WO2015041498A1 - Immune enhancement or anticancer composition containing neoagarooligosaccharide - Google Patents

Immune enhancement or anticancer composition containing neoagarooligosaccharide Download PDF

Info

Publication number
WO2015041498A1
WO2015041498A1 PCT/KR2014/008824 KR2014008824W WO2015041498A1 WO 2015041498 A1 WO2015041498 A1 WO 2015041498A1 KR 2014008824 W KR2014008824 W KR 2014008824W WO 2015041498 A1 WO2015041498 A1 WO 2015041498A1
Authority
WO
WIPO (PCT)
Prior art keywords
neoagarooligosaccharide
daga
enzyme reaction
neoagarotetraose
neoagarohexaose
Prior art date
Application number
PCT/KR2014/008824
Other languages
French (fr)
Korean (ko)
Inventor
이제현
홍순광
박재선
이문희
홍선주
정인덕
박영민
Original Assignee
다인바이오 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다인바이오 주식회사 filed Critical 다인바이오 주식회사
Publication of WO2015041498A1 publication Critical patent/WO2015041498A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/729Agar; Agarose; Agaropectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7016Disaccharides, e.g. lactose, lactulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/702Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01081Beta-agarase (3.2.1.81)

Definitions

  • the present invention relates to a novel use of a neoagarooligosaccharide or neoagarooligosaccharide mixture, and more particularly to a neoagarooligosaccharide or neoagarooligosaccharide mixture for enhancing immune function or anticancer use.
  • Agar is a representative algae-derived polysaccharide widely used for food additives, medicines, cosmetics, livestock feed and industrial raw materials for a long time.
  • agar is a relatively abundant fishery resource with annual production of about 2,000 ⁇ 5,000 tons Lt; / RTI >
  • RTI &gt a relatively abundant fishery resource with annual production of about 2,000 ⁇ 5,000 tons Lt; / RTI >
  • only a part of the total production amount is processed as a simple raw material and used as cheap raw materials, and the rest of the total amount is neglected. Therefore, there is a great demand for research on the development of new applications of agar and the improvement of added value.
  • Agar is composed mostly of polysaccharides except for small amounts of protein, ash and fat.
  • the polysaccharides constituting the agar include agarose, a neutral polysaccharide, and agaropectin, an acidic polysaccharide.
  • Agarose is an agarobiose in which D-galactose and 3,6-anhydro-L-galactose are combined in a ⁇ -1,4 form, , And agarobiose has a straight-chain structure in which ⁇ -1,3 bonds are repeatedly connected to each other, and gelation power is strong.
  • agaropectin like agarose, has agarobiose as a unit, but contains an acidic group such as a sulfate group and the like and has a weak gelling power.
  • agarose is degraded into neoagarobiose via neoagarotetraose by ⁇ -agarase acting on ⁇ -1,4 bond, and then ⁇ -1 Galactose and 3,6-anhydro-L-galactose by ⁇ -agarase, which acts on the ⁇ -3 linkage.
  • the agarose is degraded to a neoagarobiose by dilute acid or alpha-agarase.
  • neoagarooligosaccharides are obtained by hydrolyzing agar or agarose with beta-agarase, such as neoagarobiose, neoagarotetraose, neoagarohexaose ( neoagarohexaose, neoagarooctaose, and the like.
  • beta-agarase such as neoagarobiose, neoagarotetraose, neoagarohexaose ( neoagarohexaose, neoagarooctaose, and the like.
  • agarooligosaccharides can be obtained by hydrolyzing agar or agarose with a dilute acid or alpha-agarase, such as Aeoagarobiose, Agarotetraose, Agarohexaose, , Agarooctaose, and the like.
  • the neoagarooligosaccharide has 3,6-anhydro-L-galactose as a non-reducing end, while the agarooligosaccharide has 3-anhydro-L-galactose as a non- , And these structural differences cause different physiological activities.
  • Streptomyces coelicolor A3 (2) which is actinomycetes, is known to produce an agarase that degrades agar in the form of extracellular (secreted out of cells) (Stanier et al., 1942, J. Mol. Bacteriol .; Hodgson and Chater, 1981, J. Gen. Microbiol.),
  • the agarase is encoded by the DagA gene.
  • the DagA gene is a beta-agarase gene whose function is the only known in actinomycetes, and thus plays an important role in the study of agarase production through actinomycetes.
  • Streptomyces sericola is the most widely used strain in the molecular biology of actinomycetes.
  • the sequence of chromosomal DNA was analyzed by the Sanger center in England (Bantley et al., 2002, Nature).
  • Korea Patent No. 10-0794593 discloses a method of producing Thalassomonas sp. SL-5 (Thalassomonas sp. SL-5) having agar resolving ability, KCCM 10790P, Discloses a method for producing at least one neoagarooligosaccharide selected from the group consisting of neoagarobiose, neoagarotetraose and neoagarohexaose using agarase.
  • 10-1072503 also discloses that a strain of the genus Escherichia coli SL-12 KCCM 10945P (Glaciecola sp. SL-12 KCCM 10945P) having an agar-resolving ability and a ⁇ -agarase ( ⁇ - agarase is used to produce at least one neoagarooligosaccharide selected from the group consisting of neoagarobiose, neoagarotetraose and neoagarohexaose.
  • 10-1303839 discloses beta-agarase isolated from a strain of Pseudoalteromonas sp., And a method of using neoagarotetraose and neoagarohexaose
  • a method of producing at least one neoagarooligosaccharide selected from the group consisting of Korean Patent Registration No. 10-1295659 discloses beta-agarase isolated from Saccharophagus sp. Strain and neoagarotetraose and neoagarohexaose using the same. ) In the presence of a reducing agent.
  • Korean Patent Registration No. 10-1212106 discloses that beta-agarase isolated from a Saccharophagus sp.
  • Strain is selected from the group consisting of agar, neoagarotetraose, and neoagarohexose.
  • a method of producing neoagarobiose by reacting with a substrate or more is disclosed.
  • Korean Patent Registration No. 10-1206006 also discloses that the flameoovirga sp.
  • Korean Patent Registration No. 10-1302655 discloses a neoagarotetraose which is characterized by reacting agarase derived from Streptomyces coelicolor with agarose or agar.
  • Korean Patent Registration No. 10-1190078 discloses a nucleotide sequence of SEQ ID NO: 7 comprising a promoter of a trypsin gene (sprT) derived from Streptomyces griseus and a coding region of a signal peptide.
  • sprT trypsin gene
  • Korean Patent Laid-Open Publication No. 10-2014-0060045 also discloses an enzymatic production method of neoagarobiose or neoagarotetraose using a novel beta-agarase-producing gene.
  • Korean Patent Laid-Open Publication No. 10-2014-0060045 also discloses an enzymatic production method of neoagarobiose or neoagarotetraose using a novel beta-agarase-producing gene.
  • 10-2009-0044987 discloses a skin whitening composition comprising neoagarotetraose as an active ingredient.
  • Korean Patent Laid-Open Publication No. 10-2013-0085017 discloses a pharmaceutical composition for preventing or treating skin pigmentation diseases comprising 3,6-anhydro-L-galactose,
  • a cosmetic composition for skin whitening or moisturizing comprising 3,6-anhydro-L-galactose, 3,6-anhydro-L-galactose, -galactose), and the like are disclosed.
  • the prior art is mainly concerned with a novel strain comprising a beta-agarase as a gene, a method of producing a beta-agarase through a novel strain or a recombinant strain, or a method of producing beta-agarase from agar, And a variety of physiological functions of neoagarooligosaccharides prepared by using neoagarooligosaccharides, in particular beta-agarase, have hardly been studied.
  • the present invention has been made under the conventional technical background, and it is an object of the present invention to provide various physiological uses of neoagarooligosaccharide or neoagarooligosaccharide mixture.
  • the present inventor intends to develop a method for effectively utilizing agar, which is an abundant fishery resource. Since agar is a polysaccharide, various saccharide-derived compounds that exhibit physiological activity during the degradation process of agar can be produced by appropriately utilizing a glycosidase Attention was paid to possibility. Actinomycetes are microorganisms which produce useful physiologically active substances such as antibiotics. Since these physiologically active substances contain various sugar-related compounds, actinomycetes include strains having an enzyme capable of decomposing or transforming agar to convert them into useful sugar compounds I thought there would be. Accordingly, the present inventors have searched for useful enzymes from actinomycetes and applied them to the enzymatic reaction of agar to produce useful physiologically active substances.
  • the present inventors determined that the sugar compound produced through the enzymatic reaction of Actinomycetes, especially Streptomyces sericola-derived glucosease, exhibits such immune function enhancement and antitumor activity. In order to examine its efficacy, And in vivo. As a result, it was confirmed that the enzyme reaction product obtained through the reaction of DagA enzyme of actinomycetes Streptomyces sericola with agar or agarose has immune function enhancement and anticancer effect.
  • an example of the present invention is a composition comprising a neoagarooligosaccharide or a neoagarooligosaccharide mixture as an active ingredient, wherein the neoagarooligosaccharide is neoagarobiose, neoagarobiose, wherein the neoagarooligosaccharide is any one selected from the group consisting of neoagarotaxin, neoagarotaxin, neoagarotetraose, neoagarohexaose and neoagarooctaose, wherein the neoagarooligosaccharide mixture is selected from the group consisting of neoagarobiose,
  • the neoagaroligosaccharide mixture preferably contains neoagarobiose, neoagarotetraose, and neoagarohexaose
  • the neoagarooligosaccharide mixture preferably contains neoagarooligosaccharide mixture based on the total weight of the neoagarooligosaccharide mixture , It is more preferable that it contains 10% by weight or less of neoagarobiose, 50 to 70% by weight of neoagarotetraose and 20 to 50% by weight of neoagarohexaose .
  • the neoagarooligosaccharide mixture may also be an enzyme reaction product of a substrate selected from agar or agarose with DagA, a Streptomyces coelicolor- derived beta-agarase, or a purified product thereof .
  • another example of the present invention is an enzyme reaction product of a substrate selected from agar or agarose with DagA, a beta-agarase derived from Streptomyces coelicolor Or a purified product thereof as an active ingredient, wherein the enzyme reaction product or the purified product is selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose and neoagarose A neoagarooligosaccharide, and a neoagarooctaose.
  • the present invention also provides a composition for enhancing immunity or an anti-cancer composition, which comprises the neoagarooligosaccharide.
  • the content of neoagarooligosaccharide in the enzyme reaction product or the purified product is preferably 45 to 85% by weight based on the total weight of the enzyme reaction product or purified product.
  • the enzymatic reaction product or the purified product may also contain up to 10% neoagarobiose, 50 to 70% neoagarotetraose and 20 to 50% by weight, based on the total weight of the neoagarooligosaccharide, It is preferred that it contains neoagarohexaose in weight percent.
  • the enzyme reaction is preferably carried out at a temperature of 35 to 45 ° C and a pH of 6 to 8.
  • the enzyme reaction is preferably performed by adding DagA at a concentration of 2 to 250 unit / ml to an agar or agarose solution of 0.5 to 5% (w / v).
  • the DagA preferably comprises the 31st to 309th amino acids of SEQ ID NO: 2.
  • the neoagarooligosaccharide which is an active ingredient of the composition according to the present invention, has excellent immunosuppressive and anticancer effects. Therefore, the composition according to the present invention can be used as a medicine or a functional food for enhancing immunity or for preventing, improving or treating cancer. Further, the active ingredient of the composition according to the present invention can be obtained by an enzymatic reaction between a readily available substrate such as Agar or Agarose and DagA, a beta-agarase derived from Streptomyces coelicolor It can be produced at a relatively low cost and has no side effects, so that it can be easily ingested by anyone.
  • a readily available substrate such as Agar or Agarose and DagA
  • Figure 1 is a cleavage map of the pUWL201pw vector used for cloning the DagA gene in the present invention.
  • Fig. 2 is a cleavage map of a recombinant vector into which the DagA gene is introduced into the pUWL201pw vector.
  • Example 3 is a graph showing the results of HPLC-ELSD analysis of the partially purified DagA enzyme reaction product obtained in Example 3 of the present invention.
  • FIG. 4 shows the expression levels of cytokines (TNF- ⁇ , IL-1 ⁇ , IL-6, and IL-12p70) in the mouse macrophage cell line Raw264.7 cells treated with the partially purified DagA enzyme reaction product obtained in Example 3 To the control (LPS treatment).
  • cytokines TNF- ⁇ , IL-1 ⁇ , IL-6, and IL-12p70
  • FIG. 5 shows the expression levels of TNF-.alpha.
  • the mouse macrophage cell line Raw264.7 cells treated with the partially purified DagA enzyme reaction product obtained in Example 3 with the DagA enzymatic reaction product components (DP2, DP4, DP6 (LPS, AO treatment), and the standard sample treatment group (? -Glucan treatment).
  • Example 6 is a graph comparing the amount of cytokine (TNF- ⁇ , IL-6) expressed in THP-1 cells treated with the partially purified DagA enzyme product obtained in Example 3 with the control (LPS treatment) It is a graph.
  • FIG. 7 shows the expression levels of cytokines (TNF- ⁇ , IL-1 ⁇ , IL-6, IL-10 and IL-12p70) upon treatment of the partially purified DagA enzymatic reaction products obtained in Example 3 on dendritic cells derived from mice To the control (LPS treatment).
  • cytokines TNF- ⁇ , IL-1 ⁇ , IL-6, IL-10 and IL-12p70
  • FIG. 8 shows the expression levels of cytokines (TNF- ⁇ , IL-1 ⁇ , IL-6, IL-10 and IL-12p70) upon treatment of the partially purified DagA enzymatic reaction products obtained in Example 3 on dendritic cells derived from mice (DP2, DP4, and DP6 treated) of the DagA enzyme reaction products.
  • FIG 9 shows the expression levels of surface protein factors (CD80, CD86, MHC class I, and MHC class II), which are dendritic cell activation indicators, in the mouse Dendritic cells treated with the partially purified DagA enzyme reaction product obtained in Example 3, (LPS treatment).
  • CD80, CD86, MHC class I, and MHC class II dendritic cell activation indicators
  • FIG. 10 shows the results of analysis of the cell death using Annexin V-FITC and propidium iodide (PI) when the partially purified DagA enzyme reaction product obtained in Example 3 was treated with mouse derived dendritic cells, .
  • Fig. 11 is a graph showing the effect of the partially purified DagA enzyme reaction product obtained in Example 3 on the dendritic cells derived from WT mouse, TLR2 - / - mouse, TLR4 - / - mouse and TLR9 - IL-12p70, IL-1 ?, IL-10, and IL-12p70) compared to the control (LPS treatment).
  • Fig. 12 shows the results of the treatment of the partially purified DagA enzyme reaction product obtained in Example 3 with dendritic cells derived from WT mouse, TLR2 - / - mouse, TLR4 - / - mouse and TLR9 - / - (CD80, CD86) expressing cells were compared with the control group (LPS treatment).
  • FIG. 13 shows the result of confirming the signal transmission mechanism by western blotting after treating the partially purified DagA enzyme reaction product obtained in Example 3 to dendritic cells derived from WT mouse and TLR4 - / - mice for a predetermined time to be.
  • FIG. 15 shows the anticancer effect of the partially purified DagA enzyme reaction product obtained in Example 3 on the skin cancer cell animal model (B16F1 melanoma tumor model) with the control (PBS treatment) or the standard test group (? -Glucan treatment)
  • FIG. 15 shows the anticancer effect of the partially purified DagA enzyme reaction product obtained in Example 3 on the skin cancer cell animal model (B16F1 melanoma tumor model) with the control (PBS treatment) or the standard test group (? -Glucan treatment)
  • 16 is a graph showing the survival rate of Salmonella injected into Balb / c mouse and injected with the partially purified DagA enzyme reaction product obtained in Example 3 in the control group (PBS treatment, AO treatment) and the standard test group (beta-glucan treatment) .
  • FIG. 17 is a graph comparing the expression level of activated NK cells in peritoneal cells when injected with DP6 purified in Example 5 in a peritoneal cavity of C57bl / 6 mice, compared with a control (PBS solution injection).
  • Example 18 is a graph showing the amount of activated cells when the partially purified DagA enzyme reaction product obtained in Example 3 was treated with NK cells isolated from spleen of C57bl / 6 mouse and immune cells other than NK cells.
  • FIG. 19 shows the results of treatment of the partially purified DagA enzyme reaction product obtained in Example 3 on dendritic cells and the resultant supernatant was treated with immune cells other than NK cells and NK cells isolated from the spleen of C57bl / 6 mice, Lt; / RTI >
  • NAO represents the partially purified DagA enzyme reaction product obtained in Example 3 of the present invention
  • LPS represents lipopolysaccharide
  • CON represents no treatment
  • AO represents ≪ / RTI >
  • pharmaceutically acceptable and “ pharmaceutically acceptable” are intended to mean not significantly irritating the organism and not interfering with the biological activity and properties of the administered active substance.
  • prophylactic means any act that inhibits the symptoms of a particular disease or delays the progress of the disease upon administration of the composition of the present invention.
  • improvement means all actions that at least reduce the degree of symptom associated with the condition being treated.
  • treatment refers to any action that improves or alleviates the symptoms of a particular disease upon administration of the composition of the present invention.
  • administering as used herein is meant to provide any desired composition of the invention to an individual by any suitable method.
  • the term " individual " means any animal such as a human, a monkey, a dog, a goat, a pig, or a mouse having a disease in which symptoms of a specific disease can be improved by administering the composition of the present invention.
  • pharmaceutically effective amount means an amount sufficient to treat a disease at a reasonable benefit or risk rate applicable to medical treatment, including the type of disease, severity, activity of the drug, The time of administration, the route and rate of excretion of the drug, the duration of the treatment, factors including drugs used simultaneously and other factors well known in the medical arts.
  • the composition for immunomodulating or anticancer cancer includes neoagarooligosaccharide or neoagarooligosaccharide mixture as an active ingredient.
  • the neoagaroligosaccharide may be any one selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose, and neoagarooctaose.
  • the neoagarooligosaccharide may be any one selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose and neoagarooctaose. , And it is more preferable that it is selected from neoagarotetraose or neoagarohexaose, but it is not limited thereto.
  • the neoagarooligosaccharide mixture may also be selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose, and neoagarooctaose.
  • the present invention is not particularly limited as long as it includes species or more.
  • neoagarobio In view of the synergistic effect of the constituents, neoagarobio, neoagarotetraose, neoagarohexaose and neoagarooctaose neoagarooctaose, and more preferably at least three selected from the group consisting of neoagarobiose, neoagarotetraose, and neoagarohexaose.
  • the neoagarooligosaccharide mixture may also contain up to 10% neoagarobiose, 50 to 70% neoagarotetraose, and 20 to 50% neoagarotrophin, based on the total weight of the neoagarooligosaccharide mixture. It is preferred to include neoagarohexaose by weight and neoagaroboose by weight of 1 to 5% neoagarobiose, 50 to 70% neoagarotetraose and 25 to 45% It is more preferred to include neoagarohexaose in weight percent.
  • the neoagarooligosaccharide mixture may also be an enzyme reaction product of a substrate selected from agar or agarose with DagA, a Streptomyces coelicolor- derived beta-agarase, or a purified product thereof .
  • a method of obtaining a neoagarooligosaccharide mixture through an enzyme reaction between a substrate and DagA is described in detail later.
  • an immune enhancing composition or anticancer composition comprising an enzyme reaction between a substrate selected from agar or agarose and DagA, a beta-agarase derived from Streptomyces coelicolor Product or purified product thereof as an active ingredient.
  • the enzyme reaction product or the purified product is selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose, and neoagarooctaose And is not particularly limited as long as it contains one or more neoagarooligosaccharides.
  • neoagarobiose In view of the synergistic effect of the components, neoagarobiose, neoagarotetraose, neoagarohexaose, And neoagarooctaose, and more preferably at least three kinds of neoagarooligosaccharides.
  • the content of neoagarooligosaccharide in the enzyme reaction product or the purified product is preferably 45 to 85% by weight, more preferably 50 to 80% by weight, based on the total weight of the enzyme reaction product or purified product, But is not necessarily limited to.
  • the enzymatic reaction product or the purified product may also contain up to 10% neoagarobiose, 50 to 70% neoagarotetraose and 20 to 50% by weight, based on the total weight of the neoagarooligosaccharide, It is preferred to include neoagarohexaose by weight and neoagaroboose by weight of 1 to 5% neoagarobiose, 50 to 70% neoagarotetraose and 25 to 45% It is more preferred to include neoagarohexaose in weight percent.
  • the enzyme reaction is preferably carried out at a temperature of 35 to 45 ° C and a pH of 6 to 8.
  • the enzyme reaction may be carried out by adding DagA to a 0.5 to 5% (w / v) agar or agarose solution at a concentration of 2 to 250 unit / ml, preferably 10 to 150 unit / ml, more preferably 10 To 100 units / ml.
  • DagA derived from Streptomyces coelicolor means a protein having an amino acid sequence of between 31 and 309 of SEQ ID NO: 2, and is a protein having an amino acid sequence selected from the group consisting of Streptomyces coelicolor , Such as by incorporating a labeling amino acid or by altering the amino acid sequence for heterologous expression in order to make the purification more favorable, within the scope of not altering to completely different or losing agarase activity, Proteins.
  • DagA When DagA is originally translated from the beta-agarase gene of Streptomyces sericola, it has 309 amino acids of SEQ ID NO: 2 and is produced with a molecular weight of about 35 kDa, and the N-terminal 30 amino acid signal peptide is cleaved Lt; / RTI > (approximately 32 kDa). DagA of Streptomyces sericola The gene may be represented by the nucleotide sequence of SEQ ID NO: 1.
  • SEQ ID NO: 1 is the nucleotide sequence of the gene present in the genome of Streptomyces sericola A3 (2) and is named "SCO3471" on NCBI (US National Bioinformation Center) database.
  • DagA As confirmed by in vitro experiments, the transcription of the DagA gene is regulated by four or five other promoters that are recognized by at least three other holoenzymes of the RNA polymerase. DagA Transcriptional phase analysis of the gene revealed that the transcription of DagA was initiated at the 32nd, 77th, 125th and 220th bases of the coding sequence.
  • DagA used in the present invention can be produced through cultivation of Streptomyces lividans, which is a production strain of DagA, it is preferable to use an expression system of Streptomyces lividans, a heterologous strain, in order to increase production efficiency Do.
  • DagA can be produced by inserting the DagA gene into a stactobacterium vector to prepare a recombinant vector, transforming the streptomyces ribidus with a recombinant vector, and culturing the transformant.
  • the recombinant vector is preferably constructed such that the transcription of the DagA gene can be regulated by the actinomycete-derived promoter.
  • actinomycetes -derived promoters can be selected and used when preparing recombinant vectors.
  • sgtRp sgtR promoter
  • ermE promoter ermEp
  • tipAp tipA promoter
  • a variety of transformation methods are available depending on the host strain, an appropriate method can be selected and used.
  • a transformation method based on PEG polyethylene glycol
  • a DagA producing strain such as a transformant can be produced in a liquid medium to produce DagA, and a culture solution can be obtained, and a high purity DagA can be produced using a conventional protein purification method such as an ultrafiltration method. At this time, if agar or agarose is included in the liquid medium, DagA can be produced more efficiently.
  • an enzyme reaction product used as an active ingredient in the composition according to the present invention can be obtained. Further, the enzyme reaction product can be partially purified by ultrafiltration or passed through gel filtration chromatography to obtain a purified product of the enzyme reaction product.
  • the composition for enhancing immunity according to the present invention can be used to increase the immunity of a person having a weakened immunity or to improve the immunity balance of a person having a weakened immune balance.
  • the anticancer composition according to the present invention can be used to prevent, ameliorate, or treat cancer of an individual.
  • the composition according to the present invention may be formulated into pharmaceutical compositions, food additives, food compositions (especially functional foods) or feed additives depending on the intended use or aspects, and the content of the active ingredients in the composition may also be a specific form , And can be adjusted in various ranges depending on the intended use or aspect.
  • the content of the active ingredient in the pharmaceutical composition is not limited to a great extent, and may be, for example, 0.1 to 99% by weight, May be 0.5 to 50 wt%, more preferably 1 to 30 wt%.
  • the pharmaceutical composition of the present invention may further comprise, in addition to the active ingredient, an additive such as a pharmaceutically acceptable carrier, excipient or diluent.
  • Examples of carriers, excipients and diluents that can be included in the pharmaceutical composition of the present invention include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate , Cellulose, methylcellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
  • the pharmaceutical composition of the present invention may further contain one or more known active ingredients having immunosuppressive or anticancer effects in addition to neoagarooligosaccharide.
  • the pharmaceutical composition of the present invention can be formulated into a formulation for oral administration or parenteral administration by a conventional method, and can be formulated into a pharmaceutical composition such as a filler, an extender, a binder, a wetting agent, a disintegrant, Diluents or excipients.
  • Solid formulations for oral administration include tablets, pills, powders, granules, capsules and the like. These solid preparations may contain at least one excipient such as starch, calcium carbonate, Sucrose, Lactose, Gelatin, or the like.
  • Liquid preparations for oral administration include suspensions, solutions, emulsions and syrups.
  • excipients such as wetting agents, sweeteners, fragrances, preservatives and the like may be included in addition to water and liquid paraffin, which are simple diluents commonly used. have.
  • Formulations for parenteral administration may include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, and suppositories.
  • Propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used as the non-aqueous solvent and suspension agent.
  • the suppository base include witepsol, macrogol, tween 61, cacao butter, laurin, glycerogelatin and the like. Further, it can be suitably formulated according to each disease or ingredient, using appropriate methods in the art or by the method disclosed in Remington's Pharmaceutical Science (recent edition), Mack Publishing Company, Easton PA.
  • the pharmaceutical composition of the present invention may be administered orally or parenterally to a mammal including a human according to a desired method.
  • parenteral administration method examples include external dermal application, intraperitoneal injection, intramuscular injection, subcutaneous injection, intravenous injection, Intravenous injection or intra-thoracic injection.
  • the dosage of the pharmaceutical composition of the present invention is not limited as long as it is a pharmacologically effective amount and is not limited as long as it depends on the body weight, age, sex, health condition, diet, administration time, administration method, excretion rate, Varies.
  • the typical daily dose of the pharmaceutical composition of the present invention is not particularly limited, and is preferably 0.1 to 1000 mg / kg, more preferably 1 to 500 mg / kg, based on, for example, And may be administered once or several times a day.
  • the content of the active ingredient in the food composition is not limited to a great extent and is preferably 0.01 to 50% by weight, 0.1 to 25% by weight, more preferably 0.5 to 10% by weight.
  • the food composition of the present invention may be in the form of a pill, a powder, a granule, an infusion, a tablet, a capsule, or a liquid preparation. Examples of the food include meat, sausage, bread, chocolate, candy, snack, Other noodles, gums, dairy products including ice cream, various soups, drinks, tea, functional water, drinks, alcoholic beverages and vitamin complexes.
  • the food composition of the present invention may contain various flavors or natural carbohydrates as an additional ingredient in addition to the active ingredient.
  • the food composition of the present invention can be used as a food composition containing various nutrients, vitamins, electrolytes, flavors, colorants, pectic acids and salts thereof, alginic acid and its salts, organic acids, protective colloid thickeners, pH adjusters, stabilizers, preservatives, , A carbonating agent used in carbonated drinks, and the like.
  • the food composition of the present invention may contain flesh for the production of natural fruit juices, fruit juice drinks and vegetable drinks. These components may be used independently or in combination.
  • the above-mentioned natural carbohydrates are sugar alcohols such as monosaccharides such as glucose and fructose, disaccharides such as maltose and sucrose, polysaccharides such as dextrin and cyclodextrin, and xylitol, sorbitol and erythritol.
  • sugar alcohols such as monosaccharides such as glucose and fructose, disaccharides such as maltose and sucrose, polysaccharides such as dextrin and cyclodextrin, and xylitol, sorbitol and erythritol.
  • Natural flavors such as tau Martin and stevia extract, and synthetic flavors such as saccharin and aspartame may be used as the flavor.
  • PCR Polymerase chain reaction
  • PCR Polymerase chain reaction
  • TAKARA Ex-Taq
  • amplified DagA A fragment of the gene fragment (a signal peptide of DagA and a fragment of 947 bp in length encoded with the completed peptide, corresponding to a part of the sequence of the primer connected to both ends of the nucleotide sequence of SEQ ID NO: 1) was obtained.
  • the DagA gene was cloned into the pUWL201pw vector of FIG. 1 using the restriction enzyme site (NdeI / BamHI) of the amplified DagA gene fragment to prepare the recombinant vector of FIG.
  • the recombinant vector of Fig. 2 transcription of the DagA gene is regulated by the ermE promoter.
  • a recombinant strain of Streptomyces lividans TK24 was transformed with the recombinant vector of FIG. 2 to prepare a recombinant strain, and the recombinant strain was used for the production of DagA.
  • the recombinant strain was inoculated into an R2YE liquid medium containing agar of 0.3% (w / v) and pre-cultured for about 60 hours at 28 ° C and 120 rpm. After the pre-culture, the cultivation was carried out for about 60 hours.
  • the culture solution obtained through the present culture was centrifuged to remove cells, and the supernatant was separated and purified by filtration through an ultrafiltration membrane (5 kDa cut-off membrane).
  • the enzyme concentrate which did not pass through the filtration membrane was freeze-dried to solidify it, and the solidified DagA enzyme was stored and used in the subsequent experiments.
  • the agarase activity of the DagA enzyme obtained in Example 1 was measured by the method of reducing equivalence (DNS method). 100 ⁇ l of the DagA enzyme solution prepared by dissolving the DagA enzyme obtained in Example 1 in PBS (phosphate buffered saline) at a concentration of 10 mg / ml and 50 ml of 50 mM PBS solution in which the agarose was dissolved at a concentration of 0.2% (w / v) (manufactured by dissolving 6.5 g of dinitrosalicylic acid, 325 ml of 2M NaOH and 45 ml of glycerol in 1 l of distilled water) was added to the reaction mixture, followed by addition of 10 ml of 10 The mixture was boiled for minutes, then allowed to cool, and the absorbance was measured at 540 nm. 1 U (Unit) of the enzyme was defined as an activity having an absorbance at 540 nm of 0.001.
  • Example 4 Determination of neoagarooligosaccharide composition of DagA enzyme reaction product by HPLC-ELSD analysis
  • HPLC-ELSD analysis conditions are as follows.
  • FIG. 3 is a graph showing the results of HPLC-ELSD analysis of the partially purified DagA enzyme reaction product obtained in Example 3.
  • FIG. The four peak graphs shown in Figure 3 correspond to the partially purified enzyme reaction products obtained in each of the 4 batches.
  • the area (%) in the table in Fig. 3 represents the area of the peak corresponding to each neoagaroligosaccharide as a percentage of the total peak area and can be interpreted in the same sense as% by weight in the art. As shown in FIG.
  • the DagA enzymatic reaction products are mainly composed of neoagarobiose (DP2), neoagarotetraose (DP4), and neoagarohexaose neoagarohexaose, hereinafter referred to as " DP6 ").
  • the content of neoagarooligosaccharide in the DagA enzyme reaction product was found to be about 65 5% by weight based on the total weight of solids (including components not detected in the HPLC-ELSD assay) The above content can be selected in various ranges.
  • the content of neoagarooligosaccharide in the agA enzyme reaction product may be 65 ⁇ 20% by weight based on the total weight of the solids.
  • the DP2, DP4 and DP6 contents in the DagA enzyme reaction products were 2 to 4 wt%, 65 to 70 wt% and 25 to 30 wt%, respectively, based on the total weight of the neoagarooligosaccharide, Depending on the enzyme reaction conditions, the content can be selected from a wide range.
  • the content of DP2, DP4, and DP6 in the DagA enzyme reaction product may be 0 to 10 wt%, 50 to 70 wt%, and 20 to 50 wt%, respectively, based on the total weight of the neoagarooligosaccharide.
  • the partially purified enzyme reaction product obtained in Example 3 was purified by gel permeation chromatography (GPC; BioGel P-2 gel, Biorad, Cat. No. 150-4115) And purified and separated into neoagarohexaose (DP6), neoagarotetraose (DP4) and neoagarobiose (DP2).
  • the purified products were then lyophilized to solidify, and the solidified DagA enzyme reaction purified product was stored and used in subsequent experiments.
  • the purity of the purified products, DP2, DP4 and DP6, was found to be about 85% (w / w) by TLC and HPLC.
  • Example 6 Test for confirming the immunological activity and anticancer efficacy of DagA enzyme reaction product
  • Raw264.7 cells and mouse mononuclear cell line, THP-1 cells were purchased from the Korean Cell Line Bank (KCLB, Seoul, Korea) and used for experiments. The cells were cultured in RPMI 1640 (Hyclone Laboratories Inc., Logan, UT, USA) supplemented with 10% fetal bovine serum and 1% streptomycin / penicillin (Gibco BRL, Grand Island, Cells were cultured in an incubator at 37 ° C and 5% CO 2 .
  • Raw 264.7 cells were seeded at about 5 ⁇ 10 4 cells / well in a 24-well culture plate and cultured for about 24 hours. Then, the partially purified DagA enzyme reaction product obtained in Example 3 Hereinafter referred to as " NAO ") was added at various concentrations ranging from 0.005 to 12.5 mg / ml, and cultured in an incubator having a temperature condition of 37 ° C and 5% CO 2 for 24 hours.
  • &quot the partially purified DagA enzyme reaction product obtained in Example 3 Hereinafter referred to as " NAO "
  • LPS lipopolysaccharide
  • Negative control cells were cultured in the same conditions without any treatment with macrophages.
  • FIG. 4 shows the expression levels of cytokines (TNF- ⁇ , IL-1 ⁇ , IL-6, and IL-12p70) in the mouse macrophage cell line Raw264.7 cells treated with the partially purified DagA enzyme reaction product obtained in Example 3 To the control (LPS treatment).
  • cytokines TNF- ⁇ , IL-1 ⁇ , IL-6 and IL-12p70
  • DP2, DP4, DP6 and NAO which are constituents of the DagA enzyme reaction product, were treated with mouse macrophage cell line Raw264.7 cells at a concentration of 500 mu g / ml, respectively, and then the expression amount of TNF-alpha was measured.
  • LPS was treated at a concentration of 100 ng / ml or agarooligosaccharide (AO; Takara Bio Inc., JP) was treated at a concentration of 500 ⁇ g / ml, and ⁇ - Ml and then compared the expression levels of TNF- ⁇ .
  • FIG. 5 shows the expression levels of TNF-.alpha.
  • the expression level of TNF- ⁇ was the highest in the NAO treatment group.
  • the NAO-treated group showed a higher expression of TNF- ⁇ than the same amount of DP2, DP4, DP6 treated group, and this result is considered to be a synergistic effect by the combination of various neoagarooligosaccharides.
  • THP-1 cells another mononuclear cell line, were divided into 3 ⁇ 10 4 cells / well in a 96-well plate, treated with PMA (phorbol myristate acetate), and cultured for 24 hours to induce differentiation into macrophages.
  • the differentiated THP-1 cells were treated with NAO at concentrations of 0.1 mg / ml, 0.5 mg / ml and 1 mg / ml, respectively, and incubated for 24 hours in an incubator at 37 ° C and 5% CO 2 .
  • DagA enzyme reaction products on immune function was confirmed by using dendritic cells, which are responsible for the mammalian immune system and capture the antigens and present them on the surface and are known to have the best ability to support the activities of other immune cells.
  • Dendritic cells from mouse bone marrow mononuclear cells were cultured for about 6 days before use in the experiment.
  • culture medium was used that the addition of 10% FBS, 1% streptomycin / penicillin and 20ng / ml GM-CSF (granulocyte -macrophage stimulating factor) in RPMI 1640, with the temperature conditions and 5% CO 2 conditions of 37 °C Cells were cultured in an incubator.
  • Dendritic cells were plated at approximately 2 ⁇ 10 5 cells / well in a 12-well culture plate. To each well of the culture plate, NAO was added at a concentration of 0.01 mg / ml, 0.05 mg / ml, 0.1 mg / ml, 0.5 mg / / Ml and 2 mg / ml, and cultured in an incubator at 37 ° C and 5% CO 2 concentration for 24 hours. The expression level of surface protein (CD80, CD86, MHC class I, MHC class II) was then confirmed.
  • the dendritic cells were treated with NAO at a concentration of 0.025 mg / ml, 0.1 mg / ml, 0.25 mg / ml and 1 and 2.5 mg / ml respectively and then cultured in the presence of TNF- ⁇ , IL- IL-10, and IL-12p70.
  • the dendritic cells were treated with the NAO and the NAO constituents DP2, DP4, and DP6 at a concentration of 2 mg / ml, respectively, and then cultured with TNF- ⁇ , IL-1 ⁇ , IL-6, IL- Were compared.
  • LPS lipopolysaccharide
  • FIG. 7 shows the expression levels of cytokines (TNF- ⁇ , IL-1 ⁇ , IL-6, IL-10 and IL-12p70) upon treatment of the partially purified DagA enzymatic reaction products obtained in Example 3 on dendritic cells derived from mice To the control (LPS treatment).
  • 8 is a graph showing the effect of the partially purified DagA enzyme reaction product obtained in Example 3 on the dendritic cells derived from mice in the presence of cytokines (TNF- ?, IL-1 ?, IL-6, IL-10 and IL-12p70) (DP2, DP4, and DP6 treated) of the DagA enzyme reaction products.
  • FIG. 9 shows the expression levels of surface protein factors (CD80, CD86, MHC class I and MHC class II), which are indicators of dendritic cell activation, upon treatment of the partially purified DagA enzyme reaction products obtained in Example 3 on dendritic cells derived from mice To the control (LPS treatment).
  • 10 shows the results of analysis of the cell death using Annexin V-FITC and propidium iodide (PI) when the partially purified DagA enzyme reaction product obtained in Example 3 was treated with dendritic cells derived from mice, Processing).
  • NAO was treated at a concentration of 2.5 mg / ml in each of the dendritic cells obtained from WT (Wild Type) mice, TLR2 - / - mice, TLR4 - / - mice and TLR9 - / - mice, 2 concentration for 24 hours, and the expression level of surface protein (CD80, CD86) was confirmed.
  • Each of the dendritic cells was treated with NAO at a concentration of 0.5 mg / ml and 2.5 mg / ml, cultured in an incubator at 37 ° C and 5% CO 2 for 24 hours, -1 ⁇ , IL-10, and IL-12p70.
  • LPS lipopolysaccharide
  • Fig. 11 is a graph showing the effect of the partially purified DagA enzyme reaction product obtained in Example 3 on the dendritic cells derived from WT mouse, TLR2 - / - mouse, TLR4 - / - mouse and TLR9 - IL-12p70, IL-1 ?, IL-10, and IL-12p70) compared to the control (LPS treatment).
  • 12 shows the results of the partially purified DagA enzyme reaction products obtained in Example 3 on dendritic cells derived from WT mice, TLR2 - / - mice, TLR4 - / - mice and TLR9 - / - mice, Surface protein factor (CD80, CD86) expression level in comparison with the control group (LPS treatment).
  • LPS is known as a substance via TLR4 (Toll-like receptor-4). For example, binding of LPS to TRL4 promotes intracellular signaling and produces large amounts of cytokines.
  • the dendritic cells obtained from TLR4 - / - mice were treated with NAO at a concentration of 1 mg / ml for 0, 10, 20, 30, and 60 minutes, and western blotting was performed on proteins obtained from each sample The phosphorylation of ERK, JNK, p38, AKT and p65 was analyzed.
  • FIG. 13 shows the result of confirming the signal transmission mechanism by western blotting after treating the partially purified DagA enzyme reaction product obtained in Example 3 to dendritic cells derived from WT mouse and TLR4 - / - mice for a predetermined time to be.
  • treatment of NAO with WT mouse-derived dendritic cells reduced phosphorylation of ERK, p38, JNK and AKT, which are lower signaling mechanisms of TLR4, and decreased amount of p65 in the cell matrix, In the case of dendritic cells, there was no difference in the degree of phosphorylation by NAO treatment.
  • a 6-week-old Balb / c female mouse fat pad was injected with 2 ⁇ 10 5 cells of mouse breast cancer cell line 4T-1. From the 2nd day of tumor formation after the injection of the breast cancer cell line, physiological saline was administered to the control group and NAO was administered to the experimental group daily at a dose of 500 mg / kg or 1000 mg / kg. The size of the tumor was measured daily from 5 days after the injection of the breast cancer cell line. 14 shows the effect of inhibiting the growth of cancer cells when administered with the partially purified DagA enzyme reaction product obtained in Example 3 after xenotransplantation of 4T-1 breast cancer cells into Balb / c mice, compared with the control group (administered with physiological saline) It is a graph. As shown in FIG. 14, NAO inhibited the growth of breast cancer cells in a concentration-dependent manner.
  • mice 6-week-old C57bl / 6 mice were divided into 10 mice per group, and PBS (phosphate buffered saline) solution was administered to the control group and NAO or ⁇ -glucan (quizgenbiotech)
  • the size of the tumor was observed over time.
  • mice were injected intraperitoneally with NAO at a dose of 500 mg / kg or ⁇ -glucan at a dose of 25 mg / kg every other day for 9 times, and the drug was administered intraperitoneally
  • B16F1 melanoma tumor cells were subcutaneously transplanted into mice at a dose of 4 ⁇ 10 4 cells. Tumor size was measured from 10 days after transplantation of cancer cells.
  • FIG. 15 shows the anticancer effect of the partially purified DagA enzyme reaction product obtained in Example 3 on the skin cancer cell animal model (B16F1 melanoma tumor model) with the control (PBS treatment) or the standard test group (? -Glucan treatment)
  • FIG. 15 tumor size in the NAO-treated group was greatly reduced compared to the control (PBS treatment) and standard sample treatment group ( ⁇ -glucan treatment).
  • mice Balb / c mice were divided into 5 groups of 8 mice per group, and salmonella injection and drug injection were performed in mice, and survival rates were calculated. Specifically, PBS (phosphate buffered saline) solution was intraperitoneally injected once a day for 3 days, salmonella was injected, and PBS solution was intraperitoneally injected once every morning for 7 days. In group 2, ⁇ -glucan (quizgen biotech), a standard sample, was intraperitoneally injected once daily for 3 days at a dose of 50 mg / kg, then salmonella was injected and ⁇ -glucan was added at a dose of 50 mg / Daily intraperitoneal injection was performed once a day.
  • PBS phosphate buffered saline
  • agarooligosaccharide (AO; Takara Bio Inc., JP) was intraperitoneally injected once daily for 3 days at a dose of 50 mg / kg, then salmonella was injected and again agarooligosaccharide was added at 50 mg / Kg daily for 7 days.
  • NAO was intraperitoneally injected once daily for 3 days at a dose of 50 mg / kg, then salmonella was injected, and NAO was intraperitoneally injected once a day for 7 days at a dose of 50 mg / kg.
  • NAO was intraperitoneally injected once daily for 5 days at a dose of 50 mg / kg, then salmonella was injected, and NAO was intraperitoneally injected once every morning for 7 days at a dose of 50 mg / kg.
  • 16 is a graph showing the survival rate of Salmonella injected into Balb / c mouse and injected with the partially purified DagA enzyme reaction product obtained in Example 3 in the control group (PBS treatment, AO treatment) and the standard test group (beta-glucan treatment) .
  • the number of salmonella was decreased in the NAO-treated group, especially in the group injected with NAO for 5 days before the salmonella injection.
  • NAO has the effect of extending the life span of laboratory animals infected with pathogens.
  • mice 6 to 8-week-old C57bl / 6 mice were divided into 3 groups, and PBS (phosphate buffered saline) solution was injected into mouse abdominal cavity of control group.
  • DP6 obtained by purifying in Example 5 was injected into mouse abdominal cavity of experimental group at 500 mg / kg By volume. Twenty-four hours after the drug injection, 10 ml of PBS (phosphate buffered saline) solution was injected into the mouse abdominal cavity of the control group and the experimental group by the syringe, and the abdominal cells were obtained. Thereafter, 2 ⁇ 10 6 cells of the peritoneal cavity were fluorescently stained with NK1.1 and CD69, and the number of NK1.1 + / CD69 + cells was analyzed by flow cytometry.
  • FIG. 17 is a graph comparing the expression level of activated NK cells in peritoneal cells when injected with DP6 purified in Example 5 in a peritoneal cavity of C57bl / 6 mice, compared with a control (PBS solution injection).
  • the ratio of CD69 + cells which is an activation index of NK cells in the peritoneal cells, was about 9.5%, which is about four times higher than that of the control group.
  • the number of activated NK cells capable of attacking cancer cells was increased.
  • NK cells (Monocyte, macrophage, dendritic cell, helper T cell, and cytotoxic T cell) other than NK cells and NK cells were isolated from the spleen of C57bl / 6 mice using MACS beads. Then, 2 ⁇ 10 5 NK cells Each of the non-NK cells was treated with NAO at a concentration of 0.1 mg / ml, 0.5 mg / ml and 2.5 mg / ml, and cultured in an incubator at 37 ° C and 5% CO 2 for 24 hours. The cultured cells were collected and fluorescently stained with NK1.1 and CD69, and the number of CD69 + cells was analyzed by flow cytometry.
  • FIG. 18 is a graph showing the amount of activated cells when the partially purified DagA enzyme reaction product obtained in Example 3 was treated with NK cells isolated from spleen of C57bl / 6 mouse and immune cells other than NK cells. As shown in FIG. 18, the number of activated NK cells and activated non-NK cells increased depending on the concentration of NAO.
  • the NAO here each 0.1 mg / ml, 0.5 mg / ml, 2.5 mg / ml treatment at a concentration of, and the temperature conditions of 37 °C and 5% CO 2 And cultured for 24 hours in an incubator under the condition of concentration.
  • (Monocyte, macrophage, dendritic cell, helper T cell, and cytotoxic T cell) other than NK cells and NK cells were isolated from the spleen of C57bl / 6 mice using MACS beads.
  • FIG. 19 shows the results of treatment of the partially purified DagA enzyme reaction product obtained in Example 3 on dendritic cells and the resultant supernatant was treated with immune cells other than NK cells and NK cells isolated from the spleen of C57bl / 6 mice, Lt; / RTI > As shown in FIG. 19, the number of activated NK cells and the number of activated non-NK cells were increased depending on the concentration of NAO treated with dendritic cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)

Abstract

One embodiment of the present invention provides an immune enhancement or anticancer composition containing a neoagarooligosaccharide or a neoagarooligosaccharide mixture as an active ingredient. A neoagarooligosaccharide, which is an active ingredient of the composition according to the present invention, has very remarkable immune enhancement and anticancer effects. Accordingly, the composition according to the present invention can be used as a drug or a nutraceutical for enhancing immunity or preventing, alleviating or treating cancer. In addition, since the active ingredient of the composition according to the present invention can be obtained through the enzymatic reaction of a substrate such as agar or agarose, which is readily available, and DagA, which is Streptomyces coelicolor-derived β-agarase, the active ingredient can be produced at relatively low cost and can be readily taken by anyone due to the absence of side effects.

Description

네오아가로올리고당을 포함하는 면역 증강용 또는 항암용 조성물An immunostimulating or anticancer composition comprising neoagarooligosaccharide
본 발명은 네오아가로올리고당 또는 네오아가로올리고당 혼합물의 신규 용도에 관한 것으로서, 더 상세하게는 네오아가로올리고당 또는 네오아가로올리고당 혼합물의 면역 기능 증강 용도 또는 항암 용도에 관한 것이다.The present invention relates to a novel use of a neoagarooligosaccharide or neoagarooligosaccharide mixture, and more particularly to a neoagarooligosaccharide or neoagarooligosaccharide mixture for enhancing immune function or anticancer use.
한천(Agar)은 오래전부터 식품첨가물, 의약품, 화장품, 가축사료 및 공업원료 등으로 널리 이용되고 있는 대표적인 해조류 유래 다당류로서, 국내의 경우 해마다 그 생산량이 약 2,000 ~ 5,000톤에 이르고 있는 비교적 풍부한 수산자원 중 하나이다. 그러나, 실제 이용 면에서는 전체 생산량의 일부만이 단순가공 처리되어 값싼 원료로 사용될 뿐이고, 그 나머지는 대부분 방치되고 있어 부존 자원량에 비해 부가가치가 매우 낮은 실정이다. 따라서 풍부한 국내 한천의 새로운 용도개발과 부가가치 향상에 관한 연구가 크게 요구되고 있는 실정이다.Agar is a representative algae-derived polysaccharide widely used for food additives, medicines, cosmetics, livestock feed and industrial raw materials for a long time. In Korea, agar is a relatively abundant fishery resource with annual production of about 2,000 ~ 5,000 tons Lt; / RTI > However, in actual use, only a part of the total production amount is processed as a simple raw material and used as cheap raw materials, and the rest of the total amount is neglected. Therefore, there is a great demand for research on the development of new applications of agar and the improvement of added value.
한천은 소량의 단백질, 회분 및 지방을 제외하면 대부분 다당류로 이루어지는데, 상기 한천을 구성하는 다당류에는 중성 다당류인 아가로스(agarose)와 산성 다당류인 아가로펙틴(agaropectin)이 있다. 아가로스는 D-갈락토스(D-galactose)와 3,6-안하이드로-L-갈락토스(3,6-anhydro-L-galactose)가 β-1,4 형태로 결합한 아가로비오스(agarobiose)를 단위체로 가지며, 아가로비오스가 α-1,3 결합으로 반복되어 연결된 직쇄 구조로 되어있어서 겔(gel)화력이 강하다. 반면, 아가로펙틴은 아가로스와 마찬가지로 아가로비오스를 단위체로 가지나, 황산기 등과 같은 산성기를 함유하고 있어서, 겔화력이 약하다.Agar is composed mostly of polysaccharides except for small amounts of protein, ash and fat. The polysaccharides constituting the agar include agarose, a neutral polysaccharide, and agaropectin, an acidic polysaccharide. Agarose is an agarobiose in which D-galactose and 3,6-anhydro-L-galactose are combined in a β-1,4 form, , And agarobiose has a straight-chain structure in which α-1,3 bonds are repeatedly connected to each other, and gelation power is strong. On the other hand, agaropectin, like agarose, has agarobiose as a unit, but contains an acidic group such as a sulfate group and the like and has a weak gelling power.
이중, 아가로스는 β-1,4 결합에 작용하는 베타-아가레이즈(β-agarase)에 의해 네오아가로테트라오스(neoagarotetraose)를 거쳐 네오아가로비오스(neoagarobiose)로 분해되고 계속해서 α-1,3 결합에 작용하는 알파-아가레이즈(α-agarase)에 의해서 갈락토스(D-galactose)와 3,6-안하이드로-L-갈락토스(3,6-anhydro-L-galactose)로 최종 분해된다. 또한, 아가로스는 묽은 산이나 알파-아가레이즈(α-agarase)에 의해 아가로비오스(neoagarobiose)로 분해된다. 일반적으로, 네오아가로올리고당은 한천 또는 아가로스를 베타-아가레이즈(β-agarase)로 가수분해하여 얻어지는 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose), 네오아가로헥사오스(neoagarohexaose), 네오아가로옥타오스(neoagarooctaose) 등과 같이 단당이 2-10개 정도 결합한 올리고당을 의미한다. 또한, 아가로올리고당은 한천 또는 아가로스를 묽은 산이나 알파-아가레이즈(α-agarase)로 가수분해하여 얻어지는 아가로비오스(Aeoagarobiose), 아가로테트라오스(Agarotetraose), 아가로헥사오스(Agarohexaose), 아가로옥타오스(Agarooctaose) 등과 같이 단당이 2-10개 정도 결합한 올리고당을 의미한다. 네오아가로올리고당은 3,6-안하이드로-L-갈락토스(3,6-anhydro-L-galactose)를 비환원 말단으로 가지는 반면, 아가로올리고당은 D-갈락토스(D-galactose)를 비환원 말단으로 가지며, 이러한 구조적 차이 때문에 생리학적 활성 측면에서 서로 다른 성질을 보이기도 한다.Among them, agarose is degraded into neoagarobiose via neoagarotetraose by β-agarase acting on β-1,4 bond, and then α-1 Galactose and 3,6-anhydro-L-galactose by α-agarase, which acts on the β-3 linkage. In addition, the agarose is degraded to a neoagarobiose by dilute acid or alpha-agarase. In general, neoagarooligosaccharides are obtained by hydrolyzing agar or agarose with beta-agarase, such as neoagarobiose, neoagarotetraose, neoagarohexaose ( neoagarohexaose, neoagarooctaose, and the like. In addition, agarooligosaccharides can be obtained by hydrolyzing agar or agarose with a dilute acid or alpha-agarase, such as Aeoagarobiose, Agarotetraose, Agarohexaose, , Agarooctaose, and the like. The neoagarooligosaccharide has 3,6-anhydro-L-galactose as a non-reducing end, while the agarooligosaccharide has 3-anhydro-L-galactose as a non- , And these structural differences cause different physiological activities.
한편, 방선균인 스트렙토마이세스 시리칼라(Streptomyces coelicolor) A3(2)는 한천을 분해하는 아가레이즈를 세포 외(세포 밖으로 분비되는) 단백질 형태로 생산한다고 알려져 있으며(Stanier et al., 1942, J. Bacteriol.; Hodgson and Chater, 1981, J. Gen. Microbiol.), 이 아가레이즈는 DagA 유전자로 코딩되어 있다. DagA 유전자는 방선균에서 그 기능이 유일하게 알려진 베타-아가레이즈(β-agarase) 유전자이기 때문에 방선균을 통한 아가레이즈 생산 연구에 있어서 중요한 위치를 갖는다. 특히, 스트렙토마이세스 시리칼라는 방선균의 분자생물학적 연구에 가장 널리 사용되는 균주로서 2002년 영국의 Sanger centre에 의해 염색체 DNA의 서열이 분석되었고 현재 공개되어 있다(Bantley et al.,2002, Nature). Streptomyces coelicolor A3 (2), which is actinomycetes, is known to produce an agarase that degrades agar in the form of extracellular (secreted out of cells) (Stanier et al., 1942, J. Mol. Bacteriol .; Hodgson and Chater, 1981, J. Gen. Microbiol.), The agarase is encoded by the DagA gene. The DagA gene is a beta-agarase gene whose function is the only known in actinomycetes, and thus plays an important role in the study of agarase production through actinomycetes. In particular, Streptomyces sericola is the most widely used strain in the molecular biology of actinomycetes. In 2002, the sequence of chromosomal DNA was analyzed by the Sanger center in England (Bantley et al., 2002, Nature).
네오아가로올리고당의 제조 또는 용도와 관련하여, 대한민국 등록특허 제10-0794593호에는 한천 분해능을 갖는 탈라소모나스 속 균주 SL-5(Thalassomonas sp. SL-5) KCCM 10790P와 상기 균주가 생산하는 베타-아가레이즈(β-agarase)를 이용하여 네오아가로바이오스, 네오아가로테트라오스 및 네오아가로헥사오스로 이루어진 군에서 선택된 1종 이상의 네오아가로올리고당을 제조하는 방법이 개시되어 있다. 또한, 대한민국 등록특허공보 제10-1072503호에는 한천 분해능을 갖는 글라시에콜라 속 균주 SL-12 KCCM 10945P(Glaciecola sp. SL-12 KCCM 10945P)와 상기 균주가 생산하는 베타-아가레이즈(β-agarase)를 이용하여 네오아가로바이오스, 네오아가로테트라오스 및 네오아가로헥사오스로 이루어진 군에서 선택된 1종 이상의 네오아가로올리고당을 제조하는 방법이 개시되어 있다. 또한, 대한민국 등록특허 제10-1303839호에는 슈도알테로모나스 속(Pseudoalteromonas sp) 균주로부터 분리된 베타-아가레이즈 및 이를 이용하여 네오아가로테트라오스(neoagarotetraose) 및 네오아가로헥사오스(neoagarohexaose)로 이루어진 군 중에서 선택된 1종 이상의 네오아가로올리고당을 생산하는 방법이 개시되어 있다. 또한, 대한민국 등록특허공보 제10-1295659호에는 사카로파구스 속(Saccharophagus sp.) 균주로부터 분리된 베타-아가레이즈 및 이를 이용하여 네오아가로테트라오스(neoagarotetraose) 및 네오아가로헥사오스(neoagarohexaose)로 이루어진 군 중에서 선택된 1종 이상의 네오아가로올리고당을 생산하는 방법이 개시되어 있다. 또한, 대한민국 등록특허공보 제10-1212106호에는 사카로파구스 속(Saccharophagus sp.) 균주로부터 분리된 베타-아가레이즈를 한천, 네오아가로테트라오스 및 네오아가로헥사오스로 이루어진 군 중에서 선택된 1종 이상의 기질과 반응시켜 네오아가로비오스를 생산하는 방법이 개시되어 있다. 또한, 대한민국 등록특허공보 제10-1206006호에는 한천분해활성을 갖는 플라메오비르가 속 mbrc-1 균주 KCCM 11151P (Flammeovirga sp. mbrc-1 KCCM 11151P) 및 상기 균주가 생산하는 베타-아가레이즈(β-agarase)를 한천과 반응시켜 네오아가로비오스, 네오아가로테트라오스 및 네오아가로헥사오스로 이루어진 군에서 선택된 1종 이상의 네오아가로올리고당을 제조하는 방법이 개시되어 있다. 또한, 대한민국 등록특허공보 제10-1302655호에는 스트렙토마이세스 시리칼라(Streptomyces coelicolor) 유래 아가레이즈(agarase)와 아가로스(agarose) 또는 아가(agar)를 반응시키는 것을 특징으로 하는 네오아가로테트라오스(neoagarotetraose) 및 네오아가로헥사오스(neoagarohexaose)의 제조방법이 개시되어 있다. 또한, 대한민국 등록특허공보 제10-1190078호에는 스트렙토마이세스 그리세우스(Streptomyces griseus) 유래 트립신 유전자(sprT)의 프로모터와 시그널 펩타이드 코드부(coding region)를 포함하여 이루어지는 서열번호 7의 염기서열로 표시되는 DNA 단편; 및 스트렙토마이세스 시리칼라(Streptomyces coelicolor) 유래 베타-아가레이즈 유전자(dagA)에서 시그널 펩타이드 코드부가 제거된 서열번호 2의 염기서열로 표시되는 DNA 단편;을 포함하고, 원핵생물을 형질전환시킬 수 있는 베타-아가레이즈 재조합 발현 벡터와 이를 이용하여 베타-아가레이즈를 생산하는 방법이 개시되어 있다. 또한, 대한민국 공개특허공보 제10-2014-0060045호에는 신규한 베타-아가레이즈 생산 유전자를 이용한 네오아가로바이오스 또는 네오아가로테트라오스의 효소적 생산방법이 개시되어 있다. 또한, 대한민국 공개특허공보 제10-2009-0044987호에는 네오아가로테트라오스(neoagarotetraose)를 유효성분으로 포함하는 피부 미백 조성물이 개시되어 있다. 또한, 대한민국 공개특허공보 제10-2013-0085017호에는 3,6-안하이드로-L-갈락토오스(3,6-anhydro-L-galactose)를 포함하는 피부 색소 침착 질환의 예방 또는 치료용 약학 조성물, 3,6-안하이드로-L-갈락토오스(3,6-anhydro-L-galactose)를 포함하는 피부 미백 또는 보습용 화장료 조성물, 3,6-안하이드로-L-갈락토오스(3,6-anhydro-L-galactose)를 포함하는 염증성 질환의 예방 또는 치료용 약학 조성물 등이 개시되어 있다. 이상에서 살펴본 바와 같이, 종래 기술은 주로 베타-아가레이즈를 유전자로 포함하는 신규 균주, 신규 균주나 재조합 균주를 통해 베타-아가레이즈를 생산하는 방법 또는 베타-아가레이즈를 이용하여 한천 등으로부터 네오아가로올리고당을 제조하는 방법에 집중되어 있고, 네오아가로올리고당, 특히 특정 베타-아가레이즈를 이용하여 제조한 네오아가로올리고당의 다양한 생리학적 기능에 대해서는 연구가 거의 이루어지지 않고 있다.Regarding the preparation or use of neo-agarooligosaccharides, Korea Patent No. 10-0794593 discloses a method of producing Thalassomonas sp. SL-5 (Thalassomonas sp. SL-5) having agar resolving ability, KCCM 10790P, Discloses a method for producing at least one neoagarooligosaccharide selected from the group consisting of neoagarobiose, neoagarotetraose and neoagarohexaose using agarase. Korean Patent Publication No. 10-1072503 also discloses that a strain of the genus Escherichia coli SL-12 KCCM 10945P (Glaciecola sp. SL-12 KCCM 10945P) having an agar-resolving ability and a β-agarase (β- agarase is used to produce at least one neoagarooligosaccharide selected from the group consisting of neoagarobiose, neoagarotetraose and neoagarohexaose. Korean Patent No. 10-1303839 discloses beta-agarase isolated from a strain of Pseudoalteromonas sp., And a method of using neoagarotetraose and neoagarohexaose A method of producing at least one neoagarooligosaccharide selected from the group consisting of Korean Patent Registration No. 10-1295659 discloses beta-agarase isolated from Saccharophagus sp. Strain and neoagarotetraose and neoagarohexaose using the same. ) In the presence of a reducing agent. Korean Patent Registration No. 10-1212106 discloses that beta-agarase isolated from a Saccharophagus sp. Strain is selected from the group consisting of agar, neoagarotetraose, and neoagarohexose. A method of producing neoagarobiose by reacting with a substrate or more is disclosed. Korean Patent Registration No. 10-1206006 also discloses that the flameoovirga sp. Mbrc-1 KCCM 11151P strain having the agarase-degrading activity, mbrc-1 strain mbrc-1, and the beta-agarase (β -agarase is reacted with agar to produce at least one neoagarooligosaccharide selected from the group consisting of neoagarobiose, neoagarotetraose and neoagarohexaose. Korean Patent Registration No. 10-1302655 discloses a neoagarotetraose which is characterized by reacting agarase derived from Streptomyces coelicolor with agarose or agar. (neoagarotetraose) and neoagarohexaose are disclosed. Korean Patent Registration No. 10-1190078 discloses a nucleotide sequence of SEQ ID NO: 7 comprising a promoter of a trypsin gene (sprT) derived from Streptomyces griseus and a coding region of a signal peptide. A DNA fragment displayed; And a DNA fragment represented by the nucleotide sequence of SEQ ID NO: 2 from which a signal peptide code has been removed from a Streptomyces coelicolor-derived beta-agarase gene (dagA), wherein the DNA fragment is capable of transforming a prokaryote A beta-agarase recombinant expression vector and a method for producing beta-agarase using the recombinant expression vector. Korean Patent Laid-Open Publication No. 10-2014-0060045 also discloses an enzymatic production method of neoagarobiose or neoagarotetraose using a novel beta-agarase-producing gene. Korean Patent Laid-Open Publication No. 10-2009-0044987 discloses a skin whitening composition comprising neoagarotetraose as an active ingredient. Korean Patent Laid-Open Publication No. 10-2013-0085017 discloses a pharmaceutical composition for preventing or treating skin pigmentation diseases comprising 3,6-anhydro-L-galactose, A cosmetic composition for skin whitening or moisturizing comprising 3,6-anhydro-L-galactose, 3,6-anhydro-L-galactose, -galactose), and the like are disclosed. As described above, the prior art is mainly concerned with a novel strain comprising a beta-agarase as a gene, a method of producing a beta-agarase through a novel strain or a recombinant strain, or a method of producing beta-agarase from agar, And a variety of physiological functions of neoagarooligosaccharides prepared by using neoagarooligosaccharides, in particular beta-agarase, have hardly been studied.
본 발명은 종래의 기술적 배경하에서 도출된 것으로서, 본 발명의 목적은 네오아가로올리고당 또는 네오아가로올리고당 혼합물의 다양한 생리학적 용도를 제공하는 데에 있다.SUMMARY OF THE INVENTION The present invention has been made under the conventional technical background, and it is an object of the present invention to provide various physiological uses of neoagarooligosaccharide or neoagarooligosaccharide mixture.
본 발명자는 풍부한 수산자원인 한천을 유용하게 활용할 수 있는 방법을 개발하고자 하였고, 한천이 다당류이므로 당 분해효소를 적절히 활용하면 한천의 분해과정에서 생리활성 효과를 나타내는 다양한 당 유래 화합물이 생성될 수 있다는 가능성에 주목하게 되었다. 그리고 방선균은 항생제 등 유용한 생리활성 물질을 생산하는 미생물이며, 이 생리활성 물질에는 다양한 당 관련 화합물이 포함되기 때문에, 방선균 중에는 한천을 분해하거나 변형시켜 유용한 당 화합물로 전환시킬 수 있는 효소를 보유한 균주가 있을 것이라 생각하였다. 이에, 본 발명자는 방선균으로부터 유용한 효소를 탐색하고 이를 한천의 효소반응에 적용하여 유용한 생리활성 물질의 생산을 시도하였다.The present inventor intends to develop a method for effectively utilizing agar, which is an abundant fishery resource. Since agar is a polysaccharide, various saccharide-derived compounds that exhibit physiological activity during the degradation process of agar can be produced by appropriately utilizing a glycosidase Attention was paid to possibility. Actinomycetes are microorganisms which produce useful physiologically active substances such as antibiotics. Since these physiologically active substances contain various sugar-related compounds, actinomycetes include strains having an enzyme capable of decomposing or transforming agar to convert them into useful sugar compounds I thought there would be. Accordingly, the present inventors have searched for useful enzymes from actinomycetes and applied them to the enzymatic reaction of agar to produce useful physiologically active substances.
한편, 최근 들어 약용 식물 또는 식용 식물을 이용한 생리활성 연구가 활발하게 진행되고 있는데 특히 천연물에서 유래한 다당체는 다양한 생리활성을 나타내어, 기능성 식품 및 대체 의약 소재 분야에서 크게 주목받고 있다. 예를 들어, 버섯 유래 다당류에는 면역 기능의 부활 내지 증강에 의한 항종양 활성이 있는 것으로 알려져 있으며, 관련 연구도 다양하게 진행되고 있다. 면역 기능의 증강에 의한 항종양 활성은 종래의 세포독성을 나타내는 항암제와는 달리, 숙주의 저하된 면역 기능을 상당 수준 회복 또는 증강시키고 항암효과를 발휘하기 때문에 크게 각광받고 있다.Recently, physiological activity studies using medicinal plants or edible plants have been actively conducted. Especially, polysaccharides derived from natural materials have shown a great variety of physiological activities, and have been attracting much attention in the field of functional foods and alternative medicine materials. For example, it has been known that mushroom-derived polysaccharides have antitumor activity by resuscitation or enhancement of immune function, and related research is also proceeding variously. The antitumor activity by the enhancement of the immune function is greatly attracted to unlike the anticancer agent which shows the conventional cytotoxicity because it restores or enhances the decreased immune function of the host to a considerable level and exerts the anticancer effect.
본 발명자는 방선균, 특히 스트렙토마이세스 시리칼라 유래 당 분해 효소의 효소반응을 통해 생산되는 당 화합물이 이러한 면역기능 증진 및 항종양 활성을 나타낼 가능성이 있다고 판단하였으며, 이에 대한 효능을 알아보기 위해 In vitro 및 In vivo 상에서 다양한 연구를 진행하였다. 그 결과, 방선균인 스트렙토마이세스 시리칼라의 DagA 효소와 한천 또는 아가로스의 반응을 통해 수득한 효소반응 산물이 면역기능 증강 및 항암 효과가 있음을 확인하고 본 발명을 완성하게 되었다.The present inventors determined that the sugar compound produced through the enzymatic reaction of Actinomycetes, especially Streptomyces sericola-derived glucosease, exhibits such immune function enhancement and antitumor activity. In order to examine its efficacy, And in vivo. As a result, it was confirmed that the enzyme reaction product obtained through the reaction of DagA enzyme of actinomycetes Streptomyces sericola with agar or agarose has immune function enhancement and anticancer effect.
본 발명의 목적을 해결하기 위하여, 본 발명의 일 예는 네오아가로올리고당 또는 네오아가로올리고당 혼합물을 유효성분으로 포함하는 조성물로서, 상기 네오아가로올리고당은 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose), 네오아가로헥사오스(neoagarohexaose) 및 네오아가로옥타오스(neoagarooctaose)로 이루어진 군에서 선택되는 어느 하나이고, 상기 네오아가로올리고당 혼합물은 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose), 네오아가로헥사오스(neoagarohexaose) 및 네오아가로옥타오스(neoagarooctaose)로 이루어진 군에서 선택되는 2종 이상을 포함하는 것을 특징으로 하는 면역 증강용 조성물 또는 항암용 조성물을 제공한다. 이때, 상기 네오아가로올리고당 혼합물은 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose) 및 네오아가로헥사오스(neoagarohexaose)를 포함하는 것이 바람직하고, 네오아가로올리고당 혼합물 총 중량을 기준으로 10 중량% 이하의 네오아가로비오스(neoagarobiose), 50 내지 70 중량%의 네오아가로테트라오스(neoagarotetraose) 및 20 내지 50 중량%의 네오아가로헥사오스(neoagarohexaose)를 포함하는 것이 더 바람직하다. 또한, 상기 네오아가로올리고당 혼합물은 한천(Agar) 또는 아가로스(Agarose)에서 선택되는 기질과 스트렙토마이세스 시리칼라(Streptomyces coelicolor) 유래 베타-아가레이즈인 DagA와의 효소반응 산물 또는 이의 정제물일 수 있다.In order to solve the object of the present invention, an example of the present invention is a composition comprising a neoagarooligosaccharide or a neoagarooligosaccharide mixture as an active ingredient, wherein the neoagarooligosaccharide is neoagarobiose, neoagarobiose, Wherein the neoagarooligosaccharide is any one selected from the group consisting of neoagarotaxin, neoagarotaxin, neoagarotetraose, neoagarohexaose and neoagarooctaose, wherein the neoagarooligosaccharide mixture is selected from the group consisting of neoagarobiose, The composition for immunomodulating or anticancer cancer according to claim 1, wherein the composition comprises at least two selected from the group consisting of neoagarotetraose, neoagarohexaose, and neoagarooctaose. to provide. The neoagaroligosaccharide mixture preferably contains neoagarobiose, neoagarotetraose, and neoagarohexaose, and the neoagarooligosaccharide mixture preferably contains neoagarooligosaccharide mixture based on the total weight of the neoagarooligosaccharide mixture , It is more preferable that it contains 10% by weight or less of neoagarobiose, 50 to 70% by weight of neoagarotetraose and 20 to 50% by weight of neoagarohexaose . The neoagarooligosaccharide mixture may also be an enzyme reaction product of a substrate selected from agar or agarose with DagA, a Streptomyces coelicolor- derived beta-agarase, or a purified product thereof .
본 발명의 목적을 해결하기 위하여, 본 발명의 다른 예는 한천(Agar) 또는 아가로스(Agarose)에서 선택되는 기질과 스트렙토마이세스 시리칼라(Streptomyces coelicolor) 유래 베타-아가레이즈인 DagA와의 효소반응 산물 또는 이의 정제물을 유효성분으로 포함하는 조성물로서, 상기 효소반응 산물 또는 정제물은 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose), 네오아가로헥사오스(neoagarohexaose) 및 네오아가로옥타오스(neoagarooctaose)로 이루어진 군에서 선택되는 1종 이상의 네오아가로올리고당을 포함하는 것을 특징으로 하는 면역 증강용 조성물 또는 항암용 조성물을 제공한다. 이때, 상기 효소반응 산물 또는 정제물 내 네오아가로올리고당의 함량은 효소반응 산물 또는 정제물 총 중량을 기준으로 45~85 중량%인 것이 바람직하다. 또한, 상기 효소반응 산물 또는 정제물은 네오아가로올리고당 총 중량을 기준으로 10 중량% 이하의 네오아가로비오스(neoagarobiose), 50 내지 70 중량%의 네오아가로테트라오스(neoagarotetraose) 및 20 내지 50 중량%의 네오아가로헥사오스(neoagarohexaose)를 포함하는 것이 바람직하다. 또한, 상기 효소반응은 35~45℃의 온도 및 6~8의 pH에서 이루어지는 것이 바람직하다. 또한, 상기 효소반응은 0.5 내지 5%(w/v)의 한천 또는 아가로스 용액에 DagA를 2~250 unit/㎖의 농도로 첨가하여 이루어지는 것 바람직하다. 또한, 상기 DagA는 서열번호 2의 31번째부터 309번째까지의 아미노산 서열을 포함하는 것이 바람직하다.In order to solve the object of the present invention, another example of the present invention is an enzyme reaction product of a substrate selected from agar or agarose with DagA, a beta-agarase derived from Streptomyces coelicolor Or a purified product thereof as an active ingredient, wherein the enzyme reaction product or the purified product is selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose and neoagarose A neoagarooligosaccharide, and a neoagarooctaose. The present invention also provides a composition for enhancing immunity or an anti-cancer composition, which comprises the neoagarooligosaccharide. At this time, the content of neoagarooligosaccharide in the enzyme reaction product or the purified product is preferably 45 to 85% by weight based on the total weight of the enzyme reaction product or purified product. The enzymatic reaction product or the purified product may also contain up to 10% neoagarobiose, 50 to 70% neoagarotetraose and 20 to 50% by weight, based on the total weight of the neoagarooligosaccharide, It is preferred that it contains neoagarohexaose in weight percent. In addition, the enzyme reaction is preferably carried out at a temperature of 35 to 45 ° C and a pH of 6 to 8. In addition, the enzyme reaction is preferably performed by adding DagA at a concentration of 2 to 250 unit / ml to an agar or agarose solution of 0.5 to 5% (w / v). In addition, the DagA preferably comprises the 31st to 309th amino acids of SEQ ID NO: 2.
본 발명에 따른 조성물의 유효성분인 네오아가로올리고당은 면역기능 증강 효과 및 항암 효과가 매우 우수하다. 따라서 본 발명에 따른 조성물은 면역력을 높이거나 암을 예방, 개선 또는 치료하기 위한 약품 또는 기능성 식품으로 사용될 수 있다. 나아가, 본 발명에 다른 조성물의 유효성분은 쉽게 구할 수 있는 한천(Agar) 또는 아가로스(Agarose)와 같은 기질과 스트렙토마이세스 시리칼라(Streptomyces coelicolor) 유래 베타-아가레이즈인 DagA와의 효소반응을 통해 수득할 수 있기 때문에 비교적 저렴한 비용으로 생산할 수 있고, 부작용이 없어서 누구나 쉽게 섭취가 가능하다.The neoagarooligosaccharide, which is an active ingredient of the composition according to the present invention, has excellent immunosuppressive and anticancer effects. Therefore, the composition according to the present invention can be used as a medicine or a functional food for enhancing immunity or for preventing, improving or treating cancer. Further, the active ingredient of the composition according to the present invention can be obtained by an enzymatic reaction between a readily available substrate such as Agar or Agarose and DagA, a beta-agarase derived from Streptomyces coelicolor It can be produced at a relatively low cost and has no side effects, so that it can be easily ingested by anyone.
도 1은 본 발명에서 DagA 유전자를 클로닝하기 위해 사용된 pUWL201pw 벡터의 개열 지도이다.Figure 1 is a cleavage map of the pUWL201pw vector used for cloning the DagA gene in the present invention.
도 2는 pUWL201pw 벡터에 DagA 유전자가 도입된 재조합 벡터의 개열 지도이다.Fig. 2 is a cleavage map of a recombinant vector into which the DagA gene is introduced into the pUWL201pw vector.
도 3은 본 발명의 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 HPLC-ELSD로 분석한 결과를 나타낸 그래프이다.3 is a graph showing the results of HPLC-ELSD analysis of the partially purified DagA enzyme reaction product obtained in Example 3 of the present invention.
도 4는 마우스 대식세포주인 Raw264.7 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 사이토카인(TNF-α, IL-1β, IL-6, IL-12p70)의 발현량을 대조군(LPS 처리)과 비교한 그래프이다.FIG. 4 shows the expression levels of cytokines (TNF-α, IL-1β, IL-6, and IL-12p70) in the mouse macrophage cell line Raw264.7 cells treated with the partially purified DagA enzyme reaction product obtained in Example 3 To the control (LPS treatment).
도 5는 마우스 대식세포주인 Raw264.7 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 TNF-α의 발현량을 DagA 효소반응 산물의 구성성분 처리군(DP2, DP4, DP6 처리), 대조군(LPS, AO 처리), 표준시료 처리군(β-glucan 처리)과 비교한 그래프이다.FIG. 5 shows the expression levels of TNF-.alpha. In the mouse macrophage cell line Raw264.7 cells treated with the partially purified DagA enzyme reaction product obtained in Example 3 with the DagA enzymatic reaction product components (DP2, DP4, DP6 (LPS, AO treatment), and the standard sample treatment group (? -Glucan treatment).
도 6은 사람 단핵세포주인 THP-1 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 사이토카인(TNF-α, IL-6)의 발현량을 대조군(LPS 처리)과 비교한 그래프이다.6 is a graph comparing the amount of cytokine (TNF-α, IL-6) expressed in THP-1 cells treated with the partially purified DagA enzyme product obtained in Example 3 with the control (LPS treatment) It is a graph.
도 7은 마우스 유래 수지상 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 사이토카인(TNF-α, IL-1β, IL-6, IL-10, IL-12p70)의 발현량을 대조군(LPS 처리)과 비교한 그래프이다.FIG. 7 shows the expression levels of cytokines (TNF-α, IL-1β, IL-6, IL-10 and IL-12p70) upon treatment of the partially purified DagA enzymatic reaction products obtained in Example 3 on dendritic cells derived from mice To the control (LPS treatment).
도 8은 마우스 유래 수지상 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 사이토카인(TNF-α, IL-1β, IL-6, IL-10, IL-12p70)의 발현량을 DagA 효소반응 산물의 구성성분 처리군(DP2, DP4, DP6 처리)과 비교한 그래프이다.FIG. 8 shows the expression levels of cytokines (TNF-α, IL-1β, IL-6, IL-10 and IL-12p70) upon treatment of the partially purified DagA enzymatic reaction products obtained in Example 3 on dendritic cells derived from mice (DP2, DP4, and DP6 treated) of the DagA enzyme reaction products.
도 9는 마우스 유래 수지상 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 수지상 세포 활성화 지표인 표면단백질인자(CD80, CD86, MHC class I, MHC class II)의 발현량을 대조군(LPS 처리)과 비교한 그래프이다.9 shows the expression levels of surface protein factors (CD80, CD86, MHC class I, and MHC class II), which are dendritic cell activation indicators, in the mouse Dendritic cells treated with the partially purified DagA enzyme reaction product obtained in Example 3, (LPS treatment).
도 10은 마우스 유래 수지상 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 세포사멸 여부를 Annexin V-FITC와 propidium iodide(PI)를 이용하여 분석하고, 이를 대조군(LPS 처리)과 비교한 그래프이다.FIG. 10 shows the results of analysis of the cell death using Annexin V-FITC and propidium iodide (PI) when the partially purified DagA enzyme reaction product obtained in Example 3 was treated with mouse derived dendritic cells, .
도 11은 WT 마우스, TLR2-/- 마우스, TLR4-/- 마우스, TLR9-/- 마우스 유래 수지상 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 사이토카인(TNF-α, IL-12p70, IL-1β, IL-10, IL-12p70)의 발현량을 대조군(LPS 처리)과 비교한 그래프이다.Fig. 11 is a graph showing the effect of the partially purified DagA enzyme reaction product obtained in Example 3 on the dendritic cells derived from WT mouse, TLR2 - / - mouse, TLR4 - / - mouse and TLR9 - IL-12p70, IL-1 ?, IL-10, and IL-12p70) compared to the control (LPS treatment).
도 12는 WT 마우스, TLR2-/- 마우스, TLR4-/- 마우스, TLR9-/- 마우스 유래 수지상 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 수지상 세포 활성화 지표인 표면단백질인자(CD80, CD86)의 발현량을 대조군(LPS 처리)과 비교한 그래프이다.Fig. 12 shows the results of the treatment of the partially purified DagA enzyme reaction product obtained in Example 3 with dendritic cells derived from WT mouse, TLR2 - / - mouse, TLR4 - / - mouse and TLR9 - / - (CD80, CD86) expressing cells were compared with the control group (LPS treatment).
도 13은 WT 마우스, TLR4-/- 마우스 유래 수지상 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 소정의 시간별로 처리한 후 웨스턴 블롯(western blot) 방법으로 신호전달기구를 확인한 결과이다.FIG. 13 shows the result of confirming the signal transmission mechanism by western blotting after treating the partially purified DagA enzyme reaction product obtained in Example 3 to dendritic cells derived from WT mouse and TLR4 - / - mice for a predetermined time to be.
도 14는 Balb/c 마우스에 유방암 세포인 4T-1을 이종이식한 후 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 투여하였을 때 암 세포 성장 억제 효과를 대조군(생리식염수 투여)과 비교한 그래프이다.14 shows the effect of inhibiting the growth of cancer cells when administered with the partially purified DagA enzyme reaction product obtained in Example 3 after xenotransplantation of 4T-1 breast cancer cells into Balb / c mice, compared with the control group (administered with physiological saline) It is a graph.
도 15는 피부암 세포 동물모델(B16F1 melanoma tumor model)에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리하였을 때의 항암 효과를 대조군(PBS 처리) 또는 표준시료군(β-glucan 처리)과 비교한 그래프이다.15 shows the anticancer effect of the partially purified DagA enzyme reaction product obtained in Example 3 on the skin cancer cell animal model (B16F1 melanoma tumor model) with the control (PBS treatment) or the standard test group (? -Glucan treatment) FIG.
도 16은 Balb/c mouse에 salmonella를 주입하고 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 주사한 군에서의 생존율을 대조군(PBS 처리, AO 처리) 및 표준시료군(β-glucan 처리)과 비교한 그래프이다.16 is a graph showing the survival rate of Salmonella injected into Balb / c mouse and injected with the partially purified DagA enzyme reaction product obtained in Example 3 in the control group (PBS treatment, AO treatment) and the standard test group (beta-glucan treatment) .
도 17은 C57bl/6 마우스의 복강에 실시예 5에서 정제하여 수득한 DP6을 주사하였을 때 복강 세포 중 활성화된 NK 세포의 발현량을 대조군(PBS 용액 주사)과 비교한 그래프이다.FIG. 17 is a graph comparing the expression level of activated NK cells in peritoneal cells when injected with DP6 purified in Example 5 in a peritoneal cavity of C57bl / 6 mice, compared with a control (PBS solution injection).
도 18은 C57bl/6 마우스의 비장에서 분리된 NK 세포와 NK 세포 이외의 면역세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리하였을 때 활성화된 세포의 양을 나타낸 그래프이다.18 is a graph showing the amount of activated cells when the partially purified DagA enzyme reaction product obtained in Example 3 was treated with NK cells isolated from spleen of C57bl / 6 mouse and immune cells other than NK cells.
도 19는 수지상 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리한 뒤 얻은 상등액을 C57bl/6 마우스의 비장에서 분리된 NK 세포와 NK 세포 이외의 면역세포에 처리하였을 때 활성화된 세포의 양을 나타낸 그래프이다.FIG. 19 shows the results of treatment of the partially purified DagA enzyme reaction product obtained in Example 3 on dendritic cells and the resultant supernatant was treated with immune cells other than NK cells and NK cells isolated from the spleen of C57bl / 6 mice, Lt; / RTI >
도 4 내지 도 19에서 "NAO"는 본 발명의 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 나타내고, "LPS"는 lipopolysaccharide를 나타내고, "CON"은 무처리를 나타내고, "AO"는 아가로올리고당을 나타낸다.4 to 19, "NAO" represents the partially purified DagA enzyme reaction product obtained in Example 3 of the present invention, "LPS" represents lipopolysaccharide, "CON" represents no treatment, and "AO" represents ≪ / RTI >
이하, 본 발명에서 사용한 용어를 설명한다.Hereinafter, terms used in the present invention will be described.
본 발명에서 사용되는 용어 "약학적으로 허용 가능한" 및 "식품학적으로 허용 가능한"이란 생물체를 상당히 자극하지 않고 투여 활성 물질의 생물학적 활성 및 특성을 저해하지 않는 것을 의미한다.As used herein, the terms " pharmaceutically acceptable " and " pharmaceutically acceptable " are intended to mean not significantly irritating the organism and not interfering with the biological activity and properties of the administered active substance.
본 발명에서 사용되는 용어 "예방"은 본 발명의 조성물의 투여로 특정 질환의 증상을 억제시키거나 진행을 지연시키는 모든 행위를 의미한다.As used herein, the term " prophylactic " means any act that inhibits the symptoms of a particular disease or delays the progress of the disease upon administration of the composition of the present invention.
본 발명에서 사용되는 용어 "개선"은 치료되는 상태와 관련된 파라미터, 예를 들면 증상의 정도를 적어도 감소시키는 모든 행위를 의미한다.The term " improvement " as used in the present invention means all actions that at least reduce the degree of symptom associated with the condition being treated.
본 발명에서 사용되는 용어 "치료"는 본 발명의 조성물의 투여로 특정 질환의 증상을 호전 또는 이롭게 변경시키는 모든 행위를 의미한다.The term " treatment " as used herein refers to any action that improves or alleviates the symptoms of a particular disease upon administration of the composition of the present invention.
본 발명에서 사용되는 용어 "투여"는 임의의 적절한 방법으로 개체에 소정의 본 발명의 조성물을 제공하는 것을 의미한다. 이때, 개체는 본 발명의 조성물을 투여하여 특정 질환의 증상이 호전될 수 있는 질환을 가진 인간, 원숭이, 개, 염소, 돼지 또는 쥐 등 모든 동물을 의미한다.The term " administering " as used herein is meant to provide any desired composition of the invention to an individual by any suitable method. The term " individual " means any animal such as a human, a monkey, a dog, a goat, a pig, or a mouse having a disease in which symptoms of a specific disease can be improved by administering the composition of the present invention.
본 발명에서 사용되는 용어 "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜 또는 위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 이는 개체의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출비율, 치료기간, 동시에 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다.The term " pharmaceutically effective amount " as used herein means an amount sufficient to treat a disease at a reasonable benefit or risk rate applicable to medical treatment, including the type of disease, severity, activity of the drug, The time of administration, the route and rate of excretion of the drug, the duration of the treatment, factors including drugs used simultaneously and other factors well known in the medical arts.
이하, 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 일 예에 따른 면역 증강용 조성물 또는 항암용 조성물은 네오아가로올리고당 또는 네오아가로올리고당 혼합물을 유효성분으로 포함한다. 이때, 상기 네오아가로올리고당은 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose), 네오아가로헥사오스(neoagarohexaose) 및 네오아가로옥타오스(neoagarooctaose)로 이루어진 군에서 선택되는 어느 하나인 것이 바람직하고, 네오아가로테트라오스(neoagarotetraose) 또는 네오아가로헥사오스(neoagarohexaose)에서 선택되는 것이 더 바람직하나, 여기에 한정되는 것은 아니다. 또한, 상기 네오아가로올리고당 혼합물은 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose), 네오아가로헥사오스(neoagarohexaose) 및 네오아가로옥타오스(neoagarooctaose)로 이루어진 군에서 선택되는 2종 이상을 포함하는 것이라면 크게 제한되지 않으며, 구성성분들의 시너지 효과를 고려할 때 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose) 네오아가로헥사오스(neoagarohexaose) 및 네오아가로옥타오스(neoagarooctaose)로 이루어진 군에서 선택되는 3종 이상인 것이 바람직하고, 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose) 및 네오아가로헥사오스(neoagarohexaose)를 포함하는 것이 더 바람직하다. 또한, 상기 네오아가로올리고당 혼합물은 네오아가로올리고당 혼합물 총 중량을 기준으로 10 중량% 이하의 네오아가로비오스(neoagarobiose), 50 내지 70 중량%의 네오아가로테트라오스(neoagarotetraose) 및 20 내지 50 중량%의 네오아가로헥사오스(neoagarohexaose)를 포함하는 것이 바람직하고, 1 내지 5 중량%의 네오아가로비오스(neoagarobiose), 50 내지 70 중량%의 네오아가로테트라오스(neoagarotetraose) 및 25 내지 45 중량%의 네오아가로헥사오스(neoagarohexaose)를 포함하는 것이 더 바람직하다. 또한, 상기 네오아가로올리고당 혼합물은 한천(Agar) 또는 아가로스(Agarose)에서 선택되는 기질과 스트렙토마이세스 시리칼라(Streptomyces coelicolor) 유래 베타-아가레이즈인 DagA와의 효소반응 산물 또는 이의 정제물일 수 있다. 기질과 DagA와의 효소반응을 통해 네오아가로올리고당 혼합물을 수득하는 방법은 뒤에서 상세하게 설명한다.The composition for immunomodulating or anticancer cancer according to an embodiment of the present invention includes neoagarooligosaccharide or neoagarooligosaccharide mixture as an active ingredient. The neoagaroligosaccharide may be any one selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose, and neoagarooctaose. The neoagarooligosaccharide may be any one selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose and neoagarooctaose. , And it is more preferable that it is selected from neoagarotetraose or neoagarohexaose, but it is not limited thereto. The neoagarooligosaccharide mixture may also be selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose, and neoagarooctaose. The present invention is not particularly limited as long as it includes species or more. In view of the synergistic effect of the constituents, neoagarobio, neoagarotetraose, neoagarohexaose and neoagarooctaose neoagarooctaose, and more preferably at least three selected from the group consisting of neoagarobiose, neoagarotetraose, and neoagarohexaose. The neoagarooligosaccharide mixture may also contain up to 10% neoagarobiose, 50 to 70% neoagarotetraose, and 20 to 50% neoagarotrophin, based on the total weight of the neoagarooligosaccharide mixture. It is preferred to include neoagarohexaose by weight and neoagaroboose by weight of 1 to 5% neoagarobiose, 50 to 70% neoagarotetraose and 25 to 45% It is more preferred to include neoagarohexaose in weight percent. The neoagarooligosaccharide mixture may also be an enzyme reaction product of a substrate selected from agar or agarose with DagA, a Streptomyces coelicolor- derived beta-agarase, or a purified product thereof . A method of obtaining a neoagarooligosaccharide mixture through an enzyme reaction between a substrate and DagA is described in detail later.
본 발명의 다른 예에 따른 면역 증강용 조성물 또는 항암용 조성물은 한천(Agar) 또는 아가로스(Agarose)에서 선택되는 기질과 스트렙토마이세스 시리칼라(Streptomyces coelicolor) 유래 베타-아가레이즈인 DagA와의 효소반응 산물 또는 이의 정제물을 유효성분으로 포함한다. 이때, 상기 효소반응 산물 또는 정제물은 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose), 네오아가로헥사오스(neoagarohexaose) 및 네오아가로옥타오스(neoagarooctaose)로 이루어진 군에서 선택되는 1종 이상의 네오아가로올리고당을 포함하는 것이라면 크게 제한되지 않으며, 구성성분들의 시너지 효과를 고려할 때 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose), 네오아가로헥사오스(neoagarohexaose) 및 네오아가로옥타오스(neoagarooctaose)로 이루어진 군에서 선택되는 2종 이상의 네오아가로올리고당을 포함하는 것이 바람직하고, 3종 이상을 포함하는 것이 더 바람직하다. 또한, 상기 효소반응 산물 또는 정제물 내 네오아가로올리고당의 함량은 효소반응 산물 또는 정제물 총 중량을 기준으로 45~85 중량%인 것이 바람직하고, 50~80 중량%인 것이 더 바람직하나 여기에 반드시 한정되는 것은 아니다. 또한, 상기 효소반응 산물 또는 정제물은 네오아가로올리고당 총 중량을 기준으로 10 중량% 이하의 네오아가로비오스(neoagarobiose), 50 내지 70 중량%의 네오아가로테트라오스(neoagarotetraose) 및 20 내지 50 중량%의 네오아가로헥사오스(neoagarohexaose)를 포함하는 것이 바람직하고, 1 내지 5 중량%의 네오아가로비오스(neoagarobiose), 50 내지 70 중량%의 네오아가로테트라오스(neoagarotetraose) 및 25 내지 45 중량%의 네오아가로헥사오스(neoagarohexaose)를 포함하는 것이 더 바람직하다. 또한, 상기 효소반응은 35~45℃의 온도 및 6~8의 pH에서 이루어지는 것이 바람직하다. 또한, 상기 효소반응은 0.5 내지 5%(w/v)의 한천 또는 아가로스 용액에 DagA를 2~250 unit/㎖의 농도, 바람직하게는 10~150 unit/㎖의 농도, 더 바람직하게는 10~100 unit/㎖의 농도로 첨가하여 이루어지는 것 바람직하다. 이때, 효소의 활성을 나타내는 1 Unit은 0.2%(w/v)의 농도로 아가로스를 녹인 50mM PBS 용액(pH 7) 3.9㎖를 40℃에서 5분간 반응한 후(반응액 4㎖), 반응액과 동량의 DNS 시약(dinitrosalicylic acid 6.5g, 2M NaOH 325㎖ 및 glycerol 45㎖를 증류수 1ℓ에 용해시켜 제조함)을 넣고 10분간 끓인 다음 식히고, 흡광도를 540㎚에서 측정하였을 때 540㎚에서의 흡광도 0.001을 생성하는 효소의 양으로 정의된다.Another embodiment of the present invention provides an immune enhancing composition or anticancer composition comprising an enzyme reaction between a substrate selected from agar or agarose and DagA, a beta-agarase derived from Streptomyces coelicolor Product or purified product thereof as an active ingredient. Wherein the enzyme reaction product or the purified product is selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose, and neoagarooctaose And is not particularly limited as long as it contains one or more neoagarooligosaccharides. In view of the synergistic effect of the components, neoagarobiose, neoagarotetraose, neoagarohexaose, And neoagarooctaose, and more preferably at least three kinds of neoagarooligosaccharides. The term " neoagarooctaose " The content of neoagarooligosaccharide in the enzyme reaction product or the purified product is preferably 45 to 85% by weight, more preferably 50 to 80% by weight, based on the total weight of the enzyme reaction product or purified product, But is not necessarily limited to. The enzymatic reaction product or the purified product may also contain up to 10% neoagarobiose, 50 to 70% neoagarotetraose and 20 to 50% by weight, based on the total weight of the neoagarooligosaccharide, It is preferred to include neoagarohexaose by weight and neoagaroboose by weight of 1 to 5% neoagarobiose, 50 to 70% neoagarotetraose and 25 to 45% It is more preferred to include neoagarohexaose in weight percent. In addition, the enzyme reaction is preferably carried out at a temperature of 35 to 45 ° C and a pH of 6 to 8. In addition, the enzyme reaction may be carried out by adding DagA to a 0.5 to 5% (w / v) agar or agarose solution at a concentration of 2 to 250 unit / ml, preferably 10 to 150 unit / ml, more preferably 10 To 100 units / ml. At this time, 3.9 ml of a 50 mM PBS solution (pH 7) in which agarose was dissolved at a concentration of 0.2% (w / v) was reacted at 40 ° C for 5 minutes (reaction solution: 4 ml) (Prepared by dissolving 6.5 g of dinitrosalicylic acid, 325 ml of 2M NaOH and 45 ml of glycerol in 1 liter of distilled water), boiled for 10 minutes, cooled and measured for absorbance at 540 nm. Absorbance at 540 nm 0.001. ≪ / RTI >
이하, 본 발명에 따른 조성물의 유효성분을 기질과 DagA와의 효소반응을 통해 수득하는 방법을 설명한다. 본 발명에서 스트렙토마이세스 시리칼라(Streptomyces coelicolor) 유래 DagA는 서열번호 2의 31 ~ 309번 사이의 아미노산 서열을 갖는 단백질을 의미하며, 스트렙토마이세스 시리칼라로부터 생산되거나 이종 균주로부터 생산된 단백질 또는 기능이 전혀 다른 것으로 변경되거나 아가레이즈 활성을 잃지 않는 범위 내에서 통상적인 유전자 재조합 방법 즉, 정제를 유리하게하기 위해 표지 아미노산을 포함시키거나 이종 발현을 위해 아미노산 서열을 변경하는 등의 방법에 따라 재조합된 단백질을 모두 포함한다. DagA는 본래 스트렙토마이세스 시리칼라의 베타-아가레이즈 유전자로부터 번역될 때 서열번호 2의 309개 아미노산을 갖고 분자량이 약 35 kDa인 상태로 생산되며, N-말단 30개의 아미노산 시그널 펩티드가 잘려져서 완성된 세포외형 단백질(약 32kDa)의 상태로 분비된다. 스트렙토마이세스 시리칼라의 DagA 유전자는 서열번호 1의 염기서열로 표시될 수 있다. 서열번호 1은 스트렙토마이세스 시리칼라 A3(2)의 게놈에 존재하는 유전자의 염기서열로 NCBI(미국 국립생물정보센터) 데이터베이스 상에 "SCO3471"로 명명되어 있다. In vitro 실험을 통해 확인된 바에 따르면, DagA 유전자의 전사는 RNA 중합효소의 적어도 다른 3가지의 완전효소(holoenzyme)에 의해 인지되는 4가지 또는 5가지의 다른 프로모터(promoter)에 의해 조절된다. DagA 유전자의 전사단계 분석에 의하면, DagA의 전사는 암호화 서열의 상부 32, 77, 125 및 220번째 염기에서 개시되는 것으로 나타났다.Hereinafter, a method for obtaining an active ingredient of the composition according to the present invention through an enzyme reaction between a substrate and DagA will be described. In the present invention, DagA derived from Streptomyces coelicolor means a protein having an amino acid sequence of between 31 and 309 of SEQ ID NO: 2, and is a protein having an amino acid sequence selected from the group consisting of Streptomyces coelicolor , Such as by incorporating a labeling amino acid or by altering the amino acid sequence for heterologous expression in order to make the purification more favorable, within the scope of not altering to completely different or losing agarase activity, Proteins. When DagA is originally translated from the beta-agarase gene of Streptomyces sericola, it has 309 amino acids of SEQ ID NO: 2 and is produced with a molecular weight of about 35 kDa, and the N-terminal 30 amino acid signal peptide is cleaved Lt; / RTI > (approximately 32 kDa). DagA of Streptomyces sericola The gene may be represented by the nucleotide sequence of SEQ ID NO: 1. SEQ ID NO: 1 is the nucleotide sequence of the gene present in the genome of Streptomyces sericola A3 (2) and is named "SCO3471" on NCBI (US National Bioinformation Center) database. As confirmed by in vitro experiments, the transcription of the DagA gene is regulated by four or five other promoters that are recognized by at least three other holoenzymes of the RNA polymerase. DagA Transcriptional phase analysis of the gene revealed that the transcription of DagA was initiated at the 32nd, 77th, 125th and 220th bases of the coding sequence.
본래 DagA의 생산 균주인 스트렙토마이세스 시리칼라의 배양을 통해 본 발명에서 사용되는 DagA를 생산할 수 있으나, 생산 효율을 높이기 위해 이종 균주인 스트렙토마이세스 리비던스(Streptomyces lividans)의 발현 시스템을 이용하는 것이 바람직하다. 상기 DagA 유전자를 방선균용 벡터에 삽입하여 재조합 벡터를 제조한 다음, 재조합 벡터로 스트렙토마이세스 리비던스를 형질전환하고, 형질전환체를 배양하는 방법을 사용하여 DagA를 생산할 수 있다. 이 경우 재조합 벡터는 DagA 유전자의 전사가 방선균 유래 프로모터에 의해 조절될 수 있도록 구성하는 것이 바람직하다. 방선균 유래 프로모터에는 sgtR 프로모터(sgtRp), ermE 프로모터(ermEp), tipA 프로모터(tipAp) 등 다양한 프로모터가 존재하므로 재조합 벡터를 제조할 때 이들을 선택하여 사용할 수 있다. 이들 프로모터에 의해 전사가 조절될 수 있도록 구성된 여러 종류의 벡터들이 개발되어 있고, 이 벡터에 SCO3471를 클로닝하면 방선균 유래 프로모터에 의해 전사가 조절되는 구조의 재조합 벡터를 제조할 수 있다. 형질전환체는 숙주 균주를 DagA 유전자가 클로닝된 재조합 벡터로 형질전환시켜 제조할 수 있는데, 숙주 균주에 따라 형질전환 방법이 다양하게 존재하므로, 적절한 방법을 선택하여 사용할 수 있다. 예를 들어, 스트렙토마이세스 리비던스를 숙주 균주로 사용하는 경우 PEG(polyethylene glycol)를 매개로한 형질전환 방법을 사용할 수 있다. 형질전환체 등과 같은 DagA 생산 균주를 액체 배지에서 배양하면 DagA를 생산할 수 있으며, 배양액을 수득하여 한외 여과법과 같은 통상의 단백질 정제방법을 이용하면 고순도의 DagA를 생산할 수 있다. 이때 액체 배지에 한천 또는 아가로스를 포함시키면 보다 효율적으로 DagA를 생산할 수 있다.Although DagA used in the present invention can be produced through cultivation of Streptomyces lividans, which is a production strain of DagA, it is preferable to use an expression system of Streptomyces lividans, a heterologous strain, in order to increase production efficiency Do. DagA can be produced by inserting the DagA gene into a stactobacterium vector to prepare a recombinant vector, transforming the streptomyces ribidus with a recombinant vector, and culturing the transformant. In this case, the recombinant vector is preferably constructed such that the transcription of the DagA gene can be regulated by the actinomycete-derived promoter. Since there are various promoters such as sgtR promoter (sgtRp), ermE promoter (ermEp), and tipA promoter (tipAp), actinomycetes -derived promoters can be selected and used when preparing recombinant vectors. Several kinds of vectors constructed so that transcription can be regulated by these promoters have been developed. When SCO3471 is cloned into this vector, a recombinant vector having a structure in which transcription is regulated by actinomycetes-derived promoter can be produced. The transformant can be prepared by transforming the host strain with a recombinant vector in which the DagA gene is cloned. Since a variety of transformation methods are available depending on the host strain, an appropriate method can be selected and used. For example, when a Streptomyces ribidus is used as a host strain, a transformation method based on PEG (polyethylene glycol) can be used. A DagA producing strain such as a transformant can be produced in a liquid medium to produce DagA, and a culture solution can be obtained, and a high purity DagA can be produced using a conventional protein purification method such as an ultrafiltration method. At this time, if agar or agarose is included in the liquid medium, DagA can be produced more efficiently.
이렇게 생산된 DagA를 한천 또는 아가로스와 같은 기질 용액에 첨가하고 특정 온도 및 pH 조건에서 반응시키면 본 발명에 따른 조성물에서 유효성분으로 사용되는 효소반응 산물을 수득할 수 있다. 또한, 상기 효소반응 산물을 한외 여과법으로 부분 정제하거나 겔여과 크로마토그래피에 통과시켜 분획하면 효소반응 산물의 정제물을 수득할 수 있다.When the DagA thus produced is added to a substrate solution such as agar or agarose and reacted at a specific temperature and pH, an enzyme reaction product used as an active ingredient in the composition according to the present invention can be obtained. Further, the enzyme reaction product can be partially purified by ultrafiltration or passed through gel filtration chromatography to obtain a purified product of the enzyme reaction product.
본 발명에 따른 면역 증강용 조성물은 면역력이 떨어진 개체의 면역력을 증가시키거나 면역 밸런스가 떨어진 개체의 면역 밸런스를 개선시키는 데에 사용될 수 있다. 또한, 본 발명에 따른 항암용 조성물은 개체의 암을 예방, 개선 또는 치료하는 데에 사용될 수 있다. 또한, 본 발명에 따른 조성물은 사용 목적 내지 양상에 따라 약학 조성물, 식품 첨가제, 식품 조성물(특히 기능성 식품) 또는 사료 첨가제 등으로 구체화될 수 있고, 조성물 내에서의 유효성분의 함량도 조성물의 구체적인 형태, 사용 목적 내지 양상에 따라 다양한 범위에서 조정될 수 있다.The composition for enhancing immunity according to the present invention can be used to increase the immunity of a person having a weakened immunity or to improve the immunity balance of a person having a weakened immune balance. In addition, the anticancer composition according to the present invention can be used to prevent, ameliorate, or treat cancer of an individual. In addition, the composition according to the present invention may be formulated into pharmaceutical compositions, food additives, food compositions (especially functional foods) or feed additives depending on the intended use or aspects, and the content of the active ingredients in the composition may also be a specific form , And can be adjusted in various ranges depending on the intended use or aspect.
본 발명에 따른 면역 증강용 조성물 또는 항암용 조성물이 약학 조성물로 구체화되는 경우, 약학 조성물에서 유효성분의 함량은 크게 제한되지 않으며, 예를 들어 조성물 총 중량을 기준으로 0.1~99 중량%, 바람직하게는 0.5~50 중량%, 더 바람직하게는 1~30 중량%일 수 있다. 또한, 본 발명의 약학 조성물은 유효성분 외에 약학적으로 허용 가능한 담체, 부형제 또는 희석제와 같은 첨가제를 더 포함할 수 있다. 본 발명의 약학 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 또한, 본 발명의 약학 조성물은 네오아가로올리고당 외에 면역 증강 또는 항암 효과를 갖는 공지의 유효 성분을 1종 이상 더 함유할 수 있다. 본 발명의 약학 조성물은 통상의 방법에 의해 경구 투여를 위한 제형 또는 비경구 투여를 위한 제형으로 제제화될 수 있고, 제제화할 경우 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 경구 투여를 위한 고형 제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형 제제는 유효성분인 복합 추출물에 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트(Calcium carbonate), 수크로스(Sucrose), 락토오스(Lactose) 또는 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용될 수 있다. 경구 투여를 위한 액상 제제로는 현탁제, 내용액제, 유제 및 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함될 수 있다. 비수성용제, 현탁용제로는 프로필렌글리콜(Propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다. 더 나아가 당 분야의 적정한 방법으로 또는 Remington's Pharmaceutical Science(최근판), Mack Publishing Company, Easton PA에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다. 본 발명의 약학 조성물은 목적하는 방법에 따라 인간을 포함한 포유류에 경구 투여되거나 비경구 투여될 수 있으며, 비경구 투여 방식으로는 피부 외용, 복강내주사, 직장내주사, 피하주사, 정맥주사, 근육내 주사 또는 흉부내 주사 주입방식 등이 있다. 본 발명의 약학 조성물의 투여량은 약학적으로 유효한 양이라면 크게 제한되지 않으며, 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도에 따라 그 범위가 다양하다. 본 발명의 약학 조성물의 통상적인 1일 투여량은 크게 제한되지 않으며, 예를 들어 유효성분인 복합 추출물을 기준으로 할 때 0.1 내지 1000 ㎎/㎏인 것이 바람직하고, 1 내지 500 ㎎/㎏인 것이 더 바람직하며, 하루 1회 또는 수회로 나누어 투여될 수 있다.When the immunoconjugate composition or anti-cancer composition according to the present invention is formulated into a pharmaceutical composition, the content of the active ingredient in the pharmaceutical composition is not limited to a great extent, and may be, for example, 0.1 to 99% by weight, May be 0.5 to 50 wt%, more preferably 1 to 30 wt%. In addition, the pharmaceutical composition of the present invention may further comprise, in addition to the active ingredient, an additive such as a pharmaceutically acceptable carrier, excipient or diluent. Examples of carriers, excipients and diluents that can be included in the pharmaceutical composition of the present invention include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate , Cellulose, methylcellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. In addition, the pharmaceutical composition of the present invention may further contain one or more known active ingredients having immunosuppressive or anticancer effects in addition to neoagarooligosaccharide. The pharmaceutical composition of the present invention can be formulated into a formulation for oral administration or parenteral administration by a conventional method, and can be formulated into a pharmaceutical composition such as a filler, an extender, a binder, a wetting agent, a disintegrant, Diluents or excipients. Solid formulations for oral administration include tablets, pills, powders, granules, capsules and the like. These solid preparations may contain at least one excipient such as starch, calcium carbonate, Sucrose, Lactose, Gelatin, or the like. In addition to simple excipients, lubricants such as magnesium stearate talc may also be used. Liquid preparations for oral administration include suspensions, solutions, emulsions and syrups. Various excipients such as wetting agents, sweeteners, fragrances, preservatives and the like may be included in addition to water and liquid paraffin, which are simple diluents commonly used. have. Formulations for parenteral administration may include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, and suppositories. Propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used as the non-aqueous solvent and suspension agent. Examples of the suppository base include witepsol, macrogol, tween 61, cacao butter, laurin, glycerogelatin and the like. Further, it can be suitably formulated according to each disease or ingredient, using appropriate methods in the art or by the method disclosed in Remington's Pharmaceutical Science (recent edition), Mack Publishing Company, Easton PA. The pharmaceutical composition of the present invention may be administered orally or parenterally to a mammal including a human according to a desired method. Examples of the parenteral administration method include external dermal application, intraperitoneal injection, intramuscular injection, subcutaneous injection, intravenous injection, Intravenous injection or intra-thoracic injection. The dosage of the pharmaceutical composition of the present invention is not limited as long as it is a pharmacologically effective amount and is not limited as long as it depends on the body weight, age, sex, health condition, diet, administration time, administration method, excretion rate, Varies. The typical daily dose of the pharmaceutical composition of the present invention is not particularly limited, and is preferably 0.1 to 1000 mg / kg, more preferably 1 to 500 mg / kg, based on, for example, And may be administered once or several times a day.
또한, 본 발명에 따른 면역 증강용 조성물 또는 항암용 조성물이 식품 조성물로 구체화되는 경우, 식품 조성물에서 유효성분의 함량은 크게 제한되지 않으며, 조성물 총 중량을 기준으로 0.01~50 중량%, 바람직하게는 0.1~25 중량%, 더 바람직하게는 0.5~10 중량%일 수 있다. 본 발명의 식품 조성물은 환제, 분말, 과립, 침제, 정제, 캡슐, 또는 액제 등의 형태를 포함하며, 구체적인 식품의 예로는 육류, 소시지, 빵, 초콜릿, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 기능수, 드링크제, 알코올음료 및 비타민 복합제 등이 있으며, 통상적인 의미에서의 건강식품을 모두 포함한다. 본 발명의 식품 조성물은 유효성분 외에 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 또한, 본 발명의 식품 조성물은 여러 가지 영양제, 비타민, 전해질, 풍미제, 착색제, 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그 밖에 본 발명의 식품 조성물은 천연 과일주스, 과일주스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분들은 독립적으로 또는 혼합하여 사용할 수 있다. 상술한 천연 탄수화물은 포도당, 과당과 같은 모노사카라이드, 말토스, 슈크로스와 같은 디사카라이드, 및 덱스트린, 사이클로덱스트린과 같은 폴리사카라이드, 자일리톨, 소르비톨, 에리트리톨 등의 당알코올이다. 향미제로는 타우마틴, 스테비아 추출물과 같은 천연 향미제나 사카린, 아스파르탐과 같은 합성 향미제 등을 사용할 수 있다.When the immunoconjugate composition or anticancer composition according to the present invention is formulated into a food composition, the content of the active ingredient in the food composition is not limited to a great extent and is preferably 0.01 to 50% by weight, 0.1 to 25% by weight, more preferably 0.5 to 10% by weight. The food composition of the present invention may be in the form of a pill, a powder, a granule, an infusion, a tablet, a capsule, or a liquid preparation. Examples of the food include meat, sausage, bread, chocolate, candy, snack, Other noodles, gums, dairy products including ice cream, various soups, drinks, tea, functional water, drinks, alcoholic beverages and vitamin complexes. The food composition of the present invention may contain various flavors or natural carbohydrates as an additional ingredient in addition to the active ingredient. In addition, the food composition of the present invention can be used as a food composition containing various nutrients, vitamins, electrolytes, flavors, colorants, pectic acids and salts thereof, alginic acid and its salts, organic acids, protective colloid thickeners, pH adjusters, stabilizers, preservatives, , A carbonating agent used in carbonated drinks, and the like. In addition, the food composition of the present invention may contain flesh for the production of natural fruit juices, fruit juice drinks and vegetable drinks. These components may be used independently or in combination. The above-mentioned natural carbohydrates are sugar alcohols such as monosaccharides such as glucose and fructose, disaccharides such as maltose and sucrose, polysaccharides such as dextrin and cyclodextrin, and xylitol, sorbitol and erythritol. Natural flavors such as tau Martin and stevia extract, and synthetic flavors such as saccharin and aspartame may be used as the flavor.
이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다. 그러나 하기 실시예는 본 발명의 기술적 특징을 명확하게 예시하기 위한 것일 뿐 본 발명의 보호범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are intended to clearly illustrate the technical features of the present invention and do not limit the scope of protection of the present invention.
실시예 1 : DagA 효소의 생산Example 1: Production of DagA enzyme
스트렙토마이세스 시리칼라 A3(2)의 염색체 DNA를 주형으로 하고 하기의 프라이머 및 Ex-Taq(TAKARA) 중합효소를 이용하여 중합연쇄반응(polymerase chain reaction, PCR)을 수행하였고, 그 결과 증폭된 DagA 유전자 단편(DagA의 시그널 펩타이드 및 완성형 펩타이드가 암호화된 947bp 길이의 단편으로서, 서열번호 1의 염기서열 양 말단에 프라이머의 일부 서열이 연결된 상태에 해당함)을 수득하였다.Polymerase chain reaction (PCR) was performed using the chromosomal DNA of Streptomyces sericola A3 (2) as a template and using the following primers and Ex-Taq (TAKARA) polymerase. As a result, amplified DagA A fragment of the gene fragment (a signal peptide of DagA and a fragment of 947 bp in length encoded with the completed peptide, corresponding to a part of the sequence of the primer connected to both ends of the nucleotide sequence of SEQ ID NO: 1) was obtained.
* DagA 유전자 단편의 증폭에 사용된 프라이머Primers used for amplification of the DagA gene fragment
Asm-F(Forward Primer) : 5′-GACATATGGTGGTCAACCGACGTGATC-3′(NdeI) (서열번호 3)Asm-F (Forward Primer): 5'-GACATATGGTGGTCAACCGACGTGATC-3 '(NdeI) (SEQ ID NO: 3)
Asm-R(Reverse Primer) : 5′-GGTGGATCCCTACACGGCCTGATACG-3′(BamHI) (서열번호 4)Asm-R (Reverse Primer): 5'-GGTGGATCCCTACACGGCCTGATACG-3 '(BamHI) (SEQ ID NO: 4)
이후, 증폭된 DagA 유전자 단편의 제한효소 부위(NdeI/BamHI)를 이용하여 DagA 유전자를 도 1의 pUWL201pw 벡터에 클로닝하여 도 2의 재조합 벡터를 제작하였다. 도 2의 재조합 벡터에서는 DagA 유전자의 전사가 ermE 프로모터에 의해 조절된다. 이후, 도 2의 재조합 벡터로 스트렙토마이세스 리비던스(Streptomyces lividans) TK24 균주를 형질전환하여 재조합 균주를 제조하고, 상기 재조합 균주를 DagA의 생산을 위해 사용하였다.Then, the DagA gene was cloned into the pUWL201pw vector of FIG. 1 using the restriction enzyme site (NdeI / BamHI) of the amplified DagA gene fragment to prepare the recombinant vector of FIG. In the recombinant vector of Fig. 2, transcription of the DagA gene is regulated by the ermE promoter. Thereafter, a recombinant strain of Streptomyces lividans TK24 was transformed with the recombinant vector of FIG. 2 to prepare a recombinant strain, and the recombinant strain was used for the production of DagA.
구체적으로, 상기 재조합 균주를 0.3%(w/v)의 한천(agar)이 포함된 R2YE 액체 배지에 접종하고 28℃의 온도 및 120rpm의 교반 조건에서 약 60시간 동안 전 배양을 실시하였다. 전 배양 과정을 거친 다음 약 60시간 동안 본 배양을 실시하였다. 본 배양을 통해 수득한 배양액을 원심분리하여 균체를 제거하고, 상등액을 한외 여과막(5kDa cut-off membrane)으로 여과하여 분리 및 정제하였다. 여과막을 통과하지 못한 효소 농축액을 동결건조하여 고형화하고, 고형화된 DagA 효소를 보관하면서 이후의 실험에 사용하였다.Specifically, the recombinant strain was inoculated into an R2YE liquid medium containing agar of 0.3% (w / v) and pre-cultured for about 60 hours at 28 ° C and 120 rpm. After the pre-culture, the cultivation was carried out for about 60 hours. The culture solution obtained through the present culture was centrifuged to remove cells, and the supernatant was separated and purified by filtration through an ultrafiltration membrane (5 kDa cut-off membrane). The enzyme concentrate which did not pass through the filtration membrane was freeze-dried to solidify it, and the solidified DagA enzyme was stored and used in the subsequent experiments.
실시예 2 : DagA 효소의 아가레이즈 활성 측정Example 2: Measurement of agarase activity of DagA enzyme
상기 실시예 1에서 수득한 DagA 효소의 아가레이즈 활성을 환원당량 검정방법(DNS method)으로 측정하였다. 실시예 1에서 수득한 DagA 효소를 PBS(phosphate buffered saline) 용액에 10㎎/㎖의 농도로 용해시켜 제조한 DagA 효소액 100㎕와 0.2%(w/v)의 농도로 아가로스를 녹인 50mM PBS 용액(pH 7) 3.9㎖를 혼합하고 40℃에서 5분간 반응시킨 후, 여기에 DNS 시약(dinitrosalicylic acid 6.5g, 2M NaOH 325㎖ 및 glycerol 45㎖를 증류수 1ℓ에 용해시켜 제조함) 4㎖를 넣고 10분간 끓인 다음 식히고, 흡광도를 540㎚에서 측정하였다. 효소 1U(Unit)는 540㎚에서의 흡광도가 0.001인 활성으로 정의하였다.The agarase activity of the DagA enzyme obtained in Example 1 was measured by the method of reducing equivalence (DNS method). 100 μl of the DagA enzyme solution prepared by dissolving the DagA enzyme obtained in Example 1 in PBS (phosphate buffered saline) at a concentration of 10 mg / ml and 50 ml of 50 mM PBS solution in which the agarose was dissolved at a concentration of 0.2% (w / v) (manufactured by dissolving 6.5 g of dinitrosalicylic acid, 325 ml of 2M NaOH and 45 ml of glycerol in 1 l of distilled water) was added to the reaction mixture, followed by addition of 10 ml of 10 The mixture was boiled for minutes, then allowed to cool, and the absorbance was measured at 540 nm. 1 U (Unit) of the enzyme was defined as an activity having an absorbance at 540 nm of 0.001.
실시예 3 : DagA 효소반응 산물의 제조Example 3: Preparation of DagA Enzyme Reaction Products
1.5%(w/v)의 농도로 한천을 녹인 20mM Tris-HCl 용액 1ℓ를 제조하고, 100℃에서 약 10분간 가열한 다음 40℃로 온도를 떨어뜨리고, 여기에 125U/㎖ 농도의 DagA 효소 수용액을 전체 시료의 양을 기준으로 20,000U가 되도록 처리하고 약 24시간 동안 반응시켰다. 이후, 효소반응 산물을 원심분리하여 미분해된 한천을 제거하고, 상등액을 회수한 다음 TLC(thin layer chromatography)를 이용하여 효소반응 생성물을 확인하였다. 회수한 상등액을 한외 여과막(5KDa cut-off membrane)으로 여과하여 부분 정제하였다. 여과막을 통과한 DagA 효소반응 산물을 동결건조하여 고형화하였고, 고형화된 DagA 효소반응 산물을 보관하면서 이후의 실험에 사용하였다. 상기 과정을 반복하면서 4 배치(batch)에 해당하는 부분 정제된 효소반응 산물을 수득하였다.1 L of a 20 mM Tris-HCl solution in which agar was dissolved at a concentration of 1.5% (w / v) was prepared, heated at 100 캜 for about 10 minutes, and then cooled to 40 캜. To this was added a 125 U / Was treated to 20,000 U based on the amount of the whole sample and reacted for about 24 hours. Then, the enzyme reaction product was centrifuged to remove the undegraded agar, the supernatant was recovered, and the enzyme reaction product was confirmed by TLC (thin layer chromatography). The recovered supernatant was partially purified by filtration through an ultrafiltration membrane (5KDa cut-off membrane). The DagA enzyme reaction product passed through the filter membrane was lyophilized and solidified. The solidified DagA enzyme reaction product was stored and used in the subsequent experiments. The above procedure was repeated to obtain partially purified enzyme reaction products corresponding to 4 batches.
실시예 4 : HPLC-ELSD 분석을 통한 DagA 효소반응 산물의 네오아가로올리고당 조성 확인Example 4: Determination of neoagarooligosaccharide composition of DagA enzyme reaction product by HPLC-ELSD analysis
상기 실시예 3에서 수득한 효소반응 산물의 네오아가로올리고당 조성을 HPLC-ELSD 분석을 통해 확인하였다. HPLC-ELSD 분석 조건은 다음과 같다.The neo-agarooligosaccharide composition of the enzyme reaction product obtained in Example 3 was confirmed by HPLC-ELSD analysis. HPLC-ELSD analysis conditions are as follows.
* 칼럼 : NH2 P-50 4E multimode column(250㎜×4.6㎜)* Column: NH 2 P-50 4E multimode column (250 mm x 4.6 mm)
* 이동상 : 아세토니트릴(acetonitrile)과 물의 혼합용액(acetonitrile : water의 부피비는 65 : 35임* Mobile phase: a mixed solution of acetonitrile and water (acetonitrile: water in a volume ratio of 65:35
도 3은 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 HPLC-ELSD로 분석한 결과를 나타낸 그래프이다. 도 3에서 보이는 4개의 피크 그래프는 4 배치(batch)에서 각각 얻은 부분 정제된 효소반응 산물에 대응하는 것이다. 또한, 도 3에서 표 안의 면적(%)은 각각의 네오아가로올리고당에 해당하는 피크의 면적을 전체 피크 면적에 대해 백분율로 나타낸 것이며 당 업계에서 중량%와 동일한 의미로 해석될 수 있다. 도 3에서 보이는 바와 같이 DagA 효소반응 산물은 주성분이 네오아가로비오스(neoagarobiose, 이하 'DP2'라 한다), 네오아가로테트라오스(neoagarotetraose, 이하 'DP4'라 한다) 및 네오아가로헥사오스(neoagarohexaose, 이하 'DP6'라 한다) 등과 같은 네오아가로올리고당인 것으로 나타났다. DagA 효소반응 산물에서 네오아가로올리고당의 함량은 고형분(HPLC-ELSD 분석에서 검출되지 않은 성분을 포함한다)의 전체 중량을 기준으로 할 때 약 65±5 중량%인 것으로 나타났으나, 효소반응 조건에서 따라 상기 함량은 다양한 범위에서 선택될 수 있다. 예를 들어, agA 효소반응 산물에서 네오아가로올리고당의 함량은 고형분 전체 중량을 기준으로 65±20 중량%일 수 있다. 또한, DagA 효소반응 산물에서 DP2, DP4 및 DP6의 함량은 네오아가로올리고당 전체 중량을 기준으로 할 때 각각 2~4 중량%, 65~70 중량% 및 25~30 중량%인 것으로 나타났으나, 효소반응 조건에서 따라 상기 함량은 다양한 범위에서 선택될 수 있다. 예를 들어, DagA 효소반응 산물에서 DP2, DP4 및 DP6의 함량은 네오아가로올리고당 전체 중량을 기준으로 할 때 각각 0~10 중량%, 50~70 중량% 및 20~50 중량%일 수 있다.FIG. 3 is a graph showing the results of HPLC-ELSD analysis of the partially purified DagA enzyme reaction product obtained in Example 3. FIG. The four peak graphs shown in Figure 3 correspond to the partially purified enzyme reaction products obtained in each of the 4 batches. In addition, the area (%) in the table in Fig. 3 represents the area of the peak corresponding to each neoagaroligosaccharide as a percentage of the total peak area and can be interpreted in the same sense as% by weight in the art. As shown in FIG. 3, the DagA enzymatic reaction products are mainly composed of neoagarobiose (DP2), neoagarotetraose (DP4), and neoagarohexaose neoagarohexaose, hereinafter referred to as " DP6 "). The content of neoagarooligosaccharide in the DagA enzyme reaction product was found to be about 65 5% by weight based on the total weight of solids (including components not detected in the HPLC-ELSD assay) The above content can be selected in various ranges. For example, the content of neoagarooligosaccharide in the agA enzyme reaction product may be 65 ± 20% by weight based on the total weight of the solids. The DP2, DP4 and DP6 contents in the DagA enzyme reaction products were 2 to 4 wt%, 65 to 70 wt% and 25 to 30 wt%, respectively, based on the total weight of the neoagarooligosaccharide, Depending on the enzyme reaction conditions, the content can be selected from a wide range. For example, the content of DP2, DP4, and DP6 in the DagA enzyme reaction product may be 0 to 10 wt%, 50 to 70 wt%, and 20 to 50 wt%, respectively, based on the total weight of the neoagarooligosaccharide.
실시예 5 : 겔여과 크로마토그래피를 이용한 DagA 효소반응 산물의 정제Example 5 Purification of DagA Enzyme Reaction Products Using Gel Filtration Chromatography
상기 실시예 3에서 수득한 부분 정제된 효소반응 산물을 겔여과 크로마토그래피(gel permeation chromatography, GPC; 제품명 : BioGel P-2 gel, Biorad, Cat. No.: 150-4115)를 통해 네오아가로헥사오스(neoagarohexaose, DP6), 네오아가로테트라오스(neoagarotetraose, DP4) 및 네오아가로비오스(neoagarobiose, DP2)로 분리 및 정제하였다. 이후 정제한 산물들을 동결건조하여 고형화하였고, 고형화된 DagA 효소반응 정제 산물을 보관하면서 이후의 실험에 사용하였다. 정제한 산물들인 DP2, DP4 및 DP6의 순도를 TLC와 HPLC를 통해 확인한 결과 약 85%(w/w) 수준이었다. The partially purified enzyme reaction product obtained in Example 3 was purified by gel permeation chromatography (GPC; BioGel P-2 gel, Biorad, Cat. No. 150-4115) And purified and separated into neoagarohexaose (DP6), neoagarotetraose (DP4) and neoagarobiose (DP2). The purified products were then lyophilized to solidify, and the solidified DagA enzyme reaction purified product was stored and used in subsequent experiments. The purity of the purified products, DP2, DP4 and DP6, was found to be about 85% (w / w) by TLC and HPLC.
실시예 6 : DagA 효소반응 산물의 면역 활성 및 항암 효능 확인 시험Example 6: Test for confirming the immunological activity and anticancer efficacy of DagA enzyme reaction product
6-1. 면역세포에서의 사이토카인 발현량 확인6-1. Determination of cytokine expression level in immune cells
한국세포주은행(KCLB, Seoul, Korea)에서 마우스 대식세포주인 Raw264.7 세포 및 사람 단핵세포주인 THP-1 세포를 분양받아 실험에 사용하였다. 이들 세포의 배양 배지로는 RPMI 1640(HycloneLaboratoris Inc., Logan, UT, USA)에 10% FBS(fetal bovine serum) 및 1% streptomycin/penicillin(Gibco BRL, Grand Island, NY, USA)을 첨가한 것을 사용하였으며, 37℃의 온도 조건 및 5% CO2 조건을 가진 배양기에서 세포를 배양하였다.Raw264.7 cells and mouse mononuclear cell line, THP-1 cells, were purchased from the Korean Cell Line Bank (KCLB, Seoul, Korea) and used for experiments. The cells were cultured in RPMI 1640 (Hyclone Laboratories Inc., Logan, UT, USA) supplemented with 10% fetal bovine serum and 1% streptomycin / penicillin (Gibco BRL, Grand Island, Cells were cultured in an incubator at 37 ° C and 5% CO 2 .
Raw264.7 세포를 24 well culture plate에 약 5×104 cells/well로 분주하고 약 24시간 동안 배양한 다음, culture plate의 각 well에 상기 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물(이하, 'NAO'라 한다)을 0.005 ~ 12.5㎎/㎖의 다양한 농도로 첨가하고, 37℃의 온도 조건 및 5% CO2 조건을 가진 배양기에서 24시간 동안 배양하였다. 이때, 양성대조군으로 DagA 효소반응 산물 대신 LPS(lipopolysaccharide)를 50ng/㎖의 농도로 첨가하고 동일한 조건에서 배양하였고, 음성대조군으로 대식세포에 아무것도 처리하지 않고 동일한 조건에서 배양하였다. 배양을 완료한 후 상등액을 취하여 분비된 TNF-α(tumor necrosis factor alpha), IL-1β(interleukin-1 beta), IL-6(interleukin-6), IL-12p70(interleukin-12p70)의 양을 효소면역분석법(Enzyme-Linked ImmunoSorbent Assay, ELISA)으로 측정하였다. 도 4는 마우스 대식세포주인 Raw264.7 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 사이토카인(TNF-α, IL-1β, IL-6, IL-12p70)의 발현량을 대조군(LPS 처리)과 비교한 그래프이다. 도 4에서 보이는 바와 같이 처리한 NAO의 양이 증가할수록 TNF-α, IL-1β, IL-6, IL-12p70의 발현량이 농도 의존적으로 증가하는 것으로 나타났다. 이러한 결과는 NAO가 면역기능 증진 효과를 나타낸다는 것을 의미한다.Raw 264.7 cells were seeded at about 5 × 10 4 cells / well in a 24-well culture plate and cultured for about 24 hours. Then, the partially purified DagA enzyme reaction product obtained in Example 3 Hereinafter referred to as " NAO ") was added at various concentrations ranging from 0.005 to 12.5 mg / ml, and cultured in an incubator having a temperature condition of 37 ° C and 5% CO 2 for 24 hours. As a positive control, LPS (lipopolysaccharide) was added at a concentration of 50ng / ml instead of the DagA enzyme reaction product, and the cells were cultured under the same conditions. Negative control cells were cultured in the same conditions without any treatment with macrophages. After incubation, the supernatant was collected and the amount of secreted TNF-α, IL-1β (interleukin-1 beta), IL-6 (interleukin-6) and IL-12p70 (interleukin-12p70) Enzyme-Linked ImmunoSorbent Assay (ELISA). FIG. 4 shows the expression levels of cytokines (TNF-α, IL-1β, IL-6, and IL-12p70) in the mouse macrophage cell line Raw264.7 cells treated with the partially purified DagA enzyme reaction product obtained in Example 3 To the control (LPS treatment). As shown in FIG. 4, the expression levels of TNF-α, IL-1β, IL-6 and IL-12p70 were increased in a dose-dependent manner as the amount of NAO treated increased. These results indicate that NAO exhibits immune function enhancing effects.
또한, DagA 효소반응 산물의 구성성분인 DP2, DP4, DP6와 NAO를 각각 500㎍/㎖의 농도로 마우스 대식세포주인 Raw264.7 세포에 처리한 후 TNF-α의 발현량을 측정하였다. 이때, 대조군으로 LPS를 100ng/㎖의 농도로 처리하거나 아가로올리고당(Agarooligosaccharide, AO; Takara Bio Inc., JP)을 500㎍/㎖의 농도로 처리하고, 표준시료로 β-glucan을 500㎍/㎖의 농도로 처리한 후 TNF-α의 발현량을 비교하였다. 도 5는 마우스 대식세포주인 Raw264.7 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 TNF-α의 발현량을 DagA 효소반응 산물의 구성성분 처리군(DP2, DP4, DP6 처리), 대조군(LPS, AO 처리), 표준시료 처리군(β-glucan 처리)과 비교한 그래프이다. 도 5에서 보이는 바와 같이 NAO 처리군에서 TNF-α의 발현량이 가장 높게 나타났다. 특히, NAO 처리군은 동일한 양의 DP2, DP4, DP6를 처리한 군보다 TNF-α의 발현량이 높게 나타났으며, 이러한 결과는 다양한 네오아가로올리고당의 조합에 의한 시너지 효과인 것으로 판단된다.In addition, DP2, DP4, DP6 and NAO, which are constituents of the DagA enzyme reaction product, were treated with mouse macrophage cell line Raw264.7 cells at a concentration of 500 mu g / ml, respectively, and then the expression amount of TNF-alpha was measured. As a control, LPS was treated at a concentration of 100 ng / ml or agarooligosaccharide (AO; Takara Bio Inc., JP) was treated at a concentration of 500 μg / ml, and β- Ml and then compared the expression levels of TNF-α. FIG. 5 shows the expression levels of TNF-.alpha. In the mouse macrophage cell line Raw264.7 cells treated with the partially purified DagA enzyme reaction product obtained in Example 3 with the DagA enzymatic reaction product components (DP2, DP4, DP6 (LPS, AO treatment), and the standard sample treatment group (? -Glucan treatment). As shown in FIG. 5, the expression level of TNF-α was the highest in the NAO treatment group. In particular, the NAO-treated group showed a higher expression of TNF-α than the same amount of DP2, DP4, DP6 treated group, and this result is considered to be a synergistic effect by the combination of various neoagarooligosaccharides.
또한, 다른 단핵세포주인 THP-1 세포를 96 well plate에 3×104 cells/well로 분주하고 PMA(phorbol myristate acetate)를 처리한 다음 24시간 동안 배양하여 대식세포로의 분화를 유도하였다. 분화된 THP-1 세포에 NAO를 각각 0.1㎎/㎖, 0.5㎎/㎖, 1㎎/㎖의 농도로 처리하고 37℃의 온도 조건 및 5% CO2 조건을 가진 배양기에서 24시간 동안 배양하였다. 이때, 양성대조군으로 DagA 효소반응 산물 대신 LPS(lipopolysaccharide)를 100ng/㎖ 또는 500ng/㎖의 농도로 첨가하고 동일한 조건에서 배양하였다. 배양을 완료한 후 상등액을 취하여 분비된 TNF-α(tumor necrosis factor alpha), IL-6(interleukin-6)의 양을 효소면역분석법(Enzyme-Linked ImmunoSorbent Assay, ELISA)으로 측정하였다. 도 6은 사람 대식세포주인 THP-1 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 사이토카인(TNF-α, IL-6)의 발현량을 대조군(LPS 처리)과 비교한 그래프이다. 도 6에서 보이는 바와 같이 THP-1 세포에서도 Raw264.7 세포의 경우와 마찬가지로 TNF-α 및 IL-6의 발현량이 처리한 NAO의 농도에 의존적으로 증가하였다. 이러한 결과로부터 NAO가 다양한 동물에서 면역기능 증진 효과를 나타낸다는 것을 알 수 있다.In addition, THP-1 cells, another mononuclear cell line, were divided into 3 × 10 4 cells / well in a 96-well plate, treated with PMA (phorbol myristate acetate), and cultured for 24 hours to induce differentiation into macrophages. The differentiated THP-1 cells were treated with NAO at concentrations of 0.1 mg / ml, 0.5 mg / ml and 1 mg / ml, respectively, and incubated for 24 hours in an incubator at 37 ° C and 5% CO 2 . As a positive control, LPS (lipopolysaccharide) was added at a concentration of 100 ng / ml or 500 ng / ml instead of the DagA enzyme reaction product and cultured under the same conditions. After the culture was completed, the supernatant was collected and the amount of secreted TNF-α and IL-6 (interleukin-6) was measured by ELISA (enzyme-linked immunosorbent assay). 6 is a graph comparing the amount of cytokine (TNF-α, IL-6) expressed in the human macrophage cell line THP-1 cells treated with the partially purified DagA enzyme reaction product obtained in Example 3 with the control (LPS treatment) It is a graph. As shown in FIG. 6, the expression levels of TNF-α and IL-6 were increased in THP-1 cells as well as in the case of Raw264.7 cells, depending on the concentration of NAO treated. From these results, it can be seen that NAO shows immunity enhancement effect in various animals.
6-2. 수지상 세포에서의 면역활성 확인6-2. Identification of immune activity in dendritic cells
6-2-1. 수지상 세포에서의 면역기능 증진 효과 확인6-2-1. Confirming the enhancement of immune function in dendritic cells
포유류의 면역체계를 담당하며 항원을 포획하고 이것을 표면에 제시하여 다른 면역세포의 활성을 돕는 능력이 가장 뛰어난 것으로 알려져 있는 수지상 세포를 이용하여 DagA 효소반응 산물의 면역기능 증진 효과를 확인하였다.The effect of DagA enzyme reaction products on immune function was confirmed by using dendritic cells, which are responsible for the mammalian immune system and capture the antigens and present them on the surface and are known to have the best ability to support the activities of other immune cells.
마우스 골수 단핵 세포로부터 얻은 수지상 세포를 약 6일간 배양한 후에 실험에 사용하였다. 배양 배지로는 RPMI 1640에 10% FBS, 1% streptomycin/penicillin 및 20ng/㎖ GM-CSF(granulocyte-macrophage stimulating factor)를 첨가한 것을 사용하였고, 37℃의 온도 조건 및 5% CO2 조건을 가진 배양기에서 세포를 배양하였다.Dendritic cells from mouse bone marrow mononuclear cells were cultured for about 6 days before use in the experiment. In culture medium was used that the addition of 10% FBS, 1% streptomycin / penicillin and 20ng / ㎖ GM-CSF (granulocyte -macrophage stimulating factor) in RPMI 1640, with the temperature conditions and 5% CO 2 conditions of 37 ℃ Cells were cultured in an incubator.
수지상 세포를 12 well culture plate에 약 2×105 cells/well로 분주하고, culture plate의 각 well에 NAO를 0.01㎎/㎖, 0.05㎎/㎖, 0.1㎎/㎖, 0.5㎎/㎖, 1㎎/㎖, 2㎎/㎖의 농도로 처리하고, 37℃의 온도 조건 및 5% CO2 농도 조건의 배양기에서 24시간 동안 배양하였다. 이후, 표면단백질인자(surface molecule; CD80, CD86, MHC class I, MHC class II)의 발현량을 확인하였다.Dendritic cells were plated at approximately 2 × 10 5 cells / well in a 12-well culture plate. To each well of the culture plate, NAO was added at a concentration of 0.01 mg / ml, 0.05 mg / ml, 0.1 mg / ml, 0.5 mg / / Ml and 2 mg / ml, and cultured in an incubator at 37 ° C and 5% CO 2 concentration for 24 hours. The expression level of surface protein (CD80, CD86, MHC class I, MHC class II) was then confirmed.
또한, 수지상 세포에 NAO를 각각 0.025㎎/㎖, 0.1㎎/㎖, 0.25㎎/㎖, 1, 2.5㎎/㎖의 농도로 처리하고 배양한 후, TNF-α, IL-1β, IL-6, IL-10, IL-12p70의 발현량을 확인하였다.In addition, the dendritic cells were treated with NAO at a concentration of 0.025 mg / ml, 0.1 mg / ml, 0.25 mg / ml and 1 and 2.5 mg / ml respectively and then cultured in the presence of TNF-α, IL- IL-10, and IL-12p70.
또한, 수지상 세포에 NAO와 NAO 구성성분인 DP2, DP4, DP6를 각각 2㎎/㎖의 농도로 처리하고 배양한 후, TNF-α, IL-1β, IL-6, IL-10, IL-12p70의 발현량을 비교하였다.In addition, the dendritic cells were treated with the NAO and the NAO constituents DP2, DP4, and DP6 at a concentration of 2 mg / ml, respectively, and then cultured with TNF-α, IL-1β, IL-6, IL- Were compared.
또한, NAO와의 비교를 위해, 양성대조군으로 NAO 대신 LPS(lipopolysaccharide)를 50ng/㎖의 농도로 첨가하고 동일한 조건에서 배양하였고, 음성대조군으로 수지상 세포에 아무것도 처리하지 않고 동일한 조건에서 배양하였다.For comparison with NAO, LPS (lipopolysaccharide) was added at a concentration of 50 ng / ml instead of NAO as a positive control group, cultured under the same conditions, and negative control cells were cultured under the same conditions without any treatment on dendritic cells.
도 7은 마우스 유래 수지상 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 사이토카인(TNF-α, IL-1β, IL-6, IL-10, IL-12p70)의 발현량을 대조군(LPS 처리)과 비교한 그래프이다. 또한, 도 8은 마우스 유래 수지상 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 사이토카인(TNF-α, IL-1β, IL-6, IL-10, IL-12p70)의 발현량을 DagA 효소반응 산물의 구성성분 처리군(DP2, DP4, DP6 처리)과 비교한 그래프이다. 또한, 도 9는 마우스 유래 수지상 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 수지상 세포 활성화 지표인 표면단백질인자(CD80, CD86, MHC class I, MHC class II)의 발현량을 대조군(LPS 처리)과 비교한 그래프이다. 또한, 도 10은 마우스 유래 수지상 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 세포사멸 여부를 Annexin V-FITC와 propidium iodide(PI)를 이용하여 분석하고, 이를 대조군(LPS 처리)과 비교한 그래프이다.FIG. 7 shows the expression levels of cytokines (TNF-α, IL-1β, IL-6, IL-10 and IL-12p70) upon treatment of the partially purified DagA enzymatic reaction products obtained in Example 3 on dendritic cells derived from mice To the control (LPS treatment). 8 is a graph showing the effect of the partially purified DagA enzyme reaction product obtained in Example 3 on the dendritic cells derived from mice in the presence of cytokines (TNF- ?, IL-1 ?, IL-6, IL-10 and IL-12p70) (DP2, DP4, and DP6 treated) of the DagA enzyme reaction products. 9 shows the expression levels of surface protein factors (CD80, CD86, MHC class I and MHC class II), which are indicators of dendritic cell activation, upon treatment of the partially purified DagA enzyme reaction products obtained in Example 3 on dendritic cells derived from mice To the control (LPS treatment). 10 shows the results of analysis of the cell death using Annexin V-FITC and propidium iodide (PI) when the partially purified DagA enzyme reaction product obtained in Example 3 was treated with dendritic cells derived from mice, Processing).
도 7에서 보이는 바와 같이 수지상 세포에 처리한 NAO의 농도가 증가할수록 사이토카인의 발현량이 증가하는 것으로 나타났고, 도 8에서 보이는 바와 같이 수지상 세포에 NAO 및 NAO의 구성성분인 DP2, DP4, DP6를 동일한 양으로 처리하는 경우 NAO 처리군에서 사이토카인 발현량이 가장 증가하였으며, 도 9에서 보이는 바와 같이 표면단백질인자의 발현량도 NAO의 처리 농도에 의존적으로 증가하였다. 이러한 결과는 NAO가 면역기능 증진 효과를 나타낸다는 것을 의미하며, 다양한 네오아가로올리고당의 조합에 의해 면역기능 증진 효과가 극대화되는 것으로 판단된다. 또한, 도 10에서 보이는 바와 같이 NAO를 2.5㎎/㎖의 농도로 수지상 세포에 처리하는 경우에도 세포사멸은 전혀 발생하지 않았다[도 10의 각 그래프에서 상부우측 구역이 세포사멸 구역에 해당하며, 그 구역에서 점(dot)의 분포가 많아질수록 세포사멸이 발생했다고 할 수 있다].As shown in FIG. 7, as the concentration of NAO treated with dendritic cells increased, the expression level of cytokine was increased. As shown in FIG. 8, the dendritic cells were treated with DP2, DP4, DP6 In the case of treatment with the same amount, the amount of cytokine expression was the most increased in the NAO treatment group, and the expression amount of the surface protein factor was also increased depending on the treatment concentration of NAO as shown in FIG. These results indicate that NAO shows immunity - enhancing effect and that the combination of various neo - agarooligosaccharides maximizes the enhancement of immune function. In addition, as shown in Fig. 10, even when the dendritic cells were treated with NAO at a concentration of 2.5 mg / ml, apoptosis did not occur at all (in the graph of Fig. 10, the upper right region corresponds to the apoptotic zone, The greater the distribution of dots in the area, the more likely it is that cell death has occurred.
6-2-2. TLR2-/-, TLR4-/-, TLR9-/- 마우스 유래 수지상 세포에서의 면역기능 증진 효과 비교6-2-2. Comparison of Immune Function Enhancement Effect in TLR2 - / -, TLR4 - / -, TLR9 - / - Mouse Derived Dendritic Cells
WT(Wild Type) 마우스, TLR2-/- 마우스, TLR4-/- 마우스, TLR9-/- 마우스에서 얻은 수지상 세포 각각에 NAO를 2.5㎎/㎖의 농도로 처리하고 37℃의 온도 조건 및 5% CO2 농도 조건의 배양기에서 24시간 동안 배양한 후, 표면단백질인자(surface molecule; CD80, CD86)의 발현량을 확인하였다.NAO was treated at a concentration of 2.5 mg / ml in each of the dendritic cells obtained from WT (Wild Type) mice, TLR2 - / - mice, TLR4 - / - mice and TLR9 - / - mice, 2 concentration for 24 hours, and the expression level of surface protein (CD80, CD86) was confirmed.
또한, 상기 수지상 세포 각각에 NAO를 0.5㎎/㎖, 2.5㎎/㎖의 농도로 처리하고 37℃의 온도 조건 및 5% CO2 농도 조건의 배양기에서 24시간 동안 배양한 후, TNF-α, IL-1β, IL-10, IL-12p70의 발현량을 확인하였다.Each of the dendritic cells was treated with NAO at a concentration of 0.5 mg / ml and 2.5 mg / ml, cultured in an incubator at 37 ° C and 5% CO 2 for 24 hours, -1β, IL-10, and IL-12p70.
또한, NAO와의 비교를 위해, 양성대조군으로 NAO 대신 LPS(lipopolysaccharide)를 50ng/㎖의 농도로 첨가하고 동일한 조건에서 배양하였고, 음성대조군으로 수지상 세포에 아무것도 처리하지 않고 동일한 조건에서 배양하였다.For comparison with NAO, LPS (lipopolysaccharide) was added at a concentration of 50 ng / ml instead of NAO as a positive control group, cultured under the same conditions, and negative control cells were cultured under the same conditions without any treatment on dendritic cells.
도 11은 WT 마우스, TLR2-/- 마우스, TLR4-/- 마우스, TLR9-/- 마우스 유래 수지상 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 사이토카인(TNF-α, IL-12p70, IL-1β, IL-10, IL-12p70)의 발현량을 대조군(LPS 처리)과 비교한 그래프이다. 또한, 도 12는 WT 마우스, TLR2-/- 마우스, TLR4-/- 마우스, TLR9-/- 마우스 유래 수지상 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리 시 수지상 세포 활성화 지표인 표면단백질인자(CD80, CD86)의 발현량을 대조군(LPS 처리)과 비교한 그래프이다. 도 11에서 보이는 바와 같이 WT 마우스, TLR2-/- 마우스, TLR9-/- 마우스 유래 수지상 세포에 NAO를 처리하였을 때 사이토카인의 발현량이 증가하나, TLR4-/- 마우스 유래 수지상 세포에 NAO를 처리한 경우에는 대조군(LPS 처리)과 비슷한 양상으로 사이토카인의 발현량이 줄어들었다. 또한, 도 12에서 보이는 바와 같이 WT 마우스, TLR2-/- 마우스, TLR9-/- 마우스 유래 수지상 세포에 NAO를 처리하였을 때 표면단백질인자의 발현량이 증가하나, TLR4-/- 마우스 유래 수지상 세포에 NAO를 처리한 경우에는 대조군(LPS 처리)와 비슷한 양상으로 표면단백질인자의 발현량이 줄어들었다. 이때, LPS는 TLR4(Toll-like receptor-4)를 경유하는 물질로 알려져 있다. 예를 들어, LPS가 TRL4에 결합하면 세포 내 신호체계를 촉진하고 다량의 사이토카인을 생성시킨다.Fig. 11 is a graph showing the effect of the partially purified DagA enzyme reaction product obtained in Example 3 on the dendritic cells derived from WT mouse, TLR2 - / - mouse, TLR4 - / - mouse and TLR9 - IL-12p70, IL-1 ?, IL-10, and IL-12p70) compared to the control (LPS treatment). 12 shows the results of the partially purified DagA enzyme reaction products obtained in Example 3 on dendritic cells derived from WT mice, TLR2 - / - mice, TLR4 - / - mice and TLR9 - / - mice, Surface protein factor (CD80, CD86) expression level in comparison with the control group (LPS treatment). As shown in FIG. 11, when NAO was treated with dendritic cells derived from WT mice, TLR2 - / - mice and TLR9 - / - mice, the amount of cytokine expression was increased, but the dendritic cells derived from TLR4 - / - mice were treated with NAO , The expression level of cytokines was reduced in a similar manner to that of the control (LPS treatment). In addition, as shown in FIG. 12, when NAO was treated with dendritic cells derived from WT mice, TLR2 - / - mice and TLR9 - / - mice, the amount of surface protein factor was increased, but the dendritic cells derived from TLR4 - / - , The expression level of the surface protein factor was reduced in a manner similar to that of the control (LPS treatment). At this time, LPS is known as a substance via TLR4 (Toll-like receptor-4). For example, binding of LPS to TRL4 promotes intracellular signaling and produces large amounts of cytokines.
6-2-3. TLR4-/- 마우스 유래 수지상 세포에서의 면역증진 신호전달기구 확인6-2-3. Confirmation of immunity enhancement signaling mechanism in dendritic cells derived from TLR4 - / - mice
TLR4-/- 마우스로부터 얻은 수지상 세포에 NAO를 1㎎/㎖의 농도로 0분, 10분, 20분, 30분, 60분 처리하고 각각의 시료로부터 얻은 단백질에 대해 웨스턴 블롯(western blot)을 실시하여 ERK, JNK, p38, AKT, p65의 인산화 여부를 분석하였다.The dendritic cells obtained from TLR4 - / - mice were treated with NAO at a concentration of 1 mg / ml for 0, 10, 20, 30, and 60 minutes, and western blotting was performed on proteins obtained from each sample The phosphorylation of ERK, JNK, p38, AKT and p65 was analyzed.
도 13은 WT 마우스, TLR4-/- 마우스 유래 수지상 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 소정의 시간별로 처리한 후 웨스턴 블롯(western blot) 방법으로 신호전달기구를 확인한 결과이다. 도 13에서 보이는 바와 같이 WT 마우스 유래 수지상 세포에 NAO를 처리하면 TLR4의 하위신호전달기구인 ERK, p38, JNK, AKT가 인산화되고 세포 기질 내 p65의 양은 핵 내부로 들어가기 때문에 줄어든 것에 반해, TLR4 결손 수지상 세포의 경우 NAO 처리에 따른 인산화 정도에 차이가 없었다.FIG. 13 shows the result of confirming the signal transmission mechanism by western blotting after treating the partially purified DagA enzyme reaction product obtained in Example 3 to dendritic cells derived from WT mouse and TLR4 - / - mice for a predetermined time to be. As shown in FIG. 13, treatment of NAO with WT mouse-derived dendritic cells reduced phosphorylation of ERK, p38, JNK and AKT, which are lower signaling mechanisms of TLR4, and decreased amount of p65 in the cell matrix, In the case of dendritic cells, there was no difference in the degree of phosphorylation by NAO treatment.
6-3. 유방암 세포 성장 억제효과 확인6-3. Confirmation of Breast Cancer Cell Growth Inhibitory Effect
6주령된 Balb/c female mouse의 지방체(fat pad)에 마우스 유방암 세포주 4T-1을 2×105 cell의 양으로 주사하였다. 유방암 세포주를 주사한 후 종양이 형성된 2일부터 대조군에는 생리식염수를, 실험군에는 NAO를 각각 500 ㎎/㎏ 또는 1000 ㎎/㎏의 용량으로 매일 경구 투여하였다. 유방암 세포주를 주사한 후 5일부터 매일 종양의 크기를 측정하였다. 도 14는 Balb/c 마우스에 유방암 세포인 4T-1을 이종이식한 후 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 투여하였을 때 암 세포 성장 억제 효과를 대조군(생리식염수 투여)과 비교한 그래프이다. 도 14에서 보이는 바와 같이 NAO는 농도 의존적으로 유방암 세포의 성장을 억제하는 것으로 나타났다.A 6-week-old Balb / c female mouse fat pad was injected with 2 × 10 5 cells of mouse breast cancer cell line 4T-1. From the 2nd day of tumor formation after the injection of the breast cancer cell line, physiological saline was administered to the control group and NAO was administered to the experimental group daily at a dose of 500 mg / kg or 1000 mg / kg. The size of the tumor was measured daily from 5 days after the injection of the breast cancer cell line. 14 shows the effect of inhibiting the growth of cancer cells when administered with the partially purified DagA enzyme reaction product obtained in Example 3 after xenotransplantation of 4T-1 breast cancer cells into Balb / c mice, compared with the control group (administered with physiological saline) It is a graph. As shown in FIG. 14, NAO inhibited the growth of breast cancer cells in a concentration-dependent manner.
6-4. 피부암 세포 성장 억제효과 확인6-4. Confirmation of skin cancer cell growth inhibitory effect
6주령된 C57bl/6 마우스를 군당 10마리로 나눈 후, 대조군에는 PBS(phosphate buffered saline) 용액을, 나머지 실험군에는 NAO 또는 표준시료인 β-glucan(큐젠바이오텍)을 처리한 후 암 세포를 이식하고 시간에 따른 종양의 크기를 관찰하였다. 구체적으로, 실험군에는 NAO를 500 ㎎/㎏의 용량으로 또는 β-glucan을 25 ㎎/㎏의 용량으로 이틀에 한번 씩 총 9회에 걸쳐 마우스의 복강에 주사하였으며, 약물을 마우스의 복강에 4회째 주사할 때 마우스의 피하에 B16F1 melanoma tumor cell을 4×104 cell의 양으로 이식하였다. 암 세포를 이식한 후 10일부터 종양의 크기를 측정하였다. 도 15는 피부암 세포 동물모델(B16F1 melanoma tumor model)에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리하였을 때의 항암 효과를 대조군(PBS 처리) 또는 표준시료군(β-glucan 처리)과 비교한 그래프이다. 도 15에서 보이는 바와 같이 NAO를 처리한 군에서 종양의 크기가 대조군(PBS 처리) 및 표준시료 처리군(β-glucan 처리)에 비해 크게 줄어들었다.6-week-old C57bl / 6 mice were divided into 10 mice per group, and PBS (phosphate buffered saline) solution was administered to the control group and NAO or β-glucan (quizgenbiotech) The size of the tumor was observed over time. Specifically, mice were injected intraperitoneally with NAO at a dose of 500 mg / kg or β-glucan at a dose of 25 mg / kg every other day for 9 times, and the drug was administered intraperitoneally At the time of injection, B16F1 melanoma tumor cells were subcutaneously transplanted into mice at a dose of 4 × 10 4 cells. Tumor size was measured from 10 days after transplantation of cancer cells. 15 shows the anticancer effect of the partially purified DagA enzyme reaction product obtained in Example 3 on the skin cancer cell animal model (B16F1 melanoma tumor model) with the control (PBS treatment) or the standard test group (? -Glucan treatment) FIG. As shown in Fig. 15, tumor size in the NAO-treated group was greatly reduced compared to the control (PBS treatment) and standard sample treatment group (β-glucan treatment).
6-5. 이식편대 숙주치사 측정법(Graft-versus-host mortality assay)6-5. Graft-versus-host mortality assay
Balb/c mouse를 각 군당 8마리씩 5개군으로 나누고 마우스에 salmonella 주입 및 약물 주사를 수행한 후 생존율을 계산하였다. 구체적으로 1군에는 PBS(phosphate buffered saline) 용액을 3일간 매일 아침 1회 복강 주사한 다음, salmonella를 주입하고, 다시 PBS 용액을 7일간 매일 아침 1회 복강 주사하였다. 2군에는 표준시료인 β-glucan(큐젠바이오텍)을 50 ㎎/㎏의 용량으로 3일간 매일 아침 1회 복강 주사한 다음, salmonella를 주입하고, 다시 β-glucan을 50 ㎎/㎏의 용량으로 7일간 매일 아침 1회 복강 주사하였다. 3군에는 아가로올리고당(Agarooligosaccharide, AO; Takara Bio Inc., JP)을 50 ㎎/㎏의 용량으로 3일간 매일 아침 1회 복강 주사한 다음, salmonella를 주입하고, 다시 아가로올리고당을 50 ㎎/㎏의 용량으로 7일간 매일 아침 1회 복강 주사하였다. 4군에는 NAO을 50 ㎎/㎏의 용량으로 3일간 매일 아침 1회 복강 주사한 다음, salmonella를 주입하고, 다시 NAO을 50 ㎎/㎏의 용량으로 7일간 매일 아침 1회 복강 주사하였다. 5군에는 NAO을 50 ㎎/㎏의 용량으로 5일간 매일 아침 1회 복강 주사한 다음, salmonella를 주입하고, 다시 NAO을 50 ㎎/㎏의 용량으로 7일간 매일 아침 1회 복강 주사하였다. 도 16은 Balb/c mouse에 salmonella를 주입하고 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 주사한 군에서의 생존율을 대조군(PBS 처리, AO 처리) 및 표준시료군(β-glucan 처리)과 비교한 그래프이다. 도 16에서 보이는 바와 같이 NAO를 처리한 군에서 다른 군에 비해 salmonella 숫자가 감소하였고, 특히 salmonella를 주입하기 전에 5일 동안 NAO를 주사한 군에서는 매우 높은 생존율을 보였다. 즉, NAO는 병원균이 감염된 실험동물의 수명을 연장하는 효과를 나타내었다.Balb / c mice were divided into 5 groups of 8 mice per group, and salmonella injection and drug injection were performed in mice, and survival rates were calculated. Specifically, PBS (phosphate buffered saline) solution was intraperitoneally injected once a day for 3 days, salmonella was injected, and PBS solution was intraperitoneally injected once every morning for 7 days. In group 2, β-glucan (quizgen biotech), a standard sample, was intraperitoneally injected once daily for 3 days at a dose of 50 ㎎ / ㎏, then salmonella was injected and β-glucan was added at a dose of 50 ㎎ / Daily intraperitoneal injection was performed once a day. In group 3, agarooligosaccharide (AO; Takara Bio Inc., JP) was intraperitoneally injected once daily for 3 days at a dose of 50 mg / kg, then salmonella was injected and again agarooligosaccharide was added at 50 mg / Kg daily for 7 days. In group 4, NAO was intraperitoneally injected once daily for 3 days at a dose of 50 ㎎ / ㎏, then salmonella was injected, and NAO was intraperitoneally injected once a day for 7 days at a dose of 50 ㎎ / ㎏. In group 5, NAO was intraperitoneally injected once daily for 5 days at a dose of 50 ㎎ / ㎏, then salmonella was injected, and NAO was intraperitoneally injected once every morning for 7 days at a dose of 50 ㎎ / ㎏. 16 is a graph showing the survival rate of Salmonella injected into Balb / c mouse and injected with the partially purified DagA enzyme reaction product obtained in Example 3 in the control group (PBS treatment, AO treatment) and the standard test group (beta-glucan treatment) . As shown in FIG. 16, the number of salmonella was decreased in the NAO-treated group, especially in the group injected with NAO for 5 days before the salmonella injection. In other words, NAO has the effect of extending the life span of laboratory animals infected with pathogens.
6-6. 복강 세포 내 NK 세포 활성화 능력 확인6-6. Identification of NK cell activation ability in peritoneal cells
6-6-1. DP6의 복강 세포 내 NK 세포 활성화 능력 확인6-6-1. Identification of NK cell activation ability of DP6 in peritoneal cells
6~8주령 C57bl/6 마우스를 군별로 3마리씩 나누고, 대조군의 마우스 복강에 PBS(phosphate buffered saline) 용액을 주사하고, 실험군의 마우스 복강에 실시예 5에서 정제하여 수득한 DP6을 500 ㎎/㎏의 용량으로 주사하였다. 약물 주사 후 24시간이 경과하였을 때 주사기로 PBS(phosphate buffered saline) 용액 10㎖를 대조군과 실험군의 마우스 복강에 주입하고 다시 꺼내는 방식으로 복강 세포를 얻었다. 이후, 2×106 cell에 해당하는 복강세포 시료를 NK1.1과 CD69로 형광염색한 후 유세포 분석(Flow cytometry) 기법을 이용하여 NK1.1+/CD69+ 세포의 수를 분석하였다.6 to 8-week-old C57bl / 6 mice were divided into 3 groups, and PBS (phosphate buffered saline) solution was injected into mouse abdominal cavity of control group. DP6 obtained by purifying in Example 5 was injected into mouse abdominal cavity of experimental group at 500 mg / kg By volume. Twenty-four hours after the drug injection, 10 ml of PBS (phosphate buffered saline) solution was injected into the mouse abdominal cavity of the control group and the experimental group by the syringe, and the abdominal cells were obtained. Thereafter, 2 × 10 6 cells of the peritoneal cavity were fluorescently stained with NK1.1 and CD69, and the number of NK1.1 + / CD69 + cells was analyzed by flow cytometry.
도 17은 C57bl/6 마우스의 복강에 실시예 5에서 정제하여 수득한 DP6을 주사하였을 때 복강 세포 중 활성화된 NK 세포의 발현량을 대조군(PBS 용액 주사)과 비교한 그래프이다. 도 17에서 보이는 바와 같이 DP6 처리군의 경우 복강 세포 내 NK 세포 중에서 활성화 지표인 CD69+ 세포의 비율이 약 9.5%이었고 이는 대조군보다 약 4배 정도 높은 수치이다. 즉, DP6를 복강주사 하는 경우 암세포를 공격할 수 있는 활성화된 NK 세포 수가 증가하였다.FIG. 17 is a graph comparing the expression level of activated NK cells in peritoneal cells when injected with DP6 purified in Example 5 in a peritoneal cavity of C57bl / 6 mice, compared with a control (PBS solution injection). As shown in FIG. 17, in the DP6-treated group, the ratio of CD69 + cells, which is an activation index of NK cells in the peritoneal cells, was about 9.5%, which is about four times higher than that of the control group. In other words, when peritoneal injection of DP6 was performed, the number of activated NK cells capable of attacking cancer cells was increased.
6-6-2. C57bl/6 마우스의 비장 유래 면역세포 활성화 능력 확인(직접적 면역증강 효능 확인)6-6-2. Identification of spleen-derived immune cell activation ability of C57bl / 6 mouse (direct immunity enhancement efficacy confirmation)
C57bl/6 마우스의 비장으로부터 MACS bead를 이용하여 NK 세포와 NK 세포 이외의 면역세포(monocyte, macrophage, dendritic cell, helper T cell, cytotoxic T cell 등)만을 분리한 다음 2×105개의 NK 세포와 비 NK 세포 각각에 NAO를 0.1 ㎎/㎖, 0.5 ㎎/㎖, 2.5 ㎎/㎖의 농도로 처리하고, 37℃의 온도 조건 및 5% CO2 농도 조건의 배양기에서 24시간 동안 배양하였다. 배양된 세포를 모아 NK1.1과 CD69로 형광염색한 후 유세포 분석(Flow cytometry) 기법을 이용하여 CD69+ 세포의 수를 분석하였다. 도 18은 C57bl/6 마우스의 비장에서 분리된 NK 세포와 NK 세포 이외의 면역세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리하였을 때 활성화된 세포의 양을 나타낸 그래프이다. 도 18에서 보이는 바와 활성화된 NK 세포 수 및 활성화된 비 NK 세포 수는 NAO의 농도에 의존적으로 증가하였다.(Monocyte, macrophage, dendritic cell, helper T cell, and cytotoxic T cell) other than NK cells and NK cells were isolated from the spleen of C57bl / 6 mice using MACS beads. Then, 2 × 10 5 NK cells Each of the non-NK cells was treated with NAO at a concentration of 0.1 mg / ml, 0.5 mg / ml and 2.5 mg / ml, and cultured in an incubator at 37 ° C and 5% CO 2 for 24 hours. The cultured cells were collected and fluorescently stained with NK1.1 and CD69, and the number of CD69 + cells was analyzed by flow cytometry. 18 is a graph showing the amount of activated cells when the partially purified DagA enzyme reaction product obtained in Example 3 was treated with NK cells isolated from spleen of C57bl / 6 mouse and immune cells other than NK cells. As shown in FIG. 18, the number of activated NK cells and activated non-NK cells increased depending on the concentration of NAO.
6-6-3. 수지상 세포에 처리한 NAO의 면역세포 활성화 능력 확인 (간접적 면역증강 효능 확인)6-6-3. Identification of immune cell activation ability of NAO treated with dendritic cells (indirect immunity enhancement)
마우스 골수 단핵세포로부터 얻은 수지상 세포를 6일간 배양한 후, 여기에 NAO를 각각 0.1 ㎎/㎖, 0.5 ㎎/㎖, 2.5 ㎎/㎖의 농도로 처리하고, 37℃의 온도 조건 및 5% CO2 농도 조건의 배양기에서 24시간 동안 배양하였다. C57bl/6 마우스의 비장으로부터 MACS bead를 이용하여 NK 세포와 NK 세포 이외의 면역세포(monocyte, macrophage, dendritic cell, helper T cell, cytotoxic T cell 등)만을 분리한 다음 2×105개의 NK 세포와 비 NK 세포 각각에 수지상 세포 배양액으로부터 얻은 상등액을 처리하고, 37℃의 온도 조건 및 5% CO2 농도 조건의 배양기에서 24시간 동안 배양하였다. 배양된 세포를 모아 NK1.1과 CD69로 형광염색한 후 유세포 분석(Flow cytometry) 기법을 이용하여 CD69+ 세포의 수를 분석하였다. 도 19는 수지상 세포에 실시예 3에서 수득한 부분 정제된 DagA 효소반응 산물을 처리한 뒤 얻은 상등액을 C57bl/6 마우스의 비장에서 분리된 NK 세포와 NK 세포 이외의 면역세포에 처리하였을 때 활성화된 세포의 양을 나타낸 그래프이다. 도 19에서 보이는 바와 활성화된 NK 세포 수 및 활성화된 비 NK 세포 수는 수지상 세포에 처리한 NAO의 농도에 의존적으로 증가하였다.After the dendritic cells from mouse bone marrow mononuclear cells, 6 days incubation, the NAO here each 0.1 ㎎ / ㎖, 0.5 ㎎ / ㎖, 2.5 ㎎ / ㎖ treatment at a concentration of, and the temperature conditions of 37 ℃ and 5% CO 2 And cultured for 24 hours in an incubator under the condition of concentration. (Monocyte, macrophage, dendritic cell, helper T cell, and cytotoxic T cell) other than NK cells and NK cells were isolated from the spleen of C57bl / 6 mice using MACS beads. Then, 2 × 10 5 NK cells Each of the non-NK cells was treated with a supernatant obtained from a dendritic cell culture and cultured in an incubator at 37 ° C and 5% CO 2 concentration for 24 hours. The cultured cells were collected and fluorescently stained with NK1.1 and CD69, and the number of CD69 + cells was analyzed by flow cytometry. FIG. 19 shows the results of treatment of the partially purified DagA enzyme reaction product obtained in Example 3 on dendritic cells and the resultant supernatant was treated with immune cells other than NK cells and NK cells isolated from the spleen of C57bl / 6 mice, Lt; / RTI > As shown in FIG. 19, the number of activated NK cells and the number of activated non-NK cells were increased depending on the concentration of NAO treated with dendritic cells.
이상에서와 같이 본 발명을 상기의 실시예를 통해 설명하였지만 본 발명이 반드시 여기에만 한정되는 것은 아니며 본 발명의 범주와 사상을 벗어나지 않는 범위 내에서 다양한 변형실시가 가능함은 물론이다. 따라서, 본 발명의 보호범위는 특정 실시 형태로 국한되는 것이 아니며, 본 발명에 첨부된 특허청구의 범위에 속하는 모든 실시 형태를 포함하는 것으로 해석되어야 한다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Accordingly, the scope of protection of the present invention is not limited to the specific embodiments but should be construed as including all embodiments belonging to the claims attached hereto.

Claims (20)

  1. 네오아가로올리고당 또는 네오아가로올리고당 혼합물을 유효성분으로 포함하는 조성물로서,A composition comprising a neoagarooligosaccharide or neoagarooligosaccharide mixture as an active ingredient,
    상기 네오아가로올리고당은 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose), 네오아가로헥사오스(neoagarohexaose) 및 네오아가로옥타오스(neoagarooctaose)로 이루어진 군에서 선택되는 어느 하나이고,The neoagarooligosaccharide is any one selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose and neoagarooctaose, and the neoagarooligosaccharide is any one selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose and neoagarooctaose,
    상기 네오아가로올리고당 혼합물은 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose), 네오아가로헥사오스(neoagarohexaose) 및 네오아가로옥타오스(neoagarooctaose)로 이루어진 군에서 선택되는 2종 이상을 포함하는 것을 특징으로 하는 면역 증강용 조성물.The neoagarooligosaccharide mixture may be at least two or more selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose and neoagarooctaose. Wherein the composition for immunity enhancement comprises the compound of formula (I).
  2. 제 1항에서 상기 네오아가로올리고당 혼합물은 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose) 및 네오아가로헥사오스(neoagarohexaose)를 포함하는 것을 특징으로 하는 면역 증강용 조성물.The composition for immunomodulation according to claim 1, wherein the neoagarooligosaccharide mixture comprises neoagarobiose, neoagarotetraose and neoagarohexaose.
  3. 제 3항에 있어서, 상기 네오아가로올리고당 혼합물은 네오아가로올리고당 혼합물 총 중량을 기준으로 10 중량% 이하의 네오아가로비오스(neoagarobiose), 50 내지 70 중량%의 네오아가로테트라오스(neoagarotetraose) 및 20 내지 50 중량%의 네오아가로헥사오스(neoagarohexaose)를 포함하는 것을 특징으로 하는 면역 증강용 조성물.4. The method of claim 3, wherein the neoagarooligosaccharide mixture comprises less than 10% neoagarobiose, 50-70% neoagarotetraose, and mixtures thereof, based on the total weight of the neoagarooligosaccharide mixture. And 20 to 50% by weight of neoagarohexaose.
  4. 제 1항에 있어서, 상기 네오아가로올리고당 혼합물은 한천(Agar) 또는 아가로스(Agarose)에서 선택되는 기질과 스트렙토마이세스 시리칼라(Streptomyces coelicolor) 유래 베타-아가레이즈인 DagA와의 효소반응 산물 또는 이의 정제물인 것을 특징으로 하는 면역 증강용 조성물.The method of claim 1, wherein the neoagarooligosaccharide mixture is an enzyme reaction product of a substrate selected from agar or agarose with DagA, a beta-agarase derived from Streptomyces coelicolor , Wherein the composition is a purified product.
  5. 한천(Agar) 또는 아가로스(Agarose)에서 선택되는 기질과 스트렙토마이세스 시리칼라(Streptomyces coelicolor) 유래 베타-아가레이즈인 DagA와의 효소반응 산물 또는 이의 정제물을 유효성분으로 포함하는 조성물로서,A composition comprising an enzyme reaction product of a substrate selected from agar or agarose and DagA as a beta-agarase derived from Streptomyces coelicolor or a purified product thereof as an active ingredient,
    상기 효소반응 산물 또는 이의 정제물은 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose), 네오아가로헥사오스(neoagarohexaose) 및 네오아가로옥타오스(neoagarooctaose)로 이루어진 군에서 선택되는 1종 이상의 네오아가로올리고당을 포함하는 것을 특징으로 하는 면역 증강용 조성물.The enzyme reaction product or a purified product thereof may be one or more selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose, and neoagarooctaose. Or more neo-agarooligosaccharide.
  6. 제 5항에 있어서, 상기 효소반응 산물 또는 이의 정제물 내 네오아가로올리고당의 함량은 효소반응 산물 또는 이의 정제물 총 중량을 기준으로 45~85 중량%인 것을 특징으로 하는 면역 증강용 조성물.6. The composition according to claim 5, wherein the content of neoagarooligosaccharide in the enzyme reaction product or the purified product thereof is 45 to 85% by weight based on the total weight of the enzyme reaction product or purified product thereof.
  7. 제 5항에 있어서, 상기 효소반응 산물 또는 이의 정제물은 네오아가로올리고당 총 중량을 기준으로 10 중량% 이하의 네오아가로비오스(neoagarobiose), 50 내지 70 중량%의 네오아가로테트라오스(neoagarotetraose) 및 20 내지 50 중량%의 네오아가로헥사오스(neoagarohexaose)를 포함하는 것을 특징으로 하는 면역 증강용 조성물.6. The method of claim 5, wherein the enzymatic reaction product or a purified product thereof comprises no more than 10% neoagarobiose, 50-70% neoagarotetraose based on the total weight of neoagarooligosaccharide, ) And 20 to 50% by weight of neoagarohexaose.
  8. 제 5항에 있어서, 상기 효소반응은 35~45℃의 온도 및 6~8의 pH에서 이루어지는 것을 특징으로 하는 면역 증강용 조성물.The immunomodulating composition according to claim 5, wherein the enzyme reaction is carried out at a temperature of 35 to 45 ° C and a pH of 6 to 8.
  9. 제 5항에 있어서, 상기 효소반응은 0.5 내지 5%(w/v)의 한천 또는 아가로스 용액에 DagA를 2~250 unit/㎖의 농도로 첨가하여 이루어지는 것을 특징으로 하는 면역 증강용 조성물.[Claim 6] The composition for immunity enhancement according to claim 5, wherein the enzyme reaction is performed by adding DagA at a concentration of 2 to 250 unit / ml to a 0.5 to 5% (w / v) agar or agarose solution.
  10. 제 5항에 있어서, 상기 DagA는 서열번호 2의 31번째부터 309번째까지의 아미노산 서열을 포함하는 것을 특징으로 하는 면역 증강용 조성물.[Claim 6] The immunomodulating composition according to claim 5, wherein the DagA comprises the 31st to 309th amino acids of SEQ ID NO: 2.
  11. 네오아가로올리고당 또는 네오아가로올리고당 혼합물을 유효성분으로 포함하는 조성물로서,A composition comprising a neoagarooligosaccharide or neoagarooligosaccharide mixture as an active ingredient,
    상기 네오아가로올리고당은 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose), 네오아가로헥사오스(neoagarohexaose) 및 네오아가로옥타오스(neoagarooctaose)로 이루어진 군에서 선택되는 어느 하나이고,The neoagarooligosaccharide is any one selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose and neoagarooctaose, and the neoagarooligosaccharide is any one selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose and neoagarooctaose,
    상기 네오아가로올리고당 혼합물은 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose), 네오아가로헥사오스(neoagarohexaose) 및 네오아가로옥타오스(neoagarooctaose)로 이루어진 군에서 선택되는 2종 이상을 포함하는 것을 특징으로 하는 항암용 조성물.The neoagarooligosaccharide mixture may be at least two or more selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose and neoagarooctaose. Or a pharmaceutically acceptable salt thereof.
  12. 제 11항에서 상기 네오아가로올리고당 혼합물은 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose) 및 네오아가로헥사오스(neoagarohexaose)를 포함하는 것을 특징으로 하는 항암용 조성물.12. The anticancer composition according to claim 11, wherein the neoagarooligosaccharide mixture comprises neoagarobiose, neoagarotetraose, and neoagarohexaose.
  13. 제 13항에 있어서, 상기 네오아가로올리고당 혼합물은 네오아가로올리고당 혼합물 총 중량을 기준으로 10 중량% 이하의 네오아가로비오스(neoagarobiose), 50 내지 70 중량%의 네오아가로테트라오스(neoagarotetraose) 및 20 내지 50 중량%의 네오아가로헥사오스(neoagarohexaose)를 포함하는 것을 특징으로 하는 항암용 조성물.14. The method of claim 13, wherein the neoagarooligosaccharide mixture comprises less than or equal to 10% neoagarobiose, 50-70% neoagarotetraose based on the total weight of the neoagarooligosaccharide mixture, And 20 to 50% by weight of neoagarohexaose.
  14. 제 11항에 있어서, 상기 네오아가로올리고당 혼합물은 한천(Agar) 또는 아가로스(Agarose)에서 선택되는 기질과 스트렙토마이세스 시리칼라(Streptomyces coelicolor) 유래 베타-아가레이즈인 DagA와의 효소반응 산물 또는 이의 정제물인 것을 특징으로 하는 항암용 조성물.12. The method of claim 11, wherein the neoagarooligosaccharide mixture is an enzyme reaction product of a substrate selected from agar or agarose with DagA, a beta-agarase derived from Streptomyces coelicolor , Wherein the composition is a tablet.
  15. 한천(Agar) 또는 아가로스(Agarose)에서 선택되는 기질과 스트렙토마이세스 시리칼라(Streptomyces coelicolor) 유래 베타-아가레이즈인 DagA와의 효소반응 산물을 또는 이의 정제물을 유효성분으로 포함하는 조성물로서,A composition comprising an enzyme reaction product of a substrate selected from agar or agarose and DagA as a beta-agarase derived from Streptomyces coelicolor , or a purified product thereof as an active ingredient,
    상기 효소반응 산물 또는 이의 정제물은 네오아가로비오스(neoagarobiose), 네오아가로테트라오스(neoagarotetraose), 네오아가로헥사오스(neoagarohexaose) 및 네오아가로옥타오스(neoagarooctaose)로 이루어진 군에서 선택되는 1종 이상의 네오아가로올리고당을 포함하는 것을 특징으로 하는 항암용 조성물.The enzyme reaction product or a purified product thereof may be one or more selected from the group consisting of neoagarobiose, neoagarotetraose, neoagarohexaose, and neoagarooctaose. Or more of neo-agarooligosaccharide.
  16. 제 15항에 있어서, 상기 효소반응 산물 또는 이의 정제물 내 네오아가로올리고당의 함량은 효소반응 산물 또는 이의 정제물 총 중량을 기준으로 45~85 중량%인 것을 특징으로 하는 항암용 조성물.16. The anticancer composition according to claim 15, wherein the content of neoagarooligosaccharide in the enzyme reaction product or purified product thereof is 45 to 85% by weight based on the total weight of the enzyme reaction product or purified product thereof.
  17. 제 15항에 있어서, 상기 효소반응 산물 또는 이의 정제물은 네오아가로올리고당 총 중량을 기준으로 10 중량% 이하의 네오아가로비오스(neoagarobiose), 50 내지 70 중량%의 네오아가로테트라오스(neoagarotetraose) 및 20 내지 50 중량%의 네오아가로헥사오스(neoagarohexaose)를 포함하는 것을 특징으로 하는 항암용 조성물.16. The method of claim 15, wherein the enzymatic reaction product or a purified product thereof comprises no more than 10% neoagarobiose, no less than 50% neoagarotetraose, based on the total weight of neoagarooligosaccharide, ) And 20 to 50% by weight of neoagarohexaose.
  18. 제 15항에 있어서, 상기 효소반응은 35~45℃의 온도 및 6~8의 pH에서 이루어지는 것을 특징으로 하는 항암용 조성물.16. The anticancer composition according to claim 15, wherein the enzyme reaction is carried out at a temperature of 35 to 45 DEG C and a pH of 6 to 8.
  19. 제 15항에 있어서, 상기 효소반응은 0.5 내지 5%(w/v)의 한천 또는 아가로스 용액에 DagA를 2~250 unit/㎖의 농도로 첨가하여 이루어지는 것을 특징으로 하는 항암용 조성물.16. The anticancer composition according to claim 15, wherein the enzyme reaction is performed by adding DagA at a concentration of 2 to 250 unit / ml to an agar or agarose solution of 0.5 to 5% (w / v).
  20. 제 5항에 있어서, 상기 DagA는 서열번호 2의 31번째부터 309번째까지의 아미노산 서열을 포함하는 것을 특징으로 하는 항암용 조성물.6. The anticancer composition according to claim 5, wherein the DagA comprises the 31st to 309th amino acids of SEQ ID NO: 2.
PCT/KR2014/008824 2013-09-23 2014-09-23 Immune enhancement or anticancer composition containing neoagarooligosaccharide WO2015041498A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0112706 2013-09-23
KR20130112706 2013-09-23

Publications (1)

Publication Number Publication Date
WO2015041498A1 true WO2015041498A1 (en) 2015-03-26

Family

ID=52689098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008824 WO2015041498A1 (en) 2013-09-23 2014-09-23 Immune enhancement or anticancer composition containing neoagarooligosaccharide

Country Status (2)

Country Link
KR (2) KR20150033575A (en)
WO (1) WO2015041498A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408664A (en) * 2019-08-12 2019-11-05 青岛博智汇力生物科技有限公司 A kind of preparation method with new six or eight sugar of fine jade of high anti-oxidation activity
WO2020060098A1 (en) * 2018-08-08 2020-03-26 다인바이오 주식회사 Streptomyces coelicolor mutant strain, method of producing beta-agarase by using same, and method of producing neoagaro-oligosaccharides by using same
CN114214377A (en) * 2021-12-24 2022-03-22 中国海洋大学 Phosphatidyl-agaropectin oligosaccharide and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10933086B2 (en) 2016-10-27 2021-03-02 Dynebio Inc. Composition for preventing, alleviating, or treating arthritis or osteoporosis, containing neoagarooligosaccharide
KR101982223B1 (en) 2017-11-30 2019-05-24 주식회사 비케이바이오 METHOD FOR PREPARING OLIGOSACCHARIDES USING Leuconostoc lactis CCK940

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010031895A (en) * 1997-11-11 2001-04-16 오미야 히사시 Drugs, foods or drinks with the use of algae-derived physiologically active substances
JP2010230336A (en) * 2009-03-26 2010-10-14 Tohoku Univ Oligosaccharide composition showing antitumor activity
KR101302655B1 (en) * 2011-09-20 2013-09-03 명지대학교 산학협력단 Method for production of neoagarotetraose and neoagarohexaose

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010031895A (en) * 1997-11-11 2001-04-16 오미야 히사시 Drugs, foods or drinks with the use of algae-derived physiologically active substances
JP2010230336A (en) * 2009-03-26 2010-10-14 Tohoku Univ Oligosaccharide composition showing antitumor activity
KR101302655B1 (en) * 2011-09-20 2013-09-03 명지대학교 산학협력단 Method for production of neoagarotetraose and neoagarohexaose

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONG, JEONG HWA ET AL.: "Antimutagenic activity and Immunologic activity of Agarooligosaccharides Produced by beta-Agarase from Bacillus cereus ASK 202.", JOURNAL OF FOOD HYGIENE AND SAFETY., vol. 15, no. 4, 2000, pages 282 - 286 *
RHEE YOUNG JOON ET AL.: "Isolation of a Novel Freshwater Agarolytic Cellvibrio sp. KY- YJ-3 and Characterization of Its Extracellular beta-Agarase.", JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY., vol. 20, no. 10, October 2010 (2010-10-01), pages 1378 - 1385 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020060098A1 (en) * 2018-08-08 2020-03-26 다인바이오 주식회사 Streptomyces coelicolor mutant strain, method of producing beta-agarase by using same, and method of producing neoagaro-oligosaccharides by using same
US11466248B2 (en) 2018-08-08 2022-10-11 Dynebio Inc. Streptomyces coelicolor mutant strain, method of producing β-agarase by using same, and method of producing neoagaro-oligosaccharides by using same
CN112567018B (en) * 2018-08-08 2023-12-22 达因比奥有限公司 Streptomyces coelicolor mutant strain, beta-agarase production method using same and novel agarase oligosaccharide preparation method using same
CN110408664A (en) * 2019-08-12 2019-11-05 青岛博智汇力生物科技有限公司 A kind of preparation method with new six or eight sugar of fine jade of high anti-oxidation activity
CN114214377A (en) * 2021-12-24 2022-03-22 中国海洋大学 Phosphatidyl-agaropectin oligosaccharide and preparation method thereof
CN114214377B (en) * 2021-12-24 2024-03-08 中国海洋大学 Phosphatidyl-agar oligosaccharide and preparation method thereof

Also Published As

Publication number Publication date
KR20150033575A (en) 2015-04-01
KR20160020457A (en) 2016-02-23

Similar Documents

Publication Publication Date Title
WO2015041498A1 (en) Immune enhancement or anticancer composition containing neoagarooligosaccharide
JP6815525B2 (en) Compositions for the prevention, amelioration or treatment of arthritis or osteoporosis containing neoagalooligosaccharides
US10548916B2 (en) Composition comprising neoagarooligosaccharide as active ingredient, for prevention or treatment of sepsis or septic shock
WO2019088478A1 (en) Immunomodulatory composition comprising lactobacillus-derived extracellular vesicles
KR100734975B1 (en) 1- 10 1-deoxynojirimycin-producing bacillus subtilis s10 strain and composition comprising same
WO2017204547A1 (en) Versatile virus-capturing proteins and preparation method therefor
WO2021230581A1 (en) Discovery of novel akkermansia muciniphila ak32 and application thereof for prevention or treatment of intestinal injury
WO2017073849A1 (en) Composition for prevention or treatment of arthritis, containing sargassum serratifolium extract as active ingredient
KR102249652B1 (en) Composition for prevention or treatment of inflammatory Bowel Disease comprising exosome from Giardia lamblia
WO2021085854A1 (en) Yeast strain that produces glutathione, and glutathione production method using same
KR102156829B1 (en) Composition for preventing or treating immune diseases comprising mixture of Microbiome
WO2017023099A1 (en) Composition for increasing intestinal lactic acid bacteria and method for producing lactic acid bacteria using same
WO2023058801A1 (en) Composition for alleviating, preventing, or treating bowel disorder, comprising lactobacillus acidophilus kbl402 or kbl409 strain
CN108883121B (en) Use of 3, 6-anhydro-L-galactose for preventing dental caries
US20060178340A1 (en) Composition comprising soluble glucan oligomer from saccharomyces cerevisiae is2 for immune activation or prevention and treatment of cancer and the preparation method thereof
KR101923062B1 (en) Composition including neoagarooligosaccharide for preventing, improving or treating osteoporosis
KR20180046392A (en) Composition including neoagarooligosaccharide for preventing, improving or treating arthritis
KR20180046021A (en) Composition including neoagarooligosaccharide for preventing, improving or treating inflammatory disease
WO2015152653A1 (en) Composition comprising extract of alpine wormwood
KR20120107254A (en) PHARMACEUTICAL COMPOSITION FOR PREVENTING OR TREATING DIABETES MELLITUS COMPRISING α-GLUCOSIDASE INHIBITOR AND BREWER'S DRIED YEAST
WO2023282622A1 (en) Composition for treatment of autoimmune diseases comprising lactobacillus sakei or extracellular vesicles derived therefrom as active ingredient
WO2023075458A1 (en) Novel bacterial strain, vesicles derived therefrom, and anti-inflammatory and anti-bacterial use thereof
WO2023101440A1 (en) Anti-inflammatory composition, containing extract of gold nanoparticle-peanut sprout as active ingredient
WO2017204383A1 (en) Composition for inhibiting and treating cancer in females, comprising wheat germ extract and method for producing same
KR101507519B1 (en) Compositon for inducing maturation of dendritic cell comprising MAB2560

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845867

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14845867

Country of ref document: EP

Kind code of ref document: A1