WO2015045689A1 - Metallic magnetic material and electronic component - Google Patents
Metallic magnetic material and electronic component Download PDFInfo
- Publication number
- WO2015045689A1 WO2015045689A1 PCT/JP2014/071878 JP2014071878W WO2015045689A1 WO 2015045689 A1 WO2015045689 A1 WO 2015045689A1 JP 2014071878 W JP2014071878 W JP 2014071878W WO 2015045689 A1 WO2015045689 A1 WO 2015045689A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal magnetic
- alloy powder
- magnetic alloy
- element body
- glass
- Prior art date
Links
- 239000000696 magnetic material Substances 0.000 title claims abstract description 63
- 239000011521 glass Substances 0.000 claims abstract description 81
- 239000000843 powder Substances 0.000 claims abstract description 77
- 229910001004 magnetic alloy Inorganic materials 0.000 claims abstract description 70
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 42
- 239000011701 zinc Substances 0.000 claims abstract description 42
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000011651 chromium Substances 0.000 claims abstract description 19
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 18
- 229910052742 iron Inorganic materials 0.000 claims abstract description 18
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 18
- 239000010703 silicon Substances 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims description 136
- 239000002184 metal Substances 0.000 claims description 136
- 239000000203 mixture Substances 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 19
- 229910044991 metal oxide Inorganic materials 0.000 claims description 10
- 150000004706 metal oxides Chemical class 0.000 claims description 10
- 238000005452 bending Methods 0.000 claims description 5
- 239000004020 conductor Substances 0.000 abstract description 30
- 238000010438 heat treatment Methods 0.000 abstract description 22
- 238000009413 insulation Methods 0.000 abstract description 9
- 230000004907 flux Effects 0.000 abstract description 5
- 230000000052 comparative effect Effects 0.000 description 29
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 26
- 239000002245 particle Substances 0.000 description 13
- 239000011787 zinc oxide Substances 0.000 description 13
- 230000035699 permeability Effects 0.000 description 12
- 229910019819 Cr—Si Inorganic materials 0.000 description 9
- 239000000654 additive Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000005388 borosilicate glass Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- -1 and then mixed Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/255—Magnetic cores made from particles
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/33—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
- H01F2017/048—Fixed inductances of the signal type with magnetic core with encapsulating core, e.g. made of resin and magnetic powder
Definitions
- the present invention relates to a metal magnetic material and an electronic component used for a power inductor used in a power supply circuit.
- Power inductors used in power supply circuits are required to be small, low loss, and capable of handling large currents.
- a metal magnetic material with a high saturation magnetic flux density is used as the magnetic material. It is being considered.
- the metal magnetic material has an advantage that the saturation magnetic flux density is high, but the insulation resistance of the material itself is low, and in order to use it as a magnetic body of an electronic component, it is necessary to ensure insulation between the material particles. If insulation cannot be ensured, the component body will become conductive, material properties will deteriorate, and product loss will increase.
- Japanese Patent Application Laid-Open No. 2010-62424 describes an electronic component in which a material obtained by coating the surface of an Fe—Cr—Si alloy with ZnO-based glass is fired under vacuum, oxygen-free, and low oxygen partial pressure.
- a material obtained by coating the surface of an Fe—Cr—Si alloy with ZnO-based glass is fired under vacuum, oxygen-free, and low oxygen partial pressure.
- vacuum, oxygen-free, and low oxygen partial pressure to prevent sintering, it is necessary to ensure the coating, it is necessary to increase the amount of glass added, and the cost increases due to the coating. There's a problem.
- Patent No. 4866971, Patent No. 5082002 a technique for forming an oxide layer derived only from the raw material composition on the material particles.
- Patent No. 4866971, Patent No. 5082002 a technique for forming an oxide layer derived only from the raw material composition on the material particles.
- an oxide insulating film derived only from the raw material composition is used for the material particles, the deterioration of the magnetic characteristics is small.
- an oxide insulating film derived only from the raw material composition used in this method may have low insulating properties or a sufficient strength may not be obtained.
- Japanese Patent Application Laid-Open No. 2013-33966 discloses a magnetic layer material including glass and metal magnetic powder having a core-shell structure in which an iron-based compound is used as a core and a shell of a metal compound is formed around the core.
- an iron-based compound is used as a core
- a shell of a metal compound is formed around the core.
- the cost is low.
- the magnetic properties are deteriorated due to an increase in the amount of coating material (shell forming material).
- ⁇ Metal magnetic material materials for electronic parts need to insulate magnetic particles with a minimum insulating layer to ensure high insulation.
- the insulating film needs to be strong electrically and mechanically.
- One or more embodiments of the present invention provide a metal magnetic material having high saturation magnetic flux density that can be reliably insulated, and an electron with low loss and good DC superposition characteristics using the metal magnetic material. Provide parts.
- Embodiment 1 In one or more embodiments of the present invention, a metal magnetic alloy powder containing iron, silicon, and chromium, and a glass containing zinc are mixed. It is a featured metal magnetic material.
- Embodiment 2 One or more embodiments of the present invention are that glass containing zinc is deposited on the surface of a metal magnetic alloy powder containing iron, silicon, and chromium. It is a featured metal magnetic material.
- Embodiment 3 One or more embodiments of the present invention comprise a glass containing zinc and the metal magnetic alloy powder on the surface of a metal magnetic alloy powder containing iron, silicon, and chromium.
- the metal magnetic material is characterized in that a mixture of elements is deposited.
- Embodiment 4 One or more embodiments of the present invention are the metal magnetic materials according to any one of Embodiments 1 to 3, wherein the metal magnetic alloy powder is subjected to metal oxidation on its surface.
- Embodiment 5 One or more embodiments of the present invention uses a metal magnetic material in which iron, silicon, a metal magnetic alloy powder containing chromium, and a glass containing zinc are mixed.
- the element body is formed, and the glass containing zinc is deposited on the surface of the metal magnetic alloy powder, and the metal magnetic alloy powders in the element body are bonded together via the glass,
- the electronic component is characterized in that a coil is formed in the element body.
- Embodiment 6 One or more embodiments of the present invention use a metal magnetic material in which iron, silicon, chromium-containing metal magnetic alloy powder, and zinc-containing glass are mixed. An element body is formed, and a mixture of glass containing zinc and an element constituting the metal magnetic alloy powder is deposited on the surface of the metal magnetic alloy powder, and the metal magnetic alloy powder in the element body An electronic component characterized in that they are bonded to each other through a mixture of the glass containing zinc and the elements constituting the metal magnetic alloy powder, and a coil is formed in the element body. is there.
- Embodiment 7 One or more embodiments of the present invention use a metal magnetic material in which iron, silicon, a metal magnetic alloy powder containing chromium, and a glass containing zinc are mixed. An element body is formed, and by heat-treating the element body, zinc-containing glass is deposited on the surface of the metal magnetic alloy powder, and the metal magnetic alloy powders in the element body are The electronic component is characterized in that it is bonded through a glass containing zinc, and a coil is formed in the element body.
- Embodiment 8 One or more embodiments of the present invention use a metal magnetic material in which iron, silicon, a metal magnetic alloy powder containing chromium, and a glass containing zinc are mixed.
- the element body is formed, and by heat-treating the element body, a mixture of glass containing zinc and the elements constituting the metal magnetic alloy powder is deposited on the surface of the metal magnetic alloy powder, The metal magnetic alloy powders in the element body are bonded to each other through a mixture of the glass containing zinc and the elements constituting the metal magnetic alloy powder, and a coil is formed in the element body.
- This is an electronic component characterized by the above.
- the volume resistivity of the element body is 10 7 ⁇ ⁇ cm. This is an electronic component characterized by the above.
- Embodiment 10 In one or more embodiments of the present invention, in any one of the electronic components from Embodiment 5 to Embodiment 9, the bending strength of the element body is 30 MPa or more.
- Embodiment 11 One or more embodiments of the present invention are the electronic components according to any one of Embodiments 5 to 10, wherein the metal magnetic alloy powder has a metal oxide on the surface thereof.
- the electronic component is characterized in that a process for forming the substrate is not performed.
- Embodiment 12 In one or more embodiments of the present invention, in any electronic component from Embodiment 5 to Embodiment 11, metal magnetic alloy powders in the element body are It is an electronic component characterized in that it has a portion bonded on the surface via another material constituting the element body without using a metal oxide.
- the metal magnetic material is a mixture of iron, silicon, metal magnetic alloy powder containing chromium, and glass containing zinc. Accordingly, the metal magnetic material can be reliably insulated and can be a material having a high saturation magnetic flux density. In addition, an electronic component using this metal magnetic material can have low loss and good direct current superposition characteristics.
- FIG. 1 is a perspective view showing a first embodiment of an electronic component 10 according to the present invention.
- 1 is an exploded perspective view of an electronic component 10 according to the present invention. It is the table
- FIG. 1 is a perspective view showing a first embodiment of an electronic component 10 according to the present invention.
- FIG. 2 is an exploded perspective view of the electronic component 10 according to the present invention.
- the external terminals 13 and 14 are omitted.
- each figure shown below including FIG. 1 is the figure shown typically, and the magnitude
- specific numerical values, shapes, materials, and the like are shown and described, but these can be changed as appropriate.
- the electronic component 10 is a multilayer inductor that includes an element body 11 and external terminals 13 and 14. As shown in FIG. 2, the element body 11 has metal magnetic layers 11a, 11b, 11c, and 11d, and coil conductor patterns 12a, 12b, and 12c.
- the metal magnetic layers 11a to 11d are formed of a metal magnetic material in which metal magnetic alloy powder and zinc-containing glass are mixed.
- the metal magnetic alloy powder is a powder of a metal magnetic alloy (so-called Fe—Cr—Si based metal magnetic alloy) containing iron (Fe), silicon (Si), and chromium (Cr) as a metal magnetic body. is there.
- a metal magnetic alloy so-called Fe—Cr—Si based metal magnetic alloy
- iron (Fe), silicon (Si), and chromium (Cr) as a metal magnetic body.
- the element body 11 the metal magnetic layers 11a to 11d
- glass containing zinc is deposited on the surface of the metal magnetic alloy powder, and the metal magnetic alloy powders in the element body 11 contain zinc. To be bonded through glass. Details of the metal magnetic material forming the metal magnetic layers 11a to 11d will be described later.
- the coil conductor patterns 12a to 12c are formed using a conductor paste made of a metal material such as silver, silver, gold, gold, copper, or copper.
- a coil conductor pattern 12a is formed on the surface of the metal magnetic layer 11a.
- the coil conductor pattern 12a is formed with less than one turn.
- One end of the coil conductor pattern 12 a is drawn to the end face of the metal magnetic layer 11 a and is connected to the external terminal 13.
- a coil conductor pattern 12b is formed on the surface of the metal magnetic layer 11b.
- the coil conductor pattern 12b is formed for less than one turn.
- One end of the coil conductor pattern 12b is connected to the other end of the coil conductor pattern 12a via a conductor in the through hole of the metal magnetic layer 11b.
- a coil conductor pattern 12c is formed on the surface of the metal magnetic layer 11c.
- the coil conductor pattern 12c is formed with less than one turn.
- One end of the coil conductor pattern 12c is connected to the other end of the coil conductor pattern 12b via a conductor in the through hole of the metal magnetic layer 11c.
- the other end of the coil conductor pattern 12 c is drawn to the end face of the metal magnetic layer 11 c and connected to the external terminal 14.
- a metal magnetic layer 11d for protecting the coil conductor pattern is formed on the metal magnetic layer 11c on which the coil conductor pattern 12c is formed.
- four metal magnetic layers are used, but the number of turns of the coil pattern may be increased by increasing the number of layers.
- the coil pattern is formed in the element body 11 by the coil conductor patterns 12a to 12c between the metal magnetic layers.
- the coil conductor patterns 12a to 12c are connected between the external terminal 13 and the external terminal 14 formed on both end faces of the element body (molded body) 11 as shown in FIG.
- the electronic component 10 of the present embodiment having the above-described configuration is manufactured as follows. First, a predetermined amount of an additive (glass containing zinc) is added to a powder of an Fe—Cr—Si alloy having a predetermined composition, and then mixed, and a binder such as PVA (polyvinyl alcohol) is further added. And this is knead
- an additive glass containing zinc
- PVA polyvinyl alcohol
- the obtained element body 11 is subjected to binder removal processing and heat treatment at a predetermined temperature, whereby the electronic component 10 is obtained.
- the external terminals 13 and 14 can be formed after heat treatment, for example.
- the external terminals 13 and 14 can be provided by applying a conductive paste for external terminals to both ends of the heat-treated body 11 and then performing heat treatment.
- the metal magnetic material used for the metal magnetic layers 11a to 11d constituting the element body 11 is mixed with glass containing zinc as an additive to the metal magnetic alloy powder as described above. By using this, both magnetic characteristics and insulating characteristics are achieved.
- this metal magnetic material will be described with reference to comparative test results including comparative examples.
- FIG. 3 is a table summarizing the characteristics of the three types of glass used as additives in the metal magnetic material used in the comparative test.
- Glass 1 and glass 2 in FIG. 3 are glasses containing zinc used in the metal magnetic material of the present invention, and borosilicate glass was used for comparison with the present invention.
- Glass 1 and glass 2 have a lower softening point and a crystallization temperature lower than 800 ° C. compared to borosilicate glass.
- Glass 1 has a softening point of about 600 ° C. and glass 2 has a temperature of about 650 ° C.
- FIG. 4 is a table summarizing the compositions and results of comparative examples and comparative examples.
- the additive-free product ratio (%) of magnetic permeability is the product without additive of Comparative Example (Comparative Example 1, or Comparative Example 3, or Comparative Example 5 or Comparative Example 6).
- Comparative Example 1 Comparative Example 1
- Comparative Example 5 Comparative Example 6
- the increase / decrease ratio of the complex magnetic permeability ⁇ ′ is shown.
- 19 examples according to the present invention were prepared, and 6 comparative examples were prepared.
- an additive of a predetermined amount shown in FIG. 4 was added to the Fe—Cr—Si alloy powder having a predetermined composition shown in FIG. 4, then mixed, and a binder such as PVA was further added.
- An element body (molded body) was formed using the kneaded metal magnetic material paste, subjected to binder removal (degreasing) treatment at 400 ° C. to 600 ° C., and then heat treated at 800 ° C. to produce an inductor.
- binder removal degreasing
- the Fe—Cr—Si alloy powder is not subjected to a treatment for forming a metal oxide on its surface. That is, the Fe—Cr—Si alloy powder itself, which is not specially treated, is used.
- ZnO (zinc oxide) glass was added to the Fe—Cr—Si alloy.
- glass 1 has a softening point of about 600 ° C.
- glass 2 has a temperature of about 650 ° C.
- the addition of ZnO-based glass increases the insulation resistance and the bending strength compared to the case of no addition (Comparative Examples 1, 3, 5, and 6). It is rising.
- the metal magnetic materials of Examples 1 to 19 were not added by adding ZnO-based glass (Comparative Examples 1, 3, 5, 6). ) Has been secured.
- the decrease in complex magnetic permeability ⁇ ′ with no addition is within 20%
- the volume resistivity is 10 7 ⁇ ⁇ cm or more
- the bending strength is 30 Mpa.
- the determination results are shown in the determination column as “Yes” for the above and “No” for the others.
- This condition is set as a minimum condition that can be used as an inductor.
- the metal magnetic materials of Examples 1 to 19 satisfy the above conditions and are “OK”. From this result, in order to satisfy the above conditions, it has been obtained that the glass 1 requires 0.5 vol% or more, and the glass 2 requires an addition amount of 0.5 vol% or more.
- FIG. 5 shows the results of measuring the magnetic permeability of Example 3 and Example 6 and Comparative Example 1 by changing the heat treatment temperature while adjusting the molding density to 5.3 g / cm 3. It is a table.
- FIG. 6 is a graph showing the results of FIG.
- FIG. 7 is a graph showing a part of FIG. 6 in an enlarged manner.
- the magnetic permeability can be maintained up to a high heat treatment temperature as compared with the comparative example 1 which is not added.
- the heat treatment is performed in a state where the coil pattern is formed in the molded body by the coil conductor patterns 12a to 12c.
- Silver (Ag) can be used for the coil conductor patterns 12a to 12c, but the silver can be heat-treated at a temperature of 800 ° C. or higher, so that sintering can proceed and the resistance value can be lowered.
- the heat treatment temperature is less than 800 ° C., the sintering of silver does not proceed and the resistance value remains high.
- the heat treatment temperature is about 960 ° C. or higher, silver dissolves and adversely affects surrounding materials. Therefore, the heat treatment temperature is desirably as high as possible between 800 and 960 ° C., and it is necessary that the magnetic permeability of the metal magnetic layers 11a to 11d maintain a necessary value even after this heat treatment. .
- the result which may add ZnO type glass like the comparative example 4 may not be obtained. Therefore, when using a metal magnetic material containing the ZnO-based glass of the present invention, the optimum amount of addition may be set according to the particle diameter of the metal material and the temperature at which heat treatment is performed. Note that as the particle size of the metal magnetic alloy powder increases, the amount of glass required decreases (surface area decreases). Moreover, when raising heat processing temperature, it is good to select the glass with a high softening point and crystallization temperature, and to adjust addition amount with the specific gravity.
- a metal magnetic material in which iron, silicon, metal magnetic alloy powder containing chromium, and glass containing zinc are mixed is used. Therefore, even if the electronic component 10 of the first embodiment is heat-treated at a heat treatment temperature necessary for reducing the resistance value of the conductor, sufficient magnetic permeability can be secured, low loss, and good DC superposition characteristics. A high-performance multilayer inductor can be obtained. Moreover, in 1st Embodiment, the process of coating etc. for forming a metal oxide in the surface with respect to the metal magnetic alloy powder is unnecessary, and can simplify a manufacturing process.
- FIG. 8 is a perspective view showing a second embodiment of the electronic component 20 according to the present invention.
- FIG. 9 is a cross-sectional view of the electronic component 20.
- the electronic component 20 of the second embodiment is a winding type inductor including an element body 21 and a coil 22. Since the electronic component 20 of the second embodiment differs in the manufacturing method, the form and material of the coil 22 are different from those of the first embodiment.
- the metal magnetic material forming the element body 21 is the same as the metal magnetic material forming the metal magnetic layers 11a to 11d of the first embodiment. Therefore, the same reference numerals are given to the portions that perform the same functions as those in the first embodiment described above, and repeated descriptions are omitted as appropriate.
- the coil 22 is configured by spirally winding a rectangular conducting wire having a rectangular cross section with edgewise winding.
- the coil 22 may be a conductive wire having a coating, or may be an uncoated conductive wire because the element body 21 has an insulating property if not tightly wound.
- the periphery of the coil 22 is covered with an element body 21 formed of a metal magnetic material in which a metal magnetic alloy powder and a glass containing zinc are mixed. Further, both ends of the coil 22 are drawn from the end face of the element body 21 and are bent to the bottom face.
- the electronic component 20 of the present embodiment having the above-described configuration is manufactured as follows. First, a predetermined amount of an additive (glass containing zinc) is added to an Fe—Cr—Si alloy powder having a predetermined composition, and then mixed, and a binder such as PVA is further added. And this is granulated and a metal magnetic material is obtained.
- the coil 22 is formed in a predetermined shape.
- powder of a metal magnetic material mixed in the resin binder is injected into the mold in which the coil 22 is housed, and pressure is applied to the powder to form the element body 21.
- the element body 21 is subjected to binder removal processing at a temperature of about 400 ° C. in the atmosphere, and then heat-treated at, for example, 800 ° C. to obtain the electronic component 20.
- the same effect as that of the first embodiment can be obtained for the wound electronic component 20.
- the temperature at which the heat treatment is performed has been described with a specific example.
- the temperature is not limited thereto, and the temperature at which the heat treatment is performed is appropriately changed according to the particle diameter of the magnetic material, desired magnetic properties, and the like. May be.
- the specific composition was described as an example of the glass 1 and the glass 2 as an example of the ZnO-based glass.
- another ZnO glass having a different softening point from the ZnO glass may be selected according to the temperature of the heat treatment. If the difference between the softening point and the heat treatment temperature is large, an event such as expansion occurs. Therefore, it is desirable that the softening point of ZnO-based glass is close to the heat treatment temperature.
- the ZnO-based glass may contain an alkaline earth component such as MgO, CaO, BaO, and SrO.
- the metal magnetic alloy powder contained in the metal magnetic material has been described on the assumption that no oxide is formed on the surface thereof.
- an oxide may be formed on the surface of the metal magnetic alloy powder.
- the metal magnetic alloy powder naturally oxidizes or oxidizes in a high-temperature heat treatment, and the metal oxide derived from the metal magnetic alloy powder is, for example, partially or entirely on the surface. It may form naturally.
- the insulation by the metal oxide derived from the metal magnetic alloy powder is not expected, but there is no problem even if the metal oxide is formed on the surface of the metal magnetic alloy powder.
- the example in which the glass containing zinc is deposited on the surface of the metal magnetic alloy powder has been described.
- a mixture of elements constituting the metal magnetic alloy powder may further precipitate on the surface of the metal magnetic alloy powder.
- the metal magnetic alloy powders in the element body may be bonded via a mixture of glass containing zinc and elements constituting the metal magnetic alloy powder.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Dispersion Chemistry (AREA)
- Soft Magnetic Materials (AREA)
- Coils Or Transformers For Communication (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Provided are: a metallic magnetic material which renders insulation reliable and which has a high saturation magnetic flux density; and an electronic component which is obtained using the metallic magnetic material and which has a low loss and satisfactory direct-current superimposition characteristics.
The metallic magnetic material which forms an elemental object (11) comprises a metallic magnetic alloy powder that comprises iron, silicon, and chromium and a zinc-containing glass intermingled with the powder. This elemental object (11) includes, formed therein, a coil pattern configured of conductor patterns (12a) to (12c) for coils. The metallic magnetic material deteriorates little in magnetic characteristics even when heat-treated at high temperatures and makes it possible to conduct, at an adequate temperature, a heat treatment for reducing the resistance of the coil pattern.
Description
本発明は、電源回路に用いられるパワーインダクタ等に用いられる金属磁性材料、電子部品に関するものである。
The present invention relates to a metal magnetic material and an electronic component used for a power inductor used in a power supply circuit.
電源回路で使用されるパワーインダクタは、小型化、低損失化、大電流対応化が要求されており、これらの要求に対応すべく、その磁性材料に飽和磁束密度の高い金属磁性材料を使用することが検討されている。金属磁性材料は、飽和磁束密度が高いという利点があるが、その材料単体の絶縁抵抗は低く、電子部品の磁性体として使用するためには、材料粒子同士の絶縁を確保する必要がある。絶縁が確保できないと、部品本体が導通してしまったり、材料特性が劣化して、製品の損失が増加してしまったりする。
Power inductors used in power supply circuits are required to be small, low loss, and capable of handling large currents. To meet these demands, a metal magnetic material with a high saturation magnetic flux density is used as the magnetic material. It is being considered. The metal magnetic material has an advantage that the saturation magnetic flux density is high, but the insulation resistance of the material itself is low, and in order to use it as a magnetic body of an electronic component, it is necessary to ensure insulation between the material particles. If insulation cannot be ensured, the component body will become conductive, material properties will deteriorate, and product loss will increase.
従来は、金属磁性材料を電子部品に用いるときに、樹脂等でボンド化したり、粒子を絶縁膜でコートしたりして、材料粒子同士の絶縁を確保することが行われていた。
例えば、特開2010-62424号公報には、Fe-Cr-Si合金の表面をZnO系ガラスで被覆した材料を真空、無酸素、低酸素分圧下で焼成する電子部品が記載されている。しかし、真空、無酸素、低酸素分圧下では、焼結を防ぐため、コーティングを確実にする必要があり、ガラスの添加量を多くする必要があったり、コーティングのためコストが上昇したりするといった問題がある。
このように、樹脂等でボンド化したり、粒子を絶縁膜でコートしたりする従来の手法では、絶縁性をより確実にするため、磁性材料以外の絶縁材料の量を多くすることが必要であり、磁性材料以外の体積を増加させることは磁気特性の劣化につながるという問題があった。 Conventionally, when a metal magnetic material is used for an electronic component, bonding between the resin particles or the like or coating the particles with an insulating film has ensured insulation between the material particles.
For example, Japanese Patent Application Laid-Open No. 2010-62424 describes an electronic component in which a material obtained by coating the surface of an Fe—Cr—Si alloy with ZnO-based glass is fired under vacuum, oxygen-free, and low oxygen partial pressure. However, under vacuum, oxygen-free, and low oxygen partial pressure, to prevent sintering, it is necessary to ensure the coating, it is necessary to increase the amount of glass added, and the cost increases due to the coating. There's a problem.
As described above, in the conventional method of bonding with resin or coating particles with an insulating film, it is necessary to increase the amount of insulating material other than the magnetic material in order to further ensure insulation. However, there is a problem that increasing the volume other than the magnetic material leads to deterioration of magnetic properties.
例えば、特開2010-62424号公報には、Fe-Cr-Si合金の表面をZnO系ガラスで被覆した材料を真空、無酸素、低酸素分圧下で焼成する電子部品が記載されている。しかし、真空、無酸素、低酸素分圧下では、焼結を防ぐため、コーティングを確実にする必要があり、ガラスの添加量を多くする必要があったり、コーティングのためコストが上昇したりするといった問題がある。
このように、樹脂等でボンド化したり、粒子を絶縁膜でコートしたりする従来の手法では、絶縁性をより確実にするため、磁性材料以外の絶縁材料の量を多くすることが必要であり、磁性材料以外の体積を増加させることは磁気特性の劣化につながるという問題があった。 Conventionally, when a metal magnetic material is used for an electronic component, bonding between the resin particles or the like or coating the particles with an insulating film has ensured insulation between the material particles.
For example, Japanese Patent Application Laid-Open No. 2010-62424 describes an electronic component in which a material obtained by coating the surface of an Fe—Cr—Si alloy with ZnO-based glass is fired under vacuum, oxygen-free, and low oxygen partial pressure. However, under vacuum, oxygen-free, and low oxygen partial pressure, to prevent sintering, it is necessary to ensure the coating, it is necessary to increase the amount of glass added, and the cost increases due to the coating. There's a problem.
As described above, in the conventional method of bonding with resin or coating particles with an insulating film, it is necessary to increase the amount of insulating material other than the magnetic material in order to further ensure insulation. However, there is a problem that increasing the volume other than the magnetic material leads to deterioration of magnetic properties.
また、材料粒子に原料組成のみに由来する酸化物の層を形成する技術が開示されている(特許第4866971号公報、特許第5082002号公報)。この手法では、材料粒子に原料組成のみに由来する酸化物の絶縁膜を利用するので、磁気特性の劣化は小さい。しかし、この手法で用いる原料組成のみに由来する酸化物の絶縁膜では、絶縁性が低かったり、十分な強度が得られなかったりする場合があった。
In addition, a technique for forming an oxide layer derived only from the raw material composition on the material particles is disclosed (Patent No. 4866971, Patent No. 5082002). In this method, since an oxide insulating film derived only from the raw material composition is used for the material particles, the deterioration of the magnetic characteristics is small. However, an oxide insulating film derived only from the raw material composition used in this method may have low insulating properties or a sufficient strength may not be obtained.
そこで、粒子に原料組成のみに由来する酸化物の層を形成し、これに樹脂含浸する等の手法も開示されている(特開2012-238841号公報)。しかし、含浸等の手法は、コストが上昇するばかりか、製品の安定性を欠くため、実用性が低かった。
Therefore, a method of forming an oxide layer derived only from the raw material composition on the particle and impregnating it with a resin is also disclosed (Japanese Patent Laid-Open No. 2012-238841). However, methods such as impregnation have not been practical because they increase costs and lack product stability.
さらに、特開2013-33966号公報には、鉄系化合物をコアとし、その周りに金属化合物のシェルを形成したコアシェル構造の金属磁性粉末と、ガラスとを含む磁性層材料が開示されている。しかし、この手法では、コアシェル構造を構成するために、コアを構成する材料に対してシェル形成材料をコーティングする必要があり、上述した粒子を絶縁膜でコートする従来の手法と同様に、コストの上昇や、コーティング材料(シェル形成材料)の量を多くするために磁気特性の劣化につながるという問題があった。
Furthermore, Japanese Patent Application Laid-Open No. 2013-33966 discloses a magnetic layer material including glass and metal magnetic powder having a core-shell structure in which an iron-based compound is used as a core and a shell of a metal compound is formed around the core. However, in this method, in order to construct the core-shell structure, it is necessary to coat the shell forming material on the material constituting the core, and as with the conventional method of coating the above-described particles with an insulating film, the cost is low. There is a problem that the magnetic properties are deteriorated due to an increase in the amount of coating material (shell forming material).
電子部品用の金属磁性材材料には、磁性粒子同士を、最小の絶縁層で絶縁して、高い絶縁性を確保する必要がある。また、絶縁膜は電気的、機械的にも強固である必要がある。しかし、上記いずれの従来技術であっても、上述したように何らかの未解決な問題点を有していた。
¡Metal magnetic material materials for electronic parts need to insulate magnetic particles with a minimum insulating layer to ensure high insulation. The insulating film needs to be strong electrically and mechanically. However, any of the above prior arts has some unsolved problems as described above.
本発明の一又はそれ以上の実施の形態は、絶縁を確実に行え、かつ、飽和磁束密度の高い金属磁性材料と、この金属磁性材料を用いた低損失、かつ、直流重畳特性の良好な電子部品を提供する。
One or more embodiments of the present invention provide a metal magnetic material having high saturation magnetic flux density that can be reliably insulated, and an electron with low loss and good DC superposition characteristics using the metal magnetic material. Provide parts.
本発明は、以下のような解決手段により、前記課題を解決する。なお、理解を容易にするために、本発明の実施形態に対応する符号を付して説明するが、これに限定されるものではない。
The present invention solves the above problems by the following means. In addition, in order to make an understanding easy, although the code | symbol corresponding to embodiment of this invention is attached | subjected and demonstrated, it is not limited to this.
実施の形態1:本発明の一又はそれ以上の実施の形態は、鉄と、ケイ素と、クロムとを含有する金属磁性合金粉末と、亜鉛を含有するガラスと、が混在していること、を特徴とする金属磁性材料である。
Embodiment 1: In one or more embodiments of the present invention, a metal magnetic alloy powder containing iron, silicon, and chromium, and a glass containing zinc are mixed. It is a featured metal magnetic material.
実施の形態2:本発明の一又はそれ以上の実施の形態は、鉄と、ケイ素と、クロムとを含有する金属磁性合金粉末の表面に、亜鉛を含有するガラスが析出していること、を特徴とする金属磁性材料である。
Embodiment 2 One or more embodiments of the present invention are that glass containing zinc is deposited on the surface of a metal magnetic alloy powder containing iron, silicon, and chromium. It is a featured metal magnetic material.
実施の形態3:本発明の一又はそれ以上の実施の形態は、鉄と、ケイ素と、クロムとを含有する金属磁性合金粉末の表面に、亜鉛を含有するガラスと前記金属磁性合金粉末を構成する元素の混合物が析出していること、を特徴とする金属磁性材料である。
Embodiment 3: One or more embodiments of the present invention comprise a glass containing zinc and the metal magnetic alloy powder on the surface of a metal magnetic alloy powder containing iron, silicon, and chromium. The metal magnetic material is characterized in that a mixture of elements is deposited.
実施の形態4:本発明の一又はそれ以上の実施の形態は、上記実施の形態1から実施の形態3までの何れかの金属磁性材料において、前記金属磁性合金粉末は、その表面に金属酸化物を形成するための処理が行われていないこと、を特徴とする金属磁性材料である。
Embodiment 4 One or more embodiments of the present invention are the metal magnetic materials according to any one of Embodiments 1 to 3, wherein the metal magnetic alloy powder is subjected to metal oxidation on its surface. A metal magnetic material characterized in that a treatment for forming an object is not performed.
実施の形態5:本発明の一又はそれ以上の実施の形態は、鉄と、ケイ素と、クロムとを含有する金属磁性合金粉末と、亜鉛を含有するガラスと、が混在する金属磁性材料を用いて素体が形成され、前記金属磁性合金粉末の表面には、亜鉛を含有するガラスが析出しており、前記素体中の金属磁性合金粉末同士が、前記ガラスを介して結合されており、前記素体中にコイルが形成されていること、を特徴とする電子部品である。
Embodiment 5: One or more embodiments of the present invention uses a metal magnetic material in which iron, silicon, a metal magnetic alloy powder containing chromium, and a glass containing zinc are mixed. The element body is formed, and the glass containing zinc is deposited on the surface of the metal magnetic alloy powder, and the metal magnetic alloy powders in the element body are bonded together via the glass, The electronic component is characterized in that a coil is formed in the element body.
実施の形態6:本発明の一又はそれ以上の実施の形態は、鉄と、ケイ素と、クロムとを含有する金属磁性合金粉末と、亜鉛を含有するガラスと、が混在する金属磁性材料を用いて素体が形成され、前記金属磁性合金粉末の表面には、亜鉛を含有するガラスと前記金属磁性合金粉末を構成する元素との混合物が析出しており、前記素体中の金属磁性合金粉末同士が、前記亜鉛を含有するガラスと前記金属磁性合金粉末を構成する元素との混合物を介して結合されており、前記素体中にコイルが形成されていること、を特徴とする電子部品である。
Embodiment 6: One or more embodiments of the present invention use a metal magnetic material in which iron, silicon, chromium-containing metal magnetic alloy powder, and zinc-containing glass are mixed. An element body is formed, and a mixture of glass containing zinc and an element constituting the metal magnetic alloy powder is deposited on the surface of the metal magnetic alloy powder, and the metal magnetic alloy powder in the element body An electronic component characterized in that they are bonded to each other through a mixture of the glass containing zinc and the elements constituting the metal magnetic alloy powder, and a coil is formed in the element body. is there.
実施の形態7:本発明の一又はそれ以上の実施の形態は、鉄と、ケイ素と、クロムとを含有する金属磁性合金粉末と、亜鉛を含有するガラスと、が混在した金属磁性材料を用いて素体が形成され、前記素体を熱処理することにより、前記金属磁性合金粉末の表面には、亜鉛を含有するガラスが析出しており、前記素体中の金属磁性合金粉末同士が、前記亜鉛を含有するガラスを介して結合しており、前記素体中にコイルが形成されていること、を特徴とする電子部品である。
Embodiment 7: One or more embodiments of the present invention use a metal magnetic material in which iron, silicon, a metal magnetic alloy powder containing chromium, and a glass containing zinc are mixed. An element body is formed, and by heat-treating the element body, zinc-containing glass is deposited on the surface of the metal magnetic alloy powder, and the metal magnetic alloy powders in the element body are The electronic component is characterized in that it is bonded through a glass containing zinc, and a coil is formed in the element body.
実施の形態8:本発明の一又はそれ以上の実施の形態は、鉄と、ケイ素と、クロムとを含有する金属磁性合金粉末と、亜鉛を含有するガラスと、が混在した金属磁性材料を用いて素体が形成され、前記素体を熱処理することにより、前記金属磁性合金粉末の表面には、亜鉛を含有するガラスと前記金属磁性合金粉末を構成する元素との混合物が析出しており、前記素体中の金属磁性合金粉末同士が、前記亜鉛を含有するガラスと前記金属磁性合金粉末を構成する元素との混合物を介して結合しており、前記素体中にコイルが形成されていること、を特徴とする電子部品である。
Embodiment 8: One or more embodiments of the present invention use a metal magnetic material in which iron, silicon, a metal magnetic alloy powder containing chromium, and a glass containing zinc are mixed. The element body is formed, and by heat-treating the element body, a mixture of glass containing zinc and the elements constituting the metal magnetic alloy powder is deposited on the surface of the metal magnetic alloy powder, The metal magnetic alloy powders in the element body are bonded to each other through a mixture of the glass containing zinc and the elements constituting the metal magnetic alloy powder, and a coil is formed in the element body. This is an electronic component characterized by the above.
実施の形態9:本発明の一又はそれ以上の実施の形態は、上記実施の形態5から実施の形態8までの何れかの電子部品において、前記素体の体積抵抗率が107Ω・cm以上であること、を特徴とする電子部品である。
Ninth Embodiment: In one or more embodiments of the present invention, in any one of the electronic components from the fifth embodiment to the eighth embodiment, the volume resistivity of the element body is 10 7 Ω · cm. This is an electronic component characterized by the above.
実施の形態10:本発明の一又はそれ以上の実施の形態は、上記実施の形態5から実施の形態9までの何れかの電子部品において、前記素体の抗折強度が30MPa以上であること、を特徴とする電子部品である。
Embodiment 10: In one or more embodiments of the present invention, in any one of the electronic components from Embodiment 5 to Embodiment 9, the bending strength of the element body is 30 MPa or more. The electronic component characterized by the above.
実施の形態11:本発明の一又はそれ以上の実施の形態は、上記実施の形態5から実施の形態10までの何れかの電子部品において、前記金属磁性合金粉末は、その表面に金属酸化物を形成するための処理が行われていないこと、を特徴とする電子部品である。
Embodiment 11 One or more embodiments of the present invention are the electronic components according to any one of Embodiments 5 to 10, wherein the metal magnetic alloy powder has a metal oxide on the surface thereof. The electronic component is characterized in that a process for forming the substrate is not performed.
実施の形態12:本発明の一又はそれ以上の実施の形態は、上記実施の形態5から実施の形態11までの何れかの電子部品において、前記素体中の金属磁性合金粉末同士が、その表面に金属酸化物を介することなく前記素体を構成する他の材料を介して結合されている部分を有すること、を特徴とする電子部品である。
Embodiment 12: In one or more embodiments of the present invention, in any electronic component from Embodiment 5 to Embodiment 11, metal magnetic alloy powders in the element body are It is an electronic component characterized in that it has a portion bonded on the surface via another material constituting the element body without using a metal oxide.
本発明の一又はそれ以上の実施の形態によれば、金属磁性材料は、鉄と、ケイ素と、クロムとを含有する金属磁性合金粉末と、亜鉛を含むガラスとが混在している。よって、金属磁性材料は、絶縁を確実に行え、かつ、飽和磁束密度の高い材料とすることができる。また、この金属磁性材料を用いた電子部品は、低損失、かつ、直流重畳特性の良好なものとすることができる。
According to one or more embodiments of the present invention, the metal magnetic material is a mixture of iron, silicon, metal magnetic alloy powder containing chromium, and glass containing zinc. Accordingly, the metal magnetic material can be reliably insulated and can be a material having a high saturation magnetic flux density. In addition, an electronic component using this metal magnetic material can have low loss and good direct current superposition characteristics.
以下、本発明を実施するための最良の形態について図面等を参照して説明する。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
(第1実施形態)
図1は、本発明による電子部品10の第1実施形態を示す斜視図である。
図2は、本発明による電子部品10の分解斜視図である。図2では、外部端子13,14を省略している。
なお、図1を含め、以下に示す各図は、模式的に示した図であり、各部の大きさ、形状は、理解を容易にするために、適宜誇張して示している。
また、以下の説明では、具体的な数値、形状、材料等を示して説明を行うが、これらは、適宜変更することができる。 (First embodiment)
FIG. 1 is a perspective view showing a first embodiment of anelectronic component 10 according to the present invention.
FIG. 2 is an exploded perspective view of theelectronic component 10 according to the present invention. In FIG. 2, the external terminals 13 and 14 are omitted.
In addition, each figure shown below including FIG. 1 is the figure shown typically, and the magnitude | size and shape of each part are exaggerated suitably for easy understanding.
In the following description, specific numerical values, shapes, materials, and the like are shown and described, but these can be changed as appropriate.
図1は、本発明による電子部品10の第1実施形態を示す斜視図である。
図2は、本発明による電子部品10の分解斜視図である。図2では、外部端子13,14を省略している。
なお、図1を含め、以下に示す各図は、模式的に示した図であり、各部の大きさ、形状は、理解を容易にするために、適宜誇張して示している。
また、以下の説明では、具体的な数値、形状、材料等を示して説明を行うが、これらは、適宜変更することができる。 (First embodiment)
FIG. 1 is a perspective view showing a first embodiment of an
FIG. 2 is an exploded perspective view of the
In addition, each figure shown below including FIG. 1 is the figure shown typically, and the magnitude | size and shape of each part are exaggerated suitably for easy understanding.
In the following description, specific numerical values, shapes, materials, and the like are shown and described, but these can be changed as appropriate.
電子部品10は、素体11と、外部端子13,14とを備えた積層型のインダクタである。
素体11は、図2に示すように、金属磁性体層11a,11b,11c,11dと、コイル用導体パターン12a,12b,12cとを有している。 Theelectronic component 10 is a multilayer inductor that includes an element body 11 and external terminals 13 and 14.
As shown in FIG. 2, theelement body 11 has metal magnetic layers 11a, 11b, 11c, and 11d, and coil conductor patterns 12a, 12b, and 12c.
素体11は、図2に示すように、金属磁性体層11a,11b,11c,11dと、コイル用導体パターン12a,12b,12cとを有している。 The
As shown in FIG. 2, the
金属磁性体層11aから11dは、金属磁性合金粉末と、亜鉛を含有するガラスと、が混在する金属磁性材料により形成されている。
金属磁性合金粉末は、金属磁性体として、鉄(Fe)と、ケイ素(Si)と、クロム(Cr)とを含有する金属磁性合金(いわゆる、Fe-Cr-Si系金属磁性合金)の粉末である。素体11(金属磁性体層11aから11d)中では、金属磁性合金粉末の表面には、亜鉛を含有するガラスが析出しており、素体11中の金属磁性合金粉末同士が、亜鉛を含有するガラスを介して結合されている。金属磁性体層11aから11dを形成する金属磁性材料の詳細については、後述する。 The metalmagnetic layers 11a to 11d are formed of a metal magnetic material in which metal magnetic alloy powder and zinc-containing glass are mixed.
The metal magnetic alloy powder is a powder of a metal magnetic alloy (so-called Fe—Cr—Si based metal magnetic alloy) containing iron (Fe), silicon (Si), and chromium (Cr) as a metal magnetic body. is there. In the element body 11 (the metalmagnetic layers 11a to 11d), glass containing zinc is deposited on the surface of the metal magnetic alloy powder, and the metal magnetic alloy powders in the element body 11 contain zinc. To be bonded through glass. Details of the metal magnetic material forming the metal magnetic layers 11a to 11d will be described later.
金属磁性合金粉末は、金属磁性体として、鉄(Fe)と、ケイ素(Si)と、クロム(Cr)とを含有する金属磁性合金(いわゆる、Fe-Cr-Si系金属磁性合金)の粉末である。素体11(金属磁性体層11aから11d)中では、金属磁性合金粉末の表面には、亜鉛を含有するガラスが析出しており、素体11中の金属磁性合金粉末同士が、亜鉛を含有するガラスを介して結合されている。金属磁性体層11aから11dを形成する金属磁性材料の詳細については、後述する。 The metal
The metal magnetic alloy powder is a powder of a metal magnetic alloy (so-called Fe—Cr—Si based metal magnetic alloy) containing iron (Fe), silicon (Si), and chromium (Cr) as a metal magnetic body. is there. In the element body 11 (the metal
コイル用導体パターン12aから12cは、銀、銀系、金、金系、銅、銅系等の金属材料をペースト状にした導体ペーストを用いて形成されている。
The coil conductor patterns 12a to 12c are formed using a conductor paste made of a metal material such as silver, silver, gold, gold, copper, or copper.
金属磁性体層11aの表面には、コイル用導体パターン12aが形成されている。このコイル用導体パターン12aは、1ターン未満分が形成されている。コイル用導体パターン12aの一端は、金属磁性体層11aの端面に引き出されており、外部端子13に接続されている。
金属磁性体層11bの表面には、コイル用導体パターン12bが形成されている。このコイル用導体パターン12bは、1ターン未満分が形成されている。コイル用導体パターン12bの一端は金属磁性体層11bのスルーホール内の導体を介してコイル用導体パターン12aの他端に接続されている。
金属磁性体層11cの表面には、コイル用導体パターン12cが形成されている。このコイル用導体パターン12cは、1ターン未満分が形成されている。コイル用導体パターン12cの一端は、金属磁性体層11cのスルーホール内の導体を介してコイル用導体パターン12bの他端に接続される。また、コイル用導体パターン12cの他端は、金属磁性体層11cの端面に引き出されており、外部端子14に接続されている。
このコイル用導体パターン12cが形成された金属磁性体層11cの上には、コイル用導体パターンを保護するための金属磁性体層11dが形成されている。
なお、ここでは、理解を容易にするために、金属磁性体層を4層としているが、この層の数を増加させて、コイルパターンの実質的な巻き数を増やしてもよい。 Acoil conductor pattern 12a is formed on the surface of the metal magnetic layer 11a. The coil conductor pattern 12a is formed with less than one turn. One end of the coil conductor pattern 12 a is drawn to the end face of the metal magnetic layer 11 a and is connected to the external terminal 13.
Acoil conductor pattern 12b is formed on the surface of the metal magnetic layer 11b. The coil conductor pattern 12b is formed for less than one turn. One end of the coil conductor pattern 12b is connected to the other end of the coil conductor pattern 12a via a conductor in the through hole of the metal magnetic layer 11b.
Acoil conductor pattern 12c is formed on the surface of the metal magnetic layer 11c. The coil conductor pattern 12c is formed with less than one turn. One end of the coil conductor pattern 12c is connected to the other end of the coil conductor pattern 12b via a conductor in the through hole of the metal magnetic layer 11c. The other end of the coil conductor pattern 12 c is drawn to the end face of the metal magnetic layer 11 c and connected to the external terminal 14.
On the metalmagnetic layer 11c on which the coil conductor pattern 12c is formed, a metal magnetic layer 11d for protecting the coil conductor pattern is formed.
Here, in order to facilitate understanding, four metal magnetic layers are used, but the number of turns of the coil pattern may be increased by increasing the number of layers.
金属磁性体層11bの表面には、コイル用導体パターン12bが形成されている。このコイル用導体パターン12bは、1ターン未満分が形成されている。コイル用導体パターン12bの一端は金属磁性体層11bのスルーホール内の導体を介してコイル用導体パターン12aの他端に接続されている。
金属磁性体層11cの表面には、コイル用導体パターン12cが形成されている。このコイル用導体パターン12cは、1ターン未満分が形成されている。コイル用導体パターン12cの一端は、金属磁性体層11cのスルーホール内の導体を介してコイル用導体パターン12bの他端に接続される。また、コイル用導体パターン12cの他端は、金属磁性体層11cの端面に引き出されており、外部端子14に接続されている。
このコイル用導体パターン12cが形成された金属磁性体層11cの上には、コイル用導体パターンを保護するための金属磁性体層11dが形成されている。
なお、ここでは、理解を容易にするために、金属磁性体層を4層としているが、この層の数を増加させて、コイルパターンの実質的な巻き数を増やしてもよい。 A
A
A
On the metal
Here, in order to facilitate understanding, four metal magnetic layers are used, but the number of turns of the coil pattern may be increased by increasing the number of layers.
このように、金属磁性体層間のコイル用導体パターン12aから12cによって素体11内にコイルパターンが形成されている。そして、コイル用導体パターン12aから12cは、図2に示すように素体(成形体)11の両端面に形成された外部端子13と外部端子14との間に接続されている。
As described above, the coil pattern is formed in the element body 11 by the coil conductor patterns 12a to 12c between the metal magnetic layers. The coil conductor patterns 12a to 12c are connected between the external terminal 13 and the external terminal 14 formed on both end faces of the element body (molded body) 11 as shown in FIG.
上述した構成を有する本実施形態の電子部品10は、以下のようにして製造される。先ず、所定組成のFe-Cr-Si合金の粉末に所定量の添加物(亜鉛を含有するガラス)を加えた後、混合して、PVA(ポリビニルアルコール)等のバインダをさらに添加する。そして、これを混練してペースト状にして金属磁性材料ペーストを得る。また、コイル用導体パターン12aから12cを形成する導体ペーストを別途用意する。この金属磁性材料ペーストと導体ペーストとを交互に層状に印刷することにより、素体(成形体)11が得られる。得られた素体11は、所定温度で脱バインダ処理、及び、熱処理が行われて、電子部品10が得られる。なお、外部端子13,14については、例えば、熱処理後に形成することができる。この場合、例えば、熱処理後の素体11の両端に、外部端子用の導電ペーストを塗布した後、加熱処理を行い、外部端子13,14を設けることができる。
The electronic component 10 of the present embodiment having the above-described configuration is manufactured as follows. First, a predetermined amount of an additive (glass containing zinc) is added to a powder of an Fe—Cr—Si alloy having a predetermined composition, and then mixed, and a binder such as PVA (polyvinyl alcohol) is further added. And this is knead | mixed and it is made a paste and a metal magnetic material paste is obtained. Further, a conductor paste for forming the coil conductor patterns 12a to 12c is separately prepared. An element body (molded body) 11 is obtained by printing the metal magnetic material paste and the conductor paste alternately in layers. The obtained element body 11 is subjected to binder removal processing and heat treatment at a predetermined temperature, whereby the electronic component 10 is obtained. The external terminals 13 and 14 can be formed after heat treatment, for example. In this case, for example, the external terminals 13 and 14 can be provided by applying a conductive paste for external terminals to both ends of the heat-treated body 11 and then performing heat treatment.
本実施形態では、素体11を構成する金属磁性体層11aから11dに用いられる金属磁性材料に、上述したように、金属磁性合金粉末に対して亜鉛を含有するガラスを添加物として混合したものを用いることにより、磁気特性と絶縁特性との両立を図っている。以下、この金属磁性材料について、より具体的な実施例を、比較例を含めた比較試験結果を挙げて説明する。
In this embodiment, the metal magnetic material used for the metal magnetic layers 11a to 11d constituting the element body 11 is mixed with glass containing zinc as an additive to the metal magnetic alloy powder as described above. By using this, both magnetic characteristics and insulating characteristics are achieved. Hereinafter, more specific examples of this metal magnetic material will be described with reference to comparative test results including comparative examples.
図3は、比較試験に用いた金属磁性材料に添加物として用いた3種類のガラスの特性等をまとめて示した表である。図3中のガラス1及びガラス2は、本発明の金属磁性材料に用いている亜鉛を含有するガラスであり、ホウケイ酸ガラスは、本発明との比較のために用いた。ガラス1及びガラス2は、ホウケイ酸ガラスと比較して、軟化点が低く、また、結晶化温度も800℃よりも低い。ガラス1は、軟化点が約600℃であり、ガラス2は、約650℃である。
FIG. 3 is a table summarizing the characteristics of the three types of glass used as additives in the metal magnetic material used in the comparative test. Glass 1 and glass 2 in FIG. 3 are glasses containing zinc used in the metal magnetic material of the present invention, and borosilicate glass was used for comparison with the present invention. Glass 1 and glass 2 have a lower softening point and a crystallization temperature lower than 800 ° C. compared to borosilicate glass. Glass 1 has a softening point of about 600 ° C. and glass 2 has a temperature of about 650 ° C.
図4は、比較試験を行った実施例と比較例の組成と比較試験結果とをまとめて示した表である。なお、図4において、透磁率の無添加品比(%)とは、比較例の添加物無し品(比較例1、又は、比較例3、又は、比較例5、又は、比較例6)を基準として複素透磁率μ’の増減比率を表したものである。
比較試験には、本発明による実施例を19例用意し、比較例を6例用意した。
この比較実験では、図4に示す所定組成のFe-Cr-Si合金の粉末に図4に示す所定量の添加物を加えた後、混合して、PVA等のバインダをさらに添加し、これを混練した金属磁性材料ペーストを用いて素体(成形体)を形成し、400℃~600℃で脱バインダ(脱脂)処理を行った後、800℃で熱処理してインダクタを作製した。なお、Fe-Cr-Si合金の粉末は、その表面に金属酸化物を形成するための処理が行われていないものを用いている。すなわち、特別な処理が行われていない、Fe-Cr-Si合金の粉末そのものを用いている。 FIG. 4 is a table summarizing the compositions and results of comparative examples and comparative examples. In addition, in FIG. 4, the additive-free product ratio (%) of magnetic permeability is the product without additive of Comparative Example (Comparative Example 1, or Comparative Example 3, or Comparative Example 5 or Comparative Example 6). As a reference, the increase / decrease ratio of the complex magnetic permeability μ ′ is shown.
In the comparative test, 19 examples according to the present invention were prepared, and 6 comparative examples were prepared.
In this comparative experiment, an additive of a predetermined amount shown in FIG. 4 was added to the Fe—Cr—Si alloy powder having a predetermined composition shown in FIG. 4, then mixed, and a binder such as PVA was further added. An element body (molded body) was formed using the kneaded metal magnetic material paste, subjected to binder removal (degreasing) treatment at 400 ° C. to 600 ° C., and then heat treated at 800 ° C. to produce an inductor. Note that the Fe—Cr—Si alloy powder is not subjected to a treatment for forming a metal oxide on its surface. That is, the Fe—Cr—Si alloy powder itself, which is not specially treated, is used.
比較試験には、本発明による実施例を19例用意し、比較例を6例用意した。
この比較実験では、図4に示す所定組成のFe-Cr-Si合金の粉末に図4に示す所定量の添加物を加えた後、混合して、PVA等のバインダをさらに添加し、これを混練した金属磁性材料ペーストを用いて素体(成形体)を形成し、400℃~600℃で脱バインダ(脱脂)処理を行った後、800℃で熱処理してインダクタを作製した。なお、Fe-Cr-Si合金の粉末は、その表面に金属酸化物を形成するための処理が行われていないものを用いている。すなわち、特別な処理が行われていない、Fe-Cr-Si合金の粉末そのものを用いている。 FIG. 4 is a table summarizing the compositions and results of comparative examples and comparative examples. In addition, in FIG. 4, the additive-free product ratio (%) of magnetic permeability is the product without additive of Comparative Example (Comparative Example 1, or Comparative Example 3, or Comparative Example 5 or Comparative Example 6). As a reference, the increase / decrease ratio of the complex magnetic permeability μ ′ is shown.
In the comparative test, 19 examples according to the present invention were prepared, and 6 comparative examples were prepared.
In this comparative experiment, an additive of a predetermined amount shown in FIG. 4 was added to the Fe—Cr—Si alloy powder having a predetermined composition shown in FIG. 4, then mixed, and a binder such as PVA was further added. An element body (molded body) was formed using the kneaded metal magnetic material paste, subjected to binder removal (degreasing) treatment at 400 ° C. to 600 ° C., and then heat treated at 800 ° C. to produce an inductor. Note that the Fe—Cr—Si alloy powder is not subjected to a treatment for forming a metal oxide on its surface. That is, the Fe—Cr—Si alloy powder itself, which is not specially treated, is used.
実施例1から実施例19の金属磁性材料は、Fe-Cr-Si合金に、ZnO(酸化亜鉛)系ガラスを0.5~4.0wt%添加してある。上述したように、添加したZnO系ガラスのうち、ガラス1は、軟化点が約600℃、ガラス2は、約650℃である。実施例1から実施例19の金属磁性材料は、ZnO系ガラスを添加することにより、無添加の場合(比較例1,3,5,6)よりも、絶縁抵抗が上昇し、抗折強度も上昇している。
In the metal magnetic materials of Examples 1 to 19, 0.5 to 4.0 wt% of ZnO (zinc oxide) glass was added to the Fe—Cr—Si alloy. As described above, among the added ZnO-based glasses, glass 1 has a softening point of about 600 ° C. and glass 2 has a temperature of about 650 ° C. In the metal magnetic materials of Examples 1 to 19, the addition of ZnO-based glass increases the insulation resistance and the bending strength compared to the case of no addition (Comparative Examples 1, 3, 5, and 6). It is rising.
また、複素透磁率μ’等の磁気特性についても、実施例1から実施例19の金属磁性材料は、ZnO系ガラスを添加することにより、無添加の場合(比較例1,3,5,6)と同等の性能を確保できている。
Further, regarding the magnetic characteristics such as the complex permeability μ ′, the metal magnetic materials of Examples 1 to 19 were not added by adding ZnO-based glass (Comparative Examples 1, 3, 5, 6). ) Has been secured.
図4に示した比較試験結果において、無添加時に対する複素透磁率μ’の低下が20%以内であり、かつ、体積抵抗率が107Ω・cm以上であり、かつ、抗折強度が30Mpa以上のものを「可」、それ以外を「不可」として判定した結果を判定欄に示した。この条件は、インダクタとして利用可能な最低限の条件として設定してある。実施例1から実施例19の金属磁性材料は、上記条件を満たして「可」となっている。この結果からすると、上記条件を満たすためには、ガラス1は、0.5vol%以上、ガラス2でも、0.5vol%以上の添加量が必要との結果が得られている。
一方、比較例の未添加品や軟化点の高いホウケイ酸ガラスを添加した例では、上記条件を満たす特性は得られなかった。
なお、比較例4については、実施例と同様にガラス2を添加したが、Fe-Cr-Siの比率が92-3.5-4.5の場合については、ガラス2の添加量が不足していることから、抗折強度が低下したので、不可の判定となり、比較例としてある。 In the comparative test results shown in FIG. 4, the decrease in complex magnetic permeability μ ′ with no addition is within 20%, the volume resistivity is 10 7 Ω · cm or more, and the bending strength is 30 Mpa. The determination results are shown in the determination column as “Yes” for the above and “No” for the others. This condition is set as a minimum condition that can be used as an inductor. The metal magnetic materials of Examples 1 to 19 satisfy the above conditions and are “OK”. From this result, in order to satisfy the above conditions, it has been obtained that theglass 1 requires 0.5 vol% or more, and the glass 2 requires an addition amount of 0.5 vol% or more.
On the other hand, the characteristic which satisfy | fills the said conditions was not acquired in the example which added the borosilicate glass with a high softening point and the non-added goods of a comparative example.
In Comparative Example 4,glass 2 was added in the same manner as in the example. However, when the Fe—Cr—Si ratio was 92-3.5-4.5, the amount of glass 2 added was insufficient. Therefore, since the bending strength was lowered, it was judged as impossible, and this is provided as a comparative example.
一方、比較例の未添加品や軟化点の高いホウケイ酸ガラスを添加した例では、上記条件を満たす特性は得られなかった。
なお、比較例4については、実施例と同様にガラス2を添加したが、Fe-Cr-Siの比率が92-3.5-4.5の場合については、ガラス2の添加量が不足していることから、抗折強度が低下したので、不可の判定となり、比較例としてある。 In the comparative test results shown in FIG. 4, the decrease in complex magnetic permeability μ ′ with no addition is within 20%, the volume resistivity is 10 7 Ω · cm or more, and the bending strength is 30 Mpa. The determination results are shown in the determination column as “Yes” for the above and “No” for the others. This condition is set as a minimum condition that can be used as an inductor. The metal magnetic materials of Examples 1 to 19 satisfy the above conditions and are “OK”. From this result, in order to satisfy the above conditions, it has been obtained that the
On the other hand, the characteristic which satisfy | fills the said conditions was not acquired in the example which added the borosilicate glass with a high softening point and the non-added goods of a comparative example.
In Comparative Example 4,
次に、ガラス1及びガラス2を2vol%添加した実施例3及び実施例6と、添加物の無い比較例1とについて、熱処理温度を変えて透磁率特性を確認した結果について説明する。
図5は、実施例3及び実施例6と、比較例1について、成形密度を5.3g/cm3になる様に調節した状態で、熱処理温度を変化させて透磁率を測定した結果を示す表である。
図6は、図5の結果を示すグラフである。
図7は、図6の一部を拡大して示すグラフである。
ガラス1及びガラス2を加えた実施例3及び実施例6は、未添加品の比較例1と比較して、高温の熱処理温度まで透磁率を維持することができる。 Next, the results of confirming the permeability characteristics by changing the heat treatment temperature in Examples 3 and 6 to which 2 vol% ofglass 1 and glass 2 are added and Comparative Example 1 without additives will be described.
FIG. 5 shows the results of measuring the magnetic permeability of Example 3 and Example 6 and Comparative Example 1 by changing the heat treatment temperature while adjusting the molding density to 5.3 g / cm 3. It is a table.
FIG. 6 is a graph showing the results of FIG.
FIG. 7 is a graph showing a part of FIG. 6 in an enlarged manner.
In Examples 3 and 6 to which theglass 1 and the glass 2 are added, the magnetic permeability can be maintained up to a high heat treatment temperature as compared with the comparative example 1 which is not added.
図5は、実施例3及び実施例6と、比較例1について、成形密度を5.3g/cm3になる様に調節した状態で、熱処理温度を変化させて透磁率を測定した結果を示す表である。
図6は、図5の結果を示すグラフである。
図7は、図6の一部を拡大して示すグラフである。
ガラス1及びガラス2を加えた実施例3及び実施例6は、未添加品の比較例1と比較して、高温の熱処理温度まで透磁率を維持することができる。 Next, the results of confirming the permeability characteristics by changing the heat treatment temperature in Examples 3 and 6 to which 2 vol% of
FIG. 5 shows the results of measuring the magnetic permeability of Example 3 and Example 6 and Comparative Example 1 by changing the heat treatment temperature while adjusting the molding density to 5.3 g / cm 3. It is a table.
FIG. 6 is a graph showing the results of FIG.
FIG. 7 is a graph showing a part of FIG. 6 in an enlarged manner.
In Examples 3 and 6 to which the
ここで、熱処理温度の目安として、800~900℃に着目する。熱処理は、コイル用導体パターン12aから12cによって成形体内にコイルパターンが形成されている状態で行われる。このコイル用導体パターン12aから12cには、銀(Ag)を用いることができるが、銀は、800℃以上の温度で熱処理を行うことにより、焼結が進んで抵抗値を下げることができる。しかし、熱処理温度が800℃に満たないと、銀の焼結が進まず、抵抗値が高いままとなってしまう。また、熱処理温度が約960℃以上になると、銀が溶解して周囲の材料に悪影響をおよぼす。従って、熱処理温度は800~960℃の間でなるべく高温であることが望ましく、この熱処理を行っても金属磁性体層11aから11dの透磁率が必要な値を維持していることが必要である。
Here, attention is focused on 800 to 900 ° C. as a guide for heat treatment temperature. The heat treatment is performed in a state where the coil pattern is formed in the molded body by the coil conductor patterns 12a to 12c. Silver (Ag) can be used for the coil conductor patterns 12a to 12c, but the silver can be heat-treated at a temperature of 800 ° C. or higher, so that sintering can proceed and the resistance value can be lowered. However, if the heat treatment temperature is less than 800 ° C., the sintering of silver does not proceed and the resistance value remains high. On the other hand, when the heat treatment temperature is about 960 ° C. or higher, silver dissolves and adversely affects surrounding materials. Therefore, the heat treatment temperature is desirably as high as possible between 800 and 960 ° C., and it is necessary that the magnetic permeability of the metal magnetic layers 11a to 11d maintain a necessary value even after this heat treatment. .
この800~900℃に着目して、図5から図7の結果を見ると、比較例1(未添加品)では、熱処理温度が800℃を超えると透磁率が大きく低下してしまうため、熱処理温度を800℃を超える温度に上げて導体抵抗を下げることができない。
これに対して実施例3及び実施例6のガラス添加品では、850℃以上でも高い透磁率を維持できる。したがって、実施例3及び実施例6の金属磁性材料を用いた電子部品10は、高いインダクタンス値と低抵抗を両立させることができる。 Focusing on this 800 to 900 ° C., looking at the results of FIG. 5 to FIG. 7, in Comparative Example 1 (non-added product), the magnetic permeability decreases greatly when the heat treatment temperature exceeds 800 ° C. The conductor resistance cannot be lowered by raising the temperature above 800 ° C.
On the other hand, in the glass additive of Example 3 and Example 6, high magnetic permeability can be maintained even at 850 ° C. or higher. Therefore, theelectronic component 10 using the metal magnetic material of Example 3 and Example 6 can achieve both a high inductance value and a low resistance.
これに対して実施例3及び実施例6のガラス添加品では、850℃以上でも高い透磁率を維持できる。したがって、実施例3及び実施例6の金属磁性材料を用いた電子部品10は、高いインダクタンス値と低抵抗を両立させることができる。 Focusing on this 800 to 900 ° C., looking at the results of FIG. 5 to FIG. 7, in Comparative Example 1 (non-added product), the magnetic permeability decreases greatly when the heat treatment temperature exceeds 800 ° C. The conductor resistance cannot be lowered by raising the temperature above 800 ° C.
On the other hand, in the glass additive of Example 3 and Example 6, high magnetic permeability can be maintained even at 850 ° C. or higher. Therefore, the
なお、比較例4のようにZnO系ガラスを添加してもよい結果が得られない場合もある。したがって、本発明のZnO系ガラスを含む金属磁性材料を使用するときには、金属材料の粒子径、熱処理を行う温度によって添加の最適量を設定すればよい。なお、金属磁性合金粉末の粒子径が大きくなれば必要なガラスの量は減少する(表面積が減る)。また、熱処理温度を上げる場合は、軟化点及び結晶化温度の高いガラスを選択したり、その比重により添加量を調整したりするとよい。
In addition, the result which may add ZnO type glass like the comparative example 4 may not be obtained. Therefore, when using a metal magnetic material containing the ZnO-based glass of the present invention, the optimum amount of addition may be set according to the particle diameter of the metal material and the temperature at which heat treatment is performed. Note that as the particle size of the metal magnetic alloy powder increases, the amount of glass required decreases (surface area decreases). Moreover, when raising heat processing temperature, it is good to select the glass with a high softening point and crystallization temperature, and to adjust addition amount with the specific gravity.
以上説明したように、第1実施形態によれば、鉄と、ケイ素と、クロムとを含有する金属磁性合金粉末と、亜鉛を含むガラスとが混在する金属磁性材料を用いた。よって、第1実施形態の電子部品10は、導体の抵抗値を下げるために必要な熱処理温度で熱処理を行っても、十分な透磁率を確保でき、低損失、かつ、直流重畳特性の良好な高特性の積層インダクタとすることができる。また、第1実施形態では、金属磁性合金粉末に対してその表面に金属酸化物を形成するためのコーティング等の処理が不要であり、製造工程を簡素化できる。
As described above, according to the first embodiment, a metal magnetic material in which iron, silicon, metal magnetic alloy powder containing chromium, and glass containing zinc are mixed is used. Therefore, even if the electronic component 10 of the first embodiment is heat-treated at a heat treatment temperature necessary for reducing the resistance value of the conductor, sufficient magnetic permeability can be secured, low loss, and good DC superposition characteristics. A high-performance multilayer inductor can be obtained. Moreover, in 1st Embodiment, the process of coating etc. for forming a metal oxide in the surface with respect to the metal magnetic alloy powder is unnecessary, and can simplify a manufacturing process.
(第2実施形態)
図8は、本発明による電子部品20の第2実施形態を示す斜視図である。
図9は、電子部品20の断面図である。
第2実施形態の電子部品20は、素体21と、コイル22とを備えた巻線型のインダクタである。第2実施形態の電子部品20は、その製造方法が異なることから、コイル22の形態及び材料が第1実施形態とは異なっている。一方、素体21を形成する金属磁性材料は、第1実施形態の金属磁性体層11aから11dを形成する金属磁性材料と同様なものを用いている。
よって、前述した第1実施形態と同様の機能を果たす部分には、同一の符号を付して、重複する説明を適宜省略する。 (Second Embodiment)
FIG. 8 is a perspective view showing a second embodiment of theelectronic component 20 according to the present invention.
FIG. 9 is a cross-sectional view of theelectronic component 20.
Theelectronic component 20 of the second embodiment is a winding type inductor including an element body 21 and a coil 22. Since the electronic component 20 of the second embodiment differs in the manufacturing method, the form and material of the coil 22 are different from those of the first embodiment. On the other hand, the metal magnetic material forming the element body 21 is the same as the metal magnetic material forming the metal magnetic layers 11a to 11d of the first embodiment.
Therefore, the same reference numerals are given to the portions that perform the same functions as those in the first embodiment described above, and repeated descriptions are omitted as appropriate.
図8は、本発明による電子部品20の第2実施形態を示す斜視図である。
図9は、電子部品20の断面図である。
第2実施形態の電子部品20は、素体21と、コイル22とを備えた巻線型のインダクタである。第2実施形態の電子部品20は、その製造方法が異なることから、コイル22の形態及び材料が第1実施形態とは異なっている。一方、素体21を形成する金属磁性材料は、第1実施形態の金属磁性体層11aから11dを形成する金属磁性材料と同様なものを用いている。
よって、前述した第1実施形態と同様の機能を果たす部分には、同一の符号を付して、重複する説明を適宜省略する。 (Second Embodiment)
FIG. 8 is a perspective view showing a second embodiment of the
FIG. 9 is a cross-sectional view of the
The
Therefore, the same reference numerals are given to the portions that perform the same functions as those in the first embodiment described above, and repeated descriptions are omitted as appropriate.
コイル22は、断面が矩形の平角導線をエッジワイズ巻で螺旋状に巻回して構成されている。コイル22は、被膜を有する導線を用いてもよいし、密着巻きにしなければ、素体21が絶縁性を有することから、被覆の無い導線を用いてもよい。
コイル22は、金属磁性合金粉末と、亜鉛を含有するガラスと、が混在する金属磁性材料により形成されている素体21により、その周囲が覆われている。
また、コイル22の両端は、素体21の端面から引き出され、底面に折り曲げられている。 Thecoil 22 is configured by spirally winding a rectangular conducting wire having a rectangular cross section with edgewise winding. The coil 22 may be a conductive wire having a coating, or may be an uncoated conductive wire because the element body 21 has an insulating property if not tightly wound.
The periphery of thecoil 22 is covered with an element body 21 formed of a metal magnetic material in which a metal magnetic alloy powder and a glass containing zinc are mixed.
Further, both ends of thecoil 22 are drawn from the end face of the element body 21 and are bent to the bottom face.
コイル22は、金属磁性合金粉末と、亜鉛を含有するガラスと、が混在する金属磁性材料により形成されている素体21により、その周囲が覆われている。
また、コイル22の両端は、素体21の端面から引き出され、底面に折り曲げられている。 The
The periphery of the
Further, both ends of the
上述した構成を有する本実施形態の電子部品20は、以下のようにして製造される。
先ず、所定組成のFe-Cr-Si合金の粉末に所定量の添加物(亜鉛を含有するガラス)を加えた後、混合して、PVA等のバインダをさらに添加する。そして、これを造粒して金属磁性材料を得る。また、コイル22を所定形状に形成する。
次に、コイル22が収納された金型内にこの樹脂のバインダに混合された金属磁性材料の粉を注入し、これに圧力を加えて素体21を形成する。
次に、この素体21は、大気中において400℃程度の温度で脱バインダ処理された後、例えば、800℃で熱処理が行われ、電子部品20が得られる。 Theelectronic component 20 of the present embodiment having the above-described configuration is manufactured as follows.
First, a predetermined amount of an additive (glass containing zinc) is added to an Fe—Cr—Si alloy powder having a predetermined composition, and then mixed, and a binder such as PVA is further added. And this is granulated and a metal magnetic material is obtained. Thecoil 22 is formed in a predetermined shape.
Next, powder of a metal magnetic material mixed in the resin binder is injected into the mold in which thecoil 22 is housed, and pressure is applied to the powder to form the element body 21.
Next, theelement body 21 is subjected to binder removal processing at a temperature of about 400 ° C. in the atmosphere, and then heat-treated at, for example, 800 ° C. to obtain the electronic component 20.
先ず、所定組成のFe-Cr-Si合金の粉末に所定量の添加物(亜鉛を含有するガラス)を加えた後、混合して、PVA等のバインダをさらに添加する。そして、これを造粒して金属磁性材料を得る。また、コイル22を所定形状に形成する。
次に、コイル22が収納された金型内にこの樹脂のバインダに混合された金属磁性材料の粉を注入し、これに圧力を加えて素体21を形成する。
次に、この素体21は、大気中において400℃程度の温度で脱バインダ処理された後、例えば、800℃で熱処理が行われ、電子部品20が得られる。 The
First, a predetermined amount of an additive (glass containing zinc) is added to an Fe—Cr—Si alloy powder having a predetermined composition, and then mixed, and a binder such as PVA is further added. And this is granulated and a metal magnetic material is obtained. The
Next, powder of a metal magnetic material mixed in the resin binder is injected into the mold in which the
Next, the
以上説明したように、第2実施形態によれば、巻線型の電子部品20についても、第1実施形態と同様な効果を得ることができる。
As described above, according to the second embodiment, the same effect as that of the first embodiment can be obtained for the wound electronic component 20.
(変形形態)
以上説明した実施形態に限定されることなく、種々の変形や変更が可能であって、それらも本発明の範囲内である。 (Deformation)
The present invention is not limited to the embodiment described above, and various modifications and changes are possible, and these are also within the scope of the present invention.
以上説明した実施形態に限定されることなく、種々の変形や変更が可能であって、それらも本発明の範囲内である。 (Deformation)
The present invention is not limited to the embodiment described above, and various modifications and changes are possible, and these are also within the scope of the present invention.
(1)各実施形態において、金属磁性材料の具体的な組成の例を挙げて説明したが、これに限らず、各成分の分量(構成比率)は、磁性材料の粒子径や所望の磁気特性等に応じて適宜変更してもよい。
(1) In each embodiment, the specific example of the composition of the metal magnetic material has been described. However, the present invention is not limited to this, and the amount of each component (configuration ratio) depends on the particle diameter of the magnetic material and desired magnetic characteristics. You may change suitably according to etc.
(2)各実施形態において、熱処理を行う温度について、具体例を挙げて説明したが、これに限らず、熱処理を行う温度は、磁性材料の粒子径や所望の磁気特性等に応じて適宜変更してもよい。
(2) In each embodiment, the temperature at which the heat treatment is performed has been described with a specific example. However, the temperature is not limited thereto, and the temperature at which the heat treatment is performed is appropriately changed according to the particle diameter of the magnetic material, desired magnetic properties, and the like. May be.
(3)各実施形態において、ZnO系ガラスの例として、ガラス1及びガラス2として具体的な組成を例に挙げて説明した。これに限らず、例えば、熱処理の温度に合わせてZnO系ガラスの軟化点が異なる他のZnO系ガラスを選択してもよい。なお、軟化点と熱処理温度との差が大きいと、膨張等の事象が発生する。よって、ZnO系ガラスの軟化点は、熱処理温度と近いことが望ましい。
(3) In each embodiment, the specific composition was described as an example of the glass 1 and the glass 2 as an example of the ZnO-based glass. For example, another ZnO glass having a different softening point from the ZnO glass may be selected according to the temperature of the heat treatment. If the difference between the softening point and the heat treatment temperature is large, an event such as expansion occurs. Therefore, it is desirable that the softening point of ZnO-based glass is close to the heat treatment temperature.
(4)各実施形態において、ZnO系ガラスには、MgO、CaO、BaO、SrO等のアルカリ土類成分を含んでもよい。
(4) In each embodiment, the ZnO-based glass may contain an alkaline earth component such as MgO, CaO, BaO, and SrO.
(5)各実施形態において、金属磁性材料に含まれている金属磁性合金粉末は、その表面に酸化物が形成されていないものとして説明を行った。これに限らず、例えば、金属磁性合金粉末の表面には、酸化物が形成されていてもよい。金属磁性合金粉末は、自然に酸化が進んだり、高温の熱処理において酸化が進んだりして、その表面に、金属磁性合金粉末に由来する金属酸化物が例えば部分的に、又は、全体的に、自然に形成されてしまうこともある。本発明では、この金属磁性合金粉末に由来する金属酸化物による絶縁性について期待するものではないが、この金属酸化物が金属磁性合金粉末の表面に形成されていても、何ら支障は無い。
(5) In each embodiment, the metal magnetic alloy powder contained in the metal magnetic material has been described on the assumption that no oxide is formed on the surface thereof. For example, an oxide may be formed on the surface of the metal magnetic alloy powder. The metal magnetic alloy powder naturally oxidizes or oxidizes in a high-temperature heat treatment, and the metal oxide derived from the metal magnetic alloy powder is, for example, partially or entirely on the surface. It may form naturally. In the present invention, the insulation by the metal oxide derived from the metal magnetic alloy powder is not expected, but there is no problem even if the metal oxide is formed on the surface of the metal magnetic alloy powder.
(6)各実施形態において、金属磁性合金粉末の表面には、亜鉛を含有するガラスが析出している例を挙げて説明を行った。これに限らず、例えば、金属磁性合金粉末の表面には、亜鉛を含有するガラスの他に、金属磁性合金粉末を構成する元素の混合物がさらに析出していてもよい。また、これと関連して、素体中の金属磁性合金粉末同士が、亜鉛を含有するガラスと金属磁性合金粉末を構成する元素との混合物を介して結合されていてもよい。
(6) In each embodiment, the example in which the glass containing zinc is deposited on the surface of the metal magnetic alloy powder has been described. For example, in addition to the glass containing zinc, a mixture of elements constituting the metal magnetic alloy powder may further precipitate on the surface of the metal magnetic alloy powder. In connection with this, the metal magnetic alloy powders in the element body may be bonded via a mixture of glass containing zinc and elements constituting the metal magnetic alloy powder.
なお、各及び変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は以上説明した各実施形態によって限定されることはない。
In addition, although each and modification form can also be used in combination suitably, detailed description is abbreviate | omitted. Further, the present invention is not limited by the embodiments described above.
10 電子部品
11 素体
11a,11b,11c,11d 金属磁性体層
12a,12b,12c コイル用導体パターン
13,14 外部端子
20 電子部品
21 素体
22 コイル DESCRIPTION OFSYMBOLS 10 Electronic component 11 Element body 11a, 11b, 11c, 11d Metallic magnetic material layer 12a, 12b, 12c Conductor pattern 13, 14 for coil External terminal 20 Electronic component 21 Element body 22 Coil
11 素体
11a,11b,11c,11d 金属磁性体層
12a,12b,12c コイル用導体パターン
13,14 外部端子
20 電子部品
21 素体
22 コイル DESCRIPTION OF
Claims (12)
- 鉄と、ケイ素と、クロムとを含有する金属磁性合金粉末と、
亜鉛を含有するガラスと、
が混在していること、
を特徴とする金属磁性材料。 A metal magnetic alloy powder containing iron, silicon, and chromium;
Glass containing zinc;
Are mixed,
Metallic magnetic material characterized by - 鉄と、ケイ素と、クロムとを含有する金属磁性合金粉末の表面に、
亜鉛を含有するガラスが析出していること、
を特徴とする金属磁性材料。 On the surface of the metal magnetic alloy powder containing iron, silicon, and chromium,
That glass containing zinc is deposited,
Metallic magnetic material characterized by - 鉄と、ケイ素と、クロムとを含有する金属磁性合金粉末の表面に、
亜鉛を含有するガラスと前記金属磁性合金粉末を構成する元素の混合物が析出していること、
を特徴とする金属磁性材料。 On the surface of the metal magnetic alloy powder containing iron, silicon, and chromium,
A mixture of elements comprising the glass containing zinc and the metal magnetic alloy powder is deposited,
Metallic magnetic material characterized by - 請求項1から請求項3までのいずれか1項に記載の金属磁性材料において、
前記金属磁性合金粉末は、その表面に金属酸化物を形成するための処理が行われていないこと、
を特徴とする金属磁性材料。 In the metal magnetic material according to any one of claims 1 to 3,
The metal magnetic alloy powder is not subjected to a treatment for forming a metal oxide on its surface,
Metallic magnetic material characterized by - 鉄と、ケイ素と、クロムとを含有する金属磁性合金粉末と、
亜鉛を含有するガラスと、
が混在する金属磁性材料を用いて素体が形成され、
前記金属磁性合金粉末の表面には、亜鉛を含有するガラスが析出しており、
前記素体中の金属磁性合金粉末同士が、前記ガラスを介して結合されており、
前記素体中にコイルが形成されていること、
を特徴とする電子部品。 A metal magnetic alloy powder containing iron, silicon, and chromium;
Glass containing zinc;
The element body is formed using metallic magnetic materials mixed with
Glass containing zinc is deposited on the surface of the metal magnetic alloy powder,
The metal magnetic alloy powders in the element body are bonded via the glass,
A coil is formed in the element body;
Electronic parts characterized by - 鉄と、ケイ素と、クロムとを含有する金属磁性合金粉末と、
亜鉛を含有するガラスと、
が混在する金属磁性材料を用いて素体が形成され、
前記金属磁性合金粉末の表面には、亜鉛を含有するガラスと前記金属磁性合金粉末を構成する元素との混合物が析出しており、
前記素体中の金属磁性合金粉末同士が、前記亜鉛を含有するガラスと前記金属磁性合金粉末を構成する元素との混合物を介して結合されており、
前記素体中にコイルが形成されていること、
を特徴とする電子部品。 A metal magnetic alloy powder containing iron, silicon, and chromium;
Glass containing zinc;
The element body is formed using metallic magnetic materials mixed with
On the surface of the metal magnetic alloy powder, a mixture of glass containing zinc and elements constituting the metal magnetic alloy powder is deposited,
The metal magnetic alloy powders in the element body are bonded together through a mixture of the zinc-containing glass and the elements constituting the metal magnetic alloy powder,
A coil is formed in the element body;
Electronic parts characterized by - 鉄と、ケイ素と、クロムとを含有する金属磁性合金粉末と、
亜鉛を含有するガラスと、
が混在した金属磁性材料を用いて素体が形成され、
前記素体を熱処理することにより、前記金属磁性合金粉末の表面には、亜鉛を含有するガラスが析出しており、
前記素体中の金属磁性合金粉末同士が、前記亜鉛を含有するガラスを介して結合しており、
前記素体中にコイルが形成されていること、
を特徴とする電子部品。 A metal magnetic alloy powder containing iron, silicon, and chromium;
Glass containing zinc;
An element body is formed using a metal magnetic material mixed with
By heat-treating the element body, a glass containing zinc is deposited on the surface of the metal magnetic alloy powder,
The metal magnetic alloy powders in the element body are bonded via the glass containing zinc,
A coil is formed in the element body;
Electronic parts characterized by - 鉄と、ケイ素と、クロムとを含有する金属磁性合金粉末と、
亜鉛を含有するガラスと、
が混在した金属磁性材料を用いて素体が形成され、
前記素体を熱処理することにより、前記金属磁性合金粉末の表面には、亜鉛を含有するガラスと前記金属磁性合金粉末を構成する元素との混合物が析出しており、
前記素体中の金属磁性合金粉末同士が、前記亜鉛を含有するガラスと前記金属磁性合金粉末を構成する元素との混合物を介して結合しており、
前記素体中にコイルが形成されていること、
を特徴とする電子部品。 A metal magnetic alloy powder containing iron, silicon, and chromium;
Glass containing zinc;
An element body is formed using a metal magnetic material mixed with
By heat-treating the element body, a mixture of glass containing zinc and elements constituting the metal magnetic alloy powder is deposited on the surface of the metal magnetic alloy powder,
The metal magnetic alloy powders in the element body are bonded via a mixture of the glass containing zinc and the elements constituting the metal magnetic alloy powder,
A coil is formed in the element body;
Electronic parts characterized by - 請求項5から請求項8までのいずれか1項に記載の電子部品において、
前記素体の体積抵抗率が107Ω・cm以上であること、
を特徴とする電子部品。 In the electronic component according to any one of claims 5 to 8,
The volume resistivity of the element body is 10 7 Ω · cm or more,
Electronic parts characterized by - 請求項5から請求項9までのいずれか1項に記載の電子部品において、
前記素体の抗折強度が30MPa以上であること、
を特徴とする電子部品。 In the electronic component according to any one of claims 5 to 9,
The bending strength of the element body is 30 MPa or more,
Electronic parts characterized by - 請求項5から請求項10までのいずれか1項に記載の電子部品において、
前記金属磁性合金粉末は、その表面に金属酸化物を形成するための処理が行われていないこと、
を特徴とする電子部品。 In the electronic component according to any one of claims 5 to 10,
The metal magnetic alloy powder is not subjected to a treatment for forming a metal oxide on its surface,
Electronic parts characterized by - 請求項5から請求項11までのいずれか1項に記載の電子部品において、
前記素体中の金属磁性合金粉末同士が、その表面に金属酸化物を介することなく前記素体を構成する他の材料を介して結合されている部分を有すること、
を特徴とする電子部品。 The electronic component according to any one of claims 5 to 11,
The metal magnetic alloy powders in the element body have a portion bonded to the surface via another material constituting the element body without a metal oxide,
Electronic parts characterized by
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-199246 | 2013-09-26 | ||
JP2013199246A JP2015065362A (en) | 2013-09-26 | 2013-09-26 | Metal magnetic material and electronic component |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015045689A1 true WO2015045689A1 (en) | 2015-04-02 |
Family
ID=52742843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/071878 WO2015045689A1 (en) | 2013-09-26 | 2014-08-21 | Metallic magnetic material and electronic component |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015065362A (en) |
WO (1) | WO2015045689A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008226960A (en) * | 2007-03-09 | 2008-09-25 | Toko Inc | Method for manufacturing electronic component |
JP2010062424A (en) * | 2008-09-05 | 2010-03-18 | Toko Inc | Manufacturing method of electronic component |
JP2010118587A (en) * | 2008-11-14 | 2010-05-27 | Toko Inc | Electronic component and method of manufacturing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104395972B (en) * | 2012-08-10 | 2017-06-23 | 株式会社村田制作所 | magnetic composition and coil component |
-
2013
- 2013-09-26 JP JP2013199246A patent/JP2015065362A/en active Pending
-
2014
- 2014-08-21 WO PCT/JP2014/071878 patent/WO2015045689A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008226960A (en) * | 2007-03-09 | 2008-09-25 | Toko Inc | Method for manufacturing electronic component |
JP2010062424A (en) * | 2008-09-05 | 2010-03-18 | Toko Inc | Manufacturing method of electronic component |
JP2010118587A (en) * | 2008-11-14 | 2010-05-27 | Toko Inc | Electronic component and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2015065362A (en) | 2015-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5553978B2 (en) | Manufacturing method of electronic parts | |
JP5741883B2 (en) | Multilayer coil component and manufacturing method thereof | |
JP5883437B2 (en) | Magnetic material and coil component using the same | |
US9275785B2 (en) | Multilayered power inductor and method for preparing the same | |
KR20190143804A (en) | Magnetic base member including metal magnetic particles, and electronic component including the magnetic base member | |
WO2014024976A1 (en) | Magnetic material composition and coil component | |
KR20150043038A (en) | Multilayered electronic component | |
US20150022308A1 (en) | Magnetic material, method for manufacturing the same, and electronic component including the same | |
JP4881192B2 (en) | Manufacturing method of electronic parts | |
JP5913246B2 (en) | Metal magnetic materials, electronic components | |
JP2018121023A (en) | Laminate type electronic component | |
JPWO2014013896A1 (en) | Manufacturing method of laminated coil component | |
JP2016143700A (en) | Metal magnetic material and electronic component | |
JP6427933B2 (en) | Metal magnetic materials and electronic components | |
JP6663138B2 (en) | Dust core with terminal and method of manufacturing the same | |
JP2006319020A (en) | Inductance component | |
KR101310360B1 (en) | Winding-type chip inductor for power and manufacturing method thereof | |
WO2015045689A1 (en) | Metallic magnetic material and electronic component | |
JP3021208B2 (en) | Winding integrated magnetic element and method of manufacturing the same | |
JP2005005644A (en) | Wire wound electronic component and resin composition | |
WO2015159981A1 (en) | Metal magnetic material and electronic device | |
JP2018022867A (en) | Coil electronic component | |
CN113963914A (en) | Coil component and method for manufacturing coil component | |
JP6428416B2 (en) | Metal magnetic materials and electronic components | |
JP6427932B2 (en) | Metal magnetic materials and electronic components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14847345 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14847345 Country of ref document: EP Kind code of ref document: A1 |