WO2015046103A1 - Gas separation membrane, method for producing gas separation membrane, and gas separation membrane module - Google Patents

Gas separation membrane, method for producing gas separation membrane, and gas separation membrane module Download PDF

Info

Publication number
WO2015046103A1
WO2015046103A1 PCT/JP2014/075003 JP2014075003W WO2015046103A1 WO 2015046103 A1 WO2015046103 A1 WO 2015046103A1 JP 2014075003 W JP2014075003 W JP 2014075003W WO 2015046103 A1 WO2015046103 A1 WO 2015046103A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
gas separation
separation membrane
polymer
general formula
Prior art date
Application number
PCT/JP2014/075003
Other languages
French (fr)
Japanese (ja)
Inventor
岳史 成田
賢志 狩野
福田 誠
上平 茂生
佐野 聡
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015046103A1 publication Critical patent/WO2015046103A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0233Other waste gases from cement factories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/025Other waste gases from metallurgy plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • B01D2323/345UV-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a gas separation membrane, a manufacturing method thereof, and a gas separation membrane module. More specifically, the present invention relates to a gas separation membrane having high separation selectivity and permeability under high pressure and high organic solvent resistance, a method for producing the same, and a gas separation membrane module having this gas separation membrane.
  • a material composed of a polymer compound has gas permeability specific to each material. Based on the property, a desired gas component can be selectively permeated and separated by a membrane composed of a specific polymer compound.
  • this gas separation membrane As an industrial application of this gas separation membrane, it is related to the problem of global warming, and it is considered to separate and recover it from large-scale carbon dioxide generation sources in thermal power plants, cement plants, steelworks blast furnaces, etc. Has been. And this membrane separation technique attracts attention as a means for solving environmental problems that can be achieved with relatively small energy. Natural gas and biogas (gas generated by fermentation and anaerobic digestion of biological waste, organic fertilizers, biodegradable substances, sewage, garbage, energy crops, etc.) are mainly mixed gases containing methane and carbon dioxide. Membrane separation methods have been studied as means for removing the carbon dioxide and the like.
  • an asymmetric membrane As a membrane separation method for ensuring gas permeability and separability by thinning a portion that contributes to gas separation in order to make a practical gas separation membrane, an asymmetric membrane (Asymmetric Membrane)
  • a thin layer composite film Thin film composite
  • Thin film composite a thin layer called a skin layer or a support as a material having mechanical strength and a thin film layer (Selective Layer) contributing to gas separation are provided thereon.
  • a method using a hollow fiber (Hollow fiber) including a high-density layer that contributes to gas separation is known.
  • a layer contributing to gas separation is called a separation layer.
  • Patent Document 1 discloses a thin-layer composite membrane in which a separation layer is provided on a support provided with a porous layer on a nonwoven fabric.
  • Non-Patent Document 1 discloses that a gas separation membrane having a separation layer using polyimide or the like is plasticized under a high pressure condition and a high carbon dioxide concentration condition in a plant, which causes a reduction in separation selectivity.
  • it is effective to introduce a cross-linked structure into the polymer compound constituting the membrane, but since there is a trade-off relationship between gas separation selectivity and permeability, the introduction of the cross-linked structure is required. It is described that the permeability is lowered by the above.
  • Non-Patent Document 2 discloses that mixed gases such as natural gas and biogas include trace amounts of water, hydrocarbons such as tetrahydrofuran (THF), hydrogen sulfide, and long-chain hydrocarbons (HC), benzene, toluene, and xylene (BTX).
  • THF tetrahydrofuran
  • HC long-chain hydrocarbons
  • BTX xylene
  • the impurities such as aromatic compounds are contained, and as the gas separation by the membrane continues, these impurities stay in the separation membrane module, resulting in damage such as plasticization or hydrolysis of the membrane. It is described that the separation selectivity is lowered.
  • Patent Document 1 discloses a gas separation composite membrane having a gas separation layer containing a crosslinked polyimide resin on the upper side of a gas permeable support layer, and has a structure in which a polyimide compound is crosslinked via a specific crosslinking chain. It is described that the gas separation composite membrane has high gas separation selectivity while having excellent gas permeability.
  • Patent Document 2 discloses a gas separation membrane having high plasticization resistance by using cross-linking. By using a cross-linked polyimide having ester cross-linking, high permeability and high separation selectivity are realized. A method is described for obtaining hollow fibers that can be produced.
  • JP 2013-46902 A US Patent US2009 / 0249950
  • the problem to be solved by the present invention is to provide a gas separation membrane having high separation selectivity and permeability under high pressure and high resistance to organic solvents.
  • cross-linking that suppresses plasticization is achieved by using a polymer having a cross-linked structure that is cross-linked by using a ketene imine compound as a cross-linking agent as a material for the separation layer. Because it can be introduced, it can achieve both high separation selectivity and high permeability under high pressure, and can form a strong crosslink between covalent bonds between polymers, making it difficult to dissolve in organic solvents and high resistance to organic solvents. It came to discover that the gas separation membrane which has can be provided.
  • the present invention which is a specific means for solving the above problems, is as follows. [1] having a separation layer containing a polymer having a crosslinked structure; A gas separation membrane in which a polymer having a crosslinked structure contains a structure crosslinked through a linking group derived from a ketene imine crosslinking agent having at least two groups represented by the following general formula (1).
  • General formula (1) (In general formula (1), R 22 and R 23 each independently represent a substituent, and * represents a binding site.)
  • the linking group derived from the ketene imine crosslinking agent is preferably —NH—R 21 —NH— (wherein R 21 represents a divalent linking group).
  • the crosslinked structure having a reactive group has a structure of —C ( ⁇ O) —NH—R 21 —NH—C ( ⁇ O) — (R 21 is a divalent group). Represents a linking group).
  • R 21 is preferably an alkylene group, an arylene group, or a divalent linking group in which two or more alkylene groups or an arylene group are bonded. .
  • R 21 is preferably a divalent linking group having 1 to 15 carbon atoms.
  • R 21 is preferably a divalent linking group containing at least one arylene group.
  • the ketene imine crosslinking agent is preferably a compound represented by the following general formula (2).
  • R 11 represents an alkylene group, an arylene group, or a divalent linking group in which two or more alkylene groups or an arylene group are bonded directly or via R 31 , and R 12 to R 15 Each independently represents an alkyl group or an aryl group, and R 31 represents any one of the linking groups represented by the following group.
  • the polymer having a crosslinked structure is preferably a crosslinked polyimide.
  • the polymer having a reactive group preferably includes a polyimide unit and a repeating unit having a carboxyl group, an amino group or a hydroxyl group in the side chain.
  • a separation layer containing a polymer having a crosslinked structure is obtained by crosslinking a composition containing a polymer having a reactive group and a ketene imine crosslinking agent having at least two groups represented by the following general formula (1).
  • a manufacturing method of a gas separation membrane including the process of forming.
  • General formula (1) (In general formula (1), R 22 and R 23 each independently represent a substituent, and * represents a binding site.)
  • the polymer having a reactive group preferably includes a polyimide unit and a repeating unit having a carboxyl group, an amino group or a hydroxyl group in a side chain.
  • a gas separation membrane module having the gas separation membrane according to any one of [1] to [10].
  • FIG. 1 is a schematic view showing a cross section of an example of the gas separation membrane of the present invention.
  • FIG. 2 is a schematic view showing a cross section of another example of the gas separation membrane of the present invention.
  • FIG. 3 is a schematic view showing a cross section of another example of the gas separation membrane of the present invention.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • substituents when there are a plurality of substituents, linking groups, and the like (hereinafter referred to as substituents) indicated by specific symbols, or when a plurality of substituents are specified simultaneously or alternatively, It means that a substituent etc. may mutually be same or different. Further, even if not specifically stated, it means that when a plurality of substituents and the like are close to each other, they may be connected to each other or condensed to form a ring.
  • the gas separation membrane of the present invention has a separation layer containing a polymer having a crosslinked structure, and the polymer having a crosslinked structure is derived from a ketene imine crosslinking agent having at least two groups represented by the following general formula (1). Contains a structure crosslinked through a linking group.
  • General formula (1) In general formula (1), R 22 and R 23 each independently represent a substituent, and * represents a binding site.
  • the gas separation membrane of the present invention has high separation selectivity and permeability under high pressure and high resistance to organic solvents.
  • preferred embodiments of the gas separation membrane of the present invention will be described.
  • the gas separation membrane of the present invention is preferably a thin layer composite membrane, an asymmetric membrane or a hollow fiber.
  • the gas separation membrane is preferably a thin layer composite membrane.
  • the case where the gas separation membrane is a thin layer composite membrane may be described as a representative example, but the gas separation membrane of the present invention is not limited to the thin layer composite membrane.
  • the gas separation membrane of the present invention is produced, when the membrane is formed using a so-called phase separation method of passing through a poor solvent after applying the solution, the gas separation membrane has a void portion having a void and a void. Not divided into separate layers.
  • the thickness of the separation layer can be obtained by observing the cross section of the gas separation membrane by SEM and measuring the thickness of the portion where no void exists.
  • FIG. 1 is a longitudinal sectional view schematically showing a gas separation membrane 10 of a thin layer composite membrane which is a preferred embodiment of the present invention.
  • 1 is a separation layer
  • 12 is a support 4 made of a porous layer.
  • FIG. 2 is a cross-sectional view schematically showing a gas separation membrane 10 which is a preferred embodiment of the present invention.
  • a nonwoven fabric 13 is added as a part of the support 4, and the support 4 has the porous layer 12 and the nonwoven fabric 13.
  • upper support means that another layer may be interposed between the support and the separation layer.
  • the direction in which the gas to be separated is supplied is “upper”, and the direction in which the separated gas is emitted is “lower”.
  • the gas separation membrane 10 is a thin layer composite membrane, and the gas separation membrane 10 is formed on the separation layer 1 and the separation layer 1. And a protective layer 2 (Protective Layer).
  • the separation layer 1 is preferably formed on the support 4.
  • the gas separation membrane 10 of the present invention preferably has a smooth layer (Gutter Layer) 3 between the separation layer 1 and the support 4.
  • the gas separation membrane of the present invention includes a separation layer containing a polymer having a crosslinked structure, and the polymer having a crosslinked structure is derived from a ketene imine crosslinking agent having at least two groups represented by the following general formula (1). Contains a structure crosslinked through a group.
  • General formula (1) (In general formula (1), R 22 and R 23 each independently represent a substituent, and * represents a binding site.)
  • the separation layer may have an unreacted ketene imine crosslinking agent after the crosslinking reaction. It can be confirmed by IR spectrum that the separation layer has an unreacted ketene imine crosslinking agent.
  • the polymer having a crosslinked structure contains a structure crosslinked via a linking group derived from a ketene imine crosslinking agent having at least two groups represented by the general formula (1).
  • crosslinked polyimide also referred to as polyimide having a crosslinked structure
  • polyamide having a crosslinked structure cellulose having a crosslinked structure
  • polyethylene glycol having a crosslinked structure a crosslinked structure
  • polybenzoxazole having a crosslinked structure it is more preferable that it is at least one selected from polyimide having a crosslinked structure, polybenzoxazole having a crosslinked structure, and cellulose acetate having a crosslinked structure, and particularly preferably a polyimide having a crosslinked structure.
  • the polymer having a crosslinked structure is a polyimide having a crosslinked structure
  • the present invention is limited to the case where the polymer having a crosslinked structure is a polyimide having a crosslinked structure. is not.
  • the linking group derived from the ketene imine crosslinking agent is preferably —NH—R 21 —NH— (wherein R 21 represents a divalent linking group).
  • R 21 represents a divalent linking group.
  • R 21 is preferably an alkylene group, an arylene group, or a divalent linking group in which two or more alkylene groups and an arylene group are bonded directly or via R 24 , and is an alkylene group, an arylene group, or 2 A divalent linking group in which the above alkylene group and arylene group are directly bonded is more preferable.
  • the alkylene group represented by R 21 is preferably an alkylene group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, and particularly preferably an alkylene group having 1 carbon atom. is there.
  • the arylene group represented by R 21 is preferably an arylene group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 10 carbon atoms, and more preferably an arylene group having 6 carbon atoms. is there.
  • the divalent linking group in which two or more alkylene groups and arylene groups represented by R 21 are bonded directly or via R 24 is not particularly limited, but is a divalent linking group having 1 to 15 carbon atoms. And more preferably a divalent linking group having 1 to 15 carbon atoms containing at least one arylene group, and particularly a divalent linking group having 1 to 15 carbon atoms containing two arylene groups.
  • a divalent linking group having 1 to 15 carbon atoms having two arylene groups on both sides of the alkylene group is more preferable.
  • R 21 is a divalent linking group in which two or more alkylene groups and an arylene group are bonded directly or via a linking group
  • R 24 between the two or more alkylene groups and the arylene group is represented by the following group: And is preferably —SO 2 —.
  • R 21 is preferably an alkylene group or a divalent linking group in which two or more alkylene groups and an arylene group are bonded.
  • R 21 is preferably a divalent linking group having 1 to 15 carbon atoms from the viewpoint of gas separation.
  • R 21 is preferably a divalent linking group containing at least one arylene group from the viewpoint of affinity with the polyimide in the examples.
  • the linking group represented by R 21 may be further substituted with a substituent, and examples of the substituent include the substituents listed in the substituent group Z described later.
  • a crosslinked chain having a linking group derived from a ketene imine crosslinking agent as described above has an advantageous effect on improving the stability and separation selectivity of a polymer having a crosslinked structure.
  • amide [—NHC ( ⁇ O) —] is generally a stable bond, which is considered to contribute to the stabilization of the film.
  • Such an amide bond is generally considered to be much more stable than an ester bond with respect to acids and alkalis.
  • Crosslinking can be performed between the above reactive polymer chains or inside the reactive polymer chain.
  • a crosslinked chain having a linking group derived from a ketene imine crosslinking agent is excellent in production suitability.
  • the preferred range of the aryl group represented by R 22 and R 23 is the same as the preferred range of the aryl group described in Substituent group Z described later. More preferably, R 22 and R 23 are each independently an aryl group. However, in the present specification, the aryl group includes a heteroaryl group.
  • the heteroaryl group refers to a group in which at least one of the ring-constituting atoms of a 5-membered, 6-membered or 7-membered ring exhibiting aromaticity or a condensed ring thereof is substituted with a heteroatom.
  • heteroaryl groups include imidazolyl, pyridyl, quinolyl, furyl, thienyl, benzoxazolyl, indolyl, benzimidazolyl, benzthiazolyl, carbazolyl, and azepinyl groups.
  • the hetero atom contained in the heteroaryl group is preferably an oxygen atom, a sulfur atom, or a nitrogen atom, and particularly preferably an oxygen atom or a nitrogen atom.
  • the substituent represented by R 22 and R 23 may be further substituted by a further substituent, and examples of the further substituent include the substituents listed in the substituent group Z described later.
  • the ketene imine crosslinking agent is preferably a compound represented by the following general formula (2).
  • General formula (2) (In the general formula (2), R 11 represents an alkylene group, an arylene group, or a divalent linking group in which two or more alkylene groups or an arylene group are bonded directly or via R 31 , and R 12 to R 15 Each independently represents an alkyl group or an aryl group, and R 31 represents any one of the linking groups represented by the following group.)
  • the preferred range of R 11 is the same as the preferred range of R 21 described above.
  • the preferred ranges of R 12 to R 15 are the same as the preferred ranges of R 22 and R 23 described above.
  • a preferred range for R 31 is the same as the preferred range for R 24 described above.
  • ketene imine crosslinking agent Specific examples of the ketene imine crosslinking agent are shown below, but the present invention is not limited thereto.
  • the ketene imine cross-linking agent is a compound having at least two ketene imine groups.
  • the ketene imine cross-linking agent is preferably added in an amount of 0.05 to 5% by mass, more preferably 0.1 to 3% by mass, based on the polymer having a reactive group, More preferably, it is added so as to be 0.2 to 2% by mass.
  • the ketene imine cross-linking agent is preferably reacted in an amount of 5 to 99%, preferably 10 to 90%, more preferably 20 to 80%.
  • reaction rate is too low, the plastic resistance and the resistance to organic solvents deteriorate, and if the reactivity is too high, the viscosity may increase and film formation may be difficult.
  • the reaction rate of the ketene imine crosslinking agent can be obtained from the IR spectrum of the polyester film, and can be calculated from the peak at 2000 cm ⁇ 1 .
  • the crosslinking of the polymer having a reactive group is preferably performed together with the formation of the separation layer. Details will be described in [Method for producing gas separation membrane] below.
  • the polymer having a crosslinked structure used in the present invention has a structure in which a polymer having a reactive group is crosslinked via a crosslinking chain which is a linking group derived from the ketene imine crosslinking agent.
  • a crosslinking method via a crosslinking chain is typically a method using a crosslinking reaction including the following reaction schemes (1) and (2).
  • the sequential two-stage crosslinking reaction represented by the following schemes (1) and (2) is shown, but the crosslinking reaction in the present invention is a sequential two-stage crosslinking reaction. It is not limited to.
  • R A1 represents a divalent linking group
  • R A2 , R A3 , R B2 and R B3 each independently represent a substituent
  • Poly 1 and Poly 2 each independently represent an arbitrary reactive polymer skeleton.
  • the preferred range for R A1 is the same as the preferred range for R 21 described above.
  • the preferred ranges of R A2 , R A3 , R B2 and R B3 are the same as the preferred ranges of R 22 and R 23 described above.
  • Poly 1 and Poly 2 are preferably structures other than reactive groups of the reactive polymer described later.
  • the separation layer containing a polymer having a crosslinked structure is formed by crosslinking a composition containing a polymer having a reactive group and a ketene imine crosslinking agent having at least two groups represented by the general formula (1). It is preferable to become.
  • Polymers having reactive groups include polyimides having reactive groups, polyamides having reactive groups, celluloses having reactive groups, polyethylene glycols having reactive groups, polybenzoxazoles having reactive groups It is preferable that it is at least one selected from polyimide having a reactive group, polybenzoxazole having a reactive group, and cellulose acetate having a reactive group, and a polyimide having a reactive group. It is particularly preferred.
  • the polymer having a reactive group is a polyimide having a reactive group
  • the present invention may be used when the polymer having a reactive group is a polyimide having a reactive group. It is not limited.
  • the polyimide compound having a reactive group is a polymer having a reactive group, a polyimide unit and a reactive group (preferably a nucleophilic reactive group in the side chain, more preferably a carboxyl group, And a repeating unit having an amino group or a hydroxyl group. More specifically, the polymer having a reactive group is represented by at least one repeating unit represented by the following formula (I) and the following formula (III-a) or (III-b): It is preferable to include at least one repeating unit.
  • the polymer having a reactive group includes at least one repeating unit represented by the following formula (I) and at least one repeating unit represented by the following formula (II-a) or (II-b): And at least one repeating unit represented by the following formula (III-a) or (III-b).
  • the polyimide having a reactive group used in the present invention may contain a repeating unit other than the above repeating units, and the number of moles thereof is 100 as the sum of the number of moles of each repeating unit represented by the above formulas. Is preferably 20 or less, more preferably 0 to 10. It is particularly preferable that the polyimide having a reactive group used in the present invention consists only of each repeating unit represented by the following formulas.
  • R represents a group having a structure represented by any of the following formulas (Ia) to (Ih).
  • * represents a bonding site with the carbonyl group of the formula (I).
  • R in the formula (I) may be referred to as a mother nucleus, and the mother nucleus R is preferably a group represented by the formula (Ia), (Ib) or (Id), A group represented by (Ia) or (Id) is more preferred, and a group represented by (Ia) is particularly preferred.
  • ⁇ X 1 , X 2 , X 3 X 1 , X 2 and X 3 represent a single bond or a divalent linking group.
  • the divalent linking group —C (R x ) 2 — (R x represents a hydrogen atom or a substituent. When R x is a substituent, they may be linked to each other to form a ring), —O—, —SO 2 —, —C ( ⁇ O) —, —S—, —NR Y — (R Y represents a hydrogen atom, an alkyl group (preferably a methyl group or an ethyl group) or an aryl group (preferably a phenyl group).
  • R x represents a substituent
  • R x represents a substituent
  • specific examples thereof include the substituent group Z described below.
  • an alkyl group preferably the same as the substituent group Z described later
  • a halogen atom is substituted with a substituent.
  • trifluoromethyl is particularly preferable.
  • ⁇ L L represents —CH 2 ⁇ CH 2 — or —CH 2 —, preferably —CH 2 ⁇ CH 2 —.
  • R 1 , R 2 R 1 and R 2 represent a hydrogen atom or a substituent.
  • substituent any one selected from the substituent group Z shown below can be used.
  • R 1 and R 2 may be bonded to each other to form a ring.
  • R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and even more preferably a hydrogen atom.
  • R 3 represents an alkyl group or a halogen atom. Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later.
  • L1 representing the number of R 3 is an integer of 0 to 4, preferably 1 to 4, and more preferably 3 to 4.
  • R 3 is preferably an alkyl group, and more preferably a methyl group or an ethyl group.
  • R 4 , R 5 R 4 and R 5 each represents an alkyl group or a halogen atom, or a group that forms a ring together with X 2 by being linked to each other.
  • Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later.
  • the structure in which R 4 and R 5 are linked is not particularly limited, but a single bond, —O— or —S— is preferable.
  • M1 and n1 representing the number of R 4 and R 5 are integers of 0 to 4, preferably 1 to 4, and more preferably 3 to 4.
  • R 4 and R 5 are alkyl groups, they are preferably methyl groups or ethyl groups, and trifluoromethyl is also preferable.
  • R 6 , R 7 , R 8 R 6 , R 7 and R 8 represent a substituent.
  • R 7 and R 8 may be bonded to each other to form a ring.
  • L2, m2, and n2 representing the number of substituents are integers of 0 to 4, preferably 0 to 2, and more preferably 0 to 1.
  • J 1 J 1 represents a single bond or a divalent linking group.
  • As the linking group * —COO — N + R b R c R d — ** (R b to R d are a hydrogen atom, an alkyl group, and an aryl group, and preferred ranges thereof are those described in Substituent Group Z below. synonymous), * -. SO 3 - N + R e R f R g - ** (R e ⁇ R g is a hydrogen atom, an alkyl group, an aryl group, its preferred range is below substituent group Z And an alkylene group or an arylene group.
  • J 1 is preferably a single bond, a methylene group or a phenylene group, and particularly preferably a single bond.
  • a 1 is not particularly limited as long as it is a group capable of undergoing a crosslinking reaction with a ketene imine crosslinking agent, but is preferably a nucleophilic reactive group, and is —COOH, amino group, —OH, and —S ( ⁇ O More preferably, it represents a group selected from 2 OH.
  • the preferable range of this amino group is synonymous with the preferable range of the amino group demonstrated by the substituent group Z mentioned later.
  • a 1 is particularly preferably a carboxyl group, an amino group or a hydroxyl group, more particularly preferably —COOH or —OH, and particularly preferably a carboxyl group.
  • Substituent group Z An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl) , N-decyl, n-hexadecyl), a cycloalkyl group (preferably a cycloalkyl group having 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, particularly preferably 3 to 10 carbon atoms, such as cyclopropyl, Cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably an alkenyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl, allyl, -Butenyl, 3-pentenyl, etc.), alky
  • an aryl group having 6 to 12 carbon atoms such as phenyl, p-methylphenyl, naphthyl, anthranyl, etc.
  • amino group amino group, alkylamino group, arylamino group, hetero
  • a cyclic amino group preferably an amino group having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzyl Amino, diphenylamino, ditolylamino, etc.
  • alkoxy groups preferably having 1 carbon atom
  • alkoxy groups preferably having 1 carbon atom
  • an alkoxy group having 1 to 20 carbon atoms particularly preferably 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, 2-ethylhexyloxy, etc.
  • an aryloxy group preferably An aryloxy group having
  • Heterocyclic oxy group (preferably a heterocyclic oxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy and the like. ),
  • An acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), alkoxy A carbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy A carbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl), an acyloxy group ( Preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, especially Preferably, it is an acyloxy group having 2 to 10 carbon atoms, such as acet
  • alkoxycarbonylamino group preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino
  • aryl Oxycarbonylamino group preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino group
  • a sulfonylamino group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino, benzenesulfonylamino, etc.
  • a sulfamoyl group Preferably 0-30 carbon atoms, more preferred 0 to 20 carbon atoms, particularly preferably a sulfam
  • a carbamoyl group (preferably a carbamoyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like.
  • An alkylthio group preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio
  • an arylthio group Preferably, it is an arylthio group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, etc.
  • a heterocyclic thio group preferably having 1 carbon atom
  • a heterocyclic thio group e.g. pyridylthio, 2-benzoxazolyl thio, and 2-benzthiazolylthio the like.
  • a sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), a sulfinyl group (preferably A sulfinyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably having 1 carbon atom) -30, more preferably a ureido group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), a phosphoramide group (preferably having a carbon number) A phosphoric acid amide group having 1 to 30, more preferably 1 to 20 carbon
  • the hetero atom may be a non-aromatic hetero ring, and examples of the hetero atom constituting the hetero ring include a nitrogen atom, an oxygen atom and a sulfur atom, preferably 0 to 30 carbon atoms, more preferably 1 to 12 carbon atoms.
  • silyl group examples thereof include imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl and the like, and a silyl group (preferably).
  • Groups such as trimethylsilyl and triphenylsilyl), silyloxy groups (preferably silyloxy groups having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms).
  • substituents may be further substituted with any one or more substituents selected from the above substituent group Z.
  • substituents when one structural site has a plurality of substituents, these substituents are connected to each other to form a ring, or condensed with a part or all of the above structural sites to form an aromatic group.
  • a ring or an unsaturated heterocyclic ring may be formed.
  • the ratio of each repeating unit represented by the formula (I), (II-a), (II-b), (III-a), (III-b) is particularly limited.
  • the gas permeability and separation selectivity are appropriately adjusted according to the purpose of gas separation (recovery rate, purity, etc.).
  • the formulas (III-a) and (III-b) with respect to the total number of moles (E II ) of each repeating unit of the formulas (II-a) and (II-b) The ratio (E II / E III ) of the total number of moles (E III ) of each repeating unit is preferably 5/95 to 95/5, more preferably 10/90 to 80/20, More preferably, it is 20/80 to 60/40.
  • the molecular weight of the polyimide having a reactive group used in the present invention is preferably 10,000 to 1,000,000 as a weight average molecular weight, more preferably 15,000 to 500,000, and still more preferably 20,000. ⁇ 200,000.
  • the molecular weight and the degree of dispersion are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene.
  • the gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used.
  • the solvent used include ether solvents such as tetrahydrofuran and amide solvents such as N-methylpyrrolidinone.
  • the measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently.
  • the measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C. Note that the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound that is symmetrical to the measurement.
  • the polyimide having a reactive group that can be used in the present invention can be synthesized by condensation polymerization of a specific bifunctional acid anhydride (tetracarboxylic dianhydride) and a specific diamine.
  • a specific bifunctional acid anhydride tetracarboxylic dianhydride
  • a specific diamine tetracarboxylic dianhydride
  • the method described in a general book for example, published by NTS, edited by Ikuo Imai, Rikio Yokota, latest polyimide-basics and applications-pages 3-49, etc.
  • At least one tetracarboxylic dianhydride used as a raw material is represented by the following formula (VI). All of the tetracarboxylic dianhydrides used as raw materials are preferably represented by the following formula (VI).
  • R has the same meaning as R in formula (I) above.
  • tetracarboxylic dianhydrides that can be used in the present invention include the following.
  • At least one diamine compound used as a raw material is represented by the following formula (VII-a) or (VII-b), and at least one kind is represented by the following formula: It is represented by (VIII-a) or (VIII-b). All of the diamine compounds used as raw materials are preferably represented by any one of the following formulas (VII-a), (VII-b), (VIII-a) and (VIII-b).
  • polyimides having a reactive group that can be used in the present invention are listed below, but the present invention is not limited thereto.
  • “100”, “x”, and “y” represent copolymerization ratios (molar ratios). Examples of “x”, “y” and weight average molecular weight are shown in Table 1 below. In the polyimide compound that can be used in the present invention, y does not become 0.
  • oligomers or prepolymers may be used.
  • the polymer for obtaining the polymer compound may be a block copolymer, a copolymer having any form such as a random copolymer, a graft copolymer, etc., but in particular, a block copolymer or a graft copolymer.
  • a polymer it is preferable from a viewpoint of a viscosity and compatibility.
  • the polyimide having a reactive group that can be used in the present invention can be obtained by mixing each of the above raw materials in a solvent and performing condensation polymerization by a conventional method.
  • the solvent is not particularly limited, but ester organic solvents such as methyl acetate, ethyl acetate, and butyl acetate, and aliphatic ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, and cyclohexanone.
  • Ether organic solvents such as ethylene glycol dimethyl ether, dibutyl butyl ether, tetrahydrofuran, methylcyclopentyl ether, dioxane, amide organic solvents such as N-methylpyrrolidone, 2-pyrrolidone, dimethylformamide, dimethylimidazolidinone, dimethylacetamide, dimethyl sulfoxide And sulfur-containing organic solvents such as sulfolane.
  • These organic solvents are appropriately selected as long as it is possible to dissolve tetracarboxylic dianhydride as a reaction substrate, diamine compound, polyamic acid as a reaction intermediate, and polyimide compound as a final product.
  • ester type preferably butyl acetate
  • aliphatic ketone preferably methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone
  • ether type diethylene glycol monomethyl ether, methyl cyclopentyl) Ether
  • amide-based amide-based
  • sulfur-containing dimethyl sulfoxide, sulfolane
  • the polymerization reaction temperature is not particularly limited, and a temperature that can be generally employed in the synthesis of a polyimide having a reactive group can be employed. Specifically, it is preferably ⁇ 40 to 60 ° C., more preferably ⁇ 30 to 50 ° C.
  • a polyimide having a reactive group can be obtained by imidizing the polyamic acid produced by the above polymerization reaction by a dehydration ring-closing reaction in the molecule.
  • a method of dehydrating and ring-closing the method described in a general book (for example, published by NTS, edited by Ikuo Imai, edited by Rikio Yokota, latest polyimide-basics and applications, pages 3-49, etc.) It can be used as a reference.
  • acetic anhydride or dicyclohexyl is heated in the presence of a basic catalyst such as pyridine, triethylamine or DBU by heating to 120 ° C to 200 ° C for reaction while removing by-product water out of the system.
  • a technique such as so-called chemical imidization using a dehydration condensing agent such as carbodiimide and triphenyl phosphite is preferably used.
  • the total concentration of tetracarboxylic dianhydride and diamine compound in the polymerization reaction liquid of polyimide having a reactive group is not particularly limited, but is preferably 5 to 70% by mass, more preferably 5%. Is preferably 50 to 50% by mass, more preferably 5 to 30% by mass.
  • the thickness of the separation layer is preferably a thin film as much as possible under the condition of imparting high gas permeability while maintaining mechanical strength and separation selectivity.
  • the separation layer of the gas separation membrane of the present invention is preferably a thin layer.
  • the thickness of the separation layer is usually 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, further preferably 2 ⁇ m or less, further preferably 1 ⁇ m or less, 0 More preferably, it is 5 ⁇ m or less.
  • the thickness of the separation layer is usually 0.01 ⁇ m or more, and preferably 0.03 ⁇ m or more from a practical viewpoint.
  • the variation coefficient of the thickness of the separation layer is preferably 1 or less, more preferably 0.5 or less, and further preferably 0.3 or less.
  • the coefficient of variation is a value calculated by randomly selecting 10 film thickness measurement sites separated from each other by 1 cm or more in the separation layer constituting the gas separation membrane and measuring the film thickness at these sites.
  • the gas separation membrane of the present invention preferably comprises a protective layer formed on the separation layer.
  • the protective layer is preferably at least one selected from polydimethylsiloxane (hereinafter also referred to as PDMS), poly (1-trimethylsilyl-1-propyne) (hereinafter also referred to as PTMSP), and polyethylene oxide. More preferred is siloxane or poly (1-trimethylsilyl-1-propyne), and particularly preferred is polydimethylsiloxane.
  • the thickness of the protective layer is preferably 20 nm to 3 ⁇ m, more preferably 50 nm to 2 ⁇ m, and particularly preferably 100 nm to 1 ⁇ m.
  • the gas separation membrane of the present invention preferably has a support, and preferably has two or more separation layers on at least one surface side of the support.
  • the support is preferably a porous substrate that is a thin and porous material because sufficient gas permeability can be secured.
  • a separation layer may be formed and disposed on the surface or inner surface of a porous support, and at least on the surface, it can be easily formed into a thin layer composite membrane.
  • the gas separation membrane of the present invention is a thin-layer composite membrane
  • the thin-layer composite membrane is coated with a coating liquid (dope) that forms the above-mentioned separation layer on at least the surface of the porous support (coated in this specification). It is a meaning including the aspect attached to the surface by immersion.) It is preferable to form by carrying out.
  • the support is preferably formed of a non-woven fabric (Non-Woven) and a porous layer (Porous Layer) provided on at least one side of the non-woven fabric. Specifically, the support separates the porous layer. It is more preferable to have it on the layer side, and it is particularly preferable that it is a laminate of a porous layer and a nonwoven fabric arranged on the separation layer side.
  • the porous layer preferably applied to the support is not particularly limited as long as it has the purpose of satisfying the provision of mechanical strength and high gas permeability, and may be either organic or inorganic material. However, it is preferably a porous film of an organic polymer, and its thickness is 1 to 3000 ⁇ m, preferably 5 to 500 ⁇ m, more preferably 5 to 150 ⁇ m.
  • the porous structure of this porous layer usually has an average pore diameter of 10 ⁇ m or less, preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less, and a porosity of preferably 20 to 90%. Preferably, it is 30 to 80%.
  • the molecular weight cut-off of the porous layer is preferably 100,000 or less, and the gas permeability is 3 ⁇ 10 ⁇ 5 cm 3 (STP) / cm 2 ⁇ cm ⁇ sec. It is preferable that it is cmHg (30 GPU) or more.
  • the material for the porous layer include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, and polyurethane.
  • the shape of the porous layer may be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
  • a woven fabric, a nonwoven fabric, a net, etc. are provided in the lower part of the porous layer that is preferably arranged on the separation layer side, in order to impart mechanical strength.
  • non-woven fabrics are preferably used.
  • the nonwoven fabric fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination.
  • the nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer.
  • it is also preferable to apply a heat treatment by sandwiching a non-woven fabric between two rolls for the purpose of removing fluff and improving mechanical properties.
  • the gas separation membrane of the present invention is a thin layer composite membrane, it is preferable to have a smooth layer between the separation layer and the support.
  • the smooth layer preferably has a functional group in order to improve adhesion with the separation layer.
  • functional groups include epoxy groups, oxetane groups, carboxyl groups, amino groups, hydroxyl groups, and thiol groups.
  • the smooth layer includes an epoxy group, an oxetane group, a carboxyl group, and a resin having two or more of these groups.
  • a resin is preferably formed on a support by curing the radiation curable composition by irradiation with radiation.
  • the polymerizable dialkylsiloxane is a monomer having a dialkylsiloxane group, a polymerizable oligomer having a dialkylsiloxane group, or a polymer having a dialkylsiloxane group.
  • the smooth layer may be formed from a partially crosslinked radiation curable composition having dialkylsiloxane groups.
  • the dialkylsiloxane group include a group represented by — ⁇ O—Si (CH 3 ) 2 ⁇ n — (n is 1 to 100, for example).
  • a poly (dialkylsiloxane) compound having a vinyl group at the terminal can also be preferably used.
  • the material of the smooth layer is preferably at least one selected from polydimethylsiloxane (hereinafter also referred to as PDMS), poly (1-trimethylsilyl-1-propyne) (hereinafter also referred to as PTMSP), and polyethylene oxide. More preferred is polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne), and particularly preferred is polydimethylsiloxane.
  • PDMS polydimethylsiloxane
  • PTMSP poly (1-trimethylsilyl-1-propyne
  • polyethylene oxide More preferred is polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne), and particularly preferred is polydimethylsiloxane.
  • UV9300 polydimethylsiloxane (PDMS) manufactured by Momentive
  • PDMS polydimethylsiloxane
  • UV9300 polydimethylsiloxane (PDMS) manufactured by Momentive
  • the material of the smooth layer can be prepared as a composition containing an organic solvent when the smooth layer is formed, and is preferably a curable composition.
  • the film thickness of the smooth layer is not particularly limited, but the film thickness of the smooth layer is preferably 25 to 1200 nm, more preferably 30 to 800 nm, and particularly preferably 50 to 650 nm.
  • the thickness may be 70 to 120 nm, 130 to 170 nm, 180 to 220 nm, 230 to 270 nm, 300 to 360 nm, 380 to 450 nm, 470 to 540 nm, or 560 to 630 nm.
  • the film thickness of the smooth layer can be determined by SEM.
  • the film thickness of the smooth layer can be controlled by adjusting the coating amount of the curable composition.
  • the separation membrane of the present invention can be suitably used as a gas separation recovery method and a gas separation purification method.
  • a gas separation purification method for example, hydrogen, helium, carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxides, nitrogen oxides, hydrocarbons such as methane and ethane, unsaturated hydrocarbons such as propylene, tetrafluoroethane, etc.
  • a gas separation membrane capable of efficiently separating a specific gas from a gas mixture containing a gas such as a perfluoro compound.
  • the gas separation membrane of the present invention is preferably a gas separation membrane for separating at least one acidic gas from a gas mixture of acidic gas and non-acidic gas.
  • the acid gas examples include carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen oxide (NOx), and carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen. It is preferably at least one selected from oxides (NOx), more preferably carbon dioxide, hydrogen sulfide or sulfur oxide (SOx), and particularly preferably carbon dioxide.
  • the non-acid gas is preferably at least one selected from hydrogen, methane, nitrogen, and carbon monoxide, more preferably methane and hydrogen, and particularly preferably methane.
  • the gas separation membrane of the present invention is preferably a gas separation membrane that selectively separates carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane).
  • the permeability of carbon dioxide at 40 ° C. and 5 MPa is preferably more than 30 GPU, more preferably 30 to 300 GPU.
  • 40 to 300 GPU is particularly preferable, and 50 to 300 GPU is more preferable.
  • 1 GPU is 1 ⁇ 10 ⁇ 6 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg.
  • the gas to be separated is a mixed gas of carbon dioxide and methane
  • the ratio P CO2 / P CH4 of the carbon dioxide permeation flux to the methane permeation flux at 40 ° C. and 5 MPa is used.
  • the separation selectivity is preferably 15 or more, and more preferably 20 or more.
  • the method for producing a gas separation membrane of the present invention comprises a crosslinking structure comprising a composition comprising a polymer having a reactive group and a ketene imine crosslinking agent having at least two groups represented by the following general formula (1) to form a crosslinked structure.
  • a separation layer containing a polymer having General formula (1) In general formula (1), R 22 and R 23 each independently represent a substituent, and * represents a binding site.
  • the method for producing a gas separation membrane of the present invention is excellent in production suitability. Specifically, a catalyst, an initiator, and an acid generator are not required at the time of film formation, and no special treatment such as UV treatment is necessary.
  • the gas separation membrane manufacturing method may include other steps in addition to the step of forming the separation layer. For example, a step of forming a separation layer, a step of arranging two or more separation layers without being adjacent to each other, a step of surface-treating one surface of the outermost separation layer, and a surface treatment of the separation layer were performed. It is preferable to include a step of forming a protective layer on the surface.
  • the method for forming a separation layer includes a polymer having a crosslinked structure by crosslinking a composition including a polymer having a reactive group and a ketene imine crosslinking agent having at least two groups represented by the general formula (1).
  • Forming a separation layer a gas separation membrane containing a polymer having a crosslinked structure is prepared by preparing a coating solution by mixing at least one or more polymers having a reactive group and a ketene imine crosslinking agent in a solvent.
  • the coating solution is preferably applied on the lower layer (for example, a support or a smooth layer) for the gas separation membrane in a thin state so that the crosslinking and separation layers are simultaneously formed.
  • a coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used. At that time, in the coating solution containing the polymer having a reactive group and the ketene imine crosslinking agent, the crosslinking reaction does not proceed, or the traveling speed is sufficiently suppressed to the extent that gelation does not occur before coating. It is preferable. By keeping the concentration of the reactive group-containing polymer and ketene imine crosslinking agent in the coating solution below a certain level, the progress of the crosslinking reaction in the coating solution can be suppressed to a predetermined level, enabling thin-layer coating. Can maintain a low viscosity state.
  • the concentration of the polymer having a reactive group in the coating solution at the time of coating is preferably 0.1 to 20.0% by mass, more preferably 0.2 to 10.0% by mass.
  • the content is 0.5 to 5.0% by mass.
  • the concentration of the ketene imine crosslinking agent in the coating solution at the time of coating is preferably 0.2 to 30% by mass, more preferably 0.5 to 20% by mass, and 1 to 10% by mass. Further preferred.
  • the cross-linking reaction proceeds rapidly with rapid solvent evaporation, and the ketene imine cross-linking agent Forms a cross-linked structure of origin.
  • the separated layer comprised from the polymer which has a crosslinked structure can be formed on a support body.
  • the coating solution When the coating solution is applied in a thin layer, the specific interface area increases and the evaporation rate of the solvent increases remarkably. Along with the rapid evaporation of the solvent, the concentration of the polymer having a reactive group and the ketene imine cross-linking agent increases at a stretch, and as a result, the cross-linking reaction proceeds rapidly and a polymer structure having a cross-linked structure is rapidly formed. Since the formation of the polymer having a crosslinked structure proceeds rapidly after application of the coating liquid, the coating liquid hardly penetrates into the porous support (gelates before penetration). As a result, a more uniform separation layer with fewer defects can be formed.
  • the organic solvent used as a medium for the coating solution is not particularly limited, but is a hydrocarbon organic solvent such as n-hexane or n-heptane, an ester organic solvent such as methyl acetate, ethyl acetate or butyl acetate, Lower alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol and tert-butanol, aliphatic ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone and cyclohexanone, ethylene glycol , Diethylene glycol, triethylene glycol, glycerin, propylene glycol, ethylene glycol monomethyl or monoethyl ether, propylene glycol methyl ether, dipropylene glycol methyl ether, triplicate Ether-based organics
  • organic solvents are appropriately selected as long as they do not adversely affect the substrate, such as ester-based (preferably butyl acetate), alcohol-based (preferably methanol, ethanol, isopropanol).
  • ester-based preferably butyl acetate
  • alcohol-based preferably methanol, ethanol, isopropanol
  • Isobutanol aliphatic ketones (preferably methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone)
  • ether type ethylene glycol, diethylene glycol monomethyl ether, methyl cyclopentyl ether
  • these can be used 1 type or in combination of 2 or more types.
  • the conditions for forming the separation layer of the gas separation membrane of the present invention are not particularly limited, but the crosslinking reaction is preferably performed at 80 ° C. or lower.
  • the temperature of the crosslinking reaction is more preferably from ⁇ 30 ° C. to less than 80 ° C., particularly preferably from ⁇ 10 ° C. to less than 80 ° C., and particularly preferably from 5 to 50 ° C.
  • the manufacturing method of a gas separation membrane includes the process of forming a protective layer on the surface of a separation layer, or the surface which performed the surface treatment of the separation layer.
  • a protective layer on the surface which performed the surface treatment of the separated layer.
  • an organic solvent the organic solvent used for formation of a separated layer can be mentioned.
  • a coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
  • the irradiation time is preferably 1 to 30 seconds.
  • the radiant energy is preferably 10 to 500 mW / cm 2 .
  • the method for producing a gas separation membrane of the present invention may include a step of forming a smooth layer on a support.
  • a coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
  • the irradiation time is preferably 1 to 30 seconds.
  • the radiant energy is preferably 10 to 500 mW / cm 2 .
  • the gas mixture can be separated.
  • the components of the raw material gas mixture are affected by the raw material production area, application, or use environment, and are not particularly defined.
  • the main components are preferably carbon dioxide and methane, carbon dioxide and nitrogen or carbon dioxide and hydrogen. That is, the proportion of carbon dioxide and methane or carbon dioxide and hydrogen in the gas mixture is preferably 5 to 50%, more preferably 10 to 40% as the proportion of carbon dioxide.
  • the separation method of the gas mixture using the gas separation membrane of the present invention exhibits particularly excellent performance, preferably carbonization such as carbon dioxide and methane. Excellent performance in separation of hydrogen, carbon dioxide and nitrogen, and carbon dioxide and hydrogen.
  • the method for separating the gas mixture is preferably a method including selectively permeating carbon dioxide from a mixed gas containing carbon dioxide and methane. Since the gas separation membrane of the present invention has high separation selectivity and permeability under high pressure and high resistance to organic solvents, gas separation can be performed under higher pressure than before.
  • the pressure at the time of gas separation is preferably 3 to 10 MPa, more preferably 5 to 6 MPa.
  • the gas separation temperature is preferably ⁇ 30 to 90 ° C., more preferably 15 to 70 ° C.
  • the gas separation membrane module of the present invention has the gas separation membrane of the present invention.
  • the gas separation membrane of the present invention is preferably a thin layer composite membrane combined with a porous support, and more preferably a gas separation membrane module using this.
  • it can be set as the gas separation apparatus which has a means for carrying out separation recovery of the gas using the gas separation membrane of this invention, a thin layer composite membrane, or a gas separation membrane module.
  • the gas separation membrane of the present invention can be suitably used in a modular form. Examples of modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like.
  • the gas separation membrane of the present invention may be applied to a gas separation / recovery device as a membrane / absorption hybrid method used in combination with an absorbing solution as described in, for example, JP-A-2007-297605.
  • the radiation curable polymer solution was cooled to 20 ° C. and diluted by adding n-heptane to 5 mass%.
  • the resulting solution was filtered using a filter paper having a filtration accuracy of 2.7 ⁇ m to prepare a radiation curable composition.
  • Ti (OiPr) 4 Dolf Chemical Chemicals isopropoxide titanium (IV)
  • PAN polyacrylonitrile porous film
  • UV intensity UV treatment Fusion UV System, Light Hammer 10, D-bulb
  • the obtained polymer crystals were suction filtered and blown dry at 60 ° C. to obtain 50.5 g of polymer (P-101).
  • Plasma treatment was performed on the smooth layer for 5 seconds under plasma treatment conditions of an oxygen flow rate of 50 cm 3 (STP) / min, an argon flow rate of 100 cm 3 (STP) / min, and a discharge output of 10 W.
  • STP oxygen flow rate
  • STP argon flow rate
  • 10 W discharge output
  • 0.038 g of ketene imine crosslinking agent the above ketene imine (1)
  • 8.6 g of methyl ethyl ketone were mixed and stirred at 25 ° C. for 30 minutes. did. Thereafter, the stirred solution was spin-coated on the smooth layer to form a separation layer having a thickness of 100 nm.
  • the polymerizable radiation-curable composition used for forming the smooth layer is spin-coated on the separation layer, and then subjected to UV treatment under the same UV treatment conditions as for the formation of the smooth layer.
  • a protective layer having a thickness of 600 nm was formed on the substrate, and dried for 8 hours with a blower dryer at 50 ° C. to prepare a gas separation membrane. The obtained separation membrane was used as the gas separation membrane of Example 1.
  • Example 2 In Example 1, instead of ketene imine (1) as a ketene imine cross-linking agent when forming the separation layer, ketene imine (2) synthesized by the same method except that ketene imine (1) and the material used were changed were used. A gas separation membrane of Example 2 was obtained in the same manner as Example 1 except that the same amount was used. Ketenimine (2)
  • Example 1 a gas separation membrane of Comparative Example 1 was obtained in the same manner as in Example 1 except that ketene imine 1 was not added when forming the separation layer.
  • Example 2 a gas separation membrane of Comparative Example 2 was obtained in the same manner as in Example 1 except that the separation layer was formed on the smooth layer by the following method.
  • polymer (P-1) having a reactive group polymer (P-1) having a reactive group, crosslinker Denacol EX861 (manufactured by Nagase ChemteX Corp., polyethylene glycol diglycidyl ether, both having 22 ethylene glycol repeating units) Terminal epoxy group-containing compound) 0.038 g and methyl ethyl ketone 8.6 g were mixed and stirred for 30 minutes.
  • P-1 polymer having a reactive group
  • crosslinker Denacol EX861 manufactured by Nagase ChemteX Corp., polyethylene glycol diglycidyl ether, both having 22 ethylene glycol repeating units
  • Terminal epoxy group-containing compound 0.038 g
  • methyl ethyl ketone 8.6 g were mixed and stirred for 30 minutes.
  • the gas separation properties (that is, separation selectivity) of the gas separation membranes of the Examples and Comparative Examples are the ratio of the CO 2 permeability coefficient P CO2 to the CH 4 permeability coefficient P CH4 of this membrane (P CO2 / P CH4 ). As calculated.
  • the CO 2 permeability of the gas separation membrane of each Example and Comparative Example was defined as the CO 2 permeability Q CO2 (unit: GPU) of this membrane.
  • barrer 1 ⁇ 10 ⁇ 10 cm 3 (STP) ⁇ cm / cm 2 ⁇ sec ⁇ cmHg) representing a transmission coefficient.
  • the unit of GPU is represented by the symbol Q
  • the unit of barrer is represented by the symbol P.
  • This THF solution was filtered through a 0.45 ⁇ m filter, and the amount of the lysate was quantified by GPC (gel permeation chromatography) measurement.
  • the amount of the separation layer single membrane before dissolution in THF was taken as 100%, and the value obtained by subtracting the amount of dissolved material obtained by GPC measurement was taken as the dissolution test residual rate.
  • the results are shown in Table 2 below.
  • the result of the residual rate correlates with the plasticization phenomenon when the gas separation membrane is exposed to a gas containing THF (estimated that solvent molecules enter between polymer chains and the polymer molecular chains become slippery), and the residual rate is high. It shows that the resistance to plasticization is high. It can be considered that this result also represents plasticization resistance against other aromatic compounds such as benzene, toluene, xylene and the like.
  • the gas separation membrane of the present invention has high separation selectivity and permeability under high pressure and high resistance to organic solvents.
  • the separation layer of the gas separation membrane of this invention contained the structure bridge
  • the separation layer of the gas separation membrane of the present invention contains an unreacted ketene imine crosslinking agent.
  • the gas separation membrane of Comparative Example 1 having a separation layer containing a polymer that does not contain a structure cross-linked through a linking group derived from a ketene imine cross-linking agent has very low resistance to organic solvents. I understood it.
  • the gas separation membrane of Comparative Example 2 having a separation layer containing a polymer that does not contain a structure crosslinked through a linking group derived from a ketene imine crosslinking agent has low permeability. It was also found that the resistance to organic solvents was low.
  • the resistance to organic solvents could be improved without lowering the CO 2 permeability by the ketene imine crosslinking agent. It is estimated that the fact that it is difficult to dissolve in an organic solvent suppresses the plasticization phenomenon that the solvent molecules do not easily enter the polymer film and the polymer molecular chains slip.
  • Examples 101 and 102 -modularization- Using the gas separation membranes produced in Examples 1 and 2, a spiral module was produced with reference to JP-A-5-168869. The obtained gas separation membrane module was used as the gas separation membrane module of Examples 101 and 102. It was confirmed that the produced gas separation membrane modules of Examples 101 and 102 were good according to the performance of the built-in gas separation membrane.

Abstract

Provided is a gas separation membrane having a separation layer that contains a polymer having a crosslinked structure, wherein the polymer having a crosslinked structure contains a structure that is crosslinked through a linking group derived from a ketenimine crosslinking agent having at least two groups represented by general formula (1) (wherein each of R22 and R23 independently represents a substituent, and * represents a binding site). This gas separation membrane has high separation selectivity and permeability at high pressures, while exhibiting high organic solvent resistance. Also provided are a method for producing a gas separation membrane and a gas separation membrane module. AA General formula (1)

Description

ガス分離膜およびガス分離膜の製造方法ならびにガス分離膜モジュールGas separation membrane, method for producing gas separation membrane, and gas separation membrane module
 本発明は、ガス分離膜およびその製造方法ならびにガス分離膜モジュールに関する。より詳しくは、高圧下での分離選択性および透過性が高く、有機溶媒耐性が高いガス分離膜およびその製造方法、ならびに、このガス分離膜を有するガス分離膜モジュールに関する。 The present invention relates to a gas separation membrane, a manufacturing method thereof, and a gas separation membrane module. More specifically, the present invention relates to a gas separation membrane having high separation selectivity and permeability under high pressure and high organic solvent resistance, a method for producing the same, and a gas separation membrane module having this gas separation membrane.
 高分子化合物からなる素材には、その素材ごとに特有の気体透過性がある。その性質に基づき、特定の高分子化合物から構成された膜によって、所望の気体成分を選択的に透過させて分離することができる。このガス分離膜の産業上の利用態様として、地球温暖化の問題と関連し、火力発電所やセメントプラント、製鉄所高炉等において、大規模な二酸化炭素発生源からこれを分離回収することが検討されている。そして、この膜分離技術は、比較的小さなエネルギーで達成できる環境問題の解決手段として着目されている。天然ガスやバイオガス(生物の排泄物、有機質肥料、生分解性物質、汚水、ゴミ、エネルギー作物などの発酵、嫌気性消化により発生するガス)は主としてメタンと二酸化炭素を含む混合ガスであり、その二酸化炭素等を除去する手段として膜分離方法が検討されている。 A material composed of a polymer compound has gas permeability specific to each material. Based on the property, a desired gas component can be selectively permeated and separated by a membrane composed of a specific polymer compound. As an industrial application of this gas separation membrane, it is related to the problem of global warming, and it is considered to separate and recover it from large-scale carbon dioxide generation sources in thermal power plants, cement plants, steelworks blast furnaces, etc. Has been. And this membrane separation technique attracts attention as a means for solving environmental problems that can be achieved with relatively small energy. Natural gas and biogas (gas generated by fermentation and anaerobic digestion of biological waste, organic fertilizers, biodegradable substances, sewage, garbage, energy crops, etc.) are mainly mixed gases containing methane and carbon dioxide. Membrane separation methods have been studied as means for removing the carbon dioxide and the like.
 実用的なガス分離膜とするためにガス分離に寄与する部位を薄層にしてガス透過性と分離性を確保するための膜分離方法として、非対称膜(Asymmetric Membrane)として分離に寄与する部分をスキン(Skin)層と呼ばれる薄層にする方法、あるいは機械強度を有する素材として支持体を、そしてその上にガス分離に寄与する薄膜層(Selective Layer)を設ける薄層複合膜(Thin Film composite)を用いる方法、あるいはガス分離に寄与する高密度の層を含む中空糸(Hollow fiber)を用いる方法が知られている。上記方法に共通して、ガス分離に寄与する層を分離層と呼ぶ。
 例えば、特許文献1では、不織布上に多孔質層を設けた支持体上に、分離層を設置した薄層複合膜が開示されている。
As a membrane separation method for ensuring gas permeability and separability by thinning a portion that contributes to gas separation in order to make a practical gas separation membrane, an asymmetric membrane (Asymmetric Membrane) A thin layer composite film (Thin film composite) in which a thin layer called a skin layer or a support as a material having mechanical strength and a thin film layer (Selective Layer) contributing to gas separation are provided thereon. A method using a hollow fiber (Hollow fiber) including a high-density layer that contributes to gas separation is known. In common with the above method, a layer contributing to gas separation is called a separation layer.
For example, Patent Document 1 discloses a thin-layer composite membrane in which a separation layer is provided on a support provided with a porous layer on a nonwoven fabric.
 非特許文献1には、ポリイミドなどを用いた分離層を有するガス分離膜はプラントにおける高圧条件および高二酸化炭素濃度条件において膜が可塑化し、分離選択性低下の原因となっていること、またこの問題を解決するためには膜を構成する高分子化合物に架橋構造を導入することが有効であるが、ガスの分離選択性と透過性の間ではトレードオフの関係にあるために架橋構造の導入によって透過性が低下してしまうこと、が記載されている。
 非特許文献2には、天然ガスやバイオガスなどの混合ガスには微量の水、テトラヒドロフラン(THF)、硫化水素、長鎖炭化水素などのハイドロカーボン(HC)、ベンゼン、トルエン、キシレン(BTX)といった芳香族化合物などの不純物が含まれており、膜によるガス分離を継続するにつれて分離膜モジュール内にこれらの不純物が滞留してしまい、膜が可塑化あるいは加水分解するなどのダメージを受けてしまい、分離選択性が低下することが記載されている。
 特許文献1には、架橋ポリイミド樹脂を含有してなるガス分離層をガス透過性の支持層上側に有するガス分離複合膜であって、ポリイミド化合物に特定の架橋鎖を介して架橋された構造を有するガス分離複合膜とすることにより、優れたガス透過性を有しながら高いガス分離選択性を有することが記載されている。
Non-Patent Document 1 discloses that a gas separation membrane having a separation layer using polyimide or the like is plasticized under a high pressure condition and a high carbon dioxide concentration condition in a plant, which causes a reduction in separation selectivity. In order to solve the problem, it is effective to introduce a cross-linked structure into the polymer compound constituting the membrane, but since there is a trade-off relationship between gas separation selectivity and permeability, the introduction of the cross-linked structure is required. It is described that the permeability is lowered by the above.
Non-Patent Document 2 discloses that mixed gases such as natural gas and biogas include trace amounts of water, hydrocarbons such as tetrahydrofuran (THF), hydrogen sulfide, and long-chain hydrocarbons (HC), benzene, toluene, and xylene (BTX). The impurities such as aromatic compounds are contained, and as the gas separation by the membrane continues, these impurities stay in the separation membrane module, resulting in damage such as plasticization or hydrolysis of the membrane. It is described that the separation selectivity is lowered.
Patent Document 1 discloses a gas separation composite membrane having a gas separation layer containing a crosslinked polyimide resin on the upper side of a gas permeable support layer, and has a structure in which a polyimide compound is crosslinked via a specific crosslinking chain. It is described that the gas separation composite membrane has high gas separation selectivity while having excellent gas permeability.
 また、特許文献2には、架橋を用いることにより高い可塑化耐性を備えるガス分離膜が開示されており、エステル架橋を有する架橋ポリイミドを用いることで、高い透過性と、高い分離選択性を実現できる中空糸を得る方法が記載されている。 Patent Document 2 discloses a gas separation membrane having high plasticization resistance by using cross-linking. By using a cross-linked polyimide having ester cross-linking, high permeability and high separation selectivity are realized. A method is described for obtaining hollow fibers that can be produced.
特開2013-46902号公報JP 2013-46902 A 米国特許US2009/0249950号US Patent US2009 / 0249950
 このような状況のもと、本発明者が上記文献記載のガス分離膜の架橋技術を高圧下において検討したところ、架橋基導入によって分離選択性は向上するが透過性が低下しており、高分離選択性と透過性のトレードオフの関係から脱していないことが分かった。
 すなわち、高圧下におけるガス分離膜の可塑化耐性が不足しており透過性を下げずに分離選択性を向上させるための架橋技術が知られていなかった。
 本発明が解決しようとする課題は、高圧下での分離選択性および透過性が高く、有機溶媒耐性が高いガス分離膜を提供することにある。
Under such circumstances, the present inventors examined the gas separation membrane crosslinking technique described in the above literature under high pressure. As a result, the separation selectivity was improved by the introduction of the crosslinking group, but the permeability was decreased. It was found that it was not escaped from the trade-off relationship between separation selectivity and permeability.
That is, the plasticization resistance of the gas separation membrane under high pressure is insufficient, and a crosslinking technique for improving the separation selectivity without lowering the permeability has not been known.
The problem to be solved by the present invention is to provide a gas separation membrane having high separation selectivity and permeability under high pressure and high resistance to organic solvents.
 本発明者が上記課題を解決するために鋭意検討を重ねた結果、ケテンイミン化合物を架橋剤として用いて架橋させた架橋構造を有するポリマーを分離層の材料として用いることで、可塑化を抑える架橋を導入できるために高圧下での高い分離選択性および高い透過性を両立でき、かつ、共有結合による強固な架橋をポリマー間に形成できるために有機溶剤に対して難溶化して高い有機溶媒耐性を有するガス分離膜を提供できることを見出すに至った。 As a result of intensive studies by the inventor in order to solve the above problems, cross-linking that suppresses plasticization is achieved by using a polymer having a cross-linked structure that is cross-linked by using a ketene imine compound as a cross-linking agent as a material for the separation layer. Because it can be introduced, it can achieve both high separation selectivity and high permeability under high pressure, and can form a strong crosslink between covalent bonds between polymers, making it difficult to dissolve in organic solvents and high resistance to organic solvents. It came to discover that the gas separation membrane which has can be provided.
 上記の課題を解決するための具体的な手段である本発明は以下のとおりである。
[1] 架橋構造を有するポリマーを含む分離層を有し、
 架橋構造を有するポリマーが、下記一般式(1)で表される基を少なくとも2つ以上有するケテンイミン架橋剤由来の連結基を介して架橋された構造を含有する、ガス分離膜。
一般式(1)
Figure JPOXMLDOC01-appb-C000005
(一般式(1)中、R22およびR23はそれぞれ独立に置換基を表し、*は結合部位を表す。)
[2] [1]に記載のガス分離膜は、ケテンイミン架橋剤由来の連結基が、-NH-R21-NH-(ただしR21は2価の連結基を表す)であることが好ましい。
[3] [2]に記載のガス分離膜は、反応性基をもつ架橋構造が、-C(=O)-NH-R21-NH-C(=O)-(R21は2価の連結基を表す)であることが好ましい。
[4] [2]または[3]に記載のガス分離膜は、R21がアルキレン基、アリーレン基、あるいは、2以上のアルキレン基またはアリーレン基が結合した2価の連結基であることが好ましい。
[5] [2]~[4]のいずれか一つに記載のガス分離膜は、R21が炭素数1~15の2価の連結基であることが好ましい。
[6] [2]~[5]のいずれか一つに記載のガス分離膜は、R21が少なくとも1つのアリーレン基を含む2価の連結基であることが好ましい。
[7] [1]~[6]のいずれか一つに記載のガス分離膜は、ケテンイミン架橋剤が下記一般式(2)で表される化合物であることが好ましい。
一般式(2)
Figure JPOXMLDOC01-appb-C000006
(一般式(2)中、R11はアルキレン基、アリーレン基、あるいは、2以上のアルキレン基またはアリーレン基が直接またはR31を介して結合した2価の連結基を表し、R12~R15はそれぞれ独立にアルキル基またはアリール基を表し、R31は下記群で表される連結基のいずれかを表す。)
Figure JPOXMLDOC01-appb-C000007
[8] [1]~[7]のいずれか一つに記載のガス分離膜は、架橋構造を有するポリマーが、架橋ポリイミドであることが好ましい。
[9] [1]~[8]のいずれか一つに記載のガス分離膜は、架橋構造を有するポリマーを含む分離層が、反応性基を有するポリマーおよびケテンイミン架橋剤を含む組成物を架橋反応させて形成されてなることが好ましい。
[10] [9]に記載のガス分離膜は、反応性基を有するポリマーが、ポリイミド単位と、側鎖にカルボキシル基、アミノ基またはヒドロキシル基を有する繰り返し単位とを含むことが好ましい。
[11] 反応性基を有するポリマーおよび下記一般式(1)で表される基を少なくとも2つ以上有するケテンイミン架橋剤を含む組成物を架橋反応させて、架橋構造を有するポリマーを含む分離層を形成する工程を含む、ガス分離膜の製造方法。
一般式(1)
Figure JPOXMLDOC01-appb-C000008
(一般式(1)中、R22およびR23はそれぞれ独立に置換基を表し、*は結合部位を表す。)
[12] [11]に記載のガス分離膜の製造方法は、反応性基を有するポリマーが、ポリイミド単位と、側鎖にカルボキシル基、アミノ基またはヒドロキシル基を有する繰り返し単位とを含むことが好ましい。
[13] [1]~[10]のいずれか一つに記載のガス分離膜を有するガス分離膜モジュール。
The present invention, which is a specific means for solving the above problems, is as follows.
[1] having a separation layer containing a polymer having a crosslinked structure;
A gas separation membrane in which a polymer having a crosslinked structure contains a structure crosslinked through a linking group derived from a ketene imine crosslinking agent having at least two groups represented by the following general formula (1).
General formula (1)
Figure JPOXMLDOC01-appb-C000005
(In general formula (1), R 22 and R 23 each independently represent a substituent, and * represents a binding site.)
[2] In the gas separation membrane according to [1], the linking group derived from the ketene imine crosslinking agent is preferably —NH—R 21 —NH— (wherein R 21 represents a divalent linking group).
[3] In the gas separation membrane according to [2], the crosslinked structure having a reactive group has a structure of —C (═O) —NH—R 21 —NH—C (═O) — (R 21 is a divalent group). Represents a linking group).
[4] In the gas separation membrane according to [2] or [3], R 21 is preferably an alkylene group, an arylene group, or a divalent linking group in which two or more alkylene groups or an arylene group are bonded. .
[5] In the gas separation membrane according to any one of [2] to [4], R 21 is preferably a divalent linking group having 1 to 15 carbon atoms.
[6] In the gas separation membrane according to any one of [2] to [5], R 21 is preferably a divalent linking group containing at least one arylene group.
[7] In the gas separation membrane according to any one of [1] to [6], the ketene imine crosslinking agent is preferably a compound represented by the following general formula (2).
General formula (2)
Figure JPOXMLDOC01-appb-C000006
(In the general formula (2), R 11 represents an alkylene group, an arylene group, or a divalent linking group in which two or more alkylene groups or an arylene group are bonded directly or via R 31 , and R 12 to R 15 Each independently represents an alkyl group or an aryl group, and R 31 represents any one of the linking groups represented by the following group.)
Figure JPOXMLDOC01-appb-C000007
[8] In the gas separation membrane according to any one of [1] to [7], the polymer having a crosslinked structure is preferably a crosslinked polyimide.
[9] The gas separation membrane according to any one of [1] to [8], wherein the separation layer containing a polymer having a crosslinked structure crosslinks a composition containing a polymer having a reactive group and a ketene imine crosslinking agent. It is preferably formed by reaction.
[10] In the gas separation membrane according to [9], the polymer having a reactive group preferably includes a polyimide unit and a repeating unit having a carboxyl group, an amino group or a hydroxyl group in the side chain.
[11] A separation layer containing a polymer having a crosslinked structure is obtained by crosslinking a composition containing a polymer having a reactive group and a ketene imine crosslinking agent having at least two groups represented by the following general formula (1). A manufacturing method of a gas separation membrane including the process of forming.
General formula (1)
Figure JPOXMLDOC01-appb-C000008
(In general formula (1), R 22 and R 23 each independently represent a substituent, and * represents a binding site.)
[12] In the method for producing a gas separation membrane according to [11], the polymer having a reactive group preferably includes a polyimide unit and a repeating unit having a carboxyl group, an amino group or a hydroxyl group in a side chain. .
[13] A gas separation membrane module having the gas separation membrane according to any one of [1] to [10].
 本発明によれば、高圧下での分離選択性および透過性が高く、有機溶媒耐性が高いガス分離膜を提供することができる。 According to the present invention, it is possible to provide a gas separation membrane having high separation selectivity and permeability under high pressure and high resistance to organic solvents.
図1は、本発明のガス分離膜の一例の断面を示す模式図である。FIG. 1 is a schematic view showing a cross section of an example of the gas separation membrane of the present invention. 図2は、本発明のガス分離膜の他の一例の断面を示す模式図である。FIG. 2 is a schematic view showing a cross section of another example of the gas separation membrane of the present invention. 図3は、本発明のガス分離膜の他の一例の断面を示す模式図である。FIG. 3 is a schematic view showing a cross section of another example of the gas separation membrane of the present invention.
 以下、本発明について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
 本明細書において、特定の符号で表示された置換基や連結基等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が近接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。 In the present specification, when there are a plurality of substituents, linking groups, and the like (hereinafter referred to as substituents) indicated by specific symbols, or when a plurality of substituents are specified simultaneously or alternatively, It means that a substituent etc. may mutually be same or different. Further, even if not specifically stated, it means that when a plurality of substituents and the like are close to each other, they may be connected to each other or condensed to form a ring.
 本明細書において化合物(樹脂を含む)の表示については、化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、所定の一部を変化させた誘導体を含む意味である。
 本明細書における置換基(連結基についても同様)については、所望の効果を奏する範囲で、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。
In this specification, about the display of a compound (a resin is included), it uses for the meaning containing its salt and its ion besides the compound itself. Moreover, it is the meaning including the derivative | guide_body which changed the predetermined part in the range with the desired effect.
The substituent in the present specification (the same applies to the linking group) means that the group may have an arbitrary substituent as long as the desired effect is obtained. This is also synonymous for compounds that do not specify substitution / non-substitution.
[ガス分離膜]
 本発明のガス分離膜は、架橋構造を有するポリマーを含む分離層を有し、架橋構造を有するポリマーが、下記一般式(1)で表される基を少なくとも2つ以上有するケテンイミン架橋剤由来の連結基を介して架橋された構造を含有する。
一般式(1)
Figure JPOXMLDOC01-appb-C000009
(一般式(1)中、R22およびR23はそれぞれ独立に置換基を表し、*は結合部位を表す。)
 このような構成により、本発明のガス分離膜は高圧下での分離選択性および透過性が高く、有機溶媒耐性が高い。
 以下、本発明のガス分離膜の好ましい態様について説明する。
[Gas separation membrane]
The gas separation membrane of the present invention has a separation layer containing a polymer having a crosslinked structure, and the polymer having a crosslinked structure is derived from a ketene imine crosslinking agent having at least two groups represented by the following general formula (1). Contains a structure crosslinked through a linking group.
General formula (1)
Figure JPOXMLDOC01-appb-C000009
(In general formula (1), R 22 and R 23 each independently represent a substituent, and * represents a binding site.)
With such a configuration, the gas separation membrane of the present invention has high separation selectivity and permeability under high pressure and high resistance to organic solvents.
Hereinafter, preferred embodiments of the gas separation membrane of the present invention will be described.
<構成>
 本発明のガス分離膜は、ガス分離膜が、薄層複合膜、非対称膜または中空糸であることが好ましい。
 本発明では、ガス分離膜が薄層複合膜であることが好ましい。なお、以下においてガス分離膜が薄層複合膜である場合を代表例として説明するときがあるが、本発明のガス分離膜は薄層複合膜によって限定されるものではない。
 本発明のガス分離膜を製造する場合、溶液塗布後に貧溶媒中を通過させるいわゆる相分離法を用いて製膜を行ったときに、ガス分離膜は空隙のある空隙部と、空隙を有さない分離層に分かれる。分離層の厚みは、ガス分離膜の断面をSEM観察し、空隙が存在しない部分の厚さを測定することにより求めることが可能である。
<Configuration>
In the gas separation membrane of the present invention, the gas separation membrane is preferably a thin layer composite membrane, an asymmetric membrane or a hollow fiber.
In the present invention, the gas separation membrane is preferably a thin layer composite membrane. In the following description, the case where the gas separation membrane is a thin layer composite membrane may be described as a representative example, but the gas separation membrane of the present invention is not limited to the thin layer composite membrane.
When the gas separation membrane of the present invention is produced, when the membrane is formed using a so-called phase separation method of passing through a poor solvent after applying the solution, the gas separation membrane has a void portion having a void and a void. Not divided into separate layers. The thickness of the separation layer can be obtained by observing the cross section of the gas separation membrane by SEM and measuring the thickness of the portion where no void exists.
 本発明のガス分離膜の好ましい構成を、図面を用いて説明するが、本発明は図面によって限定されるものではない。
 図1は、本発明の好ましい実施形態である薄層複合膜のガス分離膜10を模式的に示す縦断面図である。1は分離層、12は多孔質層からなる支持体4である。図2は、本発明の好ましい実施形態であるガス分離膜10を模式的に示す断面図である。この実施形態では、分離層1及び多孔質層12に加え、支持体4の一部として不織布13が追加されており、支持体4が多孔質層12と不織布13を有する態様である。
Although the preferable structure of the gas separation membrane of this invention is demonstrated using drawing, this invention is not limited by drawing.
FIG. 1 is a longitudinal sectional view schematically showing a gas separation membrane 10 of a thin layer composite membrane which is a preferred embodiment of the present invention. 1 is a separation layer, and 12 is a support 4 made of a porous layer. FIG. 2 is a cross-sectional view schematically showing a gas separation membrane 10 which is a preferred embodiment of the present invention. In this embodiment, in addition to the separation layer 1 and the porous layer 12, a nonwoven fabric 13 is added as a part of the support 4, and the support 4 has the porous layer 12 and the nonwoven fabric 13.
 本明細書において「支持体上側」とは、支持体と分離層との間に他の層が介在してもよい意味である。また、上下の表現については、特に断らない限り、分離対象となるガスが供給される方向を「上」とし、分離されたガスが出される方向を「下」とする。 In this specification, “upper support” means that another layer may be interposed between the support and the separation layer. As for the upper and lower expressions, unless otherwise specified, the direction in which the gas to be separated is supplied is “upper”, and the direction in which the separated gas is emitted is “lower”.
 図3に示した本発明のより好ましいガス分離膜の他の一例では、ガス分離膜10は薄層複合膜であって、ガス分離膜10は、分離層1と、分離層1上に形成された保護層(Protective Layer)2とを具備する。
 本発明のガス分離膜10は、分離層1が支持体4上に形成されたことが好ましい。
 本発明のガス分離膜10は、分離層1と支持体4の間に平滑層(Gutter Layer)3を有することが好ましい。
In another example of the more preferable gas separation membrane of the present invention shown in FIG. 3, the gas separation membrane 10 is a thin layer composite membrane, and the gas separation membrane 10 is formed on the separation layer 1 and the separation layer 1. And a protective layer 2 (Protective Layer).
In the gas separation membrane 10 of the present invention, the separation layer 1 is preferably formed on the support 4.
The gas separation membrane 10 of the present invention preferably has a smooth layer (Gutter Layer) 3 between the separation layer 1 and the support 4.
<分離層>
 本発明のガス分離膜は、架橋構造を有するポリマーを含む分離層を含み、架橋構造を有するポリマーが、下記一般式(1)で表される基を少なくとも2つ以上有するケテンイミン架橋剤由来の連結基を介して架橋された構造を含有する。
一般式(1)
Figure JPOXMLDOC01-appb-C000010
(一般式(1)中、R22およびR23はそれぞれ独立に置換基を表し、*は結合部位を表す。)
 また、本発明のガス分離膜は、分離層が、架橋反応後の未反応のケテンイミン架橋剤を有していてもよい。分離層が未反応のケテンイミン架橋剤を有することは、IRスペクトルにより確認することができる。
<Separation layer>
The gas separation membrane of the present invention includes a separation layer containing a polymer having a crosslinked structure, and the polymer having a crosslinked structure is derived from a ketene imine crosslinking agent having at least two groups represented by the following general formula (1). Contains a structure crosslinked through a group.
General formula (1)
Figure JPOXMLDOC01-appb-C000010
(In general formula (1), R 22 and R 23 each independently represent a substituent, and * represents a binding site.)
In the gas separation membrane of the present invention, the separation layer may have an unreacted ketene imine crosslinking agent after the crosslinking reaction. It can be confirmed by IR spectrum that the separation layer has an unreacted ketene imine crosslinking agent.
(架橋構造を有するポリマー)
 架橋構造を有するポリマーは、一般式(1)で表される基を少なくとも2つ以上有するケテンイミン架橋剤由来の連結基を介して架橋された構造を含有する。
(Polymer having a crosslinked structure)
The polymer having a crosslinked structure contains a structure crosslinked via a linking group derived from a ketene imine crosslinking agent having at least two groups represented by the general formula (1).
 分離層に含まれる架橋構造を有するポリマーは、以下に挙げられるが、これらに限定されるわけではない。具体的には、架橋ポリイミド(架橋構造を有するポリイミド類とも言う)、架橋構造を有するポリアミド類、架橋構造を有するセルロース類、架橋構造を有するポリエチレングリコール類、架橋構造を有するポリベンゾオキサゾール類であることが好ましく、架橋構造を有するポリイミド、架橋構造を有するポリベンゾオキサゾールおよび架橋構造を有する酢酸セルロースから選ばれる少なくとも1種であることがより好ましく、架橋構造を有するポリイミドであることが特に好ましい。
 以下において、架橋構造を有するポリマーが架橋構造を有するポリイミドである場合について代表例として説明することがあるが、本発明は架橋構造を有するポリマーが架橋構造を有するポリイミドである場合に限定されるものではない。
Although the polymer which has a crosslinked structure contained in a separated layer is mentioned below, it is not necessarily limited to these. Specifically, crosslinked polyimide (also referred to as polyimide having a crosslinked structure), polyamide having a crosslinked structure, cellulose having a crosslinked structure, polyethylene glycol having a crosslinked structure, and polybenzoxazole having a crosslinked structure. It is more preferable that it is at least one selected from polyimide having a crosslinked structure, polybenzoxazole having a crosslinked structure, and cellulose acetate having a crosslinked structure, and particularly preferably a polyimide having a crosslinked structure.
In the following, the case where the polymer having a crosslinked structure is a polyimide having a crosslinked structure may be described as a representative example, but the present invention is limited to the case where the polymer having a crosslinked structure is a polyimide having a crosslinked structure. is not.
-ケテンイミン架橋剤由来の連結基-
 次に、ケテンイミン架橋剤由来の連結基について説明する。
 ケテンイミン架橋剤由来の連結基は、-NH-R21-NH-(ただしR21は2価の連結基を表す)であることが好ましい。
 特に本発明では後述するように架橋構造を有するポリマーとして、架橋構造を有するポリマーの反応性基がカルボキシル基などの-C(=O)-基を架橋反応後に形成するポリマーを用いることが好ましい。この場合、架橋構造を有するポリマーの反応性基ケテンイミン架橋剤由来の連結基と架橋構造を有するポリマーの反応性基由来の構造とが結合して形成される連結基は、-C(=O)-NH-R21-NH-C(=O)-(ただしR21は2価の連結基を表す)であることが好ましい。すなわち、反応性基をもつ架橋構造が、-C(=O)-NH-R21-NH-C(=O)-(R21は2価の連結基を表す)であることが好ましい。
 R21は、アルキレン基、アリーレン基、あるいは、2以上のアルキレン基およびアリーレン基が直接またはR24を介して結合した2価の連結基であることが好ましく、アルキレン基、アリーレン基、あるいは、2以上のアルキレン基およびアリーレン基が直接結合した2価の連結基であることがより好ましい。R21が表すアルキレン基は、好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルキレン基であり、より特に好ましくは炭素数1のアルキレン基である。R21が表すアリーレン基は、好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~10のアリーレン基であり、より特に好ましくは炭素数6のアリーレン基である。R21が表す2以上のアルキレン基およびアリーレン基が直接またはR24を介して結合した2価の連結基としては、特に制限はないが、炭素数1~15の2価の連結基であることが好ましく、少なくとも1つのアリーレン基を含む炭素数1~15の2価の連結基であることがより好ましく、2つのアリーレン基を含む炭素数1~15の2価の連結基であることが特に好ましく、アルキレン基の両側に2つのアリーレン基を有する炭素数1~15の2価の連結基であることがより特に好ましい。R21が、2以上のアルキレン基およびアリーレン基が直接または連結基を介して結合した2価の連結基である場合、2以上のアルキレン基およびアリーレン基の間のR24は下記群で表される連結基のいずれかであり、-SO-であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 これらの中でも、R21は、アルキレン基、あるいは、2以上のアルキレン基およびアリーレン基が結合した2価の連結基であることが好ましい。
 ここで、R21は、炭素数1~15の2価の連結基であることが、ガス分離性の観点から好ましい。また、R21は、少なくとも1つのアリーレン基を含む2価の連結基であることが、実施例にあるポリイミドとの親和性の観点から好ましい。
 R21が表す連結基は、さらに置換基によって置換されていてもよく、置換基の例としては後述の置換基群Zに列挙された置換基を挙げることができる。
-Linking group derived from ketene imine crosslinking agent-
Next, a linking group derived from a ketene imine crosslinking agent will be described.
The linking group derived from the ketene imine crosslinking agent is preferably —NH—R 21 —NH— (wherein R 21 represents a divalent linking group).
In particular, in the present invention, as described later, it is preferable to use a polymer in which a reactive group of a polymer having a crosslinked structure forms a —C (═O) — group such as a carboxyl group after the crosslinking reaction, as described later. In this case, a linking group formed by combining a linking group derived from a reactive group ketene imine crosslinking agent of a polymer having a crosslinked structure and a structure derived from a reactive group of a polymer having a crosslinked structure is -C (= O) It is preferably —NH—R 21 —NH—C (═O) — (wherein R 21 represents a divalent linking group). That is, the crosslinked structure having a reactive group is preferably —C (═O) —NH—R 21 —NH—C (═O) — (R 21 represents a divalent linking group).
R 21 is preferably an alkylene group, an arylene group, or a divalent linking group in which two or more alkylene groups and an arylene group are bonded directly or via R 24 , and is an alkylene group, an arylene group, or 2 A divalent linking group in which the above alkylene group and arylene group are directly bonded is more preferable. The alkylene group represented by R 21 is preferably an alkylene group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, and particularly preferably an alkylene group having 1 carbon atom. is there. The arylene group represented by R 21 is preferably an arylene group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 10 carbon atoms, and more preferably an arylene group having 6 carbon atoms. is there. The divalent linking group in which two or more alkylene groups and arylene groups represented by R 21 are bonded directly or via R 24 is not particularly limited, but is a divalent linking group having 1 to 15 carbon atoms. And more preferably a divalent linking group having 1 to 15 carbon atoms containing at least one arylene group, and particularly a divalent linking group having 1 to 15 carbon atoms containing two arylene groups. A divalent linking group having 1 to 15 carbon atoms having two arylene groups on both sides of the alkylene group is more preferable. When R 21 is a divalent linking group in which two or more alkylene groups and an arylene group are bonded directly or via a linking group, R 24 between the two or more alkylene groups and the arylene group is represented by the following group: And is preferably —SO 2 —.
Figure JPOXMLDOC01-appb-C000011
Among these, R 21 is preferably an alkylene group or a divalent linking group in which two or more alkylene groups and an arylene group are bonded.
Here, R 21 is preferably a divalent linking group having 1 to 15 carbon atoms from the viewpoint of gas separation. R 21 is preferably a divalent linking group containing at least one arylene group from the viewpoint of affinity with the polyimide in the examples.
The linking group represented by R 21 may be further substituted with a substituent, and examples of the substituent include the substituents listed in the substituent group Z described later.
 上記のようなケテンイミン架橋剤由来の連結基をもつ架橋鎖は、架橋構造を有するポリマーの安定性の向上や分離選択性の向上に有利に作用する。例えば、アミド〔-NHC(=O)-〕は一般的に安定な結合であり、これが膜の安定化にも寄与すると考えられる。このようなアミド結合は、酸およびアルカリに対してエステル結合よりも大幅に安定性が高いと一般に考えられているが、本発明に用いられるケテンイミン架橋剤由来の連結基では2つのアミド〔-NHC(=O)-〕結合が連結基R21を介して連結することで、有機溶媒耐性も非常に優れ、また、後述の反応性ポリマーが単独で形成し得る高次構造を阻害することなく2以上の反応性ポリマー鎖の間、あるいは、反応性ポリマー鎖内部で架橋することができる。
 ケテンイミン架橋剤由来の連結基をもつ架橋鎖は、これに加えて、製造適性に優れる。
A crosslinked chain having a linking group derived from a ketene imine crosslinking agent as described above has an advantageous effect on improving the stability and separation selectivity of a polymer having a crosslinked structure. For example, amide [—NHC (═O) —] is generally a stable bond, which is considered to contribute to the stabilization of the film. Such an amide bond is generally considered to be much more stable than an ester bond with respect to acids and alkalis. However, in the linking group derived from the ketene imine cross-linking agent used in the present invention, two amides [—NHC The (= O)-] bond is linked via the linking group R 21 , so that the organic solvent resistance is very excellent, and the higher-order structure that can be formed independently by the reactive polymer described later is not inhibited. Crosslinking can be performed between the above reactive polymer chains or inside the reactive polymer chain.
In addition to this, a crosslinked chain having a linking group derived from a ketene imine crosslinking agent is excellent in production suitability.
-ケテンイミン架橋剤-
 一般式(1)で表される基を有するケテンイミン架橋剤の好ましい態様について説明する。
一般式(1)
Figure JPOXMLDOC01-appb-C000012
(一般式(1)中、R22およびR23はそれぞれ独立に置換基を表し、*は結合部位を表す。)
 一般式(1)中、R22およびR23はそれぞれ独立に置換基を表し、置換基としては特に制限は無く後述の置換基群Zとして例示した置換基を挙げることができる。R22およびR23はそれぞれ独立にアルキル基またはアリール基を表すことが好ましい。R22およびR23が表すアルキル基の好ましい範囲は、後記置換基群Zで説明するアルキル基の好ましい範囲と同義である。R22およびR23が表すアリール基の好ましい範囲は、後記置換基群Zで説明するアリール基の好ましい範囲と同義である。R22およびR23はそれぞれ独立にアリール基であることがより好ましい。
 但し、本明細書中においては、アリール基にはヘテロアリール基が含まれるものとする。ヘテロアリール基とは、芳香族性を示す5員、6員又は7員の環又はその縮合環の環構成原子の少なくとも1つがヘテロ原子に置換されたものをいう。ヘテロアリール基としては、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、チエニル基、ベンズオキサゾリル基、インドリル基、ベンズイミダゾリル基、ベンズチアゾリル基、カルバゾリル基、アゼピニル基を例示することができる。ヘテロアリール基に含まれるヘテロ原子は、酸素原子、硫黄原子、窒素原子であることが好ましく、中でも、酸素原子または窒素原子であることが好ましい。
 R22およびR23が表す置換基は、さらなる置換基によって置換されていてもよく、さらなる置換基の例としては後述の置換基群Zに列挙された置換基を挙げることができる。
-Ketene imine cross-linking agent-
The preferable aspect of the ketene imine crosslinking agent which has group represented by General formula (1) is demonstrated.
General formula (1)
Figure JPOXMLDOC01-appb-C000012
(In general formula (1), R 22 and R 23 each independently represent a substituent, and * represents a binding site.)
In the general formula (1), R 22 and R 23 each independently represent a substituent, and the substituent is not particularly limited, and examples thereof include the substituents exemplified as the substituent group Z described later. R 22 and R 23 each independently preferably represents an alkyl group or an aryl group. The preferred range of the alkyl group represented by R 22 and R 23 is synonymous with the preferred range of the alkyl group described in Substituent Group Z below. The preferred range of the aryl group represented by R 22 and R 23 is the same as the preferred range of the aryl group described in Substituent group Z described later. More preferably, R 22 and R 23 are each independently an aryl group.
However, in the present specification, the aryl group includes a heteroaryl group. The heteroaryl group refers to a group in which at least one of the ring-constituting atoms of a 5-membered, 6-membered or 7-membered ring exhibiting aromaticity or a condensed ring thereof is substituted with a heteroatom. Examples of heteroaryl groups include imidazolyl, pyridyl, quinolyl, furyl, thienyl, benzoxazolyl, indolyl, benzimidazolyl, benzthiazolyl, carbazolyl, and azepinyl groups. . The hetero atom contained in the heteroaryl group is preferably an oxygen atom, a sulfur atom, or a nitrogen atom, and particularly preferably an oxygen atom or a nitrogen atom.
The substituent represented by R 22 and R 23 may be further substituted by a further substituent, and examples of the further substituent include the substituents listed in the substituent group Z described later.
 ケテンイミン架橋剤は、下記一般式(2)で表される化合物であることが好ましい。
一般式(2)
Figure JPOXMLDOC01-appb-C000013
(一般式(2)中、R11はアルキレン基、アリーレン基、あるいは、2以上のアルキレン基またはアリーレン基が直接またはR31を介して結合した2価の連結基を表し、R12~R15はそれぞれ独立にアルキル基またはアリール基を表し、R31は下記群で表される連結基のいずれかを表す。)
Figure JPOXMLDOC01-appb-C000014
 R11の好ましい範囲は、上述のR21の好ましい範囲と同様である。
 R12~R15の好ましい範囲は、上述のR22およびR23の好ましい範囲と同様である。
 R31の好ましい範囲は、上述のR24の好ましい範囲と同様である。
The ketene imine crosslinking agent is preferably a compound represented by the following general formula (2).
General formula (2)
Figure JPOXMLDOC01-appb-C000013
(In the general formula (2), R 11 represents an alkylene group, an arylene group, or a divalent linking group in which two or more alkylene groups or an arylene group are bonded directly or via R 31 , and R 12 to R 15 Each independently represents an alkyl group or an aryl group, and R 31 represents any one of the linking groups represented by the following group.)
Figure JPOXMLDOC01-appb-C000014
The preferred range of R 11 is the same as the preferred range of R 21 described above.
The preferred ranges of R 12 to R 15 are the same as the preferred ranges of R 22 and R 23 described above.
A preferred range for R 31 is the same as the preferred range for R 24 described above.
 以下にケテンイミン架橋剤の具体例を示すが、本発明はこれらに限定されない。 Specific examples of the ketene imine crosslinking agent are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 ケテンイミン架橋剤は、ケテンイミン基を少なくとも2つ有する化合物であり、例えば、J.Am.Chem.Soc.,1953,75(3),pp 657-660記載の方法などを参考にして合成することができる。 The ketene imine cross-linking agent is a compound having at least two ketene imine groups. Am. Chem. Soc. 1953, 75 (3), pp 657-660, and the like.
 ケテンイミン架橋剤は、反応性基を有するポリマーに対して、0.05~5質量%となるように添加することが好ましく、0.1~3質量%となるように添加することがより好ましく、0.2~2質量%となるように添加することがさらに好ましい。このように、ケテンイミン化合物の添加率を上記範囲内とすることにより、耐可塑性および耐有機溶媒耐性を効果的に高めることができる。
 ケテンイミン架橋剤は、添加量の5~99%、好ましくは10~90%、更に好ましくは20~80%が反応していることが好ましい。反応率が低すぎると耐可塑性および耐有機溶媒耐性が悪くなり、反応性が高すぎると増粘して製膜が困難になることがある。
 ケテンイミン架橋剤の反応率は、ポリエステルフィルムのIRスペクトルから得ることができ、2000cm-1のピークから算出できる。
The ketene imine cross-linking agent is preferably added in an amount of 0.05 to 5% by mass, more preferably 0.1 to 3% by mass, based on the polymer having a reactive group, More preferably, it is added so as to be 0.2 to 2% by mass. Thus, by making the addition rate of a ketene imine compound in the said range, plastic resistance and organic-solvent resistance can be improved effectively.
The ketene imine cross-linking agent is preferably reacted in an amount of 5 to 99%, preferably 10 to 90%, more preferably 20 to 80%. If the reaction rate is too low, the plastic resistance and the resistance to organic solvents deteriorate, and if the reactivity is too high, the viscosity may increase and film formation may be difficult.
The reaction rate of the ketene imine crosslinking agent can be obtained from the IR spectrum of the polyester film, and can be calculated from the peak at 2000 cm −1 .
-架橋鎖を介しての架橋方法-
 本発明において、反応性基を有するポリマーの架橋は、分離層の形成と共に行うことが好ましい。詳細は下記の[ガス分離膜の製造方法]で説明する。
-Cross-linking method via cross-linking chain-
In the present invention, the crosslinking of the polymer having a reactive group is preferably performed together with the formation of the separation layer. Details will be described in [Method for producing gas separation membrane] below.
 ここで、本発明に用いられる架橋構造を有するポリマーは、反応性基を有するポリマーが、前述のケテンイミン架橋剤由来の連結基である架橋鎖を介して架橋された構造を有する。このような架橋鎖を介しての架橋方法は、代表的には、下記の反応スキーム(1)および(2)を含む架橋反応を用いる方法である。なお、説明の目的で便宜上、下記スキーム(1)および(2)で表される逐次での2段階での架橋反応を示すが、本発明での架橋反応は逐次での2段階での架橋反応に限定されるものではない。 Here, the polymer having a crosslinked structure used in the present invention has a structure in which a polymer having a reactive group is crosslinked via a crosslinking chain which is a linking group derived from the ketene imine crosslinking agent. Such a crosslinking method via a crosslinking chain is typically a method using a crosslinking reaction including the following reaction schemes (1) and (2). For convenience of explanation, the sequential two-stage crosslinking reaction represented by the following schemes (1) and (2) is shown, but the crosslinking reaction in the present invention is a sequential two-stage crosslinking reaction. It is not limited to.
スキーム(1)
Figure JPOXMLDOC01-appb-C000016
Scheme (1)
Figure JPOXMLDOC01-appb-C000016
スキーム(2)
Figure JPOXMLDOC01-appb-C000017
 上記スキーム中、RA1は2価の連結基を表し、RA2、RA3、RB2およびRB3はそれぞれ独立に置換基を表す。PolyおよびPolyはそれぞれ独立に任意の反応性ポリマーの骨格を表す。なお、RA1の好ましい範囲は、上述のR21の好ましい範囲と同様である。RA2、RA3、RB2およびRB3の好ましい範囲は、上述のR22およびR23の好ましい範囲と同様である。PolyおよびPolyは後述の反応性ポリマーの反応性基以外の構造であることが好ましい。
Scheme (2)
Figure JPOXMLDOC01-appb-C000017
In the above scheme, R A1 represents a divalent linking group, and R A2 , R A3 , R B2 and R B3 each independently represent a substituent. Poly 1 and Poly 2 each independently represent an arbitrary reactive polymer skeleton. The preferred range for R A1 is the same as the preferred range for R 21 described above. The preferred ranges of R A2 , R A3 , R B2 and R B3 are the same as the preferred ranges of R 22 and R 23 described above. Poly 1 and Poly 2 are preferably structures other than reactive groups of the reactive polymer described later.
-反応性基を有するポリマー-
 架橋構造を有するポリマーを含む分離層は、反応性基を有するポリマーおよび一般式(1)で表される基を少なくとも2つ以上有するケテンイミン架橋剤を含む組成物を架橋反応させて、形成されてなることが好ましい。
 反応性基を有するポリマーとしては、反応性基を有するポリイミド類、反応性基を有するポリアミド類、反応性基を有するセルロース類、反応性基を有するポリエチレングリコール類、反応性基を有するポリベンゾオキサゾール類であることが好ましく、反応性基を有するポリイミド、反応性基を有するポリベンゾオキサゾールおよび反応性基を有する酢酸セルロースから選ばれる少なくとも1種であることがより好ましく、反応性基を有するポリイミドであることが特に好ましい。
-Polymers having reactive groups-
The separation layer containing a polymer having a crosslinked structure is formed by crosslinking a composition containing a polymer having a reactive group and a ketene imine crosslinking agent having at least two groups represented by the general formula (1). It is preferable to become.
Polymers having reactive groups include polyimides having reactive groups, polyamides having reactive groups, celluloses having reactive groups, polyethylene glycols having reactive groups, polybenzoxazoles having reactive groups It is preferable that it is at least one selected from polyimide having a reactive group, polybenzoxazole having a reactive group, and cellulose acetate having a reactive group, and a polyimide having a reactive group. It is particularly preferred.
 以下において、反応性基を有するポリマーが反応性基を有するポリイミドである場合について代表例として説明することがあるが、本発明は反応性基を有するポリマーが反応性基を有するポリイミドである場合に限定されるものではない。 In the following, the case where the polymer having a reactive group is a polyimide having a reactive group may be described as a representative example, but the present invention may be used when the polymer having a reactive group is a polyimide having a reactive group. It is not limited.
 本発明に用いることができる反応性基を有するポリイミドについて以下に詳しく説明する。
 本発明において、反応性基を有するポリイミド化合物は、反応性基を有するポリマーが、ポリイミド単位と、側鎖に反応性基(好ましくは求核性の反応性基であり、より好ましくはカルボキシル基、アミノ基またはヒドロキシル基)を有する繰り返し単位とを含むことが好ましい。
 より具体的に説明すれば、反応性基を有するポリマーが、下記式(I)で表される繰り返し単位の少なくとも1種と、下記式(III-a)又は(III-b)で表される繰り返し単位の少なくとも1種とを含むことが好ましい。
 さらに、反応性基を有するポリマーは、下記式(I)で表される繰り返し単位の少なくとも1種と、下記式(II-a)又は(II-b)で表される繰り返し単位の少なくとも1種と、下記式(III-a)又は(III-b)で表される繰り返し単位の少なくとも1種とを含むことがより好ましい。
 本発明に用いる反応性基を有するポリイミドは、上記各繰り返し単位以外の繰り返し単位を含むことができるが、そのモル数は、上記各式で表される各繰り返し単位のモル数の和を100としたときに、20以下であることが好ましく、0~10であることがより好ましい。本発明に用いる反応性基を有するポリイミドは、下記各式で表される各繰り返し単位のみからなることが特に好ましい。
The polyimide having a reactive group that can be used in the present invention will be described in detail below.
In the present invention, the polyimide compound having a reactive group is a polymer having a reactive group, a polyimide unit and a reactive group (preferably a nucleophilic reactive group in the side chain, more preferably a carboxyl group, And a repeating unit having an amino group or a hydroxyl group.
More specifically, the polymer having a reactive group is represented by at least one repeating unit represented by the following formula (I) and the following formula (III-a) or (III-b): It is preferable to include at least one repeating unit.
Furthermore, the polymer having a reactive group includes at least one repeating unit represented by the following formula (I) and at least one repeating unit represented by the following formula (II-a) or (II-b): And at least one repeating unit represented by the following formula (III-a) or (III-b).
The polyimide having a reactive group used in the present invention may contain a repeating unit other than the above repeating units, and the number of moles thereof is 100 as the sum of the number of moles of each repeating unit represented by the above formulas. Is preferably 20 or less, more preferably 0 to 10. It is particularly preferable that the polyimide having a reactive group used in the present invention consists only of each repeating unit represented by the following formulas.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(I)において、Rは、下記式(I-a)~(I-h)のいずれかで表される構造の基を示す。下記式(I-a)~(I-h)において、*は式(I)のカルボニル基との結合部位を示す。式(I)におけるRを母核と呼ぶことがあるが、この母核Rは式(I-a)、(I-b)または(I-d)で表される基であることが好ましく、(I-a)または(I-d)で表される基であることがより好ましく、(I-a)で表される基であることが特に好ましい。 In the formula (I), R represents a group having a structure represented by any of the following formulas (Ia) to (Ih). In the following formulas (Ia) to (Ih), * represents a bonding site with the carbonyl group of the formula (I). R in the formula (I) may be referred to as a mother nucleus, and the mother nucleus R is preferably a group represented by the formula (Ia), (Ib) or (Id), A group represented by (Ia) or (Id) is more preferred, and a group represented by (Ia) is particularly preferred.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
・X、X、X
 X、X、Xは、単結合又は2価の連結基を示す。この2価の連結基としては、-C(R-(Rは水素原子又は置換基を示す。Rが置換基の場合、互いに連結して環を形成してもよい)、-O-、-SO-、-C(=O)-、-S-、-NR-(Rは水素原子、アルキル基(好ましくはメチル基又はエチル基)又はアリール基(好ましくはフェニル基))、又はこれらの組み合わせが好ましく、単結合又は-C(R-がより好ましい。Rが置換基を示すとき、その具体例としては、後記置換基群Zが挙げられ、なかでもアルキル基(好ましい範囲は後記置換基群Zと同義である)が好ましく、ハロゲン原子を置換基として有するアルキル基がより好ましく、トリフルオロメチルが特に好ましい。なお、本明細書において「互いに連結して環を形成してもよい」というときには、単結合、二重結合等により結合して環状構造を形成するものであってもよく、また、縮合して縮環構造を形成するものであってもよい。
・ X 1 , X 2 , X 3
X 1 , X 2 and X 3 represent a single bond or a divalent linking group. As the divalent linking group, —C (R x ) 2 — (R x represents a hydrogen atom or a substituent. When R x is a substituent, they may be linked to each other to form a ring), —O—, —SO 2 —, —C (═O) —, —S—, —NR Y — (R Y represents a hydrogen atom, an alkyl group (preferably a methyl group or an ethyl group) or an aryl group (preferably a phenyl group). Group)), or a combination thereof, and a single bond or —C (R x ) 2 — is more preferable. When R x represents a substituent, specific examples thereof include the substituent group Z described below. Among them, an alkyl group (preferably the same as the substituent group Z described later) is preferable, and a halogen atom is substituted with a substituent. Are more preferable, and trifluoromethyl is particularly preferable. In the present specification, when “may be linked to each other to form a ring”, it may be bonded by a single bond, a double bond or the like to form a cyclic structure, It may form a condensed ring structure.
・L
 Lは-CH=CH-又は-CH-を示し、好ましくは-CH=CH-である。
・ L
L represents —CH 2 ═CH 2 — or —CH 2 —, preferably —CH 2 ═CH 2 —.
・R、R
 R、Rは水素原子又は置換基を示す。その置換基としては、下記に示される置換基群Zより選ばれるいずれか1つを用いることができる。RおよびRは互いに結合して環を形成していてもよい。
・ R 1 , R 2
R 1 and R 2 represent a hydrogen atom or a substituent. As the substituent, any one selected from the substituent group Z shown below can be used. R 1 and R 2 may be bonded to each other to form a ring.
 R、Rは水素原子又はアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましく、水素原子であることが更に好ましい。 R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and even more preferably a hydrogen atom.
・R
 Rはアルキル基又はハロゲン原子を示す。これらのアルキル基及びハロゲン原子の好ましいものは、後記置換基群Zで規定したアルキル基及びハロゲン原子の好ましい範囲と同義である。Rの数を示すl1は0~4の整数であるが、1~4が好ましく、3~4がより好ましい。Rはアルキル基であることが好ましく、メチル基又はエチル基であることがより好ましい。
・ R 3
R 3 represents an alkyl group or a halogen atom. Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later. L1 representing the number of R 3 is an integer of 0 to 4, preferably 1 to 4, and more preferably 3 to 4. R 3 is preferably an alkyl group, and more preferably a methyl group or an ethyl group.
・R、R
 R、Rはアルキル基もしくはハロゲン原子を示すか、又は互いに連結してXと共に環を形成する基を示す。これらのアルキル基及びハロゲン原子の好ましいものは、後記置換基群Zで規定したアルキル基及びハロゲン原子の好ましい範囲と同義である。R、Rが連結した構造に特に制限はないが、単結合、-O-又は-S-が好ましい。R、Rの数を示すm1、n1は0~4の整数であるが、1~4が好ましく、3~4がより好ましい。
 R、Rはアルキル基である場合、メチル基又はエチル基であることが好ましく、トリフルオロメチルも好ましい。
・ R 4 , R 5
R 4 and R 5 each represents an alkyl group or a halogen atom, or a group that forms a ring together with X 2 by being linked to each other. Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later. The structure in which R 4 and R 5 are linked is not particularly limited, but a single bond, —O— or —S— is preferable. M1 and n1 representing the number of R 4 and R 5 are integers of 0 to 4, preferably 1 to 4, and more preferably 3 to 4.
When R 4 and R 5 are alkyl groups, they are preferably methyl groups or ethyl groups, and trifluoromethyl is also preferable.
・R、R、R
 R、R、Rは置換基を示す。ここでRとRが互いに結合して環を形成してもよい。この置換基の数を示すl2、m2、n2は0~4の整数であるが、0~2が好ましく、0~1がより好ましい。
・ R 6 , R 7 , R 8
R 6 , R 7 and R 8 represent a substituent. Here, R 7 and R 8 may be bonded to each other to form a ring. L2, m2, and n2 representing the number of substituents are integers of 0 to 4, preferably 0 to 2, and more preferably 0 to 1.
・J
 Jは単結合又は2価の連結基を表す。連結基としては*-COO-**(R~Rは水素原子、アルキル基、アリール基を示し、その好ましい範囲は後記置換基群Zで説明するものと同義である。)、*-SO -**(R~Rは水素原子、アルキル基、アリール基を示し、その好ましい範囲は後記置換基群Zで説明するものと同義である。)、アルキレン基、又はアリーレン基を表す。*はフェニレン基側の結合部位、**はその逆の結合部位を表す。Jは、単結合、メチレン基、フェニレン基であることが好ましく、単結合が特に好ましい。
・ J 1
J 1 represents a single bond or a divalent linking group. As the linking group, * —COO N + R b R c R d — ** (R b to R d are a hydrogen atom, an alkyl group, and an aryl group, and preferred ranges thereof are those described in Substituent Group Z below. synonymous), * -. SO 3 - N + R e R f R g - ** (R e ~ R g is a hydrogen atom, an alkyl group, an aryl group, its preferred range is below substituent group Z And an alkylene group or an arylene group. * Represents the binding site on the phenylene group side, and ** represents the opposite binding site. J 1 is preferably a single bond, a methylene group or a phenylene group, and particularly preferably a single bond.
・A
 Aはケテンイミン架橋剤と架橋反応をし得る基であれば特に制限はないが、求核性の反応性基であることが好ましく、-COOH、アミノ基、-OH、及び-S(=O)OHから選ばれる基を示すことがより好ましい。このアミノ基の好ましい範囲は、後記置換基群Zで説明するアミノ基の好ましい範囲と同義である。Aは特に好ましくはカルボキシル基、アミノ基またはヒドロキシル基であり、より特に好ましくは-COOH又は-OHであり、特に好ましくはカルボキシル基である。
・ A 1
A 1 is not particularly limited as long as it is a group capable of undergoing a crosslinking reaction with a ketene imine crosslinking agent, but is preferably a nucleophilic reactive group, and is —COOH, amino group, —OH, and —S (═O More preferably, it represents a group selected from 2 OH. The preferable range of this amino group is synonymous with the preferable range of the amino group demonstrated by the substituent group Z mentioned later. A 1 is particularly preferably a carboxyl group, an amino group or a hydroxyl group, more particularly preferably —COOH or —OH, and particularly preferably a carboxyl group.
 置換基群Z:
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルキル基であり、例えばメチル、エチル、iso-プロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシル)、シクロアルキル基(好ましくは炭素数3~30、より好ましくは炭素数3~20、特に好ましくは炭素数3~10のシクロアルキル基であり、例えばシクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルケニル基であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルキニル基であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えばフェニル、p-メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(アミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~10のアミノ基であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルコキシ基であり、例えばメトキシ、エトキシ、ブトキシ、2-エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールオキシ基であり、例えばフェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環オキシ基であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、
Substituent group Z:
An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl) , N-decyl, n-hexadecyl), a cycloalkyl group (preferably a cycloalkyl group having 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, particularly preferably 3 to 10 carbon atoms, such as cyclopropyl, Cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably an alkenyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl, allyl, -Butenyl, 3-pentenyl, etc.), alkynyl group (preferably having 2 to 30 carbon atoms, more preferably An alkynyl group having 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl and 3-pentynyl, and an aryl group (preferably having 6 to 30 carbon atoms, more preferably 6 carbon atoms). To 20 and particularly preferably an aryl group having 6 to 12 carbon atoms, such as phenyl, p-methylphenyl, naphthyl, anthranyl, etc.), amino group (amino group, alkylamino group, arylamino group, hetero A cyclic amino group, preferably an amino group having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzyl Amino, diphenylamino, ditolylamino, etc.), alkoxy groups (preferably having 1 carbon atom) 30, more preferably an alkoxy group having 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, 2-ethylhexyloxy, etc.), an aryloxy group (preferably An aryloxy group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyloxy, 1-naphthyloxy, 2-naphthyloxy, and the like. Heterocyclic oxy group (preferably a heterocyclic oxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy and the like. ),
 アシル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアシル基であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニル基であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニル基であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルオキシ基であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルアミノ基であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、 An acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), alkoxy A carbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy A carbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl), an acyloxy group ( Preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, especially Preferably, it is an acyloxy group having 2 to 10 carbon atoms, such as acetoxy, benzoyloxy, etc.), an acylamino group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably carbon atoms). An acylamino group of 2 to 10, for example, acetylamino, benzoylamino and the like),
 アルコキシカルボニルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニルアミノ基であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニルアミノ基であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~12のスルファモイル基であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、 An alkoxycarbonylamino group (preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino), aryl Oxycarbonylamino group (preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino group) A sulfonylamino group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino, benzenesulfonylamino, etc.), a sulfamoyl group (Preferably 0-30 carbon atoms, more preferred 0 to 20 carbon atoms, particularly preferably a sulfamoyl group having 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, and the like phenylsulfamoyl.),
 カルバモイル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のカルバモイル基であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアルキルチオ基であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールチオ基であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環チオ基であり、例えばピリジルチオ、2-ベンズイミゾリルチオ、2-ベンズオキサゾリルチオ、2-ベンズチアゾリルチオなどが挙げられる。)、 A carbamoyl group (preferably a carbamoyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like. ), An alkylthio group (preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio), an arylthio group ( Preferably, it is an arylthio group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, etc.), a heterocyclic thio group (preferably having 1 carbon atom) To 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 1 carbon atoms. Of a heterocyclic thio group, e.g. pyridylthio, 2-benzoxazolyl thio, and 2-benzthiazolylthio the like.),
 スルホニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルホニル基であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルフィニル基であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のウレイド基であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のリン酸アミド基であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子であり、より好ましくはフッ素原子が挙げられる)、 A sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), a sulfinyl group (preferably A sulfinyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably having 1 carbon atom) -30, more preferably a ureido group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), a phosphoramide group (preferably having a carbon number) A phosphoric acid amide group having 1 to 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, For example, diethyl phosphoric acid amide, phenylphosphoric acid amide, etc.), hydroxy group, mercapto group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom, more preferably fluorine atom) ,
 シアノ基、スルホ基、カルボキシル基、オキソ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは3~7員環のヘテロ環基で、芳香族ヘテロ環でも芳香族でないヘテロ環であってもよく、ヘテロ環を構成するヘテロ原子としては、窒素原子、酸素原子、硫黄原子が挙げられる。炭素数は0~30が好ましく、より好ましくは炭素数1~12のヘテロ環基であり、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル、アゼピニルなどが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリル基であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリルオキシ基であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は、更に上記置換基群Zより選択されるいずれか1つ以上の置換基により置換されてもよい。
 なお、本発明において、1つの構造部位に複数の置換基があるときには、それらの置換基は互いに連結して環を形成していたり、上記構造部位の一部又は全部と縮環して芳香族環もしくは不飽和複素環を形成していたりしてもよい。
A cyano group, a sulfo group, a carboxyl group, an oxo group, a nitro group, a hydroxamic acid group, a sulfino group, a hydrazino group, an imino group, a heterocyclic group (preferably a 3- to 7-membered heterocyclic group, even an aromatic heterocyclic ring The hetero atom may be a non-aromatic hetero ring, and examples of the hetero atom constituting the hetero ring include a nitrogen atom, an oxygen atom and a sulfur atom, preferably 0 to 30 carbon atoms, more preferably 1 to 12 carbon atoms. Specific examples thereof include imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl and the like, and a silyl group (preferably). Is a silica having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms. Groups such as trimethylsilyl and triphenylsilyl), silyloxy groups (preferably silyloxy groups having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms). For example, trimethylsilyloxy, triphenylsilyloxy, etc.). These substituents may be further substituted with any one or more substituents selected from the above substituent group Z.
In the present invention, when one structural site has a plurality of substituents, these substituents are connected to each other to form a ring, or condensed with a part or all of the above structural sites to form an aromatic group. A ring or an unsaturated heterocyclic ring may be formed.
 本発明に用いうるポリイミド化合物において、式(I)、(II-a)、(II-b)、(III-a)、(III-b)で表される各繰り返し単位の比率は、特に制限されるものではなく、ガス分離の目的(回収率、純度など)に応じガス透過性と分離選択性を考慮して適宜に調整される。 In the polyimide compound that can be used in the present invention, the ratio of each repeating unit represented by the formula (I), (II-a), (II-b), (III-a), (III-b) is particularly limited. The gas permeability and separation selectivity are appropriately adjusted according to the purpose of gas separation (recovery rate, purity, etc.).
 本発明に用いうる反応性基を有するポリイミド中、式(II-a)及び(II-b)の各繰り返し単位の総モル数(EII)に対する式(III-a)及び(III-b)の各繰り返し単位の総モル数(EIII)の比(EII/EIII)は、5/95~95/5であることが好ましく、10/90~80/20であることがより好ましく、20/80~60/40であることがさらに好ましい。 In the polyimide having a reactive group that can be used in the present invention, the formulas (III-a) and (III-b) with respect to the total number of moles (E II ) of each repeating unit of the formulas (II-a) and (II-b) The ratio (E II / E III ) of the total number of moles (E III ) of each repeating unit is preferably 5/95 to 95/5, more preferably 10/90 to 80/20, More preferably, it is 20/80 to 60/40.
 本発明に用いる反応性基を有するポリイミドの分子量は、好ましくは重量平均分子量として10000~1000,000であることが好ましく、より好ましくは15,000~500,000であり、さらに好ましくは20,000~200,000である。 The molecular weight of the polyimide having a reactive group used in the present invention is preferably 10,000 to 1,000,000 as a weight average molecular weight, more preferably 15,000 to 500,000, and still more preferably 20,000. ~ 200,000.
 分子量及び分散度は特に断らない限りGPC(ゲルろ過クロマトグラフィー)法を用いて測定した値とし、分子量はポリスチレン換算の重量平均分子量とする。GPC法に用いるカラムに充填されているゲルは芳香族化合物を繰り返し単位に持つゲルが好ましく、例えばスチレン-ジビニルベンゼン共重合体からなるゲルが挙げられる。カラムは2~6本連結させて用いることが好ましい。用いる溶媒は、テトラヒドロフラン等のエーテル系溶媒、N-メチルピロリジノン等のアミド系溶媒が挙げられる。測定は、溶媒の流速が0.1~2mL/minの範囲で行うことが好ましく、0.5~1.5mL/minの範囲で行うことが最も好ましい。この範囲内で測定を行うことで、装置に負荷がかからず、さらに効率的に測定ができる。測定温度は10~50℃で行うことが好ましく、20~40℃で行うことが最も好ましい。なお、使用するカラム及びキャリアは測定対称となる高分子化合物の物性に応じて適宜選定することができる。 Unless otherwise specified, the molecular weight and the degree of dispersion are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene. The gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used. Examples of the solvent used include ether solvents such as tetrahydrofuran and amide solvents such as N-methylpyrrolidinone. The measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently. The measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C. Note that the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound that is symmetrical to the measurement.
 本発明に用いうる反応性基を有するポリイミドは、特定の2官能酸無水物(テトラカルボン酸二無水物)と特定のジアミンとを縮合重合させることで合成することができる。その方法としては一般的な書籍(例えば、株式会社エヌ・ティー・エス発行、今井淑夫、横田力男編著、最新ポリイミド~基礎と応用~、3~49頁など)で記載の手法を適宜選択することができる。 The polyimide having a reactive group that can be used in the present invention can be synthesized by condensation polymerization of a specific bifunctional acid anhydride (tetracarboxylic dianhydride) and a specific diamine. As the method, the method described in a general book (for example, published by NTS, edited by Ikuo Imai, Rikio Yokota, latest polyimide-basics and applications-pages 3-49, etc.) is appropriately selected. be able to.
 本発明に用いうる反応性基を有するポリイミドの合成において、原料とするテトラカルボン酸二無水物の少なくとも1種は、下記式(VI)で表される。原料とするテトラカルボン酸二無水物のすべてが下記式(VI)で表されることが好ましい。 In the synthesis of a polyimide having a reactive group that can be used in the present invention, at least one tetracarboxylic dianhydride used as a raw material is represented by the following formula (VI). All of the tetracarboxylic dianhydrides used as raw materials are preferably represented by the following formula (VI).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(VI)中、Rは上記式(I)におけるRと同義である。 In formula (VI), R has the same meaning as R in formula (I) above.
 本発明に用いうるテトラカルボン酸二無水物の具体例としては、例えば以下に示すものが挙げられる。 Specific examples of tetracarboxylic dianhydrides that can be used in the present invention include the following.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 本発明に用いうる反応性基を有するポリイミドの合成において、原料とするジアミン化合物の少なくとも1種は、下記式(VII-a)又は(VII-b)で表され、少なくとも1種は、下記式(VIII-a)又は(VIII-b)で表される。原料とするジアミン化合物のすべてが下記式下記式(VII-a)、(VII-b)、(VIII-a)及び(VIII-b)のいずれかで表されることが好ましい。 In the synthesis of the polyimide having a reactive group that can be used in the present invention, at least one diamine compound used as a raw material is represented by the following formula (VII-a) or (VII-b), and at least one kind is represented by the following formula: It is represented by (VIII-a) or (VIII-b). All of the diamine compounds used as raw materials are preferably represented by any one of the following formulas (VII-a), (VII-b), (VIII-a) and (VIII-b).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(VII-a)及び(VII-b)における各符号は、それぞれ式(II-a)及び(II-b)における同符号と同義である。また、式(VIII-a)及び(VIII-b)における各符号は、それぞれ式(III-a)及び(III-b)における同符号と同義である。 The symbols in the formulas (VII-a) and (VII-b) are synonymous with the same symbols in the formulas (II-a) and (II-b), respectively. Further, the symbols in formulas (VIII-a) and (VIII-b) have the same meanings as those in formulas (III-a) and (III-b), respectively.
 本発明に用いうるジアミン化合物の具体例としては以下のようなものが挙げられる。 Specific examples of the diamine compound that can be used in the present invention include the following.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 本発明に用いうる反応性基を有するポリイミドとして好ましい具体例を以下に挙げるが、本発明はこれらに限るものではない。なお、下記式中「100」、「x」、「y」は共重合比(モル比)を示す。「x」、「y」及び重量平均分子量の例を下記表1に示す。なお、本発明に用いうるポリイミド化合物では、yが0となることない。 Specific examples of preferred polyimides having a reactive group that can be used in the present invention are listed below, but the present invention is not limited thereto. In the following formulae, “100”, “x”, and “y” represent copolymerization ratios (molar ratios). Examples of “x”, “y” and weight average molecular weight are shown in Table 1 below. In the polyimide compound that can be used in the present invention, y does not become 0.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 式(VI)、(VII-a)、(VII-b)、(VIII-a)、(VIII-b)で表されるモノマーとしては、オリゴマー、プレポリマーとしたものを用いてもよい。高分子化合物を得る上での重合体については、ブロック共重合体、或いはランダム共重合体、グラフト共重合体などのいずれの形態を有する共重合体でも良いが、特にブロック共重合体やグラフト共重合体を用いる場合には、粘度、相溶性の観点で好ましい。 As the monomers represented by the formulas (VI), (VII-a), (VII-b), (VIII-a), (VIII-b), oligomers or prepolymers may be used. The polymer for obtaining the polymer compound may be a block copolymer, a copolymer having any form such as a random copolymer, a graft copolymer, etc., but in particular, a block copolymer or a graft copolymer. When using a polymer, it is preferable from a viewpoint of a viscosity and compatibility.
 本発明に用いうる反応性基を有するポリイミドは、上記各原料を溶媒中に混合して、通常の方法で縮合重合させて得ることができる。
 溶媒としては、特に限定されるものではないが、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系有機溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン等の脂肪族ケトン、エチレングリコールジメチルエーテル、ジブチルブチルエーテル、テトラヒドロフラン、メチルシクロペンチルエーテル、ジオキサン等のエーテル系有機溶剤、N-メチルピロリドン、2-ピロリドン、ジメチルホルムアミド、ジメチルイミダゾリジノン、ジメチルアセトアミド等のアミド系有機溶剤、ジメチルスルホキシド、スルホラン等の含硫黄系有機溶剤などが挙げられる。これらの有機溶剤は反応基質であるテトラカルボン酸二無水物、ジアミン化合物、反応中間体であるポリアミック酸、さらに最終生成物であるポリイミド化合物を溶解させることを可能とする範囲で適切に選択されるものであるが、好ましくは、エステル系(好ましくは酢酸ブチル)、脂肪族ケトン(好ましくは、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン)、エーテル系(ジエチレングリコールモノメチルエーテル、メチルシクロペンチルエーテル)、アミド系、含硫黄系(ジメチルスルホキシド、スルホラン)が好ましい。また、これらは、1種又は2種以上を組み合わせて用いることができる。
The polyimide having a reactive group that can be used in the present invention can be obtained by mixing each of the above raw materials in a solvent and performing condensation polymerization by a conventional method.
The solvent is not particularly limited, but ester organic solvents such as methyl acetate, ethyl acetate, and butyl acetate, and aliphatic ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, and cyclohexanone. Ether organic solvents such as ethylene glycol dimethyl ether, dibutyl butyl ether, tetrahydrofuran, methylcyclopentyl ether, dioxane, amide organic solvents such as N-methylpyrrolidone, 2-pyrrolidone, dimethylformamide, dimethylimidazolidinone, dimethylacetamide, dimethyl sulfoxide And sulfur-containing organic solvents such as sulfolane. These organic solvents are appropriately selected as long as it is possible to dissolve tetracarboxylic dianhydride as a reaction substrate, diamine compound, polyamic acid as a reaction intermediate, and polyimide compound as a final product. Preferably, ester type (preferably butyl acetate), aliphatic ketone (preferably methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone), ether type (diethylene glycol monomethyl ether, methyl cyclopentyl) Ether), amide-based, and sulfur-containing (dimethyl sulfoxide, sulfolane) are preferable. Moreover, these can be used 1 type or in combination of 2 or more types.
 重合反応温度に特に制限はなく反応性基を有するポリイミドの合成において通常採用されうる温度を採用することができる。具体的には-40~60℃であることが好ましく、より好ましくは-30~50℃である。 The polymerization reaction temperature is not particularly limited, and a temperature that can be generally employed in the synthesis of a polyimide having a reactive group can be employed. Specifically, it is preferably −40 to 60 ° C., more preferably −30 to 50 ° C.
 上記の重合反応により生成したポリアミック酸を分子内で脱水閉環反応させることによりイミド化することで、反応性基を有するポリイミドが得られる。脱水閉環させる方法としては、一般的な書籍(例えば、株式会社エヌ・ティー・エス発行,今井淑夫、横田力男編著,最新ポリイミド~基礎と応用~,3~49頁など)に記載の方法を参考とすることができる。例えば、120℃~200℃に加熱して、副生する水を系外に除去しながら反応させる熱イミド化法や、ピリジンやトリエチルアミン、DBUのような塩基性触媒共存下で、無水酢酸やジシクロヘキシルカルボジイミド、亜リン酸トリフェニルのような脱水縮合剤を用いるいわゆる化学イミド化等の手法が好適に用いられる。 A polyimide having a reactive group can be obtained by imidizing the polyamic acid produced by the above polymerization reaction by a dehydration ring-closing reaction in the molecule. As a method of dehydrating and ring-closing, the method described in a general book (for example, published by NTS, edited by Ikuo Imai, edited by Rikio Yokota, latest polyimide-basics and applications, pages 3-49, etc.) It can be used as a reference. For example, acetic anhydride or dicyclohexyl is heated in the presence of a basic catalyst such as pyridine, triethylamine or DBU by heating to 120 ° C to 200 ° C for reaction while removing by-product water out of the system. A technique such as so-called chemical imidization using a dehydration condensing agent such as carbodiimide and triphenyl phosphite is preferably used.
 本発明において、反応性基を有するポリイミドの重合反応液中のテトラカルボン酸二無水物及びジアミン化合物の総濃度は特に限定されるものではないが、5~70質量%が好ましく、より好ましくは5~50質量%が好ましく、さらに好ましくは5~30質量%である。 In the present invention, the total concentration of tetracarboxylic dianhydride and diamine compound in the polymerization reaction liquid of polyimide having a reactive group is not particularly limited, but is preferably 5 to 70% by mass, more preferably 5%. Is preferably 50 to 50% by mass, more preferably 5 to 30% by mass.
(分離層の構造)
 分離層の膜厚としては機械的強度、分離選択性を維持しつつ高ガス透過性を付与する条件において可能な限り薄膜であることが好ましい。
(Separation layer structure)
The thickness of the separation layer is preferably a thin film as much as possible under the condition of imparting high gas permeability while maintaining mechanical strength and separation selectivity.
 ガス透過性を高める観点から本発明のガス分離膜の分離層は薄層であることが好ましい。分離層の厚さは通常には10μ以下であり、5μm以下であることが好ましく、3μm以下であることがより好ましく、2μm以下であることがさらに好ましく、1μm以下であることがさらに好ましく、0.5μm以下であることがさらに好ましい。
 なお、上記分離層の厚さは通常には0.01μm以上であり、実用上の観点から0.03μm以上が好ましい。
From the viewpoint of enhancing gas permeability, the separation layer of the gas separation membrane of the present invention is preferably a thin layer. The thickness of the separation layer is usually 10 μm or less, preferably 5 μm or less, more preferably 3 μm or less, further preferably 2 μm or less, further preferably 1 μm or less, 0 More preferably, it is 5 μm or less.
The thickness of the separation layer is usually 0.01 μm or more, and preferably 0.03 μm or more from a practical viewpoint.
 得られたガス分離膜において、分離層の厚さの変動係数は1以下であることが好ましく、0.5以下であることがより好ましく、0.3以下であることがさらに好ましい。変動係数は、ガス分離膜を構成する分離層において、互いに1cm以上離れた膜厚測定部位を無作為に10箇所選抜し、これらの部位において膜厚測定を行い算出した値である。 In the obtained gas separation membrane, the variation coefficient of the thickness of the separation layer is preferably 1 or less, more preferably 0.5 or less, and further preferably 0.3 or less. The coefficient of variation is a value calculated by randomly selecting 10 film thickness measurement sites separated from each other by 1 cm or more in the separation layer constituting the gas separation membrane and measuring the film thickness at these sites.
<保護層>
 本発明のガス分離膜は、分離層上に形成された保護層を具備することが好ましい。
<Protective layer>
The gas separation membrane of the present invention preferably comprises a protective layer formed on the separation layer.
(材料)
 保護層の材料としては特に制限はないが、保護層に用いられる材料の好ましい範囲は、後述の平滑層に用いられる好ましい材料の範囲と同様である。特に保護層が、ポリジメチルシロキサン(以下、PDMSとも言う)、ポリ(1-トリメチルシリル-1-プロピン)(以下、PTMSPとも言う)およびポリエチレンオキサイドから選ばれる少なくとも1種であることが好ましく、ポリジメチルシロキサンまたはポリ(1-トリメチルシリル-1-プロピン)であることがより好ましく、ポリジメチルシロキサンであることが特に好ましい。
(material)
Although there is no restriction | limiting in particular as a material of a protective layer, The preferable range of the material used for a protective layer is the same as the range of the preferable material used for the below-mentioned smooth layer. In particular, the protective layer is preferably at least one selected from polydimethylsiloxane (hereinafter also referred to as PDMS), poly (1-trimethylsilyl-1-propyne) (hereinafter also referred to as PTMSP), and polyethylene oxide. More preferred is siloxane or poly (1-trimethylsilyl-1-propyne), and particularly preferred is polydimethylsiloxane.
(特性)
 保護層の膜厚は、20nm~3μmであることが好ましく、50nm~2μmであることがより好ましく、100nm~1μmであることが特に好ましい。
(Characteristic)
The thickness of the protective layer is preferably 20 nm to 3 μm, more preferably 50 nm to 2 μm, and particularly preferably 100 nm to 1 μm.
<支持体>
 本発明のガス分離膜は、支持体を有し、支持体の少なくとも一方の面側に2以上の分離層を有することが好ましい。支持体は、薄く、多孔質な素材である多孔質基材であることが、十分なガス透過性を確保することができ好ましい。
<Support>
The gas separation membrane of the present invention preferably has a support, and preferably has two or more separation layers on at least one surface side of the support. The support is preferably a porous substrate that is a thin and porous material because sufficient gas permeability can be secured.
 本発明のガス分離膜は、多孔質性の支持体の表面ないし内面に分離層を形成・配置するようにしてもよく、少なくとも表面に形成して簡便に薄層複合膜とすることができる。多孔質性の支持体の少なくとも表面に分離層を形成することで、高分離選択性と高ガス透過性、更には機械的強度を兼ね備えるという利点を有するガス分離膜とすることができる。 In the gas separation membrane of the present invention, a separation layer may be formed and disposed on the surface or inner surface of a porous support, and at least on the surface, it can be easily formed into a thin layer composite membrane. By forming a separation layer on at least the surface of the porous support, a gas separation membrane having the advantages of having both high separation selectivity, high gas permeability, and mechanical strength can be obtained.
 本発明のガス分離膜が薄層複合膜である場合、薄層複合膜は、多孔質の支持体の少なくとも表面に、上記の分離層をなす塗布液(ドープ)を塗布(本明細書において塗布とは浸漬により表面に付着される態様を含む意味である。)することにより形成することが好ましい。支持体が、不織布(Non-Woven)と、不織布の少なくとも片面に設けられた多孔質層(Porous Layer)とで形成されることが好ましく、具体的には、支持体は、多孔質層を分離層側に有することがより好ましく、分離層側に配置された多孔質層と不織布の積層体であることが特に好ましい。 When the gas separation membrane of the present invention is a thin-layer composite membrane, the thin-layer composite membrane is coated with a coating liquid (dope) that forms the above-mentioned separation layer on at least the surface of the porous support (coated in this specification). It is a meaning including the aspect attached to the surface by immersion.) It is preferable to form by carrying out. The support is preferably formed of a non-woven fabric (Non-Woven) and a porous layer (Porous Layer) provided on at least one side of the non-woven fabric. Specifically, the support separates the porous layer. It is more preferable to have it on the layer side, and it is particularly preferable that it is a laminate of a porous layer and a nonwoven fabric arranged on the separation layer side.
 支持体に好ましく適用される多孔質層は、機械的強度及び高気体透過性の付与に合致する目的のものであれば、特に限定されるものではなく有機、無機どちらの素材であっても構わないが、好ましくは有機高分子の多孔質膜であり、その厚さは1~3000μm、好ましくは5~500μmであり、より好ましくは5~150μmである。この多孔質層の細孔構造は、通常平均細孔直径が10μm以下、好ましくは0.5μm以下、より好ましくは0.2μm以下であり、空孔率は好ましくは20~90%であり、より好ましくは30~80%である。また、多孔質層の分画分子量が100,000以下であることが好ましく、さらに、その気体透過率は二酸化炭素透過速度で3×10-5cm(STP)/cm・cm・sec・cmHg(30GPU)以上であることが好ましい。多孔質層の素材としては、従来公知の高分子、例えばポリエチレン、ポリプロピレン等のポリオレフィン系樹脂等、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン等の含フッ素樹脂等、ポリスチレン、酢酸セルロース、ポリウレタン、ポリアクリロニトリル、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリアラミド等の各種樹脂を挙げることができる。多孔質層の形状としては、平板状、スパイラル状、管状、中空糸状などいずれの形状をとることもできる。 The porous layer preferably applied to the support is not particularly limited as long as it has the purpose of satisfying the provision of mechanical strength and high gas permeability, and may be either organic or inorganic material. However, it is preferably a porous film of an organic polymer, and its thickness is 1 to 3000 μm, preferably 5 to 500 μm, more preferably 5 to 150 μm. The porous structure of this porous layer usually has an average pore diameter of 10 μm or less, preferably 0.5 μm or less, more preferably 0.2 μm or less, and a porosity of preferably 20 to 90%. Preferably, it is 30 to 80%. The molecular weight cut-off of the porous layer is preferably 100,000 or less, and the gas permeability is 3 × 10 −5 cm 3 (STP) / cm 2 · cm · sec. It is preferable that it is cmHg (30 GPU) or more. Examples of the material for the porous layer include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, and polyurethane. And various resins such as polyacrylonitrile, polyphenylene oxide, polysulfone, polyethersulfone, polyimide, and polyaramid. The shape of the porous layer may be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
 薄層複合膜においては、分離層側に好ましく配置される多孔質層の下部にさらに機械的強度を付与するために織布、不織布、ネット等が設けられることが好ましく、製膜性およびコスト面から不織布が好適に用いられる。不織布としてはポリエステル、ポリプロピレン、ポリアクリロニトリル、ポリエチレン、ポリアミド等からなる繊維を単独あるいは複数を組み合わせて用いてもよい。不織布は、例えば、水に均一に分散した主体繊維とバインダー繊維を円網や長網等で抄造し、ドライヤーで乾燥することにより製造できる。また、毛羽を除去したり機械的性質を向上させたり等の目的で、不織布を2本のロール挟んで圧熱加工を施すことも好ましい。 In the thin-layer composite membrane, it is preferable that a woven fabric, a nonwoven fabric, a net, etc. are provided in the lower part of the porous layer that is preferably arranged on the separation layer side, in order to impart mechanical strength. To non-woven fabrics are preferably used. As the nonwoven fabric, fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination. The nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer. Moreover, it is also preferable to apply a heat treatment by sandwiching a non-woven fabric between two rolls for the purpose of removing fluff and improving mechanical properties.
<平滑層>
 本発明のガス分離膜が薄層複合膜である場合、分離層と支持体の間に平滑層を有することが好ましい。
<Smooth layer>
When the gas separation membrane of the present invention is a thin layer composite membrane, it is preferable to have a smooth layer between the separation layer and the support.
 平滑層は、分離層との密着性を向上させるために官能基を有することが好ましい。このような官能基としては、エポキシ基、オキセタン基、カルボキシル基、アミノ基、ヒドロキシル基およびチオール基を挙げることができる。平滑層はエポキシ基、オキセタン基、カルボキシル基およびこれらのうち2以上の基を有する樹脂を含むことがより好ましい。このような樹脂は、支持体の上に放射線硬化性組成物への放射線照射による硬化をすることにより形成されることが好ましい。 The smooth layer preferably has a functional group in order to improve adhesion with the separation layer. Examples of such functional groups include epoxy groups, oxetane groups, carboxyl groups, amino groups, hydroxyl groups, and thiol groups. More preferably, the smooth layer includes an epoxy group, an oxetane group, a carboxyl group, and a resin having two or more of these groups. Such a resin is preferably formed on a support by curing the radiation curable composition by irradiation with radiation.
 重合性ジアルキルシロキサンは、ジアルキルシロキサン基を有するモノマー、ジアルキルシロキサン基を有する重合性オリゴマー、ジアルキルシロキサン基を有するポリマーである。平滑層は、ジアルキルシロキサン基を有する部分的に架橋された放射線硬化性組成物から形成されてもよい。ジアルキルシロキサン基としては、-{O-Si(CH-で表される基(nは例えば1~100)を挙げることができる。末端にビニル基を有するポリ(ジアルキルシロキサン)化合物も好ましく用いることができる。 The polymerizable dialkylsiloxane is a monomer having a dialkylsiloxane group, a polymerizable oligomer having a dialkylsiloxane group, or a polymer having a dialkylsiloxane group. The smooth layer may be formed from a partially crosslinked radiation curable composition having dialkylsiloxane groups. Examples of the dialkylsiloxane group include a group represented by — {O—Si (CH 3 ) 2 } n — (n is 1 to 100, for example). A poly (dialkylsiloxane) compound having a vinyl group at the terminal can also be preferably used.
 平滑層の材料としては、ポリジメチルシロキサン(以下、PDMSとも言う)、ポリ(1-トリメチルシリル-1-プロピン)(以下、PTMSPとも言う)およびポリエチレンオキサイドから選ばれる少なくとも1種であることが好ましく、ポリジメチルシロキサンまたはポリ(1-トリメチルシリル-1-プロピン)であることがより好ましく、ポリジメチルシロキサンであることが特に好ましい。 The material of the smooth layer is preferably at least one selected from polydimethylsiloxane (hereinafter also referred to as PDMS), poly (1-trimethylsilyl-1-propyne) (hereinafter also referred to as PTMSP), and polyethylene oxide. More preferred is polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne), and particularly preferred is polydimethylsiloxane.
 平滑層の材料としては市販の材料を用いることができ、例えば、UV9300(Momentive社製のポリジメチルシロキサン(PDMS))、UV9380C(Momentive社製のビス(4-ドデシルフェニル)ヨードニウム=ヘキサフルオロアンチモネート)などを好ましく用いることができる。 A commercially available material can be used as the material of the smooth layer, for example, UV9300 (polydimethylsiloxane (PDMS) manufactured by Momentive), UV9380C (bis (4-dodecylphenyl) iodonium = hexafluoroantimonate manufactured by Momentive). And the like can be preferably used.
 平滑層の材料は、平滑層を形成するときに有機溶媒を含む組成物として調製することができ、硬化性組成物であることが好ましい。 The material of the smooth layer can be prepared as a composition containing an organic solvent when the smooth layer is formed, and is preferably a curable composition.
 平滑層の膜厚としては特に制限はないが、平滑層の膜厚は25~1200nmであることが好ましく、30~800nmであることがより好ましく、50~650nmであることが特に好ましい。例えば、70~120nm、130~170nm、180~220nm、230~270nm、300~360nm、380~450nm、470~540nmまたは560~630nmとすることができる。平滑層の膜厚はSEMで求めることができる。
 平滑層の膜厚は、硬化性組成物の塗布量を調整することによって制御することができる。
The film thickness of the smooth layer is not particularly limited, but the film thickness of the smooth layer is preferably 25 to 1200 nm, more preferably 30 to 800 nm, and particularly preferably 50 to 650 nm. For example, the thickness may be 70 to 120 nm, 130 to 170 nm, 180 to 220 nm, 230 to 270 nm, 300 to 360 nm, 380 to 450 nm, 470 to 540 nm, or 560 to 630 nm. The film thickness of the smooth layer can be determined by SEM.
The film thickness of the smooth layer can be controlled by adjusting the coating amount of the curable composition.
<特性、用途>
 本発明の分離膜は、ガス分離回収法、ガス分離精製法として好適に用いることができる。例えば、水素、ヘリウム、一酸化炭素、二酸化炭素、硫化水素、酸素、窒素、アンモニア、硫黄酸化物、窒素酸化物、メタン、エタンなどの炭化水素、プロピレンなどの不飽和炭化水素、テトラフルオロエタンなどのパーフルオロ化合物などのガスを含有する気体混合物から特定の気体を効率よく分離し得るガス分離膜とすることができる。
 本発明のガス分離膜は、酸性ガスと非酸性ガスのガス混合物から、少なくとも1種の酸性ガスを分離するためのガス分離膜であることが好ましい。酸性ガスとしては、二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、及び窒素酸化物(NOx)が挙げられ、二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、及び窒素酸化物(NOx)から選択される少なくとも1種であることが好ましく、より好ましくは二酸化炭素、硫化水素又は硫黄酸化物(SOx)であり、特に好ましくは二酸化炭素である。
 非酸性ガスとしては水素、メタン、窒素、及び一酸化炭素から選択される少なくとも1種であることが好ましく、より好ましくはメタン、水素であり、特に好ましくはメタンである。
 本発明のガス分離膜は、特に二酸化炭素/炭化水素(メタン)を含む気体混合物から二酸化炭素を選択分離するガス分離膜とすることが好ましい。
<Characteristics and applications>
The separation membrane of the present invention can be suitably used as a gas separation recovery method and a gas separation purification method. For example, hydrogen, helium, carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxides, nitrogen oxides, hydrocarbons such as methane and ethane, unsaturated hydrocarbons such as propylene, tetrafluoroethane, etc. A gas separation membrane capable of efficiently separating a specific gas from a gas mixture containing a gas such as a perfluoro compound.
The gas separation membrane of the present invention is preferably a gas separation membrane for separating at least one acidic gas from a gas mixture of acidic gas and non-acidic gas. Examples of the acid gas include carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen oxide (NOx), and carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen. It is preferably at least one selected from oxides (NOx), more preferably carbon dioxide, hydrogen sulfide or sulfur oxide (SOx), and particularly preferably carbon dioxide.
The non-acid gas is preferably at least one selected from hydrogen, methane, nitrogen, and carbon monoxide, more preferably methane and hydrogen, and particularly preferably methane.
The gas separation membrane of the present invention is preferably a gas separation membrane that selectively separates carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane).
 とりわけ、分離処理されるガスが二酸化炭素とメタンとの混合ガスである場合においては、40℃、5MPaにおける二酸化炭素の透過度が30GPU超であることが好ましく、30~300GPUであることがより好ましく、40~300GPUであることが特に好ましく、50~300GPUであることがより特に好ましい。
 なお、1GPUは1×10-6cm(STP)/cm・sec・cmHgである。
In particular, when the gas to be separated is a mixed gas of carbon dioxide and methane, the permeability of carbon dioxide at 40 ° C. and 5 MPa is preferably more than 30 GPU, more preferably 30 to 300 GPU. 40 to 300 GPU is particularly preferable, and 50 to 300 GPU is more preferable.
1 GPU is 1 × 10 −6 cm 3 (STP) / cm 2 · sec · cmHg.
 本発明のガス分離膜は、分離処理されるガスが二酸化炭素とメタンの混合ガスである場合において、40℃、5MPaにおける二酸化炭素の透過流束のメタンの透過流束に対する比PCO2/PCH4である分離選択性が15以上であることが好ましく、20以上であることがより好ましい。 In the gas separation membrane of the present invention, when the gas to be separated is a mixed gas of carbon dioxide and methane, the ratio P CO2 / P CH4 of the carbon dioxide permeation flux to the methane permeation flux at 40 ° C. and 5 MPa is used. The separation selectivity is preferably 15 or more, and more preferably 20 or more.
[ガス分離膜の製造方法]
 本発明のガス分離膜の製造方法は、反応性基を有するポリマーおよび下記一般式(1)で表される基を少なくとも2つ以上有するケテンイミン架橋剤を含む組成物を架橋反応させて、架橋構造を有するポリマーを含む分離層を形成する工程を含む。
一般式(1)
Figure JPOXMLDOC01-appb-C000031
(一般式(1)中、R22およびR23はそれぞれ独立に置換基を表し、*は結合部位を表す。)
 このような構成により、本発明のガス分離膜の製造方法は、製造適性に優れる。具体的には、製膜時に触媒、開始剤、酸発生剤は不要でUV処理などの特別な処理も不要である。また、開始剤を入れる必要なく、高温(80度以上)にすることなく反応するため、既存設備で簡便に製造できる。
 また、触媒、開始剤、酸発生剤などの低分子化合物を用いないことで、製膜後にこれらの低分子化合物が引き起こす性能低下を抑制することが出来る。具体的な性能低下としては、低分子成分による膜の可塑化が挙げられる。
[Method for producing gas separation membrane]
The method for producing a gas separation membrane of the present invention comprises a crosslinking structure comprising a composition comprising a polymer having a reactive group and a ketene imine crosslinking agent having at least two groups represented by the following general formula (1) to form a crosslinked structure. Forming a separation layer containing a polymer having
General formula (1)
Figure JPOXMLDOC01-appb-C000031
(In general formula (1), R 22 and R 23 each independently represent a substituent, and * represents a binding site.)
With such a configuration, the method for producing a gas separation membrane of the present invention is excellent in production suitability. Specifically, a catalyst, an initiator, and an acid generator are not required at the time of film formation, and no special treatment such as UV treatment is necessary. Moreover, since it reacts, without having to put an initiator and making it high temperature (80 degree | times or more), it can manufacture simply by the existing equipment.
Further, by not using low molecular compounds such as a catalyst, an initiator, and an acid generator, it is possible to suppress the performance degradation caused by these low molecular compounds after film formation. Specific performance degradation includes plasticization of the film by low molecular components.
 ガス分離膜の製造方法は、分離層を形成する工程に加えて、その他の工程を含んでいてもよい。例えば、分離層を形成する工程と、2以上の分離層を互いに隣接させずに配置する工程と、最外層の分離層の一方の表面を表面処理する工程と、分離層の表面処理を行った表面上に保護層を形成する工程を含むことが好ましい。 The gas separation membrane manufacturing method may include other steps in addition to the step of forming the separation layer. For example, a step of forming a separation layer, a step of arranging two or more separation layers without being adjacent to each other, a step of surface-treating one surface of the outermost separation layer, and a surface treatment of the separation layer were performed. It is preferable to include a step of forming a protective layer on the surface.
<分離層の形成方法>
 分離層の形成方法は、反応性基を有するポリマーおよび一般式(1)で表される基を少なくとも2つ以上有するケテンイミン架橋剤を含む組成物を架橋反応させて、架橋構造を有するポリマーを含む分離層を形成する工程を含む。
 本発明において、架橋構造を有するポリマーを含有するガス分離膜の調製は、少なくとも反応性基を有するポリマーの1種又は2種以上とケテンイミン架橋剤とを溶媒中に混合して塗布液を調製し、この塗布液をガス分離膜用の下層(例えば、支持体または平滑層)上に薄状塗布することで、架橋形成と分離層の形成とを同時進行で行うことが好ましい。塗布方法としては特に制限はなく公知の方法を用いることができるが、例えばスピンコート法を用いることができる。その際、反応性基を有するポリマーとケテンイミン架橋剤とを含有する塗布液中では、架橋反応が進行せず、又はその進行速度が塗布前にゲル化が生じない程度に十分に抑えられていることが好ましい。塗布液中の反応性基を有するポリマーとケテンイミン架橋剤の濃度を一定濃度よりも低く抑えることで、塗布液中での架橋反応の進行を所定のレベルに抑えることができ、薄層塗布が可能な低粘性の状態を保つことができる。具体的には、塗布時における塗布液中の反応性基を有するポリマーの濃度は0.1~20.0質量%とすることが好ましく、0.2~10.0質量%とすることがより好ましく、0.5~5.0質量%とすることがさらに好ましい。また。塗布時における塗布液中のケテンイミン架橋剤の濃度は、0.2~30質量%とすることが好ましく、0.5~20質量%とすることがより好ましく、1~10質量%とすることがさらに好ましい。
<Method for forming separation layer>
The method for forming a separation layer includes a polymer having a crosslinked structure by crosslinking a composition including a polymer having a reactive group and a ketene imine crosslinking agent having at least two groups represented by the general formula (1). Forming a separation layer.
In the present invention, a gas separation membrane containing a polymer having a crosslinked structure is prepared by preparing a coating solution by mixing at least one or more polymers having a reactive group and a ketene imine crosslinking agent in a solvent. The coating solution is preferably applied on the lower layer (for example, a support or a smooth layer) for the gas separation membrane in a thin state so that the crosslinking and separation layers are simultaneously formed. A coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used. At that time, in the coating solution containing the polymer having a reactive group and the ketene imine crosslinking agent, the crosslinking reaction does not proceed, or the traveling speed is sufficiently suppressed to the extent that gelation does not occur before coating. It is preferable. By keeping the concentration of the reactive group-containing polymer and ketene imine crosslinking agent in the coating solution below a certain level, the progress of the crosslinking reaction in the coating solution can be suppressed to a predetermined level, enabling thin-layer coating. Can maintain a low viscosity state. Specifically, the concentration of the polymer having a reactive group in the coating solution at the time of coating is preferably 0.1 to 20.0% by mass, more preferably 0.2 to 10.0% by mass. Preferably, the content is 0.5 to 5.0% by mass. Also. The concentration of the ketene imine crosslinking agent in the coating solution at the time of coating is preferably 0.2 to 30% by mass, more preferably 0.5 to 20% by mass, and 1 to 10% by mass. Further preferred.
 特定の反応性基を有するポリマーとケテンイミン架橋剤とを含有する塗布液は、ガス透過性支持体上に薄層状に塗布すると、急激な溶媒の蒸発に伴い架橋反応が素早く進行し、ケテンイミン架橋剤由来の架橋構造を形成する。これにより、支持体上に、架橋構造を有するポリマーから構成される分離層を形成することができる。 When a coating solution containing a polymer having a specific reactive group and a ketene imine cross-linking agent is applied in a thin layer on a gas-permeable support, the cross-linking reaction proceeds rapidly with rapid solvent evaporation, and the ketene imine cross-linking agent Forms a cross-linked structure of origin. Thereby, the separated layer comprised from the polymer which has a crosslinked structure can be formed on a support body.
 塗布液を薄層状に塗布すると比界面積が増大して溶媒の蒸発速度が著しく高まる。この急激な溶媒の蒸発に伴い、反応性基を有するポリマーとケテンイミン架橋剤の濃度が一気に高まり、その結果、架橋反応が素早く進行して、架橋構造を有するポリマー構造が迅速に形成される。塗布液の塗布後、架橋構造を有するポリマーの形成は急激に進行するため、塗布液の多孔質の支持体への浸透は生じにくい(浸透する前にゲル化する)。その結果、より均一でより欠陥の少ない分離層を形成することができる。 When the coating solution is applied in a thin layer, the specific interface area increases and the evaporation rate of the solvent increases remarkably. Along with the rapid evaporation of the solvent, the concentration of the polymer having a reactive group and the ketene imine cross-linking agent increases at a stretch, and as a result, the cross-linking reaction proceeds rapidly and a polymer structure having a cross-linked structure is rapidly formed. Since the formation of the polymer having a crosslinked structure proceeds rapidly after application of the coating liquid, the coating liquid hardly penetrates into the porous support (gelates before penetration). As a result, a more uniform separation layer with fewer defects can be formed.
(有機溶剤)
 塗布液の媒体とする有機溶剤としては、特に限定されるものではないが、n-ヘキサン、n-ヘプタン等の炭化水素系有機溶剤、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系有機溶剤、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、tert-ブタノール等の低級アルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン等の脂肪族ケトン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、プロピレングリコール、エチレングリコールモノメチル又はモノエチルエーテル、プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル、トリプロピレングリコールメチルエーテル、エチレングリコールフェニルエーテル、プロピレングリコールフェニルエーテル、ジエチレングリコールモノメチル又はモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチル又はモノエチルエーテル、ジブチルブチルエーテル、テトラヒドロフラン、メチルシクロペンチルエーテル、ジオキサン等のエーテル系有機溶剤、N-メチルピロリドン、2-ピロリドン、ジメチルホルムアミド、ジメチルイミダゾリジノン、ジメチルスルホキシド、ジメチルアセトアミドなどが挙げられる。これらの有機溶剤は支持体を浸蝕するなどの悪影響を及ぼさない範囲で適切に選択されるものであるが、好ましくは、エステル系(好ましくは酢酸ブチル)、アルコール系(好ましくはメタノール、エタノール、イソプロパノール、イソブタノール)、脂肪族ケトン(好ましくは、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン)、エーテル系(エチレングリコール、ジエチレングリコールモノメチルエーテル、メチルシクロペンチルエーテル)が好ましく、さらに好ましくは脂肪族ケトン系、アルコール系、エーテル系である。またこれらは、1種又は2種以上を組み合わせて用いることができる。
(Organic solvent)
The organic solvent used as a medium for the coating solution is not particularly limited, but is a hydrocarbon organic solvent such as n-hexane or n-heptane, an ester organic solvent such as methyl acetate, ethyl acetate or butyl acetate, Lower alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol and tert-butanol, aliphatic ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone and cyclohexanone, ethylene glycol , Diethylene glycol, triethylene glycol, glycerin, propylene glycol, ethylene glycol monomethyl or monoethyl ether, propylene glycol methyl ether, dipropylene glycol methyl ether, triplicate Ether-based organics such as pyrene glycol methyl ether, ethylene glycol phenyl ether, propylene glycol phenyl ether, diethylene glycol monomethyl or monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl or monoethyl ether, dibutylbutyl ether, tetrahydrofuran, methylcyclopentyl ether, dioxane Examples thereof include solvents, N-methylpyrrolidone, 2-pyrrolidone, dimethylformamide, dimethylimidazolidinone, dimethyl sulfoxide, dimethylacetamide and the like. These organic solvents are appropriately selected as long as they do not adversely affect the substrate, such as ester-based (preferably butyl acetate), alcohol-based (preferably methanol, ethanol, isopropanol). , Isobutanol), aliphatic ketones (preferably methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone), ether type (ethylene glycol, diethylene glycol monomethyl ether, methyl cyclopentyl ether) are preferred, and more preferred are fats Group-based ketones, alcohols, and ethers. Moreover, these can be used 1 type or in combination of 2 or more types.
 本発明のガス分離膜の分離層を形成する条件に特に制限はないが、架橋反応を80℃以下で行うことが好ましい。架橋反応の温度は-30℃以上80℃未満がより好ましく、-10℃以上80℃未満が特に好ましく、5~50℃がより特に好ましい。 The conditions for forming the separation layer of the gas separation membrane of the present invention are not particularly limited, but the crosslinking reaction is preferably performed at 80 ° C. or lower. The temperature of the crosslinking reaction is more preferably from −30 ° C. to less than 80 ° C., particularly preferably from −10 ° C. to less than 80 ° C., and particularly preferably from 5 to 50 ° C.
<保護層の形成>
 ガス分離膜の製造方法は、分離層の表面上にまたは分離層の表面処理を行った表面上に保護層を形成する工程を含むことが好ましい。
 分離層の表面処理を行った表面上に保護層を形成する方法としては特に制限はないが、保護層の材料および有機溶媒を含む組成物を塗布することが好ましい。有機溶媒としては、分離層の形成に用いられる有機溶媒を挙げることができる。塗布方法としては特に制限はなく公知の方法を用いることができるが、例えばスピンコート法を用いることができる。
 保護層を形成するときの硬化性組成物への放射線照射の方法としては特に制限はないが、電子線、紫外線(UV)、可視光または赤外線照射を用いることができ、用いる材料に応じて適宜選択することができる。
 放射線照射時間は1~30秒であることが好ましい。
 放射エネルギーは10~500mW/cmであることが好ましい。
<Formation of protective layer>
It is preferable that the manufacturing method of a gas separation membrane includes the process of forming a protective layer on the surface of a separation layer, or the surface which performed the surface treatment of the separation layer.
Although there is no restriction | limiting in particular as a method of forming a protective layer on the surface which performed the surface treatment of the separated layer, It is preferable to apply | coat the composition containing the material of a protective layer, and an organic solvent. As an organic solvent, the organic solvent used for formation of a separated layer can be mentioned. A coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
Although there is no restriction | limiting in particular as a method of radiation irradiation to the curable composition when forming a protective layer, Although an electron beam, an ultraviolet-ray (UV), visible light, or infrared irradiation can be used, according to the material to be used suitably. You can choose.
The irradiation time is preferably 1 to 30 seconds.
The radiant energy is preferably 10 to 500 mW / cm 2 .
<平滑層の形成>
 本発明のガス分離膜の製造方法は、平滑層を支持体上に形成する工程を含んでもよい。
 平滑層を支持体上に形成する方法としては特に制限はないが、平滑層の材料および有機溶媒を含む組成物を塗布することが好ましい。塗布方法としては特に制限はなく公知の方法を用いることができるが、例えばスピンコート法を用いることができる。
 平滑層を形成するときの硬化性組成物への放射線照射の方法としては特に制限はないが、電子線、紫外線(UV)、可視光または赤外線照射を用いることができ、用いる材料に応じて適宜選択することができる。
 放射線照射時間は1~30秒であることが好ましい。
 放射エネルギーは10~500mW/cmであることが好ましい。
<Formation of smooth layer>
The method for producing a gas separation membrane of the present invention may include a step of forming a smooth layer on a support.
Although there is no restriction | limiting in particular as a method of forming a smooth layer on a support body, It is preferable to apply | coat the composition containing the material and organic solvent of a smooth layer. A coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
Although there is no restriction | limiting in particular as a method of radiation irradiation to the curable composition when forming a smooth layer, Although an electron beam, an ultraviolet-ray (UV), visible light, or infrared irradiation can be used, According to the material to be used suitably You can choose.
The irradiation time is preferably 1 to 30 seconds.
The radiant energy is preferably 10 to 500 mW / cm 2 .
<ガス混合物の分離方法>
 本発明のガス分離膜を用いることで、ガス混合物の分離をすることができる。
 本発明のガス分離膜を用いるガス混合物の分離方法において、原料のガス混合物の成分は原料産地や用途又は使用環境などによって影響されるものであり、特に規定されるものではないが、ガス混合物の主成分が二酸化炭素及びメタン、二酸化炭素及び窒素又は二酸化炭素及び水素であることが好ましい。すなわち、ガス混合物における二酸化炭素及びメタン又は二酸化炭素及び水素の占める割合が、二酸化炭素の割合として5~50%であることが好ましく、更に好ましくは10~40%である。ガス混合物が二酸化炭素や硫化水素のような酸性ガス共存下である場合、本発明のガス分離膜を用いるガス混合物の分離方法は特に優れた性能を発揮し、好ましくは二酸化炭素とメタン等の炭化水素、二酸化炭素と窒素、二酸化炭素と水素の分離において優れた性能を発揮する。
 ガス混合物の分離方法は、二酸化炭素及びメタンを含む混合ガスから二酸化炭素を選択的に透過させることを含む方法であることが好ましい。本発明のガス分離膜は、高圧下での分離選択性および透過性が高く、有機溶媒耐性が高いため、従来よりも高圧下でガス分離を行うことができる。ガス分離の際の圧力は3~10MPaであることが好ましく、5~6MPaであることがより好ましい。また、ガス分離温度は、-30~90℃であることが好ましく、15~70℃であることがさらに好ましい。
<Separation method of gas mixture>
By using the gas separation membrane of the present invention, the gas mixture can be separated.
In the method for separating a gas mixture using the gas separation membrane of the present invention, the components of the raw material gas mixture are affected by the raw material production area, application, or use environment, and are not particularly defined. The main components are preferably carbon dioxide and methane, carbon dioxide and nitrogen or carbon dioxide and hydrogen. That is, the proportion of carbon dioxide and methane or carbon dioxide and hydrogen in the gas mixture is preferably 5 to 50%, more preferably 10 to 40% as the proportion of carbon dioxide. When the gas mixture is in the presence of an acidic gas such as carbon dioxide or hydrogen sulfide, the separation method of the gas mixture using the gas separation membrane of the present invention exhibits particularly excellent performance, preferably carbonization such as carbon dioxide and methane. Excellent performance in separation of hydrogen, carbon dioxide and nitrogen, and carbon dioxide and hydrogen.
The method for separating the gas mixture is preferably a method including selectively permeating carbon dioxide from a mixed gas containing carbon dioxide and methane. Since the gas separation membrane of the present invention has high separation selectivity and permeability under high pressure and high resistance to organic solvents, gas separation can be performed under higher pressure than before. The pressure at the time of gas separation is preferably 3 to 10 MPa, more preferably 5 to 6 MPa. The gas separation temperature is preferably −30 to 90 ° C., more preferably 15 to 70 ° C.
[ガス分離膜モジュール・気体分離装置]
 本発明のガス分離膜モジュールは、本発明のガス分離膜を有する。
 本発明のガス分離膜は多孔質支持体と組み合わせた薄層複合膜とすることが好ましく、更にはこれを用いたガス分離膜モジュールとすることが好ましい。また、本発明のガス分離膜、薄層複合膜又はガス分離膜モジュールを用いて、ガスを分離回収又は分離精製させるための手段を有する気体分離装置とすることができる。本発明のガス分離膜はモジュール化して好適に用いることができる。モジュールの例としては、スパイラル型、中空糸型、プリーツ型、管状型、プレート&フレーム型などが挙げられる。また本発明のガス分離膜は、例えば、特開2007-297605号に記載のような吸収液と併用した膜・吸収ハイブリッド法としての気体分離回収装置に適用してもよい。
[Gas separation membrane module / gas separation device]
The gas separation membrane module of the present invention has the gas separation membrane of the present invention.
The gas separation membrane of the present invention is preferably a thin layer composite membrane combined with a porous support, and more preferably a gas separation membrane module using this. Moreover, it can be set as the gas separation apparatus which has a means for carrying out separation recovery of the gas using the gas separation membrane of this invention, a thin layer composite membrane, or a gas separation membrane module. The gas separation membrane of the present invention can be suitably used in a modular form. Examples of modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like. Further, the gas separation membrane of the present invention may be applied to a gas separation / recovery device as a membrane / absorption hybrid method used in combination with an absorbing solution as described in, for example, JP-A-2007-297605.
 以下に実施例と比較例(なお比較例は公知技術というわけではない)を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 なお、文中「部」及び「%」とあるのは特に示さない限り質量基準とする。
Hereinafter, the features of the present invention will be described more specifically with reference to examples and comparative examples (note that comparative examples are not known techniques). The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Accordingly, the scope of the present invention should not be construed as being limited by the specific examples shown below.
In the text, “parts” and “%” are based on mass unless otherwise specified.
[実施例1]
<平滑層の作製>
(ジアルキルシロキサン基を有する放射線硬化性ポリマーの調製)
 市販のUV9300(Momentive社製の下記構造のポリジメチルシロキサン(PDMS)、エポキシ当量は950g/molオキシラン、粘度測定法による重量平均分子量9000)39.087質量%、市販のX-22-162C(信越化学工業(株)製、下記構造の両末端カルボキシル変性シリコーン、重量平均分子量4600)10.789質量%、DBU(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン)0.007質量%を含むn-ヘプタン溶液を調製し、95℃に維持しながら168時間経過させて、ポリ(シロキサン)基を有する放射線硬化性ポリマー溶液(25℃で粘度22.8mPa・s)を得た。
[Example 1]
<Production of smooth layer>
(Preparation of radiation curable polymer having dialkylsiloxane group)
Commercial UV9300 (Momentive's polydimethylsiloxane (PDMS) having the following structure, epoxy equivalent is 950 g / mol oxirane, weight average molecular weight 9000 by viscosity measurement method) 39.087% by mass, commercially available X-22-162C (Shin-Etsu) Chemical Industry Co., Ltd., both-end carboxyl-modified silicone having the following structure, weight average molecular weight 4600) 10.789% by mass, DBU (1,8-diazabicyclo [5.4.0] undec-7-ene) 0.007 An n-heptane solution containing mass% was prepared and allowed to elapse for 168 hours while maintaining at 95 ° C. to obtain a radiation curable polymer solution having a poly (siloxane) group (viscosity of 22.8 mPa · s at 25 ° C.). .
(重合性の放射線硬化性組成物の調製)
 放射線硬化性ポリマー溶液は20℃まで冷却され、5質量%になるまでn-ヘプタンを添加して希釈した。得られた溶液を濾過精度2.7μmの濾紙を用いて濾過し、放射線硬化性組成物を調製した。放射線硬化性組成物に対し、光重合開始剤であるUV9380C(Momentive社製のビス(4-ドデシルフェニル)ヨードニウム=ヘキサフルオロアンチモネートの45質量%、アルキルグリシジルエーテル溶液)0.1質量%およびTi(OiPr)(Dorf Ketal Chemicals製イソプロポキシドチタン(IV))0.1質量%を添加し、重合性の放射線硬化性組成物を調製した。
(Preparation of polymerizable radiation curable composition)
The radiation curable polymer solution was cooled to 20 ° C. and diluted by adding n-heptane to 5 mass%. The resulting solution was filtered using a filter paper having a filtration accuracy of 2.7 μm to prepare a radiation curable composition. For the radiation curable composition, UV9380C (45% by mass of Bis (4-dodecylphenyl) iodonium = hexafluoroantimonate, alkyl glycidyl ether solution manufactured by Momentive) as a photopolymerization initiator and 0.1% by mass of Ti (OiPr) 4 (Dolf Chemical Chemicals isopropoxide titanium (IV)) 0.1 mass% was added to prepare a polymerizable radiation curable composition.
(重合性の放射線硬化性組成物の多孔質支持体への塗布、平滑層の形成)
 PAN(ポリアクリロニトリル)多孔質膜(不織布上にポリアクリロニトリル多孔質膜が存在、不織布を含め、膜厚は約180μm)を支持体として重合性の放射線硬化性組成物をスピンコートした後、UV強度24kW/m、処理時間10秒のUV処理条件でUV処理(Fusion UV System社製、Light Hammer 10、D-バルブ)を行い、乾燥させた。このようにして、多孔質支持体上に金属錯体およびジアルキルシロキサン基を有する厚み600nmの平滑層を形成した。
Figure JPOXMLDOC01-appb-C000032
(Application of polymerizable radiation curable composition to porous support, formation of smooth layer)
PAN (polyacrylonitrile) porous film (Polyacrylonitrile porous film is present on the nonwoven fabric, including the nonwoven fabric, the film thickness is about 180 μm) The spin-coated polymerizable radiation curable composition as a support, and then the UV intensity UV treatment (Fusion UV System, Light Hammer 10, D-bulb) was performed under UV treatment conditions of 24 kW / m and treatment time of 10 seconds, and dried. In this way, a smooth layer having a thickness of 600 nm having a metal complex and a dialkylsiloxane group was formed on the porous support.
Figure JPOXMLDOC01-appb-C000032
<分離層の作製>
(ポリマー(P-101)の合成)
 下記反応スキームでポリマー(P-101)を合成した。
<Preparation of separation layer>
(Synthesis of polymer (P-101))
A polymer (P-101) was synthesized according to the following reaction scheme.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
ポリマー(P-101)の合成:
 1Lの三口フラスコにN-メチルピロリドン123ml、6FDA(東京化成株式会社製、製品番号:H0771)54.97g(0.124mol)を加えて40℃で溶解させ、窒素気流下で攪拌しているところに、2,3,5,6-テトラメチルフェニレンジアミン(東京化成株式会社製、製品番号:T1457)4.098g(0.0248mol)、3,5-ジアミノ安息香酸15.138g(0.0992mol)のN-メチルピロリドン84.0ml溶液を30分かけて系内を40℃に保ちつつ滴下した。反応液を40℃で2.5時間攪拌した後、ピリジン(和光純薬株式会社製、製品番号:)2.94g(0.037mol)、無水酢酸(和光純薬株式会社製、製品番号:)31.58g(0.31mol)をそれぞれ加えて、さらに80℃で3時間攪拌した。その後、反応液にアセトン676.6mLを加え、希釈した。5Lステンレス容器にメタノール1.15L、アセトン230mLを加えて攪拌しているところに、反応液のアセトン希釈液を滴下した。得られたポリマー結晶を吸引ろ過し、60℃で送風乾燥させて50.5gのポリマー(P-101)を得た。なお、このP-101は、前掲の例示ポリイミド化合物P-100においてX:Y=20:80としたものである。
Synthesis of polymer (P-101):
N-methylpyrrolidone 123 ml, 6FDA (manufactured by Tokyo Chemical Industry Co., Ltd., product number: H0771) 54.97 g (0.124 mol) was added to a 1 L three-necked flask and dissolved at 40 ° C. and stirred under a nitrogen stream. 2,3,5,6-tetramethylphenylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd., product number: T1457) 4.098 g (0.0248 mol), 3,5-diaminobenzoic acid 15.138 g (0.0992 mol) Of N-methylpyrrolidone in an amount of 84.0 ml was added dropwise over 30 minutes while maintaining the system at 40 ° C. After stirring the reaction solution at 40 ° C. for 2.5 hours, 2.94 g (0.037 mol) of pyridine (manufactured by Wako Pure Chemical Industries, Ltd., product number :), acetic anhydride (manufactured by Wako Pure Chemical Industries, Ltd., product number :) 31.58 g (0.31 mol) was added thereto, and the mixture was further stirred at 80 ° C. for 3 hours. Thereafter, 676.6 mL of acetone was added to the reaction solution for dilution. To a 5 L stainless steel container, 1.15 L of methanol and 230 mL of acetone were added and stirred, and an acetone diluted solution of the reaction solution was dropped. The obtained polymer crystals were suction filtered and blown dry at 60 ° C. to obtain 50.5 g of polymer (P-101). The P-101 is X: Y = 20: 80 in the exemplified polyimide compound P-100 described above.
(ケテンイミン(1)の合成)
 以下の方法で下記構造のケテンイミン(1)を合成した。
ケテンイミン(1)
Figure JPOXMLDOC01-appb-C000034
(Synthesis of ketene imine (1))
A ketene imine (1) having the following structure was synthesized by the following method.
Ketene imine (1)
Figure JPOXMLDOC01-appb-C000034
-ケチミン体(1)の合成-
 ベンゾフェノン 91g(0.50mol)、p-フェニレンジアミン 27g(0.25mol)、DABCO 112g(1.0mol)、クロロベンゼン1.5Lを三つ口フラスコに仕込み125℃で1時間攪拌した後、四塩化チタン 95g(0.5mol)をゆっくり添加した。4時間攪拌した後、沈殿物を濾過し、ろ液を濃縮後した。濃縮して得た固体をメタノールで洗浄し、黄色粉末のケチミン体(1)86g(0.2mol)を得た。
-Synthesis of ketimine (1)-
After charging 91 g (0.50 mol) of benzophenone, 27 g (0.25 mol) of p-phenylenediamine, 112 g (1.0 mol) of DABCO, and 1.5 L of chlorobenzene into a three-necked flask and stirring at 125 ° C. for 1 hour, titanium tetrachloride was added. 95 g (0.5 mol) was slowly added. After stirring for 4 hours, the precipitate was filtered and the filtrate was concentrated. The solid obtained by concentration was washed with methanol to obtain 86 g (0.2 mol) of a ketimine compound (1) as a yellow powder.
-アジリジン体(1)の合成-
 ケチミン体(1) 44g(0.1mol)、トリエチルベンジルアンモニウムクロライド 2g、クロロホルム300mlを三つ口フラスコに仕込み、攪拌しながら60℃の50%水酸化ナトリウム水溶液200gを一気に加え、内温が40~50℃で1時間攪拌した。純水300ml、クロロホルム500mlを加えて水層を除去した後、濃縮し、MEKで洗浄し、アジリジン体(1)30g(0.05mol)を得た。
-Synthesis of aziridine (1)-
Ketimine compound (1) 44 g (0.1 mol), triethylbenzylammonium chloride 2 g, and chloroform 300 ml were charged into a three-necked flask, and 200 g of 50% aqueous sodium hydroxide solution at 60 ° C. was added all at once with stirring. Stir at 50 ° C. for 1 hour. After adding 300 ml of pure water and 500 ml of chloroform to remove the aqueous layer, the solution was concentrated and washed with MEK to obtain 30 g (0.05 mol) of aziridine (1).
-ケテンイミン(1)の合成-
 アジリジン体(1)30g(0.05mol)、ヨウ化ナトリウム135g、アセトン700mlをフラスコに仕込み、2時間還流した。冷却後、4%チオ硫酸ナトリウム水溶液1.4Lに添加して30分攪拌した。析出した固体を濾過してメタノールで洗浄し、黄色固体23g(0.05mol)を得た。
H-NMR(DMSO) δ(ppm); 7.2―7.6(24H)
 得られた化合物をケテンイミン(1)とした。
-Synthesis of ketene imine (1)-
Aziridine (1) 30 g (0.05 mol), sodium iodide 135 g, and acetone 700 ml were charged into a flask and refluxed for 2 hours. After cooling, it was added to 1.4 L of 4% aqueous sodium thiosulfate solution and stirred for 30 minutes. The precipitated solid was filtered and washed with methanol to obtain 23 g (0.05 mol) of a yellow solid.
1 H-NMR (DMSO) δ (ppm); 7.2-7.6 (24H)
The obtained compound was designated as ketene imine (1).
(架橋反応および分離層の形成)
 平滑層上に酸素流量50cm(STP)/分、アルゴン流量100cm(STP)/分、放電出力10Wのプラズマ処理条件で5秒間プラズマ処理を行った。
 30ml褐色バイアル瓶に、反応性基を有するポリマー(P-101)を1.4g、ケテンイミン架橋剤(上記ケテンイミン(1))0.038g、メチルエチルケトン8.6gを混合して25℃で30分攪拌した。
 その後、攪拌した溶液を平滑層上にスピンコートし、厚み100nmの分離層を形成させた。
(Crosslinking reaction and formation of separation layer)
Plasma treatment was performed on the smooth layer for 5 seconds under plasma treatment conditions of an oxygen flow rate of 50 cm 3 (STP) / min, an argon flow rate of 100 cm 3 (STP) / min, and a discharge output of 10 W.
In a 30 ml brown vial, 1.4 g of the polymer having a reactive group (P-101), 0.038 g of ketene imine crosslinking agent (the above ketene imine (1)) and 8.6 g of methyl ethyl ketone were mixed and stirred at 25 ° C. for 30 minutes. did.
Thereafter, the stirred solution was spin-coated on the smooth layer to form a separation layer having a thickness of 100 nm.
<保護層の形成>
 その後、平滑層の形成に用いた重合性の放射線硬化性組成物を用い、分離層の上にスピンコートした後、平滑層の形成と同様のUV処理条件でUV処理を行うことで分離層上に厚み600nmの保護層を形成し、50℃の送風乾燥機にて8時間乾燥させることで、ガス分離膜を作製した。
 得られた分離膜を、実施例1のガス分離膜とした。
<Formation of protective layer>
Thereafter, the polymerizable radiation-curable composition used for forming the smooth layer is spin-coated on the separation layer, and then subjected to UV treatment under the same UV treatment conditions as for the formation of the smooth layer. A protective layer having a thickness of 600 nm was formed on the substrate, and dried for 8 hours with a blower dryer at 50 ° C. to prepare a gas separation membrane.
The obtained separation membrane was used as the gas separation membrane of Example 1.
[実施例2]
 実施例1において、分離層を形成するときのケテンイミン架橋剤としてケテンイミン(1)の代わりに、ケテンイミン(1)と使用材料を変更した以外は同様の方法で合成した下記構造のケテンイミン(2)を同量で用いた以外は実施例1と同様にして、実施例2のガス分離膜を得た。
ケテンイミン(2)
Figure JPOXMLDOC01-appb-C000035
[Example 2]
In Example 1, instead of ketene imine (1) as a ketene imine cross-linking agent when forming the separation layer, ketene imine (2) synthesized by the same method except that ketene imine (1) and the material used were changed were used. A gas separation membrane of Example 2 was obtained in the same manner as Example 1 except that the same amount was used.
Ketenimine (2)
Figure JPOXMLDOC01-appb-C000035
[比較例1]
 実施例1において、分離層を形成するときにケテンイミン1を添加しなかった以外は実施例1と同様にして、比較例1のガス分離膜を得た。
[Comparative Example 1]
In Example 1, a gas separation membrane of Comparative Example 1 was obtained in the same manner as in Example 1 except that ketene imine 1 was not added when forming the separation layer.
[比較例2]
 実施例1において、分離層を以下の方法で平滑層上に形成した以外は実施例1と同様にして、比較例2のガス分離膜を得た。
 30ml褐色バイアル瓶に、反応性基を有するポリマー(P-1)を1.4g、架橋剤デナコール EX861(ナガセケムテックス(株)製、ポリエチレングリコールジグリシジルエーテル、エチレングリコール繰り返し単位を22個有する両末端エポキシ基含有化合物)0.038g、メチルエチルケトン8.6gを混合して30分攪拌した。その後、更に光反応開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(Aldrich社製、製品番号:40,561-2)を1.4mg加えて、更に25℃で30分攪拌した。
 その後、攪拌した溶液を平滑層上にスピンコートし、FusionUV社製UVランプ(Light Hammer10)を用いて、100mWにて10秒間露光させ、厚み100nm分離層を形成させた。
[Comparative Example 2]
In Example 1, a gas separation membrane of Comparative Example 2 was obtained in the same manner as in Example 1 except that the separation layer was formed on the smooth layer by the following method.
In a 30 ml brown vial, 1.4 g of polymer (P-1) having a reactive group, crosslinker Denacol EX861 (manufactured by Nagase ChemteX Corp., polyethylene glycol diglycidyl ether, both having 22 ethylene glycol repeating units) Terminal epoxy group-containing compound) 0.038 g and methyl ethyl ketone 8.6 g were mixed and stirred for 30 minutes. Thereafter, 1.4 mg of 1-hydroxycyclohexyl phenyl ketone (manufactured by Aldrich, product number: 40,561-2) was further added as a photoreaction initiator, and the mixture was further stirred at 25 ° C. for 30 minutes.
Thereafter, the stirred solution was spin-coated on the smooth layer, and exposed to 100 mW for 10 seconds using a UV lamp (Light Hammer 10) manufactured by FusionUV, to form a separation layer having a thickness of 100 nm.
<ガス分離膜のガス分離性およびCO透過度の評価>
 得られた薄層複合膜である各実施例および比較例のガス分離膜において、高圧耐性のあるSUS316製ステンレスセル(DENISSEN社製)を用いて評価した。二酸化炭素(CO)、メタン(CH)の体積比が10:90の混合ガスをガス供給側の全圧力が5MPa(COの分圧:0.5MPa)となるように調整し、CO、CHのそれぞれのガスの透過性をTCD検知式ガスクロマトグラフィーにより測定した。各実施例および比較例のガス分離膜のガス分離性(すなわち、分離選択性)は、この膜のCHの透過係数PCH4に対するCOの透過係数PCO2の割合(PCO2/PCH4)として計算した。各実施例および比較例のガス分離膜のCO透過性は、この膜のCOの透過度QCO2(単位:GPU)とした。
 なお、ガス透過性の単位は、圧力差あたりの透過流束(透過率、透過度、Permeanceとも言う)を表すGPU(ジーピーユー)単位〔1GPU=1×10-6cm(STP)/cm・sec・cmHg〕または透過係数を表すbarrer(バーラー)単位〔1barrer=1×10-10cm(STP)・cm/cm・sec・cmHg〕で表す。本明細書中では、GPU単位の場合は記号Qを用いて表し、barrer単位の場合は記号Pを用いて表した。
<Evaluation of gas separation performance and CO 2 permeability of gas separation membrane>
The gas separation membranes of the Examples and Comparative Examples, which were the obtained thin layer composite membranes, were evaluated using a SUS316 stainless steel cell (DENISSEN) having high pressure resistance. A mixed gas having a volume ratio of carbon dioxide (CO 2 ) and methane (CH 4 ) of 10:90 is adjusted so that the total pressure on the gas supply side is 5 MPa (CO 2 partial pressure: 0.5 MPa), and CO 2 The gas permeability of each of 2 and CH 4 was measured by TCD detection type gas chromatography. The gas separation properties (that is, separation selectivity) of the gas separation membranes of the Examples and Comparative Examples are the ratio of the CO 2 permeability coefficient P CO2 to the CH 4 permeability coefficient P CH4 of this membrane (P CO2 / P CH4 ). As calculated. The CO 2 permeability of the gas separation membrane of each Example and Comparative Example was defined as the CO 2 permeability Q CO2 (unit: GPU) of this membrane.
The unit of gas permeability is a GPU (GPU) unit [1 GPU = 1 × 10 −6 cm 3 (STP) / cm 2 ) representing a permeation flux (also referred to as permeability, permeability, and Permeance) per pressure difference. · Sec · cmHg] or a barrer unit (1 barrer = 1 × 10 −10 cm 3 (STP) · cm / cm 2 · sec · cmHg) representing a transmission coefficient. In this specification, the unit of GPU is represented by the symbol Q, and the unit of barrer is represented by the symbol P.
(溶解試験(THF)での残存率)
 溶解試験用サンプルの作製を以下の方法で行った。各実施例および比較例のガス分離膜の分離層の形成に用いた反応性ポリマーと架橋剤の混合液を固形分が10質量%となるように作製した。これをガラス板上にクリアランス120μmで流延塗布し、50℃のオーブンで12時間乾燥させた。その後、ガラス板からゆっくりと剥がし、分離層単独膜を厚み10μmで作製した。
 この単独膜を5mgとり、テトロヒドロフラン(THF)溶媒5gを入れたバイアル瓶中入れ、室温で1日静置した。このTHF溶液を0.45μmのフィルターでろ過し、GPC(ゲルパーミエーションクロマトグラフィー)測定にて溶解物の量を定量した。THF溶解前の分離層単独膜の量を100%とし、GPC測定で得られた溶解物の量を差し引いた値を溶解試験残存率とした。結果を下記表2に示す。
 残存率の結果は、THFを含む気体にガス分離膜が晒された際の可塑化現象(ポリマー鎖間に溶剤分子が入り込み、ポリマー分子鎖が滑り易くなると推定)と相関し、残存率が高いほど可塑化に対する耐性が高いことを示している。この結果はベンゼン、トルエン、キシレン等、他の芳香族化合物に対する可塑化耐性をも表していると考えて良い。
(Residual rate in dissolution test (THF))
A sample for dissolution test was prepared by the following method. The liquid mixture of the reactive polymer and the crosslinking agent used for forming the separation layer of the gas separation membrane of each Example and Comparative Example was prepared so that the solid content was 10% by mass. This was cast on a glass plate with a clearance of 120 μm and dried in an oven at 50 ° C. for 12 hours. Then, it peeled off from the glass plate slowly and produced the separated layer single membrane by thickness 10 micrometers.
5 mg of this single membrane was taken, placed in a vial containing 5 g of tetrohydrofuran (THF) solvent, and allowed to stand at room temperature for 1 day. This THF solution was filtered through a 0.45 μm filter, and the amount of the lysate was quantified by GPC (gel permeation chromatography) measurement. The amount of the separation layer single membrane before dissolution in THF was taken as 100%, and the value obtained by subtracting the amount of dissolved material obtained by GPC measurement was taken as the dissolution test residual rate. The results are shown in Table 2 below.
The result of the residual rate correlates with the plasticization phenomenon when the gas separation membrane is exposed to a gas containing THF (estimated that solvent molecules enter between polymer chains and the polymer molecular chains become slippery), and the residual rate is high. It shows that the resistance to plasticization is high. It can be considered that this result also represents plasticization resistance against other aromatic compounds such as benzene, toluene, xylene and the like.
 上記の各試験例の結果を下記表2に示す。 The results of each of the above test examples are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 上記表2より、本発明のガス分離膜は、高圧下での分離選択性および透過性が高く、有機溶媒耐性が高いことがわかった。なお、本発明のガス分離膜の分離層が、ケテンイミン架橋剤由来の連結基を介して架橋された構造を含有することを、IRスペクトルによって確認した。また、本発明のガス分離膜の分離層が、未反応のケテンイミン架橋剤を含有することもIRスペクトルにより確認できた。
 一方、架橋剤を添加しなかったため、ケテンイミン架橋剤由来の連結基を介して架橋された構造を含有しないポリマーを含む分離層を有する比較例1のガス分離膜は、有機溶媒耐性が非常に低いことがわかった。
 また、2官能エポキシ化合物を架橋剤として用いたため、ケテンイミン架橋剤由来の連結基を介して架橋された構造を含有しないポリマーを含む分離層を有する比較例2のガス分離膜は、透過性が低く、有機溶媒耐性も低いことがわかった。
 ケテンイミン架橋剤によりCO透過度を下げることなく、有機溶剤耐性を向上させることができた。有機溶媒に溶け難いことはポリマー膜に溶剤分子が入り込み難く、ポリマー分子鎖同士が滑るといった可塑化現象が抑制されると推定される。
From Table 2 above, it was found that the gas separation membrane of the present invention has high separation selectivity and permeability under high pressure and high resistance to organic solvents. In addition, it confirmed by the IR spectrum that the separation layer of the gas separation membrane of this invention contained the structure bridge | crosslinked through the coupling group derived from a ketene imine crosslinking agent. It was also confirmed by IR spectrum that the separation layer of the gas separation membrane of the present invention contains an unreacted ketene imine crosslinking agent.
On the other hand, since no cross-linking agent was added, the gas separation membrane of Comparative Example 1 having a separation layer containing a polymer that does not contain a structure cross-linked through a linking group derived from a ketene imine cross-linking agent has very low resistance to organic solvents. I understood it.
Moreover, since the bifunctional epoxy compound was used as a crosslinking agent, the gas separation membrane of Comparative Example 2 having a separation layer containing a polymer that does not contain a structure crosslinked through a linking group derived from a ketene imine crosslinking agent has low permeability. It was also found that the resistance to organic solvents was low.
The resistance to organic solvents could be improved without lowering the CO 2 permeability by the ketene imine crosslinking agent. It is estimated that the fact that it is difficult to dissolve in an organic solvent suppresses the plasticization phenomenon that the solvent molecules do not easily enter the polymer film and the polymer molecular chains slip.
[実施例101および102]
-モジュール化-
 実施例1および2で作製したガス分離膜を用いて、特開平5-168869を参考に、スパイラル型モジュールを作製した。得られたガス分離膜モジュールを、実施例101および102のガス分離膜モジュールとした。
 作製した実施例101および102のガス分離膜モジュールは、内蔵するガス分離膜の性能のとおり、良好なものであることを確認した。
[Examples 101 and 102]
-modularization-
Using the gas separation membranes produced in Examples 1 and 2, a spiral module was produced with reference to JP-A-5-168869. The obtained gas separation membrane module was used as the gas separation membrane module of Examples 101 and 102.
It was confirmed that the produced gas separation membrane modules of Examples 101 and 102 were good according to the performance of the built-in gas separation membrane.
1  分離層
2  保護層
3  平滑層
4  支持体
10 ガス分離膜
12 多孔質層
13 不織布
DESCRIPTION OF SYMBOLS 1 Separation layer 2 Protective layer 3 Smooth layer 4 Support body 10 Gas separation membrane 12 Porous layer 13 Nonwoven fabric

Claims (13)

  1.  架橋構造を有するポリマーを含む分離層を有し、
     前記架橋構造を有するポリマーが、下記一般式(1)で表される基を少なくとも2つ以上有するケテンイミン架橋剤由来の連結基を介して架橋された構造を含有する、ガス分離膜;
    一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    一般式(1)中、R22およびR23はそれぞれ独立に置換基を表し、*は結合部位を表す。
    Having a separation layer comprising a polymer having a crosslinked structure;
    A gas separation membrane in which the polymer having a crosslinked structure contains a structure crosslinked through a linking group derived from a ketene imine crosslinking agent having at least two groups represented by the following general formula (1);
    General formula (1)
    Figure JPOXMLDOC01-appb-C000001
    In general formula (1), R 22 and R 23 each independently represent a substituent, and * represents a binding site.
  2.  ケテンイミン架橋剤由来の連結基が、-NH-R21-NH-(ただしR21は2価の連結基を表す)である、請求項1に記載のガス分離膜。 2. The gas separation membrane according to claim 1, wherein the linking group derived from the ketene imine crosslinking agent is —NH—R 21 —NH— (wherein R 21 represents a divalent linking group).
  3.  反応性基をもつ前記架橋構造が、-C(=O)-NH-R21-NH-C(=O)-(R21は2価の連結基を表す)である、請求項2に記載のガス分離膜。 3. The crosslinked structure having a reactive group is —C (═O) —NH—R 21 —NH—C (═O) — (R 21 represents a divalent linking group). Gas separation membrane.
  4.  前記R21がアルキレン基、アリーレン基、あるいは、2以上のアルキレン基またはアリーレン基が結合した2価の連結基である、請求項2または3に記載のガス分離膜。 The gas separation membrane according to claim 2 or 3, wherein R 21 is an alkylene group, an arylene group, or a divalent linking group in which two or more alkylene groups or an arylene group are bonded.
  5.  前記R21が炭素数1~15の2価の連結基である、請求項2~4のいずれか一項に記載のガス分離膜。 The gas separation membrane according to any one of claims 2 to 4, wherein R 21 is a divalent linking group having 1 to 15 carbon atoms.
  6.  前記R21が少なくとも1つのアリーレン基を含む2価の連結基である、請求項2~5のいずれか一項に記載のガス分離膜。 The gas separation membrane according to any one of claims 2 to 5, wherein R 21 is a divalent linking group containing at least one arylene group.
  7.  前記ケテンイミン架橋剤が下記一般式(2)で表される化合物である、請求項1~6のいずれか一項に記載のガス分離膜;
    一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    一般式(2)中、R11はアルキレン基、アリーレン基、あるいは、2以上のアルキレン基またはアリーレン基が直接またはR31を介して結合した2価の連結基を表し、R12~R15はそれぞれ独立にアルキル基またはアリール基を表し、R31は下記群で表される連結基のいずれかを表す。
    Figure JPOXMLDOC01-appb-C000003
    The gas separation membrane according to any one of claims 1 to 6, wherein the ketene imine crosslinking agent is a compound represented by the following general formula (2):
    General formula (2)
    Figure JPOXMLDOC01-appb-C000002
    In the general formula (2), R 11 represents an alkylene group, an arylene group, or a divalent linking group in which two or more alkylene groups or an arylene group are bonded directly or via R 31 , and R 12 to R 15 are Each independently represents an alkyl group or an aryl group, and R 31 represents any of the linking groups represented by the following groups.
    Figure JPOXMLDOC01-appb-C000003
  8.  前記架橋構造を有するポリマーが、架橋ポリイミドである、請求項1~7のいずれか一項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 7, wherein the polymer having a crosslinked structure is a crosslinked polyimide.
  9.  前記架橋構造を有するポリマーを含む分離層が、反応性基を有するポリマーおよび前記ケテンイミン架橋剤を含む組成物を架橋反応させて形成されてなる、請求項1~8のいずれか一項に記載のガス分離膜。 The separation layer containing a polymer having a crosslinked structure is formed by a crosslinking reaction of a polymer having a reactive group and the composition containing the ketene imine crosslinking agent. Gas separation membrane.
  10.  前記反応性基を有するポリマーが、ポリイミド単位と、側鎖にカルボキシル基、アミノ基またはヒドロキシル基を有する繰り返し単位とを含む、請求項9に記載のガス分離膜。 The gas separation membrane according to claim 9, wherein the polymer having a reactive group includes a polyimide unit and a repeating unit having a carboxyl group, an amino group or a hydroxyl group in a side chain.
  11.  反応性基を有するポリマーおよび下記一般式(1)で表される基を少なくとも2つ以上有するケテンイミン架橋剤を含む組成物を架橋反応させて、架橋構造を有するポリマーを含む分離層を形成する工程を含む、ガス分離膜の製造方法;
    一般式(1)
    Figure JPOXMLDOC01-appb-C000004
    一般式(1)中、R22およびR23はそれぞれ独立に置換基を表し、*は結合部位を表す。
    A step of cross-linking a composition containing a polymer having a reactive group and a ketene imine cross-linking agent having at least two groups represented by the following general formula (1) to form a separation layer containing a polymer having a cross-linked structure A method for producing a gas separation membrane, comprising:
    General formula (1)
    Figure JPOXMLDOC01-appb-C000004
    In general formula (1), R 22 and R 23 each independently represent a substituent, and * represents a binding site.
  12.  前記反応性基を有するポリマーが、ポリイミド単位と、側鎖にカルボキシル基、アミノ基またはヒドロキシル基を有する繰り返し単位とを含む、請求項11に記載のガス分離膜の製造方法。 The method for producing a gas separation membrane according to claim 11, wherein the polymer having a reactive group includes a polyimide unit and a repeating unit having a carboxyl group, an amino group or a hydroxyl group in a side chain.
  13.  請求項1~10のいずれか一項に記載のガス分離膜を有するガス分離膜モジュール。 A gas separation membrane module having the gas separation membrane according to any one of claims 1 to 10.
PCT/JP2014/075003 2013-09-24 2014-09-22 Gas separation membrane, method for producing gas separation membrane, and gas separation membrane module WO2015046103A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-197179 2013-09-24
JP2013197179A JP2015062856A (en) 2013-09-24 2013-09-24 Gas separation membrane, method for producing the same, and gas separation membrane module

Publications (1)

Publication Number Publication Date
WO2015046103A1 true WO2015046103A1 (en) 2015-04-02

Family

ID=52743239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075003 WO2015046103A1 (en) 2013-09-24 2014-09-22 Gas separation membrane, method for producing gas separation membrane, and gas separation membrane module

Country Status (2)

Country Link
JP (1) JP2015062856A (en)
WO (1) WO2015046103A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102457839B1 (en) * 2018-08-09 2022-10-21 주식회사 엘지화학 Preparation mehtod for separation membrane and separation membrane prepared thereof
KR102594850B1 (en) * 2019-05-08 2023-10-26 주식회사 엘지화학 Gas separation membrane, method for preparing gas separation membrane, gas separation membrane module and composition for manufacturing active layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692745A (en) * 1970-01-24 1972-09-19 Akzona Inc Method for chemically modifying thread-forming polyesters
JPS63243323A (en) * 1987-03-16 1988-10-11 アクゾ・エヌ・ヴエー Production of yarn by melt spinning of polyethylene terephthalate
US20090249950A1 (en) * 2001-12-20 2009-10-08 Chevron U.S.A. Inc. Crosslinked membrane and polymer for making same and method of using membrane
JP2013046902A (en) * 2011-07-28 2013-03-07 Fujifilm Corp Gas separation composite membrane, and gas separation module, gas separation apparatus and gas separation method using the same
JP2013509317A (en) * 2009-10-30 2013-03-14 フジフィルム・イメイジング・カラランツ・リミテッド Printing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692745A (en) * 1970-01-24 1972-09-19 Akzona Inc Method for chemically modifying thread-forming polyesters
JPS63243323A (en) * 1987-03-16 1988-10-11 アクゾ・エヌ・ヴエー Production of yarn by melt spinning of polyethylene terephthalate
US20090249950A1 (en) * 2001-12-20 2009-10-08 Chevron U.S.A. Inc. Crosslinked membrane and polymer for making same and method of using membrane
JP2013509317A (en) * 2009-10-30 2013-03-14 フジフィルム・イメイジング・カラランツ・リミテッド Printing method
JP2013046902A (en) * 2011-07-28 2013-03-07 Fujifilm Corp Gas separation composite membrane, and gas separation module, gas separation apparatus and gas separation method using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A-LIM, D.S.T. ET AL.: "Crosslinking of carboxyl functional (meth) acrylate copolymers with bisketeneimine", POLYMER BULLETIN, vol. 32, no. 4, April 1994 (1994-04-01), pages 455 - 461 *

Also Published As

Publication number Publication date
JP2015062856A (en) 2015-04-09

Similar Documents

Publication Publication Date Title
JP6276735B2 (en) Gas separation membrane, gas separation membrane module and gas separation device
WO2014087928A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
Alaslai et al. High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation
US9975092B2 (en) Gas separation membrane and gas separation membrane module
WO2015129786A1 (en) Gas separation membrane and gas separation membrane module
JP5972774B2 (en) Gas separation composite membrane and method for producing the same
JP6038058B2 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP6535747B2 (en) Method for producing gas separation composite membrane, liquid composition, gas separation composite membrane, gas separation module, gas separation device, and gas separation method
WO2015129553A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
US20180361327A1 (en) Gas separation membrane, gas separation module, gas separator, gas separation method, composition for forming gas separation layer, method of producing gas separation membrane, polyimide compound, and diamine monomer
WO2015033772A1 (en) Composite gas separation membrane, gas separation module, gas separation apparatus and gas separation method
WO2015046103A1 (en) Gas separation membrane, method for producing gas separation membrane, and gas separation membrane module
WO2017145747A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP5833986B2 (en) Gas separation composite membrane, method for producing the same, gas separation module using the same, gas separation device, and gas separation method
JP6355058B2 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2017145728A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
WO2017122486A1 (en) Gas separation membrane, method for producing gas separation membrane, gas separation membrane module and gas separation device
WO2017145905A1 (en) Polyimide compound, gas separation membrane, gas separation module, gas separation device, and gas separation method
JP2019010631A (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP2017131856A (en) Gas separation membrane, gas separation module, gas separation device and gas separation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846807

Country of ref document: EP

Kind code of ref document: A1