WO2015045017A1 - Superconducting magnet, particle beam treatment system, and method for operating superconducting magnet - Google Patents

Superconducting magnet, particle beam treatment system, and method for operating superconducting magnet Download PDF

Info

Publication number
WO2015045017A1
WO2015045017A1 PCT/JP2013/075817 JP2013075817W WO2015045017A1 WO 2015045017 A1 WO2015045017 A1 WO 2015045017A1 JP 2013075817 W JP2013075817 W JP 2013075817W WO 2015045017 A1 WO2015045017 A1 WO 2015045017A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
superconducting
electromagnet
coil
particle beam
Prior art date
Application number
PCT/JP2013/075817
Other languages
French (fr)
Japanese (ja)
Inventor
文章 野田
貴啓 山田
孝道 青木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/075817 priority Critical patent/WO2015045017A1/en
Priority to JP2015538670A priority patent/JPWO2015045017A1/en
Publication of WO2015045017A1 publication Critical patent/WO2015045017A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/02Quenching; Protection arrangements during quenching

Definitions

  • the present invention relates to a superconducting electromagnet that needs to change a magnetic field at high speed, a particle beam therapy system using the superconducting electromagnet, and a method for operating the superconducting electromagnet.
  • Patent Document 1 discloses that the polarization magnetic field required for accelerating charged particles is increased mainly by a second type of deflection coil having a small self-inductance to achieve the target energy. It is described that the high deflection magnetic field intensity required with energy close to is generated mainly by the first type of deflection coil.
  • Non-Patent Document 1 has a cylindrical magnetic pole and coil shape suitable for forming a wide magnetic field region in both the horizontal direction and the vertical direction, and the coil has a cos ⁇ distribution with a current ⁇ direction distribution. A superconducting electromagnet wound around is described.
  • Radiotherapy that is minimally invasive, has less burden on the body, and can maintain a high quality of life after treatment is attracting attention.
  • a particle beam therapy system using a charged particle beam of accelerated protons or carbon is particularly promising because of excellent dose concentration on the affected area.
  • This particle beam therapy system includes an accelerator system that adjusts a charged particle beam to energy necessary for treatment, and a beam transport system that transports the charged particle beam extracted from the accelerator to an irradiation chamber.
  • an accelerator system that adjusts a charged particle beam to energy necessary for treatment
  • a beam transport system that transports the charged particle beam extracted from the accelerator to an irradiation chamber.
  • a scatterer In particle beam therapy, a scatterer is used to expand the beam, and a collimator, a bolus, etc. irradiate a beam that matches the shape of the affected area, and a thin beam is scanned with a scanning electromagnet to control the irradiation position.
  • a beam scanning irradiation method In the beam scanning irradiation method, the depth direction of treatment can be adjusted by changing the energy of the beam. In accordance with the energy change in the accelerator system, it is necessary to synchronize and change the magnetic field strength of the electromagnet in order to keep the beam trajectory constant in the beam transport system. If this change takes time, the treatment time becomes longer and the burden on the patient increases.
  • a superconducting electromagnet capable of changing the magnetic field at high speed is required in order to achieve both the miniaturization of the system and the shortening of the treatment time.
  • an electromagnet on the downstream side of the scanning electromagnet scans the beam, so that a beam passing area is wide and a large-diameter superconducting electromagnet is required.
  • the superconducting electromagnet as described in Patent Document 1 has a problem of increasing the magnetizing current due to an increase in excitation current or an increase in the size of the yoke when trying to expand the magnetic field region in the vertical direction due to the magnet shape. It becomes.
  • the superconducting electromagnet described in Non-Patent Document 1 has a cylindrical magnetic pole and coil shape suitable for forming a wide magnetic field region in both the horizontal and vertical directions, and the coil has a current ⁇ -direction distribution. It is wound to have a cos ⁇ distribution.
  • winding methods such as double-helic winding as shown in Non-Patent Document 2.
  • the superconducting electromagnet described in Non-Patent Document 1 operates one type of coil (for example, a dipole magnetic field generating coil) with one power source, thus avoiding the occurrence of quenching. It was difficult to change the magnetic field at high speed.
  • An object of the present invention is to provide a superconducting electromagnet capable of suppressing the quenching risk as compared with the prior art and changing the magnetic field at high speed, a particle beam therapy system using the same, and a method of operating the superconducting electromagnet. .
  • the present invention includes a plurality of means for solving the above-described problems.
  • a superconducting electromagnet for deflecting the trajectory of a charged particle, which is a reference magnetic field individually set for each affected part
  • a first superconducting coil for generating a magnetic field component
  • a first power source for exciting the first superconducting coil
  • the affected part being changed at a higher speed than the first superconducting coil
  • the reference magnetic field and the reference magnetic field
  • a second superconducting coil for generating a magnetic field component for obtaining a desired magnetic field component by reinforcing or attenuating the magnetic field, and a second power source for exciting the second superconducting coil.
  • the first superconducting coil that generates the reference magnetic field having a small time change rate can stably flow a large current, and the second superconducting coil that generates the magnetic field having a large time change rate is necessary. Since the excitation current can be reduced, the risk of quenching can be greatly reduced.
  • the iron core is already in a magnetic saturation state during high magnetic field operation in which the magnetic field in the iron core is 1.5 T or more. Magnetic flux does not enter, mainly the magnetic field rise near the coil, and it is necessary to pass a large current in order to change the magnetic field in the necessary magnetic field region (the region described as the beam duct in the present invention and the vacuum duct in Patent Document 1). There is.
  • the second superconducting coil can be installed around the necessary magnetic field region, and the magnetic field in the necessary magnetic field region can be changed with a lower current compared with the magnet described in Patent Document 1. In addition to reducing the risk of quenching by separating the conduction coil and the second superconducting coil, it is possible to provide a variable superconducting electromagnet having a more stable high speed magnetic field.
  • the second superconducting coil that generates a magnetic field with a large time change rate and the first superconducting coil that generates a magnetic field with a small time change rate can be installed separately. It is possible to reduce the maximum magnetic field strength and the unit time variation of the magnetic field at the position of the first superconducting coil to be generated. For this reason, the superconducting electromagnet which can implement
  • the system can be miniaturized by using the superconducting electromagnet.
  • the energy of the beam irradiated to the patient can be changed at high speed, so that the treatment time can be shortened and the burden on the patient can be reduced.
  • FIG. 1 is a cross-sectional view showing an example of the outline of the first embodiment of the superconducting electromagnet of the present invention
  • FIG. 2 is an example of the outline of the arrangement of the coil and the power source of the first embodiment of the superconducting electromagnet of the present invention
  • FIG. 3 is a time chart showing an example of a suitable electromagnet operation pattern in the first embodiment of the superconducting electromagnet of the present invention, a conventional electromagnet operation pattern for comparison
  • FIG. 4 is a diagram illustrating the present invention.
  • FIG. 5 is a time chart showing another example of a suitable electromagnet operation pattern in the first embodiment of the superconducting electromagnet of the present invention.
  • FIG. 5 is still another preferred electromagnet operation pattern in the first embodiment of the superconducting electromagnet of the present invention.
  • FIG. 6 is a time chart showing still another example of a suitable electromagnet operation pattern in the first embodiment of the superconducting electromagnet of the present invention.
  • the superconducting electromagnet of this embodiment generally includes a superconducting coil 1, a yoke 2, a beam duct 3, and a heat insulating container 4.
  • the superconducting coil 1 includes an outer peripheral side superconducting coil (first superconducting coil) 6 and an inner peripheral side superconducting coil (second superconducting coil) 8 that are installed independently.
  • the coil 6 is connected to a power source 7 (first power source), and the coil 8 is connected to a power source 9 (second power source), and each is connected to an independent power source.
  • the coils 6 and 8 have a coil shape called cos ⁇ winding.
  • the coils 6 and 8 are arranged so as to surround a necessary magnetic field region (inside the beam duct 3) so that the current distribution in the ⁇ direction becomes a cos ⁇ distribution.
  • Each of the coils 6 and 8 is installed in a heat insulating layer constituted by the heat insulating container 4 so that it can be cooled to a very low temperature.
  • a yoke 2 is installed on the outer peripheral side of the coils 6 and 8 to increase the central magnetic field strength and reduce the leakage magnetic field in the outer peripheral direction.
  • FIG. 3 shows an example of the time change of the magnetic field generated by each coil.
  • (A) shows a magnetic field pattern in a conventional coil constituted by a single coil
  • (B) shows a super magnetic field pattern of the present invention in which the same required magnetic field pattern as in (A) is constituted by two types of coils.
  • Each magnetic field pattern in a conductive coil is shown.
  • the magnetic field pattern excited by the coil 6 generates a reference magnetic field set individually for each affected area.
  • This reference magnetic field is set to a magnetic field corresponding to the deepest part irradiation of each affected part.
  • the time for changing the reference magnetic field between the affected areas is generally several tens of seconds to 1 minute.
  • the “affected part” is not limited to the affected part to be treated in one patient, and for example, a plurality of treated objects in the case where the energy of the charged particle beam irradiated by the affected part differs greatly in one patient. It also means each “affected area” of the affected area.
  • the magnetic field pattern excited by the coil 8 is a magnetic field pattern for obtaining a magnetic field pattern necessary for irradiating each layer (several to several hundred layers) obtained by dividing one affected part in the depth direction. That is, as shown by the one-dot chain line in FIG. 3B, the coil 8 has a reference magnetic field that is smaller in intensity than the magnetic field intensity generated by the coil 6 and has a large time change rate in order to realize a necessary magnetic field pattern. This coil generates a magnetic field to be attenuated and changes it at high speed.
  • the magnetic field strength is not changed in the coil 6 in one affected part, whereas the charged particle beam is applied to each layer in the affected part in the coil 8.
  • the role of changing the intensity of the magnetic field small and at high speed corresponding to the change of the beam energy of the charged particles to irradiate is charged.
  • the time for changing the magnetic field between the layers is generally as high as several tens of ms to several hundred ms, and is considerably faster than the tens of seconds to one minute of the coil 6. is there.
  • the coil 8 that changes the magnetic field at high speed is used.
  • a current for generating a magnetic field change of 0.5 T may be supplied, and the coil 6 can be left as it is. This means that the current density can be reduced when the coil cross-sectional area is considered to be constant, and the magnetic field can be changed at high speed while having a margin against quenching.
  • a low-temperature superconducting wire having a critical temperature of less than 40K such as NbTi, which has a low wire cost
  • a high-temperature superconducting wire having a critical temperature of 40 K or higher such as MgB 2 or yttrium, is used for the coil 8 having a relatively large time change rate of the magnetic field. This further increases the margin for quenching.
  • the reference magnetic field individually set for each patient or affected area is changed gently between patients or affected areas, that is, the magnetic field Is excited by the outer superconducting coil 6 and its power source 7. Then, a magnetic field component having a large time change rate for changing the magnetic field at high speed in the vicinity of the reference magnetic field necessary for irradiating each layer in one patient or one affected area is divided from the basic magnetic field component, and independent of the coil 6.
  • the inner superconductor coil 8 and its power source 9 excite a magnetic field component having a large time change rate.
  • the necessary magnetic field pattern as shown in FIG. 3A can be obtained by configuring all the coils with a high-temperature superconducting wire and changing the magnetic field at high speed. It is possible to get.
  • a high magnetic field is produced in a wide magnetic field region, it is difficult to realize early implementation in terms of performance and cost of the wire. There is also a problem that the quench risk becomes high.
  • the reference magnetic field excitation coil 6 and the coil 8 for changing the magnetic field strength at high speed with time are independently installed, and the respective coils are excited by independent power sources 7 and 9, thereby providing a basis.
  • the maximum magnetic field strength at the position of the magnetic field excitation coil 6 and the amount of change of the magnetic field per unit time can be reduced, and a large-diameter high-speed magnetic field variable superconducting electromagnet with reduced quench risk can be realized.
  • the wire materials of the divided coils can be freely combined. For example, when a high-temperature superconducting material is used for the coil 8 that generates a magnetic field having a large time change rate, the exciting current is several minutes that of an integrated coil. It may be about one, and an early high-speed magnetic field variable superconducting electromagnet can be realized. Further, the amount of the high-temperature superconducting wire may be small, and there is an advantage in cost.
  • the magnetic field pattern generated by the outer peripheral side superconducting coil 6 and the inner peripheral side superconducting coil 8 is not limited to the pattern shown in FIG. Other examples will be described with reference to FIGS.
  • FIG. 4 shows an example in which the reference magnetic field generated by the coil 6 is set to the average depth of the affected area.
  • the maximum magnetic field generated by the coil 6 can be reduced as compared with the combination of magnetic field patterns shown in FIG.
  • the magnetic field generated by the coil 8 reinforces or attenuates the reference magnetic field generated by the coil 6, but the maximum magnetic field can be reduced in the same manner as the coil 6.
  • FIG. 5 also shows the magnetic field required to irradiate the shallowest part and the deepest part of the reference magnetic field so that the temporal change of the reference magnetic field, which varies from patient to patient, is small.
  • An example based on the closest reference magnetic field average for each patient is shown. Also in this case, the maximum magnetic field generated by the coil 6 can be reduced as compared with the combination of magnetic field patterns shown in FIG.
  • FIG. 6 shows an example in which the reference magnetic field generated by the coil 6 is constant. Even in this case, the maximum magnetic field generated by the coil 6 can be reduced as compared with the combination of the magnetic field patterns shown in FIG.
  • FIG. 7 is a configuration diagram showing a schematic configuration of a second embodiment of the particle beam therapy system using the superconducting electromagnet of the present invention.
  • the second embodiment of the particle beam therapy system of the present invention generally includes an incident system 100, a synchrotron 200, a high energy beam transport system 300, and an irradiation device 400. Further, a control system (incident system control device 110, synchrotron control device 210, high energy beam transport system control device 310, irradiation system control) that controls the incident system 100, synchrotron 200, high energy beam transport system 300, and irradiation device 400. Apparatus 410) and an overall controller 500 for controlling the entire treatment system.
  • the incident system 100 is accelerated by an ion source 11, a pre-accelerator 12 such as a linac that accelerates charged particles generated by the ion source 11 to energy suitable for incidence on the synchrotron 200, and the pre-accelerator 12.
  • a transport system (such as the deflecting electromagnet 13 and the quadrupole electromagnet 14) for transporting the charged particle beam to the synchrotron 200 is generally configured.
  • the synchrotron 200 accelerates the incident beam to a desired energy.
  • the synchrotron 200 includes an incident deflecting device 21 that makes a beam incident, a deflection electromagnet 22 that deflects the incident beam, quadrupole electromagnets 23 and 24 that converge and diverge the beam, and a high-frequency acceleration cavity 25 that accelerates the beam. And an emission device 26 for taking out the beam from the synchrotron 200 by deflecting the beam trajectory.
  • a synchrotron control device 210 that controls the synchrotron 200 includes a deflection electromagnet control unit 212 that controls the deflection electromagnet 22, quadrupole electromagnet control units 213 and 214 that respectively control the quadrupole electromagnets 23 and 24, and a high-frequency acceleration cavity 25.
  • a high-frequency acceleration control unit 215 for controlling and an extraction device control unit 216 for controlling the extraction device 26 are provided.
  • Power sources 22a, 23a, 24a, 25a, and 26a are arranged between the control units 212, 213, 214, 215, and 216 and the respective devices.
  • the high energy beam transport system 300 is accelerated to a desired energy by the synchrotron 200 and transports the charged particle beam extracted from the emission device 26 to the irradiation device 400.
  • the high energy beam transport system 300 includes a deflection electromagnet 31 that deflects an incident beam and a quadrupole electromagnet 32 that converges and diverges the beam.
  • the deflection electromagnet 31 is a superconducting electromagnet provided with a plurality of independent coils (the outer peripheral side superconducting coil 6 and its power source 7 and the inner peripheral side superconducting coil 8 and its power source 9) described in the first embodiment. It has been.
  • the high energy beam transport system control device 310 that controls the high energy beam transport system 300 includes a deflection electromagnet control unit 311 that controls the deflection electromagnet 31 and a quadrupole electromagnet control unit 312 that controls the quadrupole electromagnet 32.
  • the deflection electromagnet control unit 311 independently controls a power source 7 for exciting the outer superconducting coil 6 and a power source 9 for exciting the inner superconducting coil 8.
  • the quadrupole electromagnet control unit 312 controls a power supply 32 a for exciting the quadrupole electromagnet 32.
  • the irradiation apparatus 400 adjusts the charged particle beam taken out from the synchrotron 200 and transported by the high energy beam transport system 300 according to the position and shape of the affected area 1001 of the patient 1000 and irradiates the affected area 1001.
  • the irradiation apparatus 400 includes a scanning electromagnet 41 and a beam monitor 42 that change the trajectory of the charged particle beam.
  • the scanning electromagnet is disposed on the downstream side of the superconducting electromagnet 31, but may be disposed on the upstream side of the superconducting electromagnet 31.
  • the shape of the three-dimensional affected area 1001 is divided into a plurality of layers in the depth direction, and each layer is selectively irradiated by changing the energy of the emitted beam of the synchrotron 200.
  • the deflecting electromagnet 202 is controlled by the accelerator control system 210 in accordance with the irradiation energy pattern for each patient set by the treatment planning apparatus (not shown).
  • the quadrupole electromagnets 203 and 204 and the high-frequency acceleration cavity 205 are controlled and adjusted to predetermined energy by the synchrotron 200.
  • the beam adjusted to a predetermined energy is taken out from the synchrotron 200 by the emission device 26 and taken over by the high energy beam transport system 300.
  • the deflecting electromagnet 31 and the quadrupole electromagnet 32 are controlled by the transport system control device 310 in synchronization with the energy extracted from the synchrotron 200, and the charged particle beam is transported to the irradiation device 400.
  • the irradiation beam is scanned two-dimensionally (x direction, y direction) by the scanning electromagnet 41 to give a predetermined dose to each part in the layer of the affected part 1001.
  • the energy of the emitted beam of the synchrotron 200 is changed.
  • a signal is output to the power source 9 of the deflecting electromagnet 31 by the deflecting electromagnet controller 311 of the high energy beam transport system control device 310 so that the charged particle beam is transported to the irradiation device 400.
  • the exciting current of the inner peripheral superconducting coil 8 is adjusted so that a predetermined necessary magnetic field pattern corresponding to the emitted beam energy is obtained.
  • the deflection electromagnet control unit 311 controls the outer peripheral superconducting coil 6 in the deflection electromagnet 31 and its power supply 7 so that the magnetic field pattern is fixed and not changed.
  • the deflecting electromagnet 31 in the transport system 300 also changes the magnetic field at high speed in synchronization with the energy change.
  • the burden on the patient can be reduced by shortening the treatment time.
  • the entire treatment system can be downsized by using the superconducting electromagnet.
  • the present embodiment is not limited to this, and an example in which all of the deflection electromagnets 31 of the high energy beam transport system 300 are the superconducting electromagnets of the first embodiment has been shown. It is not always necessary to be a conductive electromagnet, and a part of the conductive electromagnet can be used.
  • FIG. 8 is a configuration diagram showing a schematic configuration of the third embodiment of the particle beam therapy system using the superconducting electromagnet of the present invention.
  • the third embodiment of the particle beam therapy system of the present invention generally includes a cyclotron system 600, a high energy beam transport system 300, and an irradiation device 400.
  • the cyclotron system 600, the high energy beam transport system 300, the control system for controlling the irradiation device 400 (accelerator control device 610, the high energy beam transport system control device 310, the irradiation system control device 410) and the entire treatment system are controlled.
  • a control device 500 a control device 500.
  • the cyclotron system 600 includes a cyclotron 61 as an accelerator and an energy changing device 62.
  • the energy is changed by taking out a beam of constant energy from the cyclotron 61 and then controlling the thickness of a metal plate or the like by controlling the energy changing device 62 based on a signal from the accelerator controller 610. This is done by changing and adjusting the energy by passing through the metal plate.
  • the beam transport system 300 after the energy changing device 62 applies the magnetic field of the deflection electromagnet 31 in synchronization with the changed energy. Need to change. Therefore, a signal is output from the cyclotron system 600 to the power supply 9 of the deflection electromagnet 31 by the deflection electromagnet controller 311 of the high energy beam transport system controller 310 so that the charged particle beam is transported to the irradiation device 400.
  • the exciting current of the inner peripheral superconducting coil 8 is controlled so that a predetermined necessary magnetic field pattern corresponding to the outgoing beam is obtained.
  • the deflection electromagnet control unit 311 controls the outer peripheral superconducting coil 6 in the deflection electromagnet 31 to fix and not change the magnetic field pattern.
  • the superconducting electromagnet of the present invention is effective regardless of the type of accelerator or the like that adjusts to the energy required for treatment.
  • the superconducting electromagnet of the present invention is provided as a superconducting electromagnet that generates a dipole magnetic field that deflects the beam trajectory.
  • a quadrupole magnetic field that converges and diverges the beam, and a higher order The same effect can be obtained for the multipolar magnetic field by applying the superconducting electromagnet of the present invention.
  • even a single quadrupole superconducting electromagnet is a functionally coupled superconducting electromagnet as described in Non-Patent Document 1 (a magnet capable of generating a dipole magnetic field and a quadrupole magnetic field with the same magnet).
  • the present invention can also be applied to the above.
  • High-frequency acceleration cavity 26 ... Ejecting equipment, 210 ... accelerator control device, 300 ... High energy beam transport system, 31 ... Bending electromagnet, 32 ... Quadrupole magnets, 310 ... High energy beam transport system controller, 400 ... Irradiation device, 41 ... Scanning magnet, 42 ... Beam monitor, 410 ... Irradiation system control device, 500 ... Overall control device, 600 ... cyclotron system, 61 ... cyclotron, 62 ... Energy change device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)

Abstract

 A reference magnetic field set individually for each patient or affected area is gradually varied between patients or affected areas. In other words, a fundamental magnetic field component for which the time rate of change of the magnetic field is small is excited by an external peripheral superconducting coil (6) and a power source (7) therefor. A magnetic field component which has a large time rate of change whereby the magnetic field is varied at high speed in the vicinity of the reference magnetic field and which is necessary for irradiation of each layer in a patient or affected area, is divided from the fundamental magnetic field component, and the magnetic field component having a large time rate of change is excited by an internal peripheral superconducting coil (8) and power source (9) therefor independent from the coil (6). It is thereby possible to provide a superconducting magnet and a particle ray treatment system using the same whereby quench risk can be reduced relative to the conventional technique and a magnetic field can be varied at high speed.

Description

超伝導電磁石および粒子線治療システムならびに超伝導電磁石の運転方法Superconducting electromagnet, particle beam therapy system, and superconducting electromagnet operation method
 本発明は、高速に磁場を変化させる必要のある超伝導電磁石とその超伝導電磁石を用いた粒子線治療システムならびに超伝導電磁石の運転方法に関する。 The present invention relates to a superconducting electromagnet that needs to change a magnetic field at high speed, a particle beam therapy system using the superconducting electromagnet, and a method for operating the superconducting electromagnet.
 円形加速器における荷電粒子の加速方法の一つとして、特許文献1には、荷電粒子の加速に必要な偏光磁場の増加を、主に自己インダクタンスの小さな第2種の偏向コイルにより行い、目的到達エネルギーに近いエネルギーで必要となる高い偏向磁場強度は主に第1種の偏向コイルにより発生させることが記載されている。 As one method of accelerating charged particles in a circular accelerator, Patent Document 1 discloses that the polarization magnetic field required for accelerating charged particles is increased mainly by a second type of deflection coil having a small self-inductance to achieve the target energy. It is described that the high deflection magnetic field intensity required with energy close to is generated mainly by the first type of deflection coil.
 また、非特許文献1には、水平方向、垂直方向ともに広い磁場領域を形成するのに適した円筒形状の磁極,コイル形状をしており、コイルは電流のθ方向分布がcosθ分布になるように巻かれている超伝導電磁石が記載されている。 Non-Patent Document 1 has a cylindrical magnetic pole and coil shape suitable for forming a wide magnetic field region in both the horizontal direction and the vertical direction, and the coil has a cos θ distribution with a current θ direction distribution. A superconducting electromagnet wound around is described.
特開平3-122999号公報JP-A-3-122999
 近年の高齢化社会を反映し、がん治療法の一つとして、低侵襲で体に負担が少なく、治療後の生活の質が高く維持できる放射線治療が注目されている。その中でも、加速した陽子や炭素などの荷電粒子ビームを用いた粒子線治療システムが、患部への優れた線量集中性のため特に有望視されている。 Reflecting the recent aging society, as one of the cancer treatment methods, radiotherapy that is minimally invasive, has less burden on the body, and can maintain a high quality of life after treatment is attracting attention. Among them, a particle beam therapy system using a charged particle beam of accelerated protons or carbon is particularly promising because of excellent dose concentration on the affected area.
 この粒子線治療システムは、治療に必要なエネルギーに荷電粒子ビームを調整する加速器システムと、加速器から取り出した荷電粒子ビームを照射室まで輸送するビーム輸送系とを備える。今後、粒子線治療システムの普及を進めていくためにはシステムの小型化が望まれており、その解決策の一つに超伝導電磁石の利用が考えられている。 This particle beam therapy system includes an accelerator system that adjusts a charged particle beam to energy necessary for treatment, and a beam transport system that transports the charged particle beam extracted from the accelerator to an irradiation chamber. In the future, in order to promote the spread of particle beam therapy systems, downsizing of the system is desired, and the use of superconducting electromagnets is considered as one of the solutions.
 粒子線治療では、散乱体を使用してビームを広げ、コリメータ、ボーラス等により患部形状に一致させたビームを照射する散乱体照射法と、細いビームを走査電磁石によって走査し、照射位置を制御するビーム走査照射法とがある。ビーム走査照射法ではビームのエネルギーを変更することで治療する深さ方向の調整が可能となる。加速器システムでのエネルギーの変更に応じて、ビーム輸送系ではビームの軌道を一定に保つために電磁石の磁場強度を同期させて変更する必要がある。この変更に時間がかかると治療時間が長くなり、患者負担が増大する。そのため、システムの小型化と治療時間短縮を両立させるため、高速に磁場を変化させることが可能な超伝導電磁石が必要となる。特に、走査電磁石より下流側の電磁石では、ビームを走査しているため、ビームの通過領域が広く、大口径の超伝導電磁石が必要とされる。 In particle beam therapy, a scatterer is used to expand the beam, and a collimator, a bolus, etc. irradiate a beam that matches the shape of the affected area, and a thin beam is scanned with a scanning electromagnet to control the irradiation position. There is a beam scanning irradiation method. In the beam scanning irradiation method, the depth direction of treatment can be adjusted by changing the energy of the beam. In accordance with the energy change in the accelerator system, it is necessary to synchronize and change the magnetic field strength of the electromagnet in order to keep the beam trajectory constant in the beam transport system. If this change takes time, the treatment time becomes longer and the burden on the patient increases. Therefore, a superconducting electromagnet capable of changing the magnetic field at high speed is required in order to achieve both the miniaturization of the system and the shortening of the treatment time. In particular, an electromagnet on the downstream side of the scanning electromagnet scans the beam, so that a beam passing area is wide and a large-diameter superconducting electromagnet is required.
 しかし、特許文献1に記載のような超伝導電磁石では、磁石形状のため、垂直方向の磁場領域を広げようとした場合に、励磁電流の増大や、ヨークの大型化による磁石重量の増大が問題となる。 However, the superconducting electromagnet as described in Patent Document 1 has a problem of increasing the magnetizing current due to an increase in excitation current or an increase in the size of the yoke when trying to expand the magnetic field region in the vertical direction due to the magnet shape. It becomes.
 また、非特許文献1記載の超伝導電磁石では、水平方向、垂直方向ともに広い磁場領域を形成するのに適した円筒形状の磁極、コイル形状をしており、そのコイルは電流のθ方向分布がcosθ分布になるように巻かれている。このコイルの巻き方の他の例としては、非特許文献2に示すようなdouble-helix巻等の種々の巻き方が存在する。 The superconducting electromagnet described in Non-Patent Document 1 has a cylindrical magnetic pole and coil shape suitable for forming a wide magnetic field region in both the horizontal and vertical directions, and the coil has a current θ-direction distribution. It is wound to have a cos θ distribution. As other examples of how to wind the coil, there are various winding methods such as double-helic winding as shown in Non-Patent Document 2.
 しかし、いずれの巻き方であっても、非特許文献1に記載の超伝導電磁石では1種類のコイル(たとえば二極磁場発生用コイル)を1電源で運転しているため、クエンチ発生を避けつつ高速に磁場を変化させるのは困難であった。 However, in any of the winding methods, the superconducting electromagnet described in Non-Patent Document 1 operates one type of coil (for example, a dipole magnetic field generating coil) with one power source, thus avoiding the occurrence of quenching. It was difficult to change the magnetic field at high speed.
 本発明の目的は、クエンチリスクを従来に比べて抑えるとともに、高速に磁場を変化させることができる超伝導電磁石とそれを用いた粒子線治療システムならびに超伝導電磁石の運転方法を提供することにある。 An object of the present invention is to provide a superconducting electromagnet capable of suppressing the quenching risk as compared with the prior art and changing the magnetic field at high speed, a particle beam therapy system using the same, and a method of operating the superconducting electromagnet. .
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
  本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、荷電粒子の軌道を偏向させるための超伝導電磁石であって、患部ごとに個別に設定した基準磁場となる磁場成分を発生させる第1超伝導コイルと、この第1超伝導コイルを励磁するための第1電源と、前記患部に対して、前記第1超伝導コイルより高速に変化させ、前記基準磁場を補強もしくは減衰させることで所望の磁場成分を得るための磁場成分を発生させる第2超伝導コイルと、この第2超伝導コイルを励磁するための第2電源とを備えたことを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present invention includes a plurality of means for solving the above-described problems. For example, a superconducting electromagnet for deflecting the trajectory of a charged particle, which is a reference magnetic field individually set for each affected part, A first superconducting coil for generating a magnetic field component, a first power source for exciting the first superconducting coil, and the affected part being changed at a higher speed than the first superconducting coil, and the reference magnetic field And a second superconducting coil for generating a magnetic field component for obtaining a desired magnetic field component by reinforcing or attenuating the magnetic field, and a second power source for exciting the second superconducting coil. .
 本発明によれば、時間変化率の小さな基準磁場を発生させる第1超伝導コイルは大電流を安定して流すことができ、時間変化率の大きな磁場を発生させる第2超伝導コイルは必要な励磁電流を小さくできるため、クエンチのリスクを大幅に低減することができる。 According to the present invention, the first superconducting coil that generates the reference magnetic field having a small time change rate can stably flow a large current, and the second superconducting coil that generates the magnetic field having a large time change rate is necessary. Since the excitation current can be reduced, the risk of quenching can be greatly reduced.
 更に特許文献1記載の電磁石構造の場合、鉄心内磁場1.5T以上となるような高磁場運転時、すでに鉄心が磁気飽和状態にあるため、コイルに流す電流を変化させてもヨーク(鉄心)に磁束が入り込まず、コイル近傍の磁場上昇が主となり、必要磁場領域(本発明でビームダクト、特許文献1で真空ダクトと記載されている領域)の磁場を変化させるためには大電流を流す必要がある。
  一方、本発明は第2超伝導コイルを必要磁場領域周辺に設置でき、特許文献1記載の磁石と比較して低い電流で必要磁場領域での磁場を変化させることが可能となり、前述第1超伝導コイルと第2超伝導コイルの分離によるクエンチのリスク低減に加え、更に安定した高速磁場の可変超伝導電磁石を提供することができる。
Furthermore, in the case of the electromagnet structure described in Patent Document 1, the iron core is already in a magnetic saturation state during high magnetic field operation in which the magnetic field in the iron core is 1.5 T or more. Magnetic flux does not enter, mainly the magnetic field rise near the coil, and it is necessary to pass a large current in order to change the magnetic field in the necessary magnetic field region (the region described as the beam duct in the present invention and the vacuum duct in Patent Document 1). There is.
On the other hand, according to the present invention, the second superconducting coil can be installed around the necessary magnetic field region, and the magnetic field in the necessary magnetic field region can be changed with a lower current compared with the magnet described in Patent Document 1. In addition to reducing the risk of quenching by separating the conduction coil and the second superconducting coil, it is possible to provide a variable superconducting electromagnet having a more stable high speed magnetic field.
 更に、時間変化率の大きな磁場を発生させる第2超伝導コイルと時間変化率の小さな磁場を発生させる第1超伝導コイルを離して設置することができるようになり、時間変化率の小さな磁場を発生させる第1超伝導コイルの位置における最大磁場強度や磁場の単位時間変化量を小さくすることが可能となる。このため、クエンチリスクを低減した大口径の高速磁場の可変を実現できる超伝導電磁石を提供することができる。 In addition, the second superconducting coil that generates a magnetic field with a large time change rate and the first superconducting coil that generates a magnetic field with a small time change rate can be installed separately. It is possible to reduce the maximum magnetic field strength and the unit time variation of the magnetic field at the position of the first superconducting coil to be generated. For this reason, the superconducting electromagnet which can implement | achieve the variable of the large-diameter high-speed magnetic field which reduced the quench risk can be provided.
 そして、本発明の超伝導電磁石を粒子線治療システムに適用することにより、超伝導電磁石の利用によりシステムの小型化が可能となる。同時に、高速磁場可変超伝導電磁石の実現により、患者に照射するビームのエネルギーを高速に変化させることができるため治療時間の短縮が可能となり、患者負担を軽減させることが可能となる。 And by applying the superconducting electromagnet of the present invention to the particle beam therapy system, the system can be miniaturized by using the superconducting electromagnet. At the same time, by realizing a high-speed magnetic field variable superconducting electromagnet, the energy of the beam irradiated to the patient can be changed at high speed, so that the treatment time can be shortened and the burden on the patient can be reduced.
本発明の超伝導電磁石の第1の実施形態の概略の一例を示す横断面図である。It is a cross-sectional view which shows an example of the outline of 1st Embodiment of the superconducting electromagnet of this invention. 本発明の超伝導電磁石の第1の実施形態のコイルと電源の配置の概略の一例を示す構成図である。It is a block diagram which shows an example of the outline of arrangement | positioning of the coil and power supply of 1st Embodiment of the superconducting electromagnet of this invention. 本発明の超伝導電磁石の第1の実施形態における好適な電磁石運転パターンの一例と、比較のための従来の電磁石運転パターンとを示すタイムチャート図である。It is a time chart which shows an example of the suitable electromagnet operation pattern in 1st Embodiment of the superconducting electromagnet of this invention, and the conventional electromagnet operation pattern for a comparison. 本発明の超伝導電磁石の第1の実施形態における好適な電磁石運転パターンの他の一例を示すタイムチャート図である。It is a time chart which shows another example of the suitable electromagnet driving | operation pattern in 1st Embodiment of the superconducting electromagnet of this invention. 本発明の超伝導電磁石の第1の実施形態における好適な電磁石運転パターンの更に他の一例を示すタイムチャート図である。It is a time chart which shows another example of the suitable electromagnet driving | operation pattern in 1st Embodiment of the superconducting electromagnet of this invention. 本発明の超伝導電磁石の第1の実施形態における好適な電磁石運転パターンの更に他の一例を示すタイムチャート図である。It is a time chart which shows another example of the suitable electromagnet driving | operation pattern in 1st Embodiment of the superconducting electromagnet of this invention. 本発明の超伝導電磁石を用いた粒子線治療システムの第2の実施形態の概略構成を示す構成図である。It is a block diagram which shows schematic structure of 2nd Embodiment of the particle beam therapy system using the superconducting electromagnet of this invention. 本発明の超伝導電磁石を用いた粒子線治療システムの第3の実施形態の概略構成を示す構成図である。It is a block diagram which shows schematic structure of 3rd Embodiment of the particle beam therapy system using the superconducting electromagnet of this invention.
 以下に本発明の超伝導電磁石および粒子線治療システムならびに超伝導電磁石の運転方法の実施形態を、図面を用いて説明する。 Embodiments of a superconducting electromagnet and particle beam therapy system and a superconducting electromagnet operation method according to the present invention will be described below with reference to the drawings.
 <第1の実施形態> 
 本発明の超伝導電磁石および超伝導電磁石の運転方法の第1の実施形態を、図1乃至図6を用いて説明する。
  図1は本発明の超伝導電磁石の第1の実施形態の概略の一例を示す横断面図、図2は本発明の超伝導電磁石の第1の実施形態のコイルと電源の配置の概略の一例を示す構成図、図3は本発明の超伝導電磁石の第1の実施形態における好適な電磁石運転パターンの一例、比較のための従来の電磁石運転パターンとを示すタイムチャート図、図4は本発明の超伝導電磁石の第1の実施形態における好適な電磁石運転パターンの他の一例を示すタイムチャート図、図5は本発明の超伝導電磁石の第1の実施形態における好適な電磁石運転パターンの更に他の一例を示すタイムチャート図、図6は本発明の超伝導電磁石の第1の実施形態における好適な電磁石運転パターンの更に他の一例を示すタイムチャート図である。
<First Embodiment>
A first embodiment of a superconducting electromagnet and a superconducting electromagnet operation method according to the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view showing an example of the outline of the first embodiment of the superconducting electromagnet of the present invention, and FIG. 2 is an example of the outline of the arrangement of the coil and the power source of the first embodiment of the superconducting electromagnet of the present invention. FIG. 3 is a time chart showing an example of a suitable electromagnet operation pattern in the first embodiment of the superconducting electromagnet of the present invention, a conventional electromagnet operation pattern for comparison, and FIG. 4 is a diagram illustrating the present invention. FIG. 5 is a time chart showing another example of a suitable electromagnet operation pattern in the first embodiment of the superconducting electromagnet of the present invention. FIG. 5 is still another preferred electromagnet operation pattern in the first embodiment of the superconducting electromagnet of the present invention. FIG. 6 is a time chart showing still another example of a suitable electromagnet operation pattern in the first embodiment of the superconducting electromagnet of the present invention.
 図1に示すように、本実施形態の超伝導電磁石は、超伝導コイル1、ヨーク2、ビームダクト3、断熱容器4とを概略備えている。 As shown in FIG. 1, the superconducting electromagnet of this embodiment generally includes a superconducting coil 1, a yoke 2, a beam duct 3, and a heat insulating container 4.
 超伝導コイル1は、それぞれ独立に設置された外周側超伝導コイル(第1超伝導コイル)6と内周側超伝導コイル(第2超伝導コイル)8とから構成されている。 The superconducting coil 1 includes an outer peripheral side superconducting coil (first superconducting coil) 6 and an inner peripheral side superconducting coil (second superconducting coil) 8 that are installed independently.
 図2に示すように、コイル6は電源7(第1電源)に、コイル8は電源9(第2電源)に接続されており、それぞれ独立した電源に接続されている。このコイル6,8は、cosθ巻と呼ばれるコイル形状を有している。 As shown in FIG. 2, the coil 6 is connected to a power source 7 (first power source), and the coil 8 is connected to a power source 9 (second power source), and each is connected to an independent power source. The coils 6 and 8 have a coil shape called cos θ winding.
 図1に戻り、コイル6,8は、それぞれθ方向の電流分布がcosθ分布となるように、必要な磁場領域(ビームダクト3の内側)を囲むように配置される。またそれぞれのコイル6,8は、断熱容器4により構成される断熱層内に設置されており、極低温まで冷却できるようになっている。コイル6,8の外周側にはヨーク2が設置されており、中心磁場強度を高め、外周方向への漏れ磁場を低減している。 Returning to FIG. 1, the coils 6 and 8 are arranged so as to surround a necessary magnetic field region (inside the beam duct 3) so that the current distribution in the θ direction becomes a cos θ distribution. Each of the coils 6 and 8 is installed in a heat insulating layer constituted by the heat insulating container 4 so that it can be cooled to a very low temperature. A yoke 2 is installed on the outer peripheral side of the coils 6 and 8 to increase the central magnetic field strength and reduce the leakage magnetic field in the outer peripheral direction.
 次に、コイル6とコイル8の違いについて説明する。まず、それぞれのコイルによって発生させる磁場の時間変化の例を図3に示す。
  図3中、(A)は単一のコイルで構成した従来のコイルでの磁場パターンを示し、(B)は(A)と同じ必要な磁場パターンを2種類のコイルで構成した本発明の超伝導コイルでのそれぞれの磁場パターンを示している。
Next, the difference between the coil 6 and the coil 8 will be described. First, FIG. 3 shows an example of the time change of the magnetic field generated by each coil.
In FIG. 3, (A) shows a magnetic field pattern in a conventional coil constituted by a single coil, and (B) shows a super magnetic field pattern of the present invention in which the same required magnetic field pattern as in (A) is constituted by two types of coils. Each magnetic field pattern in a conductive coil is shown.
 図3(B)の長破線に示すように、コイル6によって励磁する磁場パターンは、各々の患部ごとに個別に設定された基準磁場を発生させる。この基準磁場は、それぞれの患部の最深部照射に相当する磁場に設定する。この基準磁場を患部間で変化させる時間は、一般的に数十秒~1分程度である。
  なお、本発明において「患部」とは、一人の患者における治療対象の患部に限られず、例えば、一人の患者において患部が異なって照射する荷電粒子ビームのエネルギーを大きく変更する場合の複数の治療対象の患部の各々の「患部」のことも意味する。
As shown by the long broken line in FIG. 3B, the magnetic field pattern excited by the coil 6 generates a reference magnetic field set individually for each affected area. This reference magnetic field is set to a magnetic field corresponding to the deepest part irradiation of each affected part. The time for changing the reference magnetic field between the affected areas is generally several tens of seconds to 1 minute.
In the present invention, the “affected part” is not limited to the affected part to be treated in one patient, and for example, a plurality of treated objects in the case where the energy of the charged particle beam irradiated by the affected part differs greatly in one patient. It also means each “affected area” of the affected area.
 一方、コイル8によって励磁する磁場パターンは、一患部を深さ方向に分割した各層(数層~数百層)を照射するのに必要な磁場パターンを得るための磁場パターンである。すなわち、コイル8は、図3(B)の一点鎖線に示すように、必要な磁場パターンを実現するために、コイル6が発生させる磁場強度より強度が小さく、時間変化率の大きな、基準磁場を減衰させる磁場を発生させ、高速で変化させるコイルである。 On the other hand, the magnetic field pattern excited by the coil 8 is a magnetic field pattern for obtaining a magnetic field pattern necessary for irradiating each layer (several to several hundred layers) obtained by dividing one affected part in the depth direction. That is, as shown by the one-dot chain line in FIG. 3B, the coil 8 has a reference magnetic field that is smaller in intensity than the magnetic field intensity generated by the coil 6 and has a large time change rate in order to realize a necessary magnetic field pattern. This coil generates a magnetic field to be attenuated and changes it at high speed.
 このように、コイル6とコイル8とでは、図3(B)に示すように、一患部においては、コイル6では磁場強度を変化させないのに対し、コイル8は一患部において各層に荷電粒子ビームを照射するために荷電粒子のビームエネルギーを変更するのに対応させて磁場強度を小さくかつ高速に変化させるとの役割が分担されている。 Thus, in the coil 6 and the coil 8, as shown in FIG. 3B, the magnetic field strength is not changed in the coil 6 in one affected part, whereas the charged particle beam is applied to each layer in the affected part in the coil 8. The role of changing the intensity of the magnetic field small and at high speed corresponding to the change of the beam energy of the charged particles to irradiate is charged.
 より具体的には、コイル8では各層間で磁場を変化させる時間は一般的に数十ms~数百ms程度と高速であり、コイル6の数十秒~1分程度に対してかなり高速である。 More specifically, in the coil 8, the time for changing the magnetic field between the layers is generally as high as several tens of ms to several hundred ms, and is considerably faster than the tens of seconds to one minute of the coil 6. is there.
 このようにコイル8とコイル6に機能を分割して持たせると、例えば、2.5Tから2.0Tまで一患部内で磁場を変化させたい場合に、高速に磁場を変化させるコイル8には0.5Tの磁場変化を発生させる電流を流せばよく、コイル6は変化させずにそのままにしておくことができる。
  これはコイル断面積を一定として考えたときに、電流密度を小さくできることを意味し、クエンチに対して余裕を持ちながら、高速に磁場を変化させることが可能となる。
Thus, when the functions of the coil 8 and the coil 6 are divided and provided, for example, when it is desired to change the magnetic field within one affected part from 2.5T to 2.0T, the coil 8 that changes the magnetic field at high speed is used. A current for generating a magnetic field change of 0.5 T may be supplied, and the coil 6 can be left as it is.
This means that the current density can be reduced when the coil cross-sectional area is considered to be constant, and the magnetic field can be changed at high speed while having a margin against quenching.
 更に、コイル6とコイル8は異なる種類の超伝導線材が用いられている。
  具体的には、相対的に磁場の時間変化率が小さな、大電流を流すコイル6には線材コストの低いNbTi等の臨界温度が40K未満の低温超伝導線材が用いられている。一方、相対的に磁場の時間変化率が大きなコイル8にはMgB,イットリウム系といった臨界温度が40K以上の高温超伝導線材が用いられている。これにより、さらにクエンチに対する余裕を大きくすることができる。
Furthermore, different types of superconducting wires are used for the coil 6 and the coil 8.
Specifically, a low-temperature superconducting wire having a critical temperature of less than 40K, such as NbTi, which has a low wire cost, is used for the coil 6 that flows a large current with a relatively small time change rate of the magnetic field. On the other hand, a high-temperature superconducting wire having a critical temperature of 40 K or higher, such as MgB 2 or yttrium, is used for the coil 8 having a relatively large time change rate of the magnetic field. This further increases the margin for quenching.
 上述した本発明の超伝導電磁石および超伝導電磁石の運転方法の第1の実施形態によれば、患者もしくは患部毎に個別に設定した基準磁場を患者間もしくは患部間で緩やかに変化させる、すなわち磁場の時間変化率が小さい基礎磁場成分を外周側超伝導コイル6とその電源7によって励磁する。そして、一患者もしくは一患部内において各層を照射するために必要な、基準磁場近傍で高速に磁場を変化させる時間変化率が大きな磁場成分を基礎磁場成分から分割して、コイル6とは独立した内周側超伝導コイル8とその電源9とでこの時間変化率が大きな磁場成分を励磁することを特徴とする。 According to the first embodiment of the superconducting electromagnet and the superconducting electromagnet operation method of the present invention described above, the reference magnetic field individually set for each patient or affected area is changed gently between patients or affected areas, that is, the magnetic field Is excited by the outer superconducting coil 6 and its power source 7. Then, a magnetic field component having a large time change rate for changing the magnetic field at high speed in the vicinity of the reference magnetic field necessary for irradiating each layer in one patient or one affected area is divided from the basic magnetic field component, and independent of the coil 6. The inner superconductor coil 8 and its power source 9 excite a magnetic field component having a large time change rate.
 本発明のようにコイルを分割しない従来の超伝導コイルの場合、全コイルを高温超伝導線材で構成して高速に磁場を変化させることで図3(A)に示すような必要な磁場パターンを得ることは可能ではある。しかし、広い磁場領域で高磁場を出す場合に、線材の性能面およびコスト面で早期の実現は困難である。また、クエンチリスクが高くなってしまうとの問題もある。
  一方、本発明では、基準磁場励磁用のコイル6と磁場強度を高速で時間変化させるコイル8とを独立して設置するとともに、それぞれのコイルを独立の電源7,9で励磁することにより、基礎磁場励磁用のコイル6の位置での最大磁場強度や磁場の単位時間変化量を小さくすることが可能となり、クエンチリスクを低減した大口径の高速磁場可変超伝導電磁石を実現することができる。
  また、分割したコイルの線材を自由に組み合わせることができ、たとえば時間変化率の大きな磁場を発生させるコイル8に高温超伝導材を用いた場合、その励磁電流は一体型コイルの場合の数分の一程度でよく、早期の高速磁場可変超伝導電磁石を実現することができる。また、高温超伝導線材の量も少なくてよく、コスト面での利点もある。
In the case of a conventional superconducting coil that does not divide the coil as in the present invention, the necessary magnetic field pattern as shown in FIG. 3A can be obtained by configuring all the coils with a high-temperature superconducting wire and changing the magnetic field at high speed. It is possible to get. However, when a high magnetic field is produced in a wide magnetic field region, it is difficult to realize early implementation in terms of performance and cost of the wire. There is also a problem that the quench risk becomes high.
On the other hand, in the present invention, the reference magnetic field excitation coil 6 and the coil 8 for changing the magnetic field strength at high speed with time are independently installed, and the respective coils are excited by independent power sources 7 and 9, thereby providing a basis. The maximum magnetic field strength at the position of the magnetic field excitation coil 6 and the amount of change of the magnetic field per unit time can be reduced, and a large-diameter high-speed magnetic field variable superconducting electromagnet with reduced quench risk can be realized.
Moreover, the wire materials of the divided coils can be freely combined. For example, when a high-temperature superconducting material is used for the coil 8 that generates a magnetic field having a large time change rate, the exciting current is several minutes that of an integrated coil. It may be about one, and an early high-speed magnetic field variable superconducting electromagnet can be realized. Further, the amount of the high-temperature superconducting wire may be small, and there is an advantage in cost.
 なお、外周側超伝導コイル6と内周側超伝導コイル8とによって発生させる磁場パターンは図3に示すパターンに限られない。その他の例を図4乃至図6を用いて説明する。 In addition, the magnetic field pattern generated by the outer peripheral side superconducting coil 6 and the inner peripheral side superconducting coil 8 is not limited to the pattern shown in FIG. Other examples will be described with reference to FIGS.
 図4では、コイル6によって発生させる基準磁場を、患部の平均深さに設定した例である。この場合、図3(B)に示した磁場パターンの組み合わせと比較して、コイル6によって発生させる最大磁場を低減することが可能となる。また、コイル8によって発生させる磁場は、コイル6の発生させる基準磁場を補強もしくは減衰させるが、その最大磁場はコイル6と同様に低減することが可能となる。 FIG. 4 shows an example in which the reference magnetic field generated by the coil 6 is set to the average depth of the affected area. In this case, the maximum magnetic field generated by the coil 6 can be reduced as compared with the combination of magnetic field patterns shown in FIG. The magnetic field generated by the coil 8 reinforces or attenuates the reference magnetic field generated by the coil 6, but the maximum magnetic field can be reduced in the same manner as the coil 6.
 また、図5には、患者ごとに異なる基準磁場の時間変化が小さくなるように、基準磁場のうち最も浅い部分を照射するのに必要な磁場と最も深い部分を照射するのに必要な磁場のうち最も各患者毎の基準磁場の平均に近いほうを基準とした例を示す。
  この場合についても、図3(B)に示した磁場パターンの組み合わせと比較して、コイル6によって発生させる最大磁場を低減することが可能である。
FIG. 5 also shows the magnetic field required to irradiate the shallowest part and the deepest part of the reference magnetic field so that the temporal change of the reference magnetic field, which varies from patient to patient, is small. An example based on the closest reference magnetic field average for each patient is shown.
Also in this case, the maximum magnetic field generated by the coil 6 can be reduced as compared with the combination of magnetic field patterns shown in FIG.
 更に、図6にコイル6で発生させる基準磁場を一定とした例を示す。この場合においても、図3(B)に示した磁場パターンの組み合わせと比較して、コイル6によって発生させる最大磁場を低減することが可能である。 Furthermore, FIG. 6 shows an example in which the reference magnetic field generated by the coil 6 is constant. Even in this case, the maximum magnetic field generated by the coil 6 can be reduced as compared with the combination of the magnetic field patterns shown in FIG.
 <第2の実施形態> 
 本発明の粒子線治療システムの第2の実施形態を図7用いて説明する。
  図7は本発明の超伝導電磁石を用いた粒子線治療システムの第2の実施形態の概略構成を示す構成図である。
<Second Embodiment>
A second embodiment of the particle beam therapy system of the present invention will be described with reference to FIG.
FIG. 7 is a configuration diagram showing a schematic configuration of a second embodiment of the particle beam therapy system using the superconducting electromagnet of the present invention.
 図7に示すように、本発明の粒子線治療システムの第2の実施形態は、入射系100と、シンクロトロン200と、高エネルギービーム輸送系300と、照射装置400とを概略備える。また、入射系100,シンクロトロン200,高エネルギービーム輸送系300,照射装置400を制御する制御系(入射系制御装置110,シンクロトロン制御装置210,高エネルギービーム輸送系制御装置310,照射系制御装置410)と治療システム全体を制御する全体制御装置500とを概略備えている。 As shown in FIG. 7, the second embodiment of the particle beam therapy system of the present invention generally includes an incident system 100, a synchrotron 200, a high energy beam transport system 300, and an irradiation device 400. Further, a control system (incident system control device 110, synchrotron control device 210, high energy beam transport system control device 310, irradiation system control) that controls the incident system 100, synchrotron 200, high energy beam transport system 300, and irradiation device 400. Apparatus 410) and an overall controller 500 for controlling the entire treatment system.
 入射系100は、イオン源11と、このイオン源11で発生させた荷電粒子をシンクロトロン200への入射に適したエネルギーまで加速するライナックのような前段加速器12と、この前段加速器12で加速した荷電粒子ビームをシンクロトロン200まで輸送するための輸送系(偏向電磁石13や四極電磁石14等)とから概略構成される。 The incident system 100 is accelerated by an ion source 11, a pre-accelerator 12 such as a linac that accelerates charged particles generated by the ion source 11 to energy suitable for incidence on the synchrotron 200, and the pre-accelerator 12. A transport system (such as the deflecting electromagnet 13 and the quadrupole electromagnet 14) for transporting the charged particle beam to the synchrotron 200 is generally configured.
 シンクロトロン200は、入射されたビームを所望のエネルギーまで加速する。このシンクロトロン200は、ビームを入射する入射用偏向装置21と、入射したビームを偏向する偏向電磁石22と、ビームを収束・発散させる四極電磁石23,24と,ビームを加速する高周波加速空胴25と、ビーム軌道を偏向してシンクロトロン200からビームを取り出すための出射用機器26とを概略備える。 The synchrotron 200 accelerates the incident beam to a desired energy. The synchrotron 200 includes an incident deflecting device 21 that makes a beam incident, a deflection electromagnet 22 that deflects the incident beam, quadrupole electromagnets 23 and 24 that converge and diverge the beam, and a high-frequency acceleration cavity 25 that accelerates the beam. And an emission device 26 for taking out the beam from the synchrotron 200 by deflecting the beam trajectory.
 シンクロトロン200を制御するシンクロトロン制御装置210は、偏向電磁石22を制御する偏向電磁石制御部212と、四極電磁石23,24をそれぞれ制御する四極電磁石制御部213,214と、高周波加速空胴25を制御する高周波加速制御部215と、出射用機器26を制御する出射用機器制御部216とを有する。それぞれの制御部212,213,214,215,216と各機器の間には電源22a,23a,24a,25a,26aが配置されている。 A synchrotron control device 210 that controls the synchrotron 200 includes a deflection electromagnet control unit 212 that controls the deflection electromagnet 22, quadrupole electromagnet control units 213 and 214 that respectively control the quadrupole electromagnets 23 and 24, and a high-frequency acceleration cavity 25. A high-frequency acceleration control unit 215 for controlling and an extraction device control unit 216 for controlling the extraction device 26 are provided. Power sources 22a, 23a, 24a, 25a, and 26a are arranged between the control units 212, 213, 214, 215, and 216 and the respective devices.
 高エネルギービーム輸送系300は、シンクロトロン200によって所望のエネルギーまで加速され、出射用機器26から取り出された荷電粒子ビームを照射装置400まで輸送する。この高エネルギービーム輸送系300は、入射したビームを偏向する偏向電磁石31と、ビームを収束・発散させる四極電磁石32とを有する。 The high energy beam transport system 300 is accelerated to a desired energy by the synchrotron 200 and transports the charged particle beam extracted from the emission device 26 to the irradiation device 400. The high energy beam transport system 300 includes a deflection electromagnet 31 that deflects an incident beam and a quadrupole electromagnet 32 that converges and diverges the beam.
 偏向電磁石31は、第1の実施形態で説明した独立した複数系統のコイル(外周側超伝導コイル6とその電源7、内周側超伝導コイル8とその電源9)を備える超伝導電磁石が用いられている。 The deflection electromagnet 31 is a superconducting electromagnet provided with a plurality of independent coils (the outer peripheral side superconducting coil 6 and its power source 7 and the inner peripheral side superconducting coil 8 and its power source 9) described in the first embodiment. It has been.
 高エネルギービーム輸送系300を制御する高エネルギービーム輸送系制御装置310は、偏向電磁石31を制御する偏向電磁石制御部311と、四極電磁石32を制御する四極電磁石制御部312とを有する。
  偏向電磁石制御部311は、外周側超伝導コイル6を励磁させるための電源7と、内周側超伝導コイル8を励磁させるための電源9とをそれぞれ独立して制御する。四極電磁石制御部312は、四極電磁石32を励磁させるための電源32aを制御する。
The high energy beam transport system control device 310 that controls the high energy beam transport system 300 includes a deflection electromagnet control unit 311 that controls the deflection electromagnet 31 and a quadrupole electromagnet control unit 312 that controls the quadrupole electromagnet 32.
The deflection electromagnet control unit 311 independently controls a power source 7 for exciting the outer superconducting coil 6 and a power source 9 for exciting the inner superconducting coil 8. The quadrupole electromagnet control unit 312 controls a power supply 32 a for exciting the quadrupole electromagnet 32.
 照射装置400は、シンクロトロン200から取り出し、高エネルギービーム輸送系300によって輸送された荷電粒子ビームを、患者1000の患部1001の位置や形状に合わせて調整し、患部1001に照射する。照射装置400は、荷電粒子ビームの軌道を変化させる走査電磁石41やビームモニタ42等を有している。本実施例では走査電磁石を超伝導電磁石31の下流側に配置しているが、超伝導電磁石31の上流に配置される場合もある。 The irradiation apparatus 400 adjusts the charged particle beam taken out from the synchrotron 200 and transported by the high energy beam transport system 300 according to the position and shape of the affected area 1001 of the patient 1000 and irradiates the affected area 1001. The irradiation apparatus 400 includes a scanning electromagnet 41 and a beam monitor 42 that change the trajectory of the charged particle beam. In this embodiment, the scanning electromagnet is disposed on the downstream side of the superconducting electromagnet 31, but may be disposed on the upstream side of the superconducting electromagnet 31.
 このような粒子線治療システムでは、3次元的な患部1001の形状を深さ方向の複数の層に分割し、シンクロトロン200の出射ビームのエネルギーを変更することで各層を選択的に照射する。
  このために、入射系100で生成したビームをシンクロトロン200に入射した後、治療計画装置(図示せず)で設定された患者ごとの照射エネルギーパターンに対応して加速器制御系210により偏向電磁石202、四極電磁石203,204、高周波加速空胴205を制御して、シンクロトロン200にて所定のエネルギーに調整する。
  所定のエネルギーに調整されたビームは出射用機器26によってシンクロトロン200から取り出され、高エネルギービーム輸送系300に引き継がれる。
  高エネルギービーム輸送系300では、シンクロトロン200から取り出されたエネルギーに同期して輸送系制御装置310によって偏向電磁石31および四極電磁石32を制御し、照射装置400まで荷電粒子ビームを輸送する。
  照射装置400では、走査電磁石41で照射ビームを2次元的(x方向,y方向)に走査して、患部1001の層内の各部に所定の線量を与える。
In such a particle beam therapy system, the shape of the three-dimensional affected area 1001 is divided into a plurality of layers in the depth direction, and each layer is selectively irradiated by changing the energy of the emitted beam of the synchrotron 200.
For this purpose, after the beam generated by the incidence system 100 is incident on the synchrotron 200, the deflecting electromagnet 202 is controlled by the accelerator control system 210 in accordance with the irradiation energy pattern for each patient set by the treatment planning apparatus (not shown). The quadrupole electromagnets 203 and 204 and the high-frequency acceleration cavity 205 are controlled and adjusted to predetermined energy by the synchrotron 200.
The beam adjusted to a predetermined energy is taken out from the synchrotron 200 by the emission device 26 and taken over by the high energy beam transport system 300.
In the high energy beam transport system 300, the deflecting electromagnet 31 and the quadrupole electromagnet 32 are controlled by the transport system control device 310 in synchronization with the energy extracted from the synchrotron 200, and the charged particle beam is transported to the irradiation device 400.
In the irradiation apparatus 400, the irradiation beam is scanned two-dimensionally (x direction, y direction) by the scanning electromagnet 41 to give a predetermined dose to each part in the layer of the affected part 1001.
 上述のように、本実施形態の粒子線治療システムでは、患者1000の患部1001の深さ方向の複数の層に照射する際に、シンクロトロン200の出射ビームのエネルギーを変更する。このとき、荷電粒子ビームが照射装置400まで輸送されるよう、高エネルギービーム輸送系制御装置310の偏向電磁石制御部311によって偏向電磁石31の電源9に対して信号を出力して、シンクロトロン200の出射ビームエネルギーに応じた所定の必要な磁場パターンが得られるように内周側超伝導コイル8の励磁電流を調整する。この際、偏向電磁石制御部311は、偏向電磁石31内の外周側超伝導コイル6とその電源7に対しては、磁場パターンを固定して変更しないよう制御する。 As described above, in the particle beam therapy system according to the present embodiment, when irradiating a plurality of layers in the depth direction of the affected area 1001 of the patient 1000, the energy of the emitted beam of the synchrotron 200 is changed. At this time, a signal is output to the power source 9 of the deflecting electromagnet 31 by the deflecting electromagnet controller 311 of the high energy beam transport system control device 310 so that the charged particle beam is transported to the irradiation device 400. The exciting current of the inner peripheral superconducting coil 8 is adjusted so that a predetermined necessary magnetic field pattern corresponding to the emitted beam energy is obtained. At this time, the deflection electromagnet control unit 311 controls the outer peripheral superconducting coil 6 in the deflection electromagnet 31 and its power supply 7 so that the magnetic field pattern is fixed and not changed.
 本発明の粒子線治療システムの第2の実施形態においては、シンクロトロン200から取り出されるビームのエネルギーが高速に変化しても、輸送系300における偏向電磁石31もエネルギー変更と同期して磁場を高速に変更することが可能となり、治療時間の短縮により患者負担を軽減することができる。また、前述した超伝導電磁石の第1の実施形態を備えているため、超伝導電磁石の利用により治療システム全体の小型化が可能となる。 In the second embodiment of the particle beam therapy system of the present invention, even if the energy of the beam extracted from the synchrotron 200 changes at high speed, the deflecting electromagnet 31 in the transport system 300 also changes the magnetic field at high speed in synchronization with the energy change. The burden on the patient can be reduced by shortening the treatment time. Moreover, since the first embodiment of the superconducting electromagnet described above is provided, the entire treatment system can be downsized by using the superconducting electromagnet.
 なお、本実施形態はこれに限られず、高エネルギービーム輸送系300の偏向電磁石31のすべてを第1の実施形態の超伝導電磁石とした例を示したが、すべてが第1の実施形態の超伝導電磁石である必要は必ずしもなく、一部を常伝導電磁石とすることもできる。 Note that the present embodiment is not limited to this, and an example in which all of the deflection electromagnets 31 of the high energy beam transport system 300 are the superconducting electromagnets of the first embodiment has been shown. It is not always necessary to be a conductive electromagnet, and a part of the conductive electromagnet can be used.
 <第3の実施形態> 
 本発明の粒子線治療システムの第3の実施形態を図8を用いて説明する。
  図8は本発明の超伝導電磁石を用いた粒子線治療システムの第3の実施形態の概略構成を示す構成図である。
<Third Embodiment>
A third embodiment of the particle beam therapy system of the present invention will be described with reference to FIG.
FIG. 8 is a configuration diagram showing a schematic configuration of the third embodiment of the particle beam therapy system using the superconducting electromagnet of the present invention.
 図8に示すように、本発明の粒子線治療システムの第3の実施形態は、サイクロトロンシステム600と、高エネルギービーム輸送系300と、照射装置400とを概略備える。また、サイクロトロンシステム600,高エネルギービーム輸送系300,照射装置400を制御する制御系(加速器制御装置610,高エネルギービーム輸送系制御装置310,照射系制御装置410)と治療システム全体を制御する全体制御装置500とを概略備えている。 As shown in FIG. 8, the third embodiment of the particle beam therapy system of the present invention generally includes a cyclotron system 600, a high energy beam transport system 300, and an irradiation device 400. The cyclotron system 600, the high energy beam transport system 300, the control system for controlling the irradiation device 400 (accelerator control device 610, the high energy beam transport system control device 310, the irradiation system control device 410) and the entire treatment system are controlled. And a control device 500.
 サイクロトロンシステム600は、加速器としてのサイクロトロン61と、エネルギー変更機器62とを有している。 The cyclotron system 600 includes a cyclotron 61 as an accelerator and an energy changing device 62.
 サイクロトロンシステム600では、エネルギーの変更は、サイクロトロン61から一定エネルギーのビームを取り出した後に、加速器制御装置610のからの信号に基づきエネルギー変更機器62を制御して金属板等の厚みを制御し、ビームを金属板を通過させることでエネルギーを変化させ、調整することで行う。 In the cyclotron system 600, the energy is changed by taking out a beam of constant energy from the cyclotron 61 and then controlling the thickness of a metal plate or the like by controlling the energy changing device 62 based on a signal from the accelerator controller 610. This is done by changing and adjusting the energy by passing through the metal plate.
 本実施形態においても、患者1000の患部1001の深さ方向の複数の層に照射する際に、エネルギー変更機器62以降のビーム輸送系300では変更後のエネルギーに同期して偏向電磁石31の磁場を変化させる必要が生じる。
  そこで、荷電粒子ビームが照射装置400まで輸送されるよう、高エネルギービーム輸送系制御装置310の偏向電磁石制御部311によって偏向電磁石31の電源9に対して信号を出力して、サイクロトロンシステム600からの出射ビームに応じた所定の必要な磁場パターンが得られるように内周側超伝導コイル8の励磁電流を制御する。この際、第2の実施形態と同様に、偏向電磁石制御部311は、偏向電磁石31内の外周側超伝導コイル6に対しては、磁場パターンを固定して変更しないよう制御する。
Also in this embodiment, when irradiating a plurality of layers in the depth direction of the affected area 1001 of the patient 1000, the beam transport system 300 after the energy changing device 62 applies the magnetic field of the deflection electromagnet 31 in synchronization with the changed energy. Need to change.
Therefore, a signal is output from the cyclotron system 600 to the power supply 9 of the deflection electromagnet 31 by the deflection electromagnet controller 311 of the high energy beam transport system controller 310 so that the charged particle beam is transported to the irradiation device 400. The exciting current of the inner peripheral superconducting coil 8 is controlled so that a predetermined necessary magnetic field pattern corresponding to the outgoing beam is obtained. At this time, similarly to the second embodiment, the deflection electromagnet control unit 311 controls the outer peripheral superconducting coil 6 in the deflection electromagnet 31 to fix and not change the magnetic field pattern.
 本発明の粒子線治療システムの第3の実施形態においても、前述した超伝導電磁石の第1の実施形態を備えているため、粒子線治療システムの第2の実施形態とほぼ同様な効果が得られる。 Also in the third embodiment of the particle beam therapy system of the present invention, since the first embodiment of the superconducting electromagnet described above is provided, substantially the same effect as in the second embodiment of the particle beam therapy system is obtained. It is done.
 <その他> 
 なお、本発明は上記の実施形態に限られず、種々の変形、応用が可能なものである。
<Others>
In addition, this invention is not restricted to said embodiment, A various deformation | transformation and application are possible.
 例えば、治療に必要なエネルギーに調整する加速器等の種別に関係なく本発明の超伝導電磁石は有効である。 For example, the superconducting electromagnet of the present invention is effective regardless of the type of accelerator or the like that adjusts to the energy required for treatment.
 また、上述の実施形態では、ビーム軌道を偏向させる二極磁場を発生させる超伝導電磁石に本発明の超伝導電磁石を提供した場合について説明したが、ビームを収束、発散させる四極磁場、さらに高次の多極磁場についても、本発明の超伝導電磁石を適用すれば同様の効果を得ることが可能である。
  この場合、単独の四極超伝導電磁石であっても、非特許文献1に記載されているような機能結合型超伝導電磁石(同一の磁石で二極磁場と四極磁場を発生させることが可能な磁石)に対しても本発明を適用することができる。
In the above-described embodiment, the case where the superconducting electromagnet of the present invention is provided as a superconducting electromagnet that generates a dipole magnetic field that deflects the beam trajectory has been described. However, a quadrupole magnetic field that converges and diverges the beam, and a higher order The same effect can be obtained for the multipolar magnetic field by applying the superconducting electromagnet of the present invention.
In this case, even a single quadrupole superconducting electromagnet is a functionally coupled superconducting electromagnet as described in Non-Patent Document 1 (a magnet capable of generating a dipole magnetic field and a quadrupole magnetic field with the same magnet). The present invention can also be applied to the above.
1…超伝導コイル、
2…ヨーク、
3…ビームダクト、
4…断熱容器、
6…外周側超伝導コイル、
7…外周側超伝導コイル用電源、
8…内周側超伝導コイル、
9…内周側超伝導コイル用電源、
100…入射系、
11……イオン源、
12…前段加速器、
13…偏向電磁石、
14…四極電磁石、
110…入射系制御装置、
200…シンクロトロン、
21…入射用偏向装置、
22…偏向電磁石、
23…収束用四極電磁石、
24…発散用四極電磁石、
25…高周波加速空胴、
26…出射用機器、
210…加速器制御装置、
300…高エネルギービーム輸送系、
31…偏向電磁石、
32…四極電磁石、
310…高エネルギービーム輸送系制御装置、
400…照射装置、
41…走査電磁石、
42…ビームモニタ、
410…照射系制御装置、
500…全体制御装置、
600…サイクロトロンシステム、
61…サイクロトロン、
62…エネルギー変更機器。
1 ... Superconducting coil,
2 ... York,
3 ... Beam duct,
4 ... Insulated container,
6 ... outer peripheral superconducting coil,
7 ... Power supply for outer peripheral superconducting coil,
8 ... Inner circumference superconducting coil,
9 ... Power supply for inner peripheral superconducting coil,
100: Incident system,
11 …… Ion source,
12 ... Pre-stage accelerator,
13: Deflection electromagnet,
14 ... quadrupole magnets,
110 ... Incident system controller,
200 ... Synchrotron,
21 ... Incident deflecting device,
22: deflection electromagnet,
23. Convergence quadrupole electromagnet,
24 ... a dipole quadrupole magnet,
25 ... High-frequency acceleration cavity,
26 ... Ejecting equipment,
210 ... accelerator control device,
300 ... High energy beam transport system,
31 ... Bending electromagnet,
32 ... Quadrupole magnets,
310 ... High energy beam transport system controller,
400 ... Irradiation device,
41 ... Scanning magnet,
42 ... Beam monitor,
410 ... Irradiation system control device,
500 ... Overall control device,
600 ... cyclotron system,
61 ... cyclotron,
62 ... Energy change device.

Claims (5)

  1.  荷電粒子の軌道を偏向させるための超伝導電磁石であって、
     患部ごとに個別に設定した基準磁場となる磁場成分を発生させる第1超伝導コイルと、
     この第1超伝導コイルを励磁するための第1電源と、
     前記患部に対して、前記第1超伝導コイルより高速に変化させ、前記基準磁場を補強もしくは減衰させることで所望の磁場成分を得るための磁場成分を発生させる第2超伝導コイルと、
     この第2超伝導コイルを励磁するための第2電源とを備えた
     ことを特徴とする超伝導電磁石。
    A superconducting electromagnet for deflecting the trajectory of charged particles,
    A first superconducting coil that generates a magnetic field component serving as a reference magnetic field set individually for each affected area;
    A first power source for exciting the first superconducting coil;
    A second superconducting coil that generates a magnetic field component for obtaining a desired magnetic field component by changing the affected part at a higher speed than the first superconducting coil and reinforcing or attenuating the reference magnetic field;
    A superconducting electromagnet comprising a second power source for exciting the second superconducting coil.
  2.  請求項1に記載の超伝導電磁石において、
     前記第1超伝導コイルと前記第2超伝導コイルとの線材を、異なるものとした
     ことを特徴とする超伝導電磁石。
    The superconducting electromagnet according to claim 1,
    A superconducting electromagnet characterized in that the first superconducting coil and the second superconducting coil have different wire materials.
  3.  請求項2に記載の超伝導電磁石において、
     前記第1超伝導コイルの線材として、臨界温度が40K未満の低温超伝導線材を、
     前記第2超伝導コイルの線材として、臨界温度が40K以上の高温超伝導線材を用いた
     ことを特徴とする超伝導電磁石。
    The superconducting electromagnet according to claim 2,
    As a wire of the first superconducting coil, a low temperature superconducting wire having a critical temperature of less than 40K,
    A superconducting electromagnet using a high-temperature superconducting wire having a critical temperature of 40K or higher as the wire of the second superconducting coil.
  4.  荷電粒子ビームを出射する荷電粒子ビーム発生装置と、
     この荷電粒子ビーム発生装置から出射された荷電粒子ビームを照射室まで導くビーム輸送系と、
     前記照射室で照射対象物の照射対象形状に合わせて前記ビーム輸送系によって輸送された荷電粒子ビームを照射する粒子線照射装置とを備えた粒子線治療システムであって、
     前記ビーム輸送系は、請求項1乃至3のいずれか1項に記載の超伝導電磁石を有する
     ことを特徴とする粒子線治療システム。
    A charged particle beam generator for emitting a charged particle beam;
    A beam transport system for guiding the charged particle beam emitted from the charged particle beam generator to the irradiation chamber;
    A particle beam therapy system comprising a particle beam irradiation apparatus that irradiates a charged particle beam transported by the beam transport system in accordance with the irradiation target shape of an irradiation object in the irradiation chamber,
    The said beam transport system has the superconducting electromagnet of any one of Claims 1 thru | or 3. The particle beam therapy system characterized by the above-mentioned.
  5.  荷電粒子の軌道を偏向させるための超伝導電磁石の運転方法であって、
     第1電源に信号を出力して、患部ごとに個別に設定した基準磁場となる磁場成分を発生させる第1超伝導コイルを励磁する工程と、
     この第1超伝導コイルの励磁後に、第2電源に信号を出力して、前記基準磁場を補強もしくは減衰させることで所望の磁場成分を得るための磁場成分を前記第1超伝導コイルより高速に発生させる第2超伝導コイルを励磁する工程とを含む
     ことを特徴とする超伝導電磁石の運転方法。
    A method of operating a superconducting electromagnet for deflecting charged particle trajectories,
    Outputting a signal to the first power source to excite a first superconducting coil that generates a magnetic field component serving as a reference magnetic field set individually for each affected area;
    After the excitation of the first superconducting coil, a signal is output to the second power source to reinforce or attenuate the reference magnetic field so that a magnetic field component for obtaining a desired magnetic field component is faster than the first superconducting coil. And a step of exciting a second superconducting coil to be generated. A method of operating a superconducting electromagnet.
PCT/JP2013/075817 2013-09-25 2013-09-25 Superconducting magnet, particle beam treatment system, and method for operating superconducting magnet WO2015045017A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/075817 WO2015045017A1 (en) 2013-09-25 2013-09-25 Superconducting magnet, particle beam treatment system, and method for operating superconducting magnet
JP2015538670A JPWO2015045017A1 (en) 2013-09-25 2013-09-25 Superconducting electromagnet, particle beam therapy system, and superconducting electromagnet operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075817 WO2015045017A1 (en) 2013-09-25 2013-09-25 Superconducting magnet, particle beam treatment system, and method for operating superconducting magnet

Publications (1)

Publication Number Publication Date
WO2015045017A1 true WO2015045017A1 (en) 2015-04-02

Family

ID=52742231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075817 WO2015045017A1 (en) 2013-09-25 2013-09-25 Superconducting magnet, particle beam treatment system, and method for operating superconducting magnet

Country Status (2)

Country Link
JP (1) JPWO2015045017A1 (en)
WO (1) WO2015045017A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067820A1 (en) * 2014-10-28 2016-05-06 国立研究開発法人 放射線医学総合研究所 Charged particle beam irradiation device
JP2016083344A (en) * 2014-10-28 2016-05-19 国立研究開発法人放射線医学総合研究所 Charged particle beam irradiation device
JP2017000584A (en) * 2015-06-15 2017-01-05 住友重機械工業株式会社 Charged particle radiation therapy device
KR20190109483A (en) * 2017-03-14 2019-09-25 가부시끼가이샤 도시바 Rotation probe device, rotation probe method, and rotation probe therapy device
JP2021028001A (en) * 2017-03-14 2021-02-25 株式会社東芝 Control method of rotary irradiation apparatus
JP2021126154A (en) * 2020-02-10 2021-09-02 株式会社日立製作所 Particle beam treatment device, medical superconducting device, and superconducting magnet device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260222A (en) * 2006-03-29 2007-10-11 Osaka Univ Charged particle beam deflector and irradiator
JP2011072717A (en) * 2009-10-01 2011-04-14 High Energy Accelerator Research Organization Electromagnet for controlling charged particle beam and irradiation therapy instrument equipped with the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260222A (en) * 2006-03-29 2007-10-11 Osaka Univ Charged particle beam deflector and irradiator
JP2011072717A (en) * 2009-10-01 2011-04-14 High Energy Accelerator Research Organization Electromagnet for controlling charged particle beam and irradiation therapy instrument equipped with the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067820A1 (en) * 2014-10-28 2016-05-06 国立研究開発法人 放射線医学総合研究所 Charged particle beam irradiation device
JP2016083344A (en) * 2014-10-28 2016-05-19 国立研究開発法人放射線医学総合研究所 Charged particle beam irradiation device
US10090132B2 (en) 2014-10-28 2018-10-02 National Institutes For Quantum And Radiological Science And Technology Charged particle beam irradiation apparatus
JP2017000584A (en) * 2015-06-15 2017-01-05 住友重機械工業株式会社 Charged particle radiation therapy device
EP3597270A4 (en) * 2017-03-14 2020-08-26 Kabushiki Kaisha Toshiba, Inc. Rotary irradiation appratus, rotary irradiation method, and rotation radiotherapy apparatus
CN110418667A (en) * 2017-03-14 2019-11-05 株式会社东芝 Rotary irradiation device, rotary irradiation method and rotary irradiation therapeutic device
KR20190109483A (en) * 2017-03-14 2019-09-25 가부시끼가이샤 도시바 Rotation probe device, rotation probe method, and rotation probe therapy device
US10881881B2 (en) 2017-03-14 2021-01-05 Kabushiki Kaisha Toshiba Rotary irradiation apparatus, rotary irradiation method, and rotation radiotherapy apparatus
JP2021028001A (en) * 2017-03-14 2021-02-25 株式会社東芝 Control method of rotary irradiation apparatus
CN110418667B (en) * 2017-03-14 2021-06-15 株式会社东芝 Rotary irradiation device, rotary irradiation method thereof, and rotary irradiation treatment device
KR20210127765A (en) * 2017-03-14 2021-10-22 가부시끼가이샤 도시바 Control method of rotary irradiation appratus
KR102379971B1 (en) 2017-03-14 2022-03-29 가부시끼가이샤 도시바 Rotational irradiation device, rotational irradiation method, and rotational irradiation treatment device
KR102411447B1 (en) 2017-03-14 2022-06-22 가부시끼가이샤 도시바 Control method of rotary irradiation appratus
JP2021126154A (en) * 2020-02-10 2021-09-02 株式会社日立製作所 Particle beam treatment device, medical superconducting device, and superconducting magnet device
JP7448289B2 (en) 2020-02-10 2024-03-12 株式会社日立製作所 Particle beam therapy equipment, medical superconducting equipment, and superconducting magnet equipment

Also Published As

Publication number Publication date
JPWO2015045017A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
WO2015045017A1 (en) Superconducting magnet, particle beam treatment system, and method for operating superconducting magnet
US7772577B2 (en) Particle beam therapy system
US8153990B2 (en) Particle beam therapy system
JP6613466B2 (en) Charged particle beam irradiation equipment
JP4356019B2 (en) Electron accelerator and radiotherapy apparatus using the same
JP2005332794A (en) Charged-particle beam accelerator, particle beam radiation therapy system using it, and method of operating particle beam radiation therapy system
JP5336991B2 (en) Electromagnet for controlling charged particle beam and irradiation treatment apparatus provided with the same
KR20150135350A (en) Systems and methods for linear accelerator radiotherapy with magnetic resonance imaging
US10256004B2 (en) Particle-beam control electromagnet and irradiation treatment apparatus equipped therewith
US9776019B2 (en) Particle beam therapy system
CN105079983A (en) Superconductive electromagnet and charged particle beam therapy apparatus
US8525449B2 (en) Charged particle beam extraction method using pulse voltage
US20150340141A1 (en) Superconductive electromagnet device
US10881881B2 (en) Rotary irradiation apparatus, rotary irradiation method, and rotation radiotherapy apparatus
JP6622142B2 (en) Particle beam transport device and irradiation treatment device
JP5998089B2 (en) Particle beam irradiation system and its operation method
JP2018073639A (en) Linear acceleration device, neuron beam generator and particle beam therapy system
JP2013096949A (en) Scanning type electromagnet and charged particle beam irradiation device
WO2018092483A1 (en) Accelerator, particle beam irradiation device, and method for extracting beam
WO2024079992A1 (en) Accelerator and particle beam therapy device
JP6279036B2 (en) Particle beam irradiation system and its operation method
JP2022176617A (en) Septum magnet, accelerator, and particle beam therapy system
WO2016067820A1 (en) Charged particle beam irradiation device
JP3922022B2 (en) Circular accelerator control method and control apparatus, and circular accelerator system
KR20230118951A (en) Superconducting coil device, superconducting accelerator and particle beam therapy device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015538670

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894645

Country of ref document: EP

Kind code of ref document: A1