WO2015045448A1 - Polymer particles, process for producing same, and use thereof - Google Patents

Polymer particles, process for producing same, and use thereof Download PDF

Info

Publication number
WO2015045448A1
WO2015045448A1 PCT/JP2014/058618 JP2014058618W WO2015045448A1 WO 2015045448 A1 WO2015045448 A1 WO 2015045448A1 JP 2014058618 W JP2014058618 W JP 2014058618W WO 2015045448 A1 WO2015045448 A1 WO 2015045448A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer particles
surfactant
medium
filter medium
polymer
Prior art date
Application number
PCT/JP2014/058618
Other languages
French (fr)
Japanese (ja)
Inventor
智之 ▲高▼橋
原田 良祐
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52742608&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015045448(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to JP2015538928A priority Critical patent/JP6410266B2/en
Priority to KR1020167008406A priority patent/KR101790509B1/en
Priority to CN201480054204.1A priority patent/CN105593248B/en
Publication of WO2015045448A1 publication Critical patent/WO2015045448A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/16Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/30Emulsion polymerisation with the aid of emulsifying agents non-ionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles

Definitions

  • the present invention relates to polymer particles suitably used as a raw material for optical members such as a light diffusion film and an antiglare film, uses of the polymer particles (optical film and resin molded product), and a method for producing the polymer particles About.
  • Polymer particles having a volume average particle diameter of 1 to 100 ⁇ m are, for example, additives for coating agents such as paints (matting agents etc.), additives for inks (matting agents etc.), main components of adhesives or Additives, artificial marble additives (low shrinkage agents, etc.), paper treatment agents, packing materials for external preparations such as cosmetics (fillers for improving slipperiness), column packing materials used for chromatography, electrostatic charge Used in applications such as toner additives used for image development, anti-blocking agents for films, and light diffusing agents for optical members (optical films such as light diffusing films and antiglare films, light diffusers, etc.) ing.
  • additives for coating agents such as paints (matting agents etc.), additives for inks (matting agents etc.), main components of adhesives or Additives, artificial marble additives (low shrinkage agents, etc.), paper treatment agents, packing materials for external preparations such as cosmetics (fillers for improving slipperiness), column packing materials used for chromatography, electrostatic
  • Such polymer particles can be produced by polymerizing a polymerizable monomer.
  • Known polymerization methods for polymerizing polymerizable monomers include suspension polymerization, seed polymerization, and emulsion polymerization. In these polymerization methods, a surfactant is usually used so that the polymerization reaction is stably performed and the generation of coarse particles is suppressed.
  • Patent Document 1 discloses that resin fine particles (polymer particles) used as a light diffusing agent are obtained by polymerizing a vinyl monomer in a medium containing a surfactant and remain in the resin fine particles.
  • the amount of the surfactant is 0.05 parts by weight or less (specifically, 0.005 to 0.36 parts by weight) with respect to 100 parts by weight of the resin fine particles.
  • Patent Document 2 discloses washing organic particles (polymer particles) having a surface-active agent obtained by emulsion polymerization or suspension polymerization as organic particles blended in an epoxy resin composition. What has been processed is disclosed.
  • an optical film such as a light diffusion film or an antiglare film
  • a resin composition containing polymer particles and a binder there is one obtained by coating a resin composition containing polymer particles and a binder on a film substrate.
  • the resin composition is still on the film substrate.
  • the dispersion state of the polymer particles in the resin composition becomes unstable.
  • the polymer particles in the resin composition are formed. The dispersion state was not stable, and the polymer particles sometimes aggregated excessively. As a result, polymer particles may not spread over the entire coating film formed on the base film, and desired optical characteristics may not be stably obtained.
  • the present invention has been made in view of the above situation, and an object thereof is to provide polymer particles excellent in dispersion stability, a method for producing the same, and an optical film and a resin molded body using the polymer particles. To do.
  • the inventors of the present application have found that the surface state of the polymer particles has an influence on the dispersion stability, and the improvement of the dispersion stability involves a production process in the polymer particles. It was found that the content (residual amount) of the surfactant used in 1) needs to be suppressed very slightly (specifically, less than 50 ppm).
  • the polymer particles of the present invention are characterized in that the surfactant content is more than 0 ppm and less than 50 ppm.
  • the polymer particles of the present invention have a surfactant content of less than 50 ppm, they are excellent in dispersion stability in the binder when used in combination with a binder. Further, when a resin composition obtained by dispersing the polymer particles of the present invention in a binder is applied on a film substrate, the dispersion state of the polymer particles in the resin composition is determined by the coating method. Thus, it is maintained almost stably in the process of forming the coating film, and excessive aggregation of the polymer particles during the coating is suppressed. As a result, the polymer particles spread evenly on the film substrate, and can impart optical characteristics such as stable light diffusibility and antiglare property to the entire coating film formed by the coating.
  • the optical film of the present invention is characterized in that a coating resin composition containing the polymer particles of the present invention and a binder is coated on a film substrate.
  • the optical film of the present invention is formed by coating a substrate with the coating resin composition containing the polymer particles of the present invention having excellent dispersion stability, the entire coating film formed by the coating , Stable optical properties such as light diffusibility and antiglare properties can be obtained. Therefore, according to the optical film of the present invention, high quality stability can be obtained.
  • the resin molded body of the present invention is characterized by molding a molding resin composition containing the polymer particles of the present invention and a transparent resin.
  • the resin molded body of the present invention is formed by molding a molding resin composition containing the polymer particles of the present invention having excellent dispersion stability, in the resin molded body, there is no uneven light diffusibility or Optical properties such as antiglare properties can be obtained stably. Therefore, according to the resin molding of the present invention, high quality stability can be obtained.
  • a vinyl monomer is polymerized in a liquid medium in the presence of a surfactant, and the polymer particle containing the surfactant and the medium are mixed.
  • a polymerization step for obtaining a product and the crude product is charged into a filter, and the medium contained in the charged crude product is passed through the filter medium of the filter while the polymer particles contained in the crude product.
  • the amount per hour is Equation (1); X ⁇ 5.50 ⁇ A (1) (In Formula (1), X means the amount (kg / min) per unit time of the medium that has passed through the filter medium, and A represents the area (m 2 ) of the interface between the filter medium and the object to be filtered).
  • the amount of the cleaning liquid per unit time that has passed through the filter medium in the cleaning step is the following conditional expression (2): Y ⁇ 8.50 ⁇ A (2) (In Formula (2), Y means the amount (kg / min) per unit time of the cleaning liquid that has passed through the filter medium, and A represents the area (m 2 ) of the interface between the filter medium and the object to be filtered).
  • Y means the amount (kg / min) per unit time of the cleaning liquid that has passed through the filter medium
  • A represents the area (m 2 ) of the interface between the filter medium and the object to be filtered).
  • a washing liquid having a weight 10 times or more of the weight of the polymer particles held on the filter medium is used.
  • the amount per unit time of the medium that has passed through the filter medium satisfies the conditional expression (1) in the solid-liquid separation step, and the amount per unit time of the cleaning liquid that has passed through the filter medium in the washing process is the conditional expression ( 2), and in the washing step, a washing liquid having a weight of 10 times or more the weight of the polymer particles held on the filter medium is used. Therefore, the surfactant adhering to the polymer particles in the polymerization step is used. Most can be removed along with the media and cleaning solution. As a result, it is possible to obtain polymer particles excellent in dispersion stability with a very small surfactant content (residual amount).
  • the present invention it is possible to provide polymer particles excellent in dispersion stability, a method for producing the same, and an optical film and a resin molded body using the polymer particles.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a pressure filter usable in an embodiment of the present invention, (a) is a schematic cross-sectional view of the pressure filter, and (b) is the pressure filter. It is a schematic top view which shows the inside of the pressure vessel of a pressure filter.
  • the polymer particles of the present invention are characterized in that the surfactant content is more than 0 ppm and less than 50 ppm.
  • the content of the surfactant is preferably as small as possible, preferably more than 0 ppm to 30 ppm, more preferably more than 0 ppm to 20 ppm, more preferably more than 0 ppm to 15 ppm. Is more preferable.
  • the content of the surfactant in the polymer particles can be measured using, for example, liquid chromatography mass spectrometry (LC-MS-MS).
  • the surfactant contained in the polymer particles of the present invention is the surfactant remaining in the production of the polymer particles.
  • any surfactant usually used in the production of polymer particles for example, an anionic surfactant as described in the section of [Method for producing polymer particles] described later, Nonionic surfactants, cationic surfactants, and amphoteric surfactants can be exemplified.
  • the surfactant contained in the polymer particles of the present invention contains at least one of an anionic surfactant and a nonionic surfactant.
  • the presence of a surfactant in the polymer particles is, for example, measured by a time-of-flight secondary ion mass spectrometer (TOF-SIMS).
  • TOF-SIMS time-of-flight secondary ion mass spectrometer
  • the content (residual amount) of the surfactant used in the production is suppressed to less than 50 ppm, it can be said that the amount of the surfactant on the particle surface is small.
  • the polymer particles of the present invention are used by mixing with a binder, there is little difference in the surface state between the polymer particles mixed with the binder, and as a result, the polymer particles of the present invention are dispersed.
  • the dispersion state of the polymer particles in the dispersion medium is maintained almost stably. That is, the polymer particles of the present invention are excellent in dispersion stability.
  • the polymer particles of the present invention are those in which the content (residual amount) of the surfactant used in the production is suppressed to less than 50 ppm, and the amount of the surfactant on the particle surface is small. Therefore, when the polymer particles of the present invention are used in a mixture with a dispersion medium, the time required for uniform dispersion in the dispersion medium is stable. Further, as described above, the polymer particles of the present invention are obtained by dispersing polymer particles in a binder, for example, because the amount of the surfactant on the particle surface is small and the dispersion stability is excellent.
  • the dispersion state of the polymer particles in the resin composition is maintained almost stably in the process of forming a coating film by the coating.
  • excessive aggregation of the polymer particles during the coating can be suppressed.
  • the polymer particles spread evenly on the film substrate, and can impart optical characteristics such as stable light diffusibility and antiglare property to the entire coating film formed by the coating. For this reason, the optical film produced using the polymer particles of the present invention has excellent quality stability.
  • the content of the surfactant on the particle surface is preferably as small as possible.
  • the total ionic strength and negative ions of positive ions measured by a time-of-flight secondary ion mass spectrometer are used.
  • the ratio of the ionic strength of negative ions derived from the surfactant to the total ionic strength (hereinafter referred to as ionic strength ratio) of 0.01 ⁇ 10 ⁇ 4 to 2.0 ⁇ 10 ⁇ 4 Is preferred.
  • ionic strength ratio is obtained by taking the ionic strength of a high fragment as the ionic strength of negative ions derived from the surfactant.
  • the polymer particles having the ionic strength ratio within the above range have a very small amount of the surfactant on the particle surface. For this reason, when polymer particles having an ionic strength ratio within the above range are used by being mixed with a binder, the surface states of the polymer particles mixed with the binder are almost the same. When the coalesced particles are used by being dispersed in a dispersion medium, the dispersion state of the polymer particles in the dispersion medium is maintained extremely stably. That is, polymer particles having an ionic strength ratio within the above range are extremely excellent in dispersion stability.
  • the polymer particles having an ionic strength ratio within the above range are those in which the amount of the surfactant on the particle surface is extremely small, so that the polymer particles of the present invention are used by mixing with a dispersion medium. In some cases, the time required to uniformly disperse in the dispersion medium is more stable.
  • a resin composition obtained by dispersing polymer particles having an ionic strength ratio within the above range in a binder is used on a film substrate, the polymer in the resin composition is used. The dispersed state of the particles is maintained extremely stably in the process of forming the coating film by the coating, and excessive aggregation of the polymer particles during the coating is surely suppressed.
  • the polymer particles spread more uniformly on the film substrate and can reliably impart optical properties such as stable light diffusibility and antiglare properties to the entire coating film formed by the coating. .
  • the optical film produced using the polymer particles having an ionic strength ratio within the above range is excellent in quality stability.
  • the polymer constituting the polymer particles of the present invention is, for example, a vinyl monomer polymer.
  • the vinyl monomer include a monofunctional vinyl monomer having one ethylenically unsaturated group and a polyfunctional vinyl monomer having two or more ethylenically unsaturated groups. .
  • Examples of the monofunctional vinyl monomer include, for example, (meth) acrylate monomers; styrene monomers (aromatic vinyl monomers); vinyl acetate, vinyl propionate, vinyl versatate, etc. Saturated fatty acid vinyl monomers; vinyl cyanide monomers such as acrylonitrile and methacrylonitrile; ethylenic unsaturation such as acrylic acid, methacrylic acid, crotonic acid, citraconic acid, itaconic acid, maleic acid and fumaric acid Carboxylic acid; Ethylenically unsaturated carboxylic acid anhydride such as maleic anhydride; Ethylenically unsaturated dicarboxylic acid monoalkyl ester such as monobutylmaleic acid; Ethylenically unsaturated carboxylic acid and ethylenically unsaturated dicarboxylic acid monoalkyl ester Ethylenically unsaturated carboxylates such as ammonium salts or alkali metal
  • Examples of the (meth) acrylate monomer include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, isononyl acrylate, acrylic acid Alkyl acrylate monomers such as lauryl and stearyl acrylate; alkyl methacrylate monomers such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate and stearyl methacrylate; glycidyl acrylate (Meth) acrylic acid ester having an epoxy group (glycidyl group) such as glycidyl methacrylate; hydroxyalkyl (meth) acrylate such as 2-hydroxyethyl methacrylate and 2-hydroxypropyl acrylate; dimethyl Amino ethyl me
  • the (meth) acrylic acid ester monomer preferably contains at least one of an alkyl acrylate monomer and an alkyl methacrylate monomer.
  • (meth) acrylate means acrylate or methacrylate
  • (meth) acryl means acryl or methacryl.
  • styrenic monomer examples include styrene, ⁇ -methylstyrene, vinyl toluene, and ethyl vinyl benzene.
  • polyfunctional vinyl monomer examples include allyl (meth) acrylate, divinylbenzene, diallyl phthalate, triallyl cyanurate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, propylene glycol di ( Examples include meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate.
  • the above-mentioned vinyl monomers may be used alone or in combination of two or more.
  • the polymer constituting the polymer particles is preferably any of a (meth) acrylic polymer, a styrene polymer, and a (meth) acryl-styrene polymer.
  • the (meth) acrylic polymer is a polymer of a (meth) acrylic acid ester monomer, or a (meth) acrylic acid ester monomer, a (meth) acrylic acid ester monomer, and styrene. It is a copolymer with a vinyl monomer other than the monomer.
  • the styrene polymer is a polymer of a styrene monomer or a copolymer of a styrene monomer and a vinyl monomer other than a (meth) acrylate monomer and a styrene monomer. It is a polymer.
  • the (meth) acrylic-styrene copolymer is a copolymer of a (meth) acrylic acid ester monomer and a styrene monomer, or a (meth) acrylic acid ester monomer.
  • the polymer constituting the polymer particles is preferably a copolymer (crosslinked polymer) of the monofunctional vinyl monomer and the polyfunctional vinyl monomer.
  • the amount of the structural unit derived from the polyfunctional vinyl monomer in the polymer is preferably in the range of 5 to 50% by weight with respect to 100% by weight of the polymer.
  • the degree of crosslinking of the polymer is lowered.
  • the polymer particles when polymer particles are mixed with a binder and applied as a resin composition, the polymer particles may swell and increase the viscosity of the resin composition, which may reduce the coating workability.
  • the polymer particles are mixed with the binder and molded when the polymer particles are heated during mixing or molding (so-called kneading application). Particles are easily dissolved or deformed.
  • the amount of the structural unit derived from the polyfunctional vinyl monomer is larger than the above range, the improvement in the effect commensurate with the use amount of the polyfunctional vinyl monomer is not recognized, and the production cost increases. There is.
  • the gel fraction of the polymer particles of the present invention is preferably 90% or more, and more preferably 97% or more. If the gel fraction is less than 90%, sufficient solvent resistance cannot be ensured.
  • polymer particles are mixed with an organic solvent together with a binder and coated on a film substrate to produce an antiglare film or light.
  • an optical film such as a diffusion film
  • polymer particles are dissolved in an organic solvent, and there is a possibility that optical properties such as light diffusibility and antiglare property cannot be obtained sufficiently.
  • a gel fraction shall point out the gel fraction measured, for example by the method as described in the term of an Example.
  • the volume average particle diameter of the polymer particles is preferably 0.5 to 100 ⁇ m, more preferably 1 to 30 ⁇ m.
  • an optical member such as an antiglare film or a light diffusing film
  • optical properties such as antiglare property and light diffusibility of the optical member can be improved.
  • the volume average particle diameter of the polymer particles refers to the arithmetic average of the volume-based particle size distribution measured by the Coulter method, for example, the method described in the Examples section.
  • the particle diameter variation coefficient (CV) of the polymer particles is preferably 15% or less.
  • the polymer particles are preferably obtained by polymerizing (ie, seed polymerizing) a vinyl monomer by absorbing the vinyl monomer in the presence of a surfactant. Since polymer particles obtained by seed polymerization have little variation in particle diameter, when used in an optical member such as an antiglare film or a light diffusing film, the antiglare property and light diffusibility of the optical member, etc. It is possible to improve the optical characteristics.
  • the polymer particles of the present invention can be produced by the production method of the present invention.
  • a vinyl monomer is polymerized in a liquid medium in the presence of a surfactant, and the polymer particle containing the surfactant and the medium are mixed.
  • a polymerization step for obtaining a product and the crude product is charged into a filter, and the medium contained in the charged crude product is passed through the filter medium of the filter while the polymer particles contained in the crude product.
  • a solid-liquid separation step for holding the polymer particles on the filter medium, and a cleaning liquid is charged into the filter that holds the polymer particles on the filter medium, the cleaning liquid is brought into contact with the polymer particles, and the polymer particles and A cleaning step of passing the contacted cleaning liquid through the filter medium to obtain polymer particles cleaned with the cleaning liquid on the filter medium.
  • a vinyl monomer is polymerized in a liquid medium in the presence of a surfactant to obtain a crude product containing the polymer particles containing the surfactant and the medium.
  • the liquid medium (medium contained in the crude product) is preferably an aqueous medium, for example, water; lower alcohols such as methyl alcohol and ethyl alcohol (alcohols having 5 or less carbon atoms); mixtures of water and lower alcohols, etc. Is mentioned.
  • the surfactant stabilizes the dispersion of the vinyl monomer in the liquid medium.
  • the surfactant any of an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant can be used.
  • a liquid medium is used. The dispersion of the vinyl-based monomer can be more stably ensured, and polymer particles having a uniform particle diameter can be obtained, so that at least one of an anionic surfactant and a nonionic surfactant Is preferably used.
  • anionic surfactant any known anionic surfactant such as fatty acid salt type, sulfate ester type, sulfonate type and the like can be used.
  • anionic surfactant such as fatty acid salt type, sulfate ester type, sulfonate type and the like can be used.
  • alkyl sulfates such as sodium lauryl sulfate and ammonium lauryl sulfate
  • alkyl benzene sulfonates such as sodium dodecylbenzene sulfonate
  • alkyl naphthalene sulfonates alkane sulfonates, di (2-ethylhexyl) sulfosuccinate (sodium) Salt), dialkylsulfosuccinate such as dioctylsulfosuccinate (sodium salt); alkenyl succinate (dipotassium salt); alkyl phosphate ester salt
  • naphthalene sulfonate formalin condensate polyoxyethylene alkylphenyl Ether sulfates, polyoxyethylene lauryl ether, polyoxyethylene alkyl ether sulfate such as sodium sulfate; polyoxyethylene alkyl sulfates
  • nonionic surfactant any known nonionic surfactant such as an ester type, an ether type, and an ester / ether type can be used.
  • a polyoxyethylene alkyl such as polyoxyethylene tridecyl ether can be used.
  • polyoxyethylene alkylphenyl ether such as polyoxyethylene octylphenyl ether, polyoxyethylene styrenated phenyl ether, polyoxyalkylene alkyl ether such as polyoxyalkylene tridecyl ether having 3 or more carbon atoms in the alkylene group
  • poly Oxyethylene fatty acid esters such as polyoxyethylene octylphenyl ether, polyoxyethylene styrenated phenyl ether, polyoxyalkylene alkyl ether such as polyoxyalkylene tridecyl ether having 3 or more carbon atoms in the alkylene group
  • poly Oxyethylene fatty acid esters such as polyoxyethylene octylphenyl ether, polyoxyethylene styrenated phenyl ether, polyoxyalkylene alkyl ether such as polyoxyalkylene tridecyl ether having 3 or more carbon atoms in the alkylene group
  • cationic surfactant known cationic surfactants such as amine salt type and quaternary ammonium salt type can be used, but water-soluble cationic surfactants are used from the viewpoint of handling. It is advantageous.
  • the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate; alkyltrimethylammonium such as lauryltrimethylammonium chloride, hexadecyltrimethylammonium chloride, cocoyltrimethylammonium chloride, and dodecyltrimethylammonium chloride.
  • alkyl dimethyl benzyl chlorides such as hexadecyl dimethyl benzyl ammonium chloride and lauryl dimethyl benzyl ammonium chloride;
  • These cationic surfactants may be used individually by 1 type, and may be used in combination of 2 or more type.
  • amphoteric surfactants examples include lauryl dimethylamine oxide, phosphate ester surfactants, phosphite ester surfactants, and the like. These amphoteric surfactants may be used alone or in combination of two or more.
  • the above surfactants may be used alone or in combination of two or more.
  • the surfactant preferably has a solubility in water at a liquid temperature of 25 ° C. of 0.3 g / 100 ml to 5.0 g / 100 ml, more preferably 0.5 g / 100 ml to 3.0 g / 100 ml. If a surfactant having a solubility of less than 0.3 g / 100 ml is used, the vinyl monomer may not be stably dispersed in the aqueous medium when the liquid medium is an aqueous medium in the polymerization step.
  • a surfactant having a solubility exceeding 5.0 g / 100 ml has a poor hydrophobic group effect and a poor effect of stabilizing the dispersion of the vinyl monomer in an aqueous medium.
  • a large amount of a surfactant is required to stabilize the dispersion of the vinyl monomer in the aqueous medium. It is not preferable in terms of sex.
  • the amount of the surfactant used in the polymerization of the vinyl monomer is preferably in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the vinyl monomer.
  • the amount of the surfactant used is less than the above range, the polymerization stability may be lowered.
  • there is more usage-amount of surfactant than the said range it is uneconomical in terms of cost.
  • the polymerization method of the vinyl monomer is not particularly limited as long as it is a known polymerization method using a liquid medium and a surfactant.
  • methods such as seed polymerization, emulsion polymerization, suspension polymerization, etc. Is mentioned.
  • seed polymerization is most preferred because the resulting polymer particles have the least variation in particle diameter.
  • the above emulsion polymerization is a mixture of a liquid medium, a vinyl monomer that is difficult to dissolve in this medium, and a surfactant (emulsifier), and a polymerization initiator that is soluble in the medium is added thereto to perform polymerization.
  • the emulsion polymerization is characterized in that there is little variation in the particle diameter of the polymer particles obtained.
  • the suspension polymerization is a polymerization method in which a vinyl monomer and an aqueous medium such as water are mechanically stirred to suspend the vinyl monomer in the aqueous medium for polymerization.
  • the suspension polymerization is characterized in that polymer particles having a small particle size and a relatively uniform particle size can be obtained.
  • the seed polymerization is a method in which, when starting polymerization of a vinyl monomer, seed (seed) particles made of a polymer of a vinyl monomer prepared separately are put into the polymerization. More specifically, in the seed polymerization, polymer particles made of a vinyl monomer polymer are used as seed particles, the vinyl particles are absorbed in the seed particles in an aqueous medium, This is a method of polymerizing a vinyl monomer. In this method, polymer particles having a larger particle diameter than the original seed particles can be obtained by growing the seed particles.
  • the polymerization step is performed in a liquid medium in the presence of seed particles and a surfactant.
  • the method includes seed polymerizing a vinyl monomer to obtain a crude product including the polymer particles including the surfactant and the medium.
  • seed particles are added to an emulsion (suspension) containing a vinyl monomer, an aqueous medium, and a surfactant.
  • the emulsion can be prepared by a known method.
  • an emulsion can be obtained by adding a vinyl monomer and a surfactant to an aqueous medium and dispersing them with a fine emulsifier such as a homogenizer, an ultrasonic processor, or a nanomizer.
  • aqueous medium water or a mixture of water and an organic solvent (for example, a lower alcohol (alcohol having 5 or less carbon atoms)) can be used.
  • the amount of the surfactant used in the seed polymerization is preferably in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the vinyl monomer.
  • the amount of the surfactant used is less than the above range, the polymerization stability may be lowered.
  • there is more usage-amount of surfactant than the said range it is uneconomical in terms of cost.
  • the seed particles may be added to the emulsion as it is, or may be added to the emulsion in a form dispersed in an aqueous medium.
  • the vinyl monomer is absorbed by the seed particles. This absorption can usually be performed by stirring the emulsion at room temperature (about 20 ° C.) for 1 to 12 hours.
  • the emulsion may be heated to about 30 to 50 ° C.
  • the seed particles swell by absorbing the vinyl monomer.
  • the mixing ratio of the vinyl monomer to the seed particles is preferably in the range of 5 to 300 parts by weight of the vinyl monomer and 1 to 250 parts by weight with respect to 1 part by weight of the seed particles. More preferably, it is within.
  • the mixing ratio of the vinyl monomer is smaller than the above range, the increase in particle diameter due to polymerization is small, and thus the production efficiency is lowered.
  • the mixing ratio of the vinyl monomer is larger than the above range, the vinyl monomer is not completely absorbed by the seed particles, and is suspension-polymerized independently in an aqueous medium, resulting in an abnormally small particle size. Polymer particles may be produced.
  • finish of absorption of the vinyl-type monomer to a seed particle can be determined by confirming expansion of a particle diameter by observation with an optical microscope.
  • polymer particles are obtained by polymerizing the vinyl monomer absorbed by the seed particles.
  • polymer particle grains by repeating the process of making a seed particle absorb and polymerize a vinyl-type monomer in multiple times.
  • a polymerization initiator may be added to the vinyl monomer as necessary.
  • the polymerization initiator may be obtained by mixing the polymerization initiator with the vinyl monomer, and then dispersing the obtained mixture in an aqueous medium, or combining both the polymerization initiator and the vinyl monomer. Those separately dispersed in an aqueous medium may be mixed.
  • the particle size of the vinyl monomer droplets present in the resulting emulsion is preferably smaller than the particle size of the seed particles because the vinyl monomer is efficiently absorbed by the seed particles.
  • the polymerization initiator is not particularly limited.
  • benzoyl peroxide lauroyl peroxide, benzoyl peroxide, o-methoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide
  • Organic peroxides such as oxide, t-butylperoxy-2-ethylhexanoate, di-tert-butyl peroxide; 2,2′-azobisisobutyronitrile, 2,2′-azobis (2, 4-dimethylvaleronitrile), 2,2′-azobis (2,3-dimethylbutyronitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,3,3) 3-trimethylbutyronitrile), 2,2′-azobis (2-isopropylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonite) ), 2,2′-azobis (4-methoxy-2,4-dimethylvaleron
  • the polymerization temperature of the seed polymerization can be appropriately selected according to the type of vinyl monomer and the type of polymerization initiator used as necessary. Specifically, the polymerization temperature of the seed polymerization is preferably 25 to 110 ° C., and more preferably 50 to 100 ° C. The polymerization time for the seed polymerization is preferably 1 to 12 hours.
  • the polymerization reaction of the seed polymerization may be performed in an atmosphere of an inert gas (for example, nitrogen) that is inert to the polymerization.
  • the seed polymerization is preferably carried out by raising the temperature after the vinyl monomer and the polymerization initiator used as necessary are completely absorbed by the seed particles.
  • a polymer dispersion stabilizer may be added to the polymerization reaction system in order to improve the dispersion stability of the polymer particles.
  • the polymer dispersion stabilizer include polyvinyl alcohol, polycarboxylic acid, celluloses (such as hydroxyethyl cellulose and carboxymethyl cellulose), and polyvinylpyrrolidone.
  • the polymer dispersion stabilizer and an inorganic water-soluble polymer compound such as sodium tripolyphosphate may be used in combination.
  • polyvinyl alcohol and polyvinyl pyrrolidone are preferred.
  • the addition amount of the polymer dispersion stabilizer is preferably in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the vinyl monomer.
  • nitrites such as sodium nitrite, sulfites, hydroquinones, ascorbic acids, water-soluble Water-soluble polymerization inhibitors such as vitamin Bs, citric acid and polyphenols may be added to the aqueous medium.
  • the addition amount of the polymerization inhibitor is preferably in the range of 0.02 to 0.2 parts by weight with respect to 100 parts by weight of the vinyl monomer.
  • the polymerization method for obtaining seed particles by polymerizing a vinyl monomer is not particularly limited, but dispersion polymerization, emulsion polymerization, soap-free emulsion polymerization (emulsion polymerization without using a surfactant as an emulsifier). , Seed polymerization, suspension polymerization and the like can be used. In order to obtain polymer particles having a substantially uniform particle size by seed polymerization, it is necessary to first use seed particles having a substantially uniform particle size and grow these seed particles substantially uniformly.
  • Seed particles having a substantially uniform particle size as a raw material can be produced by polymerizing a vinyl monomer by a polymerization method such as soap-free emulsion polymerization (emulsion polymerization without using a surfactant) and dispersion polymerization. Accordingly, emulsion polymerization, soap-free emulsion polymerization, seed polymerization, and dispersion polymerization are preferred as polymerization methods for polymerizing vinyl monomers to obtain seed particles.
  • a polymerization method such as soap-free emulsion polymerization (emulsion polymerization without using a surfactant) and dispersion polymerization. Accordingly, emulsion polymerization, soap-free emulsion polymerization, seed polymerization, and dispersion polymerization are preferred as polymerization methods for polymerizing vinyl monomers to obtain seed particles.
  • a polymerization initiator is used as necessary.
  • the polymerization initiator include persulfates such as potassium persulfate, ammonium persulfate, sodium persulfate; benzoyl peroxide, lauroyl peroxide, o-chlorobenzoyl peroxide, o-methoxybenzoyl peroxide, 3, 5 , 5-trimethylhexanoyl peroxide, tert-butylperoxy-2-ethylhexanoate, organic peroxides such as di-tert-butyl peroxide; 2,2′-azobisisobutyronitrile, Examples thereof include azo compounds such as 1′-azobiscyclohexanecarbonitrile and 2,2′-azobis (2,4-dimethylvaleronitrile).
  • the amount of the polymerization initiator used is preferably in the range of 0.1 to 3 parts by weight with respect to 100 parts by weight of the vinyl monomer used to obtain seed particles.
  • the weight average molecular weight of the seed particles obtained can be adjusted by adjusting the amount of the polymerization initiator used.
  • a molecular weight modifier may be used in order to adjust the weight average molecular weight of the obtained seed particles.
  • the molecular weight modifier include mercaptans such as n-octyl mercaptan and tert-dodecyl mercaptan; ⁇ -methylstyrene dimer; terpenes such as ⁇ -terpinene and dipentene; halogenated hydrocarbons such as chloroform and carbon tetrachloride, etc. Can be used.
  • the weight average molecular weight of the seed particles obtained can be adjusted by adjusting the amount of the molecular weight modifier used.
  • Solid-liquid separation process In the solid-liquid separation step, the crude product is charged into a filter, and the medium contained in the charged crude product is passed through the filter medium of the filter, while the polymer particles contained in the crude product are passed through the filter. Hold on filter media.
  • the amount per unit time of the medium that has passed through the filter medium is the following conditional expression (1); X ⁇ 5.50 ⁇ A (1) (In Formula (1), X means the amount (kg / min) per unit time of the medium that has passed through the filter medium, and A represents the area (m 2 ) of the interface between the filter medium and the object to be filtered). Means).
  • the surfactant contained in the crude product together with the medium
  • the amount of the surfactant remaining in the polymer particles remaining on the filter medium (specifically, the amount of the surfactant adhered on the surface of the polymer particles) can be reduced.
  • the filter is not particularly limited.
  • the pressure vessel 2 having a cylindrical inner space and an inner bottom portion of the pressure vessel 2 are disposed.
  • An example of the pressure filter 1 includes a filter medium 3 and a compressed gas supply device (not shown) that supplies compressed gas (inert gas such as nitrogen, air, etc.) into the pressure vessel.
  • compressed gas in the pressure filter 1 shown in FIG. 1, the area of the bottom surface of the cylindrical inner space of the pressure vessel 2 (see FIG. 1B) is the interface between the filter medium 3 and the material to be filtered (crude product P). It is almost the same as the area.
  • the crude product P is charged in the form of a slurry solution into the pressure vessel 2 of the pressure filter 1, and is placed on the filter medium 3 in the pressure vessel 2.
  • the crude product P is filled, and the compressed gas is supplied to the upper space S of the filter medium 3 in the pressure vessel 2 by the compressed gas supply machine, whereby the upper space S of the filter medium 3 in the pressure vessel 2 is pressurized.
  • the crude product P is pressed against the filter medium 3, the liquid medium contained in the crude product P passes through the filter medium 3, and the liquid medium is discharged out of the pressure vessel 2 as a filtrate. Then, a cake of polymer particles remains on the filter medium 3.
  • the pressure vessel 2 is preferably made of, for example, stainless steel and has a pressure resistance of 0.50 MPa or more.
  • the filter medium 3 is not particularly limited as long as the polymer particles can be reliably collected.
  • a filter cloth such as a woven fabric or a nonwoven fabric made of natural fibers or synthetic fibers; a wire mesh made of sintered metal; Nonwoven fabric made of sintered metal; filter plate (perforated plate) made of natural fiber, glass fiber, etc .; net made of synthetic resin: filter paper; glass fiber filter, etc., and filter cloth is preferred.
  • the pressurizing condition when pressurizing the upper space S of the filter medium 3 in the pressure resistant vessel 2 using the pressure filter 1 is a pressure satisfying the conditional expression (1).
  • the conditional expression (1) it is preferable to pressurize the pressure vessel 2 so that the internal pressure is within a range of 0.01 MPa to 0.50 MPa.
  • the internal pressure of the pressure resistant vessel 2 is preferably kept almost constant so as to satisfy the conditional expression (1) from the start of pressurization to the end of the solid-liquid separation step.
  • the internal pressure of the container 2 gradually decreases as the medium contained in the crude product P passes through the filter medium 3 after being pressurized.
  • the amount of medium contained in the crude product P charged into the filter (pressure filter 1) (when all the crude products obtained in the polymerization step are charged into the filter)
  • the amount of the medium used in the polymerization step) is preferably 100% by weight, and the medium contained in the crude product P is preferably removed by passing a medium of 70% by weight or more through the filter medium 3.
  • a medium of 70% by weight or more is passed through the filter medium 3 with respect to 100% by weight of the medium contained in the crude product P charged into the filter (pressure filter 1).
  • the remaining amount of the surfactant in the polymer particles remaining on the filter medium 3 can be reduced. As a result, it is possible to reduce the amount of cleaning liquid in the cleaning process described later.
  • the solid-liquid separation step includes the amount of the medium contained in the crude product P introduced into the pressure filter 1 (
  • the amount of the medium is 70% by weight or more with respect to 100% by weight of the medium used in the polymerization step). 3 and it is preferable that the process is terminated when the internal pressure of the pressure vessel 2 becomes 80% or less with respect to the pressure of 100% during pressurization.
  • the remaining amount of the surfactant in the polymer particles remaining on the filter medium 3 can be reliably reduced, and the amount of the cleaning liquid in the cleaning step described later can be reduced.
  • washing process In the washing step, the washing liquid is put into the filter holding the polymer particles on the filter medium, the washing liquid is brought into contact with the polymer particles, and the washing liquid in contact with the polymer particles passes through the filter medium. As a result, polymer particles washed with the washing liquid are obtained on the filter medium.
  • the amount per unit time of the washing liquid that has passed through the filter medium is the following conditional expression (2); Y ⁇ 8.50 ⁇ A (2) (In Formula (2), Y means the amount (kg / min) per unit time of the cleaning liquid that has passed through the filter medium, and A represents the area (m 2 ) of the interface between the filter medium and the object to be filtered). Means).
  • Y means the amount (kg / min) per unit time of the cleaning liquid that has passed through the filter medium
  • A represents the area (m 2 ) of the interface between the filter medium and the object to be filtered). Means).
  • the amount per unit time of the cleaning liquid that has passed through the filter medium in the cleaning step averages from the start to the end of the cleaning of the polymer particles by allowing the cleaning liquid to pass through the filter medium.
  • Y means the amount (kg / min) of the cleaning liquid that has passed through the filter medium per unit time
  • A means the area (m 2 ) of the interface between the filter medium and the object to be filtered. It is preferable to satisfy.
  • the washing liquid is left while the polymer particle cake remaining on the filter medium 3 is held on the filter medium 3 as it is.
  • the cake and the cleaning liquid are brought into contact with each other by being supplied into the pressure vessel 2, and the upper space S of the filter medium 3 is pressurized by supplying the compressed gas to the upper space S of the filter medium 3 in the pressure vessel 2 by a compressed gas supply machine. .
  • the cake comes into contact with the cleaning liquid and is cleaned, and the cleaned cleaning liquid is discharged out of the pressure vessel 2 as a filtrate.
  • the pressurizing condition when the pressurizing filter 1 is used to pressurize the upper space S of the filter medium 3 in the pressure resistant vessel 2 is particularly limited as long as it satisfies the conditional expression (2).
  • the upper space S of the filter medium 3 is preferably pressurized at a rate of 0.01 to 0.30 MPa / min.
  • the internal pressure of the pressure vessel 2 is kept substantially constant from the start of pressurization to the end of the cleaning step so as to satisfy the conditional expression (2).
  • the pressure in the pressure-resistant vessel 2 gradually decreases as the cleaning liquid introduced into the pressure-resistant vessel 2 passes through the filter medium 3 after being pressurized. Specifically, when the cleaning liquid passing through the filter medium 3 is reduced or almost disappeared, the compressed air pressure in the pressure resistant container 2 is released from the bottom, and it becomes difficult to maintain the internal pressure of the pressure resistant container 2 at the pressure at the time of pressurization.
  • the pressure at the time of pressurization will be below.
  • the cleaning liquid used in the cleaning step is preferably an aqueous medium, and examples thereof include water; lower alcohols such as methyl alcohol and ethyl alcohol (alcohols having 5 or less carbon atoms); and mixtures of water and lower alcohols. It is preferable to use the same medium as used in the polymerization step.
  • the weight of the washing liquid used in the washing step is the weight of the polymer particles held on the filter medium 3 (in the case where all the crude products obtained in the polymerization step in the solid-liquid separation step are put into the filter, the polymerization step)
  • the total amount of vinyl monomers used in (1) is 10 times or more.
  • the weight of the washing liquid used in the washing step is less than 10 times the weight of the polymer particles held on the filter medium 3, the removal of the surfactant contained in the polymer particles becomes insufficient, and the desired polymer There is a possibility that particles (polymer particles having a surfactant content of less than 50 ppm) cannot be obtained.
  • the weight of the cleaning liquid used in the cleaning process is preferably equal to or more than the total amount of the lower limit D of the weight of the cleaning liquid calculated by the following calculation formula (4) for each type of surfactant used in the polymerization process.
  • the weight of the cleaning liquid used in the cleaning process is equal to or more than the total amount of the lower limit D of the weight of the cleaning liquid calculated by the following calculation formula (4) for each type of surfactant used in the polymerization process, the polymer particles The content of the surfactant in the inside can be further reduced.
  • D (E ⁇ F) ⁇ 2000 (4)
  • D Lower limit of weight of cleaning solution required for one type of surfactant (g)
  • E Amount of the one kind of surfactant used (g)
  • F Solubility (g / 100 ml) of the above-mentioned one type of surfactant in the washing liquid having a liquid temperature of 25 ° C.
  • the temperature of the cleaning solution used for cleaning is preferably a temperature at which the surfactant is sufficiently eluted, for example, preferably 40 to 80 ° C., and more preferably 50 to 80 ° C.
  • a method for heating the cleaning liquid to the above temperature and performing cleaning a method of supplying the heated cleaning liquid to a filter (for example, the pressure vessel 2 of the pressure filter 1) may be used.
  • a method of heating the cleaning liquid with a heater jacket disposed around the filter after being supplied to the filter may be used.
  • the conductivity of the cleaning liquid that has passed through the filter medium 3 is 2.0 times or less the conductivity of the cleaning liquid before being charged into the filter (pressure filter 1), and the internal pressure of the pressure vessel 2 is It is preferable that the process is terminated when the pressure is 80% or less with respect to the pressure of 100% during pressurization.
  • the water that can be absorbed by the polymer particles by passing the cleaning liquid charged into the pressure vessel 2 through the filter medium 3 until the internal pressure of the pressure vessel 2 becomes 80% or less with respect to the pressure of 100% during pressurization.
  • the amount can be reduced, and the time required for drying the polymer particles after washing can be shortened.
  • the polymer particles obtained in the washing step are dried in a vacuum dryer to almost completely remove the washing liquid, and classified as necessary (preferably, air flow classification) to obtain a weight that can be used as a product. It can be combined particles.
  • the amount per unit time of the medium that has passed through the filter medium satisfies the conditional expression (1), and the unit time of the cleaning liquid that has passed through the filter medium in the washing step. Since the amount per hit satisfies the conditional expression (2) and the washing step uses a washing liquid having a weight of 10 times or more the weight of the polymer particles held on the filter medium, the polymer particles are used in the polymerization step. Most of the surfactant adhering to can be removed together with the medium and the cleaning liquid. As a result, it is possible to obtain polymer particles excellent in dispersion stability with a very small surfactant content (residual amount).
  • polymerization process is also removed in large quantities by a solid-liquid separation process and a washing
  • the polymer particles of the present invention are suitable for optical films such as antiglare films and light diffusion films, and optical members such as light diffusers, and particularly suitable for antiglare members.
  • the optical film of the present invention is obtained by coating a coating resin composition containing the polymer particles of the present invention and a binder on a film substrate.
  • the optical film of the present invention is obtained, for example, by dispersing the polymer particles in a binder to obtain a coating resin composition, coating the obtained coating resin composition on a film substrate, It is obtained by forming a coating film made of the resin composition for use on the film substrate.
  • the binder is not particularly limited as long as it is used in the field according to required properties such as transparency, polymer particle dispersibility, light resistance, moisture resistance and heat resistance.
  • the binder include (meth) acrylic resins; (meth) acrylic-urethane resins; urethane resins; polyvinyl chloride resins; polyvinylidene chloride resins; melamine resins; styrene resins; alkyd resins.
  • Modified silicone resins; binder resins such as fluororesins such as polyvinylidene fluoride and fluoroolefin vinyl ether polymers.
  • the binder resin is preferably a curable resin capable of forming a crosslinked structure by a crosslinking reaction from the viewpoint of improving the durability of the coating resin composition.
  • the curable resin can be cured under various curing conditions.
  • the curable resin is classified into an ionizing radiation curable resin such as an ultraviolet curable resin and an electron beam curable resin, a thermosetting resin, a hot air curable resin, and the like depending on the type of curing.
  • thermosetting resin examples include thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, and silicone resin.
  • the ionizing radiation curable resin synthesized from polyfunctional (meth) acrylate resin such as polyhydric alcohol polyfunctional (meth) acrylate; diisocyanate, polyhydric alcohol, and (meth) acrylic acid ester having a hydroxy group And polyfunctional urethane acrylate resins.
  • the ionizing radiation curable resin is preferably a polyfunctional (meth) acrylate resin, and more preferably a polyhydric alcohol polyfunctional (meth) acrylate having three or more (meth) acryloyl groups in one molecule.
  • polyhydric alcohol polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups in one molecule specifically, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, 1,2,4-cyclohexanetetra (meth) acrylate, pentaglycerol triacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol triacrylate, dipentaerythritol pentaacrylate, dipentaerythritol tetra (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol triacrylate, tripentaerythritol hexaacrylate, etc. That. Two or more kinds of the ionizing radiation curable resins may be used
  • polyether resins having an acrylate functional group polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and the like can also be used.
  • a photopolymerization initiator is added to the ultraviolet curable resin to form a binder.
  • the said photoinitiator it is preferable to use what was suitable for the ultraviolet curable resin to be used.
  • Examples of the photopolymerization initiator include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, ⁇ -hydroxyalkylphenones, ⁇ -aminoalkylphenones, anthraquinones, thioxanthones, azo compounds, peroxides (Described in JP-A No. 2001-139663), 2,3-dialkyldione compounds, disulfide compounds, fluoroamine compounds, aromatic sulfoniums, onium salts, borate salts, active halogen compounds, ⁇ -acyloximes
  • Examples include esters.
  • acetophenones examples include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropio.
  • examples include phenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone.
  • benzoins examples include benzoin, benzoin benzoate, benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
  • benzophenones examples include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone, p-chlorobenzophenone, and the like.
  • phosphine oxides examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
  • Examples of the ketals include benzylmethyl ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one.
  • Examples of the ⁇ -hydroxyalkylphenones include 1-hydroxycyclohexyl phenyl ketone.
  • Examples of the ⁇ -aminoalkylphenones include 2-methyl-1- [4- (methylthio) phenyl] -2- (4-morpholinyl) -1-propanone.
  • radical photopolymerization initiators include trade names “Irgacure (registered trademark) 651” (2,2-dimethoxy-1,2-diphenylethane-1-one) manufactured by BASF Japan Ltd., manufactured by BASF Japan Ltd. Trade name “Irgacure (registered trademark) 184”, and trade name “Irgacure (registered trademark) 907” (2-methyl-1- [4- (methylthio) phenyl] -2- (4-morpholinyl) manufactured by BASF Japan Ltd. ) -1-propanone) and the like.
  • the amount of the photopolymerization initiator used is usually in the range of 0.5 to 20% by weight, preferably in the range of 1 to 5% by weight with respect to 100% by weight of the binder.
  • thermoplastic resin As the binder resin, a thermoplastic resin can be used in addition to the curable resin.
  • the thermoplastic resin include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; homopolymers and copolymers of vinyl acetate, homopolymers and copolymers of vinyl chloride, and vinylidene chloride.
  • Vinyl resins such as homopolymers and copolymers; acetal resins such as polyvinyl formal and polyvinyl butyral; homopolymers and copolymers of acrylate esters, homopolymers and copolymers of methacrylate esters, etc.
  • Acrylic resin polystyrene resin; polyamide resin; linear polyester resin; polycarbonate resin.
  • a rubber binder such as synthetic rubber or natural rubber, an inorganic binder, or the like can be used as the binder.
  • the rubber binder resin include ethylene-propylene copolymer rubber, polybutadiene rubber, styrene-butadiene rubber, and acrylonitrile-butadiene rubber. These rubber-based binder resins may be used alone or in combination of two or more.
  • the inorganic binder examples include silica sol, alkali silicate, silicon alkoxide, and phosphate.
  • an inorganic or organic-inorganic composite matrix obtained by hydrolysis and dehydration condensation of metal alkoxide or silicon alkoxide can also be used.
  • a silicon oxide matrix obtained by hydrolysis and dehydration condensation of a silicon alkoxide such as tetraethoxysilane can be used.
  • the amount of the polymer particles in the coating resin composition is preferably 2 parts by weight or more, more preferably 4 parts by weight or more, based on 100 parts by weight of the solid content of the binder, and 6 parts by weight. More preferably, it is the above.
  • the amount of the polymer particles 2 parts by weight or more with respect to 100 parts by weight of the solid content of the binder it becomes easy to make the matte property of the coating film formed by the coating resin composition sufficient. Therefore, it becomes easy to make sufficient optical characteristics, such as anti-glare property and light diffusibility, of the film formed by coating the coating resin composition on the film substrate.
  • the amount of the polymer particles in the coating resin composition is preferably 300 parts by weight or less, more preferably 200 parts by weight or less, and more preferably 100 parts by weight with respect to 100 parts by weight of the solid content of the binder. More preferably, it is as follows. By making the amount of the polymer particles 300 parts by weight or less with respect to 100 parts by weight of the solid content of the binder, the linear permeability of the coating film formed by the coating resin composition is easily made sufficient.
  • the coating resin composition may further contain an organic solvent.
  • the organic solvent is added to the coating resin composition so that the coating resin composition for the substrate is coated.
  • the coating is not particularly limited as long as the coating is easy.
  • organic solvent examples include aromatic solvents such as toluene and xylene; alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and propylene glycol monomethyl ether; Ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone; 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether, ethylene Glycol ethers such as glycol diethyl ether, diethylene glycol dimethyl ether, and propylene glycol methyl ether; 2-methoxyethyl acetate Salts, glycol ether esters such as 2-ethoxyethyl acetate (cellosolve acetate),
  • the film substrate is preferably transparent.
  • transparent film base materials include polyester polymers such as polyethylene terephthalate (PET) and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose (TAC), polycarbonate polymers, and polymethyl methacrylate.
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • polycarbonate polymers polycarbonate polymers
  • polymethyl methacrylate polymethyl methacrylate
  • a film made of a polymer such as a (meth) acrylic polymer.
  • a film made of a polymer such as a vinyl polymer or an amide polymer such as nylon or aromatic polyamide may also be mentioned.
  • films made of polymers such as polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene polymers, epoxy polymers and blends of the above polymers.
  • the film substrate those having a particularly low birefringence are preferably used.
  • an easy-adhesion layer such as (meth) acrylic resin, copolymerized polyester resin, polyurethane resin, styrene-maleic acid grafted polyester resin, acrylic grafted polyester resin, etc. is further provided on these films is also used as the film substrate. Can be used.
  • the thickness of the film substrate can be determined as appropriate, but is generally within the range of 10 to 500 ⁇ m and within the range of 20 to 300 ⁇ m from the viewpoints of strength, workability such as handling, and thin layer properties. It is preferable that it is within a range of 30 to 200 ⁇ m.
  • an additive may be added to the film substrate.
  • the additive include an ultraviolet absorber, an infrared absorber, an antistatic agent, a refractive index adjuster, and an enhancer.
  • the coating resin composition can be applied to a film substrate by bar coating, blade coating, spin coating, reverse coating, diting, spray coating, roll coating, gravure coating, micro gravure coating, lip coating, air Known coating methods such as knife coating and dipping method may be mentioned.
  • the binder contained in the coating resin composition is an ionizing radiation curable resin
  • the solvent is dried and further irradiated with active energy rays to cure the ionizing radiation.
  • the curing resin may be cured.
  • Examples of the active energy ray include ultraviolet rays emitted from a light source such as a xenon lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a metal halide lamp, a carbon arc lamp, and a tungsten lamp; Electron beams, ⁇ rays, ⁇ rays, ⁇ rays and the like extracted from electron beam accelerators such as a type, a resonant transformation type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type can be used.
  • a light source such as a xenon lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a metal halide lamp, a carbon arc lamp, and a tungsten lamp
  • Electron beams, ⁇ rays, ⁇ rays, ⁇ rays and the like extracted from electron beam accelerators such as a type
  • the thickness of the layer in which the polymer particles are dispersed in the binder formed by application (and curing) of the coating resin composition is not particularly limited and is appropriately determined depending on the particle diameter of the polymer particles. It is preferably in the range of ⁇ 10 ⁇ m, more preferably in the range of 3 to 7 ⁇ m.
  • the optical film of the present invention is formed by coating a substrate with the coating resin composition containing the polymer particles of the present invention having excellent dispersion stability, the entire coating film formed by the coating , Stable optical properties such as light diffusibility and antiglare properties can be obtained. Therefore, according to the optical film of the present invention, high quality stability can be obtained.
  • optical film of the present invention described above can be suitably used for light diffusion or antiglare, that is, as a light diffusion film or antiglare film.
  • the resin molded body of the present invention is formed by molding a molding resin composition containing the polymer particles and a transparent resin.
  • the polymer particles function as light diffusing particles. Therefore, the resin molded body of the present invention functions as a light diffuser such as a light diffusing plate and can be used as an LED lighting cover or the like.
  • the transparent resin is a base material of the resin molded body.
  • a (meth) acrylic resin, a polycarbonate resin, a polystyrene resin, a (meth) acrylic-styrene resin ((meth) acrylic) acid ester and styrene are co-polymerized. Polymer) and the like. Among them, polystyrene resin or (meth) acryl-styrene resin is preferable as the transparent resin.
  • the amount of the polymer particles contained in the resin composition is preferably in the range of 0.01 to 5 parts by weight, preferably in the range of 0.1 to 5 parts by weight, with respect to 100 parts by weight of the transparent resin. More preferably. You may add additives, such as a ultraviolet absorber, antioxidant, a heat stabilizer, a light stabilizer, and a fluorescent whitening agent, to the said resin composition.
  • the thickness, shape and the like of the resin molded body can be appropriately selected depending on the application of the resin molded body.
  • the resin molded body of the present invention can be obtained by melt-kneading the transparent resin and the polymer particles with a single screw extruder or a twin screw extruder. Moreover, the resin composition obtained by melt kneading may be molded into a plate shape via a T die and a roll unit to obtain a resin molded body. Moreover, the resin composition obtained by melt kneading may be pelletized, and the pellet may be formed into a plate shape by injection molding or press molding to obtain a resin molded body.
  • the resin molded body of the present invention is formed by molding a molding resin composition containing the polymer particles of the present invention having excellent dispersion stability, in the resin molded body, there is no uneven light diffusibility or Optical properties such as antiglare properties can be obtained stably. Therefore, according to the resin molding of the present invention, high quality stability can be obtained.
  • TOF-SIMS the measurement method of the gel fraction of the polymer particles
  • the measurement method of the dispersion stabilization time of the polymer particles will be described.
  • volume average particle size is measured by Coulter Multisizer III (measurement device manufactured by Beckman Coulter, Inc.). The measurement shall be performed using an aperture calibrated according to the Multisizer TM 3 User's Manual issued by Beckman Coulter, Inc.
  • the selection of the aperture used for the measurement is such that when the assumed volume average particle diameter of the polymer particles to be measured is 1 ⁇ m or more and 10 ⁇ m or less, an aperture having a size of 50 ⁇ m is selected, and the assumed volume average of the polymer particles to be measured When the particle diameter is larger than 10 ⁇ m and 30 ⁇ m or less, an aperture having a size of 100 ⁇ m is selected. When the assumed volume average particle diameter of the polymer particles is larger than 30 ⁇ m and not larger than 90 ⁇ m, an aperture having a size of 280 ⁇ m is selected, When the assumed volume average particle diameter of the polymer particles is greater than 90 ⁇ m and 150 ⁇ m or less, an aperture having a size of 400 ⁇ m is selected. When the volume average particle diameter after measurement is different from the assumed volume average particle diameter, the aperture is changed to an aperture having an appropriate size, and measurement is performed again.
  • the current (aperture current) is set to ⁇ 800, the gain (gain) is set to 4, and if an aperture having a size of 100 ⁇ m is selected, the current (aperture current) is ⁇ 1600, Gain (gain) is set to 2, and when an aperture having a size of 280 ⁇ m and 400 ⁇ m is selected, Current (aperture current) is set to ⁇ 3200 and Gain (gain) is set to 1.
  • the volume average particle diameter of the polymer particles is an arithmetic average in a volume-based particle size distribution of 100,000 particles.
  • the coefficient of variation (CV value) of the particle diameter of the polymer particles is calculated by the following formula.
  • Coefficient of variation of particle diameter of polymer particles (standard deviation of volume distribution of polymer particles / volume average particle diameter of polymer particles) ⁇ 100
  • the volume average particle diameter of the seed particles is measured by a laser diffraction / scattering particle size distribution measuring device (“LS 13 320” manufactured by Beckman Coulter, Inc.) and a universal liquid sample module.
  • LS 13 320 manufactured by Beckman Coulter, Inc.
  • 0.1 g of seed particles was added to 10 ml of 0.1% by weight nonionic surfactant aqueous solution in a touch mixer (manufactured by Yamato Kagaku Co., Ltd., “TOUCMIXER MT-31”) and an ultrasonic cleaner (Velvok Co., Ltd.). Dispersed using “ULTRASONIC CLEANER VS-150” manufactured by Leer, and used as a dispersion.
  • optical parameters required for evaluation based on the Mie theory are set in the software of the laser diffraction / scattering type particle size distribution measuring apparatus.
  • the measurement is performed at room temperature, and the volume average particle diameter of the seed particles is determined from the obtained data using the software parameters of the laser diffraction / scattering type particle size distribution measuring apparatus, using the preset optical parameters. (Arithmetic mean diameter in the volume-based particle size distribution) is calculated.
  • the refractive index of the seed particles was measured by inputting the refractive index of the polymer constituting the seed particles.
  • the polymer constituting the seed particles used in the production of Examples and Comparative Examples described later is polymethyl methacrylate or polyethyl methacrylate
  • the known refraction of polymethyl methacrylate and polyethyl methacrylate is known.
  • a rate of 1.495 was entered.
  • the content of the surfactant in the polymer particles is measured by extracting the polymer particles with a solvent and using a liquid chromatograph mass spectrometer (LC / MS / MS apparatus).
  • polymer particles in Examples and Comparative Examples described later are used as surfactants, di (2-ethylhexyl) sulfosuccinate, polyoxyethylene styrenated phenyl ether sulfate (see Formula (A) described later), Using at least one of alkenyl succinate (see formula (C) below) and polyoxyethylene styrenated phenyl ether (see formula (E) below) The content of the surfactant in the polymer particles was measured by the following method.
  • Approximately 0.10 g of polymer particles as a sample are precisely weighed in a centrifuge tube, and 5 mL of methanol as an extract is poured with a whole pipette to mix the polymer particles and the extract well. After ultrasonic extraction for 15 minutes, centrifugation is performed at 3500 rpm for 15 minutes, and the resulting supernatant is used as a test solution.
  • the amount of the extract is 5 ml.
  • the surfactant concentration is calculated from a calibration curve prepared in advance from the peak area value on the obtained chromatogram using an LC / MS / MS apparatus. Further, when the polymer particles contain a plurality of types of surfactants, for each of these surfactants, create a calibration curve, calculate the surfactant concentration using the created calibration curve, and calculate each The total surfactant concentration of the surfactant is defined as the “surfactant concentration ( ⁇ g / ml) in the test solution” in the above calculation formula, and the content of the surfactant in the polymer particles is determined.
  • the calibration curve creation method is as follows according to the type of surfactant used in the examples and comparative examples.
  • Capillary voltage -20V
  • Tube lens voltage -100V
  • the polymer particles are measured by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), and it is confirmed that a peak derived from the surfactant is detected.
  • TOF-SIMS time-of-flight secondary ion mass spectrometer
  • polymer particles are fixed on a sample stage of a time-of-flight secondary ion mass spectrometer (“TOF-SIMS 5” manufactured by ION-TOF), and measurement is performed under the following measurement conditions.
  • TOF-SIMS 5 time-of-flight secondary ion mass spectrometer
  • a positive electron gun is used to detect both positive and negative secondary ions, and then it is confirmed that a peak derived from the surfactant is detected.
  • anionic surfactant sodium di (2-ethylhexyl) sulfosuccinate is used as the surfactant.
  • a secondary ion mass spectrometer a plurality of negative ion fragment peaks derived from sodium di (2-ethylhexyl) sulfosuccinate are detected.
  • di (2-ethylhexyl) sulfosuccinate ion (molecular formula: C 20 H 37 SO 7 ⁇ , molecular weight 421) is the highest ion.
  • di (2-ethylhexyl) sulfosuccinate ion (molecular formula: C 20 H 37 SO 7 ⁇ , molecular weight 421) is used as an evaluation ion species, and positive ions
  • the ratio of the ionic strength of di (2-ethylhexyl) sulfosuccinate ion to the total of the total ionic strength and the total ionic strength of negative ions is determined as the ionic strength ratio.
  • Example 8 polyoxyethylene styrenated phenyl ether sulfate ammonium represented by the following formula (A), which is an anionic surfactant, is used as the surfactant.
  • A polyoxyethylene styrenated phenyl ether sulfate ammonium represented by the following formula (A)
  • a plurality of negative ion fragment peaks derived from polyoxyethylene styrenated phenyl ether ammonium sulfate represented by the following formula (A) are detected.
  • styrenated phenyloxy ion represented by the following formula (B) shows the highest ionic strength.
  • Example 8 styrenated phenyloxy ion (molecular formula: C 22 H 21 O ⁇ , molecular weight 301) was used as an evaluation ion species, and positive The ratio of the ionic strength of a styrenated phenyloxy ion (molecular formula: C 22 H 21 O ⁇ , molecular weight 301) represented by the following formula (B) to the sum of the total ionic strength of ions and the total ionic strength of negative ions, Obtained as ionic strength ratio.
  • n means the number of repeating units of an ethyleneoxy group (—CH 2 CH 2 O—).
  • dipotassium alkenyl succinate represented by the following formula (C), which is an anionic surfactant, is used as the surfactant, and measurement using the time-of-flight secondary ion mass spectrometer is performed.
  • a plurality of negative ion fragment peaks derived from dipotassium alkenyl succinate represented by the following formula (C) are detected, and the negative ion species having the highest ionic strength is represented by the following formula (D1) or (D2).
  • D1 or (D2) was detected (molecular formula: C 20 H 35 O 4 ⁇ , molecular weight 339).
  • R means an alkenyl group.
  • Example 10 as the surfactant, polyoxyethylene styrenated phenyl ether sulfate ammonium represented by the above formula (A) which is an anionic surfactant and the following formula (nonionic surfactant): E) and polyoxyethylene styrenated phenyl ether represented by the above formula (A) in the time-of-flight secondary ion mass spectrometer. Multiple peaks of negative ion fragments derived from ammonium ether sulfate and polyoxyethylene styrenated phenyl ether represented by the following formula (E) are detected.
  • the styrenated phenyloxy ion (molecular formula: C 22 H 21 O ⁇ , molecular weight 301) is an evaluation ion species, and is expressed by the above formula (B) with respect to the sum of the total ionic strength of positive ions and the total ionic strength of negative ions that styrenated phenyloxy ion (molecular formula: C 22 H 21 O -, molecular weight 301) the ratio of the ionic strength of Io Determined as the intensity ratio.
  • n means the number of repeating units of an ethyleneoxy group (—CH 2 CH 2 O—)).
  • the contents (dissolved solution) in the eggplant flask were weighed with glass fiber filters “GB-140 ( ⁇ 37 mm)” and “GA-200 ( ⁇ 37 mm)” manufactured by ADVANTEC.
  • Filtration is performed using a Buchner funnel type filter 3G (glass particle pore diameter 20-30 ⁇ m, volume 30 mL), and the solid content is recovered in the Buchner funnel type filter 3G.
  • the solid content collected in the Buchner funnel filter 3G is dried together with the Buchner funnel filter 3G in a vacuum oven at 130 ° C. for 1 hour, and then dried at a gauge pressure of 0.06 MPa for 2 hours. And cool to room temperature.
  • the total weight of the Buchner funnel filter 3G, the glass fiber filter, and the solid content was measured in a state where the solid content was contained in the Buchner funnel filter 3G. Then, the weight (g) of the dry powder was obtained by subtracting the weight of the Buchner funnel filter 3G and the glass fiber filter and the weight of the boiling stone from the measured total weight.
  • the time required for the rate of change to be within a predetermined range was measured by the following method.
  • the viscosity value of the dispersion is measured by the following method using a viscometer (a trace sample viscometer m-VROC manufactured by Nippon Lucas Co., Ltd.). Note that the viscometer is left in the measurement environment for 30 minutes or more in advance before measuring the viscosity value.
  • a viscometer a trace sample viscometer m-VROC manufactured by Nippon Lucas Co., Ltd.
  • the dispersion liquid to be measured is stirred for 30 minutes with an ultrasonic cleaner and then allowed to stand for 10 minutes, and then the viscosity (mPa ⁇ s) of the dispersion liquid is measured using the viscometer. And the viscosity value V (mPa * s / K) per unit temperature (K) is calculated
  • required by the following formula using the measured value (mPa * s) of viscosity, and measured temperature (K). Viscosity value V (mPa ⁇ s / K) Measured value (mPa ⁇ s) ⁇ Measured temperature (K)
  • the viscosity value V (mPa ⁇ s / K) of the dispersion is measured every 1 hour from the preparation of the dispersion according to the above viscosity value measurement method.
  • the measured dispersion viscosity value V is V T (mPa ⁇ s / K), and the viscosity value 1 hour before the dispersion is V T-1 (mPa ⁇ s / K).
  • an aqueous solution in which 0.9 g of potassium persulfate as a polymerization initiator was dissolved in 80 g of water was added to the contents in the separable flask and then polymerized for 12 hours. Reacted.
  • the reaction solution after polymerization was filtered through a 400 mesh (mesh size: 32 ⁇ m) wire mesh to prepare a slurry containing 14% by weight of seed particles (referred to as seed particles (1)) composed of polyethyl methacrylate as a solid content.
  • seed particles (1) contained in this slurry were true spherical particles having a volume average particle diameter of 0.76 ⁇ m.
  • the obtained mixture was added to 1800 g of ion-exchanged water with respect to sodium di (2-ethylhexyl) sulfosuccinate (“RAPISOL (registered trademark) A-80” manufactured by NOF Corporation) as a surfactant and water at a liquid temperature of 25 ° C. (Solubility: 1.5 g / 100 ml) is added to a pure component of 4.5 g and mixed with a homomixer (“TK homomixer MARK 2.5 type” manufactured by PRIMIX Corporation) at 8000 rpm for 10 minutes. And an emulsion was obtained.
  • RPISOL sodium di (2-ethylhexyl) sulfosuccinate
  • TK homomixer MARK 2.5 type manufactured by PRIMIX Corporation
  • the slurry of the seed particles (1) produced in Seed Particle Production Example 1 is added to 12.6 g as a solid content (seed particles), and is allowed to stand at room temperature for 5 hours. Stir. Thereafter, 900 g of an aqueous solution in which 15 g of polyvinyl pyrrolidone (“PVP-90” manufactured by Kuraray Co., Ltd.) as a polymer dispersion stabilizer was dissolved was put into the reactor and polymerized at 55 ° C. for 12 hours with stirring. It was.
  • PVP-90 polyvinyl pyrrolidone
  • the reaction solution after polymerization is filtered with a 400 mesh (mesh size 32 ⁇ m) wire mesh and contains 14% by weight of seed particles (hereinafter referred to as seed particles (2)) composed of polyethyl methacrylate and polymethyl methacrylate as solids.
  • seed particles (2) composed of polyethyl methacrylate and polymethyl methacrylate as solids.
  • a slurry was prepared.
  • the seed particles (2) contained in this slurry were true spherical particles having a volume average particle diameter of 2.30 ⁇ m.
  • Example 1 Production example of polymer particles
  • MMA methyl methacrylate
  • St styrene
  • Solubility 1.5 g / 100 ml
  • a homomixer Principals Co., Ltd. “T Put the K Homomixer MARK 2.5 inch ”
  • the slurry of seed particles (1) obtained in Seed Particle Production Example 1 was added to a solid content (seed particles) of 4.2 g, and stirred at 30 ° C. for 5 hours.
  • slurry (1) a slurry of polymer particles
  • the slurry (1) of polymer particles as the crude product P was subjected to pressure filtration and dehydration, and water as an aqueous medium was removed from the slurry (1) of polymer particles as a filtrate.
  • the amount of the filtrate is 2.24 kg (70% of the weight of the water used in the polymerization step) or more and the internal pressure of the pressure vessel 2 is 0.064 MPa (80% of the pressure during pressurization) or less.
  • Pressurization was terminated.
  • a cake of polymer particles was obtained on the filter medium 3.
  • the interface between the filter medium 3 (filter cloth) of the pressure filter 1 used in this embodiment and the material to be filtered (that is, the crude product P) is circular, and the diameter thereof is that of the pressure vessel 2. It is 0.115 m, which is the same as the diameter of the bottom surface of the internal space (the diameter indicated by the symbol R in FIG. 1). Therefore, the area A of the interface between the filter medium 3 (filter cloth) of the pressure filter 1 used in this example and the material to be filtered (that is, the crude product P) is 0.0104 m 2 .
  • the total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.46 kg, and the medium (water) contained in the crude product P is started to pass through the filter medium 3. Then, the time T 1 until the passage of the medium through the filter medium 3 was 55.7 minutes.
  • the washing is performed using a washing liquid having a weight 10 times or more the weight of the polymer particles obtained in the polymerization process (total amount of vinyl monomers used in the polymerization process 800 g).
  • the test was performed until the electric conductivity of water was 2.0 times or less (specifically, 15 ⁇ S or less), and the internal pressure of the pressure vessel 2 was 0.064 MPa (80% of the pressure during pressurization) or less.
  • the weight G 2 of water as the cleaning liquid used in the cleaning step of this example is 12 kg (15 times the weight of the polymer particles obtained in the polymerization step), and the surfactant used in the polymerization step.
  • Example 2 Production example of polymer particles
  • the inside of the pressure vessel 2 is pressurized to 0.15 MPa
  • the amount of the filtrate becomes 2.24 kg (70% of the weight of water used in the polymerization step) or more
  • the internal pressure of the pressure vessel 2 is 0.
  • the target polymer particles were obtained in the same manner as in Example 1 except that the solid-liquid separation step was terminated when the pressure became .12 MPa (80% of the pressure during pressurization) or less.
  • the total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.48 kg
  • the medium (water) contained in the crude product P starts to pass through the filter medium 3.
  • Example 3 Production Example of Polymer Particles
  • slurry (2) a slurry of polymer particles
  • Solid-liquid separation step instead of the polymer particle slurry (1), the polymer particle slurry (2) is used as the crude product, the inside of the pressure vessel 2 is pressurized to 0.20 MPa, and the filtrate is added.
  • the solid-liquid separation step when the amount of water becomes 2.24 kg (70% of the weight of water used in the polymerization step) or more and the internal pressure of the pressure vessel 2 becomes 0.16 MPa (80% of the pressure during pressurization) or less.
  • the water as an aqueous medium was removed from the slurry (2) of polymer particles in the same manner as in the solid-liquid separation step of Example 1 except that the process was terminated.
  • the total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.38 kg, and the medium (water) contained in the crude product P starts to pass through the filter medium 3. Then, the time T 1 from the end of the passage of the medium through the filter medium 3 was 73.9 minutes.
  • Example 4 Production Example of Polymer Particles
  • the seed particle (1) slurry obtained in seed particle production example 1 is obtained in seed particle production example 2 in place of 4.2 g as the solid content (seed particles).
  • Polymer particle slurry (hereinafter referred to as slurry (3)) in the same manner as in the polymerization step of Example 1 except that 18.7 g of the seed particle (2) slurry was used as the solid content (seed particle).
  • slurry (3) Polymer particle slurry in the same manner as in the polymerization step of Example 1 except that 18.7 g of the seed particle (2) slurry was used as the solid content (seed particle).
  • slurry (3) Polymer particle slurry in the same manner as in the polymerization step of Example 1 except that 18.7 g of the seed particle (2) slurry was used as the solid content (seed particle).
  • Solid-liquid separation step instead of the polymer particle slurry (1), the polymer particle slurry (3) is used as the crude product, the inside of the pressure vessel 2 is pressurized to 0.15 MPa, and the filtrate is added.
  • the solid-liquid separation step when the amount of water becomes 2.24 kg (70% of the weight of water used in the polymerization step) or more and the internal pressure of the pressure vessel 2 becomes 0.12 MPa (80% of the pressure during pressurization) or less.
  • the water as an aqueous medium was removed from the polymer particle slurry (3) in the same manner as in the solid-liquid separation step of Example 1 except that the process was terminated.
  • the total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.50 kg, and the medium (water) contained in the crude product P is started to pass through the filter medium 3. Then, the time T 1 until the passage of the medium through the filter medium 3 was 49.7 minutes.
  • Example 5 Production example of polymer particles
  • St styrene
  • MMA methyl methacrylate
  • a slurry of polymer particles (hereinafter referred to as a slurry) was prepared in the same manner as in the polymerization step of Example 1 except that the amount was 560 g and the blending amount of ethylene glycol dimethacrylate (EGDMA) as a polyfunctional vinyl monomer was 240 g. (4)) was obtained as a crude product.
  • EGDMA ethylene glycol dimethacrylate
  • Solid-liquid separation step instead of the polymer particle slurry (1), the polymer particle slurry (4) is used as the crude product, the inside of the pressure vessel 2 is pressurized to 0.15 MPa, and the filtrate is added.
  • the solid-liquid separation step when the amount of water becomes 2.24 kg (70% of the weight of water used in the polymerization step) or more and the internal pressure of the pressure vessel 2 becomes 0.12 MPa (80% of the pressure during pressurization) or less.
  • the water as an aqueous medium was removed from the slurry (4) of polymer particles in the same manner as in the solid-liquid separation process of Example 1 except that the process was terminated.
  • the total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.48 kg, and the medium (water) contained in the crude product P starts to pass through the filter medium 3. Then, the time T 1 from the end of the passage of the medium through the filter medium 3 was 46.1 minutes.
  • Example 6 Production example of polymer particles
  • MMA methyl methacrylate
  • St styrene
  • a slurry of polymer particles (hereinafter referred to as a slurry) was prepared in the same manner as in the polymerization step of Example 1 except that the amount was 560 g and the blending amount of ethylene glycol dimethacrylate (EGDMA) as a polyfunctional vinyl monomer was 240 g. (5)) was obtained as a crude product.
  • EGDMA ethylene glycol dimethacrylate
  • Solid-liquid separation step instead of the polymer particle slurry (1), the polymer particle slurry (5) is used as a crude product, the inside of the pressure vessel 2 is pressurized to 0.15 MPa, and the filtrate is added.
  • the solid-liquid separation step when the amount of water becomes 2.24 kg (70% of the weight of water used in the polymerization step) or more and the internal pressure of the pressure vessel 2 becomes 0.12 MPa (80% of the pressure during pressurization) or less.
  • the water as an aqueous medium was removed from the slurry (5) of polymer particles in the same manner as in the solid-liquid separation step of Example 1 except that the process was terminated.
  • the total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.48 kg, and the medium (water) contained in the crude product P starts to pass through the filter medium 3. Then, the time T 1 until the passage of the medium through the filter medium 3 was 45.3 minutes.
  • the inside of the pressure vessel 2 is pressurized to 0.10 MPa, and the conductivity of the filtrate is 2.0 times or less (specifically, 15 ⁇ S or less) of the water before washing, and the pressure vessel A cake of polymer particles on the filter medium 3 was prepared in the same manner as in the cleaning step of Example 1 except that the cleaning was performed until the internal pressure of 2 became 0.08 MPa (80% of the pressure at the time of pressurization) or less.
  • the polymer particles after washing were obtained on the filter medium 3.
  • the weight G 2 of water as the cleaning liquid used in the cleaning step of this example is 12 kg (15 times the weight of the polymer particles obtained in the polymerization step), and the surfactant used in the polymerization step.
  • Example 7 Production example of polymer particles
  • MMA methyl methacrylate
  • St styrene
  • a slurry of particles (hereinafter referred to as slurry (6)) was obtained as a crude product.
  • the total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.50 kg, and the medium (water) contained in the crude product P is started to pass through the filter medium 3. Then, the time T 1 until the passage of the medium through the filter medium 3 was completed was 77.2 minutes.
  • Example 8 Production example of polymer particles
  • sodium di (2-ethylhexyl) sulfosuccinate (“Lapisol (registered trademark) A-80” manufactured by NOF Corporation, solubility in water at a liquid temperature of 25 ° C .; 5 g / 100 ml) is replaced with 8 g as a pure component, and ammonium polyoxyethylene styrenated phenyl ether sulfate represented by the above formula (A) (“Hitenol (registered trademark) NF08” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
  • a slurry of polymer particles (hereinafter referred to as slurry (7)) was used in the same manner as in the polymerization step of Example 1 except that 8 g was used as a pure component (solubility in water at a liquid temperature of 25 ° C .; 1.2 g / 100 ml).
  • Example 9 Production example of polymer particles
  • sodium di (2-ethylhexyl) sulfosuccinate (“Lapisol (registered trademark) A-80” manufactured by NOF Corporation, solubility in water at a liquid temperature of 25 ° C .; 5 g / 100 ml) is replaced by 8 g as a pure component
  • dipotassium alkenyl succinate represented by the above formula (C) (“Ramtel ASK” manufactured by Kao Corporation, solubility in water at a liquid temperature of 25 ° C .; 1.7 g / A slurry of polymer particles (hereinafter referred to as slurry (8)) was obtained as a crude product in the same manner as in the polymerization step of Example 1 except that 8 g of 100 ml) was used as a pure component.
  • Example 10 Production example of polymer particles
  • sodium di (2-ethylhexyl) sulfosuccinate (“Lapisol (registered trademark) A-80” manufactured by NOF Corporation, solubility in water at a liquid temperature of 25 ° C .; 5 g / 100 ml) is replaced with 8 g as a pure component, and ammonium polyoxyethylene styrenated phenyl ether sulfate represented by the above formula (A) (“Hitenol (registered trademark) NF08” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 8g as a pure component was used as a polymer dispersion stabilizer ("GOHSENOL (registered trademark) GM-14L” manufactured by Nippon Synthetic Chemical Co., Ltd.).
  • GOHSENOL registered trademark
  • a slurry of polymer particles hereinafter referred to as slurry (9) was obtained as a crude product.
  • the total weight G 1 of the solid-liquid filtrate obtained in the separation step of the present example (medium) is 2.49Kg, start to pass the medium (water) to the filter medium 3 contained in the crude product P Then, the time T 1 from the end of the passage of the medium through the filter medium 3 was 82.5 minutes.
  • the weight G 2 of water as a cleaning liquid used in the cleaning process the washing step was 4.0 kg (5 times the weight of the resulting polymer particles in the polymerization process), pressurizing the interior of the pressure vessel 2 to 0.10MPa Without confirming that the conductivity of the filtrate is 2.0 times or less (specifically, 15 ⁇ S or less) of the water before washing, and the internal pressure of the pressure vessel 2 is 0.08 MPa (pressurization).
  • the cake of polymer particles on the filter medium 3 is washed in the same manner as in the washing step of Example 1 except that washing is performed until the pressure becomes 80% or less of the pressure at the time of pressure. Polymer particles were obtained.
  • washing liquid The water used as a washing liquid is used in an amount of 8.0 kg (10 times the weight of the polymer particles obtained in the polymerization process) or more, and the inside of the pressure vessel 2 is pressurized to 0.20 MPa to conduct the filtrate. Except that cleaning was performed until the rate became 2.0 times or less the conductivity of water before cleaning, and the internal pressure of the pressure vessel 2 became 0.16 MPa (80% of the pressure at the time of pressurization) or less.
  • the cake of polymer particles on the filter medium 3 was washed in the same manner as in the washing step 1 to obtain polymer particles after washing on the filter medium 3.
  • the number of the slurry of polymer particles obtained in the polymerization step (slurry No.), the composition of the monomer mixture constituting the polymer contained in this slurry (polymer) Composition), measurement result of X value in solid-liquid separation process (amount of medium passing through filter medium per unit time (kg / min)), Y value in cleaning process (amount of cleaning liquid passed through filter medium per unit time ( kg / min)), the amount (kg) of the cleaning liquid (water) used in the cleaning step, the volume average particle size ( ⁇ m) of the obtained polymer particles, and the coefficient of variation (CV value (%)).
  • Measurement results the compound name of the surfactant (used in the polymerization step) contained in the obtained polymer particles, the measurement result of the surfactant content (ppm) in the obtained polymer particles, TOF-SIM of the obtained polymer particles Measurement results by (ratio of ionic strength of negative ions derived from surfactant to total ionic strength of positive ions and total ionic strength of negative ions (ionic strength ratio), gel fraction of the resulting polymer particles (%) Measurement results and measurement results of dispersion stabilization time of polymer particles (elapsed time T from the preparation of the dispersion until the rate of change in viscosity value exceeds -1% to less than 1%) The results are shown in Table 1.
  • the area A of the interface is 0.0104 (m 2 ). Therefore, in Examples 1 to 10 and Comparative Examples 1 and 2, the upper limit value of the X value represented by the conditional expression (1) (the amount per unit time of the medium that has passed through the filter medium (kg / min)) is 0.0572 kg / min.
  • the upper limit value of the Y value (the amount of the cleaning liquid that has passed through the filter medium per unit time (kg / min)) represented by the conditional expression (2) is 0.0884 kg / min.
  • the X value in the solid-liquid separation step and the Y value in the washing step are each not more than the above upper limit, and the amount of washing liquid (water) used for washing is not less than 8.0 kg (of the polymer particles).
  • the polymer particles obtained in Examples 1 to 10 having a weight of 10 times or more are compared with the amount of the washing liquid (water) used for washing being less than 8.0 kg (less than 10 times the weight of the polymer particles).
  • the ionic strength ratio is small. That is, according to the production method of the present invention, it was recognized that the amount of the surfactant used in the polymerization step on the surface of the polymer particles can be reduced by the solid-liquid separation step and the washing step.
  • the time until the viscosity value of the dispersion is stabilized that is, the time until the rate of change of the viscosity value exceeds -1% to less than 1%) is short. It was.
  • the polymer particles of Examples 1 to 10 having a surfactant content in the range of more than 0 ppm to less than 50 ppm are compared with the polymer particles of Comparative Example 1 having a surfactant content of 156 ppm. It was recognized that the time until the dispersion medium was uniformly dispersed was short.
  • Example 11 Production example of optical film
  • an ultrasonic cleaner (“ULTRASONIC CLEANER VS-150” manufactured by VervoCrea Inc.) was added. And stirred for 1 minute to disperse the polymer particles in methyl ethyl ketone to obtain a dispersion.
  • 2.10 g of acrylic resin (“Acridic (registered trademark) A-811” manufactured by DIC Corporation) was further added, and the mixture was stirred for about 2 minutes with the above ultrasonic cleaner.
  • a resin composition was obtained. After this coating resin composition was allowed to stand for 12 hours, 5.40 g of methyl ethyl ketone was added to the coating resin composition, and the mixture was stirred for 1 minute with the ultrasonic cleaner to dilute the coating resin composition.
  • the obtained diluted resin composition for coating was coated on a PET film using a 75 ⁇ m slit coater. After coating, the film was placed in a drier maintained at 70 ° C. and left for 1 hour to obtain an optical film.
  • Example 12 Production example of optical film
  • An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 2 was used instead of 0.15 g of the polymer particles obtained in Example 1.
  • Example 13 Production example of optical film
  • An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 3 was used instead of 0.15 g of the polymer particles obtained in Example 1.
  • Example 14 Production example of optical film
  • An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 4 was used instead of 0.15 g of the polymer particles obtained in Example 1.
  • Example 15 Production example of optical film
  • An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 5 was used instead of 0.15 g of the polymer particles obtained in Example 1.
  • Example 16 Production example of optical film
  • An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 6 was used instead of 0.15 g of the polymer particles obtained in Example 1.
  • Example 17 Production example of optical film
  • An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 7 was used instead of 0.15 g of the polymer particles obtained in Example 1.
  • Example 18 Production example of optical film
  • An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 8 was used instead of 0.15 g of the polymer particles obtained in Example 1.
  • Example 19 Production example of optical film
  • An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 9 was used instead of 0.15 g of the polymer particles obtained in Example 1.
  • Example 20 Production example of optical film
  • An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 10 was used instead of 0.15 g of the polymer particles obtained in Example 1.
  • Comparative Example 3 Comparative production example of optical film
  • An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Comparative Example 1 was used instead of 0.15 g of the polymer particles obtained in Example 1.
  • Comparative Example 4 Comparative production example of optical film
  • 0.15 g of the polymer particles obtained in Comparative Example 1 0.15 g of the polymer particles obtained in Comparative Example 1 was used, and the standing time of the coating resin composition was changed from 12 hours to 24 hours.
  • the optical film was obtained like Example 11 except having changed.
  • optical properties of the optical films of Examples 11 to 20 and Comparative Examples 3 to 5 were evaluated by the following method.
  • a test piece is obtained by cutting an optical film into a 6 cm ⁇ 6 cm square shape.
  • JIS K 7136 the haze of each of the four ends of the upper, lower, left, and right sides of the surface of the test piece coated with the coating resin composition and the central portion (total of 5 locations) manufactured by Nippon Denshoku Industries Co. Measure using "NDH-4000". Then, using the measured maximum value, minimum value, and average value of the haze (%) at five locations, the haze difference (%) is calculated by the following calculation formula, and the haze difference (%) is calculated as follows: Evaluation was based on the evaluation criteria.
  • the Example number and surfactant content of the polymer particles used in the production of the optical film, the standing time of the coating resin composition, and the optical Table 3 shows the evaluation results of the optical properties of the film.
  • optical film obtained by coating a coating resin composition containing polymer particles having a surfactant content in the range of more than 0 ppm and less than 50 ppm is a surfactant.
  • optical films Comparative Examples 3 to 5
  • the haze difference is small and the light diffusibility is less uneven. It was recognized that That is, it was confirmed that stable optical characteristics (antiglare property and light diffusibility) can be obtained in an optical film including polymer particles having a surfactant content in the range of more than 0 ppm and less than 50 ppm.
  • the polymer particles of Comparative Example 1 having a surfactant content of 50 ppm or more have a stable viscosity when the standing time is 16 hours or more, and are uniformly dispersed in the dispersion medium.
  • the standing time of the coating resin composition was set to 24 hours, and the polymer particles were contained in the coating resin composition.
  • the haze difference was large and the stable optical characteristic was not acquired.
  • the polymer particles of Examples 1 to 10 having a surfactant content in the range of more than 0 ppm to less than 50 ppm and Comparative Example 2 having a surfactant content of 59 ppm are shown in Table 1. From the results shown in the above, it was confirmed that the viscosity was stabilized and dispersed uniformly in the dispersion medium (dispersion state was stabilized) in a short time of 11 to 13 hours. Therefore, in the production of the optical films of Examples 11 to 20 using the polymer particles of Examples 1 to 10 and the production of the optical film of Comparative Example 5 using the polymer particles of Comparative Example 2, the resin composition for coating is used. The standing time of the product was set to 12 hours so that the polymer particles were uniformly dispersed in the coating resin composition.
  • Examples 11 to 20 produced using the polymer particles of Examples 1 to 10 having a surfactant content in the range of more than 0 ppm to less than 50 ppm.
  • the haze difference was small and stable optical characteristics were obtained.
  • the optical film of Comparative Example 5 produced using Comparative Example 2 having a surfactant content of 59 ppm has a large haze difference and stable optical properties compared to the optical films of Examples 11 to 20. Was not obtained.
  • polymer particles having a surfactant content in the range of more than 0 ppm to less than 50 ppm are coated on a film substrate with a coating resin composition obtained by dispersing the polymer particles in a binder.
  • a coating resin composition obtained by dispersing the polymer particles in a binder In the process of forming a coating film by processing, the dispersion state in the resin composition can be maintained almost stably, and the dispersion stability can be imparted to the optical film with stable optical properties. I can say that.
  • an optical film obtained by coating a coating resin composition containing polymer particles having a surfactant content in the range of more than 0 ppm to less than 50 ppm has a small haze difference, and an optical film. It can be said that the characteristics are stable and the quality is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Paints Or Removers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Physics & Mathematics (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

Polymer particles which have a surfactant content higher than 0 ppm but less than 50 ppm; and a process for producing the polymer particles which includes a solid-liquid separation step in which a crude reaction product (P) obtained by polymerizing a vinyl monomer in a polymerization medium in the presence of a surfactant is introduced into a filter (1) and the polymerization medium contained in the crude reaction product (P) is passed through the filter medium (3) of the filter (1) and a cleaning step in which a cleaning fluid is introduced into the filter (1) to clean the polymer particles present on the filter medium (3). When the area of the interface between the filter medium (3) and the mixture to be filtered is expressed by A (m2), the amount X (kg/min) of the polymerization medium which has passed through the filter medium (3) per unit time period in the solid-liquid separation step satisfies X≤5.50×A, while the amount Y of the cleaning fluid which has passed through the filter medium (3) per unit time period in the cleaning step satisfies Y≤8.50×A. The weight amount of the cleaning fluid to be used in the cleaning step is at least 10 times that of the polymer particles held on the filter medium (3).

Description

重合体粒子、その製造方法、及びその用途POLYMER PARTICLE, PROCESS FOR PRODUCING THE SAME, AND USE THEREOF
 本発明は、光拡散フィルムや防眩フィルム等の光学部材の原料として好適に用いられる重合体粒子、この重合体粒子の用途(光学フィルム及び樹脂成形体)、及び、この重合体粒子の製造方法に関する。 The present invention relates to polymer particles suitably used as a raw material for optical members such as a light diffusion film and an antiglare film, uses of the polymer particles (optical film and resin molded product), and a method for producing the polymer particles About.
 体積平均粒子径が1~100μmの重合体粒子は、例えば、塗料等のコーティング剤用の添加剤(艶消し剤等)、インク用の添加剤(艶消し剤等)、接着剤の主成分または添加剤、人工大理石用の添加剤(低収縮化剤等)、紙処理剤、化粧品等の外用剤の充填材(滑り性向上のための充填剤)、クロマトグラフィーに用いるカラム充填材、静電荷像現像に使用されるトナー用の添加剤、フィルム用のアンチブロッキング剤、光学部材(光拡散フィルム、防眩フィルム等の光学フィルム、光拡散体等)用の光拡散剤等の用途で使用されている。 Polymer particles having a volume average particle diameter of 1 to 100 μm are, for example, additives for coating agents such as paints (matting agents etc.), additives for inks (matting agents etc.), main components of adhesives or Additives, artificial marble additives (low shrinkage agents, etc.), paper treatment agents, packing materials for external preparations such as cosmetics (fillers for improving slipperiness), column packing materials used for chromatography, electrostatic charge Used in applications such as toner additives used for image development, anti-blocking agents for films, and light diffusing agents for optical members (optical films such as light diffusing films and antiglare films, light diffusers, etc.) ing.
 このような重合体粒子は、重合性の単量体を重合させることによって製造することができる。重合性の単量体を重合させるための重合法としては、懸濁重合、シード重合、乳化重合等が知られている。これら重合方法では、通常、安定に重合反応を行って、粗大粒子の発生が抑えられるように、界面活性剤が使用される。 Such polymer particles can be produced by polymerizing a polymerizable monomer. Known polymerization methods for polymerizing polymerizable monomers include suspension polymerization, seed polymerization, and emulsion polymerization. In these polymerization methods, a surfactant is usually used so that the polymerization reaction is stably performed and the generation of coarse particles is suppressed.
 例えば、特許文献1には、光拡散剤として使用される樹脂微粒子(重合体粒子)として、界面活性剤を含む媒体中でビニル系単量体を重合することによって得られ、当該樹脂微粒子に残留する界面活性剤量が、樹脂微粒子100重量部に対し、0.05重量部以下(具体的には、0.005~0.36重量部)のものが開示されている。 For example, Patent Document 1 discloses that resin fine particles (polymer particles) used as a light diffusing agent are obtained by polymerizing a vinyl monomer in a medium containing a surfactant and remain in the resin fine particles. The amount of the surfactant is 0.05 parts by weight or less (specifically, 0.005 to 0.36 parts by weight) with respect to 100 parts by weight of the resin fine particles.
 また、特許文献2には、エポキシ系樹脂組成物に配合される有機系粒子として、乳化重合または懸濁重合により得られた界面活性剤が表面に付着した有機系粒子(重合体粒子)を洗浄処理したものが開示されている。 Patent Document 2 discloses washing organic particles (polymer particles) having a surface-active agent obtained by emulsion polymerization or suspension polymerization as organic particles blended in an epoxy resin composition. What has been processed is disclosed.
特開2006-233055号公報JP 2006-233305 A 特開2007-016183号公報JP 2007-016183 A
 ところで、光拡散フィルムや防眩フィルム等の光学フィルムとして、重合体粒子とバインダーとを含む樹脂組成物をフィルム基材上に塗工してなるものがある。 By the way, as an optical film such as a light diffusion film or an antiglare film, there is one obtained by coating a resin composition containing polymer particles and a binder on a film substrate.
 このような光学フィルムを作製する場合には、フィルム基材上の上記樹脂組成物からなる塗膜により、安定した光学特性が得られるように、フィルム基材上に樹脂組成物を塗工する前に、その樹脂組成物中(具体的には、バインダー中)に均一に重合体粒子を分散させておく必要がある。 In the case of producing such an optical film, before coating the resin composition on the film substrate so that stable optical characteristics can be obtained by the coating film comprising the resin composition on the film substrate. In addition, it is necessary to uniformly disperse the polymer particles in the resin composition (specifically, in the binder).
 しかしながら、特許文献1及び2に開示の界面活性剤を使用して製造された重合体粒子をバインダー中に均一に分散させて樹脂組成物を得ても、この樹脂組成物を上記フィルム基材上へ塗工して塗膜を形成する過程で、その樹脂組成物中での重合体粒子の分散状態が不安定となる。例えば、特許文献1及び2に開示の重合体粒子を使用して上記光学フィルムを作製する場合には、前記塗工により塗膜が形成される過程で、上記樹脂組成物中の重合体粒子の分散状態が安定せず、重合体粒子が過度に凝集してしまうことがあった。この結果、上記基材フィルム上に形成された塗膜全体に、重合体粒子が広がらず、所望の光学特性が安定して得られないことがあった。 However, even if the polymer particles produced using the surfactants disclosed in Patent Documents 1 and 2 are uniformly dispersed in a binder to obtain a resin composition, the resin composition is still on the film substrate. In the process of forming a coating film by coating the polymer particles, the dispersion state of the polymer particles in the resin composition becomes unstable. For example, when producing the optical film using the polymer particles disclosed in Patent Documents 1 and 2, in the process of forming a coating film by the coating, the polymer particles in the resin composition are formed. The dispersion state was not stable, and the polymer particles sometimes aggregated excessively. As a result, polymer particles may not spread over the entire coating film formed on the base film, and desired optical characteristics may not be stably obtained.
 そこで、重合体粒子をバインダーに分散させて得られる樹脂組成物を上記フィルム基材上へ塗工して塗膜を形成する過程において、安定した分散状態が得られ、光学フィルムに安定して光学特性を付与できる分散安定性に優れた重合体粒子の開発が望まれていた。 Therefore, in the process of forming a coating film by coating a resin composition obtained by dispersing polymer particles in a binder onto the above film substrate, a stable dispersion state is obtained, and the optical film is stably optical. There has been a demand for development of polymer particles excellent in dispersion stability capable of imparting characteristics.
 本発明は、上記した状況に鑑みてなされたものであって、分散安定性に優れた重合体粒子及びその製造方法、並びに重合体粒子を用いた光学フィルム及び樹脂成形体を提供することを目的する。 The present invention has been made in view of the above situation, and an object thereof is to provide polymer particles excellent in dispersion stability, a method for producing the same, and an optical film and a resin molded body using the polymer particles. To do.
 本願発明者らは、上記課題に鑑みて鋭意検討を行った結果、重合体粒子の表面の状態が分散安定性に影響しており、分散安定性の向上には、重合体粒子中における製造工程で使用した界面活性剤の含有量(残存量)をごく僅かに(具体的には、50ppm未満に)抑える必要があることを見出した。 As a result of intensive studies in view of the above problems, the inventors of the present application have found that the surface state of the polymer particles has an influence on the dispersion stability, and the improvement of the dispersion stability involves a production process in the polymer particles. It was found that the content (residual amount) of the surfactant used in 1) needs to be suppressed very slightly (specifically, less than 50 ppm).
 本発明の重合体粒子は、界面活性剤の含有量が0ppm超~50ppm未満であることを特徴とする。 The polymer particles of the present invention are characterized in that the surfactant content is more than 0 ppm and less than 50 ppm.
 本発明の重合体粒子は、界面活性剤の含有量が50ppm未満に抑えられたものであるから、バインダーと混合して使用される場合において、前記バインダー中での分散安定性に優れる。また、本発明の重合体粒子をバインダーに分散させて得られる樹脂組成物をフィルム基材上に塗工する場合には、その樹脂組成物中での重合体粒子の分散状態が、前記塗工により塗膜が形成される過程においてほぼ安定に維持され、前記塗工時における重合体粒子の過度な凝集が抑制される。この結果、前記重合体粒子は、フィルム基材上にむらなく広がり、前記塗工により形成された塗膜全体にむらのない安定した光拡散性や防眩性等の光学特性を付与できる。 Since the polymer particles of the present invention have a surfactant content of less than 50 ppm, they are excellent in dispersion stability in the binder when used in combination with a binder. Further, when a resin composition obtained by dispersing the polymer particles of the present invention in a binder is applied on a film substrate, the dispersion state of the polymer particles in the resin composition is determined by the coating method. Thus, it is maintained almost stably in the process of forming the coating film, and excessive aggregation of the polymer particles during the coating is suppressed. As a result, the polymer particles spread evenly on the film substrate, and can impart optical characteristics such as stable light diffusibility and antiglare property to the entire coating film formed by the coating.
 本発明の光学フィルムは、本発明の重合体粒子と、バインダーとを含むコーティング用樹脂組成物を、フィルム基材上に塗工してなることを特徴とする。 The optical film of the present invention is characterized in that a coating resin composition containing the polymer particles of the present invention and a binder is coated on a film substrate.
 本発明の光学フィルムは、分散安定性に優れた本発明の重合体粒子を含むコーティング用樹脂組成物を基材に塗工してなるものであるから、前記塗工により形成された塗膜全体において、むらのない光拡散性や防眩性等の光学特性が安定して得られる。よって、本発明の光学フィルムによれば、高い品質安定性が得られる。 Since the optical film of the present invention is formed by coating a substrate with the coating resin composition containing the polymer particles of the present invention having excellent dispersion stability, the entire coating film formed by the coating , Stable optical properties such as light diffusibility and antiglare properties can be obtained. Therefore, according to the optical film of the present invention, high quality stability can be obtained.
 本発明の樹脂成形体は、本発明の重合体粒子と、透明樹脂とを含む成形用樹脂組成物を、成形してなることを特徴とする。 The resin molded body of the present invention is characterized by molding a molding resin composition containing the polymer particles of the present invention and a transparent resin.
 本発明の樹脂成形体は、分散安定性に優れた本発明の重合体粒子を含む成形用樹脂組成物を成形してなるものであるから、その樹脂成形体において、むらのない光拡散性や防眩性等の光学特性が安定して得られる。よって、本発明の樹脂成形体によれば、高い品質安定性が得られる。 Since the resin molded body of the present invention is formed by molding a molding resin composition containing the polymer particles of the present invention having excellent dispersion stability, in the resin molded body, there is no uneven light diffusibility or Optical properties such as antiglare properties can be obtained stably. Therefore, according to the resin molding of the present invention, high quality stability can be obtained.
 本発明の重合体粒子の製造方法は、液状の媒体中、界面活性剤の存在下で、ビニル系単量体を重合させて、前記界面活性剤を含む重合体粒子と前記媒体とを含む粗生成物を得る重合工程と、濾過器に前記粗生成物を投入し、投入した前記粗生成物に含まれる媒体を前記濾過器の濾材に通過させる一方、前記粗生成物に含まれる重合体粒子を前記濾材上に保持させる固液分離工程と、前記重合体粒子を前記濾材上に保持した前記濾過器に洗浄液を投入し、前記洗浄液を前記重合体粒子と接触させて、前記重合体粒子と接触した前記洗浄液を前記濾材に通過させることによって、前記洗浄液で洗浄された重合体粒子を前記濾材上に得る洗浄工程とを含み、前記固液分離工程において、前記濾材を通過した前記媒体の単位時間当たりの量が、下記条件式(1);
 X≦5.50×A ・・・(1)
(式(1)中、Xは、前記濾材を通過した前記媒体の単位時間当たりの量(kg/min)を意味し、Aは、濾材と被濾過物との界面の面積(m)を意味する)を満たし、前記洗浄工程において、前記濾材を通過した前記洗浄液の単位時間当たりの量が、下記条件式(2);
 Y≦8.50×A ・・・(2)
(式(2)中、Yは、前記濾材を通過した前記洗浄液の単位時間当たりの量(kg/min)を意味し、Aは、濾材と被濾過物との界面の面積(m)を意味する。)を満たし、前記洗浄工程では、前記濾材上に保持された重合体粒子の重量の10倍以上の重量の洗浄液を用いることを特徴とする。
In the method for producing polymer particles of the present invention, a vinyl monomer is polymerized in a liquid medium in the presence of a surfactant, and the polymer particle containing the surfactant and the medium are mixed. A polymerization step for obtaining a product, and the crude product is charged into a filter, and the medium contained in the charged crude product is passed through the filter medium of the filter while the polymer particles contained in the crude product. A solid-liquid separation step for holding the polymer particles on the filter medium, and a cleaning liquid is charged into the filter that holds the polymer particles on the filter medium, the cleaning liquid is brought into contact with the polymer particles, and the polymer particles and A unit of passing the filter medium in the solid-liquid separation step by passing the cleaning liquid in contact with the filter medium to obtain polymer particles washed with the cleaning liquid on the filter medium. The amount per hour is Equation (1);
X ≦ 5.50 × A (1)
(In Formula (1), X means the amount (kg / min) per unit time of the medium that has passed through the filter medium, and A represents the area (m 2 ) of the interface between the filter medium and the object to be filtered). The amount of the cleaning liquid per unit time that has passed through the filter medium in the cleaning step is the following conditional expression (2):
Y ≦ 8.50 × A (2)
(In Formula (2), Y means the amount (kg / min) per unit time of the cleaning liquid that has passed through the filter medium, and A represents the area (m 2 ) of the interface between the filter medium and the object to be filtered). In the washing step, a washing liquid having a weight 10 times or more of the weight of the polymer particles held on the filter medium is used.
 上記製造方法では、固液分離工程において、濾材を通過した媒体の単位時間当たりの量が条件式(1)を満たし、洗浄工程において、濾材を通過した洗浄液の単位時間当たりの量が条件式(2)を満たし、尚且つ、その洗浄工程において、濾材上に保持された重合体粒子の重量の10倍以上の重量の洗浄液を用いることから、重合工程において重合体粒子に付着した界面活性剤の大部分を、媒体及び洗浄液と共に除去することができる。その結果、界面活性剤の含有量(残存量)の極めて少ない分散安定性に優れた重合体粒子を得ることができる。 In the above production method, the amount per unit time of the medium that has passed through the filter medium satisfies the conditional expression (1) in the solid-liquid separation step, and the amount per unit time of the cleaning liquid that has passed through the filter medium in the washing process is the conditional expression ( 2), and in the washing step, a washing liquid having a weight of 10 times or more the weight of the polymer particles held on the filter medium is used. Therefore, the surfactant adhering to the polymer particles in the polymerization step is used. Most can be removed along with the media and cleaning solution. As a result, it is possible to obtain polymer particles excellent in dispersion stability with a very small surfactant content (residual amount).
 本発明によれば、分散安定性に優れた重合体粒子及びその製造方法、並びに重合体粒子を用いた光学フィルム及び樹脂成形体を提供することができる。 According to the present invention, it is possible to provide polymer particles excellent in dispersion stability, a method for producing the same, and an optical film and a resin molded body using the polymer particles.
図1は、本発明の実施の形態で使用可能な加圧濾過器の概略構成を示す概略図であり、(a)は前記加圧濾過器の概略断面図であり、(b)は前記加圧濾過器の耐圧容器の内部を示す概略上面図である。FIG. 1 is a schematic diagram showing a schematic configuration of a pressure filter usable in an embodiment of the present invention, (a) is a schematic cross-sectional view of the pressure filter, and (b) is the pressure filter. It is a schematic top view which shows the inside of the pressure vessel of a pressure filter.
 以下に、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 〔重合体粒子〕
 本発明の重合体粒子は、界面活性剤の含有量が0ppm超~50ppm未満であることを特徴とする。本発明の重合体粒子において、界面活性剤の含有量は、少なければ少ないほど好ましく、0ppm超~30ppmであることが好ましく、0ppm超~20ppmであることがより好ましく、0ppm超~15ppmであることがさらに好ましい。なお、重合体粒子中における界面活性剤の含有量は、例えば、液体クロマトグラフ質量分析法(LC-MS-MS)を用いて測定することができる。
(Polymer particles)
The polymer particles of the present invention are characterized in that the surfactant content is more than 0 ppm and less than 50 ppm. In the polymer particles of the present invention, the content of the surfactant is preferably as small as possible, preferably more than 0 ppm to 30 ppm, more preferably more than 0 ppm to 20 ppm, more preferably more than 0 ppm to 15 ppm. Is more preferable. The content of the surfactant in the polymer particles can be measured using, for example, liquid chromatography mass spectrometry (LC-MS-MS).
 本発明の重合体粒子に含まれる界面活性剤は、当該重合体粒子の製造において使用した界面活性剤が残存したものである。このため、上記界面活性剤としては、重合体粒子の製造に通常使用されるあらゆる界面活性剤、例えば、後述する〔重合体粒子の製造方法〕の項に記載のようなアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両イオン性界面活性剤を挙げることができる。また、本発明の重合体粒子に含まれる界面活性剤は、アニオン性界面活性剤及びノニオン性界面活性剤の少なくとも一方を含むことが好ましい。 The surfactant contained in the polymer particles of the present invention is the surfactant remaining in the production of the polymer particles. For this reason, as the surfactant, any surfactant usually used in the production of polymer particles, for example, an anionic surfactant as described in the section of [Method for producing polymer particles] described later, Nonionic surfactants, cationic surfactants, and amphoteric surfactants can be exemplified. Moreover, it is preferable that the surfactant contained in the polymer particles of the present invention contains at least one of an anionic surfactant and a nonionic surfactant.
 上記重合体粒子において、界面活性剤を含むこと、すなわち、界面活性剤の含有量が0ppmを超えることは、例えば、飛行時間型2次イオン質量分析計(TOF-SIMS)による測定おいて界面活性剤に由来するフラグメントのピークが検出されることにより、或いは、後述する液体クロマトグラフ質量分析計(LC/MS/MS装置)を用いた重合体粒子中の界面活性剤の含有量の測定において、クロマトグラム上にピークが検出されることにより、確認可能である。 The presence of a surfactant in the polymer particles, that is, the content of the surfactant exceeding 0 ppm is, for example, measured by a time-of-flight secondary ion mass spectrometer (TOF-SIMS). In the measurement of the content of the surfactant in the polymer particles using the liquid chromatograph mass spectrometer (LC / MS / MS apparatus) described later, by detecting the peak of the fragment derived from the agent, It can be confirmed by detecting a peak on the chromatogram.
 本発明の重合体粒子は、製造に使用した界面活性剤の含有量(残存量)が50ppm未満に抑えられたものであることから、粒子表面における上記界面活性剤の量が少ないものと言える。このため、本発明の重合体粒子がバインダーと混合して使用される場合において、バインダーに混合される重合体粒子同士の表面状態の差が少なく、この結果として、本発明の重合体粒子を分散媒中に分散させて使用する場合において、分散媒中での重合体粒子の分散状態が、ほぼ安定に維持される。つまり、本発明の重合体粒子は、分散安定性に優れる。また、本発明の重合体粒子は、製造に使用した界面活性剤の含有量(残存量)が50ppm未満に抑えられたものであり、粒子表面における上記界面活性剤の量が少ないものであることから、本発明の重合体粒子が分散媒と混合して使用される場合において、分散媒に均一に分散させるために要する時間が安定している。また、本発明の重合体粒子は、上記の通り、粒子表面における上記界面活性剤の量が少なく、分散安定性に優れたものであるから、例えば、重合体粒子をバインダーに分散させて得られる樹脂組成物をフィルム基材上に塗工して使用する場合には、その樹脂組成物中での重合体粒子の分散状態が、前記塗工により塗膜が形成される過程においてほぼ安定に維持され、前記塗工時における重合体粒子の過度な凝集が抑えられる。この結果、前記重合体粒子は、フィルム基材上にむらなく広がり、前記塗工により形成された塗膜全体にむらのない安定した光拡散性や防眩性等の光学特性を付与できる。このため、本発明の重合体粒子を用いて作製される光学フィルムは、品質安定性に優れたものとなる。 Since the content (residual amount) of the surfactant used in the production is suppressed to less than 50 ppm, it can be said that the amount of the surfactant on the particle surface is small. For this reason, when the polymer particles of the present invention are used by mixing with a binder, there is little difference in the surface state between the polymer particles mixed with the binder, and as a result, the polymer particles of the present invention are dispersed. When used by being dispersed in a medium, the dispersion state of the polymer particles in the dispersion medium is maintained almost stably. That is, the polymer particles of the present invention are excellent in dispersion stability. The polymer particles of the present invention are those in which the content (residual amount) of the surfactant used in the production is suppressed to less than 50 ppm, and the amount of the surfactant on the particle surface is small. Therefore, when the polymer particles of the present invention are used in a mixture with a dispersion medium, the time required for uniform dispersion in the dispersion medium is stable. Further, as described above, the polymer particles of the present invention are obtained by dispersing polymer particles in a binder, for example, because the amount of the surfactant on the particle surface is small and the dispersion stability is excellent. When the resin composition is used on a film substrate, the dispersion state of the polymer particles in the resin composition is maintained almost stably in the process of forming a coating film by the coating. In addition, excessive aggregation of the polymer particles during the coating can be suppressed. As a result, the polymer particles spread evenly on the film substrate, and can impart optical characteristics such as stable light diffusibility and antiglare property to the entire coating film formed by the coating. For this reason, the optical film produced using the polymer particles of the present invention has excellent quality stability.
 本発明の重合体粒子において、粒子表面における界面活性剤の含有量は、少なければ少ないほど好ましく、例えば、飛行時間型2次イオン質量分析計により測定される、正イオンの総イオン強度及び負イオンの総イオン強度の合計に対する、前記界面活性剤に由来する負イオンのイオン強度の比(以下、イオン強度比という)が、0.01×10-4~2.0×10-4であることが好ましい。なお、飛行時間型2次イオン質量分析計による測定において、前記界面活性剤に由来する負イオンのフラグメントのピークが複数検出される場合には、それらの検出されたラグメントのうち、最もイオン強度が高いフラグメントのイオン強度を、前記界面活性剤に由来する負イオンのイオン強度として、上記イオン強度比を得るものとする。 In the polymer particles of the present invention, the content of the surfactant on the particle surface is preferably as small as possible. For example, the total ionic strength and negative ions of positive ions measured by a time-of-flight secondary ion mass spectrometer are used. The ratio of the ionic strength of negative ions derived from the surfactant to the total ionic strength (hereinafter referred to as ionic strength ratio) of 0.01 × 10 −4 to 2.0 × 10 −4 Is preferred. In the measurement with a time-of-flight secondary ion mass spectrometer, when a plurality of negative ion fragment peaks derived from the surfactant are detected, the ionic strength is the highest among the detected fragments. The ionic strength ratio is obtained by taking the ionic strength of a high fragment as the ionic strength of negative ions derived from the surfactant.
 上記イオン強度比が上記範囲内にある重合体粒子は、そのイオン強度比から、粒子表面における上記界面活性剤の量が極めて少ないものであると認められる。このため、イオン強度比が上記範囲内にある重合体粒子がバインダーと混合して使用される場合において、バインダーに混合される重合体粒子同士の表面状態はほぼ同じとなり、この結果として、上記重合体粒子を分散媒中に分散させて使用する場合において、分散媒中での重合体粒子の分散状態が、極めて安定に維持される。つまり、イオン強度比が上記範囲内にある重合体粒子は、分散安定性に極めて優れる。また、イオン強度比が上記範囲内にある重合体粒子は、粒子表面における上記界面活性剤の量が極めて少ないものであることから、本発明の重合体粒子が分散媒と混合して使用される場合において、分散媒に均一に分散させるために要する時間がより安定している。また、イオン強度比が上記範囲内にある重合体粒子をバインダーに分散させて得られる樹脂組成物をフィルム基材上に塗工して使用する場合には、その樹脂組成物中での重合体粒子の分散状態が、前記塗工により塗膜が形成される過程において極めて安定に維持され、前記塗工時における重合体粒子の過度な凝集が確実に抑えられる。この結果、前記重合体粒子は、フィルム基材上によりむらなく広がり、前記塗工により形成された塗膜全体にむらのない安定した光拡散性や防眩性等の光学特性を確実に付与できる。このため、イオン強度比が上記範囲内にある前記重合体粒子を用いて作製された光学フィルムは、品質安定性により優れたものとなる。 From the ionic strength ratio, it is recognized that the polymer particles having the ionic strength ratio within the above range have a very small amount of the surfactant on the particle surface. For this reason, when polymer particles having an ionic strength ratio within the above range are used by being mixed with a binder, the surface states of the polymer particles mixed with the binder are almost the same. When the coalesced particles are used by being dispersed in a dispersion medium, the dispersion state of the polymer particles in the dispersion medium is maintained extremely stably. That is, polymer particles having an ionic strength ratio within the above range are extremely excellent in dispersion stability. Further, the polymer particles having an ionic strength ratio within the above range are those in which the amount of the surfactant on the particle surface is extremely small, so that the polymer particles of the present invention are used by mixing with a dispersion medium. In some cases, the time required to uniformly disperse in the dispersion medium is more stable. In addition, when a resin composition obtained by dispersing polymer particles having an ionic strength ratio within the above range in a binder is used on a film substrate, the polymer in the resin composition is used. The dispersed state of the particles is maintained extremely stably in the process of forming the coating film by the coating, and excessive aggregation of the polymer particles during the coating is surely suppressed. As a result, the polymer particles spread more uniformly on the film substrate and can reliably impart optical properties such as stable light diffusibility and antiglare properties to the entire coating film formed by the coating. . For this reason, the optical film produced using the polymer particles having an ionic strength ratio within the above range is excellent in quality stability.
 本発明の重合体粒子を構成する重合体は、例えば、ビニル系単量体の重合体である。上記ビニル系単量体としては、1つのエチレン性不飽和基を有する単官能ビニル系単量体と、2つ以上のエチレン性不飽和基を有する多官能ビニル系単量体を挙げることができる。 The polymer constituting the polymer particles of the present invention is, for example, a vinyl monomer polymer. Examples of the vinyl monomer include a monofunctional vinyl monomer having one ethylenically unsaturated group and a polyfunctional vinyl monomer having two or more ethylenically unsaturated groups. .
 上記単官能ビニル系単量体としては、例えば、(メタ)アクリル酸エステル系単量体;スチレン系単量体(芳香族ビニル系単量体);酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニル等の飽和脂肪酸ビニル系単量体;アクリロニトリル、メタクリロニトリル等のシアン化ビニル系単量体;アクリル酸、メタクリル酸、クロトン酸、シトラコン酸、イタコン酸、マレイン酸、フマル酸等のエチレン性不飽和カルボン酸;無水マレイン酸等のエチレン性不飽和カルボン酸無水物;モノブチルマレイン酸等のエチレン性不飽和ジカルボン酸モノアルキルエステル;上記エチレン性不飽和カルボン酸やエチレン性不飽和ジカルボン酸モノアルキルエステルのアンモニウム塩又はアルカリ金属塩等のエチレン性不飽和カルボン酸塩類;アクリルアミド、メタクリルアミド、ジアセトンアクリルアミド等のエチレン性不飽和カルボン酸アミド類;N-メチロールアクリルアミド、N-メチロールメタクリルアミド、メチロール化ジアセトンアクリルアミド、及び、これら単量体と炭素数1~8のアルコール類とのエーテル化物(例えば、N-イソブトキシメチルアクリルアミド)等のエチレン性不飽和カルボン酸アミド類のメチロール化物及びその誘導体等が挙げられる。 Examples of the monofunctional vinyl monomer include, for example, (meth) acrylate monomers; styrene monomers (aromatic vinyl monomers); vinyl acetate, vinyl propionate, vinyl versatate, etc. Saturated fatty acid vinyl monomers; vinyl cyanide monomers such as acrylonitrile and methacrylonitrile; ethylenic unsaturation such as acrylic acid, methacrylic acid, crotonic acid, citraconic acid, itaconic acid, maleic acid and fumaric acid Carboxylic acid; Ethylenically unsaturated carboxylic acid anhydride such as maleic anhydride; Ethylenically unsaturated dicarboxylic acid monoalkyl ester such as monobutylmaleic acid; Ethylenically unsaturated carboxylic acid and ethylenically unsaturated dicarboxylic acid monoalkyl ester Ethylenically unsaturated carboxylates such as ammonium salts or alkali metal salts of Ethylenically unsaturated carboxylic acid amides such as amide, methacrylamide and diacetone acrylamide; N-methylol acrylamide, N-methylol methacrylamide, methylolated diacetone acrylamide, and these monomers and alcohols having 1 to 8 carbon atoms And methylolates of ethylenically unsaturated carboxylic acid amides such as etherified products (eg, N-isobutoxymethylacrylamide) and derivatives thereof.
 上記(メタ)アクリル酸エステル系単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸イソノニル、アクリル酸ラウリル、アクリル酸ステアリル等のアクリル酸アルキル系単量体;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ステアリル等のメタクリル酸アルキル系単量体;グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基(グリシジル基)を有する(メタ)アクリル酸エステル;2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート等のヒドロキシアルキル(メタ)アクリレート;ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート等のアミノ基を有する(メタ)アクリル酸エステル等が挙げられる。上記(メタ)アクリル酸エステル系単量体は、アクリル酸アルキル系単量体及びメタクリル酸アルキル系単量体の少なくとも一方を含むことが好ましい。なお、本出願書類において、「(メタ)アクリレート」はアクリレート又はメタクリレートを意味し、「(メタ)アクリル」はアクリル又はメタクリルを意味するものとする。 Examples of the (meth) acrylate monomer include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, isononyl acrylate, acrylic acid Alkyl acrylate monomers such as lauryl and stearyl acrylate; alkyl methacrylate monomers such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate and stearyl methacrylate; glycidyl acrylate (Meth) acrylic acid ester having an epoxy group (glycidyl group) such as glycidyl methacrylate; hydroxyalkyl (meth) acrylate such as 2-hydroxyethyl methacrylate and 2-hydroxypropyl acrylate; dimethyl Amino ethyl methacrylate, having an amino group such as diethylaminoethyl methacrylate (meth) acrylic acid ester. The (meth) acrylic acid ester monomer preferably contains at least one of an alkyl acrylate monomer and an alkyl methacrylate monomer. In this application document, “(meth) acrylate” means acrylate or methacrylate, and “(meth) acryl” means acryl or methacryl.
 上記スチレン系単量体としては、スチレン、α-メチルスチレン、ビニルトルエン、エチルビニルベンゼン等が挙げられる。 Examples of the styrenic monomer include styrene, α-methylstyrene, vinyl toluene, and ethyl vinyl benzene.
 上記多官能ビニル系単量体としては、例えば、(メタ)アクリル酸アリル、ジビニルベンゼン、ジアリルフタレート、トリアリルシアヌレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート等が挙げられる。 Examples of the polyfunctional vinyl monomer include allyl (meth) acrylate, divinylbenzene, diallyl phthalate, triallyl cyanurate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, propylene glycol di ( Examples include meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate.
 上記したビニル系単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The above-mentioned vinyl monomers may be used alone or in combination of two or more.
 上記重合体粒子を構成する重合体は、(メタ)アクリル系重合体、スチレン系重合体、(メタ)アクリル-スチレン系重合体の何れかであることが好ましい。これにより、光透過性の高い重合体粒子を実現できる。上記(メタ)アクリル系重合体は、(メタ)アクリル酸エステル系単量体の重合体、または、(メタ)アクリル酸エステル系単量体と、(メタ)アクリル酸エステル系単量体及びスチレン系単量体以外のビニル系単量体との共重合体である。上記スチレン系重合体は、スチレン系単量体の重合体、または、スチレン系単量体と、(メタ)アクリル酸エステル系単量体及びスチレン系単量体以外のビニル系単量体の共重合体である。また、上記(メタ)アクリル-スチレン系共重合体は、(メタ)アクリル酸エステル系単量体とスチレン系単量体との共重合体、または、(メタ)アクリル酸エステル系単量体と、スチレン系単量体と、(メタ)アクリル酸エステル系単量体及びスチレン系単量体以外のビニル系単量体との共重合体である。 The polymer constituting the polymer particles is preferably any of a (meth) acrylic polymer, a styrene polymer, and a (meth) acryl-styrene polymer. Thereby, a polymer particle with high light transmittance is realizable. The (meth) acrylic polymer is a polymer of a (meth) acrylic acid ester monomer, or a (meth) acrylic acid ester monomer, a (meth) acrylic acid ester monomer, and styrene. It is a copolymer with a vinyl monomer other than the monomer. The styrene polymer is a polymer of a styrene monomer or a copolymer of a styrene monomer and a vinyl monomer other than a (meth) acrylate monomer and a styrene monomer. It is a polymer. The (meth) acrylic-styrene copolymer is a copolymer of a (meth) acrylic acid ester monomer and a styrene monomer, or a (meth) acrylic acid ester monomer. A copolymer of a styrene monomer and a vinyl monomer other than the (meth) acrylic acid ester monomer and the styrene monomer.
 上記重合体粒子を構成する重合体は、上記単官能ビニル系単量体と上記多官能ビニル系単量体との共重合体(架橋重合体)であることが好ましい。例えば、上記重合体における上記多官能ビニル系単量体に由来する構成単位の量は、上記重合体100重量%に対して5~50重量%の範囲内であることが好ましい。上記多官能ビニル系単量体に由来する構成単位の量が上記範囲より少ない場合、上記重合体の架橋度が低くなる。その結果、重合体粒子をバインダーと混合して樹脂組成物として塗工する場合に、重合体粒子が膨潤して樹脂組成物の粘度上昇が起こり塗工の作業性が低下する恐れがある。さらに、上記重合体の架橋度が低くなる結果、重合体粒子をバインダーと混合して成形する用途(いわゆる練り込み用途)において混合時や成形時に重合体粒子に熱をかけたときに、重合体粒子が溶解又は変形しやすくなる。上記多官能ビニル系単量体に由来する構成単位の量が上記範囲より多い場合、上記多官能ビニル系単量体の使用量に見合った効果の向上が認められず、生産コストが上昇する場合がある。 The polymer constituting the polymer particles is preferably a copolymer (crosslinked polymer) of the monofunctional vinyl monomer and the polyfunctional vinyl monomer. For example, the amount of the structural unit derived from the polyfunctional vinyl monomer in the polymer is preferably in the range of 5 to 50% by weight with respect to 100% by weight of the polymer. When the amount of the structural unit derived from the polyfunctional vinyl monomer is less than the above range, the degree of crosslinking of the polymer is lowered. As a result, when polymer particles are mixed with a binder and applied as a resin composition, the polymer particles may swell and increase the viscosity of the resin composition, which may reduce the coating workability. Furthermore, as a result of the low degree of crosslinking of the polymer, the polymer particles are mixed with the binder and molded when the polymer particles are heated during mixing or molding (so-called kneading application). Particles are easily dissolved or deformed. When the amount of the structural unit derived from the polyfunctional vinyl monomer is larger than the above range, the improvement in the effect commensurate with the use amount of the polyfunctional vinyl monomer is not recognized, and the production cost increases. There is.
 本発明の重合体粒子のゲル分率は、90%以上であることが好ましく、97%以上であることがより好ましい。ゲル分率が90%未満であると、十分な耐溶剤性が確保できないため、例えば、重合体粒子をバインダーと共に有機溶剤と混合してフィルム基材上に塗工して、防眩フィルムや光拡散フィルム等の光学フィルムとする場合において、有機溶剤に重合体粒子が溶解してしまい、光拡散性や防眩性等の光学特性が十分に得られないおそれがある。なお、本出願書類において、ゲル分率は、例えば実施例の項に記載の方法によって測定されたゲル分率を指すものとする。 The gel fraction of the polymer particles of the present invention is preferably 90% or more, and more preferably 97% or more. If the gel fraction is less than 90%, sufficient solvent resistance cannot be ensured. For example, polymer particles are mixed with an organic solvent together with a binder and coated on a film substrate to produce an antiglare film or light. In the case of an optical film such as a diffusion film, polymer particles are dissolved in an organic solvent, and there is a possibility that optical properties such as light diffusibility and antiglare property cannot be obtained sufficiently. In addition, in this application document, a gel fraction shall point out the gel fraction measured, for example by the method as described in the term of an Example.
 また、上記重合体粒子の体積平均粒子径は、0.5~100μmであることが好ましく、1~30μmの範囲内であることがより好ましい。これにより、防眩フィルムや光拡散フィルム等の光学部材に重合体粒子を使用したときに、光学部材の防眩性や光拡散性等の光学特性を向上させることができる。なお、本出願書類において、重合体粒子の体積平均粒子径は、コールター法、例えば実施例の項に記載の方法によって測定された体積基準の粒度分布の算術平均を指すものとする。 The volume average particle diameter of the polymer particles is preferably 0.5 to 100 μm, more preferably 1 to 30 μm. Thereby, when polymer particles are used for an optical member such as an antiglare film or a light diffusing film, optical properties such as antiglare property and light diffusibility of the optical member can be improved. In the present application document, the volume average particle diameter of the polymer particles refers to the arithmetic average of the volume-based particle size distribution measured by the Coulter method, for example, the method described in the Examples section.
 上記重合体粒子の粒子径の変動係数(CV)は、15%以下であることが好ましい。これにより、防眩フィルムや光拡散フィルム等の光学部材に重合体粒子を使用したときに、光学部材の防眩性や光拡散性等の光学特性を向上させることができる。 The particle diameter variation coefficient (CV) of the polymer particles is preferably 15% or less. Thereby, when polymer particles are used for an optical member such as an antiglare film or a light diffusing film, optical properties such as antiglare property and light diffusibility of the optical member can be improved.
 上記重合体粒子は、界面活性剤の存在下で、ビニル系単量体を種粒子に吸収させて重合する(すなわち、シード重合する)ことによって得られたものであることが好ましい。シード重合により得られる重合体粒子は、粒子径のばらつきが少ないため、これにより、防眩フィルムや光拡散フィルム等の光学部材に使用されたときに、光学部材の防眩性や光拡散性等の光学特性を向上させることができる。 The polymer particles are preferably obtained by polymerizing (ie, seed polymerizing) a vinyl monomer by absorbing the vinyl monomer in the presence of a surfactant. Since polymer particles obtained by seed polymerization have little variation in particle diameter, when used in an optical member such as an antiglare film or a light diffusing film, the antiglare property and light diffusibility of the optical member, etc. It is possible to improve the optical characteristics.
 〔重合体粒子の製造方法〕
 本発明の重合体粒子は、本発明の製造方法によって製造できる。
[Production method of polymer particles]
The polymer particles of the present invention can be produced by the production method of the present invention.
 本発明の重合体粒子の製造方法は、液状の媒体中、界面活性剤の存在下で、ビニル系単量体を重合させて、前記界面活性剤を含む重合体粒子と前記媒体とを含む粗生成物を得る重合工程と、濾過器に前記粗生成物を投入し、投入した前記粗生成物に含まれる媒体を前記濾過器の濾材に通過させる一方、前記粗生成物に含まれる重合体粒子を前記濾材上に保持させる固液分離工程と、前記重合体粒子を前記濾材上に保持した前記濾過器に洗浄液を投入し、前記洗浄液を前記重合体粒子と接触させて、前記重合体粒子と接触した前記洗浄液を前記濾材に通過させることによって、前記洗浄液で洗浄された重合体粒子を前記濾材上に得る洗浄工程とを含む。 In the method for producing polymer particles of the present invention, a vinyl monomer is polymerized in a liquid medium in the presence of a surfactant, and the polymer particle containing the surfactant and the medium are mixed. A polymerization step for obtaining a product, and the crude product is charged into a filter, and the medium contained in the charged crude product is passed through the filter medium of the filter while the polymer particles contained in the crude product. A solid-liquid separation step for holding the polymer particles on the filter medium, and a cleaning liquid is charged into the filter that holds the polymer particles on the filter medium, the cleaning liquid is brought into contact with the polymer particles, and the polymer particles and A cleaning step of passing the contacted cleaning liquid through the filter medium to obtain polymer particles cleaned with the cleaning liquid on the filter medium.
 以下、本発明の製造方法の各工程について、詳述する。 Hereinafter, each step of the production method of the present invention will be described in detail.
 〔重合工程〕
 重合工程では、液状の媒体中、界面活性剤の存在下で、ビニル系単量体を重合させて、前記界面活性剤を含む重合体粒子と前記媒体とを含む粗生成物を得る。
[Polymerization process]
In the polymerization step, a vinyl monomer is polymerized in a liquid medium in the presence of a surfactant to obtain a crude product containing the polymer particles containing the surfactant and the medium.
 液状の媒体(粗生成物に含まれる媒体)としては、水性媒体が好ましく、例えば、水;メチルアルコール、エチルアルコール等の低級アルコール(炭素数5以下のアルコール);水と低級アルコールとの混合物等が挙げられる。 The liquid medium (medium contained in the crude product) is preferably an aqueous medium, for example, water; lower alcohols such as methyl alcohol and ethyl alcohol (alcohols having 5 or less carbon atoms); mixtures of water and lower alcohols, etc. Is mentioned.
 また、上記重合工程において、上記界面活性剤は、液状の媒体中でのビニル系単量体の分散を安定化させる。上記界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、及び両イオン性界面活性剤の何れをも用いることができるが、上記重合工程において、液状の媒体中でのビニル系単量体の分散をより安定に確保することができ、且つ粒子径の揃った重合体粒子を得ることができることから、アニオン性界面活性剤及びノニオン性界面活性剤の少なくとも一方を用いることが好ましい。 In the polymerization step, the surfactant stabilizes the dispersion of the vinyl monomer in the liquid medium. As the surfactant, any of an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant can be used. In the polymerization step, a liquid medium is used. The dispersion of the vinyl-based monomer can be more stably ensured, and polymer particles having a uniform particle diameter can be obtained, so that at least one of an anionic surfactant and a nonionic surfactant Is preferably used.
 上記アニオン性界面活性剤としては、脂肪酸塩型、硫酸エステル塩型、スルホン酸塩型等公知のアニオン性界面活性剤をいずれも用いることができ、例えば、オレイン酸ナトリウム、ヒマシ油カリ石鹸等の脂肪酸石鹸;ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジ(2-エチルヘキシル)スルホコハク酸塩(ナトリウム塩)、ジオクチルスルホコハク酸塩(ナトリウム塩)等のジアルキルスルホコハク酸塩;アルケニルコハク酸塩(ジカリウム塩);アルキルリン酸エステル塩;ナフタレンスルホン酸ホルマリン縮合物;ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩;ポリオキシエチレンアルキル硫酸エステル;ポリオキシエチレンスチレン化フェニルエーテル硫酸エステル塩等が挙げられる。これらのアニオン性界面活性剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the anionic surfactant, any known anionic surfactant such as fatty acid salt type, sulfate ester type, sulfonate type and the like can be used. For example, sodium oleate, castor oil potash soap, etc. Fatty acid soaps; alkyl sulfates such as sodium lauryl sulfate and ammonium lauryl sulfate; alkyl benzene sulfonates such as sodium dodecylbenzene sulfonate; alkyl naphthalene sulfonates, alkane sulfonates, di (2-ethylhexyl) sulfosuccinate (sodium) Salt), dialkylsulfosuccinate such as dioctylsulfosuccinate (sodium salt); alkenyl succinate (dipotassium salt); alkyl phosphate ester salt; naphthalene sulfonate formalin condensate; polyoxyethylene alkylphenyl Ether sulfates, polyoxyethylene lauryl ether, polyoxyethylene alkyl ether sulfate such as sodium sulfate; polyoxyethylene alkyl sulfates, polyoxyethylene styrenated phenyl ether sulfuric acid ester salts. These anionic surfactants may be used individually by 1 type, and may be used in combination of 2 or more type.
 上記ノニオン性界面活性剤としては、エステル型、エーテル型、エステル・エーテル型等の公知のノニオン性界面活性剤をいずれも用いることができ、例えば、ポリオキシエチレントリデシルエーテル等のポリオキシエチレンアルキルエーテル、ポリオキシエチレンオクチルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、アルキレン基の炭素数が3以上であるポリオキシアルキレントリデシルエーテルなどのポリオキシアルキレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、モノラウリン酸ポリオキシエチレンソルビタンなどのポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン-オキシプロピレンブロック重合体等が挙げられる。これらのノニオン性界面活性剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the nonionic surfactant, any known nonionic surfactant such as an ester type, an ether type, and an ester / ether type can be used. For example, a polyoxyethylene alkyl such as polyoxyethylene tridecyl ether can be used. Ether, polyoxyethylene alkylphenyl ether such as polyoxyethylene octylphenyl ether, polyoxyethylene styrenated phenyl ether, polyoxyalkylene alkyl ether such as polyoxyalkylene tridecyl ether having 3 or more carbon atoms in the alkylene group, poly Oxyethylene fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene alkylamines, glycerides Down fatty esters, oxyethylene - oxypropylene block polymers and the like. These nonionic surfactants may be used individually by 1 type, and may be used in combination of 2 or more type.
 上記カチオン性界面活性剤としては、アミン塩型、第4級アンモニウム塩型等の公知のカチオン性界面活性剤をいずれも用いることができるが、水溶性のカチオン性界面活性剤がその取扱い上から有利である。上記カチオン性界面活性剤の具体例としては、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩;ラウリルトリメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムクロライド、ココイルトリメチルアンモニウムクロライド、ドデシルトリメチルアンモニウムクロライド等のアルキルトリメチルアンモニウムクロライド;ヘキサデシルジメチルベンジルアンモニウムクロライド、ラウリルジメチルベンジルアンモニウムクロライド等のアルキルジメチルベンジルクロライド等が挙げられる。これらのカチオン性界面活性剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the cationic surfactant, known cationic surfactants such as amine salt type and quaternary ammonium salt type can be used, but water-soluble cationic surfactants are used from the viewpoint of handling. It is advantageous. Specific examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate; alkyltrimethylammonium such as lauryltrimethylammonium chloride, hexadecyltrimethylammonium chloride, cocoyltrimethylammonium chloride, and dodecyltrimethylammonium chloride. Chloride; alkyl dimethyl benzyl chlorides such as hexadecyl dimethyl benzyl ammonium chloride and lauryl dimethyl benzyl ammonium chloride; These cationic surfactants may be used individually by 1 type, and may be used in combination of 2 or more type.
 上記両イオン性界面活性剤としては、ラウリルジメチルアミンオキサイド、リン酸エステル系界面活性剤、亜リン酸エステル系界面活性剤等が挙げられる。これらの両イオン性界面活性剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the amphoteric surfactants include lauryl dimethylamine oxide, phosphate ester surfactants, phosphite ester surfactants, and the like. These amphoteric surfactants may be used alone or in combination of two or more.
 上記界面活性剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。上記界面活性剤としては、液温25℃の水に対する溶解度が、0.3g/100ml~5.0g/100mlのものが好ましく、0.5g/100ml~3.0g/100mlのものがより好ましい。上記溶解度が0.3g/100ml未満の界面活性剤を使用すると、上記重合工程において、上記液状の媒体が水性媒体である場合に、当該水性媒体中でビニル系単量体が安定に分散しないおそれがあり、また、当該界面活性剤の水への溶出が困難であることから、重合体粒子を洗浄する後述の洗浄工程において、多量の洗浄液を必要とし、生産性の面で好ましくない。一方、上記溶解度が5.0g/100mlを超える界面活性剤は、疎水基の効力が乏しく、水性媒体中でビニル系単量体の分散を安定化させる効果に乏しいことから、当該界面活性剤を使用すると、上記重合工程において、上記液状の媒体が水性媒体である場合に、当該水性媒体中でのビニル系単量体の分散を安定化させるために、多量の界面活性剤を必要とし、生産性の面で好ましくない。 The above surfactants may be used alone or in combination of two or more. The surfactant preferably has a solubility in water at a liquid temperature of 25 ° C. of 0.3 g / 100 ml to 5.0 g / 100 ml, more preferably 0.5 g / 100 ml to 3.0 g / 100 ml. If a surfactant having a solubility of less than 0.3 g / 100 ml is used, the vinyl monomer may not be stably dispersed in the aqueous medium when the liquid medium is an aqueous medium in the polymerization step. In addition, since it is difficult to elute the surfactant into water, a large amount of cleaning solution is required in the cleaning step described later for cleaning the polymer particles, which is not preferable in terms of productivity. On the other hand, a surfactant having a solubility exceeding 5.0 g / 100 ml has a poor hydrophobic group effect and a poor effect of stabilizing the dispersion of the vinyl monomer in an aqueous medium. When used, in the polymerization step, when the liquid medium is an aqueous medium, a large amount of a surfactant is required to stabilize the dispersion of the vinyl monomer in the aqueous medium. It is not preferable in terms of sex.
 上記ビニル系単量体の重合における界面活性剤の使用量は、ビニル系単量体の使用量100重量部に対して0.01~5重量部の範囲内であることが好ましい。界面活性剤の使用量が上記範囲より少ない場合には、重合安定性が低くなる恐れがある。また、界面活性剤の使用量が上記範囲より多い場合には、コスト的に不経済である。 The amount of the surfactant used in the polymerization of the vinyl monomer is preferably in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the vinyl monomer. When the amount of the surfactant used is less than the above range, the polymerization stability may be lowered. Moreover, when there is more usage-amount of surfactant than the said range, it is uneconomical in terms of cost.
 ビニル系単量体の重合法としては、液状の媒体と界面活性剤を使用する公知の重合方法であれば特に限定されるものではなく、例えば、シード重合、乳化重合、懸濁重合等の方法が挙げられる。これら重合法のうち、得られる重合体粒子の粒子径のばらつきが最も少ないことから、シード重合が最も好ましい。 The polymerization method of the vinyl monomer is not particularly limited as long as it is a known polymerization method using a liquid medium and a surfactant. For example, methods such as seed polymerization, emulsion polymerization, suspension polymerization, etc. Is mentioned. Of these polymerization methods, seed polymerization is most preferred because the resulting polymer particles have the least variation in particle diameter.
 上記乳化重合とは、液状の媒体と、この媒体に溶解し難いビニル系単量体と、界面活性剤(乳化剤)とを混合し、そこに媒体に溶解可能な重合開始剤を加えて重合を行う重合法である。上記乳化重合には、得られる重合体粒子の粒子径のばらつきが少ないという特徴がある。上記懸濁重合とは、ビニル系単量体と水等の水性媒体とを機械的に攪拌して、ビニル系単量体を水性媒体中に懸濁させて重合させる重合法である。上記懸濁重合には、粒子径が小さく、かつ粒子径が比較的整った重合体粒子を得ることができるという特徴がある。 The above emulsion polymerization is a mixture of a liquid medium, a vinyl monomer that is difficult to dissolve in this medium, and a surfactant (emulsifier), and a polymerization initiator that is soluble in the medium is added thereto to perform polymerization. The polymerization method to be performed. The emulsion polymerization is characterized in that there is little variation in the particle diameter of the polymer particles obtained. The suspension polymerization is a polymerization method in which a vinyl monomer and an aqueous medium such as water are mechanically stirred to suspend the vinyl monomer in the aqueous medium for polymerization. The suspension polymerization is characterized in that polymer particles having a small particle size and a relatively uniform particle size can be obtained.
 上記シード重合は、ビニル系単量体の重合を開始する際に、別途作製されたビニル系単量体の重合体からなる種(シード)粒子を入れて、重合を行う方法である。より詳細には、上記シード重合は、ビニル系単量体の重合体からなる重合体粒子を種粒子として用い、水性媒体中で上記種粒子にビニル系単量体を吸収させ、種粒子内でビニル系単量体を重合させる方法である。この方法では、種粒子を成長させることにより、元の種粒子よりも大きな粒子径の重合体粒子を得ることができる。上記した通り、ビニル系単量体の重合法としては、シード重合が最も好ましいことから、本発明の製造方法において、上記重合工程は、液状の媒体中、種粒子及び界面活性剤の存在下で、ビニル系単量体をシード重合させて、前記界面活性剤を含む重合体粒子と前記媒体とを含む粗生成物を得ることを含むことが好ましい。 The seed polymerization is a method in which, when starting polymerization of a vinyl monomer, seed (seed) particles made of a polymer of a vinyl monomer prepared separately are put into the polymerization. More specifically, in the seed polymerization, polymer particles made of a vinyl monomer polymer are used as seed particles, the vinyl particles are absorbed in the seed particles in an aqueous medium, This is a method of polymerizing a vinyl monomer. In this method, polymer particles having a larger particle diameter than the original seed particles can be obtained by growing the seed particles. As described above, since the polymerization method of the vinyl monomer is most preferably seed polymerization, in the production method of the present invention, the polymerization step is performed in a liquid medium in the presence of seed particles and a surfactant. Preferably, the method includes seed polymerizing a vinyl monomer to obtain a crude product including the polymer particles including the surfactant and the medium.
 以下にシード重合の一般的な方法を述べるが、本発明の製造方法における重合法は、この方法に限定されるものではない。 Hereinafter, a general method of seed polymerization will be described, but the polymerization method in the production method of the present invention is not limited to this method.
 シード重合では、まず、ビニル系単量体と水性媒体と界面活性剤とを含む乳化液(懸濁液)に種粒子を添加する。上記乳化液は、公知の方法により作製できる。例えば、ビニル系単量体及び界面活性剤を水性媒体に添加し、ホモジナイザー、超音波処理機、ナノマイザー等の微細乳化機により分散させることで、乳化液を得ることができる。上記水性媒体としては、水、又は、水と有機溶媒(例えば、低級アルコール(炭素数5以下のアルコール))との混合物を用いることができる。 In seed polymerization, first, seed particles are added to an emulsion (suspension) containing a vinyl monomer, an aqueous medium, and a surfactant. The emulsion can be prepared by a known method. For example, an emulsion can be obtained by adding a vinyl monomer and a surfactant to an aqueous medium and dispersing them with a fine emulsifier such as a homogenizer, an ultrasonic processor, or a nanomizer. As the aqueous medium, water or a mixture of water and an organic solvent (for example, a lower alcohol (alcohol having 5 or less carbon atoms)) can be used.
 上記シード重合における界面活性剤の使用量は、ビニル系単量体100重量部に対して0.01~5重量部の範囲内であることが好ましい。界面活性剤の使用量が上記範囲より少ない場合には、重合安定性が低くなる恐れがある。また、界面活性剤の使用量が上記範囲より多い場合には、コスト的に不経済である。 The amount of the surfactant used in the seed polymerization is preferably in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the vinyl monomer. When the amount of the surfactant used is less than the above range, the polymerization stability may be lowered. Moreover, when there is more usage-amount of surfactant than the said range, it is uneconomical in terms of cost.
 種粒子は、そのままで乳化液に添加されてもよく、水性媒体に分散された形態で乳化液に添加されてもよい。種粒子が乳化液へ添加された後、ビニル系単量体が種粒子に吸収される。この吸収は、通常、乳化液を、室温(約20℃)で1~12時間攪拌することにより行うことができる。また、種粒子へのビニル系単量体の吸収を促進するために、乳化液を30~50℃程度に加温してもよい。 The seed particles may be added to the emulsion as it is, or may be added to the emulsion in a form dispersed in an aqueous medium. After the seed particles are added to the emulsion, the vinyl monomer is absorbed by the seed particles. This absorption can usually be performed by stirring the emulsion at room temperature (about 20 ° C.) for 1 to 12 hours. In order to promote the absorption of the vinyl monomer into the seed particles, the emulsion may be heated to about 30 to 50 ° C.
 種粒子は、ビニル系単量体を吸収することにより膨潤する。ビニル系単量体と種粒子との混合比率は、種粒子1重量部に対して、ビニル系単量体が5~300重量部の範囲内であることが好ましく、100~250重量部の範囲内であることがより好ましい。ビニル系単量体の混合比率が上記範囲より小さくなると、重合による粒子径の増加が小さくなるので、製造効率が低下する。一方、ビニル系単量体の混合比率が上記範囲より大きくなると、ビニル系単量体が完全に種粒子に吸収されず、水性媒体中で独自に懸濁重合して、異常に粒子径の小さい重合体粒子が生成されることがある。なお、種粒子へのビニル系単量体の吸収の終了は、光学顕微鏡の観察で粒子径の拡大を確認することにより判定できる。 The seed particles swell by absorbing the vinyl monomer. The mixing ratio of the vinyl monomer to the seed particles is preferably in the range of 5 to 300 parts by weight of the vinyl monomer and 1 to 250 parts by weight with respect to 1 part by weight of the seed particles. More preferably, it is within. When the mixing ratio of the vinyl monomer is smaller than the above range, the increase in particle diameter due to polymerization is small, and thus the production efficiency is lowered. On the other hand, when the mixing ratio of the vinyl monomer is larger than the above range, the vinyl monomer is not completely absorbed by the seed particles, and is suspension-polymerized independently in an aqueous medium, resulting in an abnormally small particle size. Polymer particles may be produced. In addition, the completion | finish of absorption of the vinyl-type monomer to a seed particle can be determined by confirming expansion of a particle diameter by observation with an optical microscope.
 次に、種粒子に吸収されたビニル系単量体を重合させることにより、重合体粒子が得られる。なお、ビニル系単量体を種粒子に吸収させて重合させる工程を複数回繰り返すことにより重合体粒子を得てもよい。 Next, polymer particles are obtained by polymerizing the vinyl monomer absorbed by the seed particles. In addition, you may obtain polymer particle | grains by repeating the process of making a seed particle absorb and polymerize a vinyl-type monomer in multiple times.
 上記ビニル系単量体には、必要に応じて重合開始剤を添加していてもよい。上記重合開始剤は、上記重合開始剤をビニル系単量体に混合した後、得られた混合物を水性媒体中に分散させてもよいし、重合開始剤とビニル系単量体との両者を別々に水性媒体に分散させたものを混合してもよい。得られた乳化液中に存するビニル系単量体の液滴の粒子径は、種粒子の粒子径よりも小さい方が、ビニル系単量体が種粒子に効率よく吸収されるので好ましい。 A polymerization initiator may be added to the vinyl monomer as necessary. The polymerization initiator may be obtained by mixing the polymerization initiator with the vinyl monomer, and then dispersing the obtained mixture in an aqueous medium, or combining both the polymerization initiator and the vinyl monomer. Those separately dispersed in an aqueous medium may be mixed. The particle size of the vinyl monomer droplets present in the resulting emulsion is preferably smaller than the particle size of the seed particles because the vinyl monomer is efficiently absorbed by the seed particles.
 上記重合開始剤としては、特に限定されるものではないが、例えば、過酸化ベンゾイル、過酸化ラウロイル、o-クロロ過酸化ベンゾイル、o-メトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,3-ジメチルブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,3,3-トリメチルブチロニトリル)、2,2’-アゾビス(2-イソプロピルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、(2-カルバモイルアゾ)イソブチロニトリル、4,4’-アゾビス(4-シアノバレリン酸)、ジメチル-2,2’-アゾビスイソブチレート等のアゾ化合物等が挙げられる。上記重合開始剤は、ビニル系単量体100重量部に対して、0.1~1.0重量部の範囲内で使用されることが好ましい。 The polymerization initiator is not particularly limited. For example, benzoyl peroxide, lauroyl peroxide, benzoyl peroxide, o-methoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide Organic peroxides such as oxide, t-butylperoxy-2-ethylhexanoate, di-tert-butyl peroxide; 2,2′-azobisisobutyronitrile, 2,2′-azobis (2, 4-dimethylvaleronitrile), 2,2′-azobis (2,3-dimethylbutyronitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,3,3) 3-trimethylbutyronitrile), 2,2′-azobis (2-isopropylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonite) ), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), (2-carbamoylazo) isobutyronitrile, 4,4′-azobis (4-cyanovaleric acid), dimethyl-2 Azo compounds such as 2,2′-azobisisobutyrate. The polymerization initiator is preferably used within a range of 0.1 to 1.0 part by weight with respect to 100 parts by weight of the vinyl monomer.
 上記シード重合の重合温度は、ビニル系単量体の種類や、必要に応じて用いられる重合開始剤の種類に応じて適宜選択できる。上記シード重合の重合温度は、具体的には、25~110℃であることが好ましく、50~100℃であることがより好ましい。また、上記シード重合の重合時間は、1~12時間であることが好ましい。上記シード重合の重合反応は、重合に対して不活性な不活性ガス(例えば窒素)の雰囲気下で行ってもよい。なお、上記シード重合の重合反応は、ビニル系単量体及び必要に応じて用いられる重合開始剤が種粒子に完全に吸収された後に、昇温して行われるのが好ましい。 The polymerization temperature of the seed polymerization can be appropriately selected according to the type of vinyl monomer and the type of polymerization initiator used as necessary. Specifically, the polymerization temperature of the seed polymerization is preferably 25 to 110 ° C., and more preferably 50 to 100 ° C. The polymerization time for the seed polymerization is preferably 1 to 12 hours. The polymerization reaction of the seed polymerization may be performed in an atmosphere of an inert gas (for example, nitrogen) that is inert to the polymerization. The seed polymerization is preferably carried out by raising the temperature after the vinyl monomer and the polymerization initiator used as necessary are completely absorbed by the seed particles.
 上記シード重合においては、重合体粒子の分散安定性を向上させるために、高分子分散安定剤を重合反応系に添加してもよい。上記高分子分散安定剤としては、例えば、ポリビニルアルコール、ポリカルボン酸、セルロース類(ヒドロキシエチルセルロース、カルボキシメチルセルロース等)、ポリビニルピロリドン等が挙げられる。また、上記高分子分散安定剤と、トリポリリン酸ナトリウム等の無機系水溶性高分子化合物とが併用されてもよい。これら高分子分散安定剤のうち、ポリビニルアルコール及びポリビニルピロリドンが好ましい。上記高分子分散安定剤の添加量は、ビニル系単量体100重量部に対して1~10重量部の範囲内であることが好ましい。 In the seed polymerization, a polymer dispersion stabilizer may be added to the polymerization reaction system in order to improve the dispersion stability of the polymer particles. Examples of the polymer dispersion stabilizer include polyvinyl alcohol, polycarboxylic acid, celluloses (such as hydroxyethyl cellulose and carboxymethyl cellulose), and polyvinylpyrrolidone. Moreover, the polymer dispersion stabilizer and an inorganic water-soluble polymer compound such as sodium tripolyphosphate may be used in combination. Of these polymer dispersion stabilizers, polyvinyl alcohol and polyvinyl pyrrolidone are preferred. The addition amount of the polymer dispersion stabilizer is preferably in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the vinyl monomer.
 また、上記重合反応における水性媒体中での乳化粒子(粒子径の小さすぎる重合体粒子)の発生を抑えるために、亜硝酸ナトリウム等の亜硝酸塩類、亜硫酸塩類、ハイドロキノン類、アスコルビン酸類、水溶性ビタミンB類、クエン酸、ポリフェノール類等の水溶性の重合禁止剤を水性媒体に添加してもよい。上記重合禁止剤の添加量は、ビニル系単量体100重量部に対して0.02~0.2重量部の範囲内であることが好ましい。 Also, in order to suppress the generation of emulsified particles (polymer particles with too small particle size) in the aqueous medium in the above polymerization reaction, nitrites such as sodium nitrite, sulfites, hydroquinones, ascorbic acids, water-soluble Water-soluble polymerization inhibitors such as vitamin Bs, citric acid and polyphenols may be added to the aqueous medium. The addition amount of the polymerization inhibitor is preferably in the range of 0.02 to 0.2 parts by weight with respect to 100 parts by weight of the vinyl monomer.
 なお、ビニル系単量体を重合して種粒子を得るための重合法については、特に限定されないが、分散重合、乳化重合、ソープフリー乳化重合(乳化剤としての界面活性剤を用いない乳化重合)、シード重合、懸濁重合等を用いることができる。シード重合によって略均一な粒子径の重合体粒子を得るためには、最初に略均一の粒子径の種粒子を使用し、これらの種粒子を略一様に成長させることが必要になる。原料となる略均一な粒子径の種粒子は、ビニル系単量体をソープフリー乳化重合(界面活性剤を使用しない乳化重合)及び分散重合等の重合法で重合することによって作ることができる。したがって、ビニル系単量体を重合して種粒子を得るための重合法としては、乳化重合、ソープフリー乳化重合、シード重合及び分散重合が好ましい。 The polymerization method for obtaining seed particles by polymerizing a vinyl monomer is not particularly limited, but dispersion polymerization, emulsion polymerization, soap-free emulsion polymerization (emulsion polymerization without using a surfactant as an emulsifier). , Seed polymerization, suspension polymerization and the like can be used. In order to obtain polymer particles having a substantially uniform particle size by seed polymerization, it is necessary to first use seed particles having a substantially uniform particle size and grow these seed particles substantially uniformly. Seed particles having a substantially uniform particle size as a raw material can be produced by polymerizing a vinyl monomer by a polymerization method such as soap-free emulsion polymerization (emulsion polymerization without using a surfactant) and dispersion polymerization. Accordingly, emulsion polymerization, soap-free emulsion polymerization, seed polymerization, and dispersion polymerization are preferred as polymerization methods for polymerizing vinyl monomers to obtain seed particles.
 種粒子を得るための重合においても、必要に応じて重合開始剤が使用される。前記重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類;過酸化ベンゾイル、過酸化ラウロイル、o-クロロ過酸化ベンゾイル、o-メトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、tert-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、1,1’-アゾビスシクロヘキサンカルボニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物等が挙げられる。上記重合開始剤の使用量は、種粒子を得るために使用するビニル系単量体100重量部に対して0.1~3重量部の範囲内であることが好ましい。上記重合開始剤の使用量の加減により、得られる種粒子の重量平均分子量を調整することができる。 Also in the polymerization for obtaining seed particles, a polymerization initiator is used as necessary. Examples of the polymerization initiator include persulfates such as potassium persulfate, ammonium persulfate, sodium persulfate; benzoyl peroxide, lauroyl peroxide, o-chlorobenzoyl peroxide, o-methoxybenzoyl peroxide, 3, 5 , 5-trimethylhexanoyl peroxide, tert-butylperoxy-2-ethylhexanoate, organic peroxides such as di-tert-butyl peroxide; 2,2′-azobisisobutyronitrile, Examples thereof include azo compounds such as 1′-azobiscyclohexanecarbonitrile and 2,2′-azobis (2,4-dimethylvaleronitrile). The amount of the polymerization initiator used is preferably in the range of 0.1 to 3 parts by weight with respect to 100 parts by weight of the vinyl monomer used to obtain seed particles. The weight average molecular weight of the seed particles obtained can be adjusted by adjusting the amount of the polymerization initiator used.
 種粒子を得るための重合においては、得られる種粒子の重量平均分子量を調整するために、分子量調整剤を使用してもよい。前記分子量調整剤としては、n-オクチルメルカプタン、tert-ドデシルメルカプタン等のメルカプタン類;α-メチルスチレンダイマー;γ-テルピネン、ジペンテン等のテルペン類;クロロホルム、四塩化炭素等のハロゲン化炭化水素類等を使用できる。上記分子量調整剤の使用量の加減により、得られる種粒子の重量平均分子量を調整することができる。 In the polymerization for obtaining seed particles, a molecular weight modifier may be used in order to adjust the weight average molecular weight of the obtained seed particles. Examples of the molecular weight modifier include mercaptans such as n-octyl mercaptan and tert-dodecyl mercaptan; α-methylstyrene dimer; terpenes such as γ-terpinene and dipentene; halogenated hydrocarbons such as chloroform and carbon tetrachloride, etc. Can be used. The weight average molecular weight of the seed particles obtained can be adjusted by adjusting the amount of the molecular weight modifier used.
 〔固液分離工程〕
 固液分離工程では、濾過器に前記粗生成物を投入し、投入した前記粗生成物に含まれる媒体を前記濾過器の濾材に通過させる一方、前記粗生成物に含まれる重合体粒子を前記濾材上に保持させる。
[Solid-liquid separation process]
In the solid-liquid separation step, the crude product is charged into a filter, and the medium contained in the charged crude product is passed through the filter medium of the filter, while the polymer particles contained in the crude product are passed through the filter. Hold on filter media.
 上記固液分離工程では、前記濾材を通過した前記媒体の単位時間当たりの量が、下記条件式(1);
 X≦5.50×A ・・・(1)
(式(1)中、Xは、前記濾材を通過した前記媒体の単位時間当たりの量(kg/min)を意味し、Aは、濾材と被濾過物との界面の面積(m)を意味する)を満たす。
In the solid-liquid separation step, the amount per unit time of the medium that has passed through the filter medium is the following conditional expression (1);
X ≦ 5.50 × A (1)
(In Formula (1), X means the amount (kg / min) per unit time of the medium that has passed through the filter medium, and A represents the area (m 2 ) of the interface between the filter medium and the object to be filtered). Means).
 上記固液分離工程において、前記濾材を通過した前記媒体の単位時間当たりの量を、上記条件式(1)を満たすように制御することで、媒体と共に、粗生成物に含まれる界面活性剤を除去することができ、濾材上に残った重合体粒子における界面活性剤の残存量(具体的には、重合体粒子の表面における界面活性剤の付着量)を減らすことができる。 In the solid-liquid separation step, by controlling the amount of the medium that has passed through the filter medium per unit time so as to satisfy the conditional expression (1), the surfactant contained in the crude product together with the medium The amount of the surfactant remaining in the polymer particles remaining on the filter medium (specifically, the amount of the surfactant adhered on the surface of the polymer particles) can be reduced.
 上記固液分離工程において、前記濾過器としては、特に限定されないが、例えば、図1に示されるような、円柱状の内部空間を有する耐圧容器2と、この耐圧容器2の内底部に配置された濾材3と、圧縮気体(窒素等の不活性ガス、空気等)を耐圧容器内に供給する圧縮気体供給機(不図示)とを備える加圧濾過器1を挙げることができる。図1に示す加圧濾過器1では、耐圧容器2の円柱状の内部空間の底面の面積(図1(b)参照)が、濾材3と被濾過物(粗生成物P)との界面の面積と略同じとなる。 In the solid-liquid separation step, the filter is not particularly limited. For example, as shown in FIG. 1, the pressure vessel 2 having a cylindrical inner space and an inner bottom portion of the pressure vessel 2 are disposed. An example of the pressure filter 1 includes a filter medium 3 and a compressed gas supply device (not shown) that supplies compressed gas (inert gas such as nitrogen, air, etc.) into the pressure vessel. In the pressure filter 1 shown in FIG. 1, the area of the bottom surface of the cylindrical inner space of the pressure vessel 2 (see FIG. 1B) is the interface between the filter medium 3 and the material to be filtered (crude product P). It is almost the same as the area.
 上記加圧濾過器1を用いた固液分離工程では、例えば、加圧濾過器1の耐圧容器2に粗生成物Pをスラリー溶液の形態で投入して、耐圧容器2内の濾材3上に粗生成物Pを充填し、圧縮気体供給機によって耐圧容器2内における濾材3の上側空間Sに圧縮気体を供給することによって耐圧容器2の内部における濾材3の上側空間Sを加圧する。これにより、粗生成物Pが濾材3に押し付けられて、粗生成物Pに含まれる液状の媒体が濾材3を通過し、その液状の媒体が濾液として耐圧容器2の外に排出される。そして、濾材3上に重合体粒子のケーキが残る。 In the solid-liquid separation process using the pressure filter 1, for example, the crude product P is charged in the form of a slurry solution into the pressure vessel 2 of the pressure filter 1, and is placed on the filter medium 3 in the pressure vessel 2. The crude product P is filled, and the compressed gas is supplied to the upper space S of the filter medium 3 in the pressure vessel 2 by the compressed gas supply machine, whereby the upper space S of the filter medium 3 in the pressure vessel 2 is pressurized. Thereby, the crude product P is pressed against the filter medium 3, the liquid medium contained in the crude product P passes through the filter medium 3, and the liquid medium is discharged out of the pressure vessel 2 as a filtrate. Then, a cake of polymer particles remains on the filter medium 3.
 前記耐圧容器2としては、例えば、ステンレス製で、0.50MPa以上の耐圧性を備えているものが好ましい。 The pressure vessel 2 is preferably made of, for example, stainless steel and has a pressure resistance of 0.50 MPa or more.
 濾材3としては、重合体粒子を確実に捕集できるものであれば特に限定されず、例えば、天然繊維、合成繊維等からなる、織布、不織布等の濾布;焼結金属からなる金網;焼結金属からなる不織布;天然繊維、ガラス繊維等からなる濾過板(多孔板);合成樹脂からなる網:濾紙;ガラス繊維フィルター等が挙げられるが、濾布が好ましい。 The filter medium 3 is not particularly limited as long as the polymer particles can be reliably collected. For example, a filter cloth such as a woven fabric or a nonwoven fabric made of natural fibers or synthetic fibers; a wire mesh made of sintered metal; Nonwoven fabric made of sintered metal; filter plate (perforated plate) made of natural fiber, glass fiber, etc .; net made of synthetic resin: filter paper; glass fiber filter, etc., and filter cloth is preferred.
 上記固液分離工程において、加圧濾過器1を使用して耐圧容器2内における濾材3の上側空間Sを加圧する際の加圧条件は、上記条件式(1)を満たす圧力であれば、特に限定されないが、例えば、耐圧容器2の内圧が0.01MPa~0.50MPaの範囲内となるように加圧することが好ましい。なお、固体分離工程において、耐圧容器2の内圧は、加圧開始から固液分離工程の終了まで、上記条件式(1)を満たすように、ほぼ一定に保たれていることが好ましいが、耐圧容器2の内圧は、加圧後、粗生成物Pに含まれる媒体が濾材3を通過するにつれて、耐圧容器2内の圧が徐々に低下する。具体的には、濾材3を通過する媒体が少なくなる、もしくはほぼ無くなると、耐圧容器2内の圧縮空気圧が底から抜け、耐圧容器2の内圧を加圧時の圧力に維持することが難しくなり、前記加圧時の圧力を下回ることとなる。 In the solid-liquid separation step, the pressurizing condition when pressurizing the upper space S of the filter medium 3 in the pressure resistant vessel 2 using the pressure filter 1 is a pressure satisfying the conditional expression (1). Although not particularly limited, for example, it is preferable to pressurize the pressure vessel 2 so that the internal pressure is within a range of 0.01 MPa to 0.50 MPa. In the solid separation step, the internal pressure of the pressure resistant vessel 2 is preferably kept almost constant so as to satisfy the conditional expression (1) from the start of pressurization to the end of the solid-liquid separation step. The internal pressure of the container 2 gradually decreases as the medium contained in the crude product P passes through the filter medium 3 after being pressurized. Specifically, when the medium passing through the filter medium 3 is reduced or almost disappeared, the compressed air pressure in the pressure vessel 2 is released from the bottom, and it becomes difficult to maintain the internal pressure of the pressure vessel 2 at the pressure during pressurization. The pressure at the time of pressurization will be below.
 また、上記固液分離工程では、濾過器(加圧濾過器1)に投入した粗生成物Pに含まれる媒体の量(重合工程で得られた全ての粗生成物を濾過器に投入した場合は、重合工程で使用した媒体の量)100重量%に対して、70重量%以上の量の媒体を濾材3に通過させて、粗生成物Pに含まれる媒体を除去することが好ましい。上記固液分離工程において、濾過器(加圧濾過器1)に投入した粗生成物Pに含まれる媒体の量100重量%に対して、70重量%以上の量の媒体を濾材3に通過させることで、濾材3上に残った重合体粒子における界面活性剤の残存量を減らすことができる。その結果、後述する洗浄工程における洗浄液の量を減らすことが可能となる。 In the solid-liquid separation step, the amount of medium contained in the crude product P charged into the filter (pressure filter 1) (when all the crude products obtained in the polymerization step are charged into the filter) The amount of the medium used in the polymerization step) is preferably 100% by weight, and the medium contained in the crude product P is preferably removed by passing a medium of 70% by weight or more through the filter medium 3. In the solid-liquid separation step, a medium of 70% by weight or more is passed through the filter medium 3 with respect to 100% by weight of the medium contained in the crude product P charged into the filter (pressure filter 1). Thus, the remaining amount of the surfactant in the polymer particles remaining on the filter medium 3 can be reduced. As a result, it is possible to reduce the amount of cleaning liquid in the cleaning process described later.
 例えば、上記固液分離工程において、濾過器として、加圧濾過器1を使用した場合は、当該固液分離工程は、加圧濾過器1に投入した粗生成物Pに含まれる媒体の量(重合工程で得られた全ての粗生成物Pを加圧濾過器1に投入した場合は、重合工程で使用した媒体の量)100重量%に対して、70重量%以上の量の媒体が濾材3を通過し、且つ、耐圧容器2の内圧が、加圧時の圧力100%に対して、80%以下になったときに、終了することが好ましい。これにより、濾材3上に残った重合体粒子における界面活性剤の残存量を確実に減らして、後述する洗浄工程における洗浄液の量を減らすことが可能となる。 For example, when the pressure filter 1 is used as a filter in the solid-liquid separation step, the solid-liquid separation step includes the amount of the medium contained in the crude product P introduced into the pressure filter 1 ( When all the crude products P obtained in the polymerization step are put into the pressure filter 1, the amount of the medium is 70% by weight or more with respect to 100% by weight of the medium used in the polymerization step). 3 and it is preferable that the process is terminated when the internal pressure of the pressure vessel 2 becomes 80% or less with respect to the pressure of 100% during pressurization. As a result, the remaining amount of the surfactant in the polymer particles remaining on the filter medium 3 can be reliably reduced, and the amount of the cleaning liquid in the cleaning step described later can be reduced.
 〔洗浄工程〕
 洗浄工程では、前記重合体粒子を前記濾材上に保持した前記濾過器に洗浄液を投入し、前記洗浄液を前記重合体粒子と接触させて、前記重合体粒子と接触した前記洗浄液を前記濾材に通過させることによって、前記洗浄液で洗浄された重合体粒子を前記濾材上に得る。
[Washing process]
In the washing step, the washing liquid is put into the filter holding the polymer particles on the filter medium, the washing liquid is brought into contact with the polymer particles, and the washing liquid in contact with the polymer particles passes through the filter medium. As a result, polymer particles washed with the washing liquid are obtained on the filter medium.
 前記洗浄工程では、前記濾材を通過した前記洗浄液の単位時間当たりの量が、下記条件式(2);
 Y≦8.50×A ・・・(2)
(式(2)中、Yは、前記濾材を通過した前記洗浄液の単位時間当たりの量(kg/min)を意味し、Aは、濾材と被濾過物との界面の面積(m)を意味する。)を満たす。前記濾材を通過した前記洗浄液の単位時間当たりの量が、上記条件式(2)を満たさない場合には、重合体粒子と洗浄液とが接している時間が短いために、重合体粒子の表面に付着した界面活性剤が十分に取り除かれず、最終的に得られる重合体粒子に多量の界面活性剤が残存してしまうおそれがある。
In the washing step, the amount per unit time of the washing liquid that has passed through the filter medium is the following conditional expression (2);
Y ≦ 8.50 × A (2)
(In Formula (2), Y means the amount (kg / min) per unit time of the cleaning liquid that has passed through the filter medium, and A represents the area (m 2 ) of the interface between the filter medium and the object to be filtered). Means). When the amount per unit time of the cleaning liquid that has passed through the filter medium does not satisfy the conditional expression (2), the time for which the polymer particles are in contact with the cleaning liquid is short. The attached surfactant is not sufficiently removed, and a large amount of the surfactant may remain in the finally obtained polymer particles.
 また、前記洗浄工程における前記濾材を通過した前記洗浄液の単位時間当たりの量は、前記洗浄液を濾材に通過させることによる前記重合体粒子の洗浄の開始から終了まで、平均して、下記条件式(3);
 2.50×A≦Y≦8.50×A ・・・(3)
(式(3)中、Yは前記濾材を通過した前記洗浄液の単位時間当たりの量(kg/min)を意味し、Aは、濾材と被濾過物との界面の面積(m)を意味する。)を満たすことが好ましい。前記洗浄工程における前記濾材を通過した前記洗浄液の単位時間当たりの量が、平均して、上記条件式(3)を満たす場合、効率よく、重合体粒子の表面に付着した界面活性剤を十分に取り除いて、最終的に得られる重合体粒子における界面活性剤の残存量を減らすことができる。
In addition, the amount per unit time of the cleaning liquid that has passed through the filter medium in the cleaning step averages from the start to the end of the cleaning of the polymer particles by allowing the cleaning liquid to pass through the filter medium. 3);
2.50 × A ≦ Y ≦ 8.50 × A (3)
(In Formula (3), Y means the amount (kg / min) of the cleaning liquid that has passed through the filter medium per unit time, and A means the area (m 2 ) of the interface between the filter medium and the object to be filtered. It is preferable to satisfy. When the amount per unit time of the cleaning liquid that has passed through the filter medium in the cleaning step satisfies the above conditional expression (3), the surfactant adhering to the surface of the polymer particles can be sufficiently removed. The remaining amount of the surfactant in the finally obtained polymer particles can be reduced.
 例えば、上記固液分離工程において図1に示すような加圧濾過器1を用いた場合、濾材3上に残った重合体粒子のケーキを、そのまま、濾材3上に保持させたままで、洗浄液を耐圧容器2内に供給することによって前記ケーキと洗浄液を接触させ、圧縮気体供給機によって耐圧容器2内における濾材3の上側空間Sに圧縮気体を供給することにより濾材3の上側空間Sを加圧する。これにより、前記ケーキが洗浄液に接触して洗浄され、そして、洗浄後の洗浄液が濾液として耐圧容器2の外へ排出される。なお、洗浄液を供給した後、加圧を行う前に、攪拌機を用いて耐圧容器2内に供給した洗浄液を前記ケーキと混合することでスラリー化してもよい。また、洗浄用の洗浄液を供給する前に、攪拌機を用いて、ケーキのクラックを修復してもよい。これにより、洗浄液のショートパスがなくなり、効率的な洗浄が行える。 For example, when the pressure filter 1 as shown in FIG. 1 is used in the solid-liquid separation step, the washing liquid is left while the polymer particle cake remaining on the filter medium 3 is held on the filter medium 3 as it is. The cake and the cleaning liquid are brought into contact with each other by being supplied into the pressure vessel 2, and the upper space S of the filter medium 3 is pressurized by supplying the compressed gas to the upper space S of the filter medium 3 in the pressure vessel 2 by a compressed gas supply machine. . As a result, the cake comes into contact with the cleaning liquid and is cleaned, and the cleaned cleaning liquid is discharged out of the pressure vessel 2 as a filtrate. In addition, after supplying a washing | cleaning liquid, before performing pressurization, you may slurry by mixing the washing | cleaning liquid supplied in the pressure-resistant container 2 using the stirrer with the said cake. Moreover, you may repair the crack of a cake using a stirrer before supplying the washing | cleaning liquid for washing | cleaning. Thereby, there is no short path for the cleaning liquid, and efficient cleaning can be performed.
 上記洗浄工程において、加圧濾過器1を使用して耐圧容器2内における濾材3の上側空間Sを加圧する際の加圧条件は、上記条件式(2)を満たす圧力であれば、特に限定されないが、例えば、耐圧容器2の内圧が0.01MPa~0.50MPaの範囲内となるように加圧することが好ましい。また、濾材3の上側空間Sは、0.01~0.30MPa/minの速度で加圧されることが好ましい。なお、洗浄工程において、耐圧容器2の内圧は、加圧開始から洗浄工程の終了まで、上記条件式(2)を満たすように、ほぼ一定に保たれていることが好ましいが、耐圧容器2の内圧は、加圧後、耐圧容器2に投入した洗浄液が濾材3を通過するにつれて、耐圧容器2内の圧が徐々に低下する。具体的には、濾材3を通過する洗浄液が少なくなる、もしくはほぼ無くなると、耐圧容器2内の圧縮空気圧が底から抜け、耐圧容器2の内圧を加圧時の圧力に維持することが難しくなり、前記加圧時の圧力を下回ることとなる。 In the above washing step, the pressurizing condition when the pressurizing filter 1 is used to pressurize the upper space S of the filter medium 3 in the pressure resistant vessel 2 is particularly limited as long as it satisfies the conditional expression (2). However, for example, it is preferable to pressurize the pressure vessel 2 so that the internal pressure is within a range of 0.01 MPa to 0.50 MPa. The upper space S of the filter medium 3 is preferably pressurized at a rate of 0.01 to 0.30 MPa / min. In the cleaning process, it is preferable that the internal pressure of the pressure vessel 2 is kept substantially constant from the start of pressurization to the end of the cleaning step so as to satisfy the conditional expression (2). As for the internal pressure, the pressure in the pressure-resistant vessel 2 gradually decreases as the cleaning liquid introduced into the pressure-resistant vessel 2 passes through the filter medium 3 after being pressurized. Specifically, when the cleaning liquid passing through the filter medium 3 is reduced or almost disappeared, the compressed air pressure in the pressure resistant container 2 is released from the bottom, and it becomes difficult to maintain the internal pressure of the pressure resistant container 2 at the pressure at the time of pressurization. The pressure at the time of pressurization will be below.
 前記洗浄工程において使用する洗浄液としては、水性媒体が好ましく、例えば、水;メチルアルコール、エチルアルコール等の低級アルコール(炭素数5以下のアルコール);水と低級アルコールとの混合物等が挙げられるが、上記重合工程で使用した媒体と同様のものを用いることが好ましい。 The cleaning liquid used in the cleaning step is preferably an aqueous medium, and examples thereof include water; lower alcohols such as methyl alcohol and ethyl alcohol (alcohols having 5 or less carbon atoms); and mixtures of water and lower alcohols. It is preferable to use the same medium as used in the polymerization step.
 洗浄工程で用いる洗浄液の重量は、濾材3上に保持されている重合体粒子の重量(固液分離工程において重合工程で得られた全ての粗生成物を濾過器に投入した場合は、重合工程で使用したビニル系単量体の総量)の10倍以上である。洗浄工程で用いる洗浄液の重量が、濾材3上に保持されている重合体粒子の重量の10倍未満であると、重合体粒子に含まれる界面活性剤の除去が不十分となり、所望の重合体粒子(界面活性剤の含有量が50ppm未満の重合体粒子)が得られないおそれがある。 The weight of the washing liquid used in the washing step is the weight of the polymer particles held on the filter medium 3 (in the case where all the crude products obtained in the polymerization step in the solid-liquid separation step are put into the filter, the polymerization step) The total amount of vinyl monomers used in (1) is 10 times or more. When the weight of the washing liquid used in the washing step is less than 10 times the weight of the polymer particles held on the filter medium 3, the removal of the surfactant contained in the polymer particles becomes insufficient, and the desired polymer There is a possibility that particles (polymer particles having a surfactant content of less than 50 ppm) cannot be obtained.
 また、洗浄工程で用いる洗浄液の重量は、上記重合工程で使用した界面活性剤の種類毎に以下の算出式(4)により算出した洗浄液の重量の下限値Dの合計量以上であることが好ましい。洗浄工程で用いる洗浄液の重量が、上記重合工程で使用した界面活性剤の種類毎に以下の算出式(4)により算出した洗浄液の重量の下限値Dの合計量以上であると、重合体粒子中における界面活性剤の含有量をさらに、低減させることができる。 In addition, the weight of the cleaning liquid used in the cleaning process is preferably equal to or more than the total amount of the lower limit D of the weight of the cleaning liquid calculated by the following calculation formula (4) for each type of surfactant used in the polymerization process. . When the weight of the cleaning liquid used in the cleaning process is equal to or more than the total amount of the lower limit D of the weight of the cleaning liquid calculated by the following calculation formula (4) for each type of surfactant used in the polymerization process, the polymer particles The content of the surfactant in the inside can be further reduced.
 D=(E÷F)×2000・・・(4)
 D:1種の界面活性剤に対して必要とされる洗浄液の重量の下限値(g)
 E:前記1種の界面活性剤の使用量(g)
 F:液温25℃の洗浄液に対する前記1種の界面活性剤の溶解度(g/100ml)
D = (E ÷ F) × 2000 (4)
D: Lower limit of weight of cleaning solution required for one type of surfactant (g)
E: Amount of the one kind of surfactant used (g)
F: Solubility (g / 100 ml) of the above-mentioned one type of surfactant in the washing liquid having a liquid temperature of 25 ° C.
 また、洗浄に用いる洗浄液の温度は、界面活性剤が十分に溶出する温度であることが好ましく、例えば、40~80℃であることが好ましく、50~80℃であることがより好ましい。なお、洗浄液を上記温度に加熱して洗浄を行う方法としては、加熱した洗浄液を濾過器(例えば、加圧濾過器1の耐圧容器2)に供給する方法を用いてもよく、洗浄液を濾過器に供給した後、濾過器の周囲に配設したヒータジャケットによって洗浄液を加熱する方法を用いてもよい。 Further, the temperature of the cleaning solution used for cleaning is preferably a temperature at which the surfactant is sufficiently eluted, for example, preferably 40 to 80 ° C., and more preferably 50 to 80 ° C. In addition, as a method for heating the cleaning liquid to the above temperature and performing cleaning, a method of supplying the heated cleaning liquid to a filter (for example, the pressure vessel 2 of the pressure filter 1) may be used. A method of heating the cleaning liquid with a heater jacket disposed around the filter after being supplied to the filter may be used.
 上記洗浄工程は、濾材3を通過した洗浄液の導電率が、濾過器(加圧濾過器1)に投入する前の洗浄液の導電率の2.0倍以下となり、且つ、耐圧容器2の内圧が、加圧時の圧力100%に対して、80%以下になったときに終了することが好ましい。濾材3を通過した洗浄液の導電率が、濾過器(加圧濾過器1)に投入する前の洗浄液の導電率の2.0倍以下となるまで、洗浄液を耐圧容器2に投入することで、最終的に得られる重合体粒子に含まれる界面活性剤の残存量を確実に減らすことができる。また、耐圧容器2の内圧が、加圧時の圧力100%に対して80%以下となるまで、耐圧容器2に投入した洗浄液を濾材3に通過させることで、重合体粒子に吸収され得る水分量を減らすことができ、洗浄後の重合体粒子の乾燥に要する時間を、短縮化することができる。 In the cleaning step, the conductivity of the cleaning liquid that has passed through the filter medium 3 is 2.0 times or less the conductivity of the cleaning liquid before being charged into the filter (pressure filter 1), and the internal pressure of the pressure vessel 2 is It is preferable that the process is terminated when the pressure is 80% or less with respect to the pressure of 100% during pressurization. By introducing the cleaning liquid into the pressure resistant container 2 until the conductivity of the cleaning liquid that has passed through the filter medium 3 is 2.0 times or less of the conductivity of the cleaning liquid before being charged into the filter (pressure filter 1), The residual amount of the surfactant contained in the finally obtained polymer particles can be surely reduced. Further, the water that can be absorbed by the polymer particles by passing the cleaning liquid charged into the pressure vessel 2 through the filter medium 3 until the internal pressure of the pressure vessel 2 becomes 80% or less with respect to the pressure of 100% during pressurization. The amount can be reduced, and the time required for drying the polymer particles after washing can be shortened.
 洗浄工程で得られた重合体粒子は、真空乾燥機で乾燥することによって、洗浄液をほぼ完全に除去し、必要に応じて分級(好ましくは、気流分級)することによって、製品として利用可能な重合体粒子とすることができる。 The polymer particles obtained in the washing step are dried in a vacuum dryer to almost completely remove the washing liquid, and classified as necessary (preferably, air flow classification) to obtain a weight that can be used as a product. It can be combined particles.
 上記した重合体粒子の製造方法によれば、固液分離工程において、濾材を通過した媒体の単位時間当たりの量が条件式(1)を満たし、洗浄工程において、濾材を通過した洗浄液の単位時間当たりの量が条件式(2)を満たし、尚且つ、その洗浄工程において、濾材上に保持された重合体粒子の重量の10倍以上の重量の洗浄液を用いることから、重合工程において重合体粒子に付着した界面活性剤の大部分を、媒体及び洗浄液と共に除去することができる。その結果、界面活性剤の含有量(残存量)の極めて少ない分散安定性に優れた重合体粒子を得ることができる。また、上記製造方法によれば、重合工程で使用され得る高分子分散安定剤も固液分離工程及び洗浄工程で多量に除去される。このため、上記製造方法で得られる重合体粒子は、高分子分散安定剤の量も少ないものとなり得る。 According to the method for producing polymer particles described above, in the solid-liquid separation step, the amount per unit time of the medium that has passed through the filter medium satisfies the conditional expression (1), and the unit time of the cleaning liquid that has passed through the filter medium in the washing step. Since the amount per hit satisfies the conditional expression (2) and the washing step uses a washing liquid having a weight of 10 times or more the weight of the polymer particles held on the filter medium, the polymer particles are used in the polymerization step. Most of the surfactant adhering to can be removed together with the medium and the cleaning liquid. As a result, it is possible to obtain polymer particles excellent in dispersion stability with a very small surfactant content (residual amount). Moreover, according to the said manufacturing method, the polymer dispersion stabilizer which can be used at a superposition | polymerization process is also removed in large quantities by a solid-liquid separation process and a washing | cleaning process. For this reason, the polymer particle obtained by the said manufacturing method can also become a thing with little quantity of a polymer dispersion stabilizer.
 〔重合体粒子の用途〕
 本発明の重合体粒子は、防眩フィルムや光拡散フィルム等の光学フィルムや光拡散体等の光学部材用として好適であり、特に防眩部材用として好適である。
[Use of polymer particles]
The polymer particles of the present invention are suitable for optical films such as antiglare films and light diffusion films, and optical members such as light diffusers, and particularly suitable for antiglare members.
 〔光学フィルム〕
 本発明の光学フィルムは、本発明の重合体粒子と、バインダーとを含むコーティング用樹脂組成物を、フィルム基材上に塗工してなる。本発明の光学フィルムは、例えば、バインダー中に上記重合体粒子を分散させてコーティング用樹脂組成物を得て、得られたコーティング用樹脂組成物をフィルム基材上に塗工して、上記コーティング用樹脂組成物からなる塗膜を上記フィルム基材上に形成することにより得られる。
[Optical film]
The optical film of the present invention is obtained by coating a coating resin composition containing the polymer particles of the present invention and a binder on a film substrate. The optical film of the present invention is obtained, for example, by dispersing the polymer particles in a binder to obtain a coating resin composition, coating the obtained coating resin composition on a film substrate, It is obtained by forming a coating film made of the resin composition for use on the film substrate.
 上記バインダーとしては、透明性、重合体粒子分散性、耐光性、耐湿性及び耐熱性等の要求される特性に応じて、当該分野において使用されるものであれば特に限定されるものではない。上記バインダーとしては、例えば、(メタ)アクリル系樹脂;(メタ)アクリル-ウレタン系樹脂;ウレタン系樹脂;ポリ塩化ビニル系樹脂;ポリ塩化ビニリデン系樹脂;メラミン系樹脂;スチレン系樹脂;アルキド系樹脂;フェノール系樹脂;エポキシ系樹脂;ポリエステル系樹脂;アルキルポリシロキサン系樹脂等のシリコーン系樹脂;(メタ)アクリル-シリコーン系樹脂、シリコーン-アルキド系樹脂、シリコーン-ウレタン系樹脂、シリコーン-ポリエステル樹脂等の変性シリコーン樹脂;ポリフッ化ビニリデン、フルオロオレフィンビニルエーテル重合体等のフッ素系樹脂等のバインダー樹脂が挙げられる。 The binder is not particularly limited as long as it is used in the field according to required properties such as transparency, polymer particle dispersibility, light resistance, moisture resistance and heat resistance. Examples of the binder include (meth) acrylic resins; (meth) acrylic-urethane resins; urethane resins; polyvinyl chloride resins; polyvinylidene chloride resins; melamine resins; styrene resins; alkyd resins. Phenol resin; epoxy resin; polyester resin; silicone resin such as alkylpolysiloxane resin; (meth) acrylic-silicone resin, silicone-alkyd resin, silicone-urethane resin, silicone-polyester resin, etc. Modified silicone resins; binder resins such as fluororesins such as polyvinylidene fluoride and fluoroolefin vinyl ether polymers.
 上記バインダー樹脂は、コーティング用樹脂組成物の耐久性を向上させる観点から、架橋反応により架橋構造を形成できる硬化性樹脂であることが好ましい。上記硬化性樹脂は、種々の硬化条件で硬化させることができる。上記硬化性樹脂は、硬化のタイプにより、紫外線硬化性樹脂、電子線硬化性樹脂等の電離放射線硬化性樹脂、熱硬化性樹脂、温気硬化性樹脂等に分類される。 The binder resin is preferably a curable resin capable of forming a crosslinked structure by a crosslinking reaction from the viewpoint of improving the durability of the coating resin composition. The curable resin can be cured under various curing conditions. The curable resin is classified into an ionizing radiation curable resin such as an ultraviolet curable resin and an electron beam curable resin, a thermosetting resin, a hot air curable resin, and the like depending on the type of curing.
 上記熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレ重合体とからなる熱硬化型ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。 Examples of the thermosetting resin include thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, and silicone resin.
 上記電離放射線硬化性樹脂としては、多価アルコール多官能(メタ)アクリレート等のような多官能(メタ)アクリレート樹脂;ジイソシアネート、多価アルコール、及びヒドロキシ基を有する(メタ)アクリル酸エステル等から合成されるような多官能ウレタンアクリレート樹脂等が挙げられる。上記電離放射線硬化性樹脂としては、多官能(メタ)アクリレート樹脂が好ましく、1分子中に3個以上の(メタ)アクリロイル基を有する多価アルコール多官能(メタ)アクリレートがより好ましい。1分子中に3個以上の(メタ)アクリロイル基を有する多価アルコール多官能(メタ)アクリレートとしては、具体的には、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、1,2,4-シクロヘキサンテトラ(メタ)アクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリアクリレート、トリペンタエリスリトールヘキサアクリレート等が挙げられる。上記電離放射線硬化性樹脂は、二種類以上を併用してもよい。 As the ionizing radiation curable resin, synthesized from polyfunctional (meth) acrylate resin such as polyhydric alcohol polyfunctional (meth) acrylate; diisocyanate, polyhydric alcohol, and (meth) acrylic acid ester having a hydroxy group And polyfunctional urethane acrylate resins. The ionizing radiation curable resin is preferably a polyfunctional (meth) acrylate resin, and more preferably a polyhydric alcohol polyfunctional (meth) acrylate having three or more (meth) acryloyl groups in one molecule. As polyhydric alcohol polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups in one molecule, specifically, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, 1,2,4-cyclohexanetetra (meth) acrylate, pentaglycerol triacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol triacrylate, dipentaerythritol pentaacrylate, dipentaerythritol tetra (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol triacrylate, tripentaerythritol hexaacrylate, etc. That. Two or more kinds of the ionizing radiation curable resins may be used in combination.
 上記電離放射線硬化性樹脂としては、これらの他にも、アクリレート系の官能基を有するポリエーテル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も使用できる。 As the ionizing radiation curable resin, besides these, polyether resins having an acrylate functional group, polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and the like can also be used.
 上記電離放射線硬化性樹脂のうち紫外線硬化性樹脂を用いる場合、紫外線硬化性樹脂に光重合開始剤を加えてバインダーとする。上記光重合開始剤は、どのようなものを用いてもよいが、用いる紫外線硬化性樹脂にあったものを用いることが好ましい。 When using an ultraviolet curable resin among the above ionizing radiation curable resins, a photopolymerization initiator is added to the ultraviolet curable resin to form a binder. Although what kind of thing may be used for the said photoinitiator, it is preferable to use what was suitable for the ultraviolet curable resin to be used.
 上記光重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、α-ヒドロキシアルキルフェノン類、α-アミノアルキルフェノン、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類(特開2001-139663号公報等に記載)、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、オニウム塩類、ボレート塩、活性ハロゲン化合物、α-アシルオキシムエステル等が挙げられる。 Examples of the photopolymerization initiator include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, α-hydroxyalkylphenones, α-aminoalkylphenones, anthraquinones, thioxanthones, azo compounds, peroxides (Described in JP-A No. 2001-139663), 2,3-dialkyldione compounds, disulfide compounds, fluoroamine compounds, aromatic sulfoniums, onium salts, borate salts, active halogen compounds, α-acyloximes Examples include esters.
 上記アセトフェノン類としては、例えば、アセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、1-ヒドロキシジメチルフェニルケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-4-メチルチオ-2-モルフォリノプロピオフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン等が挙げられる。上記ベンゾイン類としては、例えば、ベンゾイン、ベンゾインベンゾエート、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。上記ベンゾフェノン類としては、例えば、ベンゾフェノン、2,4-ジクロロベンゾフェノン、4,4-ジクロロベンゾフェノン、p-クロロベンゾフェノン等が挙げられる。上記ホスフィンオキシド類としては、例えば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド等が挙げられる。上記ケタール類としては、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のベンジルメチルケタール類が挙げられる。上記α-ヒドロキシアルキルフェノン類としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトンが挙げられる。上記α-アミノアルキルフェノン類としては、例えば、2-メチル-1-[4-(メチルチオ)フェニル]-2-(4-モルホリニル)-1-プロパノンが挙げられる。 Examples of the acetophenones include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropio. Examples include phenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone. Examples of the benzoins include benzoin, benzoin benzoate, benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether. Examples of the benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone, p-chlorobenzophenone, and the like. Examples of the phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide. Examples of the ketals include benzylmethyl ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one. Examples of the α-hydroxyalkylphenones include 1-hydroxycyclohexyl phenyl ketone. Examples of the α-aminoalkylphenones include 2-methyl-1- [4- (methylthio) phenyl] -2- (4-morpholinyl) -1-propanone.
 市販の光ラジカル重合開始剤としては、BASFジャパン株式会社製の商品名「イルガキュア(登録商標)651」(2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン)、BASFジャパン株式会社製の商品名「イルガキュア(登録商標)184」、BASFジャパン株式会社製の商品名「イルガキュア(登録商標)907」(2-メチル-1-[4-(メチルチオ)フェニル]-2-(4-モルホリニル)-1-プロパノン)等が好ましい例として挙げられる。 Commercially available radical photopolymerization initiators include trade names “Irgacure (registered trademark) 651” (2,2-dimethoxy-1,2-diphenylethane-1-one) manufactured by BASF Japan Ltd., manufactured by BASF Japan Ltd. Trade name “Irgacure (registered trademark) 184”, and trade name “Irgacure (registered trademark) 907” (2-methyl-1- [4- (methylthio) phenyl] -2- (4-morpholinyl) manufactured by BASF Japan Ltd. ) -1-propanone) and the like.
 上記光重合開始剤の使用量は、バインダー100重量%に対し、通常、0.5~20重量%の範囲内であり、好ましくは1~5重量%の範囲内である。 The amount of the photopolymerization initiator used is usually in the range of 0.5 to 20% by weight, preferably in the range of 1 to 5% by weight with respect to 100% by weight of the binder.
 上記バインダー樹脂として、上記硬化性樹脂以外に、熱可塑性樹脂を用いることができる。上記熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体;酢酸ビニルの単独重合体及び共重合体、塩化ビニルの単独重合体及び共重合体、塩化ビニリデンの単独重合体及び共重合体等のビニル系樹脂;ポリビニルホルマール、ポリビニルブチラール等のアセタール樹脂;アクリル酸エステルの単独重合体及び共重合体、メタクリル酸エステルの単独重合体及び共重合体等の(メタ)アクリル系樹脂;ポリスチレン樹脂;ポリアミド樹脂;線状ポリエステル樹脂;ポリカーボネート樹脂等が挙げられる。 As the binder resin, a thermoplastic resin can be used in addition to the curable resin. Examples of the thermoplastic resin include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; homopolymers and copolymers of vinyl acetate, homopolymers and copolymers of vinyl chloride, and vinylidene chloride. Vinyl resins such as homopolymers and copolymers; acetal resins such as polyvinyl formal and polyvinyl butyral; homopolymers and copolymers of acrylate esters, homopolymers and copolymers of methacrylate esters, etc. ) Acrylic resin; polystyrene resin; polyamide resin; linear polyester resin; polycarbonate resin.
 また、上記バインダーとして、上記バインダー樹脂の他に、合成ゴムや天然ゴム等のゴム系バインダーや、無機系結着剤等を用いることもできる。上記ゴム系バインダー樹脂としては、エチレン-プロピレン共重合ゴム、ポリブタジエンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム等が挙げられる。これらゴム系バインダー樹脂は、単独で用いられてもよいし、2種類以上が併用されてもよい。 In addition to the binder resin, a rubber binder such as synthetic rubber or natural rubber, an inorganic binder, or the like can be used as the binder. Examples of the rubber binder resin include ethylene-propylene copolymer rubber, polybutadiene rubber, styrene-butadiene rubber, and acrylonitrile-butadiene rubber. These rubber-based binder resins may be used alone or in combination of two or more.
 上記無機系結着剤としては、シリカゾル、アルカリ珪酸塩、シリコンアルコキシド、リン酸塩等が挙げられる。上記無機系結着剤として、金属アルコキシド又はシリコンアルコキシドを加水分解及び脱水縮合して得られる無機系又は有機無機複合系マトリックスを用いることもできる。上記無機系又は有機無機複合系マトリックスとしては、シリコンアルコキシド、例えばテトラエトキシシラン等を加水分解及び脱水縮合して得られる酸化珪素系マトリックスを使用できる。これら無機系結着剤は、単独で用いられてもよいし、2種類以上が併用されてもよい。 Examples of the inorganic binder include silica sol, alkali silicate, silicon alkoxide, and phosphate. As the inorganic binder, an inorganic or organic-inorganic composite matrix obtained by hydrolysis and dehydration condensation of metal alkoxide or silicon alkoxide can also be used. As the inorganic or organic-inorganic composite matrix, a silicon oxide matrix obtained by hydrolysis and dehydration condensation of a silicon alkoxide such as tetraethoxysilane can be used. These inorganic binders may be used alone or in combination of two or more.
 上記コーティング用樹脂組成物中における重合体粒子の量は、バインダーの固形分100重量部に対して、2重量部以上であることが好ましく、4重量部以上であることがより好ましく、6重量部以上であることがさらに好ましい。上記重合体粒子の量をバインダーの固形分100重量部に対して2重量部以上にすることにより、コーティング用樹脂組成物によって形成される塗膜の艶消し性を十分なものにし易くなる。したがって、コーティング用樹脂組成物をフィルム基材上に塗工してなるフィルムの防眩性や光拡散性等の光学特性を十分なものにし易くなる。上記コーティング用樹脂組成物中における重合体粒子の量は、バインダーの固形分100重量部に対して、300重量部以下であることが好ましく、200重量部以下であることがより好ましく、100重量部以下であることがさらに好ましい。上記重合体粒子の量をバインダーの固形分100重量部に対して300重量部以下にすることにより、コーティング用樹脂組成物によって形成される塗膜の直線透過性を十分なものにし易くなる。 The amount of the polymer particles in the coating resin composition is preferably 2 parts by weight or more, more preferably 4 parts by weight or more, based on 100 parts by weight of the solid content of the binder, and 6 parts by weight. More preferably, it is the above. By making the amount of the polymer particles 2 parts by weight or more with respect to 100 parts by weight of the solid content of the binder, it becomes easy to make the matte property of the coating film formed by the coating resin composition sufficient. Therefore, it becomes easy to make sufficient optical characteristics, such as anti-glare property and light diffusibility, of the film formed by coating the coating resin composition on the film substrate. The amount of the polymer particles in the coating resin composition is preferably 300 parts by weight or less, more preferably 200 parts by weight or less, and more preferably 100 parts by weight with respect to 100 parts by weight of the solid content of the binder. More preferably, it is as follows. By making the amount of the polymer particles 300 parts by weight or less with respect to 100 parts by weight of the solid content of the binder, the linear permeability of the coating film formed by the coating resin composition is easily made sufficient.
 上記コーティング用樹脂組成物は、有機溶剤をさらに含んでいてもよい。後述するフィルム基材等の基材に上記コーティング用樹脂組成物を塗工する場合、上記有機溶剤は、それをコーティング用樹脂組成物に含有させることによって、基材へのコーティング用樹脂組成物の塗工が容易になるものであれば、特に限定されるものではない。上記有機溶剤としては、例えば、トルエン、キシレン等の芳香族系溶媒;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶媒;2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールメチルエーテル等のグリコールエーテル類;2-メトキシエチルアセタート、酢酸2-エトキシエチルアセタート(セロソルブアセタート)、2-ブトキシエチルアセタート、プロピレングリコールメチルエーテルアセタート等のグリコールエーテルエステル類;クロロホルム、ジクロロメタン、トリクロロメタン、塩化メチレン等の塩素系溶媒;テトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、1,3-ジオキソラン等のエーテル系溶媒;N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド等のアミド系溶媒等を用いることができる。これら有機溶剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The coating resin composition may further contain an organic solvent. When the coating resin composition is applied to a substrate such as a film substrate to be described later, the organic solvent is added to the coating resin composition so that the coating resin composition for the substrate is coated. The coating is not particularly limited as long as the coating is easy. Examples of the organic solvent include aromatic solvents such as toluene and xylene; alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and propylene glycol monomethyl ether; Ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone; 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether, ethylene Glycol ethers such as glycol diethyl ether, diethylene glycol dimethyl ether, and propylene glycol methyl ether; 2-methoxyethyl acetate Salts, glycol ether esters such as 2-ethoxyethyl acetate (cellosolve acetate), 2-butoxyethyl acetate, propylene glycol methyl ether acetate; chlorinated solvents such as chloroform, dichloromethane, trichloromethane, and methylene chloride Ether solvents such as tetrahydrofuran, diethyl ether, 1,4-dioxane and 1,3-dioxolane; amide solvents such as N-methylpyrrolidone, dimethylformamide, dimethyl sulfoxide and dimethylacetamide can be used. These organic solvents may be used alone or in combination of two or more.
 上記フィルム基材は、透明であることが好ましい。透明のフィルム基材としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等のポリエステル系重合体、ジアセチルセルロース、トリアセチルセルロース(TAC)等のセルロース系重合体、ポリカーボネート系重合体、ポリメチルメタクリレート等の(メタ)アクリル系重合体等の重合体からなるフィルムが挙げられる。また、透明のフィルム基材として、ポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系重合体、ポリエチレン、ポリプロピレン、環状ないしノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のオレフィン系重合体、塩化ビニル系重合体、ナイロンや芳香族ポリアミド等のアミド系重合体等の重合体からなるフィルムも挙げられる。さらに、透明のフィルム基材として、イミド系重合体、サルホン系重合体、ポリエーテルサルホン系重合体、ポリエーテルエーテルケトン系重合体、ポリフェニルスルフィド系重合体、ビニルアルコール系重合体、塩化ビニリデン系重合体、ビニルブチラール系重合体、アリレート系重合体、ポリオキシメチレン系重合体、エポキシ系重合体や上記重合体のブレンド物等の重合体からなるフィルム等も挙げられる。上記フィルム基材として、特に複屈折率の少ないものが好適に用いられる。また、これらフィルムにさらに(メタ)アクリル系樹脂、共重合ポリエステル系樹脂、ポリウレタン系樹脂、スチレン-マレイン酸グラフトポリエステル樹脂、アクリルグラフトポリエステル樹脂等の易接着層を設けたフィルムも上記フィルム基材として用いることができる。 The film substrate is preferably transparent. Examples of transparent film base materials include polyester polymers such as polyethylene terephthalate (PET) and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose (TAC), polycarbonate polymers, and polymethyl methacrylate. And a film made of a polymer such as a (meth) acrylic polymer. In addition, as a transparent film base material, polystyrene, styrene polymer such as acrylonitrile / styrene copolymer, polyethylene, polypropylene, polyolefin having cyclic or norbornene structure, olefin polymer such as ethylene / propylene copolymer, chloride A film made of a polymer such as a vinyl polymer or an amide polymer such as nylon or aromatic polyamide may also be mentioned. Further, as transparent film base materials, imide polymers, sulfone polymers, polyether sulfone polymers, polyether ether ketone polymers, polyphenyl sulfide polymers, vinyl alcohol polymers, vinylidene chloride. Examples thereof include films made of polymers such as polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene polymers, epoxy polymers and blends of the above polymers. As the film substrate, those having a particularly low birefringence are preferably used. Further, a film in which an easy-adhesion layer such as (meth) acrylic resin, copolymerized polyester resin, polyurethane resin, styrene-maleic acid grafted polyester resin, acrylic grafted polyester resin, etc. is further provided on these films is also used as the film substrate. Can be used.
 上記フィルム基材の厚さは、適宜に決定しうるが、一般には、強度や取り扱い等の作業性、薄層性等の点より10~500μmの範囲内であり、20~300μmの範囲内であることが好ましく、30~200μmの範囲内であることがより好ましい。 The thickness of the film substrate can be determined as appropriate, but is generally within the range of 10 to 500 μm and within the range of 20 to 300 μm from the viewpoints of strength, workability such as handling, and thin layer properties. It is preferable that it is within a range of 30 to 200 μm.
 また、フィルム基材には、添加剤を加えてもよい。上記添加剤としては、例えば、紫外線吸収剤、赤外線吸収剤、帯電防止剤、屈折率調整剤、増強剤等が挙げられる。 In addition, an additive may be added to the film substrate. Examples of the additive include an ultraviolet absorber, an infrared absorber, an antistatic agent, a refractive index adjuster, and an enhancer.
 上記コーティング用樹脂組成物をフィルム基材上に塗布する方法としては、バーコーティング、ブレードコーティング、スピンコーティング、リバースコーティング、ダイティング、スプレーコーティング、ロールコーティング、グラビアコーティング、マイクログラビアコーティング、リップコーティング、エアーナイフコーティング、ディッピング法等の公知の塗工方法が挙げられる。 The coating resin composition can be applied to a film substrate by bar coating, blade coating, spin coating, reverse coating, diting, spray coating, roll coating, gravure coating, micro gravure coating, lip coating, air Known coating methods such as knife coating and dipping method may be mentioned.
 上記コーティング用樹脂組成物に含まれるバインダーが電離放射線硬化性樹脂である場合、上記コーティング用樹脂組成物の塗布後に、必要に応じ溶剤を乾燥させ、さらに活性エネルギー線を照射することにより電離放射線硬化性樹脂を硬化させればよい。 When the binder contained in the coating resin composition is an ionizing radiation curable resin, after applying the coating resin composition, if necessary, the solvent is dried and further irradiated with active energy rays to cure the ionizing radiation. The curing resin may be cured.
 上記活性エネルギー線としては、例えば、キセノンランプ、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク灯、タングステンランプ等の光源から発せられる紫外線;通常20~2000KeVのコックロフワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の電子線加速器から取り出される電子線、α線、β線、γ線等を用いることができる。 Examples of the active energy ray include ultraviolet rays emitted from a light source such as a xenon lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a metal halide lamp, a carbon arc lamp, and a tungsten lamp; Electron beams, α rays, β rays, γ rays and the like extracted from electron beam accelerators such as a type, a resonant transformation type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type can be used.
 コーティング用樹脂組成物の塗布(及び硬化)によって形成される、バインダー中に重合体粒子が分散された層の厚みは、特に限定されず、重合体粒子の粒子径により適宜決定されるが、1~10μmの範囲内であることが好ましく、3~7μmの範囲内であることがより好ましい。 The thickness of the layer in which the polymer particles are dispersed in the binder formed by application (and curing) of the coating resin composition is not particularly limited and is appropriately determined depending on the particle diameter of the polymer particles. It is preferably in the range of ˜10 μm, more preferably in the range of 3 to 7 μm.
 本発明の光学フィルムは、分散安定性に優れた本発明の重合体粒子を含むコーティング用樹脂組成物を基材に塗工してなるものであるから、前記塗工により形成された塗膜全体において、むらのない光拡散性や防眩性等の光学特性が安定して得られる。よって、本発明の光学フィルムによれば、高い品質安定性が得られる。 Since the optical film of the present invention is formed by coating a substrate with the coating resin composition containing the polymer particles of the present invention having excellent dispersion stability, the entire coating film formed by the coating , Stable optical properties such as light diffusibility and antiglare properties can be obtained. Therefore, according to the optical film of the present invention, high quality stability can be obtained.
 上記した本発明の光学フィルムは、光拡散用又は防眩用として、すなわち、光拡散フィルム又は防眩フィルムとして好適に使用することができる。 The optical film of the present invention described above can be suitably used for light diffusion or antiglare, that is, as a light diffusion film or antiglare film.
 〔樹脂成形体〕
 本発明の樹脂成形体は、上記重合体粒子と透明樹脂とを含む成形用樹脂組成物を成形してなるものである。本発明の樹脂成形体中において、上記重合体粒子は光拡散粒子として機能する。したがって、本発明の樹脂成形体は、光拡散板等の光拡散体として機能し、LED照明カバー等として利用できる。
[Resin molding]
The resin molded body of the present invention is formed by molding a molding resin composition containing the polymer particles and a transparent resin. In the resin molded product of the present invention, the polymer particles function as light diffusing particles. Therefore, the resin molded body of the present invention functions as a light diffuser such as a light diffusing plate and can be used as an LED lighting cover or the like.
 上記透明樹脂は、上記樹脂成形体の基材であり、例えば、(メタ)アクリル系樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、(メタ)アクリル-スチレン樹脂((メタ)アクリル)酸エステルとスチレンとの共重合体)等が挙げられる。それらの中でも、ポリスチレン樹脂又は(メタ)アクリル-スチレン樹脂が上記透明樹脂として好ましい。 The transparent resin is a base material of the resin molded body. For example, a (meth) acrylic resin, a polycarbonate resin, a polystyrene resin, a (meth) acrylic-styrene resin ((meth) acrylic) acid ester and styrene are co-polymerized. Polymer) and the like. Among them, polystyrene resin or (meth) acryl-styrene resin is preferable as the transparent resin.
 上記樹脂組成物に含まれる重合体粒子の量は、透明樹脂100重量部に対して、0.01~5重量部の範囲内であることが好ましく、0.1~5重量部の範囲内であることがより好ましい。上記樹脂組成物には、紫外線吸収剤、酸化防止剤、熱安定剤、光安定剤、蛍光増白剤等の添加剤を加えてもよい。 The amount of the polymer particles contained in the resin composition is preferably in the range of 0.01 to 5 parts by weight, preferably in the range of 0.1 to 5 parts by weight, with respect to 100 parts by weight of the transparent resin. More preferably. You may add additives, such as a ultraviolet absorber, antioxidant, a heat stabilizer, a light stabilizer, and a fluorescent whitening agent, to the said resin composition.
 上記樹脂成形体の厚み及び形状等は、樹脂成形体の用途によって適宜選択することができる。 The thickness, shape and the like of the resin molded body can be appropriately selected depending on the application of the resin molded body.
 本発明の樹脂成形体は、上記透明樹脂と上記重合体粒子とを一軸押出機や二軸押出機等で溶融混練することにより得ることができる。また、溶融混練によって得られた樹脂組成物を、Tダイ及びロールユニットを介して板状に成形して樹脂成形体を得てもよい。また、溶融混練によって得られた樹脂組成物をペレット化し、ペレットを射出成形やプレス成形等により板状に成形して樹脂成形体を得てもよい。 The resin molded body of the present invention can be obtained by melt-kneading the transparent resin and the polymer particles with a single screw extruder or a twin screw extruder. Moreover, the resin composition obtained by melt kneading may be molded into a plate shape via a T die and a roll unit to obtain a resin molded body. Moreover, the resin composition obtained by melt kneading may be pelletized, and the pellet may be formed into a plate shape by injection molding or press molding to obtain a resin molded body.
 本発明の樹脂成形体は、分散安定性に優れた本発明の重合体粒子を含む成形用樹脂組成物を成形してなるものであるから、その樹脂成形体において、むらのない光拡散性や防眩性等の光学特性が安定して得られる。よって、本発明の樹脂成形体によれば、高い品質安定性が得られる。 Since the resin molded body of the present invention is formed by molding a molding resin composition containing the polymer particles of the present invention having excellent dispersion stability, in the resin molded body, there is no uneven light diffusibility or Optical properties such as antiglare properties can be obtained stably. Therefore, according to the resin molding of the present invention, high quality stability can be obtained.
 以下、実施例及び比較例により本発明を説明するが、本発明はこれに限定されるものではない。まず、以下の実施例及び比較例における、重合体粒子の体積平均粒子径及び粒子径の変動係数の測定方法、重合体粒子の製造に使用した種粒子の体積平均粒子径の測定方法、重合体粒子の製造の固液分離工程におけるX値(濾材を通過した媒体の単位時間当たりの量(kg/min))の測定方法、重合体粒子の製造の洗浄工程におけるY値(濾材を通過した洗浄液の単位時間当たりの量(kg/min))の測定方法、重合体粒子における界面活性剤の含有量の測定方法(液体クロマトグラフ質量分析法(LC-MS-MS)による測定方法)重合体粒子のTOF-SIMSによる測定方法、重合体粒子のゲル分率の測定方法、及び、重合体粒子の分散安定化時間の測定方法を説明する。 Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to this. First, in the following Examples and Comparative Examples, the volume average particle diameter of the polymer particles and the measurement method of the coefficient of variation of the particle diameter, the measurement method of the volume average particle diameter of the seed particles used for the production of the polymer particles, the polymer Method for measuring X value (amount of medium per unit time that passed through filter medium (kg / min)) in solid-liquid separation process of particle production, Y value (cleaning liquid that passed through filter medium) in washing process of polymer particle production Method for measuring the amount per unit time (kg / min), method for measuring the content of surfactant in polymer particles (measurement method by liquid chromatography mass spectrometry (LC-MS-MS)) polymer particles The measurement method by TOF-SIMS, the measurement method of the gel fraction of the polymer particles, and the measurement method of the dispersion stabilization time of the polymer particles will be described.
 〔重合体粒子の体積平均粒子径及び粒子径の変動係数の測定方法〕
 体積平均粒子径は、コールターマルチサイザーIII(ベックマン・コールター株式会社製測定装置)により測定する。測定は、ベックマン・コールター株式会社発行のMultisizerTM 3ユーザーズマニュアルに従って校正されたアパチャーを用いて実施するものとする。
[Measurement method of volume average particle diameter of polymer particles and coefficient of variation of particle diameter]
The volume average particle size is measured by Coulter Multisizer III (measurement device manufactured by Beckman Coulter, Inc.). The measurement shall be performed using an aperture calibrated according to the Multisizer 3 User's Manual issued by Beckman Coulter, Inc.
 なお、測定に用いるアパチャーの選択は、測定する重合体粒子の想定の体積平均粒子径が1μm以上10μm以下の場合は50μmのサイズを有するアパチャーを選択し、測定する重合体粒子の想定の体積平均粒子径が10μmより大きく30μm以下の場合は100μmのサイズを有するアパチャーを選択し、重合体粒子の想定の体積平均粒子径が30μmより大きく90μm以下の場合は280μmのサイズを有するアパチャーを選択し、重合体粒子の想定の体積平均粒子径が90μmより大きく150μm以下の場合は400μmのサイズを有するアパチャーを選択するなど、適宜行う。測定後の体積平均粒子径が想定の体積平均粒子径と異なった場合は、適正なサイズを有するアパチャーに変更して、再度測定を行う。 In addition, the selection of the aperture used for the measurement is such that when the assumed volume average particle diameter of the polymer particles to be measured is 1 μm or more and 10 μm or less, an aperture having a size of 50 μm is selected, and the assumed volume average of the polymer particles to be measured When the particle diameter is larger than 10 μm and 30 μm or less, an aperture having a size of 100 μm is selected. When the assumed volume average particle diameter of the polymer particles is larger than 30 μm and not larger than 90 μm, an aperture having a size of 280 μm is selected, When the assumed volume average particle diameter of the polymer particles is greater than 90 μm and 150 μm or less, an aperture having a size of 400 μm is selected. When the volume average particle diameter after measurement is different from the assumed volume average particle diameter, the aperture is changed to an aperture having an appropriate size, and measurement is performed again.
 又、50μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は-800、Gain(ゲイン)は4と設定し、100μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は-1600、Gain(ゲイン)は2と設定し、280μmおよび400μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は-3200、Gain(ゲイン)は1と設定する。 If an aperture having a size of 50 μm is selected, the current (aperture current) is set to −800, the gain (gain) is set to 4, and if an aperture having a size of 100 μm is selected, the current (aperture current) is − 1600, Gain (gain) is set to 2, and when an aperture having a size of 280 μm and 400 μm is selected, Current (aperture current) is set to −3200 and Gain (gain) is set to 1.
 測定用試料としては、重合体粒子0.1gを0.1重量%ノニオン性界面活性剤水溶液10m1中にタッチミキサー(ヤマト科学株式会社製、「TOUCHMIXER MT-31」)および超音波洗浄器(株式会社ヴェルヴォクリーア製、「ULTRASONIC CLEANER VS-150」)を用いて分散させ、分散液としたものを使用する。コールターマルチサイザーIIIの測定部に、ISOTON(登録商標)II(ベックマン・コールター株式会社製:測定用電解液)を満たしたビーカーをセットし、ビーカー内を緩く攪拌しながら、前記分散液を滴下して、コールターマルチサイザーIII本体画面の濃度計の示度を5~10%に合わせた後に、測定を開始する。測定中はビーカー内を気泡が入らない程度に緩く攪拌しておき、重合体粒子を10万個測定した時点で測定を終了する。重合体粒子の体積平均粒子径は、10万個の粒子の体積基準の粒度分布における算術平均である。 As a sample for measurement, 0.1 g of polymer particles in a 0.1% by weight nonionic surfactant aqueous solution 10 ml, a touch mixer (manufactured by Yamato Kagaku Co., Ltd., “TOUCHMIXER MT-31”) and an ultrasonic cleaner (stock) Dispersed using “ULTRASONIC CLEANER VS-150” (manufactured by Vervo Creer) and used as a dispersion. Set a beaker filled with ISOTON (registered trademark) II (manufactured by Beckman Coulter Co., Ltd .: electrolyte for measurement) in the measuring section of Coulter Multisizer III, and drop the dispersion while gently stirring the inside of the beaker. Then, after the densitometer reading on the Coulter Multisizer III screen is adjusted to 5 to 10%, the measurement is started. During the measurement, the beaker is gently stirred to the extent that bubbles do not enter, and the measurement is terminated when 100,000 polymer particles are measured. The volume average particle diameter of the polymer particles is an arithmetic average in a volume-based particle size distribution of 100,000 particles.
 重合体粒子の粒子径の変動係数(CV値)を、以下の数式によって算出する。 The coefficient of variation (CV value) of the particle diameter of the polymer particles is calculated by the following formula.
 重合体粒子の粒子径の変動係数=(重合体粒子の体積基準の粒度分布の標準偏差÷重合体粒子の体積平均粒子径)×100 Coefficient of variation of particle diameter of polymer particles = (standard deviation of volume distribution of polymer particles / volume average particle diameter of polymer particles) × 100
 〔種粒子の体積平均粒子径の測定方法〕
 種粒子の体積平均粒子径の測定は、レーザー回折・散乱方式粒度分布測定装置(ベックマン・コールター株式会社製「LS 13 320」)およびユニバーサルリキッドサンプルモジュールによって行う。
[Method for measuring volume average particle diameter of seed particles]
The volume average particle diameter of the seed particles is measured by a laser diffraction / scattering particle size distribution measuring device (“LS 13 320” manufactured by Beckman Coulter, Inc.) and a universal liquid sample module.
 測定には、種粒子0.1gを0.1重量%ノニオン性界面活性剤水溶液10m1中にタッチミキサー(ヤマト科学株式会社製、「TOUCHMIXER MT-31」)および超音波洗浄器(株式会社ヴェルヴォクリーア製、「ULTRASONIC CLEANER VS-150」)を用いて分散させ、分散液としたものを使用する。 For the measurement, 0.1 g of seed particles was added to 10 ml of 0.1% by weight nonionic surfactant aqueous solution in a touch mixer (manufactured by Yamato Kagaku Co., Ltd., “TOUCMIXER MT-31”) and an ultrasonic cleaner (Velvok Co., Ltd.). Dispersed using “ULTRASONIC CLEANER VS-150” manufactured by Leer, and used as a dispersion.
 また、上記のレーザー回折・散乱方式粒度分布測定装置のソフトウェアにおいて、ミー理論に基づいた評価のために必要となる以下に示す光学的なパラメータを、設定する。 Also, the following optical parameters required for evaluation based on the Mie theory are set in the software of the laser diffraction / scattering type particle size distribution measuring apparatus.
 <パラメータ>
 液体(ノニオン性界面活性剤水溶液)の屈折率B.I.の実部=1.333(水の屈折率)
 固体(測定対象の種粒子)の屈折率の実部=種粒子の屈折率
 固体の屈折率の虚部=0
 固体の形状因子=1
 また、測定条件及び測定手順は、以下の通りとする。
<Parameter>
Real part of refractive index BI of liquid (nonionic surfactant aqueous solution) = 1.333 (refractive index of water)
Real part of refractive index of solid (seed particle to be measured) = refractive index of seed particle Imaginary part of refractive index of solid = 0
Solid form factor = 1
Measurement conditions and measurement procedures are as follows.
 <測定条件>
 測定時間:60秒
 測定回数:1
 ポンプ速度:50~60%
 PIDS相対濃度:40~55%程度
 超音波出力:8
 <測定手順>
 オフセット測定、光軸調整、バックグラウンド測定を行った後、上記した分散液を、スポイトを用いて、上記のレーザー回折・散乱方式粒度分布測定装置のユニバーサルリキッドサンプルモジュール内へ注入する。上記のユニバーサルリキッドサンプルモジュール内の濃度が上記のPIDS相対濃度に達し、上記のレーザー回折・散乱方式粒度分布測定装置のソフトウェアが「OK」と表示したら、測定を開始する。なお、測定は、ユニバーサルリキッドサンプルモジュール中でポンプ循環を行うことによって上記種粒子を分散させた状態、かつ、超音波ユニット(ULM ULTRASONIC MODULE)を起動させた状態で行う。
<Measurement conditions>
Measurement time: 60 seconds Number of measurements: 1
Pump speed: 50-60%
PIDS relative concentration: about 40-55% Ultrasonic output: 8
<Measurement procedure>
After performing offset measurement, optical axis adjustment, and background measurement, the above-described dispersion liquid is injected into the universal liquid sample module of the laser diffraction / scattering particle size distribution measuring apparatus using a dropper. When the concentration in the universal liquid sample module reaches the PIDS relative concentration and the software of the laser diffraction / scattering particle size distribution measuring apparatus displays “OK”, the measurement is started. Note that the measurement is performed in a state where the seed particles are dispersed by performing pump circulation in the universal liquid sample module and an ultrasonic unit (ULM ULTRASONIC MODULE) is activated.
 また、測定は室温で行い、得られたデータから、上記のレーザー回折・散乱方式粒度分布測定装置のソフトウェアにより、上記の予め設定された光学的なパラメータを用いて、種粒子の体積平均粒子径(体積基準の粒度分布における算術平均径)を算出する。 In addition, the measurement is performed at room temperature, and the volume average particle diameter of the seed particles is determined from the obtained data using the software parameters of the laser diffraction / scattering type particle size distribution measuring apparatus, using the preset optical parameters. (Arithmetic mean diameter in the volume-based particle size distribution) is calculated.
 なお、種粒子の屈折率については、種粒子を構成する重合体の屈折率を入力し測定を実施した。例えば、後述する実施例及び比較例の製造に使用した種粒子を構成する重合体は、ポリメタクリル酸メチル又はポリメタクリル酸エチルであるため、既知であるポリメタクリル酸メチル及びポリメタクリル酸エチルの屈折率1.495を入力した。 Note that the refractive index of the seed particles was measured by inputting the refractive index of the polymer constituting the seed particles. For example, since the polymer constituting the seed particles used in the production of Examples and Comparative Examples described later is polymethyl methacrylate or polyethyl methacrylate, the known refraction of polymethyl methacrylate and polyethyl methacrylate is known. A rate of 1.495 was entered.
 〔X値の測定方法〕
 固液分離工程において、粗生成物に含まれる媒体を濾材に通過させることを開始してから、前記媒体の濾材の通過を終了させるまでの時間T(min)を測定する。また、固液分離工程において得られた濾液(媒体)の総重量G(kg)を計量する。そして、以下の算出式により、濾材を通過した媒体の単位時間当たりの量X(kg/min)を求める。
 X(kg/min)=G(kg)/T(min)
[Measurement method of X value]
In the solid-liquid separation step, a time T 1 (min) from the start of passing the medium contained in the crude product through the filter medium to the end of the passage of the medium through the filter medium is measured. Further, the total weight G 1 (kg) of the filtrate (medium) obtained in the solid-liquid separation step is weighed. And the quantity X (kg / min) per unit time of the medium which passed the filter medium is calculated | required with the following calculation formulas.
X (kg / min) = G 1 (kg) / T 1 (min)
 〔Y値の測定方法〕
 洗浄工程で用いた洗浄液の重量G(kg)を測定する。また、洗浄工程において、洗浄液を濾材に通過させることを開始してから、洗浄工程に用いた洗浄液の重量G(g)の0.8倍の重量の洗浄液が濾材を通過するまでに費やした時間T(min)を測定する。そして、以下の算出式により、濾材を通過した洗浄液の単位時間当たりの量Y(kg/min)を求める。
 Y(kg/min)=0.8×G(kg)/T(min)
[Measurement method of Y value]
The weight G 2 (kg) of the cleaning liquid used in the cleaning process is measured. Further, in the cleaning process, after the cleaning liquid was started to pass through the filter medium, the cleaning liquid having a weight 0.8 times the weight G 2 (g) of the cleaning liquid used in the cleaning process was spent passing through the filter medium. Time T 2 (min) is measured. And the quantity Y (kg / min) per unit time of the washing | cleaning liquid which passed the filter medium is calculated | required with the following calculation formulas.
Y (kg / min) = 0.8 × G 2 (kg) / T 2 (min)
 〔重合体粒子における界面活性剤の含有量の測定方法〕
 重合体粒子中の界面活性剤の含有量は、重合体粒子を溶媒により抽出し、液体クロマトグラフ質量分析計(LC/MS/MS装置)を用いて測定する。
[Method for measuring content of surfactant in polymer particles]
The content of the surfactant in the polymer particles is measured by extracting the polymer particles with a solvent and using a liquid chromatograph mass spectrometer (LC / MS / MS apparatus).
 なお、後述する実施例及び比較例の重合体粒子における界面活性剤の含有量の測定には、LC/MS/MS装置として、Thermo Fisher Scientific製の「UHPLC ACCELA」、及びThermo Fisher Scientific製の「Linear Ion Trap LC/MS LXQ」を用いた。 In addition, for the measurement of the content of the surfactant in the polymer particles of Examples and Comparative Examples described later, as a LC / MS / MS apparatus, “UHPLC ACCELA” manufactured by Thermo Fisher Scientific and “manufactured by Thermo Fisher Scientific” "Linear Ion Trap LC / MS n LXQ" was used.
 また、後述する実施例及び比較例における重合体粒子は、界面活性剤として、ジ(2-エチルヘキシル)スルホコハク酸塩、ポリオキシエチレンスチレン化フェニルエーテル硫酸エステル塩(後述の式(A)参照)、アルケニルコハク酸塩(後述の式(C)参照)、及び、ポリオキシエチレンスチレン化フェニルエーテル(後述の式(E)参照)のうちの少なくとも1つを使用しており、実施例及び比較例の重合体粒子における界面活性剤の含有量は、以下に示す方法により、測定した。 In addition, polymer particles in Examples and Comparative Examples described later are used as surfactants, di (2-ethylhexyl) sulfosuccinate, polyoxyethylene styrenated phenyl ether sulfate (see Formula (A) described later), Using at least one of alkenyl succinate (see formula (C) below) and polyoxyethylene styrenated phenyl ether (see formula (E) below) The content of the surfactant in the polymer particles was measured by the following method.
 試料としての重合体粒子約0.10gを遠沈管に精秤し、抽出液としてのメタノール5mLをホールピペットで注加して、重合体粒子と抽出液とをよく混合させる。15分間、超音波抽出を行った後、3500rpmで15分間遠心分離を行い、これにより得られた上澄みを試験液とする。 Approximately 0.10 g of polymer particles as a sample are precisely weighed in a centrifuge tube, and 5 mL of methanol as an extract is poured with a whole pipette to mix the polymer particles and the extract well. After ultrasonic extraction for 15 minutes, centrifugation is performed at 3500 rpm for 15 minutes, and the resulting supernatant is used as a test solution.
 この試験液中の界面活性剤濃度をLC/MS/MS装置を用いて測定する。そして、測定された試験液中の界面活性剤濃度(μg/ml)と、試料として用いた重合体粒子の重量(試料重量(g))と、抽出液の量(抽出液量(ml))とから、下記算出式により、重合体粒子中の界面活性剤の含有量(μg/g)を求める。なお、抽出液量は、5mlである。 Measure the surfactant concentration in the test solution using an LC / MS / MS apparatus. The measured surfactant concentration (μg / ml) in the test solution, the weight of the polymer particles used as the sample (sample weight (g)), and the amount of the extract (extract solution amount (ml)) From the above, the content (μg / g) of the surfactant in the polymer particles is determined by the following calculation formula. The amount of the extract is 5 ml.
 界面活性剤の含有量(μg/g)
 ={試験液中の界面活性剤濃度(μg/ml)×抽出液量(ml)}÷試料重量(g)
Surfactant content (μg / g)
= {Surfactant concentration in test solution (µg / ml) x Extraction liquid amount (ml)} ÷ Sample weight (g)
 なお、界面活性剤濃度は、LC/MS/MS装置を用い、得られたクロマトグラム上のピーク面積値から予め作成した検量線より含有量を算出する。また、重合体粒子が、複数種の界面活性剤を含む場合には、それら界面活性剤の各々について、検量線を作成して、作成した検量線により界面活性剤濃度を算出し、算出した各界面活性剤の界面活性剤濃度の合計を、上記算出式における「試験液中の界面活性剤濃度(μg/ml)」として、重合体粒子中の界面活性剤の含有量を求める。 The surfactant concentration is calculated from a calibration curve prepared in advance from the peak area value on the obtained chromatogram using an LC / MS / MS apparatus. Further, when the polymer particles contain a plurality of types of surfactants, for each of these surfactants, create a calibration curve, calculate the surfactant concentration using the created calibration curve, and calculate each The total surfactant concentration of the surfactant is defined as the “surfactant concentration (μg / ml) in the test solution” in the above calculation formula, and the content of the surfactant in the polymer particles is determined.
 検量線作成方法は、実施例及び比較例で使用した界面活性剤の種類に応じて、以下の通りである。 The calibration curve creation method is as follows according to the type of surfactant used in the examples and comparative examples.
 -ジ(2-エチルヘキシル)スルホコハク酸塩の検量線作成方法-
 ジ(2-エチルヘキシル)スルホコハク酸塩の約1000ppm中間標準液(メタノール溶液)を調製後、さらにメタノールで段階的に希釈して0.1ppm、0.2ppm、0.5ppm、1.0ppm、2.0ppmの検量線作成用標準液を調製する。各濃度の検量線作成用標準液を後述するLC測定条件及びMS測定条件にて測定し、モニターイオンm/z=421.3(プリカーサーイオン)→227.2(プロダクトイオン)のクロマトグラム上のピーク面積値を得る。各濃度と面積値をプロットして最小二乗法により近似曲線(二次曲線)を求め、これを定量用の検量線とする。
-Preparation of calibration curve for di (2-ethylhexyl) sulfosuccinate-
After preparing about 1000 ppm intermediate standard solution (methanol solution) of di (2-ethylhexyl) sulfosuccinate, it is further diluted stepwise with methanol to 0.1 ppm, 0.2 ppm, 0.5 ppm, 1.0 ppm, and 2. A standard solution for preparing a 0 ppm calibration curve is prepared. A standard solution for preparing a calibration curve at each concentration was measured under the LC measurement conditions and MS measurement conditions described later, and on the chromatogram of monitor ion m / z = 421.3 (precursor ion) → 227.2 (product ion). Obtain the peak area value. Each concentration and area value are plotted to obtain an approximate curve (secondary curve) by the least square method, and this is used as a calibration curve for quantification.
 -ポリオキシエチレンスチレン化フェニルエーテル硫酸エステル塩の検量線作成方法-
 ポリオキシエチレンスチレン化フェニルエーテル硫酸エステル塩の約1000ppm中間標準液(メタノール溶液)を調製後、さらにメタノールで段階的に希釈して0.1ppm、0.5ppm、1.0ppm、2.0ppm、10.0ppmの検量線作成用標準液を調製する。各濃度の検量線作成用標準液を後述するLC測定条件及びMS測定条件にて測定し、モニターイオンm/z=601.4(プリカーサーイオン)→301.2(プロダクトイオン)のクロマトグラム上のピーク面積値を得る。各濃度と面積値をプロットして最小二乗法により近似曲線(二次曲線)を求め、これを定量用の検量線とする。
-Preparation of calibration curve for polyoxyethylene styrenated phenyl ether sulfate ester salt-
After preparing about 1000 ppm intermediate standard solution (methanol solution) of polyoxyethylene styrenated phenyl ether sulfate ester, it is further diluted stepwise with methanol to 0.1 ppm, 0.5 ppm, 1.0 ppm, 2.0 ppm, 10 ppm A standard solution for preparing a calibration curve of 0.0 ppm is prepared. A standard solution for preparing a calibration curve at each concentration was measured under the LC measurement conditions and MS measurement conditions described later, and on the chromatogram of monitor ion m / z = 601.4 (precursor ion) → 301.2 (product ion). Obtain the peak area value. Each concentration and area value are plotted to obtain an approximate curve (secondary curve) by the least square method, and this is used as a calibration curve for quantification.
 -アルケニルコハク酸塩の検量線作成方法-
 アルケニルコハク酸塩の約1000ppm中間標準液(メタノール溶液)を調製後、さらにメタノールで段階的に希釈して0.03ppm、0.15ppm、0.60ppm、1.5ppm、3.0ppmの検量線作成用標準液を調製する。各濃度の検量線作成用標準液を後述するLC測定条件及びMS測定条件にて測定し、モニターイオンm/z=339.3(プリカーサーイオン)→295.2(プロダクトイオン)のクロマトグラム上のピーク面積値を得る。各濃度と面積値をプロットして最小二乗法により近似曲線(二次曲線)を求め、これを定量用の検量線とする。
-Method for preparing calibration curve of alkenyl succinate-
After preparing about 1000ppm intermediate standard solution (methanol solution) of alkenyl succinate, further dilute stepwise with methanol to create 0.03ppm, 0.15ppm, 0.60ppm, 1.5ppm, 3.0ppm calibration curves Prepare a standard solution. A standard solution for preparing a calibration curve at each concentration was measured under the LC measurement conditions and MS measurement conditions described later, and on the chromatogram of monitor ion m / z = 339.3 (precursor ion) → 295.2 (product ion). Obtain the peak area value. Each concentration and area value are plotted to obtain an approximate curve (secondary curve) by the least square method, and this is used as a calibration curve for quantification.
 -ポリオキシエチレンスチレン化フェニルエーテルの検量線作成方法-
 ポリオキシエチレンスチレン化フェニルエーテルの約1000ppm中間標準液(メタノール溶液)を調製後、さらにメタノールで段階的に希釈して0.1ppm、0.5ppm、2.5ppm、5.0ppm、10.0ppmの検量線作成用標準液を調製する。各濃度の検量線作成用標準液を後述するLC測定条件及びMS測定条件にて測定し、モニターイオンm/z=980.5(プリカーサーイオン)→963.2(プロダクトイオン)のクロマトグラム上のピーク面積値を得る。各濃度と面積値をプロットして最小二乗法により近似曲線(二次曲線)を求め、これを定量用の検量線とする。
-How to create a calibration curve for polyoxyethylene styrenated phenyl ether-
After preparing about 1000 ppm intermediate standard solution (methanol solution) of polyoxyethylene styrenated phenyl ether, it is further diluted stepwise with methanol to 0.1 ppm, 0.5 ppm, 2.5 ppm, 5.0 ppm, 10.0 ppm. Prepare a standard solution for preparing a calibration curve. A standard solution for preparing a calibration curve at each concentration was measured under the LC measurement conditions and MS measurement conditions described later, and on the chromatogram of monitor ion m / z = 980.5 (precursor ion) → 963.2 (product ion). Obtain the peak area value. Each concentration and area value are plotted to obtain an approximate curve (secondary curve) by the least square method, and this is used as a calibration curve for quantification.
 実施例及び比較例で使用した界面活性剤の種類に応じた、LC測定条件は、以下の通りである。 LC measurement conditions according to the type of surfactant used in Examples and Comparative Examples are as follows.
 -ジ(2-エチルヘキシル)スルホコハク酸塩、ポリオキシエチレンスチレン化フェニルエーテル硫酸エステル塩、及び、ポリオキシエチレンスチレン化フェニルエーテルのLC測定条件-
測定装置:UHPLC ACCELA(Thermo Fisher Scientific製)
カラム:Thermo Fisher Scientific製 Hypersil GOLD C18 1.9μm(内径2.1mm、長さ100mm)
カラム温度:40℃
移動相:(A:10mM酢酸アンモニウム/B:アセトニトリル)
移動相条件:(0min=B濃度90%、0→0.5min=B濃度90%→100%、0.5→1min=B濃度100%、1→1.1min=B濃度100%→90%、1.1→3min=B濃度90%)
流量:0.3mL/min
ポンプ温度:室温(25℃)
注入量:2μL
測定時間:3min
-LC measurement conditions for di (2-ethylhexyl) sulfosuccinate, polyoxyethylene styrenated phenyl ether sulfate, and polyoxyethylene styrenated phenyl ether-
Measuring apparatus: UHPLC ACCELA (manufactured by Thermo Fisher Scientific)
Column: Hypersil GOLD C18 1.9 μm (inner diameter 2.1 mm, length 100 mm) manufactured by Thermo Fisher Scientific
Column temperature: 40 ° C
Mobile phase: (A: 10 mM ammonium acetate / B: acetonitrile)
Mobile phase conditions: (0 min = B concentration 90%, 0 → 0.5 min = B concentration 90% → 100%, 0.5 → 1 min = B concentration 100%, 1 → 1.1 min = B concentration 100% → 90% 1.1 → 3min = B concentration 90%)
Flow rate: 0.3 mL / min
Pump temperature: room temperature (25 ° C)
Injection volume: 2 μL
Measurement time: 3 min
 -アルケニルコハク酸塩のLC測定条件-
測定装置:UHPLC ACCELA(Thermo Fisher Scientific製)
カラム:Thermo Fisher Scientific製 Hypersil GOLD C18 1.9μm(内径2.1mm、長さ100mm)
カラム温度:40℃
移動相:(A:10mM酢酸アンモニウム/B:アセトニトリル=25/75)
流量:0.3mL/min
ポンプ温度:室温(25℃)
注入量:2μL
測定時間:5min
-LC measurement conditions for alkenyl succinate-
Measuring apparatus: UHPLC ACCELA (manufactured by Thermo Fisher Scientific)
Column: Hypersil GOLD C18 1.9 μm (inner diameter 2.1 mm, length 100 mm) manufactured by Thermo Fisher Scientific
Column temperature: 40 ° C
Mobile phase: (A: 10 mM ammonium acetate / B: acetonitrile = 25/75)
Flow rate: 0.3 mL / min
Pump temperature: room temperature (25 ° C)
Injection volume: 2 μL
Measurement time: 5 min
 実施例及び比較例で使用した界面活性剤の種類に応じた、MS測定条件は、以下の通りである。 MS measurement conditions according to the type of surfactant used in Examples and Comparative Examples are as follows.
 -ジ(2-エチルヘキシル)スルホコハク酸塩のMS測定条件-
測定装置:Linear Ion Trap LC/MS LXQ(Thermo Fisher Scientific製)
イオン化法(Ionization):(ESI/negative)
シースガス(Sheath Gas):30arb
補助ガス(AUX Gas):10arb
スイープガス(Sweep Gas):0arb
スプレー電圧(I Spray Voltage):5.0kV
キャピラリー温度(Capillary Temp):350℃
キャピラリー電圧(Capillary voltage):-20V
チューブレンズ電圧(Tube lens Voltage):-100V
Monitoring ion(m/Z):ジ(2-エチルヘキシル)スルホコハク酸塩(n=421.3/n2=227.2)
-MS measurement conditions for di (2-ethylhexyl) sulfosuccinate-
Measuring device: Linear Ion Trap LC / MS n LXQ (manufactured by Thermo Fisher Scientific)
Ionization: (ESI / negative)
Sheath gas: 30 arb
Auxiliary gas (AUX Gas): 10arb
Sweep Gas: 0arb
Spray voltage (I Spray Voltage): 5.0 kV
Capillary temperature: 350 ° C.
Capillary voltage: -20V
Tube lens voltage: -100V
Monitoring ion (m / Z): di (2-ethylhexyl) sulfosuccinate (n = 421.3 / n2 = 227.2)
 -ポリオキシエチレンスチレン化フェニルエーテル硫酸エステル塩のMS測定条件-
測定装置:Linear Ion Trap LC/MS LXQ(Thermo Fisher Scientific製)
イオン化法(Ionization):(ESI/negative)
シースガス(Sheath Gas):30arb
補助ガス(AUX Gas):10arb
スイープガス(Sweep Gas):0arb
スプレー電圧(I Spray Voltage):5.0kV
キャピラリー温度(Capillary Temp):350℃
キャピラリー電圧(Capillary voltage):-20V
チューブレンズ電圧(Tube lens Voltage):-100V
Monitoring ion(m/Z):ポリオキシエチレンスチレン化フェニルエーテル硫酸エステル塩(n=601.4/n2=301.2)
-MS measurement conditions for polyoxyethylene styrenated phenyl ether sulfate-
Measuring device: Linear Ion Trap LC / MS n LXQ (manufactured by Thermo Fisher Scientific)
Ionization: (ESI / negative)
Sheath gas: 30 arb
Auxiliary gas (AUX Gas): 10arb
Sweep Gas: 0arb
Spray voltage (I Spray Voltage): 5.0 kV
Capillary temperature: 350 ° C.
Capillary voltage: -20V
Tube lens voltage: -100V
Monitoring ion (m / Z): polyoxyethylene styrenated phenyl ether sulfate ester salt (n = 601.4 / n2 = 301.2)
 -アルケニルコハク酸塩のMS測定条件-
測定装置:Linear Ion Trap LC/MS LXQ(Thermo Fisher Scientific製)
イオン化法(Ionization):(ESI/negative)
シースガス(Sheath Gas):30arb
補助ガス(AUX Gas):10arb
スイープガス(Sweep Gas):0arb
スプレー電圧(I Spray Voltage):5.0kV
キャピラリー温度(Capillary Temp):350℃
キャピラリー電圧(Capillary voltage):-20V
チューブレンズ電圧(Tube lens Voltage):-100V
Monitoring ion(m/Z):アルケニルコハク酸塩(n=339.3/n2=295.3)
-MS measurement conditions for alkenyl succinate-
Measuring device: Linear Ion Trap LC / MS n LXQ (manufactured by Thermo Fisher Scientific)
Ionization: (ESI / negative)
Sheath gas: 30 arb
Auxiliary gas (AUX Gas): 10arb
Sweep Gas: 0arb
Spray voltage (I Spray Voltage): 5.0 kV
Capillary temperature: 350 ° C.
Capillary voltage: -20V
Tube lens voltage: -100V
Monitoring ion (m / Z): alkenyl succinate (n = 339.3 / n2 = 295.3)
 -ポリオキシエチレンスチレン化フェニルエーテルのMS測定条件-
測定装置:Linear Ion Trap LC/MS LXQ(Thermo Fisher Scientific製)
イオン化法(Ionization):(ESI/negative)
シースガス(Sheath Gas):30arb
補助ガス(AUX Gas):10arb
スイープガス(Sweep Gas):0arb
スプレー電圧(I Spray Voltage):5.0kV
キャピラリー温度(Capillary Temp):350℃
キャピラリー電圧(Capillary voltage):-20V
チューブレンズ電圧(Tube lens Voltage):-100V
Monitoring ion(m/Z):ポリオキシエチレンスチレン化フェニルエーテル(n=980.5/n2=963.2)
-MS measurement conditions for polyoxyethylene styrenated phenyl ether-
Measuring device: Linear Ion Trap LC / MS n LXQ (manufactured by Thermo Fisher Scientific)
Ionization: (ESI / negative)
Sheath gas: 30 arb
Auxiliary gas (AUX Gas): 10arb
Sweep Gas: 0arb
Spray voltage (I Spray Voltage): 5.0 kV
Capillary temperature: 350 ° C.
Capillary voltage: -20V
Tube lens voltage: -100V
Monitoring ion (m / Z): polyoxyethylene styrenated phenyl ether (n = 980.5 / n2 = 963.2)
 〔重合体粒子のTOF-SIMSによる測定方法〕
 重合体粒子(試料)を飛行時間型二次イオン質量分析計(TOF-SIMS)により測定し、界面活性剤に由来するピークが検出されることを確認する。
[Measurement method of polymer particles by TOF-SIMS]
The polymer particles (sample) are measured by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), and it is confirmed that a peak derived from the surfactant is detected.
 例えば、重合体粒子を飛行時間型二次イオン質量分析計(ION-TOF社製の「TOF-SIMS 5」)の試料台に固定し、以下の測定条件にて測定を行う。測定には帯電補正用電子銃を使用して、正と負、両方の二次イオンを検出した上で、界面活性剤に由来するピークが検出されることを確認する。 For example, polymer particles are fixed on a sample stage of a time-of-flight secondary ion mass spectrometer (“TOF-SIMS 5” manufactured by ION-TOF), and measurement is performed under the following measurement conditions. For the measurement, a positive electron gun is used to detect both positive and negative secondary ions, and then it is confirmed that a peak derived from the surfactant is detected.
 <測定条件>
 一次イオン:Bi 2+
 一次イオン加速電圧:25kV
 測定面積:200μm角
<Measurement conditions>
Primary ion: Bi 3 2+
Primary ion acceleration voltage: 25 kV
Measurement area: 200μm square
 なお、実施例及び比較例では、界面活性剤(アニオン性界面活性剤及び/又はノニオン性界面活性剤)に由来するピークが検出される。そこで、上記飛行時間型2次イオン質量分析計により測定される、正イオンの総イオン強度及び負イオンの総イオン強度の合計に対する、界面活性剤に由来する負イオンのイオン強度の比を、イオン強度比として求める。  In Examples and Comparative Examples, a peak derived from a surfactant (anionic surfactant and / or nonionic surfactant) is detected. Therefore, the ratio of the ionic strength of the negative ions derived from the surfactant to the sum of the total ionic strength of the positive ions and the total ionic strength of the negative ions, measured by the time-of-flight secondary ion mass spectrometer, is expressed as Obtained as intensity ratio. *
 具体的には、実施例1~7及び比較例1~2では、界面活性剤として、アニオン性界面活性剤であるジ(2-エチルヘキシル)スルホコハク酸ナトリウムを使用しており、上記飛行時間型2次イオン質量分析計による測定においては、ジ(2-エチルヘキシル)スルホコハク酸ナトリウムに由来する負イオンのフラグメントのピークが複数検出される。検出されるジ(2-エチルヘキシル)スルホコハク酸ナトリウムに由来する負イオンのフラグメントのうち、ジ(2-エチルヘキシル)スルホコハク酸イオン(分子式:C2037SO 、分子量421)が、最も高いイオン強度を示すことから、実施例1~7及び比較例1~2では、ジ(2-エチルヘキシル)スルホコハク酸イオン(分子式:C2037SO 、分子量421)を評価イオン種とし、正イオンの総イオン強度及び負イオンの総イオン強度の合計に対する、ジ(2-エチルヘキシル)スルホコハク酸イオンのイオン強度の比を、イオン強度比として求める。 Specifically, in Examples 1 to 7 and Comparative Examples 1 and 2, anionic surfactant sodium di (2-ethylhexyl) sulfosuccinate is used as the surfactant. In measurement by a secondary ion mass spectrometer, a plurality of negative ion fragment peaks derived from sodium di (2-ethylhexyl) sulfosuccinate are detected. Of the negative ion fragments derived from sodium di (2-ethylhexyl) sulfosuccinate to be detected, di (2-ethylhexyl) sulfosuccinate ion (molecular formula: C 20 H 37 SO 7 , molecular weight 421) is the highest ion. Since strength is shown, in Examples 1 to 7 and Comparative Examples 1 and 2, di (2-ethylhexyl) sulfosuccinate ion (molecular formula: C 20 H 37 SO 7 , molecular weight 421) is used as an evaluation ion species, and positive ions The ratio of the ionic strength of di (2-ethylhexyl) sulfosuccinate ion to the total of the total ionic strength and the total ionic strength of negative ions is determined as the ionic strength ratio.
 また、実施例8では、界面活性剤として、アニオン性界面活性剤である下記式(A)で表されるポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウムを使用しており、上記飛行時間型2次イオン質量分析計による測定においては、下記式(A)で表されるポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウムに由来する負イオンのフラグメントのピークが複数検出される。検出される下記式(A)で表されるポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウムに由来する負イオンのフラグメントのうち、下記式(B)で表されるスチレン化フェニルオキシイオン(分子式:C2221、分子量301)が、最も高いイオン強度を示すことから、実施例8では、スチレン化フェニルオキシイオン(分子式:C2221、分子量301)を評価イオン種とし、正イオンの総イオン強度及び負イオンの総イオン強度の合計に対する、下記式(B)で表されるスチレン化フェニルオキシイオン(分子式:C2221、分子量301)のイオン強度の比を、イオン強度比として求める。 In Example 8, polyoxyethylene styrenated phenyl ether sulfate ammonium represented by the following formula (A), which is an anionic surfactant, is used as the surfactant. In the measurement using an ion mass spectrometer, a plurality of negative ion fragment peaks derived from polyoxyethylene styrenated phenyl ether ammonium sulfate represented by the following formula (A) are detected. Among the negative ion fragments derived from ammonium polyoxyethylene styrenated phenyl ether sulfate ester represented by the following formula (A) to be detected, styrenated phenyloxy ion represented by the following formula (B) (molecular formula: C 22 H 21 O , molecular weight 301) shows the highest ionic strength. In Example 8, styrenated phenyloxy ion (molecular formula: C 22 H 21 O , molecular weight 301) was used as an evaluation ion species, and positive The ratio of the ionic strength of a styrenated phenyloxy ion (molecular formula: C 22 H 21 O , molecular weight 301) represented by the following formula (B) to the sum of the total ionic strength of ions and the total ionic strength of negative ions, Obtained as ionic strength ratio.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 (式(A)中、nはエチレンオキシ基(-CHCHO-)の繰り返し単位数を意味する。) (In the formula (A), n means the number of repeating units of an ethyleneoxy group (—CH 2 CH 2 O—).)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 また、実施例9では、界面活性剤として、アニオン性界面活性剤である下記式(C)で表されるアルケニルコハク酸ジカリウムを使用しており、上記飛行時間型2次イオン質量分析計による測定においては、下記式(C)で表されるアルケニルコハク酸ジカリウムに由来する負イオンのフラグメントのピークが複数検出され、最もイオン強度の高い負イオン種として、下記式(D1)又は式(D2)で表されるアルケニルコハク酸の一価イオン(分子式:C2035 、分子量339)が検出された。すなわち、検出される下記式(C)で表されるアルケニルコハク酸ジカリウムに由来する負イオンのフラグメントのうち、下記式(D1)又は式(D2)で表されるアルケニルコハク酸の一価イオン(分子式:C2035 、分子量339)が、最も高いイオン強度を示すことから、実施例9では、下記式(D1)又は式(D2)で表されるアルケニルコハク酸の一価イオン(分子式:C2035 、分子量339)を評価イオン種とし、正イオンの総イオン強度及び負イオンの総イオン強度の合計に対する、下記式(D1)又は式(D2)で表されるアルケニルコハク酸の一価イオン(分子式:C2035 、分子量339)のイオン強度の比を、イオン強度比として求める。 Moreover, in Example 9, dipotassium alkenyl succinate represented by the following formula (C), which is an anionic surfactant, is used as the surfactant, and measurement using the time-of-flight secondary ion mass spectrometer is performed. , A plurality of negative ion fragment peaks derived from dipotassium alkenyl succinate represented by the following formula (C) are detected, and the negative ion species having the highest ionic strength is represented by the following formula (D1) or (D2). Was detected (molecular formula: C 20 H 35 O 4 , molecular weight 339). That is, among the negative ion fragments derived from dipotassium alkenyl succinate represented by the following formula (C) to be detected, monovalent ions of alkenyl succinic acid represented by the following formula (D1) or formula (D2) ( Since the molecular formula: C 20 H 35 O 4 , molecular weight 339) shows the highest ionic strength, in Example 9, a monovalent ion of alkenyl succinic acid represented by the following formula (D1) or formula (D2) (Molecular formula: C 20 H 35 O 4 , molecular weight 339) is an evaluation ion species, and is expressed by the following formula (D1) or formula (D2) with respect to the sum of the total ionic strength of positive ions and the total ionic strength of negative ions. The ratio of the ionic strengths of monovalent ions of alkenyl succinic acid (molecular formula: C 20 H 35 O 4 , molecular weight 339) is determined as the ionic strength ratio.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (式(C)中、Rは、アルケニル基を意味する。) (In the formula (C), R means an alkenyl group.)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (式(D1)及び式(D2)中、R’は、炭素数16のアルケニル基を意味する。) (In formula (D1) and formula (D2), R 'means an alkenyl group having 16 carbon atoms.)
 また、実施例10では、界面活性剤として、アニオン性界面活性剤である上記式(A)で表されるポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウムと、ノニオン性界面活性剤である下記式(E)で表されるポリオキシエチレンスチレン化フェニルエーテルとを使用しており、上記飛行時間型2次イオン質量分析計による測定においては、上記式(A)で表されるポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム及び下記式(E)で表されるポリオキシエチレンスチレン化フェニルエーテルに由来する負イオンのフラグメントのピークが複数検出される。検出される上記式(A)で表されるポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム及び下記式(E)で表されるポリオキシエチレンスチレン化フェニルエーテルに由来する負イオンのフラグメントのうち、上記式(B)で表されるスチレン化フェニルオキシイオン(分子式:C2221、分子量301)が、最も高いイオン強度を示すことから、実施例10では、上記式(B)で表されるスチレン化フェニルオキシイオン(分子式:C2221、分子量301)を評価イオン種とし、正イオンの総イオン強度及び負イオンの総イオン強度の合計に対する、上記式(B)で表されるスチレン化フェニルオキシイオン(分子式:C2221、分子量301)のイオン強度の比を、イオン強度比として求める。 In Example 10, as the surfactant, polyoxyethylene styrenated phenyl ether sulfate ammonium represented by the above formula (A) which is an anionic surfactant and the following formula (nonionic surfactant): E) and polyoxyethylene styrenated phenyl ether represented by the above formula (A) in the time-of-flight secondary ion mass spectrometer. Multiple peaks of negative ion fragments derived from ammonium ether sulfate and polyoxyethylene styrenated phenyl ether represented by the following formula (E) are detected. Among the negative ion fragments derived from the polyoxyethylene styrenated phenyl ether sulfate ammonium represented by the above formula (A) and the polyoxyethylene styrenated phenyl ether represented by the following formula (E): Since the styrenated phenyloxy ion represented by the formula (B) (molecular formula: C 22 H 21 O , molecular weight 301) exhibits the highest ionic strength, in Example 10, it is represented by the formula (B). The styrenated phenyloxy ion (molecular formula: C 22 H 21 O , molecular weight 301) is an evaluation ion species, and is expressed by the above formula (B) with respect to the sum of the total ionic strength of positive ions and the total ionic strength of negative ions that styrenated phenyloxy ion (molecular formula: C 22 H 21 O -, molecular weight 301) the ratio of the ionic strength of Io Determined as the intensity ratio.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (式(E)中、nはエチレンオキシ基(-CHCHO-)の繰り返し単位数を意味する。) (In the formula (E), n means the number of repeating units of an ethyleneoxy group (—CH 2 CH 2 O—)).
 〔重合体粒子のゲル分率の測定方法〕
 200mLナスフラスコに、試料としての重合体粒子1.0gと、沸騰石0.03gとを精秤して投入し、更にトルエン100mLを注加した後、前記ナスフラスコに冷却管を装着し、130℃に保ったオイルバスに前記ナスフラスコを浸けて24時間還流する。
[Method for measuring gel fraction of polymer particles]
In a 200 mL eggplant flask, 1.0 g of polymer particles as a sample and 0.03 g of boiling stone are precisely weighed and added, and further 100 mL of toluene is added, and then a cooling tube is attached to the eggplant flask. The eggplant flask is immersed in an oil bath maintained at ° C. and refluxed for 24 hours.
 還流後、前記ナスフラスコ内の内容物(溶解液)を、ADVANTEC社製のガラスファイバーフィルター「GB-140(φ37mm)」及び「GA-200(φ37mm)」を装着して秤量したTOP社製のブフナーロート型フィルター3G(硝子粒子細孔直径20~30μm、容量30mL)を用いて濾過し、前記ブフナーロート型フィルター3G内に固形分を回収する。そして、前記ブフナーロート型フィルター3G内に回収した固形分を、前記ブフナーロート型フィルター3Gごと、130℃の真空オーブンにて1時間乾燥させた後、ゲージ圧0.06MPaで2時間乾燥させてトルエンを除去し、室温まで冷却する。 After refluxing, the contents (dissolved solution) in the eggplant flask were weighed with glass fiber filters “GB-140 (φ37 mm)” and “GA-200 (φ37 mm)” manufactured by ADVANTEC. Filtration is performed using a Buchner funnel type filter 3G (glass particle pore diameter 20-30 μm, volume 30 mL), and the solid content is recovered in the Buchner funnel type filter 3G. Then, the solid content collected in the Buchner funnel filter 3G is dried together with the Buchner funnel filter 3G in a vacuum oven at 130 ° C. for 1 hour, and then dried at a gauge pressure of 0.06 MPa for 2 hours. And cool to room temperature.
 冷却後、前記ブフナーロート型フィルター3G内に前記固形分を含んだ状態で、ブフナーロート型フィルター3Gとガラスファイバーフィルターと固形分の総重量を測定した。そして、測定した総重量から、ブフナーロート型フィルター3Gとガラスファイバーフィルターの重量および沸騰石の重量を差し引きし、乾燥粉体の重量(g)を求めた。 After cooling, the total weight of the Buchner funnel filter 3G, the glass fiber filter, and the solid content was measured in a state where the solid content was contained in the Buchner funnel filter 3G. Then, the weight (g) of the dry powder was obtained by subtracting the weight of the Buchner funnel filter 3G and the glass fiber filter and the weight of the boiling stone from the measured total weight.
 そして、乾燥粉体の重量(g)と、ナスフラスコに投入した試料の重量(g)とを用いて、以下の算出式により、ゲル分率を算出した。
   ゲル分率(重量%)={乾燥粉体(g)/試料重量(g)}×100
And the gel fraction was computed with the following formulas using the weight (g) of dry powder, and the weight (g) of the sample put into the eggplant flask.
Gel fraction (% by weight) = {Dry powder (g) / Sample weight (g)} × 100
 〔重合体粒子の分散安定化時間の測定方法〕
 分散媒に重合体粒子を分散させてなる分散液の粘度値は、分散液中での重合体粒子の分散状態の変化に伴って変化する。そこで、分散液を調製後、1時間毎に前記分散液の粘度値を測定して、粘度値の変化率を求め、得られた変化率が所定の範囲内となるまでに要する時間、すなわち、分散液中で重合体粒子の分散状態が安定化するのに要する時間(分散安定化時間)を測定した。
[Method for measuring dispersion stabilization time of polymer particles]
The viscosity value of the dispersion liquid in which the polymer particles are dispersed in the dispersion medium changes as the dispersion state of the polymer particles in the dispersion liquid changes. Therefore, after preparing the dispersion, the viscosity value of the dispersion is measured every hour to determine the change rate of the viscosity value, and the time required for the obtained change rate to be within a predetermined range, The time (dispersion stabilization time) required for stabilizing the dispersion state of the polymer particles in the dispersion was measured.
 具体的には、以下の方法により、変化率が所定の範囲内となるまでに要する時間を測定した。 Specifically, the time required for the rate of change to be within a predetermined range was measured by the following method.
 (1)分散液の調製方法
 10mlのサンプル管に、重合体粒子0.15gと、分散媒としてのメチルエチルケトン0.90gとを添加し、超音波洗浄器(株式会社ヴェルヴォクリーア製「ULTRASONIC CLEANER VS-150」)を用いて1分間撹拌し、メチルエチルケトン中に重合体粒子を分散させて、分散液を得る。この分散液に、さらに、アクリル系樹脂(DIC株式会社製の「アクリディック(登録商標)A-811」)を2.10g添加し、上記超音波洗浄器で2分程度撹拌して、メチルエチルケトン及びアクリル系樹脂中に重合体粒子を分散させ、分散液を調製する。
(1) Dispersion Preparation Method To a 10 ml sample tube, 0.15 g of polymer particles and 0.90 g of methyl ethyl ketone as a dispersion medium are added, and an ultrasonic cleaner (“ULTRASONIC CLEANER VS manufactured by Velvo Crea Co., Ltd.) is added. -150 ") for 1 minute to disperse the polymer particles in methyl ethyl ketone to obtain a dispersion. To this dispersion, 2.10 g of acrylic resin (“ACRIDIC (registered trademark) A-811” manufactured by DIC Corporation) was further added and stirred for about 2 minutes with the above ultrasonic cleaner, and methyl ethyl ketone and Polymer particles are dispersed in an acrylic resin to prepare a dispersion.
 (2)粘度値の測定方法
 分散液の粘度値の測定は、粘度計(日本ルフト株式会社製の微量サンプル粘度計m-VROC)を用いて、次に示す方法により行う。なお、上記粘度計は、粘度値の測定前に、予め、測定環境下に30分以上放置しておくものとする。
(2) Method for Measuring Viscosity Value The viscosity value of the dispersion is measured by the following method using a viscometer (a trace sample viscometer m-VROC manufactured by Nippon Luft Co., Ltd.). Note that the viscometer is left in the measurement environment for 30 minutes or more in advance before measuring the viscosity value.
 測定対象の分散液を超音波洗浄器で30分撹拌し、次いで、10分静置させた後、上記粘度計を用いて前記分散液の粘度(mPa・s)を測定する。そして、粘度の測定値(mPa・s)と測定温度(K)とを用いて、下記算出式により、単位温度(K)あたりの粘度値V(mPa・s/K)を求める。
 粘度値V(mPa・s/K)=測定値(mPa・s)÷測定温度(K)
The dispersion liquid to be measured is stirred for 30 minutes with an ultrasonic cleaner and then allowed to stand for 10 minutes, and then the viscosity (mPa · s) of the dispersion liquid is measured using the viscometer. And the viscosity value V (mPa * s / K) per unit temperature (K) is calculated | required by the following formula using the measured value (mPa * s) of viscosity, and measured temperature (K).
Viscosity value V (mPa · s / K) = Measured value (mPa · s) ÷ Measured temperature (K)
 (3)分散安定化時間の測定方法
 分散液の調製から1時間おきに、上記粘度値の測定方法に従って、分散液の粘度値V(mPa・s/K)を測定する。測定した分散液の粘度値VをV(mPa・s/K)とし、この分散液の1時間前の粘度値をVT-1(mPa・s/K)として、下記算出式により、変化率W(%)を求める。
 W=((VT-1-V)/VT-1)×100
(3) Dispersion stabilization time measurement method The viscosity value V (mPa · s / K) of the dispersion is measured every 1 hour from the preparation of the dispersion according to the above viscosity value measurement method. The measured dispersion viscosity value V is V T (mPa · s / K), and the viscosity value 1 hour before the dispersion is V T-1 (mPa · s / K). The rate W (%) is obtained.
W = ((V T−1 −V T ) / V T−1 ) × 100
 変化率Wが-1%超~1%未満の範囲内となるまで、1時間おきに粘度値の測定を実施する。そして、分散液の調製後、粘度値の上記変化率Wが-1%超~1%未満の範囲内となるまでの経過時間Tを測定し、経過時間Tを分散安定化時間とした。 Measure viscosity values every 1 hour until the change rate W is in the range of more than -1% to less than 1%. Then, after the dispersion was prepared, the elapsed time T until the change rate W of the viscosity value was in the range of more than −1% to less than 1% was measured, and the elapsed time T was defined as the dispersion stabilization time.
 〔種粒子の製造例1〕
 攪拌機、温度計及び還流コンデンサーを備えたセパラブルフラスコに、水性媒体としての水1000gと、(メタ)アクリル酸エステル系単量体としてのメタクリル酸エチル180gと、分子量調整剤としてのn-オクチルメルカプタン3.6gとを仕込み、セパラブルフラスコの内容物を攪拌しながらセパラブルフラスコの内部を窒素置換し、セパラブルフラスコの内温を55℃に昇温した。さらにセパラブルフラスコの内温を55℃に保ちながら、重合開始剤としての過硫酸カリウム0.9gを水80gに溶解させた水溶液を、セパラブルフラスコ内の内容物に添加した後、12時間重合反応させた。重合後の反応液を400メッシュ(目開き32μm)の金網で濾過し、固形分としてポリメタクリル酸エチルからなる種粒子(種粒子(1)という)を14重量%含有するスラリーを作製した。このスラリーに含まれる種粒子(1)は、体積平均粒子径が0.76μmの真球状粒子であった。
[Seed Particle Production Example 1]
In a separable flask equipped with a stirrer, a thermometer and a reflux condenser, 1000 g of water as an aqueous medium, 180 g of ethyl methacrylate as a (meth) acrylic acid ester monomer, and n-octyl mercaptan as a molecular weight regulator 3.6 g was charged, the inside of the separable flask was purged with nitrogen while stirring the contents of the separable flask, and the internal temperature of the separable flask was raised to 55 ° C. Furthermore, while maintaining the internal temperature of the separable flask at 55 ° C., an aqueous solution in which 0.9 g of potassium persulfate as a polymerization initiator was dissolved in 80 g of water was added to the contents in the separable flask and then polymerized for 12 hours. Reacted. The reaction solution after polymerization was filtered through a 400 mesh (mesh size: 32 μm) wire mesh to prepare a slurry containing 14% by weight of seed particles (referred to as seed particles (1)) composed of polyethyl methacrylate as a solid content. The seed particles (1) contained in this slurry were true spherical particles having a volume average particle diameter of 0.76 μm.
 〔種粒子の製造例2〕
 攪拌機及び温度計を備えた5Lの反応器に、(メタ)アクリル酸エステル系単量体としてのメタクリル酸メチル450gと、分子量調整剤としてのn-オクチルメルカプタン4.5gと、重合開始剤としての2,2’-アゾビスイソブチロニトリル4.5gとを混合した。得られた混合物を、イオン交換水1800gに界面活性剤としてのジ(2-エチルヘキシル)スルホコハク酸ナトリウム(日油株式会社製の「ラピゾール(登録商標)A-80」、液温25℃の水に対する溶解度;1.5g/100ml)を純分として4.5g添加したものに混合し、ホモミキサー(プライミクス株式会社製の「T.KホモミキサーMARK 2.5型」)にて8000rpmで10分間処理し、乳化液を得た。
[Seed Particle Production Example 2]
In a 5 L reactor equipped with a stirrer and a thermometer, 450 g of methyl methacrylate as a (meth) acrylic acid ester monomer, 4.5 g of n-octyl mercaptan as a molecular weight regulator, and a polymerization initiator 2,2′-Azobisisobutyronitrile (4.5 g) was mixed. The obtained mixture was added to 1800 g of ion-exchanged water with respect to sodium di (2-ethylhexyl) sulfosuccinate (“RAPISOL (registered trademark) A-80” manufactured by NOF Corporation) as a surfactant and water at a liquid temperature of 25 ° C. (Solubility: 1.5 g / 100 ml) is added to a pure component of 4.5 g and mixed with a homomixer (“TK homomixer MARK 2.5 type” manufactured by PRIMIX Corporation) at 8000 rpm for 10 minutes. And an emulsion was obtained.
 上記反応器内の上記乳化液に、種粒子の製造例1で製造した種粒子(1)のスラリーを、固形分(種粒子)として12.6gとなるように加え、室温雰囲気下で5時間攪拌した。その後、高分子系分散安定剤としてのポリビニルピロリドン(株式会社クラレ製の「PVP-90」)15gを溶解させた水溶液900gを上記反応器に投入し、攪拌しながら55℃で12時間重合反応させた。 To the emulsion in the reactor, the slurry of the seed particles (1) produced in Seed Particle Production Example 1 is added to 12.6 g as a solid content (seed particles), and is allowed to stand at room temperature for 5 hours. Stir. Thereafter, 900 g of an aqueous solution in which 15 g of polyvinyl pyrrolidone (“PVP-90” manufactured by Kuraray Co., Ltd.) as a polymer dispersion stabilizer was dissolved was put into the reactor and polymerized at 55 ° C. for 12 hours with stirring. It was.
 重合後の反応液を400メッシュ(目開き32μm)の金網で濾過し、固形分としてポリメタクリル酸エチル及びポリメタクリル酸メチルからなる種粒子(以下、種粒子(2)という)を14重量%含有するスラリーを作製した。このスラリーに含まれる種粒子(2)は、体積平均粒子径が2.30μmの真球状粒子であった。 The reaction solution after polymerization is filtered with a 400 mesh (mesh size 32 μm) wire mesh and contains 14% by weight of seed particles (hereinafter referred to as seed particles (2)) composed of polyethyl methacrylate and polymethyl methacrylate as solids. A slurry was prepared. The seed particles (2) contained in this slurry were true spherical particles having a volume average particle diameter of 2.30 μm.
 〔実施例1:重合体粒子の製造例〕
 (1)重合工程
 (メタ)アクリル酸エステル系単量体としてのメタクリル酸メチル(MMA)280gと、スチレン系単量体としてのスチレン(St)280gと、多官能ビニル系単量体としてのエチレングリコールジメタクリレート(EGDMA)240gと、重合開始剤としての2,2’-アゾイソブチロニトリル4gと、重合開始剤としての過酸化ベンゾイル4gとを溶解して得られた単量体混合物を、水性媒体としてのイオン交換水800gにアニオン性界面活性剤としてのジ(2-エチルヘキシル)スルホコハク酸ナトリウム(日油株式会社製の「ラピゾール(登録商標)A-80」、液温25℃の水に対する溶解度;1.5g/100ml)を純分として8g添加したものと混合し、ホモミキサー(プライミクス株式会社製の「T.KホモミキサーMARK 2.5型」)に入れて10000rpmで10分間処理して乳化液を得た。この乳化液に、種粒子の製造例1で得られた種粒子(1)のスラリーを、固形分(種粒子)として4.2gとなるように加え、30℃で5時間撹拌し、分散液を得た。
[Example 1: Production example of polymer particles]
(1) Polymerization step 280 g of methyl methacrylate (MMA) as a (meth) acrylic acid ester monomer, 280 g of styrene (St) as a styrene monomer, and ethylene as a polyfunctional vinyl monomer A monomer mixture obtained by dissolving 240 g of glycol dimethacrylate (EGDMA), 4 g of 2,2′-azoisobutyronitrile as a polymerization initiator, and 4 g of benzoyl peroxide as a polymerization initiator, 800 g of ion-exchanged water as an aqueous medium, sodium di (2-ethylhexyl) sulfosuccinate as an anionic surfactant (“Lapizol (registered trademark) A-80” manufactured by NOF Corporation), water at a liquid temperature of 25 ° C. Solubility: 1.5 g / 100 ml) is added to the pure 8 g added and mixed with a homomixer (Primics Co., Ltd. “T Put the K Homomixer MARK 2.5 inch ") to obtain an emulsion solution for 10 minutes at 10000 rpm. To this emulsion, the slurry of seed particles (1) obtained in Seed Particle Production Example 1 was added to a solid content (seed particles) of 4.2 g, and stirred at 30 ° C. for 5 hours. Got.
 この分散液に、高分子分散安定剤としてのポリビニルアルコール(日本合成化学株式会社製の「ゴーセノール(登録商標)GM-14L」)40gと、重合禁止剤としての亜硝酸ナトリウム0.64gとを溶解させた水溶液2400gを加え、その後60℃で5時間、次いで105℃で3時間攪拌して重合反応を行い、重合体粒子のスラリー(以下、スラリー(1)という)を、粗生成物として得た。 In this dispersion, 40 g of polyvinyl alcohol (“GOHSENOL (registered trademark) GM-14L” manufactured by Nippon Synthetic Chemical Co., Ltd.) as a polymer dispersion stabilizer and 0.64 g of sodium nitrite as a polymerization inhibitor are dissolved. 2400 g of the prepared aqueous solution was added, and then the polymerization reaction was carried out by stirring at 60 ° C. for 5 hours and then at 105 ° C. for 3 hours to obtain a slurry of polymer particles (hereinafter referred to as slurry (1)) as a crude product. .
 (2)固液分離工程
 図1に示す構成を有する加圧濾過器1の耐圧容器2に、粗生成物Pとして重合体粒子のスラリー(1)を投入して、耐圧容器2内の濾材3としての濾布(敷島カンバス株式会社製の「T713」)上に重合体粒子のスラリー(1)を充填した後、圧縮気体供給機によって耐圧容器2内における濾材3の上側空間Sに圧縮気体を供給することによって耐圧容器2の内部(具体的には、濾材3の上側空間S)を、0.08MPaに加圧した。これにより、粗生成物Pとしての重合体粒子のスラリー(1)を加圧濾過・脱水して、重合体粒子のスラリー(1)から水性媒体としての水を濾液として除去した。濾液の量が2.24kg(重合工程で使用した水の重量の70%)以上となり、耐圧容器2の内圧が、0.064MPa(加圧時の圧力の80%)以下となった時点で、加圧を終了した。これにより、濾材3上に重合体粒子のケーキが得られた。なお、本実施例で使用した加圧濾過器1の濾材3(濾布)と被濾過物(すなわち、粗生成物P)との界面は、円形状であり、その直径は、耐圧容器2の内部空間の底面の径(図1の符号Rで示す径)と同じ、0.115mである。よって、本実施例で使用した加圧濾過器1の濾材3(濾布)と被濾過物(すなわち、粗生成物P)との界面の面積Aは、0.0104mである。なお、本実施例の固液分離工程で得られた濾液(媒体)の総重量Gは2.46kgであり、粗生成物Pに含まれる媒体(水)を濾材3に通過させることを開始してから、前記媒体の濾材3の通過を終了させるまでの時間Tは55.7分であった。
(2) Solid-liquid separation step The slurry (1) of polymer particles as the crude product P is charged into the pressure resistant container 2 of the pressure filter 1 having the configuration shown in FIG. After the polymer cloth slurry (1) is filled on the filter cloth (“T713” manufactured by Shikishima Canvas Co., Ltd.), the compressed gas is supplied to the upper space S of the filter medium 3 in the pressure vessel 2 by the compressed gas supply machine. By supplying, the inside of the pressure vessel 2 (specifically, the upper space S of the filter medium 3) was pressurized to 0.08 MPa. Thereby, the slurry (1) of polymer particles as the crude product P was subjected to pressure filtration and dehydration, and water as an aqueous medium was removed from the slurry (1) of polymer particles as a filtrate. When the amount of the filtrate is 2.24 kg (70% of the weight of the water used in the polymerization step) or more and the internal pressure of the pressure vessel 2 is 0.064 MPa (80% of the pressure during pressurization) or less, Pressurization was terminated. As a result, a cake of polymer particles was obtained on the filter medium 3. In addition, the interface between the filter medium 3 (filter cloth) of the pressure filter 1 used in this embodiment and the material to be filtered (that is, the crude product P) is circular, and the diameter thereof is that of the pressure vessel 2. It is 0.115 m, which is the same as the diameter of the bottom surface of the internal space (the diameter indicated by the symbol R in FIG. 1). Therefore, the area A of the interface between the filter medium 3 (filter cloth) of the pressure filter 1 used in this example and the material to be filtered (that is, the crude product P) is 0.0104 m 2 . The total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.46 kg, and the medium (water) contained in the crude product P is started to pass through the filter medium 3. Then, the time T 1 until the passage of the medium through the filter medium 3 was 55.7 minutes.
 (3)洗浄工程
 濾材3上に上記重合体粒子のケーキを保持させたままで、洗浄液としての水を耐圧容器2内の濾材3上に供給した後、圧縮気体供給機によって耐圧容器2内における濾材3の上側空間Sに圧縮気体を供給することによって耐圧容器2の内部(具体的には、濾材3の上側空間S)を、0.08MPaに加圧した。これにより、加圧濾過・脱水が行われて、上記重合体粒子のケーキが洗浄されると共に、洗浄後の水が濾液として除去され、濾材3上に洗浄後の重合体粒子が得られた。洗浄は、重合工程で得られた重合体粒子(重合工程で使用したビニル系単量体の合計量800g)の重量の10倍以上の重量の洗浄液を用い、濾液の導電率が、洗浄前の水の導電率の2.0倍以下(具体的には、15μS以下)となり、耐圧容器2の内圧が、0.064MPa(加圧時の圧力の80%)以下となるまで行った。なお、本実施例の洗浄工程で用いた洗浄液としての水の重量Gは、12kg(重合工程で得られた重合体粒子の15倍の重量)であり、上記重合工程で使用した界面活性剤の種類毎に上記算出式(4)により算出した洗浄液の重量の下限値Dの合計量10.7kg(8(g)÷1.5(g/100ml)×2000=10667(g))よりも多い重量であった。また、本実施例の洗浄工程において、洗浄液を濾材3に通過させることを開始してから、9.6kg(洗浄工程で用いた洗浄液としての水の重量Gの0.8倍の重量)の洗浄液が濾材3を通過するまでに費やした時間T(min)は、230.8分であった。
(3) Washing step After the cake of the polymer particles is held on the filter medium 3, water as a cleaning liquid is supplied onto the filter medium 3 in the pressure vessel 2, and then the filter medium in the pressure vessel 2 by a compressed gas supply machine. The compressed gas was supplied to the upper space S of 3 to pressurize the inside of the pressure vessel 2 (specifically, the upper space S of the filter medium 3) to 0.08 MPa. Thereby, pressure filtration and dehydration were performed to wash the cake of the polymer particles, and the washed water was removed as a filtrate to obtain washed polymer particles on the filter medium 3. The washing is performed using a washing liquid having a weight 10 times or more the weight of the polymer particles obtained in the polymerization process (total amount of vinyl monomers used in the polymerization process 800 g). The test was performed until the electric conductivity of water was 2.0 times or less (specifically, 15 μS or less), and the internal pressure of the pressure vessel 2 was 0.064 MPa (80% of the pressure during pressurization) or less. The weight G 2 of water as the cleaning liquid used in the cleaning step of this example is 12 kg (15 times the weight of the polymer particles obtained in the polymerization step), and the surfactant used in the polymerization step. More than the total amount 10.7 kg (8 (g) ÷ 1.5 (g / 100 ml) × 2000 = 10667 (g)) of the lower limit D of the weight of the cleaning liquid calculated by the above calculation formula (4) for each type It was a heavy weight. Further, in the cleaning step of this embodiment, from the start of passing a cleaning liquid to the filter medium 3, 9.6 kg of (0.8 times the weight of the weight G 2 of water as the cleaning liquid used in the washing step) The time T 2 (min) spent for the cleaning liquid to pass through the filter medium 3 was 230.8 minutes.
 (4)後処理工程
 洗浄工程により得られた洗浄後の重合体粒子を、真空乾燥機で乾燥させ、気流分級機(日清エンジニアリング株式会社製の「ターボクラシファイア(TC-15)」)を用いて分級し、目的の重合体粒子を得た。
(4) Post-treatment step The polymer particles after washing obtained in the washing step are dried with a vacuum dryer, and an airflow classifier ("Turbo Classifier (TC-15)" manufactured by Nissin Engineering Co., Ltd.) is used. To obtain the desired polymer particles.
 〔実施例2:重合体粒子の製造例〕
 固液分離工程において、耐圧容器2の内部を0.15MPaに加圧して、濾液の量が2.24kg(重合工程で使用した水の重量の70%)以上となり、耐圧容器2の内圧が0.12MPa(加圧時の圧力の80%)以下となった時に、当該固液分離工程を終了した以外は、実施例1と同様にして、目的の重合体粒子を得た。なお、本実施例の固液分離工程で得られた濾液(媒体)の総重量Gは2.48kgであり、粗生成物Pに含まれる媒体(水)を濾材3に通過させることを開始してから、前記媒体の濾材3の通過を終了させるまでの時間Tは46.6分であった。なお、本実施例の洗浄工程で用いた洗浄液としての水の重量Gは、12kg(重合工程で得られた重合体粒子の15倍の重量)であり、上記重合工程で使用した界面活性剤の種類毎に上記算出式(4)により算出した洗浄液の重量の下限値Dの合計量10.7kg(8(g)÷1.5(g/100ml)×2000=10667(g))よりも多い重量であった。また、本実施例の洗浄工程において、洗浄液を濾材3に通過させることを開始してから、9.6kg(洗浄工程で用いた洗浄液としての水の重量Gの0.8倍の重量)の洗浄液が濾材3を通過するまでに費やした時間T(min)は、355.6分であった。
[Example 2: Production example of polymer particles]
In the solid-liquid separation step, the inside of the pressure vessel 2 is pressurized to 0.15 MPa, the amount of the filtrate becomes 2.24 kg (70% of the weight of water used in the polymerization step) or more, and the internal pressure of the pressure vessel 2 is 0. The target polymer particles were obtained in the same manner as in Example 1 except that the solid-liquid separation step was terminated when the pressure became .12 MPa (80% of the pressure during pressurization) or less. The total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.48 kg, and the medium (water) contained in the crude product P starts to pass through the filter medium 3. Then, the time T 1 until the passage of the medium through the filter medium 3 was 46.6 minutes. The weight G 2 of water as the cleaning liquid used in the cleaning step of this example is 12 kg (15 times the weight of the polymer particles obtained in the polymerization step), and the surfactant used in the polymerization step. More than the total amount 10.7 kg (8 (g) ÷ 1.5 (g / 100 ml) × 2000 = 10667 (g)) of the lower limit D of the weight of the cleaning liquid calculated by the above calculation formula (4) for each type It was a heavy weight. Further, in the cleaning step of this embodiment, from the start of passing a cleaning liquid to the filter medium 3, 9.6 kg of (0.8 times the weight of the weight G 2 of water as the cleaning liquid used in the washing step) The time T 2 (min) spent until the cleaning liquid passed through the filter medium 3 was 355.6 minutes.
 〔実施例3:重合体粒子の製造例〕
 (1)重合工程
 種粒子の製造例1で得られた種粒子(1)のスラリーの使用量を、固形分(種粒子)として16.7gとした以外は、実施例1の重合工程と同様にして、重合体粒子のスラリー(以下、スラリー(2)という)を、粗生成物として得た。
[Example 3: Production Example of Polymer Particles]
(1) Polymerization step Similar to the polymerization step of Example 1, except that the amount of the slurry of seed particles (1) obtained in Seed Particle Production Example 1 was changed to 16.7 g as the solid content (seed particles). Thus, a slurry of polymer particles (hereinafter referred to as slurry (2)) was obtained as a crude product.
 (2)固液分離工程
 粗生成物として、重合体粒子のスラリー(1)に代えて、重合体粒子のスラリー(2)を使用し、耐圧容器2の内部を0.20MPaに加圧し、濾液の量が2.24kg(重合工程で使用した水の重量の70%)以上となり、耐圧容器2の内圧が0.16MPa(加圧時の圧力の80%)以下となった時に固液分離工程を終了した以外は、実施例1の固液分離工程と同様にして、重合体粒子のスラリー(2)から水性媒体としての水を除去した。なお、本実施例の固液分離工程で得られた濾液(媒体)の総重量Gは2.38kgであり、粗生成物Pに含まれる媒体(水)を濾材3に通過させることを開始してから、前記媒体の濾材3の通過を終了させるまでの時間Tは73.9分であった。
(2) Solid-liquid separation step Instead of the polymer particle slurry (1), the polymer particle slurry (2) is used as the crude product, the inside of the pressure vessel 2 is pressurized to 0.20 MPa, and the filtrate is added. The solid-liquid separation step when the amount of water becomes 2.24 kg (70% of the weight of water used in the polymerization step) or more and the internal pressure of the pressure vessel 2 becomes 0.16 MPa (80% of the pressure during pressurization) or less. The water as an aqueous medium was removed from the slurry (2) of polymer particles in the same manner as in the solid-liquid separation step of Example 1 except that the process was terminated. The total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.38 kg, and the medium (water) contained in the crude product P starts to pass through the filter medium 3. Then, the time T 1 from the end of the passage of the medium through the filter medium 3 was 73.9 minutes.
 (3)洗浄工程
 耐圧容器2の内部を0.20MPaに加圧し、濾液の導電率が、洗浄前の水の導電率の2.0倍以下(具体的には、15μS以下)となり、耐圧容器2の内圧が、0.16MPa(加圧時の圧力の80%)以下となるまで洗浄を行った以外は、実施例1の洗浄工程と同様にして、濾材3上の重合体粒子のケーキを洗浄し、濾材3上に洗浄後の重合体粒子を得た。なお、本実施例の洗浄工程で用いた洗浄液としての水の重量Gは、12kg(重合工程で得られた重合体粒子の15倍の重量)であり、上記重合工程で使用した界面活性剤の種類毎に上記算出式(4)により算出した洗浄液の重量の下限値Dの合計量10.7kg(8(g)÷1.5(g/100ml)×2000=10667(g))よりも多い重量であった。また、本実施例の洗浄工程において、洗浄液を濾材3に通過させることを開始してから、9.6kg(洗浄工程で用いた洗浄液としての水の重量Gの0.8倍の重量)の洗浄液が濾材3を通過するまでに費やした時間T(min)は、346.6分であった。
(3) Washing process The inside of the pressure vessel 2 is pressurized to 0.20 MPa, and the electrical conductivity of the filtrate is 2.0 times or less (specifically, 15 μS or less) of the water before washing, and the pressure vessel A cake of polymer particles on the filter medium 3 was prepared in the same manner as in the washing step of Example 1 except that washing was performed until the internal pressure of No. 2 was 0.16 MPa (80% of the pressure during pressurization) or less. The polymer particles after washing were obtained on the filter medium 3. The weight G 2 of water as the cleaning liquid used in the cleaning step of this example is 12 kg (15 times the weight of the polymer particles obtained in the polymerization step), and the surfactant used in the polymerization step. More than the total amount 10.7 kg (8 (g) ÷ 1.5 (g / 100 ml) × 2000 = 10667 (g)) of the lower limit D of the weight of the cleaning liquid calculated by the above calculation formula (4) for each type It was a heavy weight. Further, in the cleaning step of this embodiment, from the start of passing a cleaning liquid to the filter medium 3, 9.6 kg of (0.8 times the weight of the weight G 2 of water as the cleaning liquid used in the washing step) The time T 2 (min) spent for the cleaning liquid to pass through the filter medium 3 was 346.6 minutes.
 (4)後処理工程
 洗浄工程により得られた洗浄後の重合体粒子を、真空乾燥機で乾燥させ、気流分級機(日清エンジニアリング株式会社製の「ターボクラシファイア(TC-15)」)を用いて分級し、目的の重合体粒子を得た。
(4) Post-treatment step The polymer particles after washing obtained in the washing step are dried with a vacuum dryer, and an airflow classifier ("Turbo Classifier (TC-15)" manufactured by Nissin Engineering Co., Ltd.) is used. To obtain the desired polymer particles.
 〔実施例4:重合体粒子の製造例〕
 (1)重合工程
 種粒子として、種粒子の製造例1で得られた種粒子(1)のスラリーを固形分(種粒子)として4.2gに代えて、種粒子の製造例2で得られた種粒子(2)のスラリーを固形分(種粒子)として18.7g使用したこと以外は、実施例1の重合工程と同様にして、重合体粒子のスラリー(以下、スラリー(3)という)を、粗生成物として得た。
[Example 4: Production Example of Polymer Particles]
(1) Polymerization step As seed particles, the seed particle (1) slurry obtained in seed particle production example 1 is obtained in seed particle production example 2 in place of 4.2 g as the solid content (seed particles). Polymer particle slurry (hereinafter referred to as slurry (3)) in the same manner as in the polymerization step of Example 1 except that 18.7 g of the seed particle (2) slurry was used as the solid content (seed particle). Was obtained as a crude product.
 (2)固液分離工程
 粗生成物として、重合体粒子のスラリー(1)に代えて、重合体粒子のスラリー(3)を使用し、耐圧容器2の内部を0.15MPaに加圧し、濾液の量が2.24kg(重合工程で使用した水の重量の70%)以上となり、耐圧容器2の内圧が0.12MPa(加圧時の圧力の80%)以下となった時に固液分離工程を終了した以外は、実施例1の固液分離工程と同様にして、重合体粒子のスラリー(3)から水性媒体としての水を除去した。なお、本実施例の固液分離工程で得られた濾液(媒体)の総重量Gは2.50kgであり、粗生成物Pに含まれる媒体(水)を濾材3に通過させることを開始してから、前記媒体の濾材3の通過を終了させるまでの時間Tは49.7分であった。
(2) Solid-liquid separation step Instead of the polymer particle slurry (1), the polymer particle slurry (3) is used as the crude product, the inside of the pressure vessel 2 is pressurized to 0.15 MPa, and the filtrate is added. The solid-liquid separation step when the amount of water becomes 2.24 kg (70% of the weight of water used in the polymerization step) or more and the internal pressure of the pressure vessel 2 becomes 0.12 MPa (80% of the pressure during pressurization) or less. The water as an aqueous medium was removed from the polymer particle slurry (3) in the same manner as in the solid-liquid separation step of Example 1 except that the process was terminated. The total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.50 kg, and the medium (water) contained in the crude product P is started to pass through the filter medium 3. Then, the time T 1 until the passage of the medium through the filter medium 3 was 49.7 minutes.
 (3)洗浄工程
 耐圧容器2の内部を0.20MPaに加圧し、濾液の導電率が、洗浄前の水の導電率の2.0倍以下(具体的には、15μS以下)となり、耐圧容器2の内圧が、0.16MPa(加圧時の圧力の80%)以下となるまで洗浄を行った以外は、実施例1の洗浄工程と同様にして、濾材3上の重合体粒子のケーキを洗浄し、濾材3上に洗浄後の重合体粒子を得た。なお、本実施例の洗浄工程で用いた洗浄液としての水の重量Gは、12kg(重合工程で得られた重合体粒子の15倍の重量)であり、上記重合工程で使用した界面活性剤の種類毎に上記算出式(4)により算出した洗浄液の重量の下限値Dの合計量10.7kg(8(g)÷1.5(g/100ml)×2000=10667(g))よりも多い重量であった。また、本実施例の洗浄工程において、洗浄液を濾材3に通過させることを開始してから、9.6kg(洗浄工程で用いた洗浄液としての水の重量Gの0.8倍の重量)の洗浄液が濾材3を通過するまでに費やした時間T(min)は、119.7分であった。
(3) Washing process The inside of the pressure vessel 2 is pressurized to 0.20 MPa, and the electrical conductivity of the filtrate is 2.0 times or less (specifically, 15 μS or less) of the water before washing, and the pressure vessel A cake of polymer particles on the filter medium 3 was prepared in the same manner as in the washing step of Example 1 except that washing was performed until the internal pressure of No. 2 was 0.16 MPa (80% of the pressure during pressurization) or less. The polymer particles after washing were obtained on the filter medium 3. The weight G 2 of water as the cleaning liquid used in the cleaning step of this example is 12 kg (15 times the weight of the polymer particles obtained in the polymerization step), and the surfactant used in the polymerization step. More than the total amount 10.7 kg (8 (g) ÷ 1.5 (g / 100 ml) × 2000 = 10667 (g)) of the lower limit D of the weight of the cleaning liquid calculated by the above calculation formula (4) for each type It was a heavy weight. Further, in the cleaning step of this embodiment, from the start of passing a cleaning liquid to the filter medium 3, 9.6 kg of (0.8 times the weight of the weight G 2 of water as the cleaning liquid used in the washing step) The time T 2 (min) spent until the cleaning liquid passed through the filter medium 3 was 119.7 minutes.
 (4)後処理工程
 洗浄工程により得られた洗浄後の重合体粒子を、真空乾燥機で乾燥させ、気流分級機(日清エンジニアリング株式会社製の「ターボクラシファイア(TC-15)」)を用いて分級し、目的の重合体粒子を得た。
(4) Post-treatment step The polymer particles after washing obtained in the washing step are dried with a vacuum dryer, and an airflow classifier ("Turbo Classifier (TC-15)" manufactured by Nissin Engineering Co., Ltd.) is used. To obtain the desired polymer particles.
 〔実施例5:重合体粒子の製造例〕
 (1)重合工程
 上記単量体混合物において、スチレン系単量体としてのスチレン(St)を配合せず、(メタ)アクリル酸エステル系単量体としてのメタクリル酸メチル(MMA)の配合量を560gとし、多官能ビニル系単量体としてのエチレングリコールジメタクリレート(EGDMA)の配合量を240gとしたこと以外は、実施例1の重合工程と同様にして、重合体粒子のスラリー(以下、スラリー(4)という)を、粗生成物として得た。
[Example 5: Production example of polymer particles]
(1) Polymerization step In the monomer mixture, styrene (St) as a styrene monomer is not blended, and the amount of methyl methacrylate (MMA) as a (meth) acrylic ester monomer is blended. A slurry of polymer particles (hereinafter referred to as a slurry) was prepared in the same manner as in the polymerization step of Example 1 except that the amount was 560 g and the blending amount of ethylene glycol dimethacrylate (EGDMA) as a polyfunctional vinyl monomer was 240 g. (4)) was obtained as a crude product.
 (2)固液分離工程
 粗生成物として、重合体粒子のスラリー(1)に代えて、重合体粒子のスラリー(4)を使用し、耐圧容器2の内部を0.15MPaに加圧し、濾液の量が2.24kg(重合工程で使用した水の重量の70%)以上となり、耐圧容器2の内圧が0.12MPa(加圧時の圧力の80%)以下となった時に固液分離工程を終了した以外は、実施例1の固液分離工程と同様にして、重合体粒子のスラリー(4)から水性媒体としての水を除去した。なお、本実施例の固液分離工程で得られた濾液(媒体)の総重量Gは2.48kgであり、粗生成物Pに含まれる媒体(水)を濾材3に通過させることを開始してから、前記媒体の濾材3の通過を終了させるまでの時間Tは46.1分であった。
(2) Solid-liquid separation step Instead of the polymer particle slurry (1), the polymer particle slurry (4) is used as the crude product, the inside of the pressure vessel 2 is pressurized to 0.15 MPa, and the filtrate is added. The solid-liquid separation step when the amount of water becomes 2.24 kg (70% of the weight of water used in the polymerization step) or more and the internal pressure of the pressure vessel 2 becomes 0.12 MPa (80% of the pressure during pressurization) or less. The water as an aqueous medium was removed from the slurry (4) of polymer particles in the same manner as in the solid-liquid separation process of Example 1 except that the process was terminated. The total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.48 kg, and the medium (water) contained in the crude product P starts to pass through the filter medium 3. Then, the time T 1 from the end of the passage of the medium through the filter medium 3 was 46.1 minutes.
 (3)洗浄工程
 耐圧容器の内部を0.15MPaに加圧し、濾液の導電率が、洗浄前の水の導電率の2.0倍以下(具体的には、15μS以下)となり、耐圧容器2の内圧が、0.12MPa(加圧時の圧力の80%)以下となるまで洗浄を行った以外は、実施例1の洗浄工程と同様にして、濾材3上の重合体粒子のケーキを洗浄し、濾材3上に洗浄後の重合体粒子を得た。なお、本実施例の洗浄工程で用いた洗浄液としての水の重量Gは、12kg(重合工程で得られた重合体粒子の15倍の重量)であり、上記重合工程で使用した界面活性剤の種類毎に上記算出式(4)により算出した洗浄液の重量の下限値Dの合計量10.7kg(8(g)÷1.5(g/100ml)×2000=10667(g))よりも多い重量であった。また、本実施例の洗浄工程において、洗浄液を濾材3に通過させることを開始してから、9.6kg(洗浄工程で用いた洗浄液としての水の重量Gの0.8倍の重量)の洗浄液が濾材3を通過するまでに費やした時間T(min)は、263.7分であった。
(3) Washing process The inside of the pressure vessel is pressurized to 0.15 MPa, and the conductivity of the filtrate becomes 2.0 times or less (specifically, 15 μS or less) of the water before washing, and the pressure vessel 2 The cake of polymer particles on the filter medium 3 is washed in the same manner as in the washing step of Example 1 except that washing is performed until the internal pressure of 0.12 MPa or less (80% of the pressure at the time of pressurization) is reduced. Then, polymer particles after washing were obtained on the filter medium 3. The weight G 2 of water as the cleaning liquid used in the cleaning step of this example is 12 kg (15 times the weight of the polymer particles obtained in the polymerization step), and the surfactant used in the polymerization step. More than the total amount 10.7 kg (8 (g) ÷ 1.5 (g / 100 ml) × 2000 = 10667 (g)) of the lower limit D of the weight of the cleaning liquid calculated by the above calculation formula (4) for each type It was a heavy weight. Further, in the cleaning step of this embodiment, from the start of passing a cleaning liquid to the filter medium 3, 9.6 kg of (0.8 times the weight of the weight G 2 of water as the cleaning liquid used in the washing step) The time T 2 (min) spent until the cleaning liquid passed through the filter medium 3 was 263.7 minutes.
 (4)後処理工程
 洗浄工程により得られた洗浄後の重合体粒子を、真空乾燥機で乾燥させ、気流分級機(日清エンジニアリング株式会社製の「ターボクラシファイア(TC-15)」)を用いて分級し、目的の重合体粒子を得た。
(4) Post-treatment step The polymer particles after washing obtained in the washing step are dried with a vacuum dryer, and an airflow classifier ("Turbo Classifier (TC-15)" manufactured by Nissin Engineering Co., Ltd.) is used. To obtain the desired polymer particles.
 〔実施例6:重合体粒子の製造例〕
 (1)重合工程
 上記単量体混合物において、(メタ)アクリル酸エステル系単量体としてのメタクリル酸メチル(MMA)を配合せず、スチレン系単量体としてのスチレン(St)の配合量を560gとし、多官能ビニル系単量体としてのエチレングリコールジメタクリレート(EGDMA)の配合量を240gとしたこと以外は、実施例1の重合工程と同様にして、重合体粒子のスラリー(以下、スラリー(5)という)を、粗生成物として得た。
[Example 6: Production example of polymer particles]
(1) Polymerization step In the monomer mixture, methyl methacrylate (MMA) as a (meth) acrylic acid ester monomer is not blended, and the blending amount of styrene (St) as a styrene monomer is changed. A slurry of polymer particles (hereinafter referred to as a slurry) was prepared in the same manner as in the polymerization step of Example 1 except that the amount was 560 g and the blending amount of ethylene glycol dimethacrylate (EGDMA) as a polyfunctional vinyl monomer was 240 g. (5)) was obtained as a crude product.
 (2)固液分離工程
 粗生成物として、重合体粒子のスラリー(1)に代えて、重合体粒子のスラリー(5)を使用し、耐圧容器2の内部を0.15MPaに加圧し、濾液の量が2.24kg(重合工程で使用した水の重量の70%)以上となり、耐圧容器2の内圧が0.12MPa(加圧時の圧力の80%)以下となった時に固液分離工程を終了した以外は、実施例1の固液分離工程と同様にして、重合体粒子のスラリー(5)から水性媒体としての水を除去した。なお、本実施例の固液分離工程で得られた濾液(媒体)の総重量Gは2.48kgであり、粗生成物Pに含まれる媒体(水)を濾材3に通過させることを開始してから、前記媒体の濾材3の通過を終了させるまでの時間Tは45.3分であった。
(2) Solid-liquid separation step Instead of the polymer particle slurry (1), the polymer particle slurry (5) is used as a crude product, the inside of the pressure vessel 2 is pressurized to 0.15 MPa, and the filtrate is added. The solid-liquid separation step when the amount of water becomes 2.24 kg (70% of the weight of water used in the polymerization step) or more and the internal pressure of the pressure vessel 2 becomes 0.12 MPa (80% of the pressure during pressurization) or less. The water as an aqueous medium was removed from the slurry (5) of polymer particles in the same manner as in the solid-liquid separation step of Example 1 except that the process was terminated. The total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.48 kg, and the medium (water) contained in the crude product P starts to pass through the filter medium 3. Then, the time T 1 until the passage of the medium through the filter medium 3 was 45.3 minutes.
 (3)洗浄工程
 耐圧容器2の内部を0.10MPaに加圧し、濾液の導電率が、洗浄前の水の導電率の2.0倍以下(具体的には、15μS以下)となり、耐圧容器2の内圧が、0.08MPa(加圧時の圧力の80%)以下となるまで洗浄を行った以外は、実施例1の洗浄工程と同様にして、濾材3上の重合体粒子のケーキを洗浄し、濾材3上に洗浄後の重合体粒子を得た。なお、本実施例の洗浄工程で用いた洗浄液としての水の重量Gは、12kg(重合工程で得られた重合体粒子の15倍の重量)であり、上記重合工程で使用した界面活性剤の種類毎に上記算出式(4)により算出した洗浄液の重量の下限値Dの合計量10.7kg(8(g)÷1.5(g/100ml)×2000=10667(g))よりも多い重量であった。また、本実施例の洗浄工程において、洗浄液を濾材3に通過させることを開始してから、9.6kg(洗浄工程で用いた洗浄液としての水の重量Gの0.8倍の重量)の洗浄液が濾材3を通過するまでに費やした時間T(min)は、183.6分であった。
(3) Cleaning step The inside of the pressure vessel 2 is pressurized to 0.10 MPa, and the conductivity of the filtrate is 2.0 times or less (specifically, 15 μS or less) of the water before washing, and the pressure vessel A cake of polymer particles on the filter medium 3 was prepared in the same manner as in the cleaning step of Example 1 except that the cleaning was performed until the internal pressure of 2 became 0.08 MPa (80% of the pressure at the time of pressurization) or less. The polymer particles after washing were obtained on the filter medium 3. The weight G 2 of water as the cleaning liquid used in the cleaning step of this example is 12 kg (15 times the weight of the polymer particles obtained in the polymerization step), and the surfactant used in the polymerization step. More than the total amount 10.7 kg (8 (g) ÷ 1.5 (g / 100 ml) × 2000 = 10667 (g)) of the lower limit D of the weight of the cleaning liquid calculated by the above calculation formula (4) for each type It was a heavy weight. Further, in the cleaning step of this embodiment, from the start of passing a cleaning liquid to the filter medium 3, 9.6 kg of (0.8 times the weight of the weight G 2 of water as the cleaning liquid used in the washing step) The time T 2 (min) spent for the cleaning liquid to pass through the filter medium 3 was 183.6 minutes.
 (4)後処理工程
 洗浄工程により得られた洗浄後の重合体粒子を、真空乾燥機で乾燥させ、気流分級機(日清エンジニアリング株式会社製の「ターボクラシファイア(TC-15)」)を用いて分級し、目的の重合体粒子を得た。
(4) Post-treatment step The polymer particles after washing obtained in the washing step are dried with a vacuum dryer, and an airflow classifier ("Turbo Classifier (TC-15)" manufactured by Nissin Engineering Co., Ltd.) is used. To obtain the desired polymer particles.
 〔実施例7:重合体粒子の製造例〕
 (1)重合工程
 上記単量体混合物において、(メタ)アクリル酸エステル系単量体としてのメタクリル酸メチル(MMA)を配合せず、スチレン系単量体としてのスチレン(St)の配合量を560gとし、多官能ビニル系単量体として、エチレングリコールジメタクリレート(EGDMA)240gに代えて、ジビニルベンゼン(DVB)240gを配合したこと以外は、実施例1の重合工程と同様にして、重合体粒子のスラリー(以下、スラリー(6)という)を、粗生成物として得た。
[Example 7: Production example of polymer particles]
(1) Polymerization step In the monomer mixture, methyl methacrylate (MMA) as a (meth) acrylic acid ester monomer is not blended, and the blending amount of styrene (St) as a styrene monomer is changed. 560 g, a polymer similar to the polymerization step of Example 1 except that 240 g of divinylbenzene (DVB) was blended in place of 240 g of ethylene glycol dimethacrylate (EGDMA) as the polyfunctional vinyl monomer. A slurry of particles (hereinafter referred to as slurry (6)) was obtained as a crude product.
 (2)固液分離工程 
 粗生成物として、重合体粒子のスラリー(1)に代えて、重合体粒子のスラリー(6)を使用し、耐圧容器2の内部を0.10MPaに加圧し、濾液の量が2.24kg(重合工程で使用した水の重量の70%)以上となり、耐圧容器2の内圧が0.08MPa(加圧時の圧力の80%)以下となった時に固液分離工程を終了した以外は、実施例1の固液分離工程と同様にして、重合体粒子のスラリー(6)から水性媒体としての水を除去した。なお、本実施例の固液分離工程で得られた濾液(媒体)の総重量Gは2.50kgであり、粗生成物Pに含まれる媒体(水)を濾材3に通過させることを開始してから、前記媒体の濾材3の通過を終了させるまでの時間Tは77.2分であった。
(2) Solid-liquid separation process
As a crude product, instead of the polymer particle slurry (1), the polymer particle slurry (6) was used, the inside of the pressure vessel 2 was pressurized to 0.10 MPa, and the amount of filtrate was 2.24 kg ( Except that the solid-liquid separation process was completed when the pressure of the pressure vessel 2 became equal to or greater than 70% of the weight of water used in the polymerization process and the internal pressure of the pressure vessel 2 became equal to or less than 0.08 MPa (80% of the pressure during pressurization). In the same manner as in the solid-liquid separation step of Example 1, water as an aqueous medium was removed from the slurry (6) of polymer particles. The total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.50 kg, and the medium (water) contained in the crude product P is started to pass through the filter medium 3. Then, the time T 1 until the passage of the medium through the filter medium 3 was completed was 77.2 minutes.
 (3)洗浄工程
 耐圧容器2の内部を0.15MPaに加圧し、濾液の導電率が、洗浄前の水の導電率の2.0倍以下(具体的には、15μS以下)となり、耐圧容器2の内圧が、0.12MPa(加圧時の圧力の80%)以下となるまで洗浄を行った以外は、実施例1の洗浄工程と同様にして、濾材3上の重合体粒子のケーキを洗浄し、濾材3上に洗浄後の重合体粒子を得た。なお、本実施例の洗浄工程で用いた洗浄液としての水の重量Gは、12kg(重合工程で得られた重合体粒子の15倍の重量)であり、上記重合工程で使用した界面活性剤の種類毎に上記算出式(4)により算出した洗浄液の重量の下限値Dの合計量10.7kg(8(g)÷1.5(g/100ml)×2000=10667(g))よりも多い重量であった。また、本実施例の洗浄工程において、洗浄液を濾材3に通過させることを開始してから、9.6kg(洗浄工程で用いた洗浄液としての水の重量Gの0.8倍の重量)の洗浄液が濾材3を通過するまでに費やした時間T(min)は、151.9分であった。
(3) Washing process The inside of the pressure vessel 2 is pressurized to 0.15 MPa, and the conductivity of the filtrate becomes 2.0 times or less (specifically, 15 μS or less) of the water before washing, and the pressure vessel A cake of polymer particles on the filter medium 3 was prepared in the same manner as in the washing step of Example 1 except that washing was performed until the internal pressure of 2 was 0.12 MPa (80% of the pressure at the time of pressurization) or less. The polymer particles after washing were obtained on the filter medium 3. The weight G 2 of water as the cleaning liquid used in the cleaning step of this example is 12 kg (15 times the weight of the polymer particles obtained in the polymerization step), and the surfactant used in the polymerization step. More than the total amount 10.7 kg (8 (g) ÷ 1.5 (g / 100 ml) × 2000 = 10667 (g)) of the lower limit D of the weight of the cleaning liquid calculated by the above calculation formula (4) for each type It was a heavy weight. Further, in the cleaning step of this embodiment, from the start of passing a cleaning liquid to the filter medium 3, 9.6 kg of (0.8 times the weight of the weight G 2 of water as the cleaning liquid used in the washing step) The time T 2 (min) spent until the cleaning liquid passed through the filter medium 3 was 151.9 minutes.
 (4)後処理工程
 洗浄工程により得られた洗浄後の重合体粒子を、真空乾燥機で乾燥させ、気流分級機(日清エンジニアリング株式会社製の「ターボクラシファイア(TC-15)」)を用いて分級し、目的の重合体粒子を得た。
(4) Post-treatment step The polymer particles after washing obtained in the washing step are dried with a vacuum dryer, and an airflow classifier ("Turbo Classifier (TC-15)" manufactured by Nissin Engineering Co., Ltd.) is used. To obtain the desired polymer particles.
 〔実施例8:重合体粒子の製造例〕
 (1)重合工程
 アニオン性界面活性剤として、ジ(2-エチルヘキシル)スルホコハク酸ナトリウム(日油株式会社製の「ラピゾール(登録商標)A-80」、液温25℃の水に対する溶解度;1.5g/100ml)を純分として8gに代えて、上記式(A)で表されるポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム(第一工業製薬株式会社製の「ハイテノール(登録商標)NF08」、液温25℃の水に対する溶解度;1.2g/100ml)を純分として8g使用したこと以外は、実施例1の重合工程と同様にして、重合体粒子のスラリー(以下、スラリー(7)という)を、粗生成物として得た。
[Example 8: Production example of polymer particles]
(1) Polymerization Step As an anionic surfactant, sodium di (2-ethylhexyl) sulfosuccinate (“Lapisol (registered trademark) A-80” manufactured by NOF Corporation, solubility in water at a liquid temperature of 25 ° C .; 5 g / 100 ml) is replaced with 8 g as a pure component, and ammonium polyoxyethylene styrenated phenyl ether sulfate represented by the above formula (A) (“Hitenol (registered trademark) NF08” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) A slurry of polymer particles (hereinafter referred to as slurry (7)) was used in the same manner as in the polymerization step of Example 1 except that 8 g was used as a pure component (solubility in water at a liquid temperature of 25 ° C .; 1.2 g / 100 ml). Was obtained as a crude product.
 (2)固液分離工程
 粗生成物として、重合体粒子のスラリー(1)に代えて、重合体粒子のスラリー(7)を使用した以外は、実施例1の固液分離工程と同様にして、重合体粒子のスラリー(7)から水性媒体としての水を除去した。なお、本実施例の固液分離工程で得られた濾液(媒体)の総重量Gは2.44kgであり、粗生成物Pに含まれる媒体(水)を濾材3に通過させることを開始してから、前記媒体の濾材3の通過を終了させるまでの時間Tは60.1分であった。
(2) Solid-liquid separation step As the crude product, the same procedure as in the solid-liquid separation step of Example 1 was performed except that the polymer particle slurry (7) was used instead of the polymer particle slurry (1). Then, water as an aqueous medium was removed from the slurry (7) of polymer particles. The total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.44 kg, and the medium (water) contained in the crude product P is started to pass through the filter medium 3. Then, the time T 1 until the passage of the medium through the filter medium 3 was 60.1 minutes.
 (3)洗浄工程
 実施例1の洗浄工程と同様にして、濾材3上の重合体粒子のケーキを洗浄し、濾材3上に洗浄後の重合体粒子を得た。なお、本実施例の洗浄工程で用いた洗浄液としての水の重量Gは、15.0kg(重合工程で得られた重合体粒子の18.75倍の重量)であり、上記重合工程で使用した界面活性剤の種類毎に上記算出式(4)により算出した洗浄液の重量の下限値Dの合計量13.3kg(8(g)÷1.2(g/100ml)×2000=13333(g))よりも多い重量であった。た。また、本実施例の洗浄工程において、洗浄液を濾材3に通過させることを開始してから、12.0kg(洗浄工程で用いた洗浄液としての水の重量Gの0.8倍の重量)の洗浄液が濾材3を通過するまでに費やした時間T(min)は、311.7分であった。
(3) Washing Step In the same manner as in the washing step of Example 1, the polymer particle cake on the filter medium 3 was washed to obtain washed polymer particles on the filter medium 3. The weight G 2 of water as a cleaning solution used in the washing step of the present embodiment is 15.0 kg (18.75 times the weight of the resulting polymer particles in the polymerization process), used in the polymerization step 13.3 kg (8 (g) ÷ 1.2 (g / 100 ml) × 2000 = 13333 (g) of the lower limit D of the weight of the cleaning liquid calculated by the above calculation formula (4) for each type of surfactant )). It was. Further, in the cleaning step of this embodiment, from the start of passing a cleaning liquid to the filter medium 3, 12.0 kg of (0.8 times the weight of the weight G 2 of water as the cleaning liquid used in the washing step) The time T 2 (min) spent for the cleaning liquid to pass through the filter medium 3 was 311.7 minutes.
 (4)後処理工程
 洗浄工程により得られた洗浄後の重合体粒子を、真空乾燥機で乾燥させ、気流分級機(日清エンジニアリング株式会社製の「ターボクラシファイア(TC-15)」)を用いて分級し、目的の重合体粒子を得た。
(4) Post-treatment step The polymer particles after washing obtained in the washing step are dried with a vacuum dryer, and an airflow classifier ("Turbo Classifier (TC-15)" manufactured by Nissin Engineering Co., Ltd.) is used. To obtain the desired polymer particles.
 〔実施例9:重合体粒子の製造例〕
 (1)重合工程
 アニオン性界面活性剤として、ジ(2-エチルヘキシル)スルホコハク酸ナトリウム(日油株式会社製の「ラピゾール(登録商標)A-80」、液温25℃の水に対する溶解度;1.5g/100ml)を純分として8gに代えて、上記式(C)で表されるアルケニルコハク酸ジカリウム(花王株式会社製の「ラムテルASK」、液温25℃の水に対する溶解度;1.7g/100ml)を純分として8g使用したこと以外は、実施例1の重合工程と同様にして、重合体粒子のスラリー(以下、スラリー(8)という)を、粗生成物として得た。
[Example 9: Production example of polymer particles]
(1) Polymerization Step As an anionic surfactant, sodium di (2-ethylhexyl) sulfosuccinate (“Lapisol (registered trademark) A-80” manufactured by NOF Corporation, solubility in water at a liquid temperature of 25 ° C .; 5 g / 100 ml) is replaced by 8 g as a pure component, and dipotassium alkenyl succinate represented by the above formula (C) (“Ramtel ASK” manufactured by Kao Corporation, solubility in water at a liquid temperature of 25 ° C .; 1.7 g / A slurry of polymer particles (hereinafter referred to as slurry (8)) was obtained as a crude product in the same manner as in the polymerization step of Example 1 except that 8 g of 100 ml) was used as a pure component.
 (2)固液分離工程
 粗生成物として、重合体粒子のスラリー(1)に代えて、重合体粒子のスラリー(8)を使用した以外は、実施例1の固液分離工程と同様にして、重合体粒子のスラリー(8)から水性媒体としての水を除去した。なお、本実施例の固液分離工程で得られた濾液(媒体)の総重量Gは2.49kgであり、粗生成物Pに含まれる媒体(水)を濾材3に通過させることを開始してから、前記媒体の濾材3の通過を終了させるまでの時間Tは62.0分であった。
(2) Solid-Liquid Separation Step As the crude product, the same procedure as in the solid-liquid separation step of Example 1 was performed except that the polymer particle slurry (8) was used instead of the polymer particle slurry (1). Then, water as an aqueous medium was removed from the slurry (8) of polymer particles. The total weight G 1 of the solid-liquid filtrate obtained in the separation step of the present example (medium) is 2.49Kg, start to pass the medium (water) to the filter medium 3 contained in the crude product P Then, the time T 1 until the passage of the medium through the filter medium 3 was 62.0 minutes.
 (3)洗浄工程
 実施例1の洗浄工程と同様にして、濾材3上の重合体粒子のケーキを洗浄し、濾材3上に洗浄後の重合体粒子を得た。なお、本実施例の洗浄工程で用いた洗浄液としての水の重量Gは、12.0kg(重合工程で得られた重合体粒子の15倍の重量)であり、上記重合工程で使用した界面活性剤の種類毎に上記算出式(4)により算出した洗浄液の重量の下限値Dの合計量9.4kg(8(g)÷1.7(g/100ml)×2000=9412(g))よりも多い重量であった。また、本実施例の洗浄工程において、洗浄液を濾材3に通過させることを開始してから、9.6kg(洗浄工程で用いた洗浄液としての水の重量Gの0.8倍の重量)の洗浄液が濾材3を通過するまでに費やした時間T(min)は、250.7分であった。
(3) Washing Step In the same manner as in the washing step of Example 1, the polymer particle cake on the filter medium 3 was washed to obtain washed polymer particles on the filter medium 3. Surfactants The weight G 2 of water as a cleaning solution used in the washing step of the present embodiment is 12.0 kg (15 times the weight of the resulting polymer particles in the polymerization step), which was used in the polymerization step 9.4 kg (8 (g) ÷ 1.7 (g / 100 ml) × 2000 = 9412 (g)) of the lower limit D of the weight of the cleaning liquid calculated by the above calculation formula (4) for each type of activator It was more than the weight. Further, in the cleaning step of this embodiment, from the start of passing a cleaning liquid to the filter medium 3, 9.6 kg of (0.8 times the weight of the weight G 2 of water as the cleaning liquid used in the washing step) The time T 2 (min) spent for the cleaning liquid to pass through the filter medium 3 was 250.7 minutes.
 (4)後処理工程
 洗浄工程により得られた洗浄後の重合体粒子を、真空乾燥機で乾燥させ、気流分級機(日清エンジニアリング株式会社製の「ターボクラシファイア(TC-15)」)を用いて分級し、目的の重合体粒子を得た。
(4) Post-treatment step The polymer particles after washing obtained in the washing step are dried with a vacuum dryer, and an airflow classifier ("Turbo Classifier (TC-15)" manufactured by Nissin Engineering Co., Ltd.) is used. To obtain the desired polymer particles.
 〔実施例10:重合体粒子の製造例〕
 (1)重合工程
 アニオン性界面活性剤として、ジ(2-エチルヘキシル)スルホコハク酸ナトリウム(日油株式会社製の「ラピゾール(登録商標)A-80」、液温25℃の水に対する溶解度;1.5g/100ml)を純分として8gに代えて、上記式(A)で表されるポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム(第一工業製薬株式会社製の「ハイテノール(登録商標)NF08」、液温25℃の水に対する溶解度;1.2g/100ml)を純分として8g使用し、高分子分散安定剤としてのポリビニルアルコール(日本合成化学株式会社製の「ゴーセノール(登録商標)GM-14L」)40gに代えて、ノニオン性界面活性剤としての上記式(E)で表されるポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬株式会社製の「ノイゲン(登録商標)EA-167」、液温25℃の水に対する溶解度;1.1g/100ml)を純分として8g使用したこと以外は、実施例1の重合工程と同様にして、重合体粒子のスラリー(以下、スラリー(9)という)を、粗生成物として得た。
[Example 10: Production example of polymer particles]
(1) Polymerization Step As an anionic surfactant, sodium di (2-ethylhexyl) sulfosuccinate (“Lapisol (registered trademark) A-80” manufactured by NOF Corporation, solubility in water at a liquid temperature of 25 ° C .; 5 g / 100 ml) is replaced with 8 g as a pure component, and ammonium polyoxyethylene styrenated phenyl ether sulfate represented by the above formula (A) (“Hitenol (registered trademark) NF08” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 8g as a pure component was used as a polymer dispersion stabilizer ("GOHSENOL (registered trademark) GM-14L" manufactured by Nippon Synthetic Chemical Co., Ltd.). ]) In place of 40 g, polyoxyethylene styrenated phenyl represented by the above formula (E) as a nonionic surfactant Example 1 except that 8 g of ether (“Neugen® EA-167” manufactured by Daiichi Kogyo Seiyaku Co., Ltd., solubility in water at a liquid temperature of 25 ° C .; 1.1 g / 100 ml) was used as a pure component. In the same manner as in the polymerization step, a slurry of polymer particles (hereinafter referred to as slurry (9)) was obtained as a crude product.
 (2)固液分離工程
 粗生成物として、重合体粒子のスラリー(1)に代えて、重合体粒子のスラリー(9)を使用した以外は、実施例1の固液分離工程と同様にして、重合体粒子のスラリー(9)から水性媒体としての水を除去した。なお、本実施例の固液分離工程で得られた濾液(媒体)の総重量Gは2.44kgであり、粗生成物Pに含まれる媒体(水)を濾材3に通過させることを開始してから、前記媒体の濾材3の通過を終了させるまでの時間Tは65.8分であった。
(2) Solid-liquid separation step As the crude product, the same procedure as in the solid-liquid separation step of Example 1 was conducted except that the polymer particle slurry (9) was used instead of the polymer particle slurry (1). Then, water as an aqueous medium was removed from the slurry (9) of polymer particles. The total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.44 kg, and the medium (water) contained in the crude product P is started to pass through the filter medium 3. Then, the time T 1 from the end of the passage of the medium through the filter medium 3 was 65.8 minutes.
 (3)洗浄工程
 実施例1の洗浄工程と同様にして、濾材3上の重合体粒子のケーキを洗浄し、濾材3上に洗浄後の重合体粒子を得た。なお、本実施例の洗浄工程で用いた洗浄液としての水の重量Gは、30.0kg(重合工程で得られた重合体粒子の37.5倍の重量)であり、上記重合工程で使用した界面活性剤の種類毎に上記算出式(4)により算出した洗浄液の重量の下限値Dの量の合計量27.9kg({8(g)÷1.2(g/100ml)×2000}+{8(g)÷1.1(g/100ml)×2000}=13333+14545=27878(g))よりも多い重量であった。また、本実施例の洗浄工程において、洗浄液を濾材3に通過させることを開始してから、24.0kg(洗浄工程で用いた洗浄液としての水の重量Gの0.8倍の重量)の洗浄液が濾材3を通過するまでに費やした時間T(min)は、633.2分であった。
(3) Washing Step In the same manner as in the washing step of Example 1, the polymer particle cake on the filter medium 3 was washed to obtain washed polymer particles on the filter medium 3. The weight G 2 of water as a cleaning solution used in the washing step of the present embodiment is 30.0 kg (37.5 times the weight of the resulting polymer particles in the polymerization process), used in the polymerization step 27.9 kg ({8 (g) ÷ 1.2 (g / 100 ml) × 2000) of the amount of the lower limit value D of the weight of the cleaning liquid calculated by the above calculation formula (4) for each type of surfactant + {8 (g) ÷ 1.1 (g / 100 ml) × 2000} = 13333 + 14545 = 27878 (g)). In the cleaning process of this example, 24.0 kg (0.8 times the weight G 2 of the water used as the cleaning liquid in the cleaning process) was started after the cleaning liquid started to pass through the filter medium 3. The time T 2 (min) spent for the cleaning liquid to pass through the filter medium 3 was 633.2 minutes.
 (4)後処理工程
 洗浄工程により得られた洗浄後の重合体粒子を、真空乾燥機で乾燥させ、気流分級機(日清エンジニアリング株式会社製の「ターボクラシファイア(TC-15)」)を用いて分級し、目的の重合体粒子を得た。
(4) Post-treatment step The polymer particles after washing obtained in the washing step are dried with a vacuum dryer, and an airflow classifier ("Turbo Classifier (TC-15)" manufactured by Nissin Engineering Co., Ltd.) is used. To obtain the desired polymer particles.
 〔比較例1:重合体粒子の比較製造例〕
 (1)重合工程
 実施例1の重合工程と同様にして、重合体粒子のスラリー(以下、スラリー(1)という)を、粗生成物として得た。
[Comparative Example 1: Comparative production example of polymer particles]
(1) Polymerization step In the same manner as in the polymerization step of Example 1, a slurry of polymer particles (hereinafter referred to as slurry (1)) was obtained as a crude product.
 (2)固液分離工程
 耐圧容器2の内部を0.10MPaに加圧して、濾液の量が2.24kg(重合工程で使用した水の重量の70%)以上となり、耐圧容器2の内圧が0.08MPa(加圧時の圧力の80%)以下となった時に、当該固液分離工程を終了した以外は、実施例1の固液分離工程と同様にして、重合体粒子のスラリー(1)から水性媒体としての水を除去した。なお、本実施例の固液分離工程で得られた濾液(媒体)の総重量Gは2.49kgであり、粗生成物Pに含まれる媒体(水)を濾材3に通過させることを開始してから、前記媒体の濾材3の通過を終了させるまでの時間Tは82.5分であった。
(2) Solid-liquid separation process The inside of the pressure vessel 2 is pressurized to 0.10 MPa, the amount of the filtrate becomes 2.24 kg (70% of the weight of water used in the polymerization step) or more, and the internal pressure of the pressure vessel 2 is A slurry of polymer particles (1) was obtained in the same manner as in the solid-liquid separation step of Example 1, except that the solid-liquid separation step was terminated when the pressure became 0.08 MPa (80% of the pressure during pressurization) or less. ) To remove water as an aqueous medium. The total weight G 1 of the solid-liquid filtrate obtained in the separation step of the present example (medium) is 2.49Kg, start to pass the medium (water) to the filter medium 3 contained in the crude product P Then, the time T 1 from the end of the passage of the medium through the filter medium 3 was 82.5 minutes.
 (3)洗浄工程
 洗浄工程で用いる洗浄液としての水の重量Gを4.0kg(重合工程で得られた重合体粒子の5倍の重量)とし、耐圧容器2の内部を0.10MPaに加圧して、濾液の導電率が洗浄前の水の導電率の2.0倍以下(具体的には、15μS以下)となることを確認せず、耐圧容器2の内圧が、0.08MPa(加圧時の圧力の80%)以下となるまで洗浄を行った以外は、実施例1の洗浄工程と同様にして、濾材3上の重合体粒子のケーキを洗浄し、濾材3上に洗浄後の重合体粒子を得た。なお、本実施例の洗浄工程において、洗浄液を濾材3に通過させることを開始してから、3.2kg(洗浄工程で用いた洗浄液としての水の重量Gの0.8倍の重量)の洗浄液が濾材3を通過するまでに費やした時間T(min)は、74.1分であった。
(3) the weight G 2 of water as a cleaning liquid used in the cleaning process the washing step was 4.0 kg (5 times the weight of the resulting polymer particles in the polymerization process), pressurizing the interior of the pressure vessel 2 to 0.10MPa Without confirming that the conductivity of the filtrate is 2.0 times or less (specifically, 15 μS or less) of the water before washing, and the internal pressure of the pressure vessel 2 is 0.08 MPa (pressurization). The cake of polymer particles on the filter medium 3 is washed in the same manner as in the washing step of Example 1 except that washing is performed until the pressure becomes 80% or less of the pressure at the time of pressure. Polymer particles were obtained. In the cleaning process of this example, 3.2 kg (0.8 times the weight G 2 of the weight of water as the cleaning liquid used in the cleaning process) was started after the cleaning liquid started to pass through the filter medium 3. The time T 2 (min) spent for the cleaning liquid to pass through the filter medium 3 was 74.1 minutes.
 〔比較例2:重合体粒子の比較製造例〕
 (1)重合工程
 実施例1の重合工程と同様にして、重合体粒子のスラリー(以下、スラリー(1)という)を、粗生成物として得た。
[Comparative Example 2: Comparative production example of polymer particles]
(1) Polymerization step In the same manner as in the polymerization step of Example 1, a slurry of polymer particles (hereinafter referred to as slurry (1)) was obtained as a crude product.
 (2)固液分離工程
 耐圧容器2の内部を0.25MPaに加圧して、濾液の量が2.24kg(重合工程で使用した水の重量の70%)以上となり、耐圧容器2の内圧が0.20MPa(加圧時の圧力の80%)以下となった時に、当該固液分離工程を終了した以外は、実施例1の固液分離工程と同様にして、重合体粒子のスラリー(1)から水性媒体としての水を除去した。なお、本実施例の固液分離工程で得られた濾液(媒体)の総重量Gは2.45kgであり、粗生成物Pに含まれる媒体(水)を濾材3に通過させることを開始してから、前記媒体の濾材3の通過を終了させるまでの時間Tは19.5分であった。
(2) Solid-liquid separation process The inside of the pressure vessel 2 is pressurized to 0.25 MPa, the amount of the filtrate becomes 2.24 kg (70% of the weight of water used in the polymerization step) or more, and the internal pressure of the pressure vessel 2 is A slurry of polymer particles (1) was obtained in the same manner as in the solid-liquid separation step of Example 1 except that the solid-liquid separation step was terminated when the pressure became 0.20 MPa (80% of the pressure during pressurization) or less. ) To remove water as an aqueous medium. The total weight G 1 of the filtrate (medium) obtained in the solid-liquid separation step of this example is 2.45 kg, and the medium (water) contained in the crude product P is started to pass through the filter medium 3. Then, the time T 1 until the passage of the medium through the filter medium 3 was 19.5 minutes.
 (3)洗浄工程
 洗浄液としての水を8.0kg(重合工程で得られた重合体粒子の10倍の重量)以上使用し、耐圧容器2の内部を0.20MPaに加圧して、濾液の導電率が洗浄前の水の導電率の2.0倍以下となり、耐圧容器2の内圧が、0.16MPa(加圧時の圧力の80%)以下となるまで洗浄を行った以外は、実施例1の洗浄工程と同様にして、濾材3上の重合体粒子のケーキを洗浄し、濾材3上に洗浄後の重合体粒子を得た。なお、本実施例の洗浄工程で用いた洗浄液としての水の重量Gは、12.0kg(重合工程で得られた重合体粒子の15倍の重量)であり、上記重合工程で使用した界面活性剤の種類毎に上記算出式(4)により算出した洗浄液の重量の下限値Dの合計量10.7kg(8(g)÷1.5(g/100ml)×2000=10667(g))よりも多い重量であった。また、本実施例の洗浄工程において、洗浄液を濾材3に通過させることを開始してから、9.6kg(洗浄工程で用いた洗浄液としての水の重量Gの0.8倍の重量)の洗浄液が濾材3を通過するまでに費やした時間T(min)は、80.2分であった。
(3) Washing process The water used as a washing liquid is used in an amount of 8.0 kg (10 times the weight of the polymer particles obtained in the polymerization process) or more, and the inside of the pressure vessel 2 is pressurized to 0.20 MPa to conduct the filtrate. Except that cleaning was performed until the rate became 2.0 times or less the conductivity of water before cleaning, and the internal pressure of the pressure vessel 2 became 0.16 MPa (80% of the pressure at the time of pressurization) or less. The cake of polymer particles on the filter medium 3 was washed in the same manner as in the washing step 1 to obtain polymer particles after washing on the filter medium 3. Surfactants The weight G 2 of water as a cleaning solution used in the washing step of the present embodiment is 12.0 kg (15 times the weight of the resulting polymer particles in the polymerization step), which was used in the polymerization step Total amount 10.7 kg (8 (g) ÷ 1.5 (g / 100 ml) × 2000 = 10667 (g)) of the lower limit D of the weight of the cleaning liquid calculated by the above calculation formula (4) for each type of activator It was more than the weight. Further, in the cleaning step of this embodiment, from the start of passing a cleaning liquid to the filter medium 3, 9.6 kg of (0.8 times the weight of the weight G 2 of water as the cleaning liquid used in the washing step) The time T 2 (min) spent for the cleaning liquid to pass through the filter medium 3 was 80.2 minutes.
 実施例1~10及び比較例1~2について、重合工程で得られる重合体粒子のスラリーの番号(スラリーNo.)、このスラリーに含まれる重合体を構成する単量体混合物の組成(重合体組成)、固液分離工程におけるX値(濾材を通過した媒体の単位時間当たりの量(kg/min))の測定結果、洗浄工程におけるY値(濾材を通過した洗浄液の単位時間当たりの量(kg/min))の測定結果、洗浄工程で用いた洗浄液(水)の量(kg)、得られた重合体粒子の体積平均粒子径(μm)及び粒子径の変動係数(CV値(%))の測定結果、得られた重合体粒子中に含まれる(重合工程で使用した)界面活性剤の化合物名、得られた重合体粒子中の界面活性剤の含有量(ppm)の測定結果、得られた重合体粒子のTOF-SIMSによる測定結果(正イオンの総イオン強度及び負イオンの総イオン強度の合計に対する、界面活性剤に由来する負イオンのイオン強度の比(イオン強度比)、得られた重合体粒子のゲル分率(%)の測定結果、及び、重合体粒子の分散安定化時間の測定結果(分散液の調製から、粘度値の変化率が-1%超~1%未満となるまでの経過時間T)を表1に示す。また、実施例1~10及び比較例1~2の重合体粒子のTOF-SIMSによる測定結果の詳細、具体的には、TOF-SIMSにより検出された正イオンのフラグメントのイオン強度の合計(正イオンの総イオン強度)、TOF-SIMSにより検出された負イオンのフラグメントのイオン強度の合計(負イオンの総イオン強度)、TOF-SIMSにより検出された界面活性剤に由来する負イオンのうち最も高いイオン強度を示す負イオン(評価イオン種)、この負イオン(評価イオン種)のイオン強度、並びに、正イオンの総イオン強度及び負イオンの総イオン強度の合計に対する、負イオン(評価イオン種)のイオン強度の比(即ち、イオン強度比)を、表2に示す。 For Examples 1 to 10 and Comparative Examples 1 and 2, the number of the slurry of polymer particles obtained in the polymerization step (slurry No.), the composition of the monomer mixture constituting the polymer contained in this slurry (polymer) Composition), measurement result of X value in solid-liquid separation process (amount of medium passing through filter medium per unit time (kg / min)), Y value in cleaning process (amount of cleaning liquid passed through filter medium per unit time ( kg / min)), the amount (kg) of the cleaning liquid (water) used in the cleaning step, the volume average particle size (μm) of the obtained polymer particles, and the coefficient of variation (CV value (%)). ) Measurement results, the compound name of the surfactant (used in the polymerization step) contained in the obtained polymer particles, the measurement result of the surfactant content (ppm) in the obtained polymer particles, TOF-SIM of the obtained polymer particles Measurement results by (ratio of ionic strength of negative ions derived from surfactant to total ionic strength of positive ions and total ionic strength of negative ions (ionic strength ratio), gel fraction of the resulting polymer particles (%) Measurement results and measurement results of dispersion stabilization time of polymer particles (elapsed time T from the preparation of the dispersion until the rate of change in viscosity value exceeds -1% to less than 1%) The results are shown in Table 1. Further, the details of the measurement results of the polymer particles of Examples 1 to 10 and Comparative Examples 1 and 2 by TOF-SIMS, specifically, positive ion fragment ions detected by TOF-SIMS. Total strength (total ionic strength of positive ions), total ionic strength of negative ion fragments detected by TOF-SIMS (total ionic strength of negative ions), surfactant detected by TOF-SIMS Negative ion (evaluation ion species) showing the highest ion intensity among the derived negative ions, the ion intensity of this negative ion (evaluation ion species), and the total of the positive ion total ion intensity and the negative ion total ion intensity Table 2 shows the ionic strength ratio of negative ions (evaluated ionic species) (ie, ionic strength ratio).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例1~10及び比較例1~2の固液分離工程及び洗浄工程で使用した加圧濾過器1(図1参照)の濾材3(濾布)と濾過物(すなわち、粗生成物P)との界面の面積Aは、0.0104(m)である。このため、実施例1~10及び比較例1~2において、上記条件式(1)で示されるX値(濾材を通過した媒体の単位時間当たりの量(kg/min))の上限値は、0.0572kg/minとなる。また、上記条件式(2)で示されるY値(濾材を通過した洗浄液の単位時間当たりの量(kg/min))の上限値は、0.0884kg/minとなる。 The filter medium 3 (filter cloth) and the filtrate (that is, the crude product P) of the pressure filter 1 (see FIG. 1) used in the solid-liquid separation process and the washing process of Examples 1 to 10 and Comparative Examples 1 and 2 The area A of the interface is 0.0104 (m 2 ). Therefore, in Examples 1 to 10 and Comparative Examples 1 and 2, the upper limit value of the X value represented by the conditional expression (1) (the amount per unit time of the medium that has passed through the filter medium (kg / min)) is 0.0572 kg / min. In addition, the upper limit value of the Y value (the amount of the cleaning liquid that has passed through the filter medium per unit time (kg / min)) represented by the conditional expression (2) is 0.0884 kg / min.
 表1に示す結果より、固液分離工程におけるX値及び洗浄工程におけるY値が、それぞれ、上記上限値以下で、洗浄に使用した洗浄液(水)の量が8.0kg以上(重合体粒子の重量の10倍以上)である実施例1~10で得られる重合体粒子は、洗浄に使用した洗浄液(水)の量が8.0kg未満(重合体粒子の重量の10倍未満)である比較例1で得られる重合体粒子、及び、固液分離工程におけるX値及び洗浄工程におけるY値が上記上限値よりも大きい比較例2で得られる重合体粒子と比べて、イオン強度比が小さく、重合体粒子の表面における界面活性剤の量の少ないものであることが分かった。つまり、本発明の製造方法によれば、固液分離工程及び洗浄工程により、重合工程で使用した界面活性剤の重合体粒子表面への付着量を低減できることが認められた。 From the results shown in Table 1, the X value in the solid-liquid separation step and the Y value in the washing step are each not more than the above upper limit, and the amount of washing liquid (water) used for washing is not less than 8.0 kg (of the polymer particles). The polymer particles obtained in Examples 1 to 10 having a weight of 10 times or more are compared with the amount of the washing liquid (water) used for washing being less than 8.0 kg (less than 10 times the weight of the polymer particles). Compared to the polymer particles obtained in Example 1 and the polymer particles obtained in Comparative Example 2 in which the X value in the solid-liquid separation step and the Y value in the washing step are larger than the upper limit, the ionic strength ratio is small, It was found that the amount of surfactant on the surface of the polymer particles was small. That is, according to the production method of the present invention, it was recognized that the amount of the surfactant used in the polymerization step on the surface of the polymer particles can be reduced by the solid-liquid separation step and the washing step.
 また、界面活性剤の含有量が0ppm超~50ppm未満の範囲内にある実施例1~10の重合体粒子は、界面活性剤の含有量が156ppmの比較例1の重合体粒子と比べて、分散媒に分散させて分散液とした場合に、この分散液の粘度値が安定するまでの時間(すなわち、粘度値の変化率が-1%超~1%未満となるまでの時間)が短かった。すなわち、界面活性剤の含有量が0ppm超~50ppm未満の範囲内にある実施例1~10の重合体粒子は、界面活性剤の含有量が156ppmの比較例1の重合体粒子と比べて、分散媒に対して均一に分散するまでの時間が短いことが認められた。 Further, the polymer particles of Examples 1 to 10 in which the surfactant content is in the range of more than 0 ppm to less than 50 ppm, compared with the polymer particles of Comparative Example 1 having a surfactant content of 156 ppm, When a dispersion is prepared by dispersing in a dispersion medium, the time until the viscosity value of the dispersion is stabilized (that is, the time until the rate of change of the viscosity value exceeds -1% to less than 1%) is short. It was. That is, the polymer particles of Examples 1 to 10 having a surfactant content in the range of more than 0 ppm to less than 50 ppm are compared with the polymer particles of Comparative Example 1 having a surfactant content of 156 ppm. It was recognized that the time until the dispersion medium was uniformly dispersed was short.
 〔実施例11:光学フィルムの製造例〕
 10mlのサンプル管に、実施例1で得られた重合体粒子0.15gと、メチルエチルケトン0.90gとを添加し、超音波洗浄器(株式会社ヴェルヴォクリーア製「ULTRASONIC CLEANER VS-150」)を用いて1分間撹拌し、メチルエチルケトン中に重合体粒子を分散させて、分散液を得る。この分散液に、さらに、アクリル系樹脂(DIC株式会社製の「アクリディック(登録商標)A-811」)を2.10g添加し、上記超音波洗浄器で2分程度撹拌して、コーティング用樹脂組成物を得た。このコーティング用樹脂組成物を12時間静置させた後、コーティング用樹脂組成物にメチルエチルケトン5.40gを添加し、上記超音波洗浄器にて1分間撹拌して、コーティング用樹脂組成物の希釈液を得た。
[Example 11: Production example of optical film]
To a 10 ml sample tube, 0.15 g of the polymer particles obtained in Example 1 and 0.90 g of methyl ethyl ketone were added, and an ultrasonic cleaner (“ULTRASONIC CLEANER VS-150” manufactured by VervoCrea Inc.) was added. And stirred for 1 minute to disperse the polymer particles in methyl ethyl ketone to obtain a dispersion. To this dispersion, 2.10 g of acrylic resin (“Acridic (registered trademark) A-811” manufactured by DIC Corporation) was further added, and the mixture was stirred for about 2 minutes with the above ultrasonic cleaner. A resin composition was obtained. After this coating resin composition was allowed to stand for 12 hours, 5.40 g of methyl ethyl ketone was added to the coating resin composition, and the mixture was stirred for 1 minute with the ultrasonic cleaner to dilute the coating resin composition. Got.
 得られたコーティング用樹脂組成物の希釈液をPETフィルム上に、75μmスリットのコーターを使用して塗工した。塗工後、温度を70℃に保った乾燥機に入れて1時間放置することにより、光学フィルムを得た。 The obtained diluted resin composition for coating was coated on a PET film using a 75 μm slit coater. After coating, the film was placed in a drier maintained at 70 ° C. and left for 1 hour to obtain an optical film.
 〔実施例12:光学フィルムの製造例〕
 実施例1で得られた重合体粒子0.15gに代えて、実施例2で得られた重合体粒子0.15gを使用した以外は、実施例11と同様にして、光学フィルムを得た。
[Example 12: Production example of optical film]
An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 2 was used instead of 0.15 g of the polymer particles obtained in Example 1.
 〔実施例13:光学フィルムの製造例〕
 実施例1で得られた重合体粒子0.15gに代えて、実施例3で得られた重合体粒子0.15gを使用した以外は、実施例11と同様にして、光学フィルムを得た。
[Example 13: Production example of optical film]
An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 3 was used instead of 0.15 g of the polymer particles obtained in Example 1.
 〔実施例14:光学フィルムの製造例〕
 実施例1で得られた重合体粒子0.15gに代えて、実施例4で得られた重合体粒子0.15gを使用した以外は、実施例11と同様にして、光学フィルムを得た。
[Example 14: Production example of optical film]
An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 4 was used instead of 0.15 g of the polymer particles obtained in Example 1.
 〔実施例15:光学フィルムの製造例〕
 実施例1で得られた重合体粒子0.15gに代えて、実施例5で得られた重合体粒子0.15gを使用した以外は、実施例11と同様にして、光学フィルムを得た。
[Example 15: Production example of optical film]
An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 5 was used instead of 0.15 g of the polymer particles obtained in Example 1.
 〔実施例16:光学フィルムの製造例〕
 実施例1で得られた重合体粒子0.15gに代えて、実施例6で得られた重合体粒子0.15gを使用した以外は、実施例11と同様にして、光学フィルムを得た。
[Example 16: Production example of optical film]
An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 6 was used instead of 0.15 g of the polymer particles obtained in Example 1.
 〔実施例17:光学フィルムの製造例〕
 実施例1で得られた重合体粒子0.15gに代えて、実施例7で得られた重合体粒子0.15gを使用した以外は、実施例11と同様にして、光学フィルムを得た。
[Example 17: Production example of optical film]
An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 7 was used instead of 0.15 g of the polymer particles obtained in Example 1.
 〔実施例18:光学フィルムの製造例〕
 実施例1で得られた重合体粒子0.15gに代えて、実施例8で得られた重合体粒子0.15gを使用した以外は、実施例11と同様にして、光学フィルムを得た。
[Example 18: Production example of optical film]
An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 8 was used instead of 0.15 g of the polymer particles obtained in Example 1.
 〔実施例19:光学フィルムの製造例〕
 実施例1で得られた重合体粒子0.15gに代えて、実施例9で得られた重合体粒子0.15gを使用した以外は、実施例11と同様にして、光学フィルムを得た。
[Example 19: Production example of optical film]
An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 9 was used instead of 0.15 g of the polymer particles obtained in Example 1.
  〔実施例20:光学フィルムの製造例〕
 実施例1で得られた重合体粒子0.15gに代えて、実施例10で得られた重合体粒子0.15gを使用した以外は、実施例11と同様にして、光学フィルムを得た。
[Example 20: Production example of optical film]
An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Example 10 was used instead of 0.15 g of the polymer particles obtained in Example 1.
 〔比較例3:光学フィルムの比較製造例〕
 実施例1で得られた重合体粒子0.15gに代えて、比較例1で得られた重合体粒子0.15gを使用した以外は、実施例11と同様にして、光学フィルムを得た。
[Comparative Example 3: Comparative production example of optical film]
An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Comparative Example 1 was used instead of 0.15 g of the polymer particles obtained in Example 1.
 〔比較例4:光学フィルムの比較製造例〕
 実施例1で得られた重合体粒子0.15gに代えて、比較例1で得られた重合体粒子0.15gを使用し、コーティング用樹脂組成物の静置時間を12時間から24時間に変更した以外は、実施例11と同様にして、光学フィルムを得た。
[Comparative Example 4: Comparative production example of optical film]
Instead of 0.15 g of the polymer particles obtained in Example 1, 0.15 g of the polymer particles obtained in Comparative Example 1 was used, and the standing time of the coating resin composition was changed from 12 hours to 24 hours. The optical film was obtained like Example 11 except having changed.
 〔比較例5:光学フィルムの比較製造例〕
 実施例1で得られた重合体粒子0.15gに代えて、比較例2で得られた重合体粒子0.15gを使用した以外は、実施例11と同様にして、光学フィルムを得た。
[Comparative Example 5: Comparative Production Example of Optical Film]
An optical film was obtained in the same manner as in Example 11 except that 0.15 g of the polymer particles obtained in Comparative Example 2 was used instead of 0.15 g of the polymer particles obtained in Example 1.
 実施例11~20並びに比較例3~5の光学フィルムについて、以下に示す方法により、光学特性を評価した。 The optical properties of the optical films of Examples 11 to 20 and Comparative Examples 3 to 5 were evaluated by the following method.
 〔光学特性の評価方法〕
 光学フィルムを6cm×6cmの正方形状にカットしたものを試験片とする。試験片のコーティング用樹脂組成物が塗工された面の上下左右の4つの端部及び中央部(計5箇所)のそれぞれのヘイズを、JIS K 7136に従って、日本電色工業株式会社製の「NDH-4000」を使用して測定する。そして、測定した5箇所のヘイズ(%)の最大値、最小値、及び平均値を用いて、以下の算出式により、ヘイズ差(%)を算出し、そのヘイズ差(%)を、以下の評価基準により評価した。
[Evaluation method of optical characteristics]
A test piece is obtained by cutting an optical film into a 6 cm × 6 cm square shape. According to JIS K 7136, the haze of each of the four ends of the upper, lower, left, and right sides of the surface of the test piece coated with the coating resin composition and the central portion (total of 5 locations) manufactured by Nippon Denshoku Industries Co. Measure using "NDH-4000". Then, using the measured maximum value, minimum value, and average value of the haze (%) at five locations, the haze difference (%) is calculated by the following calculation formula, and the haze difference (%) is calculated as follows: Evaluation was based on the evaluation criteria.
 <ヘイズ差(%)の算出式>
 R={(HzMAX-HzMIN)/HzAVE)}×100
 R:ヘイズ差(%)
 HzMAX:5箇所のヘイズ(%)の最大値
 HzMIN:5箇所のヘイズ(%)の最小値
 HzAVE:5箇所のヘイズ(%)の平均値
 <評価基準>
 ◎:ヘイズ差が0.5%未満
 ○:ヘイズ差が0.5%以上1.0%未満
 △:ヘイズ差が1.0%以上3.0%未満
 ×:ヘイズ差が3.0以上
<Calculation formula of haze difference (%)>
R = {(Hz MAX −Hz MIN ) / Hz AVE )} × 100
R: Haze difference (%)
Hz MAX : Maximum value of 5 hazes (%) Hz MIN : Minimum value of 5 hazes (%) Hz AVE : Average value of 5 hazes (%) <Evaluation Criteria>
◎: Haze difference is less than 0.5% ○: Haze difference is 0.5% or more and less than 1.0% △: Haze difference is 1.0% or more and less than 3.0% ×: Haze difference is 3.0 or more
 実施例11~20並びに比較例3~5の光学フィルムについて、光学フィルムの製造に使用した重合体粒子の実施例番号及び界面活性剤含有量、コーティング用樹脂組成物の静置時間、並びに、光学フィルムの光学特性の評価結果を表3に示す。 For the optical films of Examples 11 to 20 and Comparative Examples 3 to 5, the Example number and surfactant content of the polymer particles used in the production of the optical film, the standing time of the coating resin composition, and the optical Table 3 shows the evaluation results of the optical properties of the film.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 界面活性剤の含有量が0ppm超~50ppm未満の範囲内にある重合体粒子を含むコーティング用樹脂組成物を塗工してなる光学フィルム(実施例11~20の光学フィルム)は、界面活性剤の含有量が50ppm以上の重合体粒子を含むコーティング用樹脂組成物を塗工してなる光学フィルム(比較例3~5)と比べて、ヘイズ差が少なく、光拡散性のむらが少ないものであることが認められた。すなわち、界面活性剤の含有量が0ppm超~50ppm未満の範囲内にある重合体粒子を含む光学フィルムでは、安定した光学特性(防眩性及び光拡散性)が得られることが認められた。 An optical film (optical film of Examples 11 to 20) obtained by coating a coating resin composition containing polymer particles having a surfactant content in the range of more than 0 ppm and less than 50 ppm is a surfactant. Compared with optical films (Comparative Examples 3 to 5) obtained by coating a coating resin composition containing polymer particles having a polymer content of 50 ppm or more, the haze difference is small and the light diffusibility is less uneven. It was recognized that That is, it was confirmed that stable optical characteristics (antiglare property and light diffusibility) can be obtained in an optical film including polymer particles having a surfactant content in the range of more than 0 ppm and less than 50 ppm.
 また、界面活性剤の含有量が50ppm以上の比較例1の重合体粒子は、表1に示す結果から、静置時間を16時間以上とすることで粘度が安定し、分散媒に均一に分散する(分散状態が安定化する)ことが認められたため、比較例4の光学フィルムの作製において、コーティング用樹脂組成物の静置時間を24時間として、コーティング用樹脂組成物中に重合体粒子が均一に分散するようにしたが、表3に示されるように、比較例4の光学フィルムでは、ヘイズ差が大きく、安定した光学特性が得られなかった。 Further, from the results shown in Table 1, the polymer particles of Comparative Example 1 having a surfactant content of 50 ppm or more have a stable viscosity when the standing time is 16 hours or more, and are uniformly dispersed in the dispersion medium. In the production of the optical film of Comparative Example 4, the standing time of the coating resin composition was set to 24 hours, and the polymer particles were contained in the coating resin composition. Although it was made to disperse | distribute uniformly, in Table 3, as for the optical film of the comparative example 4, the haze difference was large and the stable optical characteristic was not acquired.
 これに対して、界面活性剤の含有量が0ppm超~50ppm未満の範囲内にある実施例1~10、及び界面活性剤の含有量が59ppmである比較例2の重合体粒子は、表1に示す結果より、11時間~13時間と短い時間で、粘度が安定し、分散媒に均一に分散する(分散状態が安定化する)と認められた。そこで、実施例1~10の重合体粒子を使用する実施例11~20の光学フィルムの作製及び比較例2の重合体粒子を使用する比較例5の光学フィルムの作製においては、コーティング用樹脂組成物の静置時間を12時間として、コーティング用樹脂組成物中に重合体粒子が均一に分散するようにした。 In contrast, the polymer particles of Examples 1 to 10 having a surfactant content in the range of more than 0 ppm to less than 50 ppm and Comparative Example 2 having a surfactant content of 59 ppm are shown in Table 1. From the results shown in the above, it was confirmed that the viscosity was stabilized and dispersed uniformly in the dispersion medium (dispersion state was stabilized) in a short time of 11 to 13 hours. Therefore, in the production of the optical films of Examples 11 to 20 using the polymer particles of Examples 1 to 10 and the production of the optical film of Comparative Example 5 using the polymer particles of Comparative Example 2, the resin composition for coating is used. The standing time of the product was set to 12 hours so that the polymer particles were uniformly dispersed in the coating resin composition.
 この結果、表3に示されるように、界面活性剤の含有量が0ppm超~50ppm未満の範囲内にある実施例1~10の重合体粒子を使用して作製された実施例11~20の光学フィルムでは、ヘイズ差が小さく、安定した光学特性が得られた。一方、界面活性剤の含有量が59ppmである比較例2を使用して作製した比較例5の光学フィルムでは、実施例11~20の光学フィルムと比べて、ヘイズ差が大きく、安定した光学特性が得られなかった。 As a result, as shown in Table 3, Examples 11 to 20 produced using the polymer particles of Examples 1 to 10 having a surfactant content in the range of more than 0 ppm to less than 50 ppm. In the optical film, the haze difference was small and stable optical characteristics were obtained. On the other hand, the optical film of Comparative Example 5 produced using Comparative Example 2 having a surfactant content of 59 ppm has a large haze difference and stable optical properties compared to the optical films of Examples 11 to 20. Was not obtained.
 このことから、界面活性剤の含有量が0ppm超~50ppm未満の範囲内にある重合体粒子は、当該重合体粒子をバインダーに分散させて得られるコーティング用樹脂組成物をフィルム基材上へ塗工して塗膜を形成する過程において、前記樹脂組成物中での分散状態をほぼ安定に維持することができ、光学フィルムに安定した光学特性を付与できる分散安定性に優れたものであると言える。また、界面活性剤の含有量が0ppm超~50ppm未満の範囲内にある重合体粒子を含むコーティング用樹脂組成物を塗工してなる光学フィルムは、上記したように、ヘイズ差が少なく、光学特性が安定しており、品質安定性に優れると言える。 Accordingly, polymer particles having a surfactant content in the range of more than 0 ppm to less than 50 ppm are coated on a film substrate with a coating resin composition obtained by dispersing the polymer particles in a binder. In the process of forming a coating film by processing, the dispersion state in the resin composition can be maintained almost stably, and the dispersion stability can be imparted to the optical film with stable optical properties. I can say that. In addition, as described above, an optical film obtained by coating a coating resin composition containing polymer particles having a surfactant content in the range of more than 0 ppm to less than 50 ppm has a small haze difference, and an optical film. It can be said that the characteristics are stable and the quality is excellent.
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
 また、この出願は、2013年9月30日に日本で出願された特願2013-204577に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。 This application claims priority based on Japanese Patent Application No. 2013-204577 filed in Japan on September 30, 2013. By this reference, the entire contents thereof are incorporated into the present application.
1 加圧濾過器
2 耐圧容器
3 濾材
R 濾材と被濾過物との界面(脱液面)の径
P 粗生成物
S 濾材の上側空間
 
DESCRIPTION OF SYMBOLS 1 Pressure filter 2 Pressure-resistant container 3 Filter medium R The diameter P of the interface (liquid removal surface) of a filter medium and a to-be-filtered material R Crude product S Upper space of filter medium

Claims (14)

  1.  界面活性剤の含有量が0ppm超~50ppm未満であることを特徴とする重合体粒子。 Polymer particles, wherein the surfactant content is more than 0 ppm and less than 50 ppm.
  2.  請求項1に記載の重合体粒子であって、
     飛行時間型2次イオン質量分析計により測定される、正イオンの総イオン強度及び負イオンの総イオン強度の合計に対する、前記界面活性剤に由来する負イオンのイオン強度の比が、0.01×10-4~2.00×10-4であることを特徴とする重合体粒子。 
    The polymer particles according to claim 1,
    The ratio of the ionic strength of the negative ions derived from the surfactant to the sum of the total ionic strength of the positive ions and the total ionic strength of the negative ions, measured by a time-of-flight secondary ion mass spectrometer, is 0.01. A polymer particle having a size of × 10 −4 to 2.00 × 10 −4 .
  3.  請求項1又は2に記載の重合体粒子であって、
     前記界面活性剤が、アニオン性界面活性剤及びノニオン性界面活性剤の少なくとも一方を含むことを特徴とする重合体粒子。
    The polymer particles according to claim 1 or 2,
    The polymer particles, wherein the surfactant contains at least one of an anionic surfactant and a nonionic surfactant.
  4.  請求項1~3のいずれか1つに記載の重合体粒子であって、
     当該重合体粒子を構成する重合体が、(メタ)アクリル系重合体、スチレン系重合体、及び、(メタ)アクリル-スチレン系共重合体のうちの何れかであることを特徴とする重合体粒子。
    The polymer particles according to any one of claims 1 to 3,
    The polymer constituting the polymer particles is any one of a (meth) acrylic polymer, a styrene polymer, and a (meth) acryl-styrene copolymer. particle.
  5.  請求項1~4のいずれか1つに記載の重合体粒子であって、
     粒子径の変動係数が15%以下であることを特徴とする重合体粒子。
    Polymer particles according to any one of claims 1 to 4, comprising
    Polymer particles having a coefficient of variation in particle diameter of 15% or less.
  6.  請求項1~5のいずれか1つに記載の重合体粒子であって、
     ゲル分率90%以上であることを特徴とする重合体粒子。
    The polymer particles according to any one of claims 1 to 5,
    A polymer particle having a gel fraction of 90% or more.
  7.  請求項1~6のいずれか1つに記載の重合体粒子であって、
     界面活性剤の存在下で、ビニル系単量体を種粒子に吸収させて重合することによって得られることを特徴とする重合体粒子。
    The polymer particles according to any one of claims 1 to 6,
    Polymer particles obtained by polymerizing a vinyl monomer by absorbing the vinyl monomer in the presence of a surfactant.
  8.  請求項1~7のいずれか1つに記載の重合体粒子であって、
     光学部材用であることを特徴とする重合体粒子。
    Polymer particles according to any one of claims 1 to 7, comprising
    Polymer particles for optical members.
  9.  請求項1~8のいずれか1つに記載の重合体粒子であって、
     防眩部材用であることを特徴とする重合体粒子。
    The polymer particles according to any one of claims 1 to 8,
    Polymer particles for use in an antiglare member.
  10.  請求項1~7のいずれか1つに記載の重合体粒子と、バインダーとを含むコーティング用樹脂組成物を、フィルム基材上に塗工してなることを特徴とする光学フィルム。 An optical film obtained by coating a coating resin composition containing the polymer particles according to any one of claims 1 to 7 and a binder on a film substrate.
  11.  請求項10に記載の光学フィルムであって、
     防眩用であることを特徴とする光学フィルム。
    The optical film according to claim 10,
    An optical film characterized by being used for antiglare.
  12.  請求項1~7のいずれか1つに記載の重合体粒子と、透明樹脂とを含む成形用樹脂組成物を、成形してなることを特徴とする樹脂成形体。 8. A resin molded article obtained by molding a molding resin composition comprising the polymer particles according to any one of claims 1 to 7 and a transparent resin.
  13.  重合体粒子の製造方法であって、
     液状の媒体中、界面活性剤の存在下で、ビニル系単量体を重合させて、前記界面活性剤を含む重合体粒子と前記媒体とを含む粗生成物を得る重合工程と、
     濾過器に前記粗生成物を投入し、投入した前記粗生成物に含まれる媒体を前記濾過器の濾材に通過させる一方、前記粗生成物に含まれる重合体粒子を前記濾材上に保持させる固液分離工程と、
     前記重合体粒子を前記濾材上に保持した前記濾過器に洗浄液を投入し、前記洗浄液を前記重合体粒子と接触させて、前記重合体粒子と接触した前記洗浄液を前記濾材に通過させることによって、前記洗浄液で洗浄された重合体粒子を前記濾材上に得る洗浄工程とを含み、
     前記固液分離工程において、前記濾材を通過した前記媒体の単位時間当たりの量が、下記条件式(1);
     X≦5.50×A ・・・(1)
    (式(1)中、Xは、前記濾材を通過した前記媒体の単位時間当たりの量(kg/min)を意味し、Aは、濾材と被濾過物との界面の面積(m)を意味する)を満たし、
     前記洗浄工程において、前記濾材を通過した前記洗浄液の単位時間当たりの量が、下記条件式(2);
     Y≦8.50×A ・・・(2)
    (式(2)中、Yは、前記濾材を通過した前記洗浄液の単位時間当たりの量(kg/min)を意味し、Aは、濾材と被濾過物との界面の面積(m)を意味する。)を満たし、
     前記洗浄工程では、前記濾材上に保持された重合体粒子の重量の10倍以上の重量の洗浄液を用いることを特徴とする重合体粒子の製造方法。
    A method for producing polymer particles, comprising:
    A polymerization step in which a vinyl monomer is polymerized in the presence of a surfactant in a liquid medium to obtain a crude product including the polymer particles including the surfactant and the medium;
    The crude product is charged into a filter, and the medium contained in the charged crude product is allowed to pass through the filter medium of the filter, while the polymer particles contained in the crude product are retained on the filter medium. A liquid separation step;
    By introducing a cleaning liquid into the filter holding the polymer particles on the filter medium, bringing the cleaning liquid into contact with the polymer particles, and passing the cleaning liquid in contact with the polymer particles through the filter medium, A washing step of obtaining polymer particles washed with the washing liquid on the filter medium,
    In the solid-liquid separation step, the amount per unit time of the medium that has passed through the filter medium is the following conditional expression (1);
    X ≦ 5.50 × A (1)
    (In Formula (1), X means the amount (kg / min) per unit time of the medium that has passed through the filter medium, and A represents the area (m 2 ) of the interface between the filter medium and the object to be filtered). Meaning)
    In the washing step, the amount per unit time of the washing liquid that has passed through the filter medium is the following conditional expression (2):
    Y ≦ 8.50 × A (2)
    (In Formula (2), Y means the amount (kg / min) per unit time of the cleaning liquid that has passed through the filter medium, and A represents the area (m 2 ) of the interface between the filter medium and the object to be filtered). Means)
    In the washing step, a washing liquid having a weight 10 times or more of the weight of the polymer particles held on the filter medium is used.
  14.  請求項13に記載の重合体粒子の製造方法であって、
     前記重合工程が、液状の媒体中、種粒子及び界面活性剤の存在下で、ビニル系単量体をシード重合させて、前記界面活性剤を含む重合体粒子と前記媒体とを含む粗生成物を得ることを含むことを特徴とする重合体粒子の製造方法。
    It is a manufacturing method of the polymer particles according to claim 13,
    The polymerization step comprises seeding a vinyl monomer in the presence of seed particles and a surfactant in a liquid medium, and a crude product containing the polymer particles containing the surfactant and the medium. A process for producing polymer particles, comprising obtaining
PCT/JP2014/058618 2013-09-30 2014-03-26 Polymer particles, process for producing same, and use thereof WO2015045448A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015538928A JP6410266B2 (en) 2013-09-30 2014-03-26 Method for producing polymer particles
KR1020167008406A KR101790509B1 (en) 2013-09-30 2014-03-26 Polymer particles, process for producing same, and use thereof
CN201480054204.1A CN105593248B (en) 2013-09-30 2014-03-26 Polymer beads, its manufacturing method, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-204577 2013-09-30
JP2013204577 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015045448A1 true WO2015045448A1 (en) 2015-04-02

Family

ID=52742608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058618 WO2015045448A1 (en) 2013-09-30 2014-03-26 Polymer particles, process for producing same, and use thereof

Country Status (4)

Country Link
JP (4) JP6410266B2 (en)
KR (1) KR101790509B1 (en)
CN (1) CN105593248B (en)
WO (1) WO2015045448A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056529A1 (en) * 2015-09-30 2017-04-06 積水化成品工業株式会社 Polymer particles and use thereof
JP2017179335A (en) * 2016-03-29 2017-10-05 積水化成品工業株式会社 Polymer particle, manufacturing method and application thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889603A (en) * 1981-11-24 1983-05-28 Denki Kagaku Kogyo Kk Manufacture of copolymer
JPH041202A (en) * 1990-04-18 1992-01-06 Agency Of Ind Science & Technol Production of fine polymer bead having heat sensitive characteristics
JPH06289660A (en) * 1993-04-06 1994-10-18 Konica Corp Carrier for electrostatic charge image developing
JPH08100022A (en) * 1994-09-30 1996-04-16 Nippon Zeon Co Ltd Production of highly pure polymer
JP2006233055A (en) * 2005-02-25 2006-09-07 Jsp Corp Light-diffusing agent and method for producing light-diffusing agent and light-diffusing sheet
JP2008007666A (en) * 2006-06-30 2008-01-17 Jsr Corp Optical material composition, method for producing the same, and optical material molded article
JP2009138034A (en) * 2007-12-03 2009-06-25 Nippon Shokubai Co Ltd Particles and method for manufacturing the same
JP2009538965A (en) * 2006-05-31 2009-11-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for reducing fluorosurfactant content of fluoropolymer dispersion using anion exchange resin treated with anionic surfactant
JP2011252054A (en) * 2010-06-01 2011-12-15 Asahi Glass Co Ltd Method for producing aqueous fluorine-containing polymer dispersion and aqueous fluorine-containing polymer dispersion
JP2012224735A (en) * 2011-04-19 2012-11-15 Sumitomo Chemical Co Ltd Resin composition, optical film, and liquid crystal display device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372713A (en) * 1986-09-12 1988-04-02 Nitto Electric Ind Co Ltd Production of solvent-resistant fine particle of uniform particle diameter
JPH0791348B2 (en) * 1987-01-30 1995-10-04 日本合成ゴム株式会社 Method for producing crosslinked polymer particles
JPH07173217A (en) * 1993-12-17 1995-07-11 Kanegafuchi Chem Ind Co Ltd Production of resin powder
JPH07238105A (en) * 1994-08-19 1995-09-12 Japan Synthetic Rubber Co Ltd Particle of highly crosslinked polymer and production thereof
JP2005239837A (en) * 2004-02-25 2005-09-08 Toyo Ink Mfg Co Ltd Light diffusion coating film-forming coating material and light diffusion sheet
JP5212853B2 (en) * 2006-05-19 2013-06-19 綜研化学株式会社 Light diffusing polymer particles, production method thereof, and light diffusing sheet containing the light diffusing polymer particles
JP5000613B2 (en) * 2008-09-30 2012-08-15 株式会社日本触媒 Organic particle-containing composition
JP5634031B2 (en) * 2009-03-27 2014-12-03 株式会社日本触媒 POLYMER PARTICLE AND POLYMER PARTICLE-CONTAINING COMPOSITION USING THE SAME
JP5417102B2 (en) * 2009-09-18 2014-02-12 積水化成品工業株式会社 Polymer particles and method for producing the same
JP2011075704A (en) * 2009-09-29 2011-04-14 Mitsubishi Chemicals Corp Toner for developing electrostatic charge image
JP5500981B2 (en) * 2009-12-28 2014-05-21 積水化成品工業株式会社 Resin particles for light diffusion film, method for producing the same, and light diffusion film
WO2011142482A1 (en) * 2010-05-12 2011-11-17 Canon Kabushiki Kaisha Toner
US9890223B2 (en) * 2010-09-28 2018-02-13 Sekisui Plastics Co., Ltd. Resin particles and process for producing same, antiglare film, light-diffusing resin composition, and external preparation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889603A (en) * 1981-11-24 1983-05-28 Denki Kagaku Kogyo Kk Manufacture of copolymer
JPH041202A (en) * 1990-04-18 1992-01-06 Agency Of Ind Science & Technol Production of fine polymer bead having heat sensitive characteristics
JPH06289660A (en) * 1993-04-06 1994-10-18 Konica Corp Carrier for electrostatic charge image developing
JPH08100022A (en) * 1994-09-30 1996-04-16 Nippon Zeon Co Ltd Production of highly pure polymer
JP2006233055A (en) * 2005-02-25 2006-09-07 Jsp Corp Light-diffusing agent and method for producing light-diffusing agent and light-diffusing sheet
JP2009538965A (en) * 2006-05-31 2009-11-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for reducing fluorosurfactant content of fluoropolymer dispersion using anion exchange resin treated with anionic surfactant
JP2008007666A (en) * 2006-06-30 2008-01-17 Jsr Corp Optical material composition, method for producing the same, and optical material molded article
JP2009138034A (en) * 2007-12-03 2009-06-25 Nippon Shokubai Co Ltd Particles and method for manufacturing the same
JP2011252054A (en) * 2010-06-01 2011-12-15 Asahi Glass Co Ltd Method for producing aqueous fluorine-containing polymer dispersion and aqueous fluorine-containing polymer dispersion
JP2012224735A (en) * 2011-04-19 2012-11-15 Sumitomo Chemical Co Ltd Resin composition, optical film, and liquid crystal display device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056529A1 (en) * 2015-09-30 2017-04-06 積水化成品工業株式会社 Polymer particles and use thereof
CN108137719A (en) * 2015-09-30 2018-06-08 积水化成品工业株式会社 Polymer beads and its purposes
JPWO2017056529A1 (en) * 2015-09-30 2018-07-26 積水化成品工業株式会社 Polymer particles and uses thereof
EP3357934A4 (en) * 2015-09-30 2019-05-01 Sekisui Plastics Co., Ltd. Polymer particles and use thereof
JP2020128536A (en) * 2015-09-30 2020-08-27 積水化成品工業株式会社 Polymer particle and application thereof
CN108137719B (en) * 2015-09-30 2021-05-14 积水化成品工业株式会社 Polymer particles and use thereof
US11098167B2 (en) 2015-09-30 2021-08-24 Sekisui Plastics Co., Ltd. Polymer particles and use thereof
CN113336976A (en) * 2015-09-30 2021-09-03 积水化成品工业株式会社 Polymer particles and use thereof
CN113336976B (en) * 2015-09-30 2023-10-31 积水化成品工业株式会社 Polymer particles and use thereof
JP2017179335A (en) * 2016-03-29 2017-10-05 積水化成品工業株式会社 Polymer particle, manufacturing method and application thereof

Also Published As

Publication number Publication date
CN105593248A (en) 2016-05-18
JP2019052306A (en) 2019-04-04
KR20160049545A (en) 2016-05-09
JP6410266B2 (en) 2018-10-24
CN105593248B (en) 2019-06-28
JP6913210B2 (en) 2021-08-04
JPWO2015045448A1 (en) 2017-03-09
JP2021183692A (en) 2021-12-02
JP2020158772A (en) 2020-10-01
KR101790509B1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP6612417B2 (en) Polymer particles and uses thereof
CN113336976B (en) Polymer particles and use thereof
JP2021183692A (en) Polymer particle and use thereof
JP6668489B2 (en) Polymer particle dispersion, polymer particles used therefor, dispersant and dispersion medium, and uses thereof
JP6550456B2 (en) Polymer particle, method for producing polymer particle, and use thereof
JP6231030B2 (en) POLYMER PARTICLE, METHOD FOR PRODUCING POLYMER PARTICLE, AND USE THEREOF
JPWO2021171669A5 (en)
WO2021171669A1 (en) Polymer particles and use thereof
WO2022181349A1 (en) Fine resin particles and composition containing fine resin particles
JP2017179335A (en) Polymer particle, manufacturing method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015538928

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167008406

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848507

Country of ref document: EP

Kind code of ref document: A1