WO2015045614A1 - Antenna, antenna structure, and resonator - Google Patents

Antenna, antenna structure, and resonator Download PDF

Info

Publication number
WO2015045614A1
WO2015045614A1 PCT/JP2014/070160 JP2014070160W WO2015045614A1 WO 2015045614 A1 WO2015045614 A1 WO 2015045614A1 JP 2014070160 W JP2014070160 W JP 2014070160W WO 2015045614 A1 WO2015045614 A1 WO 2015045614A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
resonator
sar
antenna element
coil
Prior art date
Application number
PCT/JP2014/070160
Other languages
French (fr)
Japanese (ja)
Inventor
淳 東條
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015045614A1 publication Critical patent/WO2015045614A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/245Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with means for shaping the antenna pattern, e.g. in order to protect user against rf exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas

Definitions

  • the present invention relates to an antenna, an antenna structure, and a resonator, and more particularly to an antenna that can be incorporated into a mobile communication terminal, an antenna structure of the antenna, and a resonator used for the antenna.
  • SAR Specific Absorption Rate
  • SAR is obtained by dividing the energy absorbed by any living tissue 10g by exposure to an electromagnetic field in any 6 minutes by 10g, and further dividing by 6 minutes. It refers to the value obtained.
  • the unit of SAR is W / kg. SAR can tell how much energy a human tissue receives from a device that emits electromagnetic waves in a certain period of time.
  • “whole body average SAR” is SAR on the human head of radio waves emitted from radio equipment.
  • SAR is set to 2 W / kg or less according to Article 14-2 of the Radio Equipment Regulations.
  • a plurality of types of communication methods may be used at the same time in portable communication terminals. For example, while performing voice communication using a method such as CDMA (Code Division Multiple Access), data is transmitted using another type of method such as Wi-Fi (Wireless Fidelity) or LTE (Long Term Evolution). Communication may be performed.
  • CDMA Code Division Multiple Access
  • Wi-Fi Wireless Fidelity
  • LTE Long Term Evolution
  • FIG. 28 is a diagram for explaining the synthesis of SAR.
  • SAR distribution 1 in the figure the SAR distribution of communication in one communication method
  • SAR of communication in the other communication method the SAR of communication in the other communication method
  • the combined distribution obtained by adding the distribution is the SAR distribution of the mobile communication terminal. Since the SAR of this composite distribution must be equal to or less than the above-mentioned reference value 2 W / kg, it is more difficult to satisfy the reference than before.
  • Examples of the method for reducing the SAR include the following.
  • Patent Documents 6 to 11 there is a problem that the transmission / reception performance on the human body side is lowered over the entire band.
  • the method of Patent Document 10 has a problem that the SAR at the resonance frequency of the parasitic element is increased.
  • Patent Documents 12 and 13 there is a problem that the transmission / reception performance of the antenna in all directions is deteriorated.
  • the directivity can be controlled at a certain frequency, but there is a problem in that it radiates in the opposite direction at the operating frequency of the left-handed transmission line. . Such a problem can also occur in the conventional Yagi-Uda antenna.
  • the present invention has been made to solve the above-described problems, and one of the objects of the present invention is to reduce the transmission / reception performance of the antenna and reduce the human body side without being restricted by the layout and structure of the antenna.
  • an antenna is an antenna that can be incorporated into a mobile communication terminal, and includes an antenna element and a resonance wavelength of the antenna element to 1 ⁇ 4 of the antenna element. And one or a plurality of resonators that are electrically insulated from other portions and resonate at a wavelength near the resonance wavelength of the antenna element.
  • the present invention in addition to the antenna element, it is only necessary to provide a resonator that is insulated from other parts at a position less than a quarter of the resonance wavelength of the antenna element from the antenna element. For this reason, there is no restriction on the layout and structure of the antenna. Further, since the resonator is magnetically coupled to the antenna element at a wavelength in the vicinity of the resonance wavelength of the resonator, the SAR on the human body side of the electromagnetic wave in the vicinity of this wavelength can be suppressed to the minimum necessary. Moreover, since electromagnetic waves other than this wavelength are not suppressed, the fall of the antenna transmission / reception performance can be suppressed.
  • the resonator is provided on the side where the frequency of becoming closer to the human body than the antenna element during communication when the antenna is incorporated into the mobile communication terminal.
  • the SAR on the human body side can be further suppressed to the necessary minimum.
  • the resonator is a coil and is provided so that the magnetic field lines of the magnetic field of the antenna element penetrate the coil.
  • an inexpensive coil for example, a wound chip coil
  • the manufacturing cost of the antenna can be reduced.
  • the plurality of resonators are provided such that the coil axes are substantially parallel.
  • the effect of suppressing the SAR is weakened if the coil axes are substantially orthogonal, but can be prevented from being weakened if they are substantially parallel. As a result, the SAR suppression effect can be prevented from being weakened.
  • the resonance wavelengths of the plurality of resonators are substantially the same, and a part of the plurality of resonators and the remaining resonators are provided so that the coil axes are substantially orthogonal to each other. According to this invention, it can adjust so that the effect of SAR suppression may be weakened.
  • the resonance wavelengths of the plurality of resonators include a first resonance wavelength and a second resonance wavelength, and the resonators having the first resonance wavelength and the resonators having the second resonance wavelength are in respective coils.
  • the axes are provided so as to be substantially orthogonal.
  • the coil axes of the first resonance wavelength resonator and the second resonance wavelength resonator are not orthogonal to each other, they are coupled to each other, and the SAR suppression effect is effective only in the vicinity of the resonance wavelength of one of the resonators. I can't get it.
  • the resonator having the first resonance wavelength and the resonator having the second resonance wavelength are not coupled. As a result, SAR can be suppressed in the frequency band from the vicinity of the first resonance wavelength to the vicinity of the second resonance wavelength.
  • the resonator is an LC resonator.
  • an inexpensive LC resonator for example, MLCC
  • the manufacturing cost of the antenna can be reduced.
  • the antenna structure is an antenna structure of an antenna that can be incorporated into a mobile communication terminal, and is electrically insulated from other parts and resonates at a wavelength near the resonance wavelength of the antenna element.
  • One or a plurality of resonators are provided at a position less than a distance of 1/4 of the resonance wavelength of the antenna element from the antenna element.
  • a resonator used for an antenna that can be incorporated into a portable communication terminal is provided at a position less than a quarter of the resonance wavelength of the antenna element from the antenna element, and is electrically It is insulated from other parts and resonates at a wavelength near the resonance wavelength of the antenna element.
  • FIG. 1 It is a figure (plan view) showing the outline of the structure of the antenna according to the first embodiment. It is a figure (side view) which shows the outline of the structure of the antenna which concerns on 1st Embodiment. It is a figure (rear view) which shows the outline of the structure of the antenna which concerns on 1st Embodiment. It is a figure (front view) which shows the outline of the structure of the antenna which concerns on 1st Embodiment. It is a graph which shows the relationship between SAR and the frequency of the antenna which concerns on 1st Embodiment. It is a figure which shows the outline of the structure of the antenna which concerns on 2nd Embodiment. It is a graph which shows the reflective characteristic of the antenna which concerns on 2nd Embodiment.
  • It is the 1st figure (plan view of a printed circuit board) showing the outline of the structure of the antenna concerning a 4th embodiment.
  • It is the 1st figure (back view of a printed circuit board) showing the outline of the structure of the antenna concerning a 4th embodiment.
  • It is the 1st figure (front view of a printed circuit board) showing the outline of the structure of the antenna concerning a 4th embodiment.
  • 1A to 1D are diagrams (plan view, side view, rear view, and front view) showing an outline of the structure of the antenna according to the first embodiment.
  • the antenna according to the first embodiment is formed on a printed circuit board 100 and includes an antenna element 20 and a ground 30.
  • the antenna element 20 is provided with a feeding point and is fed from the feeding point.
  • the antenna further includes a coil 10 as a resonator.
  • a chip coil is used as the coil 10.
  • a chip coil is used as the coil. Since the chip coil is a general-purpose product that is easily available and inexpensive, an increase in the manufacturing cost of the antenna for reducing the SAR can be suppressed. Further, the chip coil can be easily mounted on the substrate.
  • the resonator may be an LC resonator, for example, an MLCC (Multi-Layer Ceramic Capacitor, multilayer ceramic capacitor) instead of the coil.
  • MLCC Multi-Layer Ceramic Capacitor, multilayer ceramic capacitor
  • the coil 10 is electrically insulated from other parts.
  • the coil 10 is mounted on the surface of the printed board 100 opposite to the side on which the antenna element 20 is formed. For this reason, it is possible not to affect the structure and arrangement of the antenna.
  • the coil 10 is mounted in the figure (five here), it is not limited to this and may be one.
  • a magnetic field is generated in the direction in which the screw rotates when the right screw about the longitudinal direction, which is the direction in which the current of the antenna element 20 flows, is screwed in the current direction.
  • the coil 10 is mounted so that the axis of the coil 10 is parallel to the printed circuit board 100 and perpendicular to the longitudinal direction of the antenna element 20 so that the magnetic field lines generated by the antenna element 20 penetrate the coil 10. Thereby, the antenna element 20 and the coil 10 are magnetically coupled.
  • the coil 10 may be mounted in another direction in a different direction as long as the magnetic field lines generated by the antenna element 20 are provided so as to penetrate the coil 10.
  • FIG. 2 is a graph showing the relationship between the SAR and the frequency of the antenna according to the first embodiment.
  • a broken line indicates a case where the coil 10 is not included in the antenna of FIGS. 1A to 1D
  • a solid line indicates a case where the coil 10 is included in the antenna of FIGS. 1A to 1D.
  • the antenna element 20 of the present embodiment has a shape that matches the frequency of 1.9 GHz. Further, the coil 10 of the present embodiment has a resonance frequency of about 2.0 GHz.
  • the coil 10 is arranged so as to be closer to the human body than the antenna element 20, the electromagnetic wave from the antenna element 20 is attenuated when it exceeds the coil 10, so that SAR can be more effectively suppressed. .
  • FIG. 3 is a diagram schematically illustrating the structure of the antenna according to the second embodiment.
  • the antenna of the second embodiment includes an antenna element 20 ⁇ / b> D and a coil 10 ⁇ / b> D similar to the coil 10 of the first embodiment.
  • the antenna element 20D of this embodiment has a dipole antenna shape.
  • a magnetic field is generated in the direction in which the screw rotates when the right screw about the longitudinal direction (X-axis direction in the figure), which is the direction in which the current of the antenna element 20D flows, is screwed in the current direction.
  • the coil 10D is directed so that the magnetic field lines generated by the antenna element 20D penetrate the coil 10D. Thereby, antenna element 20D and coil 10D are magnetically coupled.
  • FIG. 4 is a graph showing the reflection characteristics of the antenna according to the second embodiment.
  • the resonance of the antenna at 2.4 GHz is suppressed. Further, resonance is not suppressed at frequencies other than the vicinity of 2.4 GHz. For this reason, the SAR is reduced in the vicinity of 2.4 GHz while maintaining the transmission / reception characteristics except in the vicinity of 2.4 GHz.
  • FIG. 5 and 6 are diagrams showing three-dimensional radiation patterns at 2.1 GHz and 2.4 GHz, respectively, in the second embodiment.
  • these radiation patterns are radiation patterns viewed from the X-axis direction.
  • the negative direction of the Y axis which is the direction in which the coil 10D is disposed with respect to the antenna element 20D, is whitish.
  • the stronger the radiation the darker the color. For this reason, it turns out that the radiation
  • Such an effect that the radiation of the antenna element 20D in the direction in which the coil 10D is arranged is weakened is not limited to the antenna of the second embodiment, and is also achieved by the antenna of the first embodiment described above. It can also be achieved by the antenna of the embodiment described later.
  • FIGS. 7A to 7D are views (plan view, side view, rear view, and front view) schematically showing the structure of the antenna according to the third embodiment.
  • the structure of the antenna according to the third embodiment is the same as the structure of the antenna according to the first embodiment except for the arrangement of coil 10A.
  • the antenna element 20 resonates around 1.9 GHz.
  • the ground 30A resonates around 850 MHz instead of the antenna element 20A.
  • radio waves are radiated from the ground 30A.
  • a magnetic field is generated in the direction in which the screw rotates when the right screw about the longitudinal direction, which is the direction in which the current of the ground 30A flows, is screwed in the current direction.
  • the coil 10A is mounted so that the axis of the coil 10A is parallel to the printed circuit board 100A and perpendicular to the longitudinal direction of the ground 30A so that the magnetic field lines of the magnetic field generated by the ground 30A pass through the coil 10A. Thereby, the ground 30A and the coil 10A are magnetically coupled.
  • the coil 10A may be mounted in another direction in a different direction as long as the magnetic field lines generated by the ground 30A pass through the coil 10A.
  • FIG. 8 is a graph showing the relationship between the SAR and the frequency of the antenna according to the third embodiment.
  • the broken line indicates a case where the antenna of FIGS. 7A to 7D does not include the coil 10A
  • the solid line indicates a case where the antenna of FIGS. 7A to 7D includes the coil 10A.
  • the ground 30A of the present embodiment has a shape that matches the frequency of 850 MHz.
  • the coil 10 of the present embodiment has a resonance frequency of about 840 MHz.
  • FIG. 10 are respectively a first diagram (a plan view of a printed circuit board, a rear view and a front view, and a plan view of a housing) showing an outline of the structure of an antenna according to a fourth embodiment. It is a figure and a front view), and a 2nd figure.
  • FIGS. 9A to 9E and FIG. 10 is an assembly view in which the printed circuit board 100B shown in FIGS. 9A to 9C and the casing 200B shown in FIGS. 9D and 9E are assembled.
  • the antenna according to the fourth embodiment is formed on the printed circuit board 100B and the housing 200B, and includes an antenna element 20B and a coil 10B.
  • the antenna element 20B is formed by plating or the like on the inner surface of a housing 200B formed of a resin that does not conduct electricity.
  • the antenna element 20B is provided with a feeding point, and the feeding point is fed from the antenna connection connector 30B of the printed circuit board 100B.
  • the coil 10B is electrically insulated from other parts.
  • the coil 10B is mounted on a printed circuit board 100B different from the housing 200B in which the antenna element 20B is formed. For this reason, it is possible not to affect the structure and arrangement of the antenna.
  • the coil 10B is mounted in the figure by a plurality (five here), it is not limited to this and may be one.
  • a magnetic field is generated in the direction in which the screw rotates when the right screw about the longitudinal direction, which is the direction in which the current of the antenna element 20B flows, is screwed in the current direction.
  • the coil 10B is mounted so that the axis of the coil 10B is parallel to the printed circuit board 100B and perpendicular to the longitudinal direction of the antenna element 20B so that the magnetic field lines generated by the antenna element 20B penetrate the coil 10B. Thereby, the antenna element 20B and the coil 10B are magnetically coupled.
  • the coil 10B may be mounted in another direction in a different direction as long as the magnetic field lines generated by the antenna element 20B penetrate the coil 10B.
  • the antenna of the fourth embodiment also has the effect of suppressing SAR near the resonance frequency of the coil 10B.
  • FIGS. 11 to 13 are first to third diagrams for explaining coupling between antennas according to the fifth embodiment, respectively.
  • FIG. 11 shows a case where no coil is provided.
  • FIG. 12 shows a case where the coils 10X and 10Y are provided outside the antennas 20X and 20Y, respectively.
  • FIG. 13 shows a case where the coils 10X and 10Y are provided inside the antennas 20X and 20Y, respectively.
  • FIG. 14 is a graph showing a comparison result of coupling between antennas according to the fifth embodiment.
  • the wavy line shows the case of FIG. 11, the alternate long and short dash line shows the case of FIG. 12, and the solid line shows the case of FIG.
  • the radiation for the respective antennas 20X and 20Y shows the effect of suppressing the radiation from the antenna, that is, the SAR, regardless of whether the coils 10X and 10Y are provided outside or inside.
  • FIGS. 15 and 18 are first and second diagrams, respectively, showing an outline of the antenna structure for explaining the SAR suppression amount adjustment according to the sixth embodiment.
  • FIGS. 16 and 19 are first and second diagrams showing the radiation characteristics of the antenna, respectively, for explaining the SAR suppression amount adjustment according to the sixth embodiment.
  • FIGS. 17 and 20 are first and second diagrams showing the relationship between the SAR of the antenna and the frequency, respectively, for explaining the SAR suppression amount adjustment according to the sixth embodiment.
  • the right screw about the longitudinal direction which is the direction in which the current of antenna elements 20E and 20F flows, is screwed in the direction of current.
  • a magnetic field is generated in the direction of rotation.
  • all the coils 10 ⁇ / b> E are mounted so that the axes thereof are parallel to the plane of the antenna element 20 ⁇ / b> E and perpendicular to the longitudinal direction of the antenna element 20 ⁇ / b> E.
  • the coil 10F is mounted so that the axis of the coil 10F is parallel to the plane of the antenna element 20F and inclined at 45 degrees or ⁇ 45 degrees in the direction perpendicular to the longitudinal direction of the antenna element 20F.
  • the coils 10F are alternately inclined at 45 degrees or ⁇ 45 degrees, but the present invention is not limited to this, and the coils 10F may not be alternated.
  • FIG. 16 shows the reflection characteristics of the antenna when it is not tilted at 45 degrees or ⁇ 45 degrees.
  • FIG. 19 shows the reflection characteristics of the antenna when tilted by 45 degrees or ⁇ 45 degrees.
  • the broken line indicates a case where no coil is provided, and the solid line indicates a case where a coil is provided.
  • the degree of weakening the resonance of the coil is less when tilted than when not tilted.
  • FIG. 17 shows the relationship between the SAR and the frequency of the antenna when it is not tilted by 45 degrees or ⁇ 45 degrees.
  • FIG. 20 shows the relationship between the antenna SAR and the frequency when tilted by 45 degrees or ⁇ 45 degrees.
  • the broken line indicates a case where no coil is provided, and the solid line indicates a case where a coil is provided.
  • the suppression amount of SAR can be adjusted by mixing the inclined coil and the non-inclined coil.
  • FIG. 21 and FIG. 24 are first and second diagrams, respectively, showing an outline of the antenna structure for explaining the broadbanding of SAR suppression according to the seventh embodiment.
  • FIG. 22 and FIG. 25 are first and second diagrams showing the radiation characteristics of the antenna for explaining the increase in the bandwidth of SAR suppression according to the seventh embodiment, respectively.
  • FIG. 23 and FIG. 26 are first and second diagrams showing the relationship between the SAR of the antenna and the frequency, respectively, for explaining the increase in the bandwidth of SAR suppression according to the seventh embodiment.
  • the right screw about the longitudinal direction which is the direction in which the current of antenna elements 20G and 20H flows, is screwed in the current direction.
  • a magnetic field is generated in the direction of rotation.
  • the axes of all the first resonance frequency coils 10GA and all the second resonance frequency coils 10GB are parallel to the plane of the antenna element 20G and perpendicular to the longitudinal direction of the antenna element 20G. To be mounted.
  • the coils 10GA of all the first resonance frequencies are mounted so that the axes thereof are parallel to the plane of the antenna element 20G and inclined by 45 degrees in the direction perpendicular to the longitudinal direction of the antenna element 20G.
  • the coils 10GB of all the second resonance frequencies are mounted so that the axes thereof are parallel to the plane of the antenna element 20G and inclined by -45 degrees in the direction perpendicular to the longitudinal direction of the antenna element 20Gno.
  • FIG. 22 shows the reflection characteristics of the antenna when it is not tilted.
  • FIG. 25 shows the reflection characteristics of the antenna when tilted. 22 and 25, a broken line indicates a case where no coil is provided, and a solid line indicates a case where a coil is provided.
  • a broken line indicates a case where no coil is provided, and a solid line indicates a case where a coil is provided.
  • FIG. 23 shows the relationship between the SAR and the frequency of the antenna when tilted.
  • FIG. 26 shows the relationship between the SAR and frequency of the antenna when it is not tilted. 22 and 25, a broken line indicates a case where no coil is provided, and a solid line indicates a case where a coil is provided.
  • the coils having different resonance frequencies are coupled to each other.
  • SAR suppression effect can be broadened by arranging the frequency coils in a tilted manner. Note that it is desirable that the angle formed by the axes of the coils having different resonance frequencies is a right angle since the coupling between the coils can be completely prevented.
  • FIG. 29 is a diagram schematically illustrating the structure of the antenna according to the eighth embodiment.
  • the antenna according to the eighth embodiment is obtained by replacing the coil 10 as the resonator of the antenna according to the first embodiment with an MLCC that is an example of an LC resonator.
  • the antenna of the eighth embodiment is formed on printed circuit board 100J and includes antenna elements 20JA and 20JB and a ground 30J.
  • the antenna element 20JB is provided with a feeding point 50J and is fed from the feeding point 50J.
  • the antenna of the eighth embodiment further includes an LC resonator 40J as a resonator.
  • MLCC is used as the LC resonator 40J. Since MLCC is a general-purpose product that is easily available and inexpensive, it is possible to suppress an increase in the manufacturing cost of an antenna for reducing SAR.
  • LC resonator 40J is electrically insulated from other parts of the antenna.
  • the LC resonator 40J is magnetically coupled to one of the antenna elements 20JA and JB in the vicinity of one of the antenna elements 20JA and 20JB on the surface where the antenna elements 20JA and 20JB and the ground 30J of the printed board 100J are formed.
  • the position and direction are determined and mounted.
  • the distance between the antenna elements 20JA and 20JB and the LC resonator 40J is 0.1 mm. For this reason, it is possible not to affect the structure and arrangement of the antenna.
  • four LC resonators 40J are mounted in FIG. 29, the present invention is not limited to this, and other plural or one LC resonator 40J may be used.
  • FIG. 30 is a graph showing the relationship between the SAR and the frequency of the antenna according to the eighth embodiment.
  • the broken line indicates a case where the antenna of FIG. 29 does not include the LC resonator 40J
  • the solid line indicates a case where the antenna of FIG. 29 includes the LC resonator 40J.
  • the antenna elements 20JA and 20JB of the present embodiment have shapes that match the frequencies of 0.8 GHz and 1.9 GHz.
  • the SAR from 0.80 GHz to 0.85 GHz is suppressed by the LC resonator 40J mounted near the ground 30J of the antenna element 20JA, and 1 by the LC resonator 40J mounted near the antenna element 20JB. .9 GHz to 2.0 GHz SAR is suppressed.
  • the Q value of the resonator is lower than that in the case of using a coil and the resonance bandwidth is narrowed, but the size can be reduced. Further, since the MLCC alone has a higher-order resonance mode that becomes an LC resonator, a commercially available MLCC can be used without creating a dedicated resonator.
  • the LC resonator 40J is disposed close to the antenna elements 20JA and 20JB, the magnetic coupling between the antenna elements 20JA and 20JB and the LC resonator 40J becomes strong. For this reason, even if the number of LC resonators 40J is as small as 1 to several, the effect of suppressing SAR can be obtained.
  • the LC resonator 40J is arranged so as to be closer to the human body than the antenna elements 20JA and 20JB, the electromagnetic wave from the antenna elements 20JA and 20JB is attenuated when exceeding the LC resonator 40J. SAR can be suppressed.
  • FIG. 31 is a diagram schematically illustrating the structure of the antenna according to the ninth embodiment.
  • a plurality of (48 in this case) LC resonators 40KA and 40KB are formed of the antenna element 20KB. It is mounted in the vicinity (surface opposite to the side on which the antenna element of the printed board 100K is formed).
  • the LC resonator 40KA and the LC resonator 40KB are mounted alternately at an angle of 90 degrees.
  • the distance between the antenna element 20KB and the LC resonators 40KA and 40KB is 3 mm.
  • FIG. 32 is a graph showing the relationship between the SAR and the frequency of the antenna according to the ninth embodiment.
  • a broken line indicates a case where the antenna of FIG. 31 does not include the LC resonators 40KA and 40KB
  • a solid line indicates a case where the antenna of FIG. 31 includes the LC resonators 40KA and 40KB.
  • the antenna elements 20KA and 20KB of the present embodiment have a shape that matches the frequency of the 1.9 GHz band.
  • the SAR value is high.
  • the SAR value is about 0.2 to 1.1 W / in comparison with the case where the LC resonators 40KA and 40KB are not included. It has decreased by about kg.
  • the LC resonator is arranged on the surface of the printed board 100K opposite to the side on which the antenna element is formed. For this reason, the degree of freedom in the arrangement and mounting direction of the LC resonator is increased.
  • the distance between the antenna element and the LC resonator is larger in the ninth embodiment than in the eighth embodiment.
  • the ninth embodiment uses more LC resonators than the eighth embodiment. Thereby, in the ninth embodiment, the same SAR suppression effect as that in the eighth embodiment can be obtained.
  • the LC resonators 40KA and 40KB are periodically arranged at an angle of 90 degrees as in this embodiment, so that the SAR suppression effect is enhanced. It is effective for.
  • the LC resonators 40KA and 40KB are arranged so as to be closer to the human body than the antenna elements 20KA and 20KB, electromagnetic waves from the antenna elements 20KA and 20KB are attenuated when they exceed the LC resonators 40KA and 40KB. SAR can be more effectively suppressed.
  • FIG. 27A and FIG. 27B are diagrams (conventional and the present example) for explaining the effects of the present embodiment, respectively.
  • the SAR is configured to be suppressed with respect to all frequencies so that the SAR becomes 2 W / kg or less which is the reference value of the radio equipment rule. .
  • the SAR in the band where the SAR is originally 2 W / kg or less also decreases, the transmission / reception performance of the antenna in such a band has been lowered.
  • FIG. 30 of the present embodiment and FIG. 27B schematically showing FIG. 32 of the ninth embodiment SAR at some frequencies is suppressed in this embodiment. So that the SAR is 2 W / kg. For this reason, the SAR is suppressed only for the band that needs to be suppressed, and the SAR need not be suppressed for the band that does not need to be suppressed. Therefore, the SAR is suppressed to the minimum necessary without lowering the antenna transmission / reception performance more than necessary. be able to.
  • the distance between the resonator and the antenna element may be adjusted.
  • the distance between the resonator and the antenna element may be at least less than 1 ⁇ 4 of the resonance wavelength of the antenna element, but the shorter the distance, the better.
  • the distance between the director and the radiator of the Yagi-Uda antenna and the distance between the radiator and the reflector will be wider, and even the Yagi-Uda antenna can be used as a portable communication terminal. Since it is too large to apply, it is difficult to use it for a portable communication terminal.
  • the frequency may change, and the reflector may function as a director. In this case, many electromagnetic waves are radiated from the radiator to the reflector side, and the SAR on the side where SAR is desired to be increased increases.
  • the resonator (coil) of the above-described embodiment has a size of 1/4 or less of the resonance wavelength of the antenna element.
  • the distance of a resonator and an antenna element can be shortened.
  • re-radiation from the resonator itself can be almost eliminated, and SAR can be suppressed only in the target frequency band.
  • the resonator mounting space can be reduced, the influence on the size reduction of the portable communication terminal due to the mounting of the resonator can be reduced.
  • a resonator is provided for one antenna.
  • the present invention is not limited to this, and when a plurality of antennas are provided, a resonator may be provided for each antenna.
  • a resonator is provided on the side that is closer to the human body than the antenna element during communication when the antenna is incorporated in a mobile communication terminal” means that a transmitter used for voice communication in a mobile communication terminal And a resonator is provided on the side closer to the human body than the antenna element when the receiver is brought close to the user's mouth and ear during voice communication, and the display used for data communication in the portable communication terminal is data A resonator is provided on the side closer to the human body than the antenna element when directed toward the user's eye during communication.
  • a resonator for example, coil
  • coils are arranged at regular intervals as shown in FIGS. 1A to 1D, FIG. 3, FIG. 7A to FIG. 7D, FIG. 10, FIG. 15, FIG. I did it. However, it is not necessary to arrange them at regular intervals.
  • the SAR suppression effect is evenly closer when arranged at equal intervals.
  • the SAR values that are sparsely suppressed need only be equal to or less than the reference value 2 W / kg without being arranged at equal intervals.
  • the resonator When the resonator (coil) is half the wavelength of the electromagnetic wave radiated from the antenna element, the resonator functions as a metamaterial. Thereby, the magnetic permeability and dielectric constant of the resonator become negative, and electromagnetic field radiation can be further suppressed.
  • the above-described mobile communication terminal may be any terminal provided with an antenna and capable of being carried by a person, and may be, for example, a smartphone or a conventional mobile phone. However, it may be a tablet terminal that has a data communication function but no call function.

Abstract

An antenna, which can be incorporated in a mobile communication terminal, comprises: an antenna element (20); and resonators (coils 10) each of which is placed at a position remote from the antenna element by a distance of less than a quarter of the resonance wavelength thereof and each of which is isolated from the other parts and each of which resonates in the vicinity of the resonance wavelength of the antenna element. In addition to the antenna element, nothing is required except the resonators each of which is isolated at a position of less than the quarter of the resonance wavelength of the antenna element. Therefore, the layout and structure of the antenna are not restricted. Since each resonator magnetically couples, in the vicinity of the resonance wavelength of the resonator, to the antenna element, it is possible to suppress, to the bare minimum, the SAR, which is on the human body side, of the electromagnetic waves in the vicinity of that wavelength. Since the electromagnetic waves other than that wavelength are not suppressed, the degradation of transmission/reception performances of the antenna can be suppressed.

Description

アンテナ、アンテナ構造、および、共振器Antenna, antenna structure, and resonator
 この発明は、アンテナ、アンテナ構造、および、共振器に関し、特に、携帯通信端末に組込可能なアンテナ、当該アンテナのアンテナ構造、および、当該アンテナに用いられる共振器に関する。 The present invention relates to an antenna, an antenna structure, and a resonator, and more particularly to an antenna that can be incorporated into a mobile communication terminal, an antenna structure of the antenna, and a resonator used for the antenna.
 近年、電磁波が人体に与える影響について懸念されている。電磁波が人体に与える影響についての指標の1つにSAR(Specific Absorption Rate、比吸収率)がある。SARとは、無線設備規則第14条の2よれば、電磁界にさらされたことによって任意の生体組織10gが任意の6分間に吸収したエネルギーを10gで除し、さらに6分で除して得た値をいう。SARの単位は、W/kgである。SARにより、電磁波を発する機器から人体の組織が一定時間にどのくらいのエネルギーを受けたのかが分かる。 Recently, there are concerns about the effects of electromagnetic waves on the human body. One of the indicators of the influence of electromagnetic waves on the human body is SAR (Specific Absorption Rate). According to Article 14-2 of the Radio Equipment Regulations, SAR is obtained by dividing the energy absorbed by any living tissue 10g by exposure to an electromagnetic field in any 6 minutes by 10g, and further dividing by 6 minutes. It refers to the value obtained. The unit of SAR is W / kg. SAR can tell how much energy a human tissue receives from a device that emits electromagnetic waves in a certain period of time.
 人体に許容される電磁波の基準としては、「全身平均SAR」および「局所SAR」の2つの基準値が定められている。このうち「局所SAR」は、無線設備から発射された電波の人体頭部におけるSARである。SARは、無線設備規則第14条の2によって、原則、2W/kg以下とすることが定められている。 As the standard of electromagnetic waves allowed for the human body, two standard values of “whole body average SAR” and “local SAR” are defined. Among these, “local SAR” is SAR on the human head of radio waves emitted from radio equipment. As a rule, SAR is set to 2 W / kg or less according to Article 14-2 of the Radio Equipment Regulations.
 また、最近、携帯通信端末において、複数種類の通信方式が同時に用いられる場合がある。たとえば、CDMA(Code Division Multiple Access、符号分割多元接続)方式などの方式で音声通信を行ないながら、Wi-Fi(Wireless Fidelity)方式またはLTE(Long Term Evolution)方式などの別の種類の方式でデータ通信を行なう場合がある。 Recently, a plurality of types of communication methods may be used at the same time in portable communication terminals. For example, while performing voice communication using a method such as CDMA (Code Division Multiple Access), data is transmitted using another type of method such as Wi-Fi (Wireless Fidelity) or LTE (Long Term Evolution). Communication may be performed.
 図28は、SARの合成について説明するための図である。このように複数種類の通信方式が同時に用いられる場合、図28を参照して、一方の通信方式での通信のSARの分布(図のSAR分布1)と他方の通信方式での通信のSARの分布(図のSAR分布2)とを加算した合成分布が、当該携帯通信端末のSARの分布となる。この合成分布のSARが、上述の基準値2W/kg以下でなければならないので、基準を満たすことが以前よりも難しくなっている。 FIG. 28 is a diagram for explaining the synthesis of SAR. When a plurality of types of communication methods are used at the same time, referring to FIG. 28, the SAR distribution of communication in one communication method (SAR distribution 1 in the figure) and the SAR of communication in the other communication method are used. The combined distribution obtained by adding the distribution (SAR distribution 2 in the figure) is the SAR distribution of the mobile communication terminal. Since the SAR of this composite distribution must be equal to or less than the above-mentioned reference value 2 W / kg, it is more difficult to satisfy the reference than before.
 SARを低減する方法としては、たとえば、以下のものがある。
 (1) アンテナの構造および取付位置を工夫する方法(たとえば、特許文献1から5参照)。
Examples of the method for reducing the SAR include the following.
(1) A method of devising the structure and mounting position of an antenna (for example, see Patent Documents 1 to 5).
 (2) 磁性体などでアンテナの頭部側への放射電磁波を低減させる方法(たとえば、特許文献6から9参照)。 (2) A method of reducing radiated electromagnetic waves to the head side of the antenna with a magnetic material or the like (for example, see Patent Documents 6 to 9)
 (3) 無給電素子などでアンテナからの電磁波を反射させる方法(たとえば、特許文献10参照)。 (3) A method of reflecting electromagnetic waves from an antenna with a parasitic element or the like (for example, see Patent Document 10).
 (4) 誘電体によって指向性を変えて、アンテナの近傍の電磁界の強度を下げる方法(たとえば、特許文献11参照)。 (4) A method of reducing the strength of the electromagnetic field in the vicinity of the antenna by changing the directivity using a dielectric (see, for example, Patent Document 11).
 (5) 人体の近接を検知したときまたはSAR値が基準値を超えたときにアンテナの送受信性能を下げる方法(たとえば、特許文献12,13参照)。 (5) A method of reducing the antenna transmission / reception performance when proximity of a human body is detected or when the SAR value exceeds a reference value (see, for example, Patent Documents 12 and 13).
 また、SARを低減させるための方法ではないが、インダクタとキャパシタとで構成した左手系伝送線路をアンテナの近傍に配置することでアンテナの指向性を制御するものがあった(特許文献14参照)。 Moreover, although it is not a method for reducing SAR, there is one that controls the directivity of the antenna by arranging a left-handed transmission line composed of an inductor and a capacitor in the vicinity of the antenna (see Patent Document 14). .
 また、空洞共振器をアンテナの周囲に配置することでアンテナの指向性を制御するものがあった(特許文献15参照)。 In addition, there is one that controls the directivity of the antenna by arranging a cavity resonator around the antenna (see Patent Document 15).
特開2013-74361号公報JP 2013-74361 A 特開2009-253886号公報JP 2009-253886 A 特開2009-124635号公報JP 2009-124635 A 特開2006-311449号公報JP 2006-31449 A 特開2006-222604号公報JP 2006-222604 A 特開2013-123186号公報JP2013-123186A 特開2005-124043号公報JP 2005-124043 A 特開2005-93908号公報JP 2005-93908 A 特開2002-198850号公報JP 2002-198850 A 特開2008-109506号公報JP 2008-109506 A 特開2010-161441号公報JP 2010-161441 A 特開2013-162413号公報JP 2013-162413 A 特開2013-143574号公報JP 2013-143574 A 特開2010-212980号公報Japanese Patent Application Laid-Open No. 2010-212980 特開2010-193397号公報JP 2010-193397 A
 しかし、特許文献1から5の方法によれば、アンテナのレイアウトや構造に制約がかかるといった問題があった。 However, according to the methods of Patent Documents 1 to 5, there is a problem that the layout and structure of the antenna are restricted.
 特許文献6から11の方法によれば、すべての帯域に亘って人体側の送受信性能が落ちるといった問題があった。特に、特許文献10の方法では、無給電素子の共振周波数でのSARが逆に大きくなるといった問題があった。 According to the methods of Patent Documents 6 to 11, there is a problem that the transmission / reception performance on the human body side is lowered over the entire band. In particular, the method of Patent Document 10 has a problem that the SAR at the resonance frequency of the parasitic element is increased.
 特許文献12,13の方法によれば、全方向へのアンテナの送受信性能を落としてしまうといった問題があった。 According to the methods of Patent Documents 12 and 13, there is a problem that the transmission / reception performance of the antenna in all directions is deteriorated.
 特許文献14の方法によれば、左手系伝送線路自体がアンテナにもなり得るので、ある周波数では指向性を制御できるが、左手系伝送線路の動作周波数では逆方向に放射するといった問題があった。このような問題は、従来の八木宇田アンテナでも起こり得る。 According to the method of Patent Document 14, since the left-handed transmission line itself can also be an antenna, the directivity can be controlled at a certain frequency, but there is a problem in that it radiates in the opposite direction at the operating frequency of the left-handed transmission line. . Such a problem can also occur in the conventional Yagi-Uda antenna.
 特許文献15の方法によれば、空洞共振器を用いるため、特許文献14の方法と同様に放射する周波数帯があるといった問題があった。また、半波長程度のサイズとなるためサイズが大きくなり、携帯通信端末に用いることができないといった問題があった。 According to the method of Patent Document 15, since a cavity resonator is used, there is a problem that there is a frequency band that radiates in the same manner as in the method of Patent Document 14. In addition, since the size is about half a wavelength, there is a problem that the size becomes large and cannot be used for a mobile communication terminal.
 この発明は、上述の問題点を解決するためになされたものであり、この発明の目的の1つは、アンテナのレイアウトや構造に制約を受けずに、アンテナの送受信性能の低下および人体側のSARを必要最小限に抑制することが可能なアンテナ、アンテナ構造、および、共振器を提供することである。 The present invention has been made to solve the above-described problems, and one of the objects of the present invention is to reduce the transmission / reception performance of the antenna and reduce the human body side without being restricted by the layout and structure of the antenna. To provide an antenna, an antenna structure, and a resonator capable of suppressing SAR to the minimum necessary.
 上述の目的を達成するために、この発明のある局面によれば、アンテナは、携帯通信端末に組込可能なアンテナであって、アンテナ素子と、アンテナ素子からアンテナ素子の共振波長の1/4の距離未満の位置に設けられ、電気的に他の部分と絶縁されアンテナ素子の共振波長の近傍の波長で共振する1または複数の共振器とを備える。 In order to achieve the above object, according to one aspect of the present invention, an antenna is an antenna that can be incorporated into a mobile communication terminal, and includes an antenna element and a resonance wavelength of the antenna element to ¼ of the antenna element. And one or a plurality of resonators that are electrically insulated from other portions and resonate at a wavelength near the resonance wavelength of the antenna element.
 この発明に従えば、アンテナ素子の他には、アンテナ素子からアンテナ素子の共振波長の1/4の距離未満の位置に、他の部分と絶縁された共振器を備えるだけでよい。このため、アンテナのレイアウトや構造に制約を受けない。また、共振器の共振波長の近辺の波長で、共振器がアンテナ素子と磁気結合するので、この波長の近辺の電磁波の人体側のSARを必要最小限に抑制することができる。また、この波長以外の電磁波は抑制されないので、アンテナの送受信性能の低下を抑制することができる。 According to the present invention, in addition to the antenna element, it is only necessary to provide a resonator that is insulated from other parts at a position less than a quarter of the resonance wavelength of the antenna element from the antenna element. For this reason, there is no restriction on the layout and structure of the antenna. Further, since the resonator is magnetically coupled to the antenna element at a wavelength in the vicinity of the resonance wavelength of the resonator, the SAR on the human body side of the electromagnetic wave in the vicinity of this wavelength can be suppressed to the minimum necessary. Moreover, since electromagnetic waves other than this wavelength are not suppressed, the fall of the antenna transmission / reception performance can be suppressed.
 その結果、アンテナのレイアウトや構造に制約を受けずに、アンテナの送受信性能の低下および人体側のSARを必要最小限に抑制することが可能なアンテナを提供することができる。 As a result, it is possible to provide an antenna that can suppress degradation of antenna transmission / reception performance and SAR on the human body to the minimum necessary without being restricted by the layout and structure of the antenna.
 好ましくは、共振器は、アンテナが携帯通信端末に組込まれるときに、通信時にアンテナ素子よりも人体に近くになる頻度が高い側に設けられる。この発明に従えば、人体側のSARをさらに必要最小限に抑制することができる。 Preferably, the resonator is provided on the side where the frequency of becoming closer to the human body than the antenna element during communication when the antenna is incorporated into the mobile communication terminal. According to the present invention, the SAR on the human body side can be further suppressed to the necessary minimum.
 好ましくは、共振器は、コイルであり、アンテナ素子の磁界の磁力線がコイルを貫くように設けられる。この発明に従えば、安価なコイル(たとえば、巻線型のチップコイル)を用いることができる。その結果、アンテナの製造コストを下げることができる。 Preferably, the resonator is a coil and is provided so that the magnetic field lines of the magnetic field of the antenna element penetrate the coil. According to the present invention, an inexpensive coil (for example, a wound chip coil) can be used. As a result, the manufacturing cost of the antenna can be reduced.
 さらに好ましくは、複数の共振器は、コイル軸が略平行になるように設けられる。この発明に従えば、SARの抑制の効果が、コイル軸が略直交であると弱まるが、略平行であれば弱めないようにすることができる。その結果、SARの抑制効果を弱めないようにすることができる。 More preferably, the plurality of resonators are provided such that the coil axes are substantially parallel. According to the present invention, the effect of suppressing the SAR is weakened if the coil axes are substantially orthogonal, but can be prevented from being weakened if they are substantially parallel. As a result, the SAR suppression effect can be prevented from being weakened.
 さらに好ましくは、複数の共振器のそれぞれの共振波長は、略同じであり、複数の共振器の一部および残りの共振器は、それぞれ、コイル軸が略直交するように設けられる。この発明に従えば、SARの抑制の効果を弱めるように調整することができる。 More preferably, the resonance wavelengths of the plurality of resonators are substantially the same, and a part of the plurality of resonators and the remaining resonators are provided so that the coil axes are substantially orthogonal to each other. According to this invention, it can adjust so that the effect of SAR suppression may be weakened.
 さらに好ましくは、複数の共振器の共振波長には、第1の共振波長および第2の共振波長があり、第1の共振波長の共振器および第2の共振波長の共振器は、それぞれのコイル軸が略直交するように設けられる。 More preferably, the resonance wavelengths of the plurality of resonators include a first resonance wavelength and a second resonance wavelength, and the resonators having the first resonance wavelength and the resonators having the second resonance wavelength are in respective coils. The axes are provided so as to be substantially orthogonal.
 第1の共振波長の共振器および第2の共振波長の共振器のコイル軸が直交していないと、互いに結合してしまい、いずれかの共振器の共振波長の近辺でしかSARの抑制効果が得られない。この発明に従えば、第1の共振波長の共振器および第2の共振波長の共振器とが結合しない。その結果、第1の共振波長の近辺から第2の共振波長の近辺までの周波数帯でSARを抑制することができる。 If the coil axes of the first resonance wavelength resonator and the second resonance wavelength resonator are not orthogonal to each other, they are coupled to each other, and the SAR suppression effect is effective only in the vicinity of the resonance wavelength of one of the resonators. I can't get it. According to the present invention, the resonator having the first resonance wavelength and the resonator having the second resonance wavelength are not coupled. As a result, SAR can be suppressed in the frequency band from the vicinity of the first resonance wavelength to the vicinity of the second resonance wavelength.
 好ましくは、共振器は、LC共振器である。この発明に従えば、安価なLC共振器(たとえば、MLCC)を用いることができる。その結果、アンテナの製造コストを下げることができる。 Preferably, the resonator is an LC resonator. According to the present invention, an inexpensive LC resonator (for example, MLCC) can be used. As a result, the manufacturing cost of the antenna can be reduced.
 この発明の他の局面によれば、アンテナ構造は、携帯通信端末に組込可能なアンテナのアンテナ構造であって、電気的に他の部分と絶縁されアンテナ素子の共振波長の近傍の波長で共振する1または複数の共振器が、アンテナ素子からアンテナ素子の共振波長の1/4の距離未満の位置に設けられる。 According to another aspect of the present invention, the antenna structure is an antenna structure of an antenna that can be incorporated into a mobile communication terminal, and is electrically insulated from other parts and resonates at a wavelength near the resonance wavelength of the antenna element. One or a plurality of resonators are provided at a position less than a distance of 1/4 of the resonance wavelength of the antenna element from the antenna element.
 その結果、アンテナのレイアウトや構造に制約を受けずに、アンテナの送受信性能の低下およびSARを必要最小限に抑制することが可能なアンテナ構造を提供することができる。 As a result, it is possible to provide an antenna structure capable of suppressing deterioration in antenna transmission / reception performance and SAR to the minimum necessary without being restricted by the antenna layout and structure.
 この発明のさらに他の局面によれば、携帯通信端末に組込可能なアンテナに用いられる共振器は、アンテナ素子からアンテナ素子の共振波長の1/4の距離未満の位置に設けられ、電気的に他の部分と絶縁されアンテナ素子の共振波長の近傍の波長で共振する。 According to still another aspect of the present invention, a resonator used for an antenna that can be incorporated into a portable communication terminal is provided at a position less than a quarter of the resonance wavelength of the antenna element from the antenna element, and is electrically It is insulated from other parts and resonates at a wavelength near the resonance wavelength of the antenna element.
 その結果、アンテナのレイアウトや構造に制約を受けずに、アンテナの送受信性能の低下およびSARを必要最小限に抑制することが可能なアンテナに用いられる共振器を提供することができる。 As a result, it is possible to provide a resonator used for an antenna capable of suppressing the transmission / reception performance of the antenna and the SAR to the minimum necessary without being restricted by the layout and structure of the antenna.
第1の実施の形態に係るアンテナの構造の概略を示す図(平面図)である。It is a figure (plan view) showing the outline of the structure of the antenna according to the first embodiment. 第1の実施の形態に係るアンテナの構造の概略を示す図(側面図)である。It is a figure (side view) which shows the outline of the structure of the antenna which concerns on 1st Embodiment. 第1の実施の形態に係るアンテナの構造の概略を示す図(背面図)である。It is a figure (rear view) which shows the outline of the structure of the antenna which concerns on 1st Embodiment. 第1の実施の形態に係るアンテナの構造の概略を示す図(正面図)である。It is a figure (front view) which shows the outline of the structure of the antenna which concerns on 1st Embodiment. 第1の実施の形態に係るアンテナのSARと周波数との関係を示すグラフである。It is a graph which shows the relationship between SAR and the frequency of the antenna which concerns on 1st Embodiment. 第2の実施の形態に係るアンテナの構造の概略を示す図である。It is a figure which shows the outline of the structure of the antenna which concerns on 2nd Embodiment. 第2の実施の形態に係るアンテナの反射特性を示すグラフである。It is a graph which shows the reflective characteristic of the antenna which concerns on 2nd Embodiment. 第2の実施の形態における2.1GHzでの3次元の放射パターンを示す図である。It is a figure which shows the three-dimensional radiation pattern in 2.1 GHz in 2nd Embodiment. 第2の実施の形態における2.4GHzでの3次元の放射パターンを示す図である。It is a figure which shows the three-dimensional radiation pattern in 2.4 GHz in 2nd Embodiment. 第3の実施の形態に係るアンテナの構造の概略を示す図(平面図)である。It is a figure (plan view) which shows the outline of the structure of the antenna which concerns on 3rd Embodiment. 第3の実施の形態に係るアンテナの構造の概略を示す図(側面図)である。It is a figure (side view) which shows the outline of the structure of the antenna which concerns on 3rd Embodiment. 第3の実施の形態に係るアンテナの構造の概略を示す図(背面図)である。It is a figure (rear view) which shows the outline of the structure of the antenna which concerns on 3rd Embodiment. 第3の実施の形態に係るアンテナの構造の概略を示す図(正面図)である。It is a figure (front view) which shows the outline of the structure of the antenna which concerns on 3rd Embodiment. 第3の実施の形態に係るアンテナのSARと周波数との関係を示すグラフである。It is a graph which shows the relationship between SAR and the frequency of the antenna which concerns on 3rd Embodiment. 第4の実施の形態に係るアンテナの構造の概略を示す第1の図(プリント基板の平面図)である。It is the 1st figure (plan view of a printed circuit board) showing the outline of the structure of the antenna concerning a 4th embodiment. 第4の実施の形態に係るアンテナの構造の概略を示す第1の図(プリント基板の背面図)である。It is the 1st figure (back view of a printed circuit board) showing the outline of the structure of the antenna concerning a 4th embodiment. 第4の実施の形態に係るアンテナの構造の概略を示す第1の図(プリント基板の正面図)である。It is the 1st figure (front view of a printed circuit board) showing the outline of the structure of the antenna concerning a 4th embodiment. 第4の実施の形態に係るアンテナの構造の概略を示す第1の図(筐体の平面図)である。It is the 1st figure (plan view of a case) showing the outline of the structure of the antenna concerning a 4th embodiment. 第4の実施の形態に係るアンテナの構造の概略を示す第1の図(筐体の正面図)である。It is a 1st figure (front view of a housing | casing) which shows the outline of the structure of the antenna which concerns on 4th Embodiment. 第4の実施の形態に係るアンテナの構造の概略を示す第2の図である。It is a 2nd figure which shows the outline of the structure of the antenna which concerns on 4th Embodiment. 第5の実施の形態に係るアンテナ間の結合について説明するための第1の図である。It is a 1st figure for demonstrating the coupling between the antennas which concern on 5th Embodiment. 第5の実施の形態に係るアンテナ間の結合について説明するための第2の図である。It is a 2nd figure for demonstrating the coupling between the antennas which concern on 5th Embodiment. 第5の実施の形態に係るアンテナ間の結合について説明するための第3の図である。It is a 3rd figure for demonstrating the coupling between the antennas which concern on 5th Embodiment. 第5の実施の形態に係るアンテナ間の結合の比較結果を示すグラフである。It is a graph which shows the comparison result of the coupling between the antennas concerning a 5th embodiment. 第6の実施の形態に係るSARの抑制量調整について説明するためのアンテナの構造の概略を示す第1の図である。It is a 1st figure which shows the outline of the structure of the antenna for demonstrating the suppression amount adjustment of SAR which concerns on 6th Embodiment. 第6の実施の形態に係るSARの抑制量調整について説明するためのアンテナの放射特性を示す第1の図である。It is a 1st figure which shows the radiation characteristic of the antenna for demonstrating the suppression amount adjustment of SAR which concerns on 6th Embodiment. 第6の実施の形態に係るSARの抑制量調整について説明するためのアンテナのSARと周波数との関係を示す第1の図である。It is a 1st figure which shows the relationship between the SAR of an antenna, and a frequency for demonstrating the suppression amount adjustment of SAR which concerns on 6th Embodiment. 第6の実施の形態に係るSARの抑制量調整について説明するためのアンテナの構造の概略を示す第2の図である。It is a 2nd figure which shows the outline of the structure of the antenna for demonstrating the suppression amount adjustment of SAR which concerns on 6th Embodiment. 第6の実施の形態に係るSARの抑制量調整について説明するためのアンテナの放射特性を示す第2の図である。It is a 2nd figure which shows the radiation characteristic of the antenna for demonstrating the suppression amount adjustment of SAR which concerns on 6th Embodiment. 第6の実施の形態に係るSARの抑制量調整について説明するためのアンテナのSARと周波数との関係を示す第2の図である。It is a 2nd figure which shows the relationship between the SAR of an antenna, and a frequency for demonstrating the suppression amount adjustment of SAR which concerns on 6th Embodiment. 第7の実施の形態に係るSARの抑制の広帯域化について説明するためのアンテナの構造の概略を示す第1の図である。It is a 1st figure which shows the outline of the structure of the antenna for demonstrating the broadband of the suppression of SAR which concerns on 7th Embodiment. 第7の実施の形態に係るSARの抑制の広帯域化について説明するためのアンテナの放射特性を示す第1の図である。It is a 1st figure which shows the radiation characteristic of the antenna for demonstrating the broadbanding of the suppression of SAR which concerns on 7th Embodiment. 第7の実施の形態に係るSARの抑制の広帯域化について説明するためのアンテナのSARと周波数との関係を示す第1の図である。It is a 1st figure which shows the relationship between the SAR of an antenna, and a frequency for demonstrating the broadbanding of the suppression of SAR which concerns on 7th Embodiment. 第7の実施の形態に係るSARの抑制の広帯域化について説明するためのアンテナの構造の概略を示す第2の図である。It is a 2nd figure which shows the outline of the structure of the antenna for demonstrating the broadbanding of the suppression of SAR which concerns on 7th Embodiment. 第7の実施の形態に係るSARの抑制の広帯域化について説明するためのアンテナの放射特性を示す第2の図である。It is a 2nd figure which shows the radiation characteristic of the antenna for demonstrating the broadbanding of the suppression of SAR which concerns on 7th Embodiment. 第7の実施の形態に係るSARの抑制の広帯域化について説明するためのアンテナのSARと周波数との関係を示す第2の図である。It is a 2nd figure which shows the relationship between the SAR of an antenna, and a frequency for demonstrating the broadbanding of the suppression of SAR which concerns on 7th Embodiment. 本実施の形態の効果を説明するための図(従来)である。It is a figure (conventional) for demonstrating the effect of this Embodiment. 本実施の形態の効果を説明するための図(本実施例)である。It is a figure (this example) for demonstrating the effect of this Embodiment. SARの合成について説明するための図である。It is a figure for demonstrating the synthesis | combination of SAR. 第8の実施の形態に係るアンテナの構造の概略を示す図である。It is a figure which shows the outline of the structure of the antenna which concerns on 8th Embodiment. 第8の実施の形態に係るアンテナのSARと周波数との関係を示すグラフである。It is a graph which shows the relationship between SAR and the frequency of the antenna which concerns on 8th Embodiment. 第9の実施の形態に係るアンテナの構造の概略を示す図である。It is a figure which shows the outline of the structure of the antenna which concerns on 9th Embodiment. 第9の実施の形態に係るアンテナのSARと周波数との関係を示すグラフである。It is a graph which shows the relationship between SAR and the frequency of the antenna which concerns on 9th Embodiment.
 [第1の実施の形態]
 以下、この発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, about the same or equivalent part in a figure, the same code | symbol is attached | subjected and the description is not repeated.
 図1Aから図1Dは、それぞれ、第1の実施の形態に係るアンテナの構造の概略を示す図(平面図、側面図、背面図および正面図)である。図1Aから図1Dを参照して、第1の実施の形態のアンテナは、プリント基板100に形成され、アンテナ素子20とグランド30とを含む。図示はしていないがアンテナ素子20には、給電点が設けられ、給電点から給電される。 1A to 1D are diagrams (plan view, side view, rear view, and front view) showing an outline of the structure of the antenna according to the first embodiment. 1A to 1D, the antenna according to the first embodiment is formed on a printed circuit board 100 and includes an antenna element 20 and a ground 30. Although not shown, the antenna element 20 is provided with a feeding point and is fed from the feeding point.
 通常は、上述の構成でアンテナとして機能する。この実施の形態においては、アンテナは、さらに、共振器としてのコイル10を含む。この実施の形態においては、コイル10としては、チップコイルを用いる。以下の実施の形態でも、コイルとしてチップコイルを用いる。チップコイルは、汎用品で入手が容易であり安価であるので、SARを減少させるためのアンテナの製造コストの増加を抑えることができる。また、チップコイルは、基板への実装が容易である。 Normally, it functions as an antenna with the above configuration. In this embodiment, the antenna further includes a coil 10 as a resonator. In this embodiment, a chip coil is used as the coil 10. In the following embodiments, a chip coil is used as the coil. Since the chip coil is a general-purpose product that is easily available and inexpensive, an increase in the manufacturing cost of the antenna for reducing the SAR can be suppressed. Further, the chip coil can be easily mounted on the substrate.
 なお、共振器は、コイルに替えて、LC共振器、たとえば、MLCC(Multi-Layer Ceramic Capacitor、積層セラミックコンデンサ)であってもよい。MLCCを用いた場合も、汎用品で入手が容易であり安価であるのでコストダウンを図ることができ、小型化を図ることができ、基板への実装も容易である。 The resonator may be an LC resonator, for example, an MLCC (Multi-Layer Ceramic Capacitor, multilayer ceramic capacitor) instead of the coil. When MLCC is used, it is a general-purpose product that is easy to obtain and inexpensive, so that cost can be reduced, miniaturization can be achieved, and mounting on a substrate is also easy.
 コイル10は、他の部分と電気的に絶縁されている。この実施の形態においては、コイル10は、プリント基板100のアンテナ素子20が形成されている側と反対側の面に搭載される。このため、アンテナの構造および配置に影響を与えないようにすることができる。なお、コイル10は、図では複数(ここでは5つ)搭載されているが、これに限定されず、1つであってもよい。 The coil 10 is electrically insulated from other parts. In this embodiment, the coil 10 is mounted on the surface of the printed board 100 opposite to the side on which the antenna element 20 is formed. For this reason, it is possible not to affect the structure and arrangement of the antenna. In addition, although the coil 10 is mounted in the figure (five here), it is not limited to this and may be one.
 また、この実施の形態では、アンテナ素子20の電流が流れる方向である長手方向を軸とした右ネジを電流の方向に捻じ込むときのネジの回転する方向に磁界が生じる。コイル10は、アンテナ素子20が生じさせる磁界の磁力線がコイル10を貫くように、コイル10の軸がプリント基板100に平行でアンテナ素子20の長手方向と垂直な方向となるように搭載される。これにより、アンテナ素子20およびコイル10が磁気結合する。 In this embodiment, a magnetic field is generated in the direction in which the screw rotates when the right screw about the longitudinal direction, which is the direction in which the current of the antenna element 20 flows, is screwed in the current direction. The coil 10 is mounted so that the axis of the coil 10 is parallel to the printed circuit board 100 and perpendicular to the longitudinal direction of the antenna element 20 so that the magnetic field lines generated by the antenna element 20 penetrate the coil 10. Thereby, the antenna element 20 and the coil 10 are magnetically coupled.
 なお、コイル10は、アンテナ素子20が生じさせる磁界の磁力線がコイル10を貫くように設けられるのであれば、他の箇所に異なる方向で搭載されるようにしてもよい。 It should be noted that the coil 10 may be mounted in another direction in a different direction as long as the magnetic field lines generated by the antenna element 20 are provided so as to penetrate the coil 10.
 図2は、第1の実施の形態に係るアンテナのSARと周波数との関係を示すグラフである。図2を参照して、破線は、図1Aから図1Dのアンテナにおいてコイル10を含まない場合を示し、実線は、図1Aから図1Dのアンテナにおいてコイル10を含む場合を示す。本実施の形態のアンテナ素子20は、1.9GHzの周波数に合わせた形状となっている。また、本実施の形態のコイル10は、共振周波数が約2.0GHzである。 FIG. 2 is a graph showing the relationship between the SAR and the frequency of the antenna according to the first embodiment. Referring to FIG. 2, a broken line indicates a case where the coil 10 is not included in the antenna of FIGS. 1A to 1D, and a solid line indicates a case where the coil 10 is included in the antenna of FIGS. 1A to 1D. The antenna element 20 of the present embodiment has a shape that matches the frequency of 1.9 GHz. Further, the coil 10 of the present embodiment has a resonance frequency of about 2.0 GHz.
 図2のグラフで示すように、2.0GHz近辺以外の電波については、コイル10を含む場合と含まない場合とでSARの値にほとんど差はないが、2.0GHzの電波については、コイル10を含まない場合と比較して含む場合は、SARの値が約0.4W/kg、減少している。また、コイル10は、コイルであるので吸収したエネルギを再放射することもほとんどない。 As shown in the graph of FIG. 2, there is almost no difference in the SAR value between the case of including the coil 10 and the case of not including the coil 10 for radio waves other than the vicinity of 2.0 GHz. When compared with the case of not including SAR, the value of SAR is reduced by about 0.4 W / kg. Moreover, since the coil 10 is a coil, it hardly re-radiates the absorbed energy.
 このように、コイル10が負の透磁率となる周波数では、アンテナ素子20からの電磁波は、その一部がアンテナ素子20側に反射される。さらに、コイル10における損失やアンテナのマッチング変化による給電側への反射がある。このため、アンテナ素子20のコイル10側への当該周波数近傍の電磁波の伝送を抑制することができ、SARを抑制することができる。 Thus, at a frequency at which the coil 10 has a negative magnetic permeability, a part of the electromagnetic wave from the antenna element 20 is reflected to the antenna element 20 side. Furthermore, there is a reflection on the power feeding side due to a loss in the coil 10 and an antenna matching change. For this reason, transmission of the electromagnetic wave of the said frequency vicinity to the coil 10 side of the antenna element 20 can be suppressed, and SAR can be suppressed.
 また、コイル10がアンテナ素子20よりも人体に近くなるように配置されることで、アンテナ素子20からの電磁波がコイル10を越える際に減衰するため、さらに効果的にSARを抑制することができる。 Further, since the coil 10 is arranged so as to be closer to the human body than the antenna element 20, the electromagnetic wave from the antenna element 20 is attenuated when it exceeds the coil 10, so that SAR can be more effectively suppressed. .
 [第2の実施の形態]
 図3は、第2の実施の形態に係るアンテナの構造の概略を示す図である。図3を参照して、第2の実施の形態のアンテナは、アンテナ素子20Dと、第1の実施の形態のコイル10と同様のコイル10Dとを含む。この実施の形態のアンテナ素子20Dは、ダイポールアンテナの形状である。この実施の形態では、アンテナ素子20Dの電流が流れる方向である長手方向(図のX軸方向)を軸とした右ネジを電流の方向に捻じ込むときのネジの回転する方向に磁界が生じる。
[Second Embodiment]
FIG. 3 is a diagram schematically illustrating the structure of the antenna according to the second embodiment. With reference to FIG. 3, the antenna of the second embodiment includes an antenna element 20 </ b> D and a coil 10 </ b> D similar to the coil 10 of the first embodiment. The antenna element 20D of this embodiment has a dipole antenna shape. In this embodiment, a magnetic field is generated in the direction in which the screw rotates when the right screw about the longitudinal direction (X-axis direction in the figure), which is the direction in which the current of the antenna element 20D flows, is screwed in the current direction.
 コイル10Dは、アンテナ素子20Dが生じさせる磁界の磁力線がコイル10Dを貫くように向けられる。これにより、アンテナ素子20Dおよびコイル10Dが磁気結合する。 The coil 10D is directed so that the magnetic field lines generated by the antenna element 20D penetrate the coil 10D. Thereby, antenna element 20D and coil 10D are magnetically coupled.
 図4は、第2の実施の形態に係るアンテナの反射特性を示すグラフである。図4を参照して、2.4GHzでのアンテナの共振が抑制されている。また、2.4GHz近傍以外の周波数では、共振は抑制されていない。このことから、2.4GHz近傍以外では送受信の特性を維持したまま、2.4GHz近傍ではSARが減少する。 FIG. 4 is a graph showing the reflection characteristics of the antenna according to the second embodiment. Referring to FIG. 4, the resonance of the antenna at 2.4 GHz is suppressed. Further, resonance is not suppressed at frequencies other than the vicinity of 2.4 GHz. For this reason, the SAR is reduced in the vicinity of 2.4 GHz while maintaining the transmission / reception characteristics except in the vicinity of 2.4 GHz.
 図5および図6は、それぞれ、第2の実施の形態における2.1GHzおよび2.4GHzでの3次元の放射パターンを示す図である。図5および図6を参照して、これらの放射パターンは、X軸方向から見た放射パターンである。2.1GHzと比較して、2.4GHzの放射パターンでは、アンテナ素子20Dに対するコイル10Dが配置されている方向であるY軸の負方向が白っぽくなっている。この放射パターンにおいては、放射が強いほど色が濃く示される。このため、このY軸の負方向へのアンテナからの放射が弱くなっていることが分かる。 5 and 6 are diagrams showing three-dimensional radiation patterns at 2.1 GHz and 2.4 GHz, respectively, in the second embodiment. With reference to FIG. 5 and FIG. 6, these radiation patterns are radiation patterns viewed from the X-axis direction. Compared to 2.1 GHz, in the 2.4 GHz radiation pattern, the negative direction of the Y axis, which is the direction in which the coil 10D is disposed with respect to the antenna element 20D, is whitish. In this radiation pattern, the stronger the radiation, the darker the color. For this reason, it turns out that the radiation | emission from the antenna to the negative direction of this Y-axis is weak.
 このような、コイル10Dが配置されている方向のアンテナ素子20Dの放射が弱くなる効果は、第2の実施の形態のアンテナに限定されず、前述の第1の実施の形態のアンテナによっても奏されるし、後述する実施の形態のアンテナによっても奏される。 Such an effect that the radiation of the antenna element 20D in the direction in which the coil 10D is arranged is weakened is not limited to the antenna of the second embodiment, and is also achieved by the antenna of the first embodiment described above. It can also be achieved by the antenna of the embodiment described later.
 [第3の実施の形態]
 図7Aから図7Dは、それぞれ、第3の実施の形態に係るアンテナの構造の概略を示す図(平面図、側面図、背面図および正面図)である。図7Aから図7Dを参照して、第3の実施の形態に係るアンテナの構造は、コイル10Aの配置以外は、第1の実施の形態に係るアンテナの構造と同様である。なお、第1の実施の形態においては、アンテナ素子20が1.9GHz近辺で共振するが、第3の実施の形態においては、アンテナ素子20Aではなくグランド30Aが850MHz近辺で共振する。
[Third Embodiment]
7A to 7D are views (plan view, side view, rear view, and front view) schematically showing the structure of the antenna according to the third embodiment. Referring to FIGS. 7A to 7D, the structure of the antenna according to the third embodiment is the same as the structure of the antenna according to the first embodiment except for the arrangement of coil 10A. In the first embodiment, the antenna element 20 resonates around 1.9 GHz. However, in the third embodiment, the ground 30A resonates around 850 MHz instead of the antenna element 20A.
 第1の実施の形態と異なり、第3の実施の形態においては、グランド30Aから電波が放射される。このため、グランド30Aの電流が流れる方向である長手方向を軸とした右ネジを電流の方向に捻じ込むときのネジの回転する方向に磁界が生じる。コイル10Aは、グランド30Aが生じさせる磁界の磁力線がコイル10Aを貫くように、コイル10Aの軸がプリント基板100Aい平行でグランド30Aの長手方向と垂直な方向となるように搭載される。これにより、グランド30Aおよびコイル10Aが磁気結合する。 Unlike the first embodiment, in the third embodiment, radio waves are radiated from the ground 30A. For this reason, a magnetic field is generated in the direction in which the screw rotates when the right screw about the longitudinal direction, which is the direction in which the current of the ground 30A flows, is screwed in the current direction. The coil 10A is mounted so that the axis of the coil 10A is parallel to the printed circuit board 100A and perpendicular to the longitudinal direction of the ground 30A so that the magnetic field lines of the magnetic field generated by the ground 30A pass through the coil 10A. Thereby, the ground 30A and the coil 10A are magnetically coupled.
 なお、コイル10Aは、グランド30Aが生じさせる磁界の磁力線がコイル10Aを貫くように設けられるのであれば、他の箇所に異なる方向で搭載されるようにしてもよい。 It should be noted that the coil 10A may be mounted in another direction in a different direction as long as the magnetic field lines generated by the ground 30A pass through the coil 10A.
 図8は、第3の実施の形態に係るアンテナのSARと周波数との関係を示すグラフである。図8を参照して、破線は、図7Aから図7Dのアンテナにおいてコイル10Aを含まない場合を示し、実線は、図7Aから図7Dのアンテナにおいてコイル10Aを含む場合を示す。本実施の形態のグランド30Aは、850MHzの周波数に合わせた形状となっている。また、本実施の形態のコイル10は、共振周波数が約840MHzである。 FIG. 8 is a graph showing the relationship between the SAR and the frequency of the antenna according to the third embodiment. Referring to FIG. 8, the broken line indicates a case where the antenna of FIGS. 7A to 7D does not include the coil 10A, and the solid line indicates a case where the antenna of FIGS. 7A to 7D includes the coil 10A. The ground 30A of the present embodiment has a shape that matches the frequency of 850 MHz. The coil 10 of the present embodiment has a resonance frequency of about 840 MHz.
 図8のグラフで示すように、840MHz近辺以外の電波については、コイル10Aを含む場合と含まない場合とでSARの値にほとんど差はないが、840MHzの電波については、コイル10Aを含まない場合と比較して含む場合は、SARの値が約0.5W/kg、減少している。また、コイル10Aは、コイルであるので吸収したエネルギを再放射することもほとんどない。 As shown in the graph of FIG. 8, there is almost no difference in the SAR value between the case of including the coil 10A and the case of not including the coil 10A for radio waves other than those near 840 MHz, but the case of not including the coil 10A for radio waves of 840 MHz. SAR value is reduced by about 0.5 W / kg. Further, since the coil 10A is a coil, it hardly reradiates the absorbed energy.
 [第4の実施の形態]
 図9Aから図9Eおよび図10は、それぞれ、第4の実施の形態に係るアンテナの構造の概略を示す第1の図(プリント基板の平面図、背面図および正面図、ならびに、筐体の平面図および正面図)および第2の図である。図9Aから図9Eおよび図10を参照して、図10は、図9Aから図9Cで示すプリント基板100Bと図9Dおよび図9Eで示す筺体200Bを組立てた組立図である。
[Fourth Embodiment]
9A to 9E and FIG. 10 are respectively a first diagram (a plan view of a printed circuit board, a rear view and a front view, and a plan view of a housing) showing an outline of the structure of an antenna according to a fourth embodiment. It is a figure and a front view), and a 2nd figure. Referring to FIGS. 9A to 9E and FIG. 10, FIG. 10 is an assembly view in which the printed circuit board 100B shown in FIGS. 9A to 9C and the casing 200B shown in FIGS. 9D and 9E are assembled.
 第4の実施の形態のアンテナは、プリント基板100Bおよび筺体200Bに形成され、アンテナ素子20Bとコイル10Bとを含む。アンテナ素子20Bは、電気を通さない樹脂で形成される筺体200Bの内面にメッキ等で形成される。アンテナ素子20Bには、図示していないが給電点が設けられ、プリント基板100Bのアンテナ接続コネクタ30Bから給電点に給電される。 The antenna according to the fourth embodiment is formed on the printed circuit board 100B and the housing 200B, and includes an antenna element 20B and a coil 10B. The antenna element 20B is formed by plating or the like on the inner surface of a housing 200B formed of a resin that does not conduct electricity. Although not shown, the antenna element 20B is provided with a feeding point, and the feeding point is fed from the antenna connection connector 30B of the printed circuit board 100B.
 コイル10Bは、他の部分と電気的に絶縁されている。この実施の形態においては、コイル10Bは、アンテナ素子20Bが形成されている筺体200Bとは異なるプリント基板100Bに搭載される。このため、アンテナの構造および配置に影響を与えないようにすることができる。なお、コイル10Bは、図では複数(ここでは5つ)搭載されているが、これに限定されず、1つであってもよい。 The coil 10B is electrically insulated from other parts. In this embodiment, the coil 10B is mounted on a printed circuit board 100B different from the housing 200B in which the antenna element 20B is formed. For this reason, it is possible not to affect the structure and arrangement of the antenna. In addition, although the coil 10B is mounted in the figure by a plurality (five here), it is not limited to this and may be one.
 また、この実施の形態では、アンテナ素子20Bの電流が流れる方向である長手方向を軸とした右ネジを電流の方向に捻じ込むときのネジの回転する方向に磁界が生じる。コイル10Bは、アンテナ素子20Bが生じさせる磁界の磁力線がコイル10Bを貫くように、コイル10Bの軸がプリント基板100Bに平行でアンテナ素子20Bの長手方向と垂直な方向となるように搭載される。これにより、アンテナ素子20Bおよびコイル10Bが磁気結合する。 In this embodiment, a magnetic field is generated in the direction in which the screw rotates when the right screw about the longitudinal direction, which is the direction in which the current of the antenna element 20B flows, is screwed in the current direction. The coil 10B is mounted so that the axis of the coil 10B is parallel to the printed circuit board 100B and perpendicular to the longitudinal direction of the antenna element 20B so that the magnetic field lines generated by the antenna element 20B penetrate the coil 10B. Thereby, the antenna element 20B and the coil 10B are magnetically coupled.
 なお、コイル10Bは、アンテナ素子20Bが生じさせる磁界の磁力線がコイル10Bを貫くように設けられるのであれば、他の箇所に異なる方向で搭載されるようにしてもよい。 It should be noted that the coil 10B may be mounted in another direction in a different direction as long as the magnetic field lines generated by the antenna element 20B penetrate the coil 10B.
 第1の実施の形態のアンテナと同様、第4の実施の形態のアンテナによっても、コイル10Bの共振周波数近傍でSARの抑制効果がある。 As with the antenna of the first embodiment, the antenna of the fourth embodiment also has the effect of suppressing SAR near the resonance frequency of the coil 10B.
 [第5の実施の形態]
 図11から図13は、それぞれ、第5の実施の形態に係るアンテナ間の結合について説明するための第1から第3の図である。図11は、コイルを設けない場合を示す。図12は、アンテナ20X,20Yの外側にそれぞれコイル10X,10Yを設ける場合を示す。図13は、アンテナ20X,20Yの内側にそれぞれコイル10X,10Yを設ける場合を示す。
[Fifth Embodiment]
FIGS. 11 to 13 are first to third diagrams for explaining coupling between antennas according to the fifth embodiment, respectively. FIG. 11 shows a case where no coil is provided. FIG. 12 shows a case where the coils 10X and 10Y are provided outside the antennas 20X and 20Y, respectively. FIG. 13 shows a case where the coils 10X and 10Y are provided inside the antennas 20X and 20Y, respectively.
 図14は、第5の実施の形態に係るアンテナ間の結合の比較結果を示すグラフである。図14を参照して、波線が図11の場合を示し、一点鎖線が図12の場合を示し、実線が図13の場合を示す。 FIG. 14 is a graph showing a comparison result of coupling between antennas according to the fifth embodiment. Referring to FIG. 14, the wavy line shows the case of FIG. 11, the alternate long and short dash line shows the case of FIG. 12, and the solid line shows the case of FIG.
 S11で示されるように、それぞれのアンテナ20X,20Yについての放射は、外側および内側のいずれにコイル10X,10Yを設けた場合でもアンテナからの放射、つまりSARを抑制する効果が示されている。 As shown by S11, the radiation for the respective antennas 20X and 20Y shows the effect of suppressing the radiation from the antenna, that is, the SAR, regardless of whether the coils 10X and 10Y are provided outside or inside.
 S21で示されるように、コイルを設けない場合、および、コイル10X,10Yを外側に設ける場合は、アンテナ20X,20Yの結合を防止する効果は示されていない。一方、コイル10X,10Yを外側に設ける場合と比較して、コイル10X,10Yを内側に設ける場合は、アンテナ20X,20Yの結合を6dB抑制する効果が示されている。 As shown by S21, when the coil is not provided and when the coils 10X and 10Y are provided outside, the effect of preventing the coupling of the antennas 20X and 20Y is not shown. On the other hand, compared with the case where the coils 10X and 10Y are provided outside, the effect of suppressing the coupling of the antennas 20X and 20Y by 6 dB is shown when the coils 10X and 10Y are provided inside.
 このように、コイル10X,10Yがアンテナ20X,20Yの間に設けられることにより、アンテナ間の結合を抑制することができる。 Thus, by providing the coils 10X and 10Y between the antennas 20X and 20Y, coupling between the antennas can be suppressed.
 [第6の実施の形態]
 図15および図18は、それぞれ、第6の実施の形態に係るSARの抑制量調整について説明するためのアンテナの構造の概略を示す第1および第2の図である。図16および図19は、それぞれ、第6の実施の形態に係るSARの抑制量調整について説明するためのアンテナの放射特性を示す第1および第2の図である。図17および図20は、それぞれ、第6の実施の形態に係るSARの抑制量調整について説明するためのアンテナのSARと周波数との関係を示す第1および第2の図である。
[Sixth Embodiment]
FIGS. 15 and 18 are first and second diagrams, respectively, showing an outline of the antenna structure for explaining the SAR suppression amount adjustment according to the sixth embodiment. FIGS. 16 and 19 are first and second diagrams showing the radiation characteristics of the antenna, respectively, for explaining the SAR suppression amount adjustment according to the sixth embodiment. FIGS. 17 and 20 are first and second diagrams showing the relationship between the SAR of the antenna and the frequency, respectively, for explaining the SAR suppression amount adjustment according to the sixth embodiment.
 図15および図18を参照して、本実施の形態の場合、それぞれ、アンテナ素子20E,20Fの電流が流れる方向である長手方向を軸とした右ネジを電流の方向に捻じ込むときのネジの回転する方向に磁界が生じることとする。 Referring to FIG. 15 and FIG. 18, in the case of the present embodiment, the right screw about the longitudinal direction, which is the direction in which the current of antenna elements 20E and 20F flows, is screwed in the direction of current. A magnetic field is generated in the direction of rotation.
 図15の場合は、すべてのコイル10Eの軸がアンテナ素子20Eの面に平行でアンテナ素子20Eの長手方向と垂直な方向となるように搭載される。一方、図18の場合は、コイル10Fの軸がアンテナ素子20Fの面に平行でアンテナ素子20Fの長手方向と垂直な方向に45度または-45度傾けた方向となるように搭載される。なお、図18においては、コイル10Fは、交互に45度または-45度に傾けられるが、これに限定されず、交互でなくてもよい。 In the case of FIG. 15, all the coils 10 </ b> E are mounted so that the axes thereof are parallel to the plane of the antenna element 20 </ b> E and perpendicular to the longitudinal direction of the antenna element 20 </ b> E. On the other hand, in the case of FIG. 18, the coil 10F is mounted so that the axis of the coil 10F is parallel to the plane of the antenna element 20F and inclined at 45 degrees or −45 degrees in the direction perpendicular to the longitudinal direction of the antenna element 20F. In FIG. 18, the coils 10F are alternately inclined at 45 degrees or −45 degrees, but the present invention is not limited to this, and the coils 10F may not be alternated.
 図16は、45度または-45度傾けない場合のアンテナの反射特性を示す。図19は、45度または-45度傾けた場合のアンテナの反射特性を示す。図16および図19において、破線がコイルを設けない場合を示し、実線がコイルを設けた場合を示す。このように、傾けない場合と比較して、傾けた場合の方が、コイルの共振を弱める度合いが少なくなっている。 FIG. 16 shows the reflection characteristics of the antenna when it is not tilted at 45 degrees or −45 degrees. FIG. 19 shows the reflection characteristics of the antenna when tilted by 45 degrees or −45 degrees. In FIG. 16 and FIG. 19, the broken line indicates a case where no coil is provided, and the solid line indicates a case where a coil is provided. Thus, the degree of weakening the resonance of the coil is less when tilted than when not tilted.
 図17は、45度または-45度傾けない場合のアンテナのSARと周波数との関係を示す。図20は、45度または-45度傾けた場合のアンテナのSARと周波数との関係を示す。図17および図20において、破線がコイルを設けない場合を示し、実線がコイルを設けた場合を示す。このように、傾けない場合と比較して、傾けた場合の方が、SARの抑制効果が弱められている。 FIG. 17 shows the relationship between the SAR and the frequency of the antenna when it is not tilted by 45 degrees or −45 degrees. FIG. 20 shows the relationship between the antenna SAR and the frequency when tilted by 45 degrees or −45 degrees. In FIG. 17 and FIG. 20, the broken line indicates a case where no coil is provided, and the solid line indicates a case where a coil is provided. Thus, the effect of suppressing SAR is weakened when tilted compared to when tilted.
 これにより、傾けたコイルと傾けないコイルとを混在させることによって、SARの抑制量を調整することができる。 Thereby, the suppression amount of SAR can be adjusted by mixing the inclined coil and the non-inclined coil.
 [第7の実施の形態]
 図21および図24は、それぞれ、第7の実施の形態に係るSARの抑制の広帯域化について説明するためのアンテナの構造の概略を示す第1および第2の図である。図22および図25は、それぞれ、第7の実施の形態に係るSARの抑制の広帯域化について説明するためのアンテナの放射特性を示す第1および第2の図である。図23および図26は、それぞれ、第7の実施の形態に係るSARの抑制の広帯域化について説明するためのアンテナのSARと周波数との関係を示す第1および第2の図である。
[Seventh Embodiment]
FIG. 21 and FIG. 24 are first and second diagrams, respectively, showing an outline of the antenna structure for explaining the broadbanding of SAR suppression according to the seventh embodiment. FIG. 22 and FIG. 25 are first and second diagrams showing the radiation characteristics of the antenna for explaining the increase in the bandwidth of SAR suppression according to the seventh embodiment, respectively. FIG. 23 and FIG. 26 are first and second diagrams showing the relationship between the SAR of the antenna and the frequency, respectively, for explaining the increase in the bandwidth of SAR suppression according to the seventh embodiment.
 図21および図24を参照して、本実施の形態の場合、それぞれ、アンテナ素子20G,20Hの電流が流れる方向である長手方向を軸とした右ネジを電流の方向に捻じ込むときのネジの回転する方向に磁界が生じることとする。 Referring to FIGS. 21 and 24, in the case of the present embodiment, the right screw about the longitudinal direction, which is the direction in which the current of antenna elements 20G and 20H flows, is screwed in the current direction. A magnetic field is generated in the direction of rotation.
 図21の場合は、すべての第1の共振周波数のコイル10GAおよびすべての第2の共振周波数のコイル10GBの軸がアンテナ素子20Gの面に平行でアンテナ素子20Gの長手方向と垂直な方向となるように搭載される。 In the case of FIG. 21, the axes of all the first resonance frequency coils 10GA and all the second resonance frequency coils 10GB are parallel to the plane of the antenna element 20G and perpendicular to the longitudinal direction of the antenna element 20G. To be mounted.
 一方、図24の場合は、すべての第1の共振周波数のコイル10GAの軸がアンテナ素子20Gの面に平行でアンテナ素子20Gの長手方向と垂直な方向に45度傾けた方向となるように搭載され、すべての第2の共振周波数のコイル10GBの軸がアンテナ素子20Gの面に平行でアンテナ素子20Gno長手方向と垂直な方向に-45度傾けた方向となるように搭載される。 On the other hand, in the case of FIG. 24, the coils 10GA of all the first resonance frequencies are mounted so that the axes thereof are parallel to the plane of the antenna element 20G and inclined by 45 degrees in the direction perpendicular to the longitudinal direction of the antenna element 20G. Then, the coils 10GB of all the second resonance frequencies are mounted so that the axes thereof are parallel to the plane of the antenna element 20G and inclined by -45 degrees in the direction perpendicular to the longitudinal direction of the antenna element 20Gno.
 図22は、傾けない場合のアンテナの反射特性を示す。図25は、傾けた場合のアンテナの反射特性を示す。図22および図25において、破線がコイルを設けない場合を示し、実線がコイルを設けた場合を示す。このように、傾けない場合は、一方のコイルの共振周波数の帯域ではコイルの共振を弱める効果が出ているが、他方のコイルの共振周波数の帯域ではコイルの共振を逆に強めてしまう。これに対して、傾けた場合は、両方のコイルの共振周波数の帯域で共振を弱める効果が出ている。 FIG. 22 shows the reflection characteristics of the antenna when it is not tilted. FIG. 25 shows the reflection characteristics of the antenna when tilted. 22 and 25, a broken line indicates a case where no coil is provided, and a solid line indicates a case where a coil is provided. As described above, when not tilted, an effect of weakening the resonance of the coil is obtained in the resonance frequency band of one coil, but the resonance of the coil is conversely strengthened in the resonance frequency band of the other coil. On the other hand, when tilted, the effect of weakening the resonance is produced in the resonance frequency band of both coils.
 図23は、傾けた場合のアンテナのSARと周波数との関係を示す。図26は、傾けない場合のアンテナのSARと周波数との関係を示す。図22および図25において、破線がコイルを設けない場合を示し、実線がコイルを設けた場合を示す。このように、傾けない場合は、一方のコイルの共振周波数の帯域ではSARの抑制効果があるが、他方のコイルの共振周波数の帯域ではSARの抑制効果がまったく得られていない。これに対して、傾けた場合は、両方のコイルの共振周波数の帯域でSARの抑制効果が得られている。 FIG. 23 shows the relationship between the SAR and the frequency of the antenna when tilted. FIG. 26 shows the relationship between the SAR and frequency of the antenna when it is not tilted. 22 and 25, a broken line indicates a case where no coil is provided, and a solid line indicates a case where a coil is provided. As described above, in the case of not tilting, there is an SAR suppression effect in the resonance frequency band of one coil, but no SAR suppression effect is obtained in the resonance frequency band of the other coil. On the other hand, when tilted, the effect of suppressing SAR is obtained in the resonance frequency band of both coils.
 これにより、複数の共振周波数のコイルの軸を平行に配置した場合は、異なる共振周波数のコイルが互いに結合してしまうので、SARの抑制効果の広帯域化を実現することができないが、複数の共振周波数のコイルを混在させて傾けて配置することでSARの抑制効果を広帯域化することができる。なお、異なる共振周波数のコイルの軸のなす角度は、コイル間の結合を完全に防ぐことができるので、直角であることが望ましい。 As a result, when the axes of the coils having a plurality of resonance frequencies are arranged in parallel, the coils having different resonance frequencies are coupled to each other. SAR suppression effect can be broadened by arranging the frequency coils in a tilted manner. Note that it is desirable that the angle formed by the axes of the coils having different resonance frequencies is a right angle since the coupling between the coils can be completely prevented.
 [第8の実施の形態]
 図29は、第8の実施の形態に係るアンテナの構造の概略を示す図である。第8の実施の形態に係るアンテナは、第1の実施の形態に係るアンテナの共振器としてのコイル10をLC共振器の一例であるMLCCに替えたものである。
[Eighth Embodiment]
FIG. 29 is a diagram schematically illustrating the structure of the antenna according to the eighth embodiment. The antenna according to the eighth embodiment is obtained by replacing the coil 10 as the resonator of the antenna according to the first embodiment with an MLCC that is an example of an LC resonator.
 図29を参照して、第8の実施の形態のアンテナは、プリント基板100Jに形成され、アンテナ素子20JA,20JBとグランド30Jとを含む。アンテナ素子20JBには、給電点50Jが設けられ、給電点50Jから給電される。第8の実施の形態のアンテナは、さらに、共振器としてのLC共振器40Jを含む。このように共振器を備えることでアンテナによるSARを減少させることができる。この実施の形態においては、LC共振器40Jとしては、MLCCを用いる。MLCCは、汎用品で入手が容易であり安価であるので、SARを減少させるためのアンテナの製造コストの増加を抑えることができる。 Referring to FIG. 29, the antenna of the eighth embodiment is formed on printed circuit board 100J and includes antenna elements 20JA and 20JB and a ground 30J. The antenna element 20JB is provided with a feeding point 50J and is fed from the feeding point 50J. The antenna of the eighth embodiment further includes an LC resonator 40J as a resonator. By providing the resonator in this way, the SAR due to the antenna can be reduced. In this embodiment, MLCC is used as the LC resonator 40J. Since MLCC is a general-purpose product that is easily available and inexpensive, it is possible to suppress an increase in the manufacturing cost of an antenna for reducing SAR.
 LC共振器40Jは、アンテナの他の部分と電気的に絶縁されている。LC共振器40Jは、プリント基板100Jのアンテナ素子20JA,20JBおよびグランド30Jが形成されている面のアンテナ素子20JA,20JBのいずれかの近傍に、アンテナ素子20JA,JBのいずれかと磁気結合するように位置および方向が定められて搭載される。ここでは、アンテナ素子20JA,20JBとLC共振器40Jとの距離は0.1mmである。このため、アンテナの構造および配置に影響を与えないようにすることができる。なお、LC共振器40Jは、図29では4つ搭載されているが、これに限定されず、他の複数であっても1つであってもよい。 LC resonator 40J is electrically insulated from other parts of the antenna. The LC resonator 40J is magnetically coupled to one of the antenna elements 20JA and JB in the vicinity of one of the antenna elements 20JA and 20JB on the surface where the antenna elements 20JA and 20JB and the ground 30J of the printed board 100J are formed. The position and direction are determined and mounted. Here, the distance between the antenna elements 20JA and 20JB and the LC resonator 40J is 0.1 mm. For this reason, it is possible not to affect the structure and arrangement of the antenna. Although four LC resonators 40J are mounted in FIG. 29, the present invention is not limited to this, and other plural or one LC resonator 40J may be used.
 図30は、第8の実施の形態に係るアンテナのSARと周波数との関係を示すグラフである。図30を参照して、破線は、図29のアンテナにおいてLC共振器40Jを含まない場合を示し、実線は、図29のアンテナにおいてLC共振器40Jを含む場合を示す。本実施の形態のアンテナ素子20JA,20JBは、0.8GHzおよび1.9GHzの周波数に合わせた形状となっている。 FIG. 30 is a graph showing the relationship between the SAR and the frequency of the antenna according to the eighth embodiment. Referring to FIG. 30, the broken line indicates a case where the antenna of FIG. 29 does not include the LC resonator 40J, and the solid line indicates a case where the antenna of FIG. 29 includes the LC resonator 40J. The antenna elements 20JA and 20JB of the present embodiment have shapes that match the frequencies of 0.8 GHz and 1.9 GHz.
 図30のグラフで示すように、0.8GHzおよび1.9GHz近辺以外の電波については、LC共振器40Jを含む場合と含まない場合とでSARの値にほとんど差はないが、SARの値が高い0.80GHzから0.85GHzおよび1.9GHzから2.0GHzの電波については、LC共振器40Jを含まない場合と比較して、LC共振器40Jを含む場合は、SARの値が約0.1から0.7W/kg程度、減少している。 As shown in the graph of FIG. 30, for radio waves other than those in the vicinity of 0.8 GHz and 1.9 GHz, there is almost no difference in the SAR value between the case where the LC resonator 40J is included and the case where the LC resonator 40J is not included. For high 0.80 GHz to 0.85 GHz and 1.9 GHz to 2.0 GHz radio waves, when the LC resonator 40J is included, the SAR value is about 0. 0 compared to the case where the LC resonator 40J is not included. It decreases from 1 to 0.7 W / kg.
 なお、アンテナ素子20JAのグランド30J寄りの近傍に搭載されているLC共振器40Jによって0.80GHzから0.85GHzのSARが抑制され、アンテナ素子20JBの近傍に搭載されているLC共振器40Jによって1.9GHzから2.0GHzのSARが抑制されている。 The SAR from 0.80 GHz to 0.85 GHz is suppressed by the LC resonator 40J mounted near the ground 30J of the antenna element 20JA, and 1 by the LC resonator 40J mounted near the antenna element 20JB. .9 GHz to 2.0 GHz SAR is suppressed.
 共振器としてコイルに替えてLC共振器を用いた場合、コイルを用いる場合に比べて共振器のQ値は低くなり、共振の帯域幅も狭くなるが、小型化が可能となる。また、MLCC単体でもLC共振器となる高次共振モードがあるので、専用の共振器を作らなくても、市販の安いMLCCを用いることができる。 When an LC resonator is used instead of a coil as a resonator, the Q value of the resonator is lower than that in the case of using a coil and the resonance bandwidth is narrowed, but the size can be reduced. Further, since the MLCC alone has a higher-order resonance mode that becomes an LC resonator, a commercially available MLCC can be used without creating a dedicated resonator.
 また、LC共振器40Jをアンテナ素子20JA,20JBに近接して配置しているので、アンテナ素子20JA,20JBとLC共振器40Jとの磁気結合が強くなる。このため、LC共振器40Jの個数が1から数個と少なくても、SARの抑制効果が得られる。 In addition, since the LC resonator 40J is disposed close to the antenna elements 20JA and 20JB, the magnetic coupling between the antenna elements 20JA and 20JB and the LC resonator 40J becomes strong. For this reason, even if the number of LC resonators 40J is as small as 1 to several, the effect of suppressing SAR can be obtained.
 また、LC共振器40Jがアンテナ素子20JA,20JBよりも人体に近くなるように配置されることで、アンテナ素子20JA,20JBからの電磁波がLC共振器40Jを越える際に減衰するため、さらに効果的にSARを抑制することができる。 Further, since the LC resonator 40J is arranged so as to be closer to the human body than the antenna elements 20JA and 20JB, the electromagnetic wave from the antenna elements 20JA and 20JB is attenuated when exceeding the LC resonator 40J. SAR can be suppressed.
 [第9の実施の形態]
 図31は、第9の実施の形態に係るアンテナの構造の概略を示す図である。図31を参照して、第9の実施の形態に係るアンテナにおいては、第8の実施の形態に係るアンテナと同様、複数(ここでは48個)のLC共振器40KA,40KBがアンテナ素子20KBの近傍(プリント基板100Kのアンテナ素子が形成されている側と反対側の面)に搭載されている。LC共振器40KAおよびLC共振器40KBは、それぞれ、90度の角度が付けられて、交互に搭載されている。アンテナ素子20KBとLC共振器40KA,40KBとの距離は3mmである。
[Ninth Embodiment]
FIG. 31 is a diagram schematically illustrating the structure of the antenna according to the ninth embodiment. Referring to FIG. 31, in the antenna according to the ninth embodiment, as in the antenna according to the eighth embodiment, a plurality of (48 in this case) LC resonators 40KA and 40KB are formed of the antenna element 20KB. It is mounted in the vicinity (surface opposite to the side on which the antenna element of the printed board 100K is formed). The LC resonator 40KA and the LC resonator 40KB are mounted alternately at an angle of 90 degrees. The distance between the antenna element 20KB and the LC resonators 40KA and 40KB is 3 mm.
 図32は、第9の実施の形態に係るアンテナのSARと周波数との関係を示すグラフである。図32を参照して、破線は、図31のアンテナにおいてLC共振器40KA,40KBを含まない場合を示し、実線は、図31のアンテナにおいてLC共振器40KA,40KBを含む場合を示す。本実施の形態のアンテナ素子20KA,20KBは、1.9GHz帯の周波数に合わせた形状となっている。 FIG. 32 is a graph showing the relationship between the SAR and the frequency of the antenna according to the ninth embodiment. Referring to FIG. 32, a broken line indicates a case where the antenna of FIG. 31 does not include the LC resonators 40KA and 40KB, and a solid line indicates a case where the antenna of FIG. 31 includes the LC resonators 40KA and 40KB. The antenna elements 20KA and 20KB of the present embodiment have a shape that matches the frequency of the 1.9 GHz band.
 図32のグラフで示すように、1.9GHz近辺以外の電波については、LC共振器40KA,40KBを含む場合と含まない場合とでSARの値にほとんど差はないが、SARの値が高い1.9GHzから2.0GHzの電波については、LC共振器40KA,40KBを含まない場合と比較して、LC共振器40KA,40KBを含む場合は、SARの値が約0.2から1.1W/kg程度、減少している。 As shown in the graph of FIG. 32, for radio waves other than those in the vicinity of 1.9 GHz, there is almost no difference in the SAR value between the case where the LC resonators 40KA and 40KB are included and the case where the LC resonators 40KA and 40KB are not included, but the SAR value is high. For radio waves from .9 GHz to 2.0 GHz, when the LC resonators 40KA and 40KB are included, the SAR value is about 0.2 to 1.1 W / in comparison with the case where the LC resonators 40KA and 40KB are not included. It has decreased by about kg.
 このように、第9の実施の形態においては、プリント基板100Kのアンテナ素子が形成されている側と反対側の面にLC共振器が配置されている。このため、LC共振器の配置や搭載方向の自由度が高くなる。しかし、第8の実施の形態と比較して第9の実施の形態においては、アンテナ素子とLC共振器との距離が大きくなっている。このデメリットを補うために、第9の実施の形態においては、第8の実施の形態と比較して多くのLC共振器を使用している。これにより、第9の実施の形態においては、第8の実施の形態と同等のSARの抑制効果を得ることができる。 Thus, in the ninth embodiment, the LC resonator is arranged on the surface of the printed board 100K opposite to the side on which the antenna element is formed. For this reason, the degree of freedom in the arrangement and mounting direction of the LC resonator is increased. However, the distance between the antenna element and the LC resonator is larger in the ninth embodiment than in the eighth embodiment. To compensate for this disadvantage, the ninth embodiment uses more LC resonators than the eighth embodiment. Thereby, in the ninth embodiment, the same SAR suppression effect as that in the eighth embodiment can be obtained.
 なお、共振器には異方性があるため、この実施の形態のように、LC共振器40KA,40KBを90度の角度をつけて周期的に配置させることが、SARの抑制効果を高めるのに有効である。 In addition, since the resonator has anisotropy, the LC resonators 40KA and 40KB are periodically arranged at an angle of 90 degrees as in this embodiment, so that the SAR suppression effect is enhanced. It is effective for.
 また、LC共振器40KA,40KBがアンテナ素子20KA,20KBよりも人体に近くなるように配置されることで、アンテナ素子20KA,20KBからの電磁波がLC共振器40KA、40KBを越える際に減衰するため、さらに効果的にSARを抑制することができる。 Further, since the LC resonators 40KA and 40KB are arranged so as to be closer to the human body than the antenna elements 20KA and 20KB, electromagnetic waves from the antenna elements 20KA and 20KB are attenuated when they exceed the LC resonators 40KA and 40KB. SAR can be more effectively suppressed.
 [まとめ]
 図27Aおよび図27Bは、それぞれ、本実施の形態の効果を説明するための図(従来および本実施例)である。図27Aを参照して、従来の方法の一部では、SARを全周波数に対して抑制するように構成することで、SARが無線設備規則の基準値である2W/kg以下となるようにする。この方法であると、元々SARが2W/kg以下である帯域のSARも減少してしまうため、このような帯域でのアンテナの送受信性能が下がってしまっていた。
[Summary]
FIG. 27A and FIG. 27B are diagrams (conventional and the present example) for explaining the effects of the present embodiment, respectively. Referring to FIG. 27A, in a part of the conventional method, the SAR is configured to be suppressed with respect to all frequencies so that the SAR becomes 2 W / kg or less which is the reference value of the radio equipment rule. . With this method, since the SAR in the band where the SAR is originally 2 W / kg or less also decreases, the transmission / reception performance of the antenna in such a band has been lowered.
 これに対して、第1の実施の形態の図2、第3の実施の形態の図8、第6の実施の形態の図17,図20、第7の実施の形態の図26、第8の実施の形態の図30、および、第9の実施の形態の図32を模式的に示した図27Bを参照して、本実施の形態においては、一部の周波数でのSARを抑制することでSARが2W/kgとなるようにする。このため、抑制する必要のある帯域だけSARを抑制し、抑制する必要のない帯域はSARを抑制しなくて済むため、必要以上にアンテナの送受信性能を下げずにSARを必要最小限に抑制することができる。 In contrast, FIG. 2 of the first embodiment, FIG. 8 of the third embodiment, FIGS. 17 and 20 of the sixth embodiment, FIGS. 26 and 8 of the seventh embodiment. Referring to FIG. 30 of the present embodiment and FIG. 27B schematically showing FIG. 32 of the ninth embodiment, SAR at some frequencies is suppressed in this embodiment. So that the SAR is 2 W / kg. For this reason, the SAR is suppressed only for the band that needs to be suppressed, and the SAR need not be suppressed for the band that does not need to be suppressed. Therefore, the SAR is suppressed to the minimum necessary without lowering the antenna transmission / reception performance more than necessary. be able to.
 [変形例]
 (1) 前述の実施の形態においては、SARを必要最小限に抑制するために、SARが2W/kgを超えるような送信状態のときに2W/kgを超えている部分が2W/kg以下になるように、共振器(本実施の形態においてはコイル)のパラメータ(たとえば、インダクタンス、共振周波数など)、数、および、配置を調整する。
[Modification]
(1) In the above-described embodiment, in order to suppress the SAR to the minimum necessary, the portion where the SAR exceeds 2 W / kg is 2 W / kg or less in the transmission state where the SAR exceeds 2 W / kg. As such, the parameters (for example, inductance, resonance frequency, etc.), number, and arrangement of the resonator (the coil in the present embodiment) are adjusted.
 共振器の配置の調整としては、上述の図15、図18および図24で示したような平面的な配置の調整だけでなく、共振器とアンテナ素子との距離の調整をしてもよい。なお、共振器とアンテナ素子との距離は、少なくともアンテナ素子の共振波長の1/4未満であればよいが、短ければ短いほどよい。 As the adjustment of the arrangement of the resonators, not only the planar arrangement as shown in FIGS. 15, 18 and 24 described above, but also the distance between the resonator and the antenna element may be adjusted. The distance between the resonator and the antenna element may be at least less than ¼ of the resonance wavelength of the antenna element, but the shorter the distance, the better.
 アンテナ素子の共振波長の1/4以上であれば、八木宇田アンテナの導波器と放射器との間隔および放射器と反射器との間隔よりも広くなり、八木宇田アンテナでさえ携帯通信端末に適用するには大き過ぎるので、携帯通信端末に用いるのは困難となる。また、八木宇田アンテナでの指向性制御の場合、周波数が変化することで、反射器が導波器として機能する場合が生じる。この場合、放射器から反射器の側にも多くの電磁波を放射してしまうことになり、SARを抑制したい側のSARが増加してしまう。 If it is 1/4 or more of the resonant wavelength of the antenna element, the distance between the director and the radiator of the Yagi-Uda antenna and the distance between the radiator and the reflector will be wider, and even the Yagi-Uda antenna can be used as a portable communication terminal. Since it is too large to apply, it is difficult to use it for a portable communication terminal. In the case of directivity control with the Yagi-Uda antenna, the frequency may change, and the reflector may function as a director. In this case, many electromagnetic waves are radiated from the radiator to the reflector side, and the SAR on the side where SAR is desired to be increased increases.
 (2) 前述した実施の形態の共振器(コイル)は、アンテナ素子の共振波長の1/4以下のサイズであることが好ましい。これにより、共振器とアンテナ素子との距離を短くすることができる。また、アンテナ素子よりも小型の共振器を用いることにより、共振器自体からの再放射をほとんど無くすることができ、狙いの周波数帯だけでのSARの抑制が可能となる。また、共振器の搭載スペースを小さくすることができるので、共振器を搭載することによる携帯通信端末のサイズのコンパクト化への影響を少なくすることができる。 (2) It is preferable that the resonator (coil) of the above-described embodiment has a size of 1/4 or less of the resonance wavelength of the antenna element. Thereby, the distance of a resonator and an antenna element can be shortened. Also, by using a resonator smaller than the antenna element, re-radiation from the resonator itself can be almost eliminated, and SAR can be suppressed only in the target frequency band. In addition, since the resonator mounting space can be reduced, the influence on the size reduction of the portable communication terminal due to the mounting of the resonator can be reduced.
 (3) 前述した実施の形態においては、1つのアンテナに対して共振器を設けるようにした。しかし、これに限定されず、複数のアンテナを設ける場合は、それぞれのアンテナに対して、共振器を設けるようにしてもよい。 (3) In the embodiment described above, a resonator is provided for one antenna. However, the present invention is not limited to this, and when a plurality of antennas are provided, a resonator may be provided for each antenna.
 (4) 「アンテナが携帯通信端末に組込まれるときに通信時にアンテナ素子よりも人体に近くなる頻度が高い側に共振器が設けられる」とは、携帯通信端末での音声通信に用いる送話部および受話部が音声通信時にそれぞれユーザの口および耳に近付けられたときにアンテナ素子よりも人体に近くなる側に共振器が設けられること、および、携帯通信端末でのデータ通信に用いるディスプレイがデータ通信時にユーザの目の側に向けられたときにアンテナ素子よりも人体に近くなる側に共振器が設けられることである。これにより、アンテナ素子の人体側に共振器(たとえばコイル)が設けられるので、人体側のSARを抑制することができる。 (4) “A resonator is provided on the side that is closer to the human body than the antenna element during communication when the antenna is incorporated in a mobile communication terminal” means that a transmitter used for voice communication in a mobile communication terminal And a resonator is provided on the side closer to the human body than the antenna element when the receiver is brought close to the user's mouth and ear during voice communication, and the display used for data communication in the portable communication terminal is data A resonator is provided on the side closer to the human body than the antenna element when directed toward the user's eye during communication. Thereby, since a resonator (for example, coil) is provided on the human body side of the antenna element, SAR on the human body side can be suppressed.
 (5) 電波(電磁波)の周波数f(MHz)および波長λ(m)には、λ=300/fの関係がある。このため、前述の実施の形態の説明において用いられた周波数との文言は、この関係に基づいて波長との文言に置換えることができる。 (5) The frequency f (MHz) and wavelength λ (m) of radio waves (electromagnetic waves) have a relationship of λ = 300 / f. For this reason, the term “frequency” used in the description of the above-described embodiment can be replaced with the term “wavelength” based on this relationship.
 (6) 前述した実施の形態においては、図1Aから図1D、図3、図7Aから図7D、図10、図15、図18および図24などで示したように、コイルを等間隔に並べるようにした。しかし、等間隔に並べる必要はない。等間隔に並べた方がSARの抑制効果は均等に近くなる。しかし、等間隔に並べなくても、まばらに抑制されたSARの値が基準値2W/kg以下となるのであればよい。 (6) In the above-described embodiment, coils are arranged at regular intervals as shown in FIGS. 1A to 1D, FIG. 3, FIG. 7A to FIG. 7D, FIG. 10, FIG. 15, FIG. I did it. However, it is not necessary to arrange them at regular intervals. The SAR suppression effect is evenly closer when arranged at equal intervals. However, the SAR values that are sparsely suppressed need only be equal to or less than the reference value 2 W / kg without being arranged at equal intervals.
 (7) 共振器(コイル)がアンテナ素子から放射される電磁波の波長の半波長のときに、共振器はメタマテリアルとして働く。これにより、共振器の透磁率および誘電率が負となり、さらに、電磁界放射を抑制することができる。 (7) When the resonator (coil) is half the wavelength of the electromagnetic wave radiated from the antenna element, the resonator functions as a metamaterial. Thereby, the magnetic permeability and dielectric constant of the resonator become negative, and electromagnetic field radiation can be further suppressed.
 (8) 前述した携帯通信端末は、アンテナを備えて人が携帯して通信することができる端末であればよく、たとえば、スマートフォンであってもよいし、従来からの携帯電話であってもよいし、データ通信機能は有るが通話機能の無いタブレット端末であってもよい。 (8) The above-described mobile communication terminal may be any terminal provided with an antenna and capable of being carried by a person, and may be, for example, a smartphone or a conventional mobile phone. However, it may be a tablet terminal that has a data communication function but no call function.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10,10A,10B,10D,10E,10F,10GA,10GB,10HA,10HB,10X,10Y コイル、20,20A,20B,20D,20E,20F,20G,20H,20JA,20JB,20KA,20KB,20X,20Y アンテナ素子、30,30A,30J,30K グランド、30B アンテナ接続コネクタ、40J,40KA,40KB LC共振器、50J,50K 給電点、100,100A,100B,100J,100K プリント基板、200B 筺体。 10, 10A, 10B, 10D, 10E, 10F, 10GA, 10GB, 10HA, 10HB, 10X, 10Y coil, 20, 20A, 20B, 20D, 20E, 20F, 20G, 20H, 20JA, 20JB, 20KA, 20KB, 20X , 20Y antenna element, 30, 30A, 30J, 30K ground, 30B antenna connector, 40J, 40KA, 40KB LC resonator, 50J, 50K feed point, 100, 100A, 100B, 100J, 100K printed circuit board, 200B housing.

Claims (9)

  1.  携帯通信端末に組込可能なアンテナであって、
     アンテナ素子と、
     前記アンテナ素子から前記アンテナ素子の共振波長の1/4の距離未満の位置に設けられ、電気的に他の部分と絶縁され前記アンテナ素子の共振波長の近傍の波長で共振する1または複数の共振器とを備える、アンテナ。
    An antenna that can be incorporated into a mobile communication terminal,
    An antenna element;
    One or more resonances provided at a position less than a quarter of the resonance wavelength of the antenna element from the antenna element, electrically insulated from other portions and resonating at a wavelength near the resonance wavelength of the antenna element And an antenna.
  2.  前記共振器は、前記アンテナが前記携帯通信端末に組込まれるときに、通信時に前記アンテナ素子よりも人体に近くになる頻度が高い側に設けられる、請求項1に記載のアンテナ。 The antenna according to claim 1, wherein the resonator is provided on a side that is closer to a human body than the antenna element during communication when the antenna is incorporated in the mobile communication terminal.
  3.  前記共振器は、コイルであり、前記アンテナ素子の磁界の磁力線が前記コイルを貫くように設けられる、請求項1または請求項2に記載のアンテナ。 The antenna according to claim 1 or 2, wherein the resonator is a coil and is provided so that a magnetic field line of the magnetic field of the antenna element penetrates the coil.
  4.  複数の前記共振器は、コイル軸が略平行になるように設けられる、請求項3に記載のアンテナ。 The antenna according to claim 3, wherein the plurality of resonators are provided so that coil axes are substantially parallel to each other.
  5.  複数の前記共振器のそれぞれの共振波長は、略同じであり、
     複数の前記共振器の一部および残りの前記共振器は、それぞれ、コイル軸が略直交するように設けられる、請求項3に記載のアンテナ。
    Resonance wavelengths of the plurality of resonators are substantially the same,
    The antenna according to claim 3, wherein a part of the plurality of resonators and the remaining resonators are provided so that their coil axes are substantially orthogonal to each other.
  6.  複数の前記共振器の共振波長には、第1の共振波長および第2の共振波長があり、
     前記第1の共振波長の共振器および前記第2の共振波長の共振器は、それぞれのコイル軸が略直交するように設けられる、請求項3に記載のアンテナ。
    The resonance wavelengths of the plurality of resonators include a first resonance wavelength and a second resonance wavelength,
    The antenna according to claim 3, wherein the first resonance wavelength resonator and the second resonance wavelength resonator are provided so that their coil axes are substantially orthogonal to each other.
  7.  前記共振器は、LC共振器である、請求項1または請求項2に記載のアンテナ。 The antenna according to claim 1 or 2, wherein the resonator is an LC resonator.
  8.  携帯通信端末に組込可能なアンテナのアンテナ構造であって、
     電気的に他の部分と絶縁されアンテナ素子の共振波長の近傍の波長で共振する1または複数の共振器が、前記アンテナ素子から前記アンテナ素子の共振波長の1/4の距離未満の位置に設けられる、アンテナ構造。
    An antenna structure of an antenna that can be incorporated into a mobile communication terminal,
    One or a plurality of resonators that are electrically insulated from other portions and resonate at a wavelength in the vicinity of the resonance wavelength of the antenna element are provided at a position less than a quarter of the resonance wavelength of the antenna element from the antenna element. Antenna structure.
  9.  携帯通信端末に組込可能なアンテナに用いられる共振器であって、
     アンテナ素子から前記アンテナ素子の共振波長の1/4の距離未満の位置に設けられ、電気的に他の部分と絶縁され前記アンテナ素子の共振波長の近傍の波長で共振する、共振器。
    A resonator used for an antenna that can be incorporated into a mobile communication terminal,
    A resonator provided at a position less than a quarter of the resonance wavelength of the antenna element from the antenna element, electrically insulated from other portions, and resonating at a wavelength near the resonance wavelength of the antenna element.
PCT/JP2014/070160 2013-09-25 2014-07-31 Antenna, antenna structure, and resonator WO2015045614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013198205 2013-09-25
JP2013-198205 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015045614A1 true WO2015045614A1 (en) 2015-04-02

Family

ID=52742770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070160 WO2015045614A1 (en) 2013-09-25 2014-07-31 Antenna, antenna structure, and resonator

Country Status (1)

Country Link
WO (1) WO2015045614A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6583596B1 (en) * 2018-08-09 2019-10-02 株式会社村田製作所 Wireless communication device
WO2019239677A1 (en) * 2018-06-13 2019-12-19 株式会社村田製作所 Wireless communication device
WO2020012725A1 (en) * 2018-07-13 2020-01-16 株式会社村田製作所 Wireless communication device
WO2020031419A1 (en) * 2018-08-09 2020-02-13 株式会社村田製作所 Wireless communication device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289392A (en) * 1996-04-24 1997-11-04 K Lab:Kk Electromagnetic wave absorbing device
JP2001196845A (en) * 1999-12-30 2001-07-19 K Cera Inc Antenna having electromagnetic wave cut-off function and its manufacturing method
JP2007266854A (en) * 2006-03-28 2007-10-11 Kyocera Corp Communication apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289392A (en) * 1996-04-24 1997-11-04 K Lab:Kk Electromagnetic wave absorbing device
JP2001196845A (en) * 1999-12-30 2001-07-19 K Cera Inc Antenna having electromagnetic wave cut-off function and its manufacturing method
JP2007266854A (en) * 2006-03-28 2007-10-11 Kyocera Corp Communication apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239677A1 (en) * 2018-06-13 2019-12-19 株式会社村田製作所 Wireless communication device
US11381273B2 (en) 2018-06-13 2022-07-05 Murata Manufacturing Co., Ltd. Wireless communication device
WO2020012725A1 (en) * 2018-07-13 2020-01-16 株式会社村田製作所 Wireless communication device
JP6658976B1 (en) * 2018-07-13 2020-03-04 株式会社村田製作所 Wireless communication device
US11545732B2 (en) 2018-07-13 2023-01-03 Murata Manufacturing Co., Ltd. Wireless communication device
JP6583596B1 (en) * 2018-08-09 2019-10-02 株式会社村田製作所 Wireless communication device
WO2020031419A1 (en) * 2018-08-09 2020-02-13 株式会社村田製作所 Wireless communication device
US11379704B2 (en) 2018-08-09 2022-07-05 Murata Manufacturing Co., Ltd. Wireless communication device

Similar Documents

Publication Publication Date Title
EP2840651B1 (en) Tunable multiband multiport antennas and method
EP3035442B1 (en) Antenna and mobile terminal
AU2012330892B2 (en) Capacitively coupled compound loop antenna
JP6465109B2 (en) Multi-antenna and radio apparatus including the same
US20140253398A1 (en) Tunable antenna
US20110032165A1 (en) Antenna with multiple coupled regions
US20120306718A1 (en) Antenna and wireless mobile terminal equipped with the same
JP5725571B2 (en) ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE
JP2004516699A (en) Antenna with virtual domain wall
JP2011114643A (en) Antenna and radio communication apparatus
CN106299628B (en) Antenna and wireless router
WO2015045614A1 (en) Antenna, antenna structure, and resonator
Kamal et al. Printed meander line MIMO antenna integrated with air gap, DGS and RIS: A low mutual coupling design for LTE applications
WO2013175903A1 (en) Antenna device and mimo wireless device
JP2014053885A (en) Multi-band antenna
JP6478510B2 (en) antenna
KR20100104086A (en) Multi-band antenna apparatus and communication device having the same
JP2005117490A (en) Compact antenna and multi-frequency shared antenna
JP2008278414A (en) Antenna apparatus
US10320057B2 (en) Antenna device, wireless communication device, and band adjustment method
CN106129637B (en) Multi-antenna MIMO system based on resonant ring decoupling structure
Hasan et al. Dual band slotted printed circular patch antenna with superstrate and EBG structure for 5G applications
US20150155619A1 (en) Circularly Polarized Compact Helical Antenna
Soodmand et al. Small antenna with stable impedance and circular polarization
KR100779407B1 (en) Micromini dual band antenna using meta-material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14849746

Country of ref document: EP

Kind code of ref document: A1