香酸等のオキシカルボン酸を併用することも可能である。他の共重合成分として、少量のアミド結合、ウレタン結合、エーテル結合、カーボネート結合等を含有するジカルボン酸成分及び/又はジオール成分が用いられていてもよい。ポリエチレンテレフタレートの製造法としては、テレフタル酸とエチレングリコール、並びに必要に応じて他のジカルボン酸及び/又は他のジオールを直接反応させるいわゆる直接重合法や、テレフタル酸のジメチルエステルとエチレングリコール、並びに必要に応じて他のジカルボン酸のジメチルエステル及び/又は他のジオールをエステル交換反応させる、いわゆるエステル交換反応法等の任意の製造法を適用することができる。
Polyethylene terephthalate is a polyester having a structural unit derived from terephthalic acid as a dicarboxylic acid component and a structural unit derived from ethylene glycol as a diol component, and 80 mol% or more of all repeating units are preferably ethylene terephthalate. The structural unit derived from other copolymerization components may be included. Other copolymer components include isophthalic acid, p-β-oxyethoxybenzoic acid, 4,4′-dicarboxydiphenyl, 4,4′-dicarboxybenzophenone, bis (4-carboxyphenyl) ethane, adipic acid , Dicarboxylic acid components such as sebacic acid, 5-sodium sulfoisophthalic acid, 1,4-dicarboxycyclohexane, propylene glycol, butanediol, neopentyl glycol, diethylene glycol, cyclohexanediol, bisphenol A ethylene oxide adduct, polyethylene glycol And diol components such as polypropylene glycol and polytetramethylene glycol. These dicarboxylic acid components and diol components can be used in combination of two or more if necessary. In addition, an oxycarboxylic acid such as p-oxybenzoic acid can be used in combination with the carboxylic acid component or diol component. As another copolymer component, a dicarboxylic acid component and / or a diol component containing a small amount of an amide bond, a urethane bond, an ether bond, a carbonate bond, or the like may be used. Polyethylene terephthalate can be produced by a direct polymerization method in which terephthalic acid and ethylene glycol and, if necessary, other dicarboxylic acid and / or other diol are directly reacted, dimethyl ester of terephthalic acid and ethylene glycol, and necessary Depending on the above, any production method such as a so-called transesterification method in which a dimethyl ester of another dicarboxylic acid and / or another diol is transesterified can be applied.
(1-1)固有粘度
ポリエステル樹脂の固有粘度IVは0.5以上0.9以下が好ましく、より好ましくは0.52以上0.8以下、さらに好ましくは0.54以上0.7以下である。このようなIVにするには、ポリエステル樹脂を合成するときに、後述の溶融重合に加えて、固相重合を併用しても構わない。 (1-1) Intrinsic viscosity The intrinsic viscosity IV of the polyester resin is preferably 0.5 or more and 0.9 or less, more preferably 0.52 or more and 0.8 or less, and further preferably 0.54 or more and 0.7 or less. . In order to obtain such an IV, solid phase polymerization may be used in combination with the melt polymerization described later when the polyester resin is synthesized.
ポリエステル樹脂の固有粘度IVは0.5以上0.9以下が好ましく、より好ましくは0.52以上0.8以下、さらに好ましくは0.54以上0.7以下である。このようなIVにするには、ポリエステル樹脂を合成するときに、後述の溶融重合に加えて、固相重合を併用しても構わない。 (1-1) Intrinsic viscosity The intrinsic viscosity IV of the polyester resin is preferably 0.5 or more and 0.9 or less, more preferably 0.52 or more and 0.8 or less, and further preferably 0.54 or more and 0.7 or less. . In order to obtain such an IV, solid phase polymerization may be used in combination with the melt polymerization described later when the polyester resin is synthesized.
(1-2)アセトアルデヒド含率
ポリエステル樹脂のアセトアルデヒド含有量は50ppm以下であることが好ましい。さらに好ましくは40ppm以下、特に好ましくは30ppm以下である。アセトアルデヒドはアセトアルデヒド同士で縮合反応を容易に起こし、副反応物として水が生成し、この水により、ポリエステルの加水分解が進む場合がある。アセトアルデヒド含有量の下限は現実的には1ppm程度である。アセトアルデヒド含有量を上記範囲にするためには、樹脂の製造時の溶融重合、固相重合など各工程での酸素濃度を低く保つ、樹脂保管時、乾燥時の酸素濃度を低く保つ、フィルム製造時に押出機、メルト配管、ダイ等で樹脂にかかる熱履歴を低くする、溶融させる際の押出機のスクリュー構成等で局所的に強い剪断がかからないようにするなどの方法を採用することが出来る。 (1-2) Acetaldehyde content The acetaldehyde content of the polyester resin is preferably 50 ppm or less. More preferably, it is 40 ppm or less, Most preferably, it is 30 ppm or less. Acetaldehyde easily causes a condensation reaction between acetaldehydes, and water is generated as a side reaction product, which may cause hydrolysis of the polyester. The lower limit of the acetaldehyde content is practically about 1 ppm. In order to keep the acetaldehyde content in the above range, keep the oxygen concentration in each step such as melt polymerization and solid phase polymerization at the time of resin production, keep the oxygen concentration at the time of resin storage and drying, at the time of film production Methods such as lowering the heat history applied to the resin by an extruder, melt piping, die, etc., or preventing local strong shearing by the screw configuration of the extruder during melting, etc. can be employed.
ポリエステル樹脂のアセトアルデヒド含有量は50ppm以下であることが好ましい。さらに好ましくは40ppm以下、特に好ましくは30ppm以下である。アセトアルデヒドはアセトアルデヒド同士で縮合反応を容易に起こし、副反応物として水が生成し、この水により、ポリエステルの加水分解が進む場合がある。アセトアルデヒド含有量の下限は現実的には1ppm程度である。アセトアルデヒド含有量を上記範囲にするためには、樹脂の製造時の溶融重合、固相重合など各工程での酸素濃度を低く保つ、樹脂保管時、乾燥時の酸素濃度を低く保つ、フィルム製造時に押出機、メルト配管、ダイ等で樹脂にかかる熱履歴を低くする、溶融させる際の押出機のスクリュー構成等で局所的に強い剪断がかからないようにするなどの方法を採用することが出来る。 (1-2) Acetaldehyde content The acetaldehyde content of the polyester resin is preferably 50 ppm or less. More preferably, it is 40 ppm or less, Most preferably, it is 30 ppm or less. Acetaldehyde easily causes a condensation reaction between acetaldehydes, and water is generated as a side reaction product, which may cause hydrolysis of the polyester. The lower limit of the acetaldehyde content is practically about 1 ppm. In order to keep the acetaldehyde content in the above range, keep the oxygen concentration in each step such as melt polymerization and solid phase polymerization at the time of resin production, keep the oxygen concentration at the time of resin storage and drying, at the time of film production Methods such as lowering the heat history applied to the resin by an extruder, melt piping, die, etc., or preventing local strong shearing by the screw configuration of the extruder during melting, etc. can be employed.
(1-3)触媒
ポリエステル樹脂の重合には、Sb、Ge、Ti、Al系触媒が用いられ、好ましくはSb、Ti、Al系触媒、さらに好ましくはAl系触媒である。
すなわち、原料樹脂として用いられるポリエステル樹脂がアルミニウム触媒を用い重合したものであることが好ましい。
Al系触媒を用いることで、他の触媒(例えばSb、Ti)を用いた場合より、Reが発現し易くなり、PETの薄手化が可能になる。即ちAl系触媒のほうが配向し易いことを意味している。これは以下の理由によると推察される。
Al系触媒はSb,Tiにくらべ反応性(重合活性)が低い分、反応がマイルドであり、副生成物(ジエチレングリコールユニット:DEG)が生成し難い。
この結果、PETの規則性が高まり、配向し易くReを発現し易い。
(1-3-1)Al系触媒
Al系触媒としては、WO2011/040161号公報の[0013]~[0148](US2012/0183761号公報の[0021]~[0123])に記載のものを援用して使用でき、これらの公報に記載された内容は本願明細書に組み込まれる。
Al系触媒を用いてポリエステル樹脂を重合する方法としては特に制限はないが、具体的には、WO2012/008488号公報の[0091]~[0094](US2013/0112271号公報の[0144]~[0153])を援用して、これらの公報に従い重合でき、これらの公報に記載された内容は本願明細書に組み込まれる。
このようなAl系触媒は、例えば特開2012-122051号公報の[0052]~[0054]、[0099]~[0104](WO2012/029725号公報の[0045]~[0047]、[0091]~[0096])を援用して、これらの公報に従い調製でき、これらの公報に記載された内容は本願明細書に組み込まれる。Al系触媒量は、ポリエステル樹脂の質量に対するAl元素の量として3~80ppmが好ましく、より好ましくは5~60ppm、さらに好ましくは5~40ppmである。 (1-3) Catalyst For the polymerization of the polyester resin, Sb, Ge, Ti, Al-based catalysts are used, preferably Sb, Ti, Al-based catalysts, and more preferably Al-based catalysts.
That is, it is preferable that the polyester resin used as the raw material resin is polymerized using an aluminum catalyst.
By using an Al-based catalyst, it becomes easier for Re to be expressed than when other catalysts (for example, Sb, Ti) are used, and PET can be thinned. That is, it means that the Al-based catalyst is more easily oriented. This is presumed to be due to the following reasons.
Since the Al-based catalyst has a lower reactivity (polymerization activity) than Sb and Ti, the reaction is mild, and a by-product (diethylene glycol unit: DEG) is hardly generated.
As a result, the regularity of PET increases, and it is easy to align and to express Re.
(1-3-1) Al-based catalyst As the Al-based catalyst, those described in WO0013 / 040161 [0013] to [0148] (US2012 / 0183761 [0021] to [0123]) are used. The contents described in these publications are incorporated in the present specification.
The method for polymerizing the polyester resin using the Al-based catalyst is not particularly limited, but specifically, [0091] to [0094] of WO2012 / 008488 ([0144] to [0094] of US2013 / 0112271). 0153]) can be used to polymerize according to these publications, and the contents described in these publications are incorporated herein.
Such Al-based catalysts include, for example, [0052] to [0054], [0099] to [0104] of JP2012-122051 ([0045] to [0047], [0091] of WO2012 / 029725. To [0096]) can be prepared according to these publications, and the contents described in these publications are incorporated herein. The amount of the Al-based catalyst is preferably 3 to 80 ppm, more preferably 5 to 60 ppm, and still more preferably 5 to 40 ppm as the amount of Al element with respect to the mass of the polyester resin.
ポリエステル樹脂の重合には、Sb、Ge、Ti、Al系触媒が用いられ、好ましくはSb、Ti、Al系触媒、さらに好ましくはAl系触媒である。
すなわち、原料樹脂として用いられるポリエステル樹脂がアルミニウム触媒を用い重合したものであることが好ましい。
Al系触媒を用いることで、他の触媒(例えばSb、Ti)を用いた場合より、Reが発現し易くなり、PETの薄手化が可能になる。即ちAl系触媒のほうが配向し易いことを意味している。これは以下の理由によると推察される。
Al系触媒はSb,Tiにくらべ反応性(重合活性)が低い分、反応がマイルドであり、副生成物(ジエチレングリコールユニット:DEG)が生成し難い。
この結果、PETの規則性が高まり、配向し易くReを発現し易い。
(1-3-1)Al系触媒
Al系触媒としては、WO2011/040161号公報の[0013]~[0148](US2012/0183761号公報の[0021]~[0123])に記載のものを援用して使用でき、これらの公報に記載された内容は本願明細書に組み込まれる。
Al系触媒を用いてポリエステル樹脂を重合する方法としては特に制限はないが、具体的には、WO2012/008488号公報の[0091]~[0094](US2013/0112271号公報の[0144]~[0153])を援用して、これらの公報に従い重合でき、これらの公報に記載された内容は本願明細書に組み込まれる。
このようなAl系触媒は、例えば特開2012-122051号公報の[0052]~[0054]、[0099]~[0104](WO2012/029725号公報の[0045]~[0047]、[0091]~[0096])を援用して、これらの公報に従い調製でき、これらの公報に記載された内容は本願明細書に組み込まれる。Al系触媒量は、ポリエステル樹脂の質量に対するAl元素の量として3~80ppmが好ましく、より好ましくは5~60ppm、さらに好ましくは5~40ppmである。 (1-3) Catalyst For the polymerization of the polyester resin, Sb, Ge, Ti, Al-based catalysts are used, preferably Sb, Ti, Al-based catalysts, and more preferably Al-based catalysts.
That is, it is preferable that the polyester resin used as the raw material resin is polymerized using an aluminum catalyst.
By using an Al-based catalyst, it becomes easier for Re to be expressed than when other catalysts (for example, Sb, Ti) are used, and PET can be thinned. That is, it means that the Al-based catalyst is more easily oriented. This is presumed to be due to the following reasons.
Since the Al-based catalyst has a lower reactivity (polymerization activity) than Sb and Ti, the reaction is mild, and a by-product (diethylene glycol unit: DEG) is hardly generated.
As a result, the regularity of PET increases, and it is easy to align and to express Re.
(1-3-1) Al-based catalyst As the Al-based catalyst, those described in WO0013 / 040161 [0013] to [0148] (US2012 / 0183761 [0021] to [0123]) are used. The contents described in these publications are incorporated in the present specification.
The method for polymerizing the polyester resin using the Al-based catalyst is not particularly limited, but specifically, [0091] to [0094] of WO2012 / 008488 ([0144] to [0094] of US2013 / 0112271). 0153]) can be used to polymerize according to these publications, and the contents described in these publications are incorporated herein.
Such Al-based catalysts include, for example, [0052] to [0054], [0099] to [0104] of JP2012-122051 ([0045] to [0047], [0091] of WO2012 / 029725. To [0096]) can be prepared according to these publications, and the contents described in these publications are incorporated herein. The amount of the Al-based catalyst is preferably 3 to 80 ppm, more preferably 5 to 60 ppm, and still more preferably 5 to 40 ppm as the amount of Al element with respect to the mass of the polyester resin.
(1-3-2)Sb系触媒:
Sb系触媒としては、特開2012-41519号公報の[0050]、[0052]~[0054]の記載のものを使用できる。
Sb系触媒を用いてポリエステル樹脂を重合する方法としては特に制限はないが、具体的には、WO2012/157662号公報の[0086]~[0087]に従い重合できる。 (1-3-2) Sb-based catalyst:
As the Sb-based catalyst, those described in [0050], [0052] to [0054] of JP 2012-41519 A can be used.
The method for polymerizing the polyester resin using the Sb-based catalyst is not particularly limited, but specifically, the polymerization can be performed according to [0086] to [0087] of WO2012 / 157762.
Sb系触媒としては、特開2012-41519号公報の[0050]、[0052]~[0054]の記載のものを使用できる。
Sb系触媒を用いてポリエステル樹脂を重合する方法としては特に制限はないが、具体的には、WO2012/157662号公報の[0086]~[0087]に従い重合できる。 (1-3-2) Sb-based catalyst:
As the Sb-based catalyst, those described in [0050], [0052] to [0054] of JP 2012-41519 A can be used.
The method for polymerizing the polyester resin using the Sb-based catalyst is not particularly limited, but specifically, the polymerization can be performed according to [0086] to [0087] of WO2012 / 157762.
本発明のポリエステルフィルムに用いられる未延伸のポリエステルフィルムには公知の添加剤を加えることも好ましい。その例としては、紫外線吸収剤、粒子、滑剤、ブロッキング防止剤、熱安定剤、酸化防止剤、帯電防止剤、耐光剤、耐衝撃性改良剤、潤滑剤、染料、顔料等が挙げられる。ただし、ポリエステルフィルムは、一般に透明性が必要とされるため、添加剤の添加量は最小限にとどめておくことが好ましい。
It is also preferable to add a known additive to the unstretched polyester film used for the polyester film of the present invention. Examples thereof include ultraviolet absorbers, particles, lubricants, antiblocking agents, heat stabilizers, antioxidants, antistatic agents, light resistance agents, impact resistance improvers, lubricants, dyes, pigments and the like. However, since the polyester film generally requires transparency, it is preferable to keep the additive amount to a minimum.
(1-4-1)
本発明のポリエステルフィルムに用いられる未延伸のポリエステルフィルムには、液晶ディスプレイの液晶等が紫外線により劣化することを防止するために、紫外線吸収剤を含有させることも可能である。紫外線吸収剤は、紫外線吸収能を有する化合物で、ポリエステルフィルムの製造工程で付加される熱に耐えうるものであれば特に限定されない。
紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤があるが、透明性の観点からは有機系紫外線吸収剤が好ましい。WO2012/157662号公報の[0057]に記載のものや、後述の環状イミノエステル系の紫外線吸収剤を使用できる。 (1-4-1)
The unstretched polyester film used for the polyester film of the present invention can contain an ultraviolet absorber in order to prevent the liquid crystal of the liquid crystal display from being deteriorated by ultraviolet rays. The ultraviolet absorber is not particularly limited as long as it is a compound having ultraviolet absorbing ability and can withstand the heat applied in the production process of the polyester film.
As the ultraviolet absorber, there are an organic ultraviolet absorber and an inorganic ultraviolet absorber. From the viewpoint of transparency, an organic ultraviolet absorber is preferable. Those described in [0057] of WO2012 / 157762 and cyclic iminoester-based ultraviolet absorbers described later can be used.
本発明のポリエステルフィルムに用いられる未延伸のポリエステルフィルムには、液晶ディスプレイの液晶等が紫外線により劣化することを防止するために、紫外線吸収剤を含有させることも可能である。紫外線吸収剤は、紫外線吸収能を有する化合物で、ポリエステルフィルムの製造工程で付加される熱に耐えうるものであれば特に限定されない。
紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤があるが、透明性の観点からは有機系紫外線吸収剤が好ましい。WO2012/157662号公報の[0057]に記載のものや、後述の環状イミノエステル系の紫外線吸収剤を使用できる。 (1-4-1)
The unstretched polyester film used for the polyester film of the present invention can contain an ultraviolet absorber in order to prevent the liquid crystal of the liquid crystal display from being deteriorated by ultraviolet rays. The ultraviolet absorber is not particularly limited as long as it is a compound having ultraviolet absorbing ability and can withstand the heat applied in the production process of the polyester film.
As the ultraviolet absorber, there are an organic ultraviolet absorber and an inorganic ultraviolet absorber. From the viewpoint of transparency, an organic ultraviolet absorber is preferable. Those described in [0057] of WO2012 / 157762 and cyclic iminoester-based ultraviolet absorbers described later can be used.
環状イミノエステル系の紫外線吸収剤としては、下記に限定されるものではないが、例えば、2-メチル-3,1-ベンゾオキサジン-4-オン、2-ブチル-3,1-ベンゾオキサジン-4-オン、2-フェニル-3,1-ベンゾオキサジン-4-オン、2-(1-または2-ナフチル)-3,1-ベンゾオキサジン-4-オン、2-(4-ビフェニル)-3,1-ベンゾオキサジン-4-オン、2-p-ニトロフェニル-3,1-ベンゾオキサジン-4-オン、2-m-ニトロフェニル-3,1-ベンゾオキサジン-4-オン、2-p-ベンゾイルフェニル-3,1-ベンゾオキサジン-4-オン、2-p-メトキシフェニル-3,1-ベンゾオキサジン-4-オン、2-o-メトキシフェニル-3,1-ベンゾオキサジン-4-オン、2-シクロヘキシル-3,1-ベンゾオキサジン-4-オン、2-p-(またはm-)フタルイミドフェニル-3,1-ベンゾオキサジン-4-オン、N-フェニル-4-(3,1-ベンゾオキサジン-4-オン-2-イル)フタルイミド、N-ベンゾイル-4-(3,1-ベンゾオキサジン-4-オン-2-イル)アニリン、N-ベンゾイル-N-メチル-4-(3,1-ベンゾオキサジン-4-オン-2-イル)アニリン、2-(p-(N-メチルカルボニル)フェニル)-3,1-ベンゾオキサジン-4-オン、2,2’-ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-エチレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-テトラメチレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-デカメチレンビス(3,1-ベンゾオキサジン-4-オン、2、2’-(1,4-フェニレン)ビス(4H-3,1-ベンゾオキサジン-4-オン)〔なお、2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)とも言う〕、2,2’-m-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(4,4’-ジフェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2,6-または1,5-ナフチレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2-メチル-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2-ニトロ-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2-クロロ-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(1,4-シクロヘキシレン)ビス(3,1-ベンゾオキサジン-4-オン)、1,3,5-トリ(3,1-ベンゾオキサジン-4-オン-2-イル)ベンゼン、1,3,5-トリ(3,1-ベンゾオキサジン-4-オン-2-イル)ナフタレン、2,4,6-トリ(3,1-ベンゾオキサジン-4-オン-2-イル)ナフタレン、2,8-ジメチル-4H,6H-ベンゾ(1,2-d;5,4-d’)ビス(1,3)-オキサジン-4,6-ジオン、2,7-ジメチル-4H,9H-ベンゾ(1,2-d;4,5-d’)ビス(1,3)-オキサジン-4,9-ジオン、2,8-ジフェニル-4H,8H-ベンゾ(1,2-d;5,4-d’)ビス(1,3)-オキサジン-4,6-ジオン、2,7-ジフェニル-4H,9H-ベンゾ(1,2-d;4,5-d’)ビス(1,3)-オキサジン-4,6-ジオン、6,6’-ビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-ビス(2-エチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-ビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-メチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-メチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-エチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-エチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-ブチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-ブチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-オキシビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-オキシビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-スルホニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-スルホニルビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-カルボニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-カルボニルビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-メチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-メチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-ビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-エチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-オキシビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-スルホニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-カルボニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,7’-ビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,7’-ビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン、6,7’-メチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,7’-メチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)などが挙げられる。
The cyclic imino ester-based ultraviolet absorber is not limited to the following, and examples thereof include 2-methyl-3,1-benzoxazin-4-one and 2-butyl-3,1-benzoxazine-4. -One, 2-phenyl-3,1-benzoxazin-4-one, 2- (1- or 2-naphthyl) -3,1-benzoxazin-4-one, 2- (4-biphenyl) -3, 1-benzoxazin-4-one, 2-p-nitrophenyl-3,1-benzoxazin-4-one, 2-m-nitrophenyl-3,1-benzoxazin-4-one, 2-p-benzoyl Phenyl-3,1-benzoxazin-4-one, 2-p-methoxyphenyl-3,1-benzoxazin-4-one, 2-o-methoxyphenyl-3,1-benzoxazin-4-one 2-cyclohexyl-3,1-benzoxazin-4-one, 2-p- (or m-) phthalimidophenyl-3,1-benzoxazin-4-one, N-phenyl-4- (3,1-benzo Oxazin-4-one-2-yl) phthalimide, N-benzoyl-4- (3,1-benzoxazin-4-one-2-yl) aniline, N-benzoyl-N-methyl-4- (3,1 -Benzoxazin-4-one-2-yl) aniline, 2- (p- (N-methylcarbonyl) phenyl) -3,1-benzoxazin-4-one, 2,2'-bis (3,1- Benzoxazin-4-one), 2,2′-ethylenebis (3,1-benzoxazin-4-one), 2,2′-tetramethylenebis (3,1-benzoxazin-4-one), 2 , 2'-Deca Tylene bis (3,1-benzoxazin-4-one, 2,2 '-(1,4-phenylene) bis (4H-3,1-benzoxazin-4-one) [Note that 2,2'-p- Phenylenebis (3,1-benzoxazin-4-one)], 2,2'-m-phenylenebis (3,1-benzoxazin-4-one), 2,2 '-(4,4' -Diphenylene) bis (3,1-benzoxazin-4-one), 2,2 '-(2,6- or 1,5-naphthylene) bis (3,1-benzoxazin-4-one), 2, 2 '-(2-methyl-p-phenylene) bis (3,1-benzoxazin-4-one), 2,2'-(2-nitro-p-phenylene) bis (3,1-benzoxazine-4 -One), 2,2 '-(2-chloro-p-phenylene) bis ( 3,1-benzoxazin-4-one), 2,2 ′-(1,4-cyclohexylene) bis (3,1-benzoxazin-4-one), 1,3,5-tri (3,1 -Benzoxazin-4-one-2-yl) benzene, 1,3,5-tri (3,1-benzoxazin-4-one-2-yl) naphthalene, 2,4,6-tri (3,1 -Benzoxazin-4-one-2-yl) naphthalene, 2,8-dimethyl-4H, 6H-benzo (1,2-d; 5,4-d ') bis (1,3) -oxazine-4, 6-dione, 2,7-dimethyl-4H, 9H-benzo (1,2-d; 4,5-d ′) bis (1,3) -oxazine-4,9-dione, 2,8-diphenyl- 4H, 8H-benzo (1,2-d; 5,4-d ′) bis (1,3) -oxazine-4,6-di 2,7-diphenyl-4H, 9H-benzo (1,2-d; 4,5-d ′) bis (1,3) -oxazine-4,6-dione, 6,6′-bis (2 -Methyl-4H, 3,1-benzoxazin-4-one), 6,6′-bis (2-ethyl-4H, 3,1-benzoxazin-4-one), 6,6′-bis (2 -Phenyl-4H, 3,1-benzoxazin-4-one), 6,6′-methylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-methylenebis (2 -Phenyl-4H, 3,1-benzoxazin-4-one), 6,6′-ethylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-ethylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6 ′ Butylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-butylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6′- Oxybis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-oxybis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6′- Sulfonylbis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-sulfonylbis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6 '-Carbonylbis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6'-carbonylbis (2-phenyl-4H, 3,1-benzoxazin-4-one), 7 , 7'-methylenebis ( 2-methyl-4H, 3,1-benzoxazin-4-one), 7,7′-methylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one), 7,7′-bis ( 2-methyl-4H, 3,1-benzoxazin-4-one), 7,7′-ethylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 7,7′-oxybis (2-methyl-4H, 3,1-benzoxazin-4-one), 7,7′-sulfonylbis (2-methyl-4H, 3,1-benzoxazin-4-one), 7,7′- Carbonyl bis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,7′-bis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,7 ′ -Bis (2-phenyl-4H, 3,1-benzoxazine- -One, 6,7'-methylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,7'-methylenebis (2-phenyl-4H, 3,1-benzoxazine-4-one) ON).
上記化合物のうち、色調を考慮した場合、黄色味が付きにくいベンゾオキサジノン系の化合物が好適に用いられ、その例としては、下記の一般式(1)で表されるものがより好適に用いられる。
Among the above compounds, when considering the color tone, a benzoxazinone-based compound which is difficult to be yellowed is preferably used. As an example thereof, a compound represented by the following general formula (1) is more preferably used. It is done.
上記一般式(1)中、Rは2価の芳香族炭化水素基を表しX1およびX2はそれぞれ独立して水素または以下の官能基群から選ばれるが、必ずしもこれらに限定されるものではない。
In the general formula (1), R represents a divalent aromatic hydrocarbon group, and X 1 and X 2 are each independently selected from hydrogen or the following functional group group, but are not necessarily limited thereto. Absent.
官能基群:アルキル基、アリール基、ヘテロアリール基、ハロゲン、アルコキシル基、アリールオキシ基、ヒドロキシル基、カルボキシル基、エステル基、ニトロ基。
Functional group: alkyl group, aryl group, heteroaryl group, halogen, alkoxyl group, aryloxy group, hydroxyl group, carboxyl group, ester group, nitro group.
上記一般式(1)で表される化合物の中でも、本発明においては、2、2’-(1,4-フェニレン)ビス(4H-3,1-ベンゾオキサジン-4-オン)が特に好ましい。
Among the compounds represented by the general formula (1), 2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazin-4-one) is particularly preferable in the present invention.
本発明のポリエステルフィルム中に含有させる紫外線吸収剤の量は、通常10.0質量%以下、好ましくは0.3~3.0質量%の範囲で含有するものである。10.0質量%を超える量の紫外線吸収剤を含有させた場合は、表面に紫外線吸収剤がブリードアウトし、接着性低下等、表面機能性の悪化を招くおそれがある。
The amount of the ultraviolet absorber contained in the polyester film of the present invention is usually 10.0% by mass or less, preferably 0.3 to 3.0% by mass. When an ultraviolet absorber in an amount exceeding 10.0% by mass is contained, the ultraviolet absorber may bleed out on the surface, which may cause deterioration of surface functionality such as adhesion deterioration.
また、多層構造の本発明のポリエステルフィルムの場合、少なくとも3層構造のものが好ましく、紫外線吸収剤は、その中間層に配合することが好ましい。中間層に紫外線吸収剤を配合することにより、この化合物がフィルム表面へブリードアウトしてくるのを防ぐことができ、その結果、フィルムの接着性等の特性を維持することができる。
Further, in the case of the polyester film of the present invention having a multilayer structure, it is preferably at least a three-layer structure, and the ultraviolet absorber is preferably blended in the intermediate layer. By blending an ultraviolet absorber in the intermediate layer, this compound can be prevented from bleeding out to the film surface, and as a result, characteristics such as film adhesion can be maintained.
これらの配合には、WO2011/162198号公報の[0050]~[0051]に記載のマスターバッチ法を利用できる。
The masterbatch method described in [0050] to [0051] of WO2011 / 162198 can be used for these formulations.
(1-4-2)その他添加剤
本発明のポリエステルフィルムに用いられる未延伸のポリエステルフィルムには、その他添加剤を用いてもよく、例えばWO2012/157662号公報の[0058]に記載のものを援用して使用でき、これらの公報に記載された内容は本願明細書に組み込まれる。 (1-4-2) Other Additives Other additives may be used for the unstretched polyester film used in the polyester film of the present invention, for example, those described in [0058] of WO2012 / 157762. The contents described in these publications are incorporated herein by reference.
本発明のポリエステルフィルムに用いられる未延伸のポリエステルフィルムには、その他添加剤を用いてもよく、例えばWO2012/157662号公報の[0058]に記載のものを援用して使用でき、これらの公報に記載された内容は本願明細書に組み込まれる。 (1-4-2) Other Additives Other additives may be used for the unstretched polyester film used in the polyester film of the present invention, for example, those described in [0058] of WO2012 / 157762. The contents described in these publications are incorporated herein by reference.
(2)溶融混練:
未延伸のポリエステルフィルムは、ポリエステル樹脂を溶融押出ししてフィルム状に成形されてなることが好ましい。
ポリエステル樹脂、または上述のマスターバッチ法で製造したポリエステル樹脂と添加剤のマスターバッチを含水率200ppm以下に乾燥した後、単軸あるいは2軸の押出し機に導入し溶融させることが好ましい。この時、ポリエステルの分解を抑制するために、窒素中あるいは真空中で溶融することも好ましい。詳細な条件は、特許4962661号の[0051]~[0052](US2013/0100378号公報の[0085]~[0086])を援用して、これらの公報に従い実施でき、これらの公報に記載された内容は本願明細書に組み込まれる。さらに、溶融樹脂(メルト)の送り出し精度を上げるためギアポンプを使用することも好ましい。また、異物除去のための3μm~20μmの濾過機を用いることも好ましい。 (2) Melt kneading:
The unstretched polyester film is preferably formed into a film by melt-extruding a polyester resin.
It is preferable to dry the polyester resin or the master batch of the polyester resin and additive produced by the above-described master batch method to a moisture content of 200 ppm or less, and then introduce the melt into a single or twin screw extruder and melt it. At this time, in order to suppress degradation of the polyester, it is also preferable to melt in nitrogen or vacuum. The detailed conditions can be implemented in accordance with these publications with the aid of Patent Nos. 4992661 [0051] to [0052] (US 2013/0100378 publication [0085] to [0086]) and are described in these publications. The contents are incorporated herein. Furthermore, it is also preferable to use a gear pump in order to increase the delivery accuracy of the molten resin (melt). It is also preferable to use a 3 μm to 20 μm filter for removing foreign substances.
未延伸のポリエステルフィルムは、ポリエステル樹脂を溶融押出ししてフィルム状に成形されてなることが好ましい。
ポリエステル樹脂、または上述のマスターバッチ法で製造したポリエステル樹脂と添加剤のマスターバッチを含水率200ppm以下に乾燥した後、単軸あるいは2軸の押出し機に導入し溶融させることが好ましい。この時、ポリエステルの分解を抑制するために、窒素中あるいは真空中で溶融することも好ましい。詳細な条件は、特許4962661号の[0051]~[0052](US2013/0100378号公報の[0085]~[0086])を援用して、これらの公報に従い実施でき、これらの公報に記載された内容は本願明細書に組み込まれる。さらに、溶融樹脂(メルト)の送り出し精度を上げるためギアポンプを使用することも好ましい。また、異物除去のための3μm~20μmの濾過機を用いることも好ましい。 (2) Melt kneading:
The unstretched polyester film is preferably formed into a film by melt-extruding a polyester resin.
It is preferable to dry the polyester resin or the master batch of the polyester resin and additive produced by the above-described master batch method to a moisture content of 200 ppm or less, and then introduce the melt into a single or twin screw extruder and melt it. At this time, in order to suppress degradation of the polyester, it is also preferable to melt in nitrogen or vacuum. The detailed conditions can be implemented in accordance with these publications with the aid of Patent Nos. 4992661 [0051] to [0052] (US 2013/0100378 publication [0085] to [0086]) and are described in these publications. The contents are incorporated herein. Furthermore, it is also preferable to use a gear pump in order to increase the delivery accuracy of the molten resin (melt). It is also preferable to use a 3 μm to 20 μm filter for removing foreign substances.
(3)押出し、共押出し:
溶融混練したポリエステル樹脂を含むメルトをダイから押出すことが好ましいが、単層で押出しても、多層で押出しても良い。多層で押出す場合は、例えば、紫外線級取剤(UV剤)を含む層と含まない層を積層しても良く、より好ましくはUV剤を内層にした3層構成が、紫外線による偏光子の劣化を抑える上、UV剤のブリードアウトを抑制し好ましい。
ブリードアウトしたUV剤は工製膜工程のパスロールに転写、フィルムとロールの摩擦係数を増加しスリキズが発生し易く好ましくない。
ポリエステルフィルムが多層で押出されて製造されてなる場合、得られるポリエステルフィルムの好ましい内層の厚み(全層に対する比率)は50%以上95%以下が好ましく、より好ましくは60%以上90%以下、さらに好ましくは70%以上85%以下である。このような積層は、フィードブロックダイやマルチマニホールドダイを用いることで実施できる。 (3) Extrusion, coextrusion:
Although it is preferable to extrude the melt containing the polyester resin melt-kneaded from the die, it may be extruded as a single layer or as a multilayer. When extruding in multiple layers, for example, a layer containing an ultraviolet grade agent (UV agent) and a layer not containing it may be laminated. In addition to suppressing deterioration, it is preferable to suppress bleeding out of the UV agent.
The bleed-out UV agent is undesirably easily transferred to a pass roll in the film-forming process, increasing the coefficient of friction between the film and the roll, and causing scratches.
When the polyester film is produced by being extruded in multiple layers, the preferred inner layer thickness (ratio to the total layer) of the resulting polyester film is preferably 50% or more and 95% or less, more preferably 60% or more and 90% or less, Preferably they are 70% or more and 85% or less. Such lamination can be performed by using a feed block die or a multi-manifold die.
溶融混練したポリエステル樹脂を含むメルトをダイから押出すことが好ましいが、単層で押出しても、多層で押出しても良い。多層で押出す場合は、例えば、紫外線級取剤(UV剤)を含む層と含まない層を積層しても良く、より好ましくはUV剤を内層にした3層構成が、紫外線による偏光子の劣化を抑える上、UV剤のブリードアウトを抑制し好ましい。
ブリードアウトしたUV剤は工製膜工程のパスロールに転写、フィルムとロールの摩擦係数を増加しスリキズが発生し易く好ましくない。
ポリエステルフィルムが多層で押出されて製造されてなる場合、得られるポリエステルフィルムの好ましい内層の厚み(全層に対する比率)は50%以上95%以下が好ましく、より好ましくは60%以上90%以下、さらに好ましくは70%以上85%以下である。このような積層は、フィードブロックダイやマルチマニホールドダイを用いることで実施できる。 (3) Extrusion, coextrusion:
Although it is preferable to extrude the melt containing the polyester resin melt-kneaded from the die, it may be extruded as a single layer or as a multilayer. When extruding in multiple layers, for example, a layer containing an ultraviolet grade agent (UV agent) and a layer not containing it may be laminated. In addition to suppressing deterioration, it is preferable to suppress bleeding out of the UV agent.
The bleed-out UV agent is undesirably easily transferred to a pass roll in the film-forming process, increasing the coefficient of friction between the film and the roll, and causing scratches.
When the polyester film is produced by being extruded in multiple layers, the preferred inner layer thickness (ratio to the total layer) of the resulting polyester film is preferably 50% or more and 95% or less, more preferably 60% or more and 90% or less, Preferably they are 70% or more and 85% or less. Such lamination can be performed by using a feed block die or a multi-manifold die.
(4)キャスト:
特開2009-269301号公報の[0059]に従い、ダイから押出したメルトをキャスティングドラム上に押出し、冷却固化し未延伸のポリエステルフィルム(原反)を得ることが好ましい。
本発明の製造方法では、未延伸のポリエステルフィルムの長手方向の屈折率が1.590以下であることが好ましく、1.585以下がより好ましく、1.580以下が更に好ましい。
本発明の製造方法では、未延伸のポリエステルフィルムの結晶化度が5%以下であることが好ましく、3%以下がより好ましく、1%以下が更に好ましい。なお、ここでいう未延伸のポリエステルフィルムの結晶化度とは、フィルム幅方向の中央部の結晶化度を意味する。
結晶化度を調整する時、キャスティングドラムの端部の温度を低めにしたり、キャストドラム上に送風したりしてもよい。
なお、結晶化度については、フィルムの密度から算出することができる。すなわち、フィルムの密度X(g/cm3)、結晶化度0%での密度Y=1.335g/cm3、結晶化度100%での密度Z=1.501g/cm3を用いて下記計算式より結晶化度(%)を導出することができる。
結晶化度={Z × (X-Y)}/{X × (Z-Y)}×100
なお、密度の測定は、JIS K7112に準じて測定を行うことができる。 (4) Cast:
According to [0059] of JP-A-2009-269301, it is preferable to extrude the melt extruded from the die onto a casting drum and cool and solidify to obtain an unstretched polyester film (raw fabric).
In the production method of the present invention, the refractive index in the longitudinal direction of the unstretched polyester film is preferably 1.590 or less, more preferably 1.585 or less, and further preferably 1.580 or less.
In the production method of the present invention, the crystallinity of the unstretched polyester film is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less. In addition, the crystallinity degree of the unstretched polyester film here means the crystallinity degree of the center part of a film width direction.
When adjusting the degree of crystallinity, the temperature of the end of the casting drum may be lowered, or air may be blown onto the cast drum.
The crystallinity can be calculated from the film density. That is, the density X (g / cm 3) of the film density at a crystallinity of 0% Y = 1.335g / cm 3 , using density Z = 1.501g / cm 3 at 100% crystalline below The crystallinity (%) can be derived from the calculation formula.
Crystallinity = {Z × (XY)} / {X × (ZY)} × 100
The density can be measured according to JIS K7112.
特開2009-269301号公報の[0059]に従い、ダイから押出したメルトをキャスティングドラム上に押出し、冷却固化し未延伸のポリエステルフィルム(原反)を得ることが好ましい。
本発明の製造方法では、未延伸のポリエステルフィルムの長手方向の屈折率が1.590以下であることが好ましく、1.585以下がより好ましく、1.580以下が更に好ましい。
本発明の製造方法では、未延伸のポリエステルフィルムの結晶化度が5%以下であることが好ましく、3%以下がより好ましく、1%以下が更に好ましい。なお、ここでいう未延伸のポリエステルフィルムの結晶化度とは、フィルム幅方向の中央部の結晶化度を意味する。
結晶化度を調整する時、キャスティングドラムの端部の温度を低めにしたり、キャストドラム上に送風したりしてもよい。
なお、結晶化度については、フィルムの密度から算出することができる。すなわち、フィルムの密度X(g/cm3)、結晶化度0%での密度Y=1.335g/cm3、結晶化度100%での密度Z=1.501g/cm3を用いて下記計算式より結晶化度(%)を導出することができる。
結晶化度={Z × (X-Y)}/{X × (Z-Y)}×100
なお、密度の測定は、JIS K7112に準じて測定を行うことができる。 (4) Cast:
According to [0059] of JP-A-2009-269301, it is preferable to extrude the melt extruded from the die onto a casting drum and cool and solidify to obtain an unstretched polyester film (raw fabric).
In the production method of the present invention, the refractive index in the longitudinal direction of the unstretched polyester film is preferably 1.590 or less, more preferably 1.585 or less, and further preferably 1.580 or less.
In the production method of the present invention, the crystallinity of the unstretched polyester film is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less. In addition, the crystallinity degree of the unstretched polyester film here means the crystallinity degree of the center part of a film width direction.
When adjusting the degree of crystallinity, the temperature of the end of the casting drum may be lowered, or air may be blown onto the cast drum.
The crystallinity can be calculated from the film density. That is, the density X (g / cm 3) of the film density at a crystallinity of 0% Y = 1.335g / cm 3 , using density Z = 1.501g / cm 3 at 100% crystalline below The crystallinity (%) can be derived from the calculation formula.
Crystallinity = {Z × (XY)} / {X × (ZY)} × 100
The density can be measured according to JIS K7112.
(5)ポリマー層(易接着層)の形成:
溶融押出しされた未延伸のポリエステルフィルムには、後述する延伸の前あるいは後にポリマー層(好ましくは易接着層)を塗布により形成してもよい。
ポリマー層としては、一般に偏光板が有していてもよい機能層を挙げることができ、その中でもポリマー層として易接着層を形成することが好ましい。易接着層はWO2012/157662号公報の[0062]~[0070]に記載の方法で塗設することができる。 (5) Formation of polymer layer (adhesive layer):
On the melt-extruded unstretched polyester film, a polymer layer (preferably an easy-adhesion layer) may be formed by coating before or after stretching described later.
Examples of the polymer layer generally include a functional layer that the polarizing plate may have, and among them, it is preferable to form an easy adhesion layer as the polymer layer. The easy-adhesion layer can be applied by the method described in [0062] to [0070] of WO2012 / 157762.
溶融押出しされた未延伸のポリエステルフィルムには、後述する延伸の前あるいは後にポリマー層(好ましくは易接着層)を塗布により形成してもよい。
ポリマー層としては、一般に偏光板が有していてもよい機能層を挙げることができ、その中でもポリマー層として易接着層を形成することが好ましい。易接着層はWO2012/157662号公報の[0062]~[0070]に記載の方法で塗設することができる。 (5) Formation of polymer layer (adhesive layer):
On the melt-extruded unstretched polyester film, a polymer layer (preferably an easy-adhesion layer) may be formed by coating before or after stretching described later.
Examples of the polymer layer generally include a functional layer that the polarizing plate may have, and among them, it is preferable to form an easy adhesion layer as the polymer layer. The easy-adhesion layer can be applied by the method described in [0062] to [0070] of WO2012 / 157762.
<横延伸>
本発明の製造方法は、フィルム搬送路の両側に設置された一対のレールに沿って走行するクリップを有するテンター式延伸装置を用いて、未延伸のポリエステルフィルムをクリップで把持しながら横延伸する工程を含み、クリップから横延伸後のポリエステルフィルムを開放するときのフィルム膜面温度を50~120℃に制御する。 <Horizontal stretching>
The production method of the present invention uses a tenter-type stretching device having a clip that travels along a pair of rails installed on both sides of a film conveyance path, and horizontally stretches the unstretched polyester film while holding the clip with the clip. The film surface temperature when the polyester film after transverse stretching is released from the clip is controlled to 50 to 120 ° C.
本発明の製造方法は、フィルム搬送路の両側に設置された一対のレールに沿って走行するクリップを有するテンター式延伸装置を用いて、未延伸のポリエステルフィルムをクリップで把持しながら横延伸する工程を含み、クリップから横延伸後のポリエステルフィルムを開放するときのフィルム膜面温度を50~120℃に制御する。 <Horizontal stretching>
The production method of the present invention uses a tenter-type stretching device having a clip that travels along a pair of rails installed on both sides of a film conveyance path, and horizontally stretches the unstretched polyester film while holding the clip with the clip. The film surface temperature when the polyester film after transverse stretching is released from the clip is controlled to 50 to 120 ° C.
フィルム搬送路の両側に設置された一対のレールに沿って走行するクリップを有するテンター式延伸装置としては特に制限はない。一対のレールは、通常は一対の無端のレールが用いられる。
There is no particular limitation on the tenter type stretching device having a clip that travels along a pair of rails installed on both sides of the film conveyance path. A pair of endless rails is usually used as the pair of rails.
本発明のポリエステルフィルムの製造方法は、押出し後のフィルムを横延伸する。横延伸は、未延伸のポリエステルフィルムをフィルム搬送路に沿って搬送しながら、フィルム搬送方向に直交する方向に行われる。
延伸することにより、フィルム面内方向(以下、面内方向とも言う)のレターデーションReを大きく発現させることができる。特に後述のRe、Rth、Re/Rthの範囲を満たすポリエステルフィルムを達成するには、少なくとも横延伸を行う。縦延伸をその後に行う場合は縦、横の延伸倍率のうち横延伸の延伸倍率を大きくしアンバランスに延伸してもよい。 In the method for producing a polyester film of the present invention, the extruded film is stretched transversely. Transverse stretching is performed in a direction perpendicular to the film transport direction while transporting an unstretched polyester film along the film transport path.
By stretching, retardation Re in the in-plane direction of the film (hereinafter also referred to as the in-plane direction) can be greatly expressed. In particular, in order to achieve a polyester film satisfying the ranges of Re, Rth, and Re / Rth described later, at least lateral stretching is performed. When the longitudinal stretching is performed thereafter, the stretching ratio of the lateral stretching may be increased among the longitudinal and lateral stretching ratios, and the stretching may be performed unbalanced.
延伸することにより、フィルム面内方向(以下、面内方向とも言う)のレターデーションReを大きく発現させることができる。特に後述のRe、Rth、Re/Rthの範囲を満たすポリエステルフィルムを達成するには、少なくとも横延伸を行う。縦延伸をその後に行う場合は縦、横の延伸倍率のうち横延伸の延伸倍率を大きくしアンバランスに延伸してもよい。 In the method for producing a polyester film of the present invention, the extruded film is stretched transversely. Transverse stretching is performed in a direction perpendicular to the film transport direction while transporting an unstretched polyester film along the film transport path.
By stretching, retardation Re in the in-plane direction of the film (hereinafter also referred to as the in-plane direction) can be greatly expressed. In particular, in order to achieve a polyester film satisfying the ranges of Re, Rth, and Re / Rth described later, at least lateral stretching is performed. When the longitudinal stretching is performed thereafter, the stretching ratio of the lateral stretching may be increased among the longitudinal and lateral stretching ratios, and the stretching may be performed unbalanced.
延伸工程における延伸温度は70℃以上170℃以下が好ましく、より好ましくは80℃以上160℃以下、さらに好ましくは90℃以上150℃以下である。ここでいう延伸温度とは延伸開始から終了までの平均温度を指す。
The stretching temperature in the stretching step is preferably 70 ° C. or higher and 170 ° C. or lower, more preferably 80 ° C. or higher and 160 ° C. or lower, and still more preferably 90 ° C. or higher and 150 ° C. or lower. The stretching temperature here refers to an average temperature from the start to the end of stretching.
即ちクリップでフィルムの両端を把持し、加熱しながらクリップ間を拡幅することで達成できる。横延伸倍率は、2~5.5倍であることが好ましく、2.5~5倍であることがより好ましく、3~4.5倍であることが特に好ましい。
That is, it can be achieved by holding both ends of the film with clips and widening between the clips while heating. The transverse draw ratio is preferably 2 to 5.5 times, more preferably 2.5 to 5 times, and particularly preferably 3 to 4.5 times.
<熱固定>
本発明の製造方法は、横延伸後のポリエステルフィルムをクリップから開放する前に、横延伸後のポリエステルフィルムをテンター内の最高温度まで加熱する熱固定工程を含むことが好ましい。
延伸したあとに結晶化を促すために「熱固定」とよばれる熱処理を行うことが好ましい。これは延伸温度を超える温度で行うことで結晶化を促進し、フィルムの強度を上げることができる。
熱固定では結晶化のために体積収縮する。
熱固定の方法としては、延伸部に熱風を送り出すスリットを、幅方向に平行に数本設ける。このスリットから吹き出す気体の温度を、延伸部より高くすることで達成できる。また、延伸(部)出口付近に熱源(IRヒーター、ハロゲンヒーター等)を設置し、昇温しても良い。 <Heat setting>
The production method of the present invention preferably includes a heat setting step of heating the polyester film after transverse stretching to the maximum temperature in the tenter before releasing the polyester film after transverse stretching from the clip.
In order to promote crystallization after stretching, it is preferable to perform a heat treatment called “heat setting”. This can be performed at a temperature exceeding the stretching temperature to promote crystallization and increase the strength of the film.
In heat setting, volume shrinks due to crystallization.
As a heat fixing method, several slits for sending hot air to the extending portion are provided in parallel to the width direction. This can be achieved by making the temperature of the gas blown out from the slit higher than the stretched portion. Further, a heat source (IR heater, halogen heater, etc.) may be installed near the drawing (part) exit to raise the temperature.
本発明の製造方法は、横延伸後のポリエステルフィルムをクリップから開放する前に、横延伸後のポリエステルフィルムをテンター内の最高温度まで加熱する熱固定工程を含むことが好ましい。
延伸したあとに結晶化を促すために「熱固定」とよばれる熱処理を行うことが好ましい。これは延伸温度を超える温度で行うことで結晶化を促進し、フィルムの強度を上げることができる。
熱固定では結晶化のために体積収縮する。
熱固定の方法としては、延伸部に熱風を送り出すスリットを、幅方向に平行に数本設ける。このスリットから吹き出す気体の温度を、延伸部より高くすることで達成できる。また、延伸(部)出口付近に熱源(IRヒーター、ハロゲンヒーター等)を設置し、昇温しても良い。 <Heat setting>
The production method of the present invention preferably includes a heat setting step of heating the polyester film after transverse stretching to the maximum temperature in the tenter before releasing the polyester film after transverse stretching from the clip.
In order to promote crystallization after stretching, it is preferable to perform a heat treatment called “heat setting”. This can be performed at a temperature exceeding the stretching temperature to promote crystallization and increase the strength of the film.
In heat setting, volume shrinks due to crystallization.
As a heat fixing method, several slits for sending hot air to the extending portion are provided in parallel to the width direction. This can be achieved by making the temperature of the gas blown out from the slit higher than the stretched portion. Further, a heat source (IR heater, halogen heater, etc.) may be installed near the drawing (part) exit to raise the temperature.
熱固定の好ましい温度は100℃以上250℃以下が好ましく、より好ましくは150℃以上245℃以下である。
The preferred temperature for heat setting is preferably from 100 ° C. to 250 ° C., more preferably from 150 ° C. to 245 ° C.
この時、熱処理と同時に緩和(フィルムを縮ませる)ことが好ましく、TD(横方向)、MD(縦方向)の少なくとも一方に行うことが好ましい。
このような緩和は、例えばテンターにパンタグラフ状のチャックを使用し、パンタグラフの間隔を縮めても良く、クリックを電磁石上で駆動させ、この速度を低下させることでも達成できる。
縦緩和は120℃以上230以下、より好ましくは130℃以上220℃以下、さらに好ましくは140℃以上210℃以下で行うことが上記スリキズ抑制の観点から好ましい。縦緩和により、幅方向延伸においてRe/Rthを上昇させる効果もある。これは横延伸中に縦方向を緩めることで、横配向を促しReを大きくし易いためである。緩和量は、縦緩和は、1%以上10%以下の緩和であることがポリエステルフィルムにスリキズの発生を抑制する観点から好ましく、より好ましくは2%以上8%以下、さらに好ましくは3%以上7%以下である。この好ましい範囲の下限値以上であれば上記効果が出難く易く、スリキズが発生し難くなる。一方、この好ましい範囲の上限値以下であれば弛みが発生し難くなり、延伸機と接触し難くなり、スリキズが発生し難くなる。 At this time, it is preferable to relax (shrink the film) simultaneously with the heat treatment, and it is preferable to perform at least one of TD (transverse direction) and MD (vertical direction).
Such relaxation can be achieved, for example, by using a pantograph-like chuck for the tenter, reducing the interval between the pantographs, and driving the click on the electromagnet to reduce the speed.
Longitudinal relaxation is preferably performed at 120 ° C. or higher and 230 or lower, more preferably 130 ° C. or higher and 220 ° C. or lower, and further preferably 140 ° C. or higher and 210 ° C. or lower from the viewpoint of suppression of scratches. Longitudinal relaxation also has the effect of increasing Re / Rth in widthwise stretching. This is because loosening the longitudinal direction during transverse stretching facilitates lateral orientation and easily increases Re. The amount of relaxation is preferably 1% or more and 10% or less from the viewpoint of suppressing generation of scratches on the polyester film, more preferably 2% or more and 8% or less, and even more preferably 3% or more and 7%. % Or less. If it is more than the lower limit value of this preferable range, the above-mentioned effect is difficult to occur and scratches are hardly generated. On the other hand, if it is less than or equal to the upper limit of this preferred range, it will be difficult for slack to occur, it will be difficult to come into contact with a stretching machine, and scratches will not easily occur.
このような緩和は、例えばテンターにパンタグラフ状のチャックを使用し、パンタグラフの間隔を縮めても良く、クリックを電磁石上で駆動させ、この速度を低下させることでも達成できる。
縦緩和は120℃以上230以下、より好ましくは130℃以上220℃以下、さらに好ましくは140℃以上210℃以下で行うことが上記スリキズ抑制の観点から好ましい。縦緩和により、幅方向延伸においてRe/Rthを上昇させる効果もある。これは横延伸中に縦方向を緩めることで、横配向を促しReを大きくし易いためである。緩和量は、縦緩和は、1%以上10%以下の緩和であることがポリエステルフィルムにスリキズの発生を抑制する観点から好ましく、より好ましくは2%以上8%以下、さらに好ましくは3%以上7%以下である。この好ましい範囲の下限値以上であれば上記効果が出難く易く、スリキズが発生し難くなる。一方、この好ましい範囲の上限値以下であれば弛みが発生し難くなり、延伸機と接触し難くなり、スリキズが発生し難くなる。 At this time, it is preferable to relax (shrink the film) simultaneously with the heat treatment, and it is preferable to perform at least one of TD (transverse direction) and MD (vertical direction).
Such relaxation can be achieved, for example, by using a pantograph-like chuck for the tenter, reducing the interval between the pantographs, and driving the click on the electromagnet to reduce the speed.
Longitudinal relaxation is preferably performed at 120 ° C. or higher and 230 or lower, more preferably 130 ° C. or higher and 220 ° C. or lower, and further preferably 140 ° C. or higher and 210 ° C. or lower from the viewpoint of suppression of scratches. Longitudinal relaxation also has the effect of increasing Re / Rth in widthwise stretching. This is because loosening the longitudinal direction during transverse stretching facilitates lateral orientation and easily increases Re. The amount of relaxation is preferably 1% or more and 10% or less from the viewpoint of suppressing generation of scratches on the polyester film, more preferably 2% or more and 8% or less, and even more preferably 3% or more and 7%. % Or less. If it is more than the lower limit value of this preferable range, the above-mentioned effect is difficult to occur and scratches are hardly generated. On the other hand, if it is less than or equal to the upper limit of this preferred range, it will be difficult for slack to occur, it will be difficult to come into contact with a stretching machine, and scratches will not easily occur.
横方向の緩和温度は上述の熱固定温度の範囲が好ましく、熱固定とおなじ温度でも高くても低くても構わない。
横緩和量も縦緩和量と同じ範囲が好ましい。横緩和は拡幅したクリックの幅を縮めることで達成できる。 The lateral relaxation temperature is preferably in the range of the above-mentioned heat setting temperature, and may be the same as that of heat setting, or may be high or low.
The lateral relaxation amount is preferably in the same range as the longitudinal relaxation amount. Lateral relaxation can be achieved by reducing the width of the widened click.
横緩和量も縦緩和量と同じ範囲が好ましい。横緩和は拡幅したクリックの幅を縮めることで達成できる。 The lateral relaxation temperature is preferably in the range of the above-mentioned heat setting temperature, and may be the same as that of heat setting, or may be high or low.
The lateral relaxation amount is preferably in the same range as the longitudinal relaxation amount. Lateral relaxation can be achieved by reducing the width of the widened click.
上記延伸、熱固定により、本発明のポリエステルフィルムのRe、Rth、Re/Rthを達成できやすくなる。すなわち、これらの方法で延伸、熱固定を行うことにより虹むら低減の効果を発現する本発明のポリエステルフィルムを形成しやすい。
By the above stretching and heat setting, Re, Rth and Re / Rth of the polyester film of the present invention can be easily achieved. That is, it is easy to form the polyester film of the present invention that exhibits the effect of reducing rainbow unevenness by performing stretching and heat setting by these methods.
<冷却>
本発明の製造方法は、熱固定後のポリエステルフィルムをクリップから開放する前に、熱固定後のポリエステルフィルムを冷却する工程を含むことが好ましい。延伸後、好ましくは熱固定後のポリエステルフィルムは、クリップから開放される前に冷却されることが、クリップから横延伸後のポリエステルフィルムを開放するときのクリップの温度を低下しやすくする観点から、好ましい。
熱固定後のポリエステルフィルムの冷却温度としては、80℃以下が好ましく、70℃以下がより好ましく、60℃以下が特に好ましい。
熱固定後のポリエステルフィルムを冷却する方法としては、具体的には冷風をポリエステルフィルムに当てる方法が挙げることができる。 <Cooling>
It is preferable that the manufacturing method of this invention includes the process of cooling the polyester film after heat setting, before releasing the polyester film after heat setting from a clip. From the viewpoint of easily reducing the temperature of the clip when the polyester film after stretching, preferably the heat-set polyester film is cooled before being released from the clip, when the polyester film after transverse stretching is released from the clip, preferable.
The cooling temperature of the polyester film after heat setting is preferably 80 ° C. or less, more preferably 70 ° C. or less, and particularly preferably 60 ° C. or less.
Specific examples of the method for cooling the polyester film after heat setting include a method in which cold air is applied to the polyester film.
本発明の製造方法は、熱固定後のポリエステルフィルムをクリップから開放する前に、熱固定後のポリエステルフィルムを冷却する工程を含むことが好ましい。延伸後、好ましくは熱固定後のポリエステルフィルムは、クリップから開放される前に冷却されることが、クリップから横延伸後のポリエステルフィルムを開放するときのクリップの温度を低下しやすくする観点から、好ましい。
熱固定後のポリエステルフィルムの冷却温度としては、80℃以下が好ましく、70℃以下がより好ましく、60℃以下が特に好ましい。
熱固定後のポリエステルフィルムを冷却する方法としては、具体的には冷風をポリエステルフィルムに当てる方法が挙げることができる。 <Cooling>
It is preferable that the manufacturing method of this invention includes the process of cooling the polyester film after heat setting, before releasing the polyester film after heat setting from a clip. From the viewpoint of easily reducing the temperature of the clip when the polyester film after stretching, preferably the heat-set polyester film is cooled before being released from the clip, when the polyester film after transverse stretching is released from the clip, preferable.
The cooling temperature of the polyester film after heat setting is preferably 80 ° C. or less, more preferably 70 ° C. or less, and particularly preferably 60 ° C. or less.
Specific examples of the method for cooling the polyester film after heat setting include a method in which cold air is applied to the polyester film.
<クリップからのフィルムの開放>
本発明の製造方法は、クリップから横延伸後のポリエステルフィルムを開放するときのフィルム膜面温度を50~120℃に制御する。50℃以上であるとテンター出口でフィルムが破断し難くなる。120℃以下であるとクリップ開放後にフィルムが大きく収縮し過ぎず、フィルムの平面性が良好となる。
クリップから横延伸後のポリエステルフィルムを開放するときのフィルム膜面温度は55℃以上110℃以下が好ましく、60℃以上100℃以下が更に好ましい。 <Release film from clip>
In the production method of the present invention, the film surface temperature when the polyester film after transverse stretching is released from the clip is controlled to 50 to 120 ° C. When it is 50 ° C. or higher, the film is difficult to break at the tenter exit. When the temperature is 120 ° C. or lower, the film does not shrink too much after the clip is released, and the flatness of the film becomes good.
The film film surface temperature when opening the polyester film after transverse stretching from the clip is preferably 55 ° C. or higher and 110 ° C. or lower, and more preferably 60 ° C. or higher and 100 ° C. or lower.
本発明の製造方法は、クリップから横延伸後のポリエステルフィルムを開放するときのフィルム膜面温度を50~120℃に制御する。50℃以上であるとテンター出口でフィルムが破断し難くなる。120℃以下であるとクリップ開放後にフィルムが大きく収縮し過ぎず、フィルムの平面性が良好となる。
クリップから横延伸後のポリエステルフィルムを開放するときのフィルム膜面温度は55℃以上110℃以下が好ましく、60℃以上100℃以下が更に好ましい。 <Release film from clip>
In the production method of the present invention, the film surface temperature when the polyester film after transverse stretching is released from the clip is controlled to 50 to 120 ° C. When it is 50 ° C. or higher, the film is difficult to break at the tenter exit. When the temperature is 120 ° C. or lower, the film does not shrink too much after the clip is released, and the flatness of the film becomes good.
The film film surface temperature when opening the polyester film after transverse stretching from the clip is preferably 55 ° C. or higher and 110 ° C. or lower, and more preferably 60 ° C. or higher and 100 ° C. or lower.
本発明の製造方法では、クリップから横延伸後のポリエステルフィルムを開放するときの一対のレール間の距離を、横延伸ゾーン以降の最短の一対のレール間距離に対し、0.1~5%の範囲で広くすることが好ましい。クリップから横延伸後のポリエステルフィルムを開放するときの一対のレール間の距離を、横延伸ゾーン以降の最短の一対のレール間距離に対して広くする範囲が0.1%以上であるとTD方向への破断を抑制しやすくなる。クリップから横延伸後のポリエステルフィルムを開放するときの一対のレール間の距離を、横延伸ゾーン以降の最短の一対のレール間距離に対して広くする範囲が5%以下であるとMD方向への破断を抑制しやすくなる。
クリップから横延伸後のポリエステルフィルムを開放するときの一対のレール間の距離を、横延伸ゾーン以降の最短の一対のレール間距離に対し、0.2%~4%の範囲で広くすることがより好ましく、0.3%~3.5%の範囲で広くすることが更に好ましく、0.3%~3%の範囲で広くすることが最も好ましい。 In the production method of the present invention, the distance between the pair of rails when the polyester film after transverse stretching is released from the clip is 0.1 to 5% of the distance between the shortest pair of rails after the transverse stretching zone. It is preferable to widen the range. TD direction when the range in which the distance between the pair of rails when the polyester film after transverse stretching is released from the clip is wider than the shortest distance between the pair of rails after the transverse stretching zone is 0.1% or more It becomes easy to suppress breakage. When the distance between the pair of rails when the polyester film after transverse stretching is released from the clip is 5% or less relative to the distance between the shortest pair of rails after the transverse stretching zone is 5% or less, It becomes easy to suppress breakage.
The distance between the pair of rails when the polyester film after transverse stretching is released from the clip may be increased within a range of 0.2% to 4% with respect to the shortest distance between the pair of rails after the transverse stretching zone. More preferably, it is more preferably in the range of 0.3% to 3.5%, and most preferably in the range of 0.3% to 3%.
クリップから横延伸後のポリエステルフィルムを開放するときの一対のレール間の距離を、横延伸ゾーン以降の最短の一対のレール間距離に対し、0.2%~4%の範囲で広くすることがより好ましく、0.3%~3.5%の範囲で広くすることが更に好ましく、0.3%~3%の範囲で広くすることが最も好ましい。 In the production method of the present invention, the distance between the pair of rails when the polyester film after transverse stretching is released from the clip is 0.1 to 5% of the distance between the shortest pair of rails after the transverse stretching zone. It is preferable to widen the range. TD direction when the range in which the distance between the pair of rails when the polyester film after transverse stretching is released from the clip is wider than the shortest distance between the pair of rails after the transverse stretching zone is 0.1% or more It becomes easy to suppress breakage. When the distance between the pair of rails when the polyester film after transverse stretching is released from the clip is 5% or less relative to the distance between the shortest pair of rails after the transverse stretching zone is 5% or less, It becomes easy to suppress breakage.
The distance between the pair of rails when the polyester film after transverse stretching is released from the clip may be increased within a range of 0.2% to 4% with respect to the shortest distance between the pair of rails after the transverse stretching zone. More preferably, it is more preferably in the range of 0.3% to 3.5%, and most preferably in the range of 0.3% to 3%.
製膜完了後(上記横延伸およびクリップからの開放工程後)のポリエステルフィルムの厚みは20~150μmが好ましく、30~130μmがより好ましく、35~110μm以下が更に好ましい。この範囲とすることが好ましい理由は、本発明のポリエステルフィルムの膜厚をこの範囲とすることが好ましい理由と同じである。
The thickness of the polyester film after completion of film formation (after the transverse stretching and releasing step from the clip) is preferably 20 to 150 μm, more preferably 30 to 130 μm, and further preferably 35 to 110 μm or less. The reason why this range is preferable is the same as the reason why the thickness of the polyester film of the present invention is preferably within this range.
<フィルムの回収、スリット、巻取り>
上記横延伸およびクリップからの開放工程が終わった後、フィルムを必要に応じてトリミング、スリット、厚み出し加工して、回収のために巻き取る。
本発明の製造方法では、クリップから開放後のフィルム幅が1~8mであることがフィルム製品幅を効率よく確保し、かつ装置サイズが過大にならない観点から好ましく、2~6mであることがより好ましく、3~5mであることが特に好ましい。精度の必要な光学用フィルムは通常3m未満で製膜するが、本発明では上記のような広幅で製膜することが好ましい。
また、このような幅広製膜したフィルムを好ましくは2本以上6本以下、より好ましくは2本以上5本以下、さらに好ましくは3本以上4本以下にスリットしてから、巻き取ってもよい。 <Recovery of film, slit, winding>
After the transverse stretching and the step of releasing from the clip, the film is trimmed, slit, and thickened as necessary, and wound for recovery.
In the production method of the present invention, the film width after being released from the clip is preferably 1 to 8 m from the viewpoint of efficiently ensuring the width of the film product and preventing the apparatus size from becoming excessive, and more preferably 2 to 6 m. It is preferably 3 to 5 m. An optical film requiring accuracy is usually formed with a thickness of less than 3 m, but in the present invention, it is preferable to form a film with a wide width as described above.
In addition, such a wide-film-formed film is preferably slit into 2 or more, 6 or less, more preferably 2 or more and 5 or less, and even more preferably 3 or more and 4 or less, and the film may be wound up. .
上記横延伸およびクリップからの開放工程が終わった後、フィルムを必要に応じてトリミング、スリット、厚み出し加工して、回収のために巻き取る。
本発明の製造方法では、クリップから開放後のフィルム幅が1~8mであることがフィルム製品幅を効率よく確保し、かつ装置サイズが過大にならない観点から好ましく、2~6mであることがより好ましく、3~5mであることが特に好ましい。精度の必要な光学用フィルムは通常3m未満で製膜するが、本発明では上記のような広幅で製膜することが好ましい。
また、このような幅広製膜したフィルムを好ましくは2本以上6本以下、より好ましくは2本以上5本以下、さらに好ましくは3本以上4本以下にスリットしてから、巻き取ってもよい。 <Recovery of film, slit, winding>
After the transverse stretching and the step of releasing from the clip, the film is trimmed, slit, and thickened as necessary, and wound for recovery.
In the production method of the present invention, the film width after being released from the clip is preferably 1 to 8 m from the viewpoint of efficiently ensuring the width of the film product and preventing the apparatus size from becoming excessive, and more preferably 2 to 6 m. It is preferably 3 to 5 m. An optical film requiring accuracy is usually formed with a thickness of less than 3 m, but in the present invention, it is preferable to form a film with a wide width as described above.
In addition, such a wide-film-formed film is preferably slit into 2 or more, 6 or less, more preferably 2 or more and 5 or less, and even more preferably 3 or more and 4 or less, and the film may be wound up. .
またスリット後、両端に厚み出し加工(ナーリング付与)することが好ましい。
巻取りは直径70mm以上600mm以下の巻き芯に1000m以上10000m以下巻きつけることが好ましい。 Moreover, after slitting, it is preferable to process the thickness at both ends (providing knurling).
The winding is preferably performed at a diameter of not less than 1000 m and not more than 10000 m on a core having a diameter of not less than 70 mm and not more than 600 mm.
巻取りは直径70mm以上600mm以下の巻き芯に1000m以上10000m以下巻きつけることが好ましい。 Moreover, after slitting, it is preferable to process the thickness at both ends (providing knurling).
The winding is preferably performed at a diameter of not less than 1000 m and not more than 10000 m on a core having a diameter of not less than 70 mm and not more than 600 mm.
本発明の製造方法では、クリップから横延伸後のポリエステルフィルムを開放した後に、クリップから開放後のポリエステルフィルムに対して500~5000kN/m2のフィルム搬送方向へのフィルムの断面積あたりの張力をかけることが好ましい。クリップから開放後のポリエステルフィルムに対してかける、フィルム搬送方向へのフィルムの断面積あたりの張力が500kN/m2を以上であるとフィルムが弛むことなく、フィルム平面性が良好となり、フィルム表面のスリキズ等の故障も改善できる。クリップから開放後のポリエステルフィルムに対してかける、フィルム搬送方向へのフィルムの断面積あたりの張力が5000kN/m2以上であるとフィルムが破断し難くなる。
クリップから開放後のポリエステルフィルムに対してかける、フィルム搬送方向へのフィルムの断面積あたりの張力(巻取り張力)は、800kN/m2~4000kN/m2がより好ましく、1000kN/m2~3000kN/m2が更に好ましい。 In the production method of the present invention, after releasing the laterally stretched polyester film from the clip, the tension per film cross-sectional area in the film transport direction of 500 to 5000 kN / m 2 is applied to the polyester film after being released from the clip. It is preferable to apply. When the tension per cross-sectional area of the film in the film transport direction applied to the polyester film after opening from the clip is 500 kN / m 2 or more, the film does not loosen, the film flatness is improved, and the film surface Failures such as scratches can be improved. When the tension per cross-sectional area of the film in the film transport direction applied to the polyester film after being released from the clip is 5000 kN / m 2 or more, the film is difficult to break.
Subjecting the polyester film after released from the clips, tension (winding tension) per cross-sectional area of the film to the film transport direction is more preferably 800kN / m 2 ~ 4000kN / m 2, 1000kN / m 2 ~ 3000kN / M 2 is more preferable.
クリップから開放後のポリエステルフィルムに対してかける、フィルム搬送方向へのフィルムの断面積あたりの張力(巻取り張力)は、800kN/m2~4000kN/m2がより好ましく、1000kN/m2~3000kN/m2が更に好ましい。 In the production method of the present invention, after releasing the laterally stretched polyester film from the clip, the tension per film cross-sectional area in the film transport direction of 500 to 5000 kN / m 2 is applied to the polyester film after being released from the clip. It is preferable to apply. When the tension per cross-sectional area of the film in the film transport direction applied to the polyester film after opening from the clip is 500 kN / m 2 or more, the film does not loosen, the film flatness is improved, and the film surface Failures such as scratches can be improved. When the tension per cross-sectional area of the film in the film transport direction applied to the polyester film after being released from the clip is 5000 kN / m 2 or more, the film is difficult to break.
Subjecting the polyester film after released from the clips, tension (winding tension) per cross-sectional area of the film to the film transport direction is more preferably 800kN / m 2 ~ 4000kN / m 2, 1000kN / m 2 ~ 3000kN / M 2 is more preferable.
このようなフィルム搬送方向へのフィルムの断面積あたりの張力をかける方法としては、巻取り張力を制御する方法を挙げることができる。巻取り張力は、巻取機の上流側にダンサーロールを設けダンサーロールの錘の重さで調整する方法や、巻取機の上流側に張力計を設置し、張力値が規定の値になるように巻取速度を調整する方法等により制御することができる。
クリップから開放後のポリエステルフィルムに対してかける、フィルム搬送方向への張力(巻取り張力)は目的とする巻取り張力と、フィルムの厚みと幅に応じて適宜調整することができる。 Examples of a method for applying tension per cross-sectional area of the film in the film transport direction include a method for controlling the winding tension. Winding tension can be adjusted by adjusting the weight of the weight of the dancer roll by installing a dancer roll upstream of the winder, or by installing a tension meter on the upstream side of the winder. Thus, it can be controlled by a method of adjusting the winding speed.
The tension (winding tension) applied to the polyester film after being released from the clip can be appropriately adjusted according to the target winding tension and the thickness and width of the film.
クリップから開放後のポリエステルフィルムに対してかける、フィルム搬送方向への張力(巻取り張力)は目的とする巻取り張力と、フィルムの厚みと幅に応じて適宜調整することができる。 Examples of a method for applying tension per cross-sectional area of the film in the film transport direction include a method for controlling the winding tension. Winding tension can be adjusted by adjusting the weight of the weight of the dancer roll by installing a dancer roll upstream of the winder, or by installing a tension meter on the upstream side of the winder. Thus, it can be controlled by a method of adjusting the winding speed.
The tension (winding tension) applied to the polyester film after being released from the clip can be appropriately adjusted according to the target winding tension and the thickness and width of the film.
また、巻き取る前にマスキングフィルムを貼り合せることも好ましい。
It is also preferable to bond a masking film before winding.
[ポリエステルフィルム]
本発明のポリエステルフィルムは、本発明のポリエステルフィルムの製造方法で製造されたポリエステルフィルムである。 [Polyester film]
The polyester film of the present invention is a polyester film produced by the method for producing a polyester film of the present invention.
本発明のポリエステルフィルムは、本発明のポリエステルフィルムの製造方法で製造されたポリエステルフィルムである。 [Polyester film]
The polyester film of the present invention is a polyester film produced by the method for producing a polyester film of the present invention.
<ポリエステルフィルムフィルムの特性>
-長手方向の熱収縮率-
本発明のポリエステルフィルムを150℃で30分加熱した後の長手方向(MD方向)の熱収縮率(MD熱収縮率)は3%以下が好ましく、2.5%以下がより好ましく、2%以下が更に好ましく、1.5%以下が最も好ましい。
本発明のポリエステルフィルムを150℃で30分加熱した後の長手方向の熱収縮率が3%以下であると、偏光板加工等の後の加工工程でフィルムにシワが生じ難く、フィルムに反りが生じ難い。 <Characteristics of polyester film>
-Thermal shrinkage in the longitudinal direction-
The heat shrinkage (MD heat shrinkage) in the longitudinal direction (MD direction) after heating the polyester film of the present invention at 150 ° C. for 30 minutes is preferably 3% or less, more preferably 2.5% or less, and 2% or less. Is more preferable, and 1.5% or less is most preferable.
If the polyester film of the present invention has a heat shrinkage in the longitudinal direction after heating at 150 ° C. for 30 minutes of 3% or less, the film is less likely to wrinkle in subsequent processing steps such as polarizing plate processing, and the film is warped. It is hard to occur.
-長手方向の熱収縮率-
本発明のポリエステルフィルムを150℃で30分加熱した後の長手方向(MD方向)の熱収縮率(MD熱収縮率)は3%以下が好ましく、2.5%以下がより好ましく、2%以下が更に好ましく、1.5%以下が最も好ましい。
本発明のポリエステルフィルムを150℃で30分加熱した後の長手方向の熱収縮率が3%以下であると、偏光板加工等の後の加工工程でフィルムにシワが生じ難く、フィルムに反りが生じ難い。 <Characteristics of polyester film>
-Thermal shrinkage in the longitudinal direction-
The heat shrinkage (MD heat shrinkage) in the longitudinal direction (MD direction) after heating the polyester film of the present invention at 150 ° C. for 30 minutes is preferably 3% or less, more preferably 2.5% or less, and 2% or less. Is more preferable, and 1.5% or less is most preferable.
If the polyester film of the present invention has a heat shrinkage in the longitudinal direction after heating at 150 ° C. for 30 minutes of 3% or less, the film is less likely to wrinkle in subsequent processing steps such as polarizing plate processing, and the film is warped. It is hard to occur.
-位相差-
本発明のポリエステルフィルムは、面内方向のレターデーションReは3000~30000nmが好ましく、3500~25000nmがより好ましく、4000~20000nm以下が更に好ましい。Reが3000nmを下回るとパネルにしたときに画面に色むらが生じ難くなり、好ましい。30000nmを越えるフィルムを作るのは原理的に難しい。ポリエステルフィルムのReが30000nmを超えても虹むら低減効果は飽和するだけであり、本発明の効果は得られる。
虹むらは、大きな複屈折、具体的にはReが500nm以上3000nm未満のポリマーフィルムを保護フィルムとして有する偏光板にバックライト光源から斜め方向に入射した光を視認側から観察した際に現われ、特に輝線スペクトルを含む、例えば冷陰極管のような光源をバックライトとする液晶表示装置において顕著である。
ここで、連続的な発光スペクトルを有する白色光源をバックライト光源として使用する場合、本発明のポリエステルフィルムのReは上記範囲であることが、虹むらが視認されにくくなるため好ましい。 -Phase difference-
In the polyester film of the present invention, the in-plane retardation Re is preferably 3000 to 30000 nm, more preferably 3500 to 25000 nm, and still more preferably 4000 to 20000 nm or less. When Re is less than 3000 nm, color unevenness on the screen is less likely to occur when a panel is used, which is preferable. In principle, it is difficult to produce a film exceeding 30000 nm. Even if Re of the polyester film exceeds 30000 nm, the effect of reducing rainbow unevenness is only saturated, and the effect of the present invention can be obtained.
Rainbow spot appears when observing light incident obliquely from a backlight source on a polarizing plate having a large birefringence, specifically, a polymer film having Re of 500 nm or more and less than 3000 nm as a protective film. This is conspicuous in a liquid crystal display device including a bright line spectrum and having a light source such as a cold cathode tube as a backlight.
Here, when a white light source having a continuous emission spectrum is used as a backlight light source, it is preferable that the Re of the polyester film of the present invention is in the above range because rainbow unevenness is hardly visible.
本発明のポリエステルフィルムは、面内方向のレターデーションReは3000~30000nmが好ましく、3500~25000nmがより好ましく、4000~20000nm以下が更に好ましい。Reが3000nmを下回るとパネルにしたときに画面に色むらが生じ難くなり、好ましい。30000nmを越えるフィルムを作るのは原理的に難しい。ポリエステルフィルムのReが30000nmを超えても虹むら低減効果は飽和するだけであり、本発明の効果は得られる。
虹むらは、大きな複屈折、具体的にはReが500nm以上3000nm未満のポリマーフィルムを保護フィルムとして有する偏光板にバックライト光源から斜め方向に入射した光を視認側から観察した際に現われ、特に輝線スペクトルを含む、例えば冷陰極管のような光源をバックライトとする液晶表示装置において顕著である。
ここで、連続的な発光スペクトルを有する白色光源をバックライト光源として使用する場合、本発明のポリエステルフィルムのReは上記範囲であることが、虹むらが視認されにくくなるため好ましい。 -Phase difference-
In the polyester film of the present invention, the in-plane retardation Re is preferably 3000 to 30000 nm, more preferably 3500 to 25000 nm, and still more preferably 4000 to 20000 nm or less. When Re is less than 3000 nm, color unevenness on the screen is less likely to occur when a panel is used, which is preferable. In principle, it is difficult to produce a film exceeding 30000 nm. Even if Re of the polyester film exceeds 30000 nm, the effect of reducing rainbow unevenness is only saturated, and the effect of the present invention can be obtained.
Rainbow spot appears when observing light incident obliquely from a backlight source on a polarizing plate having a large birefringence, specifically, a polymer film having Re of 500 nm or more and less than 3000 nm as a protective film. This is conspicuous in a liquid crystal display device including a bright line spectrum and having a light source such as a cold cathode tube as a backlight.
Here, when a white light source having a continuous emission spectrum is used as a backlight light source, it is preferable that the Re of the polyester film of the present invention is in the above range because rainbow unevenness is hardly visible.
本発明のポリエステルフィルムは、厚み方向レターデーションRthは3000~30000nm以下が好ましく、3500~25000nmがより好ましく、4000~20000nm以下が更に好ましい。Rthが3000nmを下回るフィルムを作るのは原理的に難しい。30000nmを以下であると、パネルにしたときに画面に色むらが生じ難くなり、好ましい。
The polyester film of the present invention has a thickness direction retardation Rth of preferably 3000 to 30000 nm, more preferably 3500 to 25000 nm, and further preferably 4000 to 20000 nm. In principle, it is difficult to make a film with Rth below 3000 nm. When it is 30000 nm or less, color unevenness on the screen hardly occurs when a panel is used, which is preferable.
本発明のポリエステルフィルムは、面内方向のレターデーションReと厚み方向レターデーションRthとの比(Re/Rth)は0.5~2.5が好ましく、0.6~2.2がより好ましく、0.7~2.0が更に好ましい。Re/Rthが0.5以上であると、本発明のポリエステルフィルムを偏光板保護フィルムとして液晶パネルに組み込んだときに画面に色むらが生じ難くなり、好ましい。2.5を越えるフィルムを作るのは原理的に難しい。また、Re/Rthが1.2を超えても虹むらの視野角依存性低減の効果は飽和するだけであり、Re/Rthが1.2以下であれば力学特性の低下が少なく、スリキズが発生し難く、好ましい。
In the polyester film of the present invention, the ratio (Re / Rth) between the in-plane retardation Re and the thickness direction retardation Rth is preferably 0.5 to 2.5, more preferably 0.6 to 2.2. More preferably, it is 0.7 to 2.0. When Re / Rth is 0.5 or more, color unevenness hardly occurs on the screen when the polyester film of the present invention is incorporated as a polarizing plate protective film in a liquid crystal panel, which is preferable. In principle, it is difficult to make a film exceeding 2.5. Moreover, even if Re / Rth exceeds 1.2, the effect of reducing the viewing angle dependency of rainbow spot is only saturated, and if Re / Rth is 1.2 or less, there is little decrease in mechanical properties, and there is no scratch. It is difficult to generate and is preferable.
虹むらは、Re、Rthの関係を表すNz値を適切な値とすることでも低減することができ、虹状ムラの低減効果および製造適性より、Nz値は絶対値が2.0以下であることが好ましく、0.5~2.0であることがより好ましく、0.5~1.5であることがさらに好ましい。
虹状ムラは入射光により発生する為、通常は白表示時で観察される。
本発明のポリエステルフィルムの面内位相差値Reは、下記式(4)で表される。 Rainbow spot unevenness can also be reduced by setting the Nz value representing the relationship between Re and Rth to an appropriate value, and the absolute value of the Nz value is 2.0 or less due to the effect of reducing rainbow-like unevenness and manufacturing suitability. It is preferably 0.5 to 2.0, more preferably 0.5 to 1.5.
Since iridescent unevenness is caused by incident light, it is usually observed during white display.
The in-plane retardation value Re of the polyester film of the present invention is represented by the following formula (4).
虹状ムラは入射光により発生する為、通常は白表示時で観察される。
本発明のポリエステルフィルムの面内位相差値Reは、下記式(4)で表される。 Rainbow spot unevenness can also be reduced by setting the Nz value representing the relationship between Re and Rth to an appropriate value, and the absolute value of the Nz value is 2.0 or less due to the effect of reducing rainbow-like unevenness and manufacturing suitability. It is preferably 0.5 to 2.0, more preferably 0.5 to 1.5.
Since iridescent unevenness is caused by incident light, it is usually observed during white display.
The in-plane retardation value Re of the polyester film of the present invention is represented by the following formula (4).
Re=(nx-ny)×y1・・・(4)
ここで、nxはポリエステルフィルムの面内遅相軸方向の屈折率であり、nyはポリエステルフィルムの面内進相軸方向(面内遅相軸方向と直交する方向)の屈折率であり、y1はポリエステルフィルムの厚みである。 Re = (nx−ny) × y 1 (4)
Here, nx is the refractive index in the in-plane slow axis direction of the polyester film, ny is the refractive index in the in-plane fast axis direction (direction perpendicular to the in-plane slow axis direction) of the polyester film, and y 1 is the thickness of the polyester film.
ここで、nxはポリエステルフィルムの面内遅相軸方向の屈折率であり、nyはポリエステルフィルムの面内進相軸方向(面内遅相軸方向と直交する方向)の屈折率であり、y1はポリエステルフィルムの厚みである。 Re = (nx−ny) × y 1 (4)
Here, nx is the refractive index in the in-plane slow axis direction of the polyester film, ny is the refractive index in the in-plane fast axis direction (direction perpendicular to the in-plane slow axis direction) of the polyester film, and y 1 is the thickness of the polyester film.
本発明のポリエステルフィルムの厚み方向のレターデーションRthは下記式(5)で表される。
The retardation Rth in the thickness direction of the polyester film of the present invention is represented by the following formula (5).
Rth={(nx+ny)/2-nz}×y1・・・(5)
ここでnzはポリエステルフィルムの厚み方向の屈折率である。 Rth = {(nx + ny) / 2−nz} × y 1 (5)
Here, nz is the refractive index in the thickness direction of the polyester film.
ここでnzはポリエステルフィルムの厚み方向の屈折率である。 Rth = {(nx + ny) / 2−nz} × y 1 (5)
Here, nz is the refractive index in the thickness direction of the polyester film.
なお、ポリエステルフィルムのNz値は、下記式(6)で表される。
Note that the Nz value of the polyester film is represented by the following formula (6).
Nz=(nx-nz)/(nx-ny)・・・(6)
Nz = (nx−nz) / (nx−ny) (6)
本明細書中において、波長λnmでのRe、Rth及びNzは次のようにして測定できる。
二枚の偏光板を用いて、ポリエステルフィルムの配向軸方向を求め、配向軸方向が直交するように4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(Nx,Ny)、及び厚さ方向の屈折率(Nz)をアッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)によって求め、二軸の屈折率差の絶対値(|Nx-Ny|)を屈折率の異方性(△Nxy)とした。ポリエステルフィルムの厚みy1(nm)は電気マイクロメータ(ファインリューフ社製、ミリトロン1245D)を用いて測定し、単位をnmに換算した。測定したNx、Ny、Nz、y1の値からRe、Rth、Nzをそれぞれ算出した。 In this specification, Re, Rth, and Nz at a wavelength λnm can be measured as follows.
Using two polarizing plates, the orientation axis direction of the polyester film was determined, and a 4 cm × 2 cm rectangle was cut out so that the orientation axis directions were perpendicular to each other, and used as a measurement sample. For this sample, the biaxial refractive index (Nx, Ny) perpendicular to each other and the refractive index (Nz) in the thickness direction were determined by an Abbe refractometer (Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm). The absolute value of the refractive index difference (| Nx−Ny |) was defined as the refractive index anisotropy (ΔNxy). The thickness y 1 (nm) of the polyester film was measured using an electric micrometer (manufactured by Fine Reef, Millitron 1245D), and the unit was converted to nm. Measured Nx, Ny, Nz, Re from the value of y 1, Rth, Nz was calculated.
二枚の偏光板を用いて、ポリエステルフィルムの配向軸方向を求め、配向軸方向が直交するように4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(Nx,Ny)、及び厚さ方向の屈折率(Nz)をアッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)によって求め、二軸の屈折率差の絶対値(|Nx-Ny|)を屈折率の異方性(△Nxy)とした。ポリエステルフィルムの厚みy1(nm)は電気マイクロメータ(ファインリューフ社製、ミリトロン1245D)を用いて測定し、単位をnmに換算した。測定したNx、Ny、Nz、y1の値からRe、Rth、Nzをそれぞれ算出した。 In this specification, Re, Rth, and Nz at a wavelength λnm can be measured as follows.
Using two polarizing plates, the orientation axis direction of the polyester film was determined, and a 4 cm × 2 cm rectangle was cut out so that the orientation axis directions were perpendicular to each other, and used as a measurement sample. For this sample, the biaxial refractive index (Nx, Ny) perpendicular to each other and the refractive index (Nz) in the thickness direction were determined by an Abbe refractometer (Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm). The absolute value of the refractive index difference (| Nx−Ny |) was defined as the refractive index anisotropy (ΔNxy). The thickness y 1 (nm) of the polyester film was measured using an electric micrometer (manufactured by Fine Reef, Millitron 1245D), and the unit was converted to nm. Measured Nx, Ny, Nz, Re from the value of y 1, Rth, Nz was calculated.
上記のRe、Rthは、フィルムに用いられるポリエステル樹脂の種類、ポリエステル樹脂と添加剤の量、レターデーション発現剤の添加、フィルムの膜厚、フィルムの延伸方向と延伸率等により調整することができる。
本発明のポリエステルフィルムを上記のRe、Rthの範囲に制御する方法は特に制限はないが、例えば延伸法によって達成できる。 The above Re and Rth can be adjusted by the type of polyester resin used in the film, the amount of the polyester resin and the additive, the addition of the retardation enhancer, the film thickness, the stretching direction and the stretching ratio of the film, and the like. .
Although there is no restriction | limiting in particular in the method of controlling the polyester film of this invention to the range of said Re and Rth, For example, it can achieve by the drawing method.
本発明のポリエステルフィルムを上記のRe、Rthの範囲に制御する方法は特に制限はないが、例えば延伸法によって達成できる。 The above Re and Rth can be adjusted by the type of polyester resin used in the film, the amount of the polyester resin and the additive, the addition of the retardation enhancer, the film thickness, the stretching direction and the stretching ratio of the film, and the like. .
Although there is no restriction | limiting in particular in the method of controlling the polyester film of this invention to the range of said Re and Rth, For example, it can achieve by the drawing method.
-膜厚-
本発明のポリエステルフィルムの厚みは、20~150μmが好ましく、30~130μmがより好ましく、35~110μm以下が更に好ましい。20μm以上であるとパネルにしたときに画面に色むらが生じ難くなり、好ましい。150μmを越えるとコストが高く採算性が合わなくなる。 -Film thickness-
The thickness of the polyester film of the present invention is preferably from 20 to 150 μm, more preferably from 30 to 130 μm, still more preferably from 35 to 110 μm. When the thickness is 20 μm or more, color unevenness is unlikely to occur on the panel, which is preferable. If it exceeds 150 μm, the cost is high and the profitability is not suitable.
本発明のポリエステルフィルムの厚みは、20~150μmが好ましく、30~130μmがより好ましく、35~110μm以下が更に好ましい。20μm以上であるとパネルにしたときに画面に色むらが生じ難くなり、好ましい。150μmを越えるとコストが高く採算性が合わなくなる。 -Film thickness-
The thickness of the polyester film of the present invention is preferably from 20 to 150 μm, more preferably from 30 to 130 μm, still more preferably from 35 to 110 μm. When the thickness is 20 μm or more, color unevenness is unlikely to occur on the panel, which is preferable. If it exceeds 150 μm, the cost is high and the profitability is not suitable.
本発明のポリエステルフィルムは、一軸配向であることが好ましい。具体的には、本発明のポリエステルフィルムは、長手方向の屈折率が1.590以下であり、かつ、結晶化度が5%を超えることが好ましい。
本発明のポリエステルフィルムの長手方向の屈折率の好ましい範囲は、未延伸のポリエステルフィルムの長手方向の屈折率の好ましい範囲と同様である。
本発明のポリエステルフィルムの結晶化度は、5%以上であることが好ましく、20%以上であることがより好ましく、30%以上であることが更に好ましい。 The polyester film of the present invention is preferably uniaxially oriented. Specifically, the polyester film of the present invention preferably has a longitudinal refractive index of 1.590 or less and a crystallinity of more than 5%.
The preferable range of the refractive index in the longitudinal direction of the polyester film of the present invention is the same as the preferable range of the refractive index in the longitudinal direction of the unstretched polyester film.
The degree of crystallinity of the polyester film of the present invention is preferably 5% or more, more preferably 20% or more, and still more preferably 30% or more.
本発明のポリエステルフィルムの長手方向の屈折率の好ましい範囲は、未延伸のポリエステルフィルムの長手方向の屈折率の好ましい範囲と同様である。
本発明のポリエステルフィルムの結晶化度は、5%以上であることが好ましく、20%以上であることがより好ましく、30%以上であることが更に好ましい。 The polyester film of the present invention is preferably uniaxially oriented. Specifically, the polyester film of the present invention preferably has a longitudinal refractive index of 1.590 or less and a crystallinity of more than 5%.
The preferable range of the refractive index in the longitudinal direction of the polyester film of the present invention is the same as the preferable range of the refractive index in the longitudinal direction of the unstretched polyester film.
The degree of crystallinity of the polyester film of the present invention is preferably 5% or more, more preferably 20% or more, and still more preferably 30% or more.
<ポリエステルフィルムの層構成、表面処理>
本発明のポリエステルフィルムは、ポリエステル樹脂を含む。
本発明のポリエステルフィルムは、ポリエステル樹脂を主成分とする層の単層フィルムであってもよいし、ポリエステル樹脂を主成分とする層を少なくとも1層有する多層フィルムであってもよい。また、これら単層フィルム又は多層フィルムの両面又は片面に表面処理が施されたものであってもよく、この表面処理は、コロナ処理、ケン化処理、熱処理、紫外線照射、電子線照射等による表面改質であってもよいし、高分子や金属等の塗布や蒸着等による薄膜形成であってもよい。フィルム全体に占めるポリエステル樹脂の質量割合は、通常50質量%以上、好ましくは70質量%以上、より好ましくは90質量%以上である。 <Layer structure of polyester film, surface treatment>
The polyester film of the present invention contains a polyester resin.
The polyester film of the present invention may be a single layer film having a polyester resin as a main component or a multilayer film having at least one layer having a polyester resin as a main component. Moreover, the surface treatment may be performed on both surfaces or one surface of these single layer films or multilayer films, and this surface treatment is performed by corona treatment, saponification treatment, heat treatment, ultraviolet irradiation, electron beam irradiation, or the like. Modification may be sufficient, and thin film formation by application | coating, vapor deposition, etc. of a polymer, a metal, etc. may be sufficient. The mass ratio of the polyester resin in the entire film is usually 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more.
本発明のポリエステルフィルムは、ポリエステル樹脂を含む。
本発明のポリエステルフィルムは、ポリエステル樹脂を主成分とする層の単層フィルムであってもよいし、ポリエステル樹脂を主成分とする層を少なくとも1層有する多層フィルムであってもよい。また、これら単層フィルム又は多層フィルムの両面又は片面に表面処理が施されたものであってもよく、この表面処理は、コロナ処理、ケン化処理、熱処理、紫外線照射、電子線照射等による表面改質であってもよいし、高分子や金属等の塗布や蒸着等による薄膜形成であってもよい。フィルム全体に占めるポリエステル樹脂の質量割合は、通常50質量%以上、好ましくは70質量%以上、より好ましくは90質量%以上である。 <Layer structure of polyester film, surface treatment>
The polyester film of the present invention contains a polyester resin.
The polyester film of the present invention may be a single layer film having a polyester resin as a main component or a multilayer film having at least one layer having a polyester resin as a main component. Moreover, the surface treatment may be performed on both surfaces or one surface of these single layer films or multilayer films, and this surface treatment is performed by corona treatment, saponification treatment, heat treatment, ultraviolet irradiation, electron beam irradiation, or the like. Modification may be sufficient, and thin film formation by application | coating, vapor deposition, etc. of a polymer, a metal, etc. may be sufficient. The mass ratio of the polyester resin in the entire film is usually 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more.
[偏光板]
本発明のポリエステルフィルムは偏光板保護フィルムとして用いることができる。
本発明の偏光板は、偏光性能を有する偏光子と、本発明のポリエステルフィルムを含む。本発明の偏光板は、本発明のポリエステルフィルム以外にセルロースアシレートフィルムなどの偏光板保護フィルムをさらに含んでいてもよい。 [Polarizer]
The polyester film of the present invention can be used as a polarizing plate protective film.
The polarizing plate of the present invention includes a polarizer having polarizing performance and the polyester film of the present invention. The polarizing plate of the present invention may further contain a polarizing plate protective film such as a cellulose acylate film in addition to the polyester film of the present invention.
本発明のポリエステルフィルムは偏光板保護フィルムとして用いることができる。
本発明の偏光板は、偏光性能を有する偏光子と、本発明のポリエステルフィルムを含む。本発明の偏光板は、本発明のポリエステルフィルム以外にセルロースアシレートフィルムなどの偏光板保護フィルムをさらに含んでいてもよい。 [Polarizer]
The polyester film of the present invention can be used as a polarizing plate protective film.
The polarizing plate of the present invention includes a polarizer having polarizing performance and the polyester film of the present invention. The polarizing plate of the present invention may further contain a polarizing plate protective film such as a cellulose acylate film in addition to the polyester film of the present invention.
偏光板の形状は、液晶表示装置にそのまま組み込むことが可能な大きさに切断されたフィルム片の態様の偏光板のみならず、連続生産により、長尺状に作製され、ロール状に巻き上げられた態様(例えば、ロール長2500m以上や3900m以上の態様)の偏光板も含まれる。大画面液晶表示装置用とするためには、偏光板の幅は1470mm以上とすることが好ましい。
The shape of the polarizing plate was not only a polarizing plate in the form of a film piece cut to a size that can be incorporated into a liquid crystal display device as it is, but also produced in a long shape by continuous production and rolled up into a roll shape. A polarizing plate of an embodiment (for example, an embodiment having a roll length of 2500 m or more or 3900 m or more) is also included. In order to use for a large-screen liquid crystal display device, the width of the polarizing plate is preferably 1470 mm or more.
WO2011/162198号公報の[0025]に記載のようにPVAから成る偏光子と本発明のポリエステルフィルムを貼り合せ偏光板を調製することができる。この際、上記易接着層をPVAと接触させることが好ましい。さらに、WO2011/162198号公報の[0024]に記載のように、リターデーションを有する保護膜と組合せることも好ましい。
As described in [0025] of WO2011 / 162198, a polarizer comprising PVA and the polyester film of the present invention can be bonded to prepare a polarizing plate. Under the present circumstances, it is preferable to make the said easily bonding layer contact PVA. Furthermore, it is also preferable to combine with a protective film having retardation as described in [0024] of WO2011 / 162198.
[画像表示装置]
本発明のポリエステルフィルムは、画像表示装置に用いることができ、本発明のポリエステルフィルムを含む偏光板を画像表示装置の偏光板として用いることができる。
本発明の画像表示装置は、本発明のポリエステルフィルム、または、本発明の偏光板を備える。
本発明のポリエステルフィルムの好ましい態様では、フィルムキズも少ない。このような本発明のポリエステルフィルムの好ましい態様を用いた本発明の画像表示装置の好ましい態様では、フィルムキズに起因する輝点も少ない。
画像表示装置としては、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(OELD又はIELD)、フィールドエミッションディスプレイ(FED)、タッチパネル、電子ペーパー等を挙げることができる。これらの画像表示装置は、画像表示パネルの表示画面側に本発明の偏光板を備えることが好ましい。 [Image display device]
The polyester film of this invention can be used for an image display apparatus, and the polarizing plate containing the polyester film of this invention can be used as a polarizing plate of an image display apparatus.
The image display device of the present invention includes the polyester film of the present invention or the polarizing plate of the present invention.
In a preferred embodiment of the polyester film of the present invention, film scratches are also small. In the preferred embodiment of the image display device of the present invention using such a preferred embodiment of the polyester film of the present invention, there are few bright spots due to film scratches.
Examples of the image display device include a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (OELD or IELD), a field emission display (FED), a touch panel, and electronic paper. These image display devices preferably include the polarizing plate of the present invention on the display screen side of the image display panel.
本発明のポリエステルフィルムは、画像表示装置に用いることができ、本発明のポリエステルフィルムを含む偏光板を画像表示装置の偏光板として用いることができる。
本発明の画像表示装置は、本発明のポリエステルフィルム、または、本発明の偏光板を備える。
本発明のポリエステルフィルムの好ましい態様では、フィルムキズも少ない。このような本発明のポリエステルフィルムの好ましい態様を用いた本発明の画像表示装置の好ましい態様では、フィルムキズに起因する輝点も少ない。
画像表示装置としては、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(OELD又はIELD)、フィールドエミッションディスプレイ(FED)、タッチパネル、電子ペーパー等を挙げることができる。これらの画像表示装置は、画像表示パネルの表示画面側に本発明の偏光板を備えることが好ましい。 [Image display device]
The polyester film of this invention can be used for an image display apparatus, and the polarizing plate containing the polyester film of this invention can be used as a polarizing plate of an image display apparatus.
The image display device of the present invention includes the polyester film of the present invention or the polarizing plate of the present invention.
In a preferred embodiment of the polyester film of the present invention, film scratches are also small. In the preferred embodiment of the image display device of the present invention using such a preferred embodiment of the polyester film of the present invention, there are few bright spots due to film scratches.
Examples of the image display device include a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (OELD or IELD), a field emission display (FED), a touch panel, and electronic paper. These image display devices preferably include the polarizing plate of the present invention on the display screen side of the image display panel.
偏光板を液晶表示装置などの画像表示装置へと貼合する方法としては、公知の方法を用いることができる。また、ロールtoパネル製法を用いることもでき、生産性、歩留まりを向上する上で好ましい。ロールtoパネル製法は特開2011-48381号公報、特開2009-175653号公報、特許4628488号公報、特許4729647号公報、WO2012/014602号、WO2012/014571号等に記載されているが、これらに限定されない。
As a method of bonding the polarizing plate to an image display device such as a liquid crystal display device, a known method can be used. In addition, a roll-to-panel manufacturing method can be used, which is preferable for improving productivity and yield. The roll-to-panel manufacturing method is described in JP2011-48381, JP2009-175653, JP4628488, JP4729647, WO2012 / 014602, WO2012 / 014571, and the like. It is not limited.
画像表示装置では、光源に連続的な発光スペクトルを有する発光スペクトルを有する光源を用いることが好ましい。
これはWO2011/162198号公報の[0019]~[0020]記載のように虹ムラを解消し易くなるためである。
画像表示装置に用いられる光源としては、WO2011/162198号公報の[0013]記載のものが使用される。一方、WO2011/162198号公報の[0014]~[0015]記載の光源は連続光源ではなく、好ましくない。
画像表示装置がLCDである場合、液晶表示装置(LCD)は、WO2011/162198号公報の[0011]~[0012]に記載の構成を使用できる。
本発明のポリエステルフィルムおよび/または本発明の偏光板を用いる液晶表示装置は連続的な発光スペクトルを有する白色光源を用いたものであることが好ましく、これにより不連続(輝線)光源を用いた場合より効果的に虹むらを低減できる。これは特許4888853号の[0015]~[0027](US2012/0229732号公報の[0029]~[0041])に記載の理由を援用して、この理由と同様の理由に因るものであり、これらの公報に記載された内容は本願明細書に組み込まれる。
液晶表示装置は、本発明の偏光板と、液晶表示素子とを備えるものであることが好ましい。ここで、液晶表示素子は、上下基板間に液晶が封入された液晶セルを備え、電圧印加により液晶の配向状態を変化させて画像の表示を行う液晶パネルが代表的であるが、その他、プラズマディスプレイパネル、CRTディスプレイ、有機ELディスプレイ等、公知の各種ディスプレイに対しても、本発明の偏光板を適用することができる。このように、レターデーションが高い本発明のポリエステルフィルムを有する偏光板を液晶表示素子に適用した場合には、液晶表示素子の反りを防止することができる。 In the image display device, it is preferable to use a light source having an emission spectrum having a continuous emission spectrum as the light source.
This is because it becomes easy to eliminate rainbow unevenness as described in [0019] to [0020] of WO2011 / 162198.
As a light source used in the image display device, the one described in [0013] of WO2011 / 162198 is used. On the other hand, the light sources described in [0014] to [0015] of WO 2011/162198 are not continuous light sources and are not preferable.
When the image display device is an LCD, the configuration described in [0011] to [0012] of WO2011 / 162198 can be used as the liquid crystal display device (LCD).
The liquid crystal display device using the polyester film of the present invention and / or the polarizing plate of the present invention is preferably one using a white light source having a continuous emission spectrum, whereby a discontinuous (bright line) light source is used. Rainbow unevenness can be reduced more effectively. This is due to the reason similar to this reason, with the reason described in [0015] to [0027] of Patent No. 4888853 ([0029] to [0041] of US2012 / 0229732). The contents described in these publications are incorporated herein.
The liquid crystal display device preferably includes the polarizing plate of the present invention and a liquid crystal display element. Here, the liquid crystal display element is typically a liquid crystal panel having a liquid crystal cell in which liquid crystal is sealed between upper and lower substrates and displaying an image by changing the alignment state of the liquid crystal by applying a voltage. The polarizing plate of the present invention can be applied to various known displays such as a display panel, a CRT display, and an organic EL display. Thus, when the polarizing plate which has a polyester film of this invention with high retardation is applied to a liquid crystal display element, the curvature of a liquid crystal display element can be prevented.
これはWO2011/162198号公報の[0019]~[0020]記載のように虹ムラを解消し易くなるためである。
画像表示装置に用いられる光源としては、WO2011/162198号公報の[0013]記載のものが使用される。一方、WO2011/162198号公報の[0014]~[0015]記載の光源は連続光源ではなく、好ましくない。
画像表示装置がLCDである場合、液晶表示装置(LCD)は、WO2011/162198号公報の[0011]~[0012]に記載の構成を使用できる。
本発明のポリエステルフィルムおよび/または本発明の偏光板を用いる液晶表示装置は連続的な発光スペクトルを有する白色光源を用いたものであることが好ましく、これにより不連続(輝線)光源を用いた場合より効果的に虹むらを低減できる。これは特許4888853号の[0015]~[0027](US2012/0229732号公報の[0029]~[0041])に記載の理由を援用して、この理由と同様の理由に因るものであり、これらの公報に記載された内容は本願明細書に組み込まれる。
液晶表示装置は、本発明の偏光板と、液晶表示素子とを備えるものであることが好ましい。ここで、液晶表示素子は、上下基板間に液晶が封入された液晶セルを備え、電圧印加により液晶の配向状態を変化させて画像の表示を行う液晶パネルが代表的であるが、その他、プラズマディスプレイパネル、CRTディスプレイ、有機ELディスプレイ等、公知の各種ディスプレイに対しても、本発明の偏光板を適用することができる。このように、レターデーションが高い本発明のポリエステルフィルムを有する偏光板を液晶表示素子に適用した場合には、液晶表示素子の反りを防止することができる。 In the image display device, it is preferable to use a light source having an emission spectrum having a continuous emission spectrum as the light source.
This is because it becomes easy to eliminate rainbow unevenness as described in [0019] to [0020] of WO2011 / 162198.
As a light source used in the image display device, the one described in [0013] of WO2011 / 162198 is used. On the other hand, the light sources described in [0014] to [0015] of WO 2011/162198 are not continuous light sources and are not preferable.
When the image display device is an LCD, the configuration described in [0011] to [0012] of WO2011 / 162198 can be used as the liquid crystal display device (LCD).
The liquid crystal display device using the polyester film of the present invention and / or the polarizing plate of the present invention is preferably one using a white light source having a continuous emission spectrum, whereby a discontinuous (bright line) light source is used. Rainbow unevenness can be reduced more effectively. This is due to the reason similar to this reason, with the reason described in [0015] to [0027] of Patent No. 4888853 ([0029] to [0041] of US2012 / 0229732). The contents described in these publications are incorporated herein.
The liquid crystal display device preferably includes the polarizing plate of the present invention and a liquid crystal display element. Here, the liquid crystal display element is typically a liquid crystal panel having a liquid crystal cell in which liquid crystal is sealed between upper and lower substrates and displaying an image by changing the alignment state of the liquid crystal by applying a voltage. The polarizing plate of the present invention can be applied to various known displays such as a display panel, a CRT display, and an organic EL display. Thus, when the polarizing plate which has a polyester film of this invention with high retardation is applied to a liquid crystal display element, the curvature of a liquid crystal display element can be prevented.
ここで、虹状の色斑は、レターデーションが高いポリエステルフィルムのレターデーションとバックライト光源の発光スペクトルに起因する。従来、液晶表示装置のバックライト光源としては、冷陰極管や熱陰極管などの蛍光管を用いられる。冷陰極管や熱陰極管などの蛍光灯の分光分布は複数のピークを有する発光スペクトルを示し、これら不連続な発光スペクトルが合わさって白色の光源が得られている。レターデーションが高いフィルムを光が透過する場合、波長によって異なる透過光強度を示す。このため、バックライト光源が不連続な発光スペクトルであると、特定の波長のみ強く透過されることになり虹状の色斑が発生する。
Here, the rainbow-like color spots are caused by the retardation of the polyester film having a high retardation and the emission spectrum of the backlight light source. Conventionally, a fluorescent tube such as a cold cathode tube or a hot cathode tube is used as a backlight source of a liquid crystal display device. The spectral distribution of a fluorescent lamp such as a cold cathode tube or a hot cathode tube shows an emission spectrum having a plurality of peaks, and these discontinuous emission spectra are combined to obtain a white light source. When light passes through a film having a high retardation, the transmitted light intensity varies depending on the wavelength. For this reason, when the backlight light source has a discontinuous emission spectrum, only a specific wavelength is strongly transmitted, and a rainbow-like color spot is generated.
画像表示装置が液晶表示装置である場合は、バックライト光源と、2つの偏光板の間に配された液晶セルとを構成部材として含むことが好ましい。また、これら以外の他の構成、例えばカラーフィルター、レンズフィルム、拡散シート、反射防止フィルムなどを適宜有しても構わない。
When the image display device is a liquid crystal display device, it is preferable to include a backlight light source and a liquid crystal cell disposed between two polarizing plates as constituent members. Moreover, you may have suitably other structures other than these, for example, a color filter, a lens film, a diffusion sheet, an antireflection film etc. suitably.
バックライトの構成としては、導光板や反射板などを構成部材とするエッジライト方式であっても、直下型方式であっても構わないが、本発明では、液晶表示装置のバックライト光源として白色発光ダイオード(白色LED)を用いることが虹ムラを改善する観点から好ましい。本発明において、白色LEDとは、蛍光体方式、すなわち化合物半導体を使用した青色光、もしくは紫外光を発する発光ダイオードと蛍光体を組み合わせることにより白色を発する素子のことである。蛍光体としては、イットリウム・アルミニウム・ガーネット系の黄色蛍光体やテルビウム・アルミニウム・ガーネット系の黄色蛍光体等がある。なかでも、化合物半導体を使用した青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体とを組み合わせた発光素子からなる白色発光ダイオードは、連続的で幅広い発光スペクトルを有しているとともに発光効率にも優れるため、本発明の画像表示装置のバックライト光源として好適である。なお、ここで発光スペクトルが連続的であるとは、少なくとも可視光の領域において光の強度がゼロとなる波長が存在しないことをいう。また、本発明により消費電力の小さい白色LEDを広汎に利用可能になるので、省エネルギー化の効果も奏することが可能となる。
上記態様により虹状の色斑の発生が抑制される機構としては国際公開WO2011/162198号に記載があり、この公報の内容は本発明に組み込まれる。 The configuration of the backlight may be an edge light method using a light guide plate, a reflection plate, or the like, or a direct type, but in the present invention, white is used as the backlight light source of the liquid crystal display device. It is preferable to use a light emitting diode (white LED) from the viewpoint of improving rainbow unevenness. In the present invention, the white LED is an element that emits white by combining a phosphor with a phosphor system, that is, a light emitting diode that emits blue light or ultraviolet light using a compound semiconductor. Examples of the phosphor include yttrium / aluminum / garnet yellow phosphor and terbium / aluminum / garnet yellow phosphor. In particular, white light-emitting diodes, which are composed of light-emitting elements that combine blue light-emitting diodes using compound semiconductors with yttrium, aluminum, and garnet-based yellow phosphors, have a continuous and broad emission spectrum and are also efficient in light emission Since it is excellent, it is suitable as a backlight light source of the image display device of the present invention. Here, the continuous emission spectrum means that there is no wavelength at which the light intensity becomes zero at least in the visible light region. Further, since the white LED with low power consumption can be widely used according to the present invention, an effect of energy saving can be achieved.
The mechanism by which the occurrence of rainbow-like color spots is suppressed by the above embodiment is described in International Publication No. WO2011 / 162198, and the contents of this publication are incorporated in the present invention.
上記態様により虹状の色斑の発生が抑制される機構としては国際公開WO2011/162198号に記載があり、この公報の内容は本発明に組み込まれる。 The configuration of the backlight may be an edge light method using a light guide plate, a reflection plate, or the like, or a direct type, but in the present invention, white is used as the backlight light source of the liquid crystal display device. It is preferable to use a light emitting diode (white LED) from the viewpoint of improving rainbow unevenness. In the present invention, the white LED is an element that emits white by combining a phosphor with a phosphor system, that is, a light emitting diode that emits blue light or ultraviolet light using a compound semiconductor. Examples of the phosphor include yttrium / aluminum / garnet yellow phosphor and terbium / aluminum / garnet yellow phosphor. In particular, white light-emitting diodes, which are composed of light-emitting elements that combine blue light-emitting diodes using compound semiconductors with yttrium, aluminum, and garnet-based yellow phosphors, have a continuous and broad emission spectrum and are also efficient in light emission Since it is excellent, it is suitable as a backlight light source of the image display device of the present invention. Here, the continuous emission spectrum means that there is no wavelength at which the light intensity becomes zero at least in the visible light region. Further, since the white LED with low power consumption can be widely used according to the present invention, an effect of energy saving can be achieved.
The mechanism by which the occurrence of rainbow-like color spots is suppressed by the above embodiment is described in International Publication No. WO2011 / 162198, and the contents of this publication are incorporated in the present invention.
本発明の画像表示装置が液晶表示装置である場合は、本発明の偏光板の配置は特に制限はない。本発明の偏光板は、液晶表示装置における視認側用の偏光板として用いられることが好ましい。
面内方向のレターデーションが高い本発明のポリエステルフィルムの配置は特に限定されないが、入射光側(光源側)に配される偏光板と、液晶セルと、出射光側(視認側)に配される偏光板とを配された液晶表示装置の場合、入射光側に配される偏光板の入射光側の偏光子保護フィルム、もしくは出射光側に配される偏光板の射出光側の偏光子保護フィルムが面内方向のレターデーションが高い本発明のポリエステルフィルムであることが好ましい。特に好ましい態様は、出射光側に配される偏光板の射出光側の偏光子保護フィルムを面内方向のレターデーションが高い本発明のポリエステルフィルムとする態様である。上記以外の位置に面内方向のレターデーションが高いポリエステルフィルムを配する場合は、液晶セルの偏光特性を変化させてしまう場合がある。偏光特性が必要とされない場所に、面内方向のレターデーションが高い本発明のポリエステルフィルムは用いられることが好ましいため、このような特定の位置の偏光板の保護フィルムとして使用されることが好ましい。 When the image display device of the present invention is a liquid crystal display device, the arrangement of the polarizing plate of the present invention is not particularly limited. The polarizing plate of the present invention is preferably used as a polarizing plate for the viewing side in a liquid crystal display device.
The arrangement of the polyester film of the present invention having a high retardation in the in-plane direction is not particularly limited, but is arranged on the polarizing plate arranged on the incident light side (light source side), the liquid crystal cell, and the outgoing light side (viewing side). In the case of a liquid crystal display device provided with a polarizing plate, the polarizer protective film on the incident light side of the polarizing plate arranged on the incident light side, or the polarizer on the outgoing light side of the polarizing plate arranged on the outgoing light side The protective film is preferably the polyester film of the present invention having a high in-plane retardation. A particularly preferred embodiment is an embodiment in which the polarizer protective film on the exit light side of the polarizing plate arranged on the exit light side is the polyester film of the present invention having a high retardation in the in-plane direction. When a polyester film having a high retardation in the in-plane direction is disposed at a position other than the above, the polarization characteristics of the liquid crystal cell may be changed. Since the polyester film of the present invention having a high retardation in the in-plane direction is preferably used in a place where no polarizing property is required, it is preferably used as a protective film for the polarizing plate at such a specific position.
面内方向のレターデーションが高い本発明のポリエステルフィルムの配置は特に限定されないが、入射光側(光源側)に配される偏光板と、液晶セルと、出射光側(視認側)に配される偏光板とを配された液晶表示装置の場合、入射光側に配される偏光板の入射光側の偏光子保護フィルム、もしくは出射光側に配される偏光板の射出光側の偏光子保護フィルムが面内方向のレターデーションが高い本発明のポリエステルフィルムであることが好ましい。特に好ましい態様は、出射光側に配される偏光板の射出光側の偏光子保護フィルムを面内方向のレターデーションが高い本発明のポリエステルフィルムとする態様である。上記以外の位置に面内方向のレターデーションが高いポリエステルフィルムを配する場合は、液晶セルの偏光特性を変化させてしまう場合がある。偏光特性が必要とされない場所に、面内方向のレターデーションが高い本発明のポリエステルフィルムは用いられることが好ましいため、このような特定の位置の偏光板の保護フィルムとして使用されることが好ましい。 When the image display device of the present invention is a liquid crystal display device, the arrangement of the polarizing plate of the present invention is not particularly limited. The polarizing plate of the present invention is preferably used as a polarizing plate for the viewing side in a liquid crystal display device.
The arrangement of the polyester film of the present invention having a high retardation in the in-plane direction is not particularly limited, but is arranged on the polarizing plate arranged on the incident light side (light source side), the liquid crystal cell, and the outgoing light side (viewing side). In the case of a liquid crystal display device provided with a polarizing plate, the polarizer protective film on the incident light side of the polarizing plate arranged on the incident light side, or the polarizer on the outgoing light side of the polarizing plate arranged on the outgoing light side The protective film is preferably the polyester film of the present invention having a high in-plane retardation. A particularly preferred embodiment is an embodiment in which the polarizer protective film on the exit light side of the polarizing plate arranged on the exit light side is the polyester film of the present invention having a high retardation in the in-plane direction. When a polyester film having a high retardation in the in-plane direction is disposed at a position other than the above, the polarization characteristics of the liquid crystal cell may be changed. Since the polyester film of the present invention having a high retardation in the in-plane direction is preferably used in a place where no polarizing property is required, it is preferably used as a protective film for the polarizing plate at such a specific position.
液晶表示装置の液晶セルは、液晶層と、液晶層の両側に設けられた2枚のガラス基板を有することが好ましい。ガラス基板の厚さは0.5mm以下であることが好ましく、0.4mm以下がより好ましく、0.3mm以下が特に好ましい。
液晶表示装置の液晶セルはIPSモード、VAモード、FFSモードであることが好ましい。 The liquid crystal cell of the liquid crystal display device preferably has a liquid crystal layer and two glass substrates provided on both sides of the liquid crystal layer. The thickness of the glass substrate is preferably 0.5 mm or less, more preferably 0.4 mm or less, and particularly preferably 0.3 mm or less.
The liquid crystal cell of the liquid crystal display device is preferably IPS mode, VA mode, or FFS mode.
液晶表示装置の液晶セルはIPSモード、VAモード、FFSモードであることが好ましい。 The liquid crystal cell of the liquid crystal display device preferably has a liquid crystal layer and two glass substrates provided on both sides of the liquid crystal layer. The thickness of the glass substrate is preferably 0.5 mm or less, more preferably 0.4 mm or less, and particularly preferably 0.3 mm or less.
The liquid crystal cell of the liquid crystal display device is preferably IPS mode, VA mode, or FFS mode.
以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
Hereinafter, the features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
[実施例1]
<原料ポリエステルの合成>
(原料ポリエステル1)
以下に示すように、テレフタル酸及びエチレングリコールを直接反応させて水を留去し、エステル化した後、減圧下で重縮合を行なう直接エステル化法を用いて、連続重合装置により原料ポリエステル1(Sb触媒系PET)を得た。 [Example 1]
<Synthesis of raw material polyester>
(Raw material polyester 1)
As shown below, terephthalic acid and ethylene glycol are directly reacted to distill off water, esterify, and then, using a direct esterification method in which polycondensation is performed under reduced pressure, raw polyester 1 ( Sb catalyst system PET) was obtained.
<原料ポリエステルの合成>
(原料ポリエステル1)
以下に示すように、テレフタル酸及びエチレングリコールを直接反応させて水を留去し、エステル化した後、減圧下で重縮合を行なう直接エステル化法を用いて、連続重合装置により原料ポリエステル1(Sb触媒系PET)を得た。 [Example 1]
<Synthesis of raw material polyester>
(Raw material polyester 1)
As shown below, terephthalic acid and ethylene glycol are directly reacted to distill off water, esterify, and then, using a direct esterification method in which polycondensation is performed under reduced pressure, raw polyester 1 ( Sb catalyst system PET) was obtained.
(1)エステル化反応
第一エステル化反応槽に、高純度テレフタル酸4.7トンとエチレングリコール1.8トンを90分かけて混合してスラリー形成させ、3800kg/hの流量で連続的に第一エステル化反応槽に供給した。更に三酸化アンチモンのエチレングリコール溶液を連続的に供給し、反応槽内温度250℃、攪拌下、平均滞留時間約4.3時間で反応を行なった。このとき、三酸化アンチモンはSb添加量が元素換算値で150ppmとなるように連続的に添加した。 (1) Esterification reaction In a first esterification reactor, 4.7 tons of high-purity terephthalic acid and 1.8 tons of ethylene glycol are mixed over 90 minutes to form a slurry, and continuously at a flow rate of 3800 kg / h. It supplied to the 1st esterification reaction tank. Further, an ethylene glycol solution of antimony trioxide was continuously supplied, and the reaction was carried out at a reaction vessel temperature of 250 ° C. with stirring and an average residence time of about 4.3 hours. At this time, antimony trioxide was continuously added so that the amount of Sb added was 150 ppm in terms of element.
第一エステル化反応槽に、高純度テレフタル酸4.7トンとエチレングリコール1.8トンを90分かけて混合してスラリー形成させ、3800kg/hの流量で連続的に第一エステル化反応槽に供給した。更に三酸化アンチモンのエチレングリコール溶液を連続的に供給し、反応槽内温度250℃、攪拌下、平均滞留時間約4.3時間で反応を行なった。このとき、三酸化アンチモンはSb添加量が元素換算値で150ppmとなるように連続的に添加した。 (1) Esterification reaction In a first esterification reactor, 4.7 tons of high-purity terephthalic acid and 1.8 tons of ethylene glycol are mixed over 90 minutes to form a slurry, and continuously at a flow rate of 3800 kg / h. It supplied to the 1st esterification reaction tank. Further, an ethylene glycol solution of antimony trioxide was continuously supplied, and the reaction was carried out at a reaction vessel temperature of 250 ° C. with stirring and an average residence time of about 4.3 hours. At this time, antimony trioxide was continuously added so that the amount of Sb added was 150 ppm in terms of element.
この反応物を第二エステル化反応槽に移送し、攪拌下、反応槽内温度250℃で、平均滞留時間で1.2時間反応させた。第二エステル化反応槽には、酢酸マグネシウムのエチレングリコール溶液と、リン酸トリメチルのエチレングリコール溶液を、Mg添加量およびP添加量が元素換算値でそれぞれ65ppm、35ppmになるように連続的に供給した。
The reaction product was transferred to a second esterification reaction vessel, and reacted with stirring at a temperature in the reaction vessel of 250 ° C. and an average residence time of 1.2 hours. To the second esterification reaction tank, an ethylene glycol solution of magnesium acetate and an ethylene glycol solution of trimethyl phosphate are continuously supplied so that the added amount of Mg and the added amount of P are 65 ppm and 35 ppm in terms of element, respectively. did.
(2)重縮合反応
上記で得られたエステル化反応生成物を連続的に第一重縮合反応槽に供給し、攪拌下、反応温度270℃、反応槽内圧力20torr(2.67×10-3MPa)で、平均滞留時間約1.8時間で重縮合させた。 (2) the polycondensation reaction above-obtained esterification reaction product supplied to the first polycondensation reaction vessel continuously stirring, the reaction temperature 270 ° C., the reaction vessel pressure 20 torr (2.67 × 10 - 3 MPa) and polycondensation with an average residence time of about 1.8 hours.
上記で得られたエステル化反応生成物を連続的に第一重縮合反応槽に供給し、攪拌下、反応温度270℃、反応槽内圧力20torr(2.67×10-3MPa)で、平均滞留時間約1.8時間で重縮合させた。 (2) the polycondensation reaction above-obtained esterification reaction product supplied to the first polycondensation reaction vessel continuously stirring, the reaction temperature 270 ° C., the reaction vessel pressure 20 torr (2.67 × 10 - 3 MPa) and polycondensation with an average residence time of about 1.8 hours.
更に、第二重縮合反応槽に移送し、この反応槽において攪拌下、反応槽内温度276℃、反応槽内圧力5torr(6.67×10-4MPa)で滞留時間約1.2時間の条件で反応(重縮合)させた。
Further, it was transferred to the second double condensation reaction tank, and while stirring in this reaction tank, the reaction tank temperature was 276 ° C., the reaction tank pressure was 5 torr (6.67 × 10 −4 MPa), and the residence time was about 1.2 hours. The reaction (polycondensation) was performed under the conditions.
次いで、更に第三重縮合反応槽に移送し、この反応槽では、反応槽内温度278℃、反応槽内圧力1.5torr(2.0×10-4MPa)で、滞留時間1.5時間の条件で反応(重縮合)させ、反応物(ポリエチレンテレフタレート(PET))を得た。
Subsequently, it was further transferred to the third triple condensation reaction tank, in which the temperature in the reaction tank was 278 ° C., the pressure in the reaction tank was 1.5 torr (2.0 × 10 −4 MPa), and the residence time was 1.5 hours. The reaction product (polyethylene terephthalate (PET)) was obtained by reaction (polycondensation) under the following conditions.
次に、得られた反応物を、冷水にストランド状に吐出し、直ちにカッティングしてポリエステルのペレット<断面:長径約4mm、短径約2mm、長さ:約3mm>を作製した。
Next, the obtained reaction product was discharged into cold water in a strand shape and immediately cut to prepare polyester pellets (cross section: major axis: about 4 mm, minor axis: about 2 mm, length: about 3 mm).
得られたポリマーは、IV=0.63であった。このポリマーを原料ポリエステル1とした(以降、PET1と略す)。
The obtained polymer had IV = 0.63. This polymer was designated as raw material polyester 1 (hereinafter abbreviated as PET1).
<ポリエステルフィルムの製造>
-フィルム成形工程-
原料ポリエステル1(PET1)を、含水率20ppm以下に乾燥させた後、直径50mmの1軸混練押出機1のホッパー1に投入した。原料ポリエステル1は、300℃に溶融し、下記押出条件により、ギアポンプ、濾過器(孔径20μm)を介し、ダイから押出した。
溶融樹脂の押出条件は、圧力変動を1%、溶融樹脂の温度分布を2%として、溶融樹脂をダイから押出した。具体的には、背圧を、押出機のバレル内平均圧力に対して1%加圧し、押出機の配管温度を、押出機のバレル内平均温度に対して2%高い温度で加熱した。
ダイから押出した溶融樹脂は、温度25℃に設定された冷却キャストドラム上に押出し、静電印加法を用い冷却キャストドラムに密着させた。冷却キャストドラムに対向配置された剥ぎ取りロールを用いて剥離し、未延伸ポリエステルフィルム1を得た。 <Manufacture of polyester film>
-Film forming process-
The raw material polyester 1 (PET1) was dried to a moisture content of 20 ppm or less and then charged into the hopper 1 of a single-screw kneading extruder 1 having a diameter of 50 mm. The raw material polyester 1 was melted at 300 ° C. and extruded from a die through a gear pump and a filter (pore diameter: 20 μm) under the following extrusion conditions.
The molten resin was extruded from the die under the conditions that the pressure fluctuation was 1% and the temperature distribution of the molten resin was 2%. Specifically, the back pressure was increased by 1% with respect to the average pressure in the barrel of the extruder, and the piping temperature of the extruder was heated at a temperature 2% higher than the average temperature in the barrel of the extruder.
The molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C., and was brought into close contact with the cooling cast drum using an electrostatic application method. It peeled using the peeling roll arrange | positioned facing the cooling cast drum, and the unstretched polyester film 1 was obtained.
-フィルム成形工程-
原料ポリエステル1(PET1)を、含水率20ppm以下に乾燥させた後、直径50mmの1軸混練押出機1のホッパー1に投入した。原料ポリエステル1は、300℃に溶融し、下記押出条件により、ギアポンプ、濾過器(孔径20μm)を介し、ダイから押出した。
溶融樹脂の押出条件は、圧力変動を1%、溶融樹脂の温度分布を2%として、溶融樹脂をダイから押出した。具体的には、背圧を、押出機のバレル内平均圧力に対して1%加圧し、押出機の配管温度を、押出機のバレル内平均温度に対して2%高い温度で加熱した。
ダイから押出した溶融樹脂は、温度25℃に設定された冷却キャストドラム上に押出し、静電印加法を用い冷却キャストドラムに密着させた。冷却キャストドラムに対向配置された剥ぎ取りロールを用いて剥離し、未延伸ポリエステルフィルム1を得た。 <Manufacture of polyester film>
-Film forming process-
The raw material polyester 1 (PET1) was dried to a moisture content of 20 ppm or less and then charged into the hopper 1 of a single-screw kneading extruder 1 having a diameter of 50 mm. The raw material polyester 1 was melted at 300 ° C. and extruded from a die through a gear pump and a filter (pore diameter: 20 μm) under the following extrusion conditions.
The molten resin was extruded from the die under the conditions that the pressure fluctuation was 1% and the temperature distribution of the molten resin was 2%. Specifically, the back pressure was increased by 1% with respect to the average pressure in the barrel of the extruder, and the piping temperature of the extruder was heated at a temperature 2% higher than the average temperature in the barrel of the extruder.
The molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C., and was brought into close contact with the cooling cast drum using an electrostatic application method. It peeled using the peeling roll arrange | positioned facing the cooling cast drum, and the unstretched polyester film 1 was obtained.
得られた未延伸ポリエステルフィルム1は、固有粘度IV=0.62、長手方向の屈折率が1.573、結晶化度が0.2%であった。
The obtained unstretched polyester film 1 had an intrinsic viscosity IV = 0.62, a refractive index in the longitudinal direction of 1.573, and a crystallinity of 0.2%.
IVは、未延伸ポリエステルフィルム1を、1,1,2,2-テトラクロルエタン/フェノール(=2/3[質量比])混合溶媒に溶解し、混合溶媒中の25℃での溶液粘度から求めた。
未延伸ポリエステルフィルムの屈折率は以下の方法で測定した。
二枚の偏光板を用いて、未延伸ポリエステルフィルムの配向軸方向を求め、配向軸方向が直交するように4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(Nx,Ny)、及び厚さ方向の屈折率(Nz)をアッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)によって求めた。
未延伸ポリエステルフィルムの結晶化度は以下の方法で測定した。
結晶化度については、フィルムの密度から算出することができる。すなわち、フィルムの密度X(g/cm3)、結晶化度0%での密度Y=1.335g/cm3、結晶化度100%での密度Z=1.501g/cm3を用いて下記計算式より結晶化度(%)を導出することができる。
結晶化度={Z × (X-Y)}/{X × (Z-Y)}×100
なお、密度の測定は、JIS K7112に準じて測定を行った。 In IV, the unstretched polyester film 1 was dissolved in a 1,1,2,2-tetrachloroethane / phenol (= 2/3 [mass ratio]) mixed solvent, and from the solution viscosity at 25 ° C. in the mixed solvent. Asked.
The refractive index of the unstretched polyester film was measured by the following method.
Using two polarizing plates, the orientation axis direction of the unstretched polyester film was determined, and a 4 cm × 2 cm rectangle was cut out so that the orientation axis directions were perpendicular to each other, and used as a measurement sample. With respect to this sample, the biaxial refractive index (Nx, Ny) perpendicular to each other and the refractive index (Nz) in the thickness direction were determined by an Abbe refractometer (NAGO-4T manufactured by Atago Co., Ltd., measurement wavelength 589 nm).
The crystallinity of the unstretched polyester film was measured by the following method.
The crystallinity can be calculated from the density of the film. That is, the density X (g / cm 3) of the film density at a crystallinity of 0% Y = 1.335g / cm 3 , using density Z = 1.501g / cm 3 at 100% crystalline below The crystallinity (%) can be derived from the calculation formula.
Crystallinity = {Z × (XY)} / {X × (ZY)} × 100
The density was measured according to JIS K7112.
未延伸ポリエステルフィルムの屈折率は以下の方法で測定した。
二枚の偏光板を用いて、未延伸ポリエステルフィルムの配向軸方向を求め、配向軸方向が直交するように4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(Nx,Ny)、及び厚さ方向の屈折率(Nz)をアッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)によって求めた。
未延伸ポリエステルフィルムの結晶化度は以下の方法で測定した。
結晶化度については、フィルムの密度から算出することができる。すなわち、フィルムの密度X(g/cm3)、結晶化度0%での密度Y=1.335g/cm3、結晶化度100%での密度Z=1.501g/cm3を用いて下記計算式より結晶化度(%)を導出することができる。
結晶化度={Z × (X-Y)}/{X × (Z-Y)}×100
なお、密度の測定は、JIS K7112に準じて測定を行った。 In IV, the unstretched polyester film 1 was dissolved in a 1,1,2,2-tetrachloroethane / phenol (= 2/3 [mass ratio]) mixed solvent, and from the solution viscosity at 25 ° C. in the mixed solvent. Asked.
The refractive index of the unstretched polyester film was measured by the following method.
Using two polarizing plates, the orientation axis direction of the unstretched polyester film was determined, and a 4 cm × 2 cm rectangle was cut out so that the orientation axis directions were perpendicular to each other, and used as a measurement sample. With respect to this sample, the biaxial refractive index (Nx, Ny) perpendicular to each other and the refractive index (Nz) in the thickness direction were determined by an Abbe refractometer (NAGO-4T manufactured by Atago Co., Ltd., measurement wavelength 589 nm).
The crystallinity of the unstretched polyester film was measured by the following method.
The crystallinity can be calculated from the density of the film. That is, the density X (g / cm 3) of the film density at a crystallinity of 0% Y = 1.335g / cm 3 , using density Z = 1.501g / cm 3 at 100% crystalline below The crystallinity (%) can be derived from the calculation formula.
Crystallinity = {Z × (XY)} / {X × (ZY)} × 100
The density was measured according to JIS K7112.
-横延伸工程-
未延伸ポリエステルフィルム1をテンター(横延伸機)に導き、フィルムの端部をクリップで把持しながら、下記の方法、条件にて横延伸した。 -Transverse stretching process-
The unstretched polyester film 1 was guided to a tenter (transverse stretching machine), and was stretched laterally by the following method and conditions while holding the end of the film with a clip.
未延伸ポリエステルフィルム1をテンター(横延伸機)に導き、フィルムの端部をクリップで把持しながら、下記の方法、条件にて横延伸した。 -Transverse stretching process-
The unstretched polyester film 1 was guided to a tenter (transverse stretching machine), and was stretched laterally by the following method and conditions while holding the end of the film with a clip.
(予熱部)
予熱温度を90℃とし、延伸可能な温度まで加熱した。 (Preheating part)
The preheating temperature was 90 ° C., and the mixture was heated to a temperature at which stretching was possible.
予熱温度を90℃とし、延伸可能な温度まで加熱した。 (Preheating part)
The preheating temperature was 90 ° C., and the mixture was heated to a temperature at which stretching was possible.
(延伸部)
予熱された未延伸ポリエステルフィルム1を、幅方向に下記の条件にてテンターを用いて横延伸した。
<条件>
・横延伸温度(横延伸中の平均温度):90℃
・横延伸倍率:4.3倍 (Extension part)
The preheated unstretched polyester film 1 was stretched in the width direction using a tenter under the following conditions.
<Condition>
-Transverse stretching temperature (average temperature during transverse stretching): 90 ° C
・ Horizontal stretch ratio: 4.3 times
予熱された未延伸ポリエステルフィルム1を、幅方向に下記の条件にてテンターを用いて横延伸した。
<条件>
・横延伸温度(横延伸中の平均温度):90℃
・横延伸倍率:4.3倍 (Extension part)
The preheated unstretched polyester film 1 was stretched in the width direction using a tenter under the following conditions.
<Condition>
-Transverse stretching temperature (average temperature during transverse stretching): 90 ° C
・ Horizontal stretch ratio: 4.3 times
(熱固定部)
次いで、ポリエステルフィルムの膜面温度を下記範囲に制御しながら、熱固定処理を行った。
<条件>
・熱固定温度:180℃
・熱固定時間:15秒 (Heat fixing part)
Next, a heat setting treatment was performed while controlling the film surface temperature of the polyester film within the following range.
<Condition>
・ Heat setting temperature: 180 ℃
・ Heat setting time: 15 seconds
次いで、ポリエステルフィルムの膜面温度を下記範囲に制御しながら、熱固定処理を行った。
<条件>
・熱固定温度:180℃
・熱固定時間:15秒 (Heat fixing part)
Next, a heat setting treatment was performed while controlling the film surface temperature of the polyester film within the following range.
<Condition>
・ Heat setting temperature: 180 ℃
・ Heat setting time: 15 seconds
(熱緩和部)
熱固定後のポリエステルフィルムを下記の温度に加熱し、フィルムを緩和した。
・熱緩和温度:170℃
・熱緩和率:TD方向(フィルム幅方向)2% (Heat relaxation part)
The polyester film after heat setting was heated to the following temperature to relax the film.
-Thermal relaxation temperature: 170 ° C
-Thermal relaxation rate: TD direction (film width direction) 2%
熱固定後のポリエステルフィルムを下記の温度に加熱し、フィルムを緩和した。
・熱緩和温度:170℃
・熱緩和率:TD方向(フィルム幅方向)2% (Heat relaxation part)
The polyester film after heat setting was heated to the following temperature to relax the film.
-Thermal relaxation temperature: 170 ° C
-Thermal relaxation rate: TD direction (film width direction) 2%
(冷却部)
次に、熱緩和後のポリエステルフィルムを85℃の冷却温度にて冷却した。冷却温度は、冷却部におけるフィルム膜面温度を意味し、実際には80℃の冷風をポリエステルフィルムに当てることにより冷却を行った。
その他の実施例および比較例においても、冷却温度は、クリップがフィルムを開放するときのフィルム膜面温度と同じ値とした。 (Cooling section)
Next, the polyester film after heat relaxation was cooled at a cooling temperature of 85 ° C. Cooling temperature means the film film surface temperature in a cooling part, and actually cooled by applying 80 degreeC cold wind to a polyester film.
Also in the other Examples and Comparative Examples, the cooling temperature was set to the same value as the film film surface temperature when the clip opened the film.
次に、熱緩和後のポリエステルフィルムを85℃の冷却温度にて冷却した。冷却温度は、冷却部におけるフィルム膜面温度を意味し、実際には80℃の冷風をポリエステルフィルムに当てることにより冷却を行った。
その他の実施例および比較例においても、冷却温度は、クリップがフィルムを開放するときのフィルム膜面温度と同じ値とした。 (Cooling section)
Next, the polyester film after heat relaxation was cooled at a cooling temperature of 85 ° C. Cooling temperature means the film film surface temperature in a cooling part, and actually cooled by applying 80 degreeC cold wind to a polyester film.
Also in the other Examples and Comparative Examples, the cooling temperature was set to the same value as the film film surface temperature when the clip opened the film.
(フィルムの開放)
さらに、テンター内の横延伸工程より下流側の工程における1対のレール間距離の最も短い部分に対して、クリップがフィルムを開放するときの1対のレール間距離を1.5%広げ、クリップから横延伸後のポリエステルフィルムを開放した。
なお、クリップがフィルムを開放するときのフィルム幅は、3.5mであった。
また、クリップがフィルムを開放するときのフィルム膜面温度は85℃であった。クリップがフィルムを開放するときのフィルム膜面温度は、放射温度計(林電工製、型番:RT61-2、放射率0.95で使用)により測定した。 (Open film)
Furthermore, the distance between the pair of rails when the clip opens the film is increased by 1.5% with respect to the shortest part of the distance between the pair of rails in the process downstream of the transverse stretching process in the tenter. The polyester film after transverse stretching was opened.
The film width when the clip opened the film was 3.5 m.
The film surface temperature when the clip opened the film was 85 ° C. The film film surface temperature when the clip opened the film was measured with a radiation thermometer (manufactured by Hayashi Denko, model number: RT61-2, used at an emissivity of 0.95).
さらに、テンター内の横延伸工程より下流側の工程における1対のレール間距離の最も短い部分に対して、クリップがフィルムを開放するときの1対のレール間距離を1.5%広げ、クリップから横延伸後のポリエステルフィルムを開放した。
なお、クリップがフィルムを開放するときのフィルム幅は、3.5mであった。
また、クリップがフィルムを開放するときのフィルム膜面温度は85℃であった。クリップがフィルムを開放するときのフィルム膜面温度は、放射温度計(林電工製、型番:RT61-2、放射率0.95で使用)により測定した。 (Open film)
Furthermore, the distance between the pair of rails when the clip opens the film is increased by 1.5% with respect to the shortest part of the distance between the pair of rails in the process downstream of the transverse stretching process in the tenter. The polyester film after transverse stretching was opened.
The film width when the clip opened the film was 3.5 m.
The film surface temperature when the clip opened the film was 85 ° C. The film film surface temperature when the clip opened the film was measured with a radiation thermometer (manufactured by Hayashi Denko, model number: RT61-2, used at an emissivity of 0.95).
(フィルムの回収)
冷却およびクリップからのフィルムの開放の後、ポリエステルフィルムの両端を20cmずつトリミング(耳切り)した。その後、両端に幅10mmで押出し加工(ナーリング)を行なった後、張力350Nで巻き取った。
クリップから横延伸後のポリエステルフィルムを開放した後において、トリミング前のフィルムの断面積を、幅3.5mおよび厚み65×10-6mから2.275×10-4m2と求めた。巻取り張力350Nをもとに、クリップから開放後のポリエステルフィルムの単位断面積あたりにかかるフィルム搬送方向のフィルムの断面積あたりの張力(巻取り張力)を1538kN/m2と算出した。
巻取り張力は、巻取機の上流側に設置したダンサーロールの錘の重さをかえることで調整した。
以上のようにして、厚さ65μmの実施例1のポリエステルフィルムを製造した。 (Recovery of film)
After cooling and releasing the film from the clip, both ends of the polyester film were trimmed (ear cut) by 20 cm. Then, after extruding (knurling) with a width of 10 mm at both ends, it was wound up with a tension of 350 N.
After releasing the laterally stretched polyester film from the clip, the cross-sectional area of the untrimmed film was determined from a width of 3.5 m and a thickness of 65 × 10 −6 m to 2.275 × 10 −4 m 2 . Based on the winding tension of 350 N, the tension (winding tension) per unit cross-sectional area of the polyester film after being released from the clip in the film transport direction was calculated as 1538 kN / m 2 .
The winding tension was adjusted by changing the weight of the weight of the dancer roll installed on the upstream side of the winder.
As described above, the polyester film of Example 1 having a thickness of 65 μm was manufactured.
冷却およびクリップからのフィルムの開放の後、ポリエステルフィルムの両端を20cmずつトリミング(耳切り)した。その後、両端に幅10mmで押出し加工(ナーリング)を行なった後、張力350Nで巻き取った。
クリップから横延伸後のポリエステルフィルムを開放した後において、トリミング前のフィルムの断面積を、幅3.5mおよび厚み65×10-6mから2.275×10-4m2と求めた。巻取り張力350Nをもとに、クリップから開放後のポリエステルフィルムの単位断面積あたりにかかるフィルム搬送方向のフィルムの断面積あたりの張力(巻取り張力)を1538kN/m2と算出した。
巻取り張力は、巻取機の上流側に設置したダンサーロールの錘の重さをかえることで調整した。
以上のようにして、厚さ65μmの実施例1のポリエステルフィルムを製造した。 (Recovery of film)
After cooling and releasing the film from the clip, both ends of the polyester film were trimmed (ear cut) by 20 cm. Then, after extruding (knurling) with a width of 10 mm at both ends, it was wound up with a tension of 350 N.
After releasing the laterally stretched polyester film from the clip, the cross-sectional area of the untrimmed film was determined from a width of 3.5 m and a thickness of 65 × 10 −6 m to 2.275 × 10 −4 m 2 . Based on the winding tension of 350 N, the tension (winding tension) per unit cross-sectional area of the polyester film after being released from the clip in the film transport direction was calculated as 1538 kN / m 2 .
The winding tension was adjusted by changing the weight of the weight of the dancer roll installed on the upstream side of the winder.
As described above, the polyester film of Example 1 having a thickness of 65 μm was manufactured.
(偏光板および液晶表示装置の作製)
実施例1のポリエステルフィルムを用いて、実施例1の偏光板および液晶表示装置を作製した。 (Production of polarizing plate and liquid crystal display device)
Using the polyester film of Example 1, the polarizing plate and liquid crystal display device of Example 1 were produced.
実施例1のポリエステルフィルムを用いて、実施例1の偏光板および液晶表示装置を作製した。 (Production of polarizing plate and liquid crystal display device)
Using the polyester film of Example 1, the polarizing plate and liquid crystal display device of Example 1 were produced.
特開2011-59488号公報の[0225]に従い、PVAを含む偏光子を調製した。
According to [0225] of JP2011-59488A, a polarizer containing PVA was prepared.
下記セルロースアシレートフィルムを、特許4438270号の[0275](US2007/0178252の[0393]、これらの公報に記載された内容は本願明細書に組み込まれる)に準じてアルカリ水溶液に浸漬し鹸化処理した。
The following cellulose acylate film was immersed in an alkaline aqueous solution and saponified according to [0275] of Japanese Patent No. 4438270 ([0393] of US2007 / 0178252, the contents described in these publications are incorporated in the present specification). .
特許4731143号の[0199]~[0202](US2008/0158483の[0412]~[0416]、これらの公報に記載された内容は本願明細書に組み込まれる)と同様にしてセルロースアシレートフィルムを調製した。
Preparation of a cellulose acylate film in the same manner as [0199] to [0202] of Japanese Patent No. 4713143 ([0412] to [0416] of US2008 / 0158483, the contents described in these publications are incorporated herein) did.
各実施例および比較例のポリエステルフィルムと鹸化処理したセルロースアシレートの間に、上記偏光子を挟み、偏光子/ポリエステル間、セルロースアシレート/偏光子間に上に、PVA水溶液(完全鹸化型PVA5%水溶液)を塗布し、これらをニップロールで圧着し貼り合せた後、70℃で10分乾燥し偏光板を得た。
得られた偏光板を、実施例1の偏光板とした。 The above polarizer is sandwiched between the polyester film of each example and comparative example and the saponified cellulose acylate, and an aqueous PVA solution (fully saponified PVA5) is placed between the polarizer / polyester and between the cellulose acylate / polarizer. % Aqueous solution) was applied, these were pressure-bonded with a nip roll and bonded together, and then dried at 70 ° C. for 10 minutes to obtain a polarizing plate.
The obtained polarizing plate was used as the polarizing plate of Example 1.
得られた偏光板を、実施例1の偏光板とした。 The above polarizer is sandwiched between the polyester film of each example and comparative example and the saponified cellulose acylate, and an aqueous PVA solution (fully saponified PVA5) is placed between the polarizer / polyester and between the cellulose acylate / polarizer. % Aqueous solution) was applied, these were pressure-bonded with a nip roll and bonded together, and then dried at 70 ° C. for 10 minutes to obtain a polarizing plate.
The obtained polarizing plate was used as the polarizing plate of Example 1.
得られた偏光板2対を、液晶セルに対してポリエステルフィルムを外側とし、偏光子の吸収軸を直交配置として、連続光源(白色LED)または不連続光源(冷陰極管)をバックライトとして有する液晶表示装置に組み込み、光の透過度を50%となるように調整した。
得られた液晶表示装置を、実施例1の画像表示装置とした。 The obtained two pairs of polarizing plates have the polyester film outside with respect to the liquid crystal cell, the absorption axis of the polarizer is orthogonally arranged, and a continuous light source (white LED) or a discontinuous light source (cold cathode tube) as a backlight. It was incorporated in a liquid crystal display device, and the light transmittance was adjusted to 50%.
The obtained liquid crystal display device was used as the image display device of Example 1.
得られた液晶表示装置を、実施例1の画像表示装置とした。 The obtained two pairs of polarizing plates have the polyester film outside with respect to the liquid crystal cell, the absorption axis of the polarizer is orthogonally arranged, and a continuous light source (white LED) or a discontinuous light source (cold cathode tube) as a backlight. It was incorporated in a liquid crystal display device, and the light transmittance was adjusted to 50%.
The obtained liquid crystal display device was used as the image display device of Example 1.
[実施例2~5、比較例2および3]
実施例1において、冷却部の冷風の温度及び風量を変更して、クリップがフィルムを開放するときのフィルム膜面温度を下記表1に記載の温度に変更した。
その他は実施例1と同様にして、実施例2~5、比較例2および3のポリエステルフィルム、偏光板および画像表示装置を製造した。 [Examples 2 to 5, Comparative Examples 2 and 3]
In Example 1, the temperature of the cold air in the cooling unit and the air volume were changed, and the film surface temperature when the clip opened the film was changed to the temperature shown in Table 1 below.
Otherwise, in the same manner as in Example 1, polyester films, polarizing plates and image display devices of Examples 2 to 5 and Comparative Examples 2 and 3 were produced.
実施例1において、冷却部の冷風の温度及び風量を変更して、クリップがフィルムを開放するときのフィルム膜面温度を下記表1に記載の温度に変更した。
その他は実施例1と同様にして、実施例2~5、比較例2および3のポリエステルフィルム、偏光板および画像表示装置を製造した。 [Examples 2 to 5, Comparative Examples 2 and 3]
In Example 1, the temperature of the cold air in the cooling unit and the air volume were changed, and the film surface temperature when the clip opened the film was changed to the temperature shown in Table 1 below.
Otherwise, in the same manner as in Example 1, polyester films, polarizing plates and image display devices of Examples 2 to 5 and Comparative Examples 2 and 3 were produced.
[実施例6~9]
実施例1において、巻取り時の張力を下記表1に記載の値に変更して、クリップから開放後のポリエステルフィルムの単位断面積あたりにかかるフィルム搬送方向のフィルムの断面積あたりの張力を下記表1に記載の値に変更した。
その他は実施例1と同様にして、実施例6~9のポリエステルフィルム、偏光板および画像表示装置を製造した。 [Examples 6 to 9]
In Example 1, the tension at the time of winding was changed to the value described in Table 1 below, and the tension per unit cross-sectional area of the polyester film after being released from the clip per unit cross-sectional area of the film in the film transport direction was as follows. The values were changed to those shown in Table 1.
Others were the same as in Example 1, and polyester films, polarizing plates and image display devices of Examples 6 to 9 were produced.
実施例1において、巻取り時の張力を下記表1に記載の値に変更して、クリップから開放後のポリエステルフィルムの単位断面積あたりにかかるフィルム搬送方向のフィルムの断面積あたりの張力を下記表1に記載の値に変更した。
その他は実施例1と同様にして、実施例6~9のポリエステルフィルム、偏光板および画像表示装置を製造した。 [Examples 6 to 9]
In Example 1, the tension at the time of winding was changed to the value described in Table 1 below, and the tension per unit cross-sectional area of the polyester film after being released from the clip per unit cross-sectional area of the film in the film transport direction was as follows. The values were changed to those shown in Table 1.
Others were the same as in Example 1, and polyester films, polarizing plates and image display devices of Examples 6 to 9 were produced.
[実施例10および11]
実施例1において、テンター内の横延伸工程より下流側の各工程における1対のレール間距離の最も短い部分に対して、クリップがフィルムを開放するときの1対のレール間距離の広げ率を下記表1に記載のように変更した。
その他は実施例1と同様にして、実施例10および11のポリエステルフィルム、偏光板および画像表示装置を製造した。 [Examples 10 and 11]
In Example 1, with respect to the shortest portion of the distance between the pair of rails in each step downstream of the transverse stretching step in the tenter, the expansion ratio of the distance between the pair of rails when the clip opens the film Changes were made as described in Table 1 below.
Others were carried out similarly to Example 1, and manufactured the polyester film of Example 10 and 11, a polarizing plate, and an image display apparatus.
実施例1において、テンター内の横延伸工程より下流側の各工程における1対のレール間距離の最も短い部分に対して、クリップがフィルムを開放するときの1対のレール間距離の広げ率を下記表1に記載のように変更した。
その他は実施例1と同様にして、実施例10および11のポリエステルフィルム、偏光板および画像表示装置を製造した。 [Examples 10 and 11]
In Example 1, with respect to the shortest portion of the distance between the pair of rails in each step downstream of the transverse stretching step in the tenter, the expansion ratio of the distance between the pair of rails when the clip opens the film Changes were made as described in Table 1 below.
Others were carried out similarly to Example 1, and manufactured the polyester film of Example 10 and 11, a polarizing plate, and an image display apparatus.
[実施例12]
未延伸ポリエステルフィルム1の幅を12/35倍にカットした未延伸ポリエステルフィルム1Aを調製した。
実施例1において、未延伸ポリエステルフィルム1の代わりに未延伸ポリエステルフィルム1Aを用い、巻取り時の張力を下記表1に記載の値に変更して、クリップから開放後のポリエステルフィルムの単位断面積あたりにかかるフィルム搬送方向のフィルムの断面積あたりの張力を下記表1に記載の値に変更した。
その他は実施例1と同様にして、実施例12のポリエステルフィルム、偏光板および画像表示装置を製造した。 [Example 12]
An unstretched polyester film 1A in which the width of the unstretched polyester film 1 was cut to 12/35 times was prepared.
In Example 1, instead of the unstretched polyester film 1, the unstretched polyester film 1A was used, the tension at the time of winding was changed to the values shown in Table 1 below, and the unit cross-sectional area of the polyester film after being released from the clip The tension per cross-sectional area of the film in the film conveyance direction was changed to the values shown in Table 1 below.
Others were carried out similarly to Example 1, and manufactured the polyester film of Example 12, a polarizing plate, and an image display apparatus.
未延伸ポリエステルフィルム1の幅を12/35倍にカットした未延伸ポリエステルフィルム1Aを調製した。
実施例1において、未延伸ポリエステルフィルム1の代わりに未延伸ポリエステルフィルム1Aを用い、巻取り時の張力を下記表1に記載の値に変更して、クリップから開放後のポリエステルフィルムの単位断面積あたりにかかるフィルム搬送方向のフィルムの断面積あたりの張力を下記表1に記載の値に変更した。
その他は実施例1と同様にして、実施例12のポリエステルフィルム、偏光板および画像表示装置を製造した。 [Example 12]
An unstretched polyester film 1A in which the width of the unstretched polyester film 1 was cut to 12/35 times was prepared.
In Example 1, instead of the unstretched polyester film 1, the unstretched polyester film 1A was used, the tension at the time of winding was changed to the values shown in Table 1 below, and the unit cross-sectional area of the polyester film after being released from the clip The tension per cross-sectional area of the film in the film conveyance direction was changed to the values shown in Table 1 below.
Others were carried out similarly to Example 1, and manufactured the polyester film of Example 12, a polarizing plate, and an image display apparatus.
[実施例13および14]
実施例1において、横延伸倍率を変更せずに、横延伸後のフィルム厚みが下記表1に記載のとおりになるよう、未延伸ポリエステルフィルム1の厚みをそれぞれ調整した未延伸ポリエステルフィルムを用いた。
さらに、巻取り時の張力を下記表1に記載の値に変更して、クリップから開放後のポリエステルフィルムの単位断面積あたりにかかるフィルム搬送方向のフィルムの断面積あたりの張力を下記表1に記載の値に変更した。
その他は実施例1と同様にして、実施例13および14のポリエステルフィルム、偏光板および画像表示装置を製造した。 [Examples 13 and 14]
In Example 1, an unstretched polyester film in which the thickness of the unstretched polyester film 1 was adjusted so that the film thickness after lateral stretching was as shown in Table 1 below without changing the lateral stretch ratio was used. .
Furthermore, the tension at the time of winding is changed to the value described in Table 1 below, and the tension per unit cross-sectional area of the polyester film after being released from the clip per unit cross-sectional area of the film in the film transport direction is shown in Table 1 below. Changed to the stated value.
Others were carried out similarly to Example 1, and manufactured the polyester film of Example 13 and 14, a polarizing plate, and an image display apparatus.
実施例1において、横延伸倍率を変更せずに、横延伸後のフィルム厚みが下記表1に記載のとおりになるよう、未延伸ポリエステルフィルム1の厚みをそれぞれ調整した未延伸ポリエステルフィルムを用いた。
さらに、巻取り時の張力を下記表1に記載の値に変更して、クリップから開放後のポリエステルフィルムの単位断面積あたりにかかるフィルム搬送方向のフィルムの断面積あたりの張力を下記表1に記載の値に変更した。
その他は実施例1と同様にして、実施例13および14のポリエステルフィルム、偏光板および画像表示装置を製造した。 [Examples 13 and 14]
In Example 1, an unstretched polyester film in which the thickness of the unstretched polyester film 1 was adjusted so that the film thickness after lateral stretching was as shown in Table 1 below without changing the lateral stretch ratio was used. .
Furthermore, the tension at the time of winding is changed to the value described in Table 1 below, and the tension per unit cross-sectional area of the polyester film after being released from the clip per unit cross-sectional area of the film in the film transport direction is shown in Table 1 below. Changed to the stated value.
Others were carried out similarly to Example 1, and manufactured the polyester film of Example 13 and 14, a polarizing plate, and an image display apparatus.
[実施例15]
(原料ポリエステル2)
乾燥させた紫外線吸収剤(2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンゾオキサジン-4-オン)10質量部、PET1(IV=0.63)90質量部を混合し、混練押出機を用い、PET1の作製と同様にしてペレット化して、紫外線吸収剤を含有する原料ポリエステル2を得た(以降、PET2と略す)。 [Example 15]
(Raw material polyester 2)
10 parts by weight of the dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazin-4-one) and 90 parts by weight of PET1 (IV = 0.63) The mixture was mixed and pelletized in the same manner as the production of PET1 using a kneading extruder to obtain a raw material polyester 2 containing an ultraviolet absorber (hereinafter abbreviated as PET2).
(原料ポリエステル2)
乾燥させた紫外線吸収剤(2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンゾオキサジン-4-オン)10質量部、PET1(IV=0.63)90質量部を混合し、混練押出機を用い、PET1の作製と同様にしてペレット化して、紫外線吸収剤を含有する原料ポリエステル2を得た(以降、PET2と略す)。 [Example 15]
(Raw material polyester 2)
10 parts by weight of the dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazin-4-one) and 90 parts by weight of PET1 (IV = 0.63) The mixture was mixed and pelletized in the same manner as the production of PET1 using a kneading extruder to obtain a raw material polyester 2 containing an ultraviolet absorber (hereinafter abbreviated as PET2).
-フィルム成形工程-
原料ポリエステル1(PET1)90質量部と、紫外線吸収剤を含有した原料ポリエステル2(PET2)10質量部を、含水率20ppm以下に乾燥させた後、直径50mmの1軸混練押出機1のホッパー1に投入し、押出機1で300℃に溶融した。下記押出条件により、ギアポンプ、濾過器(孔径20μm)を介し、ダイから押出した。
溶融樹脂の押出条件は、圧力変動を1%、溶融樹脂の温度分布を2%として、溶融樹脂をダイから押出した。具体的には、背圧を、押出機のバレル内平均圧力に対して1%加圧し、押出機の配管温度を、押出機のバレル内平均温度に対して2%高い温度で加熱した。
ダイから押出した溶融樹脂は、温度25℃に設定された冷却キャストドラム上に押出し、静電印加法を用い冷却キャストドラムに密着させた。冷却キャストドラムに対向配置された剥ぎ取りロールを用いて剥離し、未延伸ポリエステルフィルム2を得た。
得られた未延伸ポリエステルフィルム2は、固有粘度IV=0.61、長手方向の屈折率が1.574、結晶化度が0.1%であった。 -Film forming process-
After drying 90 parts by mass of the raw material polyester 1 (PET1) and 10 parts by mass of the raw material polyester 2 (PET2) containing an ultraviolet absorber to a moisture content of 20 ppm or less, the hopper 1 of the uniaxial kneading extruder 1 having a diameter of 50 mm is used. And melted at 300 ° C. with the extruder 1. Extrusion was performed from a die through a gear pump and a filter (pore diameter: 20 μm) under the following extrusion conditions.
The molten resin was extruded from the die under the conditions that the pressure fluctuation was 1% and the temperature distribution of the molten resin was 2%. Specifically, the back pressure was increased by 1% with respect to the average pressure in the barrel of the extruder, and the piping temperature of the extruder was heated at a temperature 2% higher than the average temperature in the barrel of the extruder.
The molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C., and was brought into close contact with the cooling cast drum using an electrostatic application method. It peeled off using the peeling roll arrange | positioned facing the cooling cast drum, and the unstretched polyester film 2 was obtained.
The obtained unstretched polyester film 2 had an intrinsic viscosity IV = 0.61, a refractive index in the longitudinal direction of 1.574, and a crystallinity of 0.1%.
原料ポリエステル1(PET1)90質量部と、紫外線吸収剤を含有した原料ポリエステル2(PET2)10質量部を、含水率20ppm以下に乾燥させた後、直径50mmの1軸混練押出機1のホッパー1に投入し、押出機1で300℃に溶融した。下記押出条件により、ギアポンプ、濾過器(孔径20μm)を介し、ダイから押出した。
溶融樹脂の押出条件は、圧力変動を1%、溶融樹脂の温度分布を2%として、溶融樹脂をダイから押出した。具体的には、背圧を、押出機のバレル内平均圧力に対して1%加圧し、押出機の配管温度を、押出機のバレル内平均温度に対して2%高い温度で加熱した。
ダイから押出した溶融樹脂は、温度25℃に設定された冷却キャストドラム上に押出し、静電印加法を用い冷却キャストドラムに密着させた。冷却キャストドラムに対向配置された剥ぎ取りロールを用いて剥離し、未延伸ポリエステルフィルム2を得た。
得られた未延伸ポリエステルフィルム2は、固有粘度IV=0.61、長手方向の屈折率が1.574、結晶化度が0.1%であった。 -Film forming process-
After drying 90 parts by mass of the raw material polyester 1 (PET1) and 10 parts by mass of the raw material polyester 2 (PET2) containing an ultraviolet absorber to a moisture content of 20 ppm or less, the hopper 1 of the uniaxial kneading extruder 1 having a diameter of 50 mm is used. And melted at 300 ° C. with the extruder 1. Extrusion was performed from a die through a gear pump and a filter (pore diameter: 20 μm) under the following extrusion conditions.
The molten resin was extruded from the die under the conditions that the pressure fluctuation was 1% and the temperature distribution of the molten resin was 2%. Specifically, the back pressure was increased by 1% with respect to the average pressure in the barrel of the extruder, and the piping temperature of the extruder was heated at a temperature 2% higher than the average temperature in the barrel of the extruder.
The molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C., and was brought into close contact with the cooling cast drum using an electrostatic application method. It peeled off using the peeling roll arrange | positioned facing the cooling cast drum, and the unstretched polyester film 2 was obtained.
The obtained unstretched polyester film 2 had an intrinsic viscosity IV = 0.61, a refractive index in the longitudinal direction of 1.574, and a crystallinity of 0.1%.
得られた未延伸ポリエステルフィルム2を、実施例1と同じ条件で横延伸し、厚さ65μmの実施例15のポリエステルフィルムを製造した。
実施例15のポリエステルフィルムを用いた以外は実施例1と同様にして、実施例15の偏光板および画像表示装置を製造した。 The obtained unstretched polyester film 2 was horizontally stretched under the same conditions as in Example 1 to produce a polyester film of Example 15 having a thickness of 65 μm.
A polarizing plate and an image display device of Example 15 were produced in the same manner as Example 1 except that the polyester film of Example 15 was used.
実施例15のポリエステルフィルムを用いた以外は実施例1と同様にして、実施例15の偏光板および画像表示装置を製造した。 The obtained unstretched polyester film 2 was horizontally stretched under the same conditions as in Example 1 to produce a polyester film of Example 15 having a thickness of 65 μm.
A polarizing plate and an image display device of Example 15 were produced in the same manner as Example 1 except that the polyester film of Example 15 was used.
[実施例16]
-フィルム成形工程-
原料ポリエステル1(PET1)90質量部と、紫外線吸収剤を含有した原料ポリエステル2(PET2)10質量部を、含水率20ppm以下に乾燥させた後、直径50mmの1軸混練押出機1のホッパー1に投入し、押出機1で300℃に溶融した(中間層II層)。またPET1を、含水率20ppm以下に乾燥させた後、直径30mmの1軸混練押出機2のホッパー2に投入し、押出機2で300℃に溶融した(外層I層、外層III層)。この2種のポリマーをそれぞれギアポンプ、濾過器(孔径20μm)に介した後、2種3層合流ブロックにて、押出機1から押出されたポリマーが中間層(II層)に、押出機2から押出されたポリマーが外層(I層及びIII層)になるように積層し、ダイよりシート状に押し出した。
溶融樹脂の押出条件は、圧力変動を1%、溶融樹脂の温度分布を2%として、溶融樹脂をダイから押出した。具体的には、背圧を、押出機のバレル内平均圧力に対して1%加圧し、押出機の配管温度を、押出機のバレル内平均温度に対して2%高い温度で加熱した。
ダイから押出した溶融樹脂は、温度25℃に設定された冷却キャストドラム上に押出し、静電印加法を用い冷却キャストドラムに密着させた。冷却キャストドラムに対向配置された剥ぎ取りロールを用いて剥離し、未延伸ポリエステルフィルム3を得た。このとき、I層、II層、III層の厚さの比は10:80:10となるように各押出機の吐出量を調整した。
得られた未延伸ポリエステルフィルム3は、固有粘度IV=0.61、長手方向の屈折率が1.574、結晶化度が0.2%であった。なお、3層積層体である未延伸ポリエステルフィルム3の固有粘度、長手方向の屈折率および結晶化度も実施例1と同様の方法で測定できる。 [Example 16]
-Film forming process-
After drying 90 parts by mass of the raw material polyester 1 (PET1) and 10 parts by mass of the raw material polyester 2 (PET2) containing an ultraviolet absorber to a moisture content of 20 ppm or less, the hopper 1 of the uniaxial kneading extruder 1 having a diameter of 50 mm is used. And melted to 300 ° C. with the extruder 1 (intermediate layer II layer). Moreover, after drying PET1 to a water content of 20 ppm or less, it was put into a hopper 2 of a single screw kneading extruder 2 having a diameter of 30 mm and melted at 300 ° C. by the extruder 2 (outer layer I layer, outer layer III layer). After these two types of polymers are respectively passed through a gear pump and a filter (pore diameter 20 μm), the polymer extruded from the extruder 1 in the two-type three-layer confluence block is transferred to the intermediate layer (II layer) from the extruder 2. The extruded polymer was laminated so as to be outer layers (I layer and III layer), and extruded from a die into a sheet.
The molten resin was extruded from the die under the conditions that the pressure fluctuation was 1% and the temperature distribution of the molten resin was 2%. Specifically, the back pressure was increased by 1% with respect to the average pressure in the barrel of the extruder, and the piping temperature of the extruder was heated at a temperature 2% higher than the average temperature in the barrel of the extruder.
The molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C., and was brought into close contact with the cooling cast drum using an electrostatic application method. It peeled off using the peeling roll arrange | positioned facing the cooling cast drum, and the unstretched polyester film 3 was obtained. At this time, the discharge amount of each extruder was adjusted so that the ratio of the thicknesses of the I layer, the II layer, and the III layer was 10:80:10.
The obtained unstretched polyester film 3 had an intrinsic viscosity IV = 0.61, a refractive index in the longitudinal direction of 1.574, and a crystallinity of 0.2%. In addition, the intrinsic viscosity, the refractive index in the longitudinal direction, and the crystallinity of the unstretched polyester film 3 that is a three-layer laminate can also be measured by the same method as in Example 1.
-フィルム成形工程-
原料ポリエステル1(PET1)90質量部と、紫外線吸収剤を含有した原料ポリエステル2(PET2)10質量部を、含水率20ppm以下に乾燥させた後、直径50mmの1軸混練押出機1のホッパー1に投入し、押出機1で300℃に溶融した(中間層II層)。またPET1を、含水率20ppm以下に乾燥させた後、直径30mmの1軸混練押出機2のホッパー2に投入し、押出機2で300℃に溶融した(外層I層、外層III層)。この2種のポリマーをそれぞれギアポンプ、濾過器(孔径20μm)に介した後、2種3層合流ブロックにて、押出機1から押出されたポリマーが中間層(II層)に、押出機2から押出されたポリマーが外層(I層及びIII層)になるように積層し、ダイよりシート状に押し出した。
溶融樹脂の押出条件は、圧力変動を1%、溶融樹脂の温度分布を2%として、溶融樹脂をダイから押出した。具体的には、背圧を、押出機のバレル内平均圧力に対して1%加圧し、押出機の配管温度を、押出機のバレル内平均温度に対して2%高い温度で加熱した。
ダイから押出した溶融樹脂は、温度25℃に設定された冷却キャストドラム上に押出し、静電印加法を用い冷却キャストドラムに密着させた。冷却キャストドラムに対向配置された剥ぎ取りロールを用いて剥離し、未延伸ポリエステルフィルム3を得た。このとき、I層、II層、III層の厚さの比は10:80:10となるように各押出機の吐出量を調整した。
得られた未延伸ポリエステルフィルム3は、固有粘度IV=0.61、長手方向の屈折率が1.574、結晶化度が0.2%であった。なお、3層積層体である未延伸ポリエステルフィルム3の固有粘度、長手方向の屈折率および結晶化度も実施例1と同様の方法で測定できる。 [Example 16]
-Film forming process-
After drying 90 parts by mass of the raw material polyester 1 (PET1) and 10 parts by mass of the raw material polyester 2 (PET2) containing an ultraviolet absorber to a moisture content of 20 ppm or less, the hopper 1 of the uniaxial kneading extruder 1 having a diameter of 50 mm is used. And melted to 300 ° C. with the extruder 1 (intermediate layer II layer). Moreover, after drying PET1 to a water content of 20 ppm or less, it was put into a hopper 2 of a single screw kneading extruder 2 having a diameter of 30 mm and melted at 300 ° C. by the extruder 2 (outer layer I layer, outer layer III layer). After these two types of polymers are respectively passed through a gear pump and a filter (pore diameter 20 μm), the polymer extruded from the extruder 1 in the two-type three-layer confluence block is transferred to the intermediate layer (II layer) from the extruder 2. The extruded polymer was laminated so as to be outer layers (I layer and III layer), and extruded from a die into a sheet.
The molten resin was extruded from the die under the conditions that the pressure fluctuation was 1% and the temperature distribution of the molten resin was 2%. Specifically, the back pressure was increased by 1% with respect to the average pressure in the barrel of the extruder, and the piping temperature of the extruder was heated at a temperature 2% higher than the average temperature in the barrel of the extruder.
The molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C., and was brought into close contact with the cooling cast drum using an electrostatic application method. It peeled off using the peeling roll arrange | positioned facing the cooling cast drum, and the unstretched polyester film 3 was obtained. At this time, the discharge amount of each extruder was adjusted so that the ratio of the thicknesses of the I layer, the II layer, and the III layer was 10:80:10.
The obtained unstretched polyester film 3 had an intrinsic viscosity IV = 0.61, a refractive index in the longitudinal direction of 1.574, and a crystallinity of 0.2%. In addition, the intrinsic viscosity, the refractive index in the longitudinal direction, and the crystallinity of the unstretched polyester film 3 that is a three-layer laminate can also be measured by the same method as in Example 1.
得られた未延伸ポリエステルフィルム3を、実施例1と同じ条件で横延伸し、厚さ65μmの実施例16のポリエステルフィルムを製造した。
実施例16のポリエステルフィルムを用いた以外は実施例1と同様にして、実施例16の偏光板および画像表示装置を製造した。 The obtained unstretched polyester film 3 was transversely stretched under the same conditions as in Example 1 to produce a polyester film of Example 16 having a thickness of 65 μm.
A polarizing plate and an image display device of Example 16 were produced in the same manner as in Example 1 except that the polyester film of Example 16 was used.
実施例16のポリエステルフィルムを用いた以外は実施例1と同様にして、実施例16の偏光板および画像表示装置を製造した。 The obtained unstretched polyester film 3 was transversely stretched under the same conditions as in Example 1 to produce a polyester film of Example 16 having a thickness of 65 μm.
A polarizing plate and an image display device of Example 16 were produced in the same manner as in Example 1 except that the polyester film of Example 16 was used.
[比較例1]
実施例1において、冷却部の冷風の温度及び風量を変更して、クリップがフィルムを開放するときのフィルム膜面温度を下記表1に記載の温度に変更した。
さらに、巻取り時の張力を下記表1に記載の値に変更して、クリップから開放後のポリエステルフィルムの単位断面積あたりにかかるフィルム搬送方向のフィルムの断面積あたりの張力を下記表1に記載の値に変更した。
その他は実施例1と同様にして、比較例1のポリエステルフィルム、偏光板および画像表示装置を製造した。 [Comparative Example 1]
In Example 1, the temperature of the cold air in the cooling unit and the air volume were changed, and the film surface temperature when the clip opened the film was changed to the temperature shown in Table 1 below.
Furthermore, the tension at the time of winding is changed to the value described in Table 1 below, and the tension per unit cross-sectional area of the polyester film after being released from the clip per unit cross-sectional area of the film in the film transport direction is shown in Table 1 below. Changed to the stated value.
Others were carried out similarly to Example 1, and manufactured the polyester film, polarizing plate, and image display apparatus of the comparative example 1.
実施例1において、冷却部の冷風の温度及び風量を変更して、クリップがフィルムを開放するときのフィルム膜面温度を下記表1に記載の温度に変更した。
さらに、巻取り時の張力を下記表1に記載の値に変更して、クリップから開放後のポリエステルフィルムの単位断面積あたりにかかるフィルム搬送方向のフィルムの断面積あたりの張力を下記表1に記載の値に変更した。
その他は実施例1と同様にして、比較例1のポリエステルフィルム、偏光板および画像表示装置を製造した。 [Comparative Example 1]
In Example 1, the temperature of the cold air in the cooling unit and the air volume were changed, and the film surface temperature when the clip opened the film was changed to the temperature shown in Table 1 below.
Furthermore, the tension at the time of winding is changed to the value described in Table 1 below, and the tension per unit cross-sectional area of the polyester film after being released from the clip per unit cross-sectional area of the film in the film transport direction is shown in Table 1 below. Changed to the stated value.
Others were carried out similarly to Example 1, and manufactured the polyester film, polarizing plate, and image display apparatus of the comparative example 1.
[比較例4]
比較例4では、特許第5021453号の実施例1に準じて、比較例4のポリエステルフィルムを製造した。なお、特許第5021453号の実施例1にしたがって熱固定後に150℃の冷却ゾーンを設けた結果、クリップがフィルムを開放するときのフィルム膜面温度は145℃となった。
比較例4のポリエステルフィルムを用いた以外は実施例1と同様にして、比較例4の偏光板および画像表示装置を製造した。 [Comparative Example 4]
In Comparative Example 4, a polyester film of Comparative Example 4 was produced according to Example 1 of Japanese Patent No. 5021453. In addition, as a result of providing the cooling zone of 150 degreeC after heat setting according to Example 1 of patent 5021453, the film film surface temperature when a clip open | releases a film became 145 degreeC.
A polarizing plate and an image display device of Comparative Example 4 were produced in the same manner as in Example 1 except that the polyester film of Comparative Example 4 was used.
比較例4では、特許第5021453号の実施例1に準じて、比較例4のポリエステルフィルムを製造した。なお、特許第5021453号の実施例1にしたがって熱固定後に150℃の冷却ゾーンを設けた結果、クリップがフィルムを開放するときのフィルム膜面温度は145℃となった。
比較例4のポリエステルフィルムを用いた以外は実施例1と同様にして、比較例4の偏光板および画像表示装置を製造した。 [Comparative Example 4]
In Comparative Example 4, a polyester film of Comparative Example 4 was produced according to Example 1 of Japanese Patent No. 5021453. In addition, as a result of providing the cooling zone of 150 degreeC after heat setting according to Example 1 of patent 5021453, the film film surface temperature when a clip open | releases a film became 145 degreeC.
A polarizing plate and an image display device of Comparative Example 4 were produced in the same manner as in Example 1 except that the polyester film of Comparative Example 4 was used.
[評価]
(Re、Rth、Re/Rth)
各実施例および比較例のフィルムに対し、特開2012-256057号公報の[0054]~[0055]に記載の方法でReおよびRthを測定し、Reと、Rthと、Re/Rthの値を表1に記載した。 [Evaluation]
(Re, Rth, Re / Rth)
Re and Rth were measured by the method described in JP-A-2012-256057, [0054] to [0055] for each example and comparative example film, and the values of Re, Rth, and Re / Rth were determined. It described in Table 1.
(Re、Rth、Re/Rth)
各実施例および比較例のフィルムに対し、特開2012-256057号公報の[0054]~[0055]に記載の方法でReおよびRthを測定し、Reと、Rthと、Re/Rthの値を表1に記載した。 [Evaluation]
(Re, Rth, Re / Rth)
Re and Rth were measured by the method described in JP-A-2012-256057, [0054] to [0055] for each example and comparative example film, and the values of Re, Rth, and Re / Rth were determined. It described in Table 1.
(MD熱収縮率)
各実施例および比較例のポリエステルフィルムの長手(MD)方向に350mm、幅方向に50mmのサンプルを切り出し、サンプルの長手方向の両端近傍300mm間隔に標点を付け、150℃の温度に調整されたオーブンに一端固定、他端フリーで30分間放置した。これを取り出し室で標点間距離を測定し(この長さをSとする)、下記式にて150℃で30分加熱した後の長手方向の熱収縮率(MD熱収縮率)を求めた。
MD方向の熱収縮率(%)=(300-S)/300×100% (MD thermal shrinkage)
Samples of 350 mm in the longitudinal (MD) direction and 50 mm in the width direction of the polyester films of each Example and Comparative Example were cut out, marked at 300 mm intervals near both ends in the longitudinal direction of the samples, and adjusted to a temperature of 150 ° C. One end was fixed in the oven and left free for 30 minutes. The distance between the gauge points was measured in the take-out chamber (this length is assumed to be S), and the heat shrinkage rate (MD heat shrinkage rate) in the longitudinal direction after heating at 150 ° C. for 30 minutes according to the following formula was obtained. .
MD direction thermal shrinkage (%) = (300−S) / 300 × 100%
各実施例および比較例のポリエステルフィルムの長手(MD)方向に350mm、幅方向に50mmのサンプルを切り出し、サンプルの長手方向の両端近傍300mm間隔に標点を付け、150℃の温度に調整されたオーブンに一端固定、他端フリーで30分間放置した。これを取り出し室で標点間距離を測定し(この長さをSとする)、下記式にて150℃で30分加熱した後の長手方向の熱収縮率(MD熱収縮率)を求めた。
MD方向の熱収縮率(%)=(300-S)/300×100% (MD thermal shrinkage)
Samples of 350 mm in the longitudinal (MD) direction and 50 mm in the width direction of the polyester films of each Example and Comparative Example were cut out, marked at 300 mm intervals near both ends in the longitudinal direction of the samples, and adjusted to a temperature of 150 ° C. One end was fixed in the oven and left free for 30 minutes. The distance between the gauge points was measured in the take-out chamber (this length is assumed to be S), and the heat shrinkage rate (MD heat shrinkage rate) in the longitudinal direction after heating at 150 ° C. for 30 minutes according to the following formula was obtained. .
MD direction thermal shrinkage (%) = (300−S) / 300 × 100%
(テンター出口破断)
各実施例および比較例のポリエステルフィルムを10000m以上製膜し、クリップ開放部におけるフィルムの破断の回数を測定した。
破断とは、50mm以上の長さであり、フィルム厚み方向に貫通する傷とした。また、傷の方向は限定せず、TD方向の傷もMD方向の傷も、フィルム厚み方向に貫通する場合は破断に含めた。
以下の基準で評価した結果を、下記表1に記載した。
A:10000m以上ベース破断なし。
B:10000mに1~5回破断あり。
C:10000mに6~10回破断あり。
D:10000mに11回以上破断あり。 (Tenter outlet break)
The polyester film of each Example and Comparative Example was formed into 10,000 m or more, and the number of times the film was broken at the clip opening portion was measured.
The term “break” refers to a scratch having a length of 50 mm or more and penetrating in the film thickness direction. Further, the direction of the scratch was not limited, and both the scratch in the TD direction and the scratch in the MD direction were included in the break when penetrating in the film thickness direction.
The results evaluated according to the following criteria are shown in Table 1 below.
A: No base breakage of 10,000 m or more.
B: Breaked 1 to 5 times at 10,000 m.
C: Breaked 6 to 10 times at 10,000 m.
D: There are breaks 11 times or more at 10000 m.
各実施例および比較例のポリエステルフィルムを10000m以上製膜し、クリップ開放部におけるフィルムの破断の回数を測定した。
破断とは、50mm以上の長さであり、フィルム厚み方向に貫通する傷とした。また、傷の方向は限定せず、TD方向の傷もMD方向の傷も、フィルム厚み方向に貫通する場合は破断に含めた。
以下の基準で評価した結果を、下記表1に記載した。
A:10000m以上ベース破断なし。
B:10000mに1~5回破断あり。
C:10000mに6~10回破断あり。
D:10000mに11回以上破断あり。 (Tenter outlet break)
The polyester film of each Example and Comparative Example was formed into 10,000 m or more, and the number of times the film was broken at the clip opening portion was measured.
The term “break” refers to a scratch having a length of 50 mm or more and penetrating in the film thickness direction. Further, the direction of the scratch was not limited, and both the scratch in the TD direction and the scratch in the MD direction were included in the break when penetrating in the film thickness direction.
The results evaluated according to the following criteria are shown in Table 1 below.
A: No base breakage of 10,000 m or more.
B: Breaked 1 to 5 times at 10,000 m.
C: Breaked 6 to 10 times at 10,000 m.
D: There are breaks 11 times or more at 10000 m.
(フィルム平面性)
各実施例および比較例のポリエステルフィルム平面性を目視にて観察した。
以下の基準で評価した結果を、下記表1に記載した。
A:非常に良い。
B:良い。
C:許容内。
D:問題あり。 (Film flatness)
The polyester film flatness of each Example and Comparative Example was observed visually.
The results evaluated according to the following criteria are shown in Table 1 below.
A: Very good.
B: Good.
C: Within tolerance.
D: There is a problem.
各実施例および比較例のポリエステルフィルム平面性を目視にて観察した。
以下の基準で評価した結果を、下記表1に記載した。
A:非常に良い。
B:良い。
C:許容内。
D:問題あり。 (Film flatness)
The polyester film flatness of each Example and Comparative Example was observed visually.
The results evaluated according to the following criteria are shown in Table 1 below.
A: Very good.
B: Good.
C: Within tolerance.
D: There is a problem.
(フィルムキズ)
各実施例および比較例の画像表値について輝点の個数を目視にて測定し、その結果をもとに各実施例および比較例のポリエステルフィルムの単位面積あたりのフィルムキズの個数とした。
以下の基準で評価した結果を、下記表1に記載した。
A:LCDに組み込んだ際に輝点になるキズが1m2内に0個。
B:LCDに組み込んだ際に輝点になるキズが1m2内に1個または2個。
C:LCDに組み込んだ際に輝点になるキズが1m2内に3~5個。
D:LCDに組み込んだ際に輝点になるキズが1m2内に6個以上。 (Film scratch)
The number of bright spots was visually measured for the image table values of each Example and Comparative Example, and based on the result, the number of film scratches per unit area of the polyester film of each Example and Comparative Example was determined.
The results evaluated according to the following criteria are shown in Table 1 below.
A: 0 or scratches become bright spot when incorporated into the LCD within 1 m 2.
B: One or two scratches within 1 m 2 that become bright spots when incorporated in an LCD.
C: 3 to 5 scratches in 1 m 2 that become bright spots when incorporated in an LCD.
D: Six or more scratches within 1 m 2 that become bright spots when incorporated in an LCD.
各実施例および比較例の画像表値について輝点の個数を目視にて測定し、その結果をもとに各実施例および比較例のポリエステルフィルムの単位面積あたりのフィルムキズの個数とした。
以下の基準で評価した結果を、下記表1に記載した。
A:LCDに組み込んだ際に輝点になるキズが1m2内に0個。
B:LCDに組み込んだ際に輝点になるキズが1m2内に1個または2個。
C:LCDに組み込んだ際に輝点になるキズが1m2内に3~5個。
D:LCDに組み込んだ際に輝点になるキズが1m2内に6個以上。 (Film scratch)
The number of bright spots was visually measured for the image table values of each Example and Comparative Example, and based on the result, the number of film scratches per unit area of the polyester film of each Example and Comparative Example was determined.
The results evaluated according to the following criteria are shown in Table 1 below.
A: 0 or scratches become bright spot when incorporated into the LCD within 1 m 2.
B: One or two scratches within 1 m 2 that become bright spots when incorporated in an LCD.
C: 3 to 5 scratches in 1 m 2 that become bright spots when incorporated in an LCD.
D: Six or more scratches within 1 m 2 that become bright spots when incorporated in an LCD.
上記表1より、本発明のポリエステルフィルムの製造方法を用いると、テンター出口のクリップからのフィルムの開放部近傍でのフィルムの破断を極めて少なくでき、フィルム表面の平面性が良好なポリエステルフィルムを製造できることがわかった。
一方、比較例1および2より、クリップがフィルムを開放するときのフィルム膜面温度が本発明の下限値を下回る場合、テンター出口のクリップからのフィルムの開放部近傍での破断の問題が多く生じ、安定した生産ができないことがわかった。
比較例3、および特許第5021453号公報の実施例1に準じて実施した比較例4より、クリップがフィルムを開放するときのフィルム膜面温度が本発明の上限値を上回る場合、フィルム表面の平面性が著しく悪化してしまうことがわかった。
なお、本発明のポリエステルフィルムの製造方法で製造されたポリエステルフィルムの長手方向の屈折率はいずれも1.590以下であり、結晶化度はいずれも5%を超えることを未延伸ポリエステルフィルム1~3と同様の方法で確認した。
また、本発明のポリエステルフィルムの製造方法で製造されたポリエステルフィルムが一軸配向していることを、以下の方法で確認した。
すなわち、長手方向、幅方向、厚さ方向の屈折率をアッベ屈折率計で測定し、長手方向の屈折率が1.590以下であり、幅方向の屈折率がそれに比べて十分大きく、厚さ方向の屈折率がそれに比べて十分小さいことを確認することで、ポリエステルフィルムが一軸配向していることを確認した。 From Table 1 above, when the method for producing a polyester film of the present invention is used, the film breakage in the vicinity of the open portion of the film from the clip at the tenter outlet can be extremely reduced, and a polyester film with excellent film surface flatness can be produced. I knew it was possible.
On the other hand, from Comparative Examples 1 and 2, when the film film surface temperature when the clip opens the film is lower than the lower limit of the present invention, there are many problems of breakage in the vicinity of the open portion of the film from the clip at the tenter outlet. It was found that stable production was not possible.
From Comparative Example 3 and Comparative Example 4 carried out according to Example 1 of Japanese Patent No. 5021453, when the film surface temperature when the clip opens the film exceeds the upper limit of the present invention, the plane of the film surface It has been found that the characteristics are significantly deteriorated.
It should be noted that the refractive index in the longitudinal direction of the polyester film produced by the method for producing a polyester film of the present invention is 1.590 or less, and the crystallinity exceeds 5%. It confirmed by the method similar to 3.
Moreover, it confirmed that the polyester film manufactured with the manufacturing method of the polyester film of this invention was uniaxially oriented with the following method.
That is, the refractive index in the longitudinal direction, the width direction, and the thickness direction is measured with an Abbe refractometer, the refractive index in the longitudinal direction is 1.590 or less, the refractive index in the width direction is sufficiently large, and the thickness By confirming that the refractive index in the direction was sufficiently smaller than that, it was confirmed that the polyester film was uniaxially oriented.
一方、比較例1および2より、クリップがフィルムを開放するときのフィルム膜面温度が本発明の下限値を下回る場合、テンター出口のクリップからのフィルムの開放部近傍での破断の問題が多く生じ、安定した生産ができないことがわかった。
比較例3、および特許第5021453号公報の実施例1に準じて実施した比較例4より、クリップがフィルムを開放するときのフィルム膜面温度が本発明の上限値を上回る場合、フィルム表面の平面性が著しく悪化してしまうことがわかった。
なお、本発明のポリエステルフィルムの製造方法で製造されたポリエステルフィルムの長手方向の屈折率はいずれも1.590以下であり、結晶化度はいずれも5%を超えることを未延伸ポリエステルフィルム1~3と同様の方法で確認した。
また、本発明のポリエステルフィルムの製造方法で製造されたポリエステルフィルムが一軸配向していることを、以下の方法で確認した。
すなわち、長手方向、幅方向、厚さ方向の屈折率をアッベ屈折率計で測定し、長手方向の屈折率が1.590以下であり、幅方向の屈折率がそれに比べて十分大きく、厚さ方向の屈折率がそれに比べて十分小さいことを確認することで、ポリエステルフィルムが一軸配向していることを確認した。 From Table 1 above, when the method for producing a polyester film of the present invention is used, the film breakage in the vicinity of the open portion of the film from the clip at the tenter outlet can be extremely reduced, and a polyester film with excellent film surface flatness can be produced. I knew it was possible.
On the other hand, from Comparative Examples 1 and 2, when the film film surface temperature when the clip opens the film is lower than the lower limit of the present invention, there are many problems of breakage in the vicinity of the open portion of the film from the clip at the tenter outlet. It was found that stable production was not possible.
From Comparative Example 3 and Comparative Example 4 carried out according to Example 1 of Japanese Patent No. 5021453, when the film surface temperature when the clip opens the film exceeds the upper limit of the present invention, the plane of the film surface It has been found that the characteristics are significantly deteriorated.
It should be noted that the refractive index in the longitudinal direction of the polyester film produced by the method for producing a polyester film of the present invention is 1.590 or less, and the crystallinity exceeds 5%. It confirmed by the method similar to 3.
Moreover, it confirmed that the polyester film manufactured with the manufacturing method of the polyester film of this invention was uniaxially oriented with the following method.
That is, the refractive index in the longitudinal direction, the width direction, and the thickness direction is measured with an Abbe refractometer, the refractive index in the longitudinal direction is 1.590 or less, the refractive index in the width direction is sufficiently large, and the thickness By confirming that the refractive index in the direction was sufficiently smaller than that, it was confirmed that the polyester film was uniaxially oriented.
(虹ムラの評価)
また、各実施例の画像表示装置について、一方から連続光源(白色LED)、不連続光源(冷陰極管)を用い、光を入射し、反対側から偏光サングラスを通して目視で発生した虹の本数を数えることで虹むらを評価した。
各実施例の画像表示装置は、常湿である25度、相対湿度50%では、虹むらが発生しなかった。
なお、虹むらの評価は、偏光板の法線方向からと斜め方向(法線から45°)の両方から観察した。 (Evaluation of rainbow unevenness)
In addition, for the image display device of each example, a continuous light source (white LED) and a discontinuous light source (cold cathode tube) are used from one side, light is incident, and the number of rainbows generated visually through polarized sunglasses from the opposite side. The rainbow spot was evaluated by counting.
In the image display device of each example, rainbow unevenness did not occur at normal humidity of 25 degrees and relative humidity of 50%.
Note that the rainbow unevenness was observed both from the normal direction of the polarizing plate and from the oblique direction (45 ° from the normal line).
また、各実施例の画像表示装置について、一方から連続光源(白色LED)、不連続光源(冷陰極管)を用い、光を入射し、反対側から偏光サングラスを通して目視で発生した虹の本数を数えることで虹むらを評価した。
各実施例の画像表示装置は、常湿である25度、相対湿度50%では、虹むらが発生しなかった。
なお、虹むらの評価は、偏光板の法線方向からと斜め方向(法線から45°)の両方から観察した。 (Evaluation of rainbow unevenness)
In addition, for the image display device of each example, a continuous light source (white LED) and a discontinuous light source (cold cathode tube) are used from one side, light is incident, and the number of rainbows generated visually through polarized sunglasses from the opposite side. The rainbow spot was evaluated by counting.
In the image display device of each example, rainbow unevenness did not occur at normal humidity of 25 degrees and relative humidity of 50%.
Note that the rainbow unevenness was observed both from the normal direction of the polarizing plate and from the oblique direction (45 ° from the normal line).
Claims (14)
- フィルム搬送路の両側に設置された一対のレールに沿って走行するクリップを有するテンター式延伸装置を用いて、未延伸のポリエステルフィルムを前記クリップで把持しながら横延伸する工程を含み、
前記クリップから前記横延伸後のポリエステルフィルムを開放するときのフィルム膜面温度を50~120℃に制御するポリエステルフィルムの製造方法。 Using a tenter-type stretching device having a clip that travels along a pair of rails installed on both sides of the film conveyance path, including a step of laterally stretching while gripping the unstretched polyester film with the clip,
A method for producing a polyester film, wherein the film film surface temperature is controlled to 50 to 120 ° C. when the laterally stretched polyester film is released from the clip. - 前記クリップから前記横延伸後のポリエステルフィルムを開放した後に、前記クリップから開放後のポリエステルフィルムに対して500~5000kN/m2のフィルム搬送方向へのフィルムの断面積あたりの張力をかける請求項1に記載のポリエステルフィルムの製造方法。 2. After releasing the laterally stretched polyester film from the clip, a tension per cross-sectional area of the film in the film transport direction of 500 to 5000 kN / m 2 is applied to the polyester film after opening from the clip. The manufacturing method of the polyester film of description.
- 前記クリップから前記横延伸後のポリエステルフィルムを開放するときの一対のレール間の距離を、前記横延伸ゾーン以降の最短の一対のレール間距離に対し、0.1~5%の範囲で広くする請求項1または2に記載のポリエステルフィルムの製造方法。 The distance between the pair of rails when releasing the laterally stretched polyester film from the clip is increased in a range of 0.1 to 5% with respect to the shortest distance between the pair of rails after the lateral stretching zone. The manufacturing method of the polyester film of Claim 1 or 2.
- 前記横延伸後のポリエステルフィルムを前記クリップから開放する前に、前記横延伸後のポリエステルフィルムをテンター内の最高温度まで加熱する熱固定工程を含む請求項1~3のいずれか一項に記載のポリエステルフィルムの製造方法。 The heat setting step of heating the polyester film after the transverse stretching to the maximum temperature in the tenter before releasing the polyester film after the transverse stretching from the clip. A method for producing a polyester film.
- 前記熱固定後のポリエステルフィルムを前記クリップから開放する前に、前記熱固定後のポリエステルフィルムを冷却する工程を含む請求項4に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to claim 4, comprising a step of cooling the heat-fixed polyester film before releasing the heat-fixed polyester film from the clip.
- 前記未延伸のポリエステルフィルムの長手方向の屈折率が1.590以下であり、かつ、
前記未延伸のポリエステルフィルムの結晶化度が5%以下である請求項1~5のいずれか一項に記載のポリエステルフィルムの製造方法。 The refractive index in the longitudinal direction of the unstretched polyester film is 1.590 or less, and
The method for producing a polyester film according to any one of claims 1 to 5, wherein the crystallinity of the unstretched polyester film is 5% or less. - 前記未延伸のポリエステルフィルムが、ポリエチレンテレフタレート樹脂を主成分とする請求項1~6のいずれか一項に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to any one of claims 1 to 6, wherein the unstretched polyester film comprises a polyethylene terephthalate resin as a main component.
- 請求項1~7のいずれか一項に記載のポリエステルフィルムの製造方法で製造されたポリエステルフィルム。 A polyester film produced by the method for producing a polyester film according to any one of claims 1 to 7.
- 前記ポリエステルフィルムを150℃で30分加熱した後の長手方向の熱収縮率が3%以下である請求項8に記載のポリエステルフィルム。 The polyester film according to claim 8, wherein the heat shrinkage ratio in the longitudinal direction after heating the polyester film at 150 ° C for 30 minutes is 3% or less.
- フィルム厚みが20~150μmであり、
フィルム面内方向のレターデーションReが3000~30000nmであり、
厚み方向のレターデーションRthが3000~30000nmであり、
Re/Rth比率が0.5~2.5である請求項8または9に記載のポリエステルフィルム。 The film thickness is 20 to 150 μm,
Retardation Re in the in-plane direction of the film is 3000 to 30000 nm,
The retardation Rth in the thickness direction is 3000 to 30000 nm,
The polyester film according to claim 8, wherein the Re / Rth ratio is 0.5 to 2.5. - 一軸配向である請求項8~10のいずれか一項に記載のポリエステルフィルム。 The polyester film according to any one of claims 8 to 10, which is uniaxially oriented.
- 前記ポリエステルフィルムの長手方向の屈折率が1.590以下であり、かつ、
前記ポリエステルフィルムの結晶化度が5%を超える請求項11に記載のポリエステルフィルム。 The refractive index in the longitudinal direction of the polyester film is 1.590 or less, and
The polyester film according to claim 11, wherein the crystallinity of the polyester film exceeds 5%. - 偏光子と、請求項8~12のいずれか一項に記載のポリエステルフィルムとを含む偏光板。 A polarizing plate comprising a polarizer and the polyester film according to any one of claims 8 to 12.
- 請求項8~12のいずれか一項に記載のポリエステルフィルム、または、請求項13に記載の偏光板を備える画像表示装置。 An image display device comprising the polyester film according to any one of claims 8 to 12 or the polarizing plate according to claim 13.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015539194A JP6171021B2 (en) | 2013-09-26 | 2014-09-22 | Polyester film and method for producing polyester film, polarizing plate and image display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-200125 | 2013-09-26 | ||
JP2013200125 | 2013-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015046121A1 true WO2015046121A1 (en) | 2015-04-02 |
Family
ID=52743257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/075028 WO2015046121A1 (en) | 2013-09-26 | 2014-09-22 | Polyester film, production method for polyester film, polarizing plate, and image display device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6171021B2 (en) |
WO (1) | WO2015046121A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115871208A (en) * | 2021-09-27 | 2023-03-31 | 日东电工株式会社 | Method for producing stretched film, method for producing optical laminate, and film stretching device |
WO2023248877A1 (en) * | 2022-06-22 | 2023-12-28 | 東洋紡株式会社 | Polyester film for protecting polarizer, polarizing plate, and liquid crystal display device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003089151A (en) * | 2001-09-17 | 2003-03-25 | Toyobo Co Ltd | Uniaxially oriented polyester film, and surface protective film and release film using the same |
JP2006039024A (en) * | 2004-07-23 | 2006-02-09 | Konica Minolta Opto Inc | Polarizing plate for liquid crystal display device and liquid crystal display device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003089152A (en) * | 2001-09-17 | 2003-03-25 | Toyobo Co Ltd | Method for manufacturing uniaxially oriented polyester film |
WO2013027414A1 (en) * | 2011-08-25 | 2013-02-28 | コニカミノルタアドバンストレイヤー株式会社 | Method for producing long stretched film and method for producing circularly polarizing plate |
WO2013080847A1 (en) * | 2011-11-30 | 2013-06-06 | コニカミノルタ株式会社 | Process for producing acrylic-resin-containing film |
-
2014
- 2014-09-22 WO PCT/JP2014/075028 patent/WO2015046121A1/en active Application Filing
- 2014-09-22 JP JP2015539194A patent/JP6171021B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003089151A (en) * | 2001-09-17 | 2003-03-25 | Toyobo Co Ltd | Uniaxially oriented polyester film, and surface protective film and release film using the same |
JP2006039024A (en) * | 2004-07-23 | 2006-02-09 | Konica Minolta Opto Inc | Polarizing plate for liquid crystal display device and liquid crystal display device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115871208A (en) * | 2021-09-27 | 2023-03-31 | 日东电工株式会社 | Method for producing stretched film, method for producing optical laminate, and film stretching device |
CN115871208B (en) * | 2021-09-27 | 2023-08-04 | 日东电工株式会社 | Method for producing stretched film, method for producing optical laminate, and film stretching device |
WO2023248877A1 (en) * | 2022-06-22 | 2023-12-28 | 東洋紡株式会社 | Polyester film for protecting polarizer, polarizing plate, and liquid crystal display device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015046121A1 (en) | 2017-03-09 |
JP6171021B2 (en) | 2017-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6297379B2 (en) | Polyester resin film, method for producing polyester resin film, polarizing plate, image display device, hard coat film, sensor film for touch panel, glass scattering prevention film, and touch panel | |
JP5333638B2 (en) | Liquid crystal display device, polarizing plate and polarizer protective film | |
WO2015182494A1 (en) | Polyester film, method for producing polyester film, polarizing plate, image display device, hard coat film, and touch panel | |
TWI599601B (en) | Optical film manufacturing method and manufacturing apparatus | |
JP2017201417A (en) | Liquid crystal display, polarizing plate, and polarizer protective film | |
JP5614506B2 (en) | Liquid crystal display device, polarizing plate and polarizer protective film | |
WO2014203894A1 (en) | Polyester film, polarising plate, and image display device | |
JP2011099089A (en) | Biaxially oriented polyethylene terephthalate film | |
JP2012220879A (en) | Biaxially oriented polyethylene terephthalate film for protecting polarizer | |
JP6264408B2 (en) | Polarizer | |
WO2015037527A1 (en) | Liquid crystal display device, polarization plate, and polarizer protective film | |
WO2015046122A1 (en) | Polyester film, production method for polyester film, polarizing plate, and image display device | |
JP6127011B2 (en) | Polyester film, method for producing polyester film, polarizing plate, image display device, hard coat film, and touch panel | |
JP6171021B2 (en) | Polyester film and method for producing polyester film, polarizing plate and image display device | |
JP6199399B2 (en) | Polyester film and method for producing polyester film, polarizing plate and image display device | |
JP2015141347A (en) | Liquid crystal display device and polarizing plate | |
JP6645005B2 (en) | Polarizer protective film, polarizing plate, and liquid crystal display device using the same | |
JP2018055108A (en) | Liquid crystal display polarizer protective film, polarizing plate, and liquid crystal display | |
JP2016099553A (en) | Liquid crystal display device and polarizing plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14849734 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015539194 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14849734 Country of ref document: EP Kind code of ref document: A1 |