WO2015041160A1 - Insolation estimation device, method, and program - Google Patents

Insolation estimation device, method, and program Download PDF

Info

Publication number
WO2015041160A1
WO2015041160A1 PCT/JP2014/074187 JP2014074187W WO2015041160A1 WO 2015041160 A1 WO2015041160 A1 WO 2015041160A1 JP 2014074187 W JP2014074187 W JP 2014074187W WO 2015041160 A1 WO2015041160 A1 WO 2015041160A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar radiation
sky
radiation amount
sector
amount
Prior art date
Application number
PCT/JP2014/074187
Other languages
French (fr)
Japanese (ja)
Inventor
侑介 遠藤
博正 進
幹人 岩政
長谷川 義朗
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2015041160A1 publication Critical patent/WO2015041160A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/12Sunshine duration recorders

Definitions

  • Embodiments of the present invention relate to a solar radiation amount estimating device, a solar radiation amount estimating method, and a solar radiation amount estimating program.
  • the amount of solar radiation is basic data for the design and evaluation of urban environments and PV plants, and it is important to accurately estimate this, so various models have been proposed.
  • any conventional model is ignored or only statistically considered by the sky factor, and no accurate estimation method has been proposed. This is because the sky map of surrounding features must be acquired, and the amount of calculation increases.
  • the ratio of reflected solar radiation to the total solar radiation is not large, but it is an important factor in the living environment and cannot be ignored under certain conditions. For example, the reflectance of snow light is 0.8. In heavy snowfall, it affects the total solar radiation by up to 10%.
  • the problems to be solved by the present invention include a solar radiation amount estimating device, a solar radiation amount estimating method, and a solar radiation amount estimating program capable of accurately and quickly estimating the amount of solar radiation in consideration of the influence of obstacles that prevent solar radiation. Is to provide.
  • the estimation information acquisition unit that acquires estimation information including the time for estimating the amount of solar radiation, the point, and the line-of-sight direction based on the point, and the surrounding 3D model at the point acquired by the estimation information acquisition unit
  • a 3D model acquisition unit that acquires a 3D model including surrounding features
  • a solar direction calculation unit that calculates the direction of the sun at the time and point based on the estimation information
  • the estimation information A sky map imaging unit that captures the entire sky in the line-of-sight direction and generates a two-dimensional sky map, and generates a plurality of sky sectors by dividing the entire sky into a plurality of sky sectors.
  • a solar radiation amount estimating apparatus including a total solar radiation amount calculating unit that calculates the total solar radiation amount by integrating the sky sectors.
  • the block diagram which actualized more the solar radiation amount estimation apparatus 1 of FIG. The figure which shows the cube map 21 which shows an example of an environment map.
  • (A) is the figure which arranged the virtual curved surface mirror in the three-dimensional coordinate space
  • (b) is the figure which arranged the sky figure in the two-dimensional coordinate space.
  • FIG. 1 is a block diagram showing a schematic configuration of a solar radiation amount estimating apparatus 1 according to the first embodiment.
  • the solar radiation amount estimation apparatus 1 in FIG. 1 includes an estimated information acquisition unit 2, a 3D model acquisition unit 3, a solar orientation calculation unit 4, a sky map imaging unit 5, a sector division unit 6, and a sector solar radiation amount calculation unit 7. And the total solar radiation amount calculation part 8 is provided.
  • the estimate information acquisition unit 2 acquires estimate information including the time at which the amount of solar radiation is estimated, the point, and the line-of-sight direction based on this point.
  • the specific method for obtaining the estimate information is not limited.
  • the estimate information acquisition unit 2 may acquire estimate information input by the user using an input device such as a keyboard, or may acquire estimate information from another communication device by wire or wireless.
  • the 3D model acquisition unit 3 is a 3D image data (hereinafter referred to as a 3D model) around a point included in the estimation information acquired by the estimation information acquisition unit 2, and acquires a 3D model including peripheral features.
  • the specific acquisition method of 3D model is not ask
  • the 3D model acquisition unit 3 may access a server or the like to acquire a 3D model around a point included in the estimation information, or may use a tool that generates a 3D model.
  • the periphery of the point may be a predetermined range centered on the point, or an arbitrarily settable range centered on the point.
  • a specific example is a range of a predetermined radius centered on the point.
  • the solar azimuth calculation unit 4 calculates the azimuth of the sun in the sky at the time and point of the estimation based on the above-described estimation information.
  • the position of the sun is calculated by numerical calculation.
  • the sky map imaging unit 5 captures the entire sky including the 3D model in the line-of-sight direction included in the estimation information, and generates a two-dimensional sky map. More specifically, the sky map imaging unit 5 captures a state in which sunlight radiated from the position of the sun calculated by the solar direction calculation unit 4 is reflected on the whole sky including the 3D model, and is two-dimensional. Generate a sky map. As will be described later, the sky map is two-dimensional image data including a plurality of pixels.
  • the sector dividing unit 6 divides the entire sky into a plurality of sky sectors, and associates each sky sector with each pixel of the sky map.
  • the sector solar radiation amount calculation unit 7 calculates the solar radiation amount from the sun located in the azimuth calculated by the solar direction calculation unit 4 for each pixel corresponding to each sky sector, and obstructs the solar radiation, that is, the surrounding area.
  • the amount of solar radiation is adjusted depending on whether or not an object exists.
  • the peripheral features are, for example, buildings or trees that shield or reflect sunlight.
  • the total solar radiation amount calculation unit 8 calculates the total solar radiation amount by adding the solar radiation amount of each pixel corresponding to each sky sector calculated by the sector solar radiation amount calculation unit 7 for all the sky sectors.
  • the solar radiation amount estimating apparatus 1 takes into consideration the time, point and line-of-sight direction, solar azimuth, and surrounding features for estimating the solar radiation amount for each sky sector. Since the solar radiation amount is calculated, the total solar radiation amount can be accurately estimated. In particular, according to the present embodiment, it is possible to calculate the amount of solar radiation taking into account that the solar radiation from the sun is shielded by surrounding features.
  • Solar radiation from the sun can be classified into four types: direct solar radiation, uniform solar radiation, scattered solar radiation and reflected solar radiation.
  • direct solar radiation is a direct solar radiation component that reaches directly from the sun and the surrounding high-luminance sky, and occupies about 50% of the total solar radiation.
  • Uniform solar radiation is a uniform solar radiation component in the whole sky, and occupies about 25% of the total solar radiation.
  • Scattered solar radiation is a solar radiation component due to Rayleigh scattering from the vicinity of the horizon, and is about 25% of the total solar radiation.
  • Reflected solar radiation is a solar radiation component due to the reflection of the surrounding feature surface that received sunlight, and its proportion of the total solar radiation amount is small. Therefore, even if the total solar radiation amount is calculated without taking reflected solar radiation into consideration, the accuracy is not significantly affected.
  • the solar radiation amount estimating apparatus 1 is characterized in that the total solar radiation amount is calculated in consideration of direct solar radiation, uniform solar radiation and scattered solar radiation, which have a large proportion of the total solar radiation amount. To do.
  • FIG. 2 is a block diagram in which the solar radiation amount estimating apparatus 1 of FIG.
  • the solar radiation amount estimating apparatus 1 in FIG. 2 includes an environment map generation unit 9, an individual solar radiation component mask generation unit 10, a gaze direction attenuation mask generation unit 11, and a virtual curved mirror arrangement unit 12. And a GPU control unit 13.
  • the environment map generation unit 9 generates an environment map that renders the surroundings of the point included in the estimate information acquired by the estimate information acquisition unit 2 when the gaze direction included in the estimate information is turned. To do.
  • the environment map includes information on surrounding features.
  • the environment map generation unit 9 may generate the environment map by any method as long as it can perform reflection mapping around a certain point.
  • FIG. 3 is a diagram showing a cube map 21 showing an example of an environment map.
  • the cube map 21 shown in FIG. 3 represents a periphery of a certain point as a cube composed of six planes that are different from each other by 90 degrees. For example, if you are facing east at a certain point, the top surface of the cube is in the celestial direction, the bottom surface is in the ground direction, and the remaining three sides are in the north, south, and west directions.
  • the individual solar radiation component mask generation unit 10 calculates and masks three types of solar radiation components of direct solar radiation, uniform solar radiation and scattered solar radiation for each pixel of the sky map corresponding to each sky sector on the sky including the 3D model. Generate data.
  • the mask data is texture data that can be processed by the GPU.
  • mask data is generated in which three types of solar radiation components in each sky sector are expressed as color values of corresponding pixels in the sky map composed of two-dimensional image data.
  • the individual solar radiation component mask generation unit 10 sets the solar radiation component of the sky sector to a specific value if there is any obstacle that prevents solar radiation in each sky sector, that is, surrounding features. That is, if there is an obstacle in at least a part of a certain sky sector, direct solar radiation, uniform solar radiation and scattered solar radiation are set to zero, and the solar radiation component is set to a specific value.
  • the sector solar radiation amount calculation unit 7 adds the mask data generated by the individual solar radiation component mask generation unit 10 and calculates the solar radiation amount of each sky sector. Detailed processing operations of the individual solar radiation component mask generation unit 10 will be described later.
  • the gaze direction attenuation mask generation unit 11 generates mask data for attenuating the amount of solar radiation according to the angle formed by the gaze direction included in the estimation information and the direction of each sky sector.
  • the line-of-sight attenuation mask generation unit 11 corresponds to the sky sector in the direction corresponding to the sky sector in the direction perpendicular to the white
  • the pixel corresponding to the sky sector in the direction orthogonal to the line-of-sight direction is black.
  • the pixel to be generated generates mask data consisting of a black and white gray image that becomes gray in proportion to the cosine of the angle formed with the line-of-sight direction.
  • the line-of-sight direction attenuation mask generation unit 11 is not an essential component and may be omitted.
  • the virtual curved mirror arrangement unit 12 arranges a virtual curved mirror, which is a data structure having a curved surface made of a mirror surface, at a point included in the estimated information, and in a line-of-sight direction included in the estimated information.
  • the sky map image capturing unit 5 captures an image of the virtual curved mirror placed by the virtual curved mirror arrangement unit 12 from above and generates a sky map.
  • FIG. 4 is a diagram showing how the sky map imaging unit 5 captures the sky reflected on the surface of the virtual curved mirror 20 from the direction indicated by the arrow.
  • FIG. 5 shows the sky generated by the sky map imaging unit 5 imaging. It is a figure which shows FIG. In the sky map 22 of FIG. 5, surrounding features (for example, buildings) in the 3D model are displayed in shades of black and white upon receiving sunlight. Black indicates the part that is shaded by sunlight, and white indicates the part that receives and reflects sunlight.
  • the solar radiation amount estimating apparatus 1 in FIG. 2 can be configured by either hardware or software. However, when configured by software, for example, the CPU and GPU (not shown) share the solar radiation amount estimating apparatus 1 in FIG. Processing can be executed.
  • the CPU performs each process of the 3D model acquisition unit 3, the estimation information calculation unit, the sun orientation calculation unit 4, the virtual curved mirror arrangement unit 12, the GPU control unit 13, and the total solar radiation amount calculation unit 8.
  • the GPU control unit 13 controls the operation of the GPU.
  • the GPU performs each process of the environment map generation unit 9, the individual solar radiation component mask generation unit 10, the sky map imaging unit 5, and the sector solar radiation amount calculation unit 7.
  • the GPU can perform parallel calculation processing, when it is necessary to repeatedly perform the same type of processing for a plurality of sky sectors, pixels, etc., the processing can be accelerated by the GPU. Since all processes of the environment map generation unit 9, the individual solar radiation component mask generation unit 10, the sky map imaging unit 5, and the sector solar radiation amount calculation unit 7 have to repeat the same type of processing for many sky sectors and pixels. By leaving these processes to the GPU, the burden on the CPU can be reduced and the processing speed can be increased.
  • the GPU has a pixel calculation function, and can perform image processing of each color of RGB in parallel on a pixel (pixel) basis. Therefore, three types of solar radiation (direct radiation, uniform, and scattering) components can be assigned to, for example, each color of RGB, and the processing of the individual solar radiation component mask generation unit 10 can be performed simultaneously in the GPU.
  • three types of solar radiation are allocated to the color information of each pixel of the sky map obtained by imaging the virtual curved mirror in which the surrounding features are captured together with sunlight with the sky map imaging unit 5.
  • the total amount of solar radiation is calculated by the pixel calculation processing of the GPU. In this case, whether or not there is an obstacle for each pixel of the sky map is considered, and if necessary, the amount of solar radiation is attenuated according to the angle between the line-of-sight direction and the direction of the sky sector.
  • FIG. 6A is a diagram in which virtual curved mirrors are arranged in a three-dimensional coordinate space
  • FIG. 6B is a diagram in which a sky diagram is arranged in a two-dimensional coordinate space.
  • the minute area in the sky map corresponding to the minute area of the virtual curved mirror is f ( ⁇ ) as the length from the center position of the sky map to this minute area, and ⁇ as the angle between the center position and both ends of the minute area.
  • f ( ⁇ ) d ⁇ one side of the minute area
  • f ( ⁇ ) d ⁇ one side of the minute area
  • f ( ⁇ ) d ⁇ one side of the minute area
  • f ( ⁇ ) d ⁇ the minute area
  • the minute area is represented by f ( ⁇ ) f ′ ( ⁇ ) d ⁇ d ⁇ .
  • g (x) be a curved surface shape in which the result of reflection onto the virtual curved mirror is an equal projection. That is, when light from an object in the direction of the elevation angle ⁇ is reflected at a point A that is f ( ⁇ ) away from the central convex portion of the curved surface in the horizontal direction, the curved surface g that goes in the camera direction (vertical direction) Find (x).
  • This curved surface is a rotational shape, and its cross-sectional shape is represented in FIG.
  • Expressions (5) and (6) use the 90 ° portion mirror (see FIG. 8) of the upper spherical surface of the curved mirror described above, so that the minute area in the sky map is always proportional to the area of the sky sector. It is shown that.
  • the sector solar radiation amount calculation unit 7 does not perform weighted integration but simply performs integration processing.
  • the amount of solar radiation can be calculated faster.
  • the sky map is a two-dimensional image and there is no distortion, the information amount of each pixel of the sky map can be used all over and the calculation accuracy can be improved.
  • the individual solar radiation component mask generation unit 10 represents the direct solar radiation component, the uniform solar radiation component, and the scattered solar radiation component as values of different colors (for example, red, green, and blue) for each sky sector. That is, the individual solar radiation component mask generation unit 10 represents each solar radiation component of each sky sector as a pixel image. Thereby, the pixel calculation function of GPU can be utilized efficiently.
  • expressing each solar radiation component as a value of a different color is an example for facilitating GPU processing, and is not an essential processing.
  • the values obtained by calculating the direct solar radiation component, the uniform solar radiation component and the scattered solar radiation component are referred to as the direct solar radiation amount, the uniform solar radiation amount and the scattered solar radiation amount, respectively.
  • a known calculation method may be used as a method for calculating the direct solar radiation amount, the uniform solar radiation amount, and the scattered solar radiation amount. Below, the example which calculates each solar radiation amount using the calculation method disclosed by the nonpatent literature 1 is demonstrated.
  • SConst is the solar energy flux outside the atmosphere at the average distance between the Earth and the Sun.
  • is the transmittance of the atmosphere at the shortest distance (the direction of the zenith angle) (average value over the entire wavelength).
  • m ( ⁇ ) is the relative optical path length measured as a ratio of the zenith angle to the optical path length.
  • is the solar zenith angle and Elev is the altitude (unit: meters).
  • SunDur ⁇ ⁇ is the time represented by the sky sector.
  • SunGap ⁇ ⁇ is the gap ratio of the solar orbit map sector.
  • AngIn ⁇ ⁇ is the incident angle between the center of gravity of the sky sector and the axis perpendicular to the surface.
  • Gz is the zenith angle of the surface.
  • the uniform solar radiation Uni is a constant value regardless of the zenith angle and azimuth angle of the sky sector.
  • the scattered solar radiation amount Dif ⁇ , ⁇ is calculated by the following equation (8).
  • Rglb is the global standard solar radiation.
  • Pdi is the ratio of scattering in the global standard solar radiation.
  • Dur is the analysis time interval.
  • SkyGap ⁇ ⁇ is the gap ratio of the sky sector (ratio of the whole sky visible region).
  • Weight ⁇ ⁇ is the ratio of scattered solar radiation from the specified sky sector to all sectors.
  • AngIn ⁇ ⁇ is the incident angle between the center of gravity of the sky sector and the incident surface.
  • ⁇ 1 and ⁇ 2 are the zenith angles at the boundaries of the sky sector.
  • Divazi is the number of divisions in the azimuth direction of the sky map.
  • the sector solar radiation amount calculation unit 7 multiplies each mask data generated by the individual solar radiation component mask generation unit 10 and the line-of-sight attenuation mask generation unit 11, and further by an obstacle in the sky map. If the solar radiation is shielded, the amount of solar radiation for each sky sector is calculated by attenuating that amount.
  • the amount of solar radiation Global ⁇ , ⁇ obtained by adding the direct, uniform and scattered solar radiation for each sky sector is expressed by the following equation (9).
  • the total solar radiation amount can be calculated as shown in the following equation (10) by summing the solar radiation amount Global ⁇ , ⁇ for each sky sector in equation (9).
  • k ⁇ , ⁇ is a ratio according to the area of the sky sector
  • S ⁇ , ⁇ is a parameter indicating whether the direction of the sky sector is shielded by an obstacle.
  • the corresponding parameter is multiplied by the above-described equation (10) for each sky sector.
  • FIG. 10 is a flowchart showing a processing procedure of the solar radiation amount estimating apparatus 1 according to the second embodiment.
  • the estimated information acquisition unit 2 acquires estimated information including the time, point, and line-of-sight direction for estimating the amount of solar radiation (step S1).
  • the 3D model acquisition unit 3 acquires a 3D model around the point included in the estimation information (step S2).
  • the solar azimuth calculation unit 4 calculates the azimuth of the sun in the sky at the time and point of the estimation based on the estimation information (step S3).
  • the environment map generation unit 9 generates an environment map facing the line-of-sight direction with the point included in the estimation information as the center (step S4).
  • the virtual curved mirror arrangement unit 12 generates a virtual curved mirror having a data structure having a curved surface composed of mirror surfaces (step S5).
  • the virtual curved mirror arrangement unit 12 performs a calculation for arranging the generated virtual curved mirror in the line-of-sight direction at a point included in the estimation information (step S6).
  • a rendering image of the environment map is reflected on the surface of the virtual curved mirror. This is equivalent to reflection of surrounding features of the virtual curved mirror and sunlight on the surface of the virtual curved mirror.
  • the sky map imaging unit 5 calculates the position of the camera for imaging the orthogonal projection of the virtual curved mirror arranged by the virtual curved mirror arrangement unit 12 (step S7), and the virtual curved mirror from the calculated camera position. To generate a sky map composed of two-dimensional image data (step S8).
  • the individual solar radiation component mask generation unit 10 generates direct, uniform and scattered solar radiation mask data for each pixel corresponding to each sky sector including the 3D model (step S9).
  • the line-of-sight attenuation mask generation unit 11 generates mask data for attenuating the amount of solar radiation according to the angle formed by the line-of-sight direction included in the estimation information and the direction of each sky sector (step S10). .
  • the sector dividing unit 6 divides the whole sky including the 3D model into a plurality of sky sectors, and associates each sky sector with each pixel of the two-dimensional sky map. Then, for each pixel of the sky map corresponding to each sky sector, mask data for direct, uniform, and diffuse solar radiation, mask data for attenuation of the line of sight, a ratio according to the area of the sky sector, and obstacles The solar radiation amount of each sky sector is calculated by multiplying by the parameter indicating whether or not the solar radiation is shielded (step S11).
  • step S12 it is determined whether or not the processing of steps S9 to S11 has been performed for all the pixels in the sky map (step S12), and the processing of steps S9 to S11 is repeated until the amount of solar radiation for all the pixels is calculated.
  • step S10 the process of step S10 is not necessary, and in the process of step S11, a parameter indicating whether or not solar radiation is shielded by an obstacle is provided. No need to multiply.
  • the sector solar radiation amount calculation unit 7 performs weighting. It is only necessary to perform the integration process instead of the integration process, and the solar radiation component can be calculated quickly. In addition, since the sky map after conversion is not distorted, the information amount of each pixel in the sky map can be used throughout, and the solar radiation distribution can be calculated with high accuracy.
  • the GPU processes multiple pixels in parallel in order to assign information on direct solar radiation, uniform solar radiation and scattered solar radiation to the color information of each pixel in the sky map composed of two-dimensional image data. This makes it easier to do this and allows you to quickly calculate the total solar radiation.
  • FIG. 11 is a block diagram showing a schematic configuration of the solar radiation amount estimating apparatus 1 according to the third embodiment.
  • the solar radiation amount estimation apparatus 1 of FIG. 11 includes a reflected solar radiation component mask generation unit 14 in addition to the configuration of FIG.
  • the reflected solar component mask generation unit 14 generates reflected solar component mask data from surrounding features for each pixel corresponding to each sky sector including the 3D model.
  • the sector solar radiation amount calculation unit 7 adds the mask data generated by the individual solar radiation component mask generation unit 10 and the mask data generated by the reflection solar radiation component mask generation unit 14 for each pixel corresponding to each sky sector.
  • the mask data of the solar radiation component of each pixel is calculated.
  • the individual solar radiation component mask generation unit 10 assigns three types of solar radiation components of direct, uniform, and scattered to different color information of each pixel, but the reflected solar radiation component mask generation unit 14 generates The mask data thus assigned is assigned to the transparency information of each pixel.
  • the mask data generated by the individual solar radiation component mask generation unit 10 and the mask data generated by the reflective solar radiation component mask generation unit 14 can be assigned as the color and transparency information of each pixel, and the pixels that the GPU is good at. Processing can be performed by calculation, and high-speed processing is possible.
  • FIG. 12 is a flowchart showing a processing procedure of the solar radiation amount estimating apparatus 1 according to the third embodiment.
  • the flowchart in FIG. 12 is obtained by adding step S14 between steps S8 and S9 in the flowchart in FIG.
  • the reflected solar radiation component mask generation unit 14 generates mask data related to reflected solar radiation for each pixel corresponding to each sky sector.
  • step S14 the same processing as step S9 and subsequent steps in FIG. 10 is performed. Note that the process of step S14 may be provided between steps S9 to S11.
  • the reflected solar component mask generation unit 14 is provided to calculate the amount of solar radiation taking into account the reflected solar radiation from the surrounding features.
  • the amount of solar radiation can be calculated in consideration of indirect light, and the calculation accuracy of solar radiation can be improved.
  • the solar radiation amount estimating apparatus 1 is applied to the installation of a photovoltaic power generation panel.
  • FIG. 13 is a block diagram showing a schematic configuration of the solar radiation amount estimating apparatus 1 according to the fourth embodiment.
  • the solar radiation amount estimation apparatus 1 in FIG. 13 is obtained by adding an optimum condition search unit 15 to the configuration in FIG.
  • the line-of-sight direction acquired by the estimated information acquisition unit 2 is regarded as at least one of the azimuth angle and the inclination angle of the photovoltaic power generation panel, and the total amount of solar radiation irradiated to the photovoltaic power generation panel is maximized.
  • the optimum condition search unit 15 searches for such an optimum condition.
  • the optimum condition search unit 15 changes the installation location, the azimuth angle, and the inclination angle of the photovoltaic power generation panel, and the optimum condition for maximizing the total amount of solar radiation applied to the photovoltaic power generation panel. Search for.
  • Finding the optimal azimuth and tilt angle of a photovoltaic panel is a global optimization problem, and a simple solution is to set all the azimuth and tilt angles of a photovoltaic panel to a certain unit (eg, It is conceivable to try exhaustively by changing every 10 degrees.
  • a hill climbing method or an annealing method may be used in which the current azimuth angle and inclination angle of the photovoltaic power generation panel are slightly shifted and the azimuth angle and inclination angle are changed in a direction in which the amount of solar radiation increases.
  • solar power generation panels are often mounted in units of strings in which a plurality of panels are connected in series, and the power generation amount of the string is determined by the panel with the lowest power generation amount in each string. Therefore, it is desirable that there is no variation in the amount of solar radiation applied to each panel in each string. Or based on the sky map imaged for every panel, you may make it put together the panel which has the same tendency as the time zone which receives sunlight, and the amount of solar radiation as the same string.
  • the solar radiation power generation panel installation location, azimuth angle, and inclination angle can be optimized using the solar radiation amount estimating apparatus 1, and the power generation efficiency of the solar power generation panel can be optimized. Can be improved.
  • the solar radiation amount estimating apparatus 1 a plurality of solar power generation panels that are most suitable for collecting as one string can be selected, and the power generation amount in each string can be increased.
  • At least a part of the solar radiation amount estimating apparatus 1 described in the above-described embodiment may be configured by hardware or software.
  • a program that realizes at least a part of the solar radiation amount estimating apparatus 1 may be stored in a recording medium such as a flexible disk or a CD-ROM, and read and executed by a computer.
  • the recording medium is not limited to a removable medium such as a magnetic disk or an optical disk, but may be a fixed recording medium such as a hard disk device or a memory.
  • a program that realizes at least a part of the solar radiation amount estimating apparatus 1 may be distributed via a communication line (including wireless communication) such as the Internet. Further, the program may be distributed in a state where the program is encrypted, modulated or compressed, and stored in a recording medium via a wired line such as the Internet or a wireless line.
  • a communication line including wireless communication
  • the program may be distributed in a state where the program is encrypted, modulated or compressed, and stored in a recording medium via a wired line such as the Internet or a wireless line.

Landscapes

  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Image Analysis (AREA)

Abstract

[Problem] To accurately and rapidly estimate insolation while taking into account the effect of an obstacle obstructing sunlight. [Solution] The insolation estimation device of the present invention is provided with: an estimation information acquiring unit for acquiring estimation information including a time at which insolation is estimated, a location, and a line-of-sight direction based on the location; a 3D model acquiring unit for acquiring a 3D model of a periphery of the acquired location, the 3D model including a peripheral feature; a solar azimuth calculation unit for calculating the azimuth of the sun at the time and location on the basis of the estimation information; a sky map imaging unit for capturing an image of the entire sky in the line-of-sight direction included in the estimation information and generating a two-dimensional sky map; a sector division unit for dividing the entire sky into a plurality of divisions, generating a plurality of sky sectors, and associating the sky sectors with pixels of the two-dimensional sky map; a sector insolation calculation unit for calculating insolation from the sun positioned at the azimuth calculated by the solar azimuth calculation unit for each of the pixels associated with the sky sectors and adjusting the insolation according to whether a peripheral feature that obstructs sunlight is present, and a total insolation calculation unit for integrating, for all the sky sectors, the insolations of the pixels associated with the sky sectors as calculated by the sector insolation calculation unit and calculating a total insolation.

Description

日射量見積装置、日射量見積方法および日射量見積プログラムSolar radiation amount estimation device, solar radiation amount estimation method, and solar radiation amount estimation program
 本発明の実施形態は、日射量見積装置、日射量見積方法および日射量見積プログラムに関する。 Embodiments of the present invention relate to a solar radiation amount estimating device, a solar radiation amount estimating method, and a solar radiation amount estimating program.
 日射量は都市環境やPVプラントの設計・評価のための基礎データであり、これを正確に見積もることは重要であるため、各種モデルが提案されている。 The amount of solar radiation is basic data for the design and evaluation of urban environments and PV plants, and it is important to accurately estimate this, so various models have been proposed.
 しかしながら、周辺地物が日射を遮ることに関しては、従来のいずれのモデルも無視しているか、天空率によって統計的に考慮するのみであり、正確に見積もる手法が提案されていない。これは、周辺地物の天空図を取得しなければならず、計算量が増大するためである。 However, as for the surrounding features to block solar radiation, any conventional model is ignored or only statistically considered by the sky factor, and no accurate estimation method has been proposed. This is because the sky map of surrounding features must be acquired, and the amount of calculation increases.
 周辺地物からは反射日射が生じるが、従来の日射量評価では、周辺地物を考慮に入れていないため、反射日射量を見積もる手法も提案されていない。総日射量に占める反射日射量の割合は大きくはないが、住環境では重要なファクターであり、また、特定の条件下では無視できなくなる。例えば雪の光の反射率は0.8で、豪雪地帯では全日射量に最大10%程度の影響を与える。 Although reflected solar radiation is generated from surrounding features, the conventional solar radiation amount evaluation does not take into account the surrounding features, so a method for estimating the reflected solar radiation amount has not been proposed. The ratio of reflected solar radiation to the total solar radiation is not large, but it is an important factor in the living environment and cannot be ignored under certain conditions. For example, the reflectance of snow light is 0.8. In heavy snowfall, it affects the total solar radiation by up to 10%.
 ただし、周辺地物や反射日射量を考慮した正確な日射量見積手法を実装するには、膨大な計算量が必要となり、従来モデルの日射量見積に比べて高速性が犠牲になる。 However, in order to implement an accurate solar radiation amount estimation method considering the surrounding features and the reflected solar radiation amount, a huge amount of calculation is required, and the high speed is sacrificed compared with the solar radiation amount estimation of the conventional model.
 本発明が解決しようとする課題は、日射を妨げる障害物の影響を考慮に入れて、正確かつ高速に日射量を見積もることが可能な日射量見積装置、日射量見積方法および日射量見積プログラムを提供することである。 The problems to be solved by the present invention include a solar radiation amount estimating device, a solar radiation amount estimating method, and a solar radiation amount estimating program capable of accurately and quickly estimating the amount of solar radiation in consideration of the influence of obstacles that prevent solar radiation. Is to provide.
 本実施形態では、日射量の見積を行う時刻、地点および前記地点を基準とする視線方向を含む見積情報を取得する見積情報取得部と、前記見積情報取得部で取得した地点における周辺の3Dモデルであって、周辺地物を含む3Dモデルを取得する3Dモデル取得部と、前記見積情報に基づいて、前記時刻および地点における太陽の方位を計算する太陽方位計算部と、前記見積情報に含まれる視線方向における全天を撮像して、二次元の天空図を生成する天空図撮像部と、前記全天を複数に分割して複数の天空セクタを生成し、各天空セクタを前記二次元の天空図の各ピクセルに対応づけるセクタ分割部と、各天空セクタに対応する各ピクセルごとに、前記太陽方位計算部で計算された方位に位置する太陽からの日射量を計算するとともに、日射を妨げる周辺地物が存在するか否かで前記日射量を調整するセクタ日射量計算部と、前記セクタ日射量計算部で計算された各天空セクタに対応する各ピクセルの日射量を、すべての天空セクタ分積算して総日射量を計算する総日射量計算部と、を備える日射量見積装置が提供される。 In the present embodiment, the estimation information acquisition unit that acquires estimation information including the time for estimating the amount of solar radiation, the point, and the line-of-sight direction based on the point, and the surrounding 3D model at the point acquired by the estimation information acquisition unit And a 3D model acquisition unit that acquires a 3D model including surrounding features, a solar direction calculation unit that calculates the direction of the sun at the time and point based on the estimation information, and the estimation information. A sky map imaging unit that captures the entire sky in the line-of-sight direction and generates a two-dimensional sky map, and generates a plurality of sky sectors by dividing the entire sky into a plurality of sky sectors. Calculate the amount of solar radiation from the sun located in the azimuth calculated by the solar azimuth calculation unit for each pixel corresponding to each sky sector, and the sector division unit corresponding to each pixel in the figure, Sector solar radiation amount calculation unit that adjusts the solar radiation amount depending on whether there is a surrounding feature that prevents the radiation, and the solar radiation amount of each pixel corresponding to each sky sector calculated by the sector solar radiation amount calculation unit, all There is provided a solar radiation amount estimating apparatus including a total solar radiation amount calculating unit that calculates the total solar radiation amount by integrating the sky sectors.
第1の実施形態に係る日射量見積装置1の概略構成を示すブロック図。The block diagram which shows schematic structure of the solar radiation amount estimation apparatus 1 which concerns on 1st Embodiment. 図1の日射量見積装置1をより具体化したブロック図。The block diagram which actualized more the solar radiation amount estimation apparatus 1 of FIG. 環境マップの一例を示すキューブマップ21を示す図。The figure which shows the cube map 21 which shows an example of an environment map. 仮想曲面鏡20の表面に映り込んだ天空の様子を矢印で示す方向から天空図撮像部5が撮像する様子を示す図。The figure which shows a mode that the sky figure imaging part 5 images the state of the sky reflected on the surface of the virtual curved mirror 20 from the direction shown by the arrow. 天空図撮像部5が撮像して生成した天空図22を示す図。The figure which shows the sky figure 22 which the sky figure imaging part 5 imaged and produced | generated. (a)は仮想曲面鏡を3次元の座標空間に配置した図、(b)は天空図を2次元の座標空間に配置した図。(A) is the figure which arranged the virtual curved surface mirror in the three-dimensional coordinate space, (b) is the figure which arranged the sky figure in the two-dimensional coordinate space. 曲面g(x)の断面形状を示す図。The figure which shows the cross-sectional shape of the curved surface g (x). 曲面鏡の上側球面の90度部分を示す図。The figure which shows the 90 degree | times part of the upper spherical surface of a curved mirror. セクタ日射量計算部の処理動作を説明する図。The figure explaining the processing operation of a sector solar radiation amount calculation part. 第2の実施形態に係る日射量見積装置1の処理手順を示すフローチャート。The flowchart which shows the process sequence of the solar radiation amount estimation apparatus 1 which concerns on 2nd Embodiment. 第3の実施形態に係る日射量見積装置1の概略構成を示すブロック図。The block diagram which shows schematic structure of the solar radiation amount estimation apparatus 1 which concerns on 3rd Embodiment. 第3の実施形態に係る日射量見積装置1の処理手順を示すフローチャート。The flowchart which shows the process sequence of the solar radiation amount estimation apparatus 1 which concerns on 3rd Embodiment. 第4の実施形態による日射量見積装置1の概略構成を示すブロック図。The block diagram which shows schematic structure of the solar radiation amount estimation apparatus 1 by 4th Embodiment.
 以下、図面を参照しながら、本発明の一実施形態を説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 図1は第1の実施形態に係る日射量見積装置1の概略構成を示すブロック図である。図1の日射量見積装置1は、見積情報取得部2と、3Dモデル取得部3と、太陽方位計算部4と、天空図撮像部5と、セクタ分割部6と、セクタ日射量計算部7と、総日射量計算部8とを備えている。
(First embodiment)
FIG. 1 is a block diagram showing a schematic configuration of a solar radiation amount estimating apparatus 1 according to the first embodiment. The solar radiation amount estimation apparatus 1 in FIG. 1 includes an estimated information acquisition unit 2, a 3D model acquisition unit 3, a solar orientation calculation unit 4, a sky map imaging unit 5, a sector division unit 6, and a sector solar radiation amount calculation unit 7. And the total solar radiation amount calculation part 8 is provided.
 見積情報取得部2は、日射量の見積を行う時刻、地点およびこの地点を基準とする視線方向を含む見積情報を取得する。見積情報の具体的な取得方法は問わない。例えば、見積情報取得部2は、ユーザがキーボード等の入力装置を用いて入力した見積情報を取得してもよいし、有線または無線にて他の通信装置から見積情報を取得してもよい。 The estimate information acquisition unit 2 acquires estimate information including the time at which the amount of solar radiation is estimated, the point, and the line-of-sight direction based on this point. The specific method for obtaining the estimate information is not limited. For example, the estimate information acquisition unit 2 may acquire estimate information input by the user using an input device such as a keyboard, or may acquire estimate information from another communication device by wire or wireless.
 3Dモデル取得部3は、見積情報取得部2で取得された見積情報に含まれる地点の周辺の三次元画像データ(以下、3Dモデル)であって、周辺地物を含む3Dモデルを取得する。3Dモデルの具体的な取得方法は問わない。例えば、3Dモデル取得部3は、サーバ等にアクセスして、見積情報に含まれる地点の周辺の3Dモデルを取得してもよいし、3Dモデルを生成するツールを使用してもよい。ここで、地点の周辺とは、地点を中心とする予め定めた範囲でもよいし、地点を中心とする任意に設定可能な範囲でもよい。具体的な一例としては、地点を中心とする所定の半径の範囲である。 The 3D model acquisition unit 3 is a 3D image data (hereinafter referred to as a 3D model) around a point included in the estimation information acquired by the estimation information acquisition unit 2, and acquires a 3D model including peripheral features. The specific acquisition method of 3D model is not ask | required. For example, the 3D model acquisition unit 3 may access a server or the like to acquire a 3D model around a point included in the estimation information, or may use a tool that generates a 3D model. Here, the periphery of the point may be a predetermined range centered on the point, or an arbitrarily settable range centered on the point. A specific example is a range of a predetermined radius centered on the point.
 太陽方位計算部4は、上述した見積情報に基づいて、見積を行う時刻および地点における天空中の太陽の方位を計算する。ここでは、例えば、数値演算により、太陽の位置を計算する。 The solar azimuth calculation unit 4 calculates the azimuth of the sun in the sky at the time and point of the estimation based on the above-described estimation information. Here, for example, the position of the sun is calculated by numerical calculation.
 天空図撮像部5は、見積情報に含まれる視線方向における3Dモデルを含む全天を撮像して、二次元の天空図を生成する。より具体的には、天空図撮像部5は、3Dモデルを含む全天に、太陽方位計算部4で計算された太陽の位置から照射される太陽光の映り込む様子を撮像し、二次元の天空図を生成する。天空図は、後述するように、複数のピクセルからなる二次元画像データである。 The sky map imaging unit 5 captures the entire sky including the 3D model in the line-of-sight direction included in the estimation information, and generates a two-dimensional sky map. More specifically, the sky map imaging unit 5 captures a state in which sunlight radiated from the position of the sun calculated by the solar direction calculation unit 4 is reflected on the whole sky including the 3D model, and is two-dimensional. Generate a sky map. As will be described later, the sky map is two-dimensional image data including a plurality of pixels.
 セクタ分割部6は、全天を複数に分割して複数の天空セクタを生成し、各天空セクタを天空図の各ピクセルに対応づける。 The sector dividing unit 6 divides the entire sky into a plurality of sky sectors, and associates each sky sector with each pixel of the sky map.
 セクタ日射量計算部7は、各天空セクタに対応する各ピクセルごとに、太陽方位計算部4で計算された方位に位置する太陽からの日射量を計算するとともに、日射を妨げる障害物すなわち周辺地物が存在するか否かで日射量を調整する。ここで、周辺地物とは、例えば、太陽光を遮蔽または反射する建物や樹木などである。 The sector solar radiation amount calculation unit 7 calculates the solar radiation amount from the sun located in the azimuth calculated by the solar direction calculation unit 4 for each pixel corresponding to each sky sector, and obstructs the solar radiation, that is, the surrounding area. The amount of solar radiation is adjusted depending on whether or not an object exists. Here, the peripheral features are, for example, buildings or trees that shield or reflect sunlight.
 総日射量計算部8は、セクタ日射量計算部7で計算された各天空セクタに対応する各ピクセルの日射量を、すべての天空セクタ分積算して総日射量を計算する。 The total solar radiation amount calculation unit 8 calculates the total solar radiation amount by adding the solar radiation amount of each pixel corresponding to each sky sector calculated by the sector solar radiation amount calculation unit 7 for all the sky sectors.
 このように、第1の実施形態による日射量見積装置1は、日射量の見積を行う時刻、地点および視線方向と、太陽の方位と、周辺地物とを考慮に入れて、天空セクタごとに日射量を計算するため、正確に総日射量を見積もることができる。特に、本実施形態によれば、太陽からの日射が周辺地物により遮蔽されることを考慮に入れて日射量を計算できる。 As described above, the solar radiation amount estimating apparatus 1 according to the first embodiment takes into consideration the time, point and line-of-sight direction, solar azimuth, and surrounding features for estimating the solar radiation amount for each sky sector. Since the solar radiation amount is calculated, the total solar radiation amount can be accurately estimated. In particular, according to the present embodiment, it is possible to calculate the amount of solar radiation taking into account that the solar radiation from the sun is shielded by surrounding features.
 (第2の実施形態)
 太陽からの日射は、直射日射、一様日射、散乱日射および反射日射の4種類に分類することができる。このうち、直射日射は、太陽とその周辺の高輝度天空から直接届く日射成分であり、総日射量の約50%を占める。一様日射は、全天で一様な日射成分であり、総日射量の約25%を占める。散乱日射は、地平線付近からのレイリー散乱による日射成分であり、総日射量の約25%である。反射日射は、太陽光を受けた周辺地物表面の反射による日射成分であり、総日射量に占める割合はわずかである。したがって、反射日射を考慮に入れずに総日射量を計算しても、それほど精度に影響はない。
(Second Embodiment)
Solar radiation from the sun can be classified into four types: direct solar radiation, uniform solar radiation, scattered solar radiation and reflected solar radiation. Of these, direct solar radiation is a direct solar radiation component that reaches directly from the sun and the surrounding high-luminance sky, and occupies about 50% of the total solar radiation. Uniform solar radiation is a uniform solar radiation component in the whole sky, and occupies about 25% of the total solar radiation. Scattered solar radiation is a solar radiation component due to Rayleigh scattering from the vicinity of the horizon, and is about 25% of the total solar radiation. Reflected solar radiation is a solar radiation component due to the reflection of the surrounding feature surface that received sunlight, and its proportion of the total solar radiation amount is small. Therefore, even if the total solar radiation amount is calculated without taking reflected solar radiation into consideration, the accuracy is not significantly affected.
 以下に説明する第2の実施形態による日射量見積装置1は、総日射量に占める割合の大きい、直射日射、一様日射および散乱日射を考慮に入れて総日射量を計算することを特徴とする。 The solar radiation amount estimating apparatus 1 according to the second embodiment described below is characterized in that the total solar radiation amount is calculated in consideration of direct solar radiation, uniform solar radiation and scattered solar radiation, which have a large proportion of the total solar radiation amount. To do.
 図2は図1の日射量見積装置1をより具体化したブロック図である。図2の日射量見積装置1は、図1の構成に加えて、環境マップ生成部9と、個別日射成分マスク生成部10と、視線方向減衰マスク生成部11と、仮想曲面鏡配置部12と、GPU制御部13とを有する。 FIG. 2 is a block diagram in which the solar radiation amount estimating apparatus 1 of FIG. In addition to the configuration in FIG. 1, the solar radiation amount estimating apparatus 1 in FIG. 2 includes an environment map generation unit 9, an individual solar radiation component mask generation unit 10, a gaze direction attenuation mask generation unit 11, and a virtual curved mirror arrangement unit 12. And a GPU control unit 13.
 環境マップ生成部9は、見積情報取得部2で取得された見積情報に含まれる地点を中心として、見積情報に含まれる視線方向を向いたときに、その周辺の様子をレンダリングした環境マップを生成する。環境マップには、周辺地物の情報が含まれている。環境マップ生成部9は、ある地点の周辺のリフレクションマッピングを行えるものであれば、どのような手法で環境マップを生成してもよい。 The environment map generation unit 9 generates an environment map that renders the surroundings of the point included in the estimate information acquired by the estimate information acquisition unit 2 when the gaze direction included in the estimate information is turned. To do. The environment map includes information on surrounding features. The environment map generation unit 9 may generate the environment map by any method as long as it can perform reflection mapping around a certain point.
 図3は環境マップの一例を示すキューブマップ21を示す図である。図3のキューブマップ21は、ある地点の周辺を、それぞれ90°ずつ異なる6つの平面からなる立方体で表したものである。例えば、ある地点で東に向いている場合は、立方体の上面は天の方向、下面は地の方向、残り3つの側面は北、南、西の方向になる。 FIG. 3 is a diagram showing a cube map 21 showing an example of an environment map. The cube map 21 shown in FIG. 3 represents a periphery of a certain point as a cube composed of six planes that are different from each other by 90 degrees. For example, if you are facing east at a certain point, the top surface of the cube is in the celestial direction, the bottom surface is in the ground direction, and the remaining three sides are in the north, south, and west directions.
 個別日射成分マスク生成部10は、3Dモデルを含む天空上の各天空セクタに対応する天空図の各ピクセルごとに、直射日射、一様日射および散乱日射の3種類の日射成分を計算してマスクデータを生成する。ここで、マスクデータとは、GPUが処理可能なテクスチャデータである。後述するように、本実施形態では、各天空セクタにおける3種類の日射成分を、二次元画像データからなる天空図の対応ピクセルの色の値として表現したマスクデータを生成する。 The individual solar radiation component mask generation unit 10 calculates and masks three types of solar radiation components of direct solar radiation, uniform solar radiation and scattered solar radiation for each pixel of the sky map corresponding to each sky sector on the sky including the 3D model. Generate data. Here, the mask data is texture data that can be processed by the GPU. As will be described later, in the present embodiment, mask data is generated in which three types of solar radiation components in each sky sector are expressed as color values of corresponding pixels in the sky map composed of two-dimensional image data.
 個別日射成分マスク生成部10は、各天空セクタ内に日射を妨げる何らかの障害物すなわち周辺地物があれば、その天空セクタの日射成分を特定の値に設定する。すなわち、ある天空セクタ内の少なくとも一部に障害物があれば、直射日射、一様日射および散乱日射をゼロとして、日射成分を特定の値に設定する。セクタ日射量計算部7は、個別日射成分マスク生成部10が生成したマスクデータを合算して、各天空セクタの日射量を計算する。個別日射成分マスク生成部10の詳細な処理動作は後述する。 The individual solar radiation component mask generation unit 10 sets the solar radiation component of the sky sector to a specific value if there is any obstacle that prevents solar radiation in each sky sector, that is, surrounding features. That is, if there is an obstacle in at least a part of a certain sky sector, direct solar radiation, uniform solar radiation and scattered solar radiation are set to zero, and the solar radiation component is set to a specific value. The sector solar radiation amount calculation unit 7 adds the mask data generated by the individual solar radiation component mask generation unit 10 and calculates the solar radiation amount of each sky sector. Detailed processing operations of the individual solar radiation component mask generation unit 10 will be described later.
 視線方向減衰マスク生成部11は、見積情報に含まれる視線方向と、各天空セクタの方向との為す角度に応じて日射量に減衰をかけるためのマスクデータを生成する。典型的には、視線方向減衰マスク生成部11は、視線方向の天空セクタに対応するピクセルは白、視線方向と直交する方向の天空セクタに対応するピクセルは黒、その間の方向の天空セクタに対応するピクセルは視線方向との為す角度の余弦に比例した灰色になるような白黒濃淡画像からなるマスクデータを生成する。なお、視線方向減衰マスク生成部11は、必須の構成部ではなく、省略してもよい。 The gaze direction attenuation mask generation unit 11 generates mask data for attenuating the amount of solar radiation according to the angle formed by the gaze direction included in the estimation information and the direction of each sky sector. Typically, the line-of-sight attenuation mask generation unit 11 corresponds to the sky sector in the direction corresponding to the sky sector in the direction perpendicular to the white, the pixel corresponding to the sky sector in the direction orthogonal to the line-of-sight direction is black. The pixel to be generated generates mask data consisting of a black and white gray image that becomes gray in proportion to the cosine of the angle formed with the line-of-sight direction. The line-of-sight direction attenuation mask generation unit 11 is not an essential component and may be omitted.
 仮想曲面鏡配置部12は、鏡面からなる曲面を有するデータ構造である仮想曲面鏡を、見積情報に含まれる地点で、見積情報に含まれる視線方向に向けて配置する。天空図撮像部5は、仮想曲面鏡配置部12が配置した仮想曲面鏡を上方から撮像して天空図を生成する。 The virtual curved mirror arrangement unit 12 arranges a virtual curved mirror, which is a data structure having a curved surface made of a mirror surface, at a point included in the estimated information, and in a line-of-sight direction included in the estimated information. The sky map image capturing unit 5 captures an image of the virtual curved mirror placed by the virtual curved mirror arrangement unit 12 from above and generates a sky map.
 図4は仮想曲面鏡20の表面に映り込んだ天空の様子を矢印で示す方向から天空図撮像部5が撮像する様子を示す図、図5は天空図撮像部5が撮像して生成した天空図22を示す図である。図5の天空図22には、3Dモデル内の周辺地物(例えば、建物)が太陽光を受けて白黒の濃淡で表示されている。黒は太陽光の陰になっている部分、白は太陽光を受けて反射している部分を示している。 FIG. 4 is a diagram showing how the sky map imaging unit 5 captures the sky reflected on the surface of the virtual curved mirror 20 from the direction indicated by the arrow. FIG. 5 shows the sky generated by the sky map imaging unit 5 imaging. It is a figure which shows FIG. In the sky map 22 of FIG. 5, surrounding features (for example, buildings) in the 3D model are displayed in shades of black and white upon receiving sunlight. Black indicates the part that is shaded by sunlight, and white indicates the part that receives and reflects sunlight.
 図2の日射量見積装置1は、ハードウェアとソフトウェアのいずれでも構成可能であるが、ソフトウェアで構成する場合、例えば、不図示のCPUとGPUが分担して図2の日射量見積装置1の処理を実行することができる。この場合、CPUは、3Dモデル取得部3、見積情報計算部、太陽方位計算部4、仮想曲面鏡配置部12、GPU制御部13および総日射量計算部8の各処理を行う。GPU制御部13は、GPUの動作を制御する。また、GPUは、環境マップ生成部9、個別日射成分マスク生成部10、天空図撮像部5、およびセクタ日射量計算部7の各処理を行う。 The solar radiation amount estimating apparatus 1 in FIG. 2 can be configured by either hardware or software. However, when configured by software, for example, the CPU and GPU (not shown) share the solar radiation amount estimating apparatus 1 in FIG. Processing can be executed. In this case, the CPU performs each process of the 3D model acquisition unit 3, the estimation information calculation unit, the sun orientation calculation unit 4, the virtual curved mirror arrangement unit 12, the GPU control unit 13, and the total solar radiation amount calculation unit 8. The GPU control unit 13 controls the operation of the GPU. In addition, the GPU performs each process of the environment map generation unit 9, the individual solar radiation component mask generation unit 10, the sky map imaging unit 5, and the sector solar radiation amount calculation unit 7.
 GPUは、並列演算処理を行うことができるため、同種の処理を複数の天空セクタやピクセル等について繰り返し行う必要がある場合に、その処理をGPUが行うことで、処理の高速化が図れる。環境マップ生成部9、個別日射成分マスク生成部10、天空図撮像部5およびセクタ日射量計算部7のいずれの処理も、多数の天空セクタやピクセル等について、同種の処理を繰り返さなければならないため、これらの処理をGPUに任せることで、CPUの負担を軽減できるとともに、処理の高速化が図れる。 Since the GPU can perform parallel calculation processing, when it is necessary to repeatedly perform the same type of processing for a plurality of sky sectors, pixels, etc., the processing can be accelerated by the GPU. Since all processes of the environment map generation unit 9, the individual solar radiation component mask generation unit 10, the sky map imaging unit 5, and the sector solar radiation amount calculation unit 7 have to repeat the same type of processing for many sky sectors and pixels. By leaving these processes to the GPU, the burden on the CPU can be reduced and the processing speed can be increased.
 GPUは、ピクセル演算機能を備えており、画素(ピクセル)単位で、RGBの各色の画像処理を並行して行うことができる。そこで、3種類の日射(直射、一様、散乱)成分を例えばRGBの各色に割り当てて、個別日射成分マスク生成部10の処理をGPUにて同時並行的に行わせることができる。 The GPU has a pixel calculation function, and can perform image processing of each color of RGB in parallel on a pixel (pixel) basis. Therefore, three types of solar radiation (direct radiation, uniform, and scattering) components can be assigned to, for example, each color of RGB, and the processing of the individual solar radiation component mask generation unit 10 can be performed simultaneously in the GPU.
 より具体的には、太陽光とともに周辺地物が写し込まれた仮想曲面鏡を、天空図撮像部5で撮像して得られた天空図の各ピクセルの色情報に3種類の日射量を割り振り、GPUのピクセル演算処理により、総日射量を計算させる。この場合、天空図の各ピクセルごとに障害物があるか否かを考慮するとともに、必要に応じて視線方向と天空セクタの方向との為す角度に応じて日射量を減衰させる。 More specifically, three types of solar radiation are allocated to the color information of each pixel of the sky map obtained by imaging the virtual curved mirror in which the surrounding features are captured together with sunlight with the sky map imaging unit 5. The total amount of solar radiation is calculated by the pixel calculation processing of the GPU. In this case, whether or not there is an obstacle for each pixel of the sky map is considered, and if necessary, the amount of solar radiation is attenuated according to the angle between the line-of-sight direction and the direction of the sky sector.
 図6(a)は仮想曲面鏡を3次元の座標空間に配置した図、図6(b)は天空図を2次元の座標空間に配置した図である。仮想曲面鏡の半径をR、微小領域のx軸からの為す角度をθ、z軸からの為す角度をφとすると、仮想曲面鏡の表面上の微小領域のx方向の一辺の長さは、Rsinφdθで表される。また、微小領域のz方向の一辺の長さは、Rdφで表される。よって、微小領域の面積は、Rsinφdθdφで表される。 FIG. 6A is a diagram in which virtual curved mirrors are arranged in a three-dimensional coordinate space, and FIG. 6B is a diagram in which a sky diagram is arranged in a two-dimensional coordinate space. If the radius of the virtual curved mirror is R, the angle formed from the x-axis of the minute region is θ, and the angle formed from the z-axis is φ, the length of one side in the x direction of the minute region on the surface of the virtual curved mirror is It is represented by Rsinφdθ. Further, the length of one side of the micro area in the z direction is represented by Rdφ. Therefore, the area of the minute region is represented by R 2 sinφdθdφ.
 仮想曲面鏡の微小領域に対応する天空図中の微小面積は、天空図の中心位置からこの微小面積までの長さをf(φ)、中心位置から微小面積の両端までの為す角度をΔθとすると、微小面積の一辺は、f'(φ)dφで表され、他辺は、f(φ)dθで表される。よって、微小面積は、f(φ)f'(φ)dθdφで表される。 The minute area in the sky map corresponding to the minute area of the virtual curved mirror is f (φ) as the length from the center position of the sky map to this minute area, and Δθ as the angle between the center position and both ends of the minute area. Then, one side of the minute area is represented by f ′ (φ) dφ, and the other side is represented by f (φ) dθ. Therefore, the minute area is represented by f (φ) f ′ (φ) dθdφ.
 仮想曲面鏡の表面上の微小領域の面積Rsinφdθdφと、天空図中の微小面積f(φ)f'(φ)dθdφとは比例することから、微分方程式を解くと、以下の(1)式が得られる。 Since the area R 2 sinφdθdφ of the minute area on the surface of the virtual curved mirror is proportional to the minute area f (φ) f ′ (φ) dθdφ in the sky map, solving the differential equation, the following (1) The formula is obtained.
 f(φ)=k・sin(x/2)  …(1) F (φ) = k · sin (x / 2) (1)
 仮想曲面鏡の表面上の微小領域の面積と天空図中の微小面積とが比例関係にあることは等積射影と呼ばれる。仮想曲面鏡への映り込みの結果が等積射影となるような曲面形状をg(x)とする。すなわち、仰角φの方角にある物体からの光が、この曲面の中央の凸部から水平方向にf(φ)離れた地点Aで反射した場合、カメラ方向(垂直方向)に向かっていく曲面g(x)を求める。この曲面は回転形状であり、その断面形状は図7で表される。 The fact that the area of the minute area on the surface of the virtual curved mirror and the minute area in the sky map are in a proportional relationship is called equal volume projection. Let g (x) be a curved surface shape in which the result of reflection onto the virtual curved mirror is an equal projection. That is, when light from an object in the direction of the elevation angle φ is reflected at a point A that is f (φ) away from the central convex portion of the curved surface in the horizontal direction, the curved surface g that goes in the camera direction (vertical direction) Find (x). This curved surface is a rotational shape, and its cross-sectional shape is represented in FIG.
 入射光と反射光の関係から、この地点Aの傾き角度aは、φ/2になる。この傾き角度aをグラフ上の傾きとして表現すると、g'(f(φ))となる。これら2つは一致するため、以下の(2)式が得られる。 From the relationship between incident light and reflected light, the inclination angle a at this point A is φ / 2. When this inclination angle a is expressed as an inclination on the graph, it becomes g ′ (f (φ)). Since these two coincide, the following equation (2) is obtained.
 g'(f(φ))=-tan(φ/2)  …(2) G '(f (φ)) =-tan (φ / 2) (2)
 ここで、x=f(φ)と置くと、上述した(1)式は以下の(3)式のように書き換えることができる。 Here, when x = f (φ) is set, the above-described expression (1) can be rewritten as the following expression (3).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 よって、(2)式と(3)式から、以下の(4)式が成り立つ。 Therefore, the following equation (4) is established from the equations (2) and (3).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 (4)式の微分方程式を解くと、以下の(5)式が得られる。 The following equation (5) is obtained by solving the differential equation (4).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ただし、
Figure JPOXMLDOC01-appb-M000004
However,
Figure JPOXMLDOC01-appb-M000004
 (5)式と(6)式は、上述した曲面鏡の上側球面の90度部分の鏡(図8を参照)を用いることで、天空図中の微小面積が天空セクタの面積と常に比例することを示している。 Expressions (5) and (6) use the 90 ° portion mirror (see FIG. 8) of the upper spherical surface of the curved mirror described above, so that the minute area in the sky map is always proportional to the area of the sky sector. It is shown that.
 このように、天空セクタの面積と天空図中の微小面積が比例する天空図(等積天空図)を用いることで、セクタ日射量計算部7は、重み付き積算ではなく、単なる積算処理をすればよくなり、より高速に日射量を計算できる。また、天空図は二次元画像であり、歪みがないことから、天空図の各ピクセルの情報量をくまなく活用でき、計算精度を向上できる。 In this way, by using a sky map (equal sky map) in which the area of the sky sector and the minute area in the sky map are proportional, the sector solar radiation amount calculation unit 7 does not perform weighted integration but simply performs integration processing. The amount of solar radiation can be calculated faster. In addition, since the sky map is a two-dimensional image and there is no distortion, the information amount of each pixel of the sky map can be used all over and the calculation accuracy can be improved.
 次に、個別日射成分マスク生成部10の処理動作について詳述する。個別日射成分マスク生成部10は、各天空セクタごとに、直達日射成分、一様日射成分および散乱日射成分を、それぞれ異なる色(例えば、赤、緑および青)の値として表現する。すなわち、個別日射成分マスク生成部10は、各天空セクタの各日射成分をピクセル画像として表現する。これにより、GPUのピクセル演算機能を効率的に生かすことができる。なお、各日射成分をそれぞれ異なる色の値として表現することは、GPUでの処理を行いやすくするための一例であり、必須の処理ではない。 Next, the processing operation of the individual solar radiation component mask generation unit 10 will be described in detail. The individual solar radiation component mask generation unit 10 represents the direct solar radiation component, the uniform solar radiation component, and the scattered solar radiation component as values of different colors (for example, red, green, and blue) for each sky sector. That is, the individual solar radiation component mask generation unit 10 represents each solar radiation component of each sky sector as a pixel image. Thereby, the pixel calculation function of GPU can be utilized efficiently. In addition, expressing each solar radiation component as a value of a different color is an example for facilitating GPU processing, and is not an essential processing.
 本明細書では、直達日射成分、一様日射成分および散乱日射成分を計算で求めた値をそれぞれ、直達日射量、一様日射量および散乱日射量と呼ぶ。直達日射量、一様日射量および散乱日射量の計算手法は、公知の計算手法を用いればよい。以下では、非特許文献1に開示された計算手法を用いて各日射量を計算する例を説明する。 In this specification, the values obtained by calculating the direct solar radiation component, the uniform solar radiation component and the scattered solar radiation component are referred to as the direct solar radiation amount, the uniform solar radiation amount and the scattered solar radiation amount, respectively. As a method for calculating the direct solar radiation amount, the uniform solar radiation amount, and the scattered solar radiation amount, a known calculation method may be used. Below, the example which calculates each solar radiation amount using the calculation method disclosed by the nonpatent literature 1 is demonstrated.
 天空図上の各ピクセルに対応する天頂角θ(垂直線からの角度)と方位角(北からの角度)に対し、天空セクタからの直達日射量Dirθ,αは、以下の(7)式で計算される。 For the zenith angle θ (angle from the vertical line) and azimuth angle (angle from north) corresponding to each pixel on the sky map, the direct solar radiation amount Dirθ, α from the sky sector is expressed by the following equation (7). Calculated.
 Dirθ,α = Sconst × βm(θ) × SunDurθ,α × SunGapθ,α × cos(AngInθ,α) 
  …(7)
Dirθ, α = Sconst × βm (θ) × SunDurθ, α × SunGapθ, α × cos (AngInθ, α)
... (7)
 ただし、m(θ) = EXP(-0.000118 × Elev - 1.638*10-9 × Elev2) / cos(θ)、
 AngInθ,α = acos(cos(θ) × cos(Gz) + sin(θ) ×sin(Gz) × cos(α-Ga) ) 
Where m (θ) = EXP (-0.000118 × Elev-1.638 * 10 -9 × Elev2) / cos (θ),
AngInθ, α = acos (cos (θ) × cos (Gz) + sin (θ) × sin (Gz) × cos (α-Ga))
 (7)式中の各定数および関数の具体的内容は、以下の通りである。
 SConstは、地球と太陽間の平均距離における大気圏外の太陽エネルギー束。βは、最短距離(天頂角の方向)での大気圏の透過率(波長全体での平均値)。m(θ)は、天頂角の光路長に対する比率として計測される相対光路長。ただしθは太陽天頂角、Elevは標高(単位: メートル)。SunDurθ,αは、天空セクタが表す時間。SunGapθ,αは、太陽軌道図セクタのギャップ比率。AngInθ,αは、天空セクタの重心とサーフェスに垂直な軸との間の入射角。Gzは、サーフェスの天頂角。
 一様日射量Uniは、天空セクタの天頂角および方位角に関わらず、一定の値になる。
The specific contents of each constant and function in the equation (7) are as follows.
SConst is the solar energy flux outside the atmosphere at the average distance between the Earth and the Sun. β is the transmittance of the atmosphere at the shortest distance (the direction of the zenith angle) (average value over the entire wavelength). m (θ) is the relative optical path length measured as a ratio of the zenith angle to the optical path length. Where θ is the solar zenith angle and Elev is the altitude (unit: meters). SunDurθ, α is the time represented by the sky sector. SunGapθ, α is the gap ratio of the solar orbit map sector. AngInθ, α is the incident angle between the center of gravity of the sky sector and the axis perpendicular to the surface. Gz is the zenith angle of the surface.
The uniform solar radiation Uni is a constant value regardless of the zenith angle and azimuth angle of the sky sector.
 散乱日射量Difθ,αは、以下の(8)式で計算される。 The scattered solar radiation amount Difθ, α is calculated by the following equation (8).
 Difθ,α = Rglb × Pdif × Dur × SkyGapθ,α × Weightθ,α × cos(AngInθ,α)  …(8) D Difθ, α = Rglb × Pdif × Dur × SkyGapθ, α × Weightθ, α × cos (AngInθ, α) ... (8)
 ただし、Rglb = (SConst Σ(βm(θ))) / (1 - Pdif)、
 Weightθ,α = (2cosθ2 + cos2θ2 - 2cosθ1 - cos2θ1) / 4 × Divazi
Where Rglb = (SConst Σ (βm (θ))) / (1-Pdif),
Weightθ, α = (2cosθ2 + cos2θ2-2cosθ1-cos2θ1) / 4 × Divazi
 (8)式中の各定数および関数の具体的内容は、以下の通りである。
 Rglbは全天標準日射量。Pdiは 全天標準日射量のうち散乱する比率。Durは解析の時間間隔。SkyGapθ,αは天空セクタのギャップ比率(全天可視領域の割合)。Weightθ,αは指定した天空セクタを起点とする散乱日射の、すべてのセクタに対する比率。AngInθ,αは天空セクタの重心と入射面との間の入射角。θ1 と θ2は天空セクタの境界の天頂角。Divaziは天空図の方位角方向の分割数。
Specific contents of each constant and function in the equation (8) are as follows.
Rglb is the global standard solar radiation. Pdi is the ratio of scattering in the global standard solar radiation. Dur is the analysis time interval. SkyGapθ, α is the gap ratio of the sky sector (ratio of the whole sky visible region). Weightθ, α is the ratio of scattered solar radiation from the specified sky sector to all sectors. AngInθ, α is the incident angle between the center of gravity of the sky sector and the incident surface. θ1 and θ2 are the zenith angles at the boundaries of the sky sector. Divazi is the number of divisions in the azimuth direction of the sky map.
 セクタ日射量計算部7は、図9に示すように、個別日射成分マスク生成部10と視線方向減衰マスク生成部11で生成された各マスクデータを乗算し、さらに、天空図内で障害物により日射が遮蔽されている場合はその分を減衰させることにより、天空セクタごとの日射量を計算する。天空セクタごとの直達、一様および散乱の各日射量を合算した日射量Globalθ,αは以下の(9)式のようになる。 As shown in FIG. 9, the sector solar radiation amount calculation unit 7 multiplies each mask data generated by the individual solar radiation component mask generation unit 10 and the line-of-sight attenuation mask generation unit 11, and further by an obstacle in the sky map. If the solar radiation is shielded, the amount of solar radiation for each sky sector is calculated by attenuating that amount. The amount of solar radiation Globalθ, α obtained by adding the direct, uniform and scattered solar radiation for each sky sector is expressed by the following equation (9).
 Globalθ,α=Dirθ,α+Uni+Difθ,α  …(9) Globalθ, α = Dirθ, α + Uni + Difθ, α (9)
 (9)式の天空セクタごとの日射量Globalθ,αを、全天空セクタ分集計することで、以下の(10)式のように、総日射量が計算できる。 The total solar radiation amount can be calculated as shown in the following equation (10) by summing the solar radiation amount Globalθ, α for each sky sector in equation (9).
 Global=ΣGlobalθ,α×kθ,α×Sθ,α  …(10) Global = ΣGlobalθ, α × kθ, α × Sθ, α (10)
 ただし、kθ,αは天空セクタの面積に応じた比率、Sθ,αは天空セクタの方向が障害物により遮蔽されているか否かを表すパラメータである。視線方向による減衰を考慮に入れる場合は、その分のパラメータを天空セクタごとに上述した(10)式に掛け合わせることになる。 However, kθ, α is a ratio according to the area of the sky sector, and Sθ, α is a parameter indicating whether the direction of the sky sector is shielded by an obstacle. When taking attenuation due to the line-of-sight direction into consideration, the corresponding parameter is multiplied by the above-described equation (10) for each sky sector.
 図10は第2の実施形態に係る日射量見積装置1の処理手順を示すフローチャートである。まず、見積情報取得部2は、日射量の見積を行う時刻、地点および視線方向を含む見積情報を取得する(ステップS1)。次に、3Dモデル取得部3は、見積情報に含まれる地点の周辺の3Dモデルを取得する(ステップS2)。 FIG. 10 is a flowchart showing a processing procedure of the solar radiation amount estimating apparatus 1 according to the second embodiment. First, the estimated information acquisition unit 2 acquires estimated information including the time, point, and line-of-sight direction for estimating the amount of solar radiation (step S1). Next, the 3D model acquisition unit 3 acquires a 3D model around the point included in the estimation information (step S2).
 次に、太陽方位計算部4は、見積情報に基づいて、見積を行う時刻および地点における天空中の太陽の方位を計算する(ステップS3)。次に、環境マップ生成部9は、見積情報に含まれる地点を中心として、視線方向を向いた環境マップを生成する(ステップS4)。 Next, the solar azimuth calculation unit 4 calculates the azimuth of the sun in the sky at the time and point of the estimation based on the estimation information (step S3). Next, the environment map generation unit 9 generates an environment map facing the line-of-sight direction with the point included in the estimation information as the center (step S4).
 次に、仮想曲面鏡配置部12は、鏡面からなる曲面を有するデータ構造である仮想曲面鏡を生成する(ステップS5)。次に、仮想曲面鏡配置部12は、生成した仮想曲面鏡を、見積情報に含まれる地点で視線方向に向けて配置するための計算を行う(ステップS6)。この仮想曲面鏡の表面には、環境マップのレンダリング画像が映り込まれることになる。これは、仮想曲面鏡の表面に、仮想曲面鏡の周辺地物と太陽光が映り込まれることと等価である。 Next, the virtual curved mirror arrangement unit 12 generates a virtual curved mirror having a data structure having a curved surface composed of mirror surfaces (step S5). Next, the virtual curved mirror arrangement unit 12 performs a calculation for arranging the generated virtual curved mirror in the line-of-sight direction at a point included in the estimation information (step S6). A rendering image of the environment map is reflected on the surface of the virtual curved mirror. This is equivalent to reflection of surrounding features of the virtual curved mirror and sunlight on the surface of the virtual curved mirror.
 次に、天空図撮像部5は、仮想曲面鏡配置部12が配置した仮想曲面鏡の直交射影を撮像するためのカメラの位置を計算し(ステップS7)、計算したカメラの位置から仮想曲面鏡を撮像して、二次元画像データからなる天空図を生成する(ステップS8)。 Next, the sky map imaging unit 5 calculates the position of the camera for imaging the orthogonal projection of the virtual curved mirror arranged by the virtual curved mirror arrangement unit 12 (step S7), and the virtual curved mirror from the calculated camera position. To generate a sky map composed of two-dimensional image data (step S8).
 次に、個別日射成分マスク生成部10は、3Dモデルを含む天空の各天空セクタに対応する各ピクセルごとに、直射、一様、散乱日射のマスクデータを生成する(ステップS9)。次に、視線方向減衰マスク生成部11は、見積情報に含まれる視線方向と、各天空セクタの方向との為す角度に応じて日射量に減衰をかけるためのマスクデータを生成する(ステップS10)。 Next, the individual solar radiation component mask generation unit 10 generates direct, uniform and scattered solar radiation mask data for each pixel corresponding to each sky sector including the 3D model (step S9). Next, the line-of-sight attenuation mask generation unit 11 generates mask data for attenuating the amount of solar radiation according to the angle formed by the line-of-sight direction included in the estimation information and the direction of each sky sector (step S10). .
 次に、セクタ分割部6にて、3Dモデルを含む全天を複数に分割して複数の天空セクタを生成して、各天空セクタを二次元の天空図の各ピクセルに対応づける。そして、各天空セクタに対応する天空図の各ピクセルごとに、直射、一様、散乱日射のマスクデータと、視線方向減衰のためのマスクデータと、天空セクタの面積に応じた比率と、障害物で日射が遮蔽しているか否かを示すパラメータとを掛け合わせて、各天空セクタの日射量を計算する(ステップS11)。 Next, the sector dividing unit 6 divides the whole sky including the 3D model into a plurality of sky sectors, and associates each sky sector with each pixel of the two-dimensional sky map. Then, for each pixel of the sky map corresponding to each sky sector, mask data for direct, uniform, and diffuse solar radiation, mask data for attenuation of the line of sight, a ratio according to the area of the sky sector, and obstacles The solar radiation amount of each sky sector is calculated by multiplying by the parameter indicating whether or not the solar radiation is shielded (step S11).
 次に、天空図中の全ピクセルについて、ステップS9~S11の処理を行ったか否かを判定し(ステップS12)、全ピクセルについての日射量が計算されるまでステップS9~S11の処理を繰り返す。 Next, it is determined whether or not the processing of steps S9 to S11 has been performed for all the pixels in the sky map (step S12), and the processing of steps S9 to S11 is repeated until the amount of solar radiation for all the pixels is calculated.
 天空図中の全ピクセルについて日射量が計算できると、これらを積算して総日射量を計算して出力する(ステップS13)。 If the solar radiation amount can be calculated for all pixels in the sky map, these are integrated to calculate and output the total solar radiation amount (step S13).
 なお、視線方向減衰マスク生成部11は省略することも可能であり、この場合は、ステップS10の処理は不要となり、ステップS11の処理では障害物で日射が遮蔽しているか否かを示すパラメータを掛け合わせる必要がなくなる。 Note that the line-of-sight direction attenuation mask generation unit 11 can be omitted, and in this case, the process of step S10 is not necessary, and in the process of step S11, a parameter indicating whether or not solar radiation is shielded by an obstacle is provided. No need to multiply.
 このように、第2の実施形態では、仮想曲面鏡の微小領域の面積と天空図中の微小面積とが比例する仮想曲面鏡と天空図を用いることで、セクタ日射量計算部7では、重み付けした積算処理ではなく、単なる積算処理を行えばよくなり、迅速に日射成分を計算可能となる。また、変換後の天空図には歪みがないため、天空図内の各ピクセルの情報量をくまなく活用でき、日射分布を精度よく計算できる。 As described above, in the second embodiment, by using the virtual curved mirror and the sky map in which the area of the minute area of the virtual curved mirror and the minute area in the sky map are proportional, the sector solar radiation amount calculation unit 7 performs weighting. It is only necessary to perform the integration process instead of the integration process, and the solar radiation component can be calculated quickly. In addition, since the sky map after conversion is not distorted, the information amount of each pixel in the sky map can be used throughout, and the solar radiation distribution can be calculated with high accuracy.
 さらに、第2の実施形態では、二次元画像データからなる天空図内の各ピクセルの色情報に、直射日射、一様日射および散乱日射に関する情報を割り当てるため、GPUが複数のピクセルの処理を並行して行いやすくなり、総日射量を迅速に計算できる。 Furthermore, in the second embodiment, the GPU processes multiple pixels in parallel in order to assign information on direct solar radiation, uniform solar radiation and scattered solar radiation to the color information of each pixel in the sky map composed of two-dimensional image data. This makes it easier to do this and allows you to quickly calculate the total solar radiation.
 (第3の実施形態)
 図11は第3の実施形態に係る日射量見積装置1の概略構成を示すブロック図である。図11の日射量見積装置1は、図2の構成に加えて、反射日射成分マスク生成部14を備えている。反射日射成分マスク生成部14は、3Dモデルを含む天空の各天空セクタに対応する各ピクセルごとに、周辺地物からの反射日射成分のマスクデータを生成する。
(Third embodiment)
FIG. 11 is a block diagram showing a schematic configuration of the solar radiation amount estimating apparatus 1 according to the third embodiment. The solar radiation amount estimation apparatus 1 of FIG. 11 includes a reflected solar radiation component mask generation unit 14 in addition to the configuration of FIG. The reflected solar component mask generation unit 14 generates reflected solar component mask data from surrounding features for each pixel corresponding to each sky sector including the 3D model.
 セクタ日射量計算部7は、各天空セクタに対応する各ピクセルごとに、個別日射成分マスク生成部10が生成したマスクデータと、反射日射成分マスク生成部14が生成したマスクデータとを合算して、各ピクセルの日射成分のマスクデータを計算する。 The sector solar radiation amount calculation unit 7 adds the mask data generated by the individual solar radiation component mask generation unit 10 and the mask data generated by the reflection solar radiation component mask generation unit 14 for each pixel corresponding to each sky sector. The mask data of the solar radiation component of each pixel is calculated.
 上述したように、個別日射成分マスク生成部10は、直射、一様、散乱の3種類の日射成分を、各ピクセルのそれぞれ異なる色情報に割り当てたが、反射日射成分マスク生成部14は、生成したマスクデータを、各ピクセルの透明情報に割り当てる。これにより、個別日射成分マスク生成部10が生成したマスクデータと反射日射成分マスク生成部14が生成したマスクデータとを、各ピクセルの色および透明情報として割り当てることができ、GPUが得意とするピクセル演算にて処理を行うことができ、高速処理が可能となる。 As described above, the individual solar radiation component mask generation unit 10 assigns three types of solar radiation components of direct, uniform, and scattered to different color information of each pixel, but the reflected solar radiation component mask generation unit 14 generates The mask data thus assigned is assigned to the transparency information of each pixel. Thereby, the mask data generated by the individual solar radiation component mask generation unit 10 and the mask data generated by the reflective solar radiation component mask generation unit 14 can be assigned as the color and transparency information of each pixel, and the pixels that the GPU is good at. Processing can be performed by calculation, and high-speed processing is possible.
 図12は第3の実施形態に係る日射量見積装置1の処理手順を示すフローチャートである。図12のフローチャートは、図10のフローチャートのステップS8とS9の間に、ステップS14を追加したものである。このステップS14では、反射日射成分マスク生成部14は、各天空セクタに対応する各ピクセルごとに、反射日射に関するマスクデータを生成する。 FIG. 12 is a flowchart showing a processing procedure of the solar radiation amount estimating apparatus 1 according to the third embodiment. The flowchart in FIG. 12 is obtained by adding step S14 between steps S8 and S9 in the flowchart in FIG. In step S14, the reflected solar radiation component mask generation unit 14 generates mask data related to reflected solar radiation for each pixel corresponding to each sky sector.
 ステップS14の後は、図10のステップS9以降と同様の処理が行われる。なお、ステップS14の処理は、ステップS9~S11の間に設けてもよい。 After step S14, the same processing as step S9 and subsequent steps in FIG. 10 is performed. Note that the process of step S14 may be provided between steps S9 to S11.
 このように、第3の実施形態では、反射日射成分マスク生成部14を設けて、周辺地物からの反射日射を考慮に入れて日射量を計算するため、太陽光の直接光だけでなく、間接光も考慮に入れて日射量を計算でき、日射量の計算精度を向上できる。 As described above, in the third embodiment, the reflected solar component mask generation unit 14 is provided to calculate the amount of solar radiation taking into account the reflected solar radiation from the surrounding features. The amount of solar radiation can be calculated in consideration of indirect light, and the calculation accuracy of solar radiation can be improved.
 (第4の実施形態)
 以下に説明する第4の実施形態は、日射量見積装置1を太陽光発電パネルの設置に応用するものである。
(Fourth embodiment)
In the fourth embodiment described below, the solar radiation amount estimating apparatus 1 is applied to the installation of a photovoltaic power generation panel.
 図13は第4の実施形態による日射量見積装置1の概略構成を示すブロック図である。図13の日射量見積装置1は、図1の構成に、最適条件検索部15を追加したものである。 FIG. 13 is a block diagram showing a schematic configuration of the solar radiation amount estimating apparatus 1 according to the fourth embodiment. The solar radiation amount estimation apparatus 1 in FIG. 13 is obtained by adding an optimum condition search unit 15 to the configuration in FIG.
 太陽光発電パネルは、太陽光に対して最適な方位角および傾斜角に設置しないと、発電効率が落ちることが知られている。ところが、太陽光の方角は、時刻および季節によって変化するため、太陽光発電パネルを最適な方位角および傾斜角に設定するのは容易ではない。 It is known that the power generation efficiency is lowered unless the solar power generation panel is installed at the optimum azimuth and inclination with respect to sunlight. However, since the direction of sunlight changes depending on the time and season, it is not easy to set the photovoltaic panel to the optimum azimuth angle and inclination angle.
 そこで、本実施形態では、見積情報取得部2で取得する視線方向を、太陽光発電パネルの方位角および傾斜角の少なくとも一方とみなして、太陽光発電パネルに照射される総日射量が最大になるような最適条件を、最適条件検索部15で検索する。 Therefore, in this embodiment, the line-of-sight direction acquired by the estimated information acquisition unit 2 is regarded as at least one of the azimuth angle and the inclination angle of the photovoltaic power generation panel, and the total amount of solar radiation irradiated to the photovoltaic power generation panel is maximized. The optimum condition search unit 15 searches for such an optimum condition.
 より詳細には、最適条件検索部15は、太陽光発電パネルの設置場所、方位角および傾斜角の少なくとも一つを変えて、太陽光発電パネルに照射される総日射量が最大となる最適条件を検索する。 More specifically, the optimum condition search unit 15 changes the installation location, the azimuth angle, and the inclination angle of the photovoltaic power generation panel, and the optimum condition for maximizing the total amount of solar radiation applied to the photovoltaic power generation panel. Search for.
 太陽光発電パネルの最適な方位角および傾斜角を求めることは、大域的最適化問題であり、単純な解決手法としては、太陽光発電パネルのすべての方位角および傾斜角を一定の単位(例えば10度おき)で変えて、網羅的に試行することが考えられる。その他、太陽光発電パネルの現在の方位角および傾斜角を少しずらして試行し、より日射量が増える方向に方位角および傾斜角を変える山登り法や焼きなまし法などを用いてもよい。 Finding the optimal azimuth and tilt angle of a photovoltaic panel is a global optimization problem, and a simple solution is to set all the azimuth and tilt angles of a photovoltaic panel to a certain unit (eg, It is conceivable to try exhaustively by changing every 10 degrees. In addition, a hill climbing method or an annealing method may be used in which the current azimuth angle and inclination angle of the photovoltaic power generation panel are slightly shifted and the azimuth angle and inclination angle are changed in a direction in which the amount of solar radiation increases.
 また、太陽光発電パネルは、複数のパネルを直列接続したストリング単位で実装することが多く、各ストリング内で最低の発電量のパネルにより、そのストリングの発電量が決まってしまう。よって、各ストリング内の各パネルに照射される日射量にばらつきがない方が望ましい。あるいは、各パネルごとに撮像した天空図に基づいて、太陽光を受ける時間帯および日射量が同じ傾向のパネルを、同じストリングとしてまとめるようにしてもよい。 Also, solar power generation panels are often mounted in units of strings in which a plurality of panels are connected in series, and the power generation amount of the string is determined by the panel with the lowest power generation amount in each string. Therefore, it is desirable that there is no variation in the amount of solar radiation applied to each panel in each string. Or based on the sky map imaged for every panel, you may make it put together the panel which has the same tendency as the time zone which receives sunlight, and the amount of solar radiation as the same string.
 このように、第4の実施形態によれば、日射量見積装置1を利用して太陽光発電パネルの設置場所、方位角および傾斜角を最適化することができ、太陽光発電パネルの発電効率を向上できる。また、日射量見積装置1を用いることで、一つのストリングとしてまとめるのに最適な複数の太陽光発電パネルを選定でき、各ストリングでの発電量を増大できる。 Thus, according to the fourth embodiment, the solar radiation power generation panel installation location, azimuth angle, and inclination angle can be optimized using the solar radiation amount estimating apparatus 1, and the power generation efficiency of the solar power generation panel can be optimized. Can be improved. Moreover, by using the solar radiation amount estimating apparatus 1, a plurality of solar power generation panels that are most suitable for collecting as one string can be selected, and the power generation amount in each string can be increased.
 上述した実施形態で説明した日射量見積装置1の少なくとも一部は、ハードウェアで構成してもよいし、ソフトウェアで構成してもよい。ソフトウェアで構成する場合には、日射量見積装置1の少なくとも一部の機能を実現するプログラムをフレキシブルディスクやCD-ROM等の記録媒体に収納し、コンピュータに読み込ませて実行させてもよい。記録媒体は、磁気ディスクや光ディスク等の着脱可能なものに限定されず、ハードディスク装置やメモリなどの固定型の記録媒体でもよい。 At least a part of the solar radiation amount estimating apparatus 1 described in the above-described embodiment may be configured by hardware or software. When configured by software, a program that realizes at least a part of the solar radiation amount estimating apparatus 1 may be stored in a recording medium such as a flexible disk or a CD-ROM, and read and executed by a computer. The recording medium is not limited to a removable medium such as a magnetic disk or an optical disk, but may be a fixed recording medium such as a hard disk device or a memory.
 また、日射量見積装置1の少なくとも一部の機能を実現するプログラムを、インターネット等の通信回線(無線通信も含む)を介して頒布してもよい。さらに、同プログラムを暗号化したり、変調をかけたり、圧縮した状態で、インターネット等の有線回線や無線回線を介して、あるいは記録媒体に収納して頒布してもよい。 Further, a program that realizes at least a part of the solar radiation amount estimating apparatus 1 may be distributed via a communication line (including wireless communication) such as the Internet. Further, the program may be distributed in a state where the program is encrypted, modulated or compressed, and stored in a recording medium via a wired line such as the Internet or a wireless line.
 本発明の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本発明の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。 The aspects of the present invention are not limited to the individual embodiments described above, but include various modifications that can be conceived by those skilled in the art, and the effects of the present invention are not limited to the contents described above. That is, various additions, modifications, and partial deletions can be made without departing from the concept and spirit of the present invention derived from the contents defined in the claims and equivalents thereof.

Claims (12)

  1.  日射量の見積を行う時刻、地点および前記地点を基準とする視線方向を含む見積情報を取得する見積情報取得部と、
     前記見積情報取得部で取得した地点における周辺の3Dモデルであって、周辺地物を含む3Dモデルを取得する3Dモデル取得部と、
     前記見積情報に基づいて、前記時刻および地点における太陽の方位を計算する太陽方位計算部と、
     前記見積情報に含まれる視線方向における全天を撮像して、二次元の天空図を生成する天空図撮像部と、
     前記全天を複数に分割して複数の天空セクタを生成し、各天空セクタを前記二次元の天空図の各ピクセルに対応づけるセクタ分割部と、
     各天空セクタに対応する各ピクセルごとに、前記太陽方位計算部で計算された方位に位置する太陽からの日射量を計算するとともに、日射を妨げる周辺地物が存在するか否かで前記日射量を調整するセクタ日射量計算部と、
     前記セクタ日射量計算部で計算された各天空セクタに対応する各ピクセルの日射量を、すべての天空セクタ分積算して総日射量を計算する総日射量計算部と、を備える日射量見積装置。
    An estimate information acquisition unit for acquiring estimate information including a time for estimating the amount of solar radiation, a point, and a gaze direction based on the point;
    A 3D model acquisition unit that acquires a 3D model around the point acquired by the estimate information acquisition unit, the 3D model including surrounding features;
    Based on the estimated information, a solar azimuth calculation unit that calculates the azimuth of the sun at the time and point;
    A sky map imaging unit that images the whole sky in the line-of-sight direction included in the estimated information and generates a two-dimensional sky map;
    A sector dividing unit that divides the whole sky into a plurality of sky sectors and associates each sky sector with each pixel of the two-dimensional sky map;
    For each pixel corresponding to each sky sector, calculate the amount of solar radiation from the sun located in the azimuth calculated by the solar azimuth calculation unit, and whether the amount of solar radiation depends on whether there are surrounding features that hinder solar radiation Sector solar radiation amount calculation part to adjust
    A solar radiation amount estimating device, comprising: a total solar radiation amount calculating unit for calculating the total solar radiation amount by integrating the solar radiation amount of each pixel corresponding to each sky sector calculated by the sector solar radiation amount calculating unit for all the sky sectors .
  2.  前記セクタ日射量計算部は、前記複数の天空セクタのそれぞれごとに、直射日射量、散乱日射量および一様日射量を合算する請求項1に記載の日射量見積装置。 The solar radiation amount estimation device according to claim 1, wherein the sector solar radiation amount calculation unit adds a direct solar radiation amount, a scattered solar radiation amount, and a uniform solar radiation amount for each of the plurality of sky sectors.
  3.  前記セクタ日射量計算部は、前記複数の天空セクタのそれぞれごとに、前記周辺地物からの反射日射量を、直射日射量、散乱日射量および一様日射量と合算する請求項2に記載の日射量見積装置。 The sector solar radiation amount calculation unit according to claim 2, wherein the reflected solar radiation amount from the surrounding features is added to the direct solar radiation amount, the scattered solar radiation amount, and the uniform solar radiation amount for each of the plurality of sky sectors. Solar radiation estimation device.
  4.  前記天空図の各ピクセルは、一つの前記天空セクタに対応づけられており、
     前記セクタ日射量計算部は、前記複数の天空セクタのそれぞれごとの直射日射量、散乱日射量および一様日射量を、各天空セクタに対応する前記天空図上のピクセルのそれぞれ異なる色の値として計算する請求項2に記載の日射量見積装置。
    Each pixel in the sky map is associated with one sky sector,
    The sector solar radiation amount calculation unit calculates the direct solar radiation amount, the scattered solar radiation amount and the uniform solar radiation amount for each of the plurality of sky sectors as values of different colors of pixels on the sky map corresponding to each sky sector. The solar radiation amount estimation apparatus according to claim 2 to calculate.
  5.  前記天空図の各ピクセルは、一つの前記天空セクタに対応づけられており、
     前記セクタ日射量計算部は、前記複数の天空セクタのそれぞれごとの直射日射量、散乱日射量および一様日射量を、各天空セクタに対応する前記天空図上のピクセルのそれぞれ異なる色の値として計算し、かつ前記周辺地物からの反射日射量を、対応するピクセルの透明値として計算する請求項3に記載の日射量見積装置。
    Each pixel in the sky map is associated with one sky sector,
    The sector solar radiation amount calculation unit calculates the direct solar radiation amount, the scattered solar radiation amount and the uniform solar radiation amount for each of the plurality of sky sectors as values of different colors of pixels on the sky map corresponding to each sky sector. The solar radiation amount estimation apparatus according to claim 3, wherein the solar radiation amount is calculated and a reflected solar radiation amount from the surrounding feature is calculated as a transparency value of a corresponding pixel.
  6.  前記天空図の各ピクセルは、一つの前記天空セクタに対応づけられており、
     前記天空図の各ピクセルは、太陽からの光が障害物により妨げられているか否かを示す2値データであり、
     前記総日射量計算部は、前記天空図の各ピクセルの二値データと、対応する天空セクタの日射量と、前記天空図の各ピクセル値を対応する天空セクタの面積に応じた比率とを乗じた値を、全天空セクタ分積算して前記総日射量を計算する請求項1に記載の日射量見積装置。
    Each pixel in the sky map is associated with one sky sector,
    Each pixel of the sky map is binary data indicating whether light from the sun is blocked by an obstacle,
    The total solar radiation amount calculation unit multiplies the binary data of each pixel of the sky map, the solar radiation amount of the corresponding sky sector, and the ratio according to the area of the sky sector corresponding to each pixel value of the sky map. The solar radiation amount estimating apparatus according to claim 1, wherein the total solar radiation amount is calculated by integrating the calculated values for all sky sectors.
  7.  前記セクタ日射量計算部は、前記見積情報に含まれる視線方向と各天空セクタとの為す角度に応じて、日射量の減衰度を計算し、この減衰度に応じて日射量を調整する請求項1に記載の日射量見積装置。 The sector solar radiation amount calculation unit calculates an attenuation degree of the solar radiation amount according to an angle formed between the line-of-sight direction and each sky sector included in the estimation information, and adjusts the solar radiation amount according to the attenuation degree. The solar radiation amount estimation apparatus according to 1.
  8.  鏡面からなる曲面を有するデータ構造である仮想曲面鏡を、前記見積情報に含まれる地点および視線方向に配置する仮想曲面鏡配置部と、
     前記見積情報に含まれる地点で、前記見積情報に含まれる視線方向を向いた場合に、周辺の様子をレンダリングした環境マップを生成する環境マップ生成部と、を備え、
     前記天空図撮像部は、前記仮想曲面鏡配置部が配置した前記仮想曲面鏡の表面に映り込まれる前記環境マップの様子を撮像して前記天空図を生成する請求項1に記載の日射量見積装置。
    A virtual curved mirror arrangement unit that arranges a virtual curved mirror that is a data structure having a curved surface formed of a mirror surface in a point and a line-of-sight direction included in the estimation information;
    An environment map generation unit that generates an environment map that renders a surrounding state when the line of sight included in the estimate information is directed at a point included in the estimate information; and
    2. The solar radiation amount estimation according to claim 1, wherein the sky map imaging unit captures an image of the environment map reflected on a surface of the virtual curved mirror arranged by the virtual curved mirror arrangement unit to generate the sky map. apparatus.
  9.  前記仮想曲面生成部は、球面の鏡を90°角で切り取った形状のデータ構造である前記仮想曲面鏡を生成する請求項8に記載の日射量見積装置。 The solar radiation amount estimation apparatus according to claim 8, wherein the virtual curved surface generation unit generates the virtual curved mirror having a data structure having a shape obtained by cutting a spherical mirror at a 90 ° angle.
  10.  前記見積情報取得部は、太陽光発電パネルの設置場所を前記地点とし、前記太陽光発電パネルの方位角および傾斜角を前記視線方向として、前記見積情報を繰り返し取得し、
     前記太陽光発電パネルの設置場所、方位角および傾斜角の少なくとも一つを変えて、総日射量が最大となる最適条件を検索する最適条件検索部を備える請求項1に記載の日射量見積装置。
    The estimated information acquisition unit repeatedly acquires the estimated information, with the installation location of the photovoltaic power generation panel as the point, the azimuth angle and the inclination angle of the photovoltaic power generation panel as the line-of-sight direction,
    The solar radiation amount estimation apparatus according to claim 1, further comprising an optimal condition search unit that searches for an optimal condition that maximizes the total solar radiation amount by changing at least one of an installation location, an azimuth angle, and an inclination angle of the photovoltaic power generation panel. .
  11.  日射量の見積を行う時刻、地点および前記地点を基準とする視線方向を含む見積情報を取得するステップと、
     前記見積情報に含まれる地点における周辺の3Dモデルであって、周辺地物を含む3Dモデルを取得するステップと、
     前記見積情報に基づいて、前記時刻および地点における太陽の方位を計算するステップと、
     前記見積情報に含まれる視線方向における全天を撮像して、二次元の天空図を生成するステップと、
     前記全天を複数に分割して複数の天空セクタを生成し、各天空セクタを前記二次元の天空図の各ピクセルに対応づけるステップと、
     各天空セクタに対応する各ピクセルごとに、前記太陽方位計算部で計算された方位に位置する太陽からの日射量を計算するとともに、日射を妨げる周辺地物が存在するか否かで前記日射量を調整するステップと、
     前記計算された各天空セクタに対応する各ピクセルの日射量を、すべての天空セクタ分積算して総日射量を計算するステップと、を備える日射量見積方法。
    Obtaining estimate information including a time for estimating the amount of solar radiation, a point, and a gaze direction based on the point;
    Obtaining a 3D model around the point included in the estimate information, including a surrounding feature;
    Calculating a sun bearing at the time and point based on the estimate information;
    Imaging the whole sky in the line-of-sight direction included in the estimate information to generate a two-dimensional sky map;
    Dividing the whole sky into a plurality of sky sectors to associate each sky sector with each pixel of the two-dimensional sky map;
    For each pixel corresponding to each sky sector, calculate the amount of solar radiation from the sun located in the azimuth calculated by the solar azimuth calculation unit, and whether the amount of solar radiation depends on whether there are surrounding features that hinder solar radiation Adjusting steps,
    A step of calculating a total solar radiation amount by integrating the solar radiation amount of each pixel corresponding to each sky sector calculated for all the sky sectors;
  12.  日射量の見積を行う時刻、地点および前記地点を基準とする視線方向を含む見積情報を取得するステップと、
     前記見積情報に含まれる地点における周辺の3Dモデルであって、周辺地物を含む3Dモデルを取得するステップと、
     前記見積情報に基づいて、前記時刻および地点における太陽の方位を計算するステップと、
     前記見積情報に含まれる視線方向における全天を撮像して、二次元の天空図を生成するステップと、
     前記全天を複数に分割して複数の天空セクタを生成し、各天空セクタを前記二次元の天空図の各ピクセルに対応づけるステップと、
     各天空セクタに対応する各ピクセルごとに、前記太陽方位計算部で計算された方位に位置する太陽からの日射量を計算するとともに、日射を妨げる周辺地物が存在するか否かで前記日射量を調整するステップと、
     前記計算された各天空セクタに対応する各ピクセルの日射量を、すべての天空セクタ分積算して総日射量を計算するステップと、をコンピュータに実行させる日射量見積プログラム。
    Obtaining estimate information including a time for estimating the amount of solar radiation, a point, and a gaze direction based on the point;
    Obtaining a 3D model around the point included in the estimate information, including a surrounding feature;
    Calculating a sun bearing at the time and point based on the estimate information;
    Imaging the whole sky in the line-of-sight direction included in the estimate information to generate a two-dimensional sky map;
    Dividing the whole sky into a plurality of sky sectors to associate each sky sector with each pixel of the two-dimensional sky map;
    For each pixel corresponding to each sky sector, calculate the amount of solar radiation from the sun located in the azimuth calculated by the solar azimuth calculation unit, and whether the amount of solar radiation depends on whether there are surrounding features that hinder solar radiation Adjusting steps,
    A solar radiation amount estimation program for causing a computer to execute a step of calculating a total solar radiation amount by adding the solar radiation amount of each pixel corresponding to each sky sector calculated for all the sky sectors.
PCT/JP2014/074187 2013-09-20 2014-09-12 Insolation estimation device, method, and program WO2015041160A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013195963A JP2015059923A (en) 2013-09-20 2013-09-20 Solar radiation estimation device, method of estimating solar radiation and solar radiation estimation program
JP2013-195963 2013-09-20

Publications (1)

Publication Number Publication Date
WO2015041160A1 true WO2015041160A1 (en) 2015-03-26

Family

ID=52688811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074187 WO2015041160A1 (en) 2013-09-20 2014-09-12 Insolation estimation device, method, and program

Country Status (2)

Country Link
JP (1) JP2015059923A (en)
WO (1) WO2015041160A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109165458A (en) * 2018-09-05 2019-01-08 南京林业大学 Earth's surface based on BIM builds solar radiation evaluation method
CN113158129A (en) * 2021-03-09 2021-07-23 中国电建集团华东勘测设计研究院有限公司 Method and system for calculating back power generation gain rate of double-sided photovoltaic module

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3037701B1 (en) * 2015-06-16 2017-07-21 Electricite De France METHOD FOR ESTIMATING AND FORECASTING ENERGY PRODUCTION INDICATOR OF A SOLAR SYSTEM
JP6717481B2 (en) * 2016-06-17 2020-07-01 株式会社インテグラル Solar radiation calculation system, solar radiation calculation method, program, and solar radiation integrated data
JP6626081B2 (en) * 2017-12-28 2019-12-25 株式会社九電工 Apparatus and program for predicting influence of shadow
KR102008017B1 (en) * 2018-02-12 2019-08-06 전주비전대학교산학협력단 Calculation method of amount of solar radiation of construction site of a solar photovoltaic power station by using drone
JP7073901B2 (en) * 2018-05-18 2022-05-24 株式会社大林組 Heat load calculation device and heat load calculation method
WO2021193296A1 (en) * 2020-03-27 2021-09-30 Agc株式会社 Solar radiation estimation system, air conditioning control system, air conditioning device, vehicle, building, solar radiation estimation method, air conditioning control method, and solar radiation estimation program
JP2023131357A (en) * 2022-03-09 2023-09-22 Biprogy株式会社 Solar-radiation prediction system and solar-radiation prediction program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189603A (en) * 1996-01-08 1997-07-22 Kansai Electric Power Co Inc:The Sun shadow evaluating method and reflected light evaluating method
WO2009057190A1 (en) * 2007-10-29 2009-05-07 Japan Agency For Marine-Earth Science And Technology Meteorological phenomena simulation device and method
JP2009282406A (en) * 2008-05-23 2009-12-03 Miyagi Univ Of Education Fixed point observation apparatus and fixed point observation method
JP2011102740A (en) * 2009-11-10 2011-05-26 Chugoku Electric Power Co Inc:The System for predicting amount of solar radiation and method for predicting amount of solar radiation
WO2012111215A1 (en) * 2011-02-18 2012-08-23 Jx日鉱日石エネルギー株式会社 Solar radiation evaluation device, solar radiation evaluation method, and solar radiation evaluation program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189603A (en) * 1996-01-08 1997-07-22 Kansai Electric Power Co Inc:The Sun shadow evaluating method and reflected light evaluating method
WO2009057190A1 (en) * 2007-10-29 2009-05-07 Japan Agency For Marine-Earth Science And Technology Meteorological phenomena simulation device and method
JP2009282406A (en) * 2008-05-23 2009-12-03 Miyagi Univ Of Education Fixed point observation apparatus and fixed point observation method
JP2011102740A (en) * 2009-11-10 2011-05-26 Chugoku Electric Power Co Inc:The System for predicting amount of solar radiation and method for predicting amount of solar radiation
WO2012111215A1 (en) * 2011-02-18 2012-08-23 Jx日鉱日石エネルギー株式会社 Solar radiation evaluation device, solar radiation evaluation method, and solar radiation evaluation program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109165458A (en) * 2018-09-05 2019-01-08 南京林业大学 Earth's surface based on BIM builds solar radiation evaluation method
CN109165458B (en) * 2018-09-05 2023-07-11 南京林业大学 BIM-based earth surface building solar radiation estimation method
CN113158129A (en) * 2021-03-09 2021-07-23 中国电建集团华东勘测设计研究院有限公司 Method and system for calculating back power generation gain rate of double-sided photovoltaic module
CN113158129B (en) * 2021-03-09 2024-05-10 中国电建集团华东勘测设计研究院有限公司 Method and system for calculating back power generation gain ratio of double-sided photovoltaic module

Also Published As

Publication number Publication date
JP2015059923A (en) 2015-03-30

Similar Documents

Publication Publication Date Title
WO2015041160A1 (en) Insolation estimation device, method, and program
US11748946B2 (en) Solar access measurement
US20240169658A1 (en) Systems and Methods for Reconstructing Scenes to Disentangle Light and Matter Fields
US20140015924A1 (en) Rapid 3D Modeling
Sandau Digital airborne camera: introduction and technology
CN111563962A (en) Remote sensing image simulation method based on geometric radiation integrated sampling
CN102997871A (en) Method for inverting effective leaf area index by utilizing geometric projection and laser radar
Yoon et al. Evaluation of hourly solar radiation on inclined surfaces at Seoul by Photographical Method
WO2015160287A1 (en) A method and system for estimating information related to a vehicle pitch and/or roll angle
Feng et al. Comparisons of CME morphological characteristics derived from five 3D reconstruction methods
CN108318458B (en) Method for measuring outdoor typical feature pBRDF (binary RDF) suitable for different weather conditions
Cellura et al. A photographic method to estimate the shading effect of obstructions
JP6899915B2 (en) Shadow casting for elevation data grid
Orioli et al. An improved photographic method to estimate the shading effect of obstructions
Deng et al. Automatic true orthophoto generation based on three-dimensional building model using multiview urban aerial images
Borrmann Multi-modal 3D mapping-Combining 3D point clouds with thermal and color information
Andersson Smartphone-based shade analysis using hemispherical fisheye imaging for local solar energy potential
Petržala et al. Data regression on sphere for luminance map creation from sky scanner measurements
Borrmann Multi-modal 3D Mapping
Matzarakis et al. Estimation of Sky View Factor in urban environments
Ilba Estimating the daily solar irradiation on building roofs and facades using Blender Cycles path tracing algorithm
CN117647854A (en) Solar irradiation distribution prediction method and device, computer equipment and storage medium
Iwahori et al. Shape from self-calibration and fast marching method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846141

Country of ref document: EP

Kind code of ref document: A1