WO2015045266A1 - Measurement device - Google Patents

Measurement device Download PDF

Info

Publication number
WO2015045266A1
WO2015045266A1 PCT/JP2014/004314 JP2014004314W WO2015045266A1 WO 2015045266 A1 WO2015045266 A1 WO 2015045266A1 JP 2014004314 W JP2014004314 W JP 2014004314W WO 2015045266 A1 WO2015045266 A1 WO 2015045266A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
frequency
comb
mode
optical
Prior art date
Application number
PCT/JP2014/004314
Other languages
French (fr)
Japanese (ja)
Inventor
黒川 隆志
謙 柏木
田中 洋介
達俊 塩田
Original Assignee
国立大学法人東京農工大学
国立大学法人埼玉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京農工大学, 国立大学法人埼玉大学 filed Critical 国立大学法人東京農工大学
Priority to JP2015538858A priority Critical patent/JPWO2015045266A1/en
Publication of WO2015045266A1 publication Critical patent/WO2015045266A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/433Modulation spectrometry; Derivative spectrometry
    • G01J3/4338Frequency modulated spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity

Definitions

  • the present invention relates to a measuring apparatus.
  • FIG. 25 shows a conventional measuring apparatus 1400 provided with a frequency comb light source.
  • the measurement apparatus 1400 uses the measurement apparatus 1400, the optical frequency response characteristic of the sample 1420 to be measured can be measured.
  • the measurement apparatus 1400 includes a frequency comb light source 1402 whose mode light interval is on the order of 10 GHz, an interleaver 1408 that generates a plurality of low density frequency comb lights, and a low density frequency comb light emitted from the interleaver 1408.
  • An optical switch 1410 to be selected, an EDFA (optical amplifier) 1412 that amplifies the light emitted from the optical switch 1410, and a variable optical filter 1414 that extracts one mode light out of the light emitted from the optical amplifier 1412 are provided.
  • EDFA optical amplifier
  • one mode light (frequency f m ) transmitted through the variable optical filter 1414 is swept by the frequency shifter 1416 on the optical frequency axis by a frequency f on the order of MHz.
  • the one mode light thus swept passes through the sample to be measured 1420 and enters the high-speed photodetector 1422.
  • the light emitted from the variable wavelength laser 1430 is also incident on the high-speed photodetector 1422.
  • the output of the high-speed photodetector 1422 is output to the optical power meter 1428 through the electric amplifier 1424 and the low-pass filter 1426.
  • the swept one mode light is optically heterodyne detected by the light emitted from the variable wavelength laser 1430.
  • one mode light out of the comb light output from the frequency comb light source 1402 is taken out and changed by frequency sweeping in the order of MHz by the frequency shifter 1416. Therefore, the incident light on the sample 1420 to be measured can be controlled on the order of MHz. Further, since the mode interval is widened by using one or two interleavers 1408, one mode light can be selected even for a comb light source having a mode interval smaller than the resolution of the variable optical filter 1414. Furthermore, the intensity and frequency of light transmitted through the sample 1420 to be measured can be measured by optical heterodyne detection.
  • the measuring apparatus 1400 has a resolution on the order of MHz with respect to the response characteristics of the sample 1420 to be measured with respect to the optical frequency (see, for example, Patent Document 1).
  • Patent Document 1 JP 2011-017649 A
  • an interleaver 1408, an optical switch 1410, and a variable optical filter 1414 are used to widen the mode interval of comb light and extract only one mode light. Further, in order to make the mode interval larger than the resolution of the variable optical filter 1414, the interleaver 1408 is used in one or two stages.
  • An optical amplifier (EDFA) 1412 is necessary to compensate for the loss of these components. Since the usable wavelength band of these components is 1520 to 1570 nm which is a communication wavelength band, there is a problem that the measurement band is limited to this wavelength band. Also, one low density frequency comb light must be sequentially selected by the optical switch 1410 from the low density frequency comb light distributed by the interleaver 1408. Therefore, there is a problem that measurement takes time. Furthermore, since the measuring apparatus 1400 requires a wavelength tunable laser for optical heterodyne detection, there is a problem that the control system of the measuring apparatus is complicated and the measuring apparatus is expensive.
  • a measurement apparatus for measuring transmission characteristics or reflection characteristics of a sample to be measured, a frequency comb light source that outputs comb light including a plurality of mode lights having a constant frequency interval; Spectral optical system that receives comb light and frequency-resolves each mode light of the comb light one by one, and light detection that detects the intensity of at least one mode light out of the plurality of mode lights extracted from the spectroscopic optical system A mode light whose intensity is detected by the photodetector is transmitted or reflected from a sample to be measured disposed between the output of the comb light source and the input of the photodetector, and the mode of the comb light
  • the spacing frequency provides a measuring device that is greater than the optical frequency resolution of the spectroscopic optical system.
  • a measuring apparatus for measuring transmission characteristics or reflection characteristics of a sample to be measured by heterodyne detection, wherein the comb light source outputs comb light including a plurality of mode lights having different frequencies,
  • the comb light source includes a dual comb light receiver that is combined and inputted with two types of comb light that are output from the comb light source and become comb light having different mode interval frequencies, and the comb light source includes a plurality of adjacent modes in the comb light.
  • a pulse light source that outputs an optical pulse that has the same interval as the mode interval frequency, which is the frequency interval of light, and includes a smaller number of mode lights than the comb light, and a frequency band in which the mode light exists from the optical pulse
  • the band expanding unit that generates the expanded comb light based on the optical pulse and the frequency of the optical pulse output from the pulse light source are shifted in a range narrower than the mode interval frequency.
  • a frequency shifter that collectively shifts the frequency of each mode light of the comb light, the pulse light source is a continuous wave laser that outputs continuous light, and the frequency of the continuous light according to the mode interval frequency.
  • a first optical modulator and a second optical modulator that generate seed-comb light including a plurality of mode lights by modulating the frequency, and adjusting the phase and amplitude of each mode light in the seed-comb light;
  • An optical pulse synthesizing unit that synthesizes the pulses, the continuous light is branched into two, and is incident on the first optical modulator and the second optical modulator, respectively, and the first optical modulator interval frequency generates a seed com light comb light f 1, the second optical modulator, the mode spacing frequency generates a seed com light comb light f 2, the difference between f 1 and f 2 are , smaller than either of f 1 and f 2, the mode spacing frequency of f 1 comb light One or both of the called mode interval frequency comb light f 2 is, are transmitted through or reflected by the measured sample, the mode spacing frequency is comb light and the mode spacing frequency of f 1 multiplexing and comb light f 2 And a measuring device that is incident on the dual comb receiver.
  • a measuring apparatus for measuring an emission spectrum of a light source to be measured by heterodyne detection, a comb light source that outputs comb light including a plurality of mode lights having different frequencies, and the comb light is input. And a spectroscopic optical system that extracts only one designated mode light out of a plurality of mode lights in the comb light, and a single mode light extracted from the spectroscopic optical system and the measured light of the measured light source are combined. And a photodetector for detecting the intensity of the emitted light, and a mode interval frequency which is a frequency interval between adjacent mode lights in the comb light is larger than the optical frequency resolution of the spectroscopic optical system.
  • a measuring apparatus for measuring an emission spectrum of a light source to be measured by heterodyne detection, a comb light source that outputs comb light including a plurality of mode lights having different frequencies, the comb light,
  • a measuring apparatus including a photodetector for detecting the intensity of light combined with light to be measured from a measurement light source, and an electric spectrum analyzer to which an output of the photodetector is input.
  • measuring device 100 in a 1st embodiment. It is a figure which shows the mode light of the comb disperse
  • 3 is a diagram illustrating comb light that is frequency-shifted by an SSB modulator 14.
  • FIG. It is a figure which shows the frequency comb light source 10 which has the short pulse light source 12 using the optical pulse synthesizer 24.
  • FIG. It is a figure which shows the frequency comb light source 10 which has the short pulse light source 12 using the dispersion
  • FIG. It is a figure which shows the measuring apparatus 300 in 3rd Embodiment. It is a figure which shows the measuring apparatus 400 in 4th Embodiment. It is a figure which shows the measuring apparatus 500 in 5th Embodiment. It is a figure which shows the change of the spectrum in the case of the dual comb spectroscopy using two paths. It is a figure which shows the measuring apparatus 550 which is a modification of 5th Embodiment. It is a figure which shows a mode that the SSB modulator 34-2 shifts comb light on an optical frequency axis.
  • FIG. 1 is a diagram showing a measuring apparatus 100 according to the first embodiment.
  • the measuring apparatus 100 measures the transmission characteristic or reflection characteristic of the sample 40 to be measured.
  • the measuring apparatus 100 includes a frequency comb light source 10, a spectroscopic optical system 50, a single photoelectric conversion element 60 as a photodetector, an AD converter 70, a drive circuit 80, and a processor 90 as a control unit.
  • the light emitted from the frequency comb light source 10 is input to the sample to be measured 40 via the collimating lens 35.
  • Light output from the sample to be measured 40 is input to the spectroscopic optical system 50 via the collimating lens 45.
  • the light output from the spectroscopic optical system 50 is input to a single photoelectric conversion element 60.
  • the single photoelectric conversion element 60 is, for example, a photodiode.
  • the processor 90 takes in a signal output from the AD converter 70 and sends a control signal to the drive circuit.
  • the drive circuit 80 controls the rotation angle of the diffraction grating 55 in the spectroscopic optical system 50 based on the control signal.
  • the frequency comb light source 10 outputs comb light called super continuum light.
  • the frequency comb light source 10 outputs a short pulse light source 12 as a pulse light source, an EDFA (Erbium-Doped Optical Fiber Amplifier) 16 that amplifies the light intensity of the light pulse of the short pulse light source 12, and an EDFA 16 And a HNLF (Highly-Nonlinear Fiber) 18 as a band expanding unit that expands the optical frequency band of the optical pulse to be transmitted.
  • EDFA Erbium-Doped Optical Fiber Amplifier
  • HNLF Highly-Nonlinear Fiber
  • the short pulse light source 12 generates a light pulse.
  • the frequency comb light source 10 generates comb light having a mode interval frequency equal to the repetition frequency of the optical pulse output from the short pulse light source 12.
  • the mode interval frequency refers to a frequency interval between a plurality of adjacent mode lights in the comb light.
  • the repetition frequency of the optical pulse output from the short pulse light source 12 is 12.5 GHz
  • the frequency interval of the plurality of mode lights is 12.5 GHz.
  • the optical pulse is an optical pulse having a center wavelength of 1.55 ⁇ m and a spread of about 10 nm in the wavelength band.
  • the light pulse output from the short pulse light source 12 is input to the EDFA 16.
  • the EDFA 16 amplifies the light intensity of the light pulse output from the short pulse light source 12.
  • the light pulse emitted from the EDFA 16 is input to the HNLF 18.
  • the HNLF 18 generates comb light called supercontinuum light having a mode interval frequency equal to the repetition frequency of the optical pulse.
  • Comb light in which the frequency band in which mode light exists is expanded from the optical pulse is generated based on the optical pulse.
  • the HNLF 18 expands an optical pulse having a spread of about 10 nm in the wavelength band to about several hundred nm.
  • the HNLF 18 outputs comb light including a plurality of mode lights having different frequencies in a wavelength band (frequency band) wider than the input optical pulse.
  • the HNLF 18 may be a silica-based optical fiber to which GeO 2 or the like is added, or a photonic crystal fiber in which holes are periodically arranged in a cross section.
  • Comb light emitted from the HNLF 18 enters the spectroscopic optical system 50 via the collimator lens 45.
  • the comb light transmitted through the sample to be measured is input to the spectroscopic optical system 50 (transmission optical system).
  • comb light reflected from the sample to be measured may be input to the spectroscopic optical system 50 (reflection optical system).
  • the light emitted from the collimating lens 35 is reflected by the mirror 42 and input to the sample 40 to be measured. Then, the light reflected from the measurement sample 40 is input to the collimating lens 45 through the mirror 42.
  • the spectroscopic optical system 50 receives comb light transmitted through the sample to be measured or comb light reflected from the sample to be measured, and extracts only one designated mode light from a plurality of mode lights in the comb light.
  • the spectroscopic optical system 50 outputs an incident slit 52 to which comb light is input, a collimator lens 54 to which light transmitted through the incident slit 52 is input, a diffraction grating 55 that diffracts the comb light transmitted through the collimator lens 54, and a lens 56.
  • an exit slit 58 that transmits the transmitted light.
  • the diffracted comb light forms an image of the mode light spectrum on the surface of the exit slit 58 via the lens 56.
  • the mode interval frequency in the comb light is strictly determined at the stage where the comb light is generated. Therefore, by adjusting the rotation angle of the diffraction grating 55, one mode light can be acquired via the exit slit 58, and the frequency of the mode light is strictly determined. Thereby, by adjusting the rotation angle of the diffraction grating 55, it is possible to measure the optical frequency response characteristic for each mode frequency interval for the sample to be measured.
  • the single photoelectric conversion element 60 detects the intensity of one mode light extracted from the spectroscopic optical system 50.
  • the one mode light is light that is transmitted or reflected through the measurement sample 40 arranged between the output of the frequency comb light source 10 and the input of the single photoelectric conversion element 60.
  • the single photoelectric conversion element 60 converts the intensity of one mode light emitted from the emission slit 58 into an analog electric signal according to time.
  • the analog electric signal is converted by the AD converter 70 into a digital electric signal.
  • the digital electric signal is input to the processor 90 as a light intensity signal.
  • the processor 90 receives the light intensity signal and controls the drive circuit 80.
  • the processor 90 has information on the rotation angle of the diffraction grating 55 in advance. Therefore, the processor 90 has in advance information on the frequency of one mode light emitted from the exit slit 58 based on the information on the rotation angle.
  • the processor 90 knows the frequency spectrum obtained from the spectroscopic optical system 50 based on the frequency information of the one mode light and the light intensity signal obtained from the AD converter 70.
  • the processor 90 further designates the mode light extracted from the spectroscopic optical system 50 after the measurement using one mode light from the spectroscopic optical system 50 is completed.
  • the processor 90 may specify mode light having a frequency that is higher or lower than one mode light that has already been observed.
  • the processor 90 transmits a control signal for controlling the rotation angle of the diffraction grating 55 to the drive circuit 80 in order to sequentially extract only one mode light among the plurality of mode lights in the comb light.
  • the drive circuit 80 receives the control signal and adjusts the rotation angle of the diffraction grating 55.
  • the rotation angle of the diffraction grating 55 may be an angle of the incident light surface of the diffraction grating 55 with respect to the parallel light emitted from the collimating lens 54.
  • the comb light used in this example can be a near infrared band having a wavelength band of 1.2 to 1.8 ⁇ m, for example. That is, the wavelength band of the measuring device can be expanded as compared with the conventional measuring device. Further, in the measuring apparatus 100 of this example, a wavelength tunable laser for optical heterodyne detection is not necessary. Therefore, the control system is simplified as compared with the conventional measuring apparatus. Therefore, the measuring device itself can be manufactured at a low cost.
  • FIG. 2 is a view showing the mode light of the comb that is split and imaged on the surface of the exit slit 58 in FIG. The relationship between the frequency interval of the comb light and the optical frequency resolution of the spectroscopic optical system 50 is shown.
  • the sharp spectrum is the original spectrum of the mode light of the optical comb.
  • the spectrum that is gentler than that of the mode light is a spectrum of the mode light that has been expanded to the resolution by the spectroscopic optical system 50.
  • the light diffracted by the diffraction grating 55 is emitted at an angle corresponding to the frequency.
  • the exit slit 58 allows light in a predetermined frequency range to pass through the light diffracted by the diffraction grating 55.
  • the optical frequency resolution of the spectroscopic optical system 50 indicates the width of the frequency range through which the exit slit 58 passes light.
  • the comb light is diffracted by the diffraction grating 55, and the spectrum of the mode light is developed on the exit slit surface.
  • the mode interval frequency is not greater than the optical frequency resolution of the spectroscopic optical system 50, only one mode light cannot be extracted from the exit slit 58.
  • the mode interval frequency is at least twice the optical frequency resolution of the spectroscopic optical system 50.
  • the mode interval of the mode light is 3 to 4 times the optical frequency resolution of the spectroscopic optical system 50.
  • the mode interval of mode light is 12.5 GHz.
  • the optical frequency resolution of the spectroscopic optical system 50 including the diffraction grating 55, the entrance slit 52, and the exit slit 58 is about 4 GHz for light having a wavelength of 1500 nm. Therefore, the mode interval frequency of the mode light in this example is about three times the optical frequency resolution of the spectroscopic optical system 50. Therefore, even with the spectroscopic optical system 50 of the present example having an optical frequency resolution of about 4 GHz, a plurality of mode lights in the comb light can be extracted independently.
  • FIG. 3 is a diagram showing a measuring apparatus 105 which is a modification of the first embodiment.
  • an image sensor 62 is used as the photodetector instead of the single photoelectric conversion element 60.
  • the output of the image sensor 62 is processed by the image processing circuit 72 and output to the processor 90.
  • the exit slit 58 is not used.
  • the image sensor 62 has a plurality of photoelectric conversion elements arranged in an array.
  • the spectra of the plurality of mode lights emitted from the diffraction grating 55 are incident on different photoelectric conversion elements in the image sensor 62, respectively. Accordingly, the image sensor 62 detects in parallel the intensity of the plurality of mode lights output from the spectroscopic optical system 50 as analog electric signals.
  • the image processing circuit 72 converts analog electrical signals detected in parallel by the image sensor 62 into digital electrical signals and outputs them to the processor 90. Note that the image sensor 62 may have both the photoelectric conversion function of the image sensor 62 and the analog-digital conversion function of the image processing circuit 72.
  • the intensity of each mode light can be measured without the exit slit 58.
  • the diffraction grating 55 may be fixed. Therefore, in this example, the drive circuit 80 for driving the diffraction grating 55 may not be provided, but a drive circuit may be provided for rotating the diffraction grating for coarse adjustment. Therefore, compared with the first embodiment (FIG. 1), the configuration can be simplified. Moreover, since the spectrum of several mode light can be acquired simultaneously, measurement speed can be raised.
  • FIG. 4 is a diagram showing a measuring apparatus 200 according to the second embodiment.
  • the frequency comb light source 10 in the second embodiment includes an SSB (Single Side Band) modulator 14 (single sideband optical modulator) as a frequency shifter between the short pulse light source 12 and the EDFA 16, and the SSB modulator.
  • 14 is different from the first embodiment in that a signal generator 15 that inputs a modulation signal to 14 and a pulse compressor 17 between the EDFA 16 and the HNLF 18 are provided. Further, the point that the processor 90 controls the frequency of the SSB modulator 14 is also different from the first embodiment.
  • the light pulse generated in the short pulse light source 12 includes a plurality of mode lights having mode intervals equal to the frequency.
  • 4A is a schematic diagram of a light pulse emitted from the short pulse light source 12 (for example, the half width is 4 ps).
  • the upper side is an intensity spectrum (the horizontal axis indicates the optical frequency, the vertical axis indicates the light intensity), and the lower side.
  • the side is a time waveform (the horizontal axis represents time, and the vertical axis represents light intensity).
  • the light pulse generated in the short pulse light source 12 enters the SSB modulator 14.
  • the SSB modulator 14 collectively shifts the spectrum of the optical pulse output from the short pulse light source 12 by the sine wave signal output from the signal generator 15. Since the SSB modulator 14 uses the signal generator 15 having an extremely high frequency accuracy of 1 Hz or less, a frequency shift on the order of MHz can be realized with high accuracy.
  • FIG. 4B is a schematic diagram of an optical pulse emitted from the SSB modulator 14.
  • the upper intensity spectrum (the horizontal axis indicates the optical frequency and the vertical axis indicates the optical intensity) shows a state in which they are collectively shifted by ⁇ f. Although only the intensity spectrum is schematically shown here, the phase spectrum is also shifted by ⁇ f at the same time.
  • the lower side is a time waveform (time is on the horizontal axis and light intensity is on the vertical axis), and shows how the time waveform of the optical pulse is retained after emission from the SSB modulator. The time waveform of the optical pulse is held at a half width of 4 ps.
  • the optical pulse whose center frequency is shifted by ⁇ f in the SSB modulator 14 enters the HNLF 18 via the EDFA 16.
  • the HNLF 18 generates comb light based on the optical pulse whose center frequency is shifted.
  • the comb light is comb light having the same mode interval frequency as the input pulse in a wider frequency band than the input optical pulse.
  • the comb light reflects that the intensity / phase spectrum of the optical pulse has been shifted by ⁇ f on the frequency axis by the SSB modulator 14, and all of the plurality of mode lights are shifted by ⁇ f on the frequency axis.
  • the monochromatic continuous light is frequency-shifted by using the SSB modulator 14 for the monochromatic continuous light (also in Patent Document 1, the monochromatic light that has passed through the variable optical filter 1414 has been confirmed. This phenomenon is used for continuous light).
  • FIG. 5 is a diagram showing that the SSB modulator 14 shifts the frequency of one laser beam.
  • the laser light having the optical frequency f 0 is swept by the frequency f in the positive direction on the frequency axis in accordance with the frequency f of the voltage applied from the signal generator 15 to the SSB modulator 14.
  • the SSB modulator 14 not only changes the amplitude of the picosecond pulse but also the phase spectrum and does not change the time waveform of the optical pulse. Note that the SSB modulator 14 has wavelength dependency. Therefore, it is desirable that the SSB modulator 14 be disposed immediately after the short pulse light source 12 before the wavelength band of the optical pulse is expanded. If the SSB modulator 14 is disposed after the pulse compressor 17 or the HNLF 18, the wavelength band of the optical pulse has already been expanded, so that the spectrum can be shifted well due to the wavelength dependence of the SSB modulator 14. Can not.
  • the processor 90 shifts the range of the optical frequency taken out by the spectroscopic optical system 50 according to the shift amount in the SSB modulator 14. For example, the processor 90 controls the frequency shift amount of each mode light by controlling the frequency of the signal generator 15 in the order of MHz, and adjusts the rotation angle of the diffraction grating 55 according to the frequency shift amount.
  • the processor 90 adjusts the rotation angle of the diffraction grating 55 so as to coincide with the frequency of the mode light to be measured whose center is shifted to the optical frequency range taken out by the spectroscopic optical system 50. For example, the processor 90 adjusts the rotation angle of the diffraction grating 55 so that the shifted mode light to be measured passes through the center of the exit slit 58. Thereby, one of the shifted mode lights can be detected by the single photoelectric conversion element 60. Therefore, the measurement of the response characteristic of the optical frequency can be realized with high resolution on the order of MHz.
  • the image sensor 62 may be disposed instead of the single photoelectric conversion element 60 and the exit slit 58 may be omitted.
  • FIG. 6 is a diagram illustrating comb light that is frequency-shifted by the SSB modulator 14.
  • Each of a plurality of mode lights (..., F m ⁇ 1 , f m , f m + 1 ). Included in the comb light has a frequency axis according to the frequency f of the voltage applied from the signal generator 15 to the SSB modulator 14. It is swept by the frequency f in the upper positive direction.
  • mode light of the optical frequency f m which is swept by the frequency f is taken out from the spectroscopic optical system 50.
  • the processor 90 controls the frequency f of the voltage applied to the SSB modulator 14 by controlling the signal generator 15.
  • FIG. 7 is a diagram showing a frequency comb light source 10 having a short pulse light source 12 using an optical pulse synthesizer 24.
  • an optical pulse synthesizer 24 is used as the optical pulse synthesizer.
  • the frequency comb light source 10 includes a short pulse light source 12, an EDFA 16 into which an optical pulse emitted from the short pulse light source 12 is incident, a pulse compressor 17 that compresses the pulse width of the optical pulse emitted from the EDFA 16, and a pulse compressor 17 HNLF18 which expands the optical frequency band of the light emitted from the.
  • the short pulse light source 12 includes a frequency stabilization laser 20 as a continuous wave laser, an optical modulator 22 that generates seed comb light from continuous light, and an optical pulse synthesizer 24 that synthesizes an optical pulse based on the seed comb light.
  • the frequency stabilizing laser 20 outputs continuous light whose oscillation frequency is constant for a long time (for example, a frequency fluctuation of 1 MHz or less per day).
  • the frequency stabilized laser has a constant single optical frequency as shown in FIG. 7 (a-1) and is continuously output in time as shown in FIG. 7 (b-1). .
  • the optical modulator 22 modulates the frequency of continuous light with a frequency corresponding to the repetition frequency of the optical pulse to be generated, and generates a plurality of sidebands.
  • a single optical frequency of continuous light oscillated from the frequency stabilized laser 20 and a sideband group generated from the single optical frequency are collectively referred to as seed comb light.
  • the optical modulator 22 receives RF modulation from the signal generator 23 and modulates continuous light.
  • the light modulator 22 may be a LiNbO 3 (LN) light modulator that is a dielectric crystal.
  • the optical modulator 22 of this example generates approximately 30 sidebands having a frequency interval of 12.5 GHz by, for example, a 12.5 GHz sine wave signal generated by the signal generator 23 (FIG. 7 (a-2)). These sideband waves become seed comb light.
  • the modulated light is not continuous light but has a temporally discontinuous waveform (FIG. 7 (b-2)).
  • the optical circulator 25 outputs the light input from the optical modulator 22 to the optical pulse synthesizer 24.
  • the optical pulse synthesizer 24 adjusts the phase and amplitude of each mode light in the seed comb light input from the optical modulator 22.
  • the optical pulse synthesizer 24 includes an arrayed waveguide grating 26, an intensity modulator 27, a phase modulator 28, a current controller 29, and a mirror 30.
  • the arrayed waveguide grating 26 guides light to the intensity modulator 27.
  • Each mode light of the seed comb light is demultiplexed into different channel waveguides by the arrayed waveguide grating 26.
  • the intensity modulator 27 and the phase modulator 28 installed for each channel adjust the phase and amplitude of each mode light to synthesize an optical pulse (FIG. 7 (a-3)).
  • This optical pulse synthesizer 24 there is Non-Patent Document 1.
  • the synthesized optical pulse is output to the EDFA 16 via the optical circulator 25 (Non-patent Document 1: H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa: “Analog and digital optical pulses.” arrayed-waveguided grafting for high-speed optical signal processing, "IEEE J. Lightwave Technol., Vol. 26, No. 6, pp. 670-677,” 670-677.
  • an optical pulse having a repetition frequency of 12.5 GHz (pulse interval 80 ps) is synthesized (FIG. 7B-3).
  • the optical pulse synthesized by the optical pulse synthesizer 24 is input to the pulse compressor 17 through the EDFA 16.
  • the pulse compressor 17 increases the light intensity peak of the light pulse by compressing the pulse width of the light pulse.
  • the optical pulse subjected to pulse compression is input to the HNLF 18.
  • the HNLF 18 generates comb light in which the frequency band in which mode light exists is expanded from the optical pulse (FIG. 7 (a-4)). Note that the mode interval frequency of the comb light is maintained at 12.5 GHz which is the same as the mode interval frequency of the seed comb light.
  • FIG. 8 is a diagram showing the frequency comb light source 10 having the short pulse light source 12 using the dispersion applicator 21.
  • a dispersion applicator 21 is used instead of the optical pulse synthesizer 24 as the optical pulse synthesizer.
  • the dispersion applicator 21 has a large absolute value of dispersion at the center wavelength of the optical pulse to be synthesized.
  • a standard single mode fiber can be used in the vicinity of a wavelength of 1.55 ⁇ m. .
  • Even if the dispersion applicator 21 is used it is possible to synthesize optical pulses based on continuous light as in the optical pulse synthesizer 24.
  • the quality (for example, FT product) of the synthesized optical pulse is somewhat inferior, there is an advantage that the device configuration is simple and the cost is low and the operation is simple.
  • FIG. 9 is a diagram illustrating a measuring apparatus 300 according to the third embodiment.
  • FM spectroscopy can be performed by the measuring apparatus 300.
  • the measurement apparatus 300 basically has a configuration in which the frequency comb light source 10 of the measurement apparatus 100 in the first embodiment is the frequency comb light source 10 of FIG. However, the difference is that a phase modulator 31, a signal generator 32, a phase adjuster 120, and a lock-in detector 110 are provided.
  • the short pulse light source 12 of this example has a phase modulator 31 between the frequency stabilized laser 20 and the optical modulator 22.
  • a modulation voltage in the order of MHz is applied to the phase modulator 31 from the signal generator 32.
  • the phase modulator 31 phase-modulates the frequency of the continuous light of the frequency stabilized laser 20 with a frequency smaller than the mode interval frequency. In this example, the modulation frequency of the phase modulator 31 is smaller than the modulation frequency of the optical modulator 22.
  • the phase modulator 31 generates first-order double sideband light in the single frequency continuous light oscillated by the frequency stabilized laser 20 (FIG. 9A-1), and inputs the light to the optical modulator 22. To do.
  • phase modulator 31 only the phase of the continuous wave light emitted from the frequency stabilized laser 20 is phase-modulated by the phase modulator 31, and the modes of all frequency combs can be phase-modulated in the same manner.
  • the optical modulator 22 modulates the light input from the phase modulator 31 to generate seed comb light.
  • Each mode of the seed comb light has a first-order both-side band (FIG. 9 (a-2)).
  • a sine wave signal generated by the signal generator 32 is input to the phase modulator 31.
  • the phase of the sine wave signal generated by the signal generator 32 is adjusted by the phase adjuster 120 and input to the lock-in detector 110.
  • One mode light shallowly phase-modulated by the phase modulator 31 is taken out by the spectroscopic optical system 50 and is incident on a single photoelectric conversion element 60 as a photodetector.
  • the processor 90 as a control unit takes in a signal output from the lock-in detector 110 and sends a control signal to the drive circuit 80.
  • the drive circuit 80 controls the rotation angle of the diffraction grating 55 in the spectroscopic optical system 50 based on the control signal.
  • the light intensity detected by the single photoelectric conversion element 60 includes a component that varies at the same frequency as the modulation signal in the phase modulator 31.
  • the component includes a quadrature component whose phase is shifted by ⁇ / 2 from the modulation signal and an in-phase component having the same phase as the modulation signal (SIN component and COS component).
  • the amplitudes of these SIN component and COS component include phase and amplitude information, respectively.
  • Each of the SIN component and the COS component of the synthesized wave is detected by the lock-in detector 110 using the modulation signal in the phase modulator 31.
  • the lock-in detector 110 detects the SIN component and the COS component using the modulation signal from the phase modulator 31 and the signal obtained by changing the phase of the modulation signal by ⁇ / 2. Thereby, changes in amplitude and phase can be detected.
  • the comb light phase-modulated by the phase modulator 31 passes through the sample to be measured 40 and the spectroscopic optical system 50 and is then converted into an electric signal by a single photoelectric conversion element 60. Double balance detection is performed by the modulation signal, and minute changes in absorption and phase are detected.
  • FIG. 10 is a diagram showing a measuring apparatus 400 according to the fourth embodiment.
  • the measuring apparatus 400 is used for dual comb spectroscopy using two optical paths.
  • the dual comb light receiver 150 of the measuring apparatus 400 detects the optical frequency response characteristics of the sample 40 to be measured by heterodyne detection of the signal light transmitted or reflected by the sample 40 to be measured and the reference light.
  • the frequency comb light source 10 of the measuring apparatus 400 is basically the same as the frequency comb light source 10 shown in FIG. However, the difference is that the output from the frequency stabilized laser 20 is branched by the branching coupler 33, one of which is signal light transmitted through the sample to be measured 40 and the other is reference light.
  • the optical modulator 22 of this example includes a first optical modulator 22-1 and a second optical modulator 22-2 to which continuous light from the frequency stabilized laser 20 is branched and input.
  • the first optical modulator 22-1, the modulation voltage of the frequency f 1 is given.
  • the second optical modulator 22-2, the modulation voltage of the frequency f 2 is given.
  • the difference between f 1 and f 2 is sufficiently smaller than any of the f 1 and f 2.
  • f 1 is 12.5 GHz.
  • f 2 is (12.5 + ⁇ f) GHz, also delta] f is typically set to several kHz ⁇ Number 10 MHz.
  • the upper limit of the number of sampling points is determined by the ratio of ⁇ f and f 1 or the ratio of ⁇ f and f 2 . Therefore, the number of sampling points can be increased by setting ⁇ f sufficiently smaller than f 1 or f 2 . Thereby, the measurement band can be widened.
  • the seed comb light whose mode interval frequency is f 1 and the seed comb light whose mode interval frequency is f 2 are EDFAs 16-1 and 16-2, pulse compressors 17-1 and 17-2, and HNLFs 18-1 and 18 respectively. Through -2, the comb light having a mode interval frequency of f 1 and the seed comb light having a mode interval frequency of f 2 are obtained.
  • the optical pulse synthesizer 24 of this example corresponds to the first optical modulator 22-1 and the second optical modulator 22-2, and the first optical pulse synthesizer 24-1 as a first optical pulse synthesizer. And a second optical pulse synthesizer 24-2 as a second optical pulse synthesis unit.
  • the first optical pulse synthesizer 24-1, the mode spacing frequency from the first optical modulator 22-1 seed comb light f 1 is input.
  • seed comb light having a mode interval frequency of f 2 is input from the second optical modulator 22-2 to the second optical pulse synthesizer 24-2.
  • the HNLF 18 serving as the band expanding unit includes the HNLF 18-1 serving as the first band expanding unit and the second band expanding unit corresponding to the first optical pulse synthesizer 24-1 and the second optical pulse synthesizer 24-2.
  • HNLFs 18-1 and 18-2 generate comb light having a mode interval frequency of f 1 and comb light having a mode interval frequency of f 2 , respectively.
  • the comb light having a mode interval frequency of f 1 is transmitted or reflected through the sample to be measured 40 and becomes signal light.
  • Comb light having a mode interval frequency of f 2 passes through the mirror 42 and becomes reference light.
  • the comb light having a mode interval frequency of f 1 and the comb light having a mode interval frequency of f 2 transmitted through or reflected by the sample to be measured 40 is combined by the combining mirror 36 and is incident on the spectroscopic optical system 50.
  • the combined light is split by the spectroscopic optical system 50 and subjected to heterodyne detection by the single photoelectric conversion element 60.
  • the frequency of the Nth signal mode light from the center frequency f C of the comb light (equal to the oscillation frequency of the frequency stabilized laser 20) is f C + N ⁇ f 1 .
  • the frequency of the Nth reference mode light is f C + N ⁇ (f 1 + ⁇ f). If the frequency difference N ⁇ ⁇ f between the two is set smaller than f 1 , the N-th signal mode light and reference mode light are selected by the spectroscopic optical system and are incident on a single photoelectric conversion element 60. Therefore, if the maximum band of the single photoelectric conversion element 60 is set to f1, a heterodyne signal between the two can be obtained. Thereby, the optical frequency response characteristic of the sample 40 to be measured is detected.
  • the optical combs of the signal light and the reference light are generated independently from one frequency stabilized laser 20, the modes of the two optical combs are synchronized and stable.
  • the signal light and the reference light are combined to enable highly sensitive detection. That is, even if the intensity of the signal light is attenuated by absorption, highly sensitive detection can be performed by heterodyne detection with strong reference light.
  • the comb light is transmitted through the measured sample 40 or is reflected from the measured sample 40. It is not limited to light.
  • an SSB modulator 34 may be further provided between the optical pulse synthesizer 24 and the pulse compressor 17 as in the first embodiment.
  • the SSB modulator 34 includes a seed comb light with a mode interval frequency f 1 output from the optical pulse synthesizer 24-1 and a seed with a mode interval frequency f 2 output from the optical pulse synthesizer 24-2.
  • the comb light may be frequency swept on the optical frequency axis.
  • the processor 90 as a control unit controls the diffraction grating 55 and the SSB modulator 34 in the spectroscopic optical system 50, and includes a single photoelectric conversion element 60. An output signal may be acquired.
  • FIG. 11 is a diagram showing a measuring apparatus 500 according to the fifth embodiment.
  • the measurement apparatus 500 is used for dual-comb spectroscopy using two optical paths, like the measurement apparatus 400.
  • the dual comb light receiver 160 of the measuring apparatus 500 measures the light transmission characteristic or light reflection characteristic of the sample to be measured 40 by heterodyne detection using the signal light that transmits or reflects the sample to be measured 40 and the reference light.
  • the dual-com light receiver 160 of the measuring apparatus 500 is different from the spectroscopic optical system 50 and the single photoelectric conversion element 60 in that it has a single photoelectric conversion element 60 and an electric spectrum analyzer 130. Different from 150. That is, the comb light having a mode interval frequency of f 1 transmitted through or reflected by the sample to be measured and the comb light having a mode interval frequency of f 2 are combined and first input to a single photoelectric conversion element 60. The output of the single photoelectric conversion element 60 is input to the electric spectrum analyzer 130.
  • Measurement apparatus 500 is different from measurement apparatus 400 in that variable wavelength filter 19 is provided between HNLF 18-2 and multiplexing mirror 36. By using a variable wavelength filter 19 to filter a portion of the mode spacing frequency f 2 of the comb beam not used for measurement (reference light).
  • the mode spacing frequency f 1 of the comb beam (signal light) and mode spacing frequency f 2 of the comb beam (refer to light) heterodyne detection detects the spectrum of the electrical signal subjected to heterodyne detection. Therefore, the optical frequency response characteristic of the sample 40 to be measured can be detected by the electric spectrum analyzer 130 in the microwave wavelength band. Furthermore, a single photoelectric conversion element 60 is sufficient to realize high resolution spectroscopy of around several MHz. Further, since the measurement wavelength band can be widened in one measurement, a large amount of information can be acquired by one measurement.
  • FIG. 12 is a diagram showing a change in spectrum in the case of dual comb spectroscopy using two paths.
  • FIG. 12 (a-1) shows comb light having a mode interval frequency f 1 output from the HNLF 18-1.
  • Figure 12 (b-1) shows a comb light f 2 is the mode spacing frequency output from HNLF18-2.
  • the comb light whose mode interval frequency is f 2 is the central mode light (thick line) derived from the comb light having the mode interval frequency f 1 and continuous light.
  • FIG. 12A-2 shows comb light having a mode interval frequency of f 1 after passing through the sample 40 to be measured.
  • FIG. 12B-2 shows comb light having a mode interval frequency of f 2 after passing through the variable wavelength filter 19.
  • the comb light having a mode interval frequency of f 1 is transmitted through the sample to be measured 40, and the light intensity of the specific mode light is attenuated.
  • the comb light having the attenuated information and the mode interval frequency f 1 becomes signal light indicating the optical frequency response characteristic of the sample 40 to be measured. Note that a spectrum having a frequency lower than that of the central mode light (thick line) may be filtered when not used for measurement.
  • Figure 12 (a-3) includes a comb light mode interval frequency f 1 after passing through the sample to be measured 40 (signal light) and the mode interval frequency f 2 of the comb beam (reference light), but combined
  • the spectrum combined by the mirror 36 and heterodyne detected is shown.
  • the spectrum can be measured by the dual comb light receiver 150 having the spectroscopic optical system 50 or the dual comb light receiver 160 having the electric spectrum analyzer 130.
  • ⁇ f is a frequency (order of microwaves in the wavelength band) sufficiently smaller than 12.5 GHz. Therefore, ⁇ f, 2 ⁇ f, 3 ⁇ f... Can also be detected by the electric spectrum analyzer 130.
  • FIG. 13 is a diagram illustrating a measuring apparatus 550 that is a modification of the fifth embodiment.
  • the dual comb light receiver 160 includes a single photoelectric conversion element 60 and a digitizer 140.
  • the digitizer 140 sequentially AD-converts analog signals that change over time and records them as digital signals.
  • the first optical pulse synthesizer 24-1 and the second optical pulse synthesizer 24-2 instead of the first optical pulse synthesizer 24-1 and the second optical pulse synthesizer 24-2, the first dispersion imparting device 21-1 and the second dispersion imparting device 21-2 are used as the optical pulse synthesis unit.
  • an SSB modulator 34-2 as a frequency shifter is provided between the first dispersion applicator 21-1 and the pulse compressor 17-1.
  • An SSB modulator 34-1 is provided between the frequency stabilizing laser 20 and the branch coupler 33.
  • the above points are different from the measurement apparatus 500 of the fifth embodiment. Similar to the fifth embodiment, the SSB modulator 34-1 can sweep two comb lights having mode interval frequencies f 1 and f 2 on the optical frequency axis.
  • FIG. 14 is a diagram showing how the SSB modulator 34-2 shifts the comb light on the optical frequency axis.
  • the upper left part of FIG. 14 shows comb light having a mode interval frequency of f 1 output from the first dispersion imparting device 21-1 of FIG.
  • the lower left part of FIG. 14 shows comb light having a mode interval frequency of f 2 output from the second dispersion applicator 21-1 of FIG.
  • Com light mode interval frequency f 2 the mode spacing frequency coincides with the optical frequency f 0 with respect to comb light f 1.
  • the comb light having the mode interval frequency f 2 has a frequency difference of 0, ⁇ f, 2 ⁇ f, 3 ⁇ f... From the optical frequency f 0 with respect to the comb light having the mode interval frequency f 1 .
  • the left-pointing arrow in the upper left part of FIG. 14 represents the direction in which the comb light whose mode interval frequency is f 1 is frequency-shifted.
  • the comb light whose mode interval frequency is f 1 is frequency shifted by 4 ⁇ f in the low frequency direction.
  • the upper right part of FIG. 14 shows comb light having a mode interval frequency f 1 shifted by the SSB modulator 34-2.
  • the mode spacing frequency indicates the comb light f 2.
  • the SSB modulator 34-2 can select only the comb light having a mode interval frequency of f 1 on the optical frequency axis and select a mode in which the two comb lights coincide with each other. As a result, the two comb light modes can be matched in accordance with the wavelength range to be measured.
  • FIG. 15 is a diagram showing a measuring apparatus 600 according to the sixth embodiment.
  • the measuring apparatus 600 is used for dual comb spectroscopy using one optical path.
  • the measurement apparatus 600 is the same as the measurement apparatus in the fourth embodiment in that the light output from the optical modulators 22-1 and 22-2 is combined by the branch coupler 33 before being input to the optical pulse synthesizer 24. Different from the device 400. Other points are the same as those of the measuring apparatus 400.
  • the processor 90 as a control unit controls the diffraction grating 55 and the SSB modulator 34 in the spectroscopic optical system 50, and includes a single photoelectric conversion element 60. An output signal may be acquired.
  • FIG. 16 is a diagram illustrating a measuring apparatus 700 according to the seventh embodiment.
  • the measuring apparatus 700 is used for dual comb spectroscopy using one optical path.
  • the measurement apparatus 700 is the same as the measurement apparatus according to the fifth embodiment in that the light output from the optical modulators 22-1 and 22-2 is combined by the branch coupler 33 before being input to the optical pulse synthesizer 24. Different from the device 500. Other points are the same as those of the measuring apparatus 500.
  • Dual comb spectroscopy (sixth and seventh embodiments) using one optical path has lower detection sensitivity than dual comb spectroscopy (fourth and fifth embodiments) using two paths.
  • the number of component parts of the device can be reduced and the configuration of the device can be simplified as compared to dual-comb spectroscopy using two paths. Therefore, when higher accuracy than dual comb spectroscopy using two paths is not required, dual comb spectroscopy using one path can also be used.
  • FIG. 17 is a diagram showing a change in spectrum in the case of dual comb spectroscopy using one path.
  • FIG. 17A-1 shows comb light with a mode interval frequency f 1 output from the HNLF 18.
  • Figure 17 (b-1) also shows the comb beam mode interval frequency output is f 2 from HNLF18.
  • the comb light having the mode interval frequency f 1 and the comb light having the mode interval frequency f 1 are multiplexed by the branch coupler 33 before being input to the optical pulse synthesizer 24. It is shown separately in two.
  • f 2 is greater by ⁇ f than f 1. Therefore, the comb light with the mode interval frequency f 2 is 0, ⁇ f, 2 ⁇ f, 3 ⁇ f from the position where the comb light with the mode interval frequency f 1 matches the central mode light (bold line) derived from continuous light. Has a frequency difference of.
  • FIG. 17A-2 shows comb light having a mode interval frequency of f 1 after passing through the sample 40 to be measured.
  • FIG. 17B-2 shows comb light having a mode interval frequency of f 2 after passing through the sample 40 to be measured.
  • the comb light having a mode interval frequency of f 1 and the comb light having a mode interval frequency of f 2 are transmitted through the sample to be measured 40 and the light intensity of the specific mode light is attenuated. Note that a spectrum having a frequency lower than that of the central mode light (thick line) may be filtered when not used for measurement.
  • Figure 17 (a-3) shows the spectrum mode spacing frequency after passing through the measurement sample 40 is the comb light and the mode spacing frequency of f 1 and comb light f 2, were synthesized.
  • FIG. 17 (a-4) shows a state in which heterodyne detection is performed by correcting the spectral intensity.
  • the transmitted light intensity of the sample to be measured 40 is Is
  • the output of the electric spectrum analyzer 130 is proportional to the square of Is. Therefore, for the purpose of obtaining the transmitted light intensity Is of the sample 40 to be measured, the square root of the spectrum intensity is calculated and corrected.
  • the corrected spectrum can be measured by either the dual comb light receiver 150 having the spectroscopic optical system 50 or the dual comb light receiver 160 having the electric spectrum analyzer 130.
  • the same frequency stabilized laser 20 Is the light source. Therefore, it is not necessary to separately provide a heterodyne laser.
  • the frequency difference ( ⁇ f) between the two combs to be observed is not affected by performing heterodyne detection using the same light source. Therefore, even if there is a fluctuation in the output frequency of the frequency stabilization laser 20, the accuracy of heterodyne detection can be ensured.
  • FIG. 18 is a diagram showing a measuring apparatus 800 according to the eighth embodiment.
  • the measuring device 800 measures the emission spectrum of the light source 38 to be measured by heterodyne detection. That is, the measuring apparatus 800 measures the emission spectrum of the light under measurement output from the light source under measurement 38.
  • the measuring apparatus 800 is substantially the same as the measuring apparatus 200 in the second embodiment except that the sample to be measured 40 is not provided between the collimating lenses 35 and 45.
  • the measuring apparatus 800 includes a frequency comb light source 10, a multiplexing mirror 36, a light source 38 to be measured, and a spectroscopic optical system 50.
  • the frequency comb light source 10 outputs comb light including a plurality of mode lights having different frequencies.
  • the frequency comb light source 10 includes the short pulse light source 12 using the optical pulse synthesizer 24 described in FIG. 7 as the short pulse light source 12 of the measuring apparatus 200 in the second embodiment.
  • the comb light output from the HNLF 18 is combined with the measured light output from the measured light source 38 at the multiplexing mirror 36 after passing through the collimating lens 35.
  • the combined light is output to the spectroscopic optical system 50 through the collimating lens 45.
  • the spectroscopic optical system 50 may be the same as the spectroscopic optical system 50 described in the first to third embodiments.
  • the spectroscopic optical system 50 receives comb light, and extracts only one designated mode light from a plurality of mode lights in the comb light.
  • the mode interval frequency which is the frequency interval between adjacent mode lights in the comb light, is larger than the optical frequency resolution of the spectroscopic optical system 50.
  • a single photoelectric conversion element 60 as a photodetector detects the intensity of light obtained by combining one mode light extracted from the spectroscopic optical system 50 and light to be measured from the light source to be measured.
  • the intensity of the combined light is converted into an electric signal by a single photoelectric conversion element 60, and output to an AD converter 70 through a BPF (Band Pass Filter) 65.
  • the optical frequency output from the exit slit 58 is predetermined according to the rotation angle of the diffraction grating 55.
  • the BPF 65 passes only an electric signal having a frequency f in a range of f 0 ⁇ f ⁇ f 0 + ⁇ f. Therefore, the frequency band of the heterodyne signal detected by the single photoelectric conversion element 60 is limited to the above range by the BPF 65 and transmitted to the AD converter 70.
  • the center frequency f 0 of the transmission frequency width ( ⁇ f) of the BPF 65 is a frequency sufficiently smaller than half of the interval between adjacent comb lights.
  • the measuring apparatus 800 can measure the light intensity signal and the frequency of the optical beat. If the light intensity and optical frequency of the one mode light are known, the light intensity and optical frequency of the light to be measured can be calculated from the light intensity and optical frequency of the light to be measured of the beat signal.
  • the AD converter 70 outputs the light intensity signal to the processor 90 as a control unit.
  • the processor 90 may control the frequency of the voltage applied to the SSB modulator 14 and the rotation angle of the diffraction grating 55 based on the light intensity signal and the optical frequency (that is, the observed optical frequency spectrum). For example, the processor 90 may sweep the mode light by controlling the SSB modulator 14 after observing the optical frequency spectrum once. The processor 90 once observes the optical frequency spectrum and then changes the rotation angle of the diffraction grating 55 to specify that the spectroscopic optical system 50 takes out the mode light having an optical frequency different from the mode light used for the observation. You can do it.
  • FIG. 19 is a diagram showing the principle of optical frequency measurement in the eighth embodiment.
  • the spectrum of the optical comb has a plurality of different mode lights.
  • the spectroscopic optical system 50 has a transmission bandwidth including one mode light.
  • the BPF 65 has a transmission bandwidth with a frequency width ( ⁇ f) narrower than the frequency resolution width of the spectroscopic optical system 50.
  • the transmission frequency band of the BPF 65 is in the range of f 0 ⁇ f ⁇ f 0 + ⁇ f.
  • the frequency f 0 has a frequency sufficiently smaller than half of the interval between adjacent comb lights.
  • the measuring apparatus 800 can measure the light intensity signal.
  • the frequency of the optical beat does not match the transmission frequency of the BPF 65, the light intensity signal is not measured.
  • FIG. 20 is a diagram showing a measuring apparatus 900 according to the ninth embodiment.
  • the measurement apparatus 900 of the present example is that the measurement light described above is obtained by performing heterodyne detection between the mode light and the measured light of the measured light source 38 after the mode light of the comb light is separated by the spectroscopic optical system 50. Different from the device 800. Other configurations are the same as those of the measurement apparatus 800 described above.
  • FIG. 21 is a diagram showing a measuring apparatus 1000 according to the tenth embodiment.
  • the measuring apparatus 1000 measures the emission spectrum of the light source to be measured by heterodyne detection.
  • the measurement apparatus 1000 includes a spectroscopic optical system 50 and a single photoelectric conversion element 60, and a single photoelectric conversion element 60 and an electric spectrum analyzer 130 as a photodetector. Basically different in that it is replaced with. Since the measuring apparatus 1000 detects a beat signal in the order of microwaves in the wavelength band by heterodyne detection, instead of the spectroscopic optical system 50, the measurement light 1000 is obtained by combining the comb light and the measured light of the measured light source 38. A single photoelectric conversion element 60 for detecting the intensity and an electric spectrum analyzer 130 to which the output of the photodetector is input are provided. Also with this configuration, heterodyne detection can be performed.
  • FIG. 22 is a diagram showing a measuring apparatus 1100 according to the eleventh embodiment.
  • the measuring apparatus 1100 can convert the wavelength band of the optical frequency comb light source in the near infrared region (1.2 to 1.8 ⁇ m) to the wavelength band in the mid infrared region (2.0 to 5.0 ⁇ m). Thereby, in the mid-infrared wavelength band, the transmission characteristic or reflection characteristic of the sample 40 to be measured, or the emission spectrum of the light to be measured from the light source 38 to be measured can be measured. Further, when measuring transmission characteristics or reflection characteristics or measuring emission spectrum, the wavelength band of light is converted from the mid-infrared region to the near-infrared region.
  • the measuring apparatus 1100 includes a near-infrared frequency comb light source 10, a first wavelength conversion unit 1102, a second wavelength conversion unit 1104, a spectroscopic optical system 50, and a single photoelectric conversion element 60 as a photodetector.
  • the frequency comb light source 10, the spectroscopic optical system 50, and the single photoelectric conversion element 60 are as described above in the first to tenth embodiments.
  • the first wavelength conversion unit 1102 and the second wavelength conversion unit 1104 are provided between the frequency comb light source 10 and the spectroscopic optical system 50.
  • the first wavelength conversion unit 1102 includes a polarization inversion device 172 and pump light 170.
  • the polarization inversion device 172 is a nonlinear optical crystal having optical anisotropy.
  • the polarization inversion device 172 may be a PPLN (Periodically poled lithium niobate).
  • the pump light 170 is a laser light whose frequency is stabilized.
  • the pump light 170 may be a laser light having a wavelength of 0.98 ⁇ m.
  • the first wavelength conversion unit 1102 converts the near-infrared wavelength band comb light output from the optical frequency comb light source 10 into a mid-infrared wavelength band that is longer than the near-infrared wavelength band. Convert to The first wavelength conversion unit 1102 combines the comb light (center wavelength ⁇ 1 ) in the near-infrared wavelength band and the pump light 170 (wavelength ⁇ 2 ) by the combining mirror 36, and inputs the combined light to the polarization inverting device 172. To do.
  • the comb light in the mid-infrared wavelength band output from the polarization inversion device 172 is input to the sample 40 to be measured.
  • this example demonstrates the case where the transmission characteristic of the to-be-measured sample 40 is measured, as demonstrated in 1st Embodiment, you may change a structure so that a reflection characteristic may be measured.
  • the comb light in the mid-infrared wavelength band output from the polarization inverting device 172 and the measured light output from the measured light source 38 are multiplexed by the multiplexing mirror 36, The spectrum of the light to be measured may be measured.
  • the second wavelength conversion unit 1104 transmits or reflects the comb light converted into the mid-infrared wavelength band in the first wavelength conversion unit 1102 through the sample to be measured 40, and then the comb in the near-infrared wavelength band. Convert back to light.
  • the second wavelength conversion unit 1104 multiplexes the comb light (wavelength ⁇ 1 ′) and the pump light (wavelength ⁇ 2 ′) in the mid-infrared wavelength band by the multiplexing mirror 36 and inputs it to the polarization inversion device 172. To do.
  • the wavelength band is converted from the near infrared region to the mid infrared region, and then the wavelength band is converted again from the mid infrared region to the near infrared region.
  • the near-infrared spectroscopic optical system 50 can be used as it is without using the mid-infrared spectroscopic optical system 50 separately.
  • the mid-infrared photodetector has low sensitivity and high noise.
  • the wavelength band is reconverted from the mid-infrared to the near-infrared. Therefore, compared with the case where light is detected in the mid-infrared wavelength band, it is possible to increase the sensitivity of light detection and reduce noise.
  • the optical comb in the near-infrared wavelength band can be converted into an optical comb in the mid-infrared wavelength band useful for gas analysis by generating a difference frequency. Furthermore, by reconverting the comb light in the mid-infrared wavelength band into the near-infrared wavelength band, it is possible to detect optical frequency response characteristics with high sensitivity and low noise.
  • the measurement apparatuses 1100 and 1106 having the spectroscopic optical system 50 have been described.
  • the spectroscopic optical system 50 and the single photoelectric conversion element 60 may be replaced with a photodetector and an electric spectrum analyzer.
  • the first wavelength conversion unit and the second wavelength conversion unit are provided between the comb light source and the photodetector.
  • the measured light of the measured light source 38 can be heterodyne detected.
  • FIG. 23 shows a measuring apparatus 1200 including a white lamp 1204 and a spectroscopic optical system 1220.
  • a white lamp 1204 a tungsten lamp having a spectrum that continuously spreads from the visible to the infrared region is used.
  • the light from the white lamp 1204 is converted into a parallel beam by the collimator lens 1206 and output from the light source 1202 to the sample 1210 to be measured.
  • the light transmitted through the sample 1210 to be measured is output to the spectroscopic optical system 1220.
  • a diffraction grating 1222 is used for the spectroscopic optical system 1220. By applying light to the diffraction grating 1222 to disperse the light and passing through the slit 1224, monochromatic light having a target wavelength is obtained.
  • a photodetector 1230 such as a photomultiplier tube or a photodiode is provided behind the slit 1224 to detect monochromatic light.
  • the measuring device 1200 uses a white lamp 1204 as a light source, so the wavelength band is wide, but the resolution is determined by the diffraction grating of the spectroscopic optical system 1220, and is generally about several GHz. Further, since the light source is a tungsten lamp, the light intensity is also weak. Furthermore, calibration with a reference light source is required to obtain frequency accuracy. (Comparative Example 2)
  • FIG. 24 shows a measuring apparatus 1300 provided with a wavelength tunable laser light source.
  • a wavelength tunable laser 1304 an external resonator type semiconductor laser is generally used.
  • the wavelength tunable laser 1304 has a simple configuration in which the laser beam transmitted through the sample to be measured 1310 is detected by the photodetector 1324. Since the wavelength is detected by a wavelength meter incorporated in the wavelength tunable laser 1304, a spectroscopic optical system is unnecessary.
  • the wavelength is swept using the wavelength tunable laser 1304, so that a high resolution of about 10 to 100 MHz can be obtained.
  • the variable wavelength range of the laser is at most 100 nm, there is a problem that the measurement band is narrow (about 100 nm).
  • calibration with a reference light source is required to obtain frequency accuracy.
  • FM spectroscopy is a laser spectroscopy technique proposed in 1980, but it has extremely high sensitivity and high resolution, so it can observe spectra of atoms and molecules.
  • sidebands are generated in laser light by phase modulation, and heterodyne detection is performed between the sidebands and a carrier wave.
  • a double balance mixer after the photodetector, both absorption and phase can be detected with high sensitivity.
  • a frequency-stabilized semiconductor laser as the light source, a high resolution of 0.1 MHz can be obtained (reference document: GC Bjorkund, “Frequency-Modulation Spectroscopy”, Opt. Lett., 5, p.15, 1980.).
  • the FM spectrometer can obtain extremely high sensitivity and high resolution (0.1 MHz) by phase modulation of the laser.
  • the measurement wavelength range is an extremely narrow wavelength range (about 1 nm). Therefore, in order to measure at different wavelengths depending on the sample to be measured, it is necessary to prepare lasers with different oscillation wavelengths.
  • Dual comb spectroscopy can obtain a high resolution spectrum of about 100 MHz with only one photodetector by using an electric spectrum analyzer.
  • the frequency band which can be measured at a time is narrow.
  • Table 1 summarizes the comparison results between the present application and Comparative Examples 1 to 4 and the multi-GHz comb light source described in Background Art.
  • the measuring device described in the present application can be widely used in fields such as medical / life science, industrial chemistry, and medicine / food.
  • Optical communications (modulation spectrum measurement, light source line spectrum measurement, etc.).
  • frequency channels with high density over a wide wavelength range of 1.2 ⁇ m to 1.8 ⁇ m have been advancing due to the depletion of frequency resources, and modulation signal analysis in the order of MHz over a wide frequency band is required. .

Abstract

The present invention expands the measurement band of a measurement device having a spectroscopic optical system, simplifies a control system for the measurement device, and reduces the cost of the measurement device. Provided is a measurement device for measuring the transmission characteristics or reflection characteristics of a sample to be measured, wherein: the measurement device is provided with a frequency comb light source for outputting comb light including a plurality of light modes having a constant frequency interval, a spectroscopic optical system that receives the comb light and decomposes the plurality of light modes in the comb light into individual frequencies, and a photodetector for detecting the intensity of at least one light mode from among the plurality of light modes extracted from the spectroscopic optical system; a single light mode having the intensity thereof detected by the photodetector passes through or is reflected by the sample to be measured, which is disposed between the comb light source output and the photodetector input; and the frequency interval between the comb light modes is larger than the optical frequency resolution of the spectroscopic optical system.

Description

測定装置measuring device
 本発明は、測定装置に関する。 The present invention relates to a measuring apparatus.
 図25は、周波数コム光源を備える従来の測定装置1400である。測定装置1400を用いて、被測定試料1420の光周波数応答特性を測定することができる。測定装置1400は、モード光の間隔が10GHzオーダーである周波数コム光源1402と、複数の低密度周波数のコム光を発生させるインターリーバ1408と、インターリーバ1408から出射される低密度周波数のコム光を選択する光スイッチ1410と、光スイッチ1410からの出射光を増幅するEDFA(光増幅器)1412と、光増幅器1412からの出射光のうち1つのモード光を取り出す可変光フィルタ1414を備える。 FIG. 25 shows a conventional measuring apparatus 1400 provided with a frequency comb light source. Using the measurement apparatus 1400, the optical frequency response characteristic of the sample 1420 to be measured can be measured. The measurement apparatus 1400 includes a frequency comb light source 1402 whose mode light interval is on the order of 10 GHz, an interleaver 1408 that generates a plurality of low density frequency comb lights, and a low density frequency comb light emitted from the interleaver 1408. An optical switch 1410 to be selected, an EDFA (optical amplifier) 1412 that amplifies the light emitted from the optical switch 1410, and a variable optical filter 1414 that extracts one mode light out of the light emitted from the optical amplifier 1412 are provided.
 測定装置1400においては、可変光フィルタ1414を透過した1つのモード光(周波数f)が、周波数シフタ1416により、光周波数軸上をMHzオーダーの周波数fだけ掃引される。当該掃引された1つのモード光は、被測定試料1420を透過し、高速光検出器1422に入射する。高速光検出器1422には、掃引された1つのモード光に加えて、可変波長レーザ1430の出射光も入射する。高速光検出器1422の出力は、電気アンプ1424およびローパスフィルタ1426を経て、光パワーメータ1428に出力される。これにより、掃引された1つのモード光が可変波長レーザ1430の出射光により光ヘテロダイン検波される。 In the measurement apparatus 1400, one mode light (frequency f m ) transmitted through the variable optical filter 1414 is swept by the frequency shifter 1416 on the optical frequency axis by a frequency f on the order of MHz. The one mode light thus swept passes through the sample to be measured 1420 and enters the high-speed photodetector 1422. In addition to the swept one mode light, the light emitted from the variable wavelength laser 1430 is also incident on the high-speed photodetector 1422. The output of the high-speed photodetector 1422 is output to the optical power meter 1428 through the electric amplifier 1424 and the low-pass filter 1426. Thereby, the swept one mode light is optically heterodyne detected by the light emitted from the variable wavelength laser 1430.
 測定装置1400では、周波数コム光源1402から出力されるコム光のうち1つのモード光を取り出し、周波数シフタ1416によりMHzオーダーで周波数掃引して変化させる。それゆえ、被測定試料1420への入射光を、MHzオーダーで制御することができる。また、インターリーバ1408を一段または二段用いてモード間隔を広げているので、可変光フィルタ1414の分解能よりも小さなモード間隔のコム光源に対しても、1つのモード光を選択できる。さらに、光ヘテロダイン検波により、被測定試料1420を透過した光の強度および周波数を測定することができる。したがって、測定装置1400は、被測定試料1420の光周波数に対する応答特性について、MHzオーダーでの分解能を有する(例えば、特許文献1参照)。
[先行技術文献]
[特許文献]
 [特許文献1] 特開2011-017649号公報
In the measuring apparatus 1400, one mode light out of the comb light output from the frequency comb light source 1402 is taken out and changed by frequency sweeping in the order of MHz by the frequency shifter 1416. Therefore, the incident light on the sample 1420 to be measured can be controlled on the order of MHz. Further, since the mode interval is widened by using one or two interleavers 1408, one mode light can be selected even for a comb light source having a mode interval smaller than the resolution of the variable optical filter 1414. Furthermore, the intensity and frequency of light transmitted through the sample 1420 to be measured can be measured by optical heterodyne detection. Therefore, the measuring apparatus 1400 has a resolution on the order of MHz with respect to the response characteristics of the sample 1420 to be measured with respect to the optical frequency (see, for example, Patent Document 1).
[Prior art documents]
[Patent Literature]
[Patent Document 1] JP 2011-017649 A
 しかしながら、測定装置1400においては、コム光のモード間隔を広げて1つのモード光だけを取り出すために、インターリーバ1408、光スイッチ1410および可変光フィルタ1414を用いている。また、可変光フィルタ1414の分解能よりもモード間隔を大きくするために、インターリーバ1408を一段または二段にして用いている。光増幅器(EDFA)1412はこれらの部品の損失を補うために必要である。これらの部品の使用可能な波長帯は通信波長帯である1520~1570nmなので、測定帯域がこの波長帯に限定されるという問題がある。また、インターリーバ1408で分配した低密度周波数コム光の中から1つの低密度周波数コム光を光スイッチ1410で順次選択しなければならない。そのため、測定に時間がかかるという問題がある。さらに、測定装置1400においては、光ヘテロダイン検波のための波長可変レーザが必要であるので、測定装置の制御系が複雑であり、かつ、測定装置が高価となる問題がある。 However, in the measuring apparatus 1400, an interleaver 1408, an optical switch 1410, and a variable optical filter 1414 are used to widen the mode interval of comb light and extract only one mode light. Further, in order to make the mode interval larger than the resolution of the variable optical filter 1414, the interleaver 1408 is used in one or two stages. An optical amplifier (EDFA) 1412 is necessary to compensate for the loss of these components. Since the usable wavelength band of these components is 1520 to 1570 nm which is a communication wavelength band, there is a problem that the measurement band is limited to this wavelength band. Also, one low density frequency comb light must be sequentially selected by the optical switch 1410 from the low density frequency comb light distributed by the interleaver 1408. Therefore, there is a problem that measurement takes time. Furthermore, since the measuring apparatus 1400 requires a wavelength tunable laser for optical heterodyne detection, there is a problem that the control system of the measuring apparatus is complicated and the measuring apparatus is expensive.
 本発明の第1の態様においては、被測定試料の透過特性または反射特性を測定する測定装置であって、一定の周波数間隔を有する複数のモード光を含むコム光を出力する周波数コム光源と、コム光が入力され、コム光における複数のモード光を一つずつ周波数分解する分光光学系と、分光光学系から取り出された複数のモード光のうち少なくとも1つのモード光の強度を検出する光検出器とを備え、光検出器が強度を検出する1つのモード光は、コム光源の出力から、光検出器の入力までの間に配置された被測定試料を透過または反射し、コム光のモード間隔周波数は、分光光学系の光周波数分解能より大きい測定装置を提供する。 In the first aspect of the present invention, a measurement apparatus for measuring transmission characteristics or reflection characteristics of a sample to be measured, a frequency comb light source that outputs comb light including a plurality of mode lights having a constant frequency interval; Spectral optical system that receives comb light and frequency-resolves each mode light of the comb light one by one, and light detection that detects the intensity of at least one mode light out of the plurality of mode lights extracted from the spectroscopic optical system A mode light whose intensity is detected by the photodetector is transmitted or reflected from a sample to be measured disposed between the output of the comb light source and the input of the photodetector, and the mode of the comb light The spacing frequency provides a measuring device that is greater than the optical frequency resolution of the spectroscopic optical system.
 本発明の第2の態様においては、被測定試料の透過特性または反射特性をヘテロダイン検波により測定する測定装置であって、周波数が異なる複数のモード光を含むコム光を出力するコム光源と、前記コム光源から出力されて異なるモード間隔周波数のコム光となった2種類のコム光が、合波されて入力されるデュアルコム受光器とを備え、コム光源は、コム光において隣接する複数のモード光の周波数間隔であるモード間隔周波数と同一の間隔を有し、且つ、コム光よりも少ない数のモード光を含む光パルスを出力するパルス光源と、モード光が存在する周波数帯域を光パルスより拡大したコム光を、光パルスに基づいて生成する帯域拡大部と、パルス光源が出力する光パルスの周波数を、モード間隔周波数よりも狭い範囲でシフトさせることで、コム光の各モード光の周波数を一括してシフトさせる周波数シフタとを有し、パルス光源は、連続光を出力する連続発振レーザと、連続光の周波数を、モード間隔周波数に応じた周波数で変調して、複数のモード光を含む種コム光を生成する、第1の光変調器および第2の光変調器と、種コム光における各モード光の位相および振幅を調整し、光パルスを合成する光パルス合成部と、を含み、連続光は2つに分岐され、第1の光変調器および第2の光変調器にそれぞれ入射されて、第1の光変調器は、モード間隔周波数がfのコム光の種コム光を生成し、第2の光変調器は、モード間隔周波数がfのコム光の種コム光を生成し、fとfとの差は、fおよびfのいずれよりも小さく、モード間隔周波数がfのコム光およびモード間隔周波数がfのコム光の一方または両方が、被測定試料を透過または反射しており、モード間隔周波数がfのコム光とモード間隔周波数がfのコム光とは合波され、デュアルコム受光器に入射される測定装置を提供する。 According to a second aspect of the present invention, there is provided a measuring apparatus for measuring transmission characteristics or reflection characteristics of a sample to be measured by heterodyne detection, wherein the comb light source outputs comb light including a plurality of mode lights having different frequencies, The comb light source includes a dual comb light receiver that is combined and inputted with two types of comb light that are output from the comb light source and become comb light having different mode interval frequencies, and the comb light source includes a plurality of adjacent modes in the comb light. A pulse light source that outputs an optical pulse that has the same interval as the mode interval frequency, which is the frequency interval of light, and includes a smaller number of mode lights than the comb light, and a frequency band in which the mode light exists from the optical pulse The band expanding unit that generates the expanded comb light based on the optical pulse and the frequency of the optical pulse output from the pulse light source are shifted in a range narrower than the mode interval frequency. And a frequency shifter that collectively shifts the frequency of each mode light of the comb light, the pulse light source is a continuous wave laser that outputs continuous light, and the frequency of the continuous light according to the mode interval frequency. A first optical modulator and a second optical modulator that generate seed-comb light including a plurality of mode lights by modulating the frequency, and adjusting the phase and amplitude of each mode light in the seed-comb light; An optical pulse synthesizing unit that synthesizes the pulses, the continuous light is branched into two, and is incident on the first optical modulator and the second optical modulator, respectively, and the first optical modulator interval frequency generates a seed com light comb light f 1, the second optical modulator, the mode spacing frequency generates a seed com light comb light f 2, the difference between f 1 and f 2 are , smaller than either of f 1 and f 2, the mode spacing frequency of f 1 comb light One or both of the called mode interval frequency comb light f 2 is, are transmitted through or reflected by the measured sample, the mode spacing frequency is comb light and the mode spacing frequency of f 1 multiplexing and comb light f 2 And a measuring device that is incident on the dual comb receiver.
 本発明の第3の態様においては、被測定光源の発光スペクトルをヘテロダイン検波により測定する測定装置であって、周波数が異なる複数のモード光を含むコム光を出力するコム光源と、コム光が入力され、コム光における複数のモード光のうち、指定される1つのモード光だけを取り出す分光光学系と、分光光学系から取り出された1つのモード光と被測定光源の被測定光とが合波された光の強度を検出する光検出器とを備え、コム光において隣接する複数のモード光の周波数間隔であるモード間隔周波数は、分光光学系の光周波数分解能より大きい測定装置を提供する。 According to a third aspect of the present invention, there is provided a measuring apparatus for measuring an emission spectrum of a light source to be measured by heterodyne detection, a comb light source that outputs comb light including a plurality of mode lights having different frequencies, and the comb light is input. And a spectroscopic optical system that extracts only one designated mode light out of a plurality of mode lights in the comb light, and a single mode light extracted from the spectroscopic optical system and the measured light of the measured light source are combined. And a photodetector for detecting the intensity of the emitted light, and a mode interval frequency which is a frequency interval between adjacent mode lights in the comb light is larger than the optical frequency resolution of the spectroscopic optical system.
 本発明の第4の態様においては、被測定光源の発光スペクトルをヘテロダイン検波により測定する測定装置であって、周波数が異なる複数のモード光を含むコム光を出力するコム光源と、コム光と被測定光源の被測定光とが合波された光の強度を検出する光検出器と、光検出器の出力が入力される電気スペクトラムアナライザとを備える測定装置を提供する。 According to a fourth aspect of the present invention, there is provided a measuring apparatus for measuring an emission spectrum of a light source to be measured by heterodyne detection, a comb light source that outputs comb light including a plurality of mode lights having different frequencies, the comb light, There is provided a measuring apparatus including a photodetector for detecting the intensity of light combined with light to be measured from a measurement light source, and an electric spectrum analyzer to which an output of the photodetector is input.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
第1の実施形態における測定装置100を示す図である。It is a figure showing measuring device 100 in a 1st embodiment. 図1における出射スリット58の面上に分光されて結像したコムのモード光を示す図である。It is a figure which shows the mode light of the comb disperse | distributed and imaged on the surface of the output slit 58 in FIG. 第1の実施形態の変形例である測定装置105を示す図である。It is a figure which shows the measuring apparatus 105 which is a modification of 1st Embodiment. 第2の実施形態における測定装置200を示す図である。It is a figure which shows the measuring apparatus 200 in 2nd Embodiment. SSB変調器14が1本のレーザ光の周波数をシフトすることを示す図である。It is a figure which shows that the SSB modulator 14 shifts the frequency of one laser beam. SSB変調器14により周波数シフトされるコム光を示す図である。3 is a diagram illustrating comb light that is frequency-shifted by an SSB modulator 14. FIG. 光パルスシンセサイザ24を用いた短パルス光源12を有する周波数コム光源10を示す図である。It is a figure which shows the frequency comb light source 10 which has the short pulse light source 12 using the optical pulse synthesizer 24. FIG. 分散付与器21を用いた短パルス光源12を有する周波数コム光源10を示す図である。It is a figure which shows the frequency comb light source 10 which has the short pulse light source 12 using the dispersion | distribution provision device 21. FIG. 第3の実施形態における測定装置300を示す図である。It is a figure which shows the measuring apparatus 300 in 3rd Embodiment. 第4の実施形態における測定装置400を示す図である。It is a figure which shows the measuring apparatus 400 in 4th Embodiment. 第5の実施形態における測定装置500を示す図である。It is a figure which shows the measuring apparatus 500 in 5th Embodiment. 2つの経路を用いたデュアルコム分光の場合におけるスペクトルの変化を示す図である。It is a figure which shows the change of the spectrum in the case of the dual comb spectroscopy using two paths. 第5の実施形態の変形例である測定装置550を示す図である。It is a figure which shows the measuring apparatus 550 which is a modification of 5th Embodiment. SSB変調器34-2がコム光を光周波数軸上でシフトさせる様子を示す図である。It is a figure which shows a mode that the SSB modulator 34-2 shifts comb light on an optical frequency axis. 第6の実施形態における測定装置600を示す図である。It is a figure which shows the measuring apparatus 600 in 6th Embodiment. 第7の実施形態における測定装置700を示す図である。It is a figure which shows the measuring apparatus 700 in 7th Embodiment. 1つの経路を用いたデュアルコム分光の場合におけるスペクトルの変化を示す図である。It is a figure which shows the change of the spectrum in the case of the dual comb spectroscopy using one path | route. 第8の実施形態における測定装置800を示す図である。It is a figure which shows the measuring apparatus 800 in 8th Embodiment. 第8の実施形態における光周波数計測の原理を示す図である。It is a figure which shows the principle of the optical frequency measurement in 8th Embodiment. 第9の実施形態における測定装置900を示す図である。It is a figure which shows the measuring apparatus 900 in 9th Embodiment. 第10の実施形態における測定装置1000を示す図である。It is a figure which shows the measuring apparatus 1000 in 10th Embodiment. 第11の実施形態における測定装置1100と測定装置1106を示す図である。It is a figure which shows the measuring device 1100 and measuring device 1106 in 11th Embodiment. 白色ランプ1204および分光光学系1220を備える測定装置である。This is a measuring apparatus including a white lamp 1204 and a spectroscopic optical system 1220. 波長可変レーザ光源を備える測定装置である。It is a measuring apparatus provided with a wavelength variable laser light source. 周波数コム光源を備える従来の測定装置である。It is the conventional measuring device provided with a frequency comb light source.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、第1の実施形態における測定装置100を示す図である。測定装置100は、被測定試料40の透過特性または反射特性を測定する。測定装置100は、周波数コム光源10、分光光学系50、光検出器としての単一の光電変換素子60、ADコンバータ70、駆動回路80および制御部としてのプロセッサ90を備える。 FIG. 1 is a diagram showing a measuring apparatus 100 according to the first embodiment. The measuring apparatus 100 measures the transmission characteristic or reflection characteristic of the sample 40 to be measured. The measuring apparatus 100 includes a frequency comb light source 10, a spectroscopic optical system 50, a single photoelectric conversion element 60 as a photodetector, an AD converter 70, a drive circuit 80, and a processor 90 as a control unit.
 周波数コム光源10から出射された光は、コリメートレンズ35を経由して、被測定試料40に入力される。被測定試料40から出力された光は、コリメートレンズ45を経由して、分光光学系50に入力される。分光光学系50から出力された光は、単一の光電変換素子60に入力される。単一の光電変換素子60は例えばフォトダイオードである。単一の光電変換素子60を用いる場合、単一の光電変換素子60の出力は、ADコンバータ70を経由してプロセッサ90に入力される。プロセッサ90は、ADコンバータ70から出力される信号を取り込むとともに、駆動回路に制御信号を送る。駆動回路80は、当該制御信号に基づいて分光光学系50における回折格子55の回転角度を制御する。 The light emitted from the frequency comb light source 10 is input to the sample to be measured 40 via the collimating lens 35. Light output from the sample to be measured 40 is input to the spectroscopic optical system 50 via the collimating lens 45. The light output from the spectroscopic optical system 50 is input to a single photoelectric conversion element 60. The single photoelectric conversion element 60 is, for example, a photodiode. When a single photoelectric conversion element 60 is used, the output of the single photoelectric conversion element 60 is input to the processor 90 via the AD converter 70. The processor 90 takes in a signal output from the AD converter 70 and sends a control signal to the drive circuit. The drive circuit 80 controls the rotation angle of the diffraction grating 55 in the spectroscopic optical system 50 based on the control signal.
 周波数コム光源10は、スーパーコンティニューム光と呼ばれるコム光を出力する。周波数コム光源10は、パルス光源としての短パルス光源12と、短パルス光源12の光パルスの光強度を増幅するEDFA(Erbium-Doped optical Fiber Amplifier(光ファイバ型増幅器))16と、EDFA16が出力する光パルスの光周波数帯域を拡大する帯域拡大部としてのHNLF(Highly-Nonlinear Fiber)18とを有する。 The frequency comb light source 10 outputs comb light called super continuum light. The frequency comb light source 10 outputs a short pulse light source 12 as a pulse light source, an EDFA (Erbium-Doped Optical Fiber Amplifier) 16 that amplifies the light intensity of the light pulse of the short pulse light source 12, and an EDFA 16 And a HNLF (Highly-Nonlinear Fiber) 18 as a band expanding unit that expands the optical frequency band of the optical pulse to be transmitted.
 短パルス光源12は、光パルスを発生させる。また、周波数コム光源10は、短パルス光源12が出力する光パルスの繰り返し周波数に等しいモード間隔周波数のコム光を発生する。なお、本明細書においてモード間隔周波数とは、コム光において隣接する複数のモード光の周波数間隔を指す。本例では、短パルス光源12が出力する光パルスの繰り返し周波数を12.5GHzとすれば、複数のモード光の周波数間隔は12.5GHzである。また、当該光パルスは、波長帯域において、中心波長が1.55μmで、かつ、広がりが10nm程度である光パルスである。短パルス光源12から出力された光パルスは、EDFA16に入力される。 The short pulse light source 12 generates a light pulse. The frequency comb light source 10 generates comb light having a mode interval frequency equal to the repetition frequency of the optical pulse output from the short pulse light source 12. In this specification, the mode interval frequency refers to a frequency interval between a plurality of adjacent mode lights in the comb light. In this example, if the repetition frequency of the optical pulse output from the short pulse light source 12 is 12.5 GHz, the frequency interval of the plurality of mode lights is 12.5 GHz. The optical pulse is an optical pulse having a center wavelength of 1.55 μm and a spread of about 10 nm in the wavelength band. The light pulse output from the short pulse light source 12 is input to the EDFA 16.
 EDFA16は、短パルス光源12から出力された光パルスの光強度を増幅する。EDFA16から出射された光パルスは、HNLF18に入力される。 The EDFA 16 amplifies the light intensity of the light pulse output from the short pulse light source 12. The light pulse emitted from the EDFA 16 is input to the HNLF 18.
 HNLF18は、光パルスの繰り返し周波数に等しいモード間隔周波数のスーパーコンティニューム光と呼ばれるコム光を発生する。モード光が存在する周波数帯域を光パルスより拡大したコム光を、光パルスに基づいて生成する。例えば、HNLF18は、波長帯域で10nm程度の広がりを有する光パルスを、数百nm程度に拡大する。これにより、HNLF18は、入力された光パルスよりも広い波長帯域(周波数帯域)において、周波数が異なる複数のモード光を含むコム光を出力する。HNLF18は、GeO等を添加した石英系光ファイバ、または、断面内に空孔が周期配列して存在するフォトニッククリスタルファイバであってよい。HNLF18から出射されたコム光は、コリメートレンズ45を経由して、分光光学系50に入射する。 The HNLF 18 generates comb light called supercontinuum light having a mode interval frequency equal to the repetition frequency of the optical pulse. Comb light in which the frequency band in which mode light exists is expanded from the optical pulse is generated based on the optical pulse. For example, the HNLF 18 expands an optical pulse having a spread of about 10 nm in the wavelength band to about several hundred nm. Accordingly, the HNLF 18 outputs comb light including a plurality of mode lights having different frequencies in a wavelength band (frequency band) wider than the input optical pulse. The HNLF 18 may be a silica-based optical fiber to which GeO 2 or the like is added, or a photonic crystal fiber in which holes are periodically arranged in a cross section. Comb light emitted from the HNLF 18 enters the spectroscopic optical system 50 via the collimator lens 45.
 分光光学系50には、被測定試料を透過したコム光が入力される(透過光学系)。なお、分光光学系50には、被測定試料から反射したコム光が入力されてもよい(反射光学系)。反射光学系の場合には、コリメートレンズ35から出射した光はミラー42で反射されて、被測定試料40に入力される。そして、被測定試料40から反射された光が、ミラー42を経てコリメートレンズ45に入力される。 The comb light transmitted through the sample to be measured is input to the spectroscopic optical system 50 (transmission optical system). Note that comb light reflected from the sample to be measured may be input to the spectroscopic optical system 50 (reflection optical system). In the case of a reflective optical system, the light emitted from the collimating lens 35 is reflected by the mirror 42 and input to the sample 40 to be measured. Then, the light reflected from the measurement sample 40 is input to the collimating lens 45 through the mirror 42.
 分光光学系50は、被測定試料を透過したコム光または被測定試料から反射したコム光が入力され、コム光における複数のモード光のうち、指定される1つのモード光だけを取り出す。分光光学系50は、コム光が入力される入射スリット52、入射スリット52を透過した光が入力されるコリメートレンズ54、コリメートレンズ54を透過したコム光を回折する回折格子55、レンズ56から出力された光を透過させる出射スリット58を有する。当該回折されたコム光はレンズ56を介して出射スリット58の面上にモード光のスペクトルを結像する。 The spectroscopic optical system 50 receives comb light transmitted through the sample to be measured or comb light reflected from the sample to be measured, and extracts only one designated mode light from a plurality of mode lights in the comb light. The spectroscopic optical system 50 outputs an incident slit 52 to which comb light is input, a collimator lens 54 to which light transmitted through the incident slit 52 is input, a diffraction grating 55 that diffracts the comb light transmitted through the collimator lens 54, and a lens 56. And an exit slit 58 that transmits the transmitted light. The diffracted comb light forms an image of the mode light spectrum on the surface of the exit slit 58 via the lens 56.
 出射スリット58の面上に結像されたモード光のスペクトルのうち、回折格子55の角度に応じて定められる1つのモード光だけが出射スリット58を通過し、単一の光電変換素子60に出射する。 Of the spectrum of mode light imaged on the surface of the exit slit 58, only one mode light determined according to the angle of the diffraction grating 55 passes through the exit slit 58 and exits to the single photoelectric conversion element 60. To do.
 また、コム光におけるモード間隔周波数は、コム光が生成される段階において、各々厳密に定まっている。よって、回折格子55の回転角度を調整することにより出射スリット58を介して、ある1つのモード光を取得することができ、そのモード光の周波数は厳密に定まっている。これにより、回折格子55の回転角度を調節することにより、被測定試料に対してモード周波数間隔ごとの光周波数応答特性を測定することができる。 Also, the mode interval frequency in the comb light is strictly determined at the stage where the comb light is generated. Therefore, by adjusting the rotation angle of the diffraction grating 55, one mode light can be acquired via the exit slit 58, and the frequency of the mode light is strictly determined. Thereby, by adjusting the rotation angle of the diffraction grating 55, it is possible to measure the optical frequency response characteristic for each mode frequency interval for the sample to be measured.
 単一の光電変換素子60は、分光光学系50から取り出された1つのモード光の強度を検出する。当該1つのモード光は、周波数コム光源10の出力から、単一の光電変換素子60の入力までの間に配置された被測定試料40を透過または反射した光である。単一の光電変換素子60は、出射スリット58から出射された1つのモード光の強度を時間に応じてアナログ電気信号に変換する。当該アナログ電気信号は、ADコンバータ70に衆力されてデジタル電気信号に変換される。当該デジタル電気信号は、光強度信号として、プロセッサ90に入力される。 The single photoelectric conversion element 60 detects the intensity of one mode light extracted from the spectroscopic optical system 50. The one mode light is light that is transmitted or reflected through the measurement sample 40 arranged between the output of the frequency comb light source 10 and the input of the single photoelectric conversion element 60. The single photoelectric conversion element 60 converts the intensity of one mode light emitted from the emission slit 58 into an analog electric signal according to time. The analog electric signal is converted by the AD converter 70 into a digital electric signal. The digital electric signal is input to the processor 90 as a light intensity signal.
 プロセッサ90は、光強度信号を受信して駆動回路80を制御する。プロセッサ90は、回折格子55の回転角度の情報を予め有している。よって、プロセッサ90は当該回転角度の情報を基に、出射スリット58から出射された1つのモード光の周波数の情報を予め有している。プロセッサ90は、当該1つのモード光の周波数の情報とADコンバータ70から得られた光強度信号とを基にして、分光光学系50から取得される周波数スペクトルがわかる。 The processor 90 receives the light intensity signal and controls the drive circuit 80. The processor 90 has information on the rotation angle of the diffraction grating 55 in advance. Therefore, the processor 90 has in advance information on the frequency of one mode light emitted from the exit slit 58 based on the information on the rotation angle. The processor 90 knows the frequency spectrum obtained from the spectroscopic optical system 50 based on the frequency information of the one mode light and the light intensity signal obtained from the AD converter 70.
 プロセッサ90は、分光光学系50から1つのモード光を用いた測定が終了した後に、さらに、分光光学系50から取り出されるモード光を指定する。例えば、プロセッサ90は、既に観測した1つのモード光よりも周波数が高いまたは低いモード光を指定してよい。 The processor 90 further designates the mode light extracted from the spectroscopic optical system 50 after the measurement using one mode light from the spectroscopic optical system 50 is completed. For example, the processor 90 may specify mode light having a frequency that is higher or lower than one mode light that has already been observed.
 プロセッサ90は、コム光における複数のモード光のうち1つのモード光だけを順次取り出すべく、駆動回路80に回折格子55の回転角度を制御する制御信号を送信する。駆動回路80は、当該制御信号を受信して、回折格子55の回転角度を調整する。なお、回折格子55の回転角度とは、コリメートレンズ54から出射された平行光に対する、回折格子55の入射光面の角度であってよい。 The processor 90 transmits a control signal for controlling the rotation angle of the diffraction grating 55 to the drive circuit 80 in order to sequentially extract only one mode light among the plurality of mode lights in the comb light. The drive circuit 80 receives the control signal and adjusts the rotation angle of the diffraction grating 55. The rotation angle of the diffraction grating 55 may be an angle of the incident light surface of the diffraction grating 55 with respect to the parallel light emitted from the collimating lens 54.
 本例で用いられるコム光は、例えば波長帯域が1.2~1.8μmの近赤外帯域とすることができる。つまり、測定装置の波長帯域を、従来の測定装置よりも広げることができる。また、本例の測定装置100においては、光ヘテロダイン検波のための波長可変レーザが不要である。それゆえ、従来の測定装置に比較して制御系が簡単になる。また、それゆえ、測定装置自体を安価に製造することができる。 The comb light used in this example can be a near infrared band having a wavelength band of 1.2 to 1.8 μm, for example. That is, the wavelength band of the measuring device can be expanded as compared with the conventional measuring device. Further, in the measuring apparatus 100 of this example, a wavelength tunable laser for optical heterodyne detection is not necessary. Therefore, the control system is simplified as compared with the conventional measuring apparatus. Therefore, the measuring device itself can be manufactured at a low cost.
 図2は、図1における出射スリット58の面上に分光されて結像したコムのモード光を示す図である。コム光の周波数間隔と分光光学系50の光周波数分解能の関係が表されている。切立ったスペクトルが光コムのモード光のもつ本来のスペクトルである。モード光に比べてなだらかなスペクトルは、分光光学系50によってその分解能まで拡がったモード光のスペクトルである。 FIG. 2 is a view showing the mode light of the comb that is split and imaged on the surface of the exit slit 58 in FIG. The relationship between the frequency interval of the comb light and the optical frequency resolution of the spectroscopic optical system 50 is shown. The sharp spectrum is the original spectrum of the mode light of the optical comb. The spectrum that is gentler than that of the mode light is a spectrum of the mode light that has been expanded to the resolution by the spectroscopic optical system 50.
 回折格子55で回折された光は、周波数に応じた角度で射出される。出射スリット58は、回折格子55で回折された光のうち、所定の周波数範囲の光を通過させる。本例において、分光光学系50の光周波数分解能は、出射スリット58が光を通過させる周波数範囲の幅を指す。回折格子55を出射スリット58に対して回転させることで、出射スリット58を通過する光の周波数が変化する。 The light diffracted by the diffraction grating 55 is emitted at an angle corresponding to the frequency. The exit slit 58 allows light in a predetermined frequency range to pass through the light diffracted by the diffraction grating 55. In this example, the optical frequency resolution of the spectroscopic optical system 50 indicates the width of the frequency range through which the exit slit 58 passes light. By rotating the diffraction grating 55 relative to the exit slit 58, the frequency of light passing through the exit slit 58 changes.
 コム光は回折格子55で回折されて、出射スリット面上にモード光のスペクトルが展開される。モード間隔周波数は、分光光学系50の光周波数分解能より大きくないと、1つのモード光のみを出射スリット58から取り出すことができない。例えば、モード間隔周波数は、分光光学系50の光周波数分解能の2倍以上である。望ましくは、モード光のモード間隔は、分光光学系50の光周波数分解能の3倍から4倍である。 The comb light is diffracted by the diffraction grating 55, and the spectrum of the mode light is developed on the exit slit surface. If the mode interval frequency is not greater than the optical frequency resolution of the spectroscopic optical system 50, only one mode light cannot be extracted from the exit slit 58. For example, the mode interval frequency is at least twice the optical frequency resolution of the spectroscopic optical system 50. Desirably, the mode interval of the mode light is 3 to 4 times the optical frequency resolution of the spectroscopic optical system 50.
 本例では、モード光のモード間隔は12.5GHzである。なお、高性能の分光器では一般に、回折格子55、入射スリット52および出射スリット58を合わせた分光光学系50の光周波数分解能は、1500nmの波長の光に対して約4GHzである。したがって、本例のモード光のモード間隔周波数は、分光光学系50の光周波数分解能の約3倍である。それゆえ、約4GHzの光周波数分解能を有する本例の分光光学系50であっても、コム光における複数のモード光を、各々独立に取り出すことができる。 In this example, the mode interval of mode light is 12.5 GHz. In general, in a high-performance spectroscope, the optical frequency resolution of the spectroscopic optical system 50 including the diffraction grating 55, the entrance slit 52, and the exit slit 58 is about 4 GHz for light having a wavelength of 1500 nm. Therefore, the mode interval frequency of the mode light in this example is about three times the optical frequency resolution of the spectroscopic optical system 50. Therefore, even with the spectroscopic optical system 50 of the present example having an optical frequency resolution of about 4 GHz, a plurality of mode lights in the comb light can be extracted independently.
 図3は、第1の実施形態の変形例である測定装置105を示す図である。本例では、光検出器として、単一の光電変換素子60に代えて、イメージセンサ62を用いる。当該イメージセンサ62の出力は、画像処理回路72において処理されて、プロセッサ90に出力される。なお、本例では第1の実施形態(図1)の例と異なり、出射スリット58を用いない。 FIG. 3 is a diagram showing a measuring apparatus 105 which is a modification of the first embodiment. In this example, an image sensor 62 is used as the photodetector instead of the single photoelectric conversion element 60. The output of the image sensor 62 is processed by the image processing circuit 72 and output to the processor 90. In this example, unlike the example of the first embodiment (FIG. 1), the exit slit 58 is not used.
 イメージセンサ62は、アレイ状に配列された複数の光電変換素子を有する。回折格子55から出射される複数のモード光のスペクトルは、イメージセンサ62における異なる各々の光電変換素子にそれぞれ入射する。これによりイメージセンサ62は、分光光学系50から出力された複数のモード光の強度を、アナログの電気信号として並列的に検出する。画像処理回路72は、イメージセンサ62において並列的に検出されたアナログの電気信号をデジタルの電気信号に変換してプロセッサ90に出力する。なお、イメージセンサ62は、イメージセンサ62の光電変換機能と画像処理回路72のアナログ‐デジタル変換機能とを合わせて有してもよい。 The image sensor 62 has a plurality of photoelectric conversion elements arranged in an array. The spectra of the plurality of mode lights emitted from the diffraction grating 55 are incident on different photoelectric conversion elements in the image sensor 62, respectively. Accordingly, the image sensor 62 detects in parallel the intensity of the plurality of mode lights output from the spectroscopic optical system 50 as analog electric signals. The image processing circuit 72 converts analog electrical signals detected in parallel by the image sensor 62 into digital electrical signals and outputs them to the processor 90. Note that the image sensor 62 may have both the photoelectric conversion function of the image sensor 62 and the analog-digital conversion function of the image processing circuit 72.
 本例では、出射スリット58が無くとも、各モード光の強度を測定することができる。また、出射スリット58を用いないので、回折格子55は固定されてよい。したがって、本例では回折格子55を駆動する駆動回路80も無くともよいが、回折格子を粗調整用に回転するために駆動回路があってもよい。よって、第1の実施形態(図1)と比較して、簡易な構成にできる。また、同時に複数のモード光のスペクトルを取得できるので、計測速度を高めることができる。 In this example, the intensity of each mode light can be measured without the exit slit 58. Further, since the exit slit 58 is not used, the diffraction grating 55 may be fixed. Therefore, in this example, the drive circuit 80 for driving the diffraction grating 55 may not be provided, but a drive circuit may be provided for rotating the diffraction grating for coarse adjustment. Therefore, compared with the first embodiment (FIG. 1), the configuration can be simplified. Moreover, since the spectrum of several mode light can be acquired simultaneously, measurement speed can be raised.
 図4は、第2の実施形態における測定装置200を示す図である。第2の実施形態における周波数コム光源10は、短パルス光源12とEDFA16との間に周波数シフタとしてのSSB(Single Side Band)変調器14(単側波帯光変調器)と、当該SSB変調器14に変調信号を入力する信号発生器15と、EDFA16とHNLF18との間にパルス圧縮器17とを備える点が、第1の実施形態と異なる。また、プロセッサ90がSSB変調器14の周波数を制御する点も、第1の実施形態と異なる。 FIG. 4 is a diagram showing a measuring apparatus 200 according to the second embodiment. The frequency comb light source 10 in the second embodiment includes an SSB (Single Side Band) modulator 14 (single sideband optical modulator) as a frequency shifter between the short pulse light source 12 and the EDFA 16, and the SSB modulator. 14 is different from the first embodiment in that a signal generator 15 that inputs a modulation signal to 14 and a pulse compressor 17 between the EDFA 16 and the HNLF 18 are provided. Further, the point that the processor 90 controls the frequency of the SSB modulator 14 is also different from the first embodiment.
 短パルス光源12において発生した光パルスは、繰り返し周波数が例えば12.5GHzとすると、その周波数に等しいモード間隔の複数のモード光を含む。なお、図4(a)は短パルス光源12から出射した光パルス(例えば半値幅を4ps)の模式図であって、上側は強度スペクトル(横軸を光周波数、縦軸を光強度)、下側は時間波形(横軸を時間、縦軸を光強度)である。短パルス光源12において発生した光パルスは、SSB変調器14に入射する。 If the repetition frequency is 12.5 GHz, for example, the light pulse generated in the short pulse light source 12 includes a plurality of mode lights having mode intervals equal to the frequency. 4A is a schematic diagram of a light pulse emitted from the short pulse light source 12 (for example, the half width is 4 ps). The upper side is an intensity spectrum (the horizontal axis indicates the optical frequency, the vertical axis indicates the light intensity), and the lower side. The side is a time waveform (the horizontal axis represents time, and the vertical axis represents light intensity). The light pulse generated in the short pulse light source 12 enters the SSB modulator 14.
 SSB変調器14は、信号発生器15から出力される正弦波信号により、短パルス光源12が出力する光パルスのスペクトルを一括してシフトさせる。SSB変調器14は、周波数確度が1Hz以下と極めて高い信号発生器15を用いるので、高精度にMHzオーダーの周波数シフトを実現することができる。 The SSB modulator 14 collectively shifts the spectrum of the optical pulse output from the short pulse light source 12 by the sine wave signal output from the signal generator 15. Since the SSB modulator 14 uses the signal generator 15 having an extremely high frequency accuracy of 1 Hz or less, a frequency shift on the order of MHz can be realized with high accuracy.
 なお、図4(b)はSSB変調器14から出射した光パルスの模式図である。上側の強度スペクトル(横軸を光周波数、縦軸を光強度)は一括してΔfだけシフトする様子を示す。なお、ここでは強度スペクトルのみを模式的に示したが、位相スペクトルも同様に一括してΔfだけシフトする。下側は時間波形(横軸を時間、縦軸を光強度)で、光パルスの時間波形がSSB変調器出射後も保持される様子を示す。光パルスの時間波形は、半値幅を4psで保持される。SSB変調器14において中心周波数がΔfだけシフトされた光パルスは、EDFA16を介して、HNLF18に入射する。 FIG. 4B is a schematic diagram of an optical pulse emitted from the SSB modulator 14. The upper intensity spectrum (the horizontal axis indicates the optical frequency and the vertical axis indicates the optical intensity) shows a state in which they are collectively shifted by Δf. Although only the intensity spectrum is schematically shown here, the phase spectrum is also shifted by Δf at the same time. The lower side is a time waveform (time is on the horizontal axis and light intensity is on the vertical axis), and shows how the time waveform of the optical pulse is retained after emission from the SSB modulator. The time waveform of the optical pulse is held at a half width of 4 ps. The optical pulse whose center frequency is shifted by Δf in the SSB modulator 14 enters the HNLF 18 via the EDFA 16.
 HNLF18は、中心周波数がシフトされた光パルスに基づいて、コム光を発生させる。当該コム光は、入力された光パルスよりも広い周波数帯域において、入力パルスと同じモード間隔周波数を有するコム光である。ただし、当該コム光は、光パルスの強度/位相スペクトルがSSB変調器14により周波数軸上をΔfだけシフトしたことを反映して、複数のモード光の全てが周波数軸上をΔfだけシフトする。 The HNLF 18 generates comb light based on the optical pulse whose center frequency is shifted. The comb light is comb light having the same mode interval frequency as the input pulse in a wider frequency band than the input optical pulse. However, the comb light reflects that the intensity / phase spectrum of the optical pulse has been shifted by Δf on the frequency axis by the SSB modulator 14, and all of the plurality of mode lights are shifted by Δf on the frequency axis.
 なお、従来、単色の連続光に対してSSB変調器14を用いることにより、単色の連続光を周波数シフトすることは確認されている(特許文献1においても可変光フィルタ1414を通過した単色光の連続光に対してこの現象は用いられている)。 Conventionally, it has been confirmed that the monochromatic continuous light is frequency-shifted by using the SSB modulator 14 for the monochromatic continuous light (also in Patent Document 1, the monochromatic light that has passed through the variable optical filter 1414 has been confirmed. This phenomenon is used for continuous light).
 図5は、SSB変調器14が1本のレーザ光の周波数をシフトすることを示す図である。光周波数fのレーザ光は、信号発生器15からSSB変調器14に印加される電圧の周波数fに応じて、周波数軸上の正方向に周波数fだけ掃引される。 FIG. 5 is a diagram showing that the SSB modulator 14 shifts the frequency of one laser beam. The laser light having the optical frequency f 0 is swept by the frequency f in the positive direction on the frequency axis in accordance with the frequency f of the voltage applied from the signal generator 15 to the SSB modulator 14.
 再び図4の説明に戻る。SSB変調器14がピコ秒パルスの振幅だけでなく位相のスペクトルもシフトさせ、かつ、光パルスの時間波形を変化させないことは本出願の発明者により初めて確認された。なお、SSB変調器14は波長依存性を有する。それゆえ、SSB変調器14は、光パルスのもつ波長帯域が拡がる前である、短パルス光源12の直後に配置することが望ましい。SSB変調器14をパルス圧縮器17またはHNLF18の後に配置すると、光パルスのもつ波長帯域が既に拡がっているので、SSB変調器14の持つ波長依存性に起因して、スペクトルを上手くシフトさせることができない。 Returning to the explanation of FIG. It was first confirmed by the inventors of the present application that the SSB modulator 14 not only changes the amplitude of the picosecond pulse but also the phase spectrum and does not change the time waveform of the optical pulse. Note that the SSB modulator 14 has wavelength dependency. Therefore, it is desirable that the SSB modulator 14 be disposed immediately after the short pulse light source 12 before the wavelength band of the optical pulse is expanded. If the SSB modulator 14 is disposed after the pulse compressor 17 or the HNLF 18, the wavelength band of the optical pulse has already been expanded, so that the spectrum can be shifted well due to the wavelength dependence of the SSB modulator 14. Can not.
 プロセッサ90は、SSB変調器14におけるシフト量に応じて、分光光学系50が取り出す光周波数の範囲をシフトさせる。例えばプロセッサ90は、信号発生器15の周波数を制御することにより各モード光の周波数シフト量をMHzオーダーで制御し、かつ、当該周波数シフト量に応じて回折格子55の回転角度を調整する。 The processor 90 shifts the range of the optical frequency taken out by the spectroscopic optical system 50 according to the shift amount in the SSB modulator 14. For example, the processor 90 controls the frequency shift amount of each mode light by controlling the frequency of the signal generator 15 in the order of MHz, and adjusts the rotation angle of the diffraction grating 55 according to the frequency shift amount.
 プロセッサ90は、分光光学系50が取り出す光周波数の範囲に中心がシフトされた測定対象のモード光の周波数と一致するように、回折格子55の回転角度を調整する。例えばプロセッサ90は、シフトされた測定対象のモード光が、出射スリット58におけるスリットの中心を通過するように、回折格子55の回転角度を調整する。これにより、シフトされたモード光の1つを単一の光電変換素子60により検出することができる。したがって、光周波数の応答特性の測定を、MHzオーダーの高分解能で実現することができる。なお、光周波数シフタを用いた第2の実施形態において、単一の光電変換素子60の代わりにイメージセンサ62を配置し、出射スリット58を除いた構成にしてもよいことはもちろんである。 The processor 90 adjusts the rotation angle of the diffraction grating 55 so as to coincide with the frequency of the mode light to be measured whose center is shifted to the optical frequency range taken out by the spectroscopic optical system 50. For example, the processor 90 adjusts the rotation angle of the diffraction grating 55 so that the shifted mode light to be measured passes through the center of the exit slit 58. Thereby, one of the shifted mode lights can be detected by the single photoelectric conversion element 60. Therefore, the measurement of the response characteristic of the optical frequency can be realized with high resolution on the order of MHz. In the second embodiment using the optical frequency shifter, it is needless to say that the image sensor 62 may be disposed instead of the single photoelectric conversion element 60 and the exit slit 58 may be omitted.
 図6は、SSB変調器14により周波数シフトされるコム光を示す図である。コム光に含まれる複数のモード光(‥fm-1、f、fm+1‥)の各々は、信号発生器15からSSB変調器14に印加される電圧の周波数fに応じて、周波数軸上の正方向に周波数fだけ掃引される。本例では、周波数fだけ掃引された光周波数fのモード光が、分光光学系50から取り出される。なお、信号発生器15を制御してSSB変調器14に印加される電圧の周波数fは、プロセッサ90が制御する。 FIG. 6 is a diagram illustrating comb light that is frequency-shifted by the SSB modulator 14. Each of a plurality of mode lights (..., F m−1 , f m , f m + 1 ...) Included in the comb light has a frequency axis according to the frequency f of the voltage applied from the signal generator 15 to the SSB modulator 14. It is swept by the frequency f in the upper positive direction. In this example, mode light of the optical frequency f m which is swept by the frequency f is taken out from the spectroscopic optical system 50. The processor 90 controls the frequency f of the voltage applied to the SSB modulator 14 by controlling the signal generator 15.
 図7は、光パルスシンセサイザ24を用いた短パルス光源12を有する周波数コム光源10を示す図である。本例では、光パルス合成部として、光パルスシンセサイザ24を用いる。周波数コム光源10は、短パルス光源12と、短パルス光源12から出射された光パルスが入射するEDFA16と、EDFA16が出射する光パルスのパルス幅を圧縮するパルス圧縮器17と、パルス圧縮器17から出射された光の光周波数帯域を拡大するHNLF18とを有する。 FIG. 7 is a diagram showing a frequency comb light source 10 having a short pulse light source 12 using an optical pulse synthesizer 24. In this example, an optical pulse synthesizer 24 is used as the optical pulse synthesizer. The frequency comb light source 10 includes a short pulse light source 12, an EDFA 16 into which an optical pulse emitted from the short pulse light source 12 is incident, a pulse compressor 17 that compresses the pulse width of the optical pulse emitted from the EDFA 16, and a pulse compressor 17 HNLF18 which expands the optical frequency band of the light emitted from the.
 短パルス光源12は、連続発振レーザとしての周波数安定化レーザ20と、連続光から種コム光を生成する光変調器22と、種コム光を基に光パルスを合成する光パルスシンセサイザ24とを有する。周波数安定化レーザ20は、発振周波数が長時間一定な(例えば1日当たりの周波数変動1MHz以下)連続光を出力する。周波数安定化レーザは、図7(a‐1)に示すように一定の単一光周波数を有し、図7(b‐1)に示すように時間的に連続して出力されるレーザである。 The short pulse light source 12 includes a frequency stabilization laser 20 as a continuous wave laser, an optical modulator 22 that generates seed comb light from continuous light, and an optical pulse synthesizer 24 that synthesizes an optical pulse based on the seed comb light. Have. The frequency stabilizing laser 20 outputs continuous light whose oscillation frequency is constant for a long time (for example, a frequency fluctuation of 1 MHz or less per day). The frequency stabilized laser has a constant single optical frequency as shown in FIG. 7 (a-1) and is continuously output in time as shown in FIG. 7 (b-1). .
 光変調器22は、連続光の周波数を、発生しようとする光パルスの繰り返し周波数に応じた周波数で変調して、複数の側帯波を発生する。ここでは、周波数安定化レーザ20から発振する連続光の単一光周波数と当該単一光周波数から発生した側帯波群とを合わせて種コム光と呼ぶ。光変調器22は、信号発生器23からRF変調を受けて、連続光の光を変調する。光変調器22は、誘電体結晶であるLiNbO(LN)光変調器であってよい。 The optical modulator 22 modulates the frequency of continuous light with a frequency corresponding to the repetition frequency of the optical pulse to be generated, and generates a plurality of sidebands. Here, a single optical frequency of continuous light oscillated from the frequency stabilized laser 20 and a sideband group generated from the single optical frequency are collectively referred to as seed comb light. The optical modulator 22 receives RF modulation from the signal generator 23 and modulates continuous light. The light modulator 22 may be a LiNbO 3 (LN) light modulator that is a dielectric crystal.
 本例の光変調器22は、信号発生器23が発生する例えば12.5GHzの正弦波信号によって周波数間隔が12.5GHzである約30本の側帯波を発生する(図7(a‐2))。これらの側帯波群が種コム光となる。なお、変調後の光は、連続光ではなく、時間的に不連続な波形となる(図7(b‐2))。 The optical modulator 22 of this example generates approximately 30 sidebands having a frequency interval of 12.5 GHz by, for example, a 12.5 GHz sine wave signal generated by the signal generator 23 (FIG. 7 (a-2)). ). These sideband waves become seed comb light. The modulated light is not continuous light but has a temporally discontinuous waveform (FIG. 7 (b-2)).
 光サーキュレータ25は、光変調器22から入力された光を光パルスシンセサイザ24に出力する。光パルスシンセサイザ24は、光変調器22から入力された種コム光における各モード光の位相および振幅を調整する。光パルスシンセサイザ24は、アレイ導波路格子26、強度変調器27、位相変調器28、電流制御器29およびミラー30を有する。アレイ導波路格子26は、強度変調器27に光を導波させる。 The optical circulator 25 outputs the light input from the optical modulator 22 to the optical pulse synthesizer 24. The optical pulse synthesizer 24 adjusts the phase and amplitude of each mode light in the seed comb light input from the optical modulator 22. The optical pulse synthesizer 24 includes an arrayed waveguide grating 26, an intensity modulator 27, a phase modulator 28, a current controller 29, and a mirror 30. The arrayed waveguide grating 26 guides light to the intensity modulator 27.
 種コム光の各モード光は、アレイ導波路格子26によって異なるチャネル導波路へ分波される。チャネルごとに設置された強度変調器27および位相変調器28によって、各モード光の位相および振幅を調整されて光パルスが合成される(図7(a-3))。この光パルスシンセサイザ24については非特許文献1がある。合成された光パルスは、光サーキュレータ25を経由し、EDFA16へ出力される(非特許文献1:H.Tsuda, Y. Tanaka,T. Shioda,and T. Kurokawa:"Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing," IEEE J. Lightwave Technol.,Vol.26, No.6, pp. 670-677,(2008))。 Each mode light of the seed comb light is demultiplexed into different channel waveguides by the arrayed waveguide grating 26. The intensity modulator 27 and the phase modulator 28 installed for each channel adjust the phase and amplitude of each mode light to synthesize an optical pulse (FIG. 7 (a-3)). Regarding this optical pulse synthesizer 24, there is Non-Patent Document 1. The synthesized optical pulse is output to the EDFA 16 via the optical circulator 25 (Non-patent Document 1: H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa: “Analog and digital optical pulses.” arrayed-waveguided grafting for high-speed optical signal processing, "IEEE J. Lightwave Technol., Vol. 26, No. 6, pp. 670-677," 670-677.
 これにより、本例では、繰り返し周波数12.5GHz(パルス間隔80ps)を有する光パルスが合成される(図7(b-3))。光パルスシンセサイザ24で合成された光パルスは、EDFA16を経てパルス圧縮器17に入力される。 Thereby, in this example, an optical pulse having a repetition frequency of 12.5 GHz (pulse interval 80 ps) is synthesized (FIG. 7B-3). The optical pulse synthesized by the optical pulse synthesizer 24 is input to the pulse compressor 17 through the EDFA 16.
 パルス圧縮器17は、光パルスのパルス幅を圧縮することにより、光パルスの光強度ピークを高くする。パルス圧縮された光パルスは、HNLF18に入力される。 The pulse compressor 17 increases the light intensity peak of the light pulse by compressing the pulse width of the light pulse. The optical pulse subjected to pulse compression is input to the HNLF 18.
 HNLF18は、モード光が存在する周波数帯域を光パルスより拡大したコム光を生成する(図7(a-4))。なお、当該コム光のモード間隔周波数は、種コム光のモード間隔周波数と同じ12.5GHzで維持される。 The HNLF 18 generates comb light in which the frequency band in which mode light exists is expanded from the optical pulse (FIG. 7 (a-4)). Note that the mode interval frequency of the comb light is maintained at 12.5 GHz which is the same as the mode interval frequency of the seed comb light.
 図8は、分散付与器21を用いた短パルス光源12を有する周波数コム光源10を示す図である。本例では、光パルス合成部として、光パルスシンセサイザ24の代わりに、分散付与器21を用いる。分散付与器21は、合成しようとする光パルスの中心波長において分散の絶対値が大きな値を持つものであって、例えば、波長1.55μm付近においては標準の単一モードファイバを用いることができる。分散付与器21を用いても、光パルスシンセサイザ24と同様に、連続光を基にして光パルスを合成することができる。光パルスシンセサイザを用いる場合に比べて、合成される光パルスの質(例えばFT積)はやや劣るものの、デバイス構成が簡単なため低コストとなり、操作も簡便となる利点がある。 FIG. 8 is a diagram showing the frequency comb light source 10 having the short pulse light source 12 using the dispersion applicator 21. In this example, a dispersion applicator 21 is used instead of the optical pulse synthesizer 24 as the optical pulse synthesizer. The dispersion applicator 21 has a large absolute value of dispersion at the center wavelength of the optical pulse to be synthesized. For example, a standard single mode fiber can be used in the vicinity of a wavelength of 1.55 μm. . Even if the dispersion applicator 21 is used, it is possible to synthesize optical pulses based on continuous light as in the optical pulse synthesizer 24. Compared with the case where an optical pulse synthesizer is used, although the quality (for example, FT product) of the synthesized optical pulse is somewhat inferior, there is an advantage that the device configuration is simple and the cost is low and the operation is simple.
 図9は、第3の実施形態における測定装置300を示す図である。測定装置300により、FM分光を実行することができる。測定装置300は、基本的には、第1の実施形態における測定装置100の周波数コム光源10を、図7の周波数コム光源10とした構成である。ただし、位相変調器31、信号発生器32、位相調整器120およびロックイン検波器110を設ける点が異なる。 FIG. 9 is a diagram illustrating a measuring apparatus 300 according to the third embodiment. FM spectroscopy can be performed by the measuring apparatus 300. The measurement apparatus 300 basically has a configuration in which the frequency comb light source 10 of the measurement apparatus 100 in the first embodiment is the frequency comb light source 10 of FIG. However, the difference is that a phase modulator 31, a signal generator 32, a phase adjuster 120, and a lock-in detector 110 are provided.
 本例の短パルス光源12は、周波数安定化レーザ20および光変調器22の間に位相変調器31を有する。位相変調器31には、信号発生器32からMHzオーダーの変調電圧が加えられる。位相変調器31は、周波数安定化レーザ20の連続光の周波数を、モード間隔周波数よりも小さい周波数で位相変調する。本例では、位相変調器31の変調周波数は、光変調器22の変調周波数よりも小さい。位相変調器31は、周波数安定化レーザ20が発振した単一周波数連続光に1次の両側サイドバンド光を生じさせて(図9(a‐1))、当該光を光変調器22に入力する。 The short pulse light source 12 of this example has a phase modulator 31 between the frequency stabilized laser 20 and the optical modulator 22. A modulation voltage in the order of MHz is applied to the phase modulator 31 from the signal generator 32. The phase modulator 31 phase-modulates the frequency of the continuous light of the frequency stabilized laser 20 with a frequency smaller than the mode interval frequency. In this example, the modulation frequency of the phase modulator 31 is smaller than the modulation frequency of the optical modulator 22. The phase modulator 31 generates first-order double sideband light in the single frequency continuous light oscillated by the frequency stabilized laser 20 (FIG. 9A-1), and inputs the light to the optical modulator 22. To do.
 つまり、本例では、周波数安定化レーザ20から出射する連続発振光を位相変調器31で位相変調するだけで、周波数コム全てのモードを同じように位相変調することができる。 That is, in this example, only the phase of the continuous wave light emitted from the frequency stabilized laser 20 is phase-modulated by the phase modulator 31, and the modes of all frequency combs can be phase-modulated in the same manner.
 光変調器22は、位相変調器31から入力された光を変調して種コム光を生成する。種コム光の各モードは1次の両側サイドバンドを有する(図9(a‐2))。信号発生器32が発生する正弦波信号は、位相変調器31に入力される。同時に信号発生器32が発生する正弦波信号は位相調整器120によって位相が調整されて、ロックイン検波器110にも入力される。 The optical modulator 22 modulates the light input from the phase modulator 31 to generate seed comb light. Each mode of the seed comb light has a first-order both-side band (FIG. 9 (a-2)). A sine wave signal generated by the signal generator 32 is input to the phase modulator 31. At the same time, the phase of the sine wave signal generated by the signal generator 32 is adjusted by the phase adjuster 120 and input to the lock-in detector 110.
 位相変調器31により浅く位相変調された1つのモード光は、分光光学系50によって取り出され、光検出器としての単一の光電変換素子60に入射する。制御部としてのプロセッサ90は、ロックイン検波器110から出力される信号を取り込むとともに、駆動回路80に制御信号を送る。駆動回路80は、当該制御信号に基づいて分光光学系50における回折格子55の回転角度を制御する。単一の光電変換素子60が検出する光強度には、位相変調器31における変調信号と同じ周波数で変動する成分が含まれる。当該成分には、変調信号と位相がπ/2ずれている直交位相成分と、変調信号と同位相の同位相成分とが含まれる(SIN成分およびCOS成分)。 One mode light shallowly phase-modulated by the phase modulator 31 is taken out by the spectroscopic optical system 50 and is incident on a single photoelectric conversion element 60 as a photodetector. The processor 90 as a control unit takes in a signal output from the lock-in detector 110 and sends a control signal to the drive circuit 80. The drive circuit 80 controls the rotation angle of the diffraction grating 55 in the spectroscopic optical system 50 based on the control signal. The light intensity detected by the single photoelectric conversion element 60 includes a component that varies at the same frequency as the modulation signal in the phase modulator 31. The component includes a quadrature component whose phase is shifted by π / 2 from the modulation signal and an in-phase component having the same phase as the modulation signal (SIN component and COS component).
 これらのSIN成分とCOS成分の振幅がそれぞれ位相と振幅の情報を含む。この合成波のSIN成分とCOS成分それぞれを、位相変調器31における変調信号を用いてロックイン検波器110で検出する。ロックイン検波器110は、位相変調器31における変調信号と、当該変調信号の位相をπ/2変化させた信号とを用いて、SIN成分とCOS成分をそれぞれ検波する。これにより、振幅と位相の変化を検出できる。本例では、位相変調器31によって位相変調されたコム光が、被測定試料40と分光光学系50を通った後、単一の光電変換素子60で電気信号に変換され、位相変調器31における変調信号によってダブルバランス検波され、吸収と位相の微小変動が検出される。 The amplitudes of these SIN component and COS component include phase and amplitude information, respectively. Each of the SIN component and the COS component of the synthesized wave is detected by the lock-in detector 110 using the modulation signal in the phase modulator 31. The lock-in detector 110 detects the SIN component and the COS component using the modulation signal from the phase modulator 31 and the signal obtained by changing the phase of the modulation signal by π / 2. Thereby, changes in amplitude and phase can be detected. In this example, the comb light phase-modulated by the phase modulator 31 passes through the sample to be measured 40 and the spectroscopic optical system 50 and is then converted into an electric signal by a single photoelectric conversion element 60. Double balance detection is performed by the modulation signal, and minute changes in absorption and phase are detected.
 図10は、第4の実施形態における測定装置400を示す図である。測定装置400は2つの光路を用いたデュアルコム分光に用いられる。測定装置400のデュアルコム受光器150は、被測定試料40を透過または反射する信号光と参照光とをヘテロダイン検波することにより、被測定試料40の光周波数応答特性を検出する。 FIG. 10 is a diagram showing a measuring apparatus 400 according to the fourth embodiment. The measuring apparatus 400 is used for dual comb spectroscopy using two optical paths. The dual comb light receiver 150 of the measuring apparatus 400 detects the optical frequency response characteristics of the sample 40 to be measured by heterodyne detection of the signal light transmitted or reflected by the sample 40 to be measured and the reference light.
 測定装置400の周波数コム光源10は、図7に記載の周波数コム光源10と基本的に同じである。ただし、周波数安定化レーザ20からの出力が分岐カプラ33により分岐されて、一方は、被測定試料40を透過する信号光となり、他方は参照光となる点が異なる。 The frequency comb light source 10 of the measuring apparatus 400 is basically the same as the frequency comb light source 10 shown in FIG. However, the difference is that the output from the frequency stabilized laser 20 is branched by the branching coupler 33, one of which is signal light transmitted through the sample to be measured 40 and the other is reference light.
 本例の光変調器22は、周波数安定化レーザ20の連続光が分岐して入力される第1の光変調器22-1および第2の光変調器22-2を含む。第1の光変調器22-1には、周波数fの変調電圧が与えられる。一方、第2の光変調器22-2には、周波数fの変調電圧が与えられる。これにより、第1の光変調器22-1は、モード間隔周波数がfの種コム光を生成する。また、第2の光変調器22-2は、モード間隔周波数がfの種コム光を生成する。 The optical modulator 22 of this example includes a first optical modulator 22-1 and a second optical modulator 22-2 to which continuous light from the frequency stabilized laser 20 is branched and input. The first optical modulator 22-1, the modulation voltage of the frequency f 1 is given. On the other hand, the second optical modulator 22-2, the modulation voltage of the frequency f 2 is given. Thus, the first optical modulator 22-1, the mode spacing frequency to produce a seed comb light f 1. The second optical modulator 22-2, the mode spacing frequency to produce a seed comb light f 2.
 本例では、fとfとの差は、fおよびfのいずれよりも十分に小さい。具体的には、fは12.5GHzである。一方、fは(12.5+δf)GHzであり、またδfは一般に数kHz~数10MHzに設定する。 In this example, the difference between f 1 and f 2 is sufficiently smaller than any of the f 1 and f 2. Specifically, f 1 is 12.5 GHz. On the other hand, f 2 is (12.5 + δf) GHz, also delta] f is typically set to several kHz ~ Number 10 MHz.
 測定においては、δfおよびfの比またはδfおよびfの比によりサンプリング点数の上限が定まる。したがって、δfをfまたはfよりも十分小さく設定することにより、サンプリング点数を多くとることができる。これにより、測定帯域を広くすることができる。 In the measurement, the upper limit of the number of sampling points is determined by the ratio of δf and f 1 or the ratio of δf and f 2 . Therefore, the number of sampling points can be increased by setting δf sufficiently smaller than f 1 or f 2 . Thereby, the measurement band can be widened.
 モード間隔周波数がfの種コム光およびモード間隔周波数がfの種コム光は、それぞれEDFA16-1および16-2、パルス圧縮器17-1および17-2、ならびに、HNLF18-1および18-2を経て、モード間隔周波数がfのコム光およびモード間隔周波数がfの種コム光となる。 The seed comb light whose mode interval frequency is f 1 and the seed comb light whose mode interval frequency is f 2 are EDFAs 16-1 and 16-2, pulse compressors 17-1 and 17-2, and HNLFs 18-1 and 18 respectively. Through -2, the comb light having a mode interval frequency of f 1 and the seed comb light having a mode interval frequency of f 2 are obtained.
 本例の光パルスシンセサイザ24は、第1の光変調器22-1および第2の光変調器22-2に対応する、第1の光パルス合成部としての第1の光パルスシンセサイザ24-1および第2の光パルス合成部としての第2の光パルスシンセサイザ24-2を含む。第1の光パルスシンセサイザ24-1には、第1の光変調器22-1からモード間隔周波数がfの種コム光が入力される。同様に、第2の光パルスシンセサイザ24-2には、第2の光変調器22-2からモード間隔周波数がfの種コム光が入力される。 The optical pulse synthesizer 24 of this example corresponds to the first optical modulator 22-1 and the second optical modulator 22-2, and the first optical pulse synthesizer 24-1 as a first optical pulse synthesizer. And a second optical pulse synthesizer 24-2 as a second optical pulse synthesis unit. The first optical pulse synthesizer 24-1, the mode spacing frequency from the first optical modulator 22-1 seed comb light f 1 is input. Similarly, seed comb light having a mode interval frequency of f 2 is input from the second optical modulator 22-2 to the second optical pulse synthesizer 24-2.
 帯域拡大部としてのHNLF18は、第1の光パルスシンセサイザ24-1および第2の光パルスシンセサイザ24-2に対応する第1の帯域拡大部としてのHNLF18-1および第2の帯域拡大部としてのHNLF18-2を含む。HNLF18-1および18-2は、それぞれモード間隔周波数がfのコム光およびモード間隔周波数がfのコム光を発生させる。 The HNLF 18 serving as the band expanding unit includes the HNLF 18-1 serving as the first band expanding unit and the second band expanding unit corresponding to the first optical pulse synthesizer 24-1 and the second optical pulse synthesizer 24-2. Includes HNLF18-2. HNLFs 18-1 and 18-2 generate comb light having a mode interval frequency of f 1 and comb light having a mode interval frequency of f 2 , respectively.
 モード間隔周波数がfのコム光は、被測定試料40を透過または反射して、信号光となる。モード間隔周波数がfのコム光はミラー42を経由し、参照光となる。被測定試料40を透過または反射したモード間隔周波数がfのコム光と、モード間隔周波数がfのコム光とは合波ミラー36において合波され、分光光学系50に入射される。当該合波された光は、分光光学系50で分光され、単一の光電変換素子60でヘテロダイン検波される。コム光の中心周波数f(周波数安定化レーザ20の発振周波数に等しい)からN番目の信号モード光の周波数はf+N・fとなる。また、N番目の参照モード光の周波数はf+N・(f+δf)となる。両者の周波数差N・δfをfよりも小さく設定すれば、分光光学系によりN番目の信号モード光と参照モード光が選択され、単一の光電変換素子60に入射する。したがって、単一の光電変換素子60の最大帯域をf1に設定すれば、両者間のヘテロダイン信号が得られる。これにより、被測定試料40の光周波数応答特性が検出される。 The comb light having a mode interval frequency of f 1 is transmitted or reflected through the sample to be measured 40 and becomes signal light. Comb light having a mode interval frequency of f 2 passes through the mirror 42 and becomes reference light. The comb light having a mode interval frequency of f 1 and the comb light having a mode interval frequency of f 2 transmitted through or reflected by the sample to be measured 40 is combined by the combining mirror 36 and is incident on the spectroscopic optical system 50. The combined light is split by the spectroscopic optical system 50 and subjected to heterodyne detection by the single photoelectric conversion element 60. The frequency of the Nth signal mode light from the center frequency f C of the comb light (equal to the oscillation frequency of the frequency stabilized laser 20) is f C + N · f 1 . The frequency of the Nth reference mode light is f C + N · (f 1 + δf). If the frequency difference N · δf between the two is set smaller than f 1 , the N-th signal mode light and reference mode light are selected by the spectroscopic optical system and are incident on a single photoelectric conversion element 60. Therefore, if the maximum band of the single photoelectric conversion element 60 is set to f1, a heterodyne signal between the two can be obtained. Thereby, the optical frequency response characteristic of the sample 40 to be measured is detected.
 本例では、1つの周波数安定化レーザ20から信号光と参照光の光コムを独立に発生させるので、2つの光コムのモードは同期されており安定である。また、デュアルコム受光器150により参照光を検出する前に、信号光と参照光とを合波することにより、高感度な検出ができる。つまり、信号光の強度が吸収により減衰しても、強い参照光とのヘテロダイン検波により高感度な検出ができる。なお、本明細書において、単に、モード間隔周波数がfまたはfのコム光と記載した場合、当該コム光は、被測定試料40を透過したコム光または被測定試料40から反射されたコム光に限定されない。 In this example, since the optical combs of the signal light and the reference light are generated independently from one frequency stabilized laser 20, the modes of the two optical combs are synchronized and stable. In addition, before the reference light is detected by the dual-com light receiver 150, the signal light and the reference light are combined to enable highly sensitive detection. That is, even if the intensity of the signal light is attenuated by absorption, highly sensitive detection can be performed by heterodyne detection with strong reference light. In this specification, when it is simply described as comb light having a mode interval frequency of f 1 or f 2 , the comb light is transmitted through the measured sample 40 or is reflected from the measured sample 40. It is not limited to light.
 なお、本例においても、第1の実施形態と同様に光パルスシンセサイザ24とパルス圧縮器17の間に、SSB変調器34をさらに備えてよい。具体的には、SSB変調器34は、光パルスシンセサイザ24-1から出力されたモード間隔周波数がfの種コム光および光パルスシンセサイザ24-2から出力されたモード間隔周波数がfの種コム光を、光周波数軸上で周波数掃引してよい。これにより、SSB変調器34を用いない場合と比較して、さらに高い分解能でスペクトル測定をすることができる。また、第2の実施形態(図4)と同様に、制御部としてのプロセッサ90が分光光学系50における回折格子55とSSB変調器34とを制御し、かつ、単一の光電変換素子60の出力信号を取得してもよい。 Also in this example, an SSB modulator 34 may be further provided between the optical pulse synthesizer 24 and the pulse compressor 17 as in the first embodiment. Specifically, the SSB modulator 34 includes a seed comb light with a mode interval frequency f 1 output from the optical pulse synthesizer 24-1 and a seed with a mode interval frequency f 2 output from the optical pulse synthesizer 24-2. The comb light may be frequency swept on the optical frequency axis. As a result, spectrum measurement can be performed with a higher resolution than when the SSB modulator 34 is not used. Similarly to the second embodiment (FIG. 4), the processor 90 as a control unit controls the diffraction grating 55 and the SSB modulator 34 in the spectroscopic optical system 50, and includes a single photoelectric conversion element 60. An output signal may be acquired.
 図11は、第5の実施形態における測定装置500を示す図である。測定装置500は、測定装置400と同様に2つの光路を用いたデュアルコム分光に用いられる。測定装置500のデュアルコム受光器160は、被測定試料40の光透過特性または光反射特性を、被測定試料40を透過または反射する信号光と参照光とを用いてヘテロダイン検波により測定する。 FIG. 11 is a diagram showing a measuring apparatus 500 according to the fifth embodiment. The measurement apparatus 500 is used for dual-comb spectroscopy using two optical paths, like the measurement apparatus 400. The dual comb light receiver 160 of the measuring apparatus 500 measures the light transmission characteristic or light reflection characteristic of the sample to be measured 40 by heterodyne detection using the signal light that transmits or reflects the sample to be measured 40 and the reference light.
 ただし、測定装置500のデュアルコム受光器160は、分光光学系50および単一の光電変換素子60に代えて、単一の光電変換素子60および電気スペクトラムアナライザ130を有する点が、デュアルコム受光器150と異なる。つまり、被測定試料を透過または反射したモード間隔周波数がfのコム光と、モード間隔周波数がfのコム光とは合波され、まず、単一の光電変換素子60に入力される。そして、単一の光電変換素子60の出力は、電気スペクトラムアナライザ130に入力される。 However, the dual-com light receiver 160 of the measuring apparatus 500 is different from the spectroscopic optical system 50 and the single photoelectric conversion element 60 in that it has a single photoelectric conversion element 60 and an electric spectrum analyzer 130. Different from 150. That is, the comb light having a mode interval frequency of f 1 transmitted through or reflected by the sample to be measured and the comb light having a mode interval frequency of f 2 are combined and first input to a single photoelectric conversion element 60. The output of the single photoelectric conversion element 60 is input to the electric spectrum analyzer 130.
 なお、測定装置500は、HNLF18-2と合波ミラー36との間に、可変波長フィルタ19を設ける点も、測定装置400と異なる。可変波長フィルタ19を用いることにより、測定に使用しないモード間隔周波数fのコム光(参照光)の一部をフィルタリングする。 Measurement apparatus 500 is different from measurement apparatus 400 in that variable wavelength filter 19 is provided between HNLF 18-2 and multiplexing mirror 36. By using a variable wavelength filter 19 to filter a portion of the mode spacing frequency f 2 of the comb beam not used for measurement (reference light).
 本例のデュアルコム分光法によれば、モード間隔周波数fのコム光(信号光)とモード間隔周波数fのコム光(参照光)とをヘテロダイン検波する。つまり、電気スペクトラムアナライザ130は、ヘテロダイン検波された電気信号のスペクトルを検出する。したがって、マイクロ波波長帯域の電気スペクトラムアナライザ130により、被測定試料40の光周波数応答特性を検出することができる。さらに、数MHz前後の高分解な分光を実現するためには、単一の光電変換素子60があれば足りる。また、一度の測定において測定波長帯域を広くして測定することができるので、一度の測定で大容量な情報を取得することができる。 According to the dual comb spectroscopy of this example, the mode spacing frequency f 1 of the comb beam (signal light) and mode spacing frequency f 2 of the comb beam (refer to light) heterodyne detection. That is, the electrical spectrum analyzer 130 detects the spectrum of the electrical signal subjected to heterodyne detection. Therefore, the optical frequency response characteristic of the sample 40 to be measured can be detected by the electric spectrum analyzer 130 in the microwave wavelength band. Furthermore, a single photoelectric conversion element 60 is sufficient to realize high resolution spectroscopy of around several MHz. Further, since the measurement wavelength band can be widened in one measurement, a large amount of information can be acquired by one measurement.
 図12は、2つの経路を用いたデュアルコム分光の場合におけるスペクトルの変化を示す図である。図12(a‐1)は、HNLF18-1から出力されるモード間隔周波数がfのコム光を示す。図12(b‐1)は、HNLF18-2から出力されるモード間隔周波数がfのコム光を示す。上述のように、fはfよりもδfだけ大きいので、モード間隔周波数がfのコム光は、モード間隔周波数がfのコム光と連続光に由来する中央のモード光(太線)とを一致させた位置から、0、δf、2δf、3δf‥の周波数差を有する。 FIG. 12 is a diagram showing a change in spectrum in the case of dual comb spectroscopy using two paths. FIG. 12 (a-1) shows comb light having a mode interval frequency f 1 output from the HNLF 18-1. Figure 12 (b-1) shows a comb light f 2 is the mode spacing frequency output from HNLF18-2. As described above, since f 2 is larger than f 1 by δf, the comb light whose mode interval frequency is f 2 is the central mode light (thick line) derived from the comb light having the mode interval frequency f 1 and continuous light. And a frequency difference of 0, δf, 2δf, 3δf.
 図12(a‐2)は、被測定試料40を透過した後のモード間隔周波数がfのコム光を示す。図12(b‐2)は、可変波長フィルタ19を透過した後のモード間隔周波数がfのコム光を示す。モード間隔周波数がfのコム光は、被測定試料40を透過して、特定のモード光の光強度が減衰する。当該減衰した情報を有するモード間隔周波数がfのコム光が、被測定試料40の光周波数応答特性を示す信号光となる。なお、中央のモード光(太線)よりも低周波数のスペクトルは測定に用いない場合はフィルタリングしてよい。 FIG. 12A-2 shows comb light having a mode interval frequency of f 1 after passing through the sample 40 to be measured. FIG. 12B-2 shows comb light having a mode interval frequency of f 2 after passing through the variable wavelength filter 19. The comb light having a mode interval frequency of f 1 is transmitted through the sample to be measured 40, and the light intensity of the specific mode light is attenuated. The comb light having the attenuated information and the mode interval frequency f 1 becomes signal light indicating the optical frequency response characteristic of the sample 40 to be measured. Note that a spectrum having a frequency lower than that of the central mode light (thick line) may be filtered when not used for measurement.
 図12(a‐3)は、被測定試料40を透過した後のモード間隔周波数がfのコム光(信号光)とモード間隔周波数がfのコム光(参照光)とが、合波ミラー36で合波され、ヘテロダイン検波されたスペクトルを示す。当該スペクトルは、分光光学系50を有するデュアルコム受光器150でも、電気スペクトラムアナライザ130を有するデュアルコム受光器160でも、測定することができる。 Figure 12 (a-3) includes a comb light mode interval frequency f 1 after passing through the sample to be measured 40 (signal light) and the mode interval frequency f 2 of the comb beam (reference light), but combined The spectrum combined by the mirror 36 and heterodyne detected is shown. The spectrum can be measured by the dual comb light receiver 150 having the spectroscopic optical system 50 or the dual comb light receiver 160 having the electric spectrum analyzer 130.
 上述のように、δfは12.5GHzよりも十分に小さい周波数(波長帯域でマイクロ波のオーダー)である。それゆえ、δf、2δf、3δf‥は、電気スペクトラムアナライザ130でも検出することができる。 As described above, δf is a frequency (order of microwaves in the wavelength band) sufficiently smaller than 12.5 GHz. Therefore, δf, 2δf, 3δf... Can also be detected by the electric spectrum analyzer 130.
 図13は、第5の実施形態の変形例である測定装置550を示す図である。本例では、デュアルコム受光器160は、単一の光電変換素子60およびディジタイザ140を有する。ディジタイザ140は、時間的に変化するアナログ信号を順次AD変換してデジタル信号として記録する。また、光パルス合成部として、第1の光パルスシンセサイザ24-1および第2の光パルスシンセサイザ24-2に代えて、第1の分散付与器21-1および第2の分散付与器21-2を有する。さらに、周波数シフタとしてのSSB変調器34-2が第1の分散付与器21-1とパルス圧縮器17-1の間に設けられる。また、SSB変調器34-1が、周波数安定化レーザ20と分岐カプラ33との間に設けられる。上記の点が第5の実施形態の測定装置500と異なる。SSB変調器34-1によって、第5の実施形態と同様に、モード間隔周波数がfとfの2つのコム光を光周波数軸上で周波数掃引することができる。 FIG. 13 is a diagram illustrating a measuring apparatus 550 that is a modification of the fifth embodiment. In this example, the dual comb light receiver 160 includes a single photoelectric conversion element 60 and a digitizer 140. The digitizer 140 sequentially AD-converts analog signals that change over time and records them as digital signals. Further, instead of the first optical pulse synthesizer 24-1 and the second optical pulse synthesizer 24-2, the first dispersion imparting device 21-1 and the second dispersion imparting device 21-2 are used as the optical pulse synthesis unit. Have Further, an SSB modulator 34-2 as a frequency shifter is provided between the first dispersion applicator 21-1 and the pulse compressor 17-1. An SSB modulator 34-1 is provided between the frequency stabilizing laser 20 and the branch coupler 33. The above points are different from the measurement apparatus 500 of the fifth embodiment. Similar to the fifth embodiment, the SSB modulator 34-1 can sweep two comb lights having mode interval frequencies f 1 and f 2 on the optical frequency axis.
 図14は、SSB変調器34-2がコム光を光周波数軸上でシフトさせる様子を示す図である。図14の左側上段は、図13の第1の分散付与器21-1から出力される、モード間隔周波数がfであるコム光を示す。図14の左側下段は、図13の第2の分散付与器21-1から出力される、モード間隔周波数がfであるコム光を示す。モード間隔周波数がfのコム光は、モード間隔周波数がfのコム光に対して光周波数fで一致している。モード間隔周波数がfのコム光は、モード間隔周波数がfのコム光に対して光周波数fから、0、δf、2δf、3δf‥の周波数差を有する。 FIG. 14 is a diagram showing how the SSB modulator 34-2 shifts the comb light on the optical frequency axis. The upper left part of FIG. 14 shows comb light having a mode interval frequency of f 1 output from the first dispersion imparting device 21-1 of FIG. The lower left part of FIG. 14 shows comb light having a mode interval frequency of f 2 output from the second dispersion applicator 21-1 of FIG. Com light mode interval frequency f 2, the mode spacing frequency coincides with the optical frequency f 0 with respect to comb light f 1. The comb light having the mode interval frequency f 2 has a frequency difference of 0, δf, 2δf, 3δf... From the optical frequency f 0 with respect to the comb light having the mode interval frequency f 1 .
 図14の左側上段における図面左向きの矢印は、モード間隔周波数がfのコム光を周波数シフトさせる向きを表す。本例では、モード間隔周波数がfのコム光を低周波数方向に、4δfだけ周波数シフトさせる。図14の右側上段は、SSB変調器34-2によってシフトされたモード間隔周波数がfのコム光を示す。また、図14の右側下段は、モード間隔周波数がfのコム光を示す。 The left-pointing arrow in the upper left part of FIG. 14 represents the direction in which the comb light whose mode interval frequency is f 1 is frequency-shifted. In this example, the comb light whose mode interval frequency is f 1 is frequency shifted by 4δf in the low frequency direction. The upper right part of FIG. 14 shows comb light having a mode interval frequency f 1 shifted by the SSB modulator 34-2. Also, the right lower part of FIG. 14, the mode spacing frequency indicates the comb light f 2.
 このように、SSB変調器34-2によって、モード間隔周波数がfのコム光のみを光周波数軸上でシフトして、2つのコム光が一致するモードを選択することができる。これによって、測定したい波長域に合わせて2つのコム光のモードを一致させることができる。 As described above, the SSB modulator 34-2 can select only the comb light having a mode interval frequency of f 1 on the optical frequency axis and select a mode in which the two comb lights coincide with each other. As a result, the two comb light modes can be matched in accordance with the wavelength range to be measured.
 図15は、第6の実施形態における測定装置600を示す図である。測定装置600は1つの光路を用いたデュアルコム分光に用いられる。測定装置600は、光変調器22-1および22-2から出力された光が、光パルスシンセサイザ24に入力される前に分岐カプラ33で合波される点で、第4の実施形態における測定装置400と異なる。その他の点は、測定装置400と同様である。また、第2の実施形態(図4)と同様に、制御部としてのプロセッサ90が分光光学系50における回折格子55とSSB変調器34とを制御し、かつ、単一の光電変換素子60の出力信号を取得してもよい。 FIG. 15 is a diagram showing a measuring apparatus 600 according to the sixth embodiment. The measuring apparatus 600 is used for dual comb spectroscopy using one optical path. The measurement apparatus 600 is the same as the measurement apparatus in the fourth embodiment in that the light output from the optical modulators 22-1 and 22-2 is combined by the branch coupler 33 before being input to the optical pulse synthesizer 24. Different from the device 400. Other points are the same as those of the measuring apparatus 400. Similarly to the second embodiment (FIG. 4), the processor 90 as a control unit controls the diffraction grating 55 and the SSB modulator 34 in the spectroscopic optical system 50, and includes a single photoelectric conversion element 60. An output signal may be acquired.
 図16は、第7の実施形態における測定装置700を示す図である。測定装置700は、1つの光路を用いたデュアルコム分光に用いられる。測定装置700は、光変調器22-1および22-2から出力された光が、光パルスシンセサイザ24に入力される前に分岐カプラ33で合波される点で、第5の実施形態における測定装置500と異なる。その他の点は、測定装置500と同様である。 FIG. 16 is a diagram illustrating a measuring apparatus 700 according to the seventh embodiment. The measuring apparatus 700 is used for dual comb spectroscopy using one optical path. The measurement apparatus 700 is the same as the measurement apparatus according to the fifth embodiment in that the light output from the optical modulators 22-1 and 22-2 is combined by the branch coupler 33 before being input to the optical pulse synthesizer 24. Different from the device 500. Other points are the same as those of the measuring apparatus 500.
 1つの光路を用いたデュアルコム分光(第6および第7の実施形態)は、2つの経路を用いたデュアルコム分光(第4および第5の実施形態)と比較して、検出感度が低い。しかしながら、2つの経路を用いたデュアルコム分光と比較して、装置の構成部品数を削減することができ、かつ、装置の構成を簡素化することができる。したがって、2つの経路を用いたデュアルコム分光よりも高い精度を必要としない場合には、1つの経路を用いたデュアルコム分光を用いることもできる。 Dual comb spectroscopy (sixth and seventh embodiments) using one optical path has lower detection sensitivity than dual comb spectroscopy (fourth and fifth embodiments) using two paths. However, the number of component parts of the device can be reduced and the configuration of the device can be simplified as compared to dual-comb spectroscopy using two paths. Therefore, when higher accuracy than dual comb spectroscopy using two paths is not required, dual comb spectroscopy using one path can also be used.
 図17は、1つの経路を用いたデュアルコム分光の場合におけるスペクトルの変化を示す図である。図17(a‐1)は、HNLF18から出力されるモード間隔周波数がfのコム光を示す。図17(b‐1)も、HNLF18から出力されるモード間隔周波数がfのコム光を示す。なお、モード間隔周波数がfのコム光とモード間隔周波数がfのコム光とは、光パルスシンセサイザ24に入力される前に分岐カプラ33で合波されているが、説明のためにあえて2つに分離して図示した。 FIG. 17 is a diagram showing a change in spectrum in the case of dual comb spectroscopy using one path. FIG. 17A-1 shows comb light with a mode interval frequency f 1 output from the HNLF 18. Figure 17 (b-1) also shows the comb beam mode interval frequency output is f 2 from HNLF18. The comb light having the mode interval frequency f 1 and the comb light having the mode interval frequency f 1 are multiplexed by the branch coupler 33 before being input to the optical pulse synthesizer 24. It is shown separately in two.
 上述のように、fはfよりもδfだけ大きい。したがって、モード間隔周波数がfのコム光は、モード間隔周波数がfのコム光と連続光に由来する中央のモード光(太線)とを一致させた位置から、0、δf、2δf、3δf‥の周波数差を有する。 As described above, f 2 is greater by δf than f 1. Therefore, the comb light with the mode interval frequency f 2 is 0, δf, 2δf, 3δf from the position where the comb light with the mode interval frequency f 1 matches the central mode light (bold line) derived from continuous light. Has a frequency difference of.
 図17(a‐2)は、被測定試料40を透過した後における、モード間隔周波数がfのコム光を示す。図17(b‐2)は、被測定試料40を透過した後における、モード間隔周波数がfのコム光を示す。モード間隔周波数がfのコム光およびモード間隔周波数がfのコム光は、被測定試料40を透過して特定のモード光の光強度が減衰する。なお、中央のモード光(太線)よりも低周波数のスペクトルは測定に用いない場合はフィルタリングしてよい。 FIG. 17A-2 shows comb light having a mode interval frequency of f 1 after passing through the sample 40 to be measured. FIG. 17B-2 shows comb light having a mode interval frequency of f 2 after passing through the sample 40 to be measured. The comb light having a mode interval frequency of f 1 and the comb light having a mode interval frequency of f 2 are transmitted through the sample to be measured 40 and the light intensity of the specific mode light is attenuated. Note that a spectrum having a frequency lower than that of the central mode light (thick line) may be filtered when not used for measurement.
 図17(a‐3)は、被測定試料40を透過した後のモード間隔周波数がfのコム光とモード間隔周波数がfのコム光とを、合成したスペクトルを示す。図17(a‐4)は、スペクトル強度を補正してヘテロダイン検波をする様子を示す。上述のように、一つの経路を用いたデュアルコム分光では、被測定試料40の透過光強度をIsとすると、電気スペクトラムアナライザ130の出力はIsの自乗に比例する。そこで、被測定試料40の透過光強度Isを取得することを目的として、スペクトル強度の平方根を算出して補正する。当該補正されたスペクトルは、分光光学系50を有するデュアルコム受光器150でも、電気スペクトラムアナライザ130を有するデュアルコム受光器160でも、測定することができる。 Figure 17 (a-3) shows the spectrum mode spacing frequency after passing through the measurement sample 40 is the comb light and the mode spacing frequency of f 1 and comb light f 2, were synthesized. FIG. 17 (a-4) shows a state in which heterodyne detection is performed by correcting the spectral intensity. As described above, in dual comb spectroscopy using a single path, if the transmitted light intensity of the sample to be measured 40 is Is, the output of the electric spectrum analyzer 130 is proportional to the square of Is. Therefore, for the purpose of obtaining the transmitted light intensity Is of the sample 40 to be measured, the square root of the spectrum intensity is calculated and corrected. The corrected spectrum can be measured by either the dual comb light receiver 150 having the spectroscopic optical system 50 or the dual comb light receiver 160 having the electric spectrum analyzer 130.
 2つの経路を用いたデュアルコム分光(第4および第5の実施形態)、ならびに、1つの光路を用いたデュアルコム分光(第6および第7の実施形態)においては、同じ周波数安定化レーザ20を光源とする。それゆえ、ヘテロダイン用のレーザを別途設けなくともよい。加えて、仮に周波数安定化レーザ20の出力周波数に揺らぎが生じたとしても、同一の光源を用いてヘテロダイン検波することにより、観測する2つのコムの周波数差(δf)には影響が生じない。よって、仮に周波数安定化レーザ20の出力周波数に揺らぎがある場合であっても、ヘテロダイン検波の精度を担保することができる。 In dual comb spectroscopy (fourth and fifth embodiments) using two paths and dual comb spectroscopy (sixth and seventh embodiments) using one optical path, the same frequency stabilized laser 20 Is the light source. Therefore, it is not necessary to separately provide a heterodyne laser. In addition, even if fluctuation occurs in the output frequency of the frequency stabilization laser 20, the frequency difference (δf) between the two combs to be observed is not affected by performing heterodyne detection using the same light source. Therefore, even if there is a fluctuation in the output frequency of the frequency stabilization laser 20, the accuracy of heterodyne detection can be ensured.
 図18は、第8の実施形態における測定装置800を示す図である。測定装置800は、被測定光源38の発光スペクトルをヘテロダイン検波により測定する。つまり、測定装置800は、被測定光源38から出力される被測定光の発光スペクトルを計測する。測定装置800は、コリメートレンズ35および45の間に被測定試料40を有しないことを除いて、第2の実施形態における測定装置200とほぼ同じである。 FIG. 18 is a diagram showing a measuring apparatus 800 according to the eighth embodiment. The measuring device 800 measures the emission spectrum of the light source 38 to be measured by heterodyne detection. That is, the measuring apparatus 800 measures the emission spectrum of the light under measurement output from the light source under measurement 38. The measuring apparatus 800 is substantially the same as the measuring apparatus 200 in the second embodiment except that the sample to be measured 40 is not provided between the collimating lenses 35 and 45.
 測定装置800は、周波数コム光源10、合波ミラー36、被測定光源38および分光光学系50を有する。周波数コム光源10は、周波数が異なる複数のモード光を含むコム光を出力する。周波数コム光源10は、第2の実施形態における測定装置200の短パルス光源12として、図7で説明した光パルスシンセサイザ24を用いた短パルス光源12を有する。 The measuring apparatus 800 includes a frequency comb light source 10, a multiplexing mirror 36, a light source 38 to be measured, and a spectroscopic optical system 50. The frequency comb light source 10 outputs comb light including a plurality of mode lights having different frequencies. The frequency comb light source 10 includes the short pulse light source 12 using the optical pulse synthesizer 24 described in FIG. 7 as the short pulse light source 12 of the measuring apparatus 200 in the second embodiment.
 HNLF18から出力されたコム光は、コリメートレンズ35を通過後、合波ミラー36において、被測定光源38から出力された被測定光と合波される。合波された光は、コリメートレンズ45を経て、分光光学系50へ出力される。 The comb light output from the HNLF 18 is combined with the measured light output from the measured light source 38 at the multiplexing mirror 36 after passing through the collimating lens 35. The combined light is output to the spectroscopic optical system 50 through the collimating lens 45.
 分光光学系50は、第1から第3の実施形態に記載された分光光学系50と同じでああってよい。分光光学系50は、コム光が入力され、コム光における複数のモード光のうち、指定される1つのモード光だけを取り出す。なお、コム光において隣接する複数のモード光の周波数間隔であるモード間隔周波数は、分光光学系50の光周波数分解能より大きい。 The spectroscopic optical system 50 may be the same as the spectroscopic optical system 50 described in the first to third embodiments. The spectroscopic optical system 50 receives comb light, and extracts only one designated mode light from a plurality of mode lights in the comb light. Note that the mode interval frequency, which is the frequency interval between adjacent mode lights in the comb light, is larger than the optical frequency resolution of the spectroscopic optical system 50.
 光検出器としての単一の光電変換素子60は、分光光学系50から取り出された1つのモード光と被測定光源の被測定光とが合波された光の強度を検出する。合波された光の強度は、単一の光電変換素子60において電気信号に変換されて、BPF(Band Pass Filter)65を経てADコンバータ70へ出力される。なお、上述のように、回折格子55の回転角度に応じて、出射スリット58から出力される光周波数は予め定められている。 A single photoelectric conversion element 60 as a photodetector detects the intensity of light obtained by combining one mode light extracted from the spectroscopic optical system 50 and light to be measured from the light source to be measured. The intensity of the combined light is converted into an electric signal by a single photoelectric conversion element 60, and output to an AD converter 70 through a BPF (Band Pass Filter) 65. As described above, the optical frequency output from the exit slit 58 is predetermined according to the rotation angle of the diffraction grating 55.
 BPF65は、周波数fがf<f<f+Δfの範囲の電気信号のみを通過させる。したがって、単一の光電変換素子60で検出したヘテロダイン信号の周波数帯域はBPF65によって上記範囲に制限されて、ADコンバータ70へ透過される。なお、BPF65の透過周波数幅(Δf)の中心周波数fは、隣接するコム光の間隔の半分よりも十分に小さな周波数とする。例えば、中心周波数fは、6.25(=12.5/2)GHzよりも十分に小さな値であってよい。 The BPF 65 passes only an electric signal having a frequency f in a range of f 0 <f <f 0 + Δf. Therefore, the frequency band of the heterodyne signal detected by the single photoelectric conversion element 60 is limited to the above range by the BPF 65 and transmitted to the AD converter 70. The center frequency f 0 of the transmission frequency width (Δf) of the BPF 65 is a frequency sufficiently smaller than half of the interval between adjacent comb lights. For example, the center frequency f 0 may be a value sufficiently smaller than 6.25 (= 12.5 / 2) GHz.
 これにより、1つのモード光と被測定光から生じるヘテロダイン信号が、BPF65の透過周波数帯域と一致した場合に、測定装置800は光ビートの光強度信号および周波数を測定することができる。当該1つのモード光の光強度および光周波数が既知であれば、ビート信号の被測定光の光強度および光周波数から、被測定光の光強度および光周波数を算出することができる。 Thereby, when the heterodyne signal generated from one mode light and the light to be measured matches the transmission frequency band of the BPF 65, the measuring apparatus 800 can measure the light intensity signal and the frequency of the optical beat. If the light intensity and optical frequency of the one mode light are known, the light intensity and optical frequency of the light to be measured can be calculated from the light intensity and optical frequency of the light to be measured of the beat signal.
 ADコンバータ70は、当該光強度信号を制御部としてのプロセッサ90へ出力する。プロセッサ90は、光強度信号および光周波数(つまり、観測した光周波数スペクトル)に基づいて、SSB変調器14へ印加する電圧の周波数および回折格子55の回転角度を制御してよい。例えば、プロセッサ90は、光周波数スペクトルを一旦観測した後、SSB変調器14を制御してモード光を掃引してよい。また、プロセッサ90は、光周波数スペクトルを一旦観測した後、回折格子55の回転角度を変更して、観測に用いたモード光とは異なる光周波数のモード光を分光光学系50が取り出すように指定してよい。 The AD converter 70 outputs the light intensity signal to the processor 90 as a control unit. The processor 90 may control the frequency of the voltage applied to the SSB modulator 14 and the rotation angle of the diffraction grating 55 based on the light intensity signal and the optical frequency (that is, the observed optical frequency spectrum). For example, the processor 90 may sweep the mode light by controlling the SSB modulator 14 after observing the optical frequency spectrum once. The processor 90 once observes the optical frequency spectrum and then changes the rotation angle of the diffraction grating 55 to specify that the spectroscopic optical system 50 takes out the mode light having an optical frequency different from the mode light used for the observation. You can do it.
 図19は、第8の実施形態における光周波数計測の原理を示す図である。図19(a)に示すように、光コムのスペクトルは複数の異なるモード光を有する。図19(b)に示すように、分光光学系50は1つのモード光を含む透過帯域幅を有する。また、BPF65は、分光光学系50の周波数分解能の幅より狭い周波数幅(Δf)の透過帯域幅を有する。 FIG. 19 is a diagram showing the principle of optical frequency measurement in the eighth embodiment. As shown in FIG. 19A, the spectrum of the optical comb has a plurality of different mode lights. As shown in FIG. 19B, the spectroscopic optical system 50 has a transmission bandwidth including one mode light. The BPF 65 has a transmission bandwidth with a frequency width (Δf) narrower than the frequency resolution width of the spectroscopic optical system 50.
 図19(c)に示すように、BPF65の透過周波数帯域は、f<f<f+Δfの範囲である。周波数fは、隣接するコム光の間隔の半分よりも十分に小さな周波数を有する。図19(d)に示すように、1つのモード光と被測定光との光ビートの周波数がBPF65の透過周波数と一致した場合に、測定装置800は光強度信号を測定することができる。一方、光ビートの周波数がBPF65の透過周波数と一致しない場合は、光強度信号が測定されない。 As shown in FIG. 19C, the transmission frequency band of the BPF 65 is in the range of f 0 <f <f 0 + Δf. The frequency f 0 has a frequency sufficiently smaller than half of the interval between adjacent comb lights. As shown in FIG. 19D, when the frequency of the optical beat of one mode light and the light to be measured matches the transmission frequency of the BPF 65, the measuring apparatus 800 can measure the light intensity signal. On the other hand, when the frequency of the optical beat does not match the transmission frequency of the BPF 65, the light intensity signal is not measured.
 図20は、第9の実施形態における測定装置900を示す図である。本例の測定装置900は、分光光学系50によりコム光のうち1つのモード光が分光された後に、当該モード光と被測定光源38の被測定光とをヘテロダイン検波する点が、上述の測定装置800と相違する。他の構成は、上述の測定装置800と同一である。 FIG. 20 is a diagram showing a measuring apparatus 900 according to the ninth embodiment. The measurement apparatus 900 of the present example is that the measurement light described above is obtained by performing heterodyne detection between the mode light and the measured light of the measured light source 38 after the mode light of the comb light is separated by the spectroscopic optical system 50. Different from the device 800. Other configurations are the same as those of the measurement apparatus 800 described above.
 図21は、第10の実施形態における測定装置1000を示す図である。測定装置1000は、被測定光源の発光スペクトルをヘテロダイン検波により測定する。測定装置1000は、第8の実施形態の測定装置800と比較して、分光光学系50および単一の光電変換素子60を、光検出器としての単一の光電変換素子60および電気スペクトラムアナライザ130に代えた点で基本的に異なる。測定装置1000は、波長帯域でマイクロ波のオーダーのビート信号をヘテロダイン検波により検出するので、分光光学系50に代えて、コム光と被測定光源38の被測定光とが合波された光の強度を検出する単一の光電変換素子60および光検出器の出力が入力される電気スペクトラムアナライザ130を備える。当該構成によっても、ヘテロダイン検波をすることができる。 FIG. 21 is a diagram showing a measuring apparatus 1000 according to the tenth embodiment. The measuring apparatus 1000 measures the emission spectrum of the light source to be measured by heterodyne detection. Compared with the measurement apparatus 800 of the eighth embodiment, the measurement apparatus 1000 includes a spectroscopic optical system 50 and a single photoelectric conversion element 60, and a single photoelectric conversion element 60 and an electric spectrum analyzer 130 as a photodetector. Basically different in that it is replaced with. Since the measuring apparatus 1000 detects a beat signal in the order of microwaves in the wavelength band by heterodyne detection, instead of the spectroscopic optical system 50, the measurement light 1000 is obtained by combining the comb light and the measured light of the measured light source 38. A single photoelectric conversion element 60 for detecting the intensity and an electric spectrum analyzer 130 to which the output of the photodetector is input are provided. Also with this configuration, heterodyne detection can be performed.
 図22は、第11の実施形態における測定装置1100を示す図である。測定装置1100は、近赤外域(1.2~1.8μm)である光周波数コム光源の波長帯域を、中赤外域(2.0~5.0μm)の波長帯域へ変換することができる。これにより、当該中赤外の波長帯域において、被測定試料40の透過特性もしくは反射特性の測定、または、被測定光源38の被測定光の発光スペクトル計測をすることができる。また、透過特性もしくは反射特性の測定または発光スペクトル計測をするときに、中赤外域から近赤外域に光の波長帯域を変換する。 FIG. 22 is a diagram showing a measuring apparatus 1100 according to the eleventh embodiment. The measuring apparatus 1100 can convert the wavelength band of the optical frequency comb light source in the near infrared region (1.2 to 1.8 μm) to the wavelength band in the mid infrared region (2.0 to 5.0 μm). Thereby, in the mid-infrared wavelength band, the transmission characteristic or reflection characteristic of the sample 40 to be measured, or the emission spectrum of the light to be measured from the light source 38 to be measured can be measured. Further, when measuring transmission characteristics or reflection characteristics or measuring emission spectrum, the wavelength band of light is converted from the mid-infrared region to the near-infrared region.
 測定装置1100は、近赤外の周波数コム光源10、第1の波長変換部1102、第2の波長変換部1104、分光光学系50および光検出器としての単一の光電変換素子60を備える。周波数コム光源10、分光光学系50および単一の光電変換素子60は第1から第10の実施形態において上述した通りである。第1の波長変換部1102および第2の波長変換部1104は、周波数コム光源10と分光光学系50との間に設けられる。 The measuring apparatus 1100 includes a near-infrared frequency comb light source 10, a first wavelength conversion unit 1102, a second wavelength conversion unit 1104, a spectroscopic optical system 50, and a single photoelectric conversion element 60 as a photodetector. The frequency comb light source 10, the spectroscopic optical system 50, and the single photoelectric conversion element 60 are as described above in the first to tenth embodiments. The first wavelength conversion unit 1102 and the second wavelength conversion unit 1104 are provided between the frequency comb light source 10 and the spectroscopic optical system 50.
 第1の波長変換部1102は、分極反転デバイス172とポンプ光170とを有する。分極反転デバイス172は、光学異方性を有する非線形光学結晶である。分極反転デバイス172は、PPLN(Periodically poled lithium niobate)であってよい。ポンプ光170は、周波数安定化されたレーザ光である。ポンプ光170は、0.98μmの波長を有するレーザ光であってよい。 The first wavelength conversion unit 1102 includes a polarization inversion device 172 and pump light 170. The polarization inversion device 172 is a nonlinear optical crystal having optical anisotropy. The polarization inversion device 172 may be a PPLN (Periodically poled lithium niobate). The pump light 170 is a laser light whose frequency is stabilized. The pump light 170 may be a laser light having a wavelength of 0.98 μm.
 第1の波長変換部1102は、光周波数コム光源10から出力された近赤外の波長帯域のコム光を、近赤外の波長帯域よりも長波長である中赤外の波長帯域のコム光に変換する。第1の波長変換部1102は、近赤外の波長帯域のコム光(中心波長λ)とポンプ光170(波長λ)とを合波ミラー36により合波し、分極反転デバイス172に入力する。分極反転デバイス172は、差周波発生により、1/λ=1/λ-1/λ(式1)を満たす波長λの光を発生させる。差周波発生とは、非線形光学結晶にλおよびλ(λ<λ)の2つの波長の光を入射したとき、λおよびλのいずれよりも長いλの波長の光が発生する現象である。 The first wavelength conversion unit 1102 converts the near-infrared wavelength band comb light output from the optical frequency comb light source 10 into a mid-infrared wavelength band that is longer than the near-infrared wavelength band. Convert to The first wavelength conversion unit 1102 combines the comb light (center wavelength λ 1 ) in the near-infrared wavelength band and the pump light 170 (wavelength λ 2 ) by the combining mirror 36, and inputs the combined light to the polarization inverting device 172. To do. The polarization inversion device 172 generates light having a wavelength λ 3 that satisfies 1 / λ 3 = 1 / λ 2 −1 / λ 1 (Equation 1) by generating a difference frequency. Difference frequency generation means that when light having two wavelengths λ 1 and λ 221 ) is incident on a nonlinear optical crystal, light having a wavelength λ 3 longer than both λ 1 and λ 2 This is a phenomenon that occurs.
 例えば、分極反転デバイス172は、近赤外の波長帯域のコム光(中心波長λ=1.5μm)とポンプ光170(波長λ=0.98μm)とにより、中赤外の波長帯域のコム光(中心波長λ=2.8μm)を発生させる。なお、当該中赤外の波長帯域のコム光におけるモード光の周波数間隔は、近赤外の波長帯域のコム光(中心波長λ=1.5μm)と同じ周波数間隔となる。 For example, the polarization inversion device 172 uses a comb light (center wavelength λ 1 = 1.5 μm) in the near-infrared wavelength band and a pump light 170 (wavelength λ 2 = 0.98 μm) in the mid-infrared wavelength band. Comb light (center wavelength λ 3 = 2.8 μm) is generated. The frequency interval of the mode light in the comb light in the mid-infrared wavelength band is the same frequency interval as the comb light in the near-infrared wavelength band (center wavelength λ 1 = 1.5 μm).
 分極反転デバイス172から出力される中赤外の波長帯域のコム光は、被測定試料40に入力される。なお、本例は、被測定試料40の透過特性を測定する場合について説明するが、第1の実施形態で説明したように、反射特性を測定するよう構成を変更してもよい。また、測定装置1106のように、分極反転デバイス172から出力される中赤外の波長帯域のコム光と被測定光源38から出力される被測定光とを合波ミラー36により合波して、被測定光のスペクトル計測をしてもよい。 The comb light in the mid-infrared wavelength band output from the polarization inversion device 172 is input to the sample 40 to be measured. In addition, although this example demonstrates the case where the transmission characteristic of the to-be-measured sample 40 is measured, as demonstrated in 1st Embodiment, you may change a structure so that a reflection characteristic may be measured. Further, like the measuring apparatus 1106, the comb light in the mid-infrared wavelength band output from the polarization inverting device 172 and the measured light output from the measured light source 38 are multiplexed by the multiplexing mirror 36, The spectrum of the light to be measured may be measured.
 第2の波長変換部1104は、第1の波長変換部1102において中赤外の波長帯域に変換されたコム光を、被測定試料40を透過または反射した後に、近赤外の波長帯域のコム光に再び変換する。第2の波長変換部1104は、中赤外の波長帯域のコム光(波長λ')とポンプ光(波長λ')とを合波ミラー36により合波し、分極反転デバイス172に入力する。分極反転デバイス172は、差周波発生により、1/λ'=1/λ'-1/λ'(式1)を満たす波長λ'の光を発生させる。なお、当該近赤外の波長帯域のコム光におけるモード光の周波数間隔は、光周波数コム光源10のコム光と同じ周波数間隔となる。 The second wavelength conversion unit 1104 transmits or reflects the comb light converted into the mid-infrared wavelength band in the first wavelength conversion unit 1102 through the sample to be measured 40, and then the comb in the near-infrared wavelength band. Convert back to light. The second wavelength conversion unit 1104 multiplexes the comb light (wavelength λ 1 ′) and the pump light (wavelength λ 2 ′) in the mid-infrared wavelength band by the multiplexing mirror 36 and inputs it to the polarization inversion device 172. To do. The polarization inversion device 172 generates light having a wavelength λ 3 ′ that satisfies 1 / λ 3 ′ = 1 / λ 2 ′ −1 / λ 1 ′ (Equation 1) by generating a difference frequency. Note that the frequency interval of the mode light in the comb light in the near-infrared wavelength band is the same frequency interval as the comb light of the optical frequency comb light source 10.
 本例では、近赤外域から中赤外へ波長帯域を変換し、その後、中赤外から近赤外へと再度波長帯域を変換する。これにより、中赤外域用の分光光学系50を別途用いることなく、近赤外用の分光光学系50をそのまま用いることができる。また、中赤外域用の光検出器は感度が低く雑音が大きい。しかし、本例では、中赤外から近赤外に波長帯域を再変換する。したがって、中赤外の波長帯域で光検出する場合と比較して、光検出の感度を上げ、かつ、雑音を減らすことができる。 In this example, the wavelength band is converted from the near infrared region to the mid infrared region, and then the wavelength band is converted again from the mid infrared region to the near infrared region. Accordingly, the near-infrared spectroscopic optical system 50 can be used as it is without using the mid-infrared spectroscopic optical system 50 separately. The mid-infrared photodetector has low sensitivity and high noise. However, in this example, the wavelength band is reconverted from the mid-infrared to the near-infrared. Therefore, compared with the case where light is detected in the mid-infrared wavelength band, it is possible to increase the sensitivity of light detection and reduce noise.
 また、本例では、近赤外の波長帯域の光コムを差周波発生によりガス分析に有用な中赤外の波長帯域の光コムへ波長変換できる。さらに、中赤外の波長帯域のコム光を近赤外の波長帯域に再変換することにより、高感度・低雑音な光周波数応答特性の検出をすることができる。 Also, in this example, the optical comb in the near-infrared wavelength band can be converted into an optical comb in the mid-infrared wavelength band useful for gas analysis by generating a difference frequency. Furthermore, by reconverting the comb light in the mid-infrared wavelength band into the near-infrared wavelength band, it is possible to detect optical frequency response characteristics with high sensitivity and low noise.
 なお、本例では、分光光学系50を有する測定装置1100および1106について述べたが、分光光学系50および単一の光電変換素子60を光検出器および電気スペクトラムアナライザに置き換えてもよい。この場合、第1の波長変換部および第2の波長変換部は、コム光源と光検出器との間に設けられる。これにより、被測定光源38の被測定光をヘテロダイン検波することができる。
(比較例1)
In this example, the measurement apparatuses 1100 and 1106 having the spectroscopic optical system 50 have been described. However, the spectroscopic optical system 50 and the single photoelectric conversion element 60 may be replaced with a photodetector and an electric spectrum analyzer. In this case, the first wavelength conversion unit and the second wavelength conversion unit are provided between the comb light source and the photodetector. As a result, the measured light of the measured light source 38 can be heterodyne detected.
(Comparative Example 1)
 図23は、白色ランプ1204および分光光学系1220を備える測定装置1200である。白色ランプ1204として、可視から赤外域にかけて連続的に広がったスペクトルを有するタングステンランプが用いられている。白色ランプ1204の光をコリメートレンズ1206により平行光束にして、光源1202から被測定試料1210に出力する。被測定試料1210を透過した光は、分光光学系1220に出力される。 FIG. 23 shows a measuring apparatus 1200 including a white lamp 1204 and a spectroscopic optical system 1220. As the white lamp 1204, a tungsten lamp having a spectrum that continuously spreads from the visible to the infrared region is used. The light from the white lamp 1204 is converted into a parallel beam by the collimator lens 1206 and output from the light source 1202 to the sample 1210 to be measured. The light transmitted through the sample 1210 to be measured is output to the spectroscopic optical system 1220.
 分光光学系1220には回折格子1222が用いられる。回折格子1222に光を当てて光を分散させ、スリット1224を通すことにより、目的の波長を有する単色光を得る。スリット1224の後ろに光電子増倍管またはフォトダイオードなどの光検出器1230を設けて、単色光を検出する。 A diffraction grating 1222 is used for the spectroscopic optical system 1220. By applying light to the diffraction grating 1222 to disperse the light and passing through the slit 1224, monochromatic light having a target wavelength is obtained. A photodetector 1230 such as a photomultiplier tube or a photodiode is provided behind the slit 1224 to detect monochromatic light.
 測定装置1200は、白色ランプ1204を光源とするので波長帯域が広帯域であるが、分解能は分光光学系1220の回折格子により定められ、一般に数GHz程度である。また、光源がタングステンランプであるので、光強度も微弱である。さらに、周波数確度を得るには基準光源による較正が必要となる。
(比較例2)
The measuring device 1200 uses a white lamp 1204 as a light source, so the wavelength band is wide, but the resolution is determined by the diffraction grating of the spectroscopic optical system 1220, and is generally about several GHz. Further, since the light source is a tungsten lamp, the light intensity is also weak. Furthermore, calibration with a reference light source is required to obtain frequency accuracy.
(Comparative Example 2)
 図24は、波長可変レーザ光源を備える測定装置1300である。波長可変レーザ1304としては、外部共振器型の半導体レーザが一般的に用いられる。波長可変レーザ1304はモード間隔(一般に、約1pm=約100MHz)ごとに波長を掃引できる。波長可変レーザ1304は、被測定試料1310を透過したレーザ光を光検出器1324で検出するだけの簡単な構成である。波長は波長可変レーザ1304に組み込まれた波長計で検出されるので、分光光学系は不要である。 FIG. 24 shows a measuring apparatus 1300 provided with a wavelength tunable laser light source. As the wavelength tunable laser 1304, an external resonator type semiconductor laser is generally used. The wavelength tunable laser 1304 can sweep the wavelength every mode interval (generally, about 1 pm = about 100 MHz). The wavelength tunable laser 1304 has a simple configuration in which the laser beam transmitted through the sample to be measured 1310 is detected by the photodetector 1324. Since the wavelength is detected by a wavelength meter incorporated in the wavelength tunable laser 1304, a spectroscopic optical system is unnecessary.
 測定装置1300では、波長可変レーザ1304を用いて波長を掃引するので、10~100MHz程度と高い分解能が得られる。しかし、レーザの可変波長範囲は高々100nmであるので、測定帯域が狭い(100nm程度)という問題点がある。また、周波数確度を得るには基準光源による較正が必要となる。
(比較例3)
In the measuring apparatus 1300, the wavelength is swept using the wavelength tunable laser 1304, so that a high resolution of about 10 to 100 MHz can be obtained. However, since the variable wavelength range of the laser is at most 100 nm, there is a problem that the measurement band is narrow (about 100 nm). In addition, calibration with a reference light source is required to obtain frequency accuracy.
(Comparative Example 3)
 他に、FM分光測定装置がある。FM分光法は、1980年に提案されたレーザ分光技術であるが、極めて高感度かつ高分解能であるので、原子分子などのスペクトルを観測できる。FM分光法では、位相変調によりレーザ光に側帯波を発生させ、この側帯波と搬送波の間でヘテロダイン検出を行う。光検出器の後にダブルバランスミキサーを用いることで、吸収と位相の両方を高感度に検出できる。光源には周波数安定化された半導体レーザを用いることで、0.1MHzの高い分解能を得ることができる(参考文献:G.C.Bjorklund,"Frequency-Modulation Spectroscopy",Opt.Lett.,5,p.15,1980.)。 Other than that, there is an FM spectrometer. FM spectroscopy is a laser spectroscopy technique proposed in 1980, but it has extremely high sensitivity and high resolution, so it can observe spectra of atoms and molecules. In FM spectroscopy, sidebands are generated in laser light by phase modulation, and heterodyne detection is performed between the sidebands and a carrier wave. By using a double balance mixer after the photodetector, both absorption and phase can be detected with high sensitivity. By using a frequency-stabilized semiconductor laser as the light source, a high resolution of 0.1 MHz can be obtained (reference document: GC Bjorkund, “Frequency-Modulation Spectroscopy”, Opt. Lett., 5, p.15, 1980.).
 FM分光測定装置は、レーザの位相変調により、極めて高感度かつ高い分解能(0.1MHz)が得られる。しかし、周波数安定化された半導体レーザを用いるので、測定波長範囲が極めて狭い波長範囲(1nm程度)となる。したがって、被測定試料に応じて異なる波長で測定するためには、異なる発振波長のレーザを準備する必要がある。
(比較例4)
The FM spectrometer can obtain extremely high sensitivity and high resolution (0.1 MHz) by phase modulation of the laser. However, since a frequency-stabilized semiconductor laser is used, the measurement wavelength range is an extremely narrow wavelength range (about 1 nm). Therefore, in order to measure at different wavelengths depending on the sample to be measured, it is necessary to prepare lasers with different oscillation wavelengths.
(Comparative Example 4)
 その他に、デュアルコム分光測定装置がある。デュアルコム分光法の報告は、2台のフェムト秒レーザ(100MHz間隔の光コム、δf=4kHz)を用いたHCN吸収スペクトルの計測結果として、2008年位NIST(米)によりなされた(参考文献I.Coddington et al.,"Coherent Multiheterodyne spectroscopy using stabilized optical frequency combs"Phys.Rev.Lett.(100,013902(2008).)。 In addition, there is a dual-comb spectrometer. Dual comb spectroscopy was reported by NIST (USA) in 2008 as a measurement result of the HCN absorption spectrum using two femtosecond lasers (optical comb at 100 MHz interval, δf = 4 kHz) (reference document I). Codington et al., “Coherent Multiheterodyne spectroscopic using stabilized optimistic combs” Phys. Rev. Lett. (100, 013902 (2008)).
 デュアルコム分光法は、電気スペクトラムアナライザを用いることで、1台の光検出器のみで100MHz前後の高い分解能のスペクトルを得ることができる。しかし、提案されたデュアルコム分光法では、2台のフェムト秒レーザのモードおよびレーザのモード間隔を同期する必要があるので、測定が容易ではない。また、一度に測定することができる周波数帯域が狭い。 Dual comb spectroscopy can obtain a high resolution spectrum of about 100 MHz with only one photodetector by using an electric spectrum analyzer. However, in the proposed dual comb spectroscopy, it is necessary to synchronize the modes of the two femtosecond lasers and the mode interval of the lasers, so that measurement is not easy. Moreover, the frequency band which can be measured at a time is narrow.
 本願と比較例1から4および背景技術で記載したマルチGHzコム光源との対比結果を、下記の表1にまとめる。 Table 1 below summarizes the comparison results between the present application and Comparative Examples 1 to 4 and the multi-GHz comb light source described in Background Art.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本願に記載の測定装置は、医療・ライフサイエンス、工業化学、薬品・食品などの分野で広く利用することができる。 The measuring device described in the present application can be widely used in fields such as medical / life science, industrial chemistry, and medicine / food.
 医療・生体への応用(血中グルコース濃度測定等)。
 例えば、糖尿病(国内に約700万人)に関して、血液中のグルコース濃度の定量分析が非侵襲で行うことができれ、治療または予防に大きな効果が期待できる。これまで20年以上に渡って国内外で光を用いた非侵襲分析技術の研究が進められてきたが、実用化に至っていない。その主な原因は、広帯域、高分解能、高光強度の分光分析が未開拓なことによる。
Medical and biological applications (blood glucose concentration measurement, etc.).
For example, regarding diabetes (about 7 million people in Japan), quantitative analysis of glucose concentration in blood can be performed non-invasively, and a great effect can be expected for treatment or prevention. Until now, research on non-invasive analysis technology using light has been promoted in Japan and abroad for more than 20 years, but it has not been put into practical use. The main reason is that the spectrum analysis of broadband, high resolution, and high light intensity is undeveloped.
 ガス分析(CO、CO、NO等)。
 化学プラント等ではガス漏洩または混合比などを管理するために、分光分析技術が主流となっている。そこでは多様なガスに対応するため、近赤外から中赤外にかけて高強度の光源が必要となる。
Gas Analysis (CO 2, CO, NO x, etc.).
In a chemical plant or the like, a spectroscopic analysis technique is mainstream in order to manage gas leakage or mixing ratio. In order to cope with various gases, a high-intensity light source is required from the near infrared to the middle infrared.
 光通信(変調スペクトルの測定、光源の線スペクトル測定等)。
 光通信分野では、周波数資源の枯渇から1.2μm~1.8μmと広い波長領域に高密度に周波数チャンネルを割り当てる研究が進んでおり、広い周波数帯域でのMHzオーダーの変調信号解析が必要となる。
Optical communications (modulation spectrum measurement, light source line spectrum measurement, etc.).
In the field of optical communications, research to allocate frequency channels with high density over a wide wavelength range of 1.2 μm to 1.8 μm has been advancing due to the depletion of frequency resources, and modulation signal analysis in the order of MHz over a wide frequency band is required. .
 物性研究(原子・分子のエネルギー準位の精密測定、同位体分離)。
 物性研究分野では、原子・分子のエネルギー順位の精密測定または同位体分離のためにMHz精度の周波数確度が求められている。
Physical properties research (precision measurement of atomic and molecular energy levels, isotope separation).
In the field of physical property research, frequency accuracy with MHz accuracy is required for precise measurement of atomic and molecular energy rankings or for isotope separation.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順序で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, this means that it is essential to carry out in this order. is not.
10 周波数コム光源、12 短パルス光源、14 SSB変調器、15 信号発生器、16 EDFA、17 パルス圧縮器、18 HNLF、19 可変波長フィルタ、20 周波数安定化レーザ、21 分散付与器、22 光変調器、23 信号発生器、24 光パルスシンセサイザ、25 光サーキュレータ、26 アレイ導波路格子、27 強度変調器、28 位相変調器、29 電流制御器、30 ミラー、31 位相変調器、32 信号発生器、33 分岐カプラ、34 SSB変調器、35 コリメートレンズ、36 合波ミラー、38 被測定光源、40 被測定試料、42 ミラー、45 コリメートレンズ、50 分光光学系、52 入射スリット、54 コリメートレンズ、55 回折格子、56 レンズ、58 出射スリット、60 単一の光電変換素子、62 イメージセンサ、65 BPF、70 ADコンバータ、72 画像処理回路、80 駆動回路、90 プロセッサ、100 測定装置、105 測定装置、110 ロックイン検波器、120 位相調整器、130 電気スペクトラムアナライザ、140 ディジタイザ、150 デュアルコム受光器、160 デュアルコム受光器、170 ポンプ光、172 分極反転デバイス、200 測定装置、300 測定装置、400 測定装置、500 測定装置、550 測定装置、600 測定装置、700 測定装置、800 測定装置、900 測定装置、1000 測定装置、1100 測定装置、1102 第1の波長変換部、1104 第2の波長変換部、1106 測定装置、1200 測定装置、1202 光源、1204 白色ランプ、1206 コリメートレンズ、1210 被測定試料、1220 分光光学系、1222 回折格子、1224 スリット、1230 光検出器、1300 測定装置、1304 波長可変レーザ、1310 被測定試料、1324 光検出器、1400 測定装置、1402 周波数コム光源、1408 インターリーバ、1410 光スイッチ、1412 EDFA、1414 可変光フィルタ、1416 周波数シフタ、1420 被測定試料、1422 高速光検出器、1424 電気アンプ、1426 ローパスフィルタ、1428 光パワーメータ、1430 可変波長レーザ 10 frequency comb light source, 12 short pulse light source, 14 SSB modulator, 15 signal generator, 16 EDFA, 17 pulse compressor, 18 HNLF, 19 variable wavelength filter, 20 frequency stabilized laser, 21 dispersion applicator, 22 light modulation , 23 signal generator, 24 optical pulse synthesizer, 25 optical circulator, 26 array waveguide grating, 27 intensity modulator, 28 phase modulator, 29 current controller, 30 mirror, 31 phase modulator, 32 signal generator, 33 branch coupler, 34 SSB modulator, 35 collimating lens, 36 combining mirror, 38 measured light source, 40 measured sample, 42 mirror, 45 collimating lens, 50 spectroscopic optical system, 52 entrance slit, 54 collimating lens, 55 diffraction Lattice, 56 lenses, 58 Firing slit, 60 single photoelectric conversion element, 62 image sensor, 65 BPF, 70 AD converter, 72 image processing circuit, 80 drive circuit, 90 processor, 100 measuring device, 105 measuring device, 110 lock-in detector, 120 phase Adjuster, 130 Electrical spectrum analyzer, 140 Digitizer, 150 Dual comb light receiver, 160 Dual comb light receiver, 170 Pump light, 172 Polarization inversion device, 200 measuring device, 300 measuring device, 400 measuring device, 500 measuring device, 550 measurement Device, 600 measuring device, 700 measuring device, 800 measuring device, 900 measuring device, 1000 measuring device, 1100 measuring device, 1102 first wavelength converting unit, 1104 second wavelength converting unit, 1106 measuring device 1200 measuring device, 1202 light source, 1204 white lamp, 1206 collimating lens, 1210 sample to be measured, 1220 spectroscopic optical system, 1222 diffraction grating, 1224 slit, 1230 photodetector, 1300 measuring device, 1304 wavelength tunable laser, 1310 device to be measured Sample, 1324 photodetector, 1400 measuring device, 1402 frequency comb light source, 1408 interleaver, 1410 optical switch, 1412 EDFA, 1414 variable optical filter, 1416 frequency shifter, 1420 sample to be measured, 1422 high-speed photodetector, 1424 electrical amplifier , 1426 low-pass filter, 1428 optical power meter, 1430 variable wavelength laser

Claims (18)

  1.  被測定試料の透過特性または反射特性を測定する測定装置であって、
     一定の周波数間隔を有する複数のモード光を含むコム光を出力する周波数コム光源と、
     前記コム光が入力され、前記コム光における前記複数のモード光を一つずつ周波数分解する分光光学系と、
     前記分光光学系から取り出された前記複数のモード光のうち少なくとも1つのモード光の強度を検出する光検出器と
     を備え、
     前記光検出器が強度を検出する前記1つのモード光は、前記コム光源の出力から、前記光検出器の入力までの間に配置された前記被測定試料を透過または反射し、
     前記コム光のモード間隔周波数は、前記分光光学系の光周波数分解能より大きい測定装置。
    A measuring device for measuring transmission characteristics or reflection characteristics of a sample to be measured,
    A frequency comb light source that outputs comb light including a plurality of mode lights having a constant frequency interval;
    A spectroscopic optical system that receives the comb light and frequency-resolves the plurality of mode lights in the comb light one by one;
    A photodetector for detecting the intensity of at least one mode light out of the plurality of mode lights extracted from the spectroscopic optical system;
    The one mode light whose intensity is detected by the photodetector transmits or reflects the sample to be measured disposed between the output of the comb light source and the input of the photodetector,
    A measuring apparatus in which a mode interval frequency of the comb light is larger than an optical frequency resolution of the spectroscopic optical system.
  2.  前記モード間隔周波数は、前記分光光学系の光周波数分解能の2倍以上である
     請求項1に記載の測定装置。
    The measuring apparatus according to claim 1, wherein the mode interval frequency is at least twice the optical frequency resolution of the spectroscopic optical system.
  3.  前記分光光学系は、前記複数のモード光のうち、指定される1つのモード光だけを取り出す出射スリットを有し、
     前記光検出器は、前記出射スリットから出射された前記1つのモード光の強度を検出する単一の光電変換素子を有する、
     請求項1または2に記載の測定装置。
    The spectroscopic optical system has an exit slit that extracts only one designated mode light among the plurality of mode lights,
    The photodetector has a single photoelectric conversion element that detects the intensity of the one mode light emitted from the exit slit.
    The measuring apparatus according to claim 1 or 2.
  4.  前記光検出器は、前記分光光学系によって周波数分解された前記複数のモード光を並列的に検出するイメージセンサを有する、請求項1または2に記載の測定装置。 3. The measuring apparatus according to claim 1, wherein the photodetector includes an image sensor that detects the plurality of mode lights frequency-resolved by the spectroscopic optical system in parallel.
  5.  前記コム光源は、
     前記モード間隔周波数と同一の繰り返し周波数の光パルスを出力するパルス光源と、
     前記パルス光源が出力する前記光パルスのスペクトルを周波数シフトさせる周波数シフタと、
     前記光パルスの有する周波数帯域を拡大した前記コム光を、前記光パルスに基づいて生成する帯域拡大部と
     を有する請求項1から4のいずれか一項に記載の測定装置。
    The comb light source is
    A pulse light source that outputs an optical pulse having the same repetition frequency as the mode interval frequency;
    A frequency shifter that shifts the frequency of the spectrum of the optical pulse output from the pulse light source;
    The measurement apparatus according to any one of claims 1 to 4, further comprising: a band expanding unit that generates the comb light obtained by expanding the frequency band of the optical pulse based on the optical pulse.
  6.  前記周波数シフタにおけるシフト量に応じて、前記分光光学系が取り出す光周波数の範囲をシフトさせる制御機能を有する制御部を更に備える
     請求項5に記載の測定装置。
    The measurement apparatus according to claim 5, further comprising a control unit having a control function of shifting a range of an optical frequency taken out by the spectroscopic optical system in accordance with a shift amount in the frequency shifter.
  7.  前記パルス光源は、
     単一周波数の連続光を出力する連続発振レーザと、
     前記連続光の周波数を、前記モード間隔周波数に応じた周波数で変調して、複数のモード光を含む種コム光を生成する光変調器と、
     前記種コム光における各モード光の位相および振幅を調整し、光パルスを合成する光パルス合成部と
     を有する請求項5または6に記載の測定装置。
    The pulse light source is
    A continuous wave laser that outputs continuous light of a single frequency;
    An optical modulator that modulates the frequency of the continuous light with a frequency according to the mode interval frequency to generate seed comb light including a plurality of mode lights;
    The measuring apparatus according to claim 5, further comprising: an optical pulse synthesizing unit that adjusts a phase and an amplitude of each mode light in the seed comb light and synthesizes an optical pulse.
  8.  前記連続光の周波数を、前記モード間隔周波数よりも小さい周波数で位相変調して、それぞれのモード光に1次の両側サイドバンド光を生じさせて、前記光変調器に入力する位相変調器と、
     前記位相変調器に信号を入力する信号発生器と、
     前記光検出器の出力と前記信号発生器の信号が位相調整された信号とを受信するロックイン検波器と
    を更に有し、
     前記分光光学系は、指定される1つのモード光と当該モード光の前記1次の両側サイドバンド光とを同時に取り出して前記光検出器に入射し、
     前記光検出器から出力される電気信号は前記ロックイン検波器に送られ、変調信号を用いて位相敏感検波され、直交した2つの信号が取り出される
     請求項7に記載の測定装置。
    A phase modulator that phase-modulates the frequency of the continuous light at a frequency smaller than the mode interval frequency, generates first-order double sideband light in each mode light, and inputs the light to the optical modulator;
    A signal generator for inputting a signal to the phase modulator;
    A lock-in detector for receiving an output of the photodetector and a signal in which a signal of the signal generator is phase-adjusted;
    The spectroscopic optical system simultaneously takes out one designated mode light and the first-order both sideband light of the mode light and enters the photodetector.
    The measurement apparatus according to claim 7, wherein an electrical signal output from the photodetector is sent to the lock-in detector, phase-sensitive detection is performed using a modulation signal, and two orthogonal signals are extracted.
  9.  前記光変調器は、前記連続光が分岐して入力される第1の光変調器および第2の光変調器を含み、
     前記第1の光変調器は、前記モード間隔周波数がfの前記コム光の前記種コム光を生成し、前記第2の光変調器は、前記モード間隔周波数がfの前記コム光の前記種コム光を生成し、
     fとfとの差は、fおよびfのいずれよりも小さく、
     前記モード間隔周波数がfの前記コム光および前記モード間隔周波数がfの前記コム光の一方または両方が、前記被測定試料を透過または反射しており、
     前記モード間隔周波数がfの前記コム光と前記モード間隔周波数がfの前記コム光とは合波され、前記分光光学系に入射される
    請求項7に記載の測定装置。
    The optical modulator includes a first optical modulator and a second optical modulator into which the continuous light is branched and input,
    The first optical modulator generates the seed comb light of the comb light having the mode interval frequency of f 1 , and the second optical modulator generates the seed light of the comb light having the mode interval frequency of f 2. Generating the seed comb light,
    the difference between f 1 and f 2 is smaller than any of the f 1 and f 2,
    One or both of the comb light having the mode interval frequency of f 1 and the comb light having the mode interval frequency of f 2 are transmitted or reflected through the sample to be measured.
    The measurement apparatus according to claim 7, wherein the comb light having the mode interval frequency of f 1 and the comb light having the mode interval frequency of f 2 are combined and incident on the spectroscopic optical system.
  10.  前記光パルス合成部は、前記第1の光変調器および前記第2の光変調器に対応する第1の光パルス合成部および第2の光パルス合成部を含み、
     前記帯域拡大部は、前記第1の光パルス合成部および前記第2の光パルス合成部に対応する第1の帯域拡大部および第2の帯域拡大部を含む
     請求項9に記載の測定装置。
    The optical pulse synthesis unit includes a first optical pulse synthesis unit and a second optical pulse synthesis unit corresponding to the first optical modulator and the second optical modulator,
    The measurement apparatus according to claim 9, wherein the band expanding unit includes a first band expanding unit and a second band expanding unit corresponding to the first optical pulse combining unit and the second optical pulse combining unit.
  11.  被測定試料の透過特性または反射特性をヘテロダイン検波により測定する測定装置であって、
     周波数が異なる複数のモード光を含むコム光を出力するコム光源と、
     前記コム光源から出力されて異なるモード間隔周波数のコム光となった2種類のコム光が、合波されて入力されるデュアルコム受光器と
    を備え、
     前記コム光源は、
     前記コム光において隣接する複数のモード光の周波数間隔であるモード間隔周波数と同一の間隔を有し、且つ、前記コム光よりも少ない数のモード光を含む光パルスを出力するパルス光源と、
     前記モード光が存在する周波数帯域を前記光パルスより拡大した前記コム光を、前記光パルスに基づいて生成する帯域拡大部と、
     前記パルス光源が出力する前記光パルスの周波数を、前記モード間隔周波数よりも狭い範囲でシフトさせることで、前記コム光の各モード光の周波数を一括してシフトさせる周波数シフタと
    を有し、
     前記パルス光源は、
     連続光を出力する連続発振レーザと、
     前記連続光の周波数を、前記モード間隔周波数に応じた周波数で変調して、複数のモード光を含む種コム光を生成する、第1の光変調器および第2の光変調器と、
     前記種コム光における各モード光の位相および振幅を調整し、光パルスを合成する光パルス合成部と、
    を含み、
     前記連続光は2つに分岐され、前記第1の光変調器および前記第2の光変調器にそれぞれ入射されて、
     前記第1の光変調器は、前記モード間隔周波数がfの前記コム光の前記種コム光を生成し、前記第2の光変調器は、前記モード間隔周波数がfの前記コム光の前記種コム光を生成し、
     fとfとの差は、fおよびfのいずれよりも小さく、
     前記モード間隔周波数がfの前記コム光および前記モード間隔周波数がfの前記コム光の一方または両方が、前記被測定試料を透過または反射しており、
     前記モード間隔周波数がfの前記コム光と前記モード間隔周波数がfの前記コム光とは合波され、前記デュアルコム受光器に入射される測定装置。
    A measuring device for measuring transmission characteristics or reflection characteristics of a sample to be measured by heterodyne detection,
    A comb light source that outputs comb light including a plurality of mode lights having different frequencies;
    Two types of comb light that is output from the comb light source and becomes comb light of different mode interval frequencies, and a dual comb light receiver that is combined and input,
    The comb light source is
    A pulse light source that outputs a light pulse having a mode interval frequency that is a frequency interval of a plurality of mode lights adjacent to each other in the comb light and that includes a smaller number of mode lights than the comb light;
    A band expanding unit for generating the comb light, which is obtained by expanding the frequency band in which the mode light exists, from the optical pulse, based on the optical pulse;
    A frequency shifter that collectively shifts the frequency of each mode light of the comb light by shifting the frequency of the optical pulse output by the pulse light source in a range narrower than the mode interval frequency;
    The pulse light source is
    A continuous wave laser that outputs continuous light;
    A first optical modulator and a second optical modulator that modulate the frequency of the continuous light at a frequency corresponding to the mode interval frequency to generate seed comb light including a plurality of mode lights;
    An optical pulse synthesis unit that synthesizes an optical pulse by adjusting the phase and amplitude of each mode light in the seed comb light,
    Including
    The continuous light is split into two, and is incident on the first optical modulator and the second optical modulator, respectively.
    The first optical modulator generates the seed comb light of the comb light having the mode interval frequency of f 1 , and the second optical modulator generates the seed light of the comb light having the mode interval frequency of f 2. Generating the seed comb light,
    the difference between f 1 and f 2 is smaller than any of the f 1 and f 2,
    One or both of the comb light having the mode interval frequency of f 1 and the comb light having the mode interval frequency of f 2 are transmitted or reflected through the sample to be measured.
    The measuring device in which the comb light having the mode interval frequency of f 1 and the comb light having the mode interval frequency of f 2 are combined and incident on the dual comb light receiver.
  12.  前記光パルス合成部は、前記第1の光変調器および前記第2の光変調器に対応する第1の光パルスシンセサイザおよび第2の光パルスシンセサイザを含み、
     前記帯域拡大部は、前記第1の光パルスシンセサイザおよび前記第2の光パルスシンセサイザに対応する第1の帯域拡大部および第2の帯域拡大部を含む
     請求項11に記載の測定装置。
    The optical pulse synthesizer includes a first optical pulse synthesizer and a second optical pulse synthesizer corresponding to the first optical modulator and the second optical modulator,
    The measuring apparatus according to claim 11, wherein the band expanding unit includes a first band expanding unit and a second band expanding unit corresponding to the first optical pulse synthesizer and the second optical pulse synthesizer.
  13.  前記光パルス合成部と前記帯域拡大部との間に、光周波数シフタをさらに備える
     請求項8から12のいずれか一項に記載の測定装置。
    The measurement apparatus according to claim 8, further comprising an optical frequency shifter between the optical pulse synthesis unit and the band expansion unit.
  14.  前記光パルス合成部は、前記第1の光変調器および前記第2の光変調器に対応する第1の分散付与器および第2の分散付与器を含み、
     前記帯域拡大部は、前記第1の分散付与器および前記第2の分散付与器に対応する第1の帯域拡大部および第2の帯域拡大部を含み、
     前記デュアルコム受光器は、
     異なるモード間隔周波数のコム光が合波されて入力される光電変換素子と、
     前記光電変換素子からの出力が入力されるディジタイザと
    を有し、
     前記測定装置は、
     前記第1の分散付与器と前記第1の帯域拡大部との間に設けられた一の周波数シフタと、
     前記連続発振レーザからの出力を前記第1の光変調器および前記第2の光変調器に分岐する分岐カプラと前記連続発振レーザとの間に設けられた他の周波数シフタと
    をさらに備える、
     請求項11に記載の測定装置。
    The optical pulse combining unit includes a first dispersion applicator and a second dispersion applicator corresponding to the first optical modulator and the second optical modulator,
    The band expanding unit includes a first band expanding unit and a second band expanding unit corresponding to the first dispersion applicator and the second dispersion applicator,
    The dual comb receiver is
    A photoelectric conversion element to which comb light having different mode interval frequencies is combined and input;
    A digitizer to which an output from the photoelectric conversion element is input;
    The measuring device is
    A frequency shifter provided between the first dispersion applicator and the first band expanding unit;
    A branch coupler that branches the output from the continuous wave laser to the first optical modulator and the second optical modulator, and another frequency shifter provided between the continuous wave laser;
    The measuring apparatus according to claim 11.
  15.  被測定光源の発光スペクトルをヘテロダイン検波により測定する測定装置であって、
     周波数が異なる複数のモード光を含むコム光を出力するコム光源と、
     前記コム光が入力され、前記コム光における前記複数のモード光のうち、指定される1つのモード光だけを取り出す分光光学系と、
     前記分光光学系から取り出された前記1つのモード光と前記被測定光源の被測定光とが合波された光の強度を検出する光検出器と
     を備え、
     前記コム光において隣接する前記複数のモード光の周波数間隔であるモード間隔周波数は、前記分光光学系の光周波数分解能より大きい測定装置。
    A measuring device for measuring an emission spectrum of a light source to be measured by heterodyne detection,
    A comb light source that outputs comb light including a plurality of mode lights having different frequencies;
    A spectroscopic optical system that receives the comb light and extracts only one mode light of the plurality of mode lights in the comb light;
    A photodetector for detecting the intensity of the combined light of the one mode light extracted from the spectroscopic optical system and the measured light of the measured light source;
    A measurement apparatus in which a mode interval frequency, which is a frequency interval between adjacent mode lights in the comb light, is larger than an optical frequency resolution of the spectroscopic optical system.
  16.  被測定光源の発光スペクトルをヘテロダイン検波により測定する測定装置であって、
     周波数が異なる複数のモード光を含むコム光を出力するコム光源と、
     前記コム光と前記被測定光源の被測定光とが合波された光の強度を検出する光検出器と、
     前記光検出器の出力が入力される電気スペクトラムアナライザと
     を備える測定装置。
    A measuring device for measuring an emission spectrum of a light source to be measured by heterodyne detection,
    A comb light source that outputs comb light including a plurality of mode lights having different frequencies;
    A photodetector that detects the intensity of the combined light of the comb light and the measured light of the measured light source;
    An electrical spectrum analyzer to which an output of the photodetector is input.
  17.  前記コム光源と前記分光光学系との間において、
     近赤外の波長帯域のコム光を、前記近赤外の波長帯域よりも長波長である中赤外の波長帯域のコム光に変換する、第1の波長変換部と、
     前記第1の波長変換部において中赤外の波長帯域に変換されたコム光を、前記被測定試料を透過または反射した後に、近赤外の波長帯域のコム光に再び変換する、第2の波長変換部と
    をさらに備える
     請求項1から10のいずれか一項に記載の測定装置。
    Between the comb light source and the spectroscopic optical system,
    A first wavelength converter that converts comb light in the near-infrared wavelength band into comb light in the mid-infrared wavelength band that is longer than the near-infrared wavelength band;
    The comb light converted into the mid-infrared wavelength band in the first wavelength conversion unit is converted again to the comb light in the near-infrared wavelength band after being transmitted or reflected by the sample to be measured. The measurement apparatus according to claim 1, further comprising a wavelength conversion unit.
  18.  前記コム光源と前記デュアルコム受光器との間において、
     近赤外の波長帯域のコム光を、前記近赤外の波長帯域よりも長波長である中赤外の波長帯域のコム光に変換する、第1の波長変換部と、
     前記第1の波長変換部において中赤外の波長帯域に変換されたコム光を、前記被測定試料を透過または反射した後に、近赤外の波長帯域のコム光に再び変換する、第2の波長変換部と
    をさらに備える
     請求項11または12に記載の測定装置。
    Between the comb light source and the dual comb receiver,
    A first wavelength converter that converts comb light in the near-infrared wavelength band into comb light in the mid-infrared wavelength band that is longer than the near-infrared wavelength band;
    The comb light converted into the mid-infrared wavelength band in the first wavelength conversion unit is converted again to the comb light in the near-infrared wavelength band after being transmitted or reflected by the sample to be measured. The measurement apparatus according to claim 11, further comprising a wavelength conversion unit.
PCT/JP2014/004314 2013-09-24 2014-08-21 Measurement device WO2015045266A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015538858A JPWO2015045266A1 (en) 2013-09-24 2014-08-21 measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013197192 2013-09-24
JP2013-197192 2013-09-24

Publications (1)

Publication Number Publication Date
WO2015045266A1 true WO2015045266A1 (en) 2015-04-02

Family

ID=52742445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004314 WO2015045266A1 (en) 2013-09-24 2014-08-21 Measurement device

Country Status (2)

Country Link
JP (1) JPWO2015045266A1 (en)
WO (1) WO2015045266A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5760115B1 (en) * 2014-04-07 2015-08-05 大学共同利用機関法人自然科学研究機構 Chromatic dispersion measurement method and apparatus
TWI554819B (en) * 2015-08-27 2016-10-21 國立成功大學 Photonic microwave generation apparatus and method thereof
JP2017138129A (en) * 2016-02-01 2017-08-10 学校法人慶應義塾 Polarization measurement device using dual-comb spectroscopy, and polarization measurement method
JP2019035586A (en) * 2017-08-10 2019-03-07 日本電信電話株式会社 Permittivity measurement system, permittivity measurement apparatus and method
JP2019510202A (en) * 2016-01-13 2019-04-11 ネックスジェン・パートナーズ・アイピー・リミテッド・ System and method for multi-parameter spectroscopy
WO2019123719A1 (en) * 2017-12-22 2019-06-27 国立大学法人電気通信大学 Dual optical frequency comb generation optical system, laser device, and measurement device
JP2019203859A (en) * 2018-05-25 2019-11-28 日本電信電話株式会社 Device and method for measuring brillouin frequency shift
JP2020106477A (en) * 2018-12-28 2020-07-09 国立大学法人電気通信大学 Method for measuring interference signal in dual-comb spectroscopy
US11002677B2 (en) 2015-10-05 2021-05-11 Nxgen Partners Ip, Llc System and method for multi-parameter spectroscopy
WO2021220656A1 (en) * 2020-04-27 2021-11-04 パナソニックIpマネジメント株式会社 Imaging system and imaging method
JP7315928B2 (en) 2020-07-02 2023-07-27 日本電信電話株式会社 Optical signal sampling device and optical signal sampling method
JP7365864B2 (en) 2018-12-14 2023-10-20 ザ・ボーイング・カンパニー Optical detection system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101066A (en) * 1994-09-30 1996-04-16 Anritsu Corp Optical spectrum measuring apparatus
JP2010230653A (en) * 2009-03-03 2010-10-14 Canon Inc Optical interference measuring apparatus
JP2011007571A (en) * 2009-06-24 2011-01-13 Nippon Telegr & Teleph Corp <Ntt> Multi-wavelength simultaneous absorption spectroscopic device, and multi-wavelength simultaneous absorption spectroscopic method
JP2013507005A (en) * 2009-10-02 2013-02-28 イムラ アメリカ インコーポレイテッド Optical signal processing by mode-locked laser
WO2013040168A2 (en) * 2011-09-14 2013-03-21 The Massachusetts Institute Of Technology Methods and apparatus for broadband frequency comb stabilization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101066A (en) * 1994-09-30 1996-04-16 Anritsu Corp Optical spectrum measuring apparatus
JP2010230653A (en) * 2009-03-03 2010-10-14 Canon Inc Optical interference measuring apparatus
JP2011007571A (en) * 2009-06-24 2011-01-13 Nippon Telegr & Teleph Corp <Ntt> Multi-wavelength simultaneous absorption spectroscopic device, and multi-wavelength simultaneous absorption spectroscopic method
JP2013507005A (en) * 2009-10-02 2013-02-28 イムラ アメリカ インコーポレイテッド Optical signal processing by mode-locked laser
WO2013040168A2 (en) * 2011-09-14 2013-03-21 The Massachusetts Institute Of Technology Methods and apparatus for broadband frequency comb stabilization

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHOI,S. ET AL.: "Supercontinuum Comb Generation Using Optical Pulse Synthesizer and Highly Nonlinear Dispersion-Shifted Fiber", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 48, 24 September 2009 (2009-09-24) *
NAOTO WATANABE ET AL.: "Dual-comb spectroscopy using two electro-optic modulator based frequency combs", MEETING ABSTRACTS OF THE PHYSICAL SOCIETY OF JAPAN, vol. 68, no. 1, 5 March 2013 (2013-03-05), pages 221 *
NEWBURY,N.R. ET AL.: "Sensitivity of coherent dual-comb spectroscopy", OPTICS EXPRESS, vol. 18, no. 8, 31 March 2010 (2010-03-31), pages 7929 - 7945 *
SHO OKUBO ET AL.: "Dual-comb System for Broadband Near-infrared Spectroscopy", EXTENDED ABSTRACTS OF THE 74TH JSAP AUTUMN MEETING, 31 August 2013 (2013-08-31) *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5760115B1 (en) * 2014-04-07 2015-08-05 大学共同利用機関法人自然科学研究機構 Chromatic dispersion measurement method and apparatus
TWI554819B (en) * 2015-08-27 2016-10-21 國立成功大學 Photonic microwave generation apparatus and method thereof
US11002677B2 (en) 2015-10-05 2021-05-11 Nxgen Partners Ip, Llc System and method for multi-parameter spectroscopy
JP2019510202A (en) * 2016-01-13 2019-04-11 ネックスジェン・パートナーズ・アイピー・リミテッド・ System and method for multi-parameter spectroscopy
JP2017138129A (en) * 2016-02-01 2017-08-10 学校法人慶應義塾 Polarization measurement device using dual-comb spectroscopy, and polarization measurement method
JP2019035586A (en) * 2017-08-10 2019-03-07 日本電信電話株式会社 Permittivity measurement system, permittivity measurement apparatus and method
JPWO2019123719A1 (en) * 2017-12-22 2020-10-22 国立大学法人電気通信大学 Dual optical frequency comb generation optical system, laser device, measuring device
WO2019123719A1 (en) * 2017-12-22 2019-06-27 国立大学法人電気通信大学 Dual optical frequency comb generation optical system, laser device, and measurement device
JP7210025B2 (en) 2017-12-22 2023-01-23 国立大学法人電気通信大学 Dual optical frequency comb generation optics, laser device, measurement device
JP2019203859A (en) * 2018-05-25 2019-11-28 日本電信電話株式会社 Device and method for measuring brillouin frequency shift
JP7365864B2 (en) 2018-12-14 2023-10-20 ザ・ボーイング・カンパニー Optical detection system and method
JP2020106477A (en) * 2018-12-28 2020-07-09 国立大学法人電気通信大学 Method for measuring interference signal in dual-comb spectroscopy
JP7128516B2 (en) 2018-12-28 2022-08-31 国立大学法人電気通信大学 How to measure interference signals in dual comb spectroscopy
WO2021220656A1 (en) * 2020-04-27 2021-11-04 パナソニックIpマネジメント株式会社 Imaging system and imaging method
JP7315928B2 (en) 2020-07-02 2023-07-27 日本電信電話株式会社 Optical signal sampling device and optical signal sampling method

Also Published As

Publication number Publication date
JPWO2015045266A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015045266A1 (en) Measurement device
Réhault et al. Two-dimensional electronic spectroscopy with birefringent wedges
JP5675219B2 (en) Optical pulse generator, terahertz spectrometer and tomography device
US10585332B2 (en) Periodic optical filter stabilized tunable comb generator
KR20110036944A (en) Interferometer with frequency combs and synchronisation scheme
JP5713501B2 (en) Homodyne detection system electromagnetic spectrum measurement system
CN106093598B (en) Electromagnetic signal characteristic measuring system and method
KR102453813B1 (en) Light comb generating device and spectrometers comprising the same
CN105548036A (en) Self-adaptive double-light-comb spectrum system
JP2019535139A (en) Laser system with optical feedback
AU2018201848B2 (en) Laser frequency control and sensing system
CN110553992A (en) Infrared spectrum high-speed measurement system and method
Konnov et al. High-resolution frequency-comb spectroscopy with electro-optic sampling and instantaneous octave-wide coverage across mid-IR to THz at a video rate
JP6163109B2 (en) Homodyne detection system electromagnetic spectrum measurement system
CN208835437U (en) A kind of raman laser Optical devices based on atomic light filter
GB2592015A (en) Vibrational circular dichroism spectroscopy
US20230086455A1 (en) Signal processor apparatus
JP6278917B2 (en) Component concentration measuring apparatus and component concentration measuring method
JP6254543B2 (en) Dielectric spectrometer
JP2009025202A (en) Optical coherence tomography system and optical type shape-measuring instrument
JP4996669B2 (en) Electromagnetic wave processing apparatus and electromagnetic wave processing method
Qing et al. Vector spectrometer with Hertz-level resolution and super-recognition capability
EP4123257A1 (en) Phase tuning and phase stabilization of an interferometer
Klee et al. Self-referenced spectral phase retrieval of dissimilar optical frequency combs via multiheterodyne detection
JP2008209214A (en) Light sampling apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015538858

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848844

Country of ref document: EP

Kind code of ref document: A1