WO2015040984A1 - Liquid crystal display device, and manufacturing method therefor - Google Patents

Liquid crystal display device, and manufacturing method therefor Download PDF

Info

Publication number
WO2015040984A1
WO2015040984A1 PCT/JP2014/071323 JP2014071323W WO2015040984A1 WO 2015040984 A1 WO2015040984 A1 WO 2015040984A1 JP 2014071323 W JP2014071323 W JP 2014071323W WO 2015040984 A1 WO2015040984 A1 WO 2015040984A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
alignment film
side chain
electrode
Prior art date
Application number
PCT/JP2014/071323
Other languages
French (fr)
Japanese (ja)
Inventor
芝原 靖司
幹司 宮川
俊一 諏訪
親司 小林
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2015040984A1 publication Critical patent/WO2015040984A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement

Definitions

  • the present disclosure relates to a liquid crystal display device including a liquid crystal display element in which a liquid crystal layer is sealed between a pair of substrates having alignment films on opposite surfaces, and a method for manufacturing the liquid crystal display device.
  • a liquid crystal display is often used as a display monitor for liquid crystal television receivers, notebook personal computers, car navigation systems, and the like.
  • This liquid crystal display is classified into various display modes (methods) according to the molecular arrangement (orientation) of liquid crystal molecules contained in a liquid crystal layer sandwiched between substrates.
  • a display mode for example, a TN (Twisted Nematic) mode in which liquid crystal molecules are twisted and aligned without applying a voltage is well known.
  • the liquid crystal molecules have a property of positive dielectric anisotropy, that is, the dielectric constant in the major axis direction of the liquid crystal molecules is larger than that in the minor axis direction. For this reason, the liquid crystal molecules have a structure that is aligned in a direction perpendicular to the substrate surface while sequentially rotating the orientation direction of the liquid crystal molecules in a plane parallel to the substrate surface.
  • VA Vertical Alignment
  • the liquid crystal molecules have a negative dielectric anisotropy, that is, the property that the dielectric constant in the major axis direction of the liquid crystal molecules is smaller than that in the minor axis direction, and a wider viewing angle than in the TN mode. Can be realized.
  • liquid crystal molecules aligned in a direction perpendicular to the substrate are inclined in a direction parallel to the substrate due to negative dielectric anisotropy. It is the structure which permeate
  • the direction in which the liquid crystal molecules aligned in the direction perpendicular to the substrate is tilted is arbitrary, the alignment of the liquid crystal molecules is disturbed by the application of a voltage, thereby deteriorating the response characteristics to the voltage.
  • a film made of a polymer containing a chalcone structure is irradiated with ultraviolet light from a linearly polarized light or an ultraviolet light from an oblique direction to the substrate surface, and a double bond portion in the chalcone structure
  • a technique for forming an alignment film by cross-linking is known (see Patent Documents 1 to 3).
  • Patent Document 4 there is a technique for forming an alignment film using a mixture of a vinyl cinnamate derivative polymer and polyimide.
  • Patent Document 5 a technique for forming an alignment film by irradiating a film containing polyimide with linearly polarized light having a wavelength of 254 nm to decompose a part of the polyimide.
  • a peripheral technology of photo-alignment film technology it is composed of a liquid crystalline polymer compound on a film made of a polymer containing a dichroic photoreactive structural unit such as an azobenzene derivative irradiated with linearly polarized light or oblique light.
  • a technique for forming a liquid crystal alignment film by forming a film see Patent Document 6).
  • a liquid crystal display element having a pair of alignment films provided on opposite surfaces of the pair of substrates, and a liquid crystal layer including liquid crystal molecules having a negative dielectric anisotropy provided between the pair of alignment films.
  • At least one of the pair of alignment films includes a compound in which a polymer compound having a crosslinkable functional group as a side chain is crosslinked or deformed, and the liquid crystal molecules are given a pretilt by the crosslinked or deformed compound. Is known from JP2011-095696A.
  • the above-described photo-alignment film technology improves response characteristics
  • a device that irradiates light of linearly polarized light or a device that irradiates light from an oblique direction with respect to the substrate surface There is a problem that a light irradiation device is required.
  • a larger-scale device is required to manufacture a multi-domain liquid crystal display in which a plurality of sub-pixels are provided in a pixel and the alignment of liquid crystal molecules is divided.
  • the manufacturing process becomes complicated. Specifically, in a liquid crystal display having a multi-domain, an alignment film is formed so that the pretilt is different for each sub-pixel.
  • an object of the present disclosure is to provide a liquid crystal display element that can easily improve response characteristics without using a large-scale manufacturing apparatus, and to further apply a voltage applied when pretilt is applied to liquid crystal molecules. It is an object of the present invention to provide a liquid crystal display device and a method for manufacturing the same that can reduce the voltage of the display.
  • the liquid crystal display device for achieving the above object is as follows.
  • a first alignment film and a second alignment film provided on opposite surfaces of the pair of substrates, and A liquid crystal layer including liquid crystal molecules disposed between the first alignment film and the second alignment film and having negative dielectric anisotropy;
  • a liquid crystal display element having At least the first alignment film is a compound in which a polymer compound having a first side chain and a second side chain (referred to as “pre-alignment treatment / compound” for convenience) is crosslinked, polymerized, or deformed (for convenience, “alignment treatment”).
  • the first side chain has a crosslinkable functional group, a polymerizable functional group or a photosensitive functional group
  • the second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment (the liquid crystal display device according to the first aspect of the present disclosure), or alternatively
  • the second side chain has a range of angles greater than 0 degrees and less than 90 degrees from its major axis direction (preferably a range of angles greater than 0 degrees and less than 60 degrees from its major axis direction, more preferably Dipole moment within the range of angles greater than 0 degrees and less than 40 degrees from the major axis direction, and more preferably within the range of angles greater than 0 degree and less than 30 degrees from the major axis direction.
  • the liquid crystal molecules are given a pretilt by the first alignment film.
  • the “crosslinkable functional group” means a group capable of forming a crosslinked structure (crosslinked structure), and more specifically means dimerization.
  • polymerizable functional group means a functional group in which two or more functional groups sequentially polymerize.
  • the “photosensitive functional group” means a group capable of absorbing energy rays. Examples of energy rays include ultraviolet rays, X-rays, and electron beams. The same applies to the following.
  • each ring R independently represents a phenylene group, a cycloalkylene group, a phenylene group substituted with a fluorine atom or a chlorine atom, or a cycloalkylene group substituted with a fluorine atom or a chlorine atom;
  • Ring X represents a phenylene group or a cycloalkylene group, With respect to (d) A 4, A group consisting of fluorine atom, chlorine atom, —CN, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 2 CHF 2 , and —OCF 2 CHFCF 3 A group, A group composed of a fluorine-containing alkyl group having 1 to 18 carbon atoms, a fluorine-containing aromatic ring group,
  • the ring R and the ring X are portions that can be along the core portion of the liquid crystal molecule, and A 4 is a portion that is along the terminal chain of the liquid crystal molecule.
  • the step of aligning liquid crystal molecules by applying a predetermined electric field is performed on at least one substrate.
  • the liquid crystal layer is allowed to react while applying a predetermined electric field to the liquid crystal layer, thereby aligning liquid crystal molecules and imparting a pretilt. It consists of a process.
  • Such a liquid crystal display manufacturing method is called an FPA method (Field-induced Photo-reactive Alignment method).
  • a method for manufacturing a liquid crystal display device (or a method for manufacturing a liquid crystal display element) for achieving the above object is as follows. From a polymer compound having a first side chain and a second side chain having a crosslinkable functional group or a polymerizable functional group on one of a pair of substrates (referred to as “pre-alignment treatment compound” for convenience) After forming the first alignment film and forming the second alignment film on the other of the pair of substrates, A pair of substrates are disposed so that the first alignment film and the second alignment film face each other, and liquid crystal molecules having negative dielectric anisotropy are included between the first alignment film and the second alignment film.
  • the second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment, or alternatively, The second side chain has a dipole moment in the range of angles greater than 0 degrees and less than 90 degrees from its major axis direction, and has a structure that induces vertical orientation, or alternatively
  • the second side chain has the above structural formula (11).
  • a method for manufacturing a liquid crystal display device (or a method for manufacturing a liquid crystal display element) for achieving the above object is as follows.
  • a first alignment film comprising a polymer compound having a first side chain having a photosensitive functional group and a second side chain on one of a pair of substrates (for convenience, referred to as “pre-alignment treatment compound”)
  • pre-alignment treatment compound After forming the second alignment film on the other of the pair of substrates, A pair of substrates are disposed so that the first alignment film and the second alignment film face each other, and liquid crystal molecules having negative dielectric anisotropy are included between the first alignment film and the second alignment film.
  • the first side chain in the polymer compound (before the alignment treatment / compound) is deformed to give a pretilt to the liquid crystal molecules.
  • the second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment, or alternatively,
  • the second side chain has a dipole moment in the range of angles greater than 0 degrees and less than 90 degrees from its major axis direction, and has a structure that induces vertical orientation, or alternatively
  • the second side chain has the above structural formula (11).
  • a method for manufacturing a liquid crystal display device (or a method for manufacturing a liquid crystal display element) for achieving the above object is as follows. From a polymer compound having a first side chain and a second side chain having a crosslinkable functional group or a photosensitive functional group on one of a pair of substrates (referred to as “pre-alignment treatment compound” for convenience) After forming the first alignment film and forming the second alignment film on the other of the pair of substrates, A pair of substrates are disposed so that the first alignment film and the second alignment film face each other, and liquid crystal molecules having negative dielectric anisotropy are included between the first alignment film and the second alignment film.
  • the second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment, or alternatively, The second side chain has a dipole moment in the range of angles greater than 0 degrees and less than 90 degrees from its major axis direction, and has a structure that induces vertical orientation, or alternatively
  • the second side chain has the above structural formula (11).
  • the second side chain is a fluorine atom, a chlorine atom, —CN, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH. Any of 2 F, —OCF 2 CHF 2 , and —OCF 2 CHFCF 3 may be included.
  • the second side chain may have the following structural formula (12).
  • the second side chain can have a form having the following structural formula (13).
  • the first side chain and the second side chain are bonded.
  • Ring R and Ring X are portions that can be along the core portion of the liquid crystal molecule
  • a 4 is a portion that is along the end chain of the liquid crystal molecule. .
  • a 0 is an alkylene group having 1 to 17 carbon atoms, —O—, —COO—, —OCO—, —NHCO—, —CONH—, or an alkylene-ether group having 1 to 17 carbon atoms. Furthermore, an alkylene group having 2 to 6 carbon atoms, —O—, —COO—, —OCO—, —NHCO—, —CONH—, or an alkylene-ether group having 1 to 3 carbon atoms Preferably there is.
  • a 01 represents a linear or branched divalent organic group having 1 to 20 carbon atoms, preferably 3 to 12 carbon atoms, which may contain an ether group or an ester group; Represents at least one linking group selected from the group consisting of ester, ether ester, acetal, ketal, hemiacetal, and hemiketal, and is a polymer compound or a crosslinked compound (before or after alignment treatment, compound) It is bound to the main chain.
  • a 01 is preferably flexible before the alignment treatment and in the compound before the alignment treatment.
  • a 02 is a site having a crosslinkable functional group or a polymerizable functional group.
  • this crosslinkable functional group or polymerizable functional group may be a group that forms a crosslinked structure by a photoreaction or a group that forms a crosslinked structure by a thermal reaction.
  • a 02 as a photodimerized photosensitive group which is a crosslinkable functional group or a polymerizable functional group (photosensitive functional group), for example, chalcone, cinnamate, cinnamoyl, coumarin, maleimide, benzophenone, norbornene, oryzanol, Chitosan can be mentioned.
  • the polymerizable functional group include a divalent group containing any one of acryloyl, methacryloyl, vinyl, epoxy, and oxetane, or an ethynylene group.
  • the reaction site crosslinked or polymerized is represented by the structural formula (13 A 02 (although in), after the reaction) is equivalent.
  • the terminal structure portion corresponds to the ring R, ring X, and A 4 in the structural formula (13).
  • the main chain and the first side chain are bonded to each other, for example, the cross-linked portions in the two bonded side chains extending from the main chain are cross-linked to each other, A part of the liquid crystal molecules is sandwiched between the terminal structure part extending from the first part and the terminal structure part extending from the other bridging part, and the terminal structure part is predetermined with respect to the substrate. Therefore, the liquid crystal molecules are given a pretilt.
  • the binding side chain in which the first side chain and the second side chain represented by the structural formula (13) are combined include, for example, the following formulas (G-K01) to (G-K12) The monovalent group etc. which are represented by these can be mentioned.
  • the structure that induces vertical alignment in the second side chain refers to a structure having the ability to align liquid crystal molecules perpendicularly to the substrate, and the structure is not limited as long as it has this ability.
  • structures having the ability to align liquid crystal molecules vertically with respect to the substrate include, for example, long-chain alkyl groups, long-chain fluoroalkyl groups, cyclic groups having terminal alkyl groups, fluoroalkyl groups, alkoxyl groups, and steroids.
  • a group, a structure in which two or three cyclic groups are linked, a steroid group, and the like are known, and can be suitably used in the present disclosure.
  • Examples of the cyclic group include a phenylene group and a cyclohexylene group, and a structure having 2 to 3 linkages is preferable.
  • the linked structure may be a phenylene group alone, a cyclohexylene group alone, or a combination of both.
  • structural formula (11) can be given.
  • the structure that constitutes the fourth group or the fifth group constituting A 4 described above and corresponds to the above-described structure having the ability to orient vertically only the structure that constitutes the fourth group or the fifth group is used. In some cases, vertical alignment is induced.
  • the structure that induces dielectric anisotropy specifically includes fluorine atom, chlorine atom, —CN, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 2.
  • a group such as CHF 2 or —OCF 2 CHFCF 3 is applicable.
  • an alkyl group having 1 to 18 carbon atoms an alkoxy group having 1 to 8 carbon atoms, an alkoxyalkyl group having 1 to 18 carbon atoms, an alkoxyalkoxy group having 1 to 18 carbon atoms
  • Examples thereof include an alkenyl group having 1 to 18 carbon atoms, an alkenyloxy group having 1 to 18 carbon atoms, an alkenyloxyalkyl group having 1 to 18 carbon atoms, and an alkoxyalkenyl group having 1 to 18 carbon atoms.
  • alkyl group —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5 H 11 , —C 6 H 13 , —C 7 H 15 , —C 8 H 17 , —C 9 H 19 and —C 10 H 21 can be mentioned, and as the alkoxy group, —OCH 3 , —OC 2 H 5 , —OC 3 H 7 , —OC 4 H 9 , —OC 5 H 11 , -OC 6 H 13 , -OC 7 H 15 , -OC 8 H 17 and -OC 9 H 19 can be mentioned.
  • the liquid crystal layer is aligned by applying a predetermined electric field to the liquid crystal layer, while the energy is aligned.
  • the first side chain of the polymer compound (before the alignment treatment / compound) can be crosslinked or polymerized by irradiating the wire or by heating.
  • the pair of substrates includes a substrate having a pixel electrode and a substrate having a counter electrode, and it is more preferable to irradiate energy rays from the substrate having the pixel electrode.
  • a color filter layer is formed on the substrate side having the counter electrode, and energy rays are absorbed by this color filter layer, and the reaction of the crosslinkable functional group or the polymerizable functional group of the alignment film material may be difficult to occur.
  • the azimuth angle (deflection angle) of the liquid crystal molecules when pretilt is applied is defined by the strength and direction of the electric field and the molecular structure of the alignment film material
  • the polar angle (zenith angle) is It is defined by the strength of the electric field and the molecular structure of the alignment film material.
  • the liquid crystal layer is aligned by applying a predetermined electric field to the liquid crystal layer, while the energy is aligned.
  • the first side chain of the polymer compound (before alignment treatment / compound) may be deformed by irradiation with a line.
  • the polymer compound is irradiated with ultraviolet rays as energy rays while aligning liquid crystal molecules by applying a predetermined electric field to the liquid crystal layer. It can be set as a form to do.
  • a pretilt is imparted by the first alignment film (after the alignment treatment / by the compound) (first pretilt angle ⁇ 1 ), and the liquid crystal molecules are preferably pretilted by the second alignment film (after the alignment treatment / by the compound). (Second pretilt angle ⁇ 2 ).
  • the first pretilt angle ⁇ 1 and the second pretilt angle ⁇ 2 have values greater than 0 degrees.
  • the pre-tilt theta 1 than if both theta 2 is 0 degrees, thereby improving the response speed to application of the driving voltage, approximately equal to the case pretilt theta 1, both of the theta 2 is 0 degrees Contrast can be obtained. Therefore, it is possible to reduce the amount of light transmitted during black display while improving the response characteristics, and to improve the contrast.
  • the pretilts ⁇ 1 and ⁇ 2 are set to different angles, it is more desirable that the larger pretilt ⁇ of the pretilts ⁇ 1 and ⁇ 2 is not less than 1 degree and not more than 4 degrees. A particularly high effect can be obtained by setting the larger pretilt ⁇ within such an angle range.
  • the liquid crystal molecules The pretilt is imparted by the first alignment film.
  • the pretilt imparted to the liquid crystal molecules is mainly held by the first side chain, or is fixed, and the second side The chain promotes the application of pretilt to the liquid crystal molecules, and the applied voltage when applying the pretilt to the liquid crystal molecules can be reduced.
  • liquid crystal display devices according to the first to third aspects of the present disclosure including the preferable modes and configurations described above may be simply referred to simply as “liquid crystal display devices of the present disclosure”.
  • the manufacturing methods of the liquid crystal display device according to the first to third aspects of the present disclosure including the preferred embodiments described above are collectively referred to simply as “the manufacturing method of the liquid crystal display device of the present disclosure”.
  • the liquid crystal display device of the present disclosure and the manufacturing method of the liquid crystal display device of the present disclosure may be collectively referred to simply as “the present disclosure”.
  • the polymer compound (before alignment treatment / compound) or the compound constituting the first alignment film (after alignment treatment / compound) has a group represented by the following formula (1) as the first side chain. It can be set as the structure which has. Such a configuration is referred to as a “first configuration of the present disclosure” for convenience.
  • R 1 ′ is a linear or branched divalent organic group having 1 or more carbon atoms, which may contain an ether group or an ester group.
  • R 1 ′ is at least one selected from the group consisting of ethers, esters, ether esters, acetals, ketals, hemiacetals and hemiketals. And is bonded to the main chain of a polymer compound or a crosslinked compound (before or after alignment treatment), and R 2 ′ is a divalent organic compound containing a plurality of ring structures.
  • R 3' R 1 represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, having a carbonate group A monovalent group, or a derivative thereof.
  • the polymer compound (before the alignment treatment / compound) or the compound constituting the first alignment film (after the alignment treatment / compound) has the group represented by the formula (2) as the first side chain. It can be set as the structure which consists of a compound which has as. Such a configuration is referred to as a “second configuration of the present disclosure” for convenience.
  • the polymer compound (before alignment treatment / compound) or the compound constituting the first alignment film (after alignment treatment / compound) is represented not only by the group represented by formula (2) but also by the above-described formula (1). And a compound having a group represented by the formula (2) as the first side chain.
  • R 11 ′ is an organic group which may contain a linear or branched divalent ether group or ester group having 1 to 20 carbon atoms, preferably 3 to 12 carbon atoms.
  • R 11 ′ is ether, ester, ether ester, acetal, ketal, It is at least one linking group selected from the group consisting of hemiacetal and hemiketal, and is bonded to the main chain of a polymer compound or a crosslinked compound (before or after alignment treatment / compound), R 12 ', for example, chalcone, cinnamate, cinnamoyl, coumarin, maleimide, benzophenone, norbornene, oryzanol, chitosan, A Acryloyl, methacryloyl, vinyl, divalent group comprising any one of the structures of epoxy and oxetane, or an ethynylene group, R 13 'is a divalent organic group containing a plurality of ring structures , R 14 ′ is a hydrogen atom, a hal
  • the first alignment film includes a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the first substrate.
  • a cross-linked part in which a part of the first side chain is cross-linked, and a cross-linked part It is comprised from the terminal structure part couple
  • the first alignment film includes a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the first substrate.
  • a deformed part in which a part of the first side chain is deformed, and a deformed part It is comprised from the terminal structure part couple
  • the first alignment film includes a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the first substrate.
  • the first side chain and the second side chain are bonded to the main chain
  • the liquid crystal molecules are composed of a terminal structure unit bonded to the bridge / deformation unit, and the liquid crystal molecules are provided with a pretilt along the second side chain or sandwiched between the second side chain. Can do.
  • These configurations are referred to as a “third configuration of the present disclosure” for convenience.
  • the first side chain and the second side chain may be bonded to the same main chain, or may be bonded to two or more different main chains.
  • the 1st side chain and the 2nd side chain may couple
  • the first alignment film includes a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the first substrate.
  • a cross-linked part in which a part of the first side chain is cross-linked, and a cross-linked part It can be set as the structure comprised from the terminal structure part which couple
  • the main chain and the cross-linked part are bonded by a covalent bond, and the cross-linked part and the terminal structure part can be bonded by a covalent bond.
  • the first alignment film includes a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the first substrate. (Where the first side chain and the second side chain are bonded to the main chain), and a deformed part in which a part of the first side chain is deformed, and a deformed part It can be set as the structure comprised from the terminal structure part which couple
  • the first alignment film includes a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the first substrate.
  • first side chain and the second side chain are bonded to the main chain
  • first side chain and the second side chain are bonded to the main chain
  • first side chain and the second side chain are bonded to the main chain
  • first side chain and the second side chain may be bonded to the same main chain, or may be bonded to different main chains.
  • 1st side chain and the 2nd side chain may couple
  • the first side chain (more specifically, the cross-linking portion) has a form having a photodimerized photosensitive group. Can do.
  • the surface roughness Ra of the first alignment film may be 1 nm or less.
  • the surface roughness Ra is defined in JIS B 0601: 2001.
  • an alignment regulating portion composed of a slit formed in the electrode or an alignment regulating portion composed of a protrusion provided on the substrate is provided.
  • an electrode provided with uneven portions can be used.
  • the second alignment film is composed of a polymer compound (compound before alignment treatment) constituting the first alignment film, or It can be set as the form which has the same composition as a 1st alignment film.
  • the second alignment film constitutes the first alignment film as long as it is composed of the polymer compound (before the alignment treatment / compound) defined in the liquid crystal display devices according to the first to third aspects of the present disclosure. It is good also as a structure which consists of a high molecular compound (before alignment process and compound) different from the high molecular compound (before alignment process and compound) to perform.
  • the second alignment film may be composed of a polymer compound (before alignment treatment / compound) different from the polymer compound (before alignment treatment / compound) constituting the first alignment film.
  • the main chain may be configured to include an imide bond in the repeating unit.
  • the polymer compound (after alignment treatment / compound) includes a structure in which liquid crystal molecules are aligned in a predetermined direction with respect to a pair of substrates, that is, not only the first substrate but also the second substrate. It can be in the form.
  • the pair of substrates is configured from a substrate having a pixel electrode and a substrate having a counter electrode, that is, the first substrate is a substrate having a pixel electrode, and the second substrate is a substrate having a counter electrode.
  • the second substrate may be a substrate having a pixel electrode
  • the first substrate may be a substrate having a counter electrode.
  • the substrate having the pixel electrode is provided with a circuit for driving a pixel such as a TFT.
  • a layer including a circuit for driving a pixel such as a TFT may be referred to as a “TFT layer”.
  • the smoothing film is formed on the TFT layer, and the first electrode is formed on the smoothing film.
  • the color filter layer is formed on the substrate (first substrate) side having the pixel electrode, the color filter layer is formed on the TFT layer, and the color filter layer is formed on the color filter layer.
  • a first electrode is formed on the overcoat layer formed on the layer or on a passivation film made of an inorganic material.
  • a pixel when a pixel includes a plurality of subpixels, the pixel may be read as a subpixel.
  • the 1st electrode and the 2nd electrode from the transparent conductive material which has transparency, such as ITO (indium tin oxide), IZO, ZnO, SnO, for example.
  • the second electrode can be a so-called solid electrode (an electrode that is not patterned).
  • a first polarizing plate is attached to the outer surface of the first substrate, and a second polarizing plate is attached to the outer surface of the second substrate.
  • the first polarizing plate and the second polarizing plate are arranged so that their absorption axes are orthogonal to each other.
  • the absorption axis of the first polarizing plate is preferably parallel to the X axis or Y axis
  • the absorption axis of the second polarizing plate is preferably parallel to the Y axis or X axis. Not what you want.
  • the liquid crystal display device is illuminated by a well-known planar illumination device (backlight).
  • the planar illumination device may be a direct-type planar light source device or an edge light type (also referred to as a side light type) planar light source device.
  • the direct-type planar light source device includes, for example, a light source disposed in a housing, a reflecting member that is disposed in a portion of the housing located below the light source, and reflects upward light emitted from the light source.
  • the diffusing plate is attached to a housing opening located above the light source and allows the outgoing light from the light source and the reflected light from the reflecting member to pass through while diffusing.
  • the edge light type planar light source device includes, for example, a light guide plate and a light source disposed on a side surface of the light guide plate.
  • a reflective member is disposed below the light guide plate, and a diffusion sheet and a prism sheet are disposed above the light guide plate.
  • the light source is composed of, for example, a cold cathode fluorescent lamp and emits white light.
  • the light emitting element is an LED or a semiconductor laser element.
  • the first alignment film that is, at least one of the pair of alignment films has a crosslinkable functional group as the first side chain.
  • a pretilt imparted to a liquid crystal molecule including a compound (after alignment treatment / compound) obtained by crosslinking, polymerization, or deformation of a polymer compound having a group, a polymerizable functional group or a photosensitive functional group (before alignment treatment / compound) However, it will be in the state of being held and fixed by the compound after the alignment treatment.
  • the liquid crystal molecules respond in a predetermined direction with respect to the substrate surface in the major axis direction, and good display characteristics are ensured.
  • the pretilt applied to the liquid crystal molecules since the pretilt applied to the liquid crystal molecules is in a state of being held and fixed by the compound after the alignment treatment, it corresponds to the electric field between the electrodes as compared with the case where the pretilt is not applied to the liquid crystal molecules.
  • the response speed (rise speed of image display) is increased, and good display characteristics are easily maintained as compared with the case where a pretilt is applied without using a crosslinked, polymerized or deformed compound.
  • the first side chain includes a polymer compound (a compound before alignment treatment / compound) having a crosslinkable functional group or a polymerizable functional group.
  • the liquid crystal layer is sealed between the first alignment film and the second alignment film.
  • the first alignment film including a polymer compound (pre-alignment treatment / compound) having a photosensitive functional group as the first side chain. After forming, the liquid crystal layer is sealed between the first alignment film and the second alignment film.
  • the liquid crystal molecules in the liquid crystal layer are arranged in a predetermined direction (specifically, a vertical direction or an oblique direction inclined from the vertical direction) with respect to the first alignment film surface as a whole by the first alignment film. It will be in the state which arranged (however, the orientation direction is not necessarily uniform).
  • the polymer compound is crosslinked or polymerized by reacting the crosslinkable functional group or the polymerizable functional group while applying an electric field.
  • the polymer compound (before alignment treatment / compound) is deformed while applying an electric field.
  • the second side chain is affected by the electric field and tries to line up in a predetermined orientation direction.
  • the second side chains tend to line up in an oblique direction slightly inclined from the vertical direction with respect to the surface of the first alignment film.
  • the liquid crystal molecules in the liquid crystal layer are aligned in a predetermined direction (an oblique direction slightly inclined from the vertical direction) as a whole with respect to the surface of the first alignment film.
  • the pretilt imparted to the liquid crystal molecules in the vicinity of the cross-linked or polymerized or deformed compound (after the alignment treatment / compound) is held / fixed, or the pretilt is held / fixed. It becomes possible. For this reason, the response speed (rise speed of image display) is improved as compared with the case where no pretilt is given to the liquid crystal molecules.
  • the pretilt imparted to the liquid crystal molecules is maintained by irradiating the polymer compound (before the alignment treatment / compound) with energy rays.
  • -It can be fixed. That is, by cross-linking, polymerizing or deforming the first side chain of the polymer compound (before alignment treatment / compound) in a state where the liquid crystal molecules are aligned, the liquid crystal molecules are not given a pretilt, Response speed (rise speed of image display) is improved.
  • pre-tilt is given to the liquid crystal molecules without irradiating the alignment film with linearly polarized light or oblique light before sealing the liquid crystal layer, or without using a large-scale device. can do.
  • the second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment (the liquid crystal display device according to the first aspect of the present disclosure). Or a structure having a dipole moment within an angle range of more than 0 degrees and less than 90 degrees from the major axis direction and inducing vertical orientation (the second of the present disclosure)
  • the liquid crystal display device according to the aspect) or the second side chain has the structural formula (11) (the liquid crystal display device according to the third aspect of the present disclosure).
  • a compound (after alignment treatment / compound) obtained by crosslinking or polymerizing or deforming a polymer compound (before alignment treatment / compound) has a crosslinkable functional group or a polymerizable functional group as the first side chain.
  • the liquid crystal molecules are easy to follow along the second side chain or are sandwiched between the second side chains. Therefore, when an electric field is applied, the second side chain is aligned in a direction that depends on the direction of the electric field (for example, a direction slightly inclined from the direction of the electric field).
  • the pretilt is imparted to the liquid crystal molecules by the second side chain. Can be promoted.
  • the manufacturing process of the liquid crystal display device it is possible to reduce the value of the voltage applied to the liquid crystal layer in order to impart pretilt to the liquid crystal molecules constituting the liquid crystal layer.
  • the voltage applied when applying a pretilt to the liquid crystal molecules can be further reduced.
  • the pretilt value can be stabilized and the response speed can be further improved.
  • FIG. 1 is a schematic partial cross-sectional view of a liquid crystal display device of the present disclosure.
  • FIG. 2 is a schematic partial cross-sectional view of a modified example of the liquid crystal display device of the present disclosure.
  • 3A and 3B are schematic views of the first electrode and the first slit portion when one pixel is viewed from above.
  • FIG. 4 is a schematic diagram for explaining the pretilt of liquid crystal molecules.
  • FIG. 5 is a flowchart for explaining a method of manufacturing the liquid crystal display device shown in FIG.
  • FIG. 6 is a schematic diagram showing the state of the polymer compound (before the alignment treatment / compound) in the alignment film for explaining the method of manufacturing the liquid crystal display device shown in FIG. FIG.
  • FIG. 7 is a schematic partial cross-sectional view of a substrate and the like for explaining a method of manufacturing the liquid crystal display device shown in FIG.
  • FIG. 8 is a schematic partial cross-sectional view of a substrate and the like for explaining the process following FIG.
  • FIG. 9 is a schematic partial cross-sectional view of a substrate and the like for explaining the process following FIG.
  • FIG. 10 is a schematic diagram showing the state of the polymer compound (after alignment treatment / compound) in the alignment film.
  • FIG. 11 is a circuit configuration diagram of the liquid crystal display device shown in FIG.
  • FIG. 12 is a schematic cross-sectional view for explaining order parameters.
  • FIG. 13 is a conceptual diagram showing a state in which liquid crystal molecules are given a pretilt in the vicinity of the first alignment film having a side chain in which the first side chain and the second side chain represented by the structural formula (13) are combined. It is.
  • FIG. 14 is a conceptual diagram illustrating the relationship between a deformed polymer compound and liquid crystal molecules.
  • FIG. 15 is a conceptual diagram schematically showing the direction of the dipole moment of the second side chain and the direction of the dipole moment of the liquid crystal molecules.
  • FIG. 16 is a schematic partial end view of the liquid crystal display device of Example 2A-1.
  • FIG. 17 is a schematic partial end view of the liquid crystal display device of Example 2A-2.
  • FIG. 18 is a schematic partial end view of the liquid crystal display device of Example 2A-3.
  • FIG. 19 is a schematic plan view of the first electrode for one pixel that constitutes the liquid crystal display devices of Examples 2A-1 to 2A-3.
  • 20A and 20B are schematic partial cross-sectional views of the first electrode and the like along arrows AA and BB in FIG. 19 in the liquid crystal display device of Example 2A-1
  • FIG. 20D is a schematic partial cross-sectional view of the first electrode and the like taken along arrows AA and BB in FIG. 19 in the liquid crystal display device of Example 2A-2.
  • 21A and 21B are schematic partial cross-sectional views of the first electrode and the like along arrows AA and BB in FIG. 19 in the liquid crystal display device of Example 2A-3.
  • FIG. 22 is a schematic partial end view of the liquid crystal display device of Example 2A-4.
  • 23A and 23B are schematic partial cross-sectional views of the first electrode and the like along arrows AA and BB in FIG. 19 in the liquid crystal display device of Example 2A-4.
  • FIG. 24 is a schematic partial end view of a modification of the liquid crystal display device of Example 2A-4.
  • FIG. 25 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-1.
  • 26A, 26B, and 26C are schematic partial views of the first electrode and the like along arrows AA, BB, and CC in FIG. 25 in the liquid crystal display device of Example 2B-1.
  • FIG. 26D is a schematic partial cross-sectional view in which a part of FIG.
  • FIG. 28 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-2.
  • FIG. 29 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-3.
  • 30A and 30B are schematic partial cross-sectional views of the first electrode and the like along arrows AA and BB in FIG. 28 in the liquid crystal display device of Example 2B-2, and
  • FIG. 30D is a schematic partial end view of the first electrode and the like along the arrow CC in FIG.
  • FIG. 31 is a schematic plan view of a modified example of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-3.
  • FIG. 32 is a schematic perspective view of another modification of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-3.
  • FIG. 33 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-4.
  • FIG. 34 is a schematic perspective view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-4 shown in FIG. FIG.
  • FIG. 35 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-5.
  • 36A and 36B are schematic partial end views of the first electrode and the like along the arrows AA and BB in FIG. 33 in the liquid crystal display device of Example 2B-4, and
  • FIG. FIG. 36D is a schematic partial end view enlarging a part of FIG. 36B.
  • FIG. 36D shows a part of the first electrode along the arrow DD in FIG. 35 in the liquid crystal display device of Example 2B-5. It is the expanded typical partial end view.
  • FIG. 37 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-6.
  • FIG. 38 is a schematic perspective view of a modified example of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-6.
  • FIG. 39 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-7.
  • FIG. 40 is a schematic plan view of a modified example of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-7.
  • FIG. 41 is a schematic partial cross-sectional view of the first electrode and the like along the arrow AA in FIG. 39 in the liquid crystal display device of Example 2B-7.
  • FIG. 42 is a schematic partial end view of the liquid crystal display device of Example 2B-8.
  • FIG. 43 is a schematic partial end view of a modification of the liquid crystal display device of Example 2B-8.
  • FIG. 44 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-9.
  • FIG. 45 is a schematic plan view of a modification of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-9.
  • FIG. 46 is a schematic plan view of another modification of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-9.
  • FIG. 47 is a schematic plan view of still another modified example of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-9.
  • 48A and 48B are schematic partial end views of the first electrode and the like along arrows AA and BB in FIG. 44 in the liquid crystal display device of Example 2B-9.
  • FIG. 48D is a schematic partial end view of the first electrode and the like taken along arrows CC and DD in FIG. 46 in the liquid crystal display device of Example 2B-9.
  • FIG. 49 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-1.
  • FIG. 50 is a schematic plan view in which a part of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-1 is enlarged.
  • 51A and 51B are schematic partial cross-sectional views of the first electrode and the like along arrows AA and BB in FIG. 49 in the liquid crystal display device of Example 2C-1, and
  • FIG. 51B is a schematic partial cross-sectional view in which a part of FIG. 51B is enlarged.
  • FIG. 52A and 52B are schematic diagrams for explaining the behavior of liquid crystal molecules in the branch convex portions of Example 2C-1 and the liquid crystal display device in which the branch convex portions are not tapered, respectively.
  • FIG. 53 is a schematic partial end view of a modification of the liquid crystal display device of Example 2C-2.
  • 54A and 54B are schematic partial end views of the first electrode and the like along arrows AA and BB in FIG. 53 in the liquid crystal display device of Example 2C-2.
  • FIG. FIG. 55 is a schematic partial end view in which a part of FIG. 54B is enlarged.
  • FIG. 55 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-3.
  • FIG. 56 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-4.
  • FIG. 57 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-5.
  • FIG. 58 is a schematic plan view of a modification of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-5.
  • FIG. 59 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-6.
  • FIG. 60 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-7.
  • FIG. 61 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-8.
  • FIG. 62 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-1.
  • 63A is a schematic partial cross-sectional view of the first electrode and the like along the arrow AA in FIG. 62 in the liquid crystal display device of Example 2D-1, and
  • FIG. 63B is an enlarged view of a part of FIG. 63B.
  • FIG. 64A and 64B are schematic plan views of a part of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-2.
  • 65A and 65B are schematic plan views of a part of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-2.
  • FIG. 66 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-3.
  • FIG. 67 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-4.
  • 68A, 68B and 68C are diagrams schematically showing the arrangement state of the convex portion, the concave portion, the central region, etc. in the pixel constituting the liquid crystal display device of Example 2D-5, respectively, provided on the first electrode. It is the figure which shows typically the arrangement
  • 69A, 69B, and 69C are diagrams each schematically showing an arrangement state of a convex portion, a concave portion, a central region, and the like in a modification example of the pixel constituting the liquid crystal display device of Example 2D-5. It is the figure which shows typically the arrangement
  • 70C are diagrams each schematically showing an arrangement state of a convex portion, a concave portion, a central region, and the like in another modification example of the pixel constituting the liquid crystal display device of Example 2D-5 It is the figure which shows typically the arrangement
  • 71A, 71B, and 71C are diagrams each schematically showing an arrangement state of a convex portion, a concave portion, a central region, and the like in still another modified example of the pixel constituting the liquid crystal display device of Example 2D-5.
  • FIG. 3 is a diagram schematically showing an arrangement state of slit portions provided in a first electrode, and a diagram in which an uneven portion and a slit portion are superimposed.
  • 72A is a schematic end view taken along arrow AA in FIG. 68C
  • FIG. 72B is a schematic end view taken along arrow BB in FIG. 69C
  • FIG. 72C is shown in FIG.
  • FIG. 72D is a schematic end view taken along arrow CC in FIG. 71
  • FIG. 72D is a schematic end view taken along arrow DD in FIG. 71C.
  • FIGS. 74A and 74B are diagrams schematically showing arrangement states of convex portions, concave portions, slit portions, and the like in still another modification example of the pixels constituting the liquid crystal display device of Example 2D-5, and FIG. 73B is a schematic cross-sectional view of the first electrode and the like along arrow BB in FIG. 73A.
  • FIGS. 74A and 74B are diagrams schematically showing arrangement states of convex portions, concave portions, slit portions, and the like in still another modification example of the pixels constituting the liquid crystal display device of Example 2D-5, and FIG. 74B is a schematic cross-sectional view of the first electrode and the like along arrow BB in FIG. 74A.
  • FIG. 74A and 74B are diagrams schematically showing arrangement states of convex portions, concave portions, slit portions, and the like in still another modification example of the pixels constituting the liquid crystal display device of Example 2D-5
  • FIG. 74B is a
  • FIG. 75 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-6.
  • FIG. 76A is a schematic plan view of a part of the first electrode in the central region of one pixel constituting the liquid crystal display device of Example 2D-6.
  • FIGS. 76B and 76C show the liquid crystal of Example 2D-6. It is a typical partial cross section figure of a part of 1st electrode in the center area
  • 77A and 77B are schematic plan views of a part of the first electrode in the central region of one pixel constituting the liquid crystal display device of Example 2D-6.
  • FIG. 78 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-7.
  • FIG. 79 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-8.
  • 80A and 80B are schematic plan views in which a part of the first electrode surrounded by a circular region in the schematic plan view of the first electrode in FIG. 79 is enlarged.
  • FIG. 81 is an enlarged schematic plan view of a part of the first electrode surrounded by a circular region in the schematic plan view of the first electrode in FIG. 79.
  • FIG. 82 is a schematic plan view of the first electrode for one pixel constituting a modification (see Example 2D-4) of the liquid crystal display device of Example 2D-8.
  • FIG. 83 is a schematic plan view of the first electrode for one pixel constituting a modification (see Example 2D-5) of the liquid crystal display device of Example 2D-8.
  • FIG. 84 is a schematic plan view of the first electrode for one pixel constituting a modification (see Example 2D-5) of the liquid crystal display device of Example 2D-8.
  • FIG. 85 is a schematic plan view of a first electrode for one pixel constituting a modification (see Example 2D-5) of the liquid crystal display device of Example 2D-8.
  • FIG. 86 is a schematic plan view of the first electrode for one pixel constituting another modification of the liquid crystal display device of Example 2D-8 (see Example 2D-6).
  • FIG. 87 is a schematic plan view of the first electrode for one pixel constituting still another modified example (see Example 2D-7) of the liquid crystal display device of Example 2D-8.
  • FIG. 88 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-9.
  • 89A, 89B, and 89C are schematic partial views of the first electrode and the like along arrows AA, BB, and CC in FIG. 88 in the liquid crystal display device of Example 2D-9.
  • FIG. 89D is a schematic partial cross-sectional view enlarging a part of FIG. 88C.
  • FIG. 90 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-10.
  • FIG. 91 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-11.
  • 92A and 92B are schematic partial cross-sectional views of the first electrode and the like along arrows AA and BB in FIG. 90 in the liquid crystal display device of Example 2D-10.
  • FIG. FIG. 92D is a schematic partial end view of the first electrode and the like along the arrow CC in FIG. 91 in the liquid crystal display device of Example 2D-11.
  • FIG. 92D is a schematic enlarged view of a part of FIG. 92C.
  • FIG. FIG. 93 is a schematic plan view of a modification of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-11.
  • FIG. 94 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-12.
  • 95A and 95B are conceptual diagrams showing the behavior of liquid crystal molecules in the liquid crystal display device of Example 2B-8.
  • 96A and 96B are schematic partial end views of the first substrate before TFTs and the like are formed and uneven portions are formed on the first electrode.
  • FIG. 97 is a schematic plan view of a part of the convex portion for explaining the formation pitch of the convex portion, the width of the convex portion, the width of the tip portion of the convex portion, and the like.
  • FIG. 98 is a schematic plan view of a part of the convex portion for explaining the formation pitch of the convex portion, the width of the convex portion, the width of the tip portion of the convex portion, and the like.
  • FIG. 1 A schematic partial cross-sectional view of the liquid crystal display device (or liquid crystal display element) of the present disclosure is shown in FIG.
  • This liquid crystal display device has a plurality of pixels 10 (10A, 10B, 10C).
  • liquid crystal is interposed between alignment layers 21 and 51 between a TFT (Thin Film Transistor) substrate 20 and a CF (Color Filter layer) substrate 50.
  • a liquid crystal layer 70 including molecules 71 is provided.
  • This liquid crystal display device (liquid crystal display element) is a so-called transmission type, and the display mode is a vertical alignment (VA) mode.
  • VA vertical alignment
  • the pixel 10 is actually composed of subpixels such as a subpixel that displays a red image, a subpixel that displays a green image, and a subpixel that displays a blue image.
  • the TFT substrate 20 corresponds to the first substrate
  • the CF substrate 50 corresponds to the second substrate.
  • the pixel electrode 40 and the alignment film 21 provided on the first substrate (TFT substrate) 20 correspond to the first electrode and the first alignment film
  • the counter electrode 60 provided on the second substrate (CF substrate) 50.
  • the alignment film 51 corresponds to the second electrode and the second alignment film.
  • the liquid crystal display device of the present disclosure is A first alignment film 21 and a second alignment film 51 provided on the opposing surface side of the pair of substrates 20 and 50, and A liquid crystal layer 70 including liquid crystal molecules 71 disposed between the first alignment film 21 and the second alignment film 51 and having negative dielectric anisotropy;
  • the liquid crystal display element which has is provided.
  • the first alignment film (specifically, the first alignment film 21 and the second alignment film 51) has a first side chain and a second side chain.
  • the polymer compound includes a crosslinked or polymerized compound, the first side chain has a crosslinkable functional group or a polymerizable functional group, and the liquid crystal molecules 71 are given a pretilt by the first alignment film 21. Furthermore, a pretilt is also given by the second alignment film 51.
  • the first alignment film 21 includes a compound (after alignment treatment / compound) obtained by crosslinking or polymerizing a polymer compound having a first side chain having a crosslinkable functional group or a polymerizable functional group.
  • the second alignment film 51 also includes a compound (post-alignment treatment / compound) obtained by crosslinking or polymerizing a polymer compound having a first side chain having a crosslinkable functional group or a polymerizable functional group.
  • the polymer compound that constitutes the first alignment film 21 and the polymer compound that constitutes the second alignment film 51 are preferably the same polymer compound, and the alignment treatment that constitutes the first alignment film 21.
  • the post-alignment treatment / compound constituting the post-compound and the second alignment film 51 is the same post-alignment treatment / compound.
  • the liquid crystal molecules are given a pretilt by the first alignment film 21 (after the alignment treatment / by the compound) (first pretilt angle ⁇ 1 ), and the liquid crystal molecules are transferred by the second alignment film 51.
  • a pretilt is imparted (after the alignment treatment / by the compound) (second pretilt angle ⁇ 2 ).
  • the first alignment film (specifically, the first alignment film 21 and the second alignment film 51) includes the first side chain and the second side chain.
  • the first side chain has a photosensitive functional group
  • the liquid crystal molecule 71 is given a pretilt by the first alignment film 21, and the first side chain has a photosensitive functional group.
  • a pretilt is also given by the bi-alignment film 51.
  • this liquid crystal display device A first substrate (TFT substrate) 20 and a second substrate (CF substrate) 50; A first electrode (pixel electrode) 40 formed on the facing surface of the first substrate 20 facing the second substrate 50; A first alignment regulating portion 44 provided on the first electrode (pixel electrode) 40; A first alignment film 21 covering the opposing surfaces of the first electrode (pixel electrode) 40, the first alignment regulating portion 44, and the first substrate (TFT substrate) 20, A second electrode (counter electrode) 60 formed on the facing surface of a second substrate (CF substrate) 50 facing the first substrate (TFT substrate) 20; A second alignment film 51 covering the opposing surfaces of the second electrode (counter electrode) 60 and the second substrate (CF substrate) 50, and A liquid crystal layer 70 provided between the first alignment film 21 and the second alignment film 51 and including liquid crystal molecules 71; A plurality of pixels 10 having the above are arranged.
  • the TFT substrate 20 made of a glass substrate has a plurality of pixel electrodes 40 arranged in a matrix, for example, on the surface facing the CF substrate 50 made of a glass substrate. Furthermore, a TFT switching element having a gate, a source, a drain and the like for driving the plurality of pixel electrodes 40, and a gate line and a source line (not shown) connected to these TFT switching elements are provided.
  • the pixel electrode 40 is provided for each pixel electrically separated by the pixel separation unit, and is made of a transparent material such as ITO (indium tin oxide).
  • the pixel electrode 40 is provided with a first slit portion 44 (a portion where no electrode is formed) having, for example, a stripe shape or a V-shaped pattern in each pixel.
  • 3A or 3B shows the layout of the first electrode (pixel electrode) 40 and the first slit portion 44 when one pixel (sub-pixel) is viewed from above. .
  • the first slit portion 44 is a first alignment restricting portion for restricting the alignment of the entire liquid crystal molecules 71 in the liquid crystal layer 70 in order to ensure good display characteristics.
  • the portion 44 regulates the alignment direction of the liquid crystal molecules 71 when a driving voltage is applied.
  • the azimuth angle of the liquid crystal molecules when pretilt is applied is defined by the strength and direction of the electric field and the molecular structure of the alignment film material, and the direction of the electric field is determined by the alignment regulating unit.
  • the CF substrate 50 is composed of, for example, red (R), green (G), and blue (B) stripe filter layers on the surface facing the TFT substrate 20 over almost the entire effective display area.
  • a color filter layer (not shown) and a counter electrode 60 are disposed.
  • the counter electrode 60 is made of a transparent material such as ITO.
  • the counter electrode 60 is a so-called solid electrode that is not patterned.
  • the first alignment film 21 is provided on the surface of the TFT substrate 20 on the liquid crystal layer side so as to cover the pixel electrode 40 and the first slit portion 44.
  • the second alignment film 51 is provided on the surface of the CF substrate 50 on the liquid crystal layer side so as to cover the counter electrode 60.
  • the first alignment film 21 and the second alignment film 51 regulate the alignment of the liquid crystal molecules 71.
  • the liquid crystal molecules 71 positioned away from the substrate are aligned in the direction perpendicular to the substrate surface, and
  • the liquid crystal molecules 71 (71A, 71B) in the vicinity of the substrate have a function of imparting a pretilt.
  • no slit portion is provided on the CF substrate 50 side.
  • FIG. 11 shows a circuit configuration of the liquid crystal display device shown in FIG.
  • the liquid crystal display device includes a liquid crystal display element having a plurality of pixels 10 provided in a display region 80.
  • power is supplied to the periphery of the display area 80 to the source driver 81 and the gate driver 82, the timing controller 83 that controls the source driver 81 and the gate driver 82, and the source driver 81 and the gate driver 82.
  • a power supply circuit 84 is provided.
  • the display area 80 is an area in which an image is displayed, and is an area configured to display an image by arranging a plurality of pixels 10 in a matrix.
  • the display area 80 including the plurality of pixels 10 is shown, and areas corresponding to the four pixels 10 are separately enlarged.
  • a plurality of source lines 91 are arranged in the row direction, and a plurality of gate lines 92 are arranged in the column direction.
  • the pixel 10 is located at a position where the source lines 91 and the gate lines 92 intersect each other. Each is arranged.
  • Each pixel 10 includes a transistor (TFT) 93 and a capacitor 94 together with the pixel electrode 40 and the liquid crystal layer 70.
  • TFT transistor
  • the source electrode is connected to the source line 91
  • the gate electrode is connected to the gate line 92
  • the drain electrode is connected to the capacitor 94 and the pixel electrode 40.
  • Each source line 91 is connected to a source driver 81, and an image signal is supplied from the source driver 81.
  • Each gate line 92 is connected to a gate driver 82, and scanning signals are sequentially supplied from the gate driver 82.
  • the source driver 81 and the gate driver 82 select a specific pixel 10 from the plurality of pixels 10.
  • the timing controller 83 outputs, for example, an image signal (for example, RGB video signals corresponding to red, green, and blue) and a source driver control signal for controlling the operation of the source driver 81 to the source driver 81. To do. Further, the timing controller 83 outputs, for example, a gate driver control signal for controlling the operation of the gate driver 82 to the gate driver 82.
  • Examples of the source driver control signal include a horizontal synchronization signal, a start pulse signal, and a source driver clock signal.
  • Examples of the gate driver control signal include a vertical synchronization signal and a gate driver clock signal.
  • an image is displayed by applying a driving voltage between the first electrode (pixel electrode) 40 and the second electrode (counter electrode) 60 in the following manner.
  • the source driver 81 supplies an individual image signal to a predetermined source line 91 based on the image signal input from the timing controller 83 in response to the input of the source driver control signal from the timing controller 83.
  • the gate driver 82 sequentially supplies the scanning signal to the gate line 92 at a predetermined timing in response to the input of the gate driver control signal from the timing controller 83.
  • the pixel 10 located at the intersection of the source line 91 supplied with the image signal and the gate line 92 supplied with the scanning signal is selected, and a drive voltage is applied to the pixel 10.
  • Embodiment 1 is a VA mode liquid crystal display device (or liquid crystal display element) according to the present disclosure, and a method for manufacturing the liquid crystal display device (or liquid crystal display element) according to the first and third aspects of the present disclosure.
  • the first alignment film and the second alignment film are either one kind of polymer compound (after alignment treatment / compound) having a first side chain having a crosslinked structure, or It is comprised including 2 or more types.
  • the liquid crystal molecules are given a pretilt.
  • the alignment film 21 includes one or more of polymer compounds (pre-alignment treatment / compound) having a main chain and first and second side chains.
  • the polymer compound is crosslinked or polymerized, or moreover, the polymer compound is irradiated with energy rays, more specifically, an electric field or a magnetic field. Is generated by reacting a crosslinkable functional group or a polymerizable functional group contained in the first side chain.
  • the compound After the alignment treatment, the compound has liquid crystal molecules in a predetermined direction (specifically, an oblique direction slightly inclined from the vertical direction) with respect to a pair of substrates (specifically, the TFT substrate 20 and the CF substrate 50). It includes a structure (specifically, a second side chain) that is arranged in the form.
  • the polymer compound (before the alignment treatment / compound) is crosslinked or polymerized, or alternatively, the polymer compound (before the alignment treatment / compound) is irradiated with energy rays, so that the compound is aligned after the alignment treatment.
  • a pretilt can be imparted to the liquid crystal molecules 71 in the vicinity of the alignment films 21 and 51, so that the response speed (rise speed of image display and fall speed of image display) is increased, Display characteristics are improved.
  • the second side chain is It has a structure that induces dielectric anisotropy and a structure that induces vertical alignment (the liquid crystal display device according to the first aspect of the present disclosure), or alternatively
  • the second side chain has a range of angles greater than 0 degrees and less than 90 degrees from its major axis direction (preferably a range of angles greater than 0 degrees and less than 60 degrees from its major axis direction, more preferably A dipole moment within an angle range of greater than 0 degrees and less than or equal to 40 degrees from the major axis direction, more preferably an angle range of greater than 0 degrees and less than 30 degrees from the major axis direction; and , Having a structure for inducing vertical alignment (the liquid crystal display device according to the second aspect of the present disclosure), or
  • the second side chain has the above structural formula (11), more specifically, the above structural formula (12) (the liquid crystal display device according to the third aspect of the present disclosure). The same applies to the second embodiment to be described later.
  • the second side chain represented by the structural formula (12) described above includes, for example, the following formula (G-A01) to formula (GA20), formula (G-B01) to formula ( GB20), formula (G-C01) to formula (G-C16), formula (G-D01) to formula (GD16), formula (GE01) to formula (GE02), formula (G -F01) to Formula (G-F12), Formula (G-H01) to Formula (G-H12), and Formula (G-J01) to Formula (G-J14).
  • “a1” and “a2” are each independently an integer of 0 or more and 17 or less.
  • “a1” is an integer of 2 or more and 17 or less.
  • the structures shown in these formulas have a dipole moment within an angle range of greater than 0 degrees and less than or equal to 60 degrees from the major axis direction of the second side chain. Further, the structures shown in the formulas (G-J05) and (G-J06) have a dipole moment of approximately 60 degrees from the major axis direction. Furthermore, the structures shown in the formulas (G-J01) and (G-J03) have a dipole moment of approximately 40 degrees from the major axis direction. Furthermore, the structures shown in the formulas (GA01), (GA11), (GB01), and (GB11) have a dipole moment of approximately 30 degrees from the long axis direction. In the structures shown in these formulas, “A 0 ” of the second side chain can be bonded to the main chain via, for example, m-phenylenediamine.
  • n1 and n2 are integers of 2 or more and 17 or less.
  • the liquid crystal layer 70 includes liquid crystal molecules 71 having negative dielectric anisotropy. That is, the liquid crystal molecules 71 include molecules having a dipole moment in the minor axis direction. As shown in FIG. 15, the direction of the dipole moment of the second side chain has a dipole moment in a direction different from this liquid crystal molecule, that is, along the electric field from the direction perpendicular to the electric field direction. It has a dipole moment in the direction, ie in the range of 60 degrees, preferably in the range of 40 degrees, more preferably in the range of 30 degrees. Therefore, the second side chains are easily arranged in a direction slightly inclined from the electric field direction when the electric field is applied.
  • the compound before alignment treatment includes a structure having high heat resistance as a main chain.
  • the main chain preferably contains an imide bond in the repeating unit.
  • the pre-alignment treatment compound containing an imide bond in the main chain include a polymer compound containing a polyimide structure represented by the formula (3).
  • the polymer compound containing the polyimide structure represented by the formula (3) may be composed of one of the polyimide structures represented by the formula (3), or a plurality of kinds may be randomly connected and contained. In addition to the structure shown in Formula (3), other structures may be included.
  • R1 is a tetravalent organic group
  • R2 is a divalent organic group
  • n1 is an integer of 1 or more.
  • R1 and R2 in the formula (3) are arbitrary as long as they are tetravalent or divalent groups containing carbon, but either one of R1 and R2 can be used as the first side chain. It preferably contains a crosslinkable functional group or a polymerizable functional group. This is because sufficient alignment regulation ability is easily obtained after the alignment treatment and in the compound.
  • a plurality of side chains are bonded to the main chain, and at least one of the plurality of side chains is a first side chain including a crosslinkable functional group or a polymerizable functional group.
  • the compound before alignment treatment / compound may contain a side chain that does not exhibit crosslinkability in addition to the first side chain that has crosslinkability.
  • 1 type may be sufficient as the 1st side chain containing a crosslinkable functional group or a polymerizable functional group, and multiple types may be sufficient as it.
  • the crosslinkable functional group or the polymerizable functional group may be any functional group that can be crosslinked or polymerized after the liquid crystal layer 70 is formed, and may be a group that forms a crosslinked structure by a photoreaction.
  • a group that forms a crosslinked structure by reaction may be used, but among them, a photoreactive crosslinkable functional group or a polymerizable functional group (photosensitive photosensitive group) that forms a crosslinked structure by photoreaction is preferable. This is because the orientation of the liquid crystal molecules 71 is easily regulated in a predetermined direction, the response characteristics are improved, and the manufacture of a liquid crystal display device (liquid crystal display element) having good display characteristics is facilitated.
  • photoreactive crosslinkable functional groups examples include chalcone, cinnamate, cinnamoyl, coumarin, maleimide, benzophenone, norbornene, oryzanol, and chitosan.
  • the group containing any one type of these is mentioned.
  • examples of the group containing a chalcone, cinnamate, or cinnamoyl structure include a group represented by the formula (41).
  • the post-alignment treatment compound generated from the polymer compound containing the group represented by the formula (41) includes a structure represented by the formula (42) having a cyclobutane skeleton.
  • a photoreactive crosslinkable functional group such as maleimide may exhibit not only a photodimerization reaction but also a polymerization reaction. Accordingly, the expression is a compound in which a polymer compound having a crosslinkable functional group or a polymerizable functional group is crosslinked or polymerized.
  • R3 is a divalent group containing an aromatic ring
  • R4 is a monovalent group containing one or two or more ring structures
  • R5 is a hydrogen atom, an alkyl group or a derivative thereof.
  • R3 in the formula (41) is arbitrary as long as it is a divalent group including an aromatic ring such as a benzene ring, and includes a carbonyl group, an ether bond, an ester bond or a hydrocarbon group in addition to the aromatic ring. May be.
  • R4 in formula (41) is arbitrary as long as it is a monovalent group containing one or two or more ring structures. In addition to the ring structure, R4 is a carbonyl group, an ether bond, an ester bond, a hydrocarbon group, or a halogen atom. It may contain atoms and the like.
  • the ring structure of R4 is arbitrary as long as it contains carbon as an element constituting the skeleton, and as the ring structure, for example, an aromatic ring, a heterocyclic ring, an aliphatic ring, or a combination or condensed thereof Examples thereof include a ring structure.
  • R5 in formula (41) is arbitrary as long as it is a hydrogen atom, an alkyl group, or a derivative thereof.
  • the “derivative” refers to a group in which some or all of the hydrogen atoms of the alkyl group are substituted with a substituent such as a halogen atom.
  • transduced as R5 is arbitrary.
  • R5 is preferably a hydrogen atom or a methyl group. This is because good crosslinking reactivity can be obtained.
  • R3 in the formula (42) may be the same or different from each other. The same applies to R4 and R5 in the formula (41). Examples of R3, R4, and R5 in Formula (42) include the same as R3, R4, and R5 in Formula (41) described above.
  • Examples of the group represented by formula (41) include groups represented by formula (41-1) to formula (41-33). However, the group is not limited to the groups represented by the formulas (41-1) to (41-33) as long as the group has the structure represented by the formula (41).
  • the compound Prior to the alignment treatment, the compound includes a structure for aligning the liquid crystal molecules 71 in a direction perpendicular to the substrate surface, that is, a structure for inducing vertical alignment (hereinafter referred to as “vertical alignment inducing structure”).
  • vertical alignment inducing structure a structure for inducing vertical alignment
  • the alignment films 21 and 51 do not contain a compound having a vertical alignment inducing structure part (so-called normal vertical alignment agent) separately from the compound after alignment treatment, the alignment regulation of the entire liquid crystal molecules 71 is restricted. It becomes possible.
  • the alignment films 21 and 51 that can more uniformly exhibit the alignment regulating function with respect to the liquid crystal layer 70 are more easily formed than the case where the compound having the vertical alignment inducing structure portion is included separately.
  • the vertical alignment-inducing structure is preferably contained in the second side chain in the pre-alignment treatment compound, but may be contained in the main chain or in the second side chain and main chain. It may be included.
  • the compound before alignment treatment includes the polyimide structure represented by the above formula (3), a structure (repeating unit) including a vertical alignment inducing structure portion as R2, and a crosslinkable functional group or a polymerizable functional group as R2. It is preferable that it contains two types of structures, including a structure containing repeating units (repeating units). It is because it is easily available.
  • the vertical alignment inducing structure portion is included in the compound before the alignment treatment, it is also included in the compound after the alignment treatment.
  • the polymer compound before crosslinking (before the alignment treatment / compound) has, for example, a group represented by the formula (1) as the first side chain. Composed of compounds. Since the group represented by the formula (1) can move along the liquid crystal molecules 71, the group represented by the formula (1) is aligned in the alignment direction of the liquid crystal molecules 71 before the alignment treatment and when the compound is crosslinked. Are fixed together with a crosslinkable functional group or a polymerizable functional group. The group represented by the fixed formula (1) makes it easier to regulate the alignment of the liquid crystal molecules 71 in a predetermined direction, and therefore, it is possible to more easily manufacture a liquid crystal display element having good display characteristics. it can.
  • R 1 ′ is a linear or branched divalent organic group having 1 or more carbon atoms, which may contain an ether group or an ester group.
  • R 1 ′ is at least one selected from the group consisting of ethers, esters, ether esters, acetals, ketals, hemiacetals and hemiketals. It is bonded to the main chain of the polymer compound or the cross-linked compound (before or after alignment treatment or compound after alignment treatment).
  • R 2 ′ is a divalent organic group containing a plurality of ring structures, and one of the atoms constituting the ring structure is bonded to R 1 ′.
  • R 3 ′ is a monovalent group having a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group or a carbonate group, or a derivative thereof.
  • R 1 ′ in formula (1) fixes R 2 ′ and R 3 ′ to the main chain, and gives a large pretilt to the liquid crystal molecules if long R 1 ′ is selected, and is short. If R 1 ′ is selected, it is a site for functioning as a spacer part for making the pretilt angle easily constant.
  • R 1 ′ include an alkylene group. This alkylene group may have an ether bond between carbon atoms in the middle, and the number of positions having the ether bond may be one or two or more.
  • R 1 ′ may have a carbonyl group or a carbonate group. The carbon number of R 1 ′ is more preferably 6 or more.
  • the number of carbon atoms is preferably determined so that the length of R 1 ′ is approximately equal to the length of the terminal chain of the liquid crystal molecule 71.
  • R 2 ′ in the formula (1) is a portion along a ring structure (core portion) contained in a general nematic liquid crystal molecule.
  • R 2 ′ for example, 1,4-phenylene group, 1,4-cyclohexylene group, pyrimidine-2,5-diyl group, 1,6-naphthalene group, divalent group having a steroid skeleton or derivatives thereof And the like, and the same group or skeleton as the ring structure contained in the liquid crystal molecule.
  • the “derivative” is a group in which one or two or more substituents are introduced into the series of groups described above.
  • R 3 ′ in the formula (1) is a portion along the terminal chain of the liquid crystal molecule, and examples of R 3 ′ include an alkyl group or a halogenated alkyl group.
  • examples of R 3 ′ include an alkyl group or a halogenated alkyl group.
  • the halogenated alkyl group it suffices that at least one hydrogen atom in the alkyl group is substituted with a halogen atom, and the type of the halogen atom is arbitrary.
  • the alkyl group or the halogenated alkyl group may have an ether bond between carbon atoms in the middle, and the position having the ether bond may be one or two or more.
  • R 3 ′ may have a carbonyl group or a carbonate group. The number of carbon atoms in R 3 ′ is more preferably 6 or more for the same reason as R 1 ′.
  • examples of the group shown in Formula (1) include monovalent groups represented by Formula (1-1) to Formula (1-12).
  • the polymer compound before crosslinking (the compound before alignment treatment / compound) has a group represented by the formula (2) as the first side chain. Consists of. In addition to the cross-linking site, it has a site along the liquid crystal molecule 71 and a site that defines the tilt angle, so the first side chain site along the liquid crystal molecule 71 can be fixed along the liquid crystal molecule 71. It is. As a result, the orientation of the liquid crystal molecules 71 can be easily regulated in a predetermined direction, so that it is possible to more easily manufacture a liquid crystal display element having good display characteristics.
  • R 11 ′ is an organic group which may contain a linear or branched divalent ether group or ester group having 1 to 20 carbon atoms, preferably 3 to 12 carbon atoms. Yes, and bonded to the main chain of the polymer compound or the crosslinked compound (before or after the alignment treatment or after the alignment treatment), or R 11 ′ is ether, ester, ether ester, acetal, ketal, It is at least one linking group selected from the group consisting of hemiacetal and hemiketal, and is bonded to the main chain of a polymer compound or a crosslinked compound (before or after alignment treatment / compound).
  • R 12 ′ is, for example, a divalent group containing any one structure of chalcone, cinnamate, cinnamoyl, coumarin, maleimide, benzophenone, norbornene, oryzanol, chitosan, acryloyl, methacryloyl, vinyl, epoxy and oxetane, Or, it is an ethynylene group.
  • R 13 ′ is a divalent organic group containing a plurality of ring structures.
  • R 14 ′ is a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a monovalent group having a carbonate group, or a derivative thereof.
  • R 11 ′ in the formula (2) is a site that defines a tilt angle before the alignment treatment / compound, and preferably has flexibility before the alignment treatment / compound.
  • R 11 ′ include the groups described for R 1 ′ in formula (1).
  • R 12 ′ to R 14 ′ are easy to move around R 11 ′, so that R 13 ′ and R 14 ′ are easy to follow the liquid crystal molecules 71.
  • R 11 ′ has more preferably 6 or more and 10 or less carbon atoms.
  • R 12 ′ in the formula (2) is a site having a crosslinkable functional group or a polymerizable functional group.
  • this crosslinkable functional group or polymerizable functional group may be a group that forms a crosslinked structure by a photoreaction or a group that forms a crosslinked structure by a thermal reaction.
  • R 12 ′ includes, for example, any one of chalcone, cinnamate, cinnamoyl, coumarin, maleimide, benzophenone, norbornene, oryzanol, chitosan, acryloyl, methacryloyl, vinyl, epoxy, and oxetane.
  • a divalent group or an ethynylene group can be exemplified.
  • R 13 ′ in the formula (2) is a site that can follow the core site of the liquid crystal molecule 71, and examples of the R 13 ′ include the group described for R 2 ′ in the formula (1). Can be mentioned.
  • R 14 ′ in the formula (2) is a site along the terminal chain of the liquid crystal molecule 71, and examples of R 14 ′ include the group described for R 3 ′ in the formula (1).
  • examples of the group represented by the formula (2) include monovalent groups represented by the formulas (2-1) to (2-11).
  • n is an integer of 3 or more and 20 or less.
  • the group shown in the formula (2) is not limited to the above group as long as it has the above-described four sites (R 11 ′ to R 14 ′).
  • the compound (after alignment treatment / compound) obtained by crosslinking the polymer compound (before alignment treatment / compound) has the first side chain and It is composed of a second side chain and a main chain that supports the first side chain and the second side chain with respect to the substrate.
  • the first side chain is bonded to the main chain and crosslinked.
  • the liquid crystal molecules are given a pretilt along the second side chain or sandwiched between the second side chains.
  • a compound (after alignment treatment) obtained by deforming a polymer compound (before alignment treatment / compound) The compound) is composed of a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the substrate, and the first side chain Is composed of a deformed portion that is bonded to the main chain and deformed, and a terminal structure portion that is bonded to the deformed portion, and the liquid crystal molecules are sandwiched between the second side chains or between the second side chains.
  • the compound obtained by irradiating the polymer compound with energy rays includes the first side chain and It is composed of a second side chain and a main chain that supports the first side chain and the second side chain with respect to the substrate.
  • the first side chain is bonded to the main chain and is crosslinked or deformed.
  • the liquid crystal molecules have a pretilt by being along the second side chain or being sandwiched between the second side chains. Is granted.
  • the cross-linked portion in which the first side chain is cross-linked corresponds to R 12 ′ in Formula (2) (but after cross-linking).
  • the terminal structure portion corresponds to R 13 ′ and R 14 ′ in the formula (2).
  • the cross-linked parts in the two first side chains extending from the main chain are cross-linked with each other, and the terminal structure part extended from one cross-linked part and the other A part of the liquid crystal molecules is sandwiched between the terminal structure part extending from the bridging part, and the terminal structure part is fixed at a predetermined angle with respect to the substrate. Therefore, the liquid crystal molecules are given a pretilt.
  • the compound (after the alignment treatment / compound) obtained by crosslinking the polymer compound (before the alignment treatment / compound) has the first side chain. And a second side chain, and a main chain supporting the first side chain and the second side chain with respect to the substrate.
  • the first side chain is bonded to the main chain and crosslinked. It is comprised from the bridge
  • the 1st side chain can be made into the form which has a photodimerization photosensitive group.
  • the compound is composed of a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the substrate, and the first side chain Is composed of a deformed portion that is bonded to the main chain and deformed, and a terminal structure portion that is bonded to the deformed portion and has a mesogenic group.
  • a compound obtained by irradiating a polymer compound (before alignment treatment / compound) with energy rays is composed of a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the substrate.
  • the side chain is composed of a crosslinked / deformed portion bonded to the main chain and crosslinked or deformed, and a terminal structure portion bonded to the crosslinked / deformed portion and having a mesogenic group.
  • the polymerizable functional group include a group including any one of acryloyl, methacryloyl, vinyl, epoxy, and oxetane.
  • the rigid mesogenic group constituting the terminal structure part may be one that exhibits liquid crystallinity as a side chain or one that does not exhibit liquid crystallinity.
  • Specific structures include steroid derivatives, cholesterol derivatives, biphenyl, and triphenyl. And naphthalene.
  • examples of the terminal structure part include R 13 ′ and R 14 ′ in Formula (2).
  • the alignment films 21 and 51 may contain other vertical alignment agents in addition to the above-described alignment treatment / compound.
  • Other vertical alignment agents include polyimide having a vertical alignment inducing structure, polysiloxane having a vertical alignment inducing structure, and the like.
  • the liquid crystal layer 70 includes liquid crystal molecules 71 having negative dielectric anisotropy.
  • the liquid crystal molecules 71 have, for example, a rotationally symmetric shape with a major axis and a minor axis orthogonal to each other as central axes, and negative dielectric anisotropy.
  • the liquid crystal molecules 71 are liquid crystal molecules held in the second alignment film 51 in the vicinity of the interface between the liquid crystal molecules 71A held in the first alignment film 21 and the second alignment film 51 in the vicinity of the interface with the first alignment film 21. They can be classified into molecules 71B and liquid crystal molecules 71C other than these.
  • the liquid crystal molecules 71C are located in an intermediate region in the thickness direction of the liquid crystal layer 70, and the major axis direction (director) of the liquid crystal molecules 71C is substantially perpendicular to the first substrate 20 and the second substrate 50 when the drive voltage is off. It is arranged to be.
  • the liquid crystal molecules 71B are located in the vicinity of the second alignment film 51, and the major axis direction (director) of the liquid crystal molecules 71B is set to the second pretilt angle ⁇ 2 with respect to the second substrate 50 when the drive voltage is off. Oriented. Further, the liquid crystal molecules 71A are located in the vicinity of the first alignment film 21, and the major axis direction (director) of the liquid crystal molecules 71A is the first pretilt angle ⁇ 1 with respect to the first substrate 20 when the drive voltage is off. (> ⁇ 2 ) and arranged in an inclined manner.
  • the directors of the liquid crystal molecules 71 ⁇ / b> A are tilted and aligned so as to be parallel to the first substrate 20 and the second substrate 50.
  • Such a behavior is attributed to the property that the dielectric constant in the major axis direction is smaller than that in the minor axis direction in the liquid crystal molecules 71A. Since the liquid crystal molecules 71B and 71C have similar properties, the liquid crystal molecules 71B and 71C basically exhibit the same behavior as the liquid crystal molecules 71A according to the on / off state change of the drive voltage.
  • the liquid crystal molecules 71A are given the first pretilt angle ⁇ 1 by the first alignment film 21, and the director is inclined from the normal direction of the first substrate 20 and the second substrate 50. It becomes.
  • the liquid crystal molecules 71B are given the second pretilt angle ⁇ 2 by the second alignment film 51, and the director thereof is, for example, parallel to the normal direction of the second substrate 50, or alternatively, the first substrate 20
  • the posture is inclined from the normal direction of the second substrate 50.
  • “held” means that the alignment films 21 and 51 and the liquid crystal molecules 71A and 71B are not fixed and the alignment of the liquid crystal molecules 71 is regulated.
  • the “pretilt angle ⁇ ( ⁇ 1 , ⁇ 2 )” means that the direction perpendicular to the surfaces of the first substrate 20 and the second substrate 50 (normal direction) is Z as shown in FIG.
  • One of the pair of substrates 20 and 50 (specifically, the substrate 20) is composed of a polymer compound having a first side chain having a crosslinkable functional group or a polymerizable functional group and a second side chain.
  • a pair of substrates 20 and 50 are arranged such that the first alignment film 21 and the second alignment film 51 face each other, and a negative dielectric constant anisotropic is provided between the first alignment film 21 and the second alignment film 51.
  • 1st orientation which consists of a high molecular compound which has the 1st side chain which has a photosensitive functional group, and the 2nd side chain in one of a pair of board
  • a pair of substrates 20 and 50 are arranged such that the first alignment film 21 and the second alignment film 51 face each other, and a negative dielectric constant anisotropic is provided between the first alignment film 21 and the second alignment film 51.
  • One of the pair of substrates 20 and 50 (specifically, the substrate 20) is composed of a polymer compound having a first side chain having a crosslinkable functional group or a photosensitive functional group and a second side chain.
  • a pair of substrates 20 and 50 are arranged such that the first alignment film 21 and the second alignment film 51 face each other, and a negative dielectric constant anisotropic is provided between the first alignment film 21 and the second alignment film 51.
  • Sealing the liquid crystal layer 70 including the liquid crystal molecules 71 having the property The polymer compound is irradiated with energy rays to give a pretilt to the liquid crystal molecules 71.
  • Including a process (a method of manufacturing a liquid crystal display device according to a third aspect of the present disclosure). 7, 8, and 9, only one pixel is shown for simplification.
  • the second side chain is It has a structure that induces dielectric anisotropy and a structure that induces vertical alignment (the liquid crystal display device according to the first aspect of the present disclosure), or alternatively A range of angles greater than 0 degrees and less than 90 degrees from the major axis direction (preferably a range of angles greater than 0 degrees and less than 60 degrees from the major axis direction, more preferably 0 degrees from the major axis direction.
  • the liquid crystal display device according to the second aspect of the present disclosure In the range of angles greater than 40 degrees and less, more preferably in the range of angles greater than 0 degrees and less than 30 degrees from the major axis direction (also in the following) Having a structure for inducing orientation (the liquid crystal display device according to the second aspect of the present disclosure);
  • the above structural formula (11), more specifically, the above structural formula (12) (the liquid crystal display device according to the third aspect of the present disclosure).
  • the first alignment film 21 is formed on the surface of the first substrate (TFT substrate) 20, and the second alignment film 51 is formed on the surface of the second substrate (CF substrate) 50 (step S101).
  • the TFT substrate 20 is manufactured by providing pixel electrodes 40 having predetermined first slit portions 44 on the surface of the first substrate 20 in, for example, a matrix.
  • the CF substrate 50 is manufactured by providing the counter electrode 60 on the color filter layer of the second substrate 50 on which the color filter layer is formed.
  • the alignment treatment / compound or before the alignment treatment / polymer compound precursor as a compound are mixed for the liquid first alignment film and the second alignment film.
  • An alignment film material for the alignment film is prepared.
  • a polymer compound precursor as a compound before the alignment treatment for example, when a polymer compound having a crosslinkable functional group or a polymerizable functional group as a side chain includes the polyimide structure represented by the formula (3), a crosslinkable functional group And a polyamic acid having a group or a polymerizable functional group.
  • the polyamic acid as the polymer compound precursor is synthesized, for example, by reacting a diamine compound and tetracarboxylic dianhydride. At least one of the diamine compound and tetracarboxylic dianhydride used here has a crosslinkable functional group or a polymerizable functional group.
  • Examples of the diamine compound include compounds having a crosslinkable functional group or a polymerizable functional group represented by formulas (A-1) to (A-21), and examples of the tetracarboxylic dianhydride include formula (a -1) to a compound having a crosslinkable functional group or a polymerizable functional group represented by formula (a-10).
  • the compounds represented by the formulas (A-9) to (A-21) are compounds constituting the crosslinked part and the terminal structure part of the crosslinked polymer compound in the third structure of the present disclosure.
  • examples of the compound constituting the crosslinked part and the terminal structure part of the crosslinked polymer compound according to the third configuration of the present disclosure include compounds represented by formulas (F-1) to (F-22). You can also.
  • X1 to X4 are single bonds or divalent organic groups.
  • X5 to X7 are single bonds or divalent organic groups.
  • a diamine Compounds having a vertical alignment-inducing structure represented by formulas (B-1) to (B-36) as compounds, and tetracarboxylic dianhydrides represented by formulas (b-1) to (b-3) You may use the compound which has the vertical alignment induction structure part represented.
  • a4 to a6 are integers of 0 or more and 21 or less.
  • a4 is an integer of 0 or more and 21 or less.
  • a4 is an integer of 0 or more and 21 or less.
  • the polyamic acid is synthesized as a polymer compound precursor so that the compound has a group represented by the formula (1) together with the crosslinkable functional group or the polymerizable functional group before the alignment treatment, the crosslinkability described above is used.
  • a compound having a functional group or a polymerizable functional group as a diamine compound, a compound having a group that can conform to the liquid crystal molecules 71 represented by the formulas (C-1) to (C-24) It may be used.
  • a polyamic acid as a polymer compound precursor so that the compound has a group represented by the formula (2) before the alignment treatment
  • the compound having the crosslinkable functional group or the polymerizable functional group described above in addition to the compound having the crosslinkable functional group or the polymerizable functional group described above.
  • the diamine compound a compound having a group that can be aligned with the liquid crystal molecules 71 represented by the formulas (D-1) to (D-11) may be used.
  • n is an integer of 3 or more and 20 or less.
  • the polymer compound so that the compound before the alignment treatment includes two types of structures: a structure containing a vertical alignment inducing structure as R2 in formula (3) and a structure containing a crosslinkable functional group or a polymerizable functional group
  • a diamine compound and a tetracarboxylic dianhydride are selected as follows. That is, at least one of compounds having a crosslinkable functional group or a polymerizable functional group represented by formulas (A-1) to (A-21), and formulas (B-1) to (B-36).
  • R 1 and R 2 are the same or different alkyl group, alkoxy group or halogen atom, and the type of halogen atom is arbitrary.
  • R1 and R2 are an alkyl group, an alkoxy group, or a halogen atom.
  • the compound before the alignment treatment is high so that the compound includes two types of structures: a structure containing the group shown in the formula (1) as R2 in the formula (3) and a structure containing a crosslinkable functional group or a polymerizable functional group
  • a diamine compound and a tetracarboxylic dianhydride are selected as follows. That is, at least one of compounds having a crosslinkable functional group or a polymerizable functional group represented by formulas (A-1) to (A-21), and formulas (C-1) to (C-24). ) And at least one of tetracarboxylic dianhydrides represented by the formulas (E-1) to (E-28) are used.
  • the compound before the alignment treatment is high so that the compound includes two types of structures: a structure containing the group shown in the formula (2) as R2 in the formula (3) and a structure containing a crosslinkable functional group or a polymerizable functional group.
  • a diamine compound and a tetracarboxylic dianhydride are selected as follows. That is, at least one of compounds having a crosslinkable functional group or a polymerizable functional group represented by formulas (A-1) to (A-21), and formulas (D-1) to (D-11). And at least one of tetracarboxylic dianhydrides represented by formulas (E-1) to (E-28) is used.
  • the content of the pre-alignment treatment compound / or the pre-alignment treatment polymer compound precursor in the alignment film material is preferably 1% by mass or more and 30% by mass or less, and preferably 3% by mass or more and 10% by mass. % Or less is more preferable. Moreover, you may mix a photoinitiator etc. with alignment film material as needed.
  • the prepared alignment film material is applied or printed on the TFT substrate 20 and the CF substrate 50 so as to cover the pixel electrode 40, the first slit portion 44, and the counter electrode 60, and then heat-treated.
  • the temperature for the heat treatment is preferably 80 ° C. or higher, more preferably 150 ° C. or higher and 200 ° C. or lower. In the heat treatment, the heating temperature may be changed stepwise.
  • the solvent contained in the applied or printed alignment film material evaporates, and the alignment films 21 and 51 include a polymer compound (a compound before alignment treatment / compound) having a crosslinkable functional group or a polymerizable functional group as a side chain. Is formed. Then, you may perform processes, such as rubbing, as needed.
  • the pre-alignment treatment compound in the alignment films 21 and 51 is in the state shown in FIG. That is, the compound before alignment treatment includes a main chain Mc (Mc1 to Mc3), a first side chain A containing a crosslinkable functional group or a polymerizable functional group in the main chain Mc, and further a second side chain. B is included, and the main chains Mc1 to Mc3 are present in an unconnected state. And the 1st side chain A and the 2nd side chain B in this state have faced the random direction by thermal motion.
  • the TFT substrate 20 and the CF substrate 50 are arranged so that the first alignment film 21 and the second alignment film 51 face each other, and the liquid crystal molecules are arranged between the first alignment film 21 and the second alignment film 51.
  • the liquid crystal layer 70 including 71 is sealed (step S102). Specifically, spacer protrusions for securing a cell gap, such as plastic beads, are provided on the surface of the TFT substrate 20 or the CF substrate 50 where the alignment films 21 and 51 are formed.
  • the seal portion is printed by using, for example, an epoxy-based adhesive by a screen printing method. Thereafter, as shown in FIG.
  • FIG. 7 illustrates a cross-sectional configuration of the liquid crystal layer 70 sealed between the first alignment film 21 and the second alignment film 51.
  • a voltage V1 is applied between the pixel electrode 40 and the counter electrode 60 using voltage applying means (step S103).
  • the voltage V1 is 3 to 30 volts, for example.
  • an electric field (electric field) in a direction forming a predetermined angle with respect to the surfaces of the first substrate 20 and the second substrate 50 is generated, and the liquid crystal molecules 71A are aligned in a predetermined direction from the vertical direction of the first substrate 20. Is done. Further, the liquid crystal molecules 71 ⁇ / b> B are aligned in a predetermined direction from the vertical direction of the second substrate 50.
  • the azimuth angle (deflection angle) of the liquid crystal molecules 71 at this time is defined by the strength and direction of the electric field and the molecular structure of the alignment film material
  • the polar angle (zenith angle) is the strength of the electric field and It is defined by the molecular structure of the alignment film material.
  • the values of the first pretilt angle ⁇ 1 and the second pretilt angle ⁇ 2 of the liquid crystal molecules 71A and 71B can be controlled by appropriately adjusting the value of the voltage V1.
  • the second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment (the liquid crystal display device according to the first aspect of the present disclosure), or alternatively , Having a dipole moment within an angle range of greater than 0 degrees and less than 90 degrees from the major axis direction and inducing vertical alignment (the liquid crystal according to the second aspect of the present disclosure) Display device) or, alternatively, having the above structural formula (11) (the liquid crystal display device according to the third aspect of the present disclosure), the electric field is applied when the voltage V1 is applied to the liquid crystal molecules 71 for applying a pretilt.
  • the second side chains being aligned in a direction that depends on the direction of the liquid crystal (for example, a direction slightly inclined from the direction of the electric field)
  • the application of pretilt to the liquid crystal molecules can be promoted by the second side chain. Therefore, in the manufacturing process of the liquid crystal display device, the value of the voltage applied to the liquid crystal layer in order to impart pretilt to the liquid crystal molecules constituting the liquid crystal layer can be reduced.
  • the alignment films 21 and 51 are irradiated from the outside of the TFT substrate 20 with, for example, energy rays (specifically, ultraviolet UV) while the voltage V1 is applied. That is, ultraviolet rays are applied while applying an electric field or a magnetic field to the liquid crystal layer so that the liquid crystal molecules 71A are arranged obliquely with respect to the surfaces of the pair of substrates 20 and 50.
  • energy rays specifically, ultraviolet UV
  • the crosslinkable functional group or the polymerizable functional group of the compound before the alignment treatment in the alignment films 21 and 51 is reacted to crosslink the compound before the alignment treatment (step S104).
  • the direction in which the liquid crystal molecules 71 should respond is memorized by the compound after the alignment treatment, and a pretilt is imparted to the liquid crystal molecules 71 in the vicinity of the alignment films 21 and 51.
  • a compound is formed after the alignment treatment in the alignment films 21 and 51, and in the non-driven state, the liquid crystal molecules 71A and 71B located in the vicinity of the interface with the first alignment films 21 and 51 in the liquid crystal layer 70 are formed.
  • Pretilt angles ⁇ 1 and ⁇ 2 are given.
  • the ultraviolet ray UV an ultraviolet ray containing a large amount of light components having a wavelength of about 295 nm to 365 nm is preferable.
  • the liquid crystal molecules 71 may be photolyzed and deteriorated.
  • the ultraviolet rays UV are irradiated from the outside of the TFT substrate 20, but may be irradiated from the outside of the CF substrate 50, or may be irradiated from the outside of both the TFT substrate 20 and the CF substrate 50. In this case, it is preferable to irradiate ultraviolet rays UV from the substrate side with higher transmittance.
  • the ultraviolet ray UV when the ultraviolet ray UV is irradiated from the outside of the CF substrate 50, depending on the wavelength range of the ultraviolet ray UV, it may be absorbed by the color filter layer, and the crosslinking reaction may be difficult. For this reason, it is preferable to irradiate from the outside of the TFT substrate 20 (the substrate side having the pixel electrode).
  • the post-alignment treatment compound in the alignment films 21 and 51 is in the state shown in FIG. That is, the orientation of the first side chain A having a crosslinkable functional group or a polymerizable functional group introduced into the main chain Mc of the compound before the orientation treatment changes according to the orientation direction of the liquid crystal molecules 71, and the physical distance
  • the first side chains A close to each other react to form a connecting portion Cr.
  • the alignment films 21 and 51 give the first pretilt angle ⁇ 1 and the second pretilt angle ⁇ 2 to the liquid crystal molecules 71A and 71B by the compound after the alignment treatment thus generated.
  • the connecting portion Cr may be formed before the alignment treatment / between the compounds, or may be formed before the alignment treatment / in the compound.
  • the connecting portion Cr is, for example, between the first side chain A having the main chain Mc1 and the first side chain A of the compound before the alignment treatment having the main chain Mc2. It may be formed by reaction. Further, the connecting portion Cr may be formed by reacting the first side chains A introduced into the same main chain Mc3, for example, like a polymer compound having the main chain Mc3. In the case of a polymerizable functional group, a plurality of first side chains A are bonded.
  • the second side chain B is aligned in a direction depending on the direction of the electric field for applying a pretilt to the liquid crystal molecules 71 (for example, a direction slightly inclined from the direction of the electric field), the second side chain B is Application of a pretilt to liquid crystal molecules can be promoted, and a value of a voltage applied to the liquid crystal layer can be reduced in order to provide a pretilt to liquid crystal molecules constituting the liquid crystal layer in the manufacturing process of the liquid crystal display device.
  • liquid crystal display device liquid crystal display element
  • the alignment state of the liquid crystal molecules 71 included in the liquid crystal layer 70 changes between the pixel electrode 40 and the counter electrode. It changes according to the potential difference between 60.
  • the liquid crystal layer 70 when the driving voltage is applied from the state before the driving voltage is applied as shown in FIG. And the movement propagates to the other liquid crystal molecules 71C.
  • the liquid crystal molecules 71 respond so as to take a substantially horizontal (parallel) posture with respect to the TFT substrate 20 and the CF substrate 50.
  • the optical characteristics of the liquid crystal layer 70 change, and the incident light to the liquid crystal display element becomes the emitted light modulated, and an image is displayed by gradation expression based on the emitted light.
  • liquid crystal display element that has not been subjected to any pretilt treatment and a liquid crystal display device including the liquid crystal display element
  • the substrate is provided with an alignment regulating portion such as a slit portion for regulating the orientation of liquid crystal molecules
  • the liquid crystal molecules aligned in the direction perpendicular to the substrate are tilted so that the director faces an arbitrary direction in the in-plane direction of the substrate.
  • the director orientation of each liquid crystal molecule is in a blurred state, and the overall orientation is disturbed.
  • the luminance of the display state is reached as a whole pixel when the initial driving voltage is applied, but thereafter, the luminance is lowered and reaches the luminance of the display state again. That is, when overdrive driving is performed, the apparent response speed is faster than when overdrive driving is not performed, but it is difficult to obtain sufficient display quality.
  • the first alignment film 21 and the second alignment film 51 described above are predetermined first with respect to the liquid crystal molecules 71A and 71B.
  • a pretilt angle ⁇ 1 and a second pretilt angle ⁇ 2 are given. This makes it difficult for problems to occur when the pretilt processing is not performed at all, greatly improves the response speed to the drive voltage (rise speed of image display), and improves the display quality during overdrive driving.
  • the TFT substrate 20 is provided with the first slit portion 44 as an alignment regulating portion for regulating the alignment of the liquid crystal molecules 71, display characteristics such as viewing angle characteristics are ensured, which is favorable. Response characteristics are improved while maintaining display characteristics.
  • the liquid crystal molecules have the second pretilt angle ⁇ 2 by the second alignment film 51, the amount of light transmitted during black display can be reduced, and the contrast can be further improved.
  • the alignment film is applied to linearly polarized light or a substrate surface with respect to a precursor film including a predetermined polymer material provided on the substrate surface. It is formed by irradiating light in an oblique direction (hereinafter referred to as “oblique light”), and thereby pretilt processing is performed. For this reason, when forming alignment film, there exists a problem that a large light irradiation apparatus, such as an apparatus which irradiates a linearly polarized light, and an apparatus which irradiates oblique light is needed.
  • forming a pixel having a multi-domain for realizing a wider viewing angle requires a larger apparatus and has a problem that the manufacturing process becomes complicated.
  • the structure when an alignment film is formed using oblique light, if there are structures such as spacers or irregularities on the substrate, the structure will be shaded and an area where oblique light does not reach is generated. It becomes difficult to regulate the desired orientation.
  • it is necessary to design a pixel in consideration of light wraparound. That is, when the alignment film is formed using oblique light, there is a problem that it is difficult to form high-definition pixels.
  • the crosslinkable functional group or polymerizable functional group contained in the crosslinkable polymer compound in the precursor film has a thermal motion. Therefore, the probability that the physical distance between the crosslinkable functional groups or the polymerizable functional groups approaches is low.
  • the crosslinkable functional group reacts when the physical distance between the crosslinkable functional groups or polymerizable functional groups approaches, but reacts when irradiated with linearly polarized light.
  • the polymerizable functional group needs to align the polarization direction and the reaction site direction in a predetermined direction.
  • the oblique light has a lower irradiation amount per unit area as the irradiation area is wider than the vertical light. That is, the ratio of the crosslinkable functional group or the polymerizable functional group that reacts to linearly polarized light or oblique light is lower than that in the case where random light (non-polarized light) is irradiated from the direction perpendicular to the substrate surface. Therefore, the crosslinking density (degree of crosslinking) in the formed alignment film tends to be low.
  • the alignment films 21 and 51 including the compound before the alignment treatment are formed, and then the liquid crystal layer 70 is sealed between the first alignment film 21 and the second alignment film 51.
  • the liquid crystal molecules 71 take a predetermined orientation, and the orientation films 21 and 51 are arranged while the liquid crystal molecules 71 define the direction of the terminal structure of the side chain with respect to the substrate or electrode.
  • the compound Prior to the alignment treatment, the compound is crosslinked or polymerized. Accordingly, the first alignment film 21 and the second alignment film 51 that give the first pretilt angle ⁇ 1 and the second pretilt angle ⁇ 2 to the liquid crystal molecules 71A and 71B can be formed.
  • the response characteristics can be easily improved without using a large-scale device.
  • the pretilt angles ⁇ 1 and ⁇ 2 can be given to the liquid crystal molecules 71 without depending on the irradiation direction of ultraviolet rays when the compound is crosslinked or polymerized before the alignment treatment, a high-definition pixel Can be formed.
  • the degree of crosslinking after the alignment treatment is determined by the above-described conventional manufacturing method. It is thought that it is higher than the film.
  • the second side chain since the second side chain exists, the second side chain is aligned in a direction depending on the direction of the electric field for applying the pretilt to the liquid crystal molecules 71 (for example, a direction slightly inclined from the direction of the electric field). As a result, provision of a pretilt to the liquid crystal molecules can be promoted by the second side chain. Therefore, in the manufacturing process of the liquid crystal display device, the value of the voltage applied to the liquid crystal layer in order to impart pretilt to the liquid crystal molecules constituting the liquid crystal layer can be reduced.
  • the pre-alignment treatment compound in the alignment films 21 and 51 is crosslinked or polymerized.
  • the transmittance during driving of the element can be changed so as to increase continuously.
  • the first slit portion for regulating the alignment of the liquid crystal molecules 71 in the vicinity of the first alignment film 21 44 gives a pretilt according to the alignment direction of the liquid crystal molecules 71 during driving. Therefore, as shown in FIG. 12, since the pretilt directions of the liquid crystal molecules 71 are easily aligned, the order parameter becomes large (close to 1). Thereby, when the liquid crystal display element is driven, the liquid crystal molecules 71 exhibit a uniform behavior, and thus the transmittance continuously increases.
  • the main chain of the compound before the alignment process is polyimide. It is not limited to a thing including a structure.
  • the main chain may include a polysiloxane structure, a polyacrylate structure, a polymethacrylate structure, a maleimide polymer structure, a styrene polymer structure, a styrene / maleimide polymer structure, a polysaccharide structure or a polyvinyl alcohol structure.
  • pre-alignment treatment compounds having a main chain containing a polysiloxane structure are preferred.
  • Examples of the pre-alignment treatment compound having a main chain containing a polysiloxane structure include a polymer compound containing a polysilane structure represented by the formula (9).
  • R10 and R11 in the formula (9) are arbitrary as long as they are monovalent groups including carbon, but one of R10 and R11 includes the first side chain. Is preferred. This is because sufficient alignment regulation ability is easily obtained after the alignment treatment and in the compound.
  • Examples of the crosslinkable functional group or polymerizable functional group in this case include the group shown in the above formula (41).
  • R10 and R11 are monovalent organic groups, and m1 is an integer of 1 or more.
  • the first slit portion 44 is provided to divide the orientation and improve the viewing angle characteristics.
  • the present invention is not limited to this.
  • a protrusion as an alignment regulating portion may be provided on the pixel electrode 40. Providing the protrusions in this way can provide the same effects as when the first slit portion 44 is provided.
  • the same effect as when the first slit portion 44 is provided can be obtained by providing the pixel electrode 40 with an uneven portion.
  • the first alignment film 21 covering the TFT substrate, which is the first substrate 20, contains the compound after alignment treatment, and the first substrate (TFT substrate) in the liquid crystal layer 70.
  • the first pretilt angle ⁇ 1 is applied to the liquid crystal molecules 71A located on the 20 side
  • the present invention is not limited to this. That is, as shown in FIG. 2, the first substrate 20 can be a CF substrate, and the second substrate 50 can be a TFT substrate. In this case, the same effect as the liquid crystal display device shown in FIG. 1 can be obtained. be able to.
  • the second embodiment also relates to a liquid crystal display device of the present disclosure and a method for manufacturing the liquid crystal display device according to the second and third aspects of the present disclosure.
  • the compound after the alignment treatment, has a crosslinkable functional group or a polymerizable functional group in the compound having a crosslinkable functional group or a polymerizable functional group as the first side chain. Alternatively, it can be obtained by polymerization.
  • the compound after the alignment treatment is obtained based on the compound before the alignment treatment that has a photosensitive functional group as a first side chain that is deformed by irradiation with energy rays.
  • the alignment films 21 and 51 are one type of polymer compound (after alignment treatment / compound) having a first side chain having a crosslinked structure and a second side chain. Or it is comprised including 2 or more types.
  • the second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment (the liquid crystal display device according to the first aspect of the present disclosure).
  • the alignment film 21 includes one or more of polymer compounds (pre-alignment treatment / compound) having a main chain and first and second side chains.
  • the compound After the alignment treatment, the compound includes a structure in which liquid crystal molecules are arranged in a predetermined direction (specifically, an oblique direction) with respect to one of the pair of substrates (TFT substrate 20 or CF substrate 50).
  • a predetermined direction specifically, an oblique direction
  • the alignment films 21 and 51 contain the compound. Since a pretilt can be given to the liquid crystal molecules 71 in the vicinity, the response speed (rise speed of image display) is increased, and the display characteristics are improved.
  • the second side chain exists, when a voltage is applied to apply pretilt to the liquid crystal molecules 71, the second side chain is present in a direction depending on the direction of the electric field (for example, a direction slightly inclined from the direction of the electric field). As a result of the alignment of the two side chains, provision of pretilt to the liquid crystal molecules can be promoted by the second side chain. Therefore, in the manufacturing process of the liquid crystal display device, the value of the voltage applied to the liquid crystal layer in order to impart pretilt to the liquid crystal molecules constituting the liquid crystal layer can be reduced.
  • photosensitive functional groups examples include azobenzene compounds having an azo group, compounds having an imine and aldimine in the skeleton (referred to as “aldiminebenzene” for convenience), and compounds having a styrene skeleton (referred to as “stilbene” for convenience). can do. These compounds can impart a pretilt to liquid crystal molecules as a result of deformation in response to energy rays (for example, ultraviolet rays), that is, as a result of transition from a trans state to a cis state.
  • energy rays for example, ultraviolet rays
  • X in the azobenzene compound represented by the formula (AZ-0) include the following formulas (AZ-1) to (AZ-9).
  • R and R ′′ are bonded to a benzene ring containing diamine directly or via ether, ester, etc., and the other is a terminal group, and R, R ′, and R ′′ are hydrogen. It is a monovalent group having an atom, a halogen atom, an alkyl group, an alkoxy group or a carbonate group, or a derivative thereof, and the terminal groups are R 2 ′ in the formula (1) and R in the formula (2). 13 'may be included. By doing so, it is possible to more easily provide the tilt.
  • R ′′ is directly bonded to a benzene ring containing a diamine or via an ether, an ester or the like.
  • the liquid crystal display device and the manufacturing method thereof according to the second embodiment are basically the same except that the pre-alignment treatment compound having a photosensitive functional group accompanied by deformation caused by irradiation with energy rays (specifically, ultraviolet rays) is used. Since it can be substantially the same as the liquid crystal display device and the manufacturing method thereof described in Embodiment 1, detailed description thereof is omitted.
  • the pre-alignment treatment compound having a photosensitive functional group accompanied by deformation caused by irradiation with energy rays specifically, ultraviolet rays
  • the third embodiment also relates to a liquid crystal display device according to the present disclosure, and further relates to a method for manufacturing the liquid crystal display device according to the third aspect of the present disclosure.
  • a binding side chain in which the first side chain and the second side chain shown in Structural Formula (13) are combined is used.
  • the binding side chain include structures represented by the aforementioned formulas (G-K01) to (G-K12).
  • the ring R, ring X, and A 1 to A 4 in the formula (13) are the same as the above-mentioned (G-A01) to (GA20), (G-B01) to (GB20), (G-C01) to Formula (G-C16), Formula (G-D01) to Formula (G-D16), Formula (GE01) to Formula (GE02), Formula (G-F01) to Formula ( G-F12), formulas (G-H01) to formulas (G-H12), and formulas (G-J01) to formulas (GJ14) can be substituted.
  • the compound after the alignment treatment is obtained by crosslinking or polymerizing the crosslinkable functional group or the polymerizable functional group in the compound before the alignment treatment having a crosslinkable functional group or a polymerizable functional group as a binding side chain.
  • the bonding side chain in the polymer compound constituting the alignment films 21 and 51 has the structural formula (13).
  • the liquid crystal molecules are given a pretilt by a crosslinked or polymerized compound.
  • the compound is formed of the alignment films 21 and 51 in a state containing one or two or more polymer compounds having a main chain and a bonding side chain (before the alignment treatment).
  • crosslinking or polymerizing the polymer compound more specifically, a crosslinkable functional group or a polymerizable functional group (specifically, “ Produced by reacting A 02 ").
  • the compound After the alignment treatment, the compound has a structure (specifically) in which liquid crystal molecules are arranged in a predetermined direction (specifically, oblique direction) with respect to a pair of substrates (specifically, the TFT substrate 20 and the CF substrate 50). In particular, it contains a binding side chain).
  • the polymer compound (before the alignment treatment / compound) is crosslinked or polymerized, and after the alignment treatment / the compound is contained in the alignment films 21 and 51, the liquid crystal molecules 71 in the vicinity of the alignment films 21 and 51 are formed.
  • a pretilt can be given, the response speed (rise speed of image display) is increased, and the display characteristics are improved.
  • a first alignment film 21 made of a polymer compound having a binding side chain is formed on one of the pair of substrates (specifically, the substrate 20), and the other of the pair of substrates (specifically, the substrate 50) is formed.
  • a pair of substrates 20 and 50 are arranged such that the first alignment film 21 and the second alignment film 51 face each other, and a negative dielectric constant anisotropic is provided between the first alignment film 21 and the second alignment film 51.
  • the bond side chain has the characteristics as described above, when an electric field for applying a pretilt to the liquid crystal molecules 71 is applied, the direction depends on the direction of the electric field (for example, slightly inclined from the direction of the electric field). As a result of the alignment of the second side chains in the direction), it is possible to promote the application of pretilt to the liquid crystal molecules by the second side chains. As a result, in the manufacturing process of the liquid crystal display device, it is possible to reduce the value of the voltage applied to the liquid crystal layer in order to impart pretilt to the liquid crystal molecules constituting the liquid crystal layer.
  • Example 1 is a liquid crystal display device (liquid crystal display element) according to the first to third aspects of the present disclosure, a manufacturing method thereof, and a liquid crystal display according to the first to third aspects of the present disclosure.
  • the present invention relates to a method for manufacturing a device (liquid crystal display element).
  • the liquid crystal display device (liquid crystal display element) shown in FIG. 1 was produced according to the following procedure.
  • a TFT substrate 20 and a CF substrate 50 were prepared.
  • a substrate was used in which a pixel electrode 40 made of ITO having a slit pattern (line width 4 ⁇ m, line spacing 4 ⁇ m: slit portion 44) was formed on one side of a 0.7 mm thick glass substrate.
  • a substrate in which a counter electrode 60 made of ITO was formed over the entire surface of a color filter layer of a 0.7 mm thick glass substrate on which the color filter layer was formed was used. An oblique electric field is applied between the TFT substrate 20 and the CF substrate 50 by the slit pattern formed in the pixel electrode 40.
  • alignment film materials for the first alignment film and the second alignment film were prepared.
  • Example 1-A to Example 1-L a compound having a crosslinkable functional group represented by formula (A-8) as a diamine compound, formula (C-1)
  • a compound having a group capable of following the liquid crystal molecules 71 shown a compound constituting the various second side chains represented by the formula (12) shown below, and a tetracarboxylic acid shown in the formula (E-2)
  • NMP N-methyl-2-pyrrolidone
  • m-phenylenediamine is bonded to “A 0 ”.
  • Example 1-M the compound having a crosslinkable functional group represented by the formula (A-8) as the diamine compound and the liquid crystal molecule 71 represented by the formula (C-1) can be used.
  • a compound having a group, a compound having a bonding side chain represented by the formula (G-K07), and a tetracarboxylic dianhydride represented by the formula (E-2) in a molar ratio of 7.5%, 2.5% %, 40% and 50% were dissolved in N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • each of these solutions was reacted at 60 ° C. for 6 hours, and then a large excess of pure water was poured into the solution after the reaction to precipitate the reaction product.
  • the precipitated solid is separated, washed with pure water, and dried under reduced pressure at 40 ° C. for 15 hours, thereby synthesizing a polyamic acid which is a polymer compound precursor as a compound before alignment treatment. It was done.
  • 3.0 g of the obtained polyamic acid was dissolved in NMP to obtain a solution having a solid content concentration of 3% by mass, and then filtered through a 0.2 ⁇ m filter.
  • alignment film materials (Example 1-A to Example 1-M) for forming the alignment films 21 and 51 were obtained.
  • the compound constituting the second side chain is a compound such as A 1 , A 2 , A 3 , A 4 or the like in the ring X and the ring R in the structural formula (11), the structural formula (12), or the structural formula (13).
  • This group can be introduced by a known general organic synthesis method. Typical synthesis examples are “New Experimental Chemistry Course 14 Synthesis and Reaction of Organic Compounds”, Maruzen Co., Ltd. (1978), or “Fourth Edition Experimental Chemistry Course 19 to 26 Organic Synthesis I to VIII”, Maruzen Stock The method published in a company (1991) etc. can be mentioned.
  • a compound obtained by reacting an arylboric acid (21) with a compound (22) synthesized by a known method in the presence of a catalyst such as an aqueous carbonate solution and tetrakis (triphenylphosphine) palladium is synthesized (1A).
  • compound (1A) is prepared by reacting compound (23) synthesized by a known method with n-butyllithium and then with zinc chloride in the presence of a catalyst such as dichlorobis (triphenylphosphine) palladium. It can also be synthesized by reacting compound (22).
  • “MSG” represents mesogen.
  • compound (24) is reduced with a reducing agent such as sodium borohydride to obtain compound (25).
  • This compound (25) is halogenated with hydrobromic acid to obtain the compound (26).
  • the compound which comprises a 2nd side chain can also be obtained by synthesize
  • the prepared alignment film material (see Table 1) was applied to each of the TFT substrate 20 and the CF substrate 50 using a spin coater, and then the applied film was dried on an 80 ° C. hot plate for 80 seconds. Thereafter, the TFT substrate 20 and the CF substrate 50 were heated in an oven at 200 ° C. for 1 hour in a nitrogen gas atmosphere. Thus, the first alignment film 21 having a thickness of 90 nm on the pixel electrode 40 was formed, and the CF substrate 50 having a thickness of 90 nm on the second alignment film 51 on the counter electrode 60 was manufactured.
  • a seal portion is formed on the periphery of the pixel portion on the CF substrate 50 by applying an ultraviolet curable resin containing silica particles having a particle diameter of 3.5 ⁇ m, and a negative dielectric constant is formed in a portion surrounded by the seal portion.
  • Comparative Example 1-A and Comparative Example 1-B as shown in Table 1, alignment film materials were prepared in the same manner as the alignment film materials of Examples, except that the materials used were different. Specifically, a compound having a crosslinkable functional group represented by formula (A-8), a compound having a vertical alignment inducing structure represented by formula (C-1) or (C-2), and a regulator 1,4-phenylenediamine represented by formula (J-1) and tetracarboxylic dianhydride represented by formula (E-2) in a molar ratio of 12.5%, 2.5%, 35%, 50% was dissolved in N-methyl-2-pyrrolidone (NMP) to prepare a liquid crystal display device in the same manner as described above.
  • NMP N-methyl-2-pyrrolidone
  • an LCD 5200 manufactured by Otsuka Electronics Co., Ltd.
  • a driving voltage 7.5 volts
  • a luminance of 10 % To a luminance of 90% of the gradation corresponding to the driving voltage (rise time of image display) was measured.
  • the rise time is 10 milliseconds or less
  • the response time is good, and in Table 2, “response ⁇ ” is shown.
  • the rise time exceeds 10 milliseconds, the response time is regarded as defective, and in Table 2, “response x” is shown.
  • the pretilt angle ⁇ of the liquid crystal molecules 71 conforms to a known method (method described in TJ Schefer et al., J. Appl. Phys., Vol. 19, page 2013, 1980). It was measured by a crystal rotation method using a He—Ne laser beam. As described above and shown in FIG. 4, the pretilt angle ⁇ is set in the Z direction when the drive voltage is off when the direction perpendicular to the surfaces of the substrates 20 and 50 (normal direction) is Z. The tilt angle of the director D of the liquid crystal molecules 71 (71A, 71B) with respect to.
  • Example 1-A to Example 1-M and Comparative Example 1-A to Comparative Example 1-B are compared, in Comparative Examples 1-A to 1-B, the applied voltage during the pretilt process is 5 volts. The response time was poor at 10 volts and the response time was good at 20 volts, whereas in Examples 1-A to 1-M, the response was applied even when the applied voltage during pretilt processing was 5 volts. Time: Good. Further, in the case where the applied voltage was the same, in Example 1-A to Example 1-M, a pretilt angle ⁇ larger than that in Comparative Example 1-A to Comparative Example 1-B could be obtained.
  • pretilt application it becomes possible to realize pretilt application at a relatively low voltage, and it is possible to perform pretilt application with a cheaper power supply device that does not require a high voltage. It was found that a liquid crystal display device capable of easily improving response characteristics without using a large-scale manufacturing apparatus can be manufactured.
  • Example 2 the configuration and structure of the first electrode are modified. Specifically, in Example 2, instead of forming the slit portion in the first electrode, the first electrode is formed with a plurality of concave and convex portions, which ensures the occurrence of the above problem. Can be avoided. Such a form is referred to as “first structure of the first electrode”.
  • the first electrode may be formed with a plurality of concavo-convex portions, and at least a space between the recesses of the first electrode may be embedded with a planarizing layer.
  • the portion where the liquid crystal molecules contact on the first electrode side is flat or substantially flat. Therefore, the alignment state of the liquid crystal molecules can be made uniform, and as a result, the light transmittance of the liquid crystal display device can be made uniform.
  • Such a form is referred to as a “second structure of the first electrode”.
  • the planarization layer covers the first electrode; A first alignment film covering the planarization layer and a second alignment film covering the second electrode;
  • the liquid crystal molecules can have a form in which a pretilt is given at least by the first alignment film. Such a form is referred to as a “first electrode of the first type” for convenience.
  • the planarization layer covers the first electrode; A first alignment film covering the first electrode and a second alignment film covering the second electrode; The liquid crystal molecules are given a pretilt by at least the first alignment film, The first alignment film can have a form corresponding to the planarization layer. Such a form is referred to as a “second type first electrode” for convenience.
  • the planarization layer fills between the recesses of the first electrode, A first alignment film covering the first electrode and the planarization layer, and a second alignment film covering the second electrode;
  • the liquid crystal molecules can have a form in which a pretilt is given at least by the first alignment film. Such a form is referred to as a “third type first electrode” for convenience.
  • examples of the material constituting the planarization layer in the first electrode of the first type or the first electrode of the third type include high-molecular compound materials such as resist materials, photosensitive polyimide resins, and acrylic resins. And inorganic materials such as SiO 2 , SiN, and SiON.
  • the material which comprises the 1st alignment film in this indication can be mentioned as a material which comprises the planarization layer in the 2nd type 1st electrode.
  • the planarizing layer depends on the material used, it can be formed on the basis of various coating methods, or on the basis of physical vapor deposition methods (PVD methods) such as various vacuum deposition methods and sputtering methods. Alternatively, they can be formed based on various chemical vapor deposition methods (CVD methods).
  • the space between the recesses of the first electrode is buried by the planarizing layer or whether the first electrode is covered depends on the composition of the composition including the material constituting the planarizing layer and the material constituting the planarizing layer. And characteristics (for example, solid content concentration and viscosity, solvent used), the formation method and formation conditions of the planarization layer, and the like.
  • the alignment film can also be formed based on, for example, various coating methods.
  • various printing methods such as screen printing method, ink jet printing method, offset printing method, reverse offset printing method, gravure printing method, gravure offset printing method, letterpress printing, flexographic printing, microcontact method, etc. as spin coating method ;
  • stamping method may be a method of applying the liquid material.
  • the average film thickness of the alignment film is a value obtained by dividing the volume of the alignment film that occupies one pixel (or one subpixel) by the area of one pixel (or one subpixel).
  • T 2 / T 1 that is, by making the average film thickness of the first alignment film equal to or approximately equal to the average film thickness of the second alignment film, Generation
  • a plurality of stepped portions can be formed on the convex portion provided on the first electrode.
  • Such a configuration is referred to as “a 3rd A structure of the first electrode” for convenience.
  • the electric field strength is generated in the convex portion, or a lateral electric field is generated.
  • the alignment regulating force on the liquid crystal molecules at the convex portions can be strengthened, and the tilt state of the liquid crystal molecules at the convex portions can be reliably defined. Therefore, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining good voltage response characteristics, reducing the cost of the light source constituting the backlight, and reducing power consumption.
  • the reliability of the TFT can be improved.
  • the concavo-convex part passes through the center of the pixel and extends in a cross shape, and from the stem ridge to the periphery of the pixel It can be set as the form comprised from the several branch convex part extended toward a part.
  • first electrode 1-1 structure “first electrode 2-1 structure”
  • first electrode 3A-1 structure “first electrode 3A-1 structure”.
  • each of the trunk protrusions extending in a cross shape is represented by the X axis, Y Assuming an (X, Y) coordinate system as an axis,
  • the plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the fourth quadrant can adopt a form extending in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases.
  • the plurality of branch convex portions occupying the first quadrant extend at an axis of 45 degrees with the X axis, and the plurality of branch convex portions occupying the second quadrant have an axis of 135 degrees with the X axis.
  • the plurality of branch protrusions that occupy the third quadrant extend at an axis of 225 degrees with the X axis, and the plurality of branch protrusions that occupy the fourth quadrant have an axis of 315 degrees with the X axis.
  • the present invention is not limited to these values (angles). The same applies to the following.
  • the cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion is the stem convex It can be set as the form which has a cross-sectional shape from which the level
  • the cross-sectional shape of the stem convex portion when the stem convex portion is cut along a virtual vertical plane parallel to the extending direction of the stem convex portion Can have a cross-sectional shape in which the stepped portion descends from the center of the cross-sectional shape of the trunk convex portion toward the end of the cross-sectional shape of the stem convex portion.
  • the cross-section of the branch protrusion when the branch protrusion is cut along a virtual vertical plane perpendicular to the extending direction of the branch protrusion may have a cross-sectional shape in which the stepped portion descends from the center of the cross-sectional shape of the branch convex portion toward the edge of the cross-sectional shape of the branch convex portion.
  • the cross-sectional shape of the branch protrusion when the branch protrusion is cut along a virtual vertical plane parallel to the extending direction of the branch protrusion May have a cross-sectional shape in which the stepped portion descends from the trunk convex portion side of the cross-sectional shape of the branch convex portion toward the end of the cross-sectional shape of the branch convex portion.
  • the first electrode 3A-1 structure corresponds to the trunk convex portion. It can be set as the form by which the orientation control part is formed in the part of the 2nd electrode.
  • the orientation restricting portion may be formed from a slit portion provided in the second electrode, or may be formed from a protrusion provided in the second electrode, or Moreover, it can also comprise from the part of the 2nd electrode used as the protrusion shape.
  • the protrusion is made of, for example, a resist material, and the second electrode is not formed thereon.
  • a convex portion may be formed on the lower side of the second electrode, or, alternatively, by a method similar to the convex portion forming method of the concave and convex portions in the first electrode. It is also possible to provide a protruding portion of the second electrode. It is desirable that the width of the slit portion or the protruding portion or the protruding second electrode portion is narrower than the width of the trunk convex portion. The same can be applied to the 3B-1 structure of the first electrode and the 3C structure of the first electrode, which will be described later.
  • the concavo-convex portion includes a stem convex portion formed in a frame shape around the pixel, and a stem convex portion. It can be set as the form comprised from the several branch convex part extended toward the pixel inside from a part. Such a form is referred to as “first electrode 1-2 structure”, “first electrode 2-2 structure”, and “first electrode 3A-2 structure” for convenience.
  • first electrode 1-2 structure first electrode 1-2 structure
  • first electrode 2-2 structure first electrode 3A-2 structure
  • the plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the fourth quadrant can adopt a form extending in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases.
  • the cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion is the stem convex It can be set as the form which has a cross-sectional shape from which the level
  • the cross-section of the branch protrusion when the branch protrusion is cut along a virtual vertical plane orthogonal to the extending direction of the branch protrusion may have a cross-sectional shape in which the stepped portion descends from the center of the cross-sectional shape of the branch convex portion toward the edge of the cross-sectional shape of the branch convex portion.
  • the cross-sectional shape of the branch convex portion when the branch convex portion is cut along a virtual vertical plane parallel to the extending direction of the branch convex portion May have a cross-sectional shape in which the stepped portion descends from the trunk convex portion side of the cross-sectional shape of the branch convex portion toward the end of the cross-sectional shape of the branch convex portion.
  • the first electrode includes: A slit portion or a protrusion portion that passes through the center of the pixel and is parallel to the periphery of the pixel can be formed.
  • the protrusion is made of, for example, a resist material, and the first electrode is not formed thereon.
  • the first electrode may have a cross-shaped convex portion that passes through the center of the pixel and is surrounded by the concave portion.
  • Such a cross-shaped convex part can be provided by forming a cross-shaped convex part on the lower side of the first electrode, or by a method similar to the method of forming the concave-convex part in the first electrode. It is also possible to provide it. Alternatively, instead of providing the slit portion or the protrusion (rib), a cross-shaped concave portion that passes through the pixel center portion may be provided. The same applies to the 3B-2 structure of the first electrode and the 3D structure of the first electrode, which will be described later.
  • a convex structure is formed from a portion of the first substrate located between the pixels to a portion of the first substrate corresponding to the peripheral portion of the pixel,
  • the peripheral part of the concavo-convex part may be formed on a convex structure.
  • the convex structure may be formed based on a black matrix made of a known material.
  • the first electrode 1-1 structure and the first electrode 1-2 structure may be combined, or the first electrode 2-1 structure and the first electrode 2-2 structure may be combined. Also good. That is, the concavo-convex portion passes through the center of the pixel and joins the trunk convex portion extending in a cross shape, the plurality of branch convex portions extending from the stem convex portion toward the pixel peripheral portion, and the plurality of branch convex portions, and the pixel peripheral portion It can also be set as the form comprised from the trunk convex part formed in frame shape. Such a form is referred to as “first electrode 1-3 structure” and “first electrode 2-3 structure” for convenience.
  • the (X, Y) coordinate system having the X-axis and the Y-axis as the trunk convex portions extending in a cross shape is used.
  • the plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the fourth quadrant can adopt a form extending in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases.
  • a convex structure is formed from a portion of the first substrate located between the pixels to a portion of the first substrate corresponding to the peripheral portion of the pixel,
  • the peripheral part of the concavo-convex part may be formed on a convex structure.
  • Such a configuration is referred to as a “3B structure of the first electrode” for convenience.
  • the peripheral part of an uneven part is formed on a convex structure, compared with the case where the peripheral part of an uneven part is flat, a much stronger electric field arises in the peripheral part of an uneven part .
  • the alignment regulating force on the liquid crystal molecules in the peripheral part of the uneven part can be strengthened, and the tilt state of the liquid crystal molecules in the peripheral part of the uneven part can be defined reliably. Therefore, good voltage response characteristics can be maintained.
  • the configuration and structure of the 3B structure of the first electrode is the same as that of the first electrode including the 1-1 structure of the first electrode, the 1-2 structure of the first electrode, and the 1-3 structure of the first electrode.
  • the second structure of the first electrode can be applied to the first structure, including the 2-1 structure of the first electrode, the 2-2 structure of the first electrode, and the 2-3 structure of the first electrode. It can also be applied.
  • the concavo-convex portion includes a trunk convex portion that extends through the center of the pixel and extends in a cross shape, and a plurality of branch convex portions that extend from the trunk convex portion toward the pixel peripheral portion. It can be set as a form. Such a form is referred to as “the 3rd B-1 structure of the first electrode” for convenience.
  • each of the trunk convex portions extending in a cross shape is an X axis and a Y axis
  • the plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the fourth quadrant can adopt a form extending in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases.
  • the orientation restricting portion may be formed from a slit portion provided in the second electrode, or may be formed from a protrusion provided in the second electrode.
  • the concavo-convex portion includes a stem convex portion formed in a frame shape around the pixel peripheral portion and a plurality of branch convex portions extending from the stem convex portion toward the inside of the pixel. It can be set as a form. Such a form is referred to as “a third B-2 structure of the first electrode” for convenience.
  • a third B-2 structure of the first electrode an (X, Y) coordinate system is assumed in which straight lines that pass through the center of the pixel and are parallel to the periphery of the pixel are the X axis and the Y axis.
  • the plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the fourth quadrant can adopt a form extending in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases.
  • the first electrode is formed with a slit or a protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel. be able to.
  • the convex structure may be formed based on a black matrix made of a known material.
  • the concavo-convex portion is composed of a stem convex portion that extends through the center of the pixel and extends in a cross shape, and a plurality of branch convex portions that extend from the stem convex portion toward the pixel peripheral portion, An orientation regulating portion may be formed on the portion of the second electrode corresponding to the trunk convex portion.
  • a configuration is referred to as a “3C structure of the first electrode” for convenience.
  • the orientation restricting portion is formed in the portion of the second electrode corresponding to the trunk convex portion, the electric field generated by the second electrode is distorted in the vicinity of the orientation restricting portion.
  • the direction in which the liquid crystal molecules are tilted in the vicinity of the alignment regulating portion is defined.
  • the alignment regulating force on the liquid crystal molecules in the vicinity of the alignment restricting portion can be strengthened, and the tilt state of the liquid crystal molecules in the vicinity of the alignment restricting portion can be reliably defined. Therefore, at the time of image display, dark lines are unlikely to occur in the image portion corresponding to the trunk convex portion.
  • liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption.
  • the reliability of the TFT can be improved.
  • the orientation restricting portion can be formed from a slit portion provided in the second electrode, or alternatively formed from a protrusion provided in the second electrode. It can be.
  • the concavo-convex part is composed of a stem convex part formed in a frame shape around the pixel peripheral part, and a plurality of branch convex parts extending from the stem convex part toward the inside of the pixel
  • the first electrode may have a structure in which a slit portion or a protrusion portion that passes through the center portion of the pixel and is parallel to the peripheral portion of the pixel is formed. Such a configuration is referred to as “a 3D structure of the first electrode” for convenience.
  • the first electrode has a slit or protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel, so there is no slit or protrusion.
  • the electric field generated by the first electrode is distorted in the vicinity of the slit, or the liquid crystal molecules are tilted in the vicinity of the protrusion or the alignment regulating portion. Is defined.
  • the black matrix can be formed such that the projected image of the portion of the first substrate located between the pixels and the projected image of the black matrix overlap.
  • the black matrix can be formed such that the projected image of the region extending from the first substrate portion located between the pixels to the end of the concavo-convex portion and the projected image of the black matrix overlap.
  • Examples of the width of the branch convex portion and the concave portion include 1 ⁇ m to 20 ⁇ m, preferably 2 ⁇ m to 10 ⁇ m. If the widths of the branch convex portions and the concave portions are less than 1 ⁇ m, it is difficult to form the branch convex portions and the concave portions, and it may be impossible to secure a sufficient manufacturing yield. On the other hand, if the widths of the branch convex portions and the concave portions exceed 20 ⁇ m, it is difficult to generate a favorable oblique electric field between the first electrode and the second electrode when a driving voltage is applied to the first electrode and the second electrode. There is.
  • Examples of the width of the trunk convex portion include 2 ⁇ 10 ⁇ 6 m to 2 ⁇ 10 ⁇ 5 m, preferably 4 ⁇ 10 ⁇ 6 m to 1.5 ⁇ 10 ⁇ 5 m.
  • Examples of the height from the concave portion to the convex portion closest to the concave portion include 5 ⁇ 10 ⁇ 8 m to 1 ⁇ 10 ⁇ 6 m, preferably 1 ⁇ 10 ⁇ 7 m to 5 ⁇ 10 ⁇ 7 m.
  • each step portion in the convex portion (the difference in height between the adjacent top surfaces of the convex portions constituting the step portion) is 5 ⁇ 10 ⁇ 8 m to 1 ⁇ 10 ⁇ 6 m, preferably 1 ⁇ 10 -7 m to 5 ⁇ 10 -7 m can be exemplified. As a result, good orientation control can be achieved, a sufficient production yield can be secured, and a decrease in light transmittance and an extension of process time can be prevented.
  • the width of a part of the convex portion provided on the first electrode is narrowed toward the tip. it can.
  • Such a configuration is referred to as “fourth structure of the first electrode” for convenience.
  • the first electrode has a plurality of concave and convex portions, and the width of a part of the convex portions provided on the first electrode is narrower toward the tip portion. It has become. Therefore, the generation of dark lines can be further reduced. That is, a more uniform high light transmittance can be realized, and generation of dark lines can be suppressed.
  • the concavo-convex portion is composed of a stem convex portion that extends through the center of the pixel and extends in a cross shape, and a plurality of branch convex portions that extend from the stem convex portion toward the pixel peripheral portion, A plurality of branch protrusions correspond to a part of the protrusions provided on the first electrode,
  • the width of the branch convex portion may be such that the portion of the branch convex portion joined to the trunk convex portion is the widest and narrows from the portion joined to the trunk convex portion toward the tip portion.
  • first electrode 4A structure Such a form is referred to as “first electrode 4A structure” for convenience.
  • two opposite sides of the branch convex portion from the portion joined to the trunk convex portion to the tip portion are referred to as “side sides” for convenience.
  • the plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the fourth quadrant can adopt a form extending in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases.
  • the concavo-convex part is composed of a stem convex part formed in a frame shape around the pixel peripheral part, and a plurality of branch convex parts extending from the stem convex part toward the inside of the pixel, A plurality of branch protrusions correspond to a part of the protrusions provided on the first electrode,
  • the width of the branch convex portion may be such that the portion of the branch convex portion joined to the trunk convex portion is the widest and narrows from the portion joined to the trunk convex portion toward the tip portion.
  • first electrode 4B structure Such a form is referred to as “first electrode 4B structure” for convenience.
  • the plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the fourth quadrant can adopt a form extending in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases.
  • the width of the branch convex portion is linearly narrowed from the portion joining the trunk convex portion to the tip portion (the branch convex portion is Each side side to be configured is configured by one line segment, and the rate of change in width is constant.
  • Each side constituting the portion may be formed of a single smooth curve, and the rate of change of the width may be changed), or each side constituting the branching convex portion may include two or more line segments. Or it can also be set as the form comprised from the curve, and can also be set as the form (form which each side which comprises a branch convex part is step shape) narrowed stepwise.
  • the second electrode corresponding to the trunk convex part may be formed with an orientation regulating part.
  • the alignment restricting portion when the alignment restricting portion is formed in the portion of the second electrode corresponding to the trunk convex portion, the electric field generated by the second electrode is distorted in the vicinity of the alignment restricting portion, or the liquid crystal molecules in the vicinity of the alignment restricting portion. The direction of falling is defined.
  • the alignment regulating force on the liquid crystal molecules in the vicinity of the alignment restricting portion can be strengthened, and the tilt state of the liquid crystal molecules in the vicinity of the alignment restricting portion can be reliably defined. Therefore, at the time of image display, dark lines are unlikely to occur in the image portion corresponding to the trunk convex portion.
  • liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption.
  • the reliability of the TFT can be improved.
  • the first electrode may be formed with a slit or a protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel. it can. Note that no electrodes are formed on the slits or protrusions. In this way, if a slit or protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel is formed in the first electrode, a flat recess without the slit or protrusion is formed in the first electrode.
  • the electric field generated by the first electrode is distorted in the vicinity of the slit, or the direction in which the liquid crystal molecules are tilted in the vicinity of the protrusion is defined.
  • liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption.
  • the reliability of the TFT can be improved.
  • a plurality of stepped portions can be formed on the convex portion provided on the first electrode.
  • first electrode 4C structure Such a form is referred to as “first electrode 4C structure” for convenience.
  • first electrode 4C structure a plurality of step portions (height difference) are formed on the convex portion, the electric field strength or weakness occurs in the convex portion, or a lateral electric field occurs.
  • the alignment regulating force on the liquid crystal molecules at the convex portions can be strengthened, and the tilt state of the liquid crystal molecules at the convex portions can be reliably defined. Therefore, when displaying an image, for example, a dark line hardly occurs in an image portion corresponding to the trunk convex portion.
  • liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption.
  • the reliability of the TFT can be improved.
  • the concavo-convex portion includes a trunk convex portion that extends through the center of the pixel and extends in a cross shape, and a plurality of branch convex portions that extend from the trunk convex portion toward the pixel peripheral portion. It can be.
  • a first electrode 4C-1 structure Such a form is referred to as a “first electrode 4C-1 structure” for convenience.
  • the 4C-1 structure of the first electrode is substantially a combination of the 4A structure of the first electrode and the 4C structure of the first electrode.
  • the cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane perpendicular to the extending direction of the stem convex portion is the stem convex It can be set as the form which has a cross-sectional shape from which the level
  • the cross-sectional shape of the trunk convex portion when the trunk convex portion is cut along a virtual vertical plane parallel to the extending direction of the trunk convex portion Can have a cross-sectional shape in which the stepped portion descends from the center of the cross-sectional shape of the trunk convex portion toward the end of the cross-sectional shape of the stem convex portion.
  • the shape may have a cross-sectional shape in which the stepped portion descends from the center of the cross-sectional shape of the branch convex portion toward the edge of the cross-sectional shape of the branch convex portion.
  • the cross-sectional shape of the branch convex portion when the branch convex portion is cut along a virtual vertical plane parallel to the extending direction of the branch convex portion May have a cross-sectional shape in which the stepped portion descends from the trunk convex portion side of the cross-sectional shape of the branch convex portion toward the end of the cross-sectional shape of the branch convex portion.
  • the orientation restricting portion may be formed in the portion of the second electrode corresponding to the trunk convex portion. it can.
  • the orientation restricting portion can be formed by a slit portion provided in the second electrode, or alternatively, the second electrode It can be configured by a provided protrusion, or can be configured by a protruding second electrode portion.
  • the protrusion is made of, for example, a resist material, and the second electrode is not formed thereon.
  • a convex portion may be formed on the lower side of the second electrode, or, alternatively, by a method similar to the convex portion forming method of the concave and convex portions in the first electrode. It is also possible to provide a protruding portion of the second electrode. In the 4C-1 structure of the first electrode, it is desirable that the width of the slit portion or the protruding portion or the protruding portion of the second electrode is narrower than the width of the trunk protruding portion. The same can be applied to the 4D-1 structure of the first electrode described later.
  • the concavo-convex portion is constituted by a stem convex portion formed in a frame shape around the pixel and a plurality of branch convex portions extending from the stem convex portion toward the inside of the pixel. It can be set as a form. Such a form is referred to as a “first electrode 4C-2 structure” for convenience.
  • the 4C-2 structure of the first electrode is substantially a combination of the 4B structure of the first electrode and the 4C structure of the first electrode.
  • the cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion is the stem convex It can be set as the form which has a cross-sectional shape from which the level
  • the cross-section of the branch protrusion when the branch protrusion is cut along a virtual vertical plane perpendicular to the extending direction of the branch protrusion may have a cross-sectional shape in which the stepped portion descends from the center of the cross-sectional shape of the branch convex portion toward the edge of the cross-sectional shape of the branch convex portion.
  • the cross-sectional shape of the branch protrusion when the branch protrusion is cut along a virtual vertical plane parallel to the extending direction of the branch protrusion May have a cross-sectional shape in which the stepped portion descends from the trunk convex portion side of the cross-sectional shape of the branch convex portion toward the end of the cross-sectional shape of the branch convex portion.
  • the first electrode is formed with a slit or protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel. It can be set as a form. Note that no electrodes are formed on the slits or protrusions.
  • the protrusion is made of, for example, a resist material.
  • the first electrode may have a cross-shaped convex portion that passes through the center of the pixel and is surrounded by the concave portion.
  • Such a cross-shaped convex part can be provided by forming a cross-shaped convex part on the lower side of the first electrode, or by a method similar to the method of forming the concave-convex part in the first electrode. It is also possible to provide it. Alternatively, instead of providing the slit portion or the protrusion (rib), a cross-shaped concave portion that passes through the pixel center portion may be provided. The same can be applied to the 4D-2 structure of the first electrode described later.
  • a convex structure is formed from a portion of the first substrate located between the pixels to a portion of the first substrate corresponding to the peripheral portion of the pixel,
  • the peripheral part of the concavo-convex part may be formed on a convex structure.
  • the convex structure may be formed based on a black matrix made of a known material. The same applies to the 4D structure of the first electrode including the various preferred embodiments described above.
  • a convex structure is formed from a portion of the first substrate located between the pixels to a portion of the first substrate corresponding to the peripheral portion of the pixel,
  • the peripheral part of the concavo-convex part may be formed on a convex structure.
  • Such a form is referred to as a “fourth D structure of the first electrode” for convenience.
  • the concavo-convex portion includes a trunk convex portion that extends through the center of the pixel and extends in a cross shape, and a plurality of branch convex portions that extend from the trunk convex portion toward the pixel peripheral portion. It can be set as a form. Such a form is referred to as a “fourth D-1 structure of the first electrode” for convenience. Note that the 4D-1 structure of the first electrode is substantially a combination of the 4A structure of the first electrode, the 4C structure of the first electrode, and the 4D structure of the first electrode.
  • the orientation restricting portion may be formed from a slit portion provided in the second electrode, or may be formed from a protrusion provided in the second electrode.
  • the concavo-convex portion is composed of a stem convex portion formed in a frame shape around the pixel peripheral portion and a plurality of branch convex portions extending from the stem convex portion toward the inside of the pixel. It can be set as a form. Such a form is referred to as a “fourth D-2 structure of the first electrode” for convenience.
  • the 4D-2 structure of the first electrode is substantially a combination of the 4B structure of the first electrode, the 4C structure of the first electrode, and the 4D structure of the first electrode.
  • the first electrode is formed with a slit part or a protrusion part that passes through the center part of the pixel and is parallel to the peripheral part of the pixel. be able to.
  • the black matrix can be formed such that the projected image of the portion of the first substrate located between the pixels and the projected image of the black matrix overlap.
  • the black matrix can be formed such that the projected image of the region extending from the first substrate portion located between the pixels to the end of the concavo-convex portion and the projected image of the black matrix overlap.
  • Examples of the average minimum width and average maximum width of the branch convex portions and the concave portions include 1 ⁇ m and 25 ⁇ m, preferably 2 ⁇ m and 20 ⁇ m. If the average minimum width of the branch convex portions and the concave portions is less than 1 ⁇ m, it is difficult to form the branch convex portions and the concave portions, and it may be impossible to secure a sufficient manufacturing yield. On the other hand, when the average maximum width of the branch convex portions and the concave portions exceeds 25 ⁇ m, a favorable oblique electric field is hardly generated between the first electrode and the second electrode when a driving voltage is applied to the first electrode and the second electrode. There is a risk of becoming.
  • Examples of the width of the trunk convex portion include 2 ⁇ 10 ⁇ 6 m to 2 ⁇ 10 ⁇ 5 m, preferably 4 ⁇ 10 ⁇ 6 m to 1.5 ⁇ 10 ⁇ 5 m.
  • the height from the concave portion to the convex portion closest to the concave portion is 5 ⁇ 10 ⁇ 8 m to 1 ⁇ 10 ⁇ 6 m, preferably 1 ⁇ 10 ⁇ 7 m to 1 ⁇ 10 ⁇ 6 m, more preferably 2 ⁇ . 10 -7 m to be able to illustrate the 6 ⁇ 10 -7 m.
  • each step portion in the convex portion is 5 ⁇ 10 ⁇ 8 m to 1 ⁇ 10 ⁇ 6 m, preferably 1 ⁇ 10 ⁇ 7. m to 5 ⁇ 10 ⁇ 7 m can be exemplified. As a result, good orientation control can be achieved, a sufficient production yield can be secured, and a decrease in light transmittance and an extension of process time can be prevented.
  • the above discussion can be applied to the 5A structure of the first electrode to the 5E structure of the first electrode by replacing “branch convex portion” with “branch convex portion etc.” to be described later.
  • the second structure of the first electrode Assuming an X-axis and a Y-axis passing through the center of the pixel, The plurality of convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases, The plurality of convex portions occupying the second quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate decreases, The plurality of convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases, The plurality of convex portions occupying the fourth quadrant can be configured to extend in parallel with the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases. Such a configuration is referred to as a “first electrode 5A structure” for convenience.
  • the plurality of protrusions occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of protrusions occupying the second quadrant Are parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of convex portions occupying the third quadrant are in the direction in which the Y coordinate value decreases when the X coordinate value decreases.
  • the plurality of protrusions extending in parallel to the fourth quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value increases.
  • the length of the convex portion extending parallel to the X axis, or the portion of the convex portion extending parallel to the Y axis does not exist, or even if it exists, the length is very short. Therefore, the alignment direction of the liquid crystal molecules can be matched as much as possible with the direction in which the convex portions extend, and the generation of dark lines in the region corresponding to the X axis and the Y axis can be suppressed.
  • a liquid crystal display device capable of realizing the rate can be provided.
  • the second structure of the first electrode Assuming an X-axis and a Y-axis passing through the center of the pixel,
  • the plurality of concavo-convex portions are constituted by a trunk convex portion extending on the X axis and the Y axis, and a plurality of branch convex portions extending from the side of the trunk convex portion toward the peripheral portion of the pixel,
  • the extending direction of the side portion of the trunk convex portion that is not joined to the branch convex portion may be configured not to be parallel to the X axis and not parallel to the Y axis.
  • the extending direction of the side portion of the trunk convex portion that is not joined to the branch convex portion is a direction different from the X axis and the Y axis.
  • Such a configuration is referred to as a “first electrode 5B structure” for convenience.
  • the plurality of concavo-convex portions include a stem convex portion extending on the X axis and the Y axis, and a plurality of branch convex portions extending from the side of the stem convex portion toward the peripheral portion of the pixel.
  • the extending direction of the side portion of the trunk convex portion that is not joined to the branch convex portion is not parallel to the X axis and not parallel to the Y axis. That is, there is no trunk convex portion extending in parallel with the X axis or the trunk convex portion extending in parallel with the Y axis.
  • liquid crystal display device capable of realizing a more uniform high light transmittance can be provided.
  • a liquid crystal display device having a configuration and a structure capable of giving a pretilt to liquid crystal molecules in a short time.
  • the first electrode may further include a slit portion. That is, the first electrode is provided with a concavo-convex portion and a slit portion. In the slit portion, the transparent conductive material layer constituting the first electrode is not formed. Such a configuration is referred to as a “first electrode 5C structure” for convenience.
  • the first electrode in the central region of the pixel may be provided with a depression. That is, the first electrode is provided with an uneven portion and a recess. A transparent conductive material layer constituting the first electrode is formed in the recess. Such a configuration is referred to as a “first electrode 5D structure” for convenience.
  • the plurality of concavo-convex portions are constituted by a trunk convex portion extending on the X axis and the Y axis, and a plurality of branch convex portions extending from the side of the trunk convex portion toward the peripheral portion of the pixel,
  • the plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the fourth quadrant extend in parallel
  • the branch convex part extending from the trunk convex part on the Y axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the second quadrant are formed in a mutually shifted state.
  • the branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are formed in a mutually shifted state.
  • the branch convex part extending from the trunk convex part on the Y axis and occupying the third quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the fourth quadrant are formed in a mutually shifted state. It can be set as a structure. Such a configuration is referred to as a “first electrode 5E structure” for convenience.
  • the first electrode has a slit portion in addition to the concavo-convex portion.
  • the electric field generated by the first electrode is distorted in the vicinity of the slit portion, and the direction in which the liquid crystal molecules fall is strongly defined.
  • the alignment regulating force on the liquid crystal molecules in the vicinity of the slit portion can be strengthened, and the tilt state of the liquid crystal molecules in the vicinity of the slit portion can be reliably defined.
  • the first electrode in the center region of the pixel is provided with a recess.
  • the liquid crystal molecules located in the vicinity of the depression are in a state of falling toward the center of the pixel. Furthermore, in the 5E structure of the 1st electrode, it forms in the state which shifted
  • the electric field generated by the first electrode in the center of the pixel is distorted to a desired state in the vicinity of the center of the pixel, and the direction in which the liquid crystal molecules are tilted is changed. It is prescribed.
  • the liquid crystal layer is exposed to a desired electric field for a predetermined time in order to impart a pretilt to the liquid crystal molecules, but it is necessary for the alignment of the liquid crystal molecules exposed to the desired electric field to become stable.
  • Time can be shortened. That is, a pretilt can be imparted to the liquid crystal molecules in a short time, and the manufacturing time of the liquid crystal display device can be shortened.
  • the convex portion or the branch convex portion (these may be collectively referred to as “branch convex portion” hereinafter).
  • the arrangement state is called a multi-domain electrode structure, and regions having different extending directions such as branch protrusions are formed in one pixel, so that viewing angle characteristics can be improved.
  • the plurality of branch projections occupying the first quadrant extend at an angle of 45 degrees with the X axis
  • the plurality of branch projections occupying the second quadrant A plurality of branch projections, etc., extending 135 degrees with the X axis and occupying the third quadrant, etc., a plurality of branch projections, etc., whose axis extending 225 degrees with the X axis, occupying the fourth quadrant, etc. Is preferably configured such that its axis extends 315 degrees with the X axis, but is not limited to these values (angles).
  • each straight line passing through the center of the pixel and parallel to the peripheral portion of the pixel is the X axis and the Y axis.
  • the branch convex portions and the like are preferably symmetrical with respect to the X axis and also symmetrical with respect to the Y axis, or alternatively, the 5A structure of the first electrode.
  • the branch protrusions have a rotational symmetry (point symmetry) of 180 degrees with respect to the center of the pixel.
  • the trunk convex portion is not provided, and the convex portion in the 5A structure of the first electrode is substantially the first Corresponding to the branching protrusion in the electrode 5B structure
  • Each of the protrusions extending from the X axis and occupying the first quadrant is joined to each of the protrusions extending from the X axis and occupying the fourth quadrant
  • Each of the convex portions extending from the Y axis and occupying the first quadrant is joined to each of the convex portions extending from the Y axis and occupying the second quadrant
  • Each of the protrusions extending from the X axis and occupying the second quadrant is joined to each of the protrusions extending from the X axis and occupying the third quadrant
  • Each of the protrusions extending from the Y axis and occupying the third quadrant can be configured to be joined to each of the
  • the protruding portion can be configured to be surrounded by a plurality of line segments, can be configured to be surrounded by a single curve, or can be configured to be surrounded by a plurality of curves. It can also be set as the structure enclosed by the combination of a line segment and a curve.
  • the tip of the protrusion may be in contact with a joint between two adjacent protrusions in the peripheral direction of the pixel.
  • the liquid crystal display device having a long contact portion substantially corresponds to the 5B structure of the first electrode.
  • each of the protrusions extending from the X axis or the vicinity thereof and occupying the first quadrant is not joined to each of the protrusions extending from the X axis or the vicinity thereof and occupying the fourth quadrant
  • Each of the protrusions extending from the Y axis or its vicinity and occupying the first quadrant is not joined to each of the protrusions extending from the Y axis or its vicinity and occupying the second quadrant
  • Each of the protrusions extending from the X axis or the vicinity thereof and occupying the second quadrant is not joined to each of the protrusions extending from the X axis or the vicinity thereof and occupying the third quadrant
  • Each of the protrusions extending from the Y axis or the vicinity thereof and occupying the third quadrant can be configured not to be joined to each of the protrusions extending from the Y axis or the vicinity thereof and occupying the
  • the width of the convex portion can be reduced toward the peripheral portion of the pixel.
  • the first electrode may be further formed with a slit portion.
  • a slit portion Such a form is referred to as a “first electrode 5A-1 structure” for convenience.
  • the slit portion may be formed in the concave region, but it is more preferable that the slit portion is formed in the convex region.
  • the slit portion may be provided in a convex region including the central region (central portion) of the pixel, or may be a convex extending toward the central region of the pixel.
  • a configuration formed in a partial region, or a configuration formed in a convex region provided in a region sandwiched by a convex portion extending toward the central region of the pixel and the Y axis It can be.
  • Examples of the width of the slit portion include 1 ⁇ m to 4 ⁇ m, preferably 2 ⁇ m to 3 ⁇ m. The same applies to the description of the slit portion below.
  • a slit portion extending in parallel with the convex portion can be formed on the top of the convex portion, and a slit portion extending in parallel with the concave portion is formed on the bottom of the concave portion. It can also be. And in these cases, the slit part may be formed in all the convex parts, and the slit part may be formed in some convex parts. When forming a slit part in a part of convex part, it is desirable to form a slit part in the center area
  • the slit part may be formed in all the recessed parts, and the slit part may be formed in a part of recessed part.
  • a slit part in a part of recessed part, it is desirable to form a slit part in the center area
  • a slit portion extending in parallel with the convex portion is formed at the top of the convex portion, and a slit portion extending in parallel with the concave portion is formed at the bottom of the concave portion.
  • the slit portion may be formed on all the convex portions, or the slit portion may be formed on a part of the convex portions.
  • the slit part may be formed in all the recessed parts, and the slit part may be formed in a part of recessed part.
  • the first electrode is formed on the portion of the top surface of the convex portion where the slit portion is not provided, and the first electrode is formed on the portion of the concave portion where the slit portion is not provided. ing.
  • a convex portion isolated from other convex part may not be formed by a slit part, or so that a concave part isolated from another concave part may not be formed by a slit part, 1
  • a convex portion isolated from other convex portions by a slit portion in each region The slit portion may be formed so that a concave portion isolated from other concave portions is not formed by the slit portion.
  • the first electrode in the central region of the pixel is provided with a recess. It can be set as a form. Such a form is referred to as “first electrode 5A-2 structure” for convenience.
  • the recess may be narrowed toward the first substrate. That is, the depression can have a so-called forward tapered slope.
  • the present invention is not limited to this, and a configuration having a vertical surface may be employed.
  • the inclination angle of the depression can be 5 to 60 degrees, preferably 20 to 30 degrees.
  • the shape of the outer edge of the recess can be circular or rectangular.
  • the angle formed between the outer edge of the rectangular recess and the extending direction of the convex portion (the angle formed between the outer edge of the rectangular recess and the extending direction of the protruding portion where the outer edge and the extending portion of the convex portion intersect) 90 degrees or an acute angle.
  • the shape of the outer edge of the depression is not limited to these, and any shape may be used as long as the liquid crystal molecules can be tilted toward the center of the pixel.
  • the central portion of the recess can be configured to constitute a part of the contact hole.
  • the convex portion extending from the X axis or the vicinity thereof and occupying the first quadrant and the convex portion extending from the X axis or the vicinity thereof and occupying the fourth quadrant are formed in a mutually shifted state
  • the convex portion extending from the Y axis or the vicinity thereof and occupying the first quadrant and the convex portion extending from the Y axis or the vicinity thereof and occupying the second quadrant are formed in a mutually shifted state
  • the convex portion extending from the X axis or the vicinity thereof and occupying the second quadrant and the convex portion extending from the X axis or the vicinity thereof and occupying the third quadrant are formed in a mutually shifted state
  • the formation pitch of the projections along the X axis is P X
  • the formation pitch of the projections along the Y axis is P Y
  • the convex portion extending from the X axis or the vicinity thereof and occupying the first quadrant and the convex portion extending from the X axis or the vicinity thereof and occupying the fourth quadrant are formed in a state shifted from each other by (P X / 2).
  • the convex portion extending from the Y axis or the vicinity thereof and occupying the first quadrant and the convex portion extending from the Y axis or the vicinity thereof and occupying the second quadrant are formed in a state shifted from each other by (P Y / 2).
  • the convex portion extending from the X axis or the vicinity thereof and occupying the second quadrant and the convex portion extending from the X axis or the vicinity thereof and occupying the third quadrant are formed in a state shifted from each other by (P X / 2).
  • the convex portion extending from the Y axis or the vicinity thereof and occupying the third quadrant and the convex portion extending from the Y axis or the vicinity thereof and occupying the fourth quadrant are formed in a state shifted from each other by (P Y / 2). It is preferable to adopt a form. The same applies to the 5B-3 structure of the first electrode, the 5C-3 structure of the first electrode, and the 5D-3 structure of the first electrode, which will be described later.
  • the branch convex portion extending from the trunk convex portion on the Y axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the Y axis and occupying the second quadrant are shifted by (P Y / 2) from each other.
  • the branch convex portion extending from the stem convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the stem convex portion on the X axis and occupying the third quadrant are shifted by (P X / 2) from each other.
  • the branch convex portion extending from the trunk convex portion on the Y axis and occupying the third quadrant and the branch convex portion extending from the trunk convex portion on the Y axis and occupying the fourth quadrant are shifted from each other by (P Y / 2). It is preferable to have a form formed in a closed state.
  • the side portion of the trunk convex portion that is not joined to the branch convex portion is linear and / or curved, that is, linear or curved. Or a combination of a straight line and a curved line.
  • the width of the portion of the trunk convex part which is not joined to the branch convex part is narrowed toward the tip part of the trunk convex part, can do.
  • the width of the branch convex portion can be narrowed toward the peripheral portion of the pixel.
  • the first electrode may be further formed with a slit portion.
  • a first electrode 5B-1 structure Such a form is referred to as a “first electrode 5B-1 structure” for convenience.
  • the slit portion may be formed in the concave region, but it is more preferable that the slit portion is formed in the convex region.
  • the slit portion may be provided in a convex region including the central region (central portion) of the pixel, or may be a convex extending toward the central region of the pixel. It can be configured to be formed in a partial region, or it is formed in a convex region provided in a region sandwiched between the branch convex portion extending toward the central region of the pixel and the Y axis. It can be configured.
  • a slit portion extending in parallel with the convex portion can be formed on the top of the convex portion, and a slit portion extending in parallel with the concave portion is formed on the bottom of the concave portion. It can also be.
  • the slit portion may be formed as described above.
  • first electrode 5B-2 structure In the 5th B-1 structure of the 1st electrode and the 5th B structure of the 1st electrode including the various preferred forms and configurations described above, a form in which a depression is provided in the 1st electrode in the central region of the pixel It can be. Such a configuration is referred to as “first electrode 5B-2 structure” for convenience.
  • the plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the fourth quadrant can be configured to extend in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases.
  • the branch convex part extending from the trunk convex part on the X axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the X axis and occupying the fourth quadrant are formed in a mutually shifted state.
  • the branch convex part extending from the trunk convex part on the Y axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the second quadrant are formed in a mutually shifted state.
  • the branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are formed in a mutually shifted state.
  • the branch convex part extending from the trunk convex part on the Y axis and occupying the third quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the fourth quadrant are formed in a mutually shifted state. It can be set as a form. Such a configuration is referred to as a “first electrode 5B-3 structure” for convenience.
  • the slit portion may be formed in the concave region, but it is more preferable that the slit portion is formed in the convex region.
  • the slit part can be made into the structure provided in the convex part area
  • a slit portion extending in parallel with the convex portion can be formed on the top of the convex portion, and a slit portion extending in parallel with the concave portion is formed on the bottom of the concave portion. It can also be.
  • the slit portion may be formed as described above.
  • the width of the convex portion can be narrowed toward the peripheral portion of the pixel.
  • first electrode 5C-2 structure a form in which a depression is provided in the first electrode in the central region of the pixel.
  • first electrode 5C-2 structure Such a configuration is referred to as “first electrode 5C-2 structure” for convenience.
  • the plurality of concavo-convex portions are configured by a stem convex portion extending on the X-axis and the Y-axis, and a plurality of branch convex portions extending from the side of the stem convex portion toward the peripheral portion of the pixel. Can do.
  • the plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the fourth quadrant can be configured to extend in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases.
  • the branch convex part extending from the trunk convex part on the X axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the X axis and occupying the fourth quadrant are formed in a mutually shifted state.
  • the branch convex part extending from the trunk convex part on the Y axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the second quadrant are formed in a mutually shifted state.
  • the branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are formed in a mutually shifted state.
  • the branch convex part extending from the trunk convex part on the Y axis and occupying the third quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the fourth quadrant are formed in a mutually shifted state. It can be set as a form. Such a configuration is referred to as “first electrode 5C-3 structure” for convenience.
  • the central portion of the recess may be a part of the contact hole.
  • the above-mentioned provision concerning the 5A-2 structure of the first electrode can be applied to the 5D structure of the first electrode.
  • the width of the branch convex portion or the like is narrowed toward the peripheral portion of the pixel
  • the width of the convex portion etc. is linearly narrower toward the periphery of the pixel (each side constituting the branch convex portion etc. is composed of one line segment, and the rate of change of the width is constant.
  • the present invention is not limited to this, and the shape is narrowed in a curved shape (each side that constitutes a branch convex portion or the like is composed of one smooth curve, and the width changes. The rate can be changed), or each side constituting the branch convex portion or the like can be made up of two or more line segments or curves, or narrowed in a staircase shape. (A form in which each side of the branching convex portion is stepped)
  • an orientation restricting portion is formed on the portion of the 2nd electrode facing the X axis and the Y axis. It can be set as a form.
  • the alignment restricting portion is formed in the portion of the second electrode corresponding to the trunk convex portion, the electric field generated by the second electrode is distorted in the vicinity of the alignment restricting portion, or the liquid crystal molecules in the vicinity of the alignment restricting portion. The direction of falling is defined.
  • the alignment regulating force on the liquid crystal molecules in the vicinity of the alignment restricting portion can be strengthened, and the tilt state of the liquid crystal molecules in the vicinity of the alignment restricting portion can be reliably defined.
  • the orientation restricting portion can be formed of a second electrode slit portion provided on the second electrode, or alternatively, can be formed of a second electrode protrusion provided on the second electrode. Alternatively, it can also be constituted by a projecting second electrode portion.
  • the second electrode protrusion is made of, for example, a resist material, and the second electrode is not formed thereon.
  • a convex portion may be formed on the lower side of the second electrode, or, alternatively, by a method similar to the convex portion forming method of the concave and convex portions in the first electrode. It is also possible to provide a protruding portion of the second electrode.
  • a plurality of step portions are formed on the convex portion provided on the first electrode. It can be in the form.
  • the cross-sectional shape of the convex portion when the convex portion is cut in a virtual vertical plane orthogonal to the direction in which the convex portion extends is such that the stepped portion is from the center of the cross-sectional shape of the convex portion toward the edge of the cross-sectional shape of the convex portion. It can be set as the form which has the cross-sectional shape which descends.
  • the cross-sectional shape of the convex portion when the convex portion is cut in a virtual vertical plane parallel to the direction in which the convex portion extends is a stepped portion from the center of the convex sectional shape toward the end of the convex sectional shape. It can be set as the form which has the cross-sectional shape which falls. In this way, if a plurality of step portions (height difference) are formed on the convex portion, the electric field strength or weakness occurs in the convex portion, or a lateral electric field occurs. As a result, the alignment regulating force on the liquid crystal molecules at the convex portions can be strengthened, and the tilt state of the liquid crystal molecules at the convex portions can be reliably defined.
  • a dark line hardly occurs in an image portion corresponding to the convex portion. That is, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption. In addition, the reliability of the TFT can be improved.
  • the width of the convex portion or the like is the portion of the branch convex portion joined to the trunk convex portion, or the portion such as the X-axis or the vicinity thereof, the Y-axis or the vicinity of the branch convex portion (for convenience, “the root of the branch convex portion etc. It is possible to adopt a form in which the area is called the “part” ”is widest and narrows toward the peripheral part of the pixel, that is, toward the tip part such as a branch convex part.
  • the formation pitch of the branch convex portions is “P”
  • the width of the root portion of the branch convex portions is “W 1 ”
  • the width of the tip portion of the branch convex portions is “W 2 ”.
  • one side edge portion extension line such as a portion
  • the straight line L 2 and the other side edge portion such as a branch convex portion (or the other side edge such as a branch convex portion) when an intersection) between parts extension was w 22, the distance from the intersection w 21 to the intersection w 22, to define the width of the tip portion of such Edatotsu section and W 2.
  • the side edge portion extension line is indicated by a one-dot chain line.
  • the distance between the axis lines L 0 of the adjacent branch convex portions or the like is defined as the formation pitch P of the branch convex portions or the like.
  • a straight line L 3 passing through the intersection point w ′ 11 and parallel to the straight line L 1 is opposed to (adjacent to) the other side edge part such as the branch convex part, and the one side edge part such as the branch convex part.
  • the distance from the intersecting point w ′ 11 to the intersecting point w 31 is defined as the distance W 3 between the branch convex portions and the like.
  • TP W 1 -W 2
  • W 1 -W 2 W 1 -W 2
  • W ave1 W 1 + W 2 ) / 2
  • W ave2 P-W ave1
  • W 3 can be 1 ⁇ m to 10 ⁇ m, preferably 2 ⁇ m to 5 ⁇ m
  • W 2 can be 1 ⁇ m to 10 ⁇ m, preferably 2 ⁇ m to 5 ⁇ m.
  • examples of the value of TP include 0.1 to 10 times W 3 . In addition, what is necessary is just to apply these values with respect to the longest branch convex part.
  • Example 2A-1 (second structure of first electrode / first electrode of first type) 2.
  • Example 2A-2 (second structure of first electrode / first electrode of second type) 3.
  • Example 2A-3 (second structure of first electrode / first electrode of third type) 4).
  • Example 2A-4 (Modification of Examples 2A-1 to 2A-3 / Second Structure of First Electrode / Second Structure of First Electrode 2-3) 5.
  • Example 2B-1 (3A-1 structure of the first electrode) 6).
  • Example 2B-2 (Modification of Example 2B-1) 7).
  • Example 2B-3 (another modification of Example 2B-1) 8).
  • Example 2B-4 (3A-2 structure of the first electrode) 9.
  • Example 2B-5 (Modification of Example 2B-4) 10.
  • Example 2B-6 (Modification of Example 2B-5) 11.
  • Example 2B-7 (3B-1 structure of first electrode including Example 2B-1 to Example 2B-6) 12
  • Example 2B-8 (first electrode 3C structure / first electrode second structure, first electrode 3A-1 structure, first electrode 3B-1 structure modification) 13.
  • Example 2B-9 (3D structure of first electrode / 2-2 structure of first electrode, 3A-2 structure of first electrode, 3B-2 structure of first electrode) 14
  • Example 2C-1 (first electrode 4A structure) 15.
  • Example 2C-2 (first electrode 4B structure) 16.
  • Example 2C-3 (4C-1 structure of first electrode) 17.
  • Example 2C-4 (Modification of Example 2C-3) 18.
  • Example 2C-5 (another modification of Example 2C-3) 19.
  • Example 2C-6 (another modification of Example 2C-3, 4C-2 structure of the first electrode) 20.
  • Example 2C-7 (Modification of Example 2C-6) 21.
  • Example 2C-8 (Modification of Example 2C-7) 22.
  • Example 2D-1 (first electrode 5A structure) 23.
  • Example 2D-2 (Modification of Example 2D-1) 24.
  • Example 2D-3 (another modification of Example 2D-1) 25.
  • Example 2D-4 (Modification of Example 2D-1 to Example 2D-3) 26.
  • Example 2D-5 (Modification of Example 2D-1 to Example 2D-4 / Fifth A-1 Structure of First Electrode / Fifth C Structure of First Electrode) 27.
  • Example 2D-6 (Modification of Example 2D-1 to Example 2D-5 / Fifth D Structure of First Electrode / Fifth A-2 Structure of First Electrode / Fifth C-2 Structure of First Electrode) 28.
  • Example 2D-7 (Modification of Example 2D-1 to Example 2D-6 / First Electrode 5E Structure / First Electrode 5A-3 Structure / First Electrode 5C-3 Structure / First (5D-3 structure of electrode) 29.
  • Example 2D-8 (first electrode 5B structure / first electrode 5C structure / first electrode 5D structure / first electrode 5B-1 structure / first electrode 5B-2 structure / (5C-2 structure of first electrode / 5E structure of first electrode / 5B-3 structure of first electrode / 5C-3 structure of first electrode / 5D-3 structure of first electrode) 30.
  • Example 2D-9 (another variation of Example 2D-8) 31.
  • Example 2D-10 (Modification of Example 2D-9) 32.
  • Example 2D-11 (another modification of Example 2D-9) 33.
  • Example 2D-12 (5th E structure of the first electrode)
  • Example 2A-1 relates to the second structure of the first electrode, specifically to the 2-1 structure of the first electrode, and further to the first electrode of the first type.
  • a schematic partial end view of the liquid crystal display device in Example 2A-1 is shown in FIG. 16, and a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device in Example 2A-1 is shown.
  • 19A and 20B are schematic partial cross-sectional views of the first electrode and the like taken along arrows AA and BB in FIG. 19 in the liquid crystal display device in Example 2A-1 shown in FIG.
  • the first electrode has a plurality of concave and convex portions.
  • the flattened layers 41, 42, and 43 are buried between at least the recesses of one electrode.
  • the planarization layer 41 covers the first electrode 140.
  • the first alignment film 21 that covers the planarization layer 41 and the second alignment film 51 that covers the second electrode 160 are further provided, and at least the first alignment film 21 imparts a pretilt to the liquid crystal molecules.
  • the planarization layer 41 is made of a resist material, and the first alignment film 21 and the second alignment film 51 are made of the materials described in the first to third embodiments and the first embodiment. The same applies to the following embodiments.
  • the planarizing layer 41, the first alignment film 21, and the second alignment film 51 can be formed based on, for example, a spin coating method.
  • a TFT layer 30 (details will be described later) is formed on the first substrate 20, and a smoothing film 22 made of an organic insulating material such as photosensitive polyimide resin or acrylic resin is formed on the TFT layer 30.
  • the first electrode 140 is formed on the smoothing film 22.
  • the smoothing film 22 can also be composed of an inorganic insulating material such as SiO 2 , SiN, or SiON. The same applies to various embodiments described below.
  • Reference numerals 146, 246, 346, 1146, 1246, 2146, 2246, 2345, 2446, 3146, 3246, 3346, 3446 indicate portions of the first substrate located between the pixels.
  • the first electrode 140 has a plurality of concave and convex portions 141 (the convex portions 142 and the concave portions 145).
  • the uneven portion 141 includes a trunk convex portion (main convex portion) 143 extending through the center of the pixel and extending in a cross shape, and the peripheral portion of the pixel from the trunk convex portion 143. It is comprised from the several branch convex part (subconvex part) 144 extended toward.
  • each of the trunk convex portions 143 extending in a crossed shape is an X axis and a Y axis
  • the plurality of branch convex portions 144 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions 144 occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions 144 occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions 144 occupying the fourth quadrant extend parallel to the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
  • the concave portion 145 is hatched extending in the vertical direction.
  • the uneven part is, for example, (A) Formation of a resist material layer on the underlying smoothing film (or color filter layer) (the smoothing film and the color filter layer are collectively referred to as “smoothing film, etc.”) (B) Formation of irregularities in resist material layer by exposure / development (c) Formation of irregularities in smoothing film, etc. by etch back of resist material layer and smoothing film, etc. (d) On smoothing film, etc. It can be obtained by forming and patterning a transparent conductive material layer.
  • the uneven portion is, for example, (A) Formation of a resist material layer on an underlayer formed on a smoothing film, etc. (b) Formation of irregularities in the resist material layer by exposure and development (c) Resist material layer, smoothing film, etc. Formation of concavo-convex portions in the underlayer by etch back (d) It can be obtained by forming and patterning a transparent conductive material layer on the underlayer.
  • the uneven portion is, for example, (A) Formation of patterned insulating material layer on a smoothing film or the like as a base (b) Formation and patterning of a transparent conductive material layer on a smoothing film or the like and an insulating material layer.
  • the uneven portion is, for example, (A) Formation of a transparent conductive material layer on a smoothing film or the like as a base (b) Formation of a resist material layer on the transparent conductive material layer (c) Formation of uneven portions in a resist material layer by exposure and development (d) Resist It can be obtained by etching back the material layer and the transparent conductive material layer.
  • the uneven portion is, for example, (A) Formation and patterning of a first transparent conductive material layer on a smoothing film or the like as a base (b) a second transparent conductive material having an etching selectivity with the first transparent conductive material layer on the first transparent conductive material layer It can be obtained by layer formation and patterning.
  • the concavo-convex portion can be formed by, for example, optimizing the thickness of the smoothing film, so that liquid crystal display device components (for example, various signals) formed on the first substrate or above the first substrate can be used. It can also be obtained by forming a convex portion on the smoothing film due to the influence of the thickness of the line, auxiliary capacitance electrode, gate electrode, source / drain electrode, and various wirings.
  • the side surface (side wall) of the convex portion, the trunk convex portion, or the branch convex portion may be a vertical surface, may have a forward taper, or may have a reverse taper.
  • concavo-convex portion can be applied to various embodiments described below. Further, the present invention can also be applied to a stepped portion in a trunk convex portion or a branch convex portion described later.
  • a TFT is formed based on the method described below, and ITO is formed on the opposing surface of the first substrate 20 on which the smoothing film 22 is formed.
  • a transparent conductive material layer is formed.
  • the first substrate 20 is made of a glass substrate having a thickness of 0.7 mm.
  • the gate electrode 31 is formed on the insulating film 20 ′ formed on the first substrate 20, and the gate insulating layer 32 is formed on the gate electrode 31 and the insulating film 20 ′.
  • the gate insulating layer 32 is, for example, made of SiO 2 or SiN, SiON, metal oxides.
  • a source / drain electrode 34 is formed on the semiconductor layer 33.
  • the semiconductor layer 33 is made of, for example, polysilicon or amorphous silicon
  • the source / drain electrode 34 is made of, for example, a metal film such as titanium, chromium, aluminum, molybdenum, tantalum, tungsten, or copper, or an alloy film or a laminated film thereof. Consists of.
  • the TFT layer 30 can be obtained.
  • the above TFT layer 30 can be formed based on a known method.
  • the TFT is not limited to such a so-called bottom gate / top contact type, and may be a bottom gate / bottom contact type, a top gate / top contact type, or a top gate / bottom contact type. It can also be a contact type.
  • a connection hole 35 is formed in the smoothing film 22 above one source / drain electrode 34.
  • the concave and convex portions 141 (the convex portions 143 and 144 and the concave portion 145) can be obtained.
  • the 1st electrode 140 can be provided in a matrix form by patterning the transparent conductive material layer 24 based on a well-known method.
  • the specifications of the convex portions 143 and 144 and the concave portion 145 are as shown in Table 3 below.
  • a layer may be deposited. Then, in this case, after forming a resist material layer on the transparent conductive material layer, exposure / development is performed to form an uneven portion in the resist material layer. Then, by performing etch back of the resist material layer and the transparent conductive material layer, the uneven portion 141 (the protruded portions 143 and 144 and the recessed portion 145) can be formed.
  • a color filter layer (not shown) is formed on the second substrate 50 made of a glass substrate having a thickness of 0.7 mm, and a so-called solid electrode second is formed on the color filter layer.
  • An electrode 160 is formed.
  • a planarization layer 41 that covers the first electrode 140 is formed based on a spin coating method and dried.
  • the first alignment film 21 is formed on the planarization layer 41
  • the second alignment film 51 is formed on the second electrode 160.
  • heat treatment is performed.
  • a liquid crystal display device is assembled in the same manner as in the first embodiment.
  • the alignment films 21 and 51 are irradiated with energy rays (specifically ultraviolet rays UV) while applying a voltage between the first electrode 140 and the second electrode 160 using a voltage applying unit.
  • a liquid crystal display device can be completed.
  • liquid crystal display device liquid crystal display element
  • the liquid crystal display device shown in FIG. 16 in which the liquid crystal molecules 71A on the first substrate side form a pretilt can be completed.
  • a pair of polarizing plates (not shown) are attached to the outside of the liquid crystal display device so that the absorption axes are orthogonal.
  • the liquid crystal display device in the various Example described below can also be manufactured by the substantially same method.
  • the planarizing layer fills at least the space between the recesses of the first electrode. That is, the portion (specifically, the first alignment film) where the liquid crystal molecules are in contact with the first electrode side is flat or substantially flat. Therefore, the alignment state of the liquid crystal molecules can be made uniform, and as a result, the light transmittance of the liquid crystal display device can be made uniform. Further, sufficient black display quality can be realized, and good contrast characteristics can be realized.
  • the inclination of the side surface (side wall) of the concavo-convex portion can be made gentle, and for example, it is possible to reliably avoid the occurrence of problems such as the occurrence of disconnection at the convex edge portion of the transparent conductive material layer constituting the concavo-convex portion.
  • a color filter layer may be formed on the first substrate 20. Specifically, as described above, after forming the TFT layer 30 on the first substrate 20, the color filter layer 23 is formed on the TFT layer 30 instead of the smoothing film 22 based on a known method. In this way, a COA (Color Filter On Array) structure can be obtained. Then, after forming the connection hole 35 in the color filter layer 23 above the one source / drain electrode 34, the transparent conductive material layer 24 for providing the first electrode 140 on the color filter layer 23 including the connection hole 35. May be formed (see FIG. 96B).
  • the first structure of the first electrode more specifically, the 1-1 structure of the first electrode can be obtained.
  • Example 2A-2 is a modification of Example 2A-1, and specifically relates to a second electrode of the second type.
  • a schematic partial end view of the liquid crystal display device of Example 2A-2 is shown in FIG. 17, and the first view along arrows AA and BB in FIG. 20C and 20D show schematic partial cross-sectional views of electrodes and the like.
  • a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2A-2 or Example 2A-3 described later is the same as that shown in FIG.
  • the planarization layer 42 covers the first electrode 140, A first alignment film covering the first electrode 140 and a second alignment film 51 covering the second electrode 160;
  • the liquid crystal molecules are given a pretilt by at least the first alignment film,
  • the first alignment film corresponds to the planarization layer 42.
  • the specifications of the convex portions 143 and 144, the concave portion 145 and the like were the same as those in Table 3 described above.
  • the values such as T 2 / T 1 are shown in Table 4 below.
  • the material constituting the planarizing layer 42 that also functions as the first alignment film the same material as the alignment film material in Example 2A-1 was used.
  • Example 2A-2 can be the same as the configuration and structure of the liquid crystal display device of Example 2A-1, and a detailed description thereof will be omitted.
  • Example 2A-3 is a modification of Example 2A-1, and specifically relates to a first electrode of the third type.
  • a schematic partial end view of the liquid crystal display device of Example 2A-3 is shown in FIG. 18, and the first direction along arrows AA and BB of FIG. 19 in the liquid crystal display device of Example 2A-3 is shown.
  • Schematic partial cross-sectional views of electrodes and the like are shown in FIGS. 21A and 21B.
  • the planarization layer 43 fills between the recesses 145 and 145 of the first electrode 140, A first alignment film 21 covering the first electrode 140 and the planarizing layer 43 and a second alignment film 51 covering the second electrode 160; A pretilt is imparted to the liquid crystal molecules by at least the first alignment film 21.
  • the planarizing layer 43 is made of a resist material, and the same material as the alignment film material in Example 2A-1 was used as the first alignment film 21 and the second alignment film 51.
  • the planarization layer 43 can be formed by forming a resist material layer on the concavo-convex portion 141 of the first electrode 140 and etching back the resist material layer.
  • the resist material layer can be formed by exposing and developing using an exposure mask that covers the space between the recesses 145 and 145, or the exposure mask that covers the protrusions. It can be formed by exposing and developing the resist material layer using, or by so-called back exposure.
  • the gap between the concave portion 145 and the concave portion 145 of the first electrode 140 can be filled with the alignment film material.
  • the specifications of the convex portions 143 and 144, the concave portion 145 and the like were the same as those in Table 3 described above.
  • the values of T 2 / T 1 etc. in Example 2A-3-A and Example 2A-3-B are shown in Table 5 below.
  • the configuration and structure of the liquid crystal display device of Example 2A-3 can be the same as the configuration and structure of the liquid crystal display device of Example 2A-1, and a detailed description thereof will be omitted.
  • Example 2A-4 is a modification of Example 2A-1 to Example 2A-3, but relates to the 2-2 structure of the first electrode.
  • a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2A-4 is shown in FIG. 22, and the first electrode and the like along arrows AA and BB in FIG.
  • FIG. 23A and FIG. 23B are schematic partial end views of FIG.
  • the first electrode 240 has a plurality of concave and convex portions 241 (the convex portions 242 and the concave portions 245).
  • the concavo-convex portion 241 includes a stem convex portion (main convex portion) 243 formed in a frame shape around the pixel, and the stem convex portion 243 to the inside of the pixel. It is comprised from the some branch convex part (sub convex part) 244 extended toward.
  • the plurality of branch convex portions 244 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions 244 occupying the second quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate decreases
  • a plurality of branch convex portions 244 occupying the third quadrant extend in parallel with the direction in which the value of the Y coordinate decreases when the value of the X coordinate decreases
  • the plurality of branch convex portions 244 occupying the fourth quadrant extend parallel to the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
  • the shape of the concave portion located at the center of the pixel is generally cross-shaped.
  • Example 2A-4 can be the same as the configuration and structure of the liquid crystal display devices of Example 2A-1 to Example 2A-3. The detailed explanation is omitted.
  • the 2-1 structure of the first electrode (the liquid crystal display device of Example 2A-1 to Example 2A-3) and the 2-2 structure of the first electrode (the liquid crystal display device of Example 2A-4).
  • a liquid crystal display device according to the 2-3 form of the present disclosure That is, as shown in a schematic plan view of the first electrode for one pixel in FIG.
  • the portion 341 passes through the center of the pixel and joins the trunk convex portion 343A extending in a cross shape, the plurality of branch convex portions 344 extending from the trunk convex portion 343A toward the pixel peripheral portion, and the plurality of branch convex portions 344, It is comprised from the trunk convex part 343B formed in the frame shape at the periphery part.
  • the trunk convex part 343A, the branch convex part 344, and the several branch convex part 344 whole are the convex parts 342. Here, it is. Even in such a liquid crystal display device, each of the trunk convex portions 343A extending in a cross shape is used.
  • the plurality of branch convex portions 344 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions 344 occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions 344 occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions 344 occupying the fourth quadrant extend in parallel with the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
  • Reference numeral 345 indicates a recess.
  • Example 2B-1 relates to the 3A structure of the first electrode, specifically, the 3A-1 structure of the first electrode.
  • FIG. 25 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-1
  • FIGS. 26A, 26B, and 26C show arrows AA
  • FIG. A schematic partial sectional view of the first electrode and the like along arrows BB and CC is shown
  • FIG. 26D shows a schematic partial sectional view in which a part of FIG. 26C is enlarged.
  • a schematic partial end view of the liquid crystal display device of Example 2B-1 is substantially the same as FIGS.
  • planarization layers 41, 42, and 43 and the first alignment film 21 are not shown. Further, compared to Example 2B-1 or Example 2B-2 and subsequent examples, the planarization layer 41 and the first alignment film 21 of Example 2A-1, the planarization layer 42 of Example 2A-2, or The planarizing layer 43 and the first alignment film 21 of Example 2A-3 are applied.
  • the first electrode 1140 is formed with a plurality of concave and convex portions 1141 (the convex portions 1142 and the concave portions 1145), and the convex portions provided on the first electrode 1140 are provided.
  • the step 1142 has a plurality of step portions.
  • the concavo-convex portion 1141 passes through the center portion of the pixel and extends to the cross section of the main convex portion (main convex portion) 1143, and from the main portion 143 to the peripheral portion of the pixel. It is comprised from the several branch convex part (subconvex part) 1144 extended toward.
  • each of the trunk convex portions 1143 extending in a crossed shape is an X axis and a Y axis
  • the plurality of branch convex portions 1144 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions 1144 occupying the second quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate decreases
  • the plurality of branch convex portions 1144 occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions 1144 occupying the fourth quadrant extend parallel to the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
  • the step part in the trunk convex part 1143 or the branch convex part 1144 mentioned later, the trunk convex part 3343, and the branch convex part 33144 is, for example, (A) Formation and patterning of the first transparent conductive material layers 1140A and 3340A on the smoothing film 22 as a base (b) etching with the first transparent conductive material layers 1140A and 3340A on the first transparent conductive material layers 1140A and 3340A Although it can obtain by formation and patterning of the 2nd transparent conductive material layers 1140B and 3340B which have a selection ratio, it is not limited to this.
  • the cross-sectional shape of the stem convex portion 1143 when the stem convex portion 1143 is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion 1143 is the cross-section of the stem convex portion 1143 from the center of the cross-sectional shape of the stem convex portion 1143. It has a cross-sectional shape in which the stepped portion descends toward the edge of the shape.
  • the top surface of the trunk convex portion 1143 includes a top surface 1143B at the center of the trunk convex portion 1143 and top surfaces 1143A located on both sides of the top surface 1143B.
  • the trunk convex portion 1143 has two stepped portions, and the top surface 1143A and the top surface 1143B become higher in this order when the concave portion 1145 is used as a reference.
  • the top surface of the branch convex portion 1144 is indicated by reference numeral 1144A
  • the top surface 1143A of the trunk convex portion 1143 and the top surface 1144A of the branch convex portion 1144 are at the same level.
  • the top surface 1143B of the trunk convex portion 1143 is hatched extending in the horizontal direction
  • the concave portion 1145 is hatched extending in the vertical direction.
  • Table 6 The specifications of the trunk convex portion 1143, the branch convex portion 1144, and the concave portion 1145 are as shown in Table 6 below.
  • Example 2B-1 a plurality of stepped portions are formed in the trunk convex portion 1143 as described above, that is, a plurality of top surfaces 1143A and 1143B are formed in the trunk convex portion 1143. Therefore, the electric field is highest at the central portion of the trunk convex portion 1143, and the electric field decreases toward the edge of the trunk convex portion 1143.
  • the behavior of the liquid crystal molecules can increase the alignment regulating force on the liquid crystal molecules in the central portion of the stem convex portion 1143, and the liquid crystal molecules in the central portion of the stem convex portion 1143 can be strengthened.
  • the tilt state can be defined reliably. Therefore, at the time of image display, it is difficult for dark lines to occur in the image portion corresponding to the central portion of the trunk convex portion 1143. That is, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption. In addition, the reliability of the TFT can be improved.
  • Example 2B-2 is a modification of Example 2B-1.
  • FIG. 28 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-2.
  • FIGS. 30A and 30B show arrows AA and B- in FIG. A typical partial sectional view of the 1st electrode etc. along B is shown.
  • the top surface of the trunk convex portion 1143 is located on the top surface 1143C at the center of the trunk convex portion 1143, the top surface 1143B located on both sides of the top surface 1143C, and the outside of the top surface 1143B. It consists of a top surface 1143A.
  • the trunk convex portion 1143 has three stepped portions, and the top surface 1143A, the top surface 1143B, and the top surface 1143C become higher in this order when the concave portion 1145 is used as a reference.
  • the cross-sectional shape of the stem convex portion 1143 when the stem convex portion 1143 is cut in a virtual vertical plane parallel to the extending direction of the stem convex portion 1143 is from the central portion (top surface 1143C) of the cross-sectional shape of the stem convex portion 1143. It has a cross-sectional shape in which the stepped portion descends toward the end of the cross-sectional shape of the trunk convex portion 1143 (top surface 1143B and top surface 1143A). In the drawing, the top surface 1143C is cross-hatched.
  • the height difference between the top surface 1143C and the top surface 1143B of the trunk convex portion 1143 and the height difference between the top surface 1143B and the top surface 1143A were set to 0.20 ⁇ m on average.
  • Other specifications of the trunk convex portion 1143, the branch convex portion 1144, and the concave portion 1145 are the same as those in Table 6.
  • Example 2B-2 can be the same as the configuration and structure of the liquid crystal display device of Example 2B-1, and thus detailed description thereof is omitted.
  • Example 2B-3 is also a modification of Example 2B-1.
  • FIG. 29 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-3.
  • FIG. 30C shows the first electrode and the like along the arrow CC in FIG.
  • FIG. 30D shows a schematic partial end view of FIG. 30C and an enlarged partial partial end view of FIG. 30C.
  • the cross-sectional shape of the branch convex portion 1144 when the branch convex portion 1144 is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion 1144 is the cross-sectional shape of the branch convex portion 1144. It has a cross-sectional shape in which the step portion descends from the center toward the edge of the cross-sectional shape of the branch convex portion 1144.
  • the top surface of the branch convex portion 1144 includes a top surface 1144B extending from the trunk convex portion 1143 and top surfaces 1144A located on both sides of the top surface 1144B.
  • the top surface 1144A and the top surface 1144B become higher in this order.
  • the top surface 1144B is hatched in the lateral direction. 29, 31 and 37, the boundary between the trunk convex portion and the branch convex portion is indicated by a solid line.
  • the height difference between the top surface 1143B and the top surface 1143A of the branch convex portion 1144 was set to 0.20 ⁇ m on average.
  • Other specifications of the trunk convex portion 1143, the branch convex portion 1144, and the concave portion 1145 are the same as those in Table 6.
  • the top surface 1143B of the trunk convex portion 1143 and the top surface 1144B of the branch convex portion 1144 are at the same level.
  • Example 2B-3 can be the same as the configuration and structure of the liquid crystal display device of Example 2B-1, and thus detailed description thereof is omitted.
  • a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device the branch protrusion 1144 is cut along a virtual vertical plane parallel to the extending direction of the branch protrusion 1144.
  • the cross-sectional shape of the branch convex portion 1144 is such that the stepped portion descends from the trunk convex portion side of the cross-sectional shape of the branch convex portion 1144 toward the end of the cross-sectional shape of the branch convex portion 1144.
  • a schematic perspective view of the first electrode for one pixel constituting the liquid crystal display device can be combined with the trunk convex portion 1143 described in Example 2B-2.
  • Example 2B-4 is also a modification of Example 2B-1, but relates to the 3A-2 structure of the first electrode.
  • a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-4 is shown in FIG. 33, a schematic perspective view is shown in FIG. 34, and arrows AA and FIG.
  • a schematic partial end view of the first electrode or the like along the arrow BB is shown in FIGS. 36A and 36B, and a schematic partial end view enlarging a part of FIG. 36B is shown in FIG. 36C.
  • the first electrode 1240 has a plurality of concave and convex portions 1241 (the convex portion 1242 and the concave portion 1245), and the convex portion 1242 provided on the first electrode 1240 has A plurality of step portions are formed.
  • the concavo-convex portion 1241 includes a stem convex portion (main convex portion) 1243 formed in a frame shape at the periphery of the pixel, and the stem convex portion 1243 to the inside of the pixel. It is comprised from the several branch convex part (subconvex part) 1244 extended toward.
  • the plurality of branch convex portions 1244 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • a plurality of branch convex portions 1244 occupying the second quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate decreases
  • a plurality of branch convex portions 1244 occupying the third quadrant extend in parallel to the direction in which the value of the Y coordinate decreases when the value of the X coordinate decreases
  • the plurality of branch convex portions 1244 occupying the fourth quadrant extend in parallel with the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
  • the cross-sectional shape of the stem convex portion 1243 when the stem convex portion 1243 is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion 1243 is the stem convex portion 1243 from the outer edge of the cross-sectional shape of the stem convex portion 1243.
  • the cross-sectional shape is such that the stepped portion descends toward the inner edge of the cross-sectional shape.
  • the top surface of the trunk convex portion 1243 includes a top surface 1243B near the outer edge of the trunk convex portion 1243 and a top surface 1243A near the inner edge.
  • the trunk convex portion 1243 has two stepped portions, and the top surface 1243A and the top surface 1243B become higher in this order when the concave portion 1245 is used as a reference.
  • the top surface of the branch convex portion 1244 is indicated by reference numeral 1244A, but the top surface 1243A of the trunk convex portion 1243 and the top surface 1244A of the branch convex portion 1244 are at the same level.
  • the top surface 1243B of the trunk convex portion 1243 is provided with hatching extending in the horizontal direction
  • the concave portion 1245 is provided with hatching extending in the vertical direction.
  • the shape of the concave portion located at the center of the pixel is generally cross-shaped.
  • the specifications of the trunk convex portion 1243, the branch convex portion 1244, and the concave portion 1245 are as shown in Table 7 below.
  • Example 2B-4 can be the same as the configuration and structure of the liquid crystal display device of Example 2B-1, and a detailed description thereof will be omitted.
  • Example 2B-4 since the plurality of step portions are formed on the stem convex portion 1243, the electric field is highest at the outer edge of the stem convex portion 1243, and the inner edge of the stem convex portion 1243 The electric field decreases toward. As a result, the alignment regulating force on the liquid crystal molecules in the trunk convex portion 1243 can be strengthened, and the tilt state of the liquid crystal molecules in the trunk convex portion 1243 can be reliably defined. Therefore, when displaying an image, it is difficult for a dark line to be generated in an image portion corresponding to the trunk convex portion 1243.
  • liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption.
  • the reliability of the TFT can be improved.
  • Example 2B-5 is a modification of Example 2B-4.
  • a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-5 is shown in FIG. 35, and a schematic enlarged view of the first electrode along arrow DD in FIG. 35 is shown.
  • a partial end view is shown in FIG. 36D.
  • the top surface of the trunk convex portion 1243 includes a top surface 1243C in the vicinity of the outer edge portion of the trunk convex portion 1243, and a top surface 1243B and a top surface 1243A toward the inner edge portion.
  • the trunk convex portion 1243 has three step portions, and the top surface 1243A, the top surface 1243B, and the top surface 1243C become higher in this order when the concave portion 1245 is used as a reference.
  • the top surface 1243C is cross-hatched.
  • the height difference between the top surface 1243C and the top surface 1243B of the trunk convex portion 1243 and the height difference between the top surface 1243B and the top surface 1243A were set to 0.20 ⁇ m on average.
  • Other specifications of the trunk convex portion 1243, the branch convex portion 1244, and the concave portion 1245 are the same as those in Table 7.
  • Example 2B-5 can be the same as the configuration and structure of the liquid crystal display device of Example 2B-4, and a detailed description thereof will be omitted.
  • Example 2B-6 is a modification of Example 2B-5.
  • FIG. 37 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-6.
  • the cross-sectional shape of the branch convex portion 1244 when the branch convex portion 1244 is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion 1244 is the cross-sectional shape of the branch convex portion 1244. It has a cross-sectional shape in which the stepped portion descends from the center toward the edge of the cross-sectional shape of the branch convex portion 1244.
  • the top surface of the branch convex portion 1244 includes a top surface 1244B extending from the top surface 1243B of the trunk convex portion 1243 and top surfaces 1244A located on both sides of the top surface 1244B.
  • the branch convex portion 1244 has two step portions, which are higher in the order of the top surface 1244A and the top surface 1244B.
  • the top surface 1244B is hatched in the lateral direction.
  • the height difference between the top surface 1243B and the top surface 1243A of the branch convex portion 1244 was set to 0.28 ⁇ m on average.
  • Other specifications of the trunk convex portion 1243, the branch convex portion 1244, and the concave portion 1245 are the same as those in Table 7.
  • the top surface 1243B of the trunk convex portion 1243 and the top surface 1244B of the branch convex portion 1244 are at the same level.
  • a virtual vertical direction parallel to the extending direction of the branch protrusion 1244 is shown.
  • the cross-sectional shape of the branch convex portion 1244 when the branch convex portion 1244 is cut in a plane is such that the stepped portion descends from the trunk convex portion side of the cross-sectional shape of the branch convex portion 1244 toward the end of the cross-sectional shape of the branch convex portion 1244. It can also be set as the form which has the cross-sectional shape to carry out.
  • the configuration and structure of the liquid crystal display device of Example 2B-6 can be the same as the configuration and structure of the liquid crystal display device of Example 2B-4, and a detailed description thereof will be omitted.
  • the top surface of the trunk convex portion 1243 can be composed of a top surface 1243B and top surfaces 1243A located on both sides of the top surface 1243B.
  • Example 2B-7 is a modification of the liquid crystal display device described in Examples 2A-1 to 2B-6.
  • the 3B structure of the first electrode specifically, the first electrode It relates to the 3B-1 structure.
  • FIG. 39 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-7.
  • the example shown in FIG. 39 is a modification of Example 2A-1.
  • FIG. 40 shows a schematic plan view of a modification of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-7.
  • FIG. 41 shows a schematic partial cross-sectional view of the first electrode and the like along the arrow AA in FIG.
  • the first electrodes 140 and 1140 are formed with a plurality of concave and convex portions 141 and 1141, and the first substrate 140 located between the pixels 10 and 10 is formed on the first substrate.
  • Convex structures 147 and 1147 are formed from the portion to the portion of the first substrate corresponding to the pixel peripheral portion, and the peripheral portions 141A and 1141A of the concave and convex portions 141 and 1141 are formed on the convex structures 147 and 1147.
  • the convex structures 147 and 1147 are specifically formed based on the black matrix 1147A formed in the color filter layer 23.
  • the black matrix 1147A is made of a photocurable resin to which carbon is added.
  • the specifications of the trunk convex portions 143 and 1143, the branch convex portions 144 and 1144, and the concave portions 145 and 1145 are as shown in Tables 3 and 6, and the height difference between the top surface 1143B and the top surface 1143A of the trunk convex portion 1143 is as follows. Was 0.20 ⁇ m on average. The height from the smoothing film 22 to the end portions of the uneven portions 141 and 1141 is an average of 0.3 ⁇ m.
  • the peripheral portions 141A and 1141A of the concavo-convex portions 141 and 1141 are formed on the convex structures 147 and 1147, so that the peripheral portions of the concavo-convex portions are even more flat than in the case where they are flat.
  • a strong electric field is generated around the uneven part.
  • the alignment regulating force on the liquid crystal molecules in the peripheral portions 141A and 1141A of the uneven portions 141 and 1141 can be strengthened, and the tilt state of the liquid crystal molecules in the peripheral portions 141A and 1141A of the uneven portions 141 and 1141 is defined reliably. be able to. Therefore, good voltage response characteristics can be maintained.
  • the convex structure is not limited to the form formed on the basis of the black matrix, but the liquid crystal display device component formed on the first substrate 20 or above the first substrate 20, for example, various signals. It can also be composed of lines, auxiliary capacitance electrodes, gate electrodes, source / drain electrodes, and various wirings. In this case, by optimizing the thickness of the smoothing film 22, a convex structure can be formed in the smoothing film 22 due to the influence of the thickness of the liquid crystal display device components.
  • a 3B-2 structure of the first electrode can be used. That is, the peripheral portions of the uneven portions 241 and 1241 described in Embodiment 2A-4 and Embodiment 2B-4, specifically, the trunk convex portion (main convex portion) 243 formed in a frame shape on the pixel peripheral portion. It goes without saying that 1243 can be formed on the convex structures 147, 1147. Alternatively, the convex structure of Example 2B-7 can also be applied to Example 2B-8 or later examples.
  • Example 2B-8 relates to the 3C structure of the first electrode, and is a modification of Example 2A-1 to Example 2A-3 (second structure of the first electrode), Example 2B-1 to Example 2B -3 (the 3rd A-1 structure of the first electrode), and modification of Example 2B-7 (the 3rd B-1 structure of the first electrode).
  • a schematic partial end view of the liquid crystal display device of Example 2B-8 is shown in FIG. 42 or FIG.
  • FIGS. 95A and 95B are conceptual diagrams showing the behavior of liquid crystal molecules in the liquid crystal display device of Example 2B-8.
  • the first electrode 140 has a plurality of uneven portions 141, and the uneven portions 141 are It is composed of a trunk convex portion 143 extending through the center of the pixel and extending in a cross shape, and a plurality of branch convex portions 144 extending from the trunk convex portion 143 toward the pixel peripheral portion.
  • the first electrode 1140 has a plurality of uneven portions 1141, and the uneven portions 1141 are centered on the pixel. And a plurality of branch convex portions 1144 extending from the trunk convex portion 1143 toward the pixel peripheral portion. Then, as shown in FIG. 42 or FIG. 43, an orientation regulating portion 161 is formed in the portion of the second electrode 160 corresponding to the trunk convex portions 143, 1143.
  • the orientation restricting portion 161 is specifically composed of a 4.0 ⁇ m slit portion 162 provided on the second electrode 160 (see FIGS. 42 and 95A), or alternatively provided on the second electrode 160. It consists of a protruding portion (rib) 163 (see FIGS. 43 and 95B). More specifically, the protrusion 163 is made of a negative photoresist material (manufactured by JSR Corporation: Optomer AL), and has a width of 1.4 ⁇ m and a height of 1.2 ⁇ m.
  • the specifications of the trunk convex portion 1143, the branch convex portion 1144, and the concave portion 1145 were as shown in Table 6, and the height difference between the top surface 1143B and the top surface 1143A of the trunk convex portion 1143 was set to 0.20 ⁇ m on average.
  • the planar shape of the slit 162 or the protrusion (rib) 163 is a cross shape, and the cross-sectional shape of the protrusion 163 is an isosceles triangle.
  • the second electrode 160 is not formed on the slit part 162 or the protrusion part 163.
  • the alignment regulating portion 161 including the slit portion 162 is formed in the portion of the second electrode 160 corresponding to the trunk convex portions 143 and 1143, so that it is generated by the second electrode 160.
  • the applied electric field is distorted in the vicinity of the orientation restricting portion 161.
  • the alignment restricting portion 161 including the protruding portion (rib) 163 is formed, the direction in which the liquid crystal molecules fall in the vicinity of the protruding portion 163 is defined.
  • the alignment regulating force on the liquid crystal molecules in the vicinity of the alignment restricting portion 161 can be strengthened, and the tilt state of the liquid crystal molecules in the vicinity of the alignment restricting portion 161 can be reliably defined.
  • the orientation control part 161 can also be comprised from the part of the 2nd electrode 160 which became projection shape.
  • Example 2B-8 can be applied to Examples after Example 2C-1, and Example 2B-9 described below can also be applied to Examples after Example 2C-1. it can.
  • Example 2B-9 relates to the 3D structure of the first electrode, and is a modification of Example 2A-4 (2-2 structure of the first electrode), Examples 2B-4 to 2B-6 (first This relates to a modification of the 3A-2 structure of one electrode) and a modification of Example 2B-7 (3B-2 structure of the first electrode).
  • 44, 45, 46 and 47 are schematic plan views of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-9.
  • the examples shown in FIGS. This is a modification of Example 2A-4.
  • the example shown in FIGS. 45 and 47 is a modification of Example 2B-4, in which a plurality of uneven portions 1241 are formed on the first electrode 1240, and further, a plurality of step portions are formed.
  • FIG. 48A and 48B show schematic partial cross-sectional views of the first electrode and the like along arrows AA and BB in FIG. 45, and along arrows CC and DD in FIG. 48C and 48D show schematic partial cross-sectional views of the first electrode and the like.
  • a plurality of concave and convex portions 241 and 1241 are formed on the first electrodes 240 and 1240,
  • the concavo-convex portions 241 and 1241 are constituted by trunk convex portions 243 and 1243 formed in a frame shape around the pixel periphery, and a plurality of branch convex portions 244 and 1244 extending from the stem convex portions 243 and 1243 toward the inside of the pixel.
  • the first electrodes 240 and 1240 have slits 248 and 1248 (see FIGS. 44 and 45) or protrusions (ribs) 249 and 1249 (see FIGS.
  • slit portions 248 and 1248 or protrusions 249 and 1249 are formed in a cross-shaped concave portion provided in the center of the pixel.
  • the planar shape of the slits 248 and 1248 or the protrusions 249 and 1249 is a cross.
  • the specifications of the trunk convex portions 243 and 1243, the branch convex portions 244 and 1244, and the concave portions 245 and 1245 are as shown in Table 3 and Table 7, respectively.
  • the widths of the slit portions 248 and 1248 were 4.0 ⁇ m.
  • the protrusions 249 and 1249 made of a negative photoresist material had a width of 1.4 ⁇ m and a height of 1.2 ⁇ m.
  • the cross-sectional shape of the protrusions 249 and 1249 is an isosceles triangle.
  • the first electrodes 240 and 1240 are not formed on the slits 248 and 1248 or the protrusions 249 and 1249.
  • the first electrode is formed with a slit or protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel.
  • the electric field generated by the first electrode is distorted in the vicinity of the slit portion or the protrusion portion (when the slit portion is formed), or the liquid crystal molecules The direction of falling is defined (when a protrusion is formed).
  • the protrusions 249 and 1249 can be formed in the first electrodes 240 and 1240 so that a cross-shaped convex portion passing through the center of the pixel is surrounded by the concave portion.
  • Such a cross-shaped projection can be provided by forming a cross-shaped projection on the lower side of the first electrodes 240, 1240, or alternatively, the formation of the projections and depressions in the first electrodes 240, 1240. It is also possible to provide the same method. Alternatively, instead of providing the slit portions 248 and 1248 or the protruding portions (ribs) 249 and 1249, a cross-shaped concave portion that passes through the center of the pixel may be provided.
  • Example 2C-1 relates to the fourth structure of the first electrode, specifically, the 4A structure of the first electrode.
  • FIG. 49 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-1
  • FIG. 50 shows one pixel constituting the liquid crystal display device of Example 2C-1.
  • FIG. 51A and FIG. 51B are schematic plan views enlarging a part of the first electrode of FIG. 51
  • FIG. 51A and FIG. FIG. 51C is a schematic partial cross-sectional view in which a part of FIG. 51B is enlarged.
  • a schematic partial end view of the liquid crystal display device of Example 2C-1 is substantially the same as FIGS.
  • the liquid crystal display devices of Example 2C-1 or Example 2C-2 to Example 2C-8 described later are similar to the liquid crystal display devices of Example 2A-1 to Example 2A-3.
  • a first substrate 20 and a second substrate 50 First electrodes (pixel electrodes) 2140, 2240, 2340, 2440 formed on the facing surface of the first substrate 20 facing the second substrate 50, A second electrode (counter electrode) 160 formed on the facing surface of the second substrate 50 facing the first substrate 20, and A liquid crystal layer 70 provided between the first electrodes 2140, 2240, 2340, 2440 and the second electrode 160 and including liquid crystal molecules 71A, 71B, 71C;
  • the liquid crystal molecules are given a pretilt. Specifically, the liquid crystal molecules are given a pretilt at least on the first electrode side. Note that the liquid crystal molecules have negative dielectric anisotropy.
  • the first electrodes 2140, 2240, 2340, and 2440 are formed with a plurality of concave and convex portions 2141, 2241, 2341, and 2241, The widths of some of the convex portions 2142, 2242, 2342, 2242 provided on the first electrodes 2140, 2240, 2340, 2440 are narrowed toward the tip.
  • the concave portions 2145, 2245, 2345, and 2445 are hatched extending in the vertical direction.
  • the uneven portion 2141 passes through the center of the pixel and extends to the periphery of the pixel from the trunk convex portion (main convex portion) 2143 that extends in a cross shape and the trunk convex portion 2143.
  • a plurality of branch convex portions (sub-convex portions) 2144 are formed.
  • the plurality of branch convex portions 2144 correspond to part of the convex portions provided on the first electrode 2140.
  • the width of the branch convex portion 2144 is the widest at the portion 2144a of the branch convex portion joined to the trunk convex portion 2143, and narrows from the portion 2144a joined to the trunk convex portion 2143 toward the tip portion 2144b (specifically, , Narrowed linearly).
  • each of the trunk convex portions 2143 extending in a cross shape is an X axis and a Y axis
  • the plurality of branch convex portions 2144 1 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions 2144 2 occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions 2144 3 occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions 2144 4 occupying the fourth quadrant extend in parallel with the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
  • the plurality of branch projections 2144 1 occupying the first quadrant extends at an angle of 45 degrees with the X axis
  • the plurality of branch projections 2144 2 occupying the second quadrant is the axis of the X axis.
  • a plurality of branch convex portions 2144 3 extending at 135 degrees and occupying the third quadrant has an axis extending at 225 degrees with the X axis
  • a plurality of branch convex portions 2144 4 occupying the fourth quadrant are Its axis extends 315 degrees with the X axis.
  • the specifications of the trunk convex portion 2143, the branch convex portion 2144, and the concave portion 2145 are as shown in Table 8 below.
  • the width of the trunk convex portion 2143 was set to 8.0 ⁇ m.
  • an angle ⁇ 0 (for example, see FIG. 97) formed by the axis of the branch convex portion and the outer edge of the trunk convex portion was set to 45 degrees.
  • Branch pitch formation pitch P 8.0 ⁇ m Width W 2 at the tip of the branch convex portion: 4.0 ⁇ m Width W 1 of root portion of branch convex portion: 6.0 ⁇ m Distance W 3 between branch convex portions: 2.0 ⁇ m Average width of branch convex part W ave1 : 5.0 ⁇ m Total taper width TP of the branch convex part: 2.0 ⁇ m
  • a pretilt is applied to the liquid crystal molecules while a voltage is applied to the electrodes.
  • the liquid crystal molecules A located at the tip edge portion a or in the vicinity thereof (referred to as “tip region” for convenience) have a major axis direction (director) at the trunk convex portion. Tilt toward.
  • one pixel excluding the edge portions of the branch convex portions where the movement of the liquid crystal molecules A is affected by the local electric field due to the structure assuming a region in the thickness direction including the liquid crystal molecules A in the liquid crystal layer, one pixel excluding the edge portions of the branch convex portions where the movement of the liquid crystal molecules A is affected by the local electric field due to the structure.
  • liquid crystal molecule A ′ it is transmitted to the entire liquid crystal molecules (referred to as “liquid crystal molecule A ′” for the sake of convenience), and the director of the liquid crystal molecules A ′ is inclined toward the trunk convex portion.
  • the branch convex portions are tapered as shown in FIG. 52A.
  • Example 2C-1 the movement of the liquid crystal molecules A is less likely to be transmitted to the liquid crystal molecules A ′, or it may take a longer time for the movement of the liquid crystal molecules A to be transmitted to the liquid crystal molecules A ′.
  • the liquid crystal molecules in the entire liquid crystal layer change so that the director is parallel to the first substrate and the second substrate.
  • the direction of the electric field at the side edge portion is indicated by a white arrow.
  • side region when a columnar region is assumed in the thickness direction in the liquid crystal layer including the liquid crystal molecules B located in the side edge portion b or in the vicinity thereof (referred to as “side region” for convenience), Rotation occurs in the liquid crystal molecules arranged in the thickness direction.
  • liquid crystal molecule B ′ the direction of the director of the liquid crystal molecule B located in the side region and the direction of the director of the liquid crystal molecules aligned in the thickness direction in the columnar region including the liquid crystal molecule B (referred to as “liquid crystal molecule B ′” for convenience). It will be in a different state. Note that an angle formed by the director of the liquid crystal molecules B and the director of the liquid crystal molecules B ′ is ⁇ .
  • the range of the rotation angle of the liquid crystal molecules is wide (that is, the angle ⁇ is large).
  • the ratio of liquid crystal molecules having retardation in the direction or Y-axis direction may be small.
  • the light transmittance in the branch convex portion is made non-uniform, which may cause dark lines.
  • the rotation angle range of the liquid crystal molecules is narrow (that is, the angle ⁇ is small).
  • the ratio of liquid crystal molecules having retardation in the direction or Y-axis direction is large. Therefore, the occurrence of dark lines can be suppressed without causing nonuniform light transmittance in the branch convex portions.
  • the electric field can hardly affect the liquid crystal molecules, and the liquid crystal molecules may be difficult to be aligned in a desired direction (not easily collapsed). Therefore, dark lines are generated corresponding to the slits, which may cause a decrease in light transmittance.
  • Example 2C-1 since the liquid crystal molecules are affected by the electric field in the entire region within the pixel, dark lines are unlikely to occur.
  • the first electrode has a plurality of uneven portions, and the width of a part of the protruded portions provided on the first electrode is as follows. It narrows toward the tip. Therefore, the generation of dark lines can be further reduced. That is, a more uniform high light transmittance can be realized, and a better voltage response characteristic can be obtained.
  • the improvement of the initial alignment can be expected, as described above, when the liquid crystal cell is irradiated with uniform ultraviolet light in a state where an AC electric field of a rectangular wave is applied to give a pretilt to the liquid crystal molecules, The time for applying pretilt to the liquid crystal molecules can be shortened.
  • the yield is improved and the production cost of the liquid crystal display device can be reduced.
  • the light transmittance can be improved, low power consumption of the backlight and TFT reliability can be improved.
  • Example 2C-2 is a modification of Example 2C-1, and relates to the 4B structure of the first electrode.
  • a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-2 is shown in FIG. 53, and the first electrode and the like along arrows AA and BB in FIG. 54A and 54B are schematic partial end views of FIG. 54A, and FIG. 54C is a schematic partial end view of an enlarged part of FIG. 54B.
  • the uneven portion 2241 includes a stem convex portion (main convex portion) 2243 formed in a frame shape on the periphery of the pixel, and a plurality of branch convex portions extending from the stem convex portion 2243 toward the inside of the pixel. (Sub-convex portion) 2244.
  • the plurality of branch convex portions 2244 correspond to a part of the convex portions provided on the first electrode, and the width of the branch convex portion 2244 is:
  • the branch convex portion 2244a joined to the trunk convex portion 2243 is the widest, and the portion 2244a joined to the trunk convex portion 2243 is narrowed toward the distal end portion 2244b. More specifically, the width of the branch convex portion 2244 is linearly narrowed from the portion 2244a joined to the trunk convex portion 2243 toward the distal end portion 2244b.
  • Reference numeral 2245 indicates a recess.
  • a plurality of branch convex portions 2244 1 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions 2244 2 occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions 2244 3 occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions 2244 4 occupying the fourth quadrant extend in parallel with the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
  • the plurality of branch convex portions 2244 1 occupying the first quadrant extends at an angle of 45 degrees with the X axis
  • the plurality of branch convex portions 2244 2 occupying the second quadrant is the axis of the X axis.
  • a plurality of branch convex portions 2244 3 extending 135 degrees and occupying the third quadrant has an axis extending 225 degrees with the X axis
  • a plurality of branch convex portions 2244 4 occupying the fourth quadrant Its axis extends 315 degrees with the X axis.
  • Example 2C-2 can be the same as the configuration and structure of the liquid crystal display device of Example 2C-1, and thus detailed description thereof is omitted.
  • Example 2C-3 relates to the 4C structure of the first electrode, specifically, the 4C-1 structure of the first electrode.
  • FIG. 55 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-3.
  • a schematic partial end view of the liquid crystal display device of Example 2C-3 is substantially the same as FIGS.
  • a schematic partial cross-sectional view of the first electrode and the like along arrows AA, BB, and CC in FIG. 55 is substantially the same as FIGS. 26A, 26B, and 26C. It is.
  • the branch convex portion is tapered. That is, the width of the branch convex portion is the widest at the portion of the branch convex portion joined to the trunk convex portion, and narrows from the portion joined to the trunk convex portion toward the tip portion.
  • the first electrode 2340 has a plurality of concave and convex portions 2341 (the convex portions 2342 and the concave portions 2345), and the convex portions 2342 provided on the first electrode 2340.
  • a plurality of stepped portions are formed in.
  • the uneven portion 2341 passes through the center of the pixel and has a trunk convex portion (main convex portion) 2343 extending in a cross shape and a plurality of branch convex portions (sub convex portions) extending from the trunk convex portion 2343 toward the pixel peripheral portion. 2344.
  • the width of the branch convex portion 2344 is the widest at the portion of the branch convex portion joined to the trunk convex portion 2343 and is narrowed from the portion joined to the trunk convex portion 2343 toward the tip portion (specifically, Narrowed in a straight line).
  • the cross-sectional shape of the stem convex portion 2343 when the stem convex portion 2343 is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion 2343 is the center of the cross-sectional shape of the stem convex portion 2343. It has a cross-sectional shape in which the stepped portion descends toward the edge of the cross-sectional shape.
  • the top surface of the trunk convex portion 2343 includes a top surface 2343B at the center of the trunk convex portion 2343 and a top surface 2343A located on both sides of the top surface 2343B.
  • the trunk convex portion 2343 has two stepped portions, and the top surface 2343A and the top surface 2343B become higher in this order when the concave portion 2345 is used as a reference.
  • the top surface of the branch convex portion 2344 is indicated by reference numeral 2344A
  • the top surface 2343A of the trunk convex portion 2343 and the top surface 2344A of the branch convex portion 2344 are at the same level.
  • the top surface 2343B of the trunk convex portion 2343 is hatched in the lateral direction
  • the concave portion 2345 is hatched in the vertical direction.
  • the configuration and structure of the liquid crystal display device of Example 2C-3 can be the same as the configuration and structure of the liquid crystal display device described in Example 2C-1.
  • Example 2C-4 is a modification of Example 2C-3.
  • FIG. 56 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-4.
  • a schematic partial cross-sectional view of the first electrode and the like taken along arrows AA and BB in FIG. 56 is substantially the same as FIGS. 30A and 30B.
  • the top surface of the trunk convex portion 2343 is located outside the top surface 2343C at the center of the trunk convex portion 2343, the top surface 2343B located on both sides of the top surface 2343C, and the top surface 2343B. It consists of a top surface 2343A.
  • the trunk convex portion 2343 has three step portions, and the top surface 2343A, the top surface 2343B, and the top surface 2343C become higher in this order when the concave portion 2345 is used as a reference.
  • the cross-sectional shape of the stem convex portion 2343 when the stem convex portion 2343 is cut in a virtual vertical plane parallel to the extending direction of the stem convex portion 2343 is from the center (top surface 2343C) of the cross-sectional shape of the stem convex portion 2343. It has a cross-sectional shape in which the stepped portion descends toward the end of the cross-sectional shape of the trunk convex portion 2343 (top surface 2343B and top surface 2343A). In the drawing, the top surface 2343C is cross-hatched.
  • Example 2C-4 can be the same as the configuration and structure of the liquid crystal display device of Example 2C-3, and thus detailed description thereof is omitted.
  • Example 2C-5 is also a modification of Example 2C-3.
  • FIG. 57 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-5.
  • a schematic partial end view of the first electrode and the like along the arrow CC in FIG. 57 is substantially the same as FIG. 30C, and a schematic partial end view in which a part is enlarged. Is substantially the same as FIG. 30D.
  • the cross-sectional shape of the branch convex portion 2344 when the branch convex portion 2344 is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion 2344 is the cross-sectional shape of the branch convex portion 2344. It has a cross-sectional shape in which the stepped portion descends from the center toward the edge of the cross-sectional shape of the branch convex portion 2344.
  • the top surface of the branch convex portion 2344 includes a top surface 2344B extending from the trunk convex portion 2343 and top surfaces 2344A located on both sides of the top surface 2344B.
  • the top surface 2344A and the top surface 2344B become higher in this order when the concave portion 2345 is used as a reference.
  • the top surface 2344B is hatched in the lateral direction.
  • the boundary between the trunk convex portion and the branch convex portion is indicated by a solid line.
  • the height difference between the top surface 2343B and the top surface 2343A of the branch convex portion 2344 was set to an average of 0.20 ⁇ m.
  • the top surface 2343B of the trunk convex portion 2343 and the top surface 2344B of the branch convex portion 2344 are at the same level.
  • Example 2C-5 can be the same as the configuration and structure of the liquid crystal display device of Example 2C-3, and thus detailed description thereof is omitted.
  • the branch protrusion 2344 is cut along a virtual vertical plane parallel to the extending direction of the branch protrusion 2344.
  • the cross-sectional shape of the branch convex portion 2344 is such that the stepped portion descends from the trunk convex portion side of the cross-sectional shape of the branch convex portion 2344 toward the end of the cross-sectional shape of the branch convex portion 2344. You can also Further, it can be combined with the trunk convex portion 2343 described in the embodiment 2C-4.
  • Example 2C-6 is also a modification of Example 2C-3, but relates to the 4C-2 structure of the first electrode.
  • FIG. 59 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-6. Note that schematic partial end views of the first electrode and the like along arrows AA and BB in FIG. 59 are substantially the same as those shown in FIGS. 36A, 36B, and 36C.
  • the first electrode 2440 has a plurality of concave and convex portions 2441 (the convex portion 2442 and the concave portion 2445), and the convex portion 2442 provided on the first electrode 2440 includes A plurality of step portions are formed.
  • the concavo-convex portion 2441 includes a stem convex portion (main convex portion) 2443 formed in a frame shape on the periphery of the pixel, and the stem convex portion 2443 to the inside of the pixel. It is comprised from the several branch convex part (subconvex part) 2444 extended toward.
  • the width of the branch convex portion 2444 is the widest at the portion of the branch convex portion joined to the trunk convex portion 2443 and is narrowed from the portion joined to the trunk convex portion 2443 toward the tip portion (specifically, Narrowed in a straight line).
  • the cross-sectional shape of the stem convex portion 2443 when the stem convex portion 2443 is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion 2443 is the stem convex portion from the outer edge of the cross-sectional shape of the stem convex portion 2443.
  • 2443 has a cross-sectional shape in which the stepped portion descends toward the inner edge of the cross-sectional shape of 2443.
  • the top surface of the trunk convex portion 2443 includes a top surface 2443B in the vicinity of the outer edge portion of the trunk convex portion 2443 and a top surface 2443A in the vicinity of the inner edge portion.
  • the trunk convex portion 2443 has two step portions, and the top surface 2443A and the top surface 2443B become higher in this order when the concave portion 2445 is used as a reference.
  • the top surface of the branch convex portion 2444 is indicated by reference numeral 2444A, but the top surface 2443A of the trunk convex portion 2443 and the top surface 2444A of the branch convex portion 2444 are at the same level.
  • the top surface 2443B of the trunk convex portion 2443 is hatched in the lateral direction
  • the concave portion 2445 is hatched in the vertical direction.
  • the shape of the concave portion located at the center of the pixel is generally cross-shaped.
  • the configuration and structure of the liquid crystal display device of Example 2C-6 can be the same as the configuration and structure of the liquid crystal display device described in Example 2C-2 or Example 2C-3.
  • Example 2C-6 since the plurality of step portions are formed on the stem convex portion 2443, the electric field is highest at the outer edge of the stem convex portion 2443, and the inner edge of the stem convex portion 2443 The electric field decreases toward. As a result, the alignment regulating force on the liquid crystal molecules in the trunk convex portion 2443 can be strengthened, and the tilt state of the liquid crystal molecules in the trunk convex portion 2443 can be reliably defined. Therefore, at the time of image display, dark lines are unlikely to occur in the image portion corresponding to the trunk convex portion 2443.
  • liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption.
  • the reliability of the TFT can be improved.
  • Example 2C-7 is a modification of Example 2C-6.
  • a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-7 is shown in FIG. Note that a schematic partial end view of the first electrode taken along the arrow DD in FIG. 60 is substantially the same as that shown in FIG. 36D.
  • the top surface of the trunk convex portion 2443 is composed of a top surface 2443C in the vicinity of the outer edge portion of the trunk convex portion 2443, and a top surface 2443B and a top surface 2443A toward the inner edge portion.
  • the trunk convex portion 2443 has three step portions, and the top surface 2443A, the top surface 2443B, and the top surface 2443C become higher in this order when the concave portion 2445 is used as a reference.
  • the top surface 2443C is cross-hatched.
  • the height difference between the top surface 2443C and the top surface 2443B of the trunk convex portion 2443 and the height difference between the top surface 2443B and the top surface 2443A were set to 0.20 ⁇ m on average.
  • Example 2C-7 can be the same as the configuration and structure of the liquid crystal display device of Example 2C-6, and thus detailed description thereof is omitted.
  • Example 2C-8 is a modification of Example 2C-7.
  • FIG. 61 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-8.
  • the cross-sectional shape of the branch convex portion 2444 when the branch convex portion 2444 is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion 2444 is the cross-sectional shape of the branch convex portion 2444. It has a cross-sectional shape in which the stepped portion descends from the center toward the edge of the cross-sectional shape of the branch convex portion 2444.
  • the top surface of the branch convex portion 2444 includes a top surface 2444B extending from the top surface 2443B of the trunk convex portion 2443 and top surfaces 2444A located on both sides of the top surface 2444B.
  • the branch convex portion 2444 has two stepped portions, which are higher in the order of the top surface 2444A and the top surface 2444B.
  • the top surface 2444B is hatched in the lateral direction.
  • the height difference between the top surface 2443B and the top surface 2443A of the branch convex portion 2444 was set to an average of 0.28 ⁇ m.
  • the top surface 2443B of the trunk convex portion 2443 and the top surface 2444B of the branch convex portion 2444 are at the same level.
  • the cross-sectional shape of the branch convex portion 2444 when the branch convex portion 2444 is cut in a virtual vertical plane parallel to the extending direction of the branch convex portion 2444 is the branch convex portion from the trunk convex portion side of the cross-sectional shape of the branch convex portion 2444. It can also be set as the form which has a cross-sectional shape in which a level
  • the configuration and structure of the liquid crystal display device of Example 2C-8 can be the same as the configuration and structure of the liquid crystal display device of Example 2C-6, and thus detailed description thereof is omitted.
  • the top surface of the trunk convex portion 2443 can be composed of a top surface 2443B and top surfaces 2443A located on both sides of the top surface 2443B.
  • Example 2D-1 relates to the 5A structure of the first electrode.
  • FIG. 62 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-1
  • FIG. 63A shows the first electrode along the arrow AA in FIG.
  • FIG. 63B is a schematic partial cross-sectional view in which a part of FIG. 63A is enlarged.
  • a schematic partial end view of the liquid crystal display device of Example 2D-1 is substantially the same as FIGS. 16 to 18.
  • Example 2D-1 or Example 2D-2 to Example 2D-12 described later are similar to the liquid crystal display devices of Example 2A-1 to Example 2A-3.
  • a second electrode (counter electrode) 160 formed on the facing surface of the second substrate 50 facing the first substrate 20, and A liquid crystal layer 70 provided between the first electrodes 3140, 3240, 3340, 3440 and the second electrode 160 and including liquid crystal molecules 71A, 71B, 71C;
  • Example 2D-1 when the X axis and the Y axis passing through the center of the pixel 10 are assumed, specifically, the liquid crystal display device passes through the center of the pixel 10 and is parallel to the pixel peripheral portion.
  • the plurality of convex portions 3144A 1 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of convex portions 3144A 2 occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of convex portions 3144A 3 occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of convex portions 3144A 4 occupying the fourth quadrant extend in parallel to the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
  • the plurality of convex portions 3144A 1 occupying the first quadrant extends at an angle of 45 degrees with the X axis
  • the plurality of convex portions 3144A 2 occupying the second quadrant has an axis of 135 degrees with the X axis
  • the plurality of convex portions 3144A 3 occupying the third quadrant extend in an axis of 225 degrees with the X axis
  • the plurality of convex portions 3144A 4 occupying the fourth quadrant have an axis X Extends 315 degrees with the axis.
  • the convex portion 3144A is line symmetric with respect to the X axis, is also line symmetric with respect to the Y axis, and is 180 degrees rotationally symmetric (point symmetric) with respect to the pixel center.
  • liquid crystal display device of Example 2D-1 unlike the liquid crystal display device of Example 2A-1, no trunk convex portion is provided, and the convex portion 3144A in the liquid crystal display device of Example 2D-1 is This corresponds to the branch protrusion in the liquid crystal display device of Example 2A-1.
  • Each of the protrusions 3144A 11 extending from the X axis and occupying the first quadrant is joined to each of the protrusions 3144A 41 extending from the X axis and occupying the fourth quadrant
  • Each of the convex portions 3144A 12 extending from the Y axis and occupying the first quadrant is joined to each of the convex portions 3144A 22 extending from the Y axis and occupying the second quadrant
  • Each of the convex portions 3144A 21 extending from the X axis and occupying the second quadrant is joined to each of the convex portions 3144A 31 extending from the X axis and occupying the third quadrant
  • Each of the convex portions 3144A 32 extending from the Y axis and occupying the third quadrant is joined to each of the convex portions 3144A 42 extending from the Y axis and occupying the fourth quadrant.
  • planar shape of the convex portion 3144A is a “V” shape.
  • the subscripts “11”, “12” and the like in the reference numbers indicating the convex portions and the subscript characters in the reference numbers indicating the convex portions in various embodiments described later indicate the same convex portions.
  • the specifications of the convex portion 3144A and the concave portion 3145 are as shown in Table 9 below.
  • the plurality of convex portions 3144A 1 occupying the first quadrant extend in parallel with the direction in which the Y coordinate value increases when the X coordinate value increases
  • the plurality of convex portions 3144A 2 occupying the quadrant extend parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of convex portions 3144A 3 occupying the third quadrant have the X coordinate value.
  • the plurality of convex portions 3144A 4 occupying the fourth quadrant extend in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases.
  • the tip of the convex portion 3144A is constituted by a line segment orthogonal to the axis of the convex portion 3144A, or the tip of the convex portion 3144A is constituted by a curve so that the convex portion extending in parallel with the X axis is formed. It is also possible to adopt a configuration in which there is no portion or a convex portion extending in parallel with the Y axis.
  • the absorption axis of the first polarizing plate is parallel to the X axis or the Y axis
  • the absorption axis of the second polarizing plate is parallel to the Y axis or the X axis. Therefore, the generation of dark lines can be further reduced. That is, a more uniform high light transmittance can be realized, and a better voltage response characteristic can be obtained.
  • the initial alignment is improved, as described above, when the liquid crystal cell is irradiated with uniform ultraviolet rays with a rectangular wave AC electric field applied to give a pretilt to the liquid crystal molecules, The time for applying the pretilt can be shortened. Furthermore, since a reduction in alignment defects can be expected, the yield is improved and the production cost of the liquid crystal display device can be reduced. Furthermore, since the light transmittance can be improved, low power consumption of the backlight and TFT reliability can be improved.
  • Example 2D-2 is a modification of Example 2D-1.
  • FIG. 64A, FIG. 64B, FIG. 65A, and FIG. 65B show schematic plan views in which a part of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-2 is enlarged.
  • 64A, 64B, 65A, and 65B are schematic plan views in which a portion of the first electrode surrounded by a circular region in the schematic plan view of the first electrode in FIG. 62 is enlarged.
  • a protrusion 3151 extending toward the periphery of the pixel 10 is provided at the joint 3144B ′ of the two protrusions 3144B.
  • the protrusion 3151 can be configured to be surrounded by a plurality of line segments (two line segments in the illustrated example) as shown in FIGS. 64A and 64B, and as shown in FIG. 65A, A configuration surrounded by a single curve may be used, or a configuration surrounded by a plurality of curves (two curves in the illustrated example) as shown in FIG. 65B. It can also be set as the structure enclosed by the combination of a line segment and a curve.
  • the tip of the protruding portion 3151 is not in contact with the joint portion between the two convex portions adjacent in the peripheral portion direction of the pixel.
  • the tip of the projecting portion 3151 is in contact with a joint portion between two convex portions adjacent to each other in the peripheral portion direction of the pixel.
  • Example 2D-3 is also a modification of Example 2D-1.
  • the convex portion 3144A was joined on the X axis or the Y axis, and the planar shape of the convex portion 3144A was a “V” shape.
  • the convex portion 3144C is not joined on the X axis or the Y axis.
  • FIG. 66 a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-3 is shown.
  • Each of the convex portions 3144C 11 extending from the X axis or the vicinity thereof and occupying the first quadrant is not joined to each of the convex portions 3144C 41 extending from the X axis or the vicinity thereof and occupying the fourth quadrant
  • Each of the convex portions 3144C 12 extending from the Y axis or the vicinity thereof and occupying the first quadrant is not joined to each of the convex portions 3144C 22 extending from the Y axis or the vicinity thereof and occupying the second quadrant
  • Each of the convex portions 3144C 21 extending from the X axis or the vicinity thereof and occupying the second quadrant is not joined to each of the convex portions 3144C 31 extending from the X axis or the vicinity thereof and occupying the third quadrant
  • Each of the convex portions 3144C 32 extending from the Y axis or the vicinity thereof and occupying the third quadrant is not joined to each of the convex portions 3
  • each of the convex portions 3144C is not joined, but may be in a contacted state.
  • joining refers to a state in which the convex portions intersect with each other at a certain length
  • contacting means that each convex portion has a very short length (one type) , In the form of dots).
  • Example 2D-1 Even with such a configuration, there is no convex portion extending parallel to the X axis, or no convex portion extending parallel to the Y axis. Or, if present, the length is short. Accordingly, the same effect as described in Example 2D-1 can be obtained.
  • Example 2D-4 is a modification of Example 2D-1 to Example 2D-3.
  • FIG. 67 which is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-4, the width of the convex portion 3144D becomes narrower toward the peripheral portion of the pixel 10.
  • the width of the convex portion 3144D is the widest in the X axis, the Y axis, or the vicinity thereof, and narrows toward the peripheral portion of the pixel 10 (more specifically, linearly narrows). ing).
  • Example 2D-5 is a modification of Example 2D-1 to Example 2D-4, and relates to the 5A-1 structure of the first electrode, and further to the 5C structure of the first electrode.
  • 68A, 68B, 68C, 69A, 69B, 69C, 70A, and 70B are schematic plan views of the first electrode and the like for one pixel constituting the liquid crystal display device of Example 2D-5.
  • the first electrode 3140 is provided with a slit portion 3152 in addition to the concavo-convex portion 3141.
  • the slit 3152 is not formed with a transparent conductive material layer constituting the first electrode 3140.
  • 72A is a schematic end view taken along arrow AA in FIG. 68C
  • FIG. 72B is a schematic end view taken along arrow BB in FIG. 69C
  • FIG. FIG. 72C is a schematic end view taken along arrow CC in FIG. 70C
  • FIG. 72D is a schematic end view taken along arrow DD in FIG. 71C.
  • the slit portion 3152 is formed in the convex region 3144E '.
  • the slit portion 3152 is provided in a region including the central region (center portion) 3152A of the pixel 10.
  • 68A schematically shows the arrangement state of the convex portion 3144E, the convex region 3144E ′, the concave portion 3145, and the central region 3152A
  • 68C is a diagram in which the uneven portion 3141 and the slit portion 3152 are overlapped with each other.
  • FIG. 68A schematically shows the arrangement state of the convex portion 3144E, the convex region 3144E ′, the concave portion 3145, and the central region 3152A
  • 68C is a diagram in which the uneven portion 3141 and the slit portion 3152 are overlapped with each other.
  • the slit portion 3152 has one convex region 3144E ′ (specifically, extending toward the central region (central portion) of the pixel 10 in each quadrant.
  • 69A schematically shows the arrangement state of the convex portion 3144E, the convex portion region 3144E ′, and the concave portion 3145, and the arrangement state of the slit portion 3152 provided in the first electrode 3140 is schematically shown in FIG. 69B.
  • a view in which the portion 3141 and the slit portion 3152 are overlapped is shown in FIG. 69C.
  • the slit portion 3152 is formed in a convex region 3144E ′ that extends toward the central region (center portion) 3152A of the pixel 10 in each quadrant.
  • 70A schematically shows the arrangement state of the convex portion 3144E, the convex region 3144E ′, the concave portion 3145, and the central region 3152A
  • FIG. 70B schematically shows the arrangement state of the slit portion 3152 provided in the first electrode 3140 is schematically shown in FIG. 70B.
  • FIG. 70C is a diagram in which the uneven portion 3141 and the slit portion 3152 are overlapped.
  • the slit portion 3152 is provided in a region sandwiched between the convex portion extending toward the central region (center portion) 3152A of the pixel 10 and the Y axis.
  • a convex region 3144E ′ is formed.
  • 71A schematically illustrates the arrangement state of the convex portion 3144E, the convex region 3144E ′, the concave portion 3145, and the center region 3152A
  • FIG. 71B shows a diagram in which the uneven portion 3141 and the slit portion 3152 are overlapped.
  • the concave portion 3145 is hatched to extend in the vertical direction. Is attached. 68B, 68C, 69B, 69C, 70B, 70C, 71B, 71C, 83, 84, and 85, the slit portions 3152 and 3252 are hatched extending in the lateral direction. It is attached. In the region indicated by reference numeral 3152 ′, no slit portion is provided, and a transparent conductive material layer constituting the first electrode 3140 is formed. In the slit portion 3152, the smoothing film 22 is exposed.
  • FIG. 73A schematically shows an arrangement state of convex portions, concave portions, slit portions, and the like in still another modified example of the pixel constituting the liquid crystal display device of Example 2D-5, and an arrow B- in FIG. 73A.
  • a schematic cross-sectional view of the first electrode or the like along B may be formed with a slit portion 3152 extending in parallel with the convex portion 3144E at the top of the convex portion 3144E.
  • FIG. 73B a schematic cross-sectional view of the first electrode or the like along B may be formed with a slit portion 3152 extending in parallel with the convex portion 3144E at the top of the convex portion 3144E.
  • FIG. 74A schematically shows an arrangement state of convex portions, concave portions, slit portions, and the like in still another modified example of the pixels constituting the liquid crystal display device of Example 2D-5, and an arrow B- in FIG.
  • a schematic cross-sectional view of the first electrode or the like along B may be formed with a slit 3152 extending in parallel with the recess 3145 on the bottom surface of the recess 3145.
  • the slit portions 3152 and 3252 are indicated by thick solid lines. For example, in the example shown in FIGS.
  • the slit portion 3152 is not provided in the convex portion or the concave portion on the X axis and the Y axis. That is, the slit portion 3152 is provided with a notch in the convex portion or concave portion on the X axis and the Y axis. In addition, it is good also as a structure which does not provide a slit part in a convex part or a recessed part in the peripheral part of the pixel 10. FIG.
  • Example 2D-5 since the slit portion 3152 is formed in addition to the uneven portion 3141 in the first electrode 3140, the electric field generated by the first electrode 3140 is in the vicinity of the slit portion 3152. Distortion and the direction in which liquid crystal molecules fall are strongly defined. That is, it is possible to strengthen the alignment regulating force on the liquid crystal molecules in the vicinity of the slit portion 3152 and to reliably define the tilt state of the liquid crystal molecules in the vicinity of the slit portion 3152. Therefore, when a liquid crystal display device is manufactured, the liquid crystal layer is exposed to a desired electric field for a predetermined time in order to impart a pretilt to the liquid crystal molecules, but the alignment of the liquid crystal molecules exposed to the desired electric field is stabilized. The time required can be shortened. That is, a pretilt can be imparted to the liquid crystal molecules in a short time, and the manufacturing time of the liquid crystal display device can be shortened.
  • the width of the convex portion 3144E and the width of the concave portion 3145 are 2.5 ⁇ m
  • the width of the slit portion 3152 is 2.5 ⁇ m
  • the slit portion 3152 shown in FIGS. 70A, 70B, 70C, and 71C is configured.
  • the time from the voltage application during the pretilt processing to the completion of the alignment of the liquid crystal molecules. was within 10 seconds.
  • Example 2D-6 is a modification of Example 2D-1 to Example 2D-5, and includes a first electrode 5D structure, a first electrode 5A-2 structure, and a first electrode 5C-2 structure.
  • a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-6 is shown in FIG. 75, and the first region in the central region of one pixel constituting the liquid crystal display device of Example 2D-6 is shown.
  • 76A, 77A, and 77B are schematic plan views of one electrode portion, and a depression is formed in the first electrode 3140 in the central region of the pixel 10, as shown in FIG. 76B. 3153 is provided.
  • the recess 3153 is narrowed toward the first substrate. That is, the recess 3153 has a so-called forward tapered slope.
  • the inclination angle of the depression 3153 is 5 to 60 degrees, preferably 20 to 30 degrees. Such an inclination angle can be obtained, for example, by etching the smoothing film 22 based on an etch back method so that the smoothing film 22 is inclined.
  • the shape of the outer edge 3153A of the recess 3153 can be circular (the diameter is 15 ⁇ m or 7 ⁇ m, for example) as shown in FIG. 76A, or can be rectangular as shown in FIGS. 77A and 77B. (For example, a square having a side length of 12 ⁇ m).
  • the angle formed by the outer edge 3153A of the rectangular recess 3153 and the direction in which the convex portion 3144F extends (the outer edge 3153A of the rectangular recess 3153 and the direction in which the convex portion 3144F in which the outer edge 3153A and the extended portion of the convex portion 3144F extend extend.
  • the formed angle may be 90 degrees (see FIG. 77A) or an acute angle, for example, 60 degrees (see FIG. 77B).
  • the liquid crystal display device of Example 2D-6 since the depression 3153 is provided in the first electrode 3140 in the central region of the pixel, the liquid crystal molecules positioned in the vicinity of the depression 3153 It will be in a state of falling toward the center of the. Therefore, when a liquid crystal display device is manufactured, the liquid crystal layer is exposed to a desired electric field for a predetermined time in order to impart a pretilt to the liquid crystal molecules, but the alignment of the liquid crystal molecules exposed to the desired electric field is stabilized.
  • the time required can be shortened. That is, a pretilt can be imparted to the liquid crystal molecules in a short time, and the manufacturing time of the liquid crystal display device can be shortened.
  • the width of the convex portion 3144F and the width of the concave portion 3145 are each 2.5 ⁇ m, the inclination angle of the depression 3153 is 30 degrees, and the shape of the outer edge 3153A of the depression 3153 is circular as shown in FIG. 76A.
  • the time from the voltage application during the pretilt treatment to the completion of the alignment of the liquid crystal molecules was within 10 seconds.
  • the center part of the hollow 3153 can also be set as the structure which comprises some contact holes (connection hole 35).
  • Example 2D-7 is a modification of Example 2D-1 to Example 2D-6, and includes a first electrode 5E structure, a first electrode 5A-3 structure, and a first electrode 5C-3 structure.
  • the present invention relates to the 5D-3 structure of the first electrode.
  • FIG. 78 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-7.
  • Example 2D-7 The convex portion 3144G 11 extending from the X axis or the vicinity thereof and occupying the first quadrant and the convex portion 3144G 41 extending from the X axis or the vicinity thereof and occupying the fourth quadrant are formed in a mutually shifted state ( Preferably, they are formed so as to be shifted from each other by (P X / 2))
  • the convex portion 3144G 12 extending from the Y axis or its vicinity and occupying the first quadrant and the convex portion 3144G 22 extending from the Y axis or its vicinity and occupying the second quadrant are formed in a mutually shifted state ( Preferably, they are formed in a state shifted from each other by (P Y / 2)),
  • the convex portion 3144G and the convex portion 3144G in a state shifted from each other by a half pitch, the electric field generated by the first electrode 3140 at the center of the pixel is distorted in the vicinity of the center of the pixel.
  • the direction in which the liquid crystal molecules fall is defined.
  • the alignment regulating force on the liquid crystal molecules in the vicinity of the center of the pixel can be strengthened, and the tilt state of the liquid crystal molecules in the vicinity of the center of the pixel can be defined reliably.
  • the liquid crystal layer is exposed to a desired electric field for a predetermined time in order to impart a pretilt to the liquid crystal molecules, but the alignment of the liquid crystal molecules exposed to the desired electric field is stabilized.
  • the time required can be shortened. That is, a pretilt can be imparted to the liquid crystal molecules in a short time, and the manufacturing time of the liquid crystal display device can be shortened.
  • Example 2D-8 relates to the 5B structure of the first electrode.
  • FIG. 79 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-8
  • FIGS. 80A, 80B and 81 show a schematic diagram of the first electrode of FIG.
  • a schematic plan view in which a portion of the first electrode surrounded by a circular region is enlarged is shown.
  • the plurality of concavo-convex portions 3241 includes a stem convex portion 3243 extending on the X axis and the Y axis, and a plurality of branch convex portions 3244A extending from the side of the stem convex portion 3243 toward the peripheral portion of the pixel 10.
  • the extending direction of the side portion 3243 ′ of the trunk convex portion 3243 that is not joined to the branch convex portion 3244A is not parallel to the X axis and not parallel to the Y axis. That is, the extending direction of the side portion 3243 ′ of the trunk convex portion 3243 not joined to the branch convex portion 3244A is a direction different from the X axis and a direction different from the X axis.
  • the trunk convex portion 3243 and the branch convex portion 3244A are line symmetric with respect to the X axis, are also line symmetric with respect to the Y axis, and are 180 degrees rotationally symmetric with respect to the center of the pixel (points). Symmetric).
  • the side portion 3243 ′ of the trunk convex portion 3243 that is not joined to the branch convex portion 3244A is linear as shown in FIGS. 79 and 80A, or alternatively, in FIGS. As shown, it is curved. As shown in FIGS. 79, 80A, 80B, and 81, the width of the portion 3243A of the trunk convex portion 3243 that is not joined to the branch convex portion 3244A becomes narrower toward the tip end portion of the trunk convex portion 3243. ing.
  • the plurality of branch convex portions 3244A 1 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions 3244A 2 occupying the second quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate decreases
  • the plurality of branch convex portions 3244A 3 occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions 3244A 4 occupying the fourth quadrant extend in parallel with the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
  • trunk convex portion 3243 and the branch convex portion 3244A are line symmetric with respect to the X axis, are also line symmetric with respect to the Y axis, and are 180 degrees rotationally symmetric with respect to the center of the pixel (points). Symmetric).
  • the liquid crystal display device of Example 2D-8 can have the same configuration and structure as the liquid crystal display device described in Example 2D-1, and thus detailed description thereof is omitted.
  • liquid crystal display device of Example 2D-8 there is no stem convex portion extending parallel to the X axis or the stem convex portion extending parallel to the Y axis. Accordingly, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance, and to have a configuration and a structure capable of giving a pretilt to liquid crystal molecules in a short time.
  • a liquid crystal display device can be provided.
  • the specifications of the trunk convex portion 3243, the branch convex portion 3244A, and the concave portion 3245 are as shown in Table 10 below.
  • the width of the branch protrusion 3244D can be reduced toward the periphery of the pixel 10 (FIG. 82). reference).
  • the first electrode is further provided with a slit 3252 (the first electrode 5B-1 structure or the first electrode 5C structure). (See FIGS. 83, 84, and 85).
  • FIG. 83 is a schematic plan view of the first electrode for one pixel constituting a modification of the liquid crystal display device of Example 2D-8.
  • the slit portion has the same configuration and structure as shown in FIG. 3252 is provided.
  • a slit portion 3252 having a configuration and a structure is provided.
  • the slit portion 3252 does not form the branch convex portion 3244D isolated from the other branch convex portion 3244D, or the slit portion 3252 does not form the concave portion 3245 isolated from the other concave portion 3245, that is, The slit portion 3252 is formed so that all the uneven portions are electrically connected.
  • the trunk convex portion 3243 is not provided with the slit portion 3252.
  • the slit portion 3252 is provided with a notch.
  • FIG. 87 is a schematic plan view of the first electrode for one pixel
  • the formation pitch of the branch protrusions along the X axis is P X
  • the formation pitch of the branch protrusions along the Y axis is P Y
  • the branch convex part extending from the trunk convex part on the X axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the X axis and occupying the fourth quadrant are formed in a mutually shifted state.
  • the branch convex part extending from the trunk convex part on the Y axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the second quadrant are formed in a mutually shifted state.
  • the branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are formed in a mutually shifted state.
  • the branch convex part extending from the trunk convex part on the Y axis and occupying the third quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the fourth quadrant are formed in a mutually shifted state.
  • first electrode 5B-3 structure, first electrode 5C-3 structure, first electrode 5D -3 structure or 5th E structure of the first electrode are not line symmetric with respect to the X axis and the Y axis, but are 180 degrees rotationally symmetric (point symmetric) with respect to the center of the pixel.
  • Example 2D-9 is also a modification of Example 2D-8.
  • FIG. 88 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-9.
  • FIGS. 89A, 89B, and 89C show arrows AA in FIG.
  • a schematic partial cross-sectional view of the first electrode and the like along arrows BB and CC is shown, and
  • FIG. 89D is a schematic partial cross-sectional view enlarging a part of FIG. 89C.
  • Typical partial end views of the liquid crystal display device of Example 2D-9 are substantially the same as those in FIGS.
  • the width of the branch protrusion is drawn constant, but the branch protrusion is tapered as described in Example 2D-4. May be. That is, the width of the branch convex portion may be such that the portion of the branch convex portion joined to the trunk convex portion is the widest and narrows from the portion joined to the trunk convex portion toward the tip portion.
  • the first electrode 3340 has a plurality of concave and convex portions 3341 (a trunk convex portion 3343, a branch convex portion 3344, and a concave portion 3345).
  • a plurality of stepped portions are formed on the provided trunk convex portion 3343.
  • the uneven portion 3341 passes through the center of the pixel and has a trunk convex portion (main convex portion) 3343 extending in a cross shape, and a plurality of branch convex portions (sub convex portions) extending from the trunk convex portion 3343 toward the pixel peripheral portion. 3344.
  • the cross-sectional shape of the stem convex portion 3343 when the stem convex portion 3343 is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion 3343 is the center of the cross-sectional shape of the stem convex portion 3343. It has a cross-sectional shape in which the stepped portion descends toward the edge of the cross-sectional shape.
  • the top surface of the trunk convex portion 3343 includes a top surface 3343B at the center of the trunk convex portion 3343 and a top surface 3343A located on both sides of the top surface 3343B.
  • the trunk convex portion 3343 has two stepped portions, and the top surface 3343A and the top surface 3343B become higher in this order when the concave portion 3345 is used as a reference.
  • the top surface of the branch convex portion 3344 is indicated by reference numeral 3344A
  • the top surface 3343A of the trunk convex portion 3343 and the top surface 3344A of the branch convex portion 3344 are at the same level.
  • the top surface 3343B of the trunk convex portion 3343 is hatched in the lateral direction
  • the concave portion 3345 is hatched in the vertical direction.
  • Example 2D-10 is a modification of Example 2D-9.
  • FIG. 90 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-10.
  • FIGS. 92A and 92B show the arrows AA and B- in FIG. A typical partial sectional view of the 1st electrode etc. along B is shown.
  • the top surface of the trunk convex portion 3343 is located on the top surface 3343C at the center of the trunk convex portion 3343, the top surface 3343B located on both sides of the top surface 3343C, and the top surface 3343B. It is composed of a top surface 3343A.
  • the trunk convex portion 3343 has three stepped portions, and the top surface 3343A, the top surface 3343B, and the top surface 3343C become higher in this order when the concave portion 3345 is used as a reference.
  • the cross-sectional shape of the stem convex portion 3343 when the stem convex portion 3343 is cut in a virtual vertical plane parallel to the extending direction of the stem convex portion 3343 is from the central portion (top surface 3343C) of the cross-sectional shape of the stem convex portion 3343. It has a cross-sectional shape in which the stepped portion descends toward the end of the cross-sectional shape of the trunk convex portion 3343 (top surface 3343B and top surface 3343A). In the drawing, the top surface 3343C is cross-hatched.
  • Example 2D-10 can be the same as the configuration and structure of the liquid crystal display device of Example 2D-9, and a detailed description thereof will be omitted.
  • Example 2D-11 is also a modification of Example 2D-9.
  • 91 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-11.
  • FIG. 92C shows the first electrode and the like along the arrow CC in FIG.
  • FIG. 92D shows a schematic partial end view of FIG. 92C, and a schematic partial end view in which a part of FIG. 92C is enlarged is shown.
  • the cross-sectional shape of the branch convex portion 3344 when the branch convex portion 3344 is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion 3344 is the cross-sectional shape of the branch convex portion 3344. It has a cross-sectional shape in which the stepped portion descends from the center toward the edge of the cross-sectional shape of the branch convex portion 3344.
  • the top surface of the branch convex portion 3344 includes a top surface 3344B extending from the trunk convex portion 3343 and top surfaces 3344A located on both sides of the top surface 3344B.
  • the branch convex portion 3344 has two step portions, and the top surface 3344A and the top surface 3344B become higher in this order when the concave portion 3345 is used as a reference.
  • the top surface 3344B is hatched in the lateral direction. 91 and 93, the boundary between the trunk convex portion and the branch convex portion is indicated by a solid line.
  • the height difference between the top surface 3343B and the top surface 3343A of the branch convex portion 3344 was set to 0.20 ⁇ m on average.
  • the top surface 3343B of the trunk convex portion 3343 and the top surface 3344B of the branch convex portion 3344 are at the same level.
  • Example 2D-11 can be the same as the configuration and structure of the liquid crystal display device of Example 2D-9, and detailed description thereof will be omitted.
  • the branch protrusion 3344 is cut along a virtual vertical plane parallel to the direction in which the branch protrusion 3344 extends.
  • the cross-sectional shape of the branch convex portion 3344 is such that the stepped portion descends from the trunk convex portion side of the cross-sectional shape of the branch convex portion 3344 toward the end of the cross-sectional shape of the branch convex portion 3344.
  • the configuration and structure of the branch protrusions can also be applied to the protrusions in the liquid crystal display devices described in Examples 2D-1 to 2D-7.
  • Example 2D-12 relates to the 5E structure of the first electrode.
  • a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-12 is shown in FIG.
  • the liquid crystal display device of Example 2D-12 assuming the X-axis and the Y-axis passing through the center of the pixel, specifically, each of the straight lines passing through the center of the pixel 10 and parallel to the pixel peripheral portion.
  • the plurality of concavo-convex portions are constituted by a trunk convex portion 3443 extending on the X axis and the Y axis, and a plurality of branch convex portions 3444G extending from the side of the trunk convex portion 3443 toward the peripheral portion of the pixel,
  • a plurality of branch convex portions 3444G 1 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions 3444G 2 occupying the second quadrant extend in parallel with the direction in which the value of the Y coordinate increases when the value of the X coordinate decreases
  • the plurality of branch convex portions 3444G 3 occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the branch convex portion 3444G 12 extending from the trunk convex portion 3443 on the Y axis and occupying the first quadrant is shifted from the branch convex portion 3444G 22 extending from the trunk convex portion 3443 on the Y axis and occupying the second quadrant.
  • the branch convex part 3444G 21 extending from the trunk convex part 3443 on the X axis and occupying the second quadrant is shifted from the branch convex part 3444G 31 extending from the trunk convex part 3443 on the X axis and occupying the third quadrant.
  • the branch convex portion 3444G 32 extending from the trunk convex portion 3443 on the Y axis and occupying the third quadrant is shifted from the branch convex portion 3444G 42 extending from the trunk convex portion 3443 on the Y axis and occupying the fourth quadrant.
  • P X is the pitch of the branch convex portions along the X axis
  • P Y is the pitch of the branch convex portions along the Y axis.
  • trunk convex portion 3443 and the branch convex portion 3444G are not line symmetric with respect to the X axis and the Y axis, but are 180 degrees rotationally symmetric (point symmetric) with respect to the center of the pixel.
  • the formation pitch of the branch projections 3444G along the X axis is P X
  • Example 2D-12 can be configured and structured in the same manner as the liquid crystal display device described in Example 2D-1, and detailed description thereof will be omitted.
  • the present disclosure has been described based on the preferred embodiments and examples, the present disclosure is not limited to these embodiments and the like, and various modifications are possible.
  • the VA mode liquid crystal display device liquid crystal display element
  • the present disclosure is not necessarily limited thereto, and IPS (In) using liquid crystal having negative dielectric anisotropy is used.
  • the present invention can also be applied to other display modes such as a Plane Switching mode and an FFS (Fringe Field Switching) mode.
  • an improvement effect of particularly high response characteristics can be exhibited in the VA mode as compared with the case where the pretilt processing is not performed.
  • the transmissive liquid crystal display device liquid crystal display element
  • the present disclosure is not necessarily limited to the transmissive type, and may be a reflective type, for example.
  • the pixel electrode is made of an electrode material having light reflectivity such as aluminum.
  • the planar shape of the convex portion and the branch convex portion is not limited to the V shape described in the embodiment, and various patterns in which the convex portion and the branch convex portion extend in a plurality of directions, such as a stripe shape and a ladder shape, for example. Can be adopted.
  • the planar shape of the end portions of the convex portions and branch convex portions may be linear or may be stepped. Furthermore, the planar shape of the end of each convex part or branch convex part may be linear, may be composed of a combination of line segments, or may draw a curve such as an arc. .
  • the black matrix may be formed so that the projected image of the portion of the first substrate located between the pixels from the top of the uneven portion overlaps the projected image of the black matrix.
  • the alignment restricting portion is provided only on the first substrate side.
  • the first alignment restricting portion (first slit portion) is provided on the first substrate, and the second substrate is provided with the second restricting portion.
  • An orientation regulating part (second slit part) may be provided.
  • a liquid crystal display device described below can be given.
  • a first substrate and a second substrate A first electrode formed on the facing surface of the first substrate facing the second substrate; A first orientation regulating portion provided on the first electrode; A first alignment film covering a first electrode, a first alignment regulating portion, and a facing surface of the first substrate; A second electrode formed on the facing surface of the second substrate facing the first substrate; A second alignment regulating portion provided on the second electrode; A second electrode, a second alignment regulating portion, a second alignment film covering the opposing surface of the second substrate, and A liquid crystal layer provided between the first alignment film and the second alignment film and including liquid crystal molecules; A liquid crystal display device in which a plurality of pixels having In each pixel, there are a projected image of a region surrounded by the edge of the first electrode and the first alignment regulating portion, and a projected image of a region surrounded by the edge of the second electrode and the second alignment regulating portion.
  • the major axis of the liquid crystal molecule group in the liquid crystal layer is substantially located in the same virtual plane
  • the liquid crystal molecules can have a configuration in which a pretilt is imparted by the first alignment film.
  • a liquid crystal molecule group (more specifically, the first region) occupying the central region of the overlapping region along the normal direction of the second substrate.
  • the major axis of the liquid crystal molecule group occupying a minute columnar region from the substrate to the second substrate is substantially located in the same virtual vertical plane.
  • Liquid crystal display device ... first embodiment >> A first alignment film and a second alignment film provided on opposite surfaces of the pair of substrates, and A liquid crystal layer including liquid crystal molecules disposed between the first alignment film and the second alignment film and having negative dielectric anisotropy;
  • a liquid crystal display element having At least the first alignment film includes a compound obtained by crosslinking or polymerizing or deforming a polymer compound having the first side chain and the second side chain, The first side chain has a crosslinkable functional group, a polymerizable functional group or a photosensitive functional group, The second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment, A liquid crystal display device in which liquid crystal molecules are given a pretilt by a first alignment film.
  • a liquid crystal display element having At least the first alignment film includes a compound obtained by crosslinking or polymerizing or deforming a polymer compound having the first side chain and the second side chain,
  • the first side chain has a crosslinkable functional group, a polymerizable functional group or a photosensitive functional group
  • the second side chain has a structure that has a dipole moment within an angle range of more than 0 degrees and less than 90 degrees from its major axis direction, and induces vertical orientation
  • the second side chain is a fluorine atom, a chlorine atom, -CN, -OCF Three , -OCHF 2 , -CF Three , -CHF 2 , -CH 2 F, -OCF 2 CHF 2 Or -OCF 2 CHFCF Three
  • a liquid crystal display element having At least the first alignment film includes a compound obtained by crosslinking or polymerizing or deforming a polymer compound having the first side chain and the second side chain, The first side chain has a crosslinkable functional group, a polymerizable functional group or a photosensitive functional group,
  • the second side chain has the following structural formula (11): A liquid crystal display device in which liquid crystal molecules are given a pretilt by a first alignment film.
  • each ring R independently represents a phenylene group, a cycloalkylene group, a phenylene group substituted with a fluorine atom or a chlorine atom, or a cycloalkylene group substituted with a fluorine atom or a chlorine atom;
  • Ring X represents a phenylene group or a cycloalkylene group,
  • D A Four With respect to Fluorine atom, chlorine atom, -CN, -OCF Three , -OCHF 2 , -CF Three , -CHF 2 , -CH 2 F, -OCF 2 CHF 2 , And -OCF 2 CHFCF Three The group consisting of A group composed of a fluorine-containing alkyl group having 1 to 18 carbon atoms, a fluorine-containing aromatic ring group, a fluorine-containing aliphatic ring group, a fluorine-containing alkyl group having 1 to 18 carbon atoms, a fluor
  • (F-1) A 01 Is composed of an organic group which may contain a linear or branched divalent ether group or ester group having 1 to 20 carbon atoms, or ether, ester, ether ester, acetal, ketal, hemiacetal and hemiketal. Represents at least one linking group selected from the group;
  • (F-2) A 02 Is one group selected from the group consisting of chalcone, cinnamate, cinnamoyl, coumarin, maleimide, benzophenone, norbornene, oryzanol and chitosan, or any one of acryloyl, methacryloyl, vinyl, epoxy and oxetane.
  • a first alignment film composed of a polymer compound having a first side chain having a crosslinkable functional group or a polymerizable functional group and a second side chain is formed on one of the pair of substrates.
  • a pair of substrates are disposed so that the first alignment film and the second alignment film face each other, and liquid crystal molecules having negative dielectric anisotropy are included between the first alignment film and the second alignment film.
  • the second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment, or alternatively, The second side chain has a dipole moment in the range of angles greater than 0 degrees and less than 90 degrees from its major axis direction, and has a structure that induces vertical orientation, or alternatively
  • the second side chain is a method of manufacturing a liquid crystal display device having the above structural formula (11), the above structural formula (12), or the above structural formula (13).
  • the second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment, or alternatively, The second side chain has a dipole moment in the range of angles greater than 0 degrees and less than 90 degrees from its major axis direction, and has a structure that induces vertical orientation, or alternatively
  • the second side chain is a method of manufacturing a liquid crystal display device having the above structural formula (11), the above structural formula (12), or the above structural formula (13).
  • the second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment, or alternatively,
  • the second side chain has a dipole moment in the range of angles greater than 0 degrees and less than 90 degrees from its major axis direction, and has a structure that induces vertical orientation, or alternatively
  • the second side chain is a method of manufacturing a liquid crystal display device having the above structural formula (11), the above structural formula (12), or the above structural formula (13).
  • First structure of first electrode The liquid crystal display device according to any one of [A01] to [A06], wherein the first electrode has a plurality of uneven portions.
  • Second structure of first electrode The first electrode is formed with a plurality of concave and convex portions, The liquid crystal display device according to any one of [A01] to [A06], wherein at least a space between the recesses of the first electrode is filled with a planarizing layer. Liquid crystal display device.
  • the maximum height of the top surface of the planarization layer is defined as H with respect to the bottom surface of the recess.
  • the minimum height of the top surface of the planarizing layer is H L When 0.5 ⁇ H L / H H ⁇ 1
  • the height of the convex portion with respect to the bottom surface of the concave portion is H C When 0.5 ⁇ H H / H C ⁇ 5
  • the liquid crystal display device according to [C02] satisfying [C04] The planarization layer covers the first electrode, A first alignment film covering the first electrode and a second alignment film covering the second electrode;
  • the liquid crystal molecules are given a pretilt by at least the first alignment film,
  • the planarization layer covers the first electrode, A first alignment film covering the planarization layer and a second alignment film covering the second electrode;
  • the liquid crystal display device according to any one of [C01] to [C03], in which a pretilt is imparted to the liquid crystal molecules at least by the first alignment film.
  • the planarization layer fills between the recesses of the first electrode, A first alignment film covering the first electrode and the planarization layer, and a second alignment film covering the second electrode;
  • the liquid crystal display device according to any one of [C01] to [C03], in which a pretilt is imparted to the liquid crystal molecules at least by the first alignment film.
  • [D01] ⁇ 3A structure of first electrode >> The liquid crystal display device according to any one of [C01] to [C08], wherein a plurality of stepped portions are formed on a convex portion provided on the first electrode.
  • [D02] ⁇ 3A-1 structure of first electrode >> The concavo-convex portion is a liquid crystal display device according to [D01], which includes a trunk convex portion extending through the center of the pixel and extending in a cross shape and a plurality of branch convex portions extending from the trunk convex portion toward the pixel peripheral portion.
  • the cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion is from the center of the cross-sectional shape of the stem convex portion to the edge of the cross-sectional shape of the stem convex portion.
  • the cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane parallel to the extending direction of the stem convex portion is from the center of the cross-sectional shape of the stem convex portion to the end of the cross-sectional shape of the stem convex portion.
  • the liquid crystal display device according to any one of [D02] to [D03], which has a cross-sectional shape in which a stepped portion descends toward the portion.
  • the cross-sectional shape of the branch convex portion when the branch convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion is from the center of the cross-sectional shape of the branch convex portion to the edge of the cross-sectional shape of the branch convex portion.
  • the liquid crystal display device according to any one of [D02] to [D04], which has a cross-sectional shape in which a stepped portion descends toward the surface.
  • the cross-sectional shape of the branch convex portion when the branch convex portion is cut in a virtual vertical plane parallel to the extending direction of the branch convex portion is the cross-sectional shape of the branch convex portion from the trunk convex portion side of the cross-sectional shape of the branch convex portion.
  • the liquid crystal display device according to any one of [D02] to [D05] which has a cross-sectional shape in which a stepped portion descends toward the end of the substrate.
  • the liquid crystal display device according to any one of [D02] to [D06] in which an alignment regulating portion is formed in a portion of the second electrode corresponding to the trunk convex portion.
  • the concavo-convex portion is a liquid crystal display device according to [D01], which includes a stem convex portion formed in a frame shape around the pixel and a plurality of branch convex portions extending from the stem convex portion toward the inside of the pixel.
  • the cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion is the cross-sectional shape of the stem convex portion from the outer edge of the cross-sectional shape of the stem convex portion.
  • the liquid crystal display device which has a cross-sectional shape in which a stepped portion descends toward an inner edge.
  • the cross-sectional shape of the branch convex portion when the branch convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion is from the center of the cross-sectional shape of the branch convex portion to the edge of the cross-sectional shape of the branch convex portion.
  • the cross-sectional shape of the branch convex portion when the branch convex portion is cut in a virtual vertical plane parallel to the extending direction of the branch convex portion is the cross-sectional shape of the branch convex portion from the trunk convex portion side of the cross-sectional shape of the branch convex portion.
  • the liquid crystal display device according to any one of [D08] to [D10] which has a cross-sectional shape in which a stepped portion descends toward an end of the substrate.
  • a convex structure is formed from the portion of the first substrate located between the pixels to the portion of the first substrate corresponding to the peripheral portion of the pixel, The liquid crystal display device according to any one of [D02] to [D12], wherein a peripheral portion of the uneven portion is formed on a convex structure.
  • the concavo-convex portion is a liquid crystal display device according to [E01], which includes a trunk convex portion extending through the center of the pixel and extending in a cross shape and a plurality of branch convex portions extending from the trunk convex portion toward the pixel peripheral portion.
  • the concavo-convex portion is a liquid crystal display device according to [E01], which includes a stem convex portion formed in a frame shape around the pixel and a plurality of branch convex portions extending from the stem convex portion toward the inside of the pixel.
  • the concavo-convex portion is composed of a stem convex portion that extends through the center of the pixel and extends in a cross shape, and a plurality of branch convex portions that extend from the stem convex portion toward the pixel peripheral portion,
  • the liquid crystal display device according to any one of [C01] to [C08], in which an alignment regulating portion is formed in a portion of the second electrode corresponding to the trunk convex portion.
  • the concavo-convex part is composed of a stem convex part formed in a frame shape around the pixel peripheral part, and a plurality of branch convex parts extending from the stem convex part toward the inside of the pixel,
  • the liquid crystal display device according to any one of [C01] to [C08], wherein the first electrode is formed with a slit or a protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel.
  • the liquid crystal display device according to any one of [C01] to [C08], wherein a width of a part of the convex portion provided in the first electrode is narrowed toward the tip portion.
  • [H02] ⁇ Structure of 4A of first electrode The concavo-convex portion is composed of a stem convex portion that extends through the center of the pixel and extends in a cross shape, and a plurality of branch convex portions that extend from the stem convex portion toward the pixel peripheral portion, A plurality of branch protrusions correspond to a part of the protrusions provided on the first electrode,
  • the width of the branch convex portion is the widest portion of the branch convex portion joined to the trunk convex portion, and is narrower from the portion joined to the trunk convex portion toward the tip end portion [H01].
  • the concavo-convex part is composed of a stem convex part formed in a frame shape around the pixel peripheral part, and a plurality of branch convex parts extending from the stem convex part toward the inside of the pixel, A plurality of branch protrusions correspond to a part of the protrusions provided on the first electrode,
  • the width of the branch convex portion is the widest portion of the branch convex portion joined to the trunk convex portion, and is narrower from the portion joined to the trunk convex portion toward the tip end portion [H01].
  • the concavo-convex portion is the liquid crystal display device according to [H08], which includes a trunk convex portion extending through the center of the pixel and extending in a cross shape and a plurality of branch convex portions extending from the trunk convex portion toward the pixel peripheral portion.
  • the cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion is from the center of the cross-sectional shape of the stem convex portion to the edge of the cross-sectional shape of the stem convex portion.
  • the liquid crystal display device which has a cross-sectional shape in which the stepped portion descends toward the surface.
  • the cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane parallel to the extending direction of the stem convex portion is from the center of the cross-sectional shape of the stem convex portion to the end of the cross-sectional shape of the stem convex portion.
  • the liquid crystal display device according to [H09] or [H10], which has a cross-sectional shape in which the stepped portion descends toward the portion.
  • the cross-sectional shape of the branch convex portion when the branch convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion is from the center of the cross-sectional shape of the branch convex portion to the edge of the cross-sectional shape of the branch convex portion.
  • the cross-sectional shape of the branch convex portion when the branch convex portion is cut in a virtual vertical plane parallel to the extending direction of the branch convex portion is the sectional shape of the branch convex portion from the trunk convex portion side of the cross-sectional shape of the branch convex portion.
  • an alignment regulating portion is formed in a portion of the second electrode corresponding to the trunk convex portion.
  • the uneven portion is a liquid crystal display device according to [H08], which includes a stem convex portion formed in a frame shape around the pixel and a plurality of branch convex portions extending from the stem convex portion toward the inside of the pixel.
  • the cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion is the cross-sectional shape of the stem convex portion from the outer edge of the cross-sectional shape of the stem convex portion.
  • the liquid crystal display device according to [H15] which has a cross-sectional shape in which a stepped portion descends toward an inner edge.
  • the cross-sectional shape of the branch convex portion when the branch convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion is from the center of the cross-sectional shape of the branch convex portion to the edge of the cross-sectional shape of the branch convex portion.
  • the cross-sectional shape of the branch convex portion when the branch convex portion is cut in a virtual vertical plane parallel to the extending direction of the branch convex portion is the cross-sectional shape of the branch convex portion from the trunk convex portion side of the cross-sectional shape of the branch convex portion.
  • the liquid crystal display device in which an alignment regulating portion is formed in a portion of the second electrode corresponding to the trunk convex portion.
  • ⁇ 4th D-2 structure of first electrode is a liquid crystal display device according to [H21], which includes a stem convex portion formed in a frame shape around the pixel and a plurality of branch convex portions extending from the stem convex portion toward the inside of the pixel.
  • the first electrode is formed with a slit or a protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel.
  • Each of the protrusions extending from the X axis and occupying the first quadrant is joined to each of the protrusions extending from the X axis and occupying the fourth quadrant
  • Each of the convex portions extending from the Y axis and occupying the first quadrant is joined to each of the convex portions extending from the Y axis and occupying the second quadrant
  • Each of the protrusions extending from the X axis and occupying the second quadrant is joined to each of the protrusions extending from the X axis and occupying the third quadrant
  • Each of the protrusions extending from the Y axis and occupying the third quadrant is joined to each of the protrusions extending from the Y axis and occupying the fourth quadrant [J01].
  • Each of the convex portions extending from the X axis or the vicinity thereof and occupying the first quadrant extends from the X axis or the vicinity thereof and is not joined to each of the convex portions occupying the fourth quadrant
  • Each of the protrusions extending from the Y axis or its vicinity and occupying the first quadrant is not joined to each of the protrusions extending from the Y axis or its vicinity and occupying the second quadrant
  • Each of the protrusions extending from the X axis or the vicinity thereof and occupying the second quadrant is not joined to each of the protrusions extending from the X axis or the vicinity thereof and occupying the third quadrant
  • Each of the convex portions extending from the Y axis or the vicinity thereof and occupying the third quadrant extends from the Y axis or the vicinity thereof and is not joined to each of the convex portions occupying the fourth quadrant.
  • P is the pitch at which the protrusions are formed along the X axis.
  • X And the formation pitch of the protrusions along the Y-axis is P Y
  • the convex portion extending from the X axis or the vicinity thereof and occupying the first quadrant and the convex portion extending from the X axis or the vicinity thereof and occupying the fourth quadrant are mutually (P X / 2) formed in a shifted state
  • the convex portion extending from the Y axis or the vicinity thereof and occupying the first quadrant and the convex portion extending from the Y axis or the vicinity thereof and occupying the second quadrant are mutually (P Y / 2) formed in a shifted state
  • a convex portion extending from the X axis or the vicinity thereof and occupying the second quadrant and a convex portion extending from the X axis or the vicinity thereof and occupying the third quadrant are mutually (P X
  • the trunk convex portions constituting the plurality of concave and convex portions are formed in a frame shape around the pixel instead of being formed on the X axis and the Y axis.
  • [K03] The liquid crystal display device according to [K01] or [K02], wherein a side portion of the trunk convex portion that is not joined to the branch convex portion is linear.
  • [K05] The liquid crystal display according to any one of [K01] to [K04], wherein a width of a portion of the trunk convex portion that is not joined to the branch convex portion is narrowed toward a tip portion of the trunk convex portion. apparatus.
  • [K06] The liquid crystal display device according to any one of [K01] to [K05], wherein the width of the branch convex portion becomes narrower toward the peripheral portion of the pixel.
  • [K07] ⁇ 5th B-1 structure of first electrode >> The liquid crystal display device according to any one of [K01] to [K06], in which a slit portion is further formed in the first electrode.
  • [K16] The liquid crystal display device according to [K15], wherein the depression has an inclination angle of 5 degrees to 60 degrees.
  • [K17] The liquid crystal display device according to any one of [K14] to [K16], wherein the outer edge of the recess has a circular shape.
  • [K18] The liquid crystal display device according to any one of [K14] to [K16], wherein the outer edge of the recess has a rectangular shape.
  • [K19] The liquid crystal display device according to [K18], in which an angle formed between the outer edge of the rectangular recess and the extending direction of the convex portion is 90 degrees.
  • the plurality of branch protrusions occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the liquid crystal display device according to any one of [K01] to [K21], wherein the plurality of branch convex portions occupying the fourth quadrant extend in parallel with a direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
  • the branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are formed in a mutually shifted state.
  • the branch convex part extending from the trunk convex part on the Y axis and occupying the third quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the fourth quadrant are formed in a mutually shifted state.
  • the liquid crystal display device according to any one of [K01] to [K22].
  • [K24] P is the pitch of branch protrusions along the X-axis.
  • the pitch of the branch protrusions along the Y axis is P Y
  • the branch convex portion extending from the trunk convex portion on the X axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the fourth quadrant are mutually (P X / 2) formed in a shifted state
  • the branch convex portion extending from the trunk convex portion on the Y axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the Y axis and occupying the second quadrant are mutually (P Y / 2) formed in a shifted state
  • the branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are mutually (P X / 2) formed
  • [L02] The liquid crystal display device according to [L01], wherein the slit portion is formed in a convex region.
  • [L04] The liquid crystal display device according to [L02], in which a slit is formed in a convex region extending toward the center region of the pixel.
  • [L12] The liquid crystal display device according to any one of [L09] to [L11], wherein a shape of an outer edge of the recess is a circle.
  • [L13] The liquid crystal display device according to any one of [L09] to [L11], wherein a shape of an outer edge of the recess is a rectangle.
  • [L14] The liquid crystal display device according to [L13], in which the angle formed by the outer edge of the rectangular recess and the direction in which the protrusion extends is 90 degrees.
  • [L15] The liquid crystal display device according to [L13], in which the angle formed between the outer edge of the rectangular recess and the extending direction of the convex portion is an acute angle.
  • the plurality of branch convex portions occupying the first quadrant extend in parallel with the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the liquid crystal display device according to [L17] wherein the plurality of branch convex portions occupying the fourth quadrant extend in parallel with a direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
  • the branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are formed in a mutually shifted state.
  • the branch convex part extending from the trunk convex part on the Y axis and occupying the third quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the fourth quadrant are formed in a mutually shifted state.
  • the liquid crystal display device according to [L18]. [L20] P is the pitch of the branch protrusions along the X-axis.
  • the pitch of the branch protrusions along the Y axis is P Y
  • the branch convex portion extending from the trunk convex portion on the X axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the fourth quadrant are mutually (P X / 2) formed in a shifted state
  • the branch convex portion extending from the trunk convex portion on the Y axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the Y axis and occupying the second quadrant are mutually (P Y / 2) formed in a shifted state
  • the branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are mutually (P X / 2) formed
  • [M02] The liquid crystal display device according to [M01], in which the recess is narrowed toward the first substrate.
  • [M03] The liquid crystal display device according to [M02], wherein the depression has an inclination angle of 5 degrees to 60 degrees.
  • [M04] The liquid crystal display device according to any one of [M01] to [M03], wherein a shape of an outer edge of the recess is a circle.
  • [M05] The liquid crystal display device according to any one of [M01] to [M03], wherein the outer edge of the recess has a rectangular shape.
  • [M06] The liquid crystal display device according to [M05], in which an angle formed between the outer edge of the rectangular recess and the extending direction of the convex portion is 90 degrees.
  • [M07] The liquid crystal display device according to [M05], in which the angle formed by the outer edge of the rectangular recess and the extending direction of the convex portion is an acute angle.
  • [M08] The liquid crystal display device according to any one of [M01] to [M07], in which a central portion of the depression forms part of a contact hole.
  • the plurality of concavo-convex portions are configured by a trunk convex portion extending on the X axis and the Y axis, and a plurality of branch convex portions extending from the side of the trunk convex portion toward the peripheral portion of the pixel.
  • the liquid crystal display device according to any one of [M08].
  • the plurality of branch convex portions occupying the first quadrant extend in parallel with the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the liquid crystal display device according to [M09] wherein the plurality of branch convex portions occupying the fourth quadrant extend in parallel with a direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
  • [M11] ⁇ 5th D-3 structure of first electrode >> The branch convex part extending from the trunk convex part on the X axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the X axis and occupying the fourth quadrant are formed in a mutually shifted state. And The branch convex part extending from the trunk convex part on the Y axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the second quadrant are formed in a mutually shifted state.
  • the branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are formed in a mutually shifted state.
  • the branch convex part extending from the trunk convex part on the Y axis and occupying the third quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the fourth quadrant are formed in a mutually shifted state.
  • [M10] P is the pitch of the branch protrusions along the X axis.
  • the pitch of the branch protrusions along the Y axis is P Y
  • the branch convex portion extending from the trunk convex portion on the X axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the fourth quadrant are mutually (P X / 2) formed in a shifted state
  • the branch convex portion extending from the trunk convex portion on the Y axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the Y axis and occupying the second quadrant are mutually (P Y / 2) formed in a shifted state
  • the branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are mutually (P X / 2) formed
  • the plurality of concavo-convex portions are constituted by a trunk convex portion extending on the X axis and the Y axis, and a plurality of branch convex portions extending from the side of the trunk convex portion toward the peripheral portion of the pixel,
  • the plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases
  • the plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases
  • the plurality of branch convex portions occupying the fourth quadrant extend in parallel to the direction in
  • the branch convex part extending from the trunk convex part on the Y axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the second quadrant are formed in a mutually shifted state.
  • the branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are formed in a mutually shifted state.
  • the branch convex part extending from the trunk convex part on the Y axis and occupying the third quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the fourth quadrant are formed in a mutually shifted state.
  • [N02] P is the pitch of the branch protrusions along the X-axis.
  • the pitch of the branch protrusions along the Y axis is P Y
  • the branch convex portion extending from the trunk convex portion on the X axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the fourth quadrant are mutually (P X / 2) formed in a shifted state
  • the branch convex portion extending from the trunk convex portion on the Y axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the Y axis and occupying the second quadrant are mutually (P Y / 2) formed in a shifted state
  • the branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are mutually (P X / 2) formed
  • First alignment regulating portion (first slit portion), 1140A, 3340A ... First transparent conductive material layer, 1140B , 3340B ... 2nd transparent conductive material layer, 141, 241, 341, 1141, 1241, 2141, 2241, 2241, 2441, 3141, 3241, 3341, 3441 ... uneven part, 141A, 1141A ... of uneven part Peripheral part, 142, 242, 342, 1142, 1242, 2142, 2242, 2342, 2442 ... convex part, 143, 243, 343A, 343B, 1143, 1243, 2143, 2243, 2343, 2443, 3243, 3343, 3443 ...
  • trunk convex part (main convex part), 1143A, 1143B, 1143C, 1243A, 1243B, 2343A, 2343B, 2343C, 2443A, 2443B, 2443C, 3343A, 3343B, 3343C ...
  • Branch convex part (sub-convex part), 3144B ′. 3144E '... convex part area, 1144A, 1144B, 1244A, 1244B, 2344A, 2344B, 2444A, 2444B, 3344A, 33344B ... the top surface of the branch convex part, 2144a, 2244a ... joined to the trunk convex part Branch convex part, 2144b, 2244 b: tip portion of branch convex portion, 145, 245, 345, 1145, 1245, 2145, 2245, 2345, 2445, 3145, 3245, 3345, 3445 ...

Abstract

A liquid crystal display device which comprises a liquid crystal display element that has: a first alignment film (21) and a second alignment film (51) that are provided to opposing surface sides of a pair of substrates (20, 50); and a liquid crystal layer (70) that is disposed between the first alignment film (21) and the second alignment film (51), and contains liquid crystal molecules (71) having negative dielectric anisotropy. At least the first alignment film (21) contains a compound that has been polymerised, deformed, or crosslinked by a polymer compound having a first side chain and a second side chain. The first side chain has a crosslinkable functional group, a polymerisable functional group, or a photosensitive functional group. The second side chain has a structure inducing dielectric anisotropy, and has a structure inducing vertical alignment. Pretilt is applied to the liquid crystal molecules by the first alignment film.

Description

液晶表示装置及びその製造方法Liquid crystal display device and manufacturing method thereof
 本開示は、対向面に配向膜を有する一対の基板の間に液晶層が封止された液晶表示素子を備えた液晶表示装置、及び、液晶表示装置の製造方法に関する。 The present disclosure relates to a liquid crystal display device including a liquid crystal display element in which a liquid crystal layer is sealed between a pair of substrates having alignment films on opposite surfaces, and a method for manufacturing the liquid crystal display device.
 近年、液晶テレビジョン受像機やノート型パーソナルコンピュータ、カーナビゲーション装置等の表示モニタとして、液晶ディスプレイ(LCD;Liquid Crystal Display)が多く用いられている。この液晶ディスプレイは、基板間に挟持された液晶層中に含まれる液晶分子の分子配列(配向)によって様々な表示モード(方式)に分類される。表示モードとして、例えば、電圧をかけない状態で液晶分子がねじれて配向しているTN(Twisted Nematic;ねじれネマティック)モードがよく知られている。TNモードでは、液晶分子は、正の誘電率異方性、即ち、液晶分子の長軸方向の誘電率が短軸方向に比べて大きい性質を有している。このため、液晶分子は、基板面に対して平行な面内において、液晶分子の配向方位を順次回転させつつ、基板面に垂直な方向に整列させた構造となっている。 In recent years, a liquid crystal display (LCD) is often used as a display monitor for liquid crystal television receivers, notebook personal computers, car navigation systems, and the like. This liquid crystal display is classified into various display modes (methods) according to the molecular arrangement (orientation) of liquid crystal molecules contained in a liquid crystal layer sandwiched between substrates. As a display mode, for example, a TN (Twisted Nematic) mode in which liquid crystal molecules are twisted and aligned without applying a voltage is well known. In the TN mode, the liquid crystal molecules have a property of positive dielectric anisotropy, that is, the dielectric constant in the major axis direction of the liquid crystal molecules is larger than that in the minor axis direction. For this reason, the liquid crystal molecules have a structure that is aligned in a direction perpendicular to the substrate surface while sequentially rotating the orientation direction of the liquid crystal molecules in a plane parallel to the substrate surface.
 この一方で、電圧をかけない状態で液晶分子が基板面に対して垂直に配向しているVA(Vertical Alignment)モードに対する注目が高まっている。VAモードでは、液晶分子は、負の誘電率異方性、即ち、液晶分子の長軸方向の誘電率が短軸方向に比べて小さい性質を有しており、TNモードに比べて広視野角を実現できる。 On the other hand, attention has been focused on a VA (Vertical Alignment) mode in which liquid crystal molecules are aligned perpendicularly to the substrate surface without applying a voltage. In the VA mode, the liquid crystal molecules have a negative dielectric anisotropy, that is, the property that the dielectric constant in the major axis direction of the liquid crystal molecules is smaller than that in the minor axis direction, and a wider viewing angle than in the TN mode. Can be realized.
 このようなVAモードの液晶ディスプレイでは、電圧が印加されると、基板に対して垂直方向に配向していた液晶分子が、負の誘電率異方性により、基板に対して平行方向に倒れるように応答することによって、光を透過させる構成となっている。ところが、基板に対して垂直方向に配向した液晶分子の倒れる方向は任意であるため、電圧印加により液晶分子の配向が乱れ、よって、電圧に対する応答特性を悪化させる要因となっていた。 In such a VA mode liquid crystal display, when a voltage is applied, liquid crystal molecules aligned in a direction perpendicular to the substrate are inclined in a direction parallel to the substrate due to negative dielectric anisotropy. It is the structure which permeate | transmits light by responding to. However, since the direction in which the liquid crystal molecules aligned in the direction perpendicular to the substrate is tilted is arbitrary, the alignment of the liquid crystal molecules is disturbed by the application of a voltage, thereby deteriorating the response characteristics to the voltage.
 そこで、応答特性を向上させるために、液晶分子が電圧に応答して倒れる方向を規制する技術が検討されている。具体的には、紫外光の直線偏光の光あるいは基板面に対して斜め方向から紫外光を照射することにより形成された配向膜を用いて、液晶分子に対してプレチルトを付与する技術(光配向膜技術)等である。光配向膜技術として、例えば、カルコン構造を含むポリマーから成る膜に対して、紫外光の直線偏光の光あるいは基板面に対して斜め方向から紫外光を照射し、カルコン構造中の二重結合部分が架橋することにより配向膜を形成する技術が知られている(特許文献1~特許文献3参照)。また、この他に、ビニルシンナメート誘導体高分子とポリイミドとの混合物を用いて配向膜を形成する技術がある(特許文献4参照)。更に、ポリイミドを含む膜に対して波長254nmの直線偏光の光を照射して、ポリイミドの一部を分解することにより配向膜を形成する技術(特許文献5参照)等も知られている。また、光配向膜技術の周辺技術として、直線偏光の光あるいは斜め光を照射した、アゾベンゼン誘導体等の二色性光反応性構成単位を含むポリマーから成る膜上に、液晶性高分子化合物から成る膜を形成することにより液晶性配向膜とする技術もある(特許文献6参照)。 Therefore, in order to improve the response characteristics, a technique for regulating the direction in which the liquid crystal molecules fall in response to the voltage has been studied. Specifically, a technique for applying a pretilt to liquid crystal molecules (photo-alignment) using an alignment film formed by irradiating ultraviolet light from an oblique direction to the linearly polarized light of the ultraviolet light or the substrate surface. Membrane technology). As a photo-alignment film technology, for example, a film made of a polymer containing a chalcone structure is irradiated with ultraviolet light from a linearly polarized light or an ultraviolet light from an oblique direction to the substrate surface, and a double bond portion in the chalcone structure A technique for forming an alignment film by cross-linking is known (see Patent Documents 1 to 3). In addition, there is a technique for forming an alignment film using a mixture of a vinyl cinnamate derivative polymer and polyimide (see Patent Document 4). Furthermore, a technique for forming an alignment film by irradiating a film containing polyimide with linearly polarized light having a wavelength of 254 nm to decompose a part of the polyimide (see Patent Document 5) is also known. As a peripheral technology of photo-alignment film technology, it is composed of a liquid crystalline polymer compound on a film made of a polymer containing a dichroic photoreactive structural unit such as an azobenzene derivative irradiated with linearly polarized light or oblique light. There is also a technique for forming a liquid crystal alignment film by forming a film (see Patent Document 6).
 また、一対の基板の対向面側に設けられた一対の配向膜と、一対の配向膜の間に設けられ、負の誘電率異方性を有する液晶分子を含む液晶層とを有する液晶表示素子を備え、
 一対の配向膜のうちの少なくとも一方は、側鎖として架橋性官能基を有する高分子化合物が架橋あるいは変形した化合物を含み、液晶分子は、架橋あるいは変形した化合物によってプレチルトが付与される液晶表示装置が、特開2011-095696から周知である。
A liquid crystal display element having a pair of alignment films provided on opposite surfaces of the pair of substrates, and a liquid crystal layer including liquid crystal molecules having a negative dielectric anisotropy provided between the pair of alignment films. With
At least one of the pair of alignment films includes a compound in which a polymer compound having a crosslinkable functional group as a side chain is crosslinked or deformed, and the liquid crystal molecules are given a pretilt by the crosslinked or deformed compound. Is known from JP2011-095696A.
特開平10-087859号公報Japanese Patent Laid-Open No. 10-087859 特開平10-252646号公報JP-A-10-252646 特開2002-082336号公報JP 2002-082336 A 特開平10-232400号公報Japanese Patent Laid-Open No. 10-232400 特開平10-073821号公報Japanese Patent Laid-Open No. 10-073821 特開平11-326638号公報Japanese Patent Laid-Open No. 11-326638 特開2011-095696号公報JP 2011-095696 A
 しかしながら、上記した光配向膜技術では、応答特性は向上するものの、配向膜を形成する際に、直線偏光の光を照射する装置や、基板面に対して斜め方向から光照射する装置といった大がかりな光照射装置が必要とされるという問題がある。また、より広い視野角を実現するために、画素内に複数のサブ画素を設けて液晶分子の配向を分割したマルチドメインを有する液晶ディスプレイを製造するためには、より大がかりな装置が必要とされる上、製造工程が複雑になるという問題もある。具体的には、マルチドメインを有する液晶ディスプレイでは、サブ画素毎、プレチルトが異なるように配向膜が形成されている。従って、マルチドメインを有する液晶ディスプレイの製造において上記の光配向膜技術を用いる場合、サブ画素毎に光照射することになるため、サブ画素毎のマスクパターンが必要となり、更に光照射装置が大がかりとなる。また、特開2011-095696号公報に開示された技術にあっては、応答特性を向上させることが可能である。しかしながら、液晶表示装置の製造時、液晶表示装置に設けられた画素電極と対向電極とに電圧を印加することで液晶分子にプレチルトを付与するが、この印加する電圧の一層の低電圧化に対する要望がある。 However, although the above-described photo-alignment film technology improves response characteristics, when forming the alignment film, a device that irradiates light of linearly polarized light or a device that irradiates light from an oblique direction with respect to the substrate surface. There is a problem that a light irradiation device is required. In order to realize a wider viewing angle, a larger-scale device is required to manufacture a multi-domain liquid crystal display in which a plurality of sub-pixels are provided in a pixel and the alignment of liquid crystal molecules is divided. In addition, the manufacturing process becomes complicated. Specifically, in a liquid crystal display having a multi-domain, an alignment film is formed so that the pretilt is different for each sub-pixel. Therefore, in the case of using the above-described photo-alignment film technology in the manufacture of a liquid crystal display having a multi-domain, since light is emitted for each sub-pixel, a mask pattern for each sub-pixel is required, and the light irradiation device is large. Become. Further, with the technique disclosed in Japanese Patent Application Laid-Open No. 2011-095696, response characteristics can be improved. However, when a liquid crystal display device is manufactured, a pretilt is imparted to the liquid crystal molecules by applying a voltage to the pixel electrode and the counter electrode provided in the liquid crystal display device, but there is a demand for further lowering the applied voltage. There is.
 従って、本開示の目的は、大がかりな製造装置を用いなくても容易に応答特性を向上させることが可能な液晶表示素子を備え、しかも、液晶分子にプレチルトを付与するときに印加する電圧の一層の低電圧化を可能にした液晶表示装置及びその製造方法を提供することにある。 Therefore, an object of the present disclosure is to provide a liquid crystal display element that can easily improve response characteristics without using a large-scale manufacturing apparatus, and to further apply a voltage applied when pretilt is applied to liquid crystal molecules. It is an object of the present invention to provide a liquid crystal display device and a method for manufacturing the same that can reduce the voltage of the display.
 上記の目的を達成するための本開示の第1の態様、第2の態様、第3の態様に係る液晶表示装置は、
 一対の基板の対向面側に設けられた第1配向膜及び第2配向膜、並びに、
 第1配向膜と第2配向膜との間に配され、負の誘電率異方性を有する液晶分子を含む液晶層、
を有する液晶表示素子を備えており、
 少なくとも第1配向膜は、第1の側鎖及び第2の側鎖を有する高分子化合物(便宜上、『配向処理前・化合物』と呼ぶ)が架橋又は重合又は変形した化合物(便宜上、『配向処理後・化合物』と呼ぶ)を含み、
 第1の側鎖は、架橋性官能基又は重合性官能基又は感光性官能基を有し、
 第2の側鎖は、誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し(本開示の第1の態様に係る液晶表示装置)、あるいは又、
 第2の側鎖は、その長軸方向から0度を超え、90度未満の角度の範囲(好ましくは、その長軸方向から0度を超え、60度以下の角度の範囲、より好ましくは、その長軸方向から0度を超え、40度以下の角度の範囲、一層好ましくは、その長軸方向から0度を超え、30度以下の角度の範囲。以下においても同様)内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し(本開示の第2の態様に係る液晶表示装置)、あるいは又、
 第2の側鎖は、以下の構造式(11)を有し(本開示の第3の態様に係る液晶表示装置)、
 液晶分子は、第1配向膜によってプレチルトが付与されている。ここで、『架橋性官能基』とは、架橋構造(橋かけ構造)を形成することが可能な基を意味し、より具体的には、二量化を意味する。また、『重合性官能基』とは、2つ以上の官能基が逐次重合を行うような官能基を意味する。更には、『感光性官能基』とは、エネルギー線を吸収することが可能な基を意味する。エネルギー線として、紫外線、X線、電子線を挙げることができる。以下においても同様である。
The liquid crystal display device according to the first aspect, the second aspect, and the third aspect of the present disclosure for achieving the above object is as follows.
A first alignment film and a second alignment film provided on opposite surfaces of the pair of substrates, and
A liquid crystal layer including liquid crystal molecules disposed between the first alignment film and the second alignment film and having negative dielectric anisotropy;
A liquid crystal display element having
At least the first alignment film is a compound in which a polymer compound having a first side chain and a second side chain (referred to as “pre-alignment treatment / compound” for convenience) is crosslinked, polymerized, or deformed (for convenience, “alignment treatment”). Called “post-compound”),
The first side chain has a crosslinkable functional group, a polymerizable functional group or a photosensitive functional group,
The second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment (the liquid crystal display device according to the first aspect of the present disclosure), or alternatively
The second side chain has a range of angles greater than 0 degrees and less than 90 degrees from its major axis direction (preferably a range of angles greater than 0 degrees and less than 60 degrees from its major axis direction, more preferably Dipole moment within the range of angles greater than 0 degrees and less than 40 degrees from the major axis direction, and more preferably within the range of angles greater than 0 degree and less than 30 degrees from the major axis direction. And having a structure that induces vertical alignment (the liquid crystal display device according to the second aspect of the present disclosure), or
The second side chain has the following structural formula (11) (the liquid crystal display device according to the third aspect of the present disclosure),
The liquid crystal molecules are given a pretilt by the first alignment film. Here, the “crosslinkable functional group” means a group capable of forming a crosslinked structure (crosslinked structure), and more specifically means dimerization. Further, “polymerizable functional group” means a functional group in which two or more functional groups sequentially polymerize. Furthermore, the “photosensitive functional group” means a group capable of absorbing energy rays. Examples of energy rays include ultraviolet rays, X-rays, and electron beams. The same applies to the following.
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
 ここで、本開示の第3の態様に係る液晶表示装置にあっては、
(a)m及びnは、それぞれ独立に、0又は1であり、
(b)環Rは、それぞれ独立に、フェニレン基、シクロアルキレン基、フッ素原子若しくは塩素原子で置換されたフェニレン基、又は、フッ素原子若しくは塩素原子で置換されたシクロアルキレン基を表し、
(c)環Xは、フェニレン基又はシクロアルキレン基を表し、
(d)A4に関して、
 フッ素原子、塩素原子、-CN、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-OCF2CHF2、及び、-OCF2CHFCF3から構成された群を第1群とし、
 炭素原子数1乃至18のフッ素含有アルキル基、フッ素含有芳香環基、フッ素含有脂肪族環基、フッ素含有複素環基、及び、これらから成る大環状基から構成された群を第2群とし、但し、第2群におけるフッ素含有アルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
 炭素原子数1乃至18のアルキル基、脂肪族環基、複素環基、及び、これらから成る大環状基から構成された群を第3群とし、但し、第3群におけるアルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
 炭素原子数3乃至18のフッ素含有アルキル基、フッ素含有芳香環基、フッ素含有脂肪族環基、フッ素含有複素環基、及び、これらから成る大環状基から構成された群を第4群とし、但し、第4群におけるフッ素含有アルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
 炭素原子数3乃至18のアルキル基、脂肪族環基、複素環基、及び、これらから成る大環状基から構成された群を第5群とし、但し、第5群におけるアルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
(d-1)A1,A2,A3の全てが水素原子であり、且つ、m=1,n=0の場合、又は、m=0,n=1の場合、又は、m=n=1の場合、A4は、第1群又は第2群から選択された1種類の原子又は基であり、
(d-2)A3が水素原子であり、且つ、m=0,n=0の場合、A4は、第4群から選択された1種類の基であり、
(d-3)A1,A2,A3の少なくとも1つがフッ素原子又は塩素原子であり、且つ、m=1,n=0の場合、又は、m=0,n=1の場合、又は、m=n=1の場合、A4は、水素原子、第1群、第2群及び第3群から選択された1種類の原子又は基であり、
(d-4)A3がフッ素原子又は塩素原子であり、且つ、m=0,n=0の場合、A4は、水素原子、第1群、第4群及び第5群から選択された1種類の原子又は基である。
Here, in the liquid crystal display device according to the third aspect of the present disclosure,
(A) m and n are each independently 0 or 1,
(B) each ring R independently represents a phenylene group, a cycloalkylene group, a phenylene group substituted with a fluorine atom or a chlorine atom, or a cycloalkylene group substituted with a fluorine atom or a chlorine atom;
(C) Ring X represents a phenylene group or a cycloalkylene group,
With respect to (d) A 4,
A group consisting of fluorine atom, chlorine atom, —CN, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 2 CHF 2 , and —OCF 2 CHFCF 3 A group,
A group composed of a fluorine-containing alkyl group having 1 to 18 carbon atoms, a fluorine-containing aromatic ring group, a fluorine-containing aliphatic ring group, a fluorine-containing heterocyclic group, and a macrocyclic group composed of these is a second group, However, in the fluorine-containing alkyl group in the second group, any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced by —CH═CH— or —C≡C—
A group composed of an alkyl group having 1 to 18 carbon atoms, an aliphatic cyclic group, a heterocyclic group, and a macrocyclic group composed of these is defined as the third group, provided that the alkyl group in the third group is Any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced with —CH═CH— or — May be replaced by C≡C-
A group composed of a fluorine-containing alkyl group having 3 to 18 carbon atoms, a fluorine-containing aromatic ring group, a fluorine-containing aliphatic ring group, a fluorine-containing heterocyclic group, and a macrocyclic group composed of these is defined as a fourth group, However, in the fluorine-containing alkyl group in the fourth group, any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced by —CH═CH— or —C≡C—
A group composed of an alkyl group having 3 to 18 carbon atoms, an aliphatic ring group, a heterocyclic group, and a macrocyclic group composed of these is defined as a fifth group, provided that the alkyl group in the fifth group is Any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced with —CH═CH— or — May be replaced by C≡C-
(D-1) All of A 1 , A 2 , A 3 are hydrogen atoms and m = 1, n = 0, or m = 0, n = 1, or m = n When = 1, A 4 is one kind of atom or group selected from the first group or the second group,
(D-2) When A 3 is a hydrogen atom and m = 0 and n = 0, A 4 is one kind of group selected from the fourth group,
(D-3) When at least one of A 1 , A 2 , A 3 is a fluorine atom or a chlorine atom and m = 1, n = 0, or m = 0, n = 1, or , M = n = 1, A 4 is a hydrogen atom, one kind of atom or group selected from the first group, the second group and the third group,
(D-4) When A 3 is a fluorine atom or a chlorine atom, and m = 0 and n = 0, A 4 is selected from a hydrogen atom, the first group, the fourth group, and the fifth group One kind of atom or group.
 構造式(11)において、環R、環Xは、液晶分子のコア部位に対して沿うことができる部位であり、A4は、液晶分子の末端鎖に沿う部位である。 In the structural formula (11), the ring R and the ring X are portions that can be along the core portion of the liquid crystal molecule, and A 4 is a portion that is along the terminal chain of the liquid crystal molecule.
 以下に説明する本開示の第1の態様~第3の態様に係る液晶表示装置の製造方法にあっては、所定の電場を印加して液晶分子を配向させる工程は、少なくとも一方の基板の対向面及び電極上に配向制御材料を含む配向膜を形成した状態で、液晶層に対して所定の電場を印加しつつ、配向制御材料を反応させることで、液晶分子を配向させ、プレチルトを付与する工程から成る。尚、このような液晶表示装置の製造方式は、FPA方式(Field-induced Photo-reactive Alignment方式)と呼ばれる。 In the method for manufacturing a liquid crystal display device according to the first to third aspects of the present disclosure described below, the step of aligning liquid crystal molecules by applying a predetermined electric field is performed on at least one substrate. In a state where an alignment film containing an alignment control material is formed on the surface and the electrode, the liquid crystal layer is allowed to react while applying a predetermined electric field to the liquid crystal layer, thereby aligning liquid crystal molecules and imparting a pretilt. It consists of a process. Such a liquid crystal display manufacturing method is called an FPA method (Field-induced Photo-reactive Alignment method).
 上記の目的を達成するための本開示の第1の態様に係る液晶表示装置の製造方法(あるいは液晶表示素子の製造方法)は、
 一対の基板の一方に、架橋性官能基又は重合性官能基を有する第1の側鎖、及び、第2の側鎖を有する高分子化合物(便宜上、『配向処理前・化合物』と呼ぶ)から成る第1配向膜を形成し、一対の基板の他方に、第2配向膜を形成した後、
 一対の基板を、第1配向膜と第2配向膜とが対向するように配置し、第1配向膜と第2配向膜との間に、負の誘電率異方性を有する液晶分子を含む液晶層を封止し、次いで、
 高分子化合物(配向処理前・化合物)における第1の側鎖を架橋又は重合させて、液晶分子にプレチルトを付与する、
工程を含み、
 第2の側鎖は、誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
 第2の側鎖は、その長軸方向から0度を超え、90度未満の角度の範囲内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
 第2の側鎖は、上記の構造式(11)を有する。
A method for manufacturing a liquid crystal display device according to the first aspect of the present disclosure (or a method for manufacturing a liquid crystal display element) for achieving the above object is as follows.
From a polymer compound having a first side chain and a second side chain having a crosslinkable functional group or a polymerizable functional group on one of a pair of substrates (referred to as “pre-alignment treatment compound” for convenience) After forming the first alignment film and forming the second alignment film on the other of the pair of substrates,
A pair of substrates are disposed so that the first alignment film and the second alignment film face each other, and liquid crystal molecules having negative dielectric anisotropy are included between the first alignment film and the second alignment film. Sealing the liquid crystal layer, then
Crosslinking or polymerizing the first side chain of the polymer compound (before alignment treatment / compound) to give a pretilt to the liquid crystal molecules;
Including steps,
The second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment, or alternatively,
The second side chain has a dipole moment in the range of angles greater than 0 degrees and less than 90 degrees from its major axis direction, and has a structure that induces vertical orientation, or alternatively
The second side chain has the above structural formula (11).
 上記の目的を達成するための本開示の第2の態様に係る液晶表示装置の製造方法(あるいは液晶表示素子の製造方法)は、
 一対の基板の一方に、感光性官能基を有する第1の側鎖、及び、第2の側鎖を有する高分子化合物(便宜上、『配向処理前・化合物』と呼ぶ)から成る第1配向膜を形成し、一対の基板の他方に、第2配向膜を形成した後、
 一対の基板を、第1配向膜と第2配向膜とが対向するように配置し、第1配向膜と第2配向膜との間に、負の誘電率異方性を有する液晶分子を含む液晶層を封止し、次いで、
 高分子化合物(配向処理前・化合物)における第1の側鎖を変形させて、液晶分子にプレチルトを付与する、
工程を含み、
 第2の側鎖は、誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
 第2の側鎖は、その長軸方向から0度を超え、90度未満の角度の範囲内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
 第2の側鎖は、上記の構造式(11)を有する。
A method for manufacturing a liquid crystal display device according to the second aspect of the present disclosure (or a method for manufacturing a liquid crystal display element) for achieving the above object is as follows.
A first alignment film comprising a polymer compound having a first side chain having a photosensitive functional group and a second side chain on one of a pair of substrates (for convenience, referred to as “pre-alignment treatment compound”) After forming the second alignment film on the other of the pair of substrates,
A pair of substrates are disposed so that the first alignment film and the second alignment film face each other, and liquid crystal molecules having negative dielectric anisotropy are included between the first alignment film and the second alignment film. Sealing the liquid crystal layer, then
The first side chain in the polymer compound (before the alignment treatment / compound) is deformed to give a pretilt to the liquid crystal molecules.
Including steps,
The second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment, or alternatively,
The second side chain has a dipole moment in the range of angles greater than 0 degrees and less than 90 degrees from its major axis direction, and has a structure that induces vertical orientation, or alternatively
The second side chain has the above structural formula (11).
 上記の目的を達成するための本開示の第3の態様に係る液晶表示装置の製造方法(あるいは液晶表示素子の製造方法)は、
 一対の基板の一方に、架橋性官能基又は感光性官能基を有する第1の側鎖、及び、第2の側鎖を有する高分子化合物(便宜上、『配向処理前・化合物』と呼ぶ)から成る第1配向膜を形成し、一対の基板の他方に、第2配向膜を形成した後、
 一対の基板を、第1配向膜と第2配向膜とが対向するように配置し、第1配向膜と第2配向膜との間に、負の誘電率異方性を有する液晶分子を含む液晶層を封止し、次いで、
 高分子化合物(配向処理前・化合物)にエネルギー線を照射して、液晶分子にプレチルトを付与する、
工程を含み、
 第2の側鎖は、誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
 第2の側鎖は、その長軸方向から0度を超え、90度未満の角度の範囲内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
 第2の側鎖は、上記の構造式(11)を有する。
A method for manufacturing a liquid crystal display device according to the third aspect of the present disclosure (or a method for manufacturing a liquid crystal display element) for achieving the above object is as follows.
From a polymer compound having a first side chain and a second side chain having a crosslinkable functional group or a photosensitive functional group on one of a pair of substrates (referred to as “pre-alignment treatment compound” for convenience) After forming the first alignment film and forming the second alignment film on the other of the pair of substrates,
A pair of substrates are disposed so that the first alignment film and the second alignment film face each other, and liquid crystal molecules having negative dielectric anisotropy are included between the first alignment film and the second alignment film. Sealing the liquid crystal layer, then
The polymer compound (before alignment treatment / compound) is irradiated with energy rays to give a pretilt to the liquid crystal molecules.
Including steps,
The second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment, or alternatively,
The second side chain has a dipole moment in the range of angles greater than 0 degrees and less than 90 degrees from its major axis direction, and has a structure that induces vertical orientation, or alternatively
The second side chain has the above structural formula (11).
 本開示の第1の態様~第2の態様に係る液晶表示装置において、あるいは又、本開示の第1の態様~第2の態様に係る液晶表示装置を製造するための本開示の第1の態様~第3の態様に係る液晶表示装置の製造方法において、第2の側鎖は、フッ素原子、塩素原子、-CN、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-OCF2CHF2、又は、-OCF2CHFCF3のいずれかを含んでいる形態とすることができる。 In the liquid crystal display device according to the first aspect to the second aspect of the present disclosure, or alternatively, the first of the present disclosure for manufacturing the liquid crystal display device according to the first aspect to the second aspect of the present disclosure. In the method for producing a liquid crystal display device according to the third to third aspects, the second side chain is a fluorine atom, a chlorine atom, —CN, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH. Any of 2 F, —OCF 2 CHF 2 , and —OCF 2 CHFCF 3 may be included.
 本開示の第3の態様に係る液晶表示装置において、第2の側鎖は、以下の構造式(12)を有する形態とすることができる。あるいは又、第2の側鎖は、以下の構造式(13)を有する形態とすることができ、この場合、第1の側鎖と第2の側鎖とが結合している。構造式(12)及び構造式(13)において、環R、環Xは、液晶分子のコア部位に対して沿うことができる部位であり、A4は、液晶分子の末端鎖に沿う部位である。 In the liquid crystal display device according to the third aspect of the present disclosure, the second side chain may have the following structural formula (12). Alternatively, the second side chain can have a form having the following structural formula (13). In this case, the first side chain and the second side chain are bonded. In Structural Formula (12) and Structural Formula (13), Ring R and Ring X are portions that can be along the core portion of the liquid crystal molecule, and A 4 is a portion that is along the end chain of the liquid crystal molecule. .
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
 ここで、
(e)A0は、炭素原子数1乃至17のアルキレン基、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は、炭素原子数1乃至17のアルキレン-エーテル基を表し、更には、炭素原子数2乃至6のアルキレン基、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は、炭素原子数1乃至3のアルキレン-エーテル基であることが好ましい。
here,
(E) A 0 is an alkylene group having 1 to 17 carbon atoms, —O—, —COO—, —OCO—, —NHCO—, —CONH—, or an alkylene-ether group having 1 to 17 carbon atoms. Furthermore, an alkylene group having 2 to 6 carbon atoms, —O—, —COO—, —OCO—, —NHCO—, —CONH—, or an alkylene-ether group having 1 to 3 carbon atoms Preferably there is.
 また、A01は、炭素数1乃至20、好ましくは、炭素数3乃至12の直鎖状又は分岐状の2価の、エーテル基あるいはエステル基を含むことある有機基を表し、あるいは又、エーテル、エステル、エーテルエステル、アセタール、ケタール、ヘミアセタール及びヘミケタールから成る群から選択された少なくとも1種の結合基を表し、高分子化合物あるいは架橋した化合物(配向処理前・化合物あるいは配向処理後・化合物)の主鎖に結合している。A01は、配向処理前・化合物においては、配向処理前・化合物においては可撓性を有することが好ましい。 A 01 represents a linear or branched divalent organic group having 1 to 20 carbon atoms, preferably 3 to 12 carbon atoms, which may contain an ether group or an ester group; Represents at least one linking group selected from the group consisting of ester, ether ester, acetal, ketal, hemiacetal, and hemiketal, and is a polymer compound or a crosslinked compound (before or after alignment treatment, compound) It is bound to the main chain. A 01 is preferably flexible before the alignment treatment and in the compound before the alignment treatment.
 更に、A02は、架橋性官能基又は重合性官能基を有する部位である。この架橋性官能基又は重合性官能基は、上記したように、光反応によって架橋構造を形成する基であってもよいし、熱反応によって架橋構造を形成する基であってもよい。具体的には、A02として、架橋性官能基又は重合性官能基(感光性官能基)である光二量化感光基では、例えば、カルコン、シンナメート、シンナモイル、クマリン、マレイミド、ベンゾフェノン、ノルボルネン、オリザノール、キトサンを挙げることができる。また。重合性官能基としては、例えば、アクリロイル、メタクリロイル、ビニル、エポキシ及びオキセタンのうちのいずれか1種の構造を含む2価の基、又は、エチニレン基を挙げることができる。 Further, A 02 is a site having a crosslinkable functional group or a polymerizable functional group. As described above, this crosslinkable functional group or polymerizable functional group may be a group that forms a crosslinked structure by a photoreaction or a group that forms a crosslinked structure by a thermal reaction. Specifically, as A 02, as a photodimerized photosensitive group which is a crosslinkable functional group or a polymerizable functional group (photosensitive functional group), for example, chalcone, cinnamate, cinnamoyl, coumarin, maleimide, benzophenone, norbornene, oryzanol, Chitosan can be mentioned. Also. Examples of the polymerizable functional group include a divalent group containing any one of acryloyl, methacryloyl, vinyl, epoxy, and oxetane, or an ethynylene group.
 構造式(13)に示す第1の側鎖と第2の側鎖が結合した側鎖(以下、便宜上、『結合側鎖』と呼ぶ)において、架橋又は重合した反応部位は、構造式(13)におけるA02(但し、反応後)が相当する。また、末端構造部は、構造式(13)における環R、環X、A4が相当する。ここで、配向処理後・化合物にあっては、主鎖と第1の側鎖とが結合し、例えば、主鎖から延びた2つの結合側鎖における架橋部が相互に架橋し、一方の架橋部から延びた末端構造部と、他方の架橋部から延びた末端構造部との間に、恰も、液晶分子の一部が挟まれた状態となり、しかも、末端構造部は、基板に対して所定の角度を成した状態で固定されるが故に、液晶分子はプレチルトが付与される。尚、このような状態を、図13の概念図に示す。また、構造式(13)に示す第1の側鎖と第2の側鎖が結合した結合側鎖として、具体的には、例えば、後に示す式(G-K01)~式(G-K12)で表される1価の基等を挙げることができる。 In the side chain in which the first side chain and the second side chain represented by the structural formula (13) are bonded (hereinafter referred to as “bonded side chain” for the sake of convenience), the reaction site crosslinked or polymerized is represented by the structural formula (13 A 02 (although in), after the reaction) is equivalent. The terminal structure portion corresponds to the ring R, ring X, and A 4 in the structural formula (13). Here, in the compound after the alignment treatment, the main chain and the first side chain are bonded to each other, for example, the cross-linked portions in the two bonded side chains extending from the main chain are cross-linked to each other, A part of the liquid crystal molecules is sandwiched between the terminal structure part extending from the first part and the terminal structure part extending from the other bridging part, and the terminal structure part is predetermined with respect to the substrate. Therefore, the liquid crystal molecules are given a pretilt. Such a state is shown in the conceptual diagram of FIG. Further, specific examples of the binding side chain in which the first side chain and the second side chain represented by the structural formula (13) are combined include, for example, the following formulas (G-K01) to (G-K12) The monovalent group etc. which are represented by these can be mentioned.
 第2の側鎖における垂直配向性を誘起する構造とは、液晶分子を基板に対して垂直に配向させる能力を有する構造を指し、この能力を有していれば、その構造は限定されない。液晶分子を基板に対して垂直に配向させる能力を有する構造として、例えば、長鎖のアルキル基、長鎖のフルオロアルキル基、末端にアルキル基やフルオロアルキル基やアルコキシル基等を有する環状基及びステロイド基や、環状基が2乃至3連結した構造やステロイド基などが知られており、本開示においても好適に用いられる。環状基は、例えば、フェニレン基やシクロヘキシレン基が挙げられ、2乃至3連結した構造が好ましい。連結した構造は、フェニレン基のみでも、シクロヘキシレン基のみでも双方が組み合わされていてもよい。具体的には、構造式(11)を挙げることができる。また、前述したA4を構成する第4群あるいは第5群を構成する構造で、上記した垂直に配向させる能力を有する構造に該当する場合、第4群あるいは第5群を構成する構造のみで垂直配向性を誘起する場合もある。また、これらの基は、液晶分子を基板に対して垂直に配向させる能力を有している限りにおいて、ポリアミック酸又はポリイミドの主鎖に直接結合していてもよく、適当な結合基を介して結合していてもよい。また、誘電異方性を誘起する構造は、具体的には、フッ素原子、塩素原子、-CN、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-OCF2CHF2、又は、-OCF2CHFCF3といった基が該当する。 The structure that induces vertical alignment in the second side chain refers to a structure having the ability to align liquid crystal molecules perpendicularly to the substrate, and the structure is not limited as long as it has this ability. Examples of structures having the ability to align liquid crystal molecules vertically with respect to the substrate include, for example, long-chain alkyl groups, long-chain fluoroalkyl groups, cyclic groups having terminal alkyl groups, fluoroalkyl groups, alkoxyl groups, and steroids. A group, a structure in which two or three cyclic groups are linked, a steroid group, and the like are known, and can be suitably used in the present disclosure. Examples of the cyclic group include a phenylene group and a cyclohexylene group, and a structure having 2 to 3 linkages is preferable. The linked structure may be a phenylene group alone, a cyclohexylene group alone, or a combination of both. Specifically, structural formula (11) can be given. In addition, when the structure that constitutes the fourth group or the fifth group constituting A 4 described above and corresponds to the above-described structure having the ability to orient vertically, only the structure that constitutes the fourth group or the fifth group is used. In some cases, vertical alignment is induced. These groups may be directly bonded to the main chain of polyamic acid or polyimide as long as the liquid crystal molecules have the ability to align perpendicularly to the substrate, and via an appropriate bonding group. It may be bonded. The structure that induces dielectric anisotropy specifically includes fluorine atom, chlorine atom, —CN, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 2. A group such as CHF 2 or —OCF 2 CHFCF 3 is applicable.
 「A4」として、より具体的には、炭素数1乃至18のアルキル基、炭素数1乃至8のアルコキシ基、炭素数1乃至18のアルコキシアルキル基、炭素数1乃至18のアルコキシアルコキシ基、炭素数1乃至18のアルケニル基、炭素数1乃至18のアルケニルオキシ基、炭素数1乃至18のアルケニルオキシアルキル基、又は、炭素数1乃至18のアルコキシアルケニル基を例示することができる。但し、m=n=0の場合、炭素数3乃至18のアルキル基、炭素数3乃至8のアルコキシ基、炭素数3乃至18のアルコキシアルキル基、炭素数1乃至18のアルコキシアルコキシ基、炭素数3乃至18のアルケニル基、炭素数3乃至18のアルケニルオキシ基、炭素数3乃至18のアルケニルオキシアルキル基、又は、炭素数3乃至18のアルコキシアルケニル基を例示することができる。アルキル基として、-CH3、-C25、-C37、-C49、-C511、-C613、-C715、-C817、-C919及び-C1021を挙げることができるし、アルコキシ基として、-OCH3、-OC25、-OC37、-OC49、-OC511、-OC613、-OC715、-OC817及び-OC919を挙げることができる。 More specifically, as “A 4 ”, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkoxyalkyl group having 1 to 18 carbon atoms, an alkoxyalkoxy group having 1 to 18 carbon atoms, Examples thereof include an alkenyl group having 1 to 18 carbon atoms, an alkenyloxy group having 1 to 18 carbon atoms, an alkenyloxyalkyl group having 1 to 18 carbon atoms, and an alkoxyalkenyl group having 1 to 18 carbon atoms. However, when m = n = 0, the alkyl group having 3 to 18 carbon atoms, the alkoxy group having 3 to 8 carbon atoms, the alkoxyalkyl group having 3 to 18 carbon atoms, the alkoxyalkoxy group having 1 to 18 carbon atoms, the carbon number Examples thereof include an alkenyl group having 3 to 18 carbon atoms, an alkenyloxy group having 3 to 18 carbon atoms, an alkenyloxyalkyl group having 3 to 18 carbon atoms, and an alkoxyalkenyl group having 3 to 18 carbon atoms. As the alkyl group, —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5 H 11 , —C 6 H 13 , —C 7 H 15 , —C 8 H 17 , —C 9 H 19 and —C 10 H 21 can be mentioned, and as the alkoxy group, —OCH 3 , —OC 2 H 5 , —OC 3 H 7 , —OC 4 H 9 , —OC 5 H 11 , -OC 6 H 13 , -OC 7 H 15 , -OC 8 H 17 and -OC 9 H 19 can be mentioned.
 本開示の第1の態様に係る液晶表示装置の製造方法(あるいは液晶表示素子の製造方法)にあっては、液晶層に対して所定の電場を印加することにより液晶分子を配向させつつ、エネルギー線を照射して、あるいは又、加熱することで、高分子化合物(配向処理前・化合物)の第1の側鎖を架橋又は重合させる形態とすることができる。 In the method for manufacturing a liquid crystal display device (or a method for manufacturing a liquid crystal display element) according to the first aspect of the present disclosure, the liquid crystal layer is aligned by applying a predetermined electric field to the liquid crystal layer, while the energy is aligned. The first side chain of the polymer compound (before the alignment treatment / compound) can be crosslinked or polymerized by irradiating the wire or by heating.
 そして、この場合、液晶分子を一対の基板の少なくとも一方の基板の表面に対して斜め方向に配列させるように、液晶層に対して電場を印加しながらエネルギー線を照射することが好ましく、更には、一対の基板は、画素電極を有する基板、及び、対向電極を有する基板から構成されており、画素電極を有する基板側からエネルギー線を照射することがより好ましい。一般に、対向電極を有する基板側にはカラーフィルタ層が形成されており、このカラーフィルタ層によってエネルギー線が吸収され、配向膜材料の架橋性官能基又は重合性官能基の反応が生じ難くなる可能性があるが故に、上述したとおり、カラーフィルタ層が形成されていない画素電極を有する基板側からエネルギー線を照射することが一層好ましい。画素電極を有する基板側にカラーフィルタ層が形成されている場合、対向電極を有する基板側からエネルギー線を照射することが好ましい。尚、基本的に、プレチルトが付与されるときの液晶分子の方位角(偏角)は、電場の強さと方向、及び、配向膜材料の分子構造によって規定され、極角(天頂角)は、電場の強さ、及び、配向膜材料の分子構造によって規定される。本開示の第2の態様~第3の態様に係る液晶表示装置の製造方法においても、同様である。 In this case, it is preferable to irradiate the energy lines while applying an electric field to the liquid crystal layer so that the liquid crystal molecules are arranged in an oblique direction with respect to the surface of at least one of the pair of substrates. The pair of substrates includes a substrate having a pixel electrode and a substrate having a counter electrode, and it is more preferable to irradiate energy rays from the substrate having the pixel electrode. In general, a color filter layer is formed on the substrate side having the counter electrode, and energy rays are absorbed by this color filter layer, and the reaction of the crosslinkable functional group or the polymerizable functional group of the alignment film material may be difficult to occur. Therefore, as described above, it is more preferable to irradiate the energy beam from the substrate side having the pixel electrode on which the color filter layer is not formed. When the color filter layer is formed on the substrate side having the pixel electrode, it is preferable to irradiate energy rays from the substrate side having the counter electrode. Basically, the azimuth angle (deflection angle) of the liquid crystal molecules when pretilt is applied is defined by the strength and direction of the electric field and the molecular structure of the alignment film material, and the polar angle (zenith angle) is It is defined by the strength of the electric field and the molecular structure of the alignment film material. The same applies to the manufacturing method of the liquid crystal display device according to the second to third aspects of the present disclosure.
 本開示の第2の態様に係る液晶表示装置の製造方法(あるいは液晶表示素子の製造方法)にあっては、液晶層に対して所定の電場を印加することにより液晶分子を配向させつつ、エネルギー線を照射して高分子化合物(配向処理前・化合物)の第1の側鎖を変形させる形態とすることができる。 In the method for manufacturing a liquid crystal display device (or the method for manufacturing a liquid crystal display element) according to the second aspect of the present disclosure, the liquid crystal layer is aligned by applying a predetermined electric field to the liquid crystal layer, while the energy is aligned. The first side chain of the polymer compound (before alignment treatment / compound) may be deformed by irradiation with a line.
 本開示の第3の態様に係る液晶表示装置の製造方法にあっては、液晶層に対して所定の電場を印加することにより液晶分子を配向させつつ、高分子化合物にエネルギー線として紫外線を照射する形態とすることができる。 In the manufacturing method of the liquid crystal display device according to the third aspect of the present disclosure, the polymer compound is irradiated with ultraviolet rays as energy rays while aligning liquid crystal molecules by applying a predetermined electric field to the liquid crystal layer. It can be set as a form to do.
 第1配向膜によって(配向処理後・化合物によって)プレチルトが付与され(第1プレチルト角θ1)、且つ、液晶分子は、好ましくは、第2配向膜によって(配向処理後・化合物によって)プレチルトが付与される(第2プレチルト角θ2)。第1プレチルト角θ1及び第2プレチルト角θ2は、0度よりも大きな値を有している。ここで、プレチルトθ1,θ2は、同じ角度(θ1=θ2)であってもよいし、異なる角度(θ1≠θ2)であってもよいが、異なる角度であることが好ましい。これにより、プレチルトθ1,θ2の双方が0度である場合よりも、駆動電圧の印加に対する応答速度が向上すると共に、プレチルトθ1,θ2の双方が0度である場合とほぼ同等のコントラストを得ることができる。よって、応答特性を向上させつつ、黒表示の際の光の透過量を低減することができ、コントラストを向上させることができる。プレチルトθ1,θ2を異なる角度とする場合、プレチルトθ1,θ2のうちの大きい方のプレチルトθは、1度以上、4度以下であることがより望ましい。大きい方のプレチルトθをこのような角度範囲内にすることにより、特に高い効果が得られる。 A pretilt is imparted by the first alignment film (after the alignment treatment / by the compound) (first pretilt angle θ 1 ), and the liquid crystal molecules are preferably pretilted by the second alignment film (after the alignment treatment / by the compound). (Second pretilt angle θ 2 ). The first pretilt angle θ 1 and the second pretilt angle θ 2 have values greater than 0 degrees. Here, the pretilts θ 1 and θ 2 may be the same angle (θ 1 = θ 2 ) or different angles (θ 1 ≠ θ 2 ), but are preferably different angles. . Thus, the pre-tilt theta 1, than if both theta 2 is 0 degrees, thereby improving the response speed to application of the driving voltage, approximately equal to the case pretilt theta 1, both of the theta 2 is 0 degrees Contrast can be obtained. Therefore, it is possible to reduce the amount of light transmitted during black display while improving the response characteristics, and to improve the contrast. When the pretilts θ 1 and θ 2 are set to different angles, it is more desirable that the larger pretilt θ of the pretilts θ 1 and θ 2 is not less than 1 degree and not more than 4 degrees. A particularly high effect can be obtained by setting the larger pretilt θ within such an angle range.
 以上に説明した好ましい形態を含む本開示の第1の態様~第3の態様に係る液晶表示装置、本開示の第1の態様~第3の態様に係る液晶表示装置の製造方法において、液晶分子は、第1配向膜によってプレチルトが付与されるが、具体的には、主に、第1の側鎖によって、液晶分子に付与されたプレチルトが保持され、あるいは又、固定され、第2の側鎖によって、液晶分子へのプレチルトの付与が促進され、液晶分子へのプレチルト付与時の印加電圧の低減を図ることができる。 In the liquid crystal display device according to the first to third aspects of the present disclosure including the preferred embodiments described above, and the method for manufacturing the liquid crystal display device according to the first to third aspects of the present disclosure, the liquid crystal molecules The pretilt is imparted by the first alignment film. Specifically, the pretilt imparted to the liquid crystal molecules is mainly held by the first side chain, or is fixed, and the second side The chain promotes the application of pretilt to the liquid crystal molecules, and the applied voltage when applying the pretilt to the liquid crystal molecules can be reduced.
 以上に説明した好ましい形態、構成を含む本開示の第1の態様~第3の態様に係る液晶表示装置を、以下、総称して、単に、『本開示の液晶表示装置』と呼ぶ場合があるし、上記の好ましい形態を含む本開示の第1の態様~第3の態様に係る液晶表示装置の製造方法を、以下、総称して、単に、『本開示の液晶表示装置の製造方法』と呼ぶ場合があるし、本開示の液晶表示装置及び本開示の液晶表示装置の製造方法を、以下、総称して、単に、『本開示』と呼ぶ場合がある。 Hereinafter, the liquid crystal display devices according to the first to third aspects of the present disclosure including the preferable modes and configurations described above may be simply referred to simply as “liquid crystal display devices of the present disclosure”. The manufacturing methods of the liquid crystal display device according to the first to third aspects of the present disclosure including the preferred embodiments described above are collectively referred to simply as “the manufacturing method of the liquid crystal display device of the present disclosure”. Hereinafter, the liquid crystal display device of the present disclosure and the manufacturing method of the liquid crystal display device of the present disclosure may be collectively referred to simply as “the present disclosure”.
 本開示において、高分子化合物(配向処理前・化合物)あるいは第1配向膜を構成する化合物(配向処理後・化合物)は、以下の式(1)で表される基を第1の側鎖として有する構成とすることができる。尚、このような構成を、便宜上、『本開示の第1の構成』と呼ぶ。 In the present disclosure, the polymer compound (before alignment treatment / compound) or the compound constituting the first alignment film (after alignment treatment / compound) has a group represented by the following formula (1) as the first side chain. It can be set as the structure which has. Such a configuration is referred to as a “first configuration of the present disclosure” for convenience.
-R1’-R2’-R3’   (1)
ここで、R1’は、炭素数1以上の直鎖状又は分岐状の2価の、エーテル基あるいはエステル基を含むことある有機基であり、高分子化合物あるいは架橋した化合物(配向処理前・化合物あるいは配向処理後・化合物)の主鎖に結合しており、あるいは又、R1’は、エーテル、エステル、エーテルエステル、アセタール、ケタール、ヘミアセタール及びヘミケタールから成る群から選択された少なくとも1種の結合基であり、高分子化合物あるいは架橋した化合物(配向処理前・化合物あるいは配向処理後・化合物)の主鎖に結合しており、R2’は、複数の環構造を含む2価の有機基であり、環構造を構成する原子のうちの1つはR1’に結合しており、R3’は、水素原子、ハロゲン原子、アルキル基、アルコキシ基、カーボネート基を有する1価の基、又は、それらの誘導体である。
-R 1 '-R 2 ' -R 3 '(1)
Here, R 1 ′ is a linear or branched divalent organic group having 1 or more carbon atoms, which may contain an ether group or an ester group. R 1 ′ is at least one selected from the group consisting of ethers, esters, ether esters, acetals, ketals, hemiacetals and hemiketals. And is bonded to the main chain of a polymer compound or a crosslinked compound (before or after alignment treatment), and R 2 ′ is a divalent organic compound containing a plurality of ring structures. a group, one of the atoms constituting the ring structure 'is bonded to, R 3' R 1 represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, having a carbonate group A monovalent group, or a derivative thereof.
 あるいは又、本開示において、高分子化合物(配向処理前・化合物)あるいは第1配向膜を構成する化合物(配向処理後・化合物)は、式(2)で表される基を第1の側鎖として有する化合物から成る構成とすることができる。尚、このような構成を、便宜上、『本開示の第2の構成』と呼ぶ。高分子化合物(配向処理前・化合物)あるいは第1配向膜を構成する化合物(配向処理後・化合物)は、式(2)で表される基だけでなく、上述した式(1)で表される基及び式(2)で表される基を第1の側鎖として有する化合物から成る構成とすることもできる。 Alternatively, in the present disclosure, the polymer compound (before the alignment treatment / compound) or the compound constituting the first alignment film (after the alignment treatment / compound) has the group represented by the formula (2) as the first side chain. It can be set as the structure which consists of a compound which has as. Such a configuration is referred to as a “second configuration of the present disclosure” for convenience. The polymer compound (before alignment treatment / compound) or the compound constituting the first alignment film (after alignment treatment / compound) is represented not only by the group represented by formula (2) but also by the above-described formula (1). And a compound having a group represented by the formula (2) as the first side chain.
-R11’-R12’-R13’-R14’   (2)
ここで、R11’は、炭素数1以上、20以下、好ましくは、炭素数3以上、12以下の直鎖状又は分岐状の2価の、エーテル基あるいはエステル基を含むことある有機基であり、高分子化合物あるいは架橋した化合物(配向処理前・化合物あるいは配向処理後・化合物)の主鎖に結合しており、あるいは又、R11’は、エーテル、エステル、エーテルエステル、アセタール、ケタール、ヘミアセタール及びヘミケタールから成る群から選択された少なくとも1種の結合基であり、高分子化合物あるいは架橋した化合物(配向処理前・化合物あるいは配向処理後・化合物)の主鎖に結合しており、R12’は、例えば、カルコン、シンナメート、シンナモイル、クマリン、マレイミド、ベンゾフェノン、ノルボルネン、オリザノール、キトサン、アクリロイル、メタクリロイル、ビニル、エポキシ及びオキセタンのうちのいずれか1種の構造を含む2価の基、又は、エチニレン基であり、R13’は、複数の環構造を含む2価の有機基であり、R14’は、水素原子、ハロゲン原子、アルキル基、アルコキシ基、カーボネート基を有する1価の基、又は、それらの誘導体である。場合によっては、式(2)を、以下の式(2’)のとおり、変形することができる。即ち、式(2)は式(2’)を包含する。
-R11’-R12’-R14’   (2’)
-R 11 '-R 12 ' -R 13 '-R 14 ' (2)
Here, R 11 ′ is an organic group which may contain a linear or branched divalent ether group or ester group having 1 to 20 carbon atoms, preferably 3 to 12 carbon atoms. Yes, and bonded to the main chain of the polymer compound or the crosslinked compound (before or after the alignment treatment or after the alignment treatment), or R 11 ′ is ether, ester, ether ester, acetal, ketal, It is at least one linking group selected from the group consisting of hemiacetal and hemiketal, and is bonded to the main chain of a polymer compound or a crosslinked compound (before or after alignment treatment / compound), R 12 ', for example, chalcone, cinnamate, cinnamoyl, coumarin, maleimide, benzophenone, norbornene, oryzanol, chitosan, A Acryloyl, methacryloyl, vinyl, divalent group comprising any one of the structures of epoxy and oxetane, or an ethynylene group, R 13 'is a divalent organic group containing a plurality of ring structures , R 14 ′ is a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a monovalent group having a carbonate group, or a derivative thereof. In some cases, equation (2) can be transformed as equation (2 ′) below. That is, Formula (2) includes Formula (2 ′).
-R 11 '-R 12 ' -R 14 '(2')
 あるいは又、本開示において、第1配向膜は、第1の側鎖及び第2の側鎖、並びに、第1基板に対して第1の側鎖及び第2の側鎖を支持する主鎖から構成されており(ここで、第1の側鎖及び第2の側鎖は主鎖に結合している)、且つ、第1の側鎖の一部が架橋した架橋部、及び、架橋部に結合した末端構造部から構成されており、液晶分子は、第2の側鎖に沿い、又は、第2の側鎖に挟まれることでプレチルトが付与される構成とすることができる。あるいは又、本開示において、第1配向膜は、第1の側鎖及び第2の側鎖、並びに、第1基板に対して第1の側鎖及び第2の側鎖を支持する主鎖から構成されており(ここで、第1の側鎖及び第2の側鎖は主鎖に結合している)、且つ、第1の側鎖の一部が変形した変形部、及び、変形部に結合した末端構造部から構成されており、液晶分子は、第2の側鎖に沿い、又は、第2の側鎖に挟まれることでプレチルトが付与される構成とすることができる。あるいは又、本開示において、第1配向膜は、第1の側鎖及び第2の側鎖、並びに、第1基板に対して第1の側鎖及び第2の側鎖を支持する主鎖から構成されており(ここで、第1の側鎖及び第2の側鎖は主鎖に結合している)、且つ、第1の側鎖の一部が架橋あるいは変形した架橋・変形部、及び、架橋・変形部に結合した末端構造部から構成されており、液晶分子は、第2の側鎖に沿い、又は、第2の側鎖に挟まれることでプレチルトが付与される構成とすることができる。尚、これらの構成を、便宜上、『本開示の第3の構成』と呼ぶ。第1の側鎖及び第2の側鎖は、同じ1つの主鎖に結合していてもよいし、異なる2以上の主鎖に結合していてもよい。また、第1の側鎖と第2の側鎖とが結合していてもよい。 Alternatively, in the present disclosure, the first alignment film includes a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the first substrate. (Where the first side chain and the second side chain are bonded to the main chain), and a cross-linked part in which a part of the first side chain is cross-linked, and a cross-linked part It is comprised from the terminal structure part couple | bonded and it can be set as the structure by which a pretilt is provided by liquid crystal molecules being along a 2nd side chain or being pinched | interposed into a 2nd side chain. Alternatively, in the present disclosure, the first alignment film includes a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the first substrate. (Where the first side chain and the second side chain are bonded to the main chain), and a deformed part in which a part of the first side chain is deformed, and a deformed part It is comprised from the terminal structure part couple | bonded and it can be set as the structure by which a pretilt is provided by liquid crystal molecules being along a 2nd side chain or being pinched | interposed into a 2nd side chain. Alternatively, in the present disclosure, the first alignment film includes a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the first substrate. (Wherein the first side chain and the second side chain are bonded to the main chain), and a part of the first side chain is crosslinked or deformed, and The liquid crystal molecules are composed of a terminal structure unit bonded to the bridge / deformation unit, and the liquid crystal molecules are provided with a pretilt along the second side chain or sandwiched between the second side chain. Can do. These configurations are referred to as a “third configuration of the present disclosure” for convenience. The first side chain and the second side chain may be bonded to the same main chain, or may be bonded to two or more different main chains. Moreover, the 1st side chain and the 2nd side chain may couple | bond together.
 あるいは又、本開示において、第1配向膜は、第1の側鎖及び第2の側鎖、並びに、第1基板に対して第1の側鎖及び第2の側鎖を支持する主鎖から構成されており(ここで、第1の側鎖及び第2の側鎖は主鎖に結合している)、且つ、第1の側鎖の一部が架橋した架橋部、及び、架橋部に結合し、メソゲン基を有する末端構造部から構成されている構成とすることができる。尚、主鎖と架橋部とは共有結合によって結合しており、架橋部と末端構造部とは共有結合によって結合している形態とすることができる。あるいは又、本開示において、第1配向膜は、第1の側鎖及び第2の側鎖、並びに、第1基板に対して第1の側鎖及び第2の側鎖を支持する主鎖から構成されており(ここで、第1の側鎖及び第2の側鎖は主鎖に結合している)、且つ、第1の側鎖の一部が変形した変形部、及び、変形部に結合し、メソゲン基を有する末端構造部から構成されている構成とすることができる。あるいは又、本開示において、第1配向膜は、第1の側鎖及び第2の側鎖、並びに、第1基板に対して第1の側鎖及び第2の側鎖を支持する主鎖から構成されており(ここで、第1の側鎖及び第2の側鎖は主鎖に結合している)、且つ、第1の側鎖の一部が架橋あるいは変形した架橋・変形部、及び、架橋・変形部に結合し、メソゲン基を有する末端構造部から構成されている構成とすることができる。尚、これらの構成を、便宜上、『本開示の第4の構成』と呼ぶ。ここで、第1の側鎖及び第2の側鎖は、同じ1つの主鎖に結合していてもよいし、異なる主鎖に結合していてもよい。また、第1の側鎖と第2の側鎖とが結合していてもよい。 Alternatively, in the present disclosure, the first alignment film includes a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the first substrate. (Where the first side chain and the second side chain are bonded to the main chain), and a cross-linked part in which a part of the first side chain is cross-linked, and a cross-linked part It can be set as the structure comprised from the terminal structure part which couple | bonds and has a mesogenic group. The main chain and the cross-linked part are bonded by a covalent bond, and the cross-linked part and the terminal structure part can be bonded by a covalent bond. Alternatively, in the present disclosure, the first alignment film includes a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the first substrate. (Where the first side chain and the second side chain are bonded to the main chain), and a deformed part in which a part of the first side chain is deformed, and a deformed part It can be set as the structure comprised from the terminal structure part which couple | bonds and has a mesogenic group. Alternatively, in the present disclosure, the first alignment film includes a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the first substrate. (Wherein the first side chain and the second side chain are bonded to the main chain), and a part of the first side chain is crosslinked or deformed, and Further, it can be configured to be composed of a terminal structure portion having a mesogenic group bonded to a cross-linked / deformed portion. These configurations are referred to as “fourth configuration of the present disclosure” for convenience. Here, the first side chain and the second side chain may be bonded to the same main chain, or may be bonded to different main chains. Moreover, the 1st side chain and the 2nd side chain may couple | bond together.
 本開示の第1の構成~本開示の第4の構成を含む本開示にあっては、第1の側鎖(より具体的には、架橋部)は光二量化感光基を有する形態とすることができる。 In the present disclosure including the first configuration of the present disclosure to the fourth configuration of the present disclosure, the first side chain (more specifically, the cross-linking portion) has a form having a photodimerized photosensitive group. Can do.
 更には、以上に説明した好ましい構成、形態を含む本開示において、第1配向膜の表面粗さRaは1nm以下である構成とすることができる。ここで、表面粗さRaは、JIS B 0601:2001に規定されている。 Furthermore, in the present disclosure including the preferable configurations and forms described above, the surface roughness Ra of the first alignment film may be 1 nm or less. Here, the surface roughness Ra is defined in JIS B 0601: 2001.
 更には、以上に説明した好ましい構成、形態を含む本開示において、電極に形成されたスリットから成る配向規制部、又は、基板に設けられた突起から成る配向規制部が設けられている構成とすることができるし、凹凸部が設けられた電極を用いることもできる。 Furthermore, in the present disclosure including the preferred configurations and forms described above, an alignment regulating portion composed of a slit formed in the electrode or an alignment regulating portion composed of a protrusion provided on the substrate is provided. In addition, an electrode provided with uneven portions can be used.
 更には、以上に説明した好ましい構成、形態を含む本開示において、上述したとおり、第2配向膜は、第1配向膜を構成する高分子化合物(配向処理前・化合物)から成り、あるいは又、第1配向膜と同じ組成を有する形態とすることができる。但し、本開示の第1の態様~第3の態様の液晶表示装置において規定される高分子化合物(配向処理前・化合物)から構成される限り、第2配向膜は、第1配向膜を構成する高分子化合物(配向処理前・化合物)とは異なる高分子化合物(配向処理前・化合物)から成る構成としてもよい。あるいは又、第2配向膜は、第1配向膜を構成する高分子化合物(配向処理前・化合物)とは異なる高分子化合物(配向処理前・化合物)から成る構成としてもよい。 Furthermore, in the present disclosure including the preferred configurations and forms described above, as described above, the second alignment film is composed of a polymer compound (compound before alignment treatment) constituting the first alignment film, or It can be set as the form which has the same composition as a 1st alignment film. However, the second alignment film constitutes the first alignment film as long as it is composed of the polymer compound (before the alignment treatment / compound) defined in the liquid crystal display devices according to the first to third aspects of the present disclosure. It is good also as a structure which consists of a high molecular compound (before alignment process and compound) different from the high molecular compound (before alignment process and compound) to perform. Alternatively, the second alignment film may be composed of a polymer compound (before alignment treatment / compound) different from the polymer compound (before alignment treatment / compound) constituting the first alignment film.
 以上に説明した好ましい構成、形態を含む本開示において、主鎖は繰り返し単位中にイミド結合を含む構成とすることができる。また、高分子化合物(配向処理後・化合物)は、液晶分子を一対の基板に対して、即ち、第1基板のみならず、第2基板に対しても、所定の方向に配列させる構造を含む形態とすることができる。更には、一対の基板は、画素電極を有する基板、及び、対向電極を有する基板から構成されている形態、即ち、第1基板を画素電極を有する基板とし、第2基板を対向電極を有する基板とする形態、あるいは又、第2基板を画素電極を有する基板とし、第1基板を対向電極を有する基板とする形態とすることができる。 In the present disclosure including the preferred configurations and forms described above, the main chain may be configured to include an imide bond in the repeating unit. The polymer compound (after alignment treatment / compound) includes a structure in which liquid crystal molecules are aligned in a predetermined direction with respect to a pair of substrates, that is, not only the first substrate but also the second substrate. It can be in the form. Further, the pair of substrates is configured from a substrate having a pixel electrode and a substrate having a counter electrode, that is, the first substrate is a substrate having a pixel electrode, and the second substrate is a substrate having a counter electrode. Alternatively, the second substrate may be a substrate having a pixel electrode, and the first substrate may be a substrate having a counter electrode.
 画素電極を有する基板(第1基板)には、TFT等の画素を駆動するための回路が設けられている。尚、TFT等の画素を駆動するための回路を含む層を、『TFT層』と呼ぶ場合がある。対向電極を有する基板(第2基板)側にカラーフィルタ層が形成されている場合、TFT層の上には平滑化膜が形成されており、平滑化膜上に第1電極が形成されている。一方、画素電極を有する基板(第1基板)側にカラーフィルタ層が形成されている場合、TFT層の上にはカラーフィルタ層が形成されており、カラーフィルタ層上に、あるいは又、カラーフィルタ層の上の形成されたオーバーコート層の上に、若しくは、無機材料から成るパシベーション膜の上に、第1電極が形成されている。液晶表示装置において、画素が複数の副画素から構成される場合、画素を副画素と読み替えればよい。第1電極及び第2電極は、例えば、ITO(インジウム錫酸化物)やIZO、ZnO、SnO等の透明性を有する透明導電材料から構成すればよい。また、第2電極は、所謂ベタ電極(パターニングされていない電極)とすることができる。例えば、第1基板の外面に第1の偏光板を貼り付け、第2基板の外面に第2の偏光板を貼り付ける。第1の偏光板と第2の偏光板とは、それぞれの吸収軸が直交するように配置する。第1の偏光板の吸収軸は、X軸あるいはY軸と平行であり、第2の偏光板の吸収軸は、Y軸あるいはX軸と平行である形態とすることが好ましいが、これに限定するものではない。 The substrate having the pixel electrode (first substrate) is provided with a circuit for driving a pixel such as a TFT. A layer including a circuit for driving a pixel such as a TFT may be referred to as a “TFT layer”. When the color filter layer is formed on the substrate (second substrate) side having the counter electrode, the smoothing film is formed on the TFT layer, and the first electrode is formed on the smoothing film. . On the other hand, when the color filter layer is formed on the substrate (first substrate) side having the pixel electrode, the color filter layer is formed on the TFT layer, and the color filter layer is formed on the color filter layer. A first electrode is formed on the overcoat layer formed on the layer or on a passivation film made of an inorganic material. In a liquid crystal display device, when a pixel includes a plurality of subpixels, the pixel may be read as a subpixel. What is necessary is just to comprise the 1st electrode and the 2nd electrode from the transparent conductive material which has transparency, such as ITO (indium tin oxide), IZO, ZnO, SnO, for example. The second electrode can be a so-called solid electrode (an electrode that is not patterned). For example, a first polarizing plate is attached to the outer surface of the first substrate, and a second polarizing plate is attached to the outer surface of the second substrate. The first polarizing plate and the second polarizing plate are arranged so that their absorption axes are orthogonal to each other. The absorption axis of the first polarizing plate is preferably parallel to the X axis or Y axis, and the absorption axis of the second polarizing plate is preferably parallel to the Y axis or X axis. Not what you want.
 液晶表示装置は、周知の面状照明装置(バックライト)によって照明される。面状照明装置は、直下型の面状光源装置としてもよいし、エッジライト型(サイドライト型とも呼ばれる)の面状光源装置とすることもできる。ここで、直下型の面状光源装置は、例えば、筐体内に配置された光源と、光源の下方に位置する筐体の部分に配置され、光源からの出射光を上方に反射する反射部材と、光源の上方に位置する筐体開口部に取り付けられ、光源からの出射光及び反射部材からの反射光を拡散させながら通過させる拡散板とから構成されている。一方、エッジライト型の面状光源装置は、例えば、導光板と、導光板の側面に配置された光源から構成されている。尚、導光板の下方には反射部材が配置されており、導光板の上方には拡散シート及びプリズムシートが配置されている。光源は、例えば冷陰極線型の蛍光ランプから成り、白色光を出射する。あるいは又、例えば、LEDや半導体レーザ素子といった発光素子から成る。面状照明装置(バックライト)からの光の通過を液晶表示装置によって制御することで、液晶表示装置において画像を表示することができる。 The liquid crystal display device is illuminated by a well-known planar illumination device (backlight). The planar illumination device may be a direct-type planar light source device or an edge light type (also referred to as a side light type) planar light source device. Here, the direct-type planar light source device includes, for example, a light source disposed in a housing, a reflecting member that is disposed in a portion of the housing located below the light source, and reflects upward light emitted from the light source. The diffusing plate is attached to a housing opening located above the light source and allows the outgoing light from the light source and the reflected light from the reflecting member to pass through while diffusing. On the other hand, the edge light type planar light source device includes, for example, a light guide plate and a light source disposed on a side surface of the light guide plate. A reflective member is disposed below the light guide plate, and a diffusion sheet and a prism sheet are disposed above the light guide plate. The light source is composed of, for example, a cold cathode fluorescent lamp and emits white light. Alternatively, for example, the light emitting element is an LED or a semiconductor laser element. By controlling the passage of light from the planar illumination device (backlight) by the liquid crystal display device, an image can be displayed on the liquid crystal display device.
 本開示の第1の態様~第3の態様に係る液晶表示装置にあっては、第1配向膜が、即ち、一対の配向膜のうちの少なくとも一方が、第1の側鎖として架橋性官能基又は重合性官能基又は感光性官能基を有する高分子化合物(配向処理前・化合物)が架橋又は重合又は変形した化合物(配向処理後・化合物)を含み、液晶分子に対して付与されたプレチルトが、配向処理後・化合物によって保持・固定された状態となる。このため、画素電極と対向電極との間に電界が印加されると、液晶分子は、その長軸方向が基板面に対して所定の方向に応答し、良好な表示特性が確保される。その上、液晶分子に付与されたプレチルトが配向処理後・化合物によって保持・固定された状態となっているため、液晶分子にプレチルトが付与されていない場合と比較して電極間の電界に応じた応答速度(画像表示の立ち上がり速度)が早くなり、架橋又は重合又は変形した化合物を用いずにプレチルトを付与した場合と比較して、良好な表示特性が維持され易くなる。 In the liquid crystal display device according to the first to third aspects of the present disclosure, the first alignment film, that is, at least one of the pair of alignment films has a crosslinkable functional group as the first side chain. A pretilt imparted to a liquid crystal molecule, including a compound (after alignment treatment / compound) obtained by crosslinking, polymerization, or deformation of a polymer compound having a group, a polymerizable functional group or a photosensitive functional group (before alignment treatment / compound) However, it will be in the state of being held and fixed by the compound after the alignment treatment. Therefore, when an electric field is applied between the pixel electrode and the counter electrode, the liquid crystal molecules respond in a predetermined direction with respect to the substrate surface in the major axis direction, and good display characteristics are ensured. In addition, since the pretilt applied to the liquid crystal molecules is in a state of being held and fixed by the compound after the alignment treatment, it corresponds to the electric field between the electrodes as compared with the case where the pretilt is not applied to the liquid crystal molecules. The response speed (rise speed of image display) is increased, and good display characteristics are easily maintained as compared with the case where a pretilt is applied without using a crosslinked, polymerized or deformed compound.
 本開示の第1の態様に係る液晶表示装置の製造方法にあっては、第1の側鎖として架橋性官能基又は重合性官能基を有する高分子化合物(配向処理前・化合物)を含む第1配向膜を形成した後、第1配向膜及び第2配向膜の間に、液晶層を封止する。また、本開示の第2の態様に係る液晶表示装置の製造方法にあっては、第1の側鎖として感光性官能基を有する高分子化合物(配向処理前・化合物)を含む第1配向膜を形成した後、第1配向膜及び第2配向膜の間に、液晶層を封止する。ここで、液晶層中の液晶分子は、第1配向膜により、全体として第1配向膜表面に対して所定の方向(具体的には、垂直方向、あるいは、垂直方向から傾いた斜め方向)に配列した状態となる(但し、配向方向が揃っているとは限らない)。次いで、電場を印加しながら、架橋性官能基又は重合性官能基を反応させることにより高分子化合物を架橋又は重合させる。あるいは又、電場を印加しながら、高分子化合物(配向処理前・化合物)を変形させる。ここで、第2の側鎖は電場の影響を受け所定の配向方向に並ぼうとする。しかも、第2の側鎖は、第1配向膜表面に対して垂直方向からやや傾いた斜め方向に並ぼうとする。そして、第1配向膜の影響を受けて液晶層中の液晶分子は、全体として第1配向膜表面に対して所定の方向(垂直方向からやや傾いた斜め方向)に揃う。以上により、架橋又は重合又は変形した化合物(配向処理後・化合物)近傍の液晶分子に対して付与されたプレチルトが保持・固定された状態となり、あるいは又、プレチルトを保持・固定された状態とすることが可能となる。このため、液晶分子にプレチルトが付与されていない場合と比較して、応答速度(画像表示の立ち上がり速度)が向上する。しかも、液晶分子が配列した状態で高分子化合物(配向処理前・化合物)を架橋又は重合又は変形させることにより、液晶層を封止する前に配向膜に対して直線偏光の光や斜め方向の光を照射しなくても、また、大がかりな装置を用いなくても、液晶分子に対してプレチルトを付与することができる。 In the method for manufacturing a liquid crystal display device according to the first aspect of the present disclosure, the first side chain includes a polymer compound (a compound before alignment treatment / compound) having a crosslinkable functional group or a polymerizable functional group. After forming the first alignment film, the liquid crystal layer is sealed between the first alignment film and the second alignment film. Further, in the method for manufacturing a liquid crystal display device according to the second aspect of the present disclosure, the first alignment film including a polymer compound (pre-alignment treatment / compound) having a photosensitive functional group as the first side chain. After forming, the liquid crystal layer is sealed between the first alignment film and the second alignment film. Here, the liquid crystal molecules in the liquid crystal layer are arranged in a predetermined direction (specifically, a vertical direction or an oblique direction inclined from the vertical direction) with respect to the first alignment film surface as a whole by the first alignment film. It will be in the state which arranged (however, the orientation direction is not necessarily uniform). Next, the polymer compound is crosslinked or polymerized by reacting the crosslinkable functional group or the polymerizable functional group while applying an electric field. Alternatively, the polymer compound (before alignment treatment / compound) is deformed while applying an electric field. Here, the second side chain is affected by the electric field and tries to line up in a predetermined orientation direction. Moreover, the second side chains tend to line up in an oblique direction slightly inclined from the vertical direction with respect to the surface of the first alignment film. Under the influence of the first alignment film, the liquid crystal molecules in the liquid crystal layer are aligned in a predetermined direction (an oblique direction slightly inclined from the vertical direction) as a whole with respect to the surface of the first alignment film. As described above, the pretilt imparted to the liquid crystal molecules in the vicinity of the cross-linked or polymerized or deformed compound (after the alignment treatment / compound) is held / fixed, or the pretilt is held / fixed. It becomes possible. For this reason, the response speed (rise speed of image display) is improved as compared with the case where no pretilt is given to the liquid crystal molecules. Moreover, by cross-linking, polymerizing or deforming the polymer compound (before the alignment treatment / compound) in a state where the liquid crystal molecules are arranged, linearly polarized light or oblique direction is applied to the alignment film before sealing the liquid crystal layer. A pretilt can be imparted to the liquid crystal molecules without irradiation with light or without using a large-scale apparatus.
 本開示の第3の態様に係る液晶表示装置の製造方法にあっては、高分子化合物(配向処理前・化合物)にエネルギー線を照射することで、液晶分子に対して付与されたプレチルトを保持・固定された状態とすることができる。即ち、液晶分子が配列した状態で高分子化合物(配向処理前・化合物)の第1の側鎖を架橋、重合あるいは変形させることにより、液晶分子にプレチルトが付与されていない場合と比較して、応答速度(画像表示の立ち上がり速度)が向上する。しかも、液晶層を封止する前に配向膜に対して直線偏光の光や斜め方向の光を照射しなくても、また、大がかりな装置を用いなくても、液晶分子に対してプレチルトを付与することができる。 In the manufacturing method of the liquid crystal display device according to the third aspect of the present disclosure, the pretilt imparted to the liquid crystal molecules is maintained by irradiating the polymer compound (before the alignment treatment / compound) with energy rays. -It can be fixed. That is, by cross-linking, polymerizing or deforming the first side chain of the polymer compound (before alignment treatment / compound) in a state where the liquid crystal molecules are aligned, the liquid crystal molecules are not given a pretilt, Response speed (rise speed of image display) is improved. Moreover, pre-tilt is given to the liquid crystal molecules without irradiating the alignment film with linearly polarized light or oblique light before sealing the liquid crystal layer, or without using a large-scale device. can do.
 しかも、本開示において、第2の側鎖は、誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し(本開示の第1の態様に係る液晶表示装置)、あるいは又、その長軸方向から0度を超え、90度未満の角度の範囲内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し(本開示の第2の態様に係る液晶表示装置)、あるいは又、第2の側鎖は上記の構造式(11)を有する(本開示の第3の態様に係る液晶表示装置)。即ち、高分子化合物(配向処理前・化合物)を架橋又は重合又は変形させることにより得られた化合物(配向処理後・化合物)は、第1の側鎖として架橋性官能基又は重合性官能基又は感光性官能基を含み、第2の側鎖として上記の性質を有し、第1の側鎖は、主鎖に結合し、架橋又は重合又は変形した部位、及び、その部位に結合した末端構造部から構成されており、液晶分子は、第2の側鎖に沿い易く、又は、第2の側鎖に挟まれる。それ故、電場を印加したとき、電場の方向に依存した方向(例えば、電場の方向からやや傾いた方向)に第2の側鎖が揃う結果、第2の側鎖によって液晶分子に対するプレチルトの付与を促進することができる。その結果、液晶表示装置の製造工程において、液晶層を構成する液晶分子にプレチルトを付与するために液晶層に印加する電圧の値を低減することができる。また、液晶表示装置の製造時、液晶分子にプレチルトを付与するときに印加する電圧の一層の低電圧化を図ることができる。しかも、プレチルト付与の配向界面の液晶分子の歪みを緩和することができる結果、プレチルトの値の安定化、更なる応答速度の向上を図ることができる。尚、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また、付加的な効果があってもよい。 Moreover, in the present disclosure, the second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment (the liquid crystal display device according to the first aspect of the present disclosure). Or a structure having a dipole moment within an angle range of more than 0 degrees and less than 90 degrees from the major axis direction and inducing vertical orientation (the second of the present disclosure) The liquid crystal display device according to the aspect) or the second side chain has the structural formula (11) (the liquid crystal display device according to the third aspect of the present disclosure). That is, a compound (after alignment treatment / compound) obtained by crosslinking or polymerizing or deforming a polymer compound (before alignment treatment / compound) has a crosslinkable functional group or a polymerizable functional group as the first side chain. A photosensitive functional group, having the above-mentioned properties as a second side chain, the first side chain being bonded to the main chain, cross-linked or polymerized or deformed, and a terminal structure bonded to the site The liquid crystal molecules are easy to follow along the second side chain or are sandwiched between the second side chains. Therefore, when an electric field is applied, the second side chain is aligned in a direction that depends on the direction of the electric field (for example, a direction slightly inclined from the direction of the electric field). As a result, the pretilt is imparted to the liquid crystal molecules by the second side chain. Can be promoted. As a result, in the manufacturing process of the liquid crystal display device, it is possible to reduce the value of the voltage applied to the liquid crystal layer in order to impart pretilt to the liquid crystal molecules constituting the liquid crystal layer. In addition, when the liquid crystal display device is manufactured, the voltage applied when applying a pretilt to the liquid crystal molecules can be further reduced. In addition, since the distortion of the liquid crystal molecules at the pretilt-provided alignment interface can be relaxed, the pretilt value can be stabilized and the response speed can be further improved. Note that the effects described in the present specification are merely examples and are not limited, and may have additional effects.
図1は、本開示の液晶表示装置の模式的な一部断面図である。FIG. 1 is a schematic partial cross-sectional view of a liquid crystal display device of the present disclosure. 図2は、本開示の液晶表示装置の変形例の模式的な一部断面図である。FIG. 2 is a schematic partial cross-sectional view of a modified example of the liquid crystal display device of the present disclosure. 図3の(A)及び(B)は、1つの画素を上方から眺めたときの第1電極及び第1スリット部の模式図である。3A and 3B are schematic views of the first electrode and the first slit portion when one pixel is viewed from above. 図4は、液晶分子のプレチルトを説明するための模式図である。FIG. 4 is a schematic diagram for explaining the pretilt of liquid crystal molecules. 図5は、図1に示した液晶表示装置の製造方法を説明するためのフローチャートである。FIG. 5 is a flowchart for explaining a method of manufacturing the liquid crystal display device shown in FIG. 図6は、図1に示した液晶表示装置の製造方法を説明するための配向膜中における高分子化合物(配向処理前・化合物)の状態を表す模式図である。FIG. 6 is a schematic diagram showing the state of the polymer compound (before the alignment treatment / compound) in the alignment film for explaining the method of manufacturing the liquid crystal display device shown in FIG. 図7は、図1に示した液晶表示装置の製造方法を説明するための基板等の模式的な一部断面図である。FIG. 7 is a schematic partial cross-sectional view of a substrate and the like for explaining a method of manufacturing the liquid crystal display device shown in FIG. 図8は、図7に続く工程を説明するための基板等の模式的な一部断面図である。FIG. 8 is a schematic partial cross-sectional view of a substrate and the like for explaining the process following FIG. 図9は、図8に続く工程を説明するための基板等の模式的な一部断面図である。FIG. 9 is a schematic partial cross-sectional view of a substrate and the like for explaining the process following FIG. 図10は、配向膜中における高分子化合物(配向処理後・化合物)の状態を表す模式図である。FIG. 10 is a schematic diagram showing the state of the polymer compound (after alignment treatment / compound) in the alignment film. 図11は、図1に示した液晶表示装置の回路構成図である。FIG. 11 is a circuit configuration diagram of the liquid crystal display device shown in FIG. 図12は、オーダーパラメータを説明するための断面模式図である。FIG. 12 is a schematic cross-sectional view for explaining order parameters. 図13は、構造式(13)に示す第1の側鎖と第2の側鎖が結合した側鎖を有する第1配向膜に近傍において、液晶分子がプレチルトを付与される状態を示す概念図である。FIG. 13 is a conceptual diagram showing a state in which liquid crystal molecules are given a pretilt in the vicinity of the first alignment film having a side chain in which the first side chain and the second side chain represented by the structural formula (13) are combined. It is. 図14は、変形した高分子化合物と液晶分子との関係を説明する概念図である。FIG. 14 is a conceptual diagram illustrating the relationship between a deformed polymer compound and liquid crystal molecules. 図15は、第2の側鎖の双極子モーメントの方向と液晶分子の双極子モーメントの方向を模式的に示す概念図である。FIG. 15 is a conceptual diagram schematically showing the direction of the dipole moment of the second side chain and the direction of the dipole moment of the liquid crystal molecules. 図16は、実施例2A-1の液晶表示装置の模式的な一部端面図である。FIG. 16 is a schematic partial end view of the liquid crystal display device of Example 2A-1. 図17は、実施例2A-2の液晶表示装置の模式的な一部端面図である。FIG. 17 is a schematic partial end view of the liquid crystal display device of Example 2A-2. 図18は、実施例2A-3の液晶表示装置の模式的な一部端面図である。FIG. 18 is a schematic partial end view of the liquid crystal display device of Example 2A-3. 図19は、実施例2A-1~実施例2A-3の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 19 is a schematic plan view of the first electrode for one pixel that constitutes the liquid crystal display devices of Examples 2A-1 to 2A-3. 図20A及び図20Bは、実施例2A-1の液晶表示装置における図19の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部断面図であり、図20C及び図20Dは、実施例2A-2の液晶表示装置における図19の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部断面図である。20A and 20B are schematic partial cross-sectional views of the first electrode and the like along arrows AA and BB in FIG. 19 in the liquid crystal display device of Example 2A-1, and FIG. 20D is a schematic partial cross-sectional view of the first electrode and the like taken along arrows AA and BB in FIG. 19 in the liquid crystal display device of Example 2A-2. 図21A及び図21Bは、実施例2A-3の液晶表示装置における図19の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部断面図である。21A and 21B are schematic partial cross-sectional views of the first electrode and the like along arrows AA and BB in FIG. 19 in the liquid crystal display device of Example 2A-3. 図22は、実施例2A-4の液晶表示装置の模式的な一部端面図である。FIG. 22 is a schematic partial end view of the liquid crystal display device of Example 2A-4. 図23A及び図23Bは、実施例2A-4の液晶表示装置における図19の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部断面図である。23A and 23B are schematic partial cross-sectional views of the first electrode and the like along arrows AA and BB in FIG. 19 in the liquid crystal display device of Example 2A-4. 図24は、実施例2A-4の液晶表示装置の変形例の模式的な一部端面図である。FIG. 24 is a schematic partial end view of a modification of the liquid crystal display device of Example 2A-4. 図25は、実施例2B-1の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 25 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-1. 図26A、図26B及び図26Cは、実施例2B-1の液晶表示装置における図25の矢印A-A、矢印B-B、矢印C-Cに沿った第1電極等の模式的な一部断面図であり、図26Dは、図26Cの一部を拡大した模式的な一部断面図である。26A, 26B, and 26C are schematic partial views of the first electrode and the like along arrows AA, BB, and CC in FIG. 25 in the liquid crystal display device of Example 2B-1. FIG. 26D is a schematic partial cross-sectional view in which a part of FIG. 26C is enlarged. 図27A及び図27Bは、それぞれ、従来の液晶表示装置、及び、実施例2B-1の液晶表示装置における液晶分子の挙動を示す概念図である。27A and 27B are conceptual diagrams showing the behavior of liquid crystal molecules in the conventional liquid crystal display device and the liquid crystal display device of Example 2B-1, respectively. 図28は、実施例2B-2の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 28 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-2. 図29は、実施例2B-3の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 29 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-3. 図30A及び図30Bは、実施例2B-2の液晶表示装置における図28の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部断面図であり、図30Cは、実施例2B-3の液晶表示装置における図29の矢印C-Cに沿った第1電極等の模式的な一部端面図であり、図30Dは、図30Cの一部を拡大した模式的な一部端面図である。30A and 30B are schematic partial cross-sectional views of the first electrode and the like along arrows AA and BB in FIG. 28 in the liquid crystal display device of Example 2B-2, and FIG. FIG. 30D is a schematic partial end view of the first electrode and the like along the arrow CC in FIG. 29 in the liquid crystal display device of Example 2B-3, and FIG. 30D is a schematic enlarged view of a part of FIG. 30C. FIG. 図31は、実施例2B-3の液晶表示装置を構成する1画素分の第1電極の変形例の模式的な平面図である。FIG. 31 is a schematic plan view of a modified example of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-3. 図32は、実施例2B-3の液晶表示装置を構成する1画素分の第1電極の別の変形例の模式的な斜視図である。FIG. 32 is a schematic perspective view of another modification of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-3. 図33は、実施例2B-4の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 33 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-4. 図34は、図33に示した実施例2B-4の液晶表示装置を構成する1画素分の第1電極の模式的な斜視図である。FIG. 34 is a schematic perspective view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-4 shown in FIG. 図35は、実施例2B-5の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 35 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-5. 図36A及び図36Bは、実施例2B-4の液晶表示装置における図33の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部端面図であり、図36Cは、図36Bの一部を拡大した模式的な一部端面図であり、図36Dは、実施例2B-5の液晶表示装置における図35の矢印D-Dに沿った第1電極の一部を拡大した模式的な一部端面図である。36A and 36B are schematic partial end views of the first electrode and the like along the arrows AA and BB in FIG. 33 in the liquid crystal display device of Example 2B-4, and FIG. FIG. 36D is a schematic partial end view enlarging a part of FIG. 36B. FIG. 36D shows a part of the first electrode along the arrow DD in FIG. 35 in the liquid crystal display device of Example 2B-5. It is the expanded typical partial end view. 図37は、実施例2B-6の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 37 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-6. 図38は、実施例2B-6の液晶表示装置を構成する1画素分の第1電極の変形例の模式的な斜視図である。FIG. 38 is a schematic perspective view of a modified example of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-6. 図39は、実施例2B-7の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 39 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-7. 図40は、実施例2B-7の液晶表示装置を構成する1画素分の第1電極の変形例の模式的な平面図である。FIG. 40 is a schematic plan view of a modified example of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-7. 図41は、実施例2B-7の液晶表示装置における図39の矢印A-Aに沿った第1電極等の模式的な一部断面図である。FIG. 41 is a schematic partial cross-sectional view of the first electrode and the like along the arrow AA in FIG. 39 in the liquid crystal display device of Example 2B-7. 図42は、実施例2B-8の液晶表示装置の模式的な一部端面図である。FIG. 42 is a schematic partial end view of the liquid crystal display device of Example 2B-8. 図43は、実施例2B-8の液晶表示装置の変形例の模式的な一部端面図である。FIG. 43 is a schematic partial end view of a modification of the liquid crystal display device of Example 2B-8. 図44は、実施例2B-9の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 44 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-9. 図45は、実施例2B-9の液晶表示装置を構成する1画素分の第1電極の変形例の模式的な平面図である。FIG. 45 is a schematic plan view of a modification of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-9. 図46は、実施例2B-9の液晶表示装置を構成する1画素分の第1電極の別の変形例の模式的な平面図である。FIG. 46 is a schematic plan view of another modification of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-9. 図47は、実施例2B-9の液晶表示装置を構成する1画素分の第1電極の更に別の変形例の模式的な平面図である。FIG. 47 is a schematic plan view of still another modified example of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-9. 図48A及び図48Bは、実施例2B-9の液晶表示装置における図44の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部端面図であり、図48C及び図48Dは、実施例2B-9の液晶表示装置における図46の矢印C-C及び矢印D-Dに沿った第1電極等の模式的な一部端面図である。48A and 48B are schematic partial end views of the first electrode and the like along arrows AA and BB in FIG. 44 in the liquid crystal display device of Example 2B-9. FIG. 48D is a schematic partial end view of the first electrode and the like taken along arrows CC and DD in FIG. 46 in the liquid crystal display device of Example 2B-9. 図49は、実施例2C-1の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 49 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-1. 図50は、実施例2C-1の液晶表示装置を構成する1画素分の第1電極の一部分を拡大した模式的な平面図である。FIG. 50 is a schematic plan view in which a part of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-1 is enlarged. 図51A及び図51Bは、実施例2C-1の液晶表示装置における図49の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部断面図であり、図51Cは、図51Bの一部を拡大した模式的な一部断面図である。51A and 51B are schematic partial cross-sectional views of the first electrode and the like along arrows AA and BB in FIG. 49 in the liquid crystal display device of Example 2C-1, and FIG. FIG. 51B is a schematic partial cross-sectional view in which a part of FIG. 51B is enlarged. 図52A及び図52Bは、それぞれ、実施例2C-1、及び、枝凸部にテーパーが付されていない液晶表示装置の枝凸部における液晶分子の挙動を説明するための模式図である。52A and 52B are schematic diagrams for explaining the behavior of liquid crystal molecules in the branch convex portions of Example 2C-1 and the liquid crystal display device in which the branch convex portions are not tapered, respectively. 図53は、実施例2C-2の液晶表示装置の変形例の模式的な一部端面図である。FIG. 53 is a schematic partial end view of a modification of the liquid crystal display device of Example 2C-2. 図54A及び図54Bは、実施例2C-2の液晶表示装置における図53の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部端面図であり、図54Cは、図54Bの一部を拡大した模式的な一部端面図である。54A and 54B are schematic partial end views of the first electrode and the like along arrows AA and BB in FIG. 53 in the liquid crystal display device of Example 2C-2. FIG. FIG. 55 is a schematic partial end view in which a part of FIG. 54B is enlarged. 図55は、実施例2C-3の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 55 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-3. 図56は、実施例2C-4の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 56 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-4. 図57は、実施例2C-5の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 57 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-5. 図58は、実施例2C-5の液晶表示装置を構成する1画素分の第1電極の変形例の模式的な平面図である。FIG. 58 is a schematic plan view of a modification of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-5. 図59は、実施例2C-6の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 59 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-6. 図60は、実施例2C-7の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 60 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-7. 図61は、実施例2C-8の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 61 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-8. 図62は、実施例2D-1の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 62 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-1. 図63Aは、実施例2D-1の液晶表示装置における図62の矢印A-Aに沿った第1電極等の模式的な一部断面図であり、図63Bは、図63Bの一部を拡大した模式的な一部断面図である。63A is a schematic partial cross-sectional view of the first electrode and the like along the arrow AA in FIG. 62 in the liquid crystal display device of Example 2D-1, and FIG. 63B is an enlarged view of a part of FIG. 63B. FIG. 図64A及び図64Bは、それぞれ、実施例2D-2の液晶表示装置を構成する1画素分の第1電極の一部分の模式的な平面図である。64A and 64B are schematic plan views of a part of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-2. 図65A及び図65Bは、それぞれ、実施例2D-2の液晶表示装置を構成する1画素分の第1電極の一部分の模式的な平面図である。65A and 65B are schematic plan views of a part of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-2. 図66は、実施例2D-3の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 66 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-3. 図67は、実施例2D-4の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 67 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-4. 図68A、図68B及び図68Cは、それぞれ、実施例2D-5の液晶表示装置を構成する画素において、凸部、凹部、中心領域等の配置状態を模式的に示す図、第1電極に設けられたスリット部の配置状態を模式的に示す図、及び、凹凸部とスリット部とを重ね合わせた図である。68A, 68B and 68C are diagrams schematically showing the arrangement state of the convex portion, the concave portion, the central region, etc. in the pixel constituting the liquid crystal display device of Example 2D-5, respectively, provided on the first electrode. It is the figure which shows typically the arrangement | positioning state of the obtained slit part, and the figure which piled up the uneven | corrugated | grooved part and the slit part. 図69A、図69B及び図69Cは、それぞれ、実施例2D-5の液晶表示装置を構成する画素の変形例において、凸部、凹部、中心領域等の配置状態を模式的に示す図、第1電極に設けられたスリット部の配置状態を模式的に示す図、及び、凹凸部とスリット部とを重ね合わせた図である。FIGS. 69A, 69B, and 69C are diagrams each schematically showing an arrangement state of a convex portion, a concave portion, a central region, and the like in a modification example of the pixel constituting the liquid crystal display device of Example 2D-5. It is the figure which shows typically the arrangement | positioning state of the slit part provided in the electrode, and the figure which piled up the uneven | corrugated | grooved part and the slit part. 図70A、図70B及び図70Cは、それぞれ、実施例2D-5の液晶表示装置を構成する画素の別の変形例において、凸部、凹部、中心領域等の配置状態を模式的に示す図、第1電極に設けられたスリット部の配置状態を模式的に示す図、及び、凹凸部とスリット部とを重ね合わせた図である。FIG. 70A, FIG. 70B, and FIG. 70C are diagrams each schematically showing an arrangement state of a convex portion, a concave portion, a central region, and the like in another modification example of the pixel constituting the liquid crystal display device of Example 2D-5 It is the figure which shows typically the arrangement | positioning state of the slit part provided in the 1st electrode, and the figure which piled up the uneven | corrugated | grooved part and the slit part. 図71A、図71B及び図71Cは、それぞれ、実施例2D-5の液晶表示装置を構成する画素の更に別の変形例において、凸部、凹部、中心領域等の配置状態を模式的に示す図、第1電極に設けられたスリット部の配置状態を模式的に示す図、及び、凹凸部とスリット部とを重ね合わせた図である。71A, 71B, and 71C are diagrams each schematically showing an arrangement state of a convex portion, a concave portion, a central region, and the like in still another modified example of the pixel constituting the liquid crystal display device of Example 2D-5. FIG. 3 is a diagram schematically showing an arrangement state of slit portions provided in a first electrode, and a diagram in which an uneven portion and a slit portion are superimposed. 図72Aは、図68Cの矢印A-Aに沿った模式的な端面図であり、図72Bは、図69Cの矢印B-Bに沿った模式的な端面図であり、図72Cは、図70Cの矢印C-Cに沿った模式的な端面図であり、図72Dは、図71Cの矢印D-Dに沿った模式的な端面図である。72A is a schematic end view taken along arrow AA in FIG. 68C, FIG. 72B is a schematic end view taken along arrow BB in FIG. 69C, and FIG. 72C is shown in FIG. FIG. 72D is a schematic end view taken along arrow CC in FIG. 71, and FIG. 72D is a schematic end view taken along arrow DD in FIG. 71C. 図73A及び図73Bは、それぞれ、実施例2D-5の液晶表示装置を構成する画素の更に別の変形例において、凸部、凹部、スリット部等の配置状態を模式的に示す図、及び、図73Aの矢印B-Bに沿った第1電極等の模式的な断面図である。FIGS. 73A and 73B are diagrams schematically showing arrangement states of convex portions, concave portions, slit portions, and the like in still another modification example of the pixels constituting the liquid crystal display device of Example 2D-5, and FIG. 73B is a schematic cross-sectional view of the first electrode and the like along arrow BB in FIG. 73A. 図74A及び図74Bは、それぞれ、実施例2D-5の液晶表示装置を構成する画素の更に別の変形例において、凸部、凹部、スリット部等の配置状態を模式的に示す図、及び、図74Aの矢印B-Bに沿った第1電極等の模式的な断面図である。FIGS. 74A and 74B are diagrams schematically showing arrangement states of convex portions, concave portions, slit portions, and the like in still another modification example of the pixels constituting the liquid crystal display device of Example 2D-5, and FIG. 74B is a schematic cross-sectional view of the first electrode and the like along arrow BB in FIG. 74A. 図75は、実施例2D-6の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 75 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-6. 図76Aは、実施例2D-6の液晶表示装置を構成する1画素の中心領域における第1電極の一部分の模式的な平面図であり、図76B及び図76Cは、実施例2D-6の液晶表示装置を構成する1画素の中心領域における第1電極の一部分の模式的な一部断面図である。FIG. 76A is a schematic plan view of a part of the first electrode in the central region of one pixel constituting the liquid crystal display device of Example 2D-6. FIGS. 76B and 76C show the liquid crystal of Example 2D-6. It is a typical partial cross section figure of a part of 1st electrode in the center area | region of 1 pixel which comprises a display apparatus. 図77A及び図77Bは、それぞれ、実施例2D-6の液晶表示装置を構成する1画素の中心領域における第1電極の一部分の模式的な平面図である。77A and 77B are schematic plan views of a part of the first electrode in the central region of one pixel constituting the liquid crystal display device of Example 2D-6. 図78は、実施例2D-7の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 78 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-7. 図79は、実施例2D-8の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 79 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-8. 図80A及び図80Bは、それぞれ、図79の第1電極の模式的な平面図において円形の領域で囲んだ第1電極の一部分を拡大した模式的な平面図である。80A and 80B are schematic plan views in which a part of the first electrode surrounded by a circular region in the schematic plan view of the first electrode in FIG. 79 is enlarged. 図81は、図79の第1電極の模式的な平面図において円形の領域で囲んだ第1電極の一部分を拡大した模式的な平面図である。FIG. 81 is an enlarged schematic plan view of a part of the first electrode surrounded by a circular region in the schematic plan view of the first electrode in FIG. 79. 図82は、実施例2D-8の液晶表示装置の変形例(実施例2D-4参照)を構成する1画素分の第1電極の模式的な平面図である。FIG. 82 is a schematic plan view of the first electrode for one pixel constituting a modification (see Example 2D-4) of the liquid crystal display device of Example 2D-8. 図83は、実施例2D-8の液晶表示装置の変形例(実施例2D-5参照)を構成する1画素分の第1電極の模式的な平面図である。FIG. 83 is a schematic plan view of the first electrode for one pixel constituting a modification (see Example 2D-5) of the liquid crystal display device of Example 2D-8. 図84は、実施例2D-8の液晶表示装置の変形例(実施例2D-5参照)を構成する1画素分の第1電極の模式的な平面図である。FIG. 84 is a schematic plan view of the first electrode for one pixel constituting a modification (see Example 2D-5) of the liquid crystal display device of Example 2D-8. 図85は、実施例2D-8の液晶表示装置の変形例(実施例2D-5参照)を構成する1画素分の第1電極の模式的な平面図である。FIG. 85 is a schematic plan view of a first electrode for one pixel constituting a modification (see Example 2D-5) of the liquid crystal display device of Example 2D-8. 図86は、実施例2D-8の液晶表示装置の別の変形例(実施例2D-6参照)を構成する1画素分の第1電極の模式的な平面図である。FIG. 86 is a schematic plan view of the first electrode for one pixel constituting another modification of the liquid crystal display device of Example 2D-8 (see Example 2D-6). 図87は、実施例2D-8の液晶表示装置の更に別の変形例(実施例2D-7参照)を構成する1画素分の第1電極の模式的な平面図である。FIG. 87 is a schematic plan view of the first electrode for one pixel constituting still another modified example (see Example 2D-7) of the liquid crystal display device of Example 2D-8. 図88は、実施例2D-9の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 88 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-9. 図89A、図89B及び図89Cは、実施例2D-9の液晶表示装置における図88の矢印A-A、矢印B-B、矢印C-Cに沿った第1電極等の模式的な一部断面図であり、図89Dは、図88Cの一部を拡大した模式的な一部断面図である。89A, 89B, and 89C are schematic partial views of the first electrode and the like along arrows AA, BB, and CC in FIG. 88 in the liquid crystal display device of Example 2D-9. FIG. 89D is a schematic partial cross-sectional view enlarging a part of FIG. 88C. 図90は、実施例2D-10の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 90 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-10. 図91は、実施例2D-11の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 91 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-11. 図92A及び図92Bは、実施例2D-10の液晶表示装置における図90の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部断面図であり、図92Cは、実施例2D-11の液晶表示装置における図91の矢印C-Cに沿った第1電極等の模式的な一部端面図であり、図92Dは、図92Cの一部を拡大した模式的な一部端面図である。92A and 92B are schematic partial cross-sectional views of the first electrode and the like along arrows AA and BB in FIG. 90 in the liquid crystal display device of Example 2D-10. FIG. FIG. 92D is a schematic partial end view of the first electrode and the like along the arrow CC in FIG. 91 in the liquid crystal display device of Example 2D-11. FIG. 92D is a schematic enlarged view of a part of FIG. 92C. FIG. 図93は、実施例2D-11の液晶表示装置を構成する1画素分の第1電極の変形例の模式的な平面図である。FIG. 93 is a schematic plan view of a modification of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-11. 図94は、実施例2D-12の液晶表示装置を構成する1画素分の第1電極の模式的な平面図である。FIG. 94 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-12. 図95A及び図95Bは、実施例2B-8の液晶表示装置における液晶分子の挙動を示す概念図である。95A and 95B are conceptual diagrams showing the behavior of liquid crystal molecules in the liquid crystal display device of Example 2B-8. 図96A及び図96Bは、TFT等が形成され、第1電極に凹凸部が形成される前の第1基板の模式的な一部端面図である。96A and 96B are schematic partial end views of the first substrate before TFTs and the like are formed and uneven portions are formed on the first electrode. 図97は、凸部の形成ピッチ、凸部の幅、凸部の先端部の幅等を説明するための、凸部の一部の模式的な平面図である。FIG. 97 is a schematic plan view of a part of the convex portion for explaining the formation pitch of the convex portion, the width of the convex portion, the width of the tip portion of the convex portion, and the like. 図98は、凸部の形成ピッチ、凸部の幅、凸部の先端部の幅等を説明するための、凸部の一部の模式的な平面図である。FIG. 98 is a schematic plan view of a part of the convex portion for explaining the formation pitch of the convex portion, the width of the convex portion, the width of the tip portion of the convex portion, and the like.
 以下、図面を参照して、発明の実施の形態、実施例に基づき本開示を説明するが、本開示は発明の実施の形態、実施例に限定されるものではなく、発明の実施の形態、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示の液晶表示装置における共通の構成、構造に関する説明
2.発明の実施の形態に基づく、本開示の液晶表示装置及びその製造方法の説明
3.実施例1に基づく、本開示の液晶表示装置及びその製造方法の説明
4.実施例2に基づく、第1電極の各種変形例の説明、その他
Hereinafter, the present disclosure will be described based on the embodiments and examples of the invention with reference to the drawings. However, the present disclosure is not limited to the embodiments and examples of the invention. Various numerical values and materials in the examples are illustrative. The description will be given in the following order.
1. 1. Description of common configuration and structure in the liquid crystal display device of the present disclosure 2. Description of a liquid crystal display device of the present disclosure and a manufacturing method thereof according to an embodiment of the invention 3. Description of liquid crystal display device of the present disclosure and manufacturing method thereof based on Embodiment 1. Explanation of various modifications of the first electrode based on Example 2, and others
[本開示の液晶表示装置(液晶表示素子)における共通の構成、構造に関する説明]
 本開示の液晶表示装置(あるいは液晶表示素子)の模式的な一部断面図を、図1に示す。この液晶表示装置は、複数の画素10(10A,10B,10C・・・)を有している。そして、この液晶表示装置(液晶表示素子)においては、TFT(Thin Film Transistor;薄膜トランジスタ)基板20とCF(Color Filter;カラーフィルタ層)基板50との間に、配向膜21,51を介して液晶分子71を含む液晶層70が設けられている。この液晶表示装置(液晶表示素子)は、所謂透過型であり、表示モードは垂直配向(VA)モードである。図1では、駆動電圧が印加されていない非駆動状態を表している。尚、画素10は、実際には、例えば、赤色の画像を表示する副画素、緑色の画像を表示する副画素、青色の画像を表示する副画素等の副画素から構成されている。
[Description on Common Configuration and Structure of Liquid Crystal Display Device (Liquid Crystal Display Element) of Present Disclosure]
A schematic partial cross-sectional view of the liquid crystal display device (or liquid crystal display element) of the present disclosure is shown in FIG. This liquid crystal display device has a plurality of pixels 10 (10A, 10B, 10C...). In this liquid crystal display device (liquid crystal display element), liquid crystal is interposed between alignment layers 21 and 51 between a TFT (Thin Film Transistor) substrate 20 and a CF (Color Filter layer) substrate 50. A liquid crystal layer 70 including molecules 71 is provided. This liquid crystal display device (liquid crystal display element) is a so-called transmission type, and the display mode is a vertical alignment (VA) mode. FIG. 1 shows a non-driving state in which no driving voltage is applied. Note that the pixel 10 is actually composed of subpixels such as a subpixel that displays a red image, a subpixel that displays a green image, and a subpixel that displays a blue image.
 ここで、TFT基板20が第1基板に相当し、CF基板50が第2基板に相当する。また、第1基板(TFT基板)20に設けられた画素電極40及び配向膜21が、第1電極及び第1配向膜に相当し、第2基板(CF基板)50に設けられた対向電極60及び配向膜51が、第2電極及び第2配向膜に相当する。 Here, the TFT substrate 20 corresponds to the first substrate, and the CF substrate 50 corresponds to the second substrate. The pixel electrode 40 and the alignment film 21 provided on the first substrate (TFT substrate) 20 correspond to the first electrode and the first alignment film, and the counter electrode 60 provided on the second substrate (CF substrate) 50. The alignment film 51 corresponds to the second electrode and the second alignment film.
 即ち、本開示の液晶表示装置は、
 一対の基板20,50の対向面側に設けられた第1配向膜21及び第2配向膜51、並びに、
 第1配向膜21と第2配向膜51との間に配され、負の誘電率異方性を有する液晶分子71を含む液晶層70、
を有する液晶表示素子を備えている。
That is, the liquid crystal display device of the present disclosure is
A first alignment film 21 and a second alignment film 51 provided on the opposing surface side of the pair of substrates 20 and 50, and
A liquid crystal layer 70 including liquid crystal molecules 71 disposed between the first alignment film 21 and the second alignment film 51 and having negative dielectric anisotropy;
The liquid crystal display element which has is provided.
 そして、本開示の液晶表示装置にあっては、少なくとも第1配向膜(具体的には、第1配向膜21及び第2配向膜51)は第1の側鎖及び第2の側鎖を有する高分子化合物が架橋又は重合した化合物を含み、第1の側鎖は架橋性官能基又は重合性官能基を有しており、液晶分子71は、第1配向膜21によってプレチルトが付与されており、更には、第2配向膜51によってもプレチルトが付与されている。 In the liquid crystal display device of the present disclosure, at least the first alignment film (specifically, the first alignment film 21 and the second alignment film 51) has a first side chain and a second side chain. The polymer compound includes a crosslinked or polymerized compound, the first side chain has a crosslinkable functional group or a polymerizable functional group, and the liquid crystal molecules 71 are given a pretilt by the first alignment film 21. Furthermore, a pretilt is also given by the second alignment film 51.
 具体的には、第1配向膜21は、架橋性官能基又は重合性官能基を有する第1の側鎖を備えた高分子化合物が架橋又は重合した化合物(配向処理後・化合物)を含む。また、第2配向膜51も、架橋性官能基又は重合性官能基を有する第1の側鎖を備えた高分子化合物が架橋又は重合した化合物(配向処理後・化合物)を含む。ここで、第1配向膜21を構成する高分子化合物と第2配向膜51を構成する高分子化合物とは、好ましくは、同じ高分子化合物であるし、第1配向膜21を構成する配向処理後・化合物と第2配向膜51を構成する配向処理後・化合物とは、同じ配向処理後・化合物である。そして、液晶分子には、上述したとおり、第1配向膜21によって(配向処理後・化合物によって)プレチルトが付与され(第1プレチルト角θ1)、且つ、液晶分子は、第2配向膜51によって(配向処理後・化合物によって)プレチルトが付与される(第2プレチルト角θ2)。 Specifically, the first alignment film 21 includes a compound (after alignment treatment / compound) obtained by crosslinking or polymerizing a polymer compound having a first side chain having a crosslinkable functional group or a polymerizable functional group. The second alignment film 51 also includes a compound (post-alignment treatment / compound) obtained by crosslinking or polymerizing a polymer compound having a first side chain having a crosslinkable functional group or a polymerizable functional group. Here, the polymer compound that constitutes the first alignment film 21 and the polymer compound that constitutes the second alignment film 51 are preferably the same polymer compound, and the alignment treatment that constitutes the first alignment film 21. The post-alignment treatment / compound constituting the post-compound and the second alignment film 51 is the same post-alignment treatment / compound. As described above, the liquid crystal molecules are given a pretilt by the first alignment film 21 (after the alignment treatment / by the compound) (first pretilt angle θ 1 ), and the liquid crystal molecules are transferred by the second alignment film 51. A pretilt is imparted (after the alignment treatment / by the compound) (second pretilt angle θ 2 ).
 あるいは又、本開示の液晶表示装置にあっては、少なくとも第1配向膜(具体的には、第1配向膜21及び第2配向膜51)は、第1の側鎖及び第2の側鎖を有する高分子化合物が変形した化合物を含み、第1の側鎖は感光性官能基を有しており、液晶分子71は、第1配向膜21によってプレチルトが付与されており、更には、第2配向膜51によってもプレチルトが付与されている。 Alternatively, in the liquid crystal display device of the present disclosure, at least the first alignment film (specifically, the first alignment film 21 and the second alignment film 51) includes the first side chain and the second side chain. The first side chain has a photosensitive functional group, the liquid crystal molecule 71 is given a pretilt by the first alignment film 21, and the first side chain has a photosensitive functional group. A pretilt is also given by the bi-alignment film 51.
 より具体的には、この液晶表示装置は、
 第1基板(TFT基板)20及び第2基板(CF基板)50、
 第2基板50と対向する第1基板20の対向面に形成された第1電極(画素電極)40、
 第1電極(画素電極)40に設けられた第1配向規制部44、
 第1電極(画素電極)40、第1配向規制部44及び第1基板(TFT基板)20の対向面を覆う第1配向膜21、
 第1基板(TFT基板)20と対向する第2基板(CF基板)50の対向面に形成された第2電極(対向電極)60、
 第2電極(対向電極)60及び第2基板(CF基板)50の対向面を覆う第2配向膜51、並びに、
 第1配向膜21及び第2配向膜51の間に設けられ、液晶分子71を含む液晶層70、
を有する画素10が、複数、配列されて成る。
More specifically, this liquid crystal display device
A first substrate (TFT substrate) 20 and a second substrate (CF substrate) 50;
A first electrode (pixel electrode) 40 formed on the facing surface of the first substrate 20 facing the second substrate 50;
A first alignment regulating portion 44 provided on the first electrode (pixel electrode) 40;
A first alignment film 21 covering the opposing surfaces of the first electrode (pixel electrode) 40, the first alignment regulating portion 44, and the first substrate (TFT substrate) 20,
A second electrode (counter electrode) 60 formed on the facing surface of a second substrate (CF substrate) 50 facing the first substrate (TFT substrate) 20;
A second alignment film 51 covering the opposing surfaces of the second electrode (counter electrode) 60 and the second substrate (CF substrate) 50, and
A liquid crystal layer 70 provided between the first alignment film 21 and the second alignment film 51 and including liquid crystal molecules 71;
A plurality of pixels 10 having the above are arranged.
 ガラス基板から成るTFT基板20には、ガラス基板から成るCF基板50と対向する側の表面に、例えば、マトリクス状に複数の画素電極40が配置されている。更に、複数の画素電極40をそれぞれ駆動するゲート・ソース・ドレイン等を備えたTFTスイッチング素子や、これらTFTスイッチング素子に接続されるゲート線及びソース線等(図示せず)が設けられている。画素電極40は、画素分離部によって電気的に分離された画素毎に設けられ、例えばITO(インジウム錫酸化物)等の透明性を有する材料により構成されている。画素電極40には、各画素内において、例えば、ストライプ状やV字状のパターンを有する第1スリット部44(電極の形成されない部分)が設けられている。尚、1つの画素(副画素)を上方から眺めたときの第1電極(画素電極)40及び第1スリット部44の配置図を、図3の(A)あるいは図3の(B)に示す。これにより、駆動電圧が印加されると、液晶分子71の長軸方向に対して斜めの電場が付与され、画素内に配向方向の異なる領域が形成されるため(配向分割)、視野角特性が向上する。即ち、第1スリット部44は、良好な表示特性を確保するために、液晶層70中の液晶分子71全体の配向を規制するための第1配向規制部であり、ここでは、この第1スリット部44によって駆動電圧印加時の液晶分子71の配向方向を規制している。上述したとおり、基本的に、プレチルトが付与されたときの液晶分子の方位角は、電場の強さと方向、及び、配向膜材料の分子構造によって規定され、電場の方向は配向規制部によって決定される。 The TFT substrate 20 made of a glass substrate has a plurality of pixel electrodes 40 arranged in a matrix, for example, on the surface facing the CF substrate 50 made of a glass substrate. Furthermore, a TFT switching element having a gate, a source, a drain and the like for driving the plurality of pixel electrodes 40, and a gate line and a source line (not shown) connected to these TFT switching elements are provided. The pixel electrode 40 is provided for each pixel electrically separated by the pixel separation unit, and is made of a transparent material such as ITO (indium tin oxide). The pixel electrode 40 is provided with a first slit portion 44 (a portion where no electrode is formed) having, for example, a stripe shape or a V-shaped pattern in each pixel. 3A or 3B shows the layout of the first electrode (pixel electrode) 40 and the first slit portion 44 when one pixel (sub-pixel) is viewed from above. . Thereby, when a driving voltage is applied, an oblique electric field is applied to the major axis direction of the liquid crystal molecules 71, and regions having different alignment directions are formed in the pixels (alignment division). improves. That is, the first slit portion 44 is a first alignment restricting portion for restricting the alignment of the entire liquid crystal molecules 71 in the liquid crystal layer 70 in order to ensure good display characteristics. The portion 44 regulates the alignment direction of the liquid crystal molecules 71 when a driving voltage is applied. As described above, basically, the azimuth angle of the liquid crystal molecules when pretilt is applied is defined by the strength and direction of the electric field and the molecular structure of the alignment film material, and the direction of the electric field is determined by the alignment regulating unit. The
 CF基板50には、TFT基板20との対向面に、有効表示領域のほぼ全面に亙って、例えば、赤(R)、緑(G)、青(B)のストライプ状フィルタ層により構成されたカラーフィルタ層(図示せず)と、対向電極60とが配置されている。対向電極60は、画素電極40と同様に、例えばITO等の透明性を有する材料により構成されている。対向電極60は、パターニングされていない、所謂ベタ電極である。 The CF substrate 50 is composed of, for example, red (R), green (G), and blue (B) stripe filter layers on the surface facing the TFT substrate 20 over almost the entire effective display area. A color filter layer (not shown) and a counter electrode 60 are disposed. As with the pixel electrode 40, the counter electrode 60 is made of a transparent material such as ITO. The counter electrode 60 is a so-called solid electrode that is not patterned.
 第1配向膜21は、TFT基板20の液晶層側の表面に画素電極40及び第1スリット部44を覆うように設けられている。第2配向膜51は、CF基板50の液晶層側の表面に対向電極60を覆うように設けられている。第1配向膜21及び第2配向膜51は、液晶分子71の配向を規制するものであり、ここでは、基板から離れて位置する液晶分子71を基板面に対して垂直方向に配向させると共に、基板近傍の液晶分子71(71A,71B)に対してプレチルトを付与する機能を有している。尚、図1に示す液晶表示装置(液晶表示素子)にあっては、CF基板50の側には、スリット部は設けられていない。 The first alignment film 21 is provided on the surface of the TFT substrate 20 on the liquid crystal layer side so as to cover the pixel electrode 40 and the first slit portion 44. The second alignment film 51 is provided on the surface of the CF substrate 50 on the liquid crystal layer side so as to cover the counter electrode 60. The first alignment film 21 and the second alignment film 51 regulate the alignment of the liquid crystal molecules 71. Here, the liquid crystal molecules 71 positioned away from the substrate are aligned in the direction perpendicular to the substrate surface, and The liquid crystal molecules 71 (71A, 71B) in the vicinity of the substrate have a function of imparting a pretilt. In the liquid crystal display device (liquid crystal display element) shown in FIG. 1, no slit portion is provided on the CF substrate 50 side.
 図11は、図1に示した液晶表示装置の回路構成を表している。 FIG. 11 shows a circuit configuration of the liquid crystal display device shown in FIG.
 図11に示すように、液晶表示装置は、表示領域80内に設けられた複数の画素10を有する液晶表示素子を含んで構成されている。この液晶表示装置では、表示領域80の周囲には、ソースドライバ81及びゲートドライバ82と、ソースドライバ81及びゲートドライバ82を制御するタイミングコントローラ83と、ソースドライバ81及びゲートドライバ82に電力を供給する電源回路84とが設けられている。 As shown in FIG. 11, the liquid crystal display device includes a liquid crystal display element having a plurality of pixels 10 provided in a display region 80. In this liquid crystal display device, power is supplied to the periphery of the display area 80 to the source driver 81 and the gate driver 82, the timing controller 83 that controls the source driver 81 and the gate driver 82, and the source driver 81 and the gate driver 82. A power supply circuit 84 is provided.
 表示領域80は、画像が表示される領域であり、複数の画素10がマトリクス状に配列されることにより画像を表示可能に構成された領域である。尚、図11では、複数の画素10を含む表示領域80を示しているほか、4つの画素10に対応する領域を別途拡大して示している。 The display area 80 is an area in which an image is displayed, and is an area configured to display an image by arranging a plurality of pixels 10 in a matrix. In addition, in FIG. 11, the display area 80 including the plurality of pixels 10 is shown, and areas corresponding to the four pixels 10 are separately enlarged.
 表示領域80では、行方向に複数のソース線91が配列されていると共に、列方向に複数のゲート線92が配列されており、ソース線91及びゲート線92が互いに交差する位置に画素10がそれぞれ配置されている。各画素10は、画素電極40及び液晶層70と共に、トランジスタ(TFT)93及びキャパシタ94を含んで構成されている。各トランジスタ93では、ソース電極がソース線91に接続され、ゲート電極がゲート線92に接続され、ドレイン電極がキャパシタ94及び画素電極40に接続されている。各ソース線91は、ソースドライバ81に接続されており、ソースドライバ81から画像信号が供給される。各ゲート線92は、ゲートドライバ82に接続されており、ゲートドライバ82から走査信号が順次供給される。 In the display region 80, a plurality of source lines 91 are arranged in the row direction, and a plurality of gate lines 92 are arranged in the column direction. The pixel 10 is located at a position where the source lines 91 and the gate lines 92 intersect each other. Each is arranged. Each pixel 10 includes a transistor (TFT) 93 and a capacitor 94 together with the pixel electrode 40 and the liquid crystal layer 70. In each transistor 93, the source electrode is connected to the source line 91, the gate electrode is connected to the gate line 92, and the drain electrode is connected to the capacitor 94 and the pixel electrode 40. Each source line 91 is connected to a source driver 81, and an image signal is supplied from the source driver 81. Each gate line 92 is connected to a gate driver 82, and scanning signals are sequentially supplied from the gate driver 82.
 ソースドライバ81及びゲートドライバ82は、複数の画素10の中から特定の画素10を選択する。 The source driver 81 and the gate driver 82 select a specific pixel 10 from the plurality of pixels 10.
 タイミングコントローラ83は、例えば、画像信号(例えば、赤、緑、青に対応するRGBの各映像信号)と、ソースドライバ81の動作を制御するためのソースドライバ制御信号とを、ソースドライバ81に出力する。また、タイミングコントローラ83は、例えば、ゲートドライバ82の動作を制御するためのゲートドライバ制御信号をゲートドライバ82に出力する。ソースドライバ制御信号として、例えば、水平同期信号、スタートパルス信号あるいはソースドライバ用のクロック信号等が挙げられる。ゲートドライバ制御信号として、例えば、垂直同期信号や、ゲートドライバ用のクロック信号等が挙げられる。 The timing controller 83 outputs, for example, an image signal (for example, RGB video signals corresponding to red, green, and blue) and a source driver control signal for controlling the operation of the source driver 81 to the source driver 81. To do. Further, the timing controller 83 outputs, for example, a gate driver control signal for controlling the operation of the gate driver 82 to the gate driver 82. Examples of the source driver control signal include a horizontal synchronization signal, a start pulse signal, and a source driver clock signal. Examples of the gate driver control signal include a vertical synchronization signal and a gate driver clock signal.
 この液晶表示装置では、以下の要領で第1電極(画素電極)40と第2電極(対向電極)60との間に駆動電圧を印加することにより、画像が表示される。具体的には、ソースドライバ81が、タイミングコントローラ83からのソースドライバ制御信号の入力により、同じくタイミングコントローラ83から入力された画像信号に基づいて所定のソース線91に個別の画像信号を供給する。これと共に、ゲートドライバ82が、タイミングコントローラ83からのゲートドライバ制御信号の入力により所定のタイミングでゲート線92に走査信号を順次供給する。これにより、画像信号が供給されたソース線91と走査信号が供給されたゲート線92との交差部に位置する画素10が選択され、画素10に駆動電圧が印加される。 In this liquid crystal display device, an image is displayed by applying a driving voltage between the first electrode (pixel electrode) 40 and the second electrode (counter electrode) 60 in the following manner. Specifically, the source driver 81 supplies an individual image signal to a predetermined source line 91 based on the image signal input from the timing controller 83 in response to the input of the source driver control signal from the timing controller 83. At the same time, the gate driver 82 sequentially supplies the scanning signal to the gate line 92 at a predetermined timing in response to the input of the gate driver control signal from the timing controller 83. As a result, the pixel 10 located at the intersection of the source line 91 supplied with the image signal and the gate line 92 supplied with the scanning signal is selected, and a drive voltage is applied to the pixel 10.
 以下、発明の実施の形態(『実施の形態』と略称する)及び実施例に基づき、本開示を説明する。 Hereinafter, the present disclosure will be described based on embodiments of the invention (abbreviated as “embodiments”) and examples.
[実施の形態1]
 実施の形態1は、本開示のVAモードの液晶表示装置(あるいは液晶表示素子)、並びに、本開示の第1の態様、第3の態様に係る液晶表示装置(あるいは液晶表示素子)の製造方法に関する。実施の形態1において、第1配向膜及び第2配向膜(配向膜21,51)は、架橋構造を有する第1の側鎖を備えた高分子化合物(配向処理後・化合物)の1種あるいは2種以上を含んで構成されている。そして、液晶分子にはプレチルトが付与されている。ここで、配向処理後・化合物は、主鎖並びに第1の側鎖及び第2の側鎖を有する高分子化合物(配向処理前・化合物)の1種あるいは2種以上を含む状態で配向膜21,51を形成した後、液晶層70を設け、次いで、高分子化合物を架橋又は重合させることで、あるいは又、高分子化合物にエネルギー線を照射することで、より具体的には、電場又は磁場を印加しながら第1の側鎖に含まれる架橋性官能基又は重合性官能基を反応させることにより生成される。そして、配向処理後・化合物は、液晶分子を一対の基板(具体的には、TFT基板20及びCF基板50)に対して所定の方向(具体的には、垂直方向からやや傾いた斜め方向)に配列させる構造(具体的には、第2の側鎖)を含んでいる。このように、高分子化合物(配向処理前・化合物)を架橋又は重合させて、あるいは又、高分子化合物(配向処理前・化合物)にエネルギー線を照射することで、配向処理後・化合物が配向膜21,51中に含まれることにより、配向膜21,51近傍の液晶分子71に対してプレチルトを付与できるため、応答速度(画像表示の立ち上がり速度及び画像表示の立ち下がり速度)が早くなり、表示特性が向上する。
[Embodiment 1]
Embodiment 1 is a VA mode liquid crystal display device (or liquid crystal display element) according to the present disclosure, and a method for manufacturing the liquid crystal display device (or liquid crystal display element) according to the first and third aspects of the present disclosure. About. In Embodiment 1, the first alignment film and the second alignment film (alignment films 21 and 51) are either one kind of polymer compound (after alignment treatment / compound) having a first side chain having a crosslinked structure, or It is comprised including 2 or more types. The liquid crystal molecules are given a pretilt. Here, after the alignment treatment, the alignment film 21 includes one or more of polymer compounds (pre-alignment treatment / compound) having a main chain and first and second side chains. , 51 is formed, then a liquid crystal layer 70 is provided, and then the polymer compound is crosslinked or polymerized, or moreover, the polymer compound is irradiated with energy rays, more specifically, an electric field or a magnetic field. Is generated by reacting a crosslinkable functional group or a polymerizable functional group contained in the first side chain. After the alignment treatment, the compound has liquid crystal molecules in a predetermined direction (specifically, an oblique direction slightly inclined from the vertical direction) with respect to a pair of substrates (specifically, the TFT substrate 20 and the CF substrate 50). It includes a structure (specifically, a second side chain) that is arranged in the form. In this way, the polymer compound (before the alignment treatment / compound) is crosslinked or polymerized, or alternatively, the polymer compound (before the alignment treatment / compound) is irradiated with energy rays, so that the compound is aligned after the alignment treatment. By being included in the films 21 and 51, a pretilt can be imparted to the liquid crystal molecules 71 in the vicinity of the alignment films 21 and 51, so that the response speed (rise speed of image display and fall speed of image display) is increased, Display characteristics are improved.
 ここで、第2の側鎖は、
 誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し(本開示の第1の態様に係る液晶表示装置)、あるいは又、
 第2の側鎖は、その長軸方向から0度を超え、90度未満の角度の範囲(好ましくは、その長軸方向から0度を超え、60度以下の角度の範囲、より好ましくは、その長軸方向から0度を超え、40度以下の角度の範囲、一層好ましくは、その長軸方向から0度を超え、30度以下の角度の範囲)内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し(本開示の第2の態様に係る液晶表示装置)、あるいは又、
 第2の側鎖は、上記の構造式(11)、より具体的には、上記の構造式(12)を有する(本開示の第3の態様に係る液晶表示装置)。後述する実施の形態2においても同様である。
Here, the second side chain is
It has a structure that induces dielectric anisotropy and a structure that induces vertical alignment (the liquid crystal display device according to the first aspect of the present disclosure), or alternatively
The second side chain has a range of angles greater than 0 degrees and less than 90 degrees from its major axis direction (preferably a range of angles greater than 0 degrees and less than 60 degrees from its major axis direction, more preferably A dipole moment within an angle range of greater than 0 degrees and less than or equal to 40 degrees from the major axis direction, more preferably an angle range of greater than 0 degrees and less than 30 degrees from the major axis direction; and , Having a structure for inducing vertical alignment (the liquid crystal display device according to the second aspect of the present disclosure), or
The second side chain has the above structural formula (11), more specifically, the above structural formula (12) (the liquid crystal display device according to the third aspect of the present disclosure). The same applies to the second embodiment to be described later.
 より具体的には、前述した構造式(12)で示される第2の側鎖は、例えば、以下の式(G-A01)~式(G-A20)、式(G-B01)~式(G-B20)、式(G-C01)~式(G-C16)、式(G-D01)~式(G-D16)、式(G-E01)~式(G-E02)、式(G-F01)~式(G-F12)、式(G-H01)~式(G-H12)、式(G-J01)~式(G-J14)に例示する構造を有する。ここで、「a1」、「a2」は、それぞれ、独立して、0以上、17以下の整数である。但し、式(G-E01)においては、「a1」は、2以上、17以下の整数である。これらの式に示される構造は、第2の側鎖の長軸方向から0度を超え、60度以下の角度の範囲内に双極子モーメントを有している。また、式(G-J05)、式(G-J06)に示す構造は、その長軸方向から概ね60度に双極子モーメントを有する。更には、式(G-J01)、式(G-J03)に示す構造は、その長軸方向から概ね40度に双極子モーメントを有する。更には、式(G-A01)、式(G-A11)、式(G-B01)、式(G-B11)に示す構造は、その長軸方向から概ね30度に双極子モーメントを有する。尚、これらの式に示す構造において、第2の側鎖の「A0」は、例えば、m-フェニレンジアミンを介して主鎖と結合させることができる。 More specifically, the second side chain represented by the structural formula (12) described above includes, for example, the following formula (G-A01) to formula (GA20), formula (G-B01) to formula ( GB20), formula (G-C01) to formula (G-C16), formula (G-D01) to formula (GD16), formula (GE01) to formula (GE02), formula (G -F01) to Formula (G-F12), Formula (G-H01) to Formula (G-H12), and Formula (G-J01) to Formula (G-J14). Here, “a1” and “a2” are each independently an integer of 0 or more and 17 or less. However, in the formula (GE01), “a1” is an integer of 2 or more and 17 or less. The structures shown in these formulas have a dipole moment within an angle range of greater than 0 degrees and less than or equal to 60 degrees from the major axis direction of the second side chain. Further, the structures shown in the formulas (G-J05) and (G-J06) have a dipole moment of approximately 60 degrees from the major axis direction. Furthermore, the structures shown in the formulas (G-J01) and (G-J03) have a dipole moment of approximately 40 degrees from the major axis direction. Furthermore, the structures shown in the formulas (GA01), (GA11), (GB01), and (GB11) have a dipole moment of approximately 30 degrees from the long axis direction. In the structures shown in these formulas, “A 0 ” of the second side chain can be bonded to the main chain via, for example, m-phenylenediamine.
 ここで、式(G-J01)、式(G-J02)、式(G-J03)、式(G-J04)においては、式(11)における「A2」をフッ素原子としたが、また、式(G-J07)においては、式(11)における「A3」を塩素原子としたが、また、式(G-J08)においては、式(12)における「A0」を「-COO」としたが、これらの変形例は、他の式に適用することができることは云うまでもない。 Here, in Formula (G-J01), Formula (G-J02), Formula (G-J03), and Formula (G-J04), “A 2 ” in Formula (11) is a fluorine atom. In formula (GJ07), “A 3 ” in formula (11) is a chlorine atom. In formula (GJ08), “A 0 ” in formula (12) is replaced with “—COO”. However, it goes without saying that these modifications can be applied to other equations.
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
但し、n1及びn2は、2以上、17以下の整数である。
Figure JPOXMLDOC01-appb-I000017
However, n1 and n2 are integers of 2 or more and 17 or less.
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000018
 液晶層70は、負の誘電率異方性を有する液晶分子71を含んでいる。つまり、液晶分子71は短軸方向に双極子モーメントを有している分子を含んでいる。第2の側鎖の双極子モーメントの方向は図15に示すように、この液晶分子とは異なる方向に双極子モーメントを有している、つまり、電場方向に対して垂直方向より電場に沿った方向、即ち、60度の範囲、好ましくは40度の範囲、より好ましくは30度の範囲に双極子モーメントを有している。それ故、第2の側鎖は、電場印加の際に電場方向からやや傾いた方向に並び易くなる。 The liquid crystal layer 70 includes liquid crystal molecules 71 having negative dielectric anisotropy. That is, the liquid crystal molecules 71 include molecules having a dipole moment in the minor axis direction. As shown in FIG. 15, the direction of the dipole moment of the second side chain has a dipole moment in a direction different from this liquid crystal molecule, that is, along the electric field from the direction perpendicular to the electric field direction. It has a dipole moment in the direction, ie in the range of 60 degrees, preferably in the range of 40 degrees, more preferably in the range of 30 degrees. Therefore, the second side chains are easily arranged in a direction slightly inclined from the electric field direction when the electric field is applied.
 配向処理前・化合物は、主鎖として耐熱性が高い構造を含むことが好ましい。これにより、液晶表示装置(液晶表示素子)では、高温環境下に曝されても、配向膜21,51中の配向処理後・化合物が液晶分子71に対する配向規制能を維持するため、応答特性と共にコントラスト等の表示特性が良好に維持され、信頼性が確保される。ここで、主鎖は、繰り返し単位中にイミド結合を含むことが好ましい。主鎖中にイミド結合を含む配向処理前・化合物として、例えば、式(3)で表されるポリイミド構造を含む高分子化合物が挙げられる。式(3)に示すポリイミド構造を含む高分子化合物は、式(3)に示すポリイミド構造のうちの1種から構成されていてもよいし、複数種がランダムに連結して含まれていてもよいし、式(3)に示す構造の他に、他の構造を含んでいてもよい。 It is preferable that the compound before alignment treatment includes a structure having high heat resistance as a main chain. Thereby, in the liquid crystal display device (liquid crystal display element), even after being exposed to a high temperature environment, the compound after alignment treatment in the alignment films 21 and 51 maintains the alignment regulating ability with respect to the liquid crystal molecules 71. Display characteristics such as contrast are maintained well, and reliability is ensured. Here, the main chain preferably contains an imide bond in the repeating unit. Examples of the pre-alignment treatment compound containing an imide bond in the main chain include a polymer compound containing a polyimide structure represented by the formula (3). The polymer compound containing the polyimide structure represented by the formula (3) may be composed of one of the polyimide structures represented by the formula (3), or a plurality of kinds may be randomly connected and contained. In addition to the structure shown in Formula (3), other structures may be included.
Figure JPOXMLDOC01-appb-I000019
ここで、R1は4価の有機基であり、R2は2価の有機基であり、n1は1以上の整数である。
Figure JPOXMLDOC01-appb-I000019
Here, R1 is a tetravalent organic group, R2 is a divalent organic group, and n1 is an integer of 1 or more.
 式(3)におけるR1及びR2は、炭素を含んで構成された4価あるいは2価の基であれば任意であるが、R1及びR2のうちのいずれか一方に、第1の側鎖としての架橋性官能基又は重合性官能基を含んでいることが好ましい。配向処理後・化合物において、十分な配向規制能が得られ易いからである。 R1 and R2 in the formula (3) are arbitrary as long as they are tetravalent or divalent groups containing carbon, but either one of R1 and R2 can be used as the first side chain. It preferably contains a crosslinkable functional group or a polymerizable functional group. This is because sufficient alignment regulation ability is easily obtained after the alignment treatment and in the compound.
 また、配向処理前・化合物では、側鎖は主鎖に複数結合しており、複数の側鎖のうちの少なくとも1つが、架橋性官能基又は重合性官能基を含んだ第1の側鎖であることが好ましい。即ち、配向処理前・化合物は、架橋性を有する第1の側鎖の他に、架橋性を示さない側鎖を含んでいてもよい。架橋性官能基又は重合性官能基を含む第1の側鎖は、1種であってもよいし、複数種であってもよい。架橋性官能基又は重合性官能基は、液晶層70を形成した後に架橋反応又は重合可能な官能基であれば任意であり、光反応によって架橋構造を形成する基であってもよいし、熱反応によって架橋構造を形成する基であってもよいが、中でも、光反応によって架橋構造を形成する、光反応性の架橋性官能基又は重合性官能基(感光性を有する感光基)が好ましい。液晶分子71の配向を所定の方向に規制し易く、応答特性が向上すると共に良好な表示特性を有する液晶表示装置(液晶表示素子)の製造を容易にするからである。 In addition, in the compound before the alignment treatment, a plurality of side chains are bonded to the main chain, and at least one of the plurality of side chains is a first side chain including a crosslinkable functional group or a polymerizable functional group. Preferably there is. That is, the compound before alignment treatment / compound may contain a side chain that does not exhibit crosslinkability in addition to the first side chain that has crosslinkability. 1 type may be sufficient as the 1st side chain containing a crosslinkable functional group or a polymerizable functional group, and multiple types may be sufficient as it. The crosslinkable functional group or the polymerizable functional group may be any functional group that can be crosslinked or polymerized after the liquid crystal layer 70 is formed, and may be a group that forms a crosslinked structure by a photoreaction. A group that forms a crosslinked structure by reaction may be used, but among them, a photoreactive crosslinkable functional group or a polymerizable functional group (photosensitive photosensitive group) that forms a crosslinked structure by photoreaction is preferable. This is because the orientation of the liquid crystal molecules 71 is easily regulated in a predetermined direction, the response characteristics are improved, and the manufacture of a liquid crystal display device (liquid crystal display element) having good display characteristics is facilitated.
 光反応性の架橋性官能基(感光性を有する感光基であり、例えば、光二量化感光基)として、例えば、カルコン、シンナメート、シンナモイル、クマリン、マレイミド、ベンゾフェノン、ノルボルネン、オリザノール、及び、キトサンのうちのいずれか1種の構造を含む基が挙げられる。これらのうち、カルコン、シンナメートあるいはシンナモイルの構造を含む基として、例えば、式(41)で表される基が挙げられる。式(41)に示す基を含む第1の側鎖を有する配向処理前・化合物が架橋すると、例えば、式(42)に示す構造が形成される。即ち、式(41)に示す基を含む高分子化合物から生成された配向処理後・化合物は、シクロブタン骨格を有する式(42)に示す構造を含む。尚、例えば、マレイミドといった光反応性の架橋性官能基は、場合によっては、光二量化反応だけでなく、重合反応も示す。従って、架橋性官能基又は重合性官能基を有する高分子化合物が架橋又は重合した化合物といった表現としている。 Examples of photoreactive crosslinkable functional groups (photosensitive photosensitive groups such as photodimerized photosensitive groups) include chalcone, cinnamate, cinnamoyl, coumarin, maleimide, benzophenone, norbornene, oryzanol, and chitosan. The group containing any one type of these is mentioned. Among these, examples of the group containing a chalcone, cinnamate, or cinnamoyl structure include a group represented by the formula (41). When the pre-alignment treatment compound having the first side chain containing the group represented by the formula (41) is crosslinked, for example, a structure represented by the formula (42) is formed. That is, the post-alignment treatment compound generated from the polymer compound containing the group represented by the formula (41) includes a structure represented by the formula (42) having a cyclobutane skeleton. In addition, for example, a photoreactive crosslinkable functional group such as maleimide may exhibit not only a photodimerization reaction but also a polymerization reaction. Accordingly, the expression is a compound in which a polymer compound having a crosslinkable functional group or a polymerizable functional group is crosslinked or polymerized.
Figure JPOXMLDOC01-appb-I000020
ここで、R3は芳香族環を含む2価の基であり、R4は1又は2以上の環構造を含む1価の基であり、R5は水素原子、又は、アルキル基あるいはその誘導体である。
Figure JPOXMLDOC01-appb-I000020
Here, R3 is a divalent group containing an aromatic ring, R4 is a monovalent group containing one or two or more ring structures, and R5 is a hydrogen atom, an alkyl group or a derivative thereof.
 式(41)におけるR3は、ベンゼン環等の芳香族環を含む2価の基であれば任意であり、芳香族環の他に、カルボニル基、エーテル結合、エステル結合あるいは炭化水素基を含んでいてもよい。また、式(41)におけるR4は、1又は2以上の環構造を含む1価の基であれば任意であり、環構造の他に、カルボニル基、エーテル結合、エステル結合、炭化水素基あるいはハロゲン原子等を含んでいてもよい。R4が有する環構造として、骨格を構成する元素として炭素を含む環であれば任意であり、その環構造として、例えば、芳香族環、複素環あるいは脂肪族環、又は、それらの連結あるいは縮合した環構造等が挙げられる。式(41)におけるR5は、水素原子、又は、アルキル基あるいはその誘導体であれば任意である。ここで、「誘導体」とは、アルキル基が有する水素原子の一部あるいは全部がハロゲン原子等の置換基により置換された基のことを云う。また、R5として導入されるアルキル基の炭素数は任意である。R5として、水素原子あるいはメチル基が好ましい。良好な架橋反応性が得られるからである。 R3 in the formula (41) is arbitrary as long as it is a divalent group including an aromatic ring such as a benzene ring, and includes a carbonyl group, an ether bond, an ester bond or a hydrocarbon group in addition to the aromatic ring. May be. R4 in formula (41) is arbitrary as long as it is a monovalent group containing one or two or more ring structures. In addition to the ring structure, R4 is a carbonyl group, an ether bond, an ester bond, a hydrocarbon group, or a halogen atom. It may contain atoms and the like. The ring structure of R4 is arbitrary as long as it contains carbon as an element constituting the skeleton, and as the ring structure, for example, an aromatic ring, a heterocyclic ring, an aliphatic ring, or a combination or condensed thereof Examples thereof include a ring structure. R5 in formula (41) is arbitrary as long as it is a hydrogen atom, an alkyl group, or a derivative thereof. Here, the “derivative” refers to a group in which some or all of the hydrogen atoms of the alkyl group are substituted with a substituent such as a halogen atom. Moreover, carbon number of the alkyl group introduce | transduced as R5 is arbitrary. R5 is preferably a hydrogen atom or a methyl group. This is because good crosslinking reactivity can be obtained.
 式(42)におけるR3同士は、互いに同一であってもよいし、異なっていてもよい。このことは、式(41)におけるR4同士及びR5同士についても同様である。式(42)におけるR3、R4及びR5として、例えば、上記した式(41)におけるR3、R4及びR5と同様のものが挙げられる。 R3 in the formula (42) may be the same or different from each other. The same applies to R4 and R5 in the formula (41). Examples of R3, R4, and R5 in Formula (42) include the same as R3, R4, and R5 in Formula (41) described above.
 式(41)に示した基として、例えば、式(41-1)~式(41-33)で表される基が挙げられる。但し、式(41)に示した構造を有する基であれば、式(41-1)~式(41-33)に示す基に限定されない。 Examples of the group represented by formula (41) include groups represented by formula (41-1) to formula (41-33). However, the group is not limited to the groups represented by the formulas (41-1) to (41-33) as long as the group has the structure represented by the formula (41).
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000024
 配向処理前・化合物は、液晶分子71を基板面に対して垂直方向に配向させるための構造、つまり、垂直配向性を誘起する構造(以下、『垂直配向誘起構造部』と呼ぶ)を含んでいる。そして、これによって、配向膜21,51が配向処理後・化合物とは別に垂直配向誘起構造部を有する化合物(所謂、通常の垂直配向剤)を含まなくても、液晶分子71全体の配向規制が可能となる。その上、垂直配向誘起構造部を有する化合物を別に含む場合よりも、液晶層70に対する配向規制機能をより均一に発揮可能な配向膜21,51が形成され易い。垂直配向誘起構造部は、配向処理前・化合物においては、第2の側鎖に含まれていることが好ましいが、主鎖に含まれていてもよいし、第2の側鎖及び主鎖に含まれていてもよい。また、配向処理前・化合物が上記した式(3)に示したポリイミド構造を含む場合、R2として垂直配向誘起構造部を含む構造(繰り返し単位)と、R2として架橋性官能基又は重合性官能基を含む構造(繰り返し単位)との2種の構造を含んでいることが好ましい。容易に入手可能であるからである。尚、垂直配向誘起構造部は、配向処理前・化合物に含まれていれば、配向処理後・化合物においても含まれる。 Prior to the alignment treatment, the compound includes a structure for aligning the liquid crystal molecules 71 in a direction perpendicular to the substrate surface, that is, a structure for inducing vertical alignment (hereinafter referred to as “vertical alignment inducing structure”). Yes. Thus, even if the alignment films 21 and 51 do not contain a compound having a vertical alignment inducing structure part (so-called normal vertical alignment agent) separately from the compound after alignment treatment, the alignment regulation of the entire liquid crystal molecules 71 is restricted. It becomes possible. In addition, the alignment films 21 and 51 that can more uniformly exhibit the alignment regulating function with respect to the liquid crystal layer 70 are more easily formed than the case where the compound having the vertical alignment inducing structure portion is included separately. The vertical alignment-inducing structure is preferably contained in the second side chain in the pre-alignment treatment compound, but may be contained in the main chain or in the second side chain and main chain. It may be included. In addition, when the compound before alignment treatment includes the polyimide structure represented by the above formula (3), a structure (repeating unit) including a vertical alignment inducing structure portion as R2, and a crosslinkable functional group or a polymerizable functional group as R2. It is preferable that it contains two types of structures, including a structure containing repeating units (repeating units). It is because it is easily available. In addition, if the vertical alignment inducing structure portion is included in the compound before the alignment treatment, it is also included in the compound after the alignment treatment.
 また、本開示の第1の構成に則って表現すれば、架橋前の高分子化合物(配向処理前・化合物)は、例えば、式(1)で表される基を第1の側鎖として有する化合物から成る。式(1)に示した基は液晶分子71に対して沿うように動くことができるため、配向処理前・化合物が架橋する際に、式(1)に示した基が液晶分子71の配向方向に沿った状態で架橋性官能基又は重合性官能基と一緒に固定される。そして、この固定された式(1)に示した基により、液晶分子71の配向を所定の方向により規制し易くなるため、良好な表示特性を有する液晶表示素子の製造をより容易にすることができる。 Moreover, if expressed in accordance with the first configuration of the present disclosure, the polymer compound before crosslinking (before the alignment treatment / compound) has, for example, a group represented by the formula (1) as the first side chain. Composed of compounds. Since the group represented by the formula (1) can move along the liquid crystal molecules 71, the group represented by the formula (1) is aligned in the alignment direction of the liquid crystal molecules 71 before the alignment treatment and when the compound is crosslinked. Are fixed together with a crosslinkable functional group or a polymerizable functional group. The group represented by the fixed formula (1) makes it easier to regulate the alignment of the liquid crystal molecules 71 in a predetermined direction, and therefore, it is possible to more easily manufacture a liquid crystal display element having good display characteristics. it can.
-R1’-R2’-R3’   (1)
ここで、R1’は、炭素数1以上の直鎖状又は分岐状の2価の、エーテル基あるいはエステル基を含むことある有機基であり、高分子化合物あるいは架橋した化合物(配向処理前・化合物あるいは配向処理後・化合物)の主鎖に結合しており、あるいは又、R1’は、エーテル、エステル、エーテルエステル、アセタール、ケタール、ヘミアセタール及びヘミケタールから成る群から選択された少なくとも1種の結合基であり、高分子化合物あるいは架橋した化合物(配向処理前・化合物あるいは配向処理後・化合物)の主鎖に結合している。R2’は、複数の環構造を含む2価の有機基であり、環構造を構成する原子のうちの1つはR1’に結合している。R3’は、水素原子、ハロゲン原子、アルキル基、アルコキシ基、カーボネート基を有する1価の基、又は、それらの誘導体である。
-R 1 '-R 2 ' -R 3 '(1)
Here, R 1 ′ is a linear or branched divalent organic group having 1 or more carbon atoms, which may contain an ether group or an ester group. R 1 ′ is at least one selected from the group consisting of ethers, esters, ether esters, acetals, ketals, hemiacetals and hemiketals. It is bonded to the main chain of the polymer compound or the cross-linked compound (before or after alignment treatment or compound after alignment treatment). R 2 ′ is a divalent organic group containing a plurality of ring structures, and one of the atoms constituting the ring structure is bonded to R 1 ′. R 3 ′ is a monovalent group having a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group or a carbonate group, or a derivative thereof.
 式(1)中のR1’は、R2’及びR3’を主鎖に固定すると共に、長いR1’を選択すれば液晶分子に対して大きなプレチルトを付与するための、また、短いR1’を選択すればプレチルト角を容易に一定にするための、スペーサ部分として機能するための部位であり、R1’として、例えば、アルキレン基等が挙げられる。このアルキレン基は、途中の炭素原子間にエーテル結合を有していてもよく、そのエーテル結合を有する箇所は、1箇所でもよいし、2箇所以上でもよい。また、R1’は、カルボニル基又はカーボネート基を有していてもよい。R1’の炭素数は、6以上であることがより好ましい。式(1)に示した基が液晶分子71と相互作用するため、液晶分子71に対して沿い易くなるからである。この炭素数は、R1’の長さが液晶分子71の末端鎖の長さとほぼ同等となるように決定されることが好ましい。 R 1 ′ in formula (1) fixes R 2 ′ and R 3 ′ to the main chain, and gives a large pretilt to the liquid crystal molecules if long R 1 ′ is selected, and is short. If R 1 ′ is selected, it is a site for functioning as a spacer part for making the pretilt angle easily constant. Examples of R 1 ′ include an alkylene group. This alkylene group may have an ether bond between carbon atoms in the middle, and the number of positions having the ether bond may be one or two or more. R 1 ′ may have a carbonyl group or a carbonate group. The carbon number of R 1 ′ is more preferably 6 or more. This is because the group represented by the formula (1) interacts with the liquid crystal molecules 71 and therefore easily follows the liquid crystal molecules 71. The number of carbon atoms is preferably determined so that the length of R 1 ′ is approximately equal to the length of the terminal chain of the liquid crystal molecule 71.
 式(1)中のR2’は、一般的なネマティック液晶分子に含まれる環構造(コア部位)に沿う部分である。R2’として、例えば、1,4-フェニレン基、1,4-シクロヘキシレン基、ピリミジン-2,5-ジイル基、1,6-ナフタレン基、ステロイド骨格を有する2価の基又はそれらの誘導体等のように、液晶分子に含まれる環構造と同様の基あるいは骨格が挙げられる。ここで、「誘導体」とは、上記した一連の基に1又は2以上の置換基が導入された基である。 R 2 ′ in the formula (1) is a portion along a ring structure (core portion) contained in a general nematic liquid crystal molecule. As R 2 ′, for example, 1,4-phenylene group, 1,4-cyclohexylene group, pyrimidine-2,5-diyl group, 1,6-naphthalene group, divalent group having a steroid skeleton or derivatives thereof And the like, and the same group or skeleton as the ring structure contained in the liquid crystal molecule. Here, the “derivative” is a group in which one or two or more substituents are introduced into the series of groups described above.
 式(1)中のR3’は、液晶分子の末端鎖に沿う部分であり、R3’として、例えば、アルキル基又はハロゲン化アルキル基等が挙げられる。但し、ハロゲン化アルキル基では、アルキル基のうちの少なくとも1つの水素原子がハロゲン原子に置換されていればよく、そのハロゲン原子の種類は任意である。アルキル基又はハロゲン化アルキル基は、途中の炭素原子間にエーテル結合を有していてもよく、そのエーテル結合を有する箇所は、1箇所でもよいし、2箇所以上でもよい。また、R3’は、カルボニル基又はカーボネート基を有していてもよい。R3’の炭素数は、R1’と同様の理由により、6以上であることがより好ましい。 R 3 ′ in the formula (1) is a portion along the terminal chain of the liquid crystal molecule, and examples of R 3 ′ include an alkyl group or a halogenated alkyl group. However, in the halogenated alkyl group, it suffices that at least one hydrogen atom in the alkyl group is substituted with a halogen atom, and the type of the halogen atom is arbitrary. The alkyl group or the halogenated alkyl group may have an ether bond between carbon atoms in the middle, and the position having the ether bond may be one or two or more. R 3 ′ may have a carbonyl group or a carbonate group. The number of carbon atoms in R 3 ′ is more preferably 6 or more for the same reason as R 1 ′.
 具体的には、式(1)に示した基として、例えば、式(1-1)~式(1-12)で表される1価の基等が挙げられる。 Specifically, examples of the group shown in Formula (1) include monovalent groups represented by Formula (1-1) to Formula (1-12).
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000026
 尚、式(1)に示した基は、液晶分子71に対して沿うように動くことができれば、上記した基に限定されない。 Note that the group shown in Formula (1) is not limited to the above group as long as it can move along the liquid crystal molecules 71.
 あるいは又、本開示の第2の構成に則って表現すれば、架橋前の高分子化合物(配向処理前・化合物)は、式(2)で表される基を第1の側鎖として有する化合物から成る。架橋する部位の他に、液晶分子71に沿う部位とチルト角を規定する部位とを有するため、液晶分子71に対して沿う第1の側鎖の部位が液晶分子71により沿った状態で固定可能である。そして、これにより、液晶分子71の配向を所定の方向により規制し易くなるため、良好な表示特性を有する液晶表示素子の製造をより容易にすることができる。 Alternatively, if expressed in accordance with the second configuration of the present disclosure, the polymer compound before crosslinking (the compound before alignment treatment / compound) has a group represented by the formula (2) as the first side chain. Consists of. In addition to the cross-linking site, it has a site along the liquid crystal molecule 71 and a site that defines the tilt angle, so the first side chain site along the liquid crystal molecule 71 can be fixed along the liquid crystal molecule 71. It is. As a result, the orientation of the liquid crystal molecules 71 can be easily regulated in a predetermined direction, so that it is possible to more easily manufacture a liquid crystal display element having good display characteristics.
-R11’-R12’-R13’-R14’   (2)
ここで、R11’は、炭素数1以上、20以下、好ましくは、炭素数3以上、12以下の直鎖状又は分岐状の2価の、エーテル基あるいはエステル基を含むことある有機基であり、高分子化合物あるいは架橋した化合物(配向処理前・化合物あるいは配向処理後・化合物)の主鎖に結合しており、あるいは又、R11’は、エーテル、エステル、エーテルエステル、アセタール、ケタール、ヘミアセタール及びヘミケタールから成る群から選択された少なくとも1種の結合基であり、高分子化合物あるいは架橋した化合物(配向処理前・化合物あるいは配向処理後・化合物)の主鎖に結合している。R12’は、例えば、カルコン、シンナメート、シンナモイル、クマリン、マレイミド、ベンゾフェノン、ノルボルネン、オリザノール、キトサン、アクリロイル、メタクリロイル、ビニル、エポキシ及びオキセタンのうちのいずれか1種の構造を含む2価の基、又は、エチニレン基である。R13’は、複数の環構造を含む2価の有機基である。R14’は、水素原子、ハロゲン原子、アルキル基、アルコキシ基、カーボネート基を有する1価の基、又は、それらの誘導体である。
-R 11 '-R 12 ' -R 13 '-R 14 ' (2)
Here, R 11 ′ is an organic group which may contain a linear or branched divalent ether group or ester group having 1 to 20 carbon atoms, preferably 3 to 12 carbon atoms. Yes, and bonded to the main chain of the polymer compound or the crosslinked compound (before or after the alignment treatment or after the alignment treatment), or R 11 ′ is ether, ester, ether ester, acetal, ketal, It is at least one linking group selected from the group consisting of hemiacetal and hemiketal, and is bonded to the main chain of a polymer compound or a crosslinked compound (before or after alignment treatment / compound). R 12 ′ is, for example, a divalent group containing any one structure of chalcone, cinnamate, cinnamoyl, coumarin, maleimide, benzophenone, norbornene, oryzanol, chitosan, acryloyl, methacryloyl, vinyl, epoxy and oxetane, Or, it is an ethynylene group. R 13 ′ is a divalent organic group containing a plurality of ring structures. R 14 ′ is a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a monovalent group having a carbonate group, or a derivative thereof.
 式(2)中のR11’は、配向処理前・化合物においてはチルト角を規定する部位であり、配向処理前・化合物においては可撓性を有することが好ましい。R11’として、例えば、式(1)中のR1’について説明した基が挙げられる。式(2)に示した基では、R11’を軸としてR12’~R14’が動き易いため、R13’及びR14’が液晶分子71に対して沿い易くなっている。R11’の炭素数は、6以上、10以下であることがより好ましい。 R 11 ′ in the formula (2) is a site that defines a tilt angle before the alignment treatment / compound, and preferably has flexibility before the alignment treatment / compound. Examples of R 11 ′ include the groups described for R 1 ′ in formula (1). In the group shown in the formula (2), R 12 ′ to R 14 ′ are easy to move around R 11 ′, so that R 13 ′ and R 14 ′ are easy to follow the liquid crystal molecules 71. R 11 ′ has more preferably 6 or more and 10 or less carbon atoms.
 式(2)中のR12’は、架橋性官能基又は重合性官能基を有する部位である。この架橋性官能基又は重合性官能基は、上記したように、光反応によって架橋構造を形成する基であってもよいし、熱反応によって架橋構造を形成する基であってもよい。具体的には、R12’として、例えば、カルコン、シンナメート、シンナモイル、クマリン、マレイミド、ベンゾフェノン、ノルボルネン、オリザノール、キトサン、アクリロイル、メタクリロイル、ビニル、エポキシ及びオキセタンのうちのいずれか1種の構造を含む2価の基、又は、エチニレン基を挙げることができる。 R 12 ′ in the formula (2) is a site having a crosslinkable functional group or a polymerizable functional group. As described above, this crosslinkable functional group or polymerizable functional group may be a group that forms a crosslinked structure by a photoreaction or a group that forms a crosslinked structure by a thermal reaction. Specifically, R 12 ′ includes, for example, any one of chalcone, cinnamate, cinnamoyl, coumarin, maleimide, benzophenone, norbornene, oryzanol, chitosan, acryloyl, methacryloyl, vinyl, epoxy, and oxetane. A divalent group or an ethynylene group can be exemplified.
 式(2)中のR13’は、液晶分子71のコア部位に対して沿うことができる部位であり、R13’として、例えば、式(1)中のR2’について説明した基等が挙げられる。 R 13 ′ in the formula (2) is a site that can follow the core site of the liquid crystal molecule 71, and examples of the R 13 ′ include the group described for R 2 ′ in the formula (1). Can be mentioned.
 式(2)中のR14’は、液晶分子71の末端鎖に沿う部位であり、R14’として、例えば、式(1)中のR3’について説明した基等が挙げられる。 R 14 ′ in the formula (2) is a site along the terminal chain of the liquid crystal molecule 71, and examples of R 14 ′ include the group described for R 3 ′ in the formula (1).
 具体的には、式(2)に示した基として、例えば、式(2-1)~式(2-11)で表される1価の基等が挙げられる。 Specifically, examples of the group represented by the formula (2) include monovalent groups represented by the formulas (2-1) to (2-11).
Figure JPOXMLDOC01-appb-I000027
ここで、nは3以上、20以下の整数である。
Figure JPOXMLDOC01-appb-I000027
Here, n is an integer of 3 or more and 20 or less.
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000028
 尚、式(2)に示した基は、上記した4つの部位(R11’~R14’)を有していれば、上記した基に限定されない。 The group shown in the formula (2) is not limited to the above group as long as it has the above-described four sites (R 11 ′ to R 14 ′).
 また、本開示の第3の構成に則って表現すれば、高分子化合物(配向処理前・化合物)を架橋させることにより得られた化合物(配向処理後・化合物)は、第1の側鎖及び第2の側鎖、並びに、基板に対して第1の側鎖及び第2の側鎖を支持する主鎖から構成されており、第1の側鎖は、主鎖に結合し、架橋した架橋部、及び、架橋部に結合した末端構造部から構成されており、液晶分子は、第2の側鎖に沿い、又は、第2の側鎖に挟まれることでプレチルトが付与される。あるいは又、本開示の第3の構成(後述する実施の形態2を参照)に則って表現すれば、高分子化合物(配向処理前・化合物)を変形させることにより得られた化合物(配向処理後・化合物)は、第1の側鎖及び第2の側鎖、並びに、基板に対して第1の側鎖及び第2の側鎖を支持する主鎖から構成されており、第1の側鎖は、主鎖に結合し、変形した変形部、及び、変形部に結合した末端構造部から構成されており、液晶分子は、第2の側鎖に沿い、又は、第2の側鎖に挟まれることでプレチルトが付与される。あるいは又、本開示の第3の構成(後述する実施の形態2を参照)に則って表現すれば、高分子化合物にエネルギー線を照射することにより得られた化合物は、第1の側鎖及び第2の側鎖、並びに、基板に対して第1の側鎖及び第2の側鎖を支持する主鎖から構成されており、第1の側鎖は、主鎖に結合し、架橋あるいは変形した架橋・変形部、及び、架橋・変形部に結合した末端構造部から構成されており、液晶分子は、第2の側鎖に沿い、又は、第2の側鎖に挟まれることでプレチルトが付与される。 In addition, if expressed in accordance with the third configuration of the present disclosure, the compound (after alignment treatment / compound) obtained by crosslinking the polymer compound (before alignment treatment / compound) has the first side chain and It is composed of a second side chain and a main chain that supports the first side chain and the second side chain with respect to the substrate. The first side chain is bonded to the main chain and crosslinked. The liquid crystal molecules are given a pretilt along the second side chain or sandwiched between the second side chains. Alternatively, if expressed in accordance with the third configuration of the present disclosure (see Embodiment 2 to be described later), a compound (after alignment treatment) obtained by deforming a polymer compound (before alignment treatment / compound) The compound) is composed of a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the substrate, and the first side chain Is composed of a deformed portion that is bonded to the main chain and deformed, and a terminal structure portion that is bonded to the deformed portion, and the liquid crystal molecules are sandwiched between the second side chains or between the second side chains. This gives a pretilt. Alternatively, if expressed in accordance with the third configuration of the present disclosure (see Embodiment 2 described later), the compound obtained by irradiating the polymer compound with energy rays includes the first side chain and It is composed of a second side chain and a main chain that supports the first side chain and the second side chain with respect to the substrate. The first side chain is bonded to the main chain and is crosslinked or deformed. The liquid crystal molecules have a pretilt by being along the second side chain or being sandwiched between the second side chains. Is granted.
 ここで、本開示の第3の構成において、第1の側鎖が架橋した架橋部は、式(2)におけるR12’(但し、架橋後)が相当する。また、末端構造部は、式(2)におけるR13’及びR14’が相当する。ここで、配向処理後・化合物にあっては、例えば、主鎖から延びた2つの第1の側鎖における架橋部が相互に架橋し、一方の架橋部から延びた末端構造部と、他方の架橋部から延びた末端構造部との間に、恰も、液晶分子の一部が挟まれた状態となり、しかも、末端構造部は、基板に対して所定の角度を成した状態で固定されるが故に、液晶分子はプレチルトが付与される。 Here, in the third configuration of the present disclosure, the cross-linked portion in which the first side chain is cross-linked corresponds to R 12 ′ in Formula (2) (but after cross-linking). The terminal structure portion corresponds to R 13 ′ and R 14 ′ in the formula (2). Here, in the compound after the alignment treatment, for example, the cross-linked parts in the two first side chains extending from the main chain are cross-linked with each other, and the terminal structure part extended from one cross-linked part and the other A part of the liquid crystal molecules is sandwiched between the terminal structure part extending from the bridging part, and the terminal structure part is fixed at a predetermined angle with respect to the substrate. Therefore, the liquid crystal molecules are given a pretilt.
 あるいは又、本開示の第4の構成に則って表現すれば、高分子化合物(配向処理前・化合物)を架橋させることにより得られた化合物(配向処理後・化合物)は、第1の側鎖及び第2の側鎖、並びに、基板に対して第1の側鎖及び第2の側鎖を支持する主鎖から構成されており、第1の側鎖は、主鎖に結合し、架橋した架橋部、及び、架橋部に結合し、メソゲン基を有する末端構造部から構成されている。ここで、第1の側鎖は光二量化感光基を有する形態とすることができる。また、主鎖と架橋部とは共有結合によって結合しており、架橋部と末端構造部とは共有結合によって結合している形態とすることができる。あるいは又、本開示の第4の構成(後述する実施の形態2を参照)に則って表現すれば、高分子化合物(配向処理前・化合物)を変形させることにより得られた化合物(配向処理後・化合物)は、第1の側鎖及び第2の側鎖、並びに、基板に対して第1の側鎖及び第2の側鎖を支持する主鎖から構成されており、第1の側鎖は、主鎖に結合し、変形した変形部、及び、変形部に結合し、メソゲン基を有する末端構造部から構成されている。あるいは又、本開示の第4の構成(後述する実施の形態2を参照)に則って表現すれば、高分子化合物(配向処理前・化合物)にエネルギー線を照射することにより得られた化合物(配向処理後・化合物)は、第1の側鎖及び第2の側鎖、並びに、基板に対して第1の側鎖及び第2の側鎖を支持する主鎖から構成されており、第1の側鎖は、主鎖に結合し、架橋あるいは変形した架橋・変形部、及び、架橋・変形部に結合し、メソゲン基を有する末端構造部から構成されている。 Alternatively, if expressed in accordance with the fourth configuration of the present disclosure, the compound (after the alignment treatment / compound) obtained by crosslinking the polymer compound (before the alignment treatment / compound) has the first side chain. And a second side chain, and a main chain supporting the first side chain and the second side chain with respect to the substrate. The first side chain is bonded to the main chain and crosslinked. It is comprised from the bridge | crosslinking part and the terminal structure part which couple | bonds with a bridge | crosslinking part and has a mesogenic group. Here, the 1st side chain can be made into the form which has a photodimerization photosensitive group. Further, the main chain and the cross-linked part are bonded by a covalent bond, and the cross-linked part and the terminal structure part can be bonded by a covalent bond. Alternatively, if expressed in accordance with the fourth configuration of the present disclosure (see Embodiment 2 described later), a compound (after alignment treatment) obtained by deforming a polymer compound (before alignment treatment / compound) The compound) is composed of a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the substrate, and the first side chain Is composed of a deformed portion that is bonded to the main chain and deformed, and a terminal structure portion that is bonded to the deformed portion and has a mesogenic group. Alternatively, if expressed in accordance with the fourth configuration of the present disclosure (see Embodiment 2 described later), a compound obtained by irradiating a polymer compound (before alignment treatment / compound) with energy rays ( The compound after the alignment treatment is composed of a first side chain and a second side chain, and a main chain that supports the first side chain and the second side chain with respect to the substrate. The side chain is composed of a crosslinked / deformed portion bonded to the main chain and crosslinked or deformed, and a terminal structure portion bonded to the crosslinked / deformed portion and having a mesogenic group.
 ここで、本開示の第4の構成にあっては、架橋性官能基又は重合性官能基(感光性官能基)である光二量化感光基として、前述したとおり、例えば、カルコン、シンナメート、シンナモイル、クマリン、マレイミド、ベンゾフェノン、ノルボルネン、オリザノール、及び、キトサンのうちのいずれか1種の構造を含む基を挙げることができる。重合性官能基として、例えば、アクリロイル、メタクリロイル 、ビニル、エポキシ、オキセタンのうちのいずれか1種の構造を含む基を挙げることができる。また、末端構造部を構成する剛直なメソゲン基は、側鎖として液晶性を発現するものでも、液晶性を発現しないものでもよく、具体的な構造として、ステロイド誘導体、コレステロール誘導体、ビフェニル、トリフェニル、ナフタレン等を挙げることができる。更には、末端構造部として、式(2)におけるR13’及びR14’を挙げることができる。 Here, in the fourth configuration of the present disclosure, as the photodimerized photosensitive group that is a crosslinkable functional group or a polymerizable functional group (photosensitive functional group), as described above, for example, chalcone, cinnamate, cinnamoyl, A group including any one of the structures of coumarin, maleimide, benzophenone, norbornene, oryzanol, and chitosan can be given. Examples of the polymerizable functional group include a group including any one of acryloyl, methacryloyl, vinyl, epoxy, and oxetane. In addition, the rigid mesogenic group constituting the terminal structure part may be one that exhibits liquid crystallinity as a side chain or one that does not exhibit liquid crystallinity. Specific structures include steroid derivatives, cholesterol derivatives, biphenyl, and triphenyl. And naphthalene. Furthermore, examples of the terminal structure part include R 13 ′ and R 14 ′ in Formula (2).
 また、配向膜21,51は、上記した配向処理後・化合物の他に、他の垂直配向剤を含んでいてもよい。他の垂直配向剤として、垂直配向誘起構造部を有するポリイミドや、垂直配向誘起構造部を有するポリシロキサン等が挙げられる。 The alignment films 21 and 51 may contain other vertical alignment agents in addition to the above-described alignment treatment / compound. Other vertical alignment agents include polyimide having a vertical alignment inducing structure, polysiloxane having a vertical alignment inducing structure, and the like.
 液晶層70は、負の誘電率異方性を有する液晶分子71を含んでいる。液晶分子71は、例えば、互いに直交する長軸及び短軸をそれぞれ中心軸として回転対称な形状をなし、負の誘電率異方性を有している。 The liquid crystal layer 70 includes liquid crystal molecules 71 having negative dielectric anisotropy. The liquid crystal molecules 71 have, for example, a rotationally symmetric shape with a major axis and a minor axis orthogonal to each other as central axes, and negative dielectric anisotropy.
 液晶分子71は、第1配向膜21との界面近傍において、第1配向膜21に保持された液晶分子71Aと、第2配向膜51との界面近傍において第2配向膜51に保持された液晶分子71Bと、それら以外の液晶分子71Cとに分類することができる。液晶分子71Cは、液晶層70の厚み方向における中間領域に位置し、駆動電圧がオフの状態において液晶分子71Cの長軸方向(ダイレクタ)が第1基板20及び第2基板50に対してほぼ垂直になるように配列されている。また、液晶分子71Bは、第2配向膜51の近傍に位置し、駆動電圧がオフの状態において液晶分子71Bの長軸方向(ダイレクタ)が第2基板50に対して第2プレチルト角θ2にて配向されている。更には、液晶分子71Aは、第1配向膜21の近傍に位置し、駆動電圧がオフの状態において液晶分子71Aの長軸方向(ダイレクタ)が第1基板20に対して第1プレチルト角θ1(>θ2)を成して傾いて配列されている。 The liquid crystal molecules 71 are liquid crystal molecules held in the second alignment film 51 in the vicinity of the interface between the liquid crystal molecules 71A held in the first alignment film 21 and the second alignment film 51 in the vicinity of the interface with the first alignment film 21. They can be classified into molecules 71B and liquid crystal molecules 71C other than these. The liquid crystal molecules 71C are located in an intermediate region in the thickness direction of the liquid crystal layer 70, and the major axis direction (director) of the liquid crystal molecules 71C is substantially perpendicular to the first substrate 20 and the second substrate 50 when the drive voltage is off. It is arranged to be. The liquid crystal molecules 71B are located in the vicinity of the second alignment film 51, and the major axis direction (director) of the liquid crystal molecules 71B is set to the second pretilt angle θ 2 with respect to the second substrate 50 when the drive voltage is off. Oriented. Further, the liquid crystal molecules 71A are located in the vicinity of the first alignment film 21, and the major axis direction (director) of the liquid crystal molecules 71A is the first pretilt angle θ 1 with respect to the first substrate 20 when the drive voltage is off. (> Θ 2 ) and arranged in an inclined manner.
 ここで、駆動電圧がオンになると、液晶分子71Aのダイレクタが第1基板20及び第2基板50に対して平行になるように傾いて配向する。このような挙動は、液晶分子71Aにおいて、長軸方向の誘電率が短軸方向よりも小さいという性質を有することに起因している。液晶分子71B,71Cも同様の性質を有することから、駆動電圧のオン・オフの状態変化に応じて、基本的には、液晶分子71Aと同様の挙動を示す。但し、駆動電圧がオフの状態において、液晶分子71Aは第1配向膜21によって第1プレチルト角θ1が付与され、そのダイレクタが第1基板20及び第2基板50の法線方向から傾斜した姿勢となる。一方、液晶分子71Bは第2配向膜51によって第2プレチルト角θ2が付与されるが、そのダイレクタは、例えば、第2基板50の法線方向と平行であり、あるいは又、第1基板20及び第2基板50の法線方向から傾斜した姿勢となる。尚、ここで、「保持される」とは、配向膜21,51と液晶分子71A,71Bとが固着せずに、液晶分子71の配向を規制していることを表している。また、「プレチルト角θ(θ1,θ2)」とは、図4に示すように、第1基板20及び第2基板50の表面に垂直な方向(法線方向)をZとした場合に、駆動電圧がオフの状態で、Z方向に対する液晶分子71(71A,71B)のダイレクタDの傾斜角度を指す。 Here, when the drive voltage is turned on, the directors of the liquid crystal molecules 71 </ b> A are tilted and aligned so as to be parallel to the first substrate 20 and the second substrate 50. Such a behavior is attributed to the property that the dielectric constant in the major axis direction is smaller than that in the minor axis direction in the liquid crystal molecules 71A. Since the liquid crystal molecules 71B and 71C have similar properties, the liquid crystal molecules 71B and 71C basically exhibit the same behavior as the liquid crystal molecules 71A according to the on / off state change of the drive voltage. However, in a state in which the driving voltage is off, the liquid crystal molecules 71A are given the first pretilt angle θ 1 by the first alignment film 21, and the director is inclined from the normal direction of the first substrate 20 and the second substrate 50. It becomes. On the other hand, the liquid crystal molecules 71B are given the second pretilt angle θ 2 by the second alignment film 51, and the director thereof is, for example, parallel to the normal direction of the second substrate 50, or alternatively, the first substrate 20 In addition, the posture is inclined from the normal direction of the second substrate 50. Here, “held” means that the alignment films 21 and 51 and the liquid crystal molecules 71A and 71B are not fixed and the alignment of the liquid crystal molecules 71 is regulated. Further, the “pretilt angle θ (θ 1 , θ 2 )” means that the direction perpendicular to the surfaces of the first substrate 20 and the second substrate 50 (normal direction) is Z as shown in FIG. The tilt angle of the director D of the liquid crystal molecules 71 (71A, 71B) with respect to the Z direction when the drive voltage is off.
 次に、上記の液晶表示装置(液晶表示素子)の製造方法について、図5に示すフローチャートと共に、図6に示す配向膜21,51中の状態を説明するための模式図、並びに、図7、図8及び図9に示す液晶表示装置等の模式的な一部断面図を参照して説明するが、この製造方法は、
 一対の基板20,50の一方(具体的には、基板20)に、架橋性官能基又は重合性官能基を有する第1の側鎖、及び、第2の側鎖を有する高分子化合物から成る第1配向膜21を形成し、一対の基板20,50の他方(具体的には、基板50)に、第2配向膜51を形成した後、
 一対の基板20,50を、第1配向膜21と第2配向膜51とが対向するように配置し、第1配向膜21と第2配向膜51との間に、負の誘電率異方性を有する液晶分子71を含む液晶層70を封止し、次いで、
 高分子化合物における第1の側鎖を架橋又は重合させて、液晶分子71にプレチルトを付与する、
工程を含む(本開示の第1の態様に係る液晶表示装置の製造方法)。あるいは又、
 一対の基板20,50の一方(具体的には、基板20)の一方に、感光性官能基を有する第1の側鎖、及び、第2の側鎖を有する高分子化合物から成る第1配向膜21を形成し、一対の基板の他方(具体的には、基板50)に、第2配向膜51を形成した後、
 一対の基板20,50を、第1配向膜21と第2配向膜51とが対向するように配置し、第1配向膜21と第2配向膜51との間に、負の誘電率異方性を有する液晶分子71を含む液晶層70を封止し、次いで、
 高分子化合物における第1の側鎖を変形させて、液晶分子71にプレチルトを付与する、
工程を含む(本開示の第2の態様に係る液晶表示装置の製造方法であり、後述する実施の形態2を参照)。あるいは又、
 一対の基板20,50の一方(具体的には、基板20)に、架橋性官能基又は感光性官能基を有する第1の側鎖、及び、第2の側鎖を有する高分子化合物から成る第1配向膜21を形成し、一対の基板20,50の他方(具体的には、基板50)に、第2配向膜51を形成した後、
 一対の基板20,50を、第1配向膜21と第2配向膜51とが対向するように配置し、第1配向膜21と第2配向膜51との間に、負の誘電率異方性を有する液晶分子71を含む液晶層70を封止し、次いで、
 高分子化合物にエネルギー線を照射して、液晶分子71にプレチルトを付与する、
工程を含む(本開示の第3の態様に係る液晶表示装置の製造方法)。尚、図7、図8及び図9では、簡略化のため、一画素分についてのみ示す。
Next, with respect to the manufacturing method of the liquid crystal display device (liquid crystal display element), a schematic diagram for explaining the state in the alignment films 21 and 51 shown in FIG. 6 together with the flowchart shown in FIG. The manufacturing method will be described with reference to schematic partial cross-sectional views of the liquid crystal display device and the like shown in FIGS.
One of the pair of substrates 20 and 50 (specifically, the substrate 20) is composed of a polymer compound having a first side chain having a crosslinkable functional group or a polymerizable functional group and a second side chain. After forming the first alignment film 21 and forming the second alignment film 51 on the other of the pair of substrates 20 and 50 (specifically, the substrate 50),
A pair of substrates 20 and 50 are arranged such that the first alignment film 21 and the second alignment film 51 face each other, and a negative dielectric constant anisotropic is provided between the first alignment film 21 and the second alignment film 51. Sealing the liquid crystal layer 70 including the liquid crystal molecules 71 having the property,
Crosslinking or polymerizing the first side chain in the polymer compound to give a pretilt to the liquid crystal molecules 71;
A process (manufacturing method of the liquid crystal display device according to the first aspect of the present disclosure). Alternatively,
1st orientation which consists of a high molecular compound which has the 1st side chain which has a photosensitive functional group, and the 2nd side chain in one of a pair of board | substrates 20 and 50 (specifically board | substrate 20). After forming the film 21 and forming the second alignment film 51 on the other of the pair of substrates (specifically, the substrate 50),
A pair of substrates 20 and 50 are arranged such that the first alignment film 21 and the second alignment film 51 face each other, and a negative dielectric constant anisotropic is provided between the first alignment film 21 and the second alignment film 51. Sealing the liquid crystal layer 70 including the liquid crystal molecules 71 having the property,
Deforming the first side chain of the polymer compound to give a pretilt to the liquid crystal molecules 71;
Including a process (this is a method for manufacturing a liquid crystal display device according to the second aspect of the present disclosure, see Embodiment 2 described later). Alternatively,
One of the pair of substrates 20 and 50 (specifically, the substrate 20) is composed of a polymer compound having a first side chain having a crosslinkable functional group or a photosensitive functional group and a second side chain. After forming the first alignment film 21 and forming the second alignment film 51 on the other of the pair of substrates 20 and 50 (specifically, the substrate 50),
A pair of substrates 20 and 50 are arranged such that the first alignment film 21 and the second alignment film 51 face each other, and a negative dielectric constant anisotropic is provided between the first alignment film 21 and the second alignment film 51. Sealing the liquid crystal layer 70 including the liquid crystal molecules 71 having the property,
The polymer compound is irradiated with energy rays to give a pretilt to the liquid crystal molecules 71.
Including a process (a method of manufacturing a liquid crystal display device according to a third aspect of the present disclosure). 7, 8, and 9, only one pixel is shown for simplification.
 そして、第2の側鎖は、
 誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し(本開示の第1の態様に係る液晶表示装置)、あるいは又、
 その長軸方向から0度を超え、90度未満の角度の範囲(好ましくは、その長軸方向から0度を超え、60度以下の角度の範囲、より好ましくは、その長軸方向から0度を超え、40度以下の角度の範囲、一層好ましくは、その長軸方向から0度を超え、30度以下の角度の範囲。以下においても同様)内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し(本開示の第2の態様に係る液晶表示装置)、あるいは又、
 上記の構造式(11)、より具体的には、上記の構造式(12)を有する(本開示の第3の態様に係る液晶表示装置)。
And the second side chain is
It has a structure that induces dielectric anisotropy and a structure that induces vertical alignment (the liquid crystal display device according to the first aspect of the present disclosure), or alternatively
A range of angles greater than 0 degrees and less than 90 degrees from the major axis direction (preferably a range of angles greater than 0 degrees and less than 60 degrees from the major axis direction, more preferably 0 degrees from the major axis direction. In the range of angles greater than 40 degrees and less, more preferably in the range of angles greater than 0 degrees and less than 30 degrees from the major axis direction (also in the following) Having a structure for inducing orientation (the liquid crystal display device according to the second aspect of the present disclosure);
The above structural formula (11), more specifically, the above structural formula (12) (the liquid crystal display device according to the third aspect of the present disclosure).
 最初に、第1基板(TFT基板)20の表面に第1配向膜21を形成すると共に、第2基板(CF基板)50の表面に第2配向膜51を形成する(ステップS101)。 First, the first alignment film 21 is formed on the surface of the first substrate (TFT substrate) 20, and the second alignment film 51 is formed on the surface of the second substrate (CF substrate) 50 (step S101).
 具体的には、先ず、第1基板20の表面に、所定の第1スリット部44を有する画素電極40を例えばマトリクス状に設けることによりTFT基板20を作製する。また、カラーフィルタ層が形成された第2基板50のカラーフィルタ層上に対向電極60を設けることによりCF基板50を作製する。 Specifically, first, the TFT substrate 20 is manufactured by providing pixel electrodes 40 having predetermined first slit portions 44 on the surface of the first substrate 20 in, for example, a matrix. Also, the CF substrate 50 is manufactured by providing the counter electrode 60 on the color filter layer of the second substrate 50 on which the color filter layer is formed.
 一方、例えば、配向処理前・化合物あるいは配向処理前・化合物としての高分子化合物前駆体と、溶剤と、必要に応じて垂直配向剤とを混合することにより液状の第1配向膜用及び第2配向膜用の配向膜材料を調製する。 On the other hand, for example, before the alignment treatment / compound or before the alignment treatment / polymer compound precursor as a compound, a solvent, and a vertical alignment agent as necessary, are mixed for the liquid first alignment film and the second alignment film. An alignment film material for the alignment film is prepared.
 配向処理前・化合物としての高分子化合物前駆体として、例えば、側鎖として架橋性官能基又は重合性官能基を有する高分子化合物が式(3)に示したポリイミド構造を含む場合、架橋性官能基又は重合性官能基を有するポリアミック酸が挙げられる。高分子化合物前駆体としてのポリアミック酸は、例えば、ジアミン化合物とテトラカルボン酸二無水物とを反応させて合成される。ここで用いるジアミン化合物及びテトラカルボン酸二無水物の少なくとも一方が、架橋性官能基又は重合性官能基を有している。ジアミン化合物として、例えば、式(A-1)~式(A-21)で表される架橋性官能基又は重合性官能基を有する化合物が挙げられ、テトラカルボン酸二無水物として、式(a-1)~式(a-10)で表される架橋性官能基又は重合性官能基を有する化合物が挙げられる。尚、式(A-9)~式(A-21)で表される化合物は、本開示の第3の構成における架橋した高分子化合物の架橋部及び末端構造部を構成する化合物である。あるいは又、本開示の第3の構成における架橋した高分子化合物の架橋部及び末端構造部を構成する化合物として、式(F-1)~式(F-22)で表される化合物を挙げることもできる。 As a polymer compound precursor as a compound before the alignment treatment, for example, when a polymer compound having a crosslinkable functional group or a polymerizable functional group as a side chain includes the polyimide structure represented by the formula (3), a crosslinkable functional group And a polyamic acid having a group or a polymerizable functional group. The polyamic acid as the polymer compound precursor is synthesized, for example, by reacting a diamine compound and tetracarboxylic dianhydride. At least one of the diamine compound and tetracarboxylic dianhydride used here has a crosslinkable functional group or a polymerizable functional group. Examples of the diamine compound include compounds having a crosslinkable functional group or a polymerizable functional group represented by formulas (A-1) to (A-21), and examples of the tetracarboxylic dianhydride include formula (a -1) to a compound having a crosslinkable functional group or a polymerizable functional group represented by formula (a-10). The compounds represented by the formulas (A-9) to (A-21) are compounds constituting the crosslinked part and the terminal structure part of the crosslinked polymer compound in the third structure of the present disclosure. Alternatively, examples of the compound constituting the crosslinked part and the terminal structure part of the crosslinked polymer compound according to the third configuration of the present disclosure include compounds represented by formulas (F-1) to (F-22). You can also.
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000030
ここで、X1~X4は単結合あるいは2価の有機基である。
Figure JPOXMLDOC01-appb-I000030
Here, X1 to X4 are single bonds or divalent organic groups.
Figure JPOXMLDOC01-appb-I000031
ここで、X5~X7は単結合あるいは2価の有機基である。
Figure JPOXMLDOC01-appb-I000031
Here, X5 to X7 are single bonds or divalent organic groups.
Figure JPOXMLDOC01-appb-I000032
Figure JPOXMLDOC01-appb-I000032
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
Figure JPOXMLDOC01-appb-I000034
Figure JPOXMLDOC01-appb-I000035
Figure JPOXMLDOC01-appb-I000035
Figure JPOXMLDOC01-appb-I000036
Figure JPOXMLDOC01-appb-I000036
Figure JPOXMLDOC01-appb-I000037
Figure JPOXMLDOC01-appb-I000037
Figure JPOXMLDOC01-appb-I000038
Figure JPOXMLDOC01-appb-I000038
Figure JPOXMLDOC01-appb-I000039
Figure JPOXMLDOC01-appb-I000039
 また、配向処理前・化合物が垂直配向誘起構造部を含むように高分子化合物前駆体としてのポリアミック酸を合成する場合、上記の架橋性官能基又は重合性官能基を有する化合物の他に、ジアミン化合物として式(B-1)~式(B-36)で表される垂直配向誘起構造部を有する化合物や、テトラカルボン酸二無水物として式(b-1)~式(b-3)で表される垂直配向誘起構造部を有する化合物を用いてもよい。 In addition, when synthesizing a polyamic acid as a polymer compound precursor so that the compound includes a vertical alignment inducing structure before alignment treatment, in addition to the compound having a crosslinkable functional group or a polymerizable functional group, a diamine Compounds having a vertical alignment-inducing structure represented by formulas (B-1) to (B-36) as compounds, and tetracarboxylic dianhydrides represented by formulas (b-1) to (b-3) You may use the compound which has the vertical alignment induction structure part represented.
Figure JPOXMLDOC01-appb-I000040
Figure JPOXMLDOC01-appb-I000040
Figure JPOXMLDOC01-appb-I000041
Figure JPOXMLDOC01-appb-I000041
Figure JPOXMLDOC01-appb-I000042
ここで、a4~a6は0以上、21以下の整数である。
Figure JPOXMLDOC01-appb-I000042
Here, a4 to a6 are integers of 0 or more and 21 or less.
Figure JPOXMLDOC01-appb-I000043
ここで、a4は0以上、21以下の整数である。
Figure JPOXMLDOC01-appb-I000043
Here, a4 is an integer of 0 or more and 21 or less.
Figure JPOXMLDOC01-appb-I000044
ここで、a4は0以上、21以下の整数である。
Figure JPOXMLDOC01-appb-I000044
Here, a4 is an integer of 0 or more and 21 or less.
Figure JPOXMLDOC01-appb-I000045
Figure JPOXMLDOC01-appb-I000045
Figure JPOXMLDOC01-appb-I000046
Figure JPOXMLDOC01-appb-I000046
 また、配向処理前・化合物が架橋性官能基又は重合性官能基と一緒に式(1)に示した基を有するように高分子化合物前駆体としてのポリアミック酸を合成する場合、上記の架橋性官能基又は重合性官能基を有する化合物の他に、ジアミン化合物として、式(C-1)~式(C-24)で表される液晶分子71に対して沿うことができる基を有する化合物を用いてもよい。 In addition, when the polyamic acid is synthesized as a polymer compound precursor so that the compound has a group represented by the formula (1) together with the crosslinkable functional group or the polymerizable functional group before the alignment treatment, the crosslinkability described above is used. In addition to a compound having a functional group or a polymerizable functional group, as a diamine compound, a compound having a group that can conform to the liquid crystal molecules 71 represented by the formulas (C-1) to (C-24) It may be used.
Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-I000048
Figure JPOXMLDOC01-appb-I000048
Figure JPOXMLDOC01-appb-I000049
Figure JPOXMLDOC01-appb-I000049
Figure JPOXMLDOC01-appb-I000050
Figure JPOXMLDOC01-appb-I000050
 また、配向処理前・化合物が式(2)に示した基を有するように高分子化合物前駆体としてのポリアミック酸を合成する場合、上記の架橋性官能基又は重合性官能基を有する化合物の他に、ジアミン化合物として、式(D-1)~式(D-11)で表される液晶分子71に対して沿うことができる基を有する化合物を用いてもよい。 In addition, when synthesizing a polyamic acid as a polymer compound precursor so that the compound has a group represented by the formula (2) before the alignment treatment, in addition to the compound having the crosslinkable functional group or the polymerizable functional group described above. In addition, as the diamine compound, a compound having a group that can be aligned with the liquid crystal molecules 71 represented by the formulas (D-1) to (D-11) may be used.
Figure JPOXMLDOC01-appb-I000051
ここで、nは3以上、20以下の整数である。
Figure JPOXMLDOC01-appb-I000051
Here, n is an integer of 3 or more and 20 or less.
Figure JPOXMLDOC01-appb-I000052
Figure JPOXMLDOC01-appb-I000052
 更に、配向処理前・化合物が式(3)におけるR2として垂直配向誘起構造部を含む構造と、架橋性官能基又は重合性官能基を含む構造との2種の構造を含むように高分子化合物前駆体としてのポリアミック酸を合成する場合、例えば、次のように、ジアミン化合物及びテトラカルボン酸二無水物を選択する。即ち、式(A-1)~式(A-21)に示した架橋性官能基又は重合性官能基を有する化合物のうちの少なくとも1種と、式(B-1)~式(B-36)、式(b-1)~式(b-3)に示した垂直配向誘起構造部を有する化合物のうちの少なくとも1種と、式(E-1)~式(E-28)で表されるテトラカルボン酸二無水物のうちの少なくとも1種とを用いる。尚、式(E-23)におけるR1及びR2は、同一又は異なるアルキル基、アルコキシ基又はハロゲン原子であり、ハロゲン原子の種類は任意である。 Further, the polymer compound so that the compound before the alignment treatment includes two types of structures: a structure containing a vertical alignment inducing structure as R2 in formula (3) and a structure containing a crosslinkable functional group or a polymerizable functional group When synthesizing a polyamic acid as a precursor, for example, a diamine compound and a tetracarboxylic dianhydride are selected as follows. That is, at least one of compounds having a crosslinkable functional group or a polymerizable functional group represented by formulas (A-1) to (A-21), and formulas (B-1) to (B-36). ), At least one of the compounds having a vertical alignment inducing structure represented by formulas (b-1) to (b-3), and represented by formulas (E-1) to (E-28) And at least one of tetracarboxylic dianhydrides. In the formula (E-23), R 1 and R 2 are the same or different alkyl group, alkoxy group or halogen atom, and the type of halogen atom is arbitrary.
Figure JPOXMLDOC01-appb-I000053
Figure JPOXMLDOC01-appb-I000053
Figure JPOXMLDOC01-appb-I000054
Figure JPOXMLDOC01-appb-I000054
Figure JPOXMLDOC01-appb-I000055
ここで、R1,R2はアルキル基、アルコキシ基又はハロゲン原子である。
Figure JPOXMLDOC01-appb-I000055
Here, R1 and R2 are an alkyl group, an alkoxy group, or a halogen atom.
 また、配向処理前・化合物が式(3)におけるR2として式(1)に示した基を含む構造と架橋性官能基又は重合性官能基を含む構造との2種の構造を含むように高分子化合物前駆体としてのポリアミック酸を合成する場合、例えば、次のように、ジアミン化合物及びテトラカルボン酸二無水物を選択する。即ち、式(A-1)~式(A-21)に示した架橋性官能基又は重合性官能基を有する化合物のうちの少なくとも1種と、式(C-1)~式(C-24)に示した化合物のうちの少なくとも1種と、式(E-1)~式(E-28)に示したテトラカルボン酸二無水物のうちの少なくとも1種とを用いる。 In addition, the compound before the alignment treatment is high so that the compound includes two types of structures: a structure containing the group shown in the formula (1) as R2 in the formula (3) and a structure containing a crosslinkable functional group or a polymerizable functional group When synthesizing a polyamic acid as a molecular compound precursor, for example, a diamine compound and a tetracarboxylic dianhydride are selected as follows. That is, at least one of compounds having a crosslinkable functional group or a polymerizable functional group represented by formulas (A-1) to (A-21), and formulas (C-1) to (C-24). ) And at least one of tetracarboxylic dianhydrides represented by the formulas (E-1) to (E-28) are used.
 また、配向処理前・化合物が式(3)におけるR2として式(2)に示した基を含む構造と架橋性官能基又は重合性官能基を含む構造との2種の構造を含むように高分子化合物前駆体としてのポリアミック酸を合成する場合、例えば、次のように、ジアミン化合物及びテトラカルボン酸二無水物を選択する。即ち、式(A-1)~式(A-21)に示した架橋性官能基又は重合性官能基を有する化合物のうちの少なくとも1種と、式(D-1)~式(D-11)に示した化合物のうちの少なくとも1種と、式(E-1)~式(E-28)で表されるテトラカルボン酸二無水物のうちの少なくとも1種とを用いる。 In addition, the compound before the alignment treatment is high so that the compound includes two types of structures: a structure containing the group shown in the formula (2) as R2 in the formula (3) and a structure containing a crosslinkable functional group or a polymerizable functional group. When synthesizing a polyamic acid as a molecular compound precursor, for example, a diamine compound and a tetracarboxylic dianhydride are selected as follows. That is, at least one of compounds having a crosslinkable functional group or a polymerizable functional group represented by formulas (A-1) to (A-21), and formulas (D-1) to (D-11). And at least one of tetracarboxylic dianhydrides represented by formulas (E-1) to (E-28) is used.
 配向膜材料中における配向処理前・化合物あるいは配向処理前・化合物としての高分子化合物前駆体の含有量を、1質量%以上、30質量%以下とすることが好ましく、3質量%以上、10質量%以下とすることがより好ましい。また、配向膜材料には、必要に応じて、光重合開始剤等を混合してもよい。 The content of the pre-alignment treatment compound / or the pre-alignment treatment polymer compound precursor in the alignment film material is preferably 1% by mass or more and 30% by mass or less, and preferably 3% by mass or more and 10% by mass. % Or less is more preferable. Moreover, you may mix a photoinitiator etc. with alignment film material as needed.
 そして、調製した配向膜材料を、TFT基板20及びCF基板50のそれぞれに、画素電極40及び第1スリット部44、並びに、対向電極60を覆うように塗布あるいは印刷した後、加熱処理をする。加熱処理の温度は80゜C以上が好ましく、150゜C以上、200゜C以下とすることがより好ましい。また、加熱処理は、加熱温度を段階的に変化させてもよい。これにより、塗布あるいは印刷された配向膜材料に含まれる溶剤が蒸発し、側鎖として架橋性官能基又は重合性官能基を有する高分子化合物(配向処理前・化合物)を含む配向膜21,51が形成される。その後、必要に応じて、ラビング等の処理を施してもよい。 Then, the prepared alignment film material is applied or printed on the TFT substrate 20 and the CF substrate 50 so as to cover the pixel electrode 40, the first slit portion 44, and the counter electrode 60, and then heat-treated. The temperature for the heat treatment is preferably 80 ° C. or higher, more preferably 150 ° C. or higher and 200 ° C. or lower. In the heat treatment, the heating temperature may be changed stepwise. As a result, the solvent contained in the applied or printed alignment film material evaporates, and the alignment films 21 and 51 include a polymer compound (a compound before alignment treatment / compound) having a crosslinkable functional group or a polymerizable functional group as a side chain. Is formed. Then, you may perform processes, such as rubbing, as needed.
 ここで、配向膜21,51中における配向処理前・化合物は、図6に示す状態となっていると考えられる。即ち、配向処理前・化合物は、主鎖Mc(Mc1~Mc3)と、主鎖Mcに、架橋性官能基又は重合性官能基を含む第1の側鎖A、更には、第2の側鎖Bを含んで構成され、主鎖Mc1~Mc3が連結していない状態で存在している。そして、この状態における第1の側鎖A及び第2の側鎖Bは、熱運動によりランダムな方向を向いている。 Here, it is considered that the pre-alignment treatment compound in the alignment films 21 and 51 is in the state shown in FIG. That is, the compound before alignment treatment includes a main chain Mc (Mc1 to Mc3), a first side chain A containing a crosslinkable functional group or a polymerizable functional group in the main chain Mc, and further a second side chain. B is included, and the main chains Mc1 to Mc3 are present in an unconnected state. And the 1st side chain A and the 2nd side chain B in this state have faced the random direction by thermal motion.
 次に、TFT基板20とCF基板50とを第1配向膜21と第2配向膜51とが対向するように配置し、第1配向膜21と第2配向膜51との間に、液晶分子71を含む液晶層70を封止する(ステップS102)。具体的には、TFT基板20あるいはCF基板50のどちらか一方の、配向膜21,51の形成されている面に対して、セルギャップを確保するためのスペーサ突起物、例えば、プラスチックビーズ等を散布すると共に、例えば、スクリーン印刷法によりエポキシ系接着剤等を用いてシール部を印刷する。その後、図7に示すように、TFT基板20とCF基板50とを、配向膜21,51が対向するように、スペーサ突起物及びシール部を介して貼り合わせ、液晶分子71を含む液晶材料を注入する。次いで、加熱するなどしてシール部の硬化を行うことにより、液晶材料をTFT基板20とCF基板50との間に封止する。図7は、第1配向膜21及び第2配向膜51の間に封止された液晶層70の断面構成を表している。 Next, the TFT substrate 20 and the CF substrate 50 are arranged so that the first alignment film 21 and the second alignment film 51 face each other, and the liquid crystal molecules are arranged between the first alignment film 21 and the second alignment film 51. The liquid crystal layer 70 including 71 is sealed (step S102). Specifically, spacer protrusions for securing a cell gap, such as plastic beads, are provided on the surface of the TFT substrate 20 or the CF substrate 50 where the alignment films 21 and 51 are formed. At the same time as spraying, the seal portion is printed by using, for example, an epoxy-based adhesive by a screen printing method. Thereafter, as shown in FIG. 7, the TFT substrate 20 and the CF substrate 50 are bonded together with spacer protrusions and a seal portion so that the alignment films 21 and 51 face each other, and a liquid crystal material containing liquid crystal molecules 71 is obtained. inject. Next, the liquid crystal material is sealed between the TFT substrate 20 and the CF substrate 50 by curing the seal portion by heating or the like. FIG. 7 illustrates a cross-sectional configuration of the liquid crystal layer 70 sealed between the first alignment film 21 and the second alignment film 51.
 次に、図8に示すように、画素電極40と対向電極60との間に、電圧印加手段を用いて、電圧V1を印加する(ステップS103)。電圧V1は、例えば、3ボルト~30ボルトである。これにより、第1基板20及び第2基板50の表面に対して所定の角度をなす方向の電場(電界)が生じ、液晶分子71Aが、第1基板20の垂直方向から所定方向に傾いて配向される。また、液晶分子71Bが、第2基板50の垂直方向から所定方向に傾いて配向される。即ち、このときの液晶分子71の方位角(偏角)は、電場の強さと方向、及び、配向膜材料の分子構造によって規定され、極角(天頂角)は、電場の強さ、及び、配向膜材料の分子構造によって規定される。そして、液晶分子71の傾斜角と、後述する工程で、第1配向膜21との界面近傍において第1配向膜21に保持された液晶分子71A及び第2配向膜51との界面近傍において第2配向膜51に保持された液晶分子71Bに付与される第1プレチルト角θ1、第2プレチルト角θ2は、概ね等しくなる。そして、電圧V1の値を適宜調節することにより、液晶分子71A,71Bの第1プレチルト角θ1、第2プレチルト角θ2の値を制御することが可能である。しかも、第2の側鎖は、誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し(本開示の第1の態様に係る液晶表示装置)、あるいは又、その長軸方向から0度を超え、90度未満の角度の範囲内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し(本開示の第2の態様に係る液晶表示装置)、あるいは又、上記の構造式(11)を有するので(本開示の第3の態様に係る液晶表示装置)、液晶分子71へのプレチルト付与のために電圧V1を印加したとき、電場の方向に依存した方向(例えば、電場の方向からやや傾いた方向)に第2の側鎖が揃う結果、第2の側鎖によって液晶分子に対するプレチルトの付与を促進することができる。それ故、液晶表示装置の製造工程において、液晶層を構成する液晶分子にプレチルトを付与するために液晶層に印加する電圧の値を低減することができる。 Next, as shown in FIG. 8, a voltage V1 is applied between the pixel electrode 40 and the counter electrode 60 using voltage applying means (step S103). The voltage V1 is 3 to 30 volts, for example. As a result, an electric field (electric field) in a direction forming a predetermined angle with respect to the surfaces of the first substrate 20 and the second substrate 50 is generated, and the liquid crystal molecules 71A are aligned in a predetermined direction from the vertical direction of the first substrate 20. Is done. Further, the liquid crystal molecules 71 </ b> B are aligned in a predetermined direction from the vertical direction of the second substrate 50. That is, the azimuth angle (deflection angle) of the liquid crystal molecules 71 at this time is defined by the strength and direction of the electric field and the molecular structure of the alignment film material, and the polar angle (zenith angle) is the strength of the electric field and It is defined by the molecular structure of the alignment film material. Then, the inclination angle of the liquid crystal molecules 71 and the second in the vicinity of the interface between the liquid crystal molecules 71A and the second alignment film 51 held in the first alignment film 21 in the vicinity of the interface with the first alignment film 21 in the process described later. The first pretilt angle θ 1 and the second pretilt angle θ 2 given to the liquid crystal molecules 71B held in the alignment film 51 are substantially equal. The values of the first pretilt angle θ 1 and the second pretilt angle θ 2 of the liquid crystal molecules 71A and 71B can be controlled by appropriately adjusting the value of the voltage V1. Moreover, the second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment (the liquid crystal display device according to the first aspect of the present disclosure), or alternatively , Having a dipole moment within an angle range of greater than 0 degrees and less than 90 degrees from the major axis direction and inducing vertical alignment (the liquid crystal according to the second aspect of the present disclosure) Display device) or, alternatively, having the above structural formula (11) (the liquid crystal display device according to the third aspect of the present disclosure), the electric field is applied when the voltage V1 is applied to the liquid crystal molecules 71 for applying a pretilt. As a result of the second side chains being aligned in a direction that depends on the direction of the liquid crystal (for example, a direction slightly inclined from the direction of the electric field), the application of pretilt to the liquid crystal molecules can be promoted by the second side chain. Therefore, in the manufacturing process of the liquid crystal display device, the value of the voltage applied to the liquid crystal layer in order to impart pretilt to the liquid crystal molecules constituting the liquid crystal layer can be reduced.
 更に、図9に示すように、電圧V1を印加した状態のまま、エネルギー線(具体的には紫外線UV)を、例えば、TFT基板20の外側から配向膜21,51に対して照射する。即ち、液晶分子71Aを一対の基板20,50の表面に対して斜め方向に配列させるように、液晶層に対して電場又は磁場を印加しながら紫外線を照射する。これによって、配向膜21,51中の配向処理前・化合物が有する架橋性官能基又は重合性官能基を反応させ、配向処理前・化合物を架橋させる(ステップS104)。こうして、配向処理後・化合物により液晶分子71の応答すべき方向が記憶され、配向膜21,51近傍の液晶分子71にプレチルトが付与される。そして、その結果、配向膜21,51中において配向処理後・化合物が形成され、非駆動状態において、液晶層70における第1配向膜21,51との界面近傍に位置する液晶分子71A,71Bにプレチルト角θ1,θ2が付与される。紫外線UVとして、波長295nmから波長365nm程度の光成分を多く含む紫外線が好ましい。これよりも短波長域の光成分を多く含む紫外線を用いると、液晶分子71が光分解し、劣化する虞があるからである。尚、ここでは、紫外線UVをTFT基板20の外側から照射したが、CF基板50の外側から照射してもよく、TFT基板20及びCF基板50の双方の基板の外側から照射してもよい。この場合、透過率が高い方の基板側から紫外線UVを照射することが好ましい。また、CF基板50の外側から紫外線UVを照射した場合、紫外線UVの波長域に依っては、カラーフィルタ層に吸収されて架橋反応し難くなる虞がある。このため、TFT基板20の外側(画素電極を有する基板側)から照射することが好ましい。 Furthermore, as shown in FIG. 9, the alignment films 21 and 51 are irradiated from the outside of the TFT substrate 20 with, for example, energy rays (specifically, ultraviolet UV) while the voltage V1 is applied. That is, ultraviolet rays are applied while applying an electric field or a magnetic field to the liquid crystal layer so that the liquid crystal molecules 71A are arranged obliquely with respect to the surfaces of the pair of substrates 20 and 50. As a result, the crosslinkable functional group or the polymerizable functional group of the compound before the alignment treatment in the alignment films 21 and 51 is reacted to crosslink the compound before the alignment treatment (step S104). Thus, the direction in which the liquid crystal molecules 71 should respond is memorized by the compound after the alignment treatment, and a pretilt is imparted to the liquid crystal molecules 71 in the vicinity of the alignment films 21 and 51. As a result, a compound is formed after the alignment treatment in the alignment films 21 and 51, and in the non-driven state, the liquid crystal molecules 71A and 71B located in the vicinity of the interface with the first alignment films 21 and 51 in the liquid crystal layer 70 are formed. Pretilt angles θ 1 and θ 2 are given. As the ultraviolet ray UV, an ultraviolet ray containing a large amount of light components having a wavelength of about 295 nm to 365 nm is preferable. This is because if ultraviolet rays containing a larger amount of light components in the shorter wavelength region are used, the liquid crystal molecules 71 may be photolyzed and deteriorated. Here, the ultraviolet rays UV are irradiated from the outside of the TFT substrate 20, but may be irradiated from the outside of the CF substrate 50, or may be irradiated from the outside of both the TFT substrate 20 and the CF substrate 50. In this case, it is preferable to irradiate ultraviolet rays UV from the substrate side with higher transmittance. Further, when the ultraviolet ray UV is irradiated from the outside of the CF substrate 50, depending on the wavelength range of the ultraviolet ray UV, it may be absorbed by the color filter layer, and the crosslinking reaction may be difficult. For this reason, it is preferable to irradiate from the outside of the TFT substrate 20 (the substrate side having the pixel electrode).
 ここで、配向膜21,51中の配向処理後・化合物は、図10に示す状態となっている。即ち、配向処理前・化合物の主鎖Mcに導入された架橋性官能基又は重合性官能基を有する第1の側鎖Aの向きが、液晶分子71の配向方向に従って変化し、物理的な距離が近い第1の側鎖A同士が反応して、連結部Crが形成される。このように生成された配向処理後・化合物によって配向膜21,51が液晶分子71A,71Bに対して第1プレチルト角θ1、第2プレチルト角θ2を付与するものと考えられる。尚、連結部Crは、配向処理前・化合物間で形成されてもよいし、配向処理前・化合物内で形成されてもよい。即ち、図10に示すように、連結部Crは、例えば、主鎖Mc1を有する第1の側鎖Aと、主鎖Mc2を有する配向処理前・化合物の第1の側鎖Aとの間で反応して形成されてもよい。また、連結部Crは、例えば、主鎖Mc3を有する高分子化合物のように、同じ主鎖Mc3に導入された第1の側鎖A同士が反応して形成されてもよい。尚、重合性官能基の場合、第1の側鎖Aが複数個結合する。しかも、第2の側鎖Bは、液晶分子71へのプレチルト付与のための電場の方向に依存した方向(例えば、電場の方向からやや傾いた方向)に揃う結果、第2の側鎖Bによって液晶分子に対するプレチルトの付与を促進することができ、液晶表示装置の製造工程において、液晶層を構成する液晶分子にプレチルトを付与するために液晶層に印加する電圧の値を低減することができる。 Here, the post-alignment treatment compound in the alignment films 21 and 51 is in the state shown in FIG. That is, the orientation of the first side chain A having a crosslinkable functional group or a polymerizable functional group introduced into the main chain Mc of the compound before the orientation treatment changes according to the orientation direction of the liquid crystal molecules 71, and the physical distance The first side chains A close to each other react to form a connecting portion Cr. It is considered that the alignment films 21 and 51 give the first pretilt angle θ 1 and the second pretilt angle θ 2 to the liquid crystal molecules 71A and 71B by the compound after the alignment treatment thus generated. The connecting portion Cr may be formed before the alignment treatment / between the compounds, or may be formed before the alignment treatment / in the compound. That is, as shown in FIG. 10, the connecting portion Cr is, for example, between the first side chain A having the main chain Mc1 and the first side chain A of the compound before the alignment treatment having the main chain Mc2. It may be formed by reaction. Further, the connecting portion Cr may be formed by reacting the first side chains A introduced into the same main chain Mc3, for example, like a polymer compound having the main chain Mc3. In the case of a polymerizable functional group, a plurality of first side chains A are bonded. Moreover, as a result of the second side chain B being aligned in a direction depending on the direction of the electric field for applying a pretilt to the liquid crystal molecules 71 (for example, a direction slightly inclined from the direction of the electric field), the second side chain B is Application of a pretilt to liquid crystal molecules can be promoted, and a value of a voltage applied to the liquid crystal layer can be reduced in order to provide a pretilt to liquid crystal molecules constituting the liquid crystal layer in the manufacturing process of the liquid crystal display device.
 以上の工程により、図1に示した液晶表示装置(液晶表示素子)を完成させることができた。 Through the above steps, the liquid crystal display device (liquid crystal display element) shown in FIG. 1 was completed.
 液晶表示装置(液晶表示素子)の動作にあっては、選択された画素10では、駆動電圧が印加されると、液晶層70に含まれる液晶分子71の配向状態が、画素電極40と対向電極60との間の電位差に応じて変化する。具体的には、液晶層70では、図1に示した駆動電圧の印加前の状態から、駆動電圧が印加されることにより、配向膜21,51の近傍に位置する液晶分子71A,71Bが自らの傾き方向に倒れ、且つ、その動作がその他の液晶分子71Cに伝播する。その結果、液晶分子71は、TFT基板20及びCF基板50に対してほぼ水平(平行)となる姿勢をとるように応答する。これにより、液晶層70の光学的特性が変化し、液晶表示素子への入射光が変調された出射光となり、この出射光に基づいて階調表現されることで、画像が表示される。 In the operation of the liquid crystal display device (liquid crystal display element), when a driving voltage is applied to the selected pixel 10, the alignment state of the liquid crystal molecules 71 included in the liquid crystal layer 70 changes between the pixel electrode 40 and the counter electrode. It changes according to the potential difference between 60. Specifically, in the liquid crystal layer 70, when the driving voltage is applied from the state before the driving voltage is applied as shown in FIG. And the movement propagates to the other liquid crystal molecules 71C. As a result, the liquid crystal molecules 71 respond so as to take a substantially horizontal (parallel) posture with respect to the TFT substrate 20 and the CF substrate 50. As a result, the optical characteristics of the liquid crystal layer 70 change, and the incident light to the liquid crystal display element becomes the emitted light modulated, and an image is displayed by gradation expression based on the emitted light.
 ここで、プレチルト処理が全く施されていない液晶表示素子及びそれを備えた液晶表示装置では、液晶分子の配向を規制するためのスリット部等の配向規制部が基板に設けられていても、駆動電圧が印加されると、基板に対して垂直方向に配向していた液晶分子は、そのダイレクタが基板の面内方向において任意の方位を向くように倒れる。このように駆動電圧に応答した液晶分子では、各液晶分子のダイレクタの方位がぶれた状態となり、全体としての配向に乱れが生じる。これにより、応答速度(画像表示の立ち上がり速度)が遅くなり、応答特性が劣化し、その結果、表示特性を悪化させるという問題がある。また、初期の駆動電圧を表示状態の駆動電圧よりも高く設定して駆動(オーバードライブ駆動)させると、初期駆動電圧印加時において、応答した液晶分子と、殆ど応答していない液晶分子とが存在し、それらの間でダイレクタの傾きに大きな差が生じる。その後に表示状態の駆動電圧が印加されると、初期駆動電圧印加時に応答した液晶分子は、その動作が他の液晶分子に対して殆ど伝播しないうちに、表示状態の駆動電圧に応じたダイレクタの傾きとなり、この傾きが他の液晶分子に伝播する。その結果、画素全体として、初期駆動電圧印加時に表示状態の輝度に達するが、その後、輝度が低下し、再度、表示状態の輝度に達する。即ち、オーバードライブ駆動すれば、オーバードライブ駆動しない場合よりも見かけの応答速度は早くなるが、十分な表示品位が得られ難いという問題がある。尚、これらの問題は、IPSモードやFFSモードの液晶表示素子では生じ難く、VAモードの液晶表示素子において特有の問題と考えられる。 Here, in a liquid crystal display element that has not been subjected to any pretilt treatment and a liquid crystal display device including the liquid crystal display element, even if the substrate is provided with an alignment regulating portion such as a slit portion for regulating the orientation of liquid crystal molecules When a voltage is applied, the liquid crystal molecules aligned in the direction perpendicular to the substrate are tilted so that the director faces an arbitrary direction in the in-plane direction of the substrate. In this way, in the liquid crystal molecules responding to the driving voltage, the director orientation of each liquid crystal molecule is in a blurred state, and the overall orientation is disturbed. As a result, there is a problem that the response speed (rise speed of image display) becomes slow, the response characteristics deteriorate, and as a result, the display characteristics deteriorate. In addition, when the initial drive voltage is set higher than the drive voltage in the display state and driven (overdrive drive), there are liquid crystal molecules that have responded and liquid crystal molecules that have hardly responded when the initial drive voltage is applied. However, there is a large difference in director inclination between them. After that, when a driving voltage in the display state is applied, the liquid crystal molecules that responded at the time of applying the initial driving voltage are transmitted by the director corresponding to the driving voltage in the display state while the operation hardly propagates to other liquid crystal molecules. It becomes an inclination, and this inclination propagates to other liquid crystal molecules. As a result, the luminance of the display state is reached as a whole pixel when the initial driving voltage is applied, but thereafter, the luminance is lowered and reaches the luminance of the display state again. That is, when overdrive driving is performed, the apparent response speed is faster than when overdrive driving is not performed, but it is difficult to obtain sufficient display quality. These problems are unlikely to occur in an IPS mode or FFS mode liquid crystal display element, and are considered to be unique problems in a VA mode liquid crystal display element.
 これに対して、実施の形態1の液晶表示装置(液晶表示素子)及びその製造方法では、上記した第1配向膜21、第2配向膜51が液晶分子71A,71Bに対して所定の第1プレチルト角θ1、第2プレチルト角θ2を付与する。これにより、プレチルト処理が全く施されていない場合の問題が生じ難くなり、駆動電圧に対する応答速度(画像表示の立ち上がり速度)が大幅に向上し、オーバードライブ駆動時における表示品位も向上する。その上、TFT基板20には、液晶分子71の配向を規制するための配向規制部として第1スリット部44が設けられているので、視野角特性等の表示特性が確保されるため、良好な表示特性を維持した状態で応答特性が向上する。また、液晶分子は第2配向膜51によって第2プレチルト角θ2とされているので、黒表示の際の光の透過量を低減することができ、コントラストを一層向上させることができる。 On the other hand, in the liquid crystal display device (liquid crystal display element) and the manufacturing method thereof according to the first embodiment, the first alignment film 21 and the second alignment film 51 described above are predetermined first with respect to the liquid crystal molecules 71A and 71B. A pretilt angle θ 1 and a second pretilt angle θ 2 are given. This makes it difficult for problems to occur when the pretilt processing is not performed at all, greatly improves the response speed to the drive voltage (rise speed of image display), and improves the display quality during overdrive driving. In addition, since the TFT substrate 20 is provided with the first slit portion 44 as an alignment regulating portion for regulating the alignment of the liquid crystal molecules 71, display characteristics such as viewing angle characteristics are ensured, which is favorable. Response characteristics are improved while maintaining display characteristics. In addition, since the liquid crystal molecules have the second pretilt angle θ 2 by the second alignment film 51, the amount of light transmitted during black display can be reduced, and the contrast can be further improved.
 また、従来の液晶表示装置の製造方法(光配向膜技術)では、配向膜は、基板面上に設けられた所定の高分子材料を含む前駆体膜に対して直線偏光の光や基板面に対する斜め方向の光(以下、『斜め光』と呼ぶ)を照射して形成され、これによりプレチルト処理が施される。このため、配向膜を形成する際に、直線偏光の光を照射する装置や、斜め光を照射する装置といった大がかりな光照射装置が必要とされるという問題がある。また、より広い視野角を実現するためのマルチドメインを有する画素の形成には、より大がかりな装置が必要とされる上、製造工程が複雑になるという問題もある。特に、斜め光を用いて配向膜を形成する場合、基板上にスペーサ等の構造物あるいは凹凸があると、構造物等の陰になり、斜め光が届かない領域が生じ、この領域において液晶分子に対する所望の配向規制が難しくなる。この場合、例えば、画素内にマルチドメインを設けるためにフォトマスクを用いて斜め光を照射するには、光の回り込みを考慮した画素設計が必要となる。即ち、斜め光を用いて配向膜を形成する場合、高精細な画素形成が難しいという問題もある。 Further, in the conventional method for manufacturing a liquid crystal display device (photo-alignment film technology), the alignment film is applied to linearly polarized light or a substrate surface with respect to a precursor film including a predetermined polymer material provided on the substrate surface. It is formed by irradiating light in an oblique direction (hereinafter referred to as “oblique light”), and thereby pretilt processing is performed. For this reason, when forming alignment film, there exists a problem that a large light irradiation apparatus, such as an apparatus which irradiates a linearly polarized light, and an apparatus which irradiates oblique light is needed. In addition, forming a pixel having a multi-domain for realizing a wider viewing angle requires a larger apparatus and has a problem that the manufacturing process becomes complicated. In particular, when an alignment film is formed using oblique light, if there are structures such as spacers or irregularities on the substrate, the structure will be shaded and an area where oblique light does not reach is generated. It becomes difficult to regulate the desired orientation. In this case, for example, in order to irradiate oblique light using a photomask in order to provide a multi-domain in a pixel, it is necessary to design a pixel in consideration of light wraparound. That is, when the alignment film is formed using oblique light, there is a problem that it is difficult to form high-definition pixels.
 更に、従来の光配向膜技術の中でも、高分子材料として架橋性高分子化合物を用いる場合、前駆体膜中において架橋性高分子化合物に含まれる架橋性官能基又は重合性官能基は、熱運動によりランダムな方位(方向)を向いているため、架橋性官能基又は重合性官能基同士の物理的距離が近づく確率が低くなる。その上、ランダム光(非偏光)を照射した場合、架橋性官能基又は重合性官能基同士の物理的距離が近づくことにより反応するが、直線偏光の光を照射して反応する架橋性官能基又は重合性官能基は、偏光方向と反応部位の方向とが所定の方向に揃う必要がある。また、斜め光は、垂直光と比較して、照射面積が広がる分だけ、単位面積当たりの照射量が低下する。即ち、直線偏光の光あるいは斜め光に反応する架橋性官能基又は重合性官能基の割合は、ランダム光(非偏光)を基板面に対して垂直方向から照射した場合と比較して低くなる。よって、形成された配向膜中における架橋密度(架橋度合い)が低くなり易い。 Furthermore, among the conventional photo-alignment film technologies, when a crosslinkable polymer compound is used as the polymer material, the crosslinkable functional group or polymerizable functional group contained in the crosslinkable polymer compound in the precursor film has a thermal motion. Therefore, the probability that the physical distance between the crosslinkable functional groups or the polymerizable functional groups approaches is low. In addition, when irradiated with random light (non-polarized light), the crosslinkable functional group reacts when the physical distance between the crosslinkable functional groups or polymerizable functional groups approaches, but reacts when irradiated with linearly polarized light. Alternatively, the polymerizable functional group needs to align the polarization direction and the reaction site direction in a predetermined direction. Further, the oblique light has a lower irradiation amount per unit area as the irradiation area is wider than the vertical light. That is, the ratio of the crosslinkable functional group or the polymerizable functional group that reacts to linearly polarized light or oblique light is lower than that in the case where random light (non-polarized light) is irradiated from the direction perpendicular to the substrate surface. Therefore, the crosslinking density (degree of crosslinking) in the formed alignment film tends to be low.
 これに対して、実施の形態1では、配向処理前・化合物を含む配向膜21,51を形成した後、第1配向膜21と第2配向膜51の間に液晶層70を封止する。次いで、液晶層70に電圧を印加することにより、液晶分子71が所定の配向をとると共に、液晶分子71によって基板あるいは電極に対する側鎖の末端構造部の方向が規定されながら、配向膜21,51中の配向処理前・化合物を架橋又は重合させる。これにより、液晶分子71A,71Bに第1プレチルト角θ1、第2プレチルト角θ2を付与する第1配向膜21、第2配向膜51を形成することができる。即ち、実施の形態1の液晶表示装置(液晶表示素子)及びその製造方法によれば、大がかりな装置を用いなくても、容易に応答特性を向上させることができる。その上、配向処理前・化合物を架橋又は重合させる際に、紫外線の照射方向に依存することなく液晶分子71に対してプレチルト角θ1,θ2を付与することができるため、高精細な画素を形成することができる。更に、配向処理前・化合物において側鎖の末端構造部の向きが整った状態で配向処理後・化合物が生成されるため、配向処理後・化合物の架橋度合いは、上記の従来の製造方法による配向膜よりも高くなっていると考えられる。よって、長時間駆動しても、駆動中に架橋構造が新たに形成され難いため、液晶分子71A,71Bのプレチルト角θ1,θ2が製造時の状態に維持され、信頼性を向上させることもできる。しかも、第2の側鎖が存在するが故に、液晶分子71へのプレチルト付与のための電場の方向に依存した方向(例えば、電場の方向からやや傾いた方向)に第2の側鎖が揃う結果、第2の側鎖によって液晶分子に対するプレチルトの付与を促進することができる。それ故、液晶表示装置の製造工程において、液晶層を構成する液晶分子にプレチルトを付与するために液晶層に印加する電圧の値を低減することができる。 In contrast, in the first embodiment, the alignment films 21 and 51 including the compound before the alignment treatment are formed, and then the liquid crystal layer 70 is sealed between the first alignment film 21 and the second alignment film 51. Next, by applying a voltage to the liquid crystal layer 70, the liquid crystal molecules 71 take a predetermined orientation, and the orientation films 21 and 51 are arranged while the liquid crystal molecules 71 define the direction of the terminal structure of the side chain with respect to the substrate or electrode. Prior to the alignment treatment, the compound is crosslinked or polymerized. Accordingly, the first alignment film 21 and the second alignment film 51 that give the first pretilt angle θ 1 and the second pretilt angle θ 2 to the liquid crystal molecules 71A and 71B can be formed. That is, according to the liquid crystal display device (liquid crystal display element) and the manufacturing method thereof according to Embodiment 1, the response characteristics can be easily improved without using a large-scale device. In addition, since the pretilt angles θ 1 and θ 2 can be given to the liquid crystal molecules 71 without depending on the irradiation direction of ultraviolet rays when the compound is crosslinked or polymerized before the alignment treatment, a high-definition pixel Can be formed. In addition, since the compound is generated before the alignment treatment and after the alignment treatment in a state where the end structure portion of the side chain is aligned in the compound, the degree of crosslinking after the alignment treatment is determined by the above-described conventional manufacturing method. It is thought that it is higher than the film. Therefore, even if it is driven for a long time, it is difficult for a new crosslinked structure to be formed during driving, so that the pretilt angles θ 1 and θ 2 of the liquid crystal molecules 71A and 71B are maintained at the time of manufacturing, thereby improving the reliability. You can also. In addition, since the second side chain exists, the second side chain is aligned in a direction depending on the direction of the electric field for applying the pretilt to the liquid crystal molecules 71 (for example, a direction slightly inclined from the direction of the electric field). As a result, provision of a pretilt to the liquid crystal molecules can be promoted by the second side chain. Therefore, in the manufacturing process of the liquid crystal display device, the value of the voltage applied to the liquid crystal layer in order to impart pretilt to the liquid crystal molecules constituting the liquid crystal layer can be reduced.
 この場合において、実施の形態1では、配向膜21,51の間に液晶層70を封止した後、配向膜21,51中の配向処理前・化合物を架橋又は重合させているため、液晶表示素子の駆動時の透過率を連続的に増加するように変化させることができる。 In this case, in the first embodiment, after the liquid crystal layer 70 is sealed between the alignment films 21 and 51, the pre-alignment treatment compound in the alignment films 21 and 51 is crosslinked or polymerized. The transmittance during driving of the element can be changed so as to increase continuously.
 液晶層70を封止した後に配向処理前・化合物の架橋反応によりプレチルト処理が施される実施の形態1では、第1配向膜21近傍における液晶分子71の配向を規制するための第1スリット部44によって、駆動時の液晶分子71の配向方向に応じて、プレチルトが付与される。よって、図12に示すように、液晶分子71のプレチルトの方向が揃い易いため、オーダーパラメータが大きくなる(1に近づく)。これにより、液晶表示素子の駆動時において、液晶分子71が均一な挙動を示すため、透過率が連続的に増加する。 In the first embodiment in which the pretilt treatment is performed before the alignment treatment and the cross-linking reaction of the compound after sealing the liquid crystal layer 70, the first slit portion for regulating the alignment of the liquid crystal molecules 71 in the vicinity of the first alignment film 21 44 gives a pretilt according to the alignment direction of the liquid crystal molecules 71 during driving. Therefore, as shown in FIG. 12, since the pretilt directions of the liquid crystal molecules 71 are easily aligned, the order parameter becomes large (close to 1). Thereby, when the liquid crystal display element is driven, the liquid crystal molecules 71 exhibit a uniform behavior, and thus the transmittance continuously increases.
 実施の形態1では、主にポリイミド構造を含む主鎖を有する配向処理前・化合物を含有する配向膜21,51を用いた場合について説明したが、配向処理前・化合物が有する主鎖は、ポリイミド構造を含むものに限定されない。例えば、主鎖が、ポリシロキサン構造、ポリアクリレート構造、ポリメタクリレート構造、マレインイミド重合体構造、スチレン重合体構造、スチレン/マレインイミド重合体構造、ポリサッカライド構造又はポリビニルアルコール構造等を含んでいてもよく、中でも、ポリシロキサン構造を含む主鎖を有する配向処理前・化合物が好ましい。上記したポリイミド構造を含む高分子化合物と同様の効果が得られるからである。ポリシロキサン構造を含む主鎖を有する配向処理前・化合物として、例えば、式(9)で表されるポリシラン構造を含む高分子化合物が挙げられる。式(9)におけるR10及びR11は、炭素を含んで構成された1価の基であれば任意であるが、R10及びR11のうちのいずれか一方に、第1の側鎖を含んでいることが好ましい。配向処理後・化合物において、十分な配向規制能が得られ易いからである。この場合における架橋性官能基又は重合性官能基として、上記した式(41)に示した基等が挙げられる。 In the first embodiment, the case where the alignment films 21 and 51 containing the compound mainly containing the main structure including the polyimide structure is used is described. However, the main chain of the compound before the alignment process is polyimide. It is not limited to a thing including a structure. For example, the main chain may include a polysiloxane structure, a polyacrylate structure, a polymethacrylate structure, a maleimide polymer structure, a styrene polymer structure, a styrene / maleimide polymer structure, a polysaccharide structure or a polyvinyl alcohol structure. Of these, pre-alignment treatment compounds having a main chain containing a polysiloxane structure are preferred. This is because the same effect as the polymer compound containing the polyimide structure described above can be obtained. Examples of the pre-alignment treatment compound having a main chain containing a polysiloxane structure include a polymer compound containing a polysilane structure represented by the formula (9). R10 and R11 in the formula (9) are arbitrary as long as they are monovalent groups including carbon, but one of R10 and R11 includes the first side chain. Is preferred. This is because sufficient alignment regulation ability is easily obtained after the alignment treatment and in the compound. Examples of the crosslinkable functional group or polymerizable functional group in this case include the group shown in the above formula (41).
Figure JPOXMLDOC01-appb-I000056
ここで、R10及びR11は1価の有機基であり、m1は1以上の整数である。
Figure JPOXMLDOC01-appb-I000056
Here, R10 and R11 are monovalent organic groups, and m1 is an integer of 1 or more.
 更に、実施の形態1では、第1スリット部44を設けることにより、配向分割させて視野角特性を向上させるようにしたが、それに限定されるものではない。例えば、第1スリット部44の代わりに、画素電極40上に配向規制部としての突起を設けてもよい。このように突起を設けることによっても、第1スリット部44を設けた場合と同様の効果を得ることができる。あるいは又、第1スリット部44の代わりに、後述するように、画素電極40に凹凸部を設けることによっても、第1スリット部44を設けた場合と同様の効果を得ることができる。 Furthermore, in Embodiment 1, the first slit portion 44 is provided to divide the orientation and improve the viewing angle characteristics. However, the present invention is not limited to this. For example, instead of the first slit portion 44, a protrusion as an alignment regulating portion may be provided on the pixel electrode 40. Providing the protrusions in this way can provide the same effects as when the first slit portion 44 is provided. Alternatively, instead of the first slit portion 44, as will be described later, the same effect as when the first slit portion 44 is provided can be obtained by providing the pixel electrode 40 with an uneven portion.
 尚、図1に示す例にあっては、第1基板20であるTFT基板を覆う第1配向膜21が、配向処理後・化合物を含み、液晶層70のうちの第1基板(TFT基板)20の側に位置する液晶分子71Aに第1プレチルト角θ1を付与する構成としたが、これに限定されない。即ち、図2に示すように、第1基板20をCF基板とし、第2基板50をTFT基板とすることもでき、この場合においても、図1に示した液晶表示装置と同様の効果を得ることができる。但し、TFT基板では、駆動時には種々の横電場が生じていることから、第2基板50をTFT基板とする図2の液晶表示装置の変形例を採用することが望ましい。これにより、横電場による液晶分子71の配向乱れを、効果的に低減することができる。 In the example shown in FIG. 1, the first alignment film 21 covering the TFT substrate, which is the first substrate 20, contains the compound after alignment treatment, and the first substrate (TFT substrate) in the liquid crystal layer 70. Although the first pretilt angle θ 1 is applied to the liquid crystal molecules 71A located on the 20 side, the present invention is not limited to this. That is, as shown in FIG. 2, the first substrate 20 can be a CF substrate, and the second substrate 50 can be a TFT substrate. In this case, the same effect as the liquid crystal display device shown in FIG. 1 can be obtained. be able to. However, since various lateral electric fields are generated in the TFT substrate during driving, it is desirable to adopt a modification of the liquid crystal display device of FIG. 2 in which the second substrate 50 is the TFT substrate. Thereby, the alignment disorder of the liquid crystal molecules 71 due to the transverse electric field can be effectively reduced.
 次に、他の実施の形態について説明するが、実施の形態1と共通の構成要素については、同一の符号を付して説明は省略する。また、実施の形態1と同様の作用及び効果についても、適宜省略する。更には、実施の形態1において説明した以上の各種の技術的事項は、適宜、以下の実施の形態にも適用される。 Next, other embodiments will be described. Components that are the same as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. Also, operations and effects similar to those of the first embodiment are omitted as appropriate. Furthermore, the various technical items described in the first embodiment are also applied to the following embodiments as appropriate.
[実施の形態2]
 実施の形態2も、本開示の液晶表示装置、並びに、本開示の第2の態様及び第3の態様に係る液晶表示装置の製造方法に関する。
[Embodiment 2]
The second embodiment also relates to a liquid crystal display device of the present disclosure and a method for manufacturing the liquid crystal display device according to the second and third aspects of the present disclosure.
 実施の形態1にあっては、配向処理後・化合物は、第1の側鎖として架橋性官能基又は重合性官能基を有する配向処理前・化合物における架橋性官能基又は重合性官能基が架橋又は重合することで得られる。一方、実施の形態2にあっては、配向処理後・化合物は、エネルギー線の照射による変形を伴う感光性官能基を第1の側鎖として有する配向処理前・化合物に基づき得られる。 In the first embodiment, after the alignment treatment, the compound has a crosslinkable functional group or a polymerizable functional group in the compound having a crosslinkable functional group or a polymerizable functional group as the first side chain. Alternatively, it can be obtained by polymerization. On the other hand, in the second embodiment, the compound after the alignment treatment is obtained based on the compound before the alignment treatment that has a photosensitive functional group as a first side chain that is deformed by irradiation with energy rays.
 ここで、実施の形態2においても、配向膜21,51は、架橋構造を有する第1の側鎖、及び、第2の側鎖を備えた高分子化合物(配向処理後・化合物)の1種あるいは2種以上を含んで構成されている。尚、第2の側鎖は、前述したとおり、誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し(本開示の第1の態様に係る液晶表示装置)、あるいは又、その長軸方向から0度を超え、90度未満の角度の範囲内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し(本開示の第2の態様に係る液晶表示装置)、あるいは又、上記の構造式(11)、より具体的には、上記の構造式(12)を有する(本開示の第3の態様に係る液晶表示装置)。そして、液晶分子は、変形した化合物によってプレチルトが付与される。ここで、配向処理後・化合物は、主鎖並びに第1の側鎖及び第2の側鎖を有する高分子化合物(配向処理前・化合物)の1種あるいは2種以上を含む状態で配向膜21,51を形成した後、液晶層70を設け、次いで、高分子化合物を変形させることで、あるいは又、高分子化合物にエネルギー線を照射することで、より具体的には、電場又は磁場を印加しながら第1の側鎖に含まれる感光性官能基を変形させることにより生成される。尚、このような状態を、図14の概念図に示すが、図14においては、第2の側鎖の図示を省略している。また、図14において、「UV」が付された矢印の方向、「電圧」が付された矢印の方向は、紫外線が照射される方向、加えられる電界の方向を示すものではない。そして、配向処理後・化合物は、液晶分子を一対の基板の一方(TFT基板20あるいはCF基板50)に対して所定の方向(具体的には、斜め方向)に配列させる構造を含んでいる。このように、高分子化合物を変形させて、あるいは又、高分子化合物にエネルギー線を照射することで、配向処理後・化合物が配向膜21,51中に含まれることにより、配向膜21,51近傍の液晶分子71に対してプレチルトを付与できるため、応答速度(画像表示の立ち上がり速度)が早くなり、表示特性が向上する。しかも、第2の側鎖が存在するが故に、液晶分子71へのプレチルト付与のために電圧を印加したとき、電場の方向に依存した方向(例えば、電場の方向からやや傾いた方向)に第2の側鎖が揃う結果、第2の側鎖によって液晶分子に対するプレチルトの付与を促進することができる。それ故、液晶表示装置の製造工程において、液晶層を構成する液晶分子にプレチルトを付与するために液晶層に印加する電圧の値を低減することができる。 Here, also in the second embodiment, the alignment films 21 and 51 are one type of polymer compound (after alignment treatment / compound) having a first side chain having a crosslinked structure and a second side chain. Or it is comprised including 2 or more types. As described above, the second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment (the liquid crystal display device according to the first aspect of the present disclosure). Or a structure having a dipole moment within an angle range of more than 0 degrees and less than 90 degrees from the major axis direction and inducing vertical orientation (the second of the present disclosure) A liquid crystal display device according to an aspect), or the structural formula (11), more specifically, the structural formula (12) (a liquid crystal display device according to a third aspect of the present disclosure). The liquid crystal molecules are given a pretilt by the deformed compound. Here, after the alignment treatment, the alignment film 21 includes one or more of polymer compounds (pre-alignment treatment / compound) having a main chain and first and second side chains. , 51 is formed, and then a liquid crystal layer 70 is provided, and then the polymer compound is deformed, or more specifically, the polymer compound is irradiated with energy rays, and more specifically, an electric field or a magnetic field is applied. However, it is generated by deforming the photosensitive functional group contained in the first side chain. Such a state is shown in the conceptual diagram of FIG. 14, but the second side chain is not shown in FIG. In FIG. 14, the direction of the arrow with “UV” and the direction of the arrow with “voltage” do not indicate the direction in which ultraviolet rays are applied or the direction of the applied electric field. After the alignment treatment, the compound includes a structure in which liquid crystal molecules are arranged in a predetermined direction (specifically, an oblique direction) with respect to one of the pair of substrates (TFT substrate 20 or CF substrate 50). As described above, by aligning the polymer compound in the alignment films 21 and 51 by deforming the polymer compound or irradiating the polymer compound with energy rays, the alignment films 21 and 51 contain the compound. Since a pretilt can be given to the liquid crystal molecules 71 in the vicinity, the response speed (rise speed of image display) is increased, and the display characteristics are improved. In addition, since the second side chain exists, when a voltage is applied to apply pretilt to the liquid crystal molecules 71, the second side chain is present in a direction depending on the direction of the electric field (for example, a direction slightly inclined from the direction of the electric field). As a result of the alignment of the two side chains, provision of pretilt to the liquid crystal molecules can be promoted by the second side chain. Therefore, in the manufacturing process of the liquid crystal display device, the value of the voltage applied to the liquid crystal layer in order to impart pretilt to the liquid crystal molecules constituting the liquid crystal layer can be reduced.
 感光性官能基として、アゾ基を有するアゾベンゼン系化合物、イミンとアルジミンとを骨格に有する化合物(便宜上、『アルジミンベンゼン』と呼ぶ)、スチレン骨格を有する化合物(便宜上、『スチルベン』と呼ぶ)を例示することができる。これらの化合物は、エネルギー線(例えば、紫外線)に応答して変形する結果、即ち、トランス状態からシス状態へ遷移する結果、液晶分子にプレチルトを付与することができる。 Examples of photosensitive functional groups include azobenzene compounds having an azo group, compounds having an imine and aldimine in the skeleton (referred to as “aldiminebenzene” for convenience), and compounds having a styrene skeleton (referred to as “stilbene” for convenience). can do. These compounds can impart a pretilt to liquid crystal molecules as a result of deformation in response to energy rays (for example, ultraviolet rays), that is, as a result of transition from a trans state to a cis state.
Figure JPOXMLDOC01-appb-I000057
Figure JPOXMLDOC01-appb-I000058
Figure JPOXMLDOC01-appb-I000057
Figure JPOXMLDOC01-appb-I000058
 式(AZ-0)で表されるアゾベンゼン系化合物における「X」として、具体的には、例えば、以下の式(AZ-1)~式(AZ-9)を例示することができる。 Specific examples of “X” in the azobenzene compound represented by the formula (AZ-0) include the following formulas (AZ-1) to (AZ-9).
Figure JPOXMLDOC01-appb-I000059
Figure JPOXMLDOC01-appb-I000059
Figure JPOXMLDOC01-appb-I000060
Figure JPOXMLDOC01-appb-I000061
ここで、R,R”のいずれか一方は、ジアミンを含むベンゼン環と、直接、若しくは、エーテル、エステル等を介して結合し、他方は末端基となり、R,R’,R”は、水素原子、ハロゲン原子、アルキル基、アルコキシ基、カーボネート基を有する1価の基、又は、それらの誘導体であり、末端基は、その間に、式(1)のR2’、式(2)のR13’を含んでもよい。このようにすることで、チルトの付与をより容易にすることができる。R”はジアミンを含むベンゼン環と、直接、若しくは、エーテル、エステル等を介して直接結合する。
Figure JPOXMLDOC01-appb-I000060
Figure JPOXMLDOC01-appb-I000061
Here, one of R and R ″ is bonded to a benzene ring containing diamine directly or via ether, ester, etc., and the other is a terminal group, and R, R ′, and R ″ are hydrogen. It is a monovalent group having an atom, a halogen atom, an alkyl group, an alkoxy group or a carbonate group, or a derivative thereof, and the terminal groups are R 2 ′ in the formula (1) and R in the formula (2). 13 'may be included. By doing so, it is possible to more easily provide the tilt. R ″ is directly bonded to a benzene ring containing a diamine or via an ether, an ester or the like.
 実施の形態2の液晶表示装置及びその製造方法は、エネルギー線(具体的には、紫外線)の照射による変形を伴う感光性官能基を有する配向処理前・化合物を用いることを除き、基本的、実質的には、実施の形態1において説明した液晶表示装置及びその製造方法と同様とすることができるので、詳細な説明は省略する。 The liquid crystal display device and the manufacturing method thereof according to the second embodiment are basically the same except that the pre-alignment treatment compound having a photosensitive functional group accompanied by deformation caused by irradiation with energy rays (specifically, ultraviolet rays) is used. Since it can be substantially the same as the liquid crystal display device and the manufacturing method thereof described in Embodiment 1, detailed description thereof is omitted.
[実施の形態3]
 実施の形態3も、本開示の液晶表示装置に関し、更には、本開示の第3の態様に係る液晶表示装置の製造方法に関する。実施の形態3にあっては、構造式(13)に示した第1の側鎖と第2の側鎖が結合した結合側鎖を用いる。具体的には、結合側鎖として、前述した式(G-K01)~式(G-K12)に示す構造を挙げることができる。尚、式(13)における環R、環X、A1~A4を、前述した(G-A01)~式(G-A20)、式(G-B01)~式(G-B20)、式(G-C01)~式(G-C16)、式(G-D01)~式(G-D16)、式(G-E01)~式(G-E02)、式(G-F01)~式(G-F12)、式(G-H01)~式(G-H12)、式(G-J01)~式(G-J14)に例示する構造で代替することもできる。そして、配向処理後・化合物は、結合側鎖として架橋性官能基又は重合性官能基を有する配向処理前・化合物における架橋性官能基又は重合性官能基が架橋又は重合することで得られる。
[Embodiment 3]
The third embodiment also relates to a liquid crystal display device according to the present disclosure, and further relates to a method for manufacturing the liquid crystal display device according to the third aspect of the present disclosure. In Embodiment 3, a binding side chain in which the first side chain and the second side chain shown in Structural Formula (13) are combined is used. Specifically, examples of the binding side chain include structures represented by the aforementioned formulas (G-K01) to (G-K12). The ring R, ring X, and A 1 to A 4 in the formula (13) are the same as the above-mentioned (G-A01) to (GA20), (G-B01) to (GB20), (G-C01) to Formula (G-C16), Formula (G-D01) to Formula (G-D16), Formula (GE01) to Formula (GE02), Formula (G-F01) to Formula ( G-F12), formulas (G-H01) to formulas (G-H12), and formulas (G-J01) to formulas (GJ14) can be substituted. The compound after the alignment treatment is obtained by crosslinking or polymerizing the crosslinkable functional group or the polymerizable functional group in the compound before the alignment treatment having a crosslinkable functional group or a polymerizable functional group as a binding side chain.
 ここで、実施の形態3においても、配向膜21,51を構成する高分子化合物における結合側鎖は、前記の構造式(13)を有する。そして、液晶分子は、架橋又は重合した化合物によってプレチルトが付与される。配向処理後・化合物は、主鎖及び結合側鎖を有する高分子化合物(配向処理前・化合物)の1種あるいは2種以上を含む状態で配向膜21,51を形成した後、液晶層70を設け、次いで、高分子化合物を架橋又は重合させることで、より具体的には、電場又は磁場を印加しながら結合側鎖に含まれる架橋性官能基又は重合性官能基(具体的には、「A02」)を反応させることにより生成される。そして、配向処理後・化合物は、液晶分子を一対の基板(具体的には、TFT基板20及びCF基板50)に対して所定の方向(具体的には、斜め方向)に配列させる構造(具体的には結合側鎖)を含んでいる。このように、高分子化合物(配向処理前・化合物)を架橋又は重合させて、配向処理後・化合物が配向膜21,51中に含まれることにより、配向膜21,51近傍の液晶分子71に対してプレチルトを付与できるため、応答速度(画像表示の立ち上がり速度)が早くなり、表示特性が向上する。 Here, also in Embodiment 3, the bonding side chain in the polymer compound constituting the alignment films 21 and 51 has the structural formula (13). The liquid crystal molecules are given a pretilt by a crosslinked or polymerized compound. After the alignment treatment, the compound is formed of the alignment films 21 and 51 in a state containing one or two or more polymer compounds having a main chain and a bonding side chain (before the alignment treatment). And then, by crosslinking or polymerizing the polymer compound, more specifically, a crosslinkable functional group or a polymerizable functional group (specifically, “ Produced by reacting A 02 "). After the alignment treatment, the compound has a structure (specifically) in which liquid crystal molecules are arranged in a predetermined direction (specifically, oblique direction) with respect to a pair of substrates (specifically, the TFT substrate 20 and the CF substrate 50). In particular, it contains a binding side chain). As described above, the polymer compound (before the alignment treatment / compound) is crosslinked or polymerized, and after the alignment treatment / the compound is contained in the alignment films 21 and 51, the liquid crystal molecules 71 in the vicinity of the alignment films 21 and 51 are formed. On the other hand, since a pretilt can be given, the response speed (rise speed of image display) is increased, and the display characteristics are improved.
 実施の形態3の液晶表示装置の製造方法にあっては、
 一対の基板の一方(具体的には、基板20)に、結合側鎖を有する高分子化合物から成る第1配向膜21を形成し、一対の基板の他方(具体的には、基板50)に、第2配向膜51を形成した後、
 一対の基板20,50を、第1配向膜21と第2配向膜51とが対向するように配置し、第1配向膜21と第2配向膜51との間に、負の誘電率異方性を有する液晶分子71を含む液晶層70を封止し、次いで、
 高分子化合物における結合側鎖を架橋又は重合させて、液晶分子71にプレチルトを付与する。
In the manufacturing method of the liquid crystal display device of the third embodiment,
A first alignment film 21 made of a polymer compound having a binding side chain is formed on one of the pair of substrates (specifically, the substrate 20), and the other of the pair of substrates (specifically, the substrate 50) is formed. After forming the second alignment film 51,
A pair of substrates 20 and 50 are arranged such that the first alignment film 21 and the second alignment film 51 face each other, and a negative dielectric constant anisotropic is provided between the first alignment film 21 and the second alignment film 51. Sealing the liquid crystal layer 70 including the liquid crystal molecules 71 having the property,
The bonding side chain in the polymer compound is crosslinked or polymerized to give the liquid crystal molecules 71 a pretilt.
 そして、結合側鎖は、上述したとおりの特徴を有するが故に、液晶分子71へのプレチルト付与のための電場を印加したとき、電場の方向に依存した方向(例えば、電場の方向からやや傾いた方向)に第2の側鎖が揃う結果、第2の側鎖によって液晶分子に対するプレチルトの付与を促進することができる。その結果、液晶表示装置の製造工程において、液晶層を構成する液晶分子にプレチルトを付与するために液晶層に印加する電圧の値を低減することができる。 And since the bond side chain has the characteristics as described above, when an electric field for applying a pretilt to the liquid crystal molecules 71 is applied, the direction depends on the direction of the electric field (for example, slightly inclined from the direction of the electric field). As a result of the alignment of the second side chains in the direction), it is possible to promote the application of pretilt to the liquid crystal molecules by the second side chains. As a result, in the manufacturing process of the liquid crystal display device, it is possible to reduce the value of the voltage applied to the liquid crystal layer in order to impart pretilt to the liquid crystal molecules constituting the liquid crystal layer.
 実施例1は、本開示の第1の態様~第3の態様に係る液晶表示装置(液晶表示素子)及びその製造方法、並びに、本開示の第1の態様~第3の態様に係る液晶表示装置(液晶表示素子)の製造方法に関する。実施例1にあっては、以下の手順により、図1に示す液晶表示装置(液晶表示素子)を作製した。 Example 1 is a liquid crystal display device (liquid crystal display element) according to the first to third aspects of the present disclosure, a manufacturing method thereof, and a liquid crystal display according to the first to third aspects of the present disclosure. The present invention relates to a method for manufacturing a device (liquid crystal display element). In Example 1, the liquid crystal display device (liquid crystal display element) shown in FIG. 1 was produced according to the following procedure.
 先ず、TFT基板20及びCF基板50を準備した。TFT基板20として、厚さ0.7mmのガラス基板の一面側に、スリットパターン(線幅4μm、線間4μm:スリット部44)を有するITOから成る画素電極40が形成された基板を用いた。また、CF基板50として、カラーフィルタ層が形成された厚さ0.7mmのガラス基板のカラーフィルタ層上に、ITOから成る対向電極60が全面に亙って形成された基板を用いた。この画素電極40に形成されたスリットパターンによって、TFT基板20とCF基板50との間に斜め電界が加わる。 First, a TFT substrate 20 and a CF substrate 50 were prepared. As the TFT substrate 20, a substrate was used in which a pixel electrode 40 made of ITO having a slit pattern (line width 4 μm, line spacing 4 μm: slit portion 44) was formed on one side of a 0.7 mm thick glass substrate. Further, as the CF substrate 50, a substrate in which a counter electrode 60 made of ITO was formed over the entire surface of a color filter layer of a 0.7 mm thick glass substrate on which the color filter layer was formed was used. An oblique electric field is applied between the TFT substrate 20 and the CF substrate 50 by the slit pattern formed in the pixel electrode 40.
 一方、第1配向膜及び第2配向膜のための配向膜材料を調製した。 Meanwhile, alignment film materials for the first alignment film and the second alignment film were prepared.
 この場合、例えば、先ず、実施例1-A~実施例1-Lを得るために、ジアミン化合物として式(A-8)に示した架橋性官能基を有する化合物、式(C-1)に示した液晶分子71に沿うことができる基を有する化合物、式(12)で表され、以下に示す各種の第2の側鎖を構成する化合物、式(E-2)に示したテトラカルボン酸二無水物を、モル比率で、12.5%、2.5%、35%、50%として、N-メチル-2-ピロリドン(NMP)に溶解させた。尚、表1に示す各種の第2の側鎖を構成する化合物にあっては、「A0」にm-フェニレンジアミンが結合している。 In this case, for example, first, in order to obtain Example 1-A to Example 1-L, a compound having a crosslinkable functional group represented by formula (A-8) as a diamine compound, formula (C-1) A compound having a group capable of following the liquid crystal molecules 71 shown, a compound constituting the various second side chains represented by the formula (12) shown below, and a tetracarboxylic acid shown in the formula (E-2) The dianhydride was dissolved in N-methyl-2-pyrrolidone (NMP) in molar ratios of 12.5%, 2.5%, 35%, 50%. In the compounds constituting the various second side chains shown in Table 1, m-phenylenediamine is bonded to “A 0 ”.
Figure JPOXMLDOC01-appb-I000062
Figure JPOXMLDOC01-appb-I000062
 あるいは又、実施例1-Mを得るために、ジアミン化合物として式(A-8)に示した架橋性官能基を有する化合物、式(C-1)に示した液晶分子71に沿うことができる基を有する化合物、式(G-K07)に示した結合側鎖を有する化合物、式(E-2)に示したテトラカルボン酸二無水物を、モル比率で、7.5%、2.5%、40%、50%として、N-メチル-2-ピロリドン(NMP)に溶解させた。 Alternatively, in order to obtain Example 1-M, the compound having a crosslinkable functional group represented by the formula (A-8) as the diamine compound and the liquid crystal molecule 71 represented by the formula (C-1) can be used. A compound having a group, a compound having a bonding side chain represented by the formula (G-K07), and a tetracarboxylic dianhydride represented by the formula (E-2) in a molar ratio of 7.5%, 2.5% %, 40% and 50% were dissolved in N-methyl-2-pyrrolidone (NMP).
 続いて、これらの溶液のそれぞれを、60゜Cで6時間反応させた後、反応後の溶液に対して大過剰の純水を注いで反応生成物を沈殿させた。次いで、沈殿した固形物を分離した後、純水で洗浄し、減圧下、40゜Cで15時間乾燥させ、これにより、配向処理前・化合物としての高分子化合物前駆体であるポリアミック酸が合成された。最後に、得られたポリアミック酸3.0グラムをNMPに溶解させることにより、固形分濃度3質量%の溶液とした後、0.2μmのフィルタで濾過した。こうして、配向膜21,51を形成するための配向膜材料(実施例1-A~実施例1-M)を得た。 Subsequently, each of these solutions was reacted at 60 ° C. for 6 hours, and then a large excess of pure water was poured into the solution after the reaction to precipitate the reaction product. Next, the precipitated solid is separated, washed with pure water, and dried under reduced pressure at 40 ° C. for 15 hours, thereby synthesizing a polyamic acid which is a polymer compound precursor as a compound before alignment treatment. It was done. Finally, 3.0 g of the obtained polyamic acid was dissolved in NMP to obtain a solution having a solid content concentration of 3% by mass, and then filtered through a 0.2 μm filter. Thus, alignment film materials (Example 1-A to Example 1-M) for forming the alignment films 21 and 51 were obtained.
 第2の側鎖を構成する化合物は、構造式(11)あるいは構造式(12)あるいは構造式(13)中の環X、環RにA1,A2,A3,A4等の所定の基を導入することにより得ることができるが、このような基の導入は、公知の一般的な有機合成法により行い得る。代表的な合成例として、「新実験化学講座 14 有機化合物の合成と反応」、丸善株式会社(1978年)、あるいは、「第四版 実験化学講座 19から26 有機合成IからVIII」、丸善株式会社(1991)等に掲載された方法を挙げることができる。 The compound constituting the second side chain is a compound such as A 1 , A 2 , A 3 , A 4 or the like in the ring X and the ring R in the structural formula (11), the structural formula (12), or the structural formula (13). This group can be introduced by a known general organic synthesis method. Typical synthesis examples are “New Experimental Chemistry Course 14 Synthesis and Reaction of Organic Compounds”, Maruzen Co., Ltd. (1978), or “Fourth Edition Experimental Chemistry Course 19 to 26 Organic Synthesis I to VIII”, Maruzen Stock The method published in a company (1991) etc. can be mentioned.
 具体的には、例えば、アリールホウ酸(21)と公知の方法で合成される化合物(22)とを、炭酸塩水溶液とテトラキス(トリフェニルホスフィン)パラジウムのような触媒の存在下で反応させて化合物(1A)を合成する。あるいは又、化合物(1A)は、公知の方法で合成された化合物(23)に、n-ブチルリチウムを、次いで、塩化亜鉛を反応させ、ジクロロビス(トリフェニルホスフィン)パラジウムのような触媒の存在下で化合物(22)を反応させることによっても合成することができる。尚、「MSG」は、メソゲンを表す。 Specifically, for example, a compound obtained by reacting an arylboric acid (21) with a compound (22) synthesized by a known method in the presence of a catalyst such as an aqueous carbonate solution and tetrakis (triphenylphosphine) palladium. Synthesize (1A). Alternatively, compound (1A) is prepared by reacting compound (23) synthesized by a known method with n-butyllithium and then with zinc chloride in the presence of a catalyst such as dichlorobis (triphenylphosphine) palladium. It can also be synthesized by reacting compound (22). “MSG” represents mesogen.
 あるいは又、化合物(24)を水素化ホウ素ナトリウム等の還元剤で還元して、化合物(25)を得る。この化合物(25)を臭化水素酸でハロゲン化して化合物(26)を得る。そして、炭酸カリウムの存在下で、化合物(26)を化合物(27)と反応させて化合物(1B)を合成することで、第2の側鎖を構成する化合物を得ることもできる。 Alternatively, compound (24) is reduced with a reducing agent such as sodium borohydride to obtain compound (25). This compound (25) is halogenated with hydrobromic acid to obtain the compound (26). And the compound which comprises a 2nd side chain can also be obtained by synthesize | combining a compound (1B) by making a compound (26) react with a compound (27) in presence of potassium carbonate.
Figure JPOXMLDOC01-appb-I000063
Figure JPOXMLDOC01-appb-I000063
 次いで、TFT基板20及びCF基板50のそれぞれに、調製した配向膜材料(表1参照)をスピンコーターを用いて塗布した後、塗布膜を80゜Cのホットプレートで80秒間乾燥させた。その後、TFT基板20及びCF基板50を、窒素ガス雰囲気下、200゜Cのオーブンで1時間加熱した。これにより、画素電極40上における厚さが90nmの第1配向膜21を形成し、また、対向電極60上における第2配向膜51の厚さが90nmのCF基板50を作製した。 Next, the prepared alignment film material (see Table 1) was applied to each of the TFT substrate 20 and the CF substrate 50 using a spin coater, and then the applied film was dried on an 80 ° C. hot plate for 80 seconds. Thereafter, the TFT substrate 20 and the CF substrate 50 were heated in an oven at 200 ° C. for 1 hour in a nitrogen gas atmosphere. Thus, the first alignment film 21 having a thickness of 90 nm on the pixel electrode 40 was formed, and the CF substrate 50 having a thickness of 90 nm on the second alignment film 51 on the counter electrode 60 was manufactured.
 次に、CF基板50上の画素部周縁に、粒径3.5μmのシリカ粒子を含む紫外線硬化型樹脂を塗布することによりシール部を形成し、これに囲まれた部分に、負の誘電率異方性を有するネガ型液晶であるMLC-7029(メルク社製)から成る液晶材料を滴下注入した。その後、TFT基板20とCF基板50とを貼り合わせ、シール部を硬化させた。次いで、120゜Cのオーブンで1時間加熱し、シール部を完全に硬化させた。これにより、液晶層70が封止された液晶セルを備えた各種の液晶表示装置を完成させることができた。 Next, a seal portion is formed on the periphery of the pixel portion on the CF substrate 50 by applying an ultraviolet curable resin containing silica particles having a particle diameter of 3.5 μm, and a negative dielectric constant is formed in a portion surrounded by the seal portion. A liquid crystal material composed of MLC-7029 (manufactured by Merck), which is a negative type liquid crystal having anisotropy, was dropped. Thereafter, the TFT substrate 20 and the CF substrate 50 were bonded together, and the seal portion was cured. Subsequently, it heated in 120 degreeC oven for 1 hour, and the seal | sticker part was hardened | cured completely. As a result, various liquid crystal display devices including a liquid crystal cell in which the liquid crystal layer 70 was sealed could be completed.
 その後、このように作製された液晶セルに対して、実効値電圧5ボルト、10ボルト及び20ボルトの矩形波の交流電界(60Hz)を印加した状態で、500mJ(波長365nmでの測定)の均一な紫外線を照射し、配向膜21,51中の配向処理前・化合物を反応させた。これにより、TFT基板20及びCF基板50に、配向処理後・化合物を含む配向膜21,51を形成した。以上により、TFT基板20及びCF基板50側の液晶分子71A,71Bが種々のプレチルト角をなす液晶表示装置(液晶表示素子)を完成させることができた(図1参照)。最後に、液晶表示装置の外側に、吸収軸が直交するように一対の偏光板を貼り付けた。 Thereafter, 500 mJ (measurement at a wavelength of 365 nm) is uniform in a state where a rectangular wave AC electric field (60 Hz) having an effective voltage of 5 volts, 10 volts, and 20 volts is applied to the liquid crystal cell thus fabricated. UV light was irradiated to react the compound before alignment treatment in the alignment films 21 and 51. As a result, the alignment films 21 and 51 containing the compound after the alignment treatment were formed on the TFT substrate 20 and the CF substrate 50. As described above, liquid crystal display devices (liquid crystal display elements) in which the liquid crystal molecules 71A and 71B on the TFT substrate 20 and the CF substrate 50 side have various pretilt angles can be completed (see FIG. 1). Finally, a pair of polarizing plates was attached to the outside of the liquid crystal display device so that the absorption axes were orthogonal.
 比較例1-A、比較例1-Bとして、表1に示すように、用いた材料が異なることを除き、実施例の配向膜材料と同様にして配向膜材料を調製した。具体的には、式(A-8)に示した架橋性官能基を有する化合物、式(C-1)あるいは式(C-2)に示した垂直配向誘起構造部を有する化合物、調整剤として式(J-1)に示した1,4-フェニレンジアミン、式(E-2)に示したテトラカルボン酸二無水物を、モル比率で、12.5%、2.5%、35%、50%として、N-メチル-2-ピロリドン(NMP)に溶解させ、調製し、上述したと同様にして液晶表示装置を作製した。 As Comparative Example 1-A and Comparative Example 1-B, as shown in Table 1, alignment film materials were prepared in the same manner as the alignment film materials of Examples, except that the materials used were different. Specifically, a compound having a crosslinkable functional group represented by formula (A-8), a compound having a vertical alignment inducing structure represented by formula (C-1) or (C-2), and a regulator 1,4-phenylenediamine represented by formula (J-1) and tetracarboxylic dianhydride represented by formula (E-2) in a molar ratio of 12.5%, 2.5%, 35%, 50% was dissolved in N-methyl-2-pyrrolidone (NMP) to prepare a liquid crystal display device in the same manner as described above.
Figure JPOXMLDOC01-appb-I000064
Figure JPOXMLDOC01-appb-I000064
 これらの配向膜材料を用いた液晶表示装置(液晶表示素子)について、応答時間(画像表示の立ち上がり時間)、並びに、プレチルト角θを測定した。その結果を表2に示す。 For the liquid crystal display device (liquid crystal display element) using these alignment film materials, the response time (rise time of image display) and the pretilt angle θ were measured. The results are shown in Table 2.
 応答時間を測定する際には、測定装置としてLCD5200(大塚電子株式会社製)を用いて、画素電極40と対向電極60との間に、駆動電圧(7.5ボルト)を印加し、輝度10%からその駆動電圧に応じた階調の90%の輝度となるまでの時間(画像表示の立ち上がり時間)を測定した。そして、立ち上がり時間が10ミリ秒以下の場合、応答時間:良好とし、表2には、「応答 ○」と表記した。一方、立ち上がり時間が10ミリ秒を超える場合、応答時間:不良とし、表2には、「応答 ×」と表記した。 When measuring the response time, an LCD 5200 (manufactured by Otsuka Electronics Co., Ltd.) is used as a measuring device, a driving voltage (7.5 volts) is applied between the pixel electrode 40 and the counter electrode 60, and a luminance of 10 % To a luminance of 90% of the gradation corresponding to the driving voltage (rise time of image display) was measured. When the rise time is 10 milliseconds or less, the response time is good, and in Table 2, “response ○” is shown. On the other hand, when the rise time exceeds 10 milliseconds, the response time is regarded as defective, and in Table 2, “response x” is shown.
 また、液晶分子71のプレチルト角θを調べる際には、公知の方法(T.J.Scheffer等,J.Appl.Phys.,vol.19,2013頁,1980年に記載されている方法)に準拠し、He-Neレーザ光を用いた結晶回転法により測定した。尚、プレチルト角θは、上述し、図4に示したように、基板20,50の表面に垂直な方向(法線方向)をZとした場合に、駆動電圧がオフの状態で、Z方向に対する液晶分子71(71A,71B)のダイレクタDの傾斜角度である。 Further, when the pretilt angle θ of the liquid crystal molecules 71 is examined, it conforms to a known method (method described in TJ Schefer et al., J. Appl. Phys., Vol. 19, page 2013, 1980). It was measured by a crystal rotation method using a He—Ne laser beam. As described above and shown in FIG. 4, the pretilt angle θ is set in the Z direction when the drive voltage is off when the direction perpendicular to the surfaces of the substrates 20 and 50 (normal direction) is Z. The tilt angle of the director D of the liquid crystal molecules 71 (71A, 71B) with respect to.
[表1]
Figure JPOXMLDOC01-appb-I000065
[Table 1]
Figure JPOXMLDOC01-appb-I000065
[表2]
Figure JPOXMLDOC01-appb-I000066
[Table 2]
Figure JPOXMLDOC01-appb-I000066
 実施例1-A~実施例1-Mと比較例1-A~比較例1-Bとを比較すると、比較例1-A~比較例1-Bでは、プレチルト処理時の印加電圧が5ボルト及び10ボルトでは応答時間:不良であり、20ボルトで応答時間:良好となったのに対して、実施例1-A~実施例1-Mでは、プレチルト処理時の印加電圧が5ボルトでも応答時間:良好であった。また、印加電圧を同じとした場合、実施例1-A~実施例1-Mにあっては、比較例1-A~比較例1-Bよりも大きなプレチルト角θを得ることができた。即ち、より比較的低い電圧でのプレチルト付与が実現可能となり、高電圧を必要としないより安価な電源装置にてプレチルト付与を行うことが可能となった。そして、大掛かりな製造装置を用いなくても容易に応答特性を向上させることが可能な液晶表示装置を製造することができることが判った。 When Example 1-A to Example 1-M and Comparative Example 1-A to Comparative Example 1-B are compared, in Comparative Examples 1-A to 1-B, the applied voltage during the pretilt process is 5 volts. The response time was poor at 10 volts and the response time was good at 20 volts, whereas in Examples 1-A to 1-M, the response was applied even when the applied voltage during pretilt processing was 5 volts. Time: Good. Further, in the case where the applied voltage was the same, in Example 1-A to Example 1-M, a pretilt angle θ larger than that in Comparative Example 1-A to Comparative Example 1-B could be obtained. That is, it becomes possible to realize pretilt application at a relatively low voltage, and it is possible to perform pretilt application with a cheaper power supply device that does not require a high voltage. It was found that a liquid crystal display device capable of easily improving response characteristics without using a large-scale manufacturing apparatus can be manufactured.
 ところで、第1電極にスリット部を形成した場合、微小なライン・アンド・スペースから成るスリットにおいて電界の加わらない部分が存在し、更に、ラインのエッジ近傍において、電圧印加時、液晶分子の配向状態がツイスト構造を取るために、光透過率が低下するといった問題が生じる虞がある。 By the way, when the slit portion is formed in the first electrode, there is a portion where an electric field is not applied in the slit composed of minute lines and spaces, and the alignment state of the liquid crystal molecules when the voltage is applied near the edge of the line. However, since the twist structure is adopted, there is a possibility that a problem that the light transmittance is lowered may occur.
 実施例2においては、第1電極の構成、構造が変形されている。具体的には、実施例2にあっては、第1電極にスリット部を形成する代わりに、第1電極には複数の凹凸部が形成されており、これによって、上記の問題の発生を確実に回避することができる。このような形態を、『第1電極の第1構造』と呼ぶ。 In Example 2, the configuration and structure of the first electrode are modified. Specifically, in Example 2, instead of forming the slit portion in the first electrode, the first electrode is formed with a plurality of concave and convex portions, which ensures the occurrence of the above problem. Can be avoided. Such a form is referred to as “first structure of the first electrode”.
 あるいは又、第1電極には複数の凹凸部が形成されており、第1電極の少なくも凹部と凹部の間は、平坦化層で埋め込まれている形態とすることもできる。このような形態にあっては、液晶分子が第1電極側において接する部分は平坦、あるいは、概ね平坦である。それ故、液晶分子の配列状態の均一化を図ることができる結果、液晶表示装置の光透過率の均一化を図ることができる。このような形態を、『第1電極の第2構造』と呼ぶ。 Alternatively, the first electrode may be formed with a plurality of concavo-convex portions, and at least a space between the recesses of the first electrode may be embedded with a planarizing layer. In such a form, the portion where the liquid crystal molecules contact on the first electrode side is flat or substantially flat. Therefore, the alignment state of the liquid crystal molecules can be made uniform, and as a result, the light transmittance of the liquid crystal display device can be made uniform. Such a form is referred to as a “second structure of the first electrode”.
 第1電極の第2構造にあっては、凹部底面を基準として、平坦化層の頂面の最高高さをHH、平坦化層の頂面の最低高さをHLとしたとき、
0.5≦HL/HH≦1
望ましくは、
0.8≦HL/HH≦1
を満足することが好ましい。
In the second structure of the first electrode, when the maximum height of the top surface of the planarization layer is H H and the minimum height of the top surface of the planarization layer is H L on the basis of the bottom surface of the recess,
0.5 ≦ H L / H H ≦ 1
Preferably
0.8 ≦ H L / H H ≦ 1
Is preferably satisfied.
 また、上記の好ましい形態を含む第1電極の第2構造にあっては、凹部底面を基準とした凸部の高さをHCとしたとき、
0.5≦HH/HC≦5
望ましくは、
0.75≦HH/HC≦1.5
を満足することが好ましい。
Further, in the second structure of the first electrode including the preferred embodiment described above, when the height of the convex portion relative to the bottom surface of the recess was H C,
0.5 ≦ H H / H C ≦ 5
Preferably
0.75 ≦ H H / H C ≦ 1.5
Is preferably satisfied.
 更には、以上に説明した好ましい形態を含む電極の第2構造にあっては、
 平坦化層は第1電極を被覆しており、
 平坦化層を覆う第1配向膜及び第2電極を覆う第2配向膜を更に備えており、
 液晶分子には、少なくとも第1配向膜によってプレチルトが付与されている形態とすることができる。尚、このような形態を、便宜上、『第1形式の第1電極』と呼ぶ。あるいは又、
 平坦化層は第1電極を被覆しており、
 第1電極を覆う第1配向膜及び第2電極を覆う第2配向膜を更に備えており、
 液晶分子には、少なくとも第1配向膜によってプレチルトが付与されており、
 第1配向膜は平坦化層に相当する形態とすることができる。尚、このような形態を、便宜上、『第2形式の第1電極』と呼ぶ。あるいは又、
 平坦化層は、第1電極の凹部と凹部の間を埋めており、
 第1電極及び平坦化層を覆う第1配向膜並びに第2電極を覆う第2配向膜を更に備えており、
 液晶分子には、少なくとも第1配向膜によってプレチルトが付与されている形態とすることができる。尚、このような形態を、便宜上、『第3形式の第1電極』と呼ぶ。
Furthermore, in the second structure of the electrode including the preferred embodiment described above,
The planarization layer covers the first electrode;
A first alignment film covering the planarization layer and a second alignment film covering the second electrode;
The liquid crystal molecules can have a form in which a pretilt is given at least by the first alignment film. Such a form is referred to as a “first electrode of the first type” for convenience. Alternatively,
The planarization layer covers the first electrode;
A first alignment film covering the first electrode and a second alignment film covering the second electrode;
The liquid crystal molecules are given a pretilt by at least the first alignment film,
The first alignment film can have a form corresponding to the planarization layer. Such a form is referred to as a “second type first electrode” for convenience. Alternatively,
The planarization layer fills between the recesses of the first electrode,
A first alignment film covering the first electrode and the planarization layer, and a second alignment film covering the second electrode;
The liquid crystal molecules can have a form in which a pretilt is given at least by the first alignment film. Such a form is referred to as a “third type first electrode” for convenience.
 ここで、第1形式の第1電極あるいは第3形式の第1電極における平坦化層を構成する材料として、レジスト材料、感光性のポリイミド樹脂やアクリル系樹脂等の高分子化合物材料を挙げることができるし、SiO2やSiN、SiON等の無機系材料を挙げることができる。また、第2形式の第1電極における平坦化層を構成する材料として、本開示における第1配向膜を構成する材料を挙げることができる。平坦化層は、使用する材料に依存するが、各種塗布法に基づき形成することができるし、あるいは又、各種真空蒸着法やスパッタリング法等の物理的気相成長法(PVD法)に基づき形成することができるし、あるいは又、各種の化学的気相成長法(CVD法)に基づき形成することができる。平坦化層によって、第1電極の凹部と凹部の間が埋め込まれるか、第1電極が被覆されるかは、平坦化層を構成する材料、平坦化層を構成する材料を含む組成物の組成や特性(例えば、固形分濃度や粘度、使用する溶剤)、平坦化層の形成方法や形成条件等に依存する。配向膜も、例えば、各種塗布法に基づき形成することができる。 Here, examples of the material constituting the planarization layer in the first electrode of the first type or the first electrode of the third type include high-molecular compound materials such as resist materials, photosensitive polyimide resins, and acrylic resins. And inorganic materials such as SiO 2 , SiN, and SiON. Moreover, the material which comprises the 1st alignment film in this indication can be mentioned as a material which comprises the planarization layer in the 2nd type 1st electrode. Although the planarizing layer depends on the material used, it can be formed on the basis of various coating methods, or on the basis of physical vapor deposition methods (PVD methods) such as various vacuum deposition methods and sputtering methods. Alternatively, they can be formed based on various chemical vapor deposition methods (CVD methods). Whether the space between the recesses of the first electrode is buried by the planarizing layer or whether the first electrode is covered depends on the composition of the composition including the material constituting the planarizing layer and the material constituting the planarizing layer. And characteristics (for example, solid content concentration and viscosity, solvent used), the formation method and formation conditions of the planarization layer, and the like. The alignment film can also be formed based on, for example, various coating methods.
 ここで、塗布法として、スクリーン印刷法やインクジェット印刷法、オフセット印刷法、反転オフセット印刷法、グラビア印刷法、グラビアオフセット印刷法、凸版印刷、フレキソ印刷、マイクロコンタクト法といった各種印刷法;スピンコート法;エアドクタコーター法、ブレードコーター法、ロッドコーター法、ナイフコーター法、スクイズコーター法、リバースロールコーター法、トランスファーロールコーター法、グラビアコーター法、キスコーター法、キャストコーター法、スプレーコーター法、スリットコーター法、スリットオリフィスコーター法、キャップコート法、カレンダーコーター法、キャスティング法、キャピラリーコーター法、バーコーター法、浸漬法といった各種コーティング法;スプレー法;ディスペンサーを用いる方法:スタンプ法といった、液状材料を塗布する方法を挙げることができる。 Here, various printing methods such as screen printing method, ink jet printing method, offset printing method, reverse offset printing method, gravure printing method, gravure offset printing method, letterpress printing, flexographic printing, microcontact method, etc. as spin coating method ; Air doctor coater method, blade coater method, rod coater method, knife coater method, squeeze coater method, reverse roll coater method, transfer roll coater method, gravure coater method, kiss coater method, cast coater method, spray coater method, slit coater method , Slit orifice coater method, cap coat method, calendar coater method, casting method, capillary coater method, bar coater method, dipping method, various coating methods; spray method; dispenser The method used: such stamping method may be a method of applying the liquid material.
 ここで、第1形式の第1電極~第3形式の第1電極にあっては、第1配向膜の平均膜厚をT1、第2配向膜の平均膜厚をT2としたとき、
0.5≦T2/T1≦1.5
望ましくは、
0.8≦T2/T1≦1.2
を満足することが好ましい。ここで、配向膜の平均膜厚とは、1画素(あるいは、1副画素)を占める配向膜の体積を、1画素(あるいは、1副画素)の面積で除した値である。このように、T2/T1の値を規定することで、即ち、第1配向膜の平均膜厚と第2配向膜の平均膜厚とを、等しく、あるいは又、概ね等しくすることで、焼付き等の発生を確実に防止することができる。
Here, in the first type first electrode to the third type first electrode, when the average film thickness of the first alignment film is T 1 and the average film thickness of the second alignment film is T 2 ,
0.5 ≦ T 2 / T 1 ≦ 1.5
Preferably
0.8 ≦ T 2 / T 1 ≦ 1.2
Is preferably satisfied. Here, the average film thickness of the alignment film is a value obtained by dividing the volume of the alignment film that occupies one pixel (or one subpixel) by the area of one pixel (or one subpixel). Thus, by defining the value of T 2 / T 1 , that is, by making the average film thickness of the first alignment film equal to or approximately equal to the average film thickness of the second alignment film, Generation | occurrence | production of seizure etc. can be prevented reliably.
 第1電極の第1構造あるいは第1電極の第2構造において、第1電極に設けられた凸部には複数の段差部が形成されている構成とすることができる。尚、このような構成を、便宜上、『第1電極の第3A構造』と呼ぶ。 In the first structure of the first electrode or the second structure of the first electrode, a plurality of stepped portions can be formed on the convex portion provided on the first electrode. Such a configuration is referred to as “a 3rd A structure of the first electrode” for convenience.
 第1電極の第3A構造においては、凸部に複数の段差部(高低差)が形成されているので、凸部において電場の強弱が生じ、あるいは又、横電界が生じる。その結果、凸部における液晶分子に対する配向規制力を強くすることができ、凸部における液晶分子のチルト状態を確実に規定することができる。それ故、良好な電圧応答特性を保持しつつ、一層均一な高光透過率を実現することができる液晶表示装置を提供することができるし、バックライトを構成する光源のコスト低減、低消費電力化を図ることができ、また、TFTの信頼性の向上を図ることもできる。 In the 3A structure of the first electrode, since a plurality of step portions (differences in height) are formed in the convex portion, the electric field strength is generated in the convex portion, or a lateral electric field is generated. As a result, the alignment regulating force on the liquid crystal molecules at the convex portions can be strengthened, and the tilt state of the liquid crystal molecules at the convex portions can be reliably defined. Therefore, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining good voltage response characteristics, reducing the cost of the light source constituting the backlight, and reducing power consumption. In addition, the reliability of the TFT can be improved.
 第1電極の第1構造、第1電極の第2構造、第1電極の第3A構造において、凹凸部は、画素中心部を通り、十文字に延びる幹凸部、及び、幹凸部から画素周辺部に向かって延びる複数の枝凸部から構成されている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第1-1構造』、『第1電極の第2-1構造』、『第1電極の第3A-1構造』と呼ぶ。ここで、第1電極の第1-1構造、第1電極の第2-1構造、第1電極の第3A-1構造にあっては、十文字に延びる幹凸部のそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 第1象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる形態を採用することができる。このような、枝凸部の配置状態はマルチドメイン電極構造と呼ばれており、1つの画素内に枝凸部の延びる方向の異なる領域が形成されるため、視野角特性の向上を図ることができる。
In the first structure of the first electrode, the second structure of the first electrode, and the 3A structure of the first electrode, the concavo-convex part passes through the center of the pixel and extends in a cross shape, and from the stem ridge to the periphery of the pixel It can be set as the form comprised from the several branch convex part extended toward a part. For convenience, such a form is referred to as “first electrode 1-1 structure”, “first electrode 2-1 structure”, and “first electrode 3A-1 structure”. Here, in the 1-1 structure of the first electrode, the 2-1 structure of the first electrode, and the 3A-1 structure of the first electrode, each of the trunk protrusions extending in a cross shape is represented by the X axis, Y Assuming an (X, Y) coordinate system as an axis,
The plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions occupying the fourth quadrant can adopt a form extending in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases. Such an arrangement state of the branch protrusions is called a multi-domain electrode structure, and since regions having different branch protrusion extension directions are formed in one pixel, the viewing angle characteristics can be improved. it can.
 尚、第1象限を占める複数の枝凸部は、その軸線がX軸と45度を成して延び、第2象限を占める複数の枝凸部は、その軸線がX軸と135度を成して延び、第3象限を占める複数の枝凸部は、その軸線がX軸と225度を成して延び、第4象限を占める複数の枝凸部は、その軸線がX軸と315度を成して延びる形態とすることが好ましいが、これらの値(角度)に限定するものではない。以下においても同様である。 The plurality of branch convex portions occupying the first quadrant extend at an axis of 45 degrees with the X axis, and the plurality of branch convex portions occupying the second quadrant have an axis of 135 degrees with the X axis. The plurality of branch protrusions that occupy the third quadrant extend at an axis of 225 degrees with the X axis, and the plurality of branch protrusions that occupy the fourth quadrant have an axis of 315 degrees with the X axis. However, the present invention is not limited to these values (angles). The same applies to the following.
 そして、上記の好ましい形態を含む第1電極の第3A-1構造において、幹凸部の延びる方向と直交する仮想垂直平面で幹凸部を切断したときの幹凸部の断面形状は、幹凸部の断面形状の中心から幹凸部の断面形状の縁に向かって段差部が下降していく断面形状を有する形態とすることができる。そして、以上に説明した各種の好ましい形態を含む第1電極の第3A-1構造において、幹凸部の延びる方向に平行な仮想垂直平面で幹凸部を切断したときの幹凸部の断面形状は、幹凸部の断面形状の中央部から幹凸部の断面形状の端部に向かって段差部が下降していく断面形状を有する形態とすることができる。 Then, in the 3A-1 structure of the first electrode including the preferred embodiment described above, the cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion is the stem convex It can be set as the form which has a cross-sectional shape from which the level | step-difference part descend | falls toward the edge of the cross-sectional shape of a trunk convex part from the center of the cross-sectional shape of a part. And in the 3A-1 structure of the first electrode including the various preferred embodiments described above, the cross-sectional shape of the stem convex portion when the stem convex portion is cut along a virtual vertical plane parallel to the extending direction of the stem convex portion Can have a cross-sectional shape in which the stepped portion descends from the center of the cross-sectional shape of the trunk convex portion toward the end of the cross-sectional shape of the stem convex portion.
 更には、以上に説明した各種の好ましい形態を含む第1電極の第3A-1構造において、枝凸部の延びる方向と直交する仮想垂直平面で枝凸部を切断したときの枝凸部の断面形状は、枝凸部の断面形状の中心から枝凸部の断面形状の縁に向かって段差部が下降していく断面形状を有する形態とすることができる。そして、以上に説明した各種の好ましい形態を含む第1電極の第3A-1構造において、枝凸部の延びる方向に平行な仮想垂直平面で枝凸部を切断したときの枝凸部の断面形状は、枝凸部の断面形状の幹凸部側から枝凸部の断面形状の端部に向かって段差部が下降していく断面形状を有する形態とすることができる。 Furthermore, in the 3A-1 structure of the first electrode including the various preferred embodiments described above, the cross-section of the branch protrusion when the branch protrusion is cut along a virtual vertical plane perpendicular to the extending direction of the branch protrusion The shape may have a cross-sectional shape in which the stepped portion descends from the center of the cross-sectional shape of the branch convex portion toward the edge of the cross-sectional shape of the branch convex portion. Then, in the 3A-1 structure of the first electrode including the various preferred embodiments described above, the cross-sectional shape of the branch protrusion when the branch protrusion is cut along a virtual vertical plane parallel to the extending direction of the branch protrusion May have a cross-sectional shape in which the stepped portion descends from the trunk convex portion side of the cross-sectional shape of the branch convex portion toward the end of the cross-sectional shape of the branch convex portion.
 更には、以上に説明した各種の好ましい形態を含む第1電極の第1-1構造、第1電極の第2-1構造、第1電極の第3A-1構造において、幹凸部と対応する第2電極の部分には配向規制部が形成されている形態とすることができる。ここで、配向規制部は、第2電極に設けられたスリット部から成る形態とすることができるし、あるいは又、第2電極に設けられた突起部から成る形態とすることができるし、あるいは又、突起状になった第2電極の部分から構成することもできる。突起部は、例えば、レジスト材料から成り、その上には第2電極は形成されていない。突起状になった第2電極の部分を設けるためには第2電極の下側に凸部を形成すればよいし、あるいは又、第1電極における凹凸部の凸部形成方法と同様の方法で突起状になった第2電極の部分を設けることも可能である。スリット部あるいは突起部、突起状になった第2電極の部分の幅は幹凸部の幅よりも狭いことが望ましい。後述する第1電極の第3B-1構造、第1電極の第3C構造においても同様とすることができる。 Further, in the first electrode 1-1 structure, the first electrode 2-1 structure, and the first electrode 3A-1 structure including the various preferred embodiments described above, the first electrode 3A-1 structure corresponds to the trunk convex portion. It can be set as the form by which the orientation control part is formed in the part of the 2nd electrode. Here, the orientation restricting portion may be formed from a slit portion provided in the second electrode, or may be formed from a protrusion provided in the second electrode, or Moreover, it can also comprise from the part of the 2nd electrode used as the protrusion shape. The protrusion is made of, for example, a resist material, and the second electrode is not formed thereon. In order to provide the protruding portion of the second electrode, a convex portion may be formed on the lower side of the second electrode, or, alternatively, by a method similar to the convex portion forming method of the concave and convex portions in the first electrode. It is also possible to provide a protruding portion of the second electrode. It is desirable that the width of the slit portion or the protruding portion or the protruding second electrode portion is narrower than the width of the trunk convex portion. The same can be applied to the 3B-1 structure of the first electrode and the 3C structure of the first electrode, which will be described later.
 あるいは又、第1電極の第1構造、第1電極の第2構造、第1電極の第3A構造において、凹凸部は、画素周辺部に額縁状に形成された幹凸部、及び、幹凸部から画素内部に向かって延びる複数の枝凸部から構成されている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第1-2構造』、『第1電極の第2-2構造』、『第1電極の第3A-2構造』と呼ぶ。ここで、第1電極の第1-2構造、第1電極の第2-2構造、第1電極の第3A-2構造にあっては、画素中心部を通り、画素周辺部に平行な直線のそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 第1象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる形態を採用することができる。
Alternatively, in the first structure of the first electrode, the second structure of the first electrode, and the 3A structure of the first electrode, the concavo-convex portion includes a stem convex portion formed in a frame shape around the pixel, and a stem convex portion. It can be set as the form comprised from the several branch convex part extended toward the pixel inside from a part. Such a form is referred to as “first electrode 1-2 structure”, “first electrode 2-2 structure”, and “first electrode 3A-2 structure” for convenience. Here, in the 1-2 structure of the first electrode, the 2-2 structure of the first electrode, and the 3A-2 structure of the first electrode, a straight line passing through the pixel center and parallel to the pixel periphery. Assuming an (X, Y) coordinate system with each of X axis and Y axis,
The plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions occupying the fourth quadrant can adopt a form extending in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases.
 そして、上記の好ましい形態を含む第1電極の第3A-2構造において、幹凸部の延びる方向と直交する仮想垂直平面で幹凸部を切断したときの幹凸部の断面形状は、幹凸部の断面形状の外側の縁から幹凸部の断面形状の内側の縁に向かって段差部が下降していく断面形状を有する形態とすることができる。 Then, in the 3A-2 structure of the first electrode including the above preferred embodiment, the cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion is the stem convex It can be set as the form which has a cross-sectional shape from which the level | step-difference part descend | falls toward the inner edge of the cross-sectional shape of a trunk convex part from the outer edge of the cross-sectional shape of a part.
 更には、以上に説明した各種の好ましい形態を含む第1電極の第3A-2構造において、枝凸部の延びる方向と直交する仮想垂直平面で枝凸部を切断したときの枝凸部の断面形状は、枝凸部の断面形状の中心から枝凸部の断面形状の縁に向かって段差部が下降していく断面形状を有する形態とすることができる。そして、以上に説明した各種の好ましい形態を含む第1電極の第3A-2構造において、枝凸部の延びる方向に平行な仮想垂直平面で枝凸部を切断したときの枝凸部の断面形状は、枝凸部の断面形状の幹凸部側から枝凸部の断面形状の端部に向かって段差部が下降していく断面形状を有する形態とすることができる。 Furthermore, in the 3A-2 structure of the first electrode including the various preferred embodiments described above, the cross-section of the branch protrusion when the branch protrusion is cut along a virtual vertical plane orthogonal to the extending direction of the branch protrusion. The shape may have a cross-sectional shape in which the stepped portion descends from the center of the cross-sectional shape of the branch convex portion toward the edge of the cross-sectional shape of the branch convex portion. Then, in the 3A-2 structure of the first electrode including the various preferred embodiments described above, the cross-sectional shape of the branch convex portion when the branch convex portion is cut along a virtual vertical plane parallel to the extending direction of the branch convex portion May have a cross-sectional shape in which the stepped portion descends from the trunk convex portion side of the cross-sectional shape of the branch convex portion toward the end of the cross-sectional shape of the branch convex portion.
 更には、第1電極の第1-2構造、第1電極の第2-2構造、以上に説明した各種の好ましい形態を含む第1電極の第3A-2構造において、第1電極には、画素中心部を通り、画素周辺部に平行なスリット部あるいは突起部が形成されている形態とすることができる。突起部は、例えば、レジスト材料から成り、その上には第1電極は形成されていない。あるいは又、第1電極には、画素中心部を通る十文字状の凸部が凹部に囲まれて形成されている形態とすることができる。このような十文字状の凸部は、第1電極の下側に十文字状の凸部を形成することで設けることができるし、あるいは又、第1電極における凹凸部の形成方法と同様の方法で設けることも可能である。あるいは又、スリット部若しくは突起部(リブ)を設ける代わりに、画素中心部を通る十文字状の凹部を設けてもよい。後述する第1電極の第3B-2構造、第1電極の第3D構造においても同様とすることができる。 Furthermore, in the first electrode 1-2 structure, the first electrode 2-2 structure, and the first electrode 3A-2 structure including various preferred embodiments described above, the first electrode includes: A slit portion or a protrusion portion that passes through the center of the pixel and is parallel to the periphery of the pixel can be formed. The protrusion is made of, for example, a resist material, and the first electrode is not formed thereon. Alternatively, the first electrode may have a cross-shaped convex portion that passes through the center of the pixel and is surrounded by the concave portion. Such a cross-shaped convex part can be provided by forming a cross-shaped convex part on the lower side of the first electrode, or by a method similar to the method of forming the concave-convex part in the first electrode. It is also possible to provide it. Alternatively, instead of providing the slit portion or the protrusion (rib), a cross-shaped concave portion that passes through the pixel center portion may be provided. The same applies to the 3B-2 structure of the first electrode and the 3D structure of the first electrode, which will be described later.
 更には、第1電極の第1-1構造、第1電極の第1-2構造、第1電極の第2-1構造、第1電極の第2-2構造、以上に説明した各種の好ましい形態を含む第1電極の第3A-1構造あるいは第1電極の第3A-2構造において、
 画素と画素との間に位置する第1基板の部分から、画素周辺部に対応する第1基板の部分に亙り、凸構造が形成されており、
 凹凸部の周辺部は凸構造上に形成されている形態とすることができる。尚、凸構造は、周知の材料から構成されたブラックマトリクスに基づき形成されている形態とすることができる。
Furthermore, the 1-1 structure of the first electrode, the 1-2 structure of the first electrode, the 2-1 structure of the first electrode, the 2-2 structure of the first electrode, and the various preferred embodiments described above. In the 3A-1 structure of the first electrode or the 3A-2 structure of the first electrode including the form,
A convex structure is formed from a portion of the first substrate located between the pixels to a portion of the first substrate corresponding to the peripheral portion of the pixel,
The peripheral part of the concavo-convex part may be formed on a convex structure. The convex structure may be formed based on a black matrix made of a known material.
 第1電極の第1-1構造と第1電極の第1-2構造とを組み合わせてもよいし、第1電極の第2-1構造と第1電極の第2-2構造とを組み合わせてもよい。即ち、凹凸部は、画素中心部を通り、十文字に延びる幹凸部、幹凸部から画素周辺部に向かって延びる複数の枝凸部、及び、複数の枝凸部と接合し、画素周辺部に額縁状に形成された幹凸部から構成されている形態とすることもできる。尚、このような形態を、便宜上、『第1電極の第1-3構造』、『第1電極の第2-3構造』と呼ぶ。ここで、第1電極の第1-3構造、第1電極の第2-3構造にあっても、十文字に延びる幹凸部のそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 第1象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる形態を採用することができる。
The first electrode 1-1 structure and the first electrode 1-2 structure may be combined, or the first electrode 2-1 structure and the first electrode 2-2 structure may be combined. Also good. That is, the concavo-convex portion passes through the center of the pixel and joins the trunk convex portion extending in a cross shape, the plurality of branch convex portions extending from the stem convex portion toward the pixel peripheral portion, and the plurality of branch convex portions, and the pixel peripheral portion It can also be set as the form comprised from the trunk convex part formed in frame shape. Such a form is referred to as “first electrode 1-3 structure” and “first electrode 2-3 structure” for convenience. Here, even in the 1-3 structure of the first electrode and the 2-3 structure of the first electrode, the (X, Y) coordinate system having the X-axis and the Y-axis as the trunk convex portions extending in a cross shape is used. Assuming
The plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions occupying the fourth quadrant can adopt a form extending in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases.
 あるいは又、第1電極の第1構造、第1電極の第2構造において、
 画素と画素との間に位置する第1基板の部分から、画素周辺部に対応する第1基板の部分に亙り、凸構造が形成されており、
 凹凸部の周辺部は凸構造上に形成されている構成とすることができる。尚、このような構成を、便宜上、『第1電極の第3B構造』と呼ぶ。
Alternatively, in the first structure of the first electrode, the second structure of the first electrode,
A convex structure is formed from a portion of the first substrate located between the pixels to a portion of the first substrate corresponding to the peripheral portion of the pixel,
The peripheral part of the concavo-convex part may be formed on a convex structure. Such a configuration is referred to as a “3B structure of the first electrode” for convenience.
 第1電極の第3B構造において、凹凸部の周辺部は凸構造上に形成されているので、凹凸部の周辺部が平坦な場合と比べて、より一層強い電場が凹凸部の周辺部に生じる。その結果、凹凸部の周辺部における液晶分子に対する配向規制力を強くすることができ、凹凸部の周辺部における液晶分子のチルト状態を確実に規定することができる。それ故、良好な電圧応答特性を保持することができる。尚、第1電極の第3B構造の構成、構造を、第1電極の第1-1構造、第1電極の第1-2構造、第1電極の第1-3構造を含む第1電極の第1構造に適用することもできるし、第1電極の第2-1構造、第1電極の第2-2構造、第1電極の第2-3構造を含む第1電極の第2構造に適用することもできる。 In the 3rd B structure of the 1st electrode, since the peripheral part of an uneven part is formed on a convex structure, compared with the case where the peripheral part of an uneven part is flat, a much stronger electric field arises in the peripheral part of an uneven part . As a result, the alignment regulating force on the liquid crystal molecules in the peripheral part of the uneven part can be strengthened, and the tilt state of the liquid crystal molecules in the peripheral part of the uneven part can be defined reliably. Therefore, good voltage response characteristics can be maintained. The configuration and structure of the 3B structure of the first electrode is the same as that of the first electrode including the 1-1 structure of the first electrode, the 1-2 structure of the first electrode, and the 1-3 structure of the first electrode. The second structure of the first electrode can be applied to the first structure, including the 2-1 structure of the first electrode, the 2-2 structure of the first electrode, and the 2-3 structure of the first electrode. It can also be applied.
 また、第1電極の第3B構造において、凹凸部は、画素中心部を通り、十文字に延びる幹凸部、及び、幹凸部から画素周辺部に向かって延びる複数の枝凸部から構成されている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第3B-1構造』と呼ぶ。ここで、第1電極の第3B-1構造にあっては、十文字に延びる幹凸部のそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 第1象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる形態を採用することができる。
Further, in the 3B structure of the first electrode, the concavo-convex portion includes a trunk convex portion that extends through the center of the pixel and extends in a cross shape, and a plurality of branch convex portions that extend from the trunk convex portion toward the pixel peripheral portion. It can be set as a form. Such a form is referred to as “the 3rd B-1 structure of the first electrode” for convenience. Here, in the 3B-1 structure of the first electrode, assuming an (X, Y) coordinate system in which each of the trunk convex portions extending in a cross shape is an X axis and a Y axis,
The plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions occupying the fourth quadrant can adopt a form extending in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases.
 そして、上記の好ましい形態を含む第1電極の第3B-1構造において、幹凸部と対応する第2電極の部分には配向規制部が形成されている形態とすることができる。ここで、配向規制部は、第2電極に設けられたスリット部から成る形態とすることができるし、あるいは又、第2電極に設けられた突起部から成る形態とすることができる。 Then, in the 3B-1 structure of the first electrode including the above-described preferable form, it is possible to adopt a form in which an orientation restricting portion is formed in the portion of the second electrode corresponding to the trunk convex portion. Here, the orientation restricting portion may be formed from a slit portion provided in the second electrode, or may be formed from a protrusion provided in the second electrode.
 あるいは又、第1電極の第3B構造において、凹凸部は、画素周辺部に額縁状に形成された幹凸部、及び、幹凸部から画素内部に向かって延びる複数の枝凸部から構成されている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第3B-2構造』と呼ぶ。ここで、第1電極の第3B-2構造にあっては、画素中心部を通り、画素周辺部に平行な直線のそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 第1象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる形態を採用することができる。
Alternatively, in the 3B structure of the first electrode, the concavo-convex portion includes a stem convex portion formed in a frame shape around the pixel peripheral portion and a plurality of branch convex portions extending from the stem convex portion toward the inside of the pixel. It can be set as a form. Such a form is referred to as “a third B-2 structure of the first electrode” for convenience. Here, in the 3B-2 structure of the first electrode, an (X, Y) coordinate system is assumed in which straight lines that pass through the center of the pixel and are parallel to the periphery of the pixel are the X axis and the Y axis. When
The plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions occupying the fourth quadrant can adopt a form extending in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases.
 そして、上記の好ましい形態を含む第1電極の第3B-2構造において、第1電極には、画素中心部を通り、画素周辺部に平行なスリット部あるいは突起部が形成されている形態とすることができる。 In the 3B-2 structure of the first electrode including the above-described preferable form, the first electrode is formed with a slit or a protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel. be able to.
 更には、以上に説明した各種の好ましい形態を含む第1電極の第3B構造において、凸構造は、周知の材料から構成されたブラックマトリクスに基づき形成されている形態とすることができる。 Furthermore, in the 3B structure of the first electrode including the various preferable forms described above, the convex structure may be formed based on a black matrix made of a known material.
 あるいは又、第1電極の第構造、第1電極の第2構造において、
 凹凸部は、画素中心部を通り、十文字に延びる幹凸部、及び、幹凸部から画素周辺部に向かって延びる複数の枝凸部から構成されており、
 幹凸部と対応する第2電極の部分には、配向規制部が形成されている構成とすることができる。尚、このような構成を、便宜上、『第1電極の第3C構造』と呼ぶ。
Alternatively, in the first structure of the first electrode, the second structure of the first electrode,
The concavo-convex portion is composed of a stem convex portion that extends through the center of the pixel and extends in a cross shape, and a plurality of branch convex portions that extend from the stem convex portion toward the pixel peripheral portion,
An orientation regulating portion may be formed on the portion of the second electrode corresponding to the trunk convex portion. Such a configuration is referred to as a “3C structure of the first electrode” for convenience.
 第1電極の第3C構造にあっては、幹凸部と対応する第2電極の部分には配向規制部が形成されているので、第2電極によって生成された電場が配向規制部近傍において歪み、あるいは又、配向規制部近傍における液晶分子の倒れる方向が規定される。その結果、配向規制部近傍における液晶分子に対する配向規制力を強くすることができ、配向規制部近傍における液晶分子のチルト状態を確実に規定することができる。それ故、画像表示時、幹凸部に対応する画像の部分に暗線が発生し難い。即ち、良好な電圧応答特性を保持しつつ、一層均一な高光透過率を実現することができる液晶表示装置を提供することができるし、バックライトを構成する光源のコスト低減、低消費電力化を図ることができ、また、TFTの信頼性の向上を図ることもできる。 In the 3C structure of the first electrode, since the orientation restricting portion is formed in the portion of the second electrode corresponding to the trunk convex portion, the electric field generated by the second electrode is distorted in the vicinity of the orientation restricting portion. Alternatively, the direction in which the liquid crystal molecules are tilted in the vicinity of the alignment regulating portion is defined. As a result, the alignment regulating force on the liquid crystal molecules in the vicinity of the alignment restricting portion can be strengthened, and the tilt state of the liquid crystal molecules in the vicinity of the alignment restricting portion can be reliably defined. Therefore, at the time of image display, dark lines are unlikely to occur in the image portion corresponding to the trunk convex portion. That is, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption. In addition, the reliability of the TFT can be improved.
 また、第1電極の第3C構造において、配向規制部は、第2電極に設けられたスリット部から成る形態とすることができるし、あるいは又、第2電極に設けられた突起部から成る形態とすることができる。 Further, in the 3C structure of the first electrode, the orientation restricting portion can be formed from a slit portion provided in the second electrode, or alternatively formed from a protrusion provided in the second electrode. It can be.
 あるいは又、第1電極の第1構造、第1電極の第2構造において、
 凹凸部は、画素周辺部に額縁状に形成された幹凸部、及び、幹凸部から画素内部に向かって延びる複数の枝凸部から構成されており、
 第1電極には、画素中心部を通り、画素周辺部に平行なスリット部あるいは突起部が形成されている構成とすることができる。尚、このような構成を、便宜上、『第1電極の第3D構造』と呼ぶ。
Alternatively, in the first structure of the first electrode, the second structure of the first electrode,
The concavo-convex part is composed of a stem convex part formed in a frame shape around the pixel peripheral part, and a plurality of branch convex parts extending from the stem convex part toward the inside of the pixel,
The first electrode may have a structure in which a slit portion or a protrusion portion that passes through the center portion of the pixel and is parallel to the peripheral portion of the pixel is formed. Such a configuration is referred to as “a 3D structure of the first electrode” for convenience.
 第1電極の第3D構造にあっては、第1電極には、画素中心部を通り、画素周辺部に平行なスリット部あるいは突起部が形成されているので、スリット部あるいは突起部が存在しない平坦な凹部が第1電極に形成されている場合と比較して、第1電極によって生成された電場がスリット部近傍において歪み、あるいは又、突起部近傍や配向規制部近傍における液晶分子の倒れる方向が規定される。その結果、スリット部あるいは突起部近傍における液晶分子に対する配向規制力を強くすることができ、スリット部あるいは突起部近傍における液晶分子のチルト状態を確実に規定することができる。それ故、画像表示時、幹凸部に対応する画像の部分に暗線が発生し難い。即ち、良好な電圧応答特性を保持しつつ、一層均一な高光透過率を実現することができる液晶表示装置を提供することができるし、バックライトを構成する光源のコスト低減、低消費電力化を図ることができ、また、TFTの信頼性の向上を図ることもできる。 In the 3D structure of the first electrode, the first electrode has a slit or protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel, so there is no slit or protrusion. Compared with the case where a flat recess is formed in the first electrode, the electric field generated by the first electrode is distorted in the vicinity of the slit, or the liquid crystal molecules are tilted in the vicinity of the protrusion or the alignment regulating portion. Is defined. As a result, it is possible to increase the alignment regulating force on the liquid crystal molecules in the vicinity of the slit portion or the projection portion, and to reliably define the tilt state of the liquid crystal molecules in the vicinity of the slit portion or the projection portion. Therefore, at the time of image display, dark lines are unlikely to occur in the image portion corresponding to the trunk convex portion. That is, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption. In addition, the reliability of the TFT can be improved.
 また、第1電極の第3D構造において、画素と画素との間に位置する第1基板の部分の射影像とブラックマトリクスの射影像が重なるようにブラックマトリクスを形成する形態とすることができるし、画素と画素との間に位置する第1基板の部分から凹凸部の端部に亙る領域の射影像とブラックマトリクスの射影像が重なるようにブラックマトリクスを形成する形態とすることができる。 In the 3D structure of the first electrode, the black matrix can be formed such that the projected image of the portion of the first substrate located between the pixels and the projected image of the black matrix overlap. The black matrix can be formed such that the projected image of the region extending from the first substrate portion located between the pixels to the end of the concavo-convex portion and the projected image of the black matrix overlap.
 枝凸部及び凹部の幅として、1μm乃至20μm、好ましくは2μm乃至10μmを例示することができる。枝凸部及び凹部の幅が1μm未満では、枝凸部及び凹部の形成が困難となり、十分なる製造歩留りの確保できなくなる虞がある。一方、枝凸部及び凹部の幅が20μmを越えると、駆動電圧を第1電極及び第2電極に印加したとき、第1電極と第2電極との間に良好なる斜め電界が生じ難くなる虞がある。幹凸部の幅として、2×10-6m乃至2×10-5m、好ましくは4×10-6m乃至1.5×10-5mを例示することができる。凹部から、凹部に最も近い凸部までの高さとして、5×10-8m乃至1×10-6m、好ましくは1×10-7m乃至5×10-7mを例示することができるし、凸部における各段差部の高さ(段差部を構成する凸部の隣接する頂面間の高低差)として、5×10-8m乃至1×10-6m、好ましくは1×10-7m乃至5×10-7mを例示することができる。そして、これによって、良好な配向制御が可能となり、十分な製造歩留りを確保できると共に、光透過率の低下、プロセス時間の延長を防ぐことができる。 Examples of the width of the branch convex portion and the concave portion include 1 μm to 20 μm, preferably 2 μm to 10 μm. If the widths of the branch convex portions and the concave portions are less than 1 μm, it is difficult to form the branch convex portions and the concave portions, and it may be impossible to secure a sufficient manufacturing yield. On the other hand, if the widths of the branch convex portions and the concave portions exceed 20 μm, it is difficult to generate a favorable oblique electric field between the first electrode and the second electrode when a driving voltage is applied to the first electrode and the second electrode. There is. Examples of the width of the trunk convex portion include 2 × 10 −6 m to 2 × 10 −5 m, preferably 4 × 10 −6 m to 1.5 × 10 −5 m. Examples of the height from the concave portion to the convex portion closest to the concave portion include 5 × 10 −8 m to 1 × 10 −6 m, preferably 1 × 10 −7 m to 5 × 10 −7 m. The height of each step portion in the convex portion (the difference in height between the adjacent top surfaces of the convex portions constituting the step portion) is 5 × 10 −8 m to 1 × 10 −6 m, preferably 1 × 10 -7 m to 5 × 10 -7 m can be exemplified. As a result, good orientation control can be achieved, a sufficient production yield can be secured, and a decrease in light transmittance and an extension of process time can be prevented.
 あるいは又、第1電極の第1構造、第1電極の第2構造において、第1電極に設けられた凸部の一部の幅は、先端部に向かって狭くなっている構成とすることができる。尚、このような構成を、便宜上、『第1電極の第4構造』と呼ぶ。 Alternatively, in the first structure of the first electrode and the second structure of the first electrode, the width of a part of the convex portion provided on the first electrode is narrowed toward the tip. it can. Such a configuration is referred to as “fourth structure of the first electrode” for convenience.
 第1電極の第4構造にあっては、第1電極には複数の凹凸部が形成されており、この第1電極に設けられた凸部の一部の幅は、先端部に向かって狭くなっている。それ故、暗線の発生を一層少なくすることができる。即ち、一層均一な高い光透過率を実現することができ、暗線の発生を抑制することができる。 In the fourth structure of the first electrode, the first electrode has a plurality of concave and convex portions, and the width of a part of the convex portions provided on the first electrode is narrower toward the tip portion. It has become. Therefore, the generation of dark lines can be further reduced. That is, a more uniform high light transmittance can be realized, and generation of dark lines can be suppressed.
 第1電極の第4構造において、
 凹凸部は、画素中心部を通り、十文字に延びる幹凸部、及び、幹凸部から画素周辺部に向かって延びる複数の枝凸部から構成されており、
 複数の枝凸部が、第1電極に設けられた凸部の一部に該当し、
 枝凸部の幅は、幹凸部と接合する枝凸部の部分が最も広く、幹凸部と接合する部分から先端部に向かって狭くなっている形態とすることができる。このような形態を、便宜上、『第1電極の第4A構造』と呼ぶ。また、幹凸部と接合する部分から先端部までの枝凸部の対向する2つの辺を、便宜上、『側辺』と呼ぶ。
In the fourth structure of the first electrode,
The concavo-convex portion is composed of a stem convex portion that extends through the center of the pixel and extends in a cross shape, and a plurality of branch convex portions that extend from the stem convex portion toward the pixel peripheral portion,
A plurality of branch protrusions correspond to a part of the protrusions provided on the first electrode,
The width of the branch convex portion may be such that the portion of the branch convex portion joined to the trunk convex portion is the widest and narrows from the portion joined to the trunk convex portion toward the tip portion. Such a form is referred to as “first electrode 4A structure” for convenience. In addition, two opposite sides of the branch convex portion from the portion joined to the trunk convex portion to the tip portion are referred to as “side sides” for convenience.
 第1電極の第4A構造にあっては、十文字に延びる幹凸部のそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 第1象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる形態を採用することができる。後述する第1電極の第4C-1構造、第1電極の第4D-1構造においても同様とすることができる。
In the 4A structure of the first electrode, when assuming an (X, Y) coordinate system with the X-axis and the Y-axis as the trunk convex portions extending in a cross shape,
The plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions occupying the fourth quadrant can adopt a form extending in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases. The same applies to the 4C-1 structure of the first electrode and the 4D-1 structure of the first electrode, which will be described later.
 あるいは又、第1電極の第4構造において、
 凹凸部は、画素周辺部に額縁状に形成された幹凸部、及び、幹凸部から画素内部に向かって延びる複数の枝凸部から構成されており、
 複数の枝凸部が、第1電極に設けられた凸部の一部に該当し、
 枝凸部の幅は、幹凸部と接合する枝凸部の部分が最も広く、幹凸部と接合する部分から先端部に向かって狭くなっている形態とすることができる。このような形態を、便宜上、『第1電極の第4B構造』と呼ぶ。
Alternatively, in the fourth structure of the first electrode,
The concavo-convex part is composed of a stem convex part formed in a frame shape around the pixel peripheral part, and a plurality of branch convex parts extending from the stem convex part toward the inside of the pixel,
A plurality of branch protrusions correspond to a part of the protrusions provided on the first electrode,
The width of the branch convex portion may be such that the portion of the branch convex portion joined to the trunk convex portion is the widest and narrows from the portion joined to the trunk convex portion toward the tip portion. Such a form is referred to as “first electrode 4B structure” for convenience.
 第1電極の第4B構造にあっては、画素中心部を通り、画素周辺部に平行な直線のそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 第1象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる形態を採用することができる。後述する第1電極の第4C-2構造、第1電極の第4D-2構造においても同様とすることができる。
In the 4B structure of the first electrode, assuming a (X, Y) coordinate system in which straight lines passing through the center of the pixel and parallel to the periphery of the pixel are the X axis and the Y axis,
The plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions occupying the fourth quadrant can adopt a form extending in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases. The same can be applied to the 4C-2 structure of the first electrode and the 4D-2 structure of the first electrode, which will be described later.
 第1電極の第4A構造あるいは第1電極の第4B構造において、枝凸部の幅は、幹凸部と接合する部分から先端部に向かって直線状に狭くなっている形態(枝凸部を構成する各側辺が1本の線分から構成され、幅の変化率が一定である形態)とすることができるが、これに限定するものではなく、曲線状に狭くなっている形態(枝凸部を構成する各側辺が1本の滑らかな曲線から構成され、幅の変化率が変化する形態)とすることもできるし、枝凸部を構成する各側辺が2本以上の線分あるいは曲線から構成されている形態とすることもできるし、階段状に狭くなっている形態(枝凸部を構成する各側辺が階段状である形態)とすることもできる。 In the 4A structure of the first electrode or the 4B structure of the first electrode, the width of the branch convex portion is linearly narrowed from the portion joining the trunk convex portion to the tip portion (the branch convex portion is Each side side to be configured is configured by one line segment, and the rate of change in width is constant. However, the present invention is not limited to this. Each side constituting the portion may be formed of a single smooth curve, and the rate of change of the width may be changed), or each side constituting the branching convex portion may include two or more line segments. Or it can also be set as the form comprised from the curve, and can also be set as the form (form which each side which comprises a branch convex part is step shape) narrowed stepwise.
 以上に説明した好ましい形態を含む第1電極の第4A構造にあっては、幹凸部と対応する第2電極の部分には、配向規制部が形成されている形態とすることができる。このように、幹凸部と対応する第2電極の部分に配向規制部を形成すれば、第2電極によって生成された電場が配向規制部近傍において歪み、あるいは又、配向規制部近傍における液晶分子の倒れる方向が規定される。その結果、配向規制部近傍における液晶分子に対する配向規制力を強くすることができ、配向規制部近傍における液晶分子のチルト状態を確実に規定することができる。それ故、画像表示時、幹凸部に対応する画像の部分に暗線が発生し難い。即ち、良好な電圧応答特性を保持しつつ、一層均一な高い光透過率を実現することができる液晶表示装置を提供することができるし、バックライトを構成する光源のコスト低減、低消費電力化を図ることができ、また、TFTの信頼性の向上を図ることもできる。 In the 4A structure of the first electrode including the preferable form described above, the second electrode corresponding to the trunk convex part may be formed with an orientation regulating part. As described above, when the alignment restricting portion is formed in the portion of the second electrode corresponding to the trunk convex portion, the electric field generated by the second electrode is distorted in the vicinity of the alignment restricting portion, or the liquid crystal molecules in the vicinity of the alignment restricting portion. The direction of falling is defined. As a result, the alignment regulating force on the liquid crystal molecules in the vicinity of the alignment restricting portion can be strengthened, and the tilt state of the liquid crystal molecules in the vicinity of the alignment restricting portion can be reliably defined. Therefore, at the time of image display, dark lines are unlikely to occur in the image portion corresponding to the trunk convex portion. That is, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption. In addition, the reliability of the TFT can be improved.
 以上に説明した好ましい形態を含む第1電極の第4B構造において、第1電極には、画素中心部を通り、画素周辺部に平行なスリット部あるいは突起部が形成されている形態とすることができる。尚、スリット部あるいは突起部には電極は形成されていない。そして、このように、第1電極に、画素中心部を通り、画素周辺部に平行なスリット部あるいは突起部を形成すれば、スリット部あるいは突起部が存在しない平坦な凹部が第1電極に形成されている場合と比較して、第1電極によって生成された電場がスリット部近傍において歪み、あるいは又、突起部近傍における液晶分子の倒れる方向が規定される。その結果、スリット部あるいは突起部近傍における液晶分子に対する配向規制力を強くすることができ、スリット部あるいは突起部近傍における液晶分子のチルト状態を確実に規定することができる。それ故、画像表示時、幹凸部に対応する画像の部分に暗線が発生し難い。即ち、良好な電圧応答特性を保持しつつ、一層均一な高い光透過率を実現することができる液晶表示装置を提供することができるし、バックライトを構成する光源のコスト低減、低消費電力化を図ることができ、また、TFTの信頼性の向上を図ることもできる。 In the 4B structure of the first electrode including the preferred embodiment described above, the first electrode may be formed with a slit or a protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel. it can. Note that no electrodes are formed on the slits or protrusions. In this way, if a slit or protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel is formed in the first electrode, a flat recess without the slit or protrusion is formed in the first electrode. Compared with the case where the electric field is generated, the electric field generated by the first electrode is distorted in the vicinity of the slit, or the direction in which the liquid crystal molecules are tilted in the vicinity of the protrusion is defined. As a result, it is possible to increase the alignment regulating force on the liquid crystal molecules in the vicinity of the slit portion or the projection portion, and to reliably define the tilt state of the liquid crystal molecules in the vicinity of the slit portion or the projection portion. Therefore, at the time of image display, dark lines are unlikely to occur in the image portion corresponding to the trunk convex portion. That is, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption. In addition, the reliability of the TFT can be improved.
 また、第1電極の第4構造において、第1電極に設けられた凸部には複数の段差部が形成されている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第4C構造』と呼ぶ。このように、凸部に複数の段差部(高低差)を形成すれば、凸部において電場の強弱が生じ、あるいは又、横電界が生じる。その結果、凸部における液晶分子に対する配向規制力を強くすることができ、凸部における液晶分子のチルト状態を確実に規定することができる。それ故、画像表示時、例えば、幹凸部に対応する画像の部分に暗線が発生し難い。即ち、良好な電圧応答特性を保持しつつ、一層均一な高い光透過率を実現することができる液晶表示装置を提供することができるし、バックライトを構成する光源のコスト低減、低消費電力化を図ることができ、また、TFTの信頼性の向上を図ることもできる。 In the fourth structure of the first electrode, a plurality of stepped portions can be formed on the convex portion provided on the first electrode. Such a form is referred to as “first electrode 4C structure” for convenience. In this way, if a plurality of step portions (height difference) are formed on the convex portion, the electric field strength or weakness occurs in the convex portion, or a lateral electric field occurs. As a result, the alignment regulating force on the liquid crystal molecules at the convex portions can be strengthened, and the tilt state of the liquid crystal molecules at the convex portions can be reliably defined. Therefore, when displaying an image, for example, a dark line hardly occurs in an image portion corresponding to the trunk convex portion. That is, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption. In addition, the reliability of the TFT can be improved.
 第1電極の第4C構造において、凹凸部は、画素中心部を通り、十文字に延びる幹凸部、及び、幹凸部から画素周辺部に向かって延びる複数の枝凸部から構成されている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第4C-1構造』と呼ぶ。尚、第1電極の第4C-1構造は、実質的に、第1電極の第4A構造と第1電極の第4C構造とを組み合わせたものである。 In the 4C structure of the first electrode, the concavo-convex portion includes a trunk convex portion that extends through the center of the pixel and extends in a cross shape, and a plurality of branch convex portions that extend from the trunk convex portion toward the pixel peripheral portion. It can be. Such a form is referred to as a “first electrode 4C-1 structure” for convenience. The 4C-1 structure of the first electrode is substantially a combination of the 4A structure of the first electrode and the 4C structure of the first electrode.
 そして、上記の好ましい形態を含む第1電極の第4C-1構造において、幹凸部の延びる方向と直交する仮想垂直平面で幹凸部を切断したときの幹凸部の断面形状は、幹凸部の断面形状の中心から幹凸部の断面形状の縁に向かって段差部が下降していく断面形状を有する形態とすることができる。そして、以上に説明した各種の好ましい形態を含む第1電極の第4C-1構造において、幹凸部の延びる方向に平行な仮想垂直平面で幹凸部を切断したときの幹凸部の断面形状は、幹凸部の断面形状の中央部から幹凸部の断面形状の端部に向かって段差部が下降していく断面形状を有する形態とすることができる。 Then, in the 4C-1 structure of the first electrode including the above preferred embodiment, the cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane perpendicular to the extending direction of the stem convex portion is the stem convex It can be set as the form which has a cross-sectional shape from which the level | step-difference part descend | falls toward the edge of the cross-sectional shape of a trunk convex part from the center of the cross-sectional shape of a part. Then, in the 4C-1 structure of the first electrode including the various preferred embodiments described above, the cross-sectional shape of the trunk convex portion when the trunk convex portion is cut along a virtual vertical plane parallel to the extending direction of the trunk convex portion Can have a cross-sectional shape in which the stepped portion descends from the center of the cross-sectional shape of the trunk convex portion toward the end of the cross-sectional shape of the stem convex portion.
 更には、以上に説明した各種の好ましい形態を含む第1電極の第4C-1構造において、枝凸部の延びる方向と直交する仮想垂直平面で枝凸部を切断したときの枝凸部の断面形状は、枝凸部の断面形状の中心から枝凸部の断面形状の縁に向かって段差部が下降していく断面形状を有する形態とすることができる。そして、以上に説明した各種の好ましい形態を含む第1電極の第4C-1構造において、枝凸部の延びる方向に平行な仮想垂直平面で枝凸部を切断したときの枝凸部の断面形状は、枝凸部の断面形状の幹凸部側から枝凸部の断面形状の端部に向かって段差部が下降していく断面形状を有する形態とすることができる。 Furthermore, in the 4C-1 structure of the first electrode including the various preferred embodiments described above, the cross section of the branch convex portion when the branch convex portion is cut along a virtual vertical plane orthogonal to the extending direction of the branch convex portion. The shape may have a cross-sectional shape in which the stepped portion descends from the center of the cross-sectional shape of the branch convex portion toward the edge of the cross-sectional shape of the branch convex portion. Then, in the 4C-1 structure of the first electrode including the various preferred embodiments described above, the cross-sectional shape of the branch convex portion when the branch convex portion is cut along a virtual vertical plane parallel to the extending direction of the branch convex portion May have a cross-sectional shape in which the stepped portion descends from the trunk convex portion side of the cross-sectional shape of the branch convex portion toward the end of the cross-sectional shape of the branch convex portion.
 更には、以上に説明した各種の好ましい形態を含む第1電極の第4C-1構造において、幹凸部と対応する第2電極の部分には配向規制部が形成されている形態とすることができる。第1電極の第4A構造あるいは第1電極の第4C-1構造において、配向規制部は、第2電極に設けられたスリット部から成る形態とすることができるし、あるいは又、第2電極に設けられた突起部から成る形態とすることができるし、あるいは又、突起状になった第2電極の部分から構成することもできる。突起部は、例えば、レジスト材料から成り、その上には第2電極は形成されていない。突起状になった第2電極の部分を設けるためには第2電極の下側に凸部を形成すればよいし、あるいは又、第1電極における凹凸部の凸部形成方法と同様の方法で突起状になった第2電極の部分を設けることも可能である。第1電極の第4C-1構造において、スリット部あるいは突起部、突起状になった第2電極の部分の幅は幹凸部の幅よりも狭いことが望ましい。後述する第1電極の第4D-1構造においても同様とすることができる。 Further, in the 4C-1 structure of the first electrode including the various preferable forms described above, the orientation restricting portion may be formed in the portion of the second electrode corresponding to the trunk convex portion. it can. In the 4A structure of the first electrode or the 4C-1 structure of the first electrode, the orientation restricting portion can be formed by a slit portion provided in the second electrode, or alternatively, the second electrode It can be configured by a provided protrusion, or can be configured by a protruding second electrode portion. The protrusion is made of, for example, a resist material, and the second electrode is not formed thereon. In order to provide the protruding portion of the second electrode, a convex portion may be formed on the lower side of the second electrode, or, alternatively, by a method similar to the convex portion forming method of the concave and convex portions in the first electrode. It is also possible to provide a protruding portion of the second electrode. In the 4C-1 structure of the first electrode, it is desirable that the width of the slit portion or the protruding portion or the protruding portion of the second electrode is narrower than the width of the trunk protruding portion. The same can be applied to the 4D-1 structure of the first electrode described later.
 あるいは又、第1電極の第4C構造において、凹凸部は、画素周辺部に額縁状に形成された幹凸部、及び、幹凸部から画素内部に向かって延びる複数の枝凸部から構成されている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第4C-2構造』と呼ぶ。尚、第1電極の第4C-2構造は、実質的に、第1電極の第4B構造と第1電極の第4C構造とを組み合わせたものである。 Alternatively, in the 4C structure of the first electrode, the concavo-convex portion is constituted by a stem convex portion formed in a frame shape around the pixel and a plurality of branch convex portions extending from the stem convex portion toward the inside of the pixel. It can be set as a form. Such a form is referred to as a “first electrode 4C-2 structure” for convenience. The 4C-2 structure of the first electrode is substantially a combination of the 4B structure of the first electrode and the 4C structure of the first electrode.
 そして、上記の好ましい形態を含む第1電極の第4C-2構造において、幹凸部の延びる方向と直交する仮想垂直平面で幹凸部を切断したときの幹凸部の断面形状は、幹凸部の断面形状の外側の縁から幹凸部の断面形状の内側の縁に向かって段差部が下降していく断面形状を有する形態とすることができる。 Then, in the 4C-2 structure of the first electrode including the preferred embodiment described above, the cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion is the stem convex It can be set as the form which has a cross-sectional shape from which the level | step-difference part descend | falls toward the inner edge of the cross-sectional shape of a trunk convex part from the outer edge of the cross-sectional shape of a part.
 更には、以上に説明した各種の好ましい形態を含む第1電極の第4C-2構造において、枝凸部の延びる方向と直交する仮想垂直平面で枝凸部を切断したときの枝凸部の断面形状は、枝凸部の断面形状の中心から枝凸部の断面形状の縁に向かって段差部が下降していく断面形状を有する形態とすることができる。そして、以上に説明した各種の好ましい形態を含む第1電極の第4C-2構造において、枝凸部の延びる方向に平行な仮想垂直平面で枝凸部を切断したときの枝凸部の断面形状は、枝凸部の断面形状の幹凸部側から枝凸部の断面形状の端部に向かって段差部が下降していく断面形状を有する形態とすることができる。 Furthermore, in the 4C-2 structure of the first electrode including the various preferred embodiments described above, the cross-section of the branch protrusion when the branch protrusion is cut along a virtual vertical plane perpendicular to the extending direction of the branch protrusion. The shape may have a cross-sectional shape in which the stepped portion descends from the center of the cross-sectional shape of the branch convex portion toward the edge of the cross-sectional shape of the branch convex portion. Then, in the 4C-2 structure of the first electrode including the various preferred embodiments described above, the cross-sectional shape of the branch protrusion when the branch protrusion is cut along a virtual vertical plane parallel to the extending direction of the branch protrusion May have a cross-sectional shape in which the stepped portion descends from the trunk convex portion side of the cross-sectional shape of the branch convex portion toward the end of the cross-sectional shape of the branch convex portion.
 更には、以上に説明した各種の好ましい形態を含む第1電極の第4C-2構造において、第1電極には、画素中心部を通り、画素周辺部に平行なスリット部あるいは突起部が形成されている形態とすることができる。尚、スリット部あるいは突起部には電極は形成されていない。第1電極の第4B構造あるいは第1電極の第4C-2構造において、突起部は、例えば、レジスト材料から成る。あるいは又、第1電極には、画素中心部を通る十文字状の凸部が凹部に囲まれて形成されている形態とすることができる。このような十文字状の凸部は、第1電極の下側に十文字状の凸部を形成することで設けることができるし、あるいは又、第1電極における凹凸部の形成方法と同様の方法で設けることも可能である。あるいは又、スリット部若しくは突起部(リブ)を設ける代わりに、画素中心部を通る十文字状の凹部を設けてもよい。後述する第1電極の第4D-2構造においても同様とすることができる。 Furthermore, in the 4C-2 structure of the first electrode including the various preferred embodiments described above, the first electrode is formed with a slit or protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel. It can be set as a form. Note that no electrodes are formed on the slits or protrusions. In the 4B structure of the first electrode or the 4C-2 structure of the first electrode, the protrusion is made of, for example, a resist material. Alternatively, the first electrode may have a cross-shaped convex portion that passes through the center of the pixel and is surrounded by the concave portion. Such a cross-shaped convex part can be provided by forming a cross-shaped convex part on the lower side of the first electrode, or by a method similar to the method of forming the concave-convex part in the first electrode. It is also possible to provide it. Alternatively, instead of providing the slit portion or the protrusion (rib), a cross-shaped concave portion that passes through the pixel center portion may be provided. The same can be applied to the 4D-2 structure of the first electrode described later.
 更には、以上に説明した各種の好ましい形態を含む第1電極の第4C構造において、
 画素と画素との間に位置する第1基板の部分から、画素周辺部に対応する第1基板の部分に亙り、凸構造が形成されており、
 凹凸部の周辺部は凸構造上に形成されている形態とすることができる。尚、凸構造は、周知の材料から構成されたブラックマトリクスに基づき形成されている形態とすることができる。以上に説明した各種の好ましい形態を含む第1電極の第4D構造においても同様とすることができる。
Furthermore, in the 4C structure of the first electrode including the various preferred embodiments described above,
A convex structure is formed from a portion of the first substrate located between the pixels to a portion of the first substrate corresponding to the peripheral portion of the pixel,
The peripheral part of the concavo-convex part may be formed on a convex structure. The convex structure may be formed based on a black matrix made of a known material. The same applies to the 4D structure of the first electrode including the various preferred embodiments described above.
 あるいは又、第1電極の第4構造において、
 画素と画素との間に位置する第1基板の部分から、画素周辺部に対応する第1基板の部分に亙り、凸構造が形成されており、
 凹凸部の周辺部は凸構造上に形成されている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第4D構造』と呼ぶ。そして、このように、凹凸部の周辺部を凸構造上に形成すれば、凹凸部の周辺部が平坦な場合と比べて、より一層強い電場が凹凸部の周辺部に生じる。その結果、凹凸部の周辺部における液晶分子に対する配向規制力を強くすることができ、凹凸部の周辺部における液晶分子のチルト状態を確実に規定することができる。それ故、良好な電圧応答特性を保持することができる。
Alternatively, in the fourth structure of the first electrode,
A convex structure is formed from a portion of the first substrate located between the pixels to a portion of the first substrate corresponding to the peripheral portion of the pixel,
The peripheral part of the concavo-convex part may be formed on a convex structure. Such a form is referred to as a “fourth D structure of the first electrode” for convenience. In this way, when the peripheral portion of the uneven portion is formed on the convex structure, a stronger electric field is generated in the peripheral portion of the uneven portion than when the peripheral portion of the uneven portion is flat. As a result, the alignment regulating force on the liquid crystal molecules in the peripheral part of the uneven part can be strengthened, and the tilt state of the liquid crystal molecules in the peripheral part of the uneven part can be defined reliably. Therefore, good voltage response characteristics can be maintained.
 また、第1電極の第4D構造において、凹凸部は、画素中心部を通り、十文字に延びる幹凸部、及び、幹凸部から画素周辺部に向かって延びる複数の枝凸部から構成されている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第4D-1構造』と呼ぶ。尚、第1電極の第4D-1構造は、実質的に、第1電極の第4A構造と第1電極の第4C構造と第1電極の第4D構造とを組み合わせたものである。 Further, in the 4D structure of the first electrode, the concavo-convex portion includes a trunk convex portion that extends through the center of the pixel and extends in a cross shape, and a plurality of branch convex portions that extend from the trunk convex portion toward the pixel peripheral portion. It can be set as a form. Such a form is referred to as a “fourth D-1 structure of the first electrode” for convenience. Note that the 4D-1 structure of the first electrode is substantially a combination of the 4A structure of the first electrode, the 4C structure of the first electrode, and the 4D structure of the first electrode.
 そして、上記の好ましい形態を含む第1電極の第4D-1構造において、幹凸部と対応する第2電極の部分には配向規制部が形成されている形態とすることができる。ここで、配向規制部は、第2電極に設けられたスリット部から成る形態とすることができるし、あるいは又、第2電極に設けられた突起部から成る形態とすることができる。 Then, in the 4D-1 structure of the first electrode including the above-mentioned preferable form, it is possible to adopt a form in which an orientation regulating part is formed in the part of the second electrode corresponding to the trunk convex part. Here, the orientation restricting portion may be formed from a slit portion provided in the second electrode, or may be formed from a protrusion provided in the second electrode.
 あるいは又、第1電極の第4D構造において、凹凸部は、画素周辺部に額縁状に形成された幹凸部、及び、幹凸部から画素内部に向かって延びる複数の枝凸部から構成されている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第4D-2構造』と呼ぶ。尚、第1電極の第4D-2構造は、実質的に、第1電極の第4B構造と第1電極の第4C構造と第1電極の第4D構造とを組み合わせたものである。 Alternatively, in the 4D structure of the first electrode, the concavo-convex portion is composed of a stem convex portion formed in a frame shape around the pixel peripheral portion and a plurality of branch convex portions extending from the stem convex portion toward the inside of the pixel. It can be set as a form. Such a form is referred to as a “fourth D-2 structure of the first electrode” for convenience. The 4D-2 structure of the first electrode is substantially a combination of the 4B structure of the first electrode, the 4C structure of the first electrode, and the 4D structure of the first electrode.
 そして、上記の好ましい形態を含む第1電極の第4D-2構造において、第1電極には、画素中心部を通り、画素周辺部に平行なスリット部あるいは突起部が形成されている形態とすることができる。 In the 4D-2 structure of the first electrode including the above-described preferable form, the first electrode is formed with a slit part or a protrusion part that passes through the center part of the pixel and is parallel to the peripheral part of the pixel. be able to.
 また、第1電極の第4構造において、画素と画素との間に位置する第1基板の部分の射影像とブラックマトリクスの射影像が重なるようにブラックマトリクスを形成する形態とすることができるし、画素と画素との間に位置する第1基板の部分から凹凸部の端部に亙る領域の射影像とブラックマトリクスの射影像が重なるようにブラックマトリクスを形成する形態とすることができる。 In the fourth structure of the first electrode, the black matrix can be formed such that the projected image of the portion of the first substrate located between the pixels and the projected image of the black matrix overlap. The black matrix can be formed such that the projected image of the region extending from the first substrate portion located between the pixels to the end of the concavo-convex portion and the projected image of the black matrix overlap.
 枝凸部及び凹部の平均最小幅及び平均最大幅として、1μm及び25μm、好ましくは2μm及び20μmを例示することができる。枝凸部及び凹部の平均最小幅が1μm未満では、枝凸部及び凹部の形成が困難となり、十分なる製造歩留りの確保できなくなる虞がある。一方、枝凸部及び凹部の平均最大幅が25μmを越えると、駆動電圧を第1電極及び第2電極に印加したとき、第1電極と第2電極との間に良好なる斜め電界が生じ難くなる虞がある。幹凸部の幅として、2×10-6m乃至2×10-5m、好ましくは4×10-6m乃至1.5×10-5mを例示することができる。凹部から、凹部に最も近い凸部までの高さとして、5×10-8m乃至1×10-6m、好ましくは1×10-7m乃至1×10-6m、より好ましくは2×10-7m乃至6×10-7mを例示することができる。凸部における各段差部の高さ(段差部を構成する凸部の隣接する頂面間の高低差)として、5×10-8m乃至1×10-6m、好ましくは1×10-7m乃至5×10-7mを例示することができる。そして、これによって、良好な配向制御が可能となり、十分な製造歩留りを確保できると共に、光透過率の低下、プロセス時間の延長を防ぐことができる。以上の議論は、「枝凸部」を後述する「枝凸部等」に読み替えることで、第1電極の第5A構造~第1電極の第5E構造に適用することができる。 Examples of the average minimum width and average maximum width of the branch convex portions and the concave portions include 1 μm and 25 μm, preferably 2 μm and 20 μm. If the average minimum width of the branch convex portions and the concave portions is less than 1 μm, it is difficult to form the branch convex portions and the concave portions, and it may be impossible to secure a sufficient manufacturing yield. On the other hand, when the average maximum width of the branch convex portions and the concave portions exceeds 25 μm, a favorable oblique electric field is hardly generated between the first electrode and the second electrode when a driving voltage is applied to the first electrode and the second electrode. There is a risk of becoming. Examples of the width of the trunk convex portion include 2 × 10 −6 m to 2 × 10 −5 m, preferably 4 × 10 −6 m to 1.5 × 10 −5 m. The height from the concave portion to the convex portion closest to the concave portion is 5 × 10 −8 m to 1 × 10 −6 m, preferably 1 × 10 −7 m to 1 × 10 −6 m, more preferably 2 ×. 10 -7 m to be able to illustrate the 6 × 10 -7 m. The height of each step portion in the convex portion (the difference in height between the adjacent top surfaces of the convex portions constituting the step portion) is 5 × 10 −8 m to 1 × 10 −6 m, preferably 1 × 10 −7. m to 5 × 10 −7 m can be exemplified. As a result, good orientation control can be achieved, a sufficient production yield can be secured, and a decrease in light transmittance and an extension of process time can be prevented. The above discussion can be applied to the 5A structure of the first electrode to the 5E structure of the first electrode by replacing “branch convex portion” with “branch convex portion etc.” to be described later.
 あるいは又、第1電極の第1構造、第1電極の第2構造において、
 画素の中心を通るX軸及びY軸を想定したとき、
 第1象限を占める複数の凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる構成とすることができる。尚、このような構成を、便宜上、『第1電極の第5A構造』と呼ぶ。
Alternatively, in the first structure of the first electrode, the second structure of the first electrode,
Assuming an X-axis and a Y-axis passing through the center of the pixel,
The plurality of convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of convex portions occupying the second quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate decreases,
The plurality of convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of convex portions occupying the fourth quadrant can be configured to extend in parallel with the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases. Such a configuration is referred to as a “first electrode 5A structure” for convenience.
 第1電極の第5A構造において、第1象限を占める複数の凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、第2象限を占める複数の凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、第3象限を占める複数の凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、第4象限を占める複数の凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる。即ち、X軸と平行に延びる凸部の部分、あるいは、Y軸と平行に延びる凸部の部分が存在しないか、存在しても、非常に短い長さである。従って、液晶分子の配向の方向を凸部の延びる方向に出来る限り一致させることができ、X軸及びY軸に対応した領域における暗線の発生を抑制することができる結果、一層均一な高い光透過率を実現することが可能な液晶表示装置を提供することができる。また、短時間にて液晶分子にプレチルトを付与することを可能とする構成、構造を有する液晶表示装置を提供することができる。 In the 5A structure of the first electrode, the plurality of protrusions occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases, and the plurality of protrusions occupying the second quadrant Are parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases, and the plurality of convex portions occupying the third quadrant are in the direction in which the Y coordinate value decreases when the X coordinate value decreases. The plurality of protrusions extending in parallel to the fourth quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value increases. In other words, the length of the convex portion extending parallel to the X axis, or the portion of the convex portion extending parallel to the Y axis does not exist, or even if it exists, the length is very short. Therefore, the alignment direction of the liquid crystal molecules can be matched as much as possible with the direction in which the convex portions extend, and the generation of dark lines in the region corresponding to the X axis and the Y axis can be suppressed. A liquid crystal display device capable of realizing the rate can be provided. In addition, it is possible to provide a liquid crystal display device having a configuration and a structure capable of giving a pretilt to liquid crystal molecules in a short time.
 あるいは又、第1電極の第1構造、第1電極の第2構造において、
 画素の中心を通るX軸及びY軸を想定したとき、
 複数の凹凸部は、X軸上及びY軸上を延びる幹凸部、及び、幹凸部の側辺から画素の周辺部に向かって延びる複数の枝凸部から構成されており、
 枝凸部と接合していない幹凸部の側辺部分の延びる方向は、X軸とは平行でなく、且つ、Y軸とは平行でない構成とすることができる。即ち、枝凸部と接合していない幹凸部の側辺部分の延びる方向は、X軸及びY軸と異なる方向である。尚、このような構成を、便宜上、『第1電極の第5B構造』と呼ぶ。
Alternatively, in the first structure of the first electrode, the second structure of the first electrode,
Assuming an X-axis and a Y-axis passing through the center of the pixel,
The plurality of concavo-convex portions are constituted by a trunk convex portion extending on the X axis and the Y axis, and a plurality of branch convex portions extending from the side of the trunk convex portion toward the peripheral portion of the pixel,
The extending direction of the side portion of the trunk convex portion that is not joined to the branch convex portion may be configured not to be parallel to the X axis and not parallel to the Y axis. That is, the extending direction of the side portion of the trunk convex portion that is not joined to the branch convex portion is a direction different from the X axis and the Y axis. Such a configuration is referred to as a “first electrode 5B structure” for convenience.
 第1電極の第5B構造において、複数の凹凸部は、X軸上及びY軸上を延びる幹凸部、及び、幹凸部の側辺から画素の周辺部に向かって延びる複数の枝凸部から構成されており、枝凸部と接合していない幹凸部の側辺部分の延びる方向は、X軸とは平行でなく、且つ、Y軸とは平行でない。即ち、X軸と平行に延びる幹凸部の部分、あるいは、Y軸と平行に延びる幹凸部の部分が存在しない。従って、X軸及びY軸に対応した領域における暗線の発生を抑制することができる結果、一層均一な高い光透過率を実現することが可能な液晶表示装置を提供することができる。また、短時間にて液晶分子にプレチルトを付与することを可能とする構成、構造を有する液晶表示装置を提供することができる。 In the 5B structure of the first electrode, the plurality of concavo-convex portions include a stem convex portion extending on the X axis and the Y axis, and a plurality of branch convex portions extending from the side of the stem convex portion toward the peripheral portion of the pixel. The extending direction of the side portion of the trunk convex portion that is not joined to the branch convex portion is not parallel to the X axis and not parallel to the Y axis. That is, there is no trunk convex portion extending in parallel with the X axis or the trunk convex portion extending in parallel with the Y axis. Therefore, the generation of dark lines in the region corresponding to the X axis and the Y axis can be suppressed, and as a result, a liquid crystal display device capable of realizing a more uniform high light transmittance can be provided. In addition, it is possible to provide a liquid crystal display device having a configuration and a structure capable of giving a pretilt to liquid crystal molecules in a short time.
 あるいは又、第1電極の第1構造、第1電極の第2構造において、第1電極には、更に、スリット部が形成されている構成とすることができる。即ち、第1電極には、凹凸部及びスリット部が形成されている。スリット部には、第1電極を構成する透明導電材料層は形成されていない。尚、このような構成を、便宜上、『第1電極の第5C構造』と呼ぶ。 Alternatively, in the first structure of the first electrode and the second structure of the first electrode, the first electrode may further include a slit portion. That is, the first electrode is provided with a concavo-convex portion and a slit portion. In the slit portion, the transparent conductive material layer constituting the first electrode is not formed. Such a configuration is referred to as a “first electrode 5C structure” for convenience.
 あるいは又、第1電極の第1構造、第1電極の第2構造において、画素の中心領域における第1電極には窪みが設けられている構成とすることができる。即ち、第1電極には、凹凸部及び窪みが形成されている。窪みには、第1電極を構成する透明導電材料層が形成されている。尚、このような構成を、便宜上、『第1電極の第5D構造』と呼ぶ。 Alternatively, in the first structure of the first electrode and the second structure of the first electrode, the first electrode in the central region of the pixel may be provided with a depression. That is, the first electrode is provided with an uneven portion and a recess. A transparent conductive material layer constituting the first electrode is formed in the recess. Such a configuration is referred to as a “first electrode 5D structure” for convenience.
 あるいは又、第1電極の第1構造、第1電極の第2構造において、画素の中心を通るX軸及びY軸を想定したとき、
 複数の凹凸部は、X軸上及びY軸上を延びる幹凸部、及び、幹凸部の側辺から画素の周辺部に向かって延びる複数の枝凸部から構成されており、
 第1象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延び、
 X軸上の幹凸部から延び、第1象限を占める枝凸部と、X軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互にずれた状態で形成されており、
 Y軸上の幹凸部から延び、第1象限を占める枝凸部と、Y軸上の幹凸部から延び、第2象限を占める枝凸部とは、相互にずれた状態で形成されており、
 X軸上の幹凸部から延び、第2象限を占める枝凸部と、X軸上の幹凸部から延び、第3象限を占める枝凸部とは、相互にずれた状態で形成されており、
 Y軸上の幹凸部から延び、第3象限を占める枝凸部と、Y軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互にずれた状態で形成されている構成とすることができる。尚、このような構成を、便宜上、『第1電極の第5E構造』と呼ぶ。
Alternatively, in the first structure of the first electrode and the second structure of the first electrode, assuming the X axis and the Y axis passing through the center of the pixel,
The plurality of concavo-convex portions are constituted by a trunk convex portion extending on the X axis and the Y axis, and a plurality of branch convex portions extending from the side of the trunk convex portion toward the peripheral portion of the pixel,
The plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions occupying the fourth quadrant extend in parallel to the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases,
The branch convex part extending from the trunk convex part on the X axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the X axis and occupying the fourth quadrant are formed in a mutually shifted state. And
The branch convex part extending from the trunk convex part on the Y axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the second quadrant are formed in a mutually shifted state. And
The branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are formed in a mutually shifted state. And
The branch convex part extending from the trunk convex part on the Y axis and occupying the third quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the fourth quadrant are formed in a mutually shifted state. It can be set as a structure. Such a configuration is referred to as a “first electrode 5E structure” for convenience.
 第1電極の第5C構造において、第1電極には、凹凸部の他、スリット部が形成されている。ここで、スリット部を設けることで、第1電極によって生成された電場がスリット部近傍において歪み、液晶分子の倒れる方向が強く規定される。その結果、スリット部近傍における液晶分子に対する配向規制力を強くすることができ、スリット部近傍における液晶分子のチルト状態を確実に規定することができる。また、第1電極の第5D構造にあっては、画素の中心領域における第1電極には窪みが設けられている。ここで、窪みを設けることで、窪みの近傍に位置する液晶分子は、画素の中心に向かって倒れる状態となる。更には、第1電極の第5E構造にあっては、凸部と凸部とはずれた状態で形成されている。ここで、凸部と凸部とをずれた状態で形成することで、画素の中心における第1電極によって生成された電場が画素の中心の近傍において所望の状態に歪み、液晶分子の倒れる方向が規定される。そして、これらの結果として、画素の中心の近傍における液晶分子に対する配向規制力を強くすることができ、画素の中心の近傍における液晶分子のチルト状態を確実に規定することができる。こうして、液晶表示装置の製造時、液晶分子にプレチルトを付与するために液晶層を所望の電場に所定の時間、暴露するが、所望の電場に暴露された液晶分子の配向が安定するまでに要する時間を短縮することができる。即ち、短時間にて液晶分子にプレチルトを付与することが可能となり、液晶表示装置の製造時間の短縮化を図ることができる。 In the 5C structure of the first electrode, the first electrode has a slit portion in addition to the concavo-convex portion. Here, by providing the slit portion, the electric field generated by the first electrode is distorted in the vicinity of the slit portion, and the direction in which the liquid crystal molecules fall is strongly defined. As a result, the alignment regulating force on the liquid crystal molecules in the vicinity of the slit portion can be strengthened, and the tilt state of the liquid crystal molecules in the vicinity of the slit portion can be reliably defined. In the 5D structure of the first electrode, the first electrode in the center region of the pixel is provided with a recess. Here, by providing the depression, the liquid crystal molecules located in the vicinity of the depression are in a state of falling toward the center of the pixel. Furthermore, in the 5E structure of the 1st electrode, it forms in the state which shifted | deviated from the convex part and the convex part. Here, by forming the convex portion and the convex portion in a shifted state, the electric field generated by the first electrode in the center of the pixel is distorted to a desired state in the vicinity of the center of the pixel, and the direction in which the liquid crystal molecules are tilted is changed. It is prescribed. As a result, it is possible to increase the alignment regulating force on the liquid crystal molecules in the vicinity of the center of the pixel, and to reliably define the tilt state of the liquid crystal molecules in the vicinity of the center of the pixel. Thus, during the manufacture of the liquid crystal display device, the liquid crystal layer is exposed to a desired electric field for a predetermined time in order to impart a pretilt to the liquid crystal molecules, but it is necessary for the alignment of the liquid crystal molecules exposed to the desired electric field to become stable. Time can be shortened. That is, a pretilt can be imparted to the liquid crystal molecules in a short time, and the manufacturing time of the liquid crystal display device can be shortened.
 第1電極の第5A構造~第1電極の第5E構造において、上述したような、凸部あるいは枝凸部(これらを総称して、以下、『枝凸部等』と呼ぶ場合がある)の配置状態は、前述したとおり、マルチドメイン電極構造と呼ばれており、1つの画素内に枝凸部等の延びる方向の異なる領域が形成されるため、視野角特性の向上を図ることができる。尚、第1象限を占める複数の枝凸部等は、前述したと同様に、その軸線がX軸と45度を成して延び、第2象限を占める複数の枝凸部等は、その軸線がX軸と135度を成して延び、第3象限を占める複数の枝凸部等は、その軸線がX軸と225度を成して延び、第4象限を占める複数の枝凸部等は、その軸線がX軸と315度を成して延びる形態とすることが好ましいが、これらの値(角度)に限定するものではない。また、「画素の中心を通るX軸及びY軸を想定したとき」とは、具体的には、例えば、画素の中心を通り、画素周辺部に平行な直線のそれぞれをX軸、Y軸とした(X,Y)座標系を想定することを意味する。第1電極の第5E構造を除き、枝凸部等は、X軸に対して線対称であり、Y軸に対しても線対称であることが好ましく、あるいは又、第1電極の第5A構造~第1電極の第5E構造にあっては、枝凸部等は、画素の中心に対して180度の回転対称(点対称)であることが好ましい。 In the 5th A structure of the first electrode to the 5E structure of the 1st electrode, as described above, the convex portion or the branch convex portion (these may be collectively referred to as “branch convex portion” hereinafter). As described above, the arrangement state is called a multi-domain electrode structure, and regions having different extending directions such as branch protrusions are formed in one pixel, so that viewing angle characteristics can be improved. As described above, the plurality of branch projections occupying the first quadrant extend at an angle of 45 degrees with the X axis, and the plurality of branch projections occupying the second quadrant A plurality of branch projections, etc., extending 135 degrees with the X axis and occupying the third quadrant, etc., a plurality of branch projections, etc., whose axis extending 225 degrees with the X axis, occupying the fourth quadrant, etc. Is preferably configured such that its axis extends 315 degrees with the X axis, but is not limited to these values (angles). Further, “when assuming the X axis and the Y axis passing through the center of the pixel” specifically means, for example, that each straight line passing through the center of the pixel and parallel to the peripheral portion of the pixel is the X axis and the Y axis. This means that an (X, Y) coordinate system is assumed. Except for the 5E structure of the first electrode, the branch convex portions and the like are preferably symmetrical with respect to the X axis and also symmetrical with respect to the Y axis, or alternatively, the 5A structure of the first electrode. In the 5E structure of the first electrode, it is preferable that the branch protrusions have a rotational symmetry (point symmetry) of 180 degrees with respect to the center of the pixel.
 第1電極の第5A構造にあっては、第1電極の第5B構造と異なり、幹凸部は設けられておらず、第1電極の第5A構造における凸部は、実質的に、第1電極の第5B構造における枝凸部に相当し、
 X軸から延び、第1象限を占める凸部のそれぞれは、X軸から延び、第4象限を占める凸部のそれぞれと接合しており、
 Y軸から延び、第1象限を占める凸部のそれぞれは、Y軸から延び、第2象限を占める凸部のそれぞれと接合しており、
 X軸から延び、第2象限を占める凸部のそれぞれは、X軸から延び、第3象限を占める凸部のそれぞれと接合しており、
 Y軸から延び、第3象限を占める凸部のそれぞれは、Y軸から延び、第4象限を占める凸部のそれぞれと接合している形態とすることができる。
In the 5A structure of the first electrode, unlike the 5B structure of the first electrode, the trunk convex portion is not provided, and the convex portion in the 5A structure of the first electrode is substantially the first Corresponding to the branching protrusion in the electrode 5B structure
Each of the protrusions extending from the X axis and occupying the first quadrant is joined to each of the protrusions extending from the X axis and occupying the fourth quadrant,
Each of the convex portions extending from the Y axis and occupying the first quadrant is joined to each of the convex portions extending from the Y axis and occupying the second quadrant,
Each of the protrusions extending from the X axis and occupying the second quadrant is joined to each of the protrusions extending from the X axis and occupying the third quadrant,
Each of the protrusions extending from the Y axis and occupying the third quadrant can be configured to be joined to each of the protrusions extending from the Y axis and occupying the fourth quadrant.
 そして、第1電極の第5A構造におけるこのような形態にあっては、2つの凸部の接合部には、画素の周辺部方向に向かって延びる突出部が設けられている構成とすることができる。ここで、突出部は、複数の線分によって囲まれている構成とすることができるし、1本の曲線によって囲まれている構成とすることもできるし、複数の曲線によって囲まれている構成とすることもできるし、線分と曲線との組合せによって囲まれている構成とすることもできる。突出部の先端は、画素の周辺部方向において隣接する2つの凸部の接合部と接していてもよい。但し、接する部分が長い状態の液晶表示装置は、実質的に、第1電極の第5B構造に該当する。 And in such a form in 5A structure of the 1st electrode, it is set as the structure by which the protrusion part extended toward the peripheral part direction of a pixel is provided in the junction part of two convex parts. it can. Here, the protruding portion can be configured to be surrounded by a plurality of line segments, can be configured to be surrounded by a single curve, or can be configured to be surrounded by a plurality of curves. It can also be set as the structure enclosed by the combination of a line segment and a curve. The tip of the protrusion may be in contact with a joint between two adjacent protrusions in the peripheral direction of the pixel. However, the liquid crystal display device having a long contact portion substantially corresponds to the 5B structure of the first electrode.
 あるいは又、第1電極の第5A構造において、
 X軸あるいはその近傍から延び、第1象限を占める凸部のそれぞれは、X軸あるいはその近傍から延び、第4象限を占める凸部のそれぞれと接合しておらず、
 Y軸あるいはその近傍から延び、第1象限を占める凸部のそれぞれは、Y軸あるいはその近傍から延び、第2象限を占める凸部のそれぞれと接合しておらず、
 X軸あるいはその近傍から延び、第2象限を占める凸部のそれぞれは、X軸あるいはその近傍から延び、第3象限を占める凸部のそれぞれと接合しておらず、
 Y軸あるいはその近傍から延び、第3象限を占める凸部のそれぞれは、Y軸あるいはその近傍から延び、第4象限を占める凸部のそれぞれと接合していない形態とすることができる。
Alternatively, in the 5A structure of the first electrode,
Each of the protrusions extending from the X axis or the vicinity thereof and occupying the first quadrant is not joined to each of the protrusions extending from the X axis or the vicinity thereof and occupying the fourth quadrant,
Each of the protrusions extending from the Y axis or its vicinity and occupying the first quadrant is not joined to each of the protrusions extending from the Y axis or its vicinity and occupying the second quadrant,
Each of the protrusions extending from the X axis or the vicinity thereof and occupying the second quadrant is not joined to each of the protrusions extending from the X axis or the vicinity thereof and occupying the third quadrant,
Each of the protrusions extending from the Y axis or the vicinity thereof and occupying the third quadrant can be configured not to be joined to each of the protrusions extending from the Y axis or the vicinity thereof and occupying the fourth quadrant.
 以上に説明した好ましい各種の形態、構成を含む第1電極の第5A構造において、凸部の幅は画素の周辺部に向かって狭くなる構成とすることができる。 In the 5A structure of the first electrode including the preferable various forms and configurations described above, the width of the convex portion can be reduced toward the peripheral portion of the pixel.
 更には、以上に説明した好ましい各種の形態、構成を含む第1電極の第5A構造において、第1電極には、更に、スリット部が形成されている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第5A-1構造』と呼ぶ。 Furthermore, in the 5A structure of the first electrode including the various preferred forms and configurations described above, the first electrode may be further formed with a slit portion. Such a form is referred to as a “first electrode 5A-1 structure” for convenience.
 ここで、第1電極の第5A-1構造において、スリット部を凹部領域に形成してもよいが、スリット部は凸部領域に形成されている構成とすることがより好ましい。そして、このような構成において、スリット部は、画素の中心領域(中央部分)を含む凸部領域に設けられている構成とすることができるし、あるいは又、画素の中心領域に向かって延びる凸部領域に形成されている構成とすることができるし、あるいは又、画素の中心領域に向かって延びる凸部とY軸とによって挟まれた領域に設けられた凸部領域に形成されている構成とすることができる。スリット部の幅として、1μm乃至4μm、好ましくは、2μm乃至3μmを例示することができる。以下におけるスリット部の説明においても同様である。 Here, in the 5A-1 structure of the first electrode, the slit portion may be formed in the concave region, but it is more preferable that the slit portion is formed in the convex region. In such a configuration, the slit portion may be provided in a convex region including the central region (central portion) of the pixel, or may be a convex extending toward the central region of the pixel. A configuration formed in a partial region, or a configuration formed in a convex region provided in a region sandwiched by a convex portion extending toward the central region of the pixel and the Y axis It can be. Examples of the width of the slit portion include 1 μm to 4 μm, preferably 2 μm to 3 μm. The same applies to the description of the slit portion below.
 あるいは又、凸部の頂部には、凸部と平行に延びるスリット部が形成されている構成とすることもできるし、凹部の底部には、凹部と平行に延びるスリット部が形成されている構成とすることもできる。そして、これらの場合、凸部の全てにスリット部が形成されていてもよいし、凸部の一部にスリット部が形成されていてもよい。凸部の一部にスリット部を形成する場合、画素の中心領域(中央部分)及びその近傍の凸部にスリット部を形成することが望ましい。また、凹部の全てにスりット部が形成されていてもよいし、凹部の一部にスリット部が形成されていてもよい。凹部の一部にスリット部を形成する場合、画素の中心領域(中央部分)及びその近傍の凹部にスリット部を形成することが望ましい。あるいは又、凸部の頂部には、凸部と平行に延びるスリット部が形成されており、凹部の底部には、凹部と平行に延びるスリット部が形成されている構成とすることもでき、この場合、凸部の全てにスリット部が形成されていてもよいし、凸部の一部にスリット部が形成されていてもよい。また、凹部の全てにスリット部が形成されていてもよいし、凹部の一部にスリット部が形成されていてもよい。尚、凸部の頂面のスリット部が設けられていない部分には、第1電極が形成されているし、凹部の底部のスリット部が設けられていない部分には、第1電極が形成されている。尚、スリット部によって他の凸部から孤立した凸部が形成されないように、あるいは又、スリット部によって他の凹部から孤立した凹部が形成されないように、スリット部を形成する必要があるが、1つ画素が複数の領域に分割され、各領域が独立して駆動される、所謂マルチ画素駆動方式の表示装置にあっては、各領域内において、スリット部によって他の凸部から孤立した凸部が形成されないように、あるいは又、スリット部によって他の凹部から孤立した凹部が形成されないように、スリット部を形成すればよい。凸部の頂面にスリット部を設ける場合、凸部の幅とスリット部の幅として、
0.2≦(スリット部の幅/凸部の幅)≦0.8
を例示することができるし、凹部の底面にスリット部を設ける場合、凹部の幅とスリット部の幅として、
0.2≦(スリット部の幅/凹部の幅)≦0.8
を例示することができる。以下におけるスリット部の説明においても同様である。
Alternatively, a slit portion extending in parallel with the convex portion can be formed on the top of the convex portion, and a slit portion extending in parallel with the concave portion is formed on the bottom of the concave portion. It can also be. And in these cases, the slit part may be formed in all the convex parts, and the slit part may be formed in some convex parts. When forming a slit part in a part of convex part, it is desirable to form a slit part in the center area | region (center part) of a pixel, and the convex part of the vicinity. Moreover, the slit part may be formed in all the recessed parts, and the slit part may be formed in a part of recessed part. When forming a slit part in a part of recessed part, it is desirable to form a slit part in the center area | region (center part) of a pixel and the recessed part of the vicinity. Alternatively, a slit portion extending in parallel with the convex portion is formed at the top of the convex portion, and a slit portion extending in parallel with the concave portion is formed at the bottom of the concave portion. In this case, the slit portion may be formed on all the convex portions, or the slit portion may be formed on a part of the convex portions. Moreover, the slit part may be formed in all the recessed parts, and the slit part may be formed in a part of recessed part. The first electrode is formed on the portion of the top surface of the convex portion where the slit portion is not provided, and the first electrode is formed on the portion of the concave portion where the slit portion is not provided. ing. In addition, although it is necessary to form a slit part so that the convex part isolated from another convex part may not be formed by a slit part, or so that a concave part isolated from another concave part may not be formed by a slit part, 1 In a so-called multi-pixel drive type display device in which one pixel is divided into a plurality of regions and each region is driven independently, a convex portion isolated from other convex portions by a slit portion in each region The slit portion may be formed so that a concave portion isolated from other concave portions is not formed by the slit portion. When providing the slit part on the top surface of the convex part, as the width of the convex part and the width of the slit part,
0.2 ≦ (width of slit portion / width of convex portion) ≦ 0.8
In the case of providing a slit portion on the bottom surface of the recess, as the width of the recess and the width of the slit portion,
0.2 ≦ (width of slit portion / width of recess) ≦ 0.8
Can be illustrated. The same applies to the description of the slit portion below.
 更には、第1電極の第5A-1構造、以上に説明した好ましい各種の形態、構成を含む第1電極の第5A構造にあっては、画素の中心領域における第1電極に窪みが設けられている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第5A-2構造』と呼ぶ。 Further, in the 5A-1 structure of the first electrode and the 5A structure of the first electrode including the various preferred forms and configurations described above, the first electrode in the central region of the pixel is provided with a recess. It can be set as a form. Such a form is referred to as “first electrode 5A-2 structure” for convenience.
 ここで、第1電極の第5A-2構造において、窪みは第1基板に向かって窄まっている構成とすることができる。即ち、窪みは、所謂、順テーパーの斜面を有する構成とすることができる。但し、これに限定するものではなく、垂直面を有している構成とすることもできる。そして、窪みが第1基板に向かって窄まっている構成にあっては、窪みの傾斜角は、5度乃至60度、好ましくは20度乃至30度である構成とすることができる。更には、これらの好ましい構成を含む第1電極の第5A-2構造にあっては、窪みの外縁の形状を、円形とすることができるし、あるいは又、矩形とすることができる。後者の場合、矩形形状の窪みの外縁と凸部の延びる方向との成す角度(矩形形状の窪みの外縁と、この外縁と凸部の延長部が交わる凸部の延びる方向との成す角度)は、90度であってもよいし、鋭角であってもよい。尚、窪みの外縁の形状は、これらに限定されず、液晶分子を画素の中心に向けて倒せる構造であれば如何なる形状であってもよい。 Here, in the 5A-2 structure of the first electrode, the recess may be narrowed toward the first substrate. That is, the depression can have a so-called forward tapered slope. However, the present invention is not limited to this, and a configuration having a vertical surface may be employed. In the configuration in which the depression is narrowed toward the first substrate, the inclination angle of the depression can be 5 to 60 degrees, preferably 20 to 30 degrees. Furthermore, in the 5A-2 structure of the first electrode including these preferred configurations, the shape of the outer edge of the recess can be circular or rectangular. In the latter case, the angle formed between the outer edge of the rectangular recess and the extending direction of the convex portion (the angle formed between the outer edge of the rectangular recess and the extending direction of the protruding portion where the outer edge and the extending portion of the convex portion intersect) 90 degrees or an acute angle. The shape of the outer edge of the depression is not limited to these, and any shape may be used as long as the liquid crystal molecules can be tilted toward the center of the pixel.
 更には、以上に説明した好ましい構成を含む第1電極の第5A-2構造において、窪みの中心部はコンタクトホールの一部を構成する構成とすることができる。 Furthermore, in the 5A-2 structure of the first electrode including the preferred configuration described above, the central portion of the recess can be configured to constitute a part of the contact hole.
 尚、以上に説明した第1電極の第5A-2構造に関する規定は、後述する第1電極の第5B-2構造、第1電極の第5C-2構造にも適用することができる。 It should be noted that the provisions relating to the 5A-2 structure of the first electrode described above can also be applied to the 5B-2 structure of the first electrode and the 5C-2 structure of the first electrode, which will be described later.
 更には、第1電極の第5A-1構造、第1電極の第5A-2構造、以上に説明した好ましい各種の形態、構成を含む第1電極の第5A構造にあっては、
 X軸あるいはその近傍から延び、第1象限を占める凸部と、X軸あるいはその近傍から延び、第4象限を占める凸部とは、相互にずれた状態で形成されており、
 Y軸あるいはその近傍から延び、第1象限を占める凸部と、Y軸あるいはその近傍から延び、第2象限を占める凸部とは、相互にずれた状態で形成されており、
 X軸あるいはその近傍から延び、第2象限を占める凸部と、X軸あるいはその近傍から延び、第3象限を占める凸部とは、相互にずれた状態で形成されており、
 Y軸あるいはその近傍から延び、第3象限を占める凸部と、Y軸あるいはその近傍から延び、第4象限を占める凸部とは、相互にずれた状態で形成されている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第5A-3構造』と呼ぶ。
Further, in the 5A-1 structure of the first electrode including the 5A-1 structure of the first electrode, the 5A-2 structure of the first electrode, and the preferred various forms and configurations described above,
The convex portion extending from the X axis or the vicinity thereof and occupying the first quadrant and the convex portion extending from the X axis or the vicinity thereof and occupying the fourth quadrant are formed in a mutually shifted state,
The convex portion extending from the Y axis or the vicinity thereof and occupying the first quadrant and the convex portion extending from the Y axis or the vicinity thereof and occupying the second quadrant are formed in a mutually shifted state,
The convex portion extending from the X axis or the vicinity thereof and occupying the second quadrant and the convex portion extending from the X axis or the vicinity thereof and occupying the third quadrant are formed in a mutually shifted state,
The convex portion extending from the Y axis or the vicinity thereof and occupying the third quadrant and the convex portion extending from the Y axis or the vicinity thereof and occupying the fourth quadrant may be formed so as to be shifted from each other. it can. Such a form is referred to as “first electrode 5A-3 structure” for convenience.
 尚、X軸に沿った凸部の形成ピッチをPXとし、Y軸に沿った凸部の形成ピッチをPYとしたとき、
 X軸あるいはその近傍から延び、第1象限を占める凸部と、X軸あるいはその近傍から延び、第4象限を占める凸部とは、相互に(PX/2)ずれた状態で形成されており、
 Y軸あるいはその近傍から延び、第1象限を占める凸部と、Y軸あるいはその近傍から延び、第2象限を占める凸部とは、相互に(PY/2)ずれた状態で形成されており、
 X軸あるいはその近傍から延び、第2象限を占める凸部と、X軸あるいはその近傍から延び、第3象限を占める凸部とは、相互に(PX/2)ずれた状態で形成されており、
 Y軸あるいはその近傍から延び、第3象限を占める凸部と、Y軸あるいはその近傍から延び、第4象限を占める凸部とは、相互に(PY/2)ずれた状態で形成されている形態とすることが好ましい。後述する第1電極の第5B-3構造、第1電極の第5C-3構造、第1電極の第5D-3構造にあっても同様である。
In addition, when the formation pitch of the projections along the X axis is P X and the formation pitch of the projections along the Y axis is P Y ,
The convex portion extending from the X axis or the vicinity thereof and occupying the first quadrant and the convex portion extending from the X axis or the vicinity thereof and occupying the fourth quadrant are formed in a state shifted from each other by (P X / 2). And
The convex portion extending from the Y axis or the vicinity thereof and occupying the first quadrant and the convex portion extending from the Y axis or the vicinity thereof and occupying the second quadrant are formed in a state shifted from each other by (P Y / 2). And
The convex portion extending from the X axis or the vicinity thereof and occupying the second quadrant and the convex portion extending from the X axis or the vicinity thereof and occupying the third quadrant are formed in a state shifted from each other by (P X / 2). And
The convex portion extending from the Y axis or the vicinity thereof and occupying the third quadrant and the convex portion extending from the Y axis or the vicinity thereof and occupying the fourth quadrant are formed in a state shifted from each other by (P Y / 2). It is preferable to adopt a form. The same applies to the 5B-3 structure of the first electrode, the 5C-3 structure of the first electrode, and the 5D-3 structure of the first electrode, which will be described later.
 同様に、第1電極の第5E構造にあっては、X軸に沿った枝凸部の形成ピッチをPXとし、Y軸に沿った枝凸部の形成ピッチをPYとしたとき、
 X軸上の幹凸部から延び、第1象限を占める枝凸部と、X軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互に(PX/2)ずれた状態で形成されており、
 Y軸上の幹凸部から延び、第1象限を占める枝凸部と、Y軸上の幹凸部から延び、第2象限を占める枝凸部とは、相互に(PY/2)ずれた状態で形成されており、
 X軸上の幹凸部から延び、第2象限を占める枝凸部と、X軸上の幹凸部から延び、第3象限を占める枝凸部とは、相互に(PX/2)ずれた状態で形成されており、
 Y軸上の幹凸部から延び、第3象限を占める枝凸部と、Y軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互に(PY/2)ずれた状態で形成されている形態とすることが好ましい。
Similarly, in the 5E structure of the first electrode, when the formation pitch of the branch protrusions along the X axis is P X and the formation pitch of the branch protrusions along the Y axis is P Y ,
The branch convex portion extending from the trunk convex portion on the X axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the fourth quadrant are shifted by (P X / 2) from each other. Formed in the state,
The branch convex portion extending from the trunk convex portion on the Y axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the Y axis and occupying the second quadrant are shifted by (P Y / 2) from each other. Formed in the state,
The branch convex portion extending from the stem convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the stem convex portion on the X axis and occupying the third quadrant are shifted by (P X / 2) from each other. Formed in the state,
The branch convex portion extending from the trunk convex portion on the Y axis and occupying the third quadrant and the branch convex portion extending from the trunk convex portion on the Y axis and occupying the fourth quadrant are shifted from each other by (P Y / 2). It is preferable to have a form formed in a closed state.
 第1電極の第5B構造において、枝凸部と接合していない幹凸部の側辺部分は、直線状及び/又は曲線状である形態、即ち、直線状である形態、あるいは又、曲線状である形態、あるいは又、直線状と曲線状の組合せである形態とすることができる。 In the 5B structure of the first electrode, the side portion of the trunk convex portion that is not joined to the branch convex portion is linear and / or curved, that is, linear or curved. Or a combination of a straight line and a curved line.
 そして、このような好ましい形態を含む第1電極の第5B構造において、枝凸部と接合していない幹凸部の部分の幅は、幹凸部の先端部に向かって狭くなっている形態とすることができる。 And in 5B structure of the 1st electrode including such a desirable form, the width of the portion of the trunk convex part which is not joined to the branch convex part is narrowed toward the tip part of the trunk convex part, can do.
 更には、これらの好ましい形態を含む第1電極の第5B構造において、枝凸部の幅は画素の周辺部に向かって狭くなる形態とすることができる。 Furthermore, in the 5B structure of the first electrode including these preferable modes, the width of the branch convex portion can be narrowed toward the peripheral portion of the pixel.
 更には、以上に説明した好ましい各種の形態を含む第1電極の第5B構造において、第1電極には、更に、スリット部が形成されている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第5B-1構造』と呼ぶ。 Furthermore, in the 5B structure of the first electrode including the various preferred forms described above, the first electrode may be further formed with a slit portion. Such a form is referred to as a “first electrode 5B-1 structure” for convenience.
 ここで、第1電極の第5B-1構造において、スリット部を凹部領域に形成してもよいが、スリット部は凸部領域に形成されている構成とすることがより好ましい。そして、このような構成において、スリット部は、画素の中心領域(中央部分)を含む凸部領域に設けられている構成とすることができるし、あるいは又、画素の中心領域に向かって延びる凸部領域に形成されている構成とすることができるし、あるいは又、画素の中心領域に向かって延びる枝凸部とY軸とによって挟まれた領域に設けられた凸部領域に形成されている構成とすることができる。あるいは又、凸部の頂部には、凸部と平行に延びるスリット部が形成されている構成とすることもできるし、凹部の底部には、凹部と平行に延びるスリット部が形成されている構成とすることもできる。尚、スリット部によって他の凸部から孤立した凸部が形成されないように、あるいは又、スリット部によって他の凹部から孤立した凹部が形成されないように、スリット部を形成する必要があるが、前述したマルチ画素駆動方式の表示装置にあっては、スリット部の形成は前述のとおりとすればよい。 Here, in the 5B-1 structure of the first electrode, the slit portion may be formed in the concave region, but it is more preferable that the slit portion is formed in the convex region. In such a configuration, the slit portion may be provided in a convex region including the central region (central portion) of the pixel, or may be a convex extending toward the central region of the pixel. It can be configured to be formed in a partial region, or it is formed in a convex region provided in a region sandwiched between the branch convex portion extending toward the central region of the pixel and the Y axis. It can be configured. Alternatively, a slit portion extending in parallel with the convex portion can be formed on the top of the convex portion, and a slit portion extending in parallel with the concave portion is formed on the bottom of the concave portion. It can also be. In addition, although it is necessary to form a slit part so that a convex part isolated from other convex parts may not be formed by the slit part, or so as not to form a concave part isolated from other concave parts by the slit part, In the multi-pixel driving display device, the slit portion may be formed as described above.
 第1電極の第5B-1構造、以上に説明した好ましい各種の形態、構成を含む第1電極の第5B構造にあっては、画素の中心領域における第1電極に窪みが設けられている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第5B-2構造』と呼ぶ。 In the 5th B-1 structure of the 1st electrode and the 5th B structure of the 1st electrode including the various preferred forms and configurations described above, a form in which a depression is provided in the 1st electrode in the central region of the pixel It can be. Such a configuration is referred to as “first electrode 5B-2 structure” for convenience.
 更には、第1電極の第5B-1構造、第1電極の第5B-2構造、以上に説明した好ましい各種の形態、構成を含む第1電極の第5B構造にあっては、
 第1象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる形態とすることができる。
Further, in the 5B-1 structure of the first electrode including the 5B-1 structure of the first electrode, the 5B-2 structure of the first electrode, and the various preferred forms and configurations described above,
The plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions occupying the fourth quadrant can be configured to extend in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases.
 更には、第1電極の第5B-1構造、第1電極の第5B-2構造、以上に説明した好ましい各種の形態、構成を含む第1電極の第5B構造にあっては、
 X軸上の幹凸部から延び、第1象限を占める枝凸部と、X軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互にずれた状態で形成されており、
 Y軸上の幹凸部から延び、第1象限を占める枝凸部と、Y軸上の幹凸部から延び、第2象限を占める枝凸部とは、相互にずれた状態で形成されており、
 X軸上の幹凸部から延び、第2象限を占める枝凸部と、X軸上の幹凸部から延び、第3象限を占める枝凸部とは、相互にずれた状態で形成されており、
 Y軸上の幹凸部から延び、第3象限を占める枝凸部と、Y軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互にずれた状態で形成されている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第5B-3構造』と呼ぶ。
Further, in the 5B-1 structure of the first electrode including the 5B-1 structure of the first electrode, the 5B-2 structure of the first electrode, and the various preferred forms and configurations described above,
The branch convex part extending from the trunk convex part on the X axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the X axis and occupying the fourth quadrant are formed in a mutually shifted state. And
The branch convex part extending from the trunk convex part on the Y axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the second quadrant are formed in a mutually shifted state. And
The branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are formed in a mutually shifted state. And
The branch convex part extending from the trunk convex part on the Y axis and occupying the third quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the fourth quadrant are formed in a mutually shifted state. It can be set as a form. Such a configuration is referred to as a “first electrode 5B-3 structure” for convenience.
 第1電極の第5C構造において、スリット部を凹部領域に形成してもよいが、スリット部は凸部領域に形成されている構成とすることがより好ましい。そして、このような形態において、スリット部は、画素の中心領域(中央部分)を含む凸部領域に設けられている構成とすることができるし、また、画素の中心領域に向かって延びる凸部領域に形成されている構成とすることができるし、また、画素の中心領域に向かって延びる凸部とY軸とによって挟まれた領域に設けられた凸部領域に形成されている構成とすることができる。あるいは又、凸部の頂部には、凸部と平行に延びるスリット部が形成されている構成とすることもできるし、凹部の底部には、凹部と平行に延びるスリット部が形成されている構成とすることもできる。尚、スリット部によって他の凸部から孤立した凸部が形成されないように、あるいは又、スリット部によって他の凹部から孤立した凹部が形成されないように、スリット部を形成する必要があるが、前述したマルチ画素駆動方式の表示装置にあっては、スリット部の形成は前述のとおりとすればよい。 In the 5C structure of the first electrode, the slit portion may be formed in the concave region, but it is more preferable that the slit portion is formed in the convex region. And in such a form, the slit part can be made into the structure provided in the convex part area | region including the center area | region (center part) of a pixel, and the convex part extended toward the center area | region of a pixel It can be configured to be formed in the region, or it is configured to be formed in a convex region provided in a region sandwiched between the convex portion extending toward the central region of the pixel and the Y axis. be able to. Alternatively, a slit portion extending in parallel with the convex portion can be formed on the top of the convex portion, and a slit portion extending in parallel with the concave portion is formed on the bottom of the concave portion. It can also be. In addition, although it is necessary to form a slit part so that a convex part isolated from other convex parts may not be formed by the slit part, or so as not to form a concave part isolated from other concave parts by the slit part, In the multi-pixel driving display device, the slit portion may be formed as described above.
 更には、以上に説明した好ましい形態、構成を含む第1電極の第5C構造において、凸部の幅は画素の周辺部に向かって狭くなる構成とすることができる。 Furthermore, in the 5C structure of the first electrode including the preferable modes and configurations described above, the width of the convex portion can be narrowed toward the peripheral portion of the pixel.
 更には、以上に説明した好ましい形態、構成を含む第1電極の第5C構造にあっては、画素の中心領域における第1電極に窪みが設けられている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第5C-2構造』と呼ぶ。 Furthermore, in the 5C structure of the first electrode including the preferable form and configuration described above, a form in which a depression is provided in the first electrode in the central region of the pixel can be adopted. Such a configuration is referred to as “first electrode 5C-2 structure” for convenience.
 更には、第1電極の第5C-2構造、以上に説明した好ましい各種の形態、構成を含む第1電極の第5C構造にあっては、
 画素の中心を通るX軸及びY軸を想定したとき、
 複数の凹凸部は、X軸上及びY軸上を延びる幹凸部、及び、幹凸部の側辺から画素の周辺部に向かって延びる複数の枝凸部から構成されている形態とすることができる。そして、この場合、
 第1象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる形態とすることができる。そして、更には、
 X軸上の幹凸部から延び、第1象限を占める枝凸部と、X軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互にずれた状態で形成されており、
 Y軸上の幹凸部から延び、第1象限を占める枝凸部と、Y軸上の幹凸部から延び、第2象限を占める枝凸部とは、相互にずれた状態で形成されており、
 X軸上の幹凸部から延び、第2象限を占める枝凸部と、X軸上の幹凸部から延び、第3象限を占める枝凸部とは、相互にずれた状態で形成されており、
 Y軸上の幹凸部から延び、第3象限を占める枝凸部と、Y軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互にずれた状態で形成されている形態とすることができる。尚、このような形態を、便宜上、『第1電極の第5C-3構造』と呼ぶ。
Further, in the 5C-2 structure of the first electrode including the 5C-2 structure of the first electrode and the various preferred forms and configurations described above,
Assuming an X-axis and a Y-axis passing through the center of the pixel,
The plurality of concavo-convex portions are configured by a stem convex portion extending on the X-axis and the Y-axis, and a plurality of branch convex portions extending from the side of the stem convex portion toward the peripheral portion of the pixel. Can do. And in this case
The plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions occupying the fourth quadrant can be configured to extend in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases. And furthermore,
The branch convex part extending from the trunk convex part on the X axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the X axis and occupying the fourth quadrant are formed in a mutually shifted state. And
The branch convex part extending from the trunk convex part on the Y axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the second quadrant are formed in a mutually shifted state. And
The branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are formed in a mutually shifted state. And
The branch convex part extending from the trunk convex part on the Y axis and occupying the third quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the fourth quadrant are formed in a mutually shifted state. It can be set as a form. Such a configuration is referred to as “first electrode 5C-3 structure” for convenience.
 第1電極の第5D構造において、窪みの中心部はコンタクトホールの一部を構成する形態とすることができる。ここで、上述した第1電極の第5A-2構造に関する規定を、第1電極の第5D構造に適用することができる。 In the 5D structure of the first electrode, the central portion of the recess may be a part of the contact hole. Here, the above-mentioned provision concerning the 5A-2 structure of the first electrode can be applied to the 5D structure of the first electrode.
 更には、以上に説明した好ましい形態を含む第1電極の第5D構造において、上述した第1電極の第5C-3構造の規定を適用することができ、係る構成を、便宜上、『第1電極の第5D-3構造』と呼ぶ。 Furthermore, in the 5D structure of the first electrode including the preferred embodiment described above, the above-mentioned definition of the 5C-3 structure of the first electrode can be applied. The fifth D-3 structure of
 以上に説明した好ましい形態、構成を含む第1電極の第5A構造~第1電極の第5E構造において、枝凸部等の幅を画素の周辺部に向かって狭くする構成にあっては、枝凸部等の幅は、画素の周辺部に向かって直線状に狭くなっている形態(枝凸部等を構成する各側辺が1本の線分から構成され、幅の変化率が一定である形態)とすることができるが、これに限定するものではなく、曲線状に狭くなっている形態(枝凸部等を構成する各側辺が1本の滑らかな曲線から構成され、幅の変化率が変化する形態)とすることもできるし、枝凸部等を構成する各側辺が2本以上の線分あるいは曲線から構成されている形態とすることもできるし、階段状に狭くなっている形態(枝凸部等を構成する各側辺が階段状である形態)とすることもできる。 In the 5A structure of the first electrode to the 5E structure of the 1st electrode including the preferred modes and configurations described above, in the configuration in which the width of the branch convex portion or the like is narrowed toward the peripheral portion of the pixel, The width of the convex portion etc. is linearly narrower toward the periphery of the pixel (each side constituting the branch convex portion etc. is composed of one line segment, and the rate of change of the width is constant. However, the present invention is not limited to this, and the shape is narrowed in a curved shape (each side that constitutes a branch convex portion or the like is composed of one smooth curve, and the width changes. The rate can be changed), or each side constituting the branch convex portion or the like can be made up of two or more line segments or curves, or narrowed in a staircase shape. (A form in which each side of the branching convex portion is stepped)
 以上に説明した好ましい形態、構成を含む第1電極の第5A構造~第1電極の第5E構造において、X軸及びY軸に対向する第2電極の部分には、配向規制部が形成されている形態とすることができる。このように、幹凸部と対応する第2電極の部分に配向規制部を形成すれば、第2電極によって生成された電場が配向規制部近傍において歪み、あるいは又、配向規制部近傍における液晶分子の倒れる方向が規定される。その結果、配向規制部近傍における液晶分子に対する配向規制力を強くすることができ、配向規制部近傍における液晶分子のチルト状態を確実に規定することができる。それ故、画像表示時、X軸及びY軸に対応する画像の部分に暗線が発生し難い。即ち、良好な電圧応答特性を保持しつつ、一層均一な高い光透過率を実現することができる液晶表示装置を提供することができるし、バックライトを構成する光源のコスト低減、低消費電力化を図ることができ、また、TFTの信頼性の向上を図ることもできる。 In the 5A structure of the first electrode to the 5E structure of the 1st electrode including the preferred form and configuration described above, an orientation restricting portion is formed on the portion of the 2nd electrode facing the X axis and the Y axis. It can be set as a form. As described above, when the alignment restricting portion is formed in the portion of the second electrode corresponding to the trunk convex portion, the electric field generated by the second electrode is distorted in the vicinity of the alignment restricting portion, or the liquid crystal molecules in the vicinity of the alignment restricting portion. The direction of falling is defined. As a result, the alignment regulating force on the liquid crystal molecules in the vicinity of the alignment restricting portion can be strengthened, and the tilt state of the liquid crystal molecules in the vicinity of the alignment restricting portion can be reliably defined. Therefore, at the time of image display, dark lines are unlikely to occur in image portions corresponding to the X axis and the Y axis. That is, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption. In addition, the reliability of the TFT can be improved.
 配向規制部は、第2電極に設けられた第2電極スリット部から成る形態とすることができるし、あるいは又、第2電極に設けられた第2電極突起部から成る形態とすることができるし、あるいは又、突起状になった第2電極の部分から構成することもできる。第2電極突起部は、例えば、レジスト材料から成り、その上には第2電極は形成されていない。突起状になった第2電極の部分を設けるためには第2電極の下側に凸部を形成すればよいし、あるいは又、第1電極における凹凸部の凸部形成方法と同様の方法で突起状になった第2電極の部分を設けることも可能である。 The orientation restricting portion can be formed of a second electrode slit portion provided on the second electrode, or alternatively, can be formed of a second electrode protrusion provided on the second electrode. Alternatively, it can also be constituted by a projecting second electrode portion. The second electrode protrusion is made of, for example, a resist material, and the second electrode is not formed thereon. In order to provide the protruding portion of the second electrode, a convex portion may be formed on the lower side of the second electrode, or, alternatively, by a method similar to the convex portion forming method of the concave and convex portions in the first electrode. It is also possible to provide a protruding portion of the second electrode.
 また、以上に説明した好ましい形態、構成を含む第1電極の第5A構造~第1電極の第5E構造において、第1電極に設けられた凸部には、複数の段差部が形成されている形態とすることができる。ここで、凸部の延びる方向と直交する仮想垂直平面で凸部を切断したときの凸部の断面形状は、凸部の断面形状の中心から凸部の断面形状の縁に向かって段差部が下降していく断面形状を有する形態とすることができる。また、凸部の延びる方向に平行な仮想垂直平面で凸部を切断したときの凸部の断面形状は、凸部の断面形状の中央部から凸部の断面形状の端部に向かって段差部が下降していく断面形状を有する形態とすることができる。このように、凸部に複数の段差部(高低差)を形成すれば、凸部において電場の強弱が生じ、あるいは又、横電界が生じる。その結果、凸部における液晶分子に対する配向規制力を強くすることができ、凸部における液晶分子のチルト状態を確実に規定することができる。それ故、画像表示時、例えば、凸部に対応する画像の部分に暗線が発生し難い。即ち、良好な電圧応答特性を保持しつつ、一層均一な高い光透過率を実現することができる液晶表示装置を提供することができるし、バックライトを構成する光源のコスト低減、低消費電力化を図ることができ、また、TFTの信頼性の向上を図ることもできる。 Further, in the first electrode 5A structure to the first electrode 5E structure including the preferred form and configuration described above, a plurality of step portions are formed on the convex portion provided on the first electrode. It can be in the form. Here, the cross-sectional shape of the convex portion when the convex portion is cut in a virtual vertical plane orthogonal to the direction in which the convex portion extends is such that the stepped portion is from the center of the cross-sectional shape of the convex portion toward the edge of the cross-sectional shape of the convex portion. It can be set as the form which has the cross-sectional shape which descends. Further, the cross-sectional shape of the convex portion when the convex portion is cut in a virtual vertical plane parallel to the direction in which the convex portion extends is a stepped portion from the center of the convex sectional shape toward the end of the convex sectional shape. It can be set as the form which has the cross-sectional shape which falls. In this way, if a plurality of step portions (height difference) are formed on the convex portion, the electric field strength or weakness occurs in the convex portion, or a lateral electric field occurs. As a result, the alignment regulating force on the liquid crystal molecules at the convex portions can be strengthened, and the tilt state of the liquid crystal molecules at the convex portions can be reliably defined. Therefore, when displaying an image, for example, a dark line hardly occurs in an image portion corresponding to the convex portion. That is, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption. In addition, the reliability of the TFT can be improved.
 また、以上に説明した好ましい形態、構成を含む第1電極の第4A構造あるいは第1電極の第4B構造、第1電極の第5A構造~第1電極の第5E構造において、上述したとおり、枝凸部等の幅は、幹凸部と接合する枝凸部の部分、あるいは又、X軸あるいはその近傍、Y軸あるいはその近傍の枝凸部等の部分(便宜上、『枝凸部等の根元部』と呼ぶ)が最も広く、画素の周辺部に向かって、即ち、枝凸部等の先端部に向かって狭くなっている形態とすることができる。ここで、枝凸部等の形成ピッチを「P」、枝凸部等の根元部の幅を「W1」、枝凸部等の先端部の幅を「W2」とする。図97及び図98に示すように、幹凸部と枝凸部とが接合する幹凸部の縁部と、枝凸部の一方のエッジ部(側辺エッジ部)の成す角度(あるいは又、X軸あるいはY軸と、枝凸部等の一方のエッジ部(側辺エッジ部)の成す角度)をα1、幹凸部と枝凸部とが接合する幹凸部の外縁と、枝凸部の他方の側辺エッジ部の成す角度(あるいは又、X軸あるいはY軸と、枝凸部等の他方の側辺エッジ部の成す角度)をα2としたとき、幹凸部の外縁近傍における、枝凸部の軸線L0と幹凸部の外縁との成す角度(あるいは又、X軸あるいはY軸と枝凸部等の軸線L0との成す角度)α0は、
α0={α1+(180-α2)}/2
で表すことができる。但し、0<α1≦90度、90≦α2<180度とする。そして、このような場合、幹凸部の外縁と枝凸部の一方の側辺エッジ部の交点(あるいは又、X軸あるいはY軸と枝凸部等の一方の側辺エッジ部の交点)をw11とし、X軸あるいはY軸と枝凸部等の他方の側辺エッジ部の交点をw’11とし、交点w11を通り、枝凸部等の軸線L0と直交する直線L1が枝凸部等の他方の側辺エッジ部と交わる点をw12としたとき、交点w11から交点w12までの距離を、枝凸部等の根元部の幅W1と定義する。また、枝凸部等の軸線L0と直交する直線であって、枝凸部等の先端部と接する直線L2と、枝凸部等の一方の側辺エッジ部との交点(あるいは枝凸部等の一方の側辺エッジ部延長線との交点)をw21、直線L2と、枝凸部等の他方の側辺エッジ部との交点(あるいは枝凸部等の他方の側辺エッジ部延長線との交点)をw22としたとき、交点w21から交点w22までの距離を、枝凸部等の先端部の幅をW2と定義する。尚、図98において、側辺エッジ部延長線を一点鎖線で示す。更には、隣接する枝凸部等の軸線L0の間の距離を、枝凸部等の形成ピッチPと定義する。また、交点w’11を通り、直線L1と平行な直線L3が、枝凸部等の他方の側辺エッジ部と対向する(隣接する)枝凸部等の一方の側辺エッジ部と交わる点をw31とするとき、交点w’11から交点w31までの距離を、枝凸部等の間の距離W3と定義する。枝凸部等の全テーパー幅TPは、
TP =W1-W2
と定義することができる。また、枝凸部等の平均幅Wave1、凹部の平均幅Wave2は、
ave1=(W1+W2)/2
ave2=P-Wave1
で表すことができる。ここで、W3の値として、1μm乃至10μm、好ましくは2μm乃至5μmを挙げることができるし、W2の値として、1μm乃至10μm、好ましくは2μm乃至5μmを挙げることができるし、Pの値として、2μm乃至20μm、好ましくは2μm乃至10μmを挙げることができる。また、TPの値として、W3の0.1倍乃至10倍を例示することができる。尚、これらの値は、長さの最も長い枝凸部等に対して適用すればよい。
Further, as described above, in the 4A structure of the first electrode or the 4B structure of the first electrode and the 5A structure of the first electrode to the 5E structure of the first electrode, including the preferred embodiment and configuration described above, The width of the convex portion or the like is the portion of the branch convex portion joined to the trunk convex portion, or the portion such as the X-axis or the vicinity thereof, the Y-axis or the vicinity of the branch convex portion (for convenience, “the root of the branch convex portion etc. It is possible to adopt a form in which the area is called the “part” ”is widest and narrows toward the peripheral part of the pixel, that is, toward the tip part such as a branch convex part. Here, it is assumed that the formation pitch of the branch convex portions is “P”, the width of the root portion of the branch convex portions is “W 1 ”, and the width of the tip portion of the branch convex portions is “W 2 ”. As shown in FIGS. 97 and 98, an angle formed by the edge of the trunk convex portion where the trunk convex portion and the branch convex portion are joined, and one edge portion (side edge portion) of the branch convex portion (or alternatively, The angle between the X-axis or Y-axis and one edge part (side edge part) of the branch convex part is α 1 , the outer edge of the trunk convex part where the trunk convex part and the branch convex part are joined, and the branch convex part other angle between the side edge portion (Alternatively, the X-axis or Y-axis, the angle formed by the other side edge portion such Edatotsu portion) when formed into a 2 alpha, near the outer edge of Mikitotsu portion The angle formed between the axis L 0 of the branch convex portion and the outer edge of the trunk convex portion (or the angle formed between the X axis or the Y axis and the axis L 0 of the branch convex portion) α 0 is
α 0 = {α 1 + (180−α 2 )} / 2
It can be expressed as However, 0 <α 1 ≦ 90 degrees and 90 ≦ α 2 <180 degrees. In such a case, the intersection of the outer edge of the trunk convex part and one side edge part of the branch convex part (or the intersection of one side edge part such as the X axis or Y axis and the branch convex part). Let w 11 be the intersection of the X-axis or Y-axis and the other side edge portion such as the branch convex portion, and let w ′ 11 be the straight line L 1 passing through the intersection w 11 and orthogonal to the axis L 0 of the branch convex portion. when the point of intersection with the other side edge portion of the Edatotsu portion such was w 12, the distance from the intersection w 11 to the intersection w 12, defined as the width W 1 of the root portion of such Edatotsu portion. In addition, a straight line orthogonal to the axis L 0 of the branch convex portion or the like, and an intersection (or branch convex) of a straight line L 2 in contact with the tip portion such as the branch convex portion and one side edge portion such as the branch convex portion. The intersection of one side edge portion extension line such as a portion) with w 21 , the straight line L 2 and the other side edge portion such as a branch convex portion (or the other side edge such as a branch convex portion) when an intersection) between parts extension was w 22, the distance from the intersection w 21 to the intersection w 22, to define the width of the tip portion of such Edatotsu section and W 2. In FIG. 98, the side edge portion extension line is indicated by a one-dot chain line. Furthermore, the distance between the axis lines L 0 of the adjacent branch convex portions or the like is defined as the formation pitch P of the branch convex portions or the like. In addition, a straight line L 3 passing through the intersection point w ′ 11 and parallel to the straight line L 1 is opposed to (adjacent to) the other side edge part such as the branch convex part, and the one side edge part such as the branch convex part. Assuming that the intersecting point is w 31 , the distance from the intersecting point w ′ 11 to the intersecting point w 31 is defined as the distance W 3 between the branch convex portions and the like. The total taper width TP of the branch convex part etc. is
TP = W 1 -W 2
Can be defined as Also, the average width W ave1 such Edatotsu portion, the average width W ave2 recess,
W ave1 = (W 1 + W 2 ) / 2
W ave2 = P-W ave1
It can be expressed as Here, the value of W 3 can be 1 μm to 10 μm, preferably 2 μm to 5 μm, and the value of W 2 can be 1 μm to 10 μm, preferably 2 μm to 5 μm. 2 μm to 20 μm, preferably 2 μm to 10 μm. Further, examples of the value of TP include 0.1 to 10 times W 3 . In addition, what is necessary is just to apply these values with respect to the longest branch convex part.
 尚、以下においては平坦化層が形成された実施例を説明するが、平坦化層を形成しなければ、第1電極の第1構造あるいは各種の第1電極の第1構造の変形となることは云うまでもない。以下に説明する実施例と第1電極の構造の関係は、以下のとおりである。 In the following, an embodiment in which a planarizing layer is formed will be described. However, if the planarizing layer is not formed, the first structure of the first electrode or the various first structures of the first electrode may be modified. Needless to say. The relationship between the examples described below and the structure of the first electrode is as follows.
1.実施例2A-1(第1電極の第2構造/第1形式の第1電極)
2.実施例2A-2(第1電極の第2構造/第2形式の第1電極)
3.実施例2A-3(第1電極の第2構造/第3形式の第1電極)
4.実施例2A-4(実施例2A-1~実施例2A-3の変形/第1電極の第2-2構造/第1電極の第2-3構造)
5.実施例2B-1(第1電極の第3A-1構造)
6.実施例2B-2(実施例2B-1の変形)
7.実施例2B-3(実施例2B-1の別の変形)
8.実施例2B-4(第1電極の第3A-2構造)
9.実施例2B-5(実施例2B-4の変形)
10.実施例2B-6(実施例2B-5の変形)
11.実施例2B-7(実施例2B-1~実施例2B-6を含む第1電極の第3B-1構造)
12.実施例2B-8(第1電極の第3C構造/第1電極の第2構造、第1電極の第3A-1構造、第1電極の第3B-1構造の変形)
13.実施例2B-9(第1電極の第3D構造/第1電極の第2-2構造、第1電極の第3A-2構造、第1電極の第3B-2構造の変形)
14.実施例2C-1(第1電極の第4A構造)
15.実施例2C-2(第1電極の第4B構造)
16.実施例2C-3(第1電極の第4C-1構造)
17.実施例2C-4(実施例2C-3の変形)
18.実施例2C-5(実施例2C-3の別の変形)
19.実施例2C-6(実施例2C-3の別の変形、第1電極の第4C-2構造)
20.実施例2C-7(実施例2C-6の変形)
21.実施例2C-8(実施例2C-7の変形)
22.実施例2D-1(第1電極の第5A構造)
23.実施例2D-2(実施例2D-1の変形)
24.実施例2D-3(実施例2D-1の別の変形)
25.実施例2D-4(実施例2D-1~実施例2D-3の変形)
26.実施例2D-5(実施例2D-1~実施例2D-4の変形/第1電極の第5A-1構造/第1電極の第5C構造)
27.実施例2D-6(実施例2D-1~実施例2D-5の変形/第1電極の第5D構造/第1電極の第5A-2構造/第1電極の第5C-2構造)
28.実施例2D-7(実施例2D-1~実施例2D-6の変形/第1電極の第5E構造/第1電極の第5A-3構造/第1電極の第5C-3構造/第1電極の第5D-3構造)
29.実施例2D-8(第1電極の第5B構造/第1電極の第5C構造/第1電極の第5D構造/第1電極の第5B-1構造/第1電極の第5B-2構造/第1電極の第5C-2構造/第1電極の第5E構造/第1電極の第5B-3構造/第1電極の第5C-3構造/第1電極の第5D-3構造)
30.実施例2D-9(実施例2D-8の別の変形)
31.実施例2D-10(実施例2D-9の変形)
32.実施例2D-11(実施例2D-9の別の変形)
33.実施例2D-12(第1電極の第5E構造)
1. Example 2A-1 (second structure of first electrode / first electrode of first type)
2. Example 2A-2 (second structure of first electrode / first electrode of second type)
3. Example 2A-3 (second structure of first electrode / first electrode of third type)
4). Example 2A-4 (Modification of Examples 2A-1 to 2A-3 / Second Structure of First Electrode / Second Structure of First Electrode 2-3)
5. Example 2B-1 (3A-1 structure of the first electrode)
6). Example 2B-2 (Modification of Example 2B-1)
7). Example 2B-3 (another modification of Example 2B-1)
8). Example 2B-4 (3A-2 structure of the first electrode)
9. Example 2B-5 (Modification of Example 2B-4)
10. Example 2B-6 (Modification of Example 2B-5)
11. Example 2B-7 (3B-1 structure of first electrode including Example 2B-1 to Example 2B-6)
12 Example 2B-8 (first electrode 3C structure / first electrode second structure, first electrode 3A-1 structure, first electrode 3B-1 structure modification)
13. Example 2B-9 (3D structure of first electrode / 2-2 structure of first electrode, 3A-2 structure of first electrode, 3B-2 structure of first electrode)
14 Example 2C-1 (first electrode 4A structure)
15. Example 2C-2 (first electrode 4B structure)
16. Example 2C-3 (4C-1 structure of first electrode)
17. Example 2C-4 (Modification of Example 2C-3)
18. Example 2C-5 (another modification of Example 2C-3)
19. Example 2C-6 (another modification of Example 2C-3, 4C-2 structure of the first electrode)
20. Example 2C-7 (Modification of Example 2C-6)
21. Example 2C-8 (Modification of Example 2C-7)
22. Example 2D-1 (first electrode 5A structure)
23. Example 2D-2 (Modification of Example 2D-1)
24. Example 2D-3 (another modification of Example 2D-1)
25. Example 2D-4 (Modification of Example 2D-1 to Example 2D-3)
26. Example 2D-5 (Modification of Example 2D-1 to Example 2D-4 / Fifth A-1 Structure of First Electrode / Fifth C Structure of First Electrode)
27. Example 2D-6 (Modification of Example 2D-1 to Example 2D-5 / Fifth D Structure of First Electrode / Fifth A-2 Structure of First Electrode / Fifth C-2 Structure of First Electrode)
28. Example 2D-7 (Modification of Example 2D-1 to Example 2D-6 / First Electrode 5E Structure / First Electrode 5A-3 Structure / First Electrode 5C-3 Structure / First (5D-3 structure of electrode)
29. Example 2D-8 (first electrode 5B structure / first electrode 5C structure / first electrode 5D structure / first electrode 5B-1 structure / first electrode 5B-2 structure / (5C-2 structure of first electrode / 5E structure of first electrode / 5B-3 structure of first electrode / 5C-3 structure of first electrode / 5D-3 structure of first electrode)
30. Example 2D-9 (another variation of Example 2D-8)
31. Example 2D-10 (Modification of Example 2D-9)
32. Example 2D-11 (another modification of Example 2D-9)
33. Example 2D-12 (5th E structure of the first electrode)
〈実施例2A-1〉
 実施例2A-1は、第1電極の第2構造に関し、具体的には、第1電極の第2-1構造に関し、更には、第1形式の第1電極に関する。実施例2A-1における液晶表示装置の模式的な一部端面図を図16に示し、実施例2A-1における液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図19に示し、実施例2A-1における液晶表示装置における図19の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部断面図を図20A及び図20Bに示す。
<Example 2A-1>
Example 2A-1 relates to the second structure of the first electrode, specifically to the 2-1 structure of the first electrode, and further to the first electrode of the first type. A schematic partial end view of the liquid crystal display device in Example 2A-1 is shown in FIG. 16, and a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device in Example 2A-1 is shown. 19A and 20B are schematic partial cross-sectional views of the first electrode and the like taken along arrows AA and BB in FIG. 19 in the liquid crystal display device in Example 2A-1 shown in FIG.
 実施例2A-1の液晶表示装置、あるいは、後述する実施例2A-2~実施例2D-12の液晶表示装置にあっては、第1電極には複数の凹凸部が形成されており、第1電極の少なくも凹部と凹部の間は、平坦化層41,42,43で埋め込まれている。 In the liquid crystal display device of Example 2A-1 or the liquid crystal display devices of Example 2A-2 to Example 2D-12, which will be described later, the first electrode has a plurality of concave and convex portions. The flattened layers 41, 42, and 43 are buried between at least the recesses of one electrode.
 具体的には、実施例2A-1の液晶表示装置において、平坦化層41は第1電極140を被覆している。そして、平坦化層41を覆う第1配向膜21及び第2電極160を覆う第2配向膜51を更に備えており、液晶分子には、少なくとも第1配向膜21によってプレチルトが付与されている。平坦化層41はレジスト材料から成り、第1配向膜21及び第2配向膜51は、実施の形態1~実施の形態3、実施例1において説明した材料から成る。以下の実施例においても同様である。これらの平坦化層41、第1配向膜21、第2配向膜51は、例えば、スピンコート法に基づき形成することができる。 Specifically, in the liquid crystal display device of Example 2A-1, the planarization layer 41 covers the first electrode 140. The first alignment film 21 that covers the planarization layer 41 and the second alignment film 51 that covers the second electrode 160 are further provided, and at least the first alignment film 21 imparts a pretilt to the liquid crystal molecules. The planarization layer 41 is made of a resist material, and the first alignment film 21 and the second alignment film 51 are made of the materials described in the first to third embodiments and the first embodiment. The same applies to the following embodiments. The planarizing layer 41, the first alignment film 21, and the second alignment film 51 can be formed based on, for example, a spin coating method.
 第1基板20の上には、TFT層30(詳細は後述する)が形成されており、TFT層30上に、感光性のポリイミド樹脂やアクリル樹脂等の有機絶縁材料から成る平滑化膜22が形成されており、平滑化膜22上に第1電極140が形成されている。平滑化膜22は、SiO2やSiN、SiON等の無機絶縁材料から構成することもできる。以下に説明する種々の実施例においても同様とすることができる。参照番号146,246,346,1146,1246,2146,2246,2345,2446,3146,3246,3346,3446は、画素と画素との間に位置する第1基板の部分を示す。 A TFT layer 30 (details will be described later) is formed on the first substrate 20, and a smoothing film 22 made of an organic insulating material such as photosensitive polyimide resin or acrylic resin is formed on the TFT layer 30. The first electrode 140 is formed on the smoothing film 22. The smoothing film 22 can also be composed of an inorganic insulating material such as SiO 2 , SiN, or SiON. The same applies to various embodiments described below. Reference numerals 146, 246, 346, 1146, 1246, 2146, 2246, 2345, 2446, 3146, 3246, 3346, 3446 indicate portions of the first substrate located between the pixels.
 そして、実施例2A-1の液晶表示装置にあっては、第1電極140には複数の凹凸部141(凸部142及び凹部145)が形成されている。具体的には、実施例2A-1の液晶表示装置において、凹凸部141は、画素中心部を通り、十文字に延びる幹凸部(主凸部)143、及び、幹凸部143から画素周辺部に向かって延びる複数の枝凸部(副凸部)144から構成されている。より具体的には、十文字に延びる幹凸部143のそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 第1象限を占める複数の枝凸部144は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部144は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部144は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部144は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる。図面において、凹部145には、縦方向に延びるハッチングを付している。
In the liquid crystal display device of Example 2A-1, the first electrode 140 has a plurality of concave and convex portions 141 (the convex portions 142 and the concave portions 145). Specifically, in the liquid crystal display device of Example 2A-1, the uneven portion 141 includes a trunk convex portion (main convex portion) 143 extending through the center of the pixel and extending in a cross shape, and the peripheral portion of the pixel from the trunk convex portion 143. It is comprised from the several branch convex part (subconvex part) 144 extended toward. More specifically, when assuming an (X, Y) coordinate system in which each of the trunk convex portions 143 extending in a crossed shape is an X axis and a Y axis,
The plurality of branch convex portions 144 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions 144 occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions 144 occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions 144 occupying the fourth quadrant extend parallel to the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases. In the drawing, the concave portion 145 is hatched extending in the vertical direction.
 凹凸部は、例えば、
(a)下地である平滑化膜(あるいはカラーフィルタ層)の上におけるレジスト材料層の形成(平滑化膜及びカラーフィルタ層を総称して、『平滑化膜等』と呼ぶ)
(b)露光・現像によるレジスト材料層における凹凸部の形成
(c)レジスト材料層及び平滑化膜等のエッチバックによる、平滑化膜等における凹凸部の形成
(d)平滑化膜等の上における透明導電材料層の形成及びパターニング
によって得ることができる。
The uneven part is, for example,
(A) Formation of a resist material layer on the underlying smoothing film (or color filter layer) (the smoothing film and the color filter layer are collectively referred to as “smoothing film, etc.”)
(B) Formation of irregularities in resist material layer by exposure / development (c) Formation of irregularities in smoothing film, etc. by etch back of resist material layer and smoothing film, etc. (d) On smoothing film, etc. It can be obtained by forming and patterning a transparent conductive material layer.
 あるいは又、凹凸部は、例えば、
(a)平滑化膜等の上に形成された下地層の上におけるレジスト材料層の形成
(b)露光・現像によるレジスト材料層における凹凸部の形成
(c)レジスト材料層及び平滑化膜等のエッチバックによる、下地層における凹凸部の形成
(d)下地層の上における透明導電材料層の形成及びパターニング
によって得ることができる。
Alternatively, the uneven portion is, for example,
(A) Formation of a resist material layer on an underlayer formed on a smoothing film, etc. (b) Formation of irregularities in the resist material layer by exposure and development (c) Resist material layer, smoothing film, etc. Formation of concavo-convex portions in the underlayer by etch back (d) It can be obtained by forming and patterning a transparent conductive material layer on the underlayer.
 あるいは又、凹凸部は、例えば、
(a)下地である平滑化膜等の上におけるパターニングされた絶縁材料層の形成
(b)平滑化膜等及び絶縁材料層上における透明導電材料層の形成及びパターニング
によって得ることができる。
Alternatively, the uneven portion is, for example,
(A) Formation of patterned insulating material layer on a smoothing film or the like as a base (b) Formation and patterning of a transparent conductive material layer on a smoothing film or the like and an insulating material layer.
 あるいは又、凹凸部は、例えば、
(a)下地である平滑化膜等における透明導電材料層の形成
(b)透明導電材料層上におけるレジスト材料層の形成
(c)露光・現像によるレジスト材料層における凹凸部の形成
(d)レジスト材料層及び透明導電材料層のエッチバック
によって得ることができる。
Alternatively, the uneven portion is, for example,
(A) Formation of a transparent conductive material layer on a smoothing film or the like as a base (b) Formation of a resist material layer on the transparent conductive material layer (c) Formation of uneven portions in a resist material layer by exposure and development (d) Resist It can be obtained by etching back the material layer and the transparent conductive material layer.
 あるいは又、凹凸部は、例えば、
(a)下地である平滑化膜等における第1透明導電材料層の形成及びパターニング
(b)第1透明導電材料層上における、第1透明導電材料層とエッチング選択比を有する第2透明導電材料層の形成及びパターニング
によって得ることができる。
Alternatively, the uneven portion is, for example,
(A) Formation and patterning of a first transparent conductive material layer on a smoothing film or the like as a base (b) a second transparent conductive material having an etching selectivity with the first transparent conductive material layer on the first transparent conductive material layer It can be obtained by layer formation and patterning.
 あるいは又、凹凸部は、例えば、平滑化膜の厚さの最適化を図ることで、第1基板の上、あるいは、第1基板の上方に形成された液晶表示装置構成要素(例えば、各種信号線や補助容量電極、ゲート電極、ソース/ドレイン電極、各種配線)の厚さの影響で平滑化膜に凸部を形成することで得ることもできる。 Alternatively, the concavo-convex portion can be formed by, for example, optimizing the thickness of the smoothing film, so that liquid crystal display device components (for example, various signals) formed on the first substrate or above the first substrate can be used. It can also be obtained by forming a convex portion on the smoothing film due to the influence of the thickness of the line, auxiliary capacitance electrode, gate electrode, source / drain electrode, and various wirings.
 凸部、幹凸部あるいは枝凸部の側面(側壁)は、垂直面であってもよいし、順テーパーが付されていてもよいし、逆テーパーが付されていてもよい。 The side surface (side wall) of the convex portion, the trunk convex portion, or the branch convex portion may be a vertical surface, may have a forward taper, or may have a reverse taper.
 以上の凹凸部に関する説明は、以下に説明する種々の実施例に適用することができる。また、後述する幹凸部あるいは枝凸部における段差部にも適用することができる。 The above description regarding the concavo-convex portion can be applied to various embodiments described below. Further, the present invention can also be applied to a stepped portion in a trunk convex portion or a branch convex portion described later.
 実施例2A-1の液晶表示装置の製造にあっては、先ず、以下に説明する方法に基づきTFTを形成し、更に、平滑化膜22が形成された第1基板20の対向面上にITOから成る透明導電材料層を形成する。尚、第1基板20は、厚さ0.7mmのガラス基板から成る。 In the manufacture of the liquid crystal display device of Example 2A-1, first, a TFT is formed based on the method described below, and ITO is formed on the opposing surface of the first substrate 20 on which the smoothing film 22 is formed. A transparent conductive material layer is formed. The first substrate 20 is made of a glass substrate having a thickness of 0.7 mm.
 即ち、図96Aに示すように、第1基板20上に形成された絶縁膜20’の上にゲート電極31を形成し、ゲート電極31及び絶縁膜20’の上にゲート絶縁層32を形成する。ゲート絶縁層32は、例えば、SiO2やSiN、SiON、金属酸化物から成る。次いで、ゲート絶縁層32上にチャネル形成領域となる半導体層33を形成した後、半導体層33上にソース/ドレイン電極34を形成する。半導体層33は、例えば、ポリシリコンやアモルファスシリコンから成り、ソース/ドレイン電極34は、例えば、チタン、クロム、アルミニウム、モリブデン、タンタル、タングステン、銅等の金属膜や、これらの合金膜又は積層膜から成る。こうして、TFT層30を得ることができる。以上のTFT層30の形成は、周知の方法に基づき行うことができる。尚、TFTは、このような所謂ボトムゲート/トップコンタクト型に限定されず、ボトムゲート/ボトムコンタクト型とすることもできるし、トップゲート/トップコンタクト型とすることもできるし、トップゲート/ボトムコンタクト型とすることもできる。次いで、全面に、厚さ2.5μmの平滑化膜22を形成した後、一方のソース/ドレイン電極34の上方の平滑化膜22に接続孔35を形成する。 That is, as shown in FIG. 96A, the gate electrode 31 is formed on the insulating film 20 ′ formed on the first substrate 20, and the gate insulating layer 32 is formed on the gate electrode 31 and the insulating film 20 ′. . The gate insulating layer 32 is, for example, made of SiO 2 or SiN, SiON, metal oxides. Next, after forming a semiconductor layer 33 to be a channel formation region on the gate insulating layer 32, a source / drain electrode 34 is formed on the semiconductor layer 33. The semiconductor layer 33 is made of, for example, polysilicon or amorphous silicon, and the source / drain electrode 34 is made of, for example, a metal film such as titanium, chromium, aluminum, molybdenum, tantalum, tungsten, or copper, or an alloy film or a laminated film thereof. Consists of. In this way, the TFT layer 30 can be obtained. The above TFT layer 30 can be formed based on a known method. The TFT is not limited to such a so-called bottom gate / top contact type, and may be a bottom gate / bottom contact type, a top gate / top contact type, or a top gate / bottom contact type. It can also be a contact type. Next, after a smoothing film 22 having a thickness of 2.5 μm is formed on the entire surface, a connection hole 35 is formed in the smoothing film 22 above one source / drain electrode 34.
 次いで、平滑化膜22上にレジスト材料層を形成した後、露光・現像を行うことで、レジスト材料層に、所定の深さを有する凹凸部を形成する。そして、レジスト材料層及び平滑化膜22のエッチバックを行うことで、平滑化膜22に凹凸部を形成することができる。その後、全面に、所定の厚さを有するITOから成る透明導電材料層24を形成することで、凹凸部141(凸部143,144、凹部145)を得ることができる。そして、周知の方法に基づき透明導電材料層24をパターニングすることで、第1電極140をマトリクス状に設けることができる。凸部143,144、凹部145等の仕様を以下の表3のとおりとした。 Next, after forming a resist material layer on the smoothing film 22, exposure / development is performed to form an uneven portion having a predetermined depth in the resist material layer. Then, by performing the etch back of the resist material layer and the smoothing film 22, the uneven portion can be formed in the smoothing film 22. After that, by forming a transparent conductive material layer 24 made of ITO having a predetermined thickness on the entire surface, the concave and convex portions 141 (the convex portions 143 and 144 and the concave portion 145) can be obtained. And the 1st electrode 140 can be provided in a matrix form by patterning the transparent conductive material layer 24 based on a well-known method. The specifications of the convex portions 143 and 144 and the concave portion 145 are as shown in Table 3 below.
 尚、一方のソース/ドレイン電極34の上方の平滑化膜22に接続孔35を形成した後、接続孔35を含む平滑化膜22の上に、第1電極140を形成するための透明導電材料層を成膜してもよい。そして、この場合には、次いで、透明導電材料層上にレジスト材料層を形成した後、露光・現像を行うことで、レジスト材料層に凹凸部を形成する。そして、レジスト材料層及び透明導電材料層のエッチバックを行うことで、凹凸部141(凸部143,144、凹部145)を形成することができる。 A transparent conductive material for forming the first electrode 140 on the smoothing film 22 including the connection hole 35 after the connection hole 35 is formed in the smoothing film 22 above the one source / drain electrode 34. A layer may be deposited. Then, in this case, after forming a resist material layer on the transparent conductive material layer, exposure / development is performed to form an uneven portion in the resist material layer. Then, by performing etch back of the resist material layer and the transparent conductive material layer, the uneven portion 141 (the protruded portions 143 and 144 and the recessed portion 145) can be formed.
 一方、第2基板50にあっては、厚さ0.7mmのガラス基板から成る第2基板50にカラーフィルタ層(図示せず)を形成し、カラーフィルタ層上に、所謂ベタ電極の第2電極160を形成する。 On the other hand, in the second substrate 50, a color filter layer (not shown) is formed on the second substrate 50 made of a glass substrate having a thickness of 0.7 mm, and a so-called solid electrode second is formed on the color filter layer. An electrode 160 is formed.
[表3]
凸部の平均高さ    :0.4μm
凸部の形成ピッチ   :5.0μm
凸部の幅       :2.5μm
凹部の幅       :2.5μm
透明導電材料層の厚さ :0.1μm
枝凸部の側面の傾斜角度:順テーパーで70度
第1配向膜の平均膜厚 :0.1μm
第2配向膜の平均膜厚 :0.1μm
2/T1       :1
L/HH       :約1
H/HC       :約1.25
[Table 3]
Average height of protrusions: 0.4 μm
Convex part formation pitch: 5.0 μm
Width of convex part: 2.5 μm
Recess width: 2.5 μm
Transparent conductive material layer thickness: 0.1 μm
Inclination angle of side surface of branch convex portion: forward taper and 70 degrees average film thickness of first alignment film: 0.1 μm
Average film thickness of second alignment film: 0.1 μm
T 2 / T 1 : 1
H L / H H : about 1
H H / H C : about 1.25
 次に、第1電極140を被覆する平坦化層41をスピンコート法に基づき形成し、乾燥させる。次いで、平坦化層41上に第1配向膜21を形成し、第2電極160の上に第2配向膜51を形成する。具体的には、配向膜材料を、平坦化層41及び第2電極160のそれぞれの上に塗布あるいは印刷した後、加熱処理をする。その後、実施の形態1と同様にして、液晶表示装置を組み立てる。次いで、第1電極140と第2電極160との間に、電圧印加手段を用いて電圧を印加しながらエネルギー線(具体的には紫外線UV)を配向膜21,51に対して照射することで、液晶表示装置を完成させることができる。 Next, a planarization layer 41 that covers the first electrode 140 is formed based on a spin coating method and dried. Next, the first alignment film 21 is formed on the planarization layer 41, and the second alignment film 51 is formed on the second electrode 160. Specifically, after the alignment film material is applied or printed on each of the planarization layer 41 and the second electrode 160, heat treatment is performed. Thereafter, a liquid crystal display device is assembled in the same manner as in the first embodiment. Next, the alignment films 21 and 51 are irradiated with energy rays (specifically ultraviolet rays UV) while applying a voltage between the first electrode 140 and the second electrode 160 using a voltage applying unit. A liquid crystal display device can be completed.
 以上の工程により、第1基板側の液晶分子71Aがプレチルトをなす図16に示した液晶表示装置(液晶表示素子)を完成させることができる。最後に、液晶表示装置の外側に、吸収軸が直交するように一対の偏光板(図示せず)を貼り付ける。尚、以下に説明する各種の実施例における液晶表示装置も、概ね同様の方法で製造することができる。 Through the above steps, the liquid crystal display device (liquid crystal display element) shown in FIG. 16 in which the liquid crystal molecules 71A on the first substrate side form a pretilt can be completed. Finally, a pair of polarizing plates (not shown) are attached to the outside of the liquid crystal display device so that the absorption axes are orthogonal. In addition, the liquid crystal display device in the various Example described below can also be manufactured by the substantially same method.
 実施例2A-1の液晶表示装置にあっては、平坦化層が、第1電極の少なくも凹部と凹部の間を埋めている。即ち、液晶分子が第1電極側において接する部分(具体的には、第1配向膜)は平坦、あるいは、概ね平坦である。それ故、液晶分子の配列状態の均一化を図ることができる結果、液晶表示装置の光透過率の均一化を図ることができる。また、十分な黒表示の品位を実現することができ、良好なコントラスト特性を実現することができる。更には、凹凸部の側面(側壁)の傾斜を緩やかにすることができ、例えば、凹凸部を構成する透明導電材料層の凸部エッジ部における断線発生といった問題の発生を確実に回避することができるし、比較的マージンの緩いプロセスを採用することができる結果、液晶表示装置の製造歩留りの向上を図ることができる。 In the liquid crystal display device of Example 2A-1, the planarizing layer fills at least the space between the recesses of the first electrode. That is, the portion (specifically, the first alignment film) where the liquid crystal molecules are in contact with the first electrode side is flat or substantially flat. Therefore, the alignment state of the liquid crystal molecules can be made uniform, and as a result, the light transmittance of the liquid crystal display device can be made uniform. Further, sufficient black display quality can be realized, and good contrast characteristics can be realized. Furthermore, the inclination of the side surface (side wall) of the concavo-convex portion can be made gentle, and for example, it is possible to reliably avoid the occurrence of problems such as the occurrence of disconnection at the convex edge portion of the transparent conductive material layer constituting the concavo-convex portion. In addition, as a result of adopting a process having a relatively loose margin, it is possible to improve the manufacturing yield of the liquid crystal display device.
 尚、第1基板20にカラーフィルタ層を形成してもよい。具体的には、上述したとおり、第1基板20にTFT層30を形成した後、周知の方法に基づき、平滑化膜22の代わりにカラーフィルタ層23をTFT層30の上に形成する。こうして、COA(Color Filter On Array)構造を得ることができる。そして、一方のソース/ドレイン電極34の上方のカラーフィルタ層23に接続孔35を形成した後、接続孔35を含むカラーフィルタ層23上に、第1電極140を設けるための透明導電材料層24を形成すればよい(図96B参照)。 A color filter layer may be formed on the first substrate 20. Specifically, as described above, after forming the TFT layer 30 on the first substrate 20, the color filter layer 23 is formed on the TFT layer 30 instead of the smoothing film 22 based on a known method. In this way, a COA (Color Filter On Array) structure can be obtained. Then, after forming the connection hole 35 in the color filter layer 23 above the one source / drain electrode 34, the transparent conductive material layer 24 for providing the first electrode 140 on the color filter layer 23 including the connection hole 35. May be formed (see FIG. 96B).
 平坦化層41の形成を除けば、第1電極の第1構造、より具体的には、第1電極の第1-1構造を得ることができる。 Except for the formation of the planarizing layer 41, the first structure of the first electrode, more specifically, the 1-1 structure of the first electrode can be obtained.
〈実施例2A-2〉
 実施例2A-2は、実施例2A-1の変形であり、具体的には、第2形式の第1電極に関する。実施例2A-2の液晶表示装置の模式的な一部端面図を図17に示し、実施例2A-2の液晶表示装置における図19の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部断面図を図20C及び図20Dに示す。尚、実施例2A-2あるいは後述する実施例2A-3の液晶表示装置を構成する1画素分の第1電極の模式的な平面図は、図19に示したと同様である。
<Example 2A-2>
Example 2A-2 is a modification of Example 2A-1, and specifically relates to a second electrode of the second type. A schematic partial end view of the liquid crystal display device of Example 2A-2 is shown in FIG. 17, and the first view along arrows AA and BB in FIG. 20C and 20D show schematic partial cross-sectional views of electrodes and the like. Incidentally, a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2A-2 or Example 2A-3 described later is the same as that shown in FIG.
 実施例2A-2の液晶表示装置において、
 平坦化層42は第1電極140を被覆しており、
 第1電極140を覆う第1配向膜及び第2電極160を覆う第2配向膜51を更に備えており、
 液晶分子には、少なくとも第1配向膜によってプレチルトが付与されており、
 第1配向膜は平坦化層42に相当する。
In the liquid crystal display device of Example 2A-2,
The planarization layer 42 covers the first electrode 140,
A first alignment film covering the first electrode 140 and a second alignment film 51 covering the second electrode 160;
The liquid crystal molecules are given a pretilt by at least the first alignment film,
The first alignment film corresponds to the planarization layer 42.
 凸部143,144、凹部145等の仕様を、上述した表3と同じとした。尚、T2/T1等の値を、以下の表4に示す。第1配向膜としても機能する平坦化層42を構成する材料として、実施例2A-1における配向膜材料と同じ材料を使用した。 The specifications of the convex portions 143 and 144, the concave portion 145 and the like were the same as those in Table 3 described above. The values such as T 2 / T 1 are shown in Table 4 below. As the material constituting the planarizing layer 42 that also functions as the first alignment film, the same material as the alignment film material in Example 2A-1 was used.
[表4]
第1配向膜の平均膜厚 :0.3μm
第2配向膜の平均膜厚 :0.3μm
2/T1       :1
L/HH       :約1
H/HC       :約1.25
[Table 4]
Average film thickness of first alignment film: 0.3 μm
Average film thickness of second alignment film: 0.3 μm
T 2 / T 1 : 1
H L / H H : about 1
H H / H C : about 1.25
 以上の点を除き、実施例2A-2の液晶表示装置の構成、構造は、実施例2A-1の液晶表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 Except for the above points, the configuration and structure of the liquid crystal display device of Example 2A-2 can be the same as the configuration and structure of the liquid crystal display device of Example 2A-1, and a detailed description thereof will be omitted.
〈実施例2A-3〉
 実施例2A-3は、実施例2A-1の変形であり、具体的には、第3形式の第1電極に関する。実施例2A-3の液晶表示装置の模式的な一部端面図を図18に示し、実施例2A-3の液晶表示装置における図19の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部断面図を図21A及び図21Bに示す。
<Example 2A-3>
Example 2A-3 is a modification of Example 2A-1, and specifically relates to a first electrode of the third type. A schematic partial end view of the liquid crystal display device of Example 2A-3 is shown in FIG. 18, and the first direction along arrows AA and BB of FIG. 19 in the liquid crystal display device of Example 2A-3 is shown. Schematic partial cross-sectional views of electrodes and the like are shown in FIGS. 21A and 21B.
 実施例2A-3の液晶表示装置において、
 平坦化層43は、第1電極140の凹部145と凹部145の間を埋めており、
 第1電極140及び平坦化層43を覆う第1配向膜21並びに第2電極160を覆う第2配向膜51を更に備えており、
 液晶分子には、少なくとも第1配向膜21によってプレチルトが付与されている。
In the liquid crystal display device of Example 2A-3,
The planarization layer 43 fills between the recesses 145 and 145 of the first electrode 140,
A first alignment film 21 covering the first electrode 140 and the planarizing layer 43 and a second alignment film 51 covering the second electrode 160;
A pretilt is imparted to the liquid crystal molecules by at least the first alignment film 21.
 平坦化層43はレジスト材料から成り、第1配向膜21及び第2配向膜51として、実施例2A-1における配向膜材料と同じ材料を使用した。平坦化層43の形成は、第1電極140の凹凸部141上にレジスト材料層を形成し、このレジスト材料層をエッチバックすることで形成することができる。あるいは又、レジスト材料に依存するが、凹部145と凹部145の間を覆う露光用マスクを用いてレジスト材料層を露光し、現像することで形成することもできるし、凸部を覆う露光用マスクを用いてレジスト材料層を露光し、現像することで形成することもできるし、所謂背面露光を行うことで形成することもできる。そして、エッチバック法に基づき、第1電極140の凹部145と凹部145の間を配向膜材料で埋め込むことができる。凸部143,144、凹部145等の仕様を、上述した表3と同じとした。尚、実施例2A-3-A及び実施例2A-3-BにおけるT2/T1等の値を、以下の表5に示す。 The planarizing layer 43 is made of a resist material, and the same material as the alignment film material in Example 2A-1 was used as the first alignment film 21 and the second alignment film 51. The planarization layer 43 can be formed by forming a resist material layer on the concavo-convex portion 141 of the first electrode 140 and etching back the resist material layer. Alternatively, although depending on the resist material, the resist material layer can be formed by exposing and developing using an exposure mask that covers the space between the recesses 145 and 145, or the exposure mask that covers the protrusions. It can be formed by exposing and developing the resist material layer using, or by so-called back exposure. Then, based on the etch-back method, the gap between the concave portion 145 and the concave portion 145 of the first electrode 140 can be filled with the alignment film material. The specifications of the convex portions 143 and 144, the concave portion 145 and the like were the same as those in Table 3 described above. The values of T 2 / T 1 etc. in Example 2A-3-A and Example 2A-3-B are shown in Table 5 below.
[表5]
実施例2A-3-A
  第1配向膜の平均膜厚 :0.25μm
  第2配向膜の平均膜厚 :0.2μm
  T2/T1       :0.8
  HL/HH       :約0.8
  HH/HC       :約1.25
実施例2A-3-B
  第1配向膜の平均膜厚 :0.2μm
  第2配向膜の平均膜厚 :0.2μm
  T2/T1       :1
  HL/HH       :約0.6
  HH/HC       :約1.25
[Table 5]
Example 2A-3-A
Average film thickness of the first alignment film: 0.25 μm
Average film thickness of second alignment film: 0.2 μm
T 2 / T 1 : 0.8
H L / H H : about 0.8
H H / H C : about 1.25
Example 2A-3-B
Average film thickness of the first alignment film: 0.2 μm
Average film thickness of second alignment film: 0.2 μm
T 2 / T 1 : 1
H L / H H : about 0.6
H H / H C : about 1.25
 以上の点を除き、実施例2A-3の液晶表示装置の構成、構造は、実施例2A-1の液晶表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 Except for the above points, the configuration and structure of the liquid crystal display device of Example 2A-3 can be the same as the configuration and structure of the liquid crystal display device of Example 2A-1, and a detailed description thereof will be omitted.
〈実施例2A-4〉
 実施例2A-4は、実施例2A-1~実施例2A-3の変形であるが、第1電極の第2-2構造に関する。実施例2A-4の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図22に示し、図22の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部端面図を図23A及び図23Bに示す。
<Example 2A-4>
Example 2A-4 is a modification of Example 2A-1 to Example 2A-3, but relates to the 2-2 structure of the first electrode. A schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2A-4 is shown in FIG. 22, and the first electrode and the like along arrows AA and BB in FIG. FIG. 23A and FIG. 23B are schematic partial end views of FIG.
 実施例2A-4の液晶表示装置においても、第1電極240には、複数の凹凸部241(凸部242及び凹部245)が形成されている。具体的には、実施例2A-4の液晶表示装置において、凹凸部241は、画素周辺部に額縁状に形成された幹凸部(主凸部)243、及び、幹凸部243から画素内部に向かって延びる複数の枝凸部(副凸部)244から構成されている。そして、実施例2A-4の液晶表示装置にあっては、画素中心部を通り、画素周辺部に平行な直線のそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 第1象限を占める複数の枝凸部244は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部244は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部244は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部244は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる。画素の中央部に位置する凹部の部分の形状は、概ね十文字状である。
Also in the liquid crystal display device of Example 2A-4, the first electrode 240 has a plurality of concave and convex portions 241 (the convex portions 242 and the concave portions 245). Specifically, in the liquid crystal display device of Example 2A-4, the concavo-convex portion 241 includes a stem convex portion (main convex portion) 243 formed in a frame shape around the pixel, and the stem convex portion 243 to the inside of the pixel. It is comprised from the some branch convex part (sub convex part) 244 extended toward. In the liquid crystal display device of Example 2A-4, assuming an (X, Y) coordinate system in which the straight lines passing through the center of the pixel and parallel to the periphery of the pixel are the X axis and the Y axis, respectively. ,
The plurality of branch convex portions 244 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions 244 occupying the second quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate decreases,
A plurality of branch convex portions 244 occupying the third quadrant extend in parallel with the direction in which the value of the Y coordinate decreases when the value of the X coordinate decreases,
The plurality of branch convex portions 244 occupying the fourth quadrant extend parallel to the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases. The shape of the concave portion located at the center of the pixel is generally cross-shaped.
 以上の点を除き、実施例2A-4の液晶表示装置の構成、構造は、実施例2A-1~実施例2A-3の液晶表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 Except for the above points, the configuration and structure of the liquid crystal display device of Example 2A-4 can be the same as the configuration and structure of the liquid crystal display devices of Example 2A-1 to Example 2A-3. The detailed explanation is omitted.
 尚、第1電極の第2-1構造(実施例2A-1~実施例2A-3の液晶表示装置)と第1電極の第2-2構造(実施例2A-4の液晶表示装置とを組み合わせてもよい(本開示の第2-3の形態に係る液晶表示装置)。即ち、1画素分の第1電極の模式的な平面図を図24に示すように、第1電極340における凹凸部341は、画素中心部を通り、十文字に延びる幹凸部343A、幹凸部343Aから画素周辺部に向かって延びる複数の枝凸部344、及び、複数の枝凸部344と接合し、画素周辺部に額縁状に形成された幹凸部343Bから構成されている。尚、幹凸部343A、枝凸部344及び複数の枝凸部344の全体が、凸部342である。ここで、このような液晶表示装置にあっても、十文字に延びる幹凸部343AのそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 第1象限を占める複数の枝凸部344は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部344は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部344は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部344は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる。尚、参照番号345は凹部を示す。
Note that the 2-1 structure of the first electrode (the liquid crystal display device of Example 2A-1 to Example 2A-3) and the 2-2 structure of the first electrode (the liquid crystal display device of Example 2A-4). (A liquid crystal display device according to the 2-3 form of the present disclosure) That is, as shown in a schematic plan view of the first electrode for one pixel in FIG. The portion 341 passes through the center of the pixel and joins the trunk convex portion 343A extending in a cross shape, the plurality of branch convex portions 344 extending from the trunk convex portion 343A toward the pixel peripheral portion, and the plurality of branch convex portions 344, It is comprised from the trunk convex part 343B formed in the frame shape at the periphery part.The trunk convex part 343A, the branch convex part 344, and the several branch convex part 344 whole are the convex parts 342. Here, it is. Even in such a liquid crystal display device, each of the trunk convex portions 343A extending in a cross shape is used. X-axis, and the Y-axis (X, Y) when assuming a coordinate system,
The plurality of branch convex portions 344 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions 344 occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions 344 occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions 344 occupying the fourth quadrant extend in parallel with the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases. Reference numeral 345 indicates a recess.
〈実施例2B-1〉
 実施例2B-1は、第1電極の第3A構造、具体的には、第1電極の第3A-1構造に関する。図25に、実施例2B-1の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を示し、図26A、図26B、図26Cに、図25の矢印A-A、矢印B-B、矢印C-Cに沿った第1電極等の模式的な一部断面図を示し、図26Dに、図26Cの一部を拡大した模式的な一部断面図を示す。実施例2B-1の液晶表示装置の模式的な一部端面図は、実質的に、図16~図18と同じである。
<Example 2B-1>
Example 2B-1 relates to the 3A structure of the first electrode, specifically, the 3A-1 structure of the first electrode. FIG. 25 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-1, and FIGS. 26A, 26B, and 26C show arrows AA, FIG. A schematic partial sectional view of the first electrode and the like along arrows BB and CC is shown, and FIG. 26D shows a schematic partial sectional view in which a part of FIG. 26C is enlarged. A schematic partial end view of the liquid crystal display device of Example 2B-1 is substantially the same as FIGS.
 尚、以下に説明する第1電極等の模式的な一部断面図においては、平坦化層41,42,43、第1配向膜21の図示を省略している。また、実施例2B-1あるいは実施例2B-2以降の実施例に対して、実施例2A-1の平坦化層41及び第1配向膜21、実施例2A-2の平坦化層42、あるいは、実施例2A-3の平坦化層43及び第1配向膜21が適用されている。 In the schematic partial cross-sectional view of the first electrode and the like described below, the planarization layers 41, 42, and 43 and the first alignment film 21 are not shown. Further, compared to Example 2B-1 or Example 2B-2 and subsequent examples, the planarization layer 41 and the first alignment film 21 of Example 2A-1, the planarization layer 42 of Example 2A-2, or The planarizing layer 43 and the first alignment film 21 of Example 2A-3 are applied.
 そして、実施例2B-1の液晶表示装置にあっては、第1電極1140には複数の凹凸部1141(凸部1142及び凹部1145)が形成されており、第1電極1140に設けられた凸部1142には複数の段差部が形成されている。 In the liquid crystal display device of Example 2B-1, the first electrode 1140 is formed with a plurality of concave and convex portions 1141 (the convex portions 1142 and the concave portions 1145), and the convex portions provided on the first electrode 1140 are provided. The step 1142 has a plurality of step portions.
 具体的には、実施例2B-1の液晶表示装置において、凹凸部1141は、画素中心部を通り、十文字に延びる幹凸部(主凸部)1143、及び、幹凸部1143から画素周辺部に向かって延びる複数の枝凸部(副凸部)1144から構成されている。より具体的には、十文字に延びる幹凸部1143のそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 第1象限を占める複数の枝凸部1144は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部1144は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部1144は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部1144は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる。
Specifically, in the liquid crystal display device of Example 2B-1, the concavo-convex portion 1141 passes through the center portion of the pixel and extends to the cross section of the main convex portion (main convex portion) 1143, and from the main portion 143 to the peripheral portion of the pixel. It is comprised from the several branch convex part (subconvex part) 1144 extended toward. More specifically, when assuming an (X, Y) coordinate system in which each of the trunk convex portions 1143 extending in a crossed shape is an X axis and a Y axis,
The plurality of branch convex portions 1144 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions 1144 occupying the second quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate decreases,
The plurality of branch convex portions 1144 occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions 1144 occupying the fourth quadrant extend parallel to the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
 尚、幹凸部1143あるいは後述する枝凸部1144、幹凸部3343、枝凸部33144における段差部は、例えば、
(a)下地である平滑化膜22における第1透明導電材料層1140A,3340Aの形成及びパターニング
(b)第1透明導電材料層1140A,3340A上における、第1透明導電材料層1140A,3340Aとエッチング選択比を有する第2透明導電材料層1140B,3340Bの形成及びパターニング
によって得ることができるが、これに限定するものではない。
In addition, the step part in the trunk convex part 1143 or the branch convex part 1144 mentioned later, the trunk convex part 3343, and the branch convex part 33144 is, for example,
(A) Formation and patterning of the first transparent conductive material layers 1140A and 3340A on the smoothing film 22 as a base (b) etching with the first transparent conductive material layers 1140A and 3340A on the first transparent conductive material layers 1140A and 3340A Although it can obtain by formation and patterning of the 2nd transparent conductive material layers 1140B and 3340B which have a selection ratio, it is not limited to this.
 そして、幹凸部1143の延びる方向と直交する仮想垂直平面で幹凸部1143を切断したときの幹凸部1143の断面形状は、幹凸部1143の断面形状の中心から幹凸部1143の断面形状の縁に向かって段差部が下降していく断面形状を有する。具体的には、幹凸部1143の頂面は、幹凸部1143の中央部の頂面1143B、及び、頂面1143Bの両側に位置する頂面1143Aから構成されている。このように、幹凸部1143には2つの段差部が存在し、凹部1145を基準としたとき、頂面1143A、頂面1143Bの順に高くなっている。枝凸部1144の頂面を参照番号1144Aで示すが、幹凸部1143の頂面1143Aと枝凸部1144の頂面1144Aは同じレベルにある。図面において、幹凸部1143の頂面1143Bには、横方向に延びるハッチングを付し、凹部1145には、縦方向に延びるハッチングを付している。幹凸部1143、枝凸部1144、凹部1145の仕様を以下の表6のとおりとした。 The cross-sectional shape of the stem convex portion 1143 when the stem convex portion 1143 is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion 1143 is the cross-section of the stem convex portion 1143 from the center of the cross-sectional shape of the stem convex portion 1143. It has a cross-sectional shape in which the stepped portion descends toward the edge of the shape. Specifically, the top surface of the trunk convex portion 1143 includes a top surface 1143B at the center of the trunk convex portion 1143 and top surfaces 1143A located on both sides of the top surface 1143B. Thus, the trunk convex portion 1143 has two stepped portions, and the top surface 1143A and the top surface 1143B become higher in this order when the concave portion 1145 is used as a reference. Although the top surface of the branch convex portion 1144 is indicated by reference numeral 1144A, the top surface 1143A of the trunk convex portion 1143 and the top surface 1144A of the branch convex portion 1144 are at the same level. In the drawing, the top surface 1143B of the trunk convex portion 1143 is hatched extending in the horizontal direction, and the concave portion 1145 is hatched extending in the vertical direction. The specifications of the trunk convex portion 1143, the branch convex portion 1144, and the concave portion 1145 are as shown in Table 6 below.
[表6]
幹凸部1143の頂面1143Aと凹部1145との間の高低差 :平均0.20μm
枝凸部1144の頂面1144Aと凹部1145との間の高低差 :平均0.20μm
幹凸部1143の幅(幹凸部1143の頂面1143Aの幅)  :8.0μm
幹凸部1143の頂面1143Bの幅             :4.0μm
枝凸部1144の幅(枝凸部1144の頂面1144Aの幅)  :2.5μm
枝凸部1144と枝凸部1144の間隔(スペース)      :2.5μm
幹凸部1143の頂面1143Bと頂面1143Aとの間の高低差:平均0.2μm
[Table 6]
Height difference between the top surface 1143A of the trunk convex portion 1143 and the concave portion 1145: average 0.20 μm
Height difference between the top surface 1144A of the branch convex portion 1144 and the concave portion 1145: average 0.20 μm
Width of trunk convex portion 1143 (width of top surface 1143A of trunk convex portion 1143): 8.0 μm
Width of top surface 1143B of trunk convex portion 1143: 4.0 μm
Width of branch convex portion 1144 (width of top surface 1144A of branch convex portion 1144): 2.5 μm
Interval (space) between the branch convex portion 1144 and the branch convex portion 1144: 2.5 μm
Difference in height between the top surface 1143B and the top surface 1143A of the trunk convex portion 1143: average 0.2 μm
 幹凸部に段差部が形成されていない場合、液晶分子の挙動を図27Aの概念図に示すように、幹凸部の中央部における液晶分子に対する配向規制力が弱く、幹凸部の中央部における液晶分子のチルト状態が定まらない状態となる場合がある。一方、実施例2B-1にあっては、このように幹凸部1143に複数の段差部が形成されているので、即ち、幹凸部1143には複数の頂面1143A,1143Bが形成されているので、幹凸部1143の中央部において電場が最も高く、幹凸部1143の縁部に向かって電場が低くなる。それ故、液晶分子の挙動を図27Bの概念図に示すように、幹凸部1143の中央部における液晶分子に対する配向規制力を強くすることができ、幹凸部1143の中央部における液晶分子のチルト状態を確実に規定することができる。それ故、画像表示時、幹凸部1143の中央部に対応する画像の部分に暗線が発生し難い。即ち、良好な電圧応答特性を保持しつつ、一層均一な高光透過率を実現することができる液晶表示装置を提供することができるし、バックライトを構成する光源のコスト低減、低消費電力化を図ることができ、また、TFTの信頼性の向上を図ることもできる。 When no step portion is formed on the stem convex portion, the behavior of liquid crystal molecules is weak as shown in the conceptual diagram of FIG. 27A, and the alignment regulating force on the liquid crystal molecules at the central portion of the stem convex portion is weak, and the central portion of the stem convex portion In some cases, the tilt state of the liquid crystal molecules in is not determined. On the other hand, in Example 2B-1, a plurality of stepped portions are formed in the trunk convex portion 1143 as described above, that is, a plurality of top surfaces 1143A and 1143B are formed in the trunk convex portion 1143. Therefore, the electric field is highest at the central portion of the trunk convex portion 1143, and the electric field decreases toward the edge of the trunk convex portion 1143. Therefore, as shown in the conceptual diagram of FIG. 27B, the behavior of the liquid crystal molecules can increase the alignment regulating force on the liquid crystal molecules in the central portion of the stem convex portion 1143, and the liquid crystal molecules in the central portion of the stem convex portion 1143 can be strengthened. The tilt state can be defined reliably. Therefore, at the time of image display, it is difficult for dark lines to occur in the image portion corresponding to the central portion of the trunk convex portion 1143. That is, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption. In addition, the reliability of the TFT can be improved.
〈実施例2B-2〉
 実施例2B-2は、実施例2B-1の変形である。図28に、実施例2B-2の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を示し、図30A、図30Bに、図28の矢印A-A、矢印B-Bに沿った第1電極等の模式的な一部断面図を示す。
<Example 2B-2>
Example 2B-2 is a modification of Example 2B-1. FIG. 28 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-2. FIGS. 30A and 30B show arrows AA and B- in FIG. A typical partial sectional view of the 1st electrode etc. along B is shown.
 実施例2B-2において、幹凸部1143の頂面は、幹凸部1143の中央部の頂面1143C、頂面1143Cの両側に位置する頂面1143B、及び、頂面1143Bの外側に位置する頂面1143Aから構成されている。このように、幹凸部1143には3つの段差部が存在し、凹部1145を基準としたとき、頂面1143A、頂面1143B、頂面1143Cの順に高くなっている。また、幹凸部1143の延びる方向に平行な仮想垂直平面で幹凸部1143を切断したときの幹凸部1143の断面形状は、幹凸部1143の断面形状の中央部(頂面1143C)から幹凸部1143の断面形状の端部に向かって段差部が下降していく断面形状を有する(頂面1143B及び頂面1143A)。尚、図面において、頂面1143Cには、クロスハッチングを付している。幹凸部1143の頂面1143Cと頂面1143Bとの間の高低差、及び、頂面1143Bと頂面1143Aとの間の高低差を、平均0.20μmとした。幹凸部1143、枝凸部1144、凹部1145の他の仕様は表6と同様である。 In Example 2B-2, the top surface of the trunk convex portion 1143 is located on the top surface 1143C at the center of the trunk convex portion 1143, the top surface 1143B located on both sides of the top surface 1143C, and the outside of the top surface 1143B. It consists of a top surface 1143A. Thus, the trunk convex portion 1143 has three stepped portions, and the top surface 1143A, the top surface 1143B, and the top surface 1143C become higher in this order when the concave portion 1145 is used as a reference. Further, the cross-sectional shape of the stem convex portion 1143 when the stem convex portion 1143 is cut in a virtual vertical plane parallel to the extending direction of the stem convex portion 1143 is from the central portion (top surface 1143C) of the cross-sectional shape of the stem convex portion 1143. It has a cross-sectional shape in which the stepped portion descends toward the end of the cross-sectional shape of the trunk convex portion 1143 (top surface 1143B and top surface 1143A). In the drawing, the top surface 1143C is cross-hatched. The height difference between the top surface 1143C and the top surface 1143B of the trunk convex portion 1143 and the height difference between the top surface 1143B and the top surface 1143A were set to 0.20 μm on average. Other specifications of the trunk convex portion 1143, the branch convex portion 1144, and the concave portion 1145 are the same as those in Table 6.
 以上の点を除き、実施例2B-2の液晶表示装置の構成、構造は、実施例2B-1の液晶表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 Except for the above, the configuration and structure of the liquid crystal display device of Example 2B-2 can be the same as the configuration and structure of the liquid crystal display device of Example 2B-1, and thus detailed description thereof is omitted.
〈実施例2B-3〉
 実施例2B-3も、実施例2B-1の変形である。図29に、実施例2B-3の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を示し、図30Cに、図29の矢印C-Cに沿った第1電極等の模式的な一部端面図を示し、図30Cの一部を拡大した模式的な一部端面図を図30Dに示す。
<Example 2B-3>
Example 2B-3 is also a modification of Example 2B-1. FIG. 29 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-3. FIG. 30C shows the first electrode and the like along the arrow CC in FIG. FIG. 30D shows a schematic partial end view of FIG. 30C and an enlarged partial partial end view of FIG. 30C.
 実施例2B-3にあっては、枝凸部1144の延びる方向と直交する仮想垂直平面で枝凸部1144を切断したときの枝凸部1144の断面形状は、枝凸部1144の断面形状の中心から枝凸部1144の断面形状の縁に向かって段差部が下降していく断面形状を有する。具体的には、枝凸部1144の頂面は、幹凸部1143から延びる頂面1144B、及び、頂面1144Bの両側に位置する頂面1144Aから構成されている。このように、枝凸部1144には2つの段差部が存在し、凹部1145を基準としたとき、頂面1144A、頂面1144Bの順に高くなっている。尚、図面において、頂面1144Bには、横方向に延びるハッチングを付している。また、図29、図31、図37においては、幹凸部と枝凸部の境界を実線で示している。枝凸部1144の頂面1143Bと頂面1143Aとの間の高低差を平均0.20μmとした。幹凸部1143、枝凸部1144、凹部1145の他の仕様は表6と同様である。幹凸部1143の頂面1143Bと枝凸部1144の頂面1144Bは同じレベルにある。 In Example 2B-3, the cross-sectional shape of the branch convex portion 1144 when the branch convex portion 1144 is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion 1144 is the cross-sectional shape of the branch convex portion 1144. It has a cross-sectional shape in which the step portion descends from the center toward the edge of the cross-sectional shape of the branch convex portion 1144. Specifically, the top surface of the branch convex portion 1144 includes a top surface 1144B extending from the trunk convex portion 1143 and top surfaces 1144A located on both sides of the top surface 1144B. Thus, there are two stepped portions in the branch convex portion 1144, and when the concave portion 1145 is used as a reference, the top surface 1144A and the top surface 1144B become higher in this order. In the drawing, the top surface 1144B is hatched in the lateral direction. 29, 31 and 37, the boundary between the trunk convex portion and the branch convex portion is indicated by a solid line. The height difference between the top surface 1143B and the top surface 1143A of the branch convex portion 1144 was set to 0.20 μm on average. Other specifications of the trunk convex portion 1143, the branch convex portion 1144, and the concave portion 1145 are the same as those in Table 6. The top surface 1143B of the trunk convex portion 1143 and the top surface 1144B of the branch convex portion 1144 are at the same level.
 以上の点を除き、実施例2B-3の液晶表示装置の構成、構造は、実施例2B-1の液晶表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 Except for the above points, the configuration and structure of the liquid crystal display device of Example 2B-3 can be the same as the configuration and structure of the liquid crystal display device of Example 2B-1, and thus detailed description thereof is omitted.
 尚、液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図31に示すように、枝凸部1144の延びる方向に平行な仮想垂直平面で枝凸部1144を切断したときの枝凸部1144の断面形状は、枝凸部1144の断面形状の幹凸部側から枝凸部1144の断面形状の端部に向かって段差部が下降していく断面形状を有する形態とすることもできる。また、液晶表示装置を構成する1画素分の第1電極の模式的な斜視図を図32に示すように、実施例2B-2において説明した幹凸部1143と組み合わせることもできる。 In addition, as shown in FIG. 31, a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device, the branch protrusion 1144 is cut along a virtual vertical plane parallel to the extending direction of the branch protrusion 1144. The cross-sectional shape of the branch convex portion 1144 is such that the stepped portion descends from the trunk convex portion side of the cross-sectional shape of the branch convex portion 1144 toward the end of the cross-sectional shape of the branch convex portion 1144. You can also Further, as shown in FIG. 32, a schematic perspective view of the first electrode for one pixel constituting the liquid crystal display device can be combined with the trunk convex portion 1143 described in Example 2B-2.
〈実施例2B-4〉
 実施例2B-4も実施例2B-1の変形であるが、第1電極の第3A-2構造に関する。実施例2B-4の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図33に示し、模式的な斜視図を図34に示し、図33の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部端面図を図36A及び図36Bに示し、図36Bの一部を拡大した模式的な一部端面図を図36Cに示す。
<Example 2B-4>
Example 2B-4 is also a modification of Example 2B-1, but relates to the 3A-2 structure of the first electrode. A schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-4 is shown in FIG. 33, a schematic perspective view is shown in FIG. 34, and arrows AA and FIG. A schematic partial end view of the first electrode or the like along the arrow BB is shown in FIGS. 36A and 36B, and a schematic partial end view enlarging a part of FIG. 36B is shown in FIG. 36C.
 実施例2B-4の液晶表示装置においても、第1電極1240には複数の凹凸部1241(凸部1242及び凹部1245)が形成されており、第1電極1240に設けられた凸部1242には複数の段差部が形成されている。具体的には、実施例2B-4の液晶表示装置において、凹凸部1241は、画素周辺部に額縁状に形成された幹凸部(主凸部)1243、及び、幹凸部1243から画素内部に向かって延びる複数の枝凸部(副凸部)1244から構成されている。そして、実施例2B-4の液晶表示装置にあっては、画素中心部を通り、画素周辺部に平行な直線のそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 第1象限を占める複数の枝凸部1244は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部1244は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部1244は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部1244は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる。
Also in the liquid crystal display device of Example 2B-4, the first electrode 1240 has a plurality of concave and convex portions 1241 (the convex portion 1242 and the concave portion 1245), and the convex portion 1242 provided on the first electrode 1240 has A plurality of step portions are formed. Specifically, in the liquid crystal display device of Example 2B-4, the concavo-convex portion 1241 includes a stem convex portion (main convex portion) 1243 formed in a frame shape at the periphery of the pixel, and the stem convex portion 1243 to the inside of the pixel. It is comprised from the several branch convex part (subconvex part) 1244 extended toward. In the liquid crystal display device of Example 2B-4, assuming an (X, Y) coordinate system in which straight lines passing through the center of the pixel and parallel to the periphery of the pixel are the X axis and the Y axis, respectively. ,
The plurality of branch convex portions 1244 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
A plurality of branch convex portions 1244 occupying the second quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate decreases,
A plurality of branch convex portions 1244 occupying the third quadrant extend in parallel to the direction in which the value of the Y coordinate decreases when the value of the X coordinate decreases,
The plurality of branch convex portions 1244 occupying the fourth quadrant extend in parallel with the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
 そして、幹凸部1243の延びる方向と直交する仮想垂直平面で幹凸部1243を切断したときの幹凸部1243の断面形状は、幹凸部1243の断面形状の外側の縁から幹凸部1243の断面形状の内側の縁に向かって段差部が下降していく断面形状を有する。具体的には、幹凸部1243の頂面は、幹凸部1243の外側の縁部近傍の頂面1243B、及び、内側の縁部近傍の頂面1243Aから構成されている。このように、幹凸部1243には2つの段差部が存在し、凹部1245を基準としたとき、頂面1243A、頂面1243Bの順に高くなっている。尚、枝凸部1244の頂面を参照番号1244Aで示すが、幹凸部1243の頂面1243Aと枝凸部1244の頂面1244Aは同じレベルにある。図面において、幹凸部1243の頂面1243Bには、横方向に延びるハッチングを付し、凹部1245には、縦方向に延びるハッチングを付している。画素の中央部に位置する凹部の部分の形状は、概ね十文字状である。幹凸部1243、枝凸部1244、凹部1245の仕様を以下の表7のとおりとした。 The cross-sectional shape of the stem convex portion 1243 when the stem convex portion 1243 is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion 1243 is the stem convex portion 1243 from the outer edge of the cross-sectional shape of the stem convex portion 1243. The cross-sectional shape is such that the stepped portion descends toward the inner edge of the cross-sectional shape. Specifically, the top surface of the trunk convex portion 1243 includes a top surface 1243B near the outer edge of the trunk convex portion 1243 and a top surface 1243A near the inner edge. Thus, the trunk convex portion 1243 has two stepped portions, and the top surface 1243A and the top surface 1243B become higher in this order when the concave portion 1245 is used as a reference. The top surface of the branch convex portion 1244 is indicated by reference numeral 1244A, but the top surface 1243A of the trunk convex portion 1243 and the top surface 1244A of the branch convex portion 1244 are at the same level. In the drawing, the top surface 1243B of the trunk convex portion 1243 is provided with hatching extending in the horizontal direction, and the concave portion 1245 is provided with hatching extending in the vertical direction. The shape of the concave portion located at the center of the pixel is generally cross-shaped. The specifications of the trunk convex portion 1243, the branch convex portion 1244, and the concave portion 1245 are as shown in Table 7 below.
[表7]
幹凸部1243の頂面1243Bと頂面1243Aとの間の高低差:平均0.20μm
幹凸部1243の頂面1243Aと凹部1245との間の高低差 :平均0.20μm
枝凸部1244の頂面1244Aと凹部1245との間の高低差 :平均0.20μm
幹凸部1243の幅(幹凸部1243の頂面1243Aの幅)  :8.0μm
幹凸部1243の頂面1243Bの幅             :4.0μm
枝凸部1244の幅(枝凸部1244の頂面1244Aの幅)  :2.5μm
枝凸部1244と枝凸部1244の間隔(スペース)      :2.5μm
画素の中央部に設けられた十文字状の凹部の幅         :4.0μm
[Table 7]
Height difference between the top surface 1243B and the top surface 1243A of the trunk convex portion 1243: 0.20 μm on average
Height difference between the top surface 1243A of the trunk convex portion 1243 and the concave portion 1245: average 0.20 μm
Height difference between the top surface 1244A of the branch convex portion 1244 and the concave portion 1245: average 0.20 μm
Width of trunk convex portion 1243 (width of top surface 1243A of trunk convex portion 1243): 8.0 μm
Width of top surface 1243B of trunk convex portion 1243: 4.0 μm
Width of branch convex portion 1244 (width of top surface 1244A of branch convex portion 1244): 2.5 μm
Interval (space) between the branch convex portion 1244 and the branch convex portion 1244: 2.5 μm
Width of cross-shaped recess provided in the center of the pixel: 4.0 μm
 以上の点を除き、実施例2B-4の液晶表示装置の構成、構造は、実施例2B-1の液晶表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 Except for the above points, the configuration and structure of the liquid crystal display device of Example 2B-4 can be the same as the configuration and structure of the liquid crystal display device of Example 2B-1, and a detailed description thereof will be omitted.
 実施例2B-4にあっては、幹凸部1243に複数の段差部が形成されているので、幹凸部1243の外側の縁部において電場が最も高く、幹凸部1243の内側の縁部に向かって電場が低くなる。その結果、幹凸部1243における液晶分子に対する配向規制力を強くすることができ、幹凸部1243における液晶分子のチルト状態を確実に規定することができる。それ故、画像表示時、幹凸部1243に対応する画像の部分に暗線が発生し難い。即ち、良好な電圧応答特性を保持しつつ、一層均一な高光透過率を実現することができる液晶表示装置を提供することができるし、バックライトを構成する光源のコスト低減、低消費電力化を図ることができ、また、TFTの信頼性の向上を図ることもできる。 In Example 2B-4, since the plurality of step portions are formed on the stem convex portion 1243, the electric field is highest at the outer edge of the stem convex portion 1243, and the inner edge of the stem convex portion 1243 The electric field decreases toward. As a result, the alignment regulating force on the liquid crystal molecules in the trunk convex portion 1243 can be strengthened, and the tilt state of the liquid crystal molecules in the trunk convex portion 1243 can be reliably defined. Therefore, when displaying an image, it is difficult for a dark line to be generated in an image portion corresponding to the trunk convex portion 1243. That is, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption. In addition, the reliability of the TFT can be improved.
〈実施例2B-5〉
 実施例2B-5は、実施例2B-4の変形である。実施例2B-5の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図35に示し、図35の矢印D-Dに沿った第1電極を拡大した模式的な一部端面図を図36Dに示す。
<Example 2B-5>
Example 2B-5 is a modification of Example 2B-4. A schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-5 is shown in FIG. 35, and a schematic enlarged view of the first electrode along arrow DD in FIG. 35 is shown. A partial end view is shown in FIG. 36D.
 実施例2B-5において、幹凸部1243の頂面は、幹凸部1243の外側の縁部近傍の頂面1243C、並びに、内側の縁部に向かって、頂面1243B及び頂面1243Aから構成されている。このように、幹凸部1243には3つの段差部が存在し、凹部1245を基準としたとき、頂面1243A、頂面1243B、頂面1243Cの順に高くなっている。尚、図面において、頂面1243Cには、クロスハッチングを付している。幹凸部1243の頂面1243Cと頂面1243Bとの間の高低差、頂面1243Bと頂面1243Aとの間の高低差を、平均0.20μmとした。幹凸部1243、枝凸部1244、凹部1245の他の仕様は表7と同様である。 In Example 2B-5, the top surface of the trunk convex portion 1243 includes a top surface 1243C in the vicinity of the outer edge portion of the trunk convex portion 1243, and a top surface 1243B and a top surface 1243A toward the inner edge portion. Has been. Thus, the trunk convex portion 1243 has three step portions, and the top surface 1243A, the top surface 1243B, and the top surface 1243C become higher in this order when the concave portion 1245 is used as a reference. In the drawing, the top surface 1243C is cross-hatched. The height difference between the top surface 1243C and the top surface 1243B of the trunk convex portion 1243 and the height difference between the top surface 1243B and the top surface 1243A were set to 0.20 μm on average. Other specifications of the trunk convex portion 1243, the branch convex portion 1244, and the concave portion 1245 are the same as those in Table 7.
 以上の点を除き、実施例2B-5の液晶表示装置の構成、構造は、実施例2B-4の液晶表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 Except for the above points, the configuration and structure of the liquid crystal display device of Example 2B-5 can be the same as the configuration and structure of the liquid crystal display device of Example 2B-4, and a detailed description thereof will be omitted.
〈実施例2B-6〉
 実施例2B-6は実施例2B-5の変形である。図37に実施例2B-6の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を示す。
<Example 2B-6>
Example 2B-6 is a modification of Example 2B-5. FIG. 37 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-6.
 実施例2B-6にあっては、枝凸部1244の延びる方向と直交する仮想垂直平面で枝凸部1244を切断したときの枝凸部1244の断面形状は、枝凸部1244の断面形状の中心から枝凸部1244の断面形状の縁に向かって段差部が下降していく断面形状を有する。具体的には、枝凸部1244の頂面は、幹凸部1243の頂面1243Bから延びる頂面1244B、及び、頂面1244Bの両側に位置する頂面1244Aから構成されている。そして、凹部1245を基準としたとき、枝凸部1244には2つの段差部が存在し、頂面1244A、頂面1244Bの順に高くなっている。尚、図面において、頂面1244Bには、横方向に延びるハッチングを付している。枝凸部1244の頂面1243Bと頂面1243Aとの間の高低差を平均0.28μmとした。幹凸部1243、枝凸部1244、凹部1245の他の仕様は表7と同様である。幹凸部1243の頂面1243Bと枝凸部1244の頂面1244Bは同じレベルにある。 In Example 2B-6, the cross-sectional shape of the branch convex portion 1244 when the branch convex portion 1244 is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion 1244 is the cross-sectional shape of the branch convex portion 1244. It has a cross-sectional shape in which the stepped portion descends from the center toward the edge of the cross-sectional shape of the branch convex portion 1244. Specifically, the top surface of the branch convex portion 1244 includes a top surface 1244B extending from the top surface 1243B of the trunk convex portion 1243 and top surfaces 1244A located on both sides of the top surface 1244B. Then, when the concave portion 1245 is used as a reference, the branch convex portion 1244 has two step portions, which are higher in the order of the top surface 1244A and the top surface 1244B. In the drawing, the top surface 1244B is hatched in the lateral direction. The height difference between the top surface 1243B and the top surface 1243A of the branch convex portion 1244 was set to 0.28 μm on average. Other specifications of the trunk convex portion 1243, the branch convex portion 1244, and the concave portion 1245 are the same as those in Table 7. The top surface 1243B of the trunk convex portion 1243 and the top surface 1244B of the branch convex portion 1244 are at the same level.
 また、図38に実施例2B-6の液晶表示装置を構成する1画素分の第1電極の変形例の模式的な斜視図を示すように、枝凸部1244の延びる方向に平行な仮想垂直平面で枝凸部1244を切断したときの枝凸部1244の断面形状は、枝凸部1244の断面形状の幹凸部側から枝凸部1244の断面形状の端部に向かって段差部が下降していく断面形状を有する形態とすることもできる。 Further, as shown in a schematic perspective view of a modification of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-6 in FIG. 38, a virtual vertical direction parallel to the extending direction of the branch protrusion 1244 is shown. The cross-sectional shape of the branch convex portion 1244 when the branch convex portion 1244 is cut in a plane is such that the stepped portion descends from the trunk convex portion side of the cross-sectional shape of the branch convex portion 1244 toward the end of the cross-sectional shape of the branch convex portion 1244. It can also be set as the form which has the cross-sectional shape to carry out.
 以上の点を除き、実施例2B-6の液晶表示装置の構成、構造は、実施例2B-4の液晶表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。尚、実施例2B-4と同様にして、幹凸部1243の頂面を、頂面1243B、及び、頂面1243Bの両側に位置する頂面1243Aから構成することもできる。 Except for the above points, the configuration and structure of the liquid crystal display device of Example 2B-6 can be the same as the configuration and structure of the liquid crystal display device of Example 2B-4, and a detailed description thereof will be omitted. In the same manner as in Example 2B-4, the top surface of the trunk convex portion 1243 can be composed of a top surface 1243B and top surfaces 1243A located on both sides of the top surface 1243B.
〈実施例2B-7〉
 実施例2B-7は、実施例2A-1~実施例2B-6において説明した液晶表示装置の変形であり、あるいは又、第1電極の第3B構造、具体的には、第1電極の第3B-1構造に関する。実施例2B-7の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図39に示すが、図39に示す例は、実施例2A-1の変形である。あるいは又、実施例2B-7の液晶表示装置を構成する1画素分の第1電極の変形例の模式的な平面図を図40に示すが、図40に示す例は、実施例2B-1の変形である。図40の矢印A-Aに沿った第1電極等の模式的な一部断面図を図41に示す。
<Example 2B-7>
Example 2B-7 is a modification of the liquid crystal display device described in Examples 2A-1 to 2B-6. Alternatively, the 3B structure of the first electrode, specifically, the first electrode It relates to the 3B-1 structure. FIG. 39 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-7. The example shown in FIG. 39 is a modification of Example 2A-1. Alternatively, FIG. 40 shows a schematic plan view of a modification of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-7. The example shown in FIG. It is a modification of. FIG. 41 shows a schematic partial cross-sectional view of the first electrode and the like along the arrow AA in FIG.
 実施例2B-7の液晶表示装置にあっては、第1電極140,1140には複数の凹凸部141,1141が形成されており、画素10と画素10との間に位置する第1基板の部分から、画素周辺部に対応する第1基板の部分に亙り、凸構造147,1147が形成されており、凹凸部141,1141の周辺部141A,1141Aは凸構造147,1147上に形成されている。ここで、凸構造147,1147は、具体的には、カラーフィルタ層23に形成されたブラックマトリクス1147Aに基づき形成されている。ブラックマトリクス1147Aは、カーボンが添加された光硬化性樹脂から構成されている。尚、幹凸部143,1143、枝凸部144,1144、凹部145,1145の仕様を表3、表6のとおりとし、幹凸部1143の頂面1143Bと頂面1143Aとの間の高低差を、平均0.20μmとした。また、平滑化膜22から凹凸部141,1141の端部までの高さは、平均0.3μmである。 In the liquid crystal display device of Example 2B-7, the first electrodes 140 and 1140 are formed with a plurality of concave and convex portions 141 and 1141, and the first substrate 140 located between the pixels 10 and 10 is formed on the first substrate. Convex structures 147 and 1147 are formed from the portion to the portion of the first substrate corresponding to the pixel peripheral portion, and the peripheral portions 141A and 1141A of the concave and convex portions 141 and 1141 are formed on the convex structures 147 and 1147. Yes. Here, the convex structures 147 and 1147 are specifically formed based on the black matrix 1147A formed in the color filter layer 23. The black matrix 1147A is made of a photocurable resin to which carbon is added. The specifications of the trunk convex portions 143 and 1143, the branch convex portions 144 and 1144, and the concave portions 145 and 1145 are as shown in Tables 3 and 6, and the height difference between the top surface 1143B and the top surface 1143A of the trunk convex portion 1143 is as follows. Was 0.20 μm on average. The height from the smoothing film 22 to the end portions of the uneven portions 141 and 1141 is an average of 0.3 μm.
 実施例2B-7の液晶表示装置において、凹凸部141,1141の周辺部141A,1141Aは凸構造147,1147上に形成されているので、凹凸部の周辺部が平坦な場合と比べ、より一層強い電場が凹凸部の周辺部に生じる。その結果、凹凸部141,1141の周辺部141A,1141Aにおける液晶分子に対する配向規制力を強くすることができ、凹凸部141,1141の周辺部141A,1141Aにおける液晶分子のチルト状態を確実に規定することができる。それ故、良好な電圧応答特性を保持することができる。 In the liquid crystal display device of Example 2B-7, the peripheral portions 141A and 1141A of the concavo- convex portions 141 and 1141 are formed on the convex structures 147 and 1147, so that the peripheral portions of the concavo-convex portions are even more flat than in the case where they are flat. A strong electric field is generated around the uneven part. As a result, the alignment regulating force on the liquid crystal molecules in the peripheral portions 141A and 1141A of the uneven portions 141 and 1141 can be strengthened, and the tilt state of the liquid crystal molecules in the peripheral portions 141A and 1141A of the uneven portions 141 and 1141 is defined reliably. be able to. Therefore, good voltage response characteristics can be maintained.
 尚、凸構造は、ブラックマトリクスに基づき形成される形態に限定するものではなく、第1基板20の上、あるいは、第1基板20の上方に形成された液晶表示装置構成要素、例えば、各種信号線や補助容量電極、ゲート電極、ソース/ドレイン電極、各種配線から構成することもできる。そして、この場合、平滑化膜22の厚さの最適化を図ることで、液晶表示装置構成要素の厚さの影響で平滑化膜22に凸構造を形成することができる。 The convex structure is not limited to the form formed on the basis of the black matrix, but the liquid crystal display device component formed on the first substrate 20 or above the first substrate 20, for example, various signals. It can also be composed of lines, auxiliary capacitance electrodes, gate electrodes, source / drain electrodes, and various wirings. In this case, by optimizing the thickness of the smoothing film 22, a convex structure can be formed in the smoothing film 22 due to the influence of the thickness of the liquid crystal display device components.
 また、第1電極の第3B-2構造とすることもできる。即ち、実施例2A-4や実施例2B-4において説明した凹凸部241,1241の周辺部、具体的には、画素周辺部に額縁状に形成された幹凸部(主凸部)243,1243を、凸構造147,1147上に形成することができることは云うまでもない。あるいは又、実施例2B-7の凸構造を、実施例2B-8あるいはそれ以降の実施例に適用することもできる。 Also, a 3B-2 structure of the first electrode can be used. That is, the peripheral portions of the uneven portions 241 and 1241 described in Embodiment 2A-4 and Embodiment 2B-4, specifically, the trunk convex portion (main convex portion) 243 formed in a frame shape on the pixel peripheral portion. It goes without saying that 1243 can be formed on the convex structures 147, 1147. Alternatively, the convex structure of Example 2B-7 can also be applied to Example 2B-8 or later examples.
〈実施例2B-8〉
 実施例2B-8は、第1電極の第3C構造に関し、また、実施例2A-1~実施例2A-3の変形(第1電極の第2構造)、実施例2B-1~実施例2B-3(第1電極の第3A-1構造)の変形、実施例2B-7(第1電極の第3B-1構造)の変形に関する。実施例2B-8の液晶表示装置の模式的な一部端面図を図42あるいは図43に示す。また、実施例2B-8の液晶表示装置における液晶分子の挙動を示す概念図を図95A及び図95Bに示す。
<Example 2B-8>
Example 2B-8 relates to the 3C structure of the first electrode, and is a modification of Example 2A-1 to Example 2A-3 (second structure of the first electrode), Example 2B-1 to Example 2B -3 (the 3rd A-1 structure of the first electrode), and modification of Example 2B-7 (the 3rd B-1 structure of the first electrode). A schematic partial end view of the liquid crystal display device of Example 2B-8 is shown in FIG. 42 or FIG. In addition, FIGS. 95A and 95B are conceptual diagrams showing the behavior of liquid crystal molecules in the liquid crystal display device of Example 2B-8.
 実施例2B-8の液晶表示装置にあっては、図19、図24、図39に示したように、第1電極140には複数の凹凸部141が形成されており、凹凸部141は、画素中心部を通り、十文字に延びる幹凸部143、及び、幹凸部143から画素周辺部に向かって延びる複数の枝凸部144から構成されている。あるいは又、図25、図28、図29、図31、図32、図40に示したように、第1電極1140には複数の凹凸部1141が形成されており、凹凸部1141は、画素中心部を通り、十文字に延びる幹凸部1143、及び、幹凸部1143から画素周辺部に向かって延びる複数の枝凸部1144から構成されている。そして、図42あるいは図43に示すように、幹凸部143,1143と対応する第2電極160の部分には、配向規制部161が形成されている。 In the liquid crystal display device of Example 2B-8, as shown in FIGS. 19, 24, and 39, the first electrode 140 has a plurality of uneven portions 141, and the uneven portions 141 are It is composed of a trunk convex portion 143 extending through the center of the pixel and extending in a cross shape, and a plurality of branch convex portions 144 extending from the trunk convex portion 143 toward the pixel peripheral portion. Alternatively, as shown in FIGS. 25, 28, 29, 31, 32, and 40, the first electrode 1140 has a plurality of uneven portions 1141, and the uneven portions 1141 are centered on the pixel. And a plurality of branch convex portions 1144 extending from the trunk convex portion 1143 toward the pixel peripheral portion. Then, as shown in FIG. 42 or FIG. 43, an orientation regulating portion 161 is formed in the portion of the second electrode 160 corresponding to the trunk convex portions 143, 1143.
 ここで、配向規制部161は、具体的には、第2電極160に設けられた4.0μmのスリット部162から成り(図42及び図95A参照)、あるいは又、第2電極160に設けられた突起部(リブ)163から成る(図43及び図95B参照)。突起部163は、より具体的には、ネガ型フォトレジスト材料(JSR株式会社製:オプトマーAL)から成り、幅1.4μm、高さ1.2μmである。尚、幹凸部1143、枝凸部1144、凹部1145の仕様を表6のとおりとし、幹凸部1143の頂面1143Bと頂面1143Aとの間の高低差を、平均0.20μmとした。スリット部162あるいは突起部(リブ)163の平面形状は十文字状であり、突起部163の断面形状は二等辺三角形である。スリット部162あるいは突起部163の上には第2電極160は形成されていない。 Here, the orientation restricting portion 161 is specifically composed of a 4.0 μm slit portion 162 provided on the second electrode 160 (see FIGS. 42 and 95A), or alternatively provided on the second electrode 160. It consists of a protruding portion (rib) 163 (see FIGS. 43 and 95B). More specifically, the protrusion 163 is made of a negative photoresist material (manufactured by JSR Corporation: Optomer AL), and has a width of 1.4 μm and a height of 1.2 μm. The specifications of the trunk convex portion 1143, the branch convex portion 1144, and the concave portion 1145 were as shown in Table 6, and the height difference between the top surface 1143B and the top surface 1143A of the trunk convex portion 1143 was set to 0.20 μm on average. The planar shape of the slit 162 or the protrusion (rib) 163 is a cross shape, and the cross-sectional shape of the protrusion 163 is an isosceles triangle. The second electrode 160 is not formed on the slit part 162 or the protrusion part 163.
 実施例2B-8の液晶表示装置において、幹凸部143,1143と対応する第2電極160の部分にはスリット部162から成る配向規制部161が形成されているので、第2電極160によって生成された電場が、配向規制部161の近傍において歪む。あるいは又、突起部(リブ)163から成る配向規制部161が形成されているので、突起部163近傍における液晶分子の倒れる方向が規定される。その結果、配向規制部161の近傍における液晶分子に対する配向規制力を強くすることができ、配向規制部161の近傍における液晶分子のチルト状態を確実に規定することができる。それ故、画像表示時、幹凸部に対応する画像の部分に暗線が発生し難い。即ち、良好な電圧応答特性を保持しつつ、一層均一な高光透過率を実現することができる液晶表示装置を提供することができるし、バックライトを構成する光源のコスト低減、低消費電力化を図ることができ、また、TFTの信頼性の向上を図ることもできる。尚、配向規制部161を、突起状になった第2電極160の部分から構成することもできる。 In the liquid crystal display device of Example 2B-8, the alignment regulating portion 161 including the slit portion 162 is formed in the portion of the second electrode 160 corresponding to the trunk convex portions 143 and 1143, so that it is generated by the second electrode 160. The applied electric field is distorted in the vicinity of the orientation restricting portion 161. Alternatively, since the alignment restricting portion 161 including the protruding portion (rib) 163 is formed, the direction in which the liquid crystal molecules fall in the vicinity of the protruding portion 163 is defined. As a result, the alignment regulating force on the liquid crystal molecules in the vicinity of the alignment restricting portion 161 can be strengthened, and the tilt state of the liquid crystal molecules in the vicinity of the alignment restricting portion 161 can be reliably defined. Therefore, at the time of image display, dark lines are unlikely to occur in the image portion corresponding to the trunk convex portion. That is, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption. In addition, the reliability of the TFT can be improved. In addition, the orientation control part 161 can also be comprised from the part of the 2nd electrode 160 which became projection shape.
 尚、実施例2B-8を、実施例2C-1以降の実施例に適用することができるし、次に述べる実施例2B-9も、実施例2C-1以降の実施例に適用することができる。 Note that Example 2B-8 can be applied to Examples after Example 2C-1, and Example 2B-9 described below can also be applied to Examples after Example 2C-1. it can.
〈実施例2B-9〉
 実施例2B-9は、第1電極の第3D構造に関し、また、実施例2A-4(第1電極の第2-2構造)の変形、実施例2B-4~実施例2B-6(第1電極の第3A-2構造)の変形、実施例2B-7(第1電極の第3B-2構造)の変形に関する。実施例2B-9の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図44、図45、図46、図47に示すが、図44及び図46に示す例は、実施例2A-4の変形である。また、図45及び図47に示す例は、実施例2B-4の変形であり、第1電極1240に複数の凹凸部1241が形成されており、更には、複数の段差部が形成されている。図45の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部断面図を図48A及び図48Bに示し、図47の矢印C-C及び矢印D-Dに沿った第1電極等の模式的な一部断面図を図48C及び図48Dに示す。
<Example 2B-9>
Example 2B-9 relates to the 3D structure of the first electrode, and is a modification of Example 2A-4 (2-2 structure of the first electrode), Examples 2B-4 to 2B-6 (first This relates to a modification of the 3A-2 structure of one electrode) and a modification of Example 2B-7 (3B-2 structure of the first electrode). 44, 45, 46 and 47 are schematic plan views of the first electrode for one pixel constituting the liquid crystal display device of Example 2B-9. The examples shown in FIGS. This is a modification of Example 2A-4. The example shown in FIGS. 45 and 47 is a modification of Example 2B-4, in which a plurality of uneven portions 1241 are formed on the first electrode 1240, and further, a plurality of step portions are formed. . 48A and 48B show schematic partial cross-sectional views of the first electrode and the like along arrows AA and BB in FIG. 45, and along arrows CC and DD in FIG. 48C and 48D show schematic partial cross-sectional views of the first electrode and the like.
 実施例2B-9の液晶表示装置にあっては、
 第1電極240,1240には複数の凹凸部241,1241が形成されており、
 凹凸部241,1241は、画素周辺部に額縁状に形成された幹凸部243,1243、及び、幹凸部243,1243から画素内部に向かって延びる複数の枝凸部244,1244から構成されており、
 第1電極240,1240には、画素中心部を通り、画素周辺部に平行なスリット部248,1248(図44、図45参照)あるいは突起部(リブ)249,1249(図46、図47参照)が形成されている。即ち、画素の中央部に設けられた十文字状の凹部の部分に、スリット部248,1248あるいは突起部249,1249が形成されている。スリット部248,1248あるいは突起部249,1249の平面形状は十文字である。尚、幹凸部243,1243、枝凸部244,1244、凹部245,1245の仕様を表3、表7のとおりとした。スリット部248,1248の幅を4.0μmとした。また、ネガ型フォトレジスト材料(JSR株式会社製:オプトマーAL)から成る突起部249,1249の幅を1.4μm、高さを1.2μmとした。突起部249,1249の断面形状は二等辺三角形である。スリット部248,1248あるいは突起部249,1249の上には第1電極240,1240は形成されていない。
In the liquid crystal display device of Example 2B-9,
A plurality of concave and convex portions 241 and 1241 are formed on the first electrodes 240 and 1240,
The concavo- convex portions 241 and 1241 are constituted by trunk convex portions 243 and 1243 formed in a frame shape around the pixel periphery, and a plurality of branch convex portions 244 and 1244 extending from the stem convex portions 243 and 1243 toward the inside of the pixel. And
The first electrodes 240 and 1240 have slits 248 and 1248 (see FIGS. 44 and 45) or protrusions (ribs) 249 and 1249 (see FIGS. 46 and 47) that pass through the center of the pixel and are parallel to the periphery of the pixel. ) Is formed. That is, slit portions 248 and 1248 or protrusions 249 and 1249 are formed in a cross-shaped concave portion provided in the center of the pixel. The planar shape of the slits 248 and 1248 or the protrusions 249 and 1249 is a cross. The specifications of the trunk convex portions 243 and 1243, the branch convex portions 244 and 1244, and the concave portions 245 and 1245 are as shown in Table 3 and Table 7, respectively. The widths of the slit portions 248 and 1248 were 4.0 μm. Further, the protrusions 249 and 1249 made of a negative photoresist material (manufactured by JSR Corporation: Optomer AL) had a width of 1.4 μm and a height of 1.2 μm. The cross-sectional shape of the protrusions 249 and 1249 is an isosceles triangle. The first electrodes 240 and 1240 are not formed on the slits 248 and 1248 or the protrusions 249 and 1249.
 実施例2B-9の液晶表示装置において、第1電極には、画素中心部を通り、画素周辺部に平行なスリット部あるいは突起部が形成されているので、スリット部あるいは突起部が存在しない平坦な凹部が第1電極に形成されている場合と比較して、第1電極によって生成された電場が、スリット部あるいは突起部近傍において歪み(スリット部を形成した場合)、あるいは又、液晶分子の倒れる方向が規定される(突起部を形成した場合)。その結果、スリット部あるいは突起部近傍における液晶分子に対する配向規制力を強くすることができ、スリット部あるいは突起部近傍における液晶分子のチルト状態を確実に規定することができる。それ故、画像表示時、幹凸部に対応する画像の部分に暗線が発生し難い。即ち、良好な電圧応答特性を保持しつつ、一層均一な高光透過率を実現することができる液晶表示装置を提供することができるし、バックライトを構成する光源のコスト低減、低消費電力化を図ることができ、また、TFTの信頼性の向上を図ることもできる。尚、突起部249,1249を、第1電極240,1240には、画素中心部を通る十文字状の凸部が凹部に囲まれて形成されている形態とすることができる。このような十文字状の凸部は、第1電極240,1240の下側に十文字状の凸部を形成することで設けることができるし、あるいは又、第1電極240,1240における凹凸部の形成方法と同様の方法で設けることも可能である。あるいは又、スリット部248,1248若しくは突起部(リブ)249,1249を設ける代わりに、画素中心部を通る十文字状の凹部を設けてもよい。 In the liquid crystal display device of Example 2B-9, the first electrode is formed with a slit or protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel. Compared to the case where a concave portion is formed on the first electrode, the electric field generated by the first electrode is distorted in the vicinity of the slit portion or the protrusion portion (when the slit portion is formed), or the liquid crystal molecules The direction of falling is defined (when a protrusion is formed). As a result, it is possible to increase the alignment regulating force on the liquid crystal molecules in the vicinity of the slit portion or the projection portion, and to reliably define the tilt state of the liquid crystal molecules in the vicinity of the slit portion or the projection portion. Therefore, at the time of image display, dark lines are unlikely to occur in the image portion corresponding to the trunk convex portion. That is, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption. In addition, the reliability of the TFT can be improved. Note that the protrusions 249 and 1249 can be formed in the first electrodes 240 and 1240 so that a cross-shaped convex portion passing through the center of the pixel is surrounded by the concave portion. Such a cross-shaped projection can be provided by forming a cross-shaped projection on the lower side of the first electrodes 240, 1240, or alternatively, the formation of the projections and depressions in the first electrodes 240, 1240. It is also possible to provide the same method. Alternatively, instead of providing the slit portions 248 and 1248 or the protruding portions (ribs) 249 and 1249, a cross-shaped concave portion that passes through the center of the pixel may be provided.
〈実施例2C-1〉
 実施例2C-1は、第1電極の第4構造、具体的には、第1電極の第4A構造に関する。図49に、実施例2C-1の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を示し、図50に実施例2C-1の液晶表示装置を構成する1画素分の第1電極の一部分を拡大した模式的な平面図を示し、図51A及び図51Bに、図49の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部断面図を示し、図51Cに、図51Bの一部を拡大した模式的な一部断面図を示す。実施例2C-1の液晶表示装置の模式的な一部端面図は、実質的に、図16~図18と同じである。
<Example 2C-1>
Example 2C-1 relates to the fourth structure of the first electrode, specifically, the 4A structure of the first electrode. FIG. 49 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-1, and FIG. 50 shows one pixel constituting the liquid crystal display device of Example 2C-1. FIG. 51A and FIG. 51B are schematic plan views enlarging a part of the first electrode of FIG. 51, and FIG. 51A and FIG. FIG. 51C is a schematic partial cross-sectional view in which a part of FIG. 51B is enlarged. A schematic partial end view of the liquid crystal display device of Example 2C-1 is substantially the same as FIGS.
 実施例2C-1あるいは後述する実施例2C-2~実施例2C-8の液晶表示装置は、実施例2A-1~実施例2A-3の液晶表示装置と同様に、
 第1基板20及び第2基板50、
 第2基板50と対向する第1基板20の対向面に形成された第1電極(画素電極)2140,2240,2340,2440、
 第1基板20と対向する第2基板50の対向面に形成された第2電極(対向電極)160、並びに、
 第1電極2140,2240,2340,2440及び第2電極160の間に設けられ、液晶分子71A,71B,71Cを含む液晶層70、
を有する画素10(10A,10B,10C)が、複数、配列されて成る液晶表示装置であり、液晶分子にはプレチルトが付与されている。
 液晶分子にはプレチルトが付与されている。具体的には、液晶分子は、少なくとも第1電極の側にプレチルトが付与されている。尚、液晶分子は負の誘電率異方性を有する。そして、
 第1電極2140,2240,2340,2440には複数の凹凸部2141,2241,2341,2241が形成されており、
 第1電極2140,2240,2340,2440に設けられた凸部2142,2242,2342,2242の一部の幅は、先端部に向かって狭くなっている。尚、図面において、凹部2145,2245,2345,2445には、縦方向に延びるハッチングを付している。
The liquid crystal display devices of Example 2C-1 or Example 2C-2 to Example 2C-8 described later are similar to the liquid crystal display devices of Example 2A-1 to Example 2A-3.
A first substrate 20 and a second substrate 50,
First electrodes (pixel electrodes) 2140, 2240, 2340, 2440 formed on the facing surface of the first substrate 20 facing the second substrate 50,
A second electrode (counter electrode) 160 formed on the facing surface of the second substrate 50 facing the first substrate 20, and
A liquid crystal layer 70 provided between the first electrodes 2140, 2240, 2340, 2440 and the second electrode 160 and including liquid crystal molecules 71A, 71B, 71C;
Is a liquid crystal display device in which a plurality of pixels 10 (10A, 10B, 10C) having an alignment are arranged, and a pretilt is given to the liquid crystal molecules.
The liquid crystal molecules are given a pretilt. Specifically, the liquid crystal molecules are given a pretilt at least on the first electrode side. Note that the liquid crystal molecules have negative dielectric anisotropy. And
The first electrodes 2140, 2240, 2340, and 2440 are formed with a plurality of concave and convex portions 2141, 2241, 2341, and 2241,
The widths of some of the convex portions 2142, 2242, 2342, 2242 provided on the first electrodes 2140, 2240, 2340, 2440 are narrowed toward the tip. In the drawings, the concave portions 2145, 2245, 2345, and 2445 are hatched extending in the vertical direction.
 そして、実施例2C-1の液晶表示装置において、凹凸部2141は、画素中心部を通り、十文字に延びる幹凸部(主凸部)2143、及び、幹凸部2143から画素周辺部に向かって延びる複数の枝凸部(副凸部)2144から構成されている。ここで、複数の枝凸部2144が、第1電極2140に設けられた凸部の一部に該当する。枝凸部2144の幅は、幹凸部2143と接合する枝凸部の部分2144aが最も広く、幹凸部2143と接合する部分2144aから先端部2144bに向かって狭くなっている(具体的には、直線状に狭くなっている)。より具体的には、十文字に延びる幹凸部2143のそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 第1象限を占める複数の枝凸部21441は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部21442は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部21443は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部21444は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる。尚、第1象限を占める複数の枝凸部21441は、その軸線がX軸と45度を成して延び、第2象限を占める複数の枝凸部21442は、その軸線がX軸と135度を成して延び、第3象限を占める複数の枝凸部21443は、その軸線がX軸と225度を成して延び、第4象限を占める複数の枝凸部21444は、その軸線がX軸と315度を成して延びる。
In the liquid crystal display device of Example 2C-1, the uneven portion 2141 passes through the center of the pixel and extends to the periphery of the pixel from the trunk convex portion (main convex portion) 2143 that extends in a cross shape and the trunk convex portion 2143. A plurality of branch convex portions (sub-convex portions) 2144 are formed. Here, the plurality of branch convex portions 2144 correspond to part of the convex portions provided on the first electrode 2140. The width of the branch convex portion 2144 is the widest at the portion 2144a of the branch convex portion joined to the trunk convex portion 2143, and narrows from the portion 2144a joined to the trunk convex portion 2143 toward the tip portion 2144b (specifically, , Narrowed linearly). More specifically, when assuming an (X, Y) coordinate system in which each of the trunk convex portions 2143 extending in a cross shape is an X axis and a Y axis,
The plurality of branch convex portions 2144 1 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions 2144 2 occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions 2144 3 occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions 2144 4 occupying the fourth quadrant extend in parallel with the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases. The plurality of branch projections 2144 1 occupying the first quadrant extends at an angle of 45 degrees with the X axis, and the plurality of branch projections 2144 2 occupying the second quadrant is the axis of the X axis. A plurality of branch convex portions 2144 3 extending at 135 degrees and occupying the third quadrant has an axis extending at 225 degrees with the X axis, and a plurality of branch convex portions 2144 4 occupying the fourth quadrant are Its axis extends 315 degrees with the X axis.
 幹凸部2143、枝凸部2144、凹部2145の仕様を以下の表8のとおりとした。尚、幹凸部2143の幅を8.0μmとした。また、枝凸部の軸線と幹凸部の外縁との成す角度α0(例えば、図97参照)を45度とした。 The specifications of the trunk convex portion 2143, the branch convex portion 2144, and the concave portion 2145 are as shown in Table 8 below. The width of the trunk convex portion 2143 was set to 8.0 μm. Further, an angle α 0 (for example, see FIG. 97) formed by the axis of the branch convex portion and the outer edge of the trunk convex portion was set to 45 degrees.
[表8]
枝凸部の形成ピッチP  :8.0μm
枝凸部の先端部の幅W2  :4.0μm
枝凸部の根元部の幅W1  :6.0μm
枝凸部間の距離W3    :2.0μm
枝凸部の平均幅Wave1  :5.0μm
枝凸部の全テーパー幅TP:2.0μm
[Table 8]
Branch pitch formation pitch P: 8.0 μm
Width W 2 at the tip of the branch convex portion: 4.0 μm
Width W 1 of root portion of branch convex portion: 6.0 μm
Distance W 3 between branch convex portions: 2.0 μm
Average width of branch convex part W ave1 : 5.0 μm
Total taper width TP of the branch convex part: 2.0 μm
 液晶表示装置の製造時、電極に電圧を印加した状態で液晶分子にプレチルトを付与する。このとき、図52A、図52Bに示すように、先端エッジ部aあるいはその近傍(便宜上、『先端領域』と呼ぶ)に位置する液晶分子Aは、その長軸方向(ダイレクタ)が幹凸部に向かって傾く。そして、液晶層において、この液晶分子Aを含む厚さ方向の領域を想定した場合、液晶分子Aの動きが、構造に起因した局所電場の影響を受ける枝凸部のエッジ部を除いた1画素全体の液晶分子(便宜上、『液晶分子A’』と呼ぶ)に伝わり、液晶分子A’のダイレクタが幹凸部に向かって傾いていく。ここで、図52Bに示すように、枝凸部にテーパーが付されていない液晶表示装置にあっては、図52Aに示すように、枝凸部にテーパーが付されている実施例2C-1よりも、液晶分子Aの動きが液晶分子A’に伝わり難く、あるいは又、液晶分子Aの動きが液晶分子A’に伝わるのに一層長い時間を要する場合がある。 When manufacturing a liquid crystal display device, a pretilt is applied to the liquid crystal molecules while a voltage is applied to the electrodes. At this time, as shown in FIGS. 52A and 52B, the liquid crystal molecules A located at the tip edge portion a or in the vicinity thereof (referred to as “tip region” for convenience) have a major axis direction (director) at the trunk convex portion. Tilt toward. Then, assuming a region in the thickness direction including the liquid crystal molecules A in the liquid crystal layer, one pixel excluding the edge portions of the branch convex portions where the movement of the liquid crystal molecules A is affected by the local electric field due to the structure. It is transmitted to the entire liquid crystal molecules (referred to as “liquid crystal molecule A ′” for the sake of convenience), and the director of the liquid crystal molecules A ′ is inclined toward the trunk convex portion. Here, in the liquid crystal display device in which the branch convex portions are not tapered as shown in FIG. 52B, the branch convex portions are tapered as shown in FIG. 52A. Example 2C-1 In some cases, the movement of the liquid crystal molecules A is less likely to be transmitted to the liquid crystal molecules A ′, or it may take a longer time for the movement of the liquid crystal molecules A to be transmitted to the liquid crystal molecules A ′.
 液晶表示装置における画像の表示時、電極に電圧を印加すると、液晶層全体において、液晶分子は、ダイレクタが第1基板及び第2基板に対して平行となるように変化する。尚、図52A及び図52Bにおいて、側辺エッジ部における電場の方向を白抜きの矢印で示している。ここで、側辺エッジ部bあるいはその近傍(便宜上、『側辺領域』と呼ぶ)に位置する液晶分子Bを含む液晶層において、厚さ方向に柱状領域を想定した場合、この柱状領域中の厚さ方向に並んだ液晶分子には回転が生じる。即ち、側辺領域に位置する液晶分子Bのダイレクタの方向と、液晶分子Bを含む柱状領域中の厚さ方向に並んだ液晶分子(便宜上、『液晶分子B’』と呼ぶ)のダイレクタの方向とは異なる状態となる。尚、これらの液晶分子Bのダイレクタと液晶分子B’のダイレクタとの成す角度をβとする。ここで、図52Bに示すように、枝凸部にテーパーが付されていない液晶表示装置にあっては、液晶分子の回転角度の範囲が広いので(即ち、角度βが大きいので)、X軸方向あるいはY軸方向にリタデーションを持つ液晶分子の割合が少ない場合がある。それ故、枝凸部における光透過率の不均一化を招き、暗線となる虞がある。一方、図52Aに示すように、枝凸部にテーパーが付されている実施例2C-1にあっては、液晶分子の回転角度範囲が狭いので(即ち、角度βが小さいので)、X軸方向あるいはY軸方向にリタデーションを持つ液晶分子の割合が多い。それ故、枝凸部における光透過率の不均一化を招くことがなく、暗線の発生を抑制することができる。 When a voltage is applied to the electrodes when displaying an image on the liquid crystal display device, the liquid crystal molecules in the entire liquid crystal layer change so that the director is parallel to the first substrate and the second substrate. In FIGS. 52A and 52B, the direction of the electric field at the side edge portion is indicated by a white arrow. Here, when a columnar region is assumed in the thickness direction in the liquid crystal layer including the liquid crystal molecules B located in the side edge portion b or in the vicinity thereof (referred to as “side region” for convenience), Rotation occurs in the liquid crystal molecules arranged in the thickness direction. That is, the direction of the director of the liquid crystal molecule B located in the side region and the direction of the director of the liquid crystal molecules aligned in the thickness direction in the columnar region including the liquid crystal molecule B (referred to as “liquid crystal molecule B ′” for convenience). It will be in a different state. Note that an angle formed by the director of the liquid crystal molecules B and the director of the liquid crystal molecules B ′ is β. Here, as shown in FIG. 52B, in the liquid crystal display device in which the branch convex portions are not tapered, the range of the rotation angle of the liquid crystal molecules is wide (that is, the angle β is large). The ratio of liquid crystal molecules having retardation in the direction or Y-axis direction may be small. Therefore, the light transmittance in the branch convex portion is made non-uniform, which may cause dark lines. On the other hand, as shown in FIG. 52A, in Example 2C-1 in which the branch convex portions are tapered, the rotation angle range of the liquid crystal molecules is narrow (that is, the angle β is small). The ratio of liquid crystal molecules having retardation in the direction or Y-axis direction is large. Therefore, the occurrence of dark lines can be suppressed without causing nonuniform light transmittance in the branch convex portions.
 ファインスリット構造では、電極が設けられていないスリットにおいては、電場は液晶分子に対して殆ど影響を与えることができず、液晶分子が所望の方向に配向し難い(倒れ難い)場合がある。それ故、スリットに対応して暗線が生じ、光透過率の低下を招く虞がある。実施例2C-1にあっては、液晶分子は画素内の全領域において電場の影響を受けるので、暗線が発生し難い。 In the fine slit structure, in the slit in which no electrode is provided, the electric field can hardly affect the liquid crystal molecules, and the liquid crystal molecules may be difficult to be aligned in a desired direction (not easily collapsed). Therefore, dark lines are generated corresponding to the slits, which may cause a decrease in light transmittance. In Example 2C-1, since the liquid crystal molecules are affected by the electric field in the entire region within the pixel, dark lines are unlikely to occur.
 以上のとおり、実施例2C-1の液晶表示装置にあっては、第1電極には複数の凹凸部が形成されており、この第1電極に設けられた凸部の一部の幅は、先端部に向かって狭くなっている。それ故、暗線の発生を一層少なくすることができる。即ち、一層均一な高い光透過率を実現することができるし、一層良好な電圧応答特性を得ることができる。また、初期配向の改善を見込むことができるため、前述したように、液晶セルに対して矩形波の交流電界を印加した状態で均一な紫外線を照射して、液晶分子にプレチルトを付与するとき、液晶分子にプレチルトを付与するための時間の短縮を図ることができる。また、配向欠陥の減少が見込めるため、歩留りが向上し、液晶表示装置の生産コストの低減が可能となる。更には、光透過率の向上を図れるが故に、バックライトの低消費電力、TFT信頼性の向上を図ることができる。 As described above, in the liquid crystal display device of Example 2C-1, the first electrode has a plurality of uneven portions, and the width of a part of the protruded portions provided on the first electrode is as follows. It narrows toward the tip. Therefore, the generation of dark lines can be further reduced. That is, a more uniform high light transmittance can be realized, and a better voltage response characteristic can be obtained. In addition, since the improvement of the initial alignment can be expected, as described above, when the liquid crystal cell is irradiated with uniform ultraviolet light in a state where an AC electric field of a rectangular wave is applied to give a pretilt to the liquid crystal molecules, The time for applying pretilt to the liquid crystal molecules can be shortened. In addition, since a reduction in alignment defects can be expected, the yield is improved and the production cost of the liquid crystal display device can be reduced. Furthermore, since the light transmittance can be improved, low power consumption of the backlight and TFT reliability can be improved.
〈実施例2C-2〉
 実施例2C-2は、実施例2C-1の変形であり、第1電極の第4B構造に関する。実施例2C-2の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図53に示し、図53の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部端面図を図54A及び図54Bに示し、図54Bの一部を拡大した模式的な一部端面図を図54Cに示す。
<Example 2C-2>
Example 2C-2 is a modification of Example 2C-1, and relates to the 4B structure of the first electrode. A schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-2 is shown in FIG. 53, and the first electrode and the like along arrows AA and BB in FIG. 54A and 54B are schematic partial end views of FIG. 54A, and FIG. 54C is a schematic partial end view of an enlarged part of FIG. 54B.
 実施例2C-2において、凹凸部2241は、画素周辺部に額縁状に形成された幹凸部(主凸部)2243、及び、幹凸部2243から画素内部に向かって延びる複数の枝凸部(副凸部)2244から構成されている。そして、そして、実施例2C-2の液晶表示装置にあっても、複数の枝凸部2244が、第1電極に設けられた凸部の一部に該当し、枝凸部2244の幅は、幹凸部2243と接合する枝凸部の部分2244aが最も広く、幹凸部2243と接合する部分2244aから先端部2244bに向かって狭くなっている。より具体的には、枝凸部2244の幅は、幹凸部2243と接合する部分2244aから先端部2244bに向かって直線状に狭くなっている。尚、参照番号2245は凹部を示す。 In Example 2C-2, the uneven portion 2241 includes a stem convex portion (main convex portion) 2243 formed in a frame shape on the periphery of the pixel, and a plurality of branch convex portions extending from the stem convex portion 2243 toward the inside of the pixel. (Sub-convex portion) 2244. And also in the liquid crystal display device of Example 2C-2, the plurality of branch convex portions 2244 correspond to a part of the convex portions provided on the first electrode, and the width of the branch convex portion 2244 is: The branch convex portion 2244a joined to the trunk convex portion 2243 is the widest, and the portion 2244a joined to the trunk convex portion 2243 is narrowed toward the distal end portion 2244b. More specifically, the width of the branch convex portion 2244 is linearly narrowed from the portion 2244a joined to the trunk convex portion 2243 toward the distal end portion 2244b. Reference numeral 2245 indicates a recess.
 そして、実施例2C-2の液晶表示装置にあっては、画素中心部を通り、画素周辺部に平行な直線のそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 第1象限を占める複数の枝凸部22441は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部22442は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部22443は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部22444は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる。
In the liquid crystal display device of Example 2C-2, when an (X, Y) coordinate system is assumed in which straight lines passing through the center of the pixel and parallel to the periphery of the pixel are the X axis and the Y axis, respectively. ,
A plurality of branch convex portions 2244 1 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions 2244 2 occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions 2244 3 occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions 2244 4 occupying the fourth quadrant extend in parallel with the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
 尚、第1象限を占める複数の枝凸部22441は、その軸線がX軸と45度を成して延び、第2象限を占める複数の枝凸部22442は、その軸線がX軸と135度を成して延び、第3象限を占める複数の枝凸部22443は、その軸線がX軸と225度を成して延び、第4象限を占める複数の枝凸部22444は、その軸線がX軸と315度を成して延びる。 The plurality of branch convex portions 2244 1 occupying the first quadrant extends at an angle of 45 degrees with the X axis, and the plurality of branch convex portions 2244 2 occupying the second quadrant is the axis of the X axis. A plurality of branch convex portions 2244 3 extending 135 degrees and occupying the third quadrant has an axis extending 225 degrees with the X axis, and a plurality of branch convex portions 2244 4 occupying the fourth quadrant, Its axis extends 315 degrees with the X axis.
 以上の点を除き、実施例2C-2の液晶表示装置の構成、構造は、実施例2C-1の液晶表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 Except for the above, the configuration and structure of the liquid crystal display device of Example 2C-2 can be the same as the configuration and structure of the liquid crystal display device of Example 2C-1, and thus detailed description thereof is omitted.
〈実施例2C-3〉
 実施例2C-3は、第1電極の第4C構造、具体的には、第1電極の第4C-1構造に関する。図55に、実施例2C-3の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を示す。実施例2C-3の液晶表示装置の模式的な一部端面図は、実質的に図16~図18と同様である。また、図55の矢印A-A、矢印B-B、矢印C-Cに沿った第1電極等の模式的な一部断面図は、実質的に、図26A、図26B、図26Cと同じである。
<Example 2C-3>
Example 2C-3 relates to the 4C structure of the first electrode, specifically, the 4C-1 structure of the first electrode. FIG. 55 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-3. A schematic partial end view of the liquid crystal display device of Example 2C-3 is substantially the same as FIGS. Also, a schematic partial cross-sectional view of the first electrode and the like along arrows AA, BB, and CC in FIG. 55 is substantially the same as FIGS. 26A, 26B, and 26C. It is.
 尚、図55、図56、図57、図58、図59、図60、図61においては、図面を簡素化するため、枝凸部の幅を一定として描いているが、実際には、実施例2C-1~実施例2C-2にて説明したと同様に、枝凸部にはテーパーが付されている。即ち、枝凸部の幅は、幹凸部と接合する枝凸部の部分が最も広く、幹凸部と接合する部分から先端部に向かって狭くなっている。 In FIG. 55, FIG. 56, FIG. 57, FIG. 58, FIG. 59, FIG. 60, and FIG. As described in Example 2C-1 to Example 2C-2, the branch convex portion is tapered. That is, the width of the branch convex portion is the widest at the portion of the branch convex portion joined to the trunk convex portion, and narrows from the portion joined to the trunk convex portion toward the tip portion.
 実施例2C-3の液晶表示装置にあっては、第1電極2340には複数の凹凸部2341(凸部2342及び凹部2345)が形成されており、第1電極2340に設けられた凸部2342には複数の段差部が形成されている。また、凹凸部2341は、画素中心部を通り、十文字に延びる幹凸部(主凸部)2343、及び、幹凸部2343から画素周辺部に向かって延びる複数の枝凸部(副凸部)2344から構成されている。そして、枝凸部2344の幅は、幹凸部2343と接合する枝凸部の部分が最も広く、幹凸部2343と接合する部分から先端部に向かって狭くなっている(具体的には、直線状に狭くなっている)。 In the liquid crystal display device of Example 2C-3, the first electrode 2340 has a plurality of concave and convex portions 2341 (the convex portions 2342 and the concave portions 2345), and the convex portions 2342 provided on the first electrode 2340. A plurality of stepped portions are formed in. Further, the uneven portion 2341 passes through the center of the pixel and has a trunk convex portion (main convex portion) 2343 extending in a cross shape and a plurality of branch convex portions (sub convex portions) extending from the trunk convex portion 2343 toward the pixel peripheral portion. 2344. The width of the branch convex portion 2344 is the widest at the portion of the branch convex portion joined to the trunk convex portion 2343 and is narrowed from the portion joined to the trunk convex portion 2343 toward the tip portion (specifically, Narrowed in a straight line).
 ここで、幹凸部2343の延びる方向と直交する仮想垂直平面で幹凸部2343を切断したときの幹凸部2343の断面形状は、幹凸部2343の断面形状の中心から幹凸部2343の断面形状の縁に向かって段差部が下降していく断面形状を有する。具体的には、幹凸部2343の頂面は、幹凸部2343の中央部の頂面2343B、及び、頂面2343Bの両側に位置する頂面2343Aから構成されている。このように、幹凸部2343には2つの段差部が存在し、凹部2345を基準としたとき、頂面2343A、頂面2343Bの順に高くなっている。枝凸部2344の頂面を参照番号2344Aで示すが、幹凸部2343の頂面2343Aと枝凸部2344の頂面2344Aは同じレベルにある。図面において、幹凸部2343の頂面2343Bには、横方向に延びるハッチングを付し、凹部2345には、縦方向に延びるハッチングを付している。 Here, the cross-sectional shape of the stem convex portion 2343 when the stem convex portion 2343 is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion 2343 is the center of the cross-sectional shape of the stem convex portion 2343. It has a cross-sectional shape in which the stepped portion descends toward the edge of the cross-sectional shape. Specifically, the top surface of the trunk convex portion 2343 includes a top surface 2343B at the center of the trunk convex portion 2343 and a top surface 2343A located on both sides of the top surface 2343B. Thus, the trunk convex portion 2343 has two stepped portions, and the top surface 2343A and the top surface 2343B become higher in this order when the concave portion 2345 is used as a reference. Although the top surface of the branch convex portion 2344 is indicated by reference numeral 2344A, the top surface 2343A of the trunk convex portion 2343 and the top surface 2344A of the branch convex portion 2344 are at the same level. In the drawing, the top surface 2343B of the trunk convex portion 2343 is hatched in the lateral direction, and the concave portion 2345 is hatched in the vertical direction.
 以上の点を除き、実施例2C-3の液晶表示装置の構成、構造は、実施例2C-1において説明した液晶表示装置の構成、構造と同様とすることができる。 Except for the above, the configuration and structure of the liquid crystal display device of Example 2C-3 can be the same as the configuration and structure of the liquid crystal display device described in Example 2C-1.
〈実施例2C-4〉
 実施例2C-4は、実施例2C-3の変形である。図56に、実施例2C-4の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を示す。尚、図56の矢印A-A、矢印B-Bに沿った第1電極等の模式的な一部断面図は、実質的に、図30A、図30Bと同じである。
<Example 2C-4>
Example 2C-4 is a modification of Example 2C-3. FIG. 56 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-4. A schematic partial cross-sectional view of the first electrode and the like taken along arrows AA and BB in FIG. 56 is substantially the same as FIGS. 30A and 30B.
 実施例2C-4において、幹凸部2343の頂面は、幹凸部2343の中央部の頂面2343C、頂面2343Cの両側に位置する頂面2343B、及び、頂面2343Bの外側に位置する頂面2343Aから構成されている。このように、幹凸部2343には3つの段差部が存在し、凹部2345を基準としたとき、頂面2343A、頂面2343B、頂面2343Cの順に高くなっている。また、幹凸部2343の延びる方向に平行な仮想垂直平面で幹凸部2343を切断したときの幹凸部2343の断面形状は、幹凸部2343の断面形状の中央部(頂面2343C)から幹凸部2343の断面形状の端部に向かって段差部が下降していく断面形状を有する(頂面2343B及び頂面2343A)。尚、図面において、頂面2343Cには、クロスハッチングを付している。 In Example 2C-4, the top surface of the trunk convex portion 2343 is located outside the top surface 2343C at the center of the trunk convex portion 2343, the top surface 2343B located on both sides of the top surface 2343C, and the top surface 2343B. It consists of a top surface 2343A. As described above, the trunk convex portion 2343 has three step portions, and the top surface 2343A, the top surface 2343B, and the top surface 2343C become higher in this order when the concave portion 2345 is used as a reference. Further, the cross-sectional shape of the stem convex portion 2343 when the stem convex portion 2343 is cut in a virtual vertical plane parallel to the extending direction of the stem convex portion 2343 is from the center (top surface 2343C) of the cross-sectional shape of the stem convex portion 2343. It has a cross-sectional shape in which the stepped portion descends toward the end of the cross-sectional shape of the trunk convex portion 2343 (top surface 2343B and top surface 2343A). In the drawing, the top surface 2343C is cross-hatched.
 以上の点を除き、実施例2C-4の液晶表示装置の構成、構造は、実施例2C-3の液晶表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 Except for the above, the configuration and structure of the liquid crystal display device of Example 2C-4 can be the same as the configuration and structure of the liquid crystal display device of Example 2C-3, and thus detailed description thereof is omitted.
〈実施例2C-5〉
 実施例2C-5も、実施例2C-3の変形である。図57に、実施例2C-5の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を示す。尚、図57の矢印C-Cに沿った第1電極等の模式的な一部端面図は、実質的に、図30Cと同じであり、また一部を拡大した模式的な一部端面図は、実質的に、図30Dと同じである。
<Example 2C-5>
Example 2C-5 is also a modification of Example 2C-3. FIG. 57 is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-5. A schematic partial end view of the first electrode and the like along the arrow CC in FIG. 57 is substantially the same as FIG. 30C, and a schematic partial end view in which a part is enlarged. Is substantially the same as FIG. 30D.
 実施例2C-5にあっては、枝凸部2344の延びる方向と直交する仮想垂直平面で枝凸部2344を切断したときの枝凸部2344の断面形状は、枝凸部2344の断面形状の中心から枝凸部2344の断面形状の縁に向かって段差部が下降していく断面形状を有する。具体的には、枝凸部2344の頂面は、幹凸部2343から延びる頂面2344B、及び、頂面2344Bの両側に位置する頂面2344Aから構成されている。このように、枝凸部2344には2つの段差部が存在し、凹部2345を基準としたとき、頂面2344A、頂面2344Bの順に高くなっている。尚、図面において、頂面2344Bには、横方向に延びるハッチングを付している。また、図57、図58、図61においては、幹凸部と枝凸部の境界を実線で示している。枝凸部2344の頂面2343Bと頂面2343Aとの間の高低差を平均0.20μmとした。幹凸部2343の頂面2343Bと枝凸部2344の頂面2344Bは同じレベルにある。 In Example 2C-5, the cross-sectional shape of the branch convex portion 2344 when the branch convex portion 2344 is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion 2344 is the cross-sectional shape of the branch convex portion 2344. It has a cross-sectional shape in which the stepped portion descends from the center toward the edge of the cross-sectional shape of the branch convex portion 2344. Specifically, the top surface of the branch convex portion 2344 includes a top surface 2344B extending from the trunk convex portion 2343 and top surfaces 2344A located on both sides of the top surface 2344B. Thus, there are two stepped portions in the branch convex portion 2344, and the top surface 2344A and the top surface 2344B become higher in this order when the concave portion 2345 is used as a reference. In the drawing, the top surface 2344B is hatched in the lateral direction. In FIGS. 57, 58, and 61, the boundary between the trunk convex portion and the branch convex portion is indicated by a solid line. The height difference between the top surface 2343B and the top surface 2343A of the branch convex portion 2344 was set to an average of 0.20 μm. The top surface 2343B of the trunk convex portion 2343 and the top surface 2344B of the branch convex portion 2344 are at the same level.
 以上の点を除き、実施例2C-5の液晶表示装置の構成、構造は、実施例2C-3の液晶表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 Except for the above, the configuration and structure of the liquid crystal display device of Example 2C-5 can be the same as the configuration and structure of the liquid crystal display device of Example 2C-3, and thus detailed description thereof is omitted.
 尚、液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図58に示すように、枝凸部2344の延びる方向に平行な仮想垂直平面で枝凸部2344を切断したときの枝凸部2344の断面形状は、枝凸部2344の断面形状の幹凸部側から枝凸部2344の断面形状の端部に向かって段差部が下降していく断面形状を有する形態とすることもできる。また、実施例2C-4において説明した幹凸部2343と組み合わせることもできる。 As shown in FIG. 58, which is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device, the branch protrusion 2344 is cut along a virtual vertical plane parallel to the extending direction of the branch protrusion 2344. The cross-sectional shape of the branch convex portion 2344 is such that the stepped portion descends from the trunk convex portion side of the cross-sectional shape of the branch convex portion 2344 toward the end of the cross-sectional shape of the branch convex portion 2344. You can also Further, it can be combined with the trunk convex portion 2343 described in the embodiment 2C-4.
〈実施例2C-6〉
 実施例2C-6も実施例2C-3の変形であるが、第1電極の第4C-2構造に関する。実施例2C-6の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図59に示す。尚、図59の矢印A-A及び矢印B-Bに沿った第1電極等の模式的な一部端面図は、実質的に、図36A,図36B,図36Cに示したと同じである。
<Example 2C-6>
Example 2C-6 is also a modification of Example 2C-3, but relates to the 4C-2 structure of the first electrode. FIG. 59 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-6. Note that schematic partial end views of the first electrode and the like along arrows AA and BB in FIG. 59 are substantially the same as those shown in FIGS. 36A, 36B, and 36C.
 実施例2C-6の液晶表示装置においても、第1電極2440には複数の凹凸部2441(凸部2442及び凹部2445)が形成されており、第1電極2440に設けられた凸部2442には複数の段差部が形成されている。具体的には、実施例2C-6の液晶表示装置において、凹凸部2441は、画素周辺部に額縁状に形成された幹凸部(主凸部)2443、及び、幹凸部2443から画素内部に向かって延びる複数の枝凸部(副凸部)2444から構成されている。そして、枝凸部2444の幅は、幹凸部2443と接合する枝凸部の部分が最も広く、幹凸部2443と接合する部分から先端部に向かって狭くなっている(具体的には、直線状に狭くなっている)。 Also in the liquid crystal display device of Example 2C-6, the first electrode 2440 has a plurality of concave and convex portions 2441 (the convex portion 2442 and the concave portion 2445), and the convex portion 2442 provided on the first electrode 2440 includes A plurality of step portions are formed. Specifically, in the liquid crystal display device of Example 2C-6, the concavo-convex portion 2441 includes a stem convex portion (main convex portion) 2443 formed in a frame shape on the periphery of the pixel, and the stem convex portion 2443 to the inside of the pixel. It is comprised from the several branch convex part (subconvex part) 2444 extended toward. The width of the branch convex portion 2444 is the widest at the portion of the branch convex portion joined to the trunk convex portion 2443 and is narrowed from the portion joined to the trunk convex portion 2443 toward the tip portion (specifically, Narrowed in a straight line).
 ここで、幹凸部2443の延びる方向と直交する仮想垂直平面で幹凸部2443を切断したときの幹凸部2443の断面形状は、幹凸部2443の断面形状の外側の縁から幹凸部2443の断面形状の内側の縁に向かって段差部が下降していく断面形状を有する。具体的には、幹凸部2443の頂面は、幹凸部2443の外側の縁部近傍の頂面2443B、及び、内側の縁部近傍の頂面2443Aから構成されている。このように、幹凸部2443には2つの段差部が存在し、凹部2445を基準としたとき、頂面2443A、頂面2443Bの順に高くなっている。尚、枝凸部2444の頂面を参照番号2444Aで示すが、幹凸部2443の頂面2443Aと枝凸部2444の頂面2444Aは同じレベルにある。図面において、幹凸部2443の頂面2443Bには、横方向に延びるハッチングを付し、凹部2445には、縦方向に延びるハッチングを付している。画素の中央部に位置する凹部の部分の形状は、概ね十文字状である。 Here, the cross-sectional shape of the stem convex portion 2443 when the stem convex portion 2443 is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion 2443 is the stem convex portion from the outer edge of the cross-sectional shape of the stem convex portion 2443. 2443 has a cross-sectional shape in which the stepped portion descends toward the inner edge of the cross-sectional shape of 2443. Specifically, the top surface of the trunk convex portion 2443 includes a top surface 2443B in the vicinity of the outer edge portion of the trunk convex portion 2443 and a top surface 2443A in the vicinity of the inner edge portion. As described above, the trunk convex portion 2443 has two step portions, and the top surface 2443A and the top surface 2443B become higher in this order when the concave portion 2445 is used as a reference. The top surface of the branch convex portion 2444 is indicated by reference numeral 2444A, but the top surface 2443A of the trunk convex portion 2443 and the top surface 2444A of the branch convex portion 2444 are at the same level. In the drawing, the top surface 2443B of the trunk convex portion 2443 is hatched in the lateral direction, and the concave portion 2445 is hatched in the vertical direction. The shape of the concave portion located at the center of the pixel is generally cross-shaped.
 以上の点を除き、実施例2C-6の液晶表示装置の構成、構造は、実施例2C-2あるいは実施例2C-3において説明した液晶表示装置の構成、構造と同様とすることができる。 Except for the above points, the configuration and structure of the liquid crystal display device of Example 2C-6 can be the same as the configuration and structure of the liquid crystal display device described in Example 2C-2 or Example 2C-3.
 実施例2C-6にあっては、幹凸部2443に複数の段差部が形成されているので、幹凸部2443の外側の縁部において電場が最も高く、幹凸部2443の内側の縁部に向かって電場が低くなる。その結果、幹凸部2443における液晶分子に対する配向規制力を強くすることができ、幹凸部2443における液晶分子のチルト状態を確実に規定することができる。それ故、画像表示時、幹凸部2443に対応する画像の部分に暗線が発生し難い。即ち、良好な電圧応答特性を保持しつつ、一層均一な高光透過率を実現することができる液晶表示装置を提供することができるし、バックライトを構成する光源のコスト低減、低消費電力化を図ることができ、また、TFTの信頼性の向上を図ることもできる。 In Example 2C-6, since the plurality of step portions are formed on the stem convex portion 2443, the electric field is highest at the outer edge of the stem convex portion 2443, and the inner edge of the stem convex portion 2443 The electric field decreases toward. As a result, the alignment regulating force on the liquid crystal molecules in the trunk convex portion 2443 can be strengthened, and the tilt state of the liquid crystal molecules in the trunk convex portion 2443 can be reliably defined. Therefore, at the time of image display, dark lines are unlikely to occur in the image portion corresponding to the trunk convex portion 2443. That is, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance while maintaining a good voltage response characteristic, and to reduce the cost of the light source constituting the backlight and reduce the power consumption. In addition, the reliability of the TFT can be improved.
〈実施例2C-7〉
 実施例2C-7は、実施例2C-6の変形である。実施例2C-7の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図60に示す。尚、図60の矢印D-Dに沿った第1電極を拡大した模式的な一部端面図は、実質的に、図36Dに示したと同じである。
<Example 2C-7>
Example 2C-7 is a modification of Example 2C-6. A schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-7 is shown in FIG. Note that a schematic partial end view of the first electrode taken along the arrow DD in FIG. 60 is substantially the same as that shown in FIG. 36D.
 実施例2C-7において、幹凸部2443の頂面は、幹凸部2443の外側の縁部近傍の頂面2443C、並びに、内側の縁部に向かって、頂面2443B及び頂面2443Aから構成されている。このように、幹凸部2443には3つの段差部が存在し、凹部2445を基準としたとき、頂面2443A、頂面2443B、頂面2443Cの順に高くなっている。尚、図面において、頂面2443Cには、クロスハッチングを付している。幹凸部2443の頂面2443Cと頂面2443Bとの間の高低差、頂面2443Bと頂面2443Aとの間の高低差を、平均0.20μmとした。 In Example 2C-7, the top surface of the trunk convex portion 2443 is composed of a top surface 2443C in the vicinity of the outer edge portion of the trunk convex portion 2443, and a top surface 2443B and a top surface 2443A toward the inner edge portion. Has been. Thus, the trunk convex portion 2443 has three step portions, and the top surface 2443A, the top surface 2443B, and the top surface 2443C become higher in this order when the concave portion 2445 is used as a reference. In the drawing, the top surface 2443C is cross-hatched. The height difference between the top surface 2443C and the top surface 2443B of the trunk convex portion 2443 and the height difference between the top surface 2443B and the top surface 2443A were set to 0.20 μm on average.
 以上の点を除き、実施例2C-7の液晶表示装置の構成、構造は、実施例2C-6の液晶表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 Except for the above, the configuration and structure of the liquid crystal display device of Example 2C-7 can be the same as the configuration and structure of the liquid crystal display device of Example 2C-6, and thus detailed description thereof is omitted.
〈実施例2C-8〉
 実施例2C-8は実施例2C-7の変形である。図61に実施例2C-8の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を示す。
<Example 2C-8>
Example 2C-8 is a modification of Example 2C-7. FIG. 61 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2C-8.
 実施例2C-8にあっては、枝凸部2444の延びる方向と直交する仮想垂直平面で枝凸部2444を切断したときの枝凸部2444の断面形状は、枝凸部2444の断面形状の中心から枝凸部2444の断面形状の縁に向かって段差部が下降していく断面形状を有する。具体的には、枝凸部2444の頂面は、幹凸部2443の頂面2443Bから延びる頂面2444B、及び、頂面2444Bの両側に位置する頂面2444Aから構成されている。そして、凹部2445を基準としたとき、枝凸部2444には2つの段差部が存在し、頂面2444A、頂面2444Bの順に高くなっている。尚、図面において、頂面2444Bには、横方向に延びるハッチングを付している。枝凸部2444の頂面2443Bと頂面2443Aとの間の高低差を平均0.28μmとした。幹凸部2443の頂面2443Bと枝凸部2444の頂面2444Bは同じレベルにある。 In Example 2C-8, the cross-sectional shape of the branch convex portion 2444 when the branch convex portion 2444 is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion 2444 is the cross-sectional shape of the branch convex portion 2444. It has a cross-sectional shape in which the stepped portion descends from the center toward the edge of the cross-sectional shape of the branch convex portion 2444. Specifically, the top surface of the branch convex portion 2444 includes a top surface 2444B extending from the top surface 2443B of the trunk convex portion 2443 and top surfaces 2444A located on both sides of the top surface 2444B. Then, when the concave portion 2445 is used as a reference, the branch convex portion 2444 has two stepped portions, which are higher in the order of the top surface 2444A and the top surface 2444B. In the drawing, the top surface 2444B is hatched in the lateral direction. The height difference between the top surface 2443B and the top surface 2443A of the branch convex portion 2444 was set to an average of 0.28 μm. The top surface 2443B of the trunk convex portion 2443 and the top surface 2444B of the branch convex portion 2444 are at the same level.
 また、枝凸部2444の延びる方向に平行な仮想垂直平面で枝凸部2444を切断したときの枝凸部2444の断面形状は、枝凸部2444の断面形状の幹凸部側から枝凸部2444の断面形状の端部に向かって段差部が下降していく断面形状を有する形態とすることもできる。 The cross-sectional shape of the branch convex portion 2444 when the branch convex portion 2444 is cut in a virtual vertical plane parallel to the extending direction of the branch convex portion 2444 is the branch convex portion from the trunk convex portion side of the cross-sectional shape of the branch convex portion 2444. It can also be set as the form which has a cross-sectional shape in which a level | step-difference part descend | falls toward the edge part of the cross-sectional shape of 2444.
 以上の点を除き、実施例2C-8の液晶表示装置の構成、構造は、実施例2C-6の液晶表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。尚、実施例2C-6と同様にして、幹凸部2443の頂面を、頂面2443B、及び、頂面2443Bの両側に位置する頂面2443Aから構成することもできる。 Except for the above, the configuration and structure of the liquid crystal display device of Example 2C-8 can be the same as the configuration and structure of the liquid crystal display device of Example 2C-6, and thus detailed description thereof is omitted. In the same manner as in Example 2C-6, the top surface of the trunk convex portion 2443 can be composed of a top surface 2443B and top surfaces 2443A located on both sides of the top surface 2443B.
〈実施例2D-1〉
 実施例2D-1は、第1電極の第5A構造に関する。図62に、実施例2D-1の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を示し、図63Aに、図62の矢印A-Aに沿った第1電極等の模式的な一部断面図を示し、図63Bに、図63Aの一部を拡大した模式的な一部断面図を示す。実施例2D-1の液晶表示装置の模式的な一部端面図は、実質的に、図16~図18と同じである。
<Example 2D-1>
Example 2D-1 relates to the 5A structure of the first electrode. FIG. 62 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-1, and FIG. 63A shows the first electrode along the arrow AA in FIG. FIG. 63B is a schematic partial cross-sectional view in which a part of FIG. 63A is enlarged. A schematic partial end view of the liquid crystal display device of Example 2D-1 is substantially the same as FIGS. 16 to 18.
 実施例2D-1あるいは後述する実施例2D-2~実施例2D-12の液晶表示装置は、実施例2A-1~実施例2A-3の液晶表示装置と同様に、
 第1基板20及び第2基板50、
 第2基板50と対向する第1基板20の対向面に形成された第1電極(画素電極)3140,3240,3340,3440、
 第1基板20と対向する第2基板50の対向面に形成された第2電極(対向電極)160、並びに、
 第1電極3140,3240,3340,3440及び第2電極160の間に設けられ、液晶分子71A,71B,71Cを含む液晶層70、
を有する画素10(10A,10B,10C)が、複数、配列されて成る液晶表示装置であり、液晶分子にはプレチルトが付与されており、
 第1電極3140,3240,3340,3440には複数の凹凸部3141,3241,3341,3441が形成されている。具体的には、少なくとも第1電極の側の液晶分子にはプレチルトが付与されている。尚、液晶分子は負の誘電率異方性を有する。
The liquid crystal display devices of Example 2D-1 or Example 2D-2 to Example 2D-12 described later are similar to the liquid crystal display devices of Example 2A-1 to Example 2A-3.
A first substrate 20 and a second substrate 50,
First electrodes (pixel electrodes) 3140, 3240, 3340, 3440 formed on the facing surface of the first substrate 20 facing the second substrate 50.
A second electrode (counter electrode) 160 formed on the facing surface of the second substrate 50 facing the first substrate 20, and
A liquid crystal layer 70 provided between the first electrodes 3140, 3240, 3340, 3440 and the second electrode 160 and including liquid crystal molecules 71A, 71B, 71C;
Is a liquid crystal display device in which a plurality of pixels 10 (10A, 10B, 10C) are arranged, and a pretilt is given to the liquid crystal molecules,
A plurality of concave and convex portions 3141, 3241, 3341, 3441 are formed on the first electrodes 3140, 3240, 3340, 3440. Specifically, a pretilt is imparted to at least the liquid crystal molecules on the first electrode side. Note that the liquid crystal molecules have negative dielectric anisotropy.
 そして、実施例2D-1の液晶表示装置にあっては、画素10の中心を通るX軸及びY軸を想定したとき、具体的には、画素10の中心を通り、画素周辺部に平行な直線のそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 第1象限を占める複数の凸部3144A1は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の凸部3144A2は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の凸部3144A3は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の凸部3144A4は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる。尚、第1象限を占める複数の凸部3144A1は、その軸線がX軸と45度を成して延び、第2象限を占める複数の凸部3144A2は、その軸線がX軸と135度を成して延び、第3象限を占める複数の凸部3144A3は、その軸線がX軸と225度を成して延び、第4象限を占める複数の凸部3144A4は、その軸線がX軸と315度を成して延びる。尚、凸部3144Aは、X軸に対して線対称であり、Y軸に対しても線対称であるし、また、画素の中心に対して180度の回転対称(点対称)である。
In the liquid crystal display device of Example 2D-1, when the X axis and the Y axis passing through the center of the pixel 10 are assumed, specifically, the liquid crystal display device passes through the center of the pixel 10 and is parallel to the pixel peripheral portion. Assuming an (X, Y) coordinate system with each straight line as the X-axis and Y-axis,
The plurality of convex portions 3144A 1 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of convex portions 3144A 2 occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of convex portions 3144A 3 occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of convex portions 3144A 4 occupying the fourth quadrant extend in parallel to the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases. The plurality of convex portions 3144A 1 occupying the first quadrant extends at an angle of 45 degrees with the X axis, and the plurality of convex portions 3144A 2 occupying the second quadrant has an axis of 135 degrees with the X axis. The plurality of convex portions 3144A 3 occupying the third quadrant extend in an axis of 225 degrees with the X axis, and the plurality of convex portions 3144A 4 occupying the fourth quadrant have an axis X Extends 315 degrees with the axis. The convex portion 3144A is line symmetric with respect to the X axis, is also line symmetric with respect to the Y axis, and is 180 degrees rotationally symmetric (point symmetric) with respect to the pixel center.
 実施例2D-1の液晶表示装置にあっては、実施例2A-1の液晶表示装置と異なり、幹凸部は設けられておらず、実施例2D-1の液晶表示装置における凸部3144Aは、実施例2A-1の液晶表示装置における枝凸部に相当する。そして、
 X軸から延び、第1象限を占める凸部3144A11のそれぞれは、X軸から延び、第4象限を占める凸部3144A41のそれぞれと接合しており、
 Y軸から延び、第1象限を占める凸部3144A12のそれぞれは、Y軸から延び、第2象限を占める凸部3144A22のそれぞれと接合しており、
 X軸から延び、第2象限を占める凸部3144A21のそれぞれは、X軸から延び、第3象限を占める凸部3144A31のそれぞれと接合しており、
 Y軸から延び、第3象限を占める凸部3144A32のそれぞれは、Y軸から延び、第4象限を占める凸部3144A42のそれぞれと接合している。即ち、凸部3144Aの平面形状は「V」字形状である。尚、凸部を示す参照番号における下付文字「11」、「12」等と、後述する各種実施例における凸部を示す参照番号における下付文字とは、同じ凸部の部分を指す。
In the liquid crystal display device of Example 2D-1, unlike the liquid crystal display device of Example 2A-1, no trunk convex portion is provided, and the convex portion 3144A in the liquid crystal display device of Example 2D-1 is This corresponds to the branch protrusion in the liquid crystal display device of Example 2A-1. And
Each of the protrusions 3144A 11 extending from the X axis and occupying the first quadrant is joined to each of the protrusions 3144A 41 extending from the X axis and occupying the fourth quadrant,
Each of the convex portions 3144A 12 extending from the Y axis and occupying the first quadrant is joined to each of the convex portions 3144A 22 extending from the Y axis and occupying the second quadrant,
Each of the convex portions 3144A 21 extending from the X axis and occupying the second quadrant is joined to each of the convex portions 3144A 31 extending from the X axis and occupying the third quadrant,
Each of the convex portions 3144A 32 extending from the Y axis and occupying the third quadrant is joined to each of the convex portions 3144A 42 extending from the Y axis and occupying the fourth quadrant. That is, the planar shape of the convex portion 3144A is a “V” shape. The subscripts “11”, “12” and the like in the reference numbers indicating the convex portions and the subscript characters in the reference numbers indicating the convex portions in various embodiments described later indicate the same convex portions.
 凸部3144A、凹部3145の仕様を以下の表9のとおりとした。 The specifications of the convex portion 3144A and the concave portion 3145 are as shown in Table 9 below.
[表9]
凸部の平均高さ :0.2μm
凸部の形成ピッチ:5.0μm
凸部の幅    :2.5μm
凹部の幅    :2.5μm
[Table 9]
Average height of protrusions: 0.2 μm
Projection pitch: 5.0 μm
Width of convex part: 2.5 μm
Recess width: 2.5 μm
 実施例2D-1の液晶表示装置にあっては、第1象限を占める複数の凸部3144A1は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、第2象限を占める複数の凸部3144A2は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、第3象限を占める複数の凸部3144A3は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、第4象限を占める複数の凸部3144A4は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる。即ち、X軸と平行に延びる凸部の部分、あるいは、Y軸と平行に延びる凸部の部分が、凸部3144Aの先端部を除き、存在しない。尚、凸部3144Aの先端部を、凸部3144Aの軸線と直交する線分から構成し、あるいは又、凸部3144Aの先端部を、曲線から構成することで、X軸と平行に延びる凸部の部分、あるいは、Y軸と平行に延びる凸部の部分が、存在しない構成とすることもできる。ここで、第1の偏光板の吸収軸は、X軸あるいはY軸と平行であり、第2の偏光板の吸収軸は、Y軸あるいはX軸と平行である。従って、暗線の発生を一層少なくすることができる。即ち、一層均一な高い光透過率を実現することができるし、一層良好な電圧応答特性を得ることができる。また、初期配向が改善されるため、前述したように、液晶セルに対して矩形波の交流電界を印加した状態で均一な紫外線を照射して、液晶分子にプレチルトを付与するとき、液晶分子にプレチルトを付与するための時間の短縮を図ることができる。更には、配向欠陥の減少が見込めるため、歩留りが向上し、液晶表示装置の生産コストの低減が可能となる。更には、光透過率の向上を図れるが故に、バックライトの低消費電力、TFT信頼性の向上を図ることができる。 In the liquid crystal display device of Example 2D-1, the plurality of convex portions 3144A 1 occupying the first quadrant extend in parallel with the direction in which the Y coordinate value increases when the X coordinate value increases, The plurality of convex portions 3144A 2 occupying the quadrant extend parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases, and the plurality of convex portions 3144A 3 occupying the third quadrant have the X coordinate value. When decreasing, the plurality of convex portions 3144A 4 occupying the fourth quadrant extend in parallel with the direction in which the Y coordinate value decreases when the X coordinate value increases. In other words, there is no protruding portion extending in parallel with the X axis or protruding portion extending in parallel with the Y axis except for the tip of the protruding portion 3144A. In addition, the tip of the convex portion 3144A is constituted by a line segment orthogonal to the axis of the convex portion 3144A, or the tip of the convex portion 3144A is constituted by a curve so that the convex portion extending in parallel with the X axis is formed. It is also possible to adopt a configuration in which there is no portion or a convex portion extending in parallel with the Y axis. Here, the absorption axis of the first polarizing plate is parallel to the X axis or the Y axis, and the absorption axis of the second polarizing plate is parallel to the Y axis or the X axis. Therefore, the generation of dark lines can be further reduced. That is, a more uniform high light transmittance can be realized, and a better voltage response characteristic can be obtained. In addition, since the initial alignment is improved, as described above, when the liquid crystal cell is irradiated with uniform ultraviolet rays with a rectangular wave AC electric field applied to give a pretilt to the liquid crystal molecules, The time for applying the pretilt can be shortened. Furthermore, since a reduction in alignment defects can be expected, the yield is improved and the production cost of the liquid crystal display device can be reduced. Furthermore, since the light transmittance can be improved, low power consumption of the backlight and TFT reliability can be improved.
〈実施例2D-2〉
 実施例2D-2は、実施例2D-1の変形である。実施例2D-2の液晶表示装置を構成する1画素分の第1電極の一部分を拡大した模式的な平面図を、図64A、図64B、図65A、図65Bに示す。尚、図64A、図64B、図65A、図65Bは、図62の第1電極の模式的な平面図において円形の領域で囲んだ第1電極の部分を拡大した模式的な平面図である。実施例2D-2の液晶表示装置において、2つの凸部3144Bの接合部3144B’には、画素10の周辺部方向に向かって延びる突出部3151が設けられている。突出部3151は、図64A及び図64Bに示すように、複数の線分(図示した例では2本の線分)によって囲まれている構成とすることができるし、図65Aに示すように、1本の曲線によって囲まれている構成とすることもできるし、図65Bに示すように、複数の曲線(図示した例では2本の曲線)によって囲まれている構成とすることもできるし、線分と曲線との組合せによって囲まれている構成とすることもできる。尚、図64Aに示す例にあっては、突出部3151の先端は、画素の周辺部方向において隣接する2つの凸部の接合部と接していない。一方、図64Bに示す例にあっては、突出部3151の先端は、画素の周辺部方向において隣接する2つの凸部の接合部と接している。
<Example 2D-2>
Example 2D-2 is a modification of Example 2D-1. FIG. 64A, FIG. 64B, FIG. 65A, and FIG. 65B show schematic plan views in which a part of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-2 is enlarged. 64A, 64B, 65A, and 65B are schematic plan views in which a portion of the first electrode surrounded by a circular region in the schematic plan view of the first electrode in FIG. 62 is enlarged. In the liquid crystal display device of Example 2D-2, a protrusion 3151 extending toward the periphery of the pixel 10 is provided at the joint 3144B ′ of the two protrusions 3144B. The protrusion 3151 can be configured to be surrounded by a plurality of line segments (two line segments in the illustrated example) as shown in FIGS. 64A and 64B, and as shown in FIG. 65A, A configuration surrounded by a single curve may be used, or a configuration surrounded by a plurality of curves (two curves in the illustrated example) as shown in FIG. 65B. It can also be set as the structure enclosed by the combination of a line segment and a curve. In the example shown in FIG. 64A, the tip of the protruding portion 3151 is not in contact with the joint portion between the two convex portions adjacent in the peripheral portion direction of the pixel. On the other hand, in the example shown in FIG. 64B, the tip of the projecting portion 3151 is in contact with a joint portion between two convex portions adjacent to each other in the peripheral portion direction of the pixel.
 このような構成にすることによっても、X軸と平行に延びる凸部の部分、あるいは、Y軸と平行に延びる凸部の部分が存在しないか、存在しても極めて僅かな長さである。しかも、凸部の「V」字形状の底部の内側の部分には、突出部3151が設けられているので、凸部の「V」字形状の底部の部分に突出部3151が設けられていない場合よりも、凸部の「V」字形状の底部の内側の近傍に位置する液晶分子の配向状態を、一層、所望の状態とすることができる。 Even with such a configuration, there is no portion of a convex portion extending parallel to the X axis, or a portion of a convex portion extending parallel to the Y axis, or the length is very small even if it exists. Moreover, since the protrusion 3151 is provided on the inner side of the bottom of the “V” shape of the protrusion, the protrusion 3151 is not provided on the bottom of the “V” shape of the protrusion. The alignment state of the liquid crystal molecules located in the vicinity of the inside of the bottom portion of the “V” shape of the convex portion can be made further desired as compared with the case.
〈実施例2D-3〉
 実施例2D-3も、実施例2D-1の変形である。実施例2D-1にあっては、凸部3144AはX軸上あるいはY軸上で接合され、凸部3144Aの平面形状は「V」字形状であった。一方、実施例2D-3にあっては、凸部3144CはX軸上あるいはY軸上で接合されていない。具体的には、実施例2D-3の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図66に示すように、
 X軸あるいはその近傍から延び、第1象限を占める凸部3144C11のそれぞれは、X軸あるいはその近傍から延び、第4象限を占める凸部3144C41のそれぞれと接合しておらず、
 Y軸あるいはその近傍から延び、第1象限を占める凸部3144C12のそれぞれは、Y軸あるいはその近傍から延び、第2象限を占める凸部3144C22のそれぞれと接合しておらず、
 X軸あるいはその近傍から延び、第2象限を占める凸部3144C21のそれぞれは、X軸あるいはその近傍から延び、第3象限を占める凸部3144C31のそれぞれと接合しておらず、
 Y軸あるいはその近傍から延び、第3象限を占める凸部3144C32のそれぞれは、Y軸あるいはその近傍から延び、第4象限を占める凸部3144C42のそれぞれと接合していない。
<Example 2D-3>
Example 2D-3 is also a modification of Example 2D-1. In Example 2D-1, the convex portion 3144A was joined on the X axis or the Y axis, and the planar shape of the convex portion 3144A was a “V” shape. On the other hand, in Example 2D-3, the convex portion 3144C is not joined on the X axis or the Y axis. Specifically, as shown in FIG. 66, a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-3 is shown.
Each of the convex portions 3144C 11 extending from the X axis or the vicinity thereof and occupying the first quadrant is not joined to each of the convex portions 3144C 41 extending from the X axis or the vicinity thereof and occupying the fourth quadrant,
Each of the convex portions 3144C 12 extending from the Y axis or the vicinity thereof and occupying the first quadrant is not joined to each of the convex portions 3144C 22 extending from the Y axis or the vicinity thereof and occupying the second quadrant,
Each of the convex portions 3144C 21 extending from the X axis or the vicinity thereof and occupying the second quadrant is not joined to each of the convex portions 3144C 31 extending from the X axis or the vicinity thereof and occupying the third quadrant,
Each of the convex portions 3144C 32 extending from the Y axis or the vicinity thereof and occupying the third quadrant is not joined to each of the convex portions 3144C 42 extending from the Y axis or the vicinity thereof and occupying the fourth quadrant.
 尚、凸部3144Cのそれぞれは、接合していないが、接した状態にあってもよい。ここで、「接合」しているとは、凸部のそれぞれが或る長さで交わっている状態を指し、「接して」いるとは、凸部のそれぞれが非常に短い長さで(一種、点状で)交わっている状態を指す。 Note that each of the convex portions 3144C is not joined, but may be in a contacted state. Here, “joining” refers to a state in which the convex portions intersect with each other at a certain length, and “contacting” means that each convex portion has a very short length (one type) , In the form of dots).
 このような構成にすることによっても、X軸と平行に延びる凸部の部分、あるいは、Y軸と平行に延びる凸部の部分が存在しない。あるいは、存在したとしても、長さは短い。従って、実施例2D-1において説明したと同様の効果を得ることができる。 Even with such a configuration, there is no convex portion extending parallel to the X axis, or no convex portion extending parallel to the Y axis. Or, if present, the length is short. Accordingly, the same effect as described in Example 2D-1 can be obtained.
〈実施例2D-4〉
 実施例2D-4は、実施例2D-1~実施例2D-3の変形である。実施例2D-4の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図67に示すように、凸部3144Dの幅は画素10の周辺部に向かって狭くなる。具体的には、凸部3144Dの幅は、X軸、Y軸あるいはその近傍の部分が最も広く、画素10の周辺部に向かって狭くなっている(より具体的には、直線状に狭くなっている)。
<Example 2D-4>
Example 2D-4 is a modification of Example 2D-1 to Example 2D-3. As shown in FIG. 67, which is a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-4, the width of the convex portion 3144D becomes narrower toward the peripheral portion of the pixel 10. Specifically, the width of the convex portion 3144D is the widest in the X axis, the Y axis, or the vicinity thereof, and narrows toward the peripheral portion of the pixel 10 (more specifically, linearly narrows). ing).
〈実施例2D-5〉
 実施例2D-5は、実施例2D-1~実施例2D-4の変形であり、第1電極の第5A-1構造に関し、更には、第1電極の第5C構造に関する。
<Example 2D-5>
Example 2D-5 is a modification of Example 2D-1 to Example 2D-4, and relates to the 5A-1 structure of the first electrode, and further to the 5C structure of the first electrode.
 実施例2D-5の液晶表示装置を構成する1画素分の第1電極等の模式的な平面図を図68A、図68B、図68C、図69A、図69B、図69C、図70A、図70B、図70C、図71A、図71B、図71Cに示すように、第1電極3140には、凹凸部3141に加えて、スリット部3152が形成されている。スリット部3152には、第1電極3140を構成する透明導電材料層は形成されていない。尚、図72Aは、図68Cの矢印A-Aに沿った模式的な端面図であり、図72Bは、図69Cの矢印B-Bに沿った模式的な端面図であり、図72Cは、図70Cの矢印C-Cに沿った模式的な端面図であり、図72Dは、図71Cの矢印D-Dに沿った模式的な端面図である。 68A, 68B, 68C, 69A, 69B, 69C, 70A, and 70B are schematic plan views of the first electrode and the like for one pixel constituting the liquid crystal display device of Example 2D-5. 70C, FIG. 71A, FIG. 71B, and FIG. 71C, the first electrode 3140 is provided with a slit portion 3152 in addition to the concavo-convex portion 3141. The slit 3152 is not formed with a transparent conductive material layer constituting the first electrode 3140. 72A is a schematic end view taken along arrow AA in FIG. 68C, FIG. 72B is a schematic end view taken along arrow BB in FIG. 69C, and FIG. FIG. 72C is a schematic end view taken along arrow CC in FIG. 70C, and FIG. 72D is a schematic end view taken along arrow DD in FIG. 71C.
 実施例2D-5にあっては、スリット部3152が凸部領域3144E’に形成されている。ここで、図68A、図68B、図68Cに示すように、スリット部3152は、画素10の中心領域(中央部分)3152Aを含む領域に設けられている。尚、凸部3144E、凸部領域3144E’、凹部3145、中心領域3152Aの配置状態を図68Aに模式的に示し、第1電極3140に設けられたスリット部3152の配置状態を図68Bに模式的に示し、凹凸部3141とスリット部3152を重ね合わせた図を図68Cに示す。あるいは又、図69A、図69B、図69Cに示すように、スリット部3152は、各象限において、画素10の中心領域(中央部分)に向かって延びる1つの凸部領域3144E’(具体的には、1本の凸部3144上)に形成されている。尚、凸部3144E、凸部領域3144E’、凹部3145の配置状態を図69Aに模式的に示し、第1電極3140に設けられたスリット部3152の配置状態を図69Bに模式的に示し、凹凸部3141とスリット部3152を重ね合わせた図を図69Cに示す。あるいは又、図70A、図70B、図70Cに示すように、スリット部3152は、各象限において、画素10の中心領域(中央部分)3152Aに向かって延びる凸部領域3144E’に形成されている。尚、凸部3144E、凸部領域3144E’、凹部3145、中心領域3152Aの配置状態を図70Aに模式的に示し、第1電極3140に設けられたスリット部3152の配置状態を図70Bに模式的に示し、凹凸部3141とスリット部3152を重ね合わせた図を図70Cに示す。あるいは又、図71A、図71B、図71Cに示すように、スリット部3152は、画素10の中心領域(中央部分)3152Aに向かって延びる凸部とY軸とによって挟まれた領域に設けられた凸部領域3144E’に形成されている。尚、凸部3144E、凸部領域3144E’、凹部3145、中心領域3152Aの配置状態を図71Aに模式的に示し、第1電極3140に設けられたスリット部3152の配置状態を図71Bに模式的に示し、凹凸部3141とスリット部3152を重ね合わせた図を図71Cに示す。ここで、図68A、図68B、図68C、図69A、図69B、図69C、図70A、図70B、図70C、図71A、図71B、図71Cにおいては、凹部3145を、縦方向に延びるハッチングを付している。また、図68B、図68C、図69B、図69C、図70B、図70C、図71B、図71C、図83、図84、図85においては、スリット部3152,3252を、横方向に延びるハッチングを付している。参照番号3152’で示す領域には、スリット部は設けられておらず、第1電極3140を構成する透明導電材料層が形成されている。スリット部3152においては、平滑化膜22が露出している。 In Example 2D-5, the slit portion 3152 is formed in the convex region 3144E '. Here, as shown in FIGS. 68A, 68B, and 68C, the slit portion 3152 is provided in a region including the central region (center portion) 3152A of the pixel 10. 68A schematically shows the arrangement state of the convex portion 3144E, the convex region 3144E ′, the concave portion 3145, and the central region 3152A, and the arrangement state of the slit portion 3152 provided in the first electrode 3140 is schematically shown in FIG. 68B. 68C is a diagram in which the uneven portion 3141 and the slit portion 3152 are overlapped with each other. Alternatively, as shown in FIG. 69A, FIG. 69B, and FIG. 69C, the slit portion 3152 has one convex region 3144E ′ (specifically, extending toward the central region (central portion) of the pixel 10 in each quadrant. One convex portion 3144). 69A schematically shows the arrangement state of the convex portion 3144E, the convex portion region 3144E ′, and the concave portion 3145, and the arrangement state of the slit portion 3152 provided in the first electrode 3140 is schematically shown in FIG. 69B. A view in which the portion 3141 and the slit portion 3152 are overlapped is shown in FIG. 69C. Alternatively, as shown in FIG. 70A, FIG. 70B, and FIG. 70C, the slit portion 3152 is formed in a convex region 3144E ′ that extends toward the central region (center portion) 3152A of the pixel 10 in each quadrant. 70A schematically shows the arrangement state of the convex portion 3144E, the convex region 3144E ′, the concave portion 3145, and the central region 3152A, and the arrangement state of the slit portion 3152 provided in the first electrode 3140 is schematically shown in FIG. 70B. FIG. 70C is a diagram in which the uneven portion 3141 and the slit portion 3152 are overlapped. Alternatively, as shown in FIG. 71A, FIG. 71B, and FIG. 71C, the slit portion 3152 is provided in a region sandwiched between the convex portion extending toward the central region (center portion) 3152A of the pixel 10 and the Y axis. A convex region 3144E ′ is formed. 71A schematically illustrates the arrangement state of the convex portion 3144E, the convex region 3144E ′, the concave portion 3145, and the center region 3152A, and the arrangement state of the slit portion 3152 provided in the first electrode 3140 is schematically illustrated in FIG. 71B. FIG. 71C shows a diagram in which the uneven portion 3141 and the slit portion 3152 are overlapped. Here, in FIGS. 68A, 68B, 68C, 69A, 69B, 69C, 70A, 70B, 70C, 71A, 71B, and 71C, the concave portion 3145 is hatched to extend in the vertical direction. Is attached. 68B, 68C, 69B, 69C, 70B, 70C, 71B, 71C, 83, 84, and 85, the slit portions 3152 and 3252 are hatched extending in the lateral direction. It is attached. In the region indicated by reference numeral 3152 ′, no slit portion is provided, and a transparent conductive material layer constituting the first electrode 3140 is formed. In the slit portion 3152, the smoothing film 22 is exposed.
 あるいは又、実施例2D-5の液晶表示装置を構成する画素の更に別の変形例における、凸部、凹部、スリット部等の配置状態を模式的に図73Aに示し、図73Aの矢印B-Bに沿った第1電極等の模式的な断面図を図73Bに示すように、凸部3144Eの頂部には、凸部3144Eと平行に延びるスリット部3152が形成されていてもよい。あるいは又、実施例2D-5の液晶表示装置を構成する画素の更に別の変形例における、凸部、凹部、スリット部等の配置状態を模式的に図74Aに示し、図74Aの矢印B-Bに沿った第1電極等の模式的な断面図を図74Bに示すように、凹部3145の底面には、凹部3145と平行に延びるスリット部3152が形成されていてもよい。尚、図73A及び図74Aにおいて、あるいは又、後述する図84及び図85において、スリット部3152,3252を太い実線で示している。例えば、図73A及び図73Bに示した例においては、(凸部の幅,凹部の幅,スリット部の幅)=(7.0μm,3.0μm,3.0μm)であり、図74A及び図74Bに示した例においては、(凸部の幅,凹部の幅,スリット部の幅)=(3.0μm,7.0μm,3.0μm)である。ここで、スリット部3152によって他の凸部3144Eから孤立した凸部3144Eが形成されないように、あるいは又、スリット部3152によって他の凹部3145から孤立した凹部3145が形成されないように、即ち、全ての凹凸部が電気的に接続されているように、スリット部3152を形成する。図73A、図74Aに示した例では、X軸及びY軸上における凸部あるいは凹部にはスリット部3152が設けられていない。即ち、X軸及びY軸上における凸部あるいは凹部において、スリット部3152には切欠きが設けられている。尚、画素10の周辺部において凸部あるいは凹部にスリット部を設けない構成としてもよい。 Alternatively, FIG. 73A schematically shows an arrangement state of convex portions, concave portions, slit portions, and the like in still another modified example of the pixel constituting the liquid crystal display device of Example 2D-5, and an arrow B- in FIG. 73A. As shown in FIG. 73B, a schematic cross-sectional view of the first electrode or the like along B may be formed with a slit portion 3152 extending in parallel with the convex portion 3144E at the top of the convex portion 3144E. Alternatively, FIG. 74A schematically shows an arrangement state of convex portions, concave portions, slit portions, and the like in still another modified example of the pixels constituting the liquid crystal display device of Example 2D-5, and an arrow B- in FIG. As shown in FIG. 74B, a schematic cross-sectional view of the first electrode or the like along B may be formed with a slit 3152 extending in parallel with the recess 3145 on the bottom surface of the recess 3145. In FIGS. 73A and 74A, or in FIGS. 84 and 85 to be described later, the slit portions 3152 and 3252 are indicated by thick solid lines. For example, in the example shown in FIGS. 73A and 73B, (the width of the convex portion, the width of the concave portion, the width of the slit portion) = (7.0 μm, 3.0 μm, 3.0 μm). In the example shown in 74B, (width of convex part, width of concave part, width of slit part) = (3.0 μm, 7.0 μm, 3.0 μm). Here, the protrusion 3144E isolated from the other protrusion 3144E is not formed by the slit 3152, or the recess 3145 isolated from the other recess 3145 is not formed by the slit 3152, that is, all A slit portion 3152 is formed so that the uneven portion is electrically connected. In the example shown in FIGS. 73A and 74A, the slit portion 3152 is not provided in the convex portion or the concave portion on the X axis and the Y axis. That is, the slit portion 3152 is provided with a notch in the convex portion or concave portion on the X axis and the Y axis. In addition, it is good also as a structure which does not provide a slit part in a convex part or a recessed part in the peripheral part of the pixel 10. FIG.
 このように、実施例2D-5において、第1電極3140には、凹凸部3141の他、スリット部3152が形成されているので、第1電極3140によって生成された電場がスリット部3152の近傍において歪み、液晶分子の倒れる方向が強く規定される。即ち、スリット部3152の近傍における液晶分子に対する配向規制力を強くすることができ、スリット部3152の近傍における液晶分子のチルト状態を確実に規定することができる。それ故、液晶表示装置の製造時、液晶分子にプレチルトを付与するために液晶層を所望の電場に所定の時間、暴露するが、所望の電場に暴露された液晶分子の配向が安定するまでに要する時間の短縮化を図ることができる。即ち、短時間にて液晶分子にプレチルトを付与することが可能となり、液晶表示装置の製造時間の短縮化を図ることが可能となる。 Thus, in Example 2D-5, since the slit portion 3152 is formed in addition to the uneven portion 3141 in the first electrode 3140, the electric field generated by the first electrode 3140 is in the vicinity of the slit portion 3152. Distortion and the direction in which liquid crystal molecules fall are strongly defined. That is, it is possible to strengthen the alignment regulating force on the liquid crystal molecules in the vicinity of the slit portion 3152 and to reliably define the tilt state of the liquid crystal molecules in the vicinity of the slit portion 3152. Therefore, when a liquid crystal display device is manufactured, the liquid crystal layer is exposed to a desired electric field for a predetermined time in order to impart a pretilt to the liquid crystal molecules, but the alignment of the liquid crystal molecules exposed to the desired electric field is stabilized. The time required can be shortened. That is, a pretilt can be imparted to the liquid crystal molecules in a short time, and the manufacturing time of the liquid crystal display device can be shortened.
 凸部3144Eの幅及び凹部3145の幅を、それぞれ、2.5μmとし、スリット部3152の幅を2.5μm、図70A、図70B、図70C、図71Cに示したスリット部3152の構成を有する液晶表示装置にあっては、あるいは又、図73A、図74Aに示したスリット部3152の構成を有する液晶表示装置にあっては、プレチルト処理時の電圧印加から、液晶分子の配向完了までの時間は10秒以内であった。 The width of the convex portion 3144E and the width of the concave portion 3145 are 2.5 μm, the width of the slit portion 3152 is 2.5 μm, and the slit portion 3152 shown in FIGS. 70A, 70B, 70C, and 71C is configured. In the liquid crystal display device, or in the liquid crystal display device having the configuration of the slit portion 3152 shown in FIGS. 73A and 74A, the time from the voltage application during the pretilt processing to the completion of the alignment of the liquid crystal molecules. Was within 10 seconds.
〈実施例2D-6〉
 実施例2D-6は、実施例2D-1~実施例2D-5の変形であり、第1電極の第5D構造、第1電極の第5A-2構造、第1電極の第5C-2構造に関する。実施例2D-6の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図75に示し、実施例2D-6の液晶表示装置を構成する1画素の中心領域における第1電極の部分の模式的な平面図を図76A、図77A、図77Bに示し、模式的な一部断面図を図76Bに示すように、画素10の中心領域における第1電極3140には窪み3153が設けられている。
<Example 2D-6>
Example 2D-6 is a modification of Example 2D-1 to Example 2D-5, and includes a first electrode 5D structure, a first electrode 5A-2 structure, and a first electrode 5C-2 structure. About. A schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-6 is shown in FIG. 75, and the first region in the central region of one pixel constituting the liquid crystal display device of Example 2D-6 is shown. 76A, 77A, and 77B are schematic plan views of one electrode portion, and a depression is formed in the first electrode 3140 in the central region of the pixel 10, as shown in FIG. 76B. 3153 is provided.
 ここで、図76Bに示すように、窪み3153は第1基板に向かって窄まっている。即ち、窪み3153は、所謂、順テーパーの斜面を有する。窪み3153の傾斜角は、5度乃至60度、好ましくは20度乃至30度であることが望ましい。このような傾斜角は、平滑化膜22に傾斜が付くように、例えば、エッチバック法に基づき平滑化膜22をエッチングすることで得ることができる。そして、窪み3153の外縁3153Aの形状を、図76Aに示すように、円形(直径は、例えば、15μmあるいは7μm)とすることができるし、あるいは又、図77A、図77Bに示すように、矩形(例えば、一辺の長さが12μmの正方形)とすることができる。矩形形状の窪み3153の外縁3153Aと凸部3144Fの延びる方向との成す角度(矩形形状の窪み3153の外縁3153Aと、この外縁3153Aと凸部3144Fの延長部が交わる凸部3144Fの延びる方向との成す角度)は、90度であってもよいし(図77A参照)、鋭角、例えば、60度であってもよい(図77B参照)。 Here, as shown in FIG. 76B, the recess 3153 is narrowed toward the first substrate. That is, the recess 3153 has a so-called forward tapered slope. The inclination angle of the depression 3153 is 5 to 60 degrees, preferably 20 to 30 degrees. Such an inclination angle can be obtained, for example, by etching the smoothing film 22 based on an etch back method so that the smoothing film 22 is inclined. The shape of the outer edge 3153A of the recess 3153 can be circular (the diameter is 15 μm or 7 μm, for example) as shown in FIG. 76A, or can be rectangular as shown in FIGS. 77A and 77B. (For example, a square having a side length of 12 μm). The angle formed by the outer edge 3153A of the rectangular recess 3153 and the direction in which the convex portion 3144F extends (the outer edge 3153A of the rectangular recess 3153 and the direction in which the convex portion 3144F in which the outer edge 3153A and the extended portion of the convex portion 3144F extend extend. The formed angle may be 90 degrees (see FIG. 77A) or an acute angle, for example, 60 degrees (see FIG. 77B).
 このように、実施例2D-6の液晶表示装置にあっては、画素の中心領域における第1電極3140には窪み3153が設けられているので、窪み3153の近傍に位置する液晶分子は、画素の中心に向かって倒れる状態となる。それ故、液晶表示装置の製造時、液晶分子にプレチルトを付与するために液晶層を所望の電場に所定の時間、暴露するが、所望の電場に暴露された液晶分子の配向が安定するまでに要する時間の短縮化を図ることができる。即ち、短時間にて液晶分子にプレチルトを付与することが可能となり、液晶表示装置の製造時間の短縮化を図ることが可能となる。 As described above, in the liquid crystal display device of Example 2D-6, since the depression 3153 is provided in the first electrode 3140 in the central region of the pixel, the liquid crystal molecules positioned in the vicinity of the depression 3153 It will be in a state of falling toward the center of the. Therefore, when a liquid crystal display device is manufactured, the liquid crystal layer is exposed to a desired electric field for a predetermined time in order to impart a pretilt to the liquid crystal molecules, but the alignment of the liquid crystal molecules exposed to the desired electric field is stabilized. The time required can be shortened. That is, a pretilt can be imparted to the liquid crystal molecules in a short time, and the manufacturing time of the liquid crystal display device can be shortened.
 凸部3144Fの幅及び凹部3145の幅を、それぞれ、2.5μmとし、窪み3153の傾斜角を30度、窪み3153の外縁3153Aの形状を、図76Aに示すように、円形とした液晶表示装置にあっては、プレチルト処理時の電圧印加から、液晶分子の配向完了までの時間は10秒以内であった。 The width of the convex portion 3144F and the width of the concave portion 3145 are each 2.5 μm, the inclination angle of the depression 3153 is 30 degrees, and the shape of the outer edge 3153A of the depression 3153 is circular as shown in FIG. 76A. In this case, the time from the voltage application during the pretilt treatment to the completion of the alignment of the liquid crystal molecules was within 10 seconds.
 尚、図76Cに示すように、窪み3153の中心部はコンタクトホール(接続孔35)の一部を構成する構成とすることもできる。 In addition, as shown to FIG. 76C, the center part of the hollow 3153 can also be set as the structure which comprises some contact holes (connection hole 35).
〈実施例2D-7〉
 実施例2D-7は、実施例2D-1~実施例2D-6の変形であり、第1電極の第5E構造、第1電極の第5A-3構造、第1電極の第5C-3構造、第1電極の第5D-3構造に関する。実施例2D-7の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図78に示す。
<Example 2D-7>
Example 2D-7 is a modification of Example 2D-1 to Example 2D-6, and includes a first electrode 5E structure, a first electrode 5A-3 structure, and a first electrode 5C-3 structure. The present invention relates to the 5D-3 structure of the first electrode. FIG. 78 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-7.
 即ち、実施例2D-7の液晶表示装置にあっては、X軸に沿った凸部3144Gの形成ピッチをPXとし、Y軸に沿った凸部3144Gの形成ピッチをPY(=PX)としたとき、凸部3144Gの幅を(PY/2=PX/2)とし、凹部3145の幅を(PY/2=PX/2)とした。 That is, in the liquid crystal display device of Example 2D-7, the formation pitch of the projections 3144G along the X axis is P X and the formation pitch of the projections 3144G along the Y axis is P Y (= P X ), The width of the convex portion 3144G is (P Y / 2 = P X / 2), and the width of the concave portion 3145 is (P Y / 2 = P X / 2).
 そして、実施例2D-7にあっては、
 X軸あるいはその近傍から延び、第1象限を占める凸部3144G11と、X軸あるいはその近傍から延び、第4象限を占める凸部3144G41とは、相互にずれた状態で形成されており(好ましくは、相互に(PX/2)ずれた状態で形成されており)、
 Y軸あるいはその近傍から延び、第1象限を占める凸部3144G12と、Y軸あるいはその近傍から延び、第2象限を占める凸部3144G22とは、相互にずれた状態で形成されており(好ましくは、相互に(PY/2)ずれた状態で形成されており)、
 X軸あるいはその近傍から延び、第2象限を占める凸部3144G21と、X軸あるいはその近傍から延び、第3象限を占める凸部3144G32とは、相互にずれた状態で形成されており(好ましくは、相互に(PX/2)ずれた状態で形成されており)、
 Y軸あるいはその近傍から延び、第3象限を占める凸部3144G31と、Y軸あるいはその近傍から延び、第4象限を占める凸部3144G41とは、相互にずれた状態で形成されているり(好ましくは、相互に(PY/2)ずれた状態で形成されている)。尚、凸部3144Gは、X軸及びY軸に対して線対称ではなく、画素の中心に対して180度の回転対称(点対称)である。
In Example 2D-7,
The convex portion 3144G 11 extending from the X axis or the vicinity thereof and occupying the first quadrant and the convex portion 3144G 41 extending from the X axis or the vicinity thereof and occupying the fourth quadrant are formed in a mutually shifted state ( Preferably, they are formed so as to be shifted from each other by (P X / 2))
The convex portion 3144G 12 extending from the Y axis or its vicinity and occupying the first quadrant and the convex portion 3144G 22 extending from the Y axis or its vicinity and occupying the second quadrant are formed in a mutually shifted state ( Preferably, they are formed in a state shifted from each other by (P Y / 2)),
The convex portion 3144G 21 extending from the X axis or the vicinity thereof and occupying the second quadrant and the convex portion 3144G 32 extending from the X axis or the vicinity thereof and occupying the third quadrant are formed in a mutually shifted state ( Preferably, they are formed so as to be shifted from each other by (P X / 2))
The convex portion 3144G 31 extending from the Y axis or the vicinity thereof and occupying the third quadrant and the convex portion 3144G 41 extending from the Y axis or the vicinity thereof and occupying the fourth quadrant are formed in a state shifted from each other ( preferably formed in a state of mutual (P Y / 2) shifted). The convex portion 3144G is not line symmetric with respect to the X axis and the Y axis, but is rotationally symmetric (point symmetric) by 180 degrees with respect to the center of the pixel.
 このように、凸部3144Gと凸部3144Gとを、相互に半ピッチずつ、ずれた状態で形成することで、画素の中心における第1電極3140によって生成された電場が画素の中心の近傍において歪み、液晶分子の倒れる方向が規定される。その結果、画素の中心の近傍における液晶分子に対する配向規制力を強くすることができ、画素の中心の近傍における液晶分子のチルト状態を確実に規定することができる。それ故、液晶表示装置の製造時、液晶分子にプレチルトを付与するために液晶層を所望の電場に所定の時間、暴露するが、所望の電場に暴露された液晶分子の配向が安定するまでに要する時間の短縮化を図ることができる。即ち、短時間にて液晶分子にプレチルトを付与することが可能となり、液晶表示装置の製造時間の短縮化を図ることが可能となる。 Thus, by forming the convex portion 3144G and the convex portion 3144G in a state shifted from each other by a half pitch, the electric field generated by the first electrode 3140 at the center of the pixel is distorted in the vicinity of the center of the pixel. The direction in which the liquid crystal molecules fall is defined. As a result, the alignment regulating force on the liquid crystal molecules in the vicinity of the center of the pixel can be strengthened, and the tilt state of the liquid crystal molecules in the vicinity of the center of the pixel can be defined reliably. Therefore, when a liquid crystal display device is manufactured, the liquid crystal layer is exposed to a desired electric field for a predetermined time in order to impart a pretilt to the liquid crystal molecules, but the alignment of the liquid crystal molecules exposed to the desired electric field is stabilized. The time required can be shortened. That is, a pretilt can be imparted to the liquid crystal molecules in a short time, and the manufacturing time of the liquid crystal display device can be shortened.
 凸部3144Gの幅及び凹部3145の幅を、それぞれ、2.5μmとし、凸部3144Gと凸部3144Gとを、相互に半ピッチずつ、ずれた状態の液晶表示装置にあっては、プレチルト処理時の電圧印加から、液晶分子の配向完了までの時間は10秒以内であった。 In the liquid crystal display device in which the width of the convex portion 3144G and the width of the concave portion 3145 are 2.5 μm, and the convex portion 3144G and the convex portion 3144G are shifted from each other by a half pitch, The time from application of the voltage to completion of alignment of the liquid crystal molecules was within 10 seconds.
〈実施例2D-8〉
 実施例2D-8は、第1電極の第5B構造に関する。図79に、実施例2D-8の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を示し、図80A、図80B及び図81に、図79の第1電極の模式的な平面図において円形の領域で囲んだ第1電極の部分を拡大した模式的な平面図を示す。
<Example 2D-8>
Example 2D-8 relates to the 5B structure of the first electrode. FIG. 79 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-8, and FIGS. 80A, 80B and 81 show a schematic diagram of the first electrode of FIG. In the typical plan view, a schematic plan view in which a portion of the first electrode surrounded by a circular region is enlarged is shown.
 実施例2D-8の液晶表示装置にあっては、画素10の中心を通るX軸及びY軸を想定したとき、具体的には、画素10の中心を通り、画素周辺部に平行な直線のそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 複数の凹凸部3241は、X軸上及びY軸上を延びる幹凸部3243、及び、幹凸部3243の側辺から画素10の周辺部に向かって延びる複数の枝凸部3244Aから構成されており、
 枝凸部3244Aと接合していない幹凸部3243の側辺部分3243’の延びる方向は、X軸とは平行でなく、且つ、Y軸とは平行でない。即ち、枝凸部3244Aと接合していない幹凸部3243の側辺部分3243’の延びる方向は、X軸と異なる方向であり、且つ、X軸と異なる方向である。尚、幹凸部3243、枝凸部3244Aは、X軸に対して線対称であり、Y軸に対しても線対称であるし、また、画素の中心に対して180度の回転対称(点対称)である。
In the liquid crystal display device of Example 2D-8, when the X axis and the Y axis passing through the center of the pixel 10 are assumed, specifically, a straight line passing through the center of the pixel 10 and parallel to the pixel peripheral portion is used. Assuming an (X, Y) coordinate system with the X and Y axes respectively,
The plurality of concavo-convex portions 3241 includes a stem convex portion 3243 extending on the X axis and the Y axis, and a plurality of branch convex portions 3244A extending from the side of the stem convex portion 3243 toward the peripheral portion of the pixel 10. And
The extending direction of the side portion 3243 ′ of the trunk convex portion 3243 that is not joined to the branch convex portion 3244A is not parallel to the X axis and not parallel to the Y axis. That is, the extending direction of the side portion 3243 ′ of the trunk convex portion 3243 not joined to the branch convex portion 3244A is a direction different from the X axis and a direction different from the X axis. The trunk convex portion 3243 and the branch convex portion 3244A are line symmetric with respect to the X axis, are also line symmetric with respect to the Y axis, and are 180 degrees rotationally symmetric with respect to the center of the pixel (points). Symmetric).
 具体的には、枝凸部3244Aと接合していない幹凸部3243の側辺部分3243’は、図79及び図80Aに示すように、直線状であり、あるいは又、図80B、図81に示すように、曲線状である。そして、図79、図80A、図80B、図81に示すように、枝凸部3244Aと接合していない幹凸部3243の部分3243Aの幅は、幹凸部3243の先端部に向かって狭くなっている。 Specifically, the side portion 3243 ′ of the trunk convex portion 3243 that is not joined to the branch convex portion 3244A is linear as shown in FIGS. 79 and 80A, or alternatively, in FIGS. As shown, it is curved. As shown in FIGS. 79, 80A, 80B, and 81, the width of the portion 3243A of the trunk convex portion 3243 that is not joined to the branch convex portion 3244A becomes narrower toward the tip end portion of the trunk convex portion 3243. ing.
 ここで、実施例2D-8の液晶表示装置にあっては、
 第1象限を占める複数の枝凸部3244A1は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部3244A2は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部3244A3は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部3244A4は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる。
Here, in the liquid crystal display device of Example 2D-8,
The plurality of branch convex portions 3244A 1 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions 3244A 2 occupying the second quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate decreases,
The plurality of branch convex portions 3244A 3 occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions 3244A 4 occupying the fourth quadrant extend in parallel with the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
 即ち、幹凸部3243及び枝凸部3244Aは、X軸に対して線対称であり、Y軸に対しても線対称であるし、また、画素の中心に対して180度の回転対称(点対称)である。 That is, the trunk convex portion 3243 and the branch convex portion 3244A are line symmetric with respect to the X axis, are also line symmetric with respect to the Y axis, and are 180 degrees rotationally symmetric with respect to the center of the pixel (points). Symmetric).
 以上の点を除き、実施例2D-8の液晶表示装置は、実施例2D-1にて説明した液晶表示装置と同様の構成、構造とすることができるので、詳細な説明は省略する。 Except for the above points, the liquid crystal display device of Example 2D-8 can have the same configuration and structure as the liquid crystal display device described in Example 2D-1, and thus detailed description thereof is omitted.
 このように、実施例2D-8の液晶表示装置にあっては、X軸と平行に延びる幹凸部の部分、あるいは、Y軸と平行に延びる幹凸部の部分が存在しない。従って、一層均一な高い光透過率を実現することが可能な液晶表示装置を提供することができるし、また、短時間にて液晶分子にプレチルトを付与することを可能とする構成、構造を有する液晶表示装置を提供することができる。 Thus, in the liquid crystal display device of Example 2D-8, there is no stem convex portion extending parallel to the X axis or the stem convex portion extending parallel to the Y axis. Accordingly, it is possible to provide a liquid crystal display device capable of realizing a more uniform high light transmittance, and to have a configuration and a structure capable of giving a pretilt to liquid crystal molecules in a short time. A liquid crystal display device can be provided.
 幹凸部3243、枝凸部3244A、凹部3245の仕様を以下の表10のとおりとした。 The specifications of the trunk convex portion 3243, the branch convex portion 3244A, and the concave portion 3245 are as shown in Table 10 below.
[表10]
幹凸部の平均高さ :0.2μm
幹凸部の幅    :最小1.0μm、最大2.0μm
枝凸部の平均高さ :0.2μm
枝凸部の形成ピッチ:5.0μm
枝凸部の幅    :2.5μm
凹部の幅     :2.5μm
[Table 10]
Average height of trunk convex part: 0.2 μm
Width of trunk convex part: Minimum 1.0 μm, maximum 2.0 μm
Average height of branch convex part: 0.2 μm
Branch protrusion formation pitch: 5.0 μm
Branch width: 2.5 μm
Recess width: 2.5 μm
 尚、実施例2D-8の液晶表示装置に対して、実施例2D-4と同様に、枝凸部3244Dの幅は画素10の周辺部に向かって狭くなる形態とすることができる(図82参照)。あるいは又、実施例2D-5と同様に、第1電極には、更に、スリット部3252が形成されている形態(第1電極の第5B-1構造あるいは第1電極の第5C構造)とすることができる(図83、図84、図85参照)。尚、図83は、実施例2D-8の液晶表示装置の変形例を構成する1画素分の第1電極の模式的な平面図であり、図69に示したと同様の構成、構造のスリット部3252が設けられている。また、図84、図85は、実施例2D-8の液晶表示装置の変形例を構成する1画素分の第1電極の模式的な平面図であり、図73、図74に示したと同様の構成、構造のスリット部3252が設けられている。ここで、スリット部3252によって他の枝凸部3244Dから孤立した枝凸部3244Dが形成されないように、あるいは又、スリット部3252によって他の凹部3245から孤立した凹部3245が形成されないように、即ち、全ての凹凸部が電気的に接続されているように、スリット部3252を形成する。図84、図85に示した例では、幹凸部3243にはスリット部3252が設けられていない。即ち、幹凸部において、スリット部3252には切欠きが設けられている。尚、画素10の周辺部において枝凸部あるいは凹部にスリット部を設けない構成としてもよい。あるいは又、実施例2D-6と同様に、画素10の中心領域における第1電極には窪み3253が設けられている形態(第1電極の第5B-2構造、第1電極の第5C-2構造、第1電極の第5D構造)とすることができる(図86参照)。 In the liquid crystal display device of Example 2D-8, as in Example 2D-4, the width of the branch protrusion 3244D can be reduced toward the periphery of the pixel 10 (FIG. 82). reference). Alternatively, similarly to Example 2D-5, the first electrode is further provided with a slit 3252 (the first electrode 5B-1 structure or the first electrode 5C structure). (See FIGS. 83, 84, and 85). FIG. 83 is a schematic plan view of the first electrode for one pixel constituting a modification of the liquid crystal display device of Example 2D-8. The slit portion has the same configuration and structure as shown in FIG. 3252 is provided. 84 and 85 are schematic plan views of the first electrode for one pixel constituting a modification of the liquid crystal display device of Example 2D-8, and are the same as those shown in FIGS. 73 and 74. A slit portion 3252 having a configuration and a structure is provided. Here, the slit portion 3252 does not form the branch convex portion 3244D isolated from the other branch convex portion 3244D, or the slit portion 3252 does not form the concave portion 3245 isolated from the other concave portion 3245, that is, The slit portion 3252 is formed so that all the uneven portions are electrically connected. In the example shown in FIGS. 84 and 85, the trunk convex portion 3243 is not provided with the slit portion 3252. That is, in the trunk convex portion, the slit portion 3252 is provided with a notch. In addition, it is good also as a structure which does not provide a slit part in a branch convex part or a recessed part in the peripheral part of the pixel 10. FIG. Alternatively, as in Example 2D-6, the first electrode in the center region of the pixel 10 is provided with a recess 3253 (first electrode 5B-2 structure, first electrode 5C-2). Structure, 5D structure of the first electrode) (see FIG. 86).
 あるいは又、実施例2D-8の液晶表示装置にあっては、1画素分の第1電極の模式的な平面図である図87に示すように、
 X軸に沿った枝凸部の形成ピッチをPXとし、Y軸に沿った枝凸部の形成ピッチをPYとしたとき、
 X軸上の幹凸部から延び、第1象限を占める枝凸部と、X軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互にずれた状態で形成されており(好ましくは、相互に(PX/2)ずれた状態で形成されており)、
 Y軸上の幹凸部から延び、第1象限を占める枝凸部と、Y軸上の幹凸部から延び、第2象限を占める枝凸部とは、相互にずれた状態で形成されており(好ましくは、相互に(PY/2)ずれた状態で形成されており)、
 X軸上の幹凸部から延び、第2象限を占める枝凸部と、X軸上の幹凸部から延び、第3象限を占める枝凸部とは、相互にずれた状態で形成されており(好ましくは、相互に(PX/2)ずれた状態で形成されており)、
 Y軸上の幹凸部から延び、第3象限を占める枝凸部と、Y軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互にずれた状態で形成されている(好ましくは、相互に(PY/2)ずれた状態で形成されている)形態(第1電極の第5B-3構造、第1電極の第5C-3構造、第1電極の第5D-3構造あるいは第1電極の第5E構造)とすることができる。即ち、幹凸部及び枝凸部は、X軸及びY軸に対して線対称ではなく、画素の中心に対して180度の回転対称(点対称)である。
Alternatively, in the liquid crystal display device of Example 2D-8, as shown in FIG. 87 which is a schematic plan view of the first electrode for one pixel,
When the formation pitch of the branch protrusions along the X axis is P X and the formation pitch of the branch protrusions along the Y axis is P Y ,
The branch convex part extending from the trunk convex part on the X axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the X axis and occupying the fourth quadrant are formed in a mutually shifted state. (Preferably formed in a state shifted from each other by (P X / 2)),
The branch convex part extending from the trunk convex part on the Y axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the second quadrant are formed in a mutually shifted state. (Preferably formed in a state shifted from each other by (P Y / 2)),
The branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are formed in a mutually shifted state. (Preferably formed in a state shifted from each other by (P X / 2)),
The branch convex part extending from the trunk convex part on the Y axis and occupying the third quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the fourth quadrant are formed in a mutually shifted state. (Preferably formed in a state shifted from each other by (P Y / 2)) (first electrode 5B-3 structure, first electrode 5C-3 structure, first electrode 5D -3 structure or 5th E structure of the first electrode). That is, the trunk convex portion and the branch convex portion are not line symmetric with respect to the X axis and the Y axis, but are 180 degrees rotationally symmetric (point symmetric) with respect to the center of the pixel.
〈実施例2D-9〉
 実施例2D-9も、実施例2D-8の変形である。図88に、実施例2D-9の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を示し、図89A、図89B、図89Cに、図88の矢印A-A、矢印B-B、矢印C-Cに沿った第1電極等の模式的な一部断面図を示し、図89Dに、図89Cの一部を拡大した模式的な一部断面図を示す。実施例2D-9の液晶表示装置の模式的な一部端面図は、実質的に図16~図18と同様である。
<Example 2D-9>
Example 2D-9 is also a modification of Example 2D-8. FIG. 88 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-9. FIGS. 89A, 89B, and 89C show arrows AA in FIG. A schematic partial cross-sectional view of the first electrode and the like along arrows BB and CC is shown, and FIG. 89D is a schematic partial cross-sectional view enlarging a part of FIG. 89C. Typical partial end views of the liquid crystal display device of Example 2D-9 are substantially the same as those in FIGS.
 尚、図88、図90、図91、図93においては、枝凸部の幅を一定として描いているが、実施例2D-4にて説明したと同様に、枝凸部にテーパーを付してもよい。即ち、枝凸部の幅は、幹凸部と接合する枝凸部の部分が最も広く、幹凸部と接合する部分から先端部に向かって狭くなっている形態としてもよい。 In FIGS. 88, 90, 91, and 93, the width of the branch protrusion is drawn constant, but the branch protrusion is tapered as described in Example 2D-4. May be. That is, the width of the branch convex portion may be such that the portion of the branch convex portion joined to the trunk convex portion is the widest and narrows from the portion joined to the trunk convex portion toward the tip portion.
 実施例2D-9の液晶表示装置にあっては、第1電極3340には複数の凹凸部3341(幹凸部3343、枝凸部3344及び凹部3345)が形成されており、第1電極3340に設けられた幹凸部3343には複数の段差部が形成されている。また、凹凸部3341は、画素の中心を通り、十文字に延びる幹凸部(主凸部)3343、及び、幹凸部3343から画素周辺部に向かって延びる複数の枝凸部(副凸部)3344から構成されている。 In the liquid crystal display device of Example 2D-9, the first electrode 3340 has a plurality of concave and convex portions 3341 (a trunk convex portion 3343, a branch convex portion 3344, and a concave portion 3345). A plurality of stepped portions are formed on the provided trunk convex portion 3343. In addition, the uneven portion 3341 passes through the center of the pixel and has a trunk convex portion (main convex portion) 3343 extending in a cross shape, and a plurality of branch convex portions (sub convex portions) extending from the trunk convex portion 3343 toward the pixel peripheral portion. 3344.
 ここで、幹凸部3343の延びる方向と直交する仮想垂直平面で幹凸部3343を切断したときの幹凸部3343の断面形状は、幹凸部3343の断面形状の中心から幹凸部3343の断面形状の縁に向かって段差部が下降していく断面形状を有する。具体的には、幹凸部3343の頂面は、幹凸部3343の中央部の頂面3343B、及び、頂面3343Bの両側に位置する頂面3343Aから構成されている。このように、幹凸部3343には2つの段差部が存在し、凹部3345を基準としたとき、頂面3343A、頂面3343Bの順に高くなっている。枝凸部3344の頂面を参照番号3344Aで示すが、幹凸部3343の頂面3343Aと枝凸部3344の頂面3344Aは同じレベルにある。図面において、幹凸部3343の頂面3343Bには、横方向に延びるハッチングを付し、凹部3345には、縦方向に延びるハッチングを付している。 Here, the cross-sectional shape of the stem convex portion 3343 when the stem convex portion 3343 is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion 3343 is the center of the cross-sectional shape of the stem convex portion 3343. It has a cross-sectional shape in which the stepped portion descends toward the edge of the cross-sectional shape. Specifically, the top surface of the trunk convex portion 3343 includes a top surface 3343B at the center of the trunk convex portion 3343 and a top surface 3343A located on both sides of the top surface 3343B. Thus, the trunk convex portion 3343 has two stepped portions, and the top surface 3343A and the top surface 3343B become higher in this order when the concave portion 3345 is used as a reference. Although the top surface of the branch convex portion 3344 is indicated by reference numeral 3344A, the top surface 3343A of the trunk convex portion 3343 and the top surface 3344A of the branch convex portion 3344 are at the same level. In the drawing, the top surface 3343B of the trunk convex portion 3343 is hatched in the lateral direction, and the concave portion 3345 is hatched in the vertical direction.
〈実施例2D-10〉
 実施例2D-10は、実施例2D-9の変形である。図90に、実施例2D-10の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を示し、図92A、図92Bに、図90の矢印A-A、矢印B-Bに沿った第1電極等の模式的な一部断面図を示す。
<Example 2D-10>
Example 2D-10 is a modification of Example 2D-9. FIG. 90 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-10. FIGS. 92A and 92B show the arrows AA and B- in FIG. A typical partial sectional view of the 1st electrode etc. along B is shown.
 実施例2D-10において、幹凸部3343の頂面は、幹凸部3343の中央部の頂面3343C、頂面3343Cの両側に位置する頂面3343B、及び、頂面3343Bの外側に位置する頂面3343Aから構成されている。このように、幹凸部3343には3つの段差部が存在し、凹部3345を基準としたとき、頂面3343A、頂面3343B、頂面3343Cの順に高くなっている。また、幹凸部3343の延びる方向に平行な仮想垂直平面で幹凸部3343を切断したときの幹凸部3343の断面形状は、幹凸部3343の断面形状の中央部(頂面3343C)から幹凸部3343の断面形状の端部に向かって段差部が下降していく断面形状を有する(頂面3343B及び頂面3343A)。尚、図面において、頂面3343Cには、クロスハッチングを付している。 In Example 2D-10, the top surface of the trunk convex portion 3343 is located on the top surface 3343C at the center of the trunk convex portion 3343, the top surface 3343B located on both sides of the top surface 3343C, and the top surface 3343B. It is composed of a top surface 3343A. Thus, the trunk convex portion 3343 has three stepped portions, and the top surface 3343A, the top surface 3343B, and the top surface 3343C become higher in this order when the concave portion 3345 is used as a reference. Further, the cross-sectional shape of the stem convex portion 3343 when the stem convex portion 3343 is cut in a virtual vertical plane parallel to the extending direction of the stem convex portion 3343 is from the central portion (top surface 3343C) of the cross-sectional shape of the stem convex portion 3343. It has a cross-sectional shape in which the stepped portion descends toward the end of the cross-sectional shape of the trunk convex portion 3343 (top surface 3343B and top surface 3343A). In the drawing, the top surface 3343C is cross-hatched.
 以上の点を除き、実施例2D-10の液晶表示装置の構成、構造は、実施例2D-9の液晶表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 Except for the above points, the configuration and structure of the liquid crystal display device of Example 2D-10 can be the same as the configuration and structure of the liquid crystal display device of Example 2D-9, and a detailed description thereof will be omitted.
〈実施例2D-11〉
 実施例2D-11も、実施例2D-9の変形である。図91に、実施例2D-11の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を示し、図92Cに、図91の矢印C-Cに沿った第1電極等の模式的な一部端面図を示し、図92Cの一部を拡大した模式的な一部端面図を図92Dに示す。
<Example 2D-11>
Example 2D-11 is also a modification of Example 2D-9. 91 shows a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-11. FIG. 92C shows the first electrode and the like along the arrow CC in FIG. FIG. 92D shows a schematic partial end view of FIG. 92C, and a schematic partial end view in which a part of FIG. 92C is enlarged is shown.
 実施例2D-11にあっては、枝凸部3344の延びる方向と直交する仮想垂直平面で枝凸部3344を切断したときの枝凸部3344の断面形状は、枝凸部3344の断面形状の中心から枝凸部3344の断面形状の縁に向かって段差部が下降していく断面形状を有する。具体的には、枝凸部3344の頂面は、幹凸部3343から延びる頂面3344B、及び、頂面3344Bの両側に位置する頂面3344Aから構成されている。このように、枝凸部3344には2つの段差部が存在し、凹部3345を基準としたとき、頂面3344A、頂面3344Bの順に高くなっている。尚、図面において、頂面3344Bには、横方向に延びるハッチングを付している。また、図91、図93においては、幹凸部と枝凸部の境界を実線で示している。枝凸部3344の頂面3343Bと頂面3343Aとの間の高低差を平均0.20μmとした。幹凸部3343の頂面3343Bと枝凸部3344の頂面3344Bは同じレベルにある。 In Example 2D-11, the cross-sectional shape of the branch convex portion 3344 when the branch convex portion 3344 is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion 3344 is the cross-sectional shape of the branch convex portion 3344. It has a cross-sectional shape in which the stepped portion descends from the center toward the edge of the cross-sectional shape of the branch convex portion 3344. Specifically, the top surface of the branch convex portion 3344 includes a top surface 3344B extending from the trunk convex portion 3343 and top surfaces 3344A located on both sides of the top surface 3344B. As described above, the branch convex portion 3344 has two step portions, and the top surface 3344A and the top surface 3344B become higher in this order when the concave portion 3345 is used as a reference. In the drawing, the top surface 3344B is hatched in the lateral direction. 91 and 93, the boundary between the trunk convex portion and the branch convex portion is indicated by a solid line. The height difference between the top surface 3343B and the top surface 3343A of the branch convex portion 3344 was set to 0.20 μm on average. The top surface 3343B of the trunk convex portion 3343 and the top surface 3344B of the branch convex portion 3344 are at the same level.
 以上の点を除き、実施例2D-11の液晶表示装置の構成、構造は、実施例2D-9の液晶表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 Except for the above points, the configuration and structure of the liquid crystal display device of Example 2D-11 can be the same as the configuration and structure of the liquid crystal display device of Example 2D-9, and detailed description thereof will be omitted.
 尚、液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図93に示すように、枝凸部3344の延びる方向に平行な仮想垂直平面で枝凸部3344を切断したときの枝凸部3344の断面形状は、枝凸部3344の断面形状の幹凸部側から枝凸部3344の断面形状の端部に向かって段差部が下降していく断面形状を有する形態とすることもできる。また、実施例2D-10において説明した幹凸部3343と組み合わせることもできる。また、枝凸部の構成、構造を、実施例2D-1~実施例2D-7において説明した液晶表示装置における凸部に適用することもできる。 In addition, as shown in FIG. 93, a schematic plan view of the first electrode for one pixel constituting the liquid crystal display device, the branch protrusion 3344 is cut along a virtual vertical plane parallel to the direction in which the branch protrusion 3344 extends. The cross-sectional shape of the branch convex portion 3344 is such that the stepped portion descends from the trunk convex portion side of the cross-sectional shape of the branch convex portion 3344 toward the end of the cross-sectional shape of the branch convex portion 3344. You can also Further, it can be combined with the trunk convex portion 3343 described in Example 2D-10. Further, the configuration and structure of the branch protrusions can also be applied to the protrusions in the liquid crystal display devices described in Examples 2D-1 to 2D-7.
〈実施例2D-12〉
 実施例2D-12は、第1電極の第5E構造に関する。実施例2D-12の液晶表示装置を構成する1画素分の第1電極の模式的な平面図を図94に示す。実施例2D-12の液晶表示装置にあっては、画素の中心を通るX軸及びY軸を想定したとき、具体的には、画素10の中心を通り、画素周辺部に平行な直線のそれぞれをX軸、Y軸とした(X,Y)座標系を想定したとき、
 複数の凹凸部は、X軸上及びY軸上を延びる幹凸部3443、及び、幹凸部3443の側辺から画素の周辺部に向かって延びる複数の枝凸部3444Gから構成されており、
 第1象限を占める複数の枝凸部3444G1は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部3444G2は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部3444G3は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部3444G4は、X座標の値が増加したときY座標の値が減少する方向に平行に延び、
 X軸上の幹凸部3443から延び、第1象限を占める枝凸部3444G11と、X軸上の幹凸部3443から延び、第4象限を占める枝凸部3444G41とは、相互にずれた状態で形成されており(好ましくは、相互に(PX/2)ずれた状態で形成されており)、
 Y軸上の幹凸部3443から延び、第1象限を占める枝凸部3444G12と、Y軸上の幹凸部3443から延び、第2象限を占める枝凸部3444G22とは、相互にずれた状態で形成されており(好ましくは、相互に(PY/2)ずれた状態で形成されており)、
 X軸上の幹凸部3443から延び、第2象限を占める枝凸部3444G21と、X軸上の幹凸部3443から延び、第3象限を占める枝凸部3444G31とは、相互にずれた状態で形成されており(好ましくは、相互に(PX/2)ずれた状態で形成されており)、
 Y軸上の幹凸部3443から延び、第3象限を占める枝凸部3444G32と、Y軸上の幹凸部3443から延び、第4象限を占める枝凸部3444G42とは、相互にずれた状態で形成されている(好ましくは、相互に(PY/2)ずれた状態で形成されている)。ここで、PXはX軸に沿った枝凸部の形成ピッチであり、PYはY軸に沿った枝凸部の形成ピッチである。即ち、幹凸部3443及び枝凸部3444Gは、X軸及びY軸に対して線対称ではなく、画素の中心に対して180度の回転対称(点対称)である。
<Example 2D-12>
Example 2D-12 relates to the 5E structure of the first electrode. A schematic plan view of the first electrode for one pixel constituting the liquid crystal display device of Example 2D-12 is shown in FIG. In the liquid crystal display device of Example 2D-12, assuming the X-axis and the Y-axis passing through the center of the pixel, specifically, each of the straight lines passing through the center of the pixel 10 and parallel to the pixel peripheral portion. Assuming an (X, Y) coordinate system with X and Y axes as
The plurality of concavo-convex portions are constituted by a trunk convex portion 3443 extending on the X axis and the Y axis, and a plurality of branch convex portions 3444G extending from the side of the trunk convex portion 3443 toward the peripheral portion of the pixel,
A plurality of branch convex portions 3444G 1 occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions 3444G 2 occupying the second quadrant extend in parallel with the direction in which the value of the Y coordinate increases when the value of the X coordinate decreases,
The plurality of branch convex portions 3444G 3 occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions 3444G 4 occupying the fourth quadrant extend in parallel to the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases,
The branch convex portion 3444G 11 extending from the trunk convex portion 3443 on the X axis and occupying the first quadrant is shifted from the branch convex portion 3444G 41 extending from the trunk convex portion 3443 on the X axis and occupying the fourth quadrant. (Preferably, they are formed in a state shifted from each other by (P X / 2)),
The branch convex portion 3444G 12 extending from the trunk convex portion 3443 on the Y axis and occupying the first quadrant is shifted from the branch convex portion 3444G 22 extending from the trunk convex portion 3443 on the Y axis and occupying the second quadrant. state is formed in the (preferably formed in a state of mutual (P Y / 2) shifted),
The branch convex part 3444G 21 extending from the trunk convex part 3443 on the X axis and occupying the second quadrant is shifted from the branch convex part 3444G 31 extending from the trunk convex part 3443 on the X axis and occupying the third quadrant. (Preferably, they are formed in a state shifted from each other by (P X / 2)),
The branch convex portion 3444G 32 extending from the trunk convex portion 3443 on the Y axis and occupying the third quadrant is shifted from the branch convex portion 3444G 42 extending from the trunk convex portion 3443 on the Y axis and occupying the fourth quadrant. (Preferably formed in a state shifted from each other by (P Y / 2)). Here, P X is the pitch of the branch convex portions along the X axis, and P Y is the pitch of the branch convex portions along the Y axis. That is, the trunk convex portion 3443 and the branch convex portion 3444G are not line symmetric with respect to the X axis and the Y axis, but are 180 degrees rotationally symmetric (point symmetric) with respect to the center of the pixel.
 尚、実施例2D-12の液晶表示装置にあっても、X軸に沿った枝凸部3444Gの形成ピッチをPXとし、Y軸に沿った枝凸部3444Gの形成ピッチをPY(=PX)としたとき、枝凸部3444Gの幅を(PY/2=PX/2)とし、凹部3445の幅を(PY/2=PX/2)とした。 Even in the liquid crystal display device of Example 2D-12, the formation pitch of the branch projections 3444G along the X axis is P X, and the formation pitch of the branch projections 3444G along the Y axis is P Y (= P X ), the width of the branch convex portion 3444G is (P Y / 2 = P X / 2), and the width of the concave portion 3445 is (P Y / 2 = P X / 2).
 以上の点を除き、実施例2D-12の液晶表示装置は、実施例2D-1にて説明した液晶表示装置と同様の構成、構造とすることができるので、詳細な説明は省略する。 Except for the above points, the liquid crystal display device of Example 2D-12 can be configured and structured in the same manner as the liquid crystal display device described in Example 2D-1, and detailed description thereof will be omitted.
 以上、本開示を好ましい実施の形態及び実施例に基づき説明したが、本開示はこれらの実施の形態等に限定されず、種々の変形が可能である。例えば、実施の形態及び実施例ではVAモードの液晶表示装置(液晶表示素子)について説明したが、本開示は必ずしもこれに限定されず、負の誘電率異方性の液晶を用いたIPS(In Plane Switching)モードやFFS(Fringe Field Switching)モード等の、他の表示モードにも適用可能である。但し、本開示では、プレチルト処理が施されていないものと比較すると、VAモードにおいて、特に高い応答特性の改善効果を発揮することができる。 Although the present disclosure has been described based on the preferred embodiments and examples, the present disclosure is not limited to these embodiments and the like, and various modifications are possible. For example, although the VA mode liquid crystal display device (liquid crystal display element) has been described in the embodiments and examples, the present disclosure is not necessarily limited thereto, and IPS (In) using liquid crystal having negative dielectric anisotropy is used. The present invention can also be applied to other display modes such as a Plane Switching mode and an FFS (Fringe Field Switching) mode. However, in the present disclosure, an improvement effect of particularly high response characteristics can be exhibited in the VA mode as compared with the case where the pretilt processing is not performed.
 また、実施の形態及び実施例では、専ら透過型の液晶表示装置(液晶表示素子)について説明したが、本開示では必ずしも透過型に限られず、例えば、反射型としてもよい。反射型とした場合には、画素電極がアルミニウム等の光反射性を有する電極材料により構成される。凸部や枝凸部の平面形状は、実施例において説明したV字状に限定されず、例えばストライプ状や梯子状等、凸部や枝凸部が複数の方位に向かって延びる様々なパターンを採用することができる。凸部や枝凸部を全体として見た場合、凸部や枝凸部の端部の平面形状は、直線状であってもよいし、階段状とすることもできる。更には、各凸部や枝凸部の端部の平面形状は、直線状であってもよいし、線分の組合せから構成されていてもよいし、円弧等の曲線を描いていてもよい。凹凸部の端部の上から画素と画素との間に位置する第1基板の部分の射影像とブラックマトリクスの射影像が重なるようにブラックマトリクスを形成してもよい。 In the embodiments and examples, the transmissive liquid crystal display device (liquid crystal display element) has been described. However, the present disclosure is not necessarily limited to the transmissive type, and may be a reflective type, for example. In the case of the reflection type, the pixel electrode is made of an electrode material having light reflectivity such as aluminum. The planar shape of the convex portion and the branch convex portion is not limited to the V shape described in the embodiment, and various patterns in which the convex portion and the branch convex portion extend in a plurality of directions, such as a stripe shape and a ladder shape, for example. Can be adopted. When the convex portions and branch convex portions are viewed as a whole, the planar shape of the end portions of the convex portions and branch convex portions may be linear or may be stepped. Furthermore, the planar shape of the end of each convex part or branch convex part may be linear, may be composed of a combination of line segments, or may draw a curve such as an arc. . The black matrix may be formed so that the projected image of the portion of the first substrate located between the pixels from the top of the uneven portion overlaps the projected image of the black matrix.
 以上に説明した液晶表示装置にあっては、第1基板側にのみ配向規制部を設けたが、第1基板に第1配向規制部(第1スリット部)を設け、第2基板に第2配向規制部(第2スリット部)を設けてもよい。このような液晶表示装置の一例として、以下に説明する液晶表示装置を挙げることができる。即ち、
 第1基板及び第2基板、
 第2基板と対向する第1基板の対向面に形成された第1電極、
 第1電極に設けられた第1配向規制部、
 第1電極、第1配向規制部及び第1基板の対向面を覆う第1配向膜、
 第1基板と対向する第2基板の対向面に形成された第2電極、
 第2電極に設けられた第2配向規制部、
 第2電極、第2配向規制部及び第2基板の対向面を覆う第2配向膜、並びに、
 第1配向膜及び第2配向膜の間に設けられ、液晶分子を含む液晶層、
を有する画素が、複数、配列されて成る液晶表示装置であって、
 各画素において、第1電極の縁部と第1配向規制部とによって囲まれた領域の射影像と、第2電極の縁部と第2配向規制部とによって囲まれた領域の射影像とが重なり合う重複領域の中心領域において、液晶層における液晶分子群の長軸は、略、同一仮想平面内に位置しており、
 液晶分子は、第1配向膜によってプレチルトが付与される構成とすることができる。ここで、第2基板の法線方向から重複領域の中心領域を眺めたとき、第2基板の法線方向に沿って重複領域の中心領域を占める液晶分子群(より具体的には、第1基板から第2基板までの微小な柱状領域を占める液晶分子群)の長軸は、略、同一仮想垂直面内に位置している。
In the liquid crystal display device described above, the alignment restricting portion is provided only on the first substrate side. However, the first alignment restricting portion (first slit portion) is provided on the first substrate, and the second substrate is provided with the second restricting portion. An orientation regulating part (second slit part) may be provided. As an example of such a liquid crystal display device, a liquid crystal display device described below can be given. That is,
A first substrate and a second substrate,
A first electrode formed on the facing surface of the first substrate facing the second substrate;
A first orientation regulating portion provided on the first electrode;
A first alignment film covering a first electrode, a first alignment regulating portion, and a facing surface of the first substrate;
A second electrode formed on the facing surface of the second substrate facing the first substrate;
A second alignment regulating portion provided on the second electrode;
A second electrode, a second alignment regulating portion, a second alignment film covering the opposing surface of the second substrate, and
A liquid crystal layer provided between the first alignment film and the second alignment film and including liquid crystal molecules;
A liquid crystal display device in which a plurality of pixels having
In each pixel, there are a projected image of a region surrounded by the edge of the first electrode and the first alignment regulating portion, and a projected image of a region surrounded by the edge of the second electrode and the second alignment regulating portion. In the central region of the overlapping region that overlaps, the major axis of the liquid crystal molecule group in the liquid crystal layer is substantially located in the same virtual plane,
The liquid crystal molecules can have a configuration in which a pretilt is imparted by the first alignment film. Here, when the central region of the overlapping region is viewed from the normal direction of the second substrate, a liquid crystal molecule group (more specifically, the first region) occupying the central region of the overlapping region along the normal direction of the second substrate. The major axis of the liquid crystal molecule group occupying a minute columnar region from the substrate to the second substrate is substantially located in the same virtual vertical plane.
 尚、本開示は、以下のような構成を取ることもできる。
[A01]《液晶表示装置・・・第1の態様》
 一対の基板の対向面側に設けられた第1配向膜及び第2配向膜、並びに、
 第1配向膜と第2配向膜との間に配され、負の誘電率異方性を有する液晶分子を含む液晶層、
を有する液晶表示素子を備えており、
 少なくとも第1配向膜は、第1の側鎖及び第2の側鎖を有する高分子化合物が架橋又は重合又は変形した化合物を含み、
 第1の側鎖は、架橋性官能基又は重合性官能基又は感光性官能基を有し、
 第2の側鎖は、誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し、
 液晶分子は、第1配向膜によってプレチルトが付与されている液晶表示装置。
[A02]《液晶表示装置・・・第2の態様》
 一対の基板の対向面側に設けられた第1配向膜及び第2配向膜、並びに、
 第1配向膜と第2配向膜との間に配され、負の誘電率異方性を有する液晶分子を含む液晶層、
を有する液晶表示素子を備えており、
 少なくとも第1配向膜は、第1の側鎖及び第2の側鎖を有する高分子化合物が架橋又は重合又は変形した化合物を含み、
 第1の側鎖は、架橋性官能基又は重合性官能基又は感光性官能基を有し、
 第2の側鎖は、その長軸方向から0度を超え、90度未満の角度の範囲内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し、
 液晶分子は、第1配向膜によってプレチルトが付与されている液晶表示装置。
[A03]第2の側鎖は、フッ素原子、塩素原子、-CN、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-OCF2CHF2、又は、-OCF2CHFCF3のいずれかを含んでいる[A01]又は[A02]に記載の液晶表示装置。
[A04]《液晶表示装置・・・第3の態様》
 一対の基板の対向面側に設けられた第1配向膜及び第2配向膜、並びに、
 第1配向膜と第2配向膜との間に配され、負の誘電率異方性を有する液晶分子を含む液晶層、
を有する液晶表示素子を備えており、
 少なくとも第1配向膜は、第1の側鎖及び第2の側鎖を有する高分子化合物が架橋又は重合又は変形した化合物を含み、
 第1の側鎖は、架橋性官能基又は重合性官能基又は感光性官能基を有し、
 第2の側鎖は、以下の構造式(11)を有し、
 液晶分子は、第1配向膜によってプレチルトが付与されている液晶表示装置。
Figure JPOXMLDOC01-appb-I000067
ここで、
(a)m及びnは、それぞれ独立に、0又は1であり、
(b)環Rは、それぞれ独立に、フェニレン基、シクロアルキレン基、フッ素原子若しくは塩素原子で置換されたフェニレン基、又は、フッ素原子若しくは塩素原子で置換されたシクロアルキレン基を表し、
(c)環Xは、フェニレン基又はシクロアルキレン基を表し、
(d)A4に関して、
 フッ素原子、塩素原子、-CN、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-OCF2CHF2、及び、-OCF2CHFCF3から構成された群を第1群とし、
 炭素原子数1乃至18のフッ素含有アルキル基、フッ素含有芳香環基、フッ素含有脂肪族環基、フッ素含有複素環基、及び、これらから成る大環状基から構成された群を第2群とし、但し、第2群におけるフッ素含有アルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
 炭素原子数1乃至18のアルキル基、脂肪族環基、複素環基、及び、これらから成る大環状基から構成された群を第3群とし、但し、第3群におけるアルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
 炭素原子数3乃至18のフッ素含有アルキル基、フッ素含有芳香環基、フッ素含有脂肪族環基、フッ素含有複素環基、及び、これらから成る大環状基から構成された群を第4群とし、但し、第4群におけるフッ素含有アルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
 炭素原子数3乃至18のアルキル基、脂肪族環基、複素環基、及び、これらから成る大環状基から構成された群を第5群とし、但し、第5群におけるアルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
(d-1)A1,A2,A3の全てが水素原子であり、且つ、m=1,n=0の場合、又は、m=0,n=1の場合、又は、m=n=1の場合、A4は、第1群又は第2群から選択された1種類の原子又は基であり、
(d-2)A3が水素原子であり、且つ、m=0,n=0の場合、A4は、第4群から選択された1種類の基であり、
(d-3)A1,A2,A3の少なくとも1つがフッ素原子又は塩素原子であり、且つ、m=1,n=0の場合、又は、m=0,n=1の場合、又は、m=n=1の場合、A4は、水素原子、第1群、第2群及び第3群から選択された1種類の原子又は基であり、
(d-4)A3がフッ素原子又は塩素原子であり、且つ、m=0,n=0の場合、A4は、水素原子、第1群、第4群及び第5群から選択された1種類の原子又は基である。
[A05]第2の側鎖は、以下の構造式(12)を有する[A04]に記載の液晶表示装置。
Figure JPOXMLDOC01-appb-I000068
ここで、
(e)A0は、炭素原子数1乃至17のアルキレン基、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は、炭素原子数1乃至17のアルキレン-エーテル基を表す。
[A06]第2の側鎖は、以下の構造式(13)を有する[A04]に記載の液晶表示装置。
Figure JPOXMLDOC01-appb-I000069
ここで、
(f-1)A01は、炭素数1乃至20の直鎖状又は分岐状の2価の、エーテル基あるいはエステル基を含むことある有機基、又は、エーテル、エステル、エーテルエステル、アセタール、ケタール、ヘミアセタール及びヘミケタールから成る群から選択された少なくとも1種の結合基を表し、
(f-2)A02は、カルコン、シンナメート、シンナモイル、クマリン、マレイミド、ベンゾフェノン、ノルボルネン、オリザノール及びキトサンから成る群から選択された1種類の基、又は、アクリロイル、メタクリロイル、ビニル、エポキシ及びオキセタンの内のいずれか1種の構造を含む2価の基、又は、エチニレン基を表す。
[A07]《液晶表示装置の製造方法・・・第1の態様》
 一対の基板の一方に、架橋性官能基又は重合性官能基を有する第1の側鎖、及び、第2の側鎖を有する高分子化合物から成る第1配向膜を形成し、一対の基板の他方に、第2配向膜を形成した後、
 一対の基板を、第1配向膜と第2配向膜とが対向するように配置し、第1配向膜と第2配向膜との間に、負の誘電率異方性を有する液晶分子を含む液晶層を封止し、次いで、
 高分子化合物における第1の側鎖を架橋又は重合させて、液晶分子にプレチルトを付与する、
工程を含み、
 第2の側鎖は、誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
 第2の側鎖は、その長軸方向から0度を超え、90度未満の角度の範囲内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
 第2の側鎖は、上記の構造式(11)又は上記の構造式(12)又は上記の構造式(13)を有する液晶表示装置の製造方法。
[A08]液晶層に対して所定の電場を印加することにより液晶分子を配向させつつ、エネルギー線を照射して高分子化合物の第1の側鎖を架橋又は重合させる[A07]に記載の液晶表示装置の製造方法。
[A09]《液晶表示装置の製造方法・・・第2の態様》
 一対の基板の一方に、感光性官能基を有する第1の側鎖、及び、第2の側鎖を有する高分子化合物から成る第1配向膜を形成し、一対の基板の他方に、第2配向膜を形成した後、
 一対の基板を、第1配向膜と第2配向膜とが対向するように配置し、第1配向膜と第2配向膜との間に、負の誘電率異方性を有する液晶分子を含む液晶層を封止し、次いで、
 高分子化合物における第1の側鎖を変形させて、液晶分子にプレチルトを付与する、
工程を含み、
 第2の側鎖は、誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
 第2の側鎖は、その長軸方向から0度を超え、90度未満の角度の範囲内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
 第2の側鎖は、上記の構造式(11)又は上記の構造式(12)又は上記の構造式(13)を有する液晶表示装置の製造方法。
[A10]液晶層に対して所定の電場を印加することにより液晶分子を配向させつつ、エネルギー線を照射して高分子化合物の第1の側鎖を変形させる[A09]に記載の液晶表示装置の製造方法。
[A11]《液晶表示装置の製造方法・・・第3の態様》
 一対の基板の一方に、架橋性官能基又は感光性官能基を有する第1の側鎖、及び、第2の側鎖を有する高分子化合物から成る第1配向膜を形成し、一対の基板の他方に、第2配向膜を形成した後、
 一対の基板を、第1配向膜と第2配向膜とが対向するように配置し、第1配向膜と第2配向膜との間に、負の誘電率異方性を有する液晶分子を含む液晶層を封止し、次いで、
 高分子化合物にエネルギー線を照射して、液晶分子にプレチルトを付与する、
工程を含み、
 第2の側鎖は、誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
 第2の側鎖は、その長軸方向から0度を超え、90度未満の角度の範囲内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
 第2の側鎖は、上記の構造式(11)又は上記の構造式(12)又は上記の構造式(13)を有する液晶表示装置の製造方法。
[B01]《第1電極の第1の構造》
 第1電極には複数の凹凸部が形成されている[A01]乃至[A06]のいずれか1項に記載の液晶表示装置。
[C01]《第1電極の第2の構造》
 第1電極には複数の凹凸部が形成されており、
 第1電極の少なくも凹部と凹部の間は、平坦化層で埋め込まれている[A01]乃至[A06]のいずれか1項に記載の液晶表示装置。液晶表示装置。
[C02]凹部底面を基準として、平坦化層の頂面の最高高さをHH、平坦化層の頂面の最低高さをHLとしたとき、
0.5≦HL/HH≦1
を満足する[C01]に記載の液晶表示装置。
[C03]凹部底面を基準とした凸部の高さをHCとしたとき、
0.5≦HH/HC≦5
を満足する[C02]に記載の液晶表示装置。
[C04]平坦化層は第1電極を被覆しており、
 第1電極を覆う第1配向膜及び第2電極を覆う第2配向膜を更に備えており、
 液晶分子には、少なくとも第1配向膜によってプレチルトが付与されており、
 第1配向膜は平坦化層に相当する[C01]乃至[C03]のいずれか1項に記載の液晶表示装置。
[C05]平坦化層は第1電極を被覆しており、
 平坦化層を覆う第1配向膜及び第2電極を覆う第2配向膜を更に備えており、
 液晶分子には、少なくとも第1配向膜によってプレチルトが付与されている[C01]乃至[C03]のいずれか1項に記載の液晶表示装置。
[C06]平坦化層は、第1電極の凹部と凹部の間を埋めており、
 第1電極及び平坦化層を覆う第1配向膜並びに第2電極を覆う第2配向膜を更に備えており、
 液晶分子には、少なくとも第1配向膜によってプレチルトが付与されている[C01]乃至[C03]のいずれか1項に記載の液晶表示装置。
[C07]液晶層に対して所定の電場を印加しつつ、少なくとも第1配向膜を構成する高分子化合物を反応させることにより液晶分子にプレチルトが付与される[C04]乃至[C06]のいずれか1項に記載の液晶表示装置。
[C08]第1配向膜の平均膜厚をT1、第2配向膜の平均膜厚をT2としたとき、
0.5≦T2/T1≦1.5
を満足する[C03]乃至[C07]のいずれか1項に記載の液晶表示装置。
[D01]《第1電極の第3Aの構造》
 第1電極に設けられた凸部には複数の段差部が形成されている[C01]乃至[C08]のいずれか1項に記載の液晶表示装置。
[D02]《第1電極の第3A-1構造》
 凹凸部は、画素中心部を通り、十文字に延びる幹凸部、及び、幹凸部から画素周辺部に向かって延びる複数の枝凸部から構成されている[D01]に記載の液晶表示装置。
[D03]幹凸部の延びる方向と直交する仮想垂直平面で幹凸部を切断したときの幹凸部の断面形状は、幹凸部の断面形状の中心から幹凸部の断面形状の縁に向かって段差部が下降していく断面形状を有する[D02]に記載の液晶表示装置。
[D04]幹凸部の延びる方向に平行な仮想垂直平面で幹凸部を切断したときの幹凸部の断面形状は、幹凸部の断面形状の中央部から幹凸部の断面形状の端部に向かって段差部が下降していく断面形状を有する[D02]乃至[D03]のいずれか1項に記載の液晶表示装置。
[D05]枝凸部の延びる方向と直交する仮想垂直平面で枝凸部を切断したときの枝凸部の断面形状は、枝凸部の断面形状の中心から枝凸部の断面形状の縁に向かって段差部が下降していく断面形状を有する[D02]乃至[D04]のいずれか1項に記載の液晶表示装置。
[D06]枝凸部の延びる方向に平行な仮想垂直平面で枝凸部を切断したときの枝凸部の断面形状は、枝凸部の断面形状の幹凸部側から枝凸部の断面形状の端部に向かって段差部が下降していく断面形状を有する[D02]乃至[D05]のいずれか1項に記載の液晶表示装置。
[D07]幹凸部と対応する第2電極の部分には、配向規制部が形成されている[D02]乃至[D06]のいずれか1項に記載の液晶表示装置。
[D08]《第1電極の第3A-2構造》
 凹凸部は、画素周辺部に額縁状に形成された幹凸部、及び、幹凸部から画素内部に向かって延びる複数の枝凸部から構成されている[D01]に記載の液晶表示装置。
[D09]幹凸部の延びる方向と直交する仮想垂直平面で幹凸部を切断したときの幹凸部の断面形状は、幹凸部の断面形状の外側の縁から幹凸部の断面形状の内側の縁に向かって段差部が下降していく断面形状を有する[D08]に記載の液晶表示装置。
[D10]枝凸部の延びる方向と直交する仮想垂直平面で枝凸部を切断したときの枝凸部の断面形状は、枝凸部の断面形状の中心から枝凸部の断面形状の縁に向かって段差部が下降していく断面形状を有する[D08]乃至[D09]のいずれか1項に記載の液晶表示装置。
[D11]枝凸部の延びる方向に平行な仮想垂直平面で枝凸部を切断したときの枝凸部の断面形状は、枝凸部の断面形状の幹凸部側から枝凸部の断面形状の端部に向かって段差部が下降していく断面形状を有する[D08]乃至[D10]のいずれか1項に記載の液晶表示装置。
[D12]第1電極には、画素中心部を通り、画素周辺部に平行なスリット部あるいは突起部が形成されている[D08]乃至[D11]のいずれか1項に記載の液晶表示装置。
[D13]画素と画素との間に位置する第1基板の部分から、画素周辺部に対応する第1基板の部分に亙り、凸構造が形成されており、
 凹凸部の周辺部は凸構造上に形成されている[D02]乃至[D12]のいずれか1項に記載の液晶表示装置。
[E01]《第1電極の第3Bの構造》
 画素と画素との間に位置する第1基板の部分から、画素周辺部に対応する第1基板の部分に亙り、凸構造が形成されており、
 凹凸部の周辺部は凸構造上に形成されている[C01]乃至[C08]のいずれか1項に記載の液晶表示装置。
[E02]《第1電極の第3B-1の構造》
 凹凸部は、画素中心部を通り、十文字に延びる幹凸部、及び、幹凸部から画素周辺部に向かって延びる複数の枝凸部から構成されている[E01]に記載の液晶表示装置。
[E03]幹凸部と対応する第2電極の部分には、配向規制部が形成されている[E02]に記載の液晶表示装置。
[E04]《第1電極の第3B-2構造》
 凹凸部は、画素周辺部に額縁状に形成された幹凸部、及び、幹凸部から画素内部に向かって延びる複数の枝凸部から構成されている[E01]に記載の液晶表示装置。
[E05]第1電極には、画素中心部を通り、画素周辺部に平行なスリット部あるいは突起部が形成されている[E04]に記載の液晶表示装置。
[F01]《第1電極の第3Cの構造》
 凹凸部は、画素中心部を通り、十文字に延びる幹凸部、及び、幹凸部から画素周辺部に向かって延びる複数の枝凸部から構成されており、
 幹凸部と対応する第2電極の部分には、配向規制部が形成されている[C01]乃至[C08]のいずれか1項に記載の液晶表示装置。
[G01]《第1電極の第3Dの構造》
 凹凸部は、画素周辺部に額縁状に形成された幹凸部、及び、幹凸部から画素内部に向かって延びる複数の枝凸部から構成されており、
 第1電極には、画素中心部を通り、画素周辺部に平行なスリット部あるいは突起部が形成されている[C01]乃至[C08]のいずれか1項に記載の液晶表示装置。
[H01]《第1電極の第4の構造》
 第1電極に設けられた凸部の一部の幅は、先端部に向かって狭くなっている[C01]乃至[C08]のいずれか1項に記載の液晶表示装置。
[H02]《第1電極の第4Aの構造》
 凹凸部は、画素中心部を通り、十文字に延びる幹凸部、及び、幹凸部から画素周辺部に向かって延びる複数の枝凸部から構成されており、
 複数の枝凸部が、第1電極に設けられた凸部の一部に該当し、
 枝凸部の幅は、幹凸部と接合する枝凸部の部分が最も広く、幹凸部と接合する部分から先端部に向かって狭くなっている[H01]に記載の液晶表示装置。
[H03]枝凸部の幅は、幹凸部と接合する部分から先端部に向かって直線状に狭くなっている[H02]に記載の液晶表示装置。
[H04]幹凸部と対応する第2電極の部分には、配向規制部が形成されている[H02]又は[H03]に記載の液晶表示装置。
[H05]《第1電極の第4Bの構造》
 凹凸部は、画素周辺部に額縁状に形成された幹凸部、及び、幹凸部から画素内部に向かって延びる複数の枝凸部から構成されており、
 複数の枝凸部が、第1電極に設けられた凸部の一部に該当し、
 枝凸部の幅は、幹凸部と接合する枝凸部の部分が最も広く、幹凸部と接合する部分から先端部に向かって狭くなっている[H01]に記載の液晶表示装置。
[H06]枝凸部の幅は、幹凸部と接合する部分から先端部に向かって直線状に狭くなっている[H05]に記載の液晶表示装置。
[H07]第1電極には、画素中心部を通り、画素周辺部に平行なスリット部あるいは突起部が形成されている[H05]又は[H06]に記載の液晶表示装置。
[H08]《第1電極の第4Cの構造》
 第1電極に設けられた凸部には複数の段差部が形成されている[H01]に記載の液晶表示装置。
[H09]《第1電極の第4C-1の構造》
 凹凸部は、画素中心部を通り、十文字に延びる幹凸部、及び、幹凸部から画素周辺部に向かって延びる複数の枝凸部から構成されている[H08]に記載の液晶表示装置。
[H10]幹凸部の延びる方向と直交する仮想垂直平面で幹凸部を切断したときの幹凸部の断面形状は、幹凸部の断面形状の中心から幹凸部の断面形状の縁に向かって段差部が下降していく断面形状を有する[H09]に記載の液晶表示装置。
[H11]幹凸部の延びる方向に平行な仮想垂直平面で幹凸部を切断したときの幹凸部の断面形状は、幹凸部の断面形状の中央部から幹凸部の断面形状の端部に向かって段差部が下降していく断面形状を有する[H09]又は[H10]に記載の液晶表示装置。
[H12]枝凸部の延びる方向と直交する仮想垂直平面で枝凸部を切断したときの枝凸部の断面形状は、枝凸部の断面形状の中心から枝凸部の断面形状の縁に向かって段差部が下降していく断面形状を有する[H09]乃至[H11]のいずれか1項に記載の液晶表示装置。
[H13]枝凸部の延びる方向に平行な仮想垂直平面で枝凸部を切断したときの枝凸部の断面形状は、枝凸部の断面形状の幹凸部側から枝凸部の断面形状の端部に向かって段差部が下降していく断面形状を有する[H09]乃至[H12]のいずれか1項に記載の液晶表示装置。
[H14]幹凸部と対応する第2電極の部分には、配向規制部が形成されている[H09]乃至[H13]のいずれか1項に記載の液晶表示装置。
[H15]《第1電極の第4C-2の構造》
 凹凸部は、画素周辺部に額縁状に形成された幹凸部、及び、幹凸部から画素内部に向かって延びる複数の枝凸部から構成されている[H08]に記載の液晶表示装置。
[H16]幹凸部の延びる方向と直交する仮想垂直平面で幹凸部を切断したときの幹凸部の断面形状は、幹凸部の断面形状の外側の縁から幹凸部の断面形状の内側の縁に向かって段差部が下降していく断面形状を有する[H15]に記載の液晶表示装置。
[H17]枝凸部の延びる方向と直交する仮想垂直平面で枝凸部を切断したときの枝凸部の断面形状は、枝凸部の断面形状の中心から枝凸部の断面形状の縁に向かって段差部が下降していく断面形状を有する[H15]又は[H16]に記載の液晶表示装置。
[H18]枝凸部の延びる方向に平行な仮想垂直平面で枝凸部を切断したときの枝凸部の断面形状は、枝凸部の断面形状の幹凸部側から枝凸部の断面形状の端部に向かって段差部が下降していく断面形状を有する[H15]乃至[H17]のいずれか1項に記載の液晶表示装置。
[H19]第1電極には、画素中心部を通り、画素周辺部に平行なスリット部あるいは突起部が形成されている[H15]乃至[H18]のいずれか1項に記載の液晶表示装置。
[H20]画素と画素との間に位置する第1基板の部分から、画素周辺部に対応する第1基板の部分に亙り、凸構造が形成されており、
 凹凸部の周辺部は凸構造上に形成されている[H09]乃至[H19]のいずれか1項に記載の液晶表示装置。
[H21]《第1電極の第4Dの構造》
 画素と画素との間に位置する第1基板の部分から、画素周辺部に対応する第1基板の部分に亙り、凸構造が形成されており、
 凹凸部の周辺部は凸構造上に形成されている[H01]に記載の液晶表示装置。
[H22]《第1電極の第4D-1の構造》
 凹凸部は、画素中心部を通り、十文字に延びる幹凸部、及び、幹凸部から画素周辺部に向かって延びる複数の枝凸部から構成されている[H21]に記載の液晶表示装置。
[H23]幹凸部と対応する第2電極の部分には、配向規制部が形成されている[H22]に記載の液晶表示装置。
[H24]《第1電極の第4D-2構造》
 凹凸部は、画素周辺部に額縁状に形成された幹凸部、及び、幹凸部から画素内部に向かって延びる複数の枝凸部から構成されている[H21]に記載の液晶表示装置。
[H25]第1電極には、画素中心部を通り、画素周辺部に平行なスリット部あるいは突起部が形成されている[H24]に記載の液晶表示装置。
[J01]《第1電極の第5Aの構造》
 画素の中心を通るX軸及びY軸を想定したとき、
 第1象限を占める複数の凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる[C01]乃至[C08]のいずれか1項に記載の液晶表示装置。
[J02]X軸から延び、第1象限を占める凸部のそれぞれは、X軸から延び、第4象限を占める凸部のそれぞれと接合しており、
 Y軸から延び、第1象限を占める凸部のそれぞれは、Y軸から延び、第2象限を占める凸部のそれぞれと接合しており、
 X軸から延び、第2象限を占める凸部のそれぞれは、X軸から延び、第3象限を占める凸部のそれぞれと接合しており、
 Y軸から延び、第3象限を占める凸部のそれぞれは、Y軸から延び、第4象限を占める凸部のそれぞれと接合している[J01]に記載の液晶表示装置。
[J03]2つの凸部の接合部には、画素の周辺部方向に向かって延びる突出部が設けられている[J02]に記載の液晶表示装置。
[J04]突出部は複数の線分によって囲まれている[J03]に記載の液晶表示装置。
[J05]突出部は1本の曲線によって囲まれている[J03]に記載の液晶表示装置。
[J06]突出部は複数の曲線によって囲まれている[J03]に記載の液晶表示装置。
[J07]X軸あるいはその近傍から延び、第1象限を占める凸部のそれぞれは、X軸あるいはその近傍から延び、第4象限を占める凸部のそれぞれと接合しておらず、
 Y軸あるいはその近傍から延び、第1象限を占める凸部のそれぞれは、Y軸あるいはその近傍から延び、第2象限を占める凸部のそれぞれと接合しておらず、
 X軸あるいはその近傍から延び、第2象限を占める凸部のそれぞれは、X軸あるいはその近傍から延び、第3象限を占める凸部のそれぞれと接合しておらず、
 Y軸あるいはその近傍から延び、第3象限を占める凸部のそれぞれは、Y軸あるいはその近傍から延び、第4象限を占める凸部のそれぞれと接合していない[J01]に記載の液晶表示装置。
[J08]凸部の幅は画素の周辺部に向かって狭くなる[J01]乃至[J07]のいずれか1項に記載の液晶表示装置。
[J09]《第1電極の第5A-1構造》
 第1電極には、更に、スリット部が形成されている[J01]乃至[J08]のいずれか1項に記載の液晶表示装置。
[J10]スリット部は凸部領域に形成されている[J09]に記載の液晶表示装置。
[J11]スリット部は、画素の中央部分を含む凸部領域に設けられている[J10]に記載の液晶表示装置。
[J12]画素の中心領域に向かって延びる凸部領域にスリット部が形成されている[J10]に記載の液晶表示装置。
[J13]画素の中心領域に向かって延びる凸部とY軸とによって挟まれた領域に設けられた凸部領域にスリット部が形成されている[J10]に記載の液晶表示装置。
[J14]凸部の頂部には、凸部と平行に延びるスリット部が形成されている[J09]に記載の液晶表示装置。
[J15]凹部の底部には、凹部と平行に延びるスリット部が形成されている[J09]に記載の液晶表示装置。
[J16]《第1電極の第5A-2構造》
 画素の中心領域における第1電極には窪みが設けられている[J01]乃至[J13]のいずれか1項に液晶表示装置。
[J17]窪みは第1基板に向かって窄まっている[J16]に記載の液晶表示装置。
[J18]窪みの傾斜角は5度乃至60度である[J17]に記載の液晶表示装置。
[J19]窪みの外縁の形状は円形である[J16]乃至[J18]のいずれか1項に記載の液晶表示装置。
[J20]窪みの外縁の形状は矩形である[J16]乃至[J18]のいずれか1項に記載の液晶表示装置。
[J21]矩形形状の窪みの外縁と凸部の延びる方向との成す角度は90度である[J20]に記載の液晶表示装置。
[J22]矩形形状の窪みの外縁と凸部の延びる方向との成す角度は鋭角である[J20]に記載の液晶表示装置。
[J23]窪みの中心部はコンタクトホールの一部を構成する[J16]乃至[J22]のいずれか1項に記載の液晶表示装置。
[J24]《第1電極の第5A-3構造》
 X軸あるいはその近傍から延び、第1象限を占める凸部と、X軸あるいはその近傍から延び、第4象限を占める凸部とは、相互にずれた状態で形成されており、
 Y軸あるいはその近傍から延び、第1象限を占める凸部と、Y軸あるいはその近傍から延び、第2象限を占める凸部とは、相互にずれた状態で形成されており、
 X軸あるいはその近傍から延び、第2象限を占める凸部と、X軸あるいはその近傍から延び、第3象限を占める凸部とは、相互にずれた状態で形成されており、
 Y軸あるいはその近傍から延び、第3象限を占める凸部と、Y軸あるいはその近傍から延び、第4象限を占める凸部とは、相互にずれた状態で形成されている[J01]乃至[J23]のいずれか1項に記載の液晶表示装置。
[J25]X軸に沿った凸部の形成ピッチをPXとし、Y軸に沿った凸部の形成ピッチをPYとしたとき、
 X軸あるいはその近傍から延び、第1象限を占める凸部と、X軸あるいはその近傍から延び、第4象限を占める凸部とは、相互に(PX/2)ずれた状態で形成されており、
 Y軸あるいはその近傍から延び、第1象限を占める凸部と、Y軸あるいはその近傍から延び、第2象限を占める凸部とは、相互に(PY/2)ずれた状態で形成されており、
 X軸あるいはその近傍から延び、第2象限を占める凸部と、X軸あるいはその近傍から延び、第3象限を占める凸部とは、相互に(PX/2)ずれた状態で形成されており、
 Y軸あるいはその近傍から延び、第3象限を占める凸部と、Y軸あるいはその近傍から延び、第4象限を占める凸部とは、相互に(PY/2)ずれた状態で形成されている[J24]に記載の液晶表示装置。
[K01]《第1電極の第5B構造》
 画素の中心を通るX軸及びY軸を想定したとき、
 複数の凹凸部は、X軸上及びY軸上を延びる幹凸部、及び、幹凸部の側辺から画素の周辺部に向かって延びる複数の枝凸部から構成されており、
 枝凸部と接合していない幹凸部の側辺部分の延びる方向は、X軸とは平行でなく、且つ、Y軸とは平行でない[C01]乃至[C08]のいずれか1項に記載の液晶表示装置。
[K02]複数の凹凸部を構成する幹凸部は、X軸上及びY軸上に形成されている代わりに、画素周辺部に額縁状に形成されている[K01]に記載の液晶表示装置。
[K03]枝凸部と接合していない幹凸部の側辺部分は、直線状である[K01]又は[K02]に記載の液晶表示装置。
[K04]枝凸部と接合していない幹凸部の側辺部分は、曲線状である[K01]乃至[K03]のいずれか1項に記載の液晶表示装置。
[K05]枝凸部と接合していない幹凸部の部分の幅は、幹凸部の先端部に向かって狭くなっている[K01]乃至[K04]のいずれか1項に記載の液晶表示装置。
[K06]枝凸部の幅は画素の周辺部に向かって狭くなる[K01]乃至[K05]のいずれか1項に記載の液晶表示装置。
[K07]《第1電極の第5B-1構造》
 第1電極には、更に、スリット部が形成されている[K01]乃至[K06]のいずれか1項に記載の液晶表示装置。
[K08]スリット部は凸部領域に形成されている[K07]に記載の液晶表示装置。
[K09]スリット部は、画素の中央部分を含む凸部領域に設けられている[K08]に記載の液晶表示装置。
[K10]画素の中心領域に向かって延びる凸部領域にスリット部が形成されている[K08]に記載の液晶表示装置。
[K11]画素の中心領域に向かって延びる枝凸部とY軸とによって挟まれた領域に設けられた凸部領域にスリット部が形成されている[K08]に記載の液晶表示装置。
[K12]凸部の頂部には、凸部と平行に延びるスリット部が形成されている[K07]に記載の液晶表示装置。
[K13]凹部の底部には、凹部と平行に延びるスリット部が形成されている[K07]に記載の液晶表示装置。
[K14]《第1電極の第5B-2構造》
 画素の中心領域における第1電極には窪みが設けられている[K01]乃至[K11]のいずれか1項に記載の液晶表示装置。
[K15]窪みは第1基板に向かって窄まっている[K14]に記載の液晶表示装置。
[K16]窪みの傾斜角は5度乃至60度である[K15]に記載の液晶表示装置。
[K17]窪みの外縁の形状は円形である[K14]乃至[K16]のいずれか1項に記載の液晶表示装置。
[K18]窪みの外縁の形状は矩形である[K14]乃至[K16]のいずれか1項に記載の液晶表示装置。
[K19]矩形形状の窪みの外縁と凸部の延びる方向との成す角度は90度である[K18]に記載の液晶表示装置。
[K20]矩形形状の窪みの外縁と凸部の延びる方向との成す角度は鋭角である[K18]に記載の液晶表示装置。
[K21]窪みの中心部はコンタクトホールの一部を構成する[K14]乃至[K20]のいずれか1項に記載の液晶表示装置。
[K22]第1象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる[K01]乃至[K21]のいずれか1項に記載の液晶表示装置。
[K23]《第1電極の第5B-3構造》
 X軸上の幹凸部から延び、第1象限を占める枝凸部と、X軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互にずれた状態で形成されており、
 Y軸上の幹凸部から延び、第1象限を占める枝凸部と、Y軸上の幹凸部から延び、第2象限を占める枝凸部とは、相互にずれた状態で形成されており、
 X軸上の幹凸部から延び、第2象限を占める枝凸部と、X軸上の幹凸部から延び、第3象限を占める枝凸部とは、相互にずれた状態で形成されており、
 Y軸上の幹凸部から延び、第3象限を占める枝凸部と、Y軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互にずれた状態で形成されている[K01]乃至[K22]のいずれか1項に記載の液晶表示装置。
[K24]X軸に沿った枝凸部の形成ピッチをPXとし、Y軸に沿った枝凸部の形成ピッチをPYとしたとき、
 X軸上の幹凸部から延び、第1象限を占める枝凸部と、X軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互に(PX/2)ずれた状態で形成されており、
 Y軸上の幹凸部から延び、第1象限を占める枝凸部と、Y軸上の幹凸部から延び、第2象限を占める枝凸部とは、相互に(PY/2)ずれた状態で形成されており、
 X軸上の幹凸部から延び、第2象限を占める枝凸部と、X軸上の幹凸部から延び、第3象限を占める枝凸部とは、相互に(PX/2)ずれた状態で形成されており、
 Y軸上の幹凸部から延び、第3象限を占める枝凸部と、Y軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互に(PY/2)ずれた状態で形成されている[K23]に記載の液晶表示装置。
[L01]《第1電極の第5C構造》
 第1電極には、更に、スリット部が形成されている[C01]乃至[C08]のいずれか1項に記載の液晶表示装置。
[L02]スリット部は凸部領域に形成されている[L01]に記載の液晶表示装置。
[L03]スリット部は、画素の中央部分を含む凸部領域に設けられている[L02]に記載の液晶表示装置。
[L04]画素の中心領域に向かって延びる凸部領域にスリット部が形成されている[L02]に記載の液晶表示装置。
[L05]画素の中心領域に向かって延びる凸部とY軸とによって挟まれた領域に設けられた凸部領域にスリット部が形成されている[L02]に記載の液晶表示装置。
[L06]凸部の頂部には、凸部と平行に延びるスリット部が形成されている[L01]に記載の液晶表示装置。
[L07]凹部の底部には、凹部と平行に延びるスリット部が形成されている[L01]に記載の液晶表示装置。
[L08]凸部の幅は画素の周辺部に向かって狭くなる[L01]乃至[L05]のいずれか1項に記載の液晶表示装置。
[L09]《第1電極の第5C-2構造》
 画素の中心領域における第1電極には窪みが設けられている[L01]乃至[L08]のいずれか1項に液晶表示装置。
[L10]窪みは第1基板に向かって窄まっている[L09]に記載の液晶表示装置。
[L11]窪みの傾斜角は5度乃至60度である[L10]に記載の液晶表示装置。
[L12]窪みの外縁の形状は円形である[L09]乃至[L11]のいずれか1項に記載の液晶表示装置。
[L13]窪みの外縁の形状は矩形である[L09]乃至[L11]のいずれか1項に記載の液晶表示装置。
[L14]矩形形状の窪みの外縁と凸部の延びる方向との成す角度は90度である[L13]に記載の液晶表示装置。
[L15]矩形形状の窪みの外縁と凸部の延びる方向との成す角度は鋭角である[L13]に記載の液晶表示装置。
[L16]窪みの中心部はコンタクトホールの一部を構成する[L09]乃至[L15]のいずれか1項に記載の液晶表示装置。
[L17]画素の中心を通るX軸及びY軸を想定したとき、
 複数の凹凸部は、X軸上及びY軸上を延びる幹凸部、及び、幹凸部の側辺から画素の周辺部に向かって延びる複数の枝凸部から構成されている[L01]乃至[L16]のいずれか1項に記載の液晶表示装置。
[L18]第1象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる[L17]に記載の液晶表示装置。
[L19]《第1電極の第5C-3構造》
 X軸上の幹凸部から延び、第1象限を占める枝凸部と、X軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互にずれた状態で形成されており、
 Y軸上の幹凸部から延び、第1象限を占める枝凸部と、Y軸上の幹凸部から延び、第2象限を占める枝凸部とは、相互にずれた状態で形成されており、
 X軸上の幹凸部から延び、第2象限を占める枝凸部と、X軸上の幹凸部から延び、第3象限を占める枝凸部とは、相互にずれた状態で形成されており、
 Y軸上の幹凸部から延び、第3象限を占める枝凸部と、Y軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互にずれた状態で形成されている[L18]に記載の液晶表示装置。
[L20]X軸に沿った枝凸部の形成ピッチをPXとし、Y軸に沿った枝凸部の形成ピッチをPYとしたとき、
 X軸上の幹凸部から延び、第1象限を占める枝凸部と、X軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互に(PX/2)ずれた状態で形成されており、
 Y軸上の幹凸部から延び、第1象限を占める枝凸部と、Y軸上の幹凸部から延び、第2象限を占める枝凸部とは、相互に(PY/2)ずれた状態で形成されており、
 X軸上の幹凸部から延び、第2象限を占める枝凸部と、X軸上の幹凸部から延び、第3象限を占める枝凸部とは、相互に(PX/2)ずれた状態で形成されており、
 Y軸上の幹凸部から延び、第3象限を占める枝凸部と、Y軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互に(PY/2)ずれた状態で形成されている[L19]に記載の液晶表示装置。
[M01]《第1電極の第5D構造》
 画素の中心領域における第1電極には窪みが設けられている[C01]乃至[C08]のいずれか1項に記載の液晶表示装置。
[M02]窪みは第1基板に向かって窄まっている[M01]に記載の液晶表示装置。
[M03]窪みの傾斜角は5度乃至60度である[M02]に記載の液晶表示装置。
[M04]窪みの外縁の形状は円形である[M01]乃至[M03]のいずれか1項に記載の液晶表示装置。
[M05]窪みの外縁の形状は矩形である[M01]乃至[M03]のいずれか1項に記載の液晶表示装置。
[M06]矩形形状の窪みの外縁と凸部の延びる方向との成す角度は90度である[M05]に記載の液晶表示装置。
[M07]矩形形状の窪みの外縁と凸部の延びる方向との成す角度は鋭角である[M05]に記載の液晶表示装置。
[M08]窪みの中心部はコンタクトホールの一部を構成する[M01]乃至[M07]のいずれか1項に記載の液晶表示装置。
[M09]画素の中心を通るX軸及びY軸を想定したとき、
 複数の凹凸部は、X軸上及びY軸上を延びる幹凸部、及び、幹凸部の側辺から画素の周辺部に向かって延びる複数の枝凸部から構成されている[M01]乃至[M08]のいずれか1項に記載の液晶表示装置。
[M10]第1象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延びる[M09]に記載の液晶表示装置。
[M11]《第1電極の第5D-3構造》
 X軸上の幹凸部から延び、第1象限を占める枝凸部と、X軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互にずれた状態で形成されており、
 Y軸上の幹凸部から延び、第1象限を占める枝凸部と、Y軸上の幹凸部から延び、第2象限を占める枝凸部とは、相互にずれた状態で形成されており、
 X軸上の幹凸部から延び、第2象限を占める枝凸部と、X軸上の幹凸部から延び、第3象限を占める枝凸部とは、相互にずれた状態で形成されており、
 Y軸上の幹凸部から延び、第3象限を占める枝凸部と、Y軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互にずれた状態で形成されている[M10]に記載の液晶表示装置。
[M12]X軸に沿った枝凸部の形成ピッチをPXとし、Y軸に沿った枝凸部の形成ピッチをPYとしたとき、
 X軸上の幹凸部から延び、第1象限を占める枝凸部と、X軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互に(PX/2)ずれた状態で形成されており、
 Y軸上の幹凸部から延び、第1象限を占める枝凸部と、Y軸上の幹凸部から延び、第2象限を占める枝凸部とは、相互に(PY/2)ずれた状態で形成されており、
 X軸上の幹凸部から延び、第2象限を占める枝凸部と、X軸上の幹凸部から延び、第3象限を占める枝凸部とは、相互に(PX/2)ずれた状態で形成されており、
 Y軸上の幹凸部から延び、第3象限を占める枝凸部と、Y軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互に(PY/2)ずれた状態で形成されている[M11]に記載の液晶表示装置。
[N01]《第1電極の第5E構造》
 画素の中心を通るX軸及びY軸を想定したとき、
 複数の凹凸部は、X軸上及びY軸上を延びる幹凸部、及び、幹凸部の側辺から画素の周辺部に向かって延びる複数の枝凸部から構成されており、
 第1象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が増加する方向に平行に延び、
 第2象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が増加する方向に平行に延び、
 第3象限を占める複数の枝凸部は、X座標の値が減少したときY座標の値が減少する方向に平行に延び、
 第4象限を占める複数の枝凸部は、X座標の値が増加したときY座標の値が減少する方向に平行に延び、
 X軸上の幹凸部から延び、第1象限を占める枝凸部と、X軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互にずれた状態で形成されており、
 Y軸上の幹凸部から延び、第1象限を占める枝凸部と、Y軸上の幹凸部から延び、第2象限を占める枝凸部とは、相互にずれた状態で形成されており、
 X軸上の幹凸部から延び、第2象限を占める枝凸部と、X軸上の幹凸部から延び、第3象限を占める枝凸部とは、相互にずれた状態で形成されており、
 Y軸上の幹凸部から延び、第3象限を占める枝凸部と、Y軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互にずれた状態で形成されている[C01]乃至[C08]のいずれか1項に記載の液晶表示装置。
[N02]X軸に沿った枝凸部の形成ピッチをPXとし、Y軸に沿った枝凸部の形成ピッチをPYとしたとき、
 X軸上の幹凸部から延び、第1象限を占める枝凸部と、X軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互に(PX/2)ずれた状態で形成されており、
 Y軸上の幹凸部から延び、第1象限を占める枝凸部と、Y軸上の幹凸部から延び、第2象限を占める枝凸部とは、相互に(PY/2)ずれた状態で形成されており、
 X軸上の幹凸部から延び、第2象限を占める枝凸部と、X軸上の幹凸部から延び、第3象限を占める枝凸部とは、相互に(PX/2)ずれた状態で形成されており、
 Y軸上の幹凸部から延び、第3象限を占める枝凸部と、Y軸上の幹凸部から延び、第4象限を占める枝凸部とは、相互に(PY/2)ずれた状態で形成されている[N01]に記載の液晶表示装置。
In addition, this indication can also take the following structures.
[A01] << Liquid crystal display device ... first embodiment >>
A first alignment film and a second alignment film provided on opposite surfaces of the pair of substrates, and
A liquid crystal layer including liquid crystal molecules disposed between the first alignment film and the second alignment film and having negative dielectric anisotropy;
A liquid crystal display element having
At least the first alignment film includes a compound obtained by crosslinking or polymerizing or deforming a polymer compound having the first side chain and the second side chain,
The first side chain has a crosslinkable functional group, a polymerizable functional group or a photosensitive functional group,
The second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment,
A liquid crystal display device in which liquid crystal molecules are given a pretilt by a first alignment film.
[A02] << Liquid Crystal Display Device Second Embodiment >>
A first alignment film and a second alignment film provided on opposite surfaces of the pair of substrates, and
A liquid crystal layer including liquid crystal molecules disposed between the first alignment film and the second alignment film and having negative dielectric anisotropy;
A liquid crystal display element having
At least the first alignment film includes a compound obtained by crosslinking or polymerizing or deforming a polymer compound having the first side chain and the second side chain,
The first side chain has a crosslinkable functional group, a polymerizable functional group or a photosensitive functional group,
The second side chain has a structure that has a dipole moment within an angle range of more than 0 degrees and less than 90 degrees from its major axis direction, and induces vertical orientation,
A liquid crystal display device in which liquid crystal molecules are given a pretilt by a first alignment film.
[A03] The second side chain is a fluorine atom, a chlorine atom, -CN, -OCF Three , -OCHF 2 , -CF Three , -CHF 2 , -CH 2 F, -OCF 2 CHF 2 Or -OCF 2 CHFCF Three The liquid crystal display device according to [A01] or [A02], including any of the above.
[A04] << Liquid Crystal Display Device—Third Aspect >>
A first alignment film and a second alignment film provided on opposite surfaces of the pair of substrates, and
A liquid crystal layer including liquid crystal molecules disposed between the first alignment film and the second alignment film and having negative dielectric anisotropy;
A liquid crystal display element having
At least the first alignment film includes a compound obtained by crosslinking or polymerizing or deforming a polymer compound having the first side chain and the second side chain,
The first side chain has a crosslinkable functional group, a polymerizable functional group or a photosensitive functional group,
The second side chain has the following structural formula (11):
A liquid crystal display device in which liquid crystal molecules are given a pretilt by a first alignment film.
Figure JPOXMLDOC01-appb-I000067
here,
(A) m and n are each independently 0 or 1,
(B) each ring R independently represents a phenylene group, a cycloalkylene group, a phenylene group substituted with a fluorine atom or a chlorine atom, or a cycloalkylene group substituted with a fluorine atom or a chlorine atom;
(C) Ring X represents a phenylene group or a cycloalkylene group,
(D) A Four With respect to
Fluorine atom, chlorine atom, -CN, -OCF Three , -OCHF 2 , -CF Three , -CHF 2 , -CH 2 F, -OCF 2 CHF 2 , And -OCF 2 CHFCF Three The group consisting of
A group composed of a fluorine-containing alkyl group having 1 to 18 carbon atoms, a fluorine-containing aromatic ring group, a fluorine-containing aliphatic ring group, a fluorine-containing heterocyclic group, and a macrocyclic group composed of these is a second group, However, in the fluorine-containing alkyl group in the second group, any — (CH 2 ) — May be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — May be replaced by —CH═CH— or —C≡C—
A group composed of an alkyl group having 1 to 18 carbon atoms, an aliphatic cyclic group, a heterocyclic group, and a macrocyclic group composed of these is defined as the third group, provided that the alkyl group in the third group is , Any non-adjacent-(CH 2 ) — May be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — May be replaced by —CH═CH— or —C≡C—
A group composed of a fluorine-containing alkyl group having 3 to 18 carbon atoms, a fluorine-containing aromatic ring group, a fluorine-containing aliphatic ring group, a fluorine-containing heterocyclic group, and a macrocyclic group composed of these is defined as a fourth group, However, in the fluorine-containing alkyl group in the fourth group, any — (CH 2 ) — May be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — May be replaced by —CH═CH— or —C≡C—
A group composed of an alkyl group having 3 to 18 carbon atoms, an aliphatic ring group, a heterocyclic group, and a macrocyclic group composed of these is defined as a fifth group, provided that the alkyl group in the fifth group is , Any non-adjacent-(CH 2 ) — May be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — May be replaced by —CH═CH— or —C≡C—
(D-1) A 1 , A 2 , A Three Are all hydrogen atoms and m = 1, n = 0, or m = 0, n = 1, or m = n = 1, A Four Is one kind of atom or group selected from the first group or the second group,
(D-2) A Three Is a hydrogen atom, and when m = 0 and n = 0, A Four Is a group selected from the fourth group,
(D-3) A 1 , A 2 , A Three A is a fluorine atom or a chlorine atom, and when m = 1, n = 0, or when m = 0, n = 1, or when m = n = 1, A Four Is a hydrogen atom, one type of atom or group selected from the first group, the second group and the third group,
(D-4) A Three Is a fluorine atom or a chlorine atom, and m = 0, n = 0, A Four Is a hydrogen atom, one type of atom or group selected from the first group, the fourth group and the fifth group.
[A05] The liquid crystal display device according to [A04], in which the second side chain has the following structural formula (12).
Figure JPOXMLDOC01-appb-I000068
here,
(E) A 0 Represents an alkylene group having 1 to 17 carbon atoms, —O—, —COO—, —OCO—, —NHCO—, —CONH—, or an alkylene-ether group having 1 to 17 carbon atoms.
[A06] The liquid crystal display device according to [A04], wherein the second side chain has the following structural formula (13).
Figure JPOXMLDOC01-appb-I000069
here,
(F-1) A 01 Is composed of an organic group which may contain a linear or branched divalent ether group or ester group having 1 to 20 carbon atoms, or ether, ester, ether ester, acetal, ketal, hemiacetal and hemiketal. Represents at least one linking group selected from the group;
(F-2) A 02 Is one group selected from the group consisting of chalcone, cinnamate, cinnamoyl, coumarin, maleimide, benzophenone, norbornene, oryzanol and chitosan, or any one of acryloyl, methacryloyl, vinyl, epoxy and oxetane. It represents a divalent group containing a structure or an ethynylene group.
[A07] << Liquid Crystal Display Manufacturing Method: First Aspect >>
A first alignment film composed of a polymer compound having a first side chain having a crosslinkable functional group or a polymerizable functional group and a second side chain is formed on one of the pair of substrates. On the other hand, after forming the second alignment film,
A pair of substrates are disposed so that the first alignment film and the second alignment film face each other, and liquid crystal molecules having negative dielectric anisotropy are included between the first alignment film and the second alignment film. Sealing the liquid crystal layer, then
Crosslinking or polymerizing the first side chain in the polymer compound to give a pretilt to the liquid crystal molecules;
Including steps,
The second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment, or alternatively,
The second side chain has a dipole moment in the range of angles greater than 0 degrees and less than 90 degrees from its major axis direction, and has a structure that induces vertical orientation, or alternatively
The second side chain is a method of manufacturing a liquid crystal display device having the above structural formula (11), the above structural formula (12), or the above structural formula (13).
[A08] The liquid crystal according to [A07], wherein the first side chain of the polymer compound is crosslinked or polymerized by irradiating energy rays while aligning the liquid crystal molecules by applying a predetermined electric field to the liquid crystal layer. Manufacturing method of display device.
[A09] << Liquid Crystal Display Manufacturing Method ... Second Aspect >>
A first alignment film composed of a polymer compound having a first side chain having a photosensitive functional group and a second side chain is formed on one of the pair of substrates, and a second alignment film is formed on the other of the pair of substrates. After forming the alignment film,
A pair of substrates are disposed so that the first alignment film and the second alignment film face each other, and liquid crystal molecules having negative dielectric anisotropy are included between the first alignment film and the second alignment film. Sealing the liquid crystal layer, then
Deforming the first side chain of the polymer compound to give a pretilt to the liquid crystal molecules;
Including steps,
The second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment, or alternatively,
The second side chain has a dipole moment in the range of angles greater than 0 degrees and less than 90 degrees from its major axis direction, and has a structure that induces vertical orientation, or alternatively
The second side chain is a method of manufacturing a liquid crystal display device having the above structural formula (11), the above structural formula (12), or the above structural formula (13).
[A10] The liquid crystal display device according to [A09], wherein the first side chain of the polymer compound is deformed by irradiating energy rays while aligning liquid crystal molecules by applying a predetermined electric field to the liquid crystal layer. Manufacturing method.
[A11] << Liquid Crystal Display Manufacturing Method ... Third Aspect >>
A first alignment film composed of a polymer compound having a first side chain having a crosslinkable functional group or a photosensitive functional group and a second side chain is formed on one of the pair of substrates. On the other hand, after forming the second alignment film,
A pair of substrates are disposed so that the first alignment film and the second alignment film face each other, and liquid crystal molecules having negative dielectric anisotropy are included between the first alignment film and the second alignment film. Sealing the liquid crystal layer, then
Irradiate the polymer compound with energy rays to give the liquid crystal molecules a pretilt,
Including steps,
The second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment, or alternatively,
The second side chain has a dipole moment in the range of angles greater than 0 degrees and less than 90 degrees from its major axis direction, and has a structure that induces vertical orientation, or alternatively
The second side chain is a method of manufacturing a liquid crystal display device having the above structural formula (11), the above structural formula (12), or the above structural formula (13).
[B01] << First structure of first electrode >>
The liquid crystal display device according to any one of [A01] to [A06], wherein the first electrode has a plurality of uneven portions.
[C01] << Second structure of first electrode >>
The first electrode is formed with a plurality of concave and convex portions,
The liquid crystal display device according to any one of [A01] to [A06], wherein at least a space between the recesses of the first electrode is filled with a planarizing layer. Liquid crystal display device.
[C02] The maximum height of the top surface of the planarization layer is defined as H with respect to the bottom surface of the recess. H , The minimum height of the top surface of the planarizing layer is H L When
0.5 ≦ H L / H H ≦ 1
The liquid crystal display device according to [C01] satisfying
[C03] The height of the convex portion with respect to the bottom surface of the concave portion is H C When
0.5 ≦ H H / H C ≦ 5
The liquid crystal display device according to [C02] satisfying
[C04] The planarization layer covers the first electrode,
A first alignment film covering the first electrode and a second alignment film covering the second electrode;
The liquid crystal molecules are given a pretilt by at least the first alignment film,
The liquid crystal display device according to any one of [C01] to [C03], wherein the first alignment film corresponds to a planarization layer.
[C05] The planarization layer covers the first electrode,
A first alignment film covering the planarization layer and a second alignment film covering the second electrode;
The liquid crystal display device according to any one of [C01] to [C03], in which a pretilt is imparted to the liquid crystal molecules at least by the first alignment film.
[C06] The planarization layer fills between the recesses of the first electrode,
A first alignment film covering the first electrode and the planarization layer, and a second alignment film covering the second electrode;
The liquid crystal display device according to any one of [C01] to [C03], in which a pretilt is imparted to the liquid crystal molecules at least by the first alignment film.
[C07] Any of [C04] to [C06] in which a pretilt is imparted to the liquid crystal molecules by reacting at least a polymer compound constituting the first alignment film while applying a predetermined electric field to the liquid crystal layer. 2. A liquid crystal display device according to item 1.
[C08] The average film thickness of the first alignment film is T 1 , The average film thickness of the second alignment film is T 2 When
0.5 ≦ T 2 / T 1 ≦ 1.5
The liquid crystal display device according to any one of [C03] to [C07] that satisfies the above.
[D01] << 3A structure of first electrode >>
The liquid crystal display device according to any one of [C01] to [C08], wherein a plurality of stepped portions are formed on a convex portion provided on the first electrode.
[D02] << 3A-1 structure of first electrode >>
The concavo-convex portion is a liquid crystal display device according to [D01], which includes a trunk convex portion extending through the center of the pixel and extending in a cross shape and a plurality of branch convex portions extending from the trunk convex portion toward the pixel peripheral portion.
[D03] The cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion is from the center of the cross-sectional shape of the stem convex portion to the edge of the cross-sectional shape of the stem convex portion. The liquid crystal display device according to [D02], which has a cross-sectional shape in which a stepped portion descends toward the surface.
[D04] The cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane parallel to the extending direction of the stem convex portion is from the center of the cross-sectional shape of the stem convex portion to the end of the cross-sectional shape of the stem convex portion. The liquid crystal display device according to any one of [D02] to [D03], which has a cross-sectional shape in which a stepped portion descends toward the portion.
[D05] The cross-sectional shape of the branch convex portion when the branch convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion is from the center of the cross-sectional shape of the branch convex portion to the edge of the cross-sectional shape of the branch convex portion. The liquid crystal display device according to any one of [D02] to [D04], which has a cross-sectional shape in which a stepped portion descends toward the surface.
[D06] The cross-sectional shape of the branch convex portion when the branch convex portion is cut in a virtual vertical plane parallel to the extending direction of the branch convex portion is the cross-sectional shape of the branch convex portion from the trunk convex portion side of the cross-sectional shape of the branch convex portion. The liquid crystal display device according to any one of [D02] to [D05], which has a cross-sectional shape in which a stepped portion descends toward the end of the substrate.
[D07] The liquid crystal display device according to any one of [D02] to [D06], in which an alignment regulating portion is formed in a portion of the second electrode corresponding to the trunk convex portion.
[D08] << 3A-2 structure of first electrode >>
The concavo-convex portion is a liquid crystal display device according to [D01], which includes a stem convex portion formed in a frame shape around the pixel and a plurality of branch convex portions extending from the stem convex portion toward the inside of the pixel.
[D09] The cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion is the cross-sectional shape of the stem convex portion from the outer edge of the cross-sectional shape of the stem convex portion. The liquid crystal display device according to [D08], which has a cross-sectional shape in which a stepped portion descends toward an inner edge.
[D10] The cross-sectional shape of the branch convex portion when the branch convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion is from the center of the cross-sectional shape of the branch convex portion to the edge of the cross-sectional shape of the branch convex portion. The liquid crystal display device according to any one of [D08] to [D09], which has a cross-sectional shape in which a stepped portion descends toward the surface.
[D11] The cross-sectional shape of the branch convex portion when the branch convex portion is cut in a virtual vertical plane parallel to the extending direction of the branch convex portion is the cross-sectional shape of the branch convex portion from the trunk convex portion side of the cross-sectional shape of the branch convex portion. The liquid crystal display device according to any one of [D08] to [D10], which has a cross-sectional shape in which a stepped portion descends toward an end of the substrate.
[D12] The liquid crystal display device according to any one of [D08] to [D11], wherein the first electrode is formed with a slit or a protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel.
[D13] A convex structure is formed from the portion of the first substrate located between the pixels to the portion of the first substrate corresponding to the peripheral portion of the pixel,
The liquid crystal display device according to any one of [D02] to [D12], wherein a peripheral portion of the uneven portion is formed on a convex structure.
[E01] << 3B structure of first electrode >>
A convex structure is formed from a portion of the first substrate located between the pixels to a portion of the first substrate corresponding to the peripheral portion of the pixel,
The liquid crystal display device according to any one of [C01] to [C08], wherein a peripheral portion of the concavo-convex portion is formed on a convex structure.
[E02] << Structure of 3B-1 of first electrode >>
The concavo-convex portion is a liquid crystal display device according to [E01], which includes a trunk convex portion extending through the center of the pixel and extending in a cross shape and a plurality of branch convex portions extending from the trunk convex portion toward the pixel peripheral portion.
[E03] The liquid crystal display device according to [E02], wherein an alignment regulating portion is formed in a portion of the second electrode corresponding to the trunk convex portion.
[E04] << 3B-2 structure of first electrode >>
The concavo-convex portion is a liquid crystal display device according to [E01], which includes a stem convex portion formed in a frame shape around the pixel and a plurality of branch convex portions extending from the stem convex portion toward the inside of the pixel.
[E05] The liquid crystal display device according to [E04], wherein the first electrode is formed with a slit or a protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel.
[F01] << 3C structure of first electrode >>
The concavo-convex portion is composed of a stem convex portion that extends through the center of the pixel and extends in a cross shape, and a plurality of branch convex portions that extend from the stem convex portion toward the pixel peripheral portion,
The liquid crystal display device according to any one of [C01] to [C08], in which an alignment regulating portion is formed in a portion of the second electrode corresponding to the trunk convex portion.
[G01] << 3D structure of first electrode >>
The concavo-convex part is composed of a stem convex part formed in a frame shape around the pixel peripheral part, and a plurality of branch convex parts extending from the stem convex part toward the inside of the pixel,
The liquid crystal display device according to any one of [C01] to [C08], wherein the first electrode is formed with a slit or a protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel.
[H01] << Fourth structure of first electrode >>
The liquid crystal display device according to any one of [C01] to [C08], wherein a width of a part of the convex portion provided in the first electrode is narrowed toward the tip portion.
[H02] << Structure of 4A of first electrode >>
The concavo-convex portion is composed of a stem convex portion that extends through the center of the pixel and extends in a cross shape, and a plurality of branch convex portions that extend from the stem convex portion toward the pixel peripheral portion,
A plurality of branch protrusions correspond to a part of the protrusions provided on the first electrode,
The width of the branch convex portion is the widest portion of the branch convex portion joined to the trunk convex portion, and is narrower from the portion joined to the trunk convex portion toward the tip end portion [H01].
[H03] The liquid crystal display device according to [H02], wherein the width of the branch convex portion is linearly narrowed from the portion joined to the trunk convex portion toward the tip portion.
[H04] The liquid crystal display device according to [H02] or [H03], in which an alignment regulating portion is formed in a portion of the second electrode corresponding to the trunk convex portion.
[H05] << Structure 4B of first electrode >>
The concavo-convex part is composed of a stem convex part formed in a frame shape around the pixel peripheral part, and a plurality of branch convex parts extending from the stem convex part toward the inside of the pixel,
A plurality of branch protrusions correspond to a part of the protrusions provided on the first electrode,
The width of the branch convex portion is the widest portion of the branch convex portion joined to the trunk convex portion, and is narrower from the portion joined to the trunk convex portion toward the tip end portion [H01].
[H06] The liquid crystal display device according to [H05], wherein the width of the branch convex portion is linearly narrowed from the portion joined to the trunk convex portion toward the tip portion.
[H07] The liquid crystal display device according to [H05] or [H06], wherein the first electrode is formed with a slit or a protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel.
[H08] << 4C structure of first electrode >>
The liquid crystal display device according to [H01], wherein a plurality of stepped portions are formed on a convex portion provided on the first electrode.
[H09] << Structure of 4C-1 of first electrode >>
The concavo-convex portion is the liquid crystal display device according to [H08], which includes a trunk convex portion extending through the center of the pixel and extending in a cross shape and a plurality of branch convex portions extending from the trunk convex portion toward the pixel peripheral portion.
[H10] The cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion is from the center of the cross-sectional shape of the stem convex portion to the edge of the cross-sectional shape of the stem convex portion. The liquid crystal display device according to [H09], which has a cross-sectional shape in which the stepped portion descends toward the surface.
[H11] The cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane parallel to the extending direction of the stem convex portion is from the center of the cross-sectional shape of the stem convex portion to the end of the cross-sectional shape of the stem convex portion. The liquid crystal display device according to [H09] or [H10], which has a cross-sectional shape in which the stepped portion descends toward the portion.
[H12] The cross-sectional shape of the branch convex portion when the branch convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion is from the center of the cross-sectional shape of the branch convex portion to the edge of the cross-sectional shape of the branch convex portion. The liquid crystal display device according to any one of [H09] to [H11], wherein the liquid crystal display device has a cross-sectional shape in which a stepped portion descends toward the surface.
[H13] The cross-sectional shape of the branch convex portion when the branch convex portion is cut in a virtual vertical plane parallel to the extending direction of the branch convex portion is the sectional shape of the branch convex portion from the trunk convex portion side of the cross-sectional shape of the branch convex portion. The liquid crystal display device according to any one of [H09] to [H12], wherein the liquid crystal display device has a cross-sectional shape in which a stepped portion descends toward an end of the substrate.
[H14] The liquid crystal display device according to any one of [H09] to [H13], wherein an alignment regulating portion is formed in a portion of the second electrode corresponding to the trunk convex portion.
[H15] << Structure of 4C-2 of first electrode >>
The uneven portion is a liquid crystal display device according to [H08], which includes a stem convex portion formed in a frame shape around the pixel and a plurality of branch convex portions extending from the stem convex portion toward the inside of the pixel.
[H16] The cross-sectional shape of the stem convex portion when the stem convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the stem convex portion is the cross-sectional shape of the stem convex portion from the outer edge of the cross-sectional shape of the stem convex portion. The liquid crystal display device according to [H15], which has a cross-sectional shape in which a stepped portion descends toward an inner edge.
[H17] The cross-sectional shape of the branch convex portion when the branch convex portion is cut in a virtual vertical plane orthogonal to the extending direction of the branch convex portion is from the center of the cross-sectional shape of the branch convex portion to the edge of the cross-sectional shape of the branch convex portion. The liquid crystal display device according to [H15] or [H16], which has a cross-sectional shape in which the stepped portion descends toward the surface.
[H18] The cross-sectional shape of the branch convex portion when the branch convex portion is cut in a virtual vertical plane parallel to the extending direction of the branch convex portion is the cross-sectional shape of the branch convex portion from the trunk convex portion side of the cross-sectional shape of the branch convex portion. The liquid crystal display device according to any one of [H15] to [H17], wherein the liquid crystal display device has a cross-sectional shape in which a stepped portion descends toward an end of the substrate.
[H19] The liquid crystal display device according to any one of [H15] to [H18], wherein the first electrode is provided with a slit or a protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel.
[H20] A convex structure is formed from the portion of the first substrate located between the pixels to the portion of the first substrate corresponding to the peripheral portion of the pixel,
The liquid crystal display device according to any one of [H09] to [H19], wherein a peripheral portion of the uneven portion is formed on a convex structure.
[H21] << 4D structure of first electrode >>
A convex structure is formed from a portion of the first substrate located between the pixels to a portion of the first substrate corresponding to the peripheral portion of the pixel,
The liquid crystal display device according to [H01], wherein a peripheral portion of the concavo-convex portion is formed on a convex structure.
[H22] << Structure 4D-1 of first electrode >>
The concavo-convex portion is the liquid crystal display device according to [H21], which includes a trunk convex portion extending through the center of the pixel and extending in a cross shape and a plurality of branch convex portions extending from the trunk convex portion toward the pixel peripheral portion.
[H23] The liquid crystal display device according to [H22], in which an alignment regulating portion is formed in a portion of the second electrode corresponding to the trunk convex portion.
[H24] << 4th D-2 structure of first electrode >>
The concavo-convex portion is a liquid crystal display device according to [H21], which includes a stem convex portion formed in a frame shape around the pixel and a plurality of branch convex portions extending from the stem convex portion toward the inside of the pixel.
[H25] The liquid crystal display device according to [H24], wherein the first electrode is formed with a slit or a protrusion that passes through the center of the pixel and is parallel to the periphery of the pixel.
[J01] << Structure 5A of first electrode >>
Assuming an X-axis and a Y-axis passing through the center of the pixel,
The plurality of convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of convex portions occupying the second quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate decreases,
The plurality of convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The liquid crystal display device according to any one of [C01] to [C08], wherein the plurality of convex portions occupying the fourth quadrant extend in parallel with a direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
[J02] Each of the protrusions extending from the X axis and occupying the first quadrant is joined to each of the protrusions extending from the X axis and occupying the fourth quadrant,
Each of the convex portions extending from the Y axis and occupying the first quadrant is joined to each of the convex portions extending from the Y axis and occupying the second quadrant,
Each of the protrusions extending from the X axis and occupying the second quadrant is joined to each of the protrusions extending from the X axis and occupying the third quadrant,
Each of the protrusions extending from the Y axis and occupying the third quadrant is joined to each of the protrusions extending from the Y axis and occupying the fourth quadrant [J01].
[J03] The liquid crystal display device according to [J02], in which a joint extending between the two convex portions is provided with a protruding portion extending toward the peripheral portion of the pixel.
[J04] The liquid crystal display device according to [J03], in which the protruding portion is surrounded by a plurality of line segments.
[J05] The liquid crystal display device according to [J03], in which the protrusion is surrounded by a single curve.
[J06] The liquid crystal display device according to [J03], in which the protruding portion is surrounded by a plurality of curves.
[J07] Each of the convex portions extending from the X axis or the vicinity thereof and occupying the first quadrant extends from the X axis or the vicinity thereof and is not joined to each of the convex portions occupying the fourth quadrant,
Each of the protrusions extending from the Y axis or its vicinity and occupying the first quadrant is not joined to each of the protrusions extending from the Y axis or its vicinity and occupying the second quadrant,
Each of the protrusions extending from the X axis or the vicinity thereof and occupying the second quadrant is not joined to each of the protrusions extending from the X axis or the vicinity thereof and occupying the third quadrant,
Each of the convex portions extending from the Y axis or the vicinity thereof and occupying the third quadrant extends from the Y axis or the vicinity thereof and is not joined to each of the convex portions occupying the fourth quadrant. [J01] .
[J08] The liquid crystal display device according to any one of [J01] to [J07], in which a width of the convex portion becomes narrower toward a peripheral portion of the pixel.
[J09] << 5A-1 structure of first electrode >>
The liquid crystal display device according to any one of [J01] to [J08], in which a slit portion is further formed in the first electrode.
[J10] The liquid crystal display device according to [J09], wherein the slit portion is formed in the convex region.
[J11] The liquid crystal display device according to [J10], wherein the slit portion is provided in a convex region including a central portion of the pixel.
[J12] The liquid crystal display device according to [J10], wherein a slit portion is formed in a convex region extending toward the central region of the pixel.
[J13] The liquid crystal display device according to [J10], wherein a slit portion is formed in a convex region provided in a region sandwiched between the convex portion extending toward the central region of the pixel and the Y axis.
[J14] The liquid crystal display device according to [J09], wherein a slit portion extending in parallel with the convex portion is formed at a top portion of the convex portion.
[J15] The liquid crystal display device according to [J09], wherein a slit portion extending in parallel with the concave portion is formed at a bottom portion of the concave portion.
[J16] << 5A-2 structure of first electrode >>
The liquid crystal display device according to any one of [J01] to [J13], wherein a depression is provided in the first electrode in the central region of the pixel.
[J17] The liquid crystal display device according to [J16], in which the recess is narrowed toward the first substrate.
[J18] The liquid crystal display device according to [J17], in which the depression has an inclination angle of 5 degrees to 60 degrees.
[J19] The liquid crystal display device according to any one of [J16] to [J18], wherein the outer edge of the recess has a circular shape.
[J20] The liquid crystal display device according to any one of [J16] to [J18], wherein the outer edge of the recess has a rectangular shape.
[J21] The liquid crystal display device according to [J20], in which an angle formed between the outer edge of the rectangular recess and the extending direction of the convex portion is 90 degrees.
[J22] The liquid crystal display device according to [J20], in which the angle formed between the outer edge of the rectangular recess and the extending direction of the convex portion is an acute angle.
[J23] The liquid crystal display device according to any one of [J16] to [J22], in which a central portion of the depression forms a part of the contact hole.
[J24] << 5A-3 structure of first electrode >>
The convex portion extending from the X axis or the vicinity thereof and occupying the first quadrant and the convex portion extending from the X axis or the vicinity thereof and occupying the fourth quadrant are formed in a mutually shifted state,
The convex portion extending from the Y axis or the vicinity thereof and occupying the first quadrant and the convex portion extending from the Y axis or the vicinity thereof and occupying the second quadrant are formed in a mutually shifted state,
The convex portion extending from the X axis or the vicinity thereof and occupying the second quadrant and the convex portion extending from the X axis or the vicinity thereof and occupying the third quadrant are formed in a mutually shifted state,
The protrusions extending from the Y axis or the vicinity thereof and occupying the third quadrant and the protrusions extending from the Y axis or the vicinity thereof and occupying the fourth quadrant are formed in a mutually shifted state [J01] to [J The liquid crystal display device according to any one of J23].
[J25] P is the pitch at which the protrusions are formed along the X axis. X And the formation pitch of the protrusions along the Y-axis is P Y When
The convex portion extending from the X axis or the vicinity thereof and occupying the first quadrant and the convex portion extending from the X axis or the vicinity thereof and occupying the fourth quadrant are mutually (P X / 2) formed in a shifted state,
The convex portion extending from the Y axis or the vicinity thereof and occupying the first quadrant and the convex portion extending from the Y axis or the vicinity thereof and occupying the second quadrant are mutually (P Y / 2) formed in a shifted state,
A convex portion extending from the X axis or the vicinity thereof and occupying the second quadrant and a convex portion extending from the X axis or the vicinity thereof and occupying the third quadrant are mutually (P X / 2) formed in a shifted state,
A convex portion extending from the Y axis or the vicinity thereof and occupying the third quadrant and a convex portion extending from the Y axis or the vicinity thereof and occupying the fourth quadrant are mutually (P Y / 2) The liquid crystal display device according to [J24] formed in a shifted state.
[K01] << 5B structure of first electrode >>
Assuming an X-axis and a Y-axis passing through the center of the pixel,
The plurality of concavo-convex portions are constituted by a trunk convex portion extending on the X axis and the Y axis, and a plurality of branch convex portions extending from the side of the trunk convex portion toward the peripheral portion of the pixel,
The direction in which the side portion of the trunk convex portion that is not joined to the branch convex portion is not parallel to the X axis and not parallel to the Y axis is described in any one of [C01] to [C08]. Liquid crystal display device.
[K02] The trunk convex portions constituting the plurality of concave and convex portions are formed in a frame shape around the pixel instead of being formed on the X axis and the Y axis. The liquid crystal display device according to [K01] .
[K03] The liquid crystal display device according to [K01] or [K02], wherein a side portion of the trunk convex portion that is not joined to the branch convex portion is linear.
[K04] The liquid crystal display device according to any one of [K01] to [K03], wherein a side portion of the trunk convex portion that is not joined to the branch convex portion is curved.
[K05] The liquid crystal display according to any one of [K01] to [K04], wherein a width of a portion of the trunk convex portion that is not joined to the branch convex portion is narrowed toward a tip portion of the trunk convex portion. apparatus.
[K06] The liquid crystal display device according to any one of [K01] to [K05], wherein the width of the branch convex portion becomes narrower toward the peripheral portion of the pixel.
[K07] << 5th B-1 structure of first electrode >>
The liquid crystal display device according to any one of [K01] to [K06], in which a slit portion is further formed in the first electrode.
[K08] The liquid crystal display device according to [K07], wherein the slit portion is formed in the convex region.
[K09] The liquid crystal display device according to [K08], wherein the slit portion is provided in a convex region including a central portion of the pixel.
[K10] The liquid crystal display device according to [K08], wherein a slit portion is formed in a convex region extending toward the center region of the pixel.
[K11] The liquid crystal display device according to [K08], in which a slit portion is formed in a convex region provided in a region sandwiched between the branch convex portion extending toward the central region of the pixel and the Y axis.
[K12] The liquid crystal display device according to [K07], in which a slit portion extending in parallel with the convex portion is formed at a top portion of the convex portion.
[K13] The liquid crystal display device according to [K07], wherein a slit portion extending in parallel with the concave portion is formed at a bottom portion of the concave portion.
[K14] << 5th B-2 structure of first electrode >>
The liquid crystal display device according to any one of [K01] to [K11], wherein a depression is provided in the first electrode in the central region of the pixel.
[K15] The liquid crystal display device according to [K14], in which the recess is narrowed toward the first substrate.
[K16] The liquid crystal display device according to [K15], wherein the depression has an inclination angle of 5 degrees to 60 degrees.
[K17] The liquid crystal display device according to any one of [K14] to [K16], wherein the outer edge of the recess has a circular shape.
[K18] The liquid crystal display device according to any one of [K14] to [K16], wherein the outer edge of the recess has a rectangular shape.
[K19] The liquid crystal display device according to [K18], in which an angle formed between the outer edge of the rectangular recess and the extending direction of the convex portion is 90 degrees.
[K20] The liquid crystal display device according to [K18], in which an angle formed between the outer edge of the rectangular recess and the extending direction of the convex portion is an acute angle.
[K21] The liquid crystal display device according to any one of [K14] to [K20], in which a central portion of the depression forms a part of the contact hole.
[K22] The plurality of branch protrusions occupying the first quadrant extend in parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The liquid crystal display device according to any one of [K01] to [K21], wherein the plurality of branch convex portions occupying the fourth quadrant extend in parallel with a direction in which the value of the Y coordinate decreases when the value of the X coordinate increases. .
[K23] << 5th B-3 structure of first electrode >>
The branch convex part extending from the trunk convex part on the X axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the X axis and occupying the fourth quadrant are formed in a mutually shifted state. And
The branch convex part extending from the trunk convex part on the Y axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the second quadrant are formed in a mutually shifted state. And
The branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are formed in a mutually shifted state. And
The branch convex part extending from the trunk convex part on the Y axis and occupying the third quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the fourth quadrant are formed in a mutually shifted state. The liquid crystal display device according to any one of [K01] to [K22].
[K24] P is the pitch of branch protrusions along the X-axis. X And the pitch of the branch protrusions along the Y axis is P Y When
The branch convex portion extending from the trunk convex portion on the X axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the fourth quadrant are mutually (P X / 2) formed in a shifted state,
The branch convex portion extending from the trunk convex portion on the Y axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the Y axis and occupying the second quadrant are mutually (P Y / 2) formed in a shifted state,
The branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are mutually (P X / 2) formed in a shifted state,
A branch convex portion extending from the trunk convex portion on the Y axis and occupying the third quadrant and a branch convex portion extending from the trunk convex portion on the Y axis and occupying the fourth quadrant are mutually (P Y / 2) The liquid crystal display device according to [K23], which is formed in a shifted state.
[L01] << 5C structure of first electrode >>
The liquid crystal display device according to any one of [C01] to [C08], in which a slit portion is further formed in the first electrode.
[L02] The liquid crystal display device according to [L01], wherein the slit portion is formed in a convex region.
[L03] The liquid crystal display device according to [L02], wherein the slit portion is provided in a convex region including a central portion of the pixel.
[L04] The liquid crystal display device according to [L02], in which a slit is formed in a convex region extending toward the center region of the pixel.
[L05] The liquid crystal display device according to [L02], wherein a slit portion is formed in a convex region provided in a region sandwiched between the convex portion extending toward the central region of the pixel and the Y axis.
[L06] The liquid crystal display device according to [L01], wherein a slit portion extending in parallel with the convex portion is formed at a top portion of the convex portion.
[L07] The liquid crystal display device according to [L01], wherein a slit portion extending in parallel with the concave portion is formed at a bottom portion of the concave portion.
[L08] The liquid crystal display device according to any one of [L01] to [L05], in which a width of the convex portion becomes narrower toward a peripheral portion of the pixel.
[L09] << 5th C-2 structure of first electrode >>
The liquid crystal display device according to any one of [L01] to [L08], wherein the first electrode in the center region of the pixel is provided with a depression.
[L10] The liquid crystal display device according to [L09], in which the recess is narrowed toward the first substrate.
[L11] The liquid crystal display device according to [L10], wherein the depression has an inclination angle of 5 degrees to 60 degrees.
[L12] The liquid crystal display device according to any one of [L09] to [L11], wherein a shape of an outer edge of the recess is a circle.
[L13] The liquid crystal display device according to any one of [L09] to [L11], wherein a shape of an outer edge of the recess is a rectangle.
[L14] The liquid crystal display device according to [L13], in which the angle formed by the outer edge of the rectangular recess and the direction in which the protrusion extends is 90 degrees.
[L15] The liquid crystal display device according to [L13], in which the angle formed between the outer edge of the rectangular recess and the extending direction of the convex portion is an acute angle.
[L16] The liquid crystal display device according to any one of [L09] to [L15], in which a central portion of the depression forms part of a contact hole.
[L17] When the X axis and the Y axis passing through the center of the pixel are assumed,
The plurality of concavo-convex portions are constituted by a stem convex portion extending on the X axis and the Y axis, and a plurality of branch convex portions extending from the side of the stem convex portion toward the peripheral portion of the pixel [L01] to [L01]. The liquid crystal display device according to any one of [L16].
[L18] The plurality of branch convex portions occupying the first quadrant extend in parallel with the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The liquid crystal display device according to [L17], wherein the plurality of branch convex portions occupying the fourth quadrant extend in parallel with a direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
[L19] << 5th C-3 structure of first electrode >>
The branch convex part extending from the trunk convex part on the X axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the X axis and occupying the fourth quadrant are formed in a mutually shifted state. And
The branch convex part extending from the trunk convex part on the Y axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the second quadrant are formed in a mutually shifted state. And
The branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are formed in a mutually shifted state. And
The branch convex part extending from the trunk convex part on the Y axis and occupying the third quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the fourth quadrant are formed in a mutually shifted state. The liquid crystal display device according to [L18].
[L20] P is the pitch of the branch protrusions along the X-axis. X And the pitch of the branch protrusions along the Y axis is P Y When
The branch convex portion extending from the trunk convex portion on the X axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the fourth quadrant are mutually (P X / 2) formed in a shifted state,
The branch convex portion extending from the trunk convex portion on the Y axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the Y axis and occupying the second quadrant are mutually (P Y / 2) formed in a shifted state,
The branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are mutually (P X / 2) formed in a shifted state,
A branch convex portion extending from the trunk convex portion on the Y axis and occupying the third quadrant and a branch convex portion extending from the trunk convex portion on the Y axis and occupying the fourth quadrant are mutually (P Y / 2) The liquid crystal display device according to [L19], which is formed in a shifted state.
[M01] << 5D structure of first electrode >>
The liquid crystal display device according to any one of [C01] to [C08], wherein a depression is provided in the first electrode in the central region of the pixel.
[M02] The liquid crystal display device according to [M01], in which the recess is narrowed toward the first substrate.
[M03] The liquid crystal display device according to [M02], wherein the depression has an inclination angle of 5 degrees to 60 degrees.
[M04] The liquid crystal display device according to any one of [M01] to [M03], wherein a shape of an outer edge of the recess is a circle.
[M05] The liquid crystal display device according to any one of [M01] to [M03], wherein the outer edge of the recess has a rectangular shape.
[M06] The liquid crystal display device according to [M05], in which an angle formed between the outer edge of the rectangular recess and the extending direction of the convex portion is 90 degrees.
[M07] The liquid crystal display device according to [M05], in which the angle formed by the outer edge of the rectangular recess and the extending direction of the convex portion is an acute angle.
[M08] The liquid crystal display device according to any one of [M01] to [M07], in which a central portion of the depression forms part of a contact hole.
[M09] When the X axis and the Y axis passing through the center of the pixel are assumed,
The plurality of concavo-convex portions are configured by a trunk convex portion extending on the X axis and the Y axis, and a plurality of branch convex portions extending from the side of the trunk convex portion toward the peripheral portion of the pixel. The liquid crystal display device according to any one of [M08].
[M10] The plurality of branch convex portions occupying the first quadrant extend in parallel with the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The liquid crystal display device according to [M09], wherein the plurality of branch convex portions occupying the fourth quadrant extend in parallel with a direction in which the value of the Y coordinate decreases when the value of the X coordinate increases.
[M11] << 5th D-3 structure of first electrode >>
The branch convex part extending from the trunk convex part on the X axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the X axis and occupying the fourth quadrant are formed in a mutually shifted state. And
The branch convex part extending from the trunk convex part on the Y axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the second quadrant are formed in a mutually shifted state. And
The branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are formed in a mutually shifted state. And
The branch convex part extending from the trunk convex part on the Y axis and occupying the third quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the fourth quadrant are formed in a mutually shifted state. The liquid crystal display device according to [M10].
[M12] P is the pitch of the branch protrusions along the X axis. X And the pitch of the branch protrusions along the Y axis is P Y When
The branch convex portion extending from the trunk convex portion on the X axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the fourth quadrant are mutually (P X / 2) formed in a shifted state,
The branch convex portion extending from the trunk convex portion on the Y axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the Y axis and occupying the second quadrant are mutually (P Y / 2) formed in a shifted state,
The branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are mutually (P X / 2) formed in a shifted state,
A branch convex portion extending from the trunk convex portion on the Y axis and occupying the third quadrant and a branch convex portion extending from the trunk convex portion on the Y axis and occupying the fourth quadrant are mutually (P Y / 2) The liquid crystal display device according to [M11], which is formed in a shifted state.
[N01] << 5th E structure of first electrode >>
Assuming an X-axis and a Y-axis passing through the center of the pixel,
The plurality of concavo-convex portions are constituted by a trunk convex portion extending on the X axis and the Y axis, and a plurality of branch convex portions extending from the side of the trunk convex portion toward the peripheral portion of the pixel,
The plurality of branch convex portions occupying the first quadrant extend parallel to the direction in which the value of the Y coordinate increases when the value of the X coordinate increases,
The plurality of branch convex portions occupying the second quadrant extend in parallel to the direction in which the Y coordinate value increases when the X coordinate value decreases,
The plurality of branch convex portions occupying the third quadrant extend in parallel to the direction in which the Y coordinate value decreases when the X coordinate value decreases,
The plurality of branch convex portions occupying the fourth quadrant extend in parallel to the direction in which the value of the Y coordinate decreases when the value of the X coordinate increases,
The branch convex part extending from the trunk convex part on the X axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the X axis and occupying the fourth quadrant are formed in a mutually shifted state. And
The branch convex part extending from the trunk convex part on the Y axis and occupying the first quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the second quadrant are formed in a mutually shifted state. And
The branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are formed in a mutually shifted state. And
The branch convex part extending from the trunk convex part on the Y axis and occupying the third quadrant and the branch convex part extending from the trunk convex part on the Y axis and occupying the fourth quadrant are formed in a mutually shifted state. The liquid crystal display device according to any one of [C01] to [C08].
[N02] P is the pitch of the branch protrusions along the X-axis. X And the pitch of the branch protrusions along the Y axis is P Y When
The branch convex portion extending from the trunk convex portion on the X axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the fourth quadrant are mutually (P X / 2) formed in a shifted state,
The branch convex portion extending from the trunk convex portion on the Y axis and occupying the first quadrant and the branch convex portion extending from the trunk convex portion on the Y axis and occupying the second quadrant are mutually (P Y / 2) formed in a shifted state,
The branch convex portion extending from the trunk convex portion on the X axis and occupying the second quadrant and the branch convex portion extending from the trunk convex portion on the X axis and occupying the third quadrant are mutually (P X / 2) formed in a shifted state,
A branch convex portion extending from the trunk convex portion on the Y axis and occupying the third quadrant and a branch convex portion extending from the trunk convex portion on the Y axis and occupying the fourth quadrant are mutually (P Y / 2) The liquid crystal display device according to [N01], which is formed in a shifted state.
10,10A,10B,10C・・・画素、20・・・第1基板(TFT基板)、20’・・・絶縁膜、21・・・第1配向膜、22・・・平滑化膜、23・・・カラーフィルタ層、24・・・透明導電材料層、30・・・TFT層、31・・・ゲート電極、32・・・ゲート絶縁層、33・・・半導体層(チャネル形成領域)、34・・・ソース/ドレイン電極、35・・・接続孔(コンタクトホール)、40,140,240,340,1140,1240,2140,2240,2340,2440,3140,3240,3340,3440・・・第1電極(画素電極)、41,42,43・・・平坦化層、44・・・第1配向規制部(第1スリット部)、1140A,3340A・・・第1透明導電材料層、1140B,3340B・・・第2透明導電材料層、141,241,341,1141,1241,2141,2241,2341,2441,3141,3241,3341,3441・・・凹凸部、141A,1141A・・・凹凸部の周辺部、142,242,342,1142,1242,2142,2242,2342,2442・・・凸部、143,243,343A,343B,1143,1243,2143,2243,2343,2443,3243,3343,3443・・・幹凸部(主凸部)、1143A,1143B,1143C,1243A,1243B,2343A,2343B,2343C,2443A,2443B,2443C,3343A,3343B,3343C・・・幹凸部の頂面、3243’・・・幹凸部の側辺部分、144,244,344,1144,1244,2144,2244,2344,2444,3144A,3144A1,3144A11,3144A12,3144A2,3144A21,3144A22,3144A3,3144A31,3144A32,3144A4,3144A41,3144A42,3144B,3144C,3144C1,3144C11,3144C12,3144C2,3144C21,3144C22,3144C3,3144C31,3144C32,3144C4,3144C41,3144C42,3144D,3144D1,3144D11,3144D12,3144D2,3144D21,3144D22,3144D3,3144D31,3144D32,3144D4,3144D41,3144D42,3244A,3244A1,3244A11,3244A12,3244A2,3244A21,3244A22,3244A3,3244A31,3244A32,3244A4,3244A41,3244A42,3344,3444A,3444A1,3444A11,3444A12,3444A2,3444A21,3444A22,3444A3,3444A31,3444A32,3444A4,3444A41,3444A42・・・枝凸部(副凸部)、3144B’・・・2つの凸部の接合部、3144E’・・・凸部領域、1144A,1144B,1244A,1244B,2344A,2344B,2444A,2444B,3344A,33344B・・・枝凸部の頂面、2144a,2244a・・・幹凸部と接合する枝凸部の部分、2144b,2244b・・・枝凸部の先端部、145,245,345,1145,1245,2145,2245,2345,2445,3145,3245,3345,3445・・・凹部、146,246,346,1146,1246,2146,2246,2346,2446,3146,3246,3346,3446・・・画素と画素との間に位置する第1基板の部分、147,1147・・・凸構造、1147A・・・ブラックマトリクス、3151・・・突出部、3152,3252・・・スリット部、3152A・・・中心領域、3153,3253・・・窪み、3153A・・・窪みの外縁、50・・・第2基板(CF基板)、51・・・第2配向膜、60,160・・・第2電極(対向電極)、161・・・配向規制部、162・・・スリット部、163・・・突起部(リブ)、248,1248・・・スリット部、249,1249・・・突起部(リブ)、70・・・液晶層、71,71A,71B,71C・・・液晶分子、80・・・表示領域、81・・・ソースドライバ、82・・・ゲートドライバ、83・・・タイミングコントローラ、84・・・電源回路、91・・・ソース線、92・・・ゲート線、93・・・TFT(トランジスタ)、94・・・キャパシタ、A・・・第1の側鎖、B・・・第2の側鎖、Cr・・・連結部、Mc(Mc1,Mc2,Mc3)・・・主鎖 10, 10A, 10B, 10C ... pixels, 20 ... first substrate (TFT substrate), 20 '... insulating film, 21 ... first alignment film, 22 ... smoothing film, 23 ... Color filter layer, 24 ... Transparent conductive material layer, 30 ... TFT layer, 31 ... Gate electrode, 32 ... Gate insulating layer, 33 ... Semiconductor layer (channel formation region), 34 ... Source / drain electrodes, 35 ... Connection holes (contact holes), 40, 140, 240, 340, 1140, 1240, 2140, 2240, 2340, 2440, 3140, 3240, 3340, 3440 ... First electrode (pixel electrode), 41, 42, 43... Flattened layer, 44... First alignment regulating portion (first slit portion), 1140A, 3340A ... First transparent conductive material layer, 1140B , 3340B ... 2nd transparent conductive material layer, 141, 241, 341, 1141, 1241, 2141, 2241, 2241, 2441, 3141, 3241, 3341, 3441 ... uneven part, 141A, 1141A ... of uneven part Peripheral part, 142, 242, 342, 1142, 1242, 2142, 2242, 2342, 2442 ... convex part, 143, 243, 343A, 343B, 1143, 1243, 2143, 2243, 2343, 2443, 3243, 3343, 3443 ... trunk convex part (main convex part), 1143A, 1143B, 1143C, 1243A, 1243B, 2343A, 2343B, 2343C, 2443A, 2443B, 2443C, 3343A, 3343B, 3343C ... top surface of the trunk convex part, 3243 ′ ・ ・ ・ Side side part of trunk convex part, 1 44,244,344,1144,1244,2144,2244,2344,2444,3144A, 3144A 1, 3144A 11, 3144A 12, 3144A 2, 3144A 21, 3144A 22, 3144A 3, 3144A 31, 3144A 32, 3144A 4, 3144A 41, 3144A 42, 3144B, 3144C, 3144C 1, 3144C 11, 3144C 12, 3144C 2, 3144C 21, 3144C 22, 3144C 3, 3144C 31, 3144C 32, 3144C 4, 3144C 41, 3144C 42, 3144D, 3144D 1 , 3144D 11, 3144D 12, 3144D 2, 3144D 21, 3144D 22, 3144D 3, 3144D 31, 3144D 32, 3144D 4, 3144D 41, 3144D 42, 3244A, 32 4A 1, 3244A 11, 3244A 12 , 3244A 2, 3244A 21, 3244A 22, 3244A 3, 3244A 31, 3244A 32, 3244A 4, 3244A 41, 3244A 42, 3344,3444A, 3444A 1, 3444A 11, 3444A 12, 3444A 2 , 3444A 21 , 3444A 22 , 3444A 3 , 3444A 31 , 3444A 32 , 3444A 4 , 3444A 41 , 3444A 42 ... Branch convex part (sub-convex part), 3144B ′. 3144E '... convex part area, 1144A, 1144B, 1244A, 1244B, 2344A, 2344B, 2444A, 2444B, 3344A, 33344B ... the top surface of the branch convex part, 2144a, 2244a ... joined to the trunk convex part Branch convex part, 2144b, 2244 b: tip portion of branch convex portion, 145, 245, 345, 1145, 1245, 2145, 2245, 2345, 2445, 3145, 3245, 3345, 3445 ... concave portion, 146, 246, 346, 1146, 1246 , 2146, 2246, 2346, 2446, 3146, 3246, 3346, 3446 ... the portion of the first substrate located between the pixels, 147, 1147 ... convex structure, 1147A ... black matrix, 3151 ... Projection part, 3152, 3252 ... Slit part, 3152A ... Central region, 3153, 3253 ... Depression, 3153A ... Outer edge of depression, 50 ... Second substrate (CF substrate) , 51 ... 2nd alignment film, 60, 160 ... 2nd electrode (counter electrode), 161 ... Orientation control part, 162 ... Lit part, 163 ... Projection part (rib), 248, 1248 ... Slit part, 249, 1249 ... Projection part (rib), 70 ... Liquid crystal layer, 71, 71A, 71B, 71C ... Liquid crystal molecules, 80 ... display area, 81 ... source driver, 82 ... gate driver, 83 ... timing controller, 84 ... power supply circuit, 91 ... source line, 92 ... Gate line, 93 ... TFT (transistor), 94 ... Capacitor, A ... First side chain, B ... Second side chain, Cr ... Connector, Mc (Mc1, Mc2) , Mc3) ... main chain

Claims (9)

  1.  一対の基板の対向面側に設けられた第1配向膜及び第2配向膜、並びに、
     第1配向膜と第2配向膜との間に配され、負の誘電率異方性を有する液晶分子を含む液晶層、
    を有する液晶表示素子を備えており、
     少なくとも第1配向膜は、第1の側鎖及び第2の側鎖を有する高分子化合物が架橋又は重合又は変形した化合物を含み、
     第1の側鎖は、架橋性官能基又は重合性官能基又は感光性官能基を有し、
     第2の側鎖は、誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し、
     液晶分子は、第1配向膜によってプレチルトが付与されている液晶表示装置。
    A first alignment film and a second alignment film provided on opposite surfaces of the pair of substrates, and
    A liquid crystal layer including liquid crystal molecules disposed between the first alignment film and the second alignment film and having negative dielectric anisotropy;
    A liquid crystal display element having
    At least the first alignment film includes a compound obtained by crosslinking or polymerizing or deforming a polymer compound having the first side chain and the second side chain,
    The first side chain has a crosslinkable functional group, a polymerizable functional group or a photosensitive functional group,
    The second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment,
    A liquid crystal display device in which liquid crystal molecules are given a pretilt by a first alignment film.
  2.  一対の基板の対向面側に設けられた第1配向膜及び第2配向膜、並びに、
     第1配向膜と第2配向膜との間に配され、負の誘電率異方性を有する液晶分子を含む液晶層、
    を有する液晶表示素子を備えており、
     少なくとも第1配向膜は、第1の側鎖及び第2の側鎖を有する高分子化合物が架橋又は重合又は変形した化合物を含み、
     第1の側鎖は、架橋性官能基又は重合性官能基又は感光性官能基を有し、
     第2の側鎖は、その長軸方向から0度を超え、90度未満の角度の範囲内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し、
     液晶分子は、第1配向膜によってプレチルトが付与されている液晶表示装置。
    A first alignment film and a second alignment film provided on opposite surfaces of the pair of substrates, and
    A liquid crystal layer including liquid crystal molecules disposed between the first alignment film and the second alignment film and having negative dielectric anisotropy;
    A liquid crystal display element having
    At least the first alignment film includes a compound obtained by crosslinking or polymerizing or deforming a polymer compound having the first side chain and the second side chain,
    The first side chain has a crosslinkable functional group, a polymerizable functional group or a photosensitive functional group,
    The second side chain has a structure that has a dipole moment within an angle range of more than 0 degrees and less than 90 degrees from its major axis direction, and induces vertical orientation,
    A liquid crystal display device in which liquid crystal molecules are given a pretilt by a first alignment film.
  3.  第2の側鎖は、フッ素原子、塩素原子、-CN、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-OCF2CHF2、又は、-OCF2CHFCF3のいずれかを含んでいる請求項1又は請求項2に記載の液晶表示装置。 The second side chain is a fluorine atom, a chlorine atom, —CN, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 2 CHF 2 , or —OCF 2 CHFCF 3 The liquid crystal display device according to claim 1, comprising any one of the above.
  4.  一対の基板の対向面側に設けられた第1配向膜及び第2配向膜、並びに、
     第1配向膜と第2配向膜との間に配され、負の誘電率異方性を有する液晶分子を含む液晶層、
    を有する液晶表示素子を備えており、
     少なくとも第1配向膜は、第1の側鎖及び第2の側鎖を有する高分子化合物が架橋又は重合又は変形した化合物を含み、
     第1の側鎖は、架橋性官能基又は重合性官能基又は感光性官能基を有し、
     第2の側鎖は、以下の構造式(11)を有し、
     液晶分子は、第1配向膜によってプレチルトが付与されている液晶表示装置。
    Figure JPOXMLDOC01-appb-I000001
    ここで、
    (a)m及びnは、それぞれ独立に、0又は1であり、
    (b)環Rは、それぞれ独立に、フェニレン基、シクロアルキレン基、フッ素原子若しくは塩素原子で置換されたフェニレン基、又は、フッ素原子若しくは塩素原子で置換されたシクロアルキレン基を表し、
    (c)環Xは、フェニレン基又はシクロアルキレン基を表し、
    (d)A4に関して、
     フッ素原子、塩素原子、-CN、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-OCF2CHF2、及び、-OCF2CHFCF3から構成された群を第1群とし、
     炭素原子数1乃至18のフッ素含有アルキル基、フッ素含有芳香環基、フッ素含有脂肪族環基、フッ素含有複素環基、及び、これらから成る大環状基から構成された群を第2群とし、但し、第2群におけるフッ素含有アルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
     炭素原子数1乃至18のアルキル基、脂肪族環基、複素環基、及び、これらから成る大環状基から構成された群を第3群とし、但し、第3群におけるアルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
     炭素原子数3乃至18のフッ素含有アルキル基、フッ素含有芳香環基、フッ素含有脂肪族環基、フッ素含有複素環基、及び、これらから成る大環状基から構成された群を第4群とし、但し、第4群におけるフッ素含有アルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
     炭素原子数3乃至18のアルキル基、脂肪族環基、複素環基、及び、これらから成る大環状基から構成された群を第5群とし、但し、第5群におけるアルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
    (d-1)A1,A2,A3の全てが水素原子であり、且つ、m=1,n=0の場合、又は、m=0,n=1の場合、又は、m=n=1の場合、A4は、第1群又は第2群から選択された1種類の原子又は基であり、
    (d-2)A3が水素原子であり、且つ、m=0,n=0の場合、A4は、第4群から選択された1種類の基であり、
    (d-3)A1,A2,A3の少なくとも1つがフッ素原子又は塩素原子であり、且つ、m=1,n=0の場合、又は、m=0,n=1の場合、又は、m=n=1の場合、A4は、水素原子、第1群、第2群及び第3群から選択された1種類の原子又は基であり、
    (d-4)A3がフッ素原子又は塩素原子であり、且つ、m=0,n=0の場合、A4は、水素原子、第1群、第4群及び第5群から選択された1種類の原子又は基である。
    A first alignment film and a second alignment film provided on opposite surfaces of the pair of substrates, and
    A liquid crystal layer including liquid crystal molecules disposed between the first alignment film and the second alignment film and having negative dielectric anisotropy;
    A liquid crystal display element having
    At least the first alignment film includes a compound obtained by crosslinking or polymerizing or deforming a polymer compound having the first side chain and the second side chain,
    The first side chain has a crosslinkable functional group, a polymerizable functional group or a photosensitive functional group,
    The second side chain has the following structural formula (11):
    A liquid crystal display device in which liquid crystal molecules are given a pretilt by a first alignment film.
    Figure JPOXMLDOC01-appb-I000001
    here,
    (A) m and n are each independently 0 or 1,
    (B) each ring R independently represents a phenylene group, a cycloalkylene group, a phenylene group substituted with a fluorine atom or a chlorine atom, or a cycloalkylene group substituted with a fluorine atom or a chlorine atom;
    (C) Ring X represents a phenylene group or a cycloalkylene group,
    With respect to (d) A 4,
    A group consisting of fluorine atom, chlorine atom, —CN, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 2 CHF 2 , and —OCF 2 CHFCF 3 A group,
    A group composed of a fluorine-containing alkyl group having 1 to 18 carbon atoms, a fluorine-containing aromatic ring group, a fluorine-containing aliphatic ring group, a fluorine-containing heterocyclic group, and a macrocyclic group composed of these is a second group, However, in the fluorine-containing alkyl group in the second group, any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced by —CH═CH— or —C≡C—
    A group composed of an alkyl group having 1 to 18 carbon atoms, an aliphatic cyclic group, a heterocyclic group, and a macrocyclic group composed of these is defined as the third group, provided that the alkyl group in the third group is Any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced with —CH═CH— or — May be replaced by C≡C-
    A group composed of a fluorine-containing alkyl group having 3 to 18 carbon atoms, a fluorine-containing aromatic ring group, a fluorine-containing aliphatic ring group, a fluorine-containing heterocyclic group, and a macrocyclic group composed of these is defined as a fourth group, However, in the fluorine-containing alkyl group in the fourth group, any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced by —CH═CH— or —C≡C—
    A group composed of an alkyl group having 3 to 18 carbon atoms, an aliphatic ring group, a heterocyclic group, and a macrocyclic group composed of these is defined as a fifth group, provided that the alkyl group in the fifth group is Any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced with —CH═CH— or — May be replaced by C≡C-
    (D-1) All of A 1 , A 2 , A 3 are hydrogen atoms and m = 1, n = 0, or m = 0, n = 1, or m = n When = 1, A 4 is one kind of atom or group selected from the first group or the second group,
    (D-2) When A 3 is a hydrogen atom and m = 0 and n = 0, A 4 is one kind of group selected from the fourth group,
    (D-3) When at least one of A 1 , A 2 , A 3 is a fluorine atom or a chlorine atom and m = 1, n = 0, or m = 0, n = 1, or , M = n = 1, A 4 is a hydrogen atom, one kind of atom or group selected from the first group, the second group and the third group,
    (D-4) When A 3 is a fluorine atom or a chlorine atom, and m = 0 and n = 0, A 4 is selected from a hydrogen atom, the first group, the fourth group, and the fifth group One kind of atom or group.
  5.  第2の側鎖は、以下の構造式(12)を有する請求項4に記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-I000002
    ここで、
    (e)A0は、炭素原子数1乃至17のアルキレン基、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は、炭素原子数1乃至17のアルキレン-エーテル基を表す。
    The liquid crystal display device according to claim 4, wherein the second side chain has the following structural formula (12).
    Figure JPOXMLDOC01-appb-I000002
    here,
    (E) A 0 is an alkylene group having 1 to 17 carbon atoms, —O—, —COO—, —OCO—, —NHCO—, —CONH—, or an alkylene-ether group having 1 to 17 carbon atoms. Represents.
  6.  第2の側鎖は、以下の構造式(13)を有する請求項4に記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-I000003
    ここで、
    (f-1)A01は、炭素数1乃至20の直鎖状又は分岐状の2価の、エーテル基あるいはエステル基を含むことある有機基、又は、エーテル、エステル、エーテルエステル、アセタール、ケタール、ヘミアセタール及びヘミケタールから成る群から選択された少なくとも1種の結合基を表し、
    (f-2)A02は、カルコン、シンナメート、シンナモイル、クマリン、マレイミド、ベンゾフェノン、ノルボルネン、オリザノール及びキトサンから成る群から選択された1種類の基、又は、アクリロイル、メタクリロイル、ビニル、エポキシ及びオキセタンの内のいずれか1種の構造を含む2価の基、又は、エチニレン基を表す。
    The liquid crystal display device according to claim 4, wherein the second side chain has the following structural formula (13).
    Figure JPOXMLDOC01-appb-I000003
    here,
    (F-1) A 01 is a C 1-20 linear or branched divalent organic group that may contain an ether group or an ester group, or an ether, ester, ether ester, acetal, or ketal. Represents at least one linking group selected from the group consisting of hemiacetal and hemiketal;
    (F-2) A 02 is one group selected from the group consisting of chalcone, cinnamate, cinnamoyl, coumarin, maleimide, benzophenone, norbornene, oryzanol and chitosan, or acryloyl, methacryloyl, vinyl, epoxy and oxetane. It represents a divalent group containing any one of the structures, or an ethynylene group.
  7.  一対の基板の一方に、架橋性官能基又は重合性官能基を有する第1の側鎖、及び、第2の側鎖を有する高分子化合物から成る第1配向膜を形成し、一対の基板の他方に、第2配向膜を形成した後、
     一対の基板を、第1配向膜と第2配向膜とが対向するように配置し、第1配向膜と第2配向膜との間に、負の誘電率異方性を有する液晶分子を含む液晶層を封止し、次いで、
     高分子化合物における第1の側鎖を架橋又は重合させて、液晶分子にプレチルトを付与する、
    工程を含み、
     第2の側鎖は、誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
     第2の側鎖は、その長軸方向から0度を超え、90度未満の角度の範囲内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
     第2の側鎖は、以下の構造式(11)を有する液晶表示装置の製造方法。
    Figure JPOXMLDOC01-appb-I000004
    ここで、
    (a)m及びnは、それぞれ独立に、0又は1であり、
    (b)環Rは、それぞれ独立に、フェニレン基、シクロアルキレン基、フッ素原子若しくは塩素原子で置換されたフェニレン基、又は、フッ素原子若しくは塩素原子で置換されたシクロアルキレン基を表し、
    (c)環Xは、フェニレン基又はシクロアルキレン基を表し、
    (d)A4に関して、
     フッ素原子、塩素原子、-CN、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-OCF2CHF2、及び、-OCF2CHFCF3から構成された群を第1群とし、
     炭素原子数1乃至18のフッ素含有アルキル基、フッ素含有芳香環基、フッ素含有脂肪族環基、フッ素含有複素環基、及び、これらから成る大環状基から構成された群を第2群とし、但し、第2群におけるフッ素含有アルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
     炭素原子数1乃至18のアルキル基、脂肪族環基、複素環基、及び、これらから成る大環状基から構成された群を第3群とし、但し、第3群におけるアルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
     炭素原子数3乃至18のフッ素含有アルキル基、フッ素含有芳香環基、フッ素含有脂肪族環基、フッ素含有複素環基、及び、これらから成る大環状基から構成された群を第4群とし、但し、第4群におけるフッ素含有アルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
     炭素原子数3乃至18のアルキル基、脂肪族環基、複素環基、及び、これらから成る大環状基から構成された群を第5群とし、但し、第5群におけるアルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
    (d-1)A1,A2,A3の全てが水素原子であり、且つ、m=1,n=0の場合、又は、m=0,n=1の場合、又は、m=n=1の場合、A4は、第1群又は第2群から選択された1種類の原子又は基であり、
    (d-2)A3が水素原子であり、且つ、m=0,n=0の場合、A4は、第4群から選択された1種類の基であり、
    (d-3)A1,A2,A3の少なくとも1つがフッ素原子又は塩素原子であり、且つ、m=1,n=0の場合、又は、m=0,n=1の場合、又は、m=n=1の場合、A4は、水素原子、第1群、第2群及び第3群から選択された1種類の原子又は基であり、
    (d-4)A3がフッ素原子又は塩素原子であり、且つ、m=0,n=0の場合、A4は、水素原子、第1群、第4群及び第5群から選択された1種類の原子又は基である。
    A first alignment film composed of a polymer compound having a first side chain having a crosslinkable functional group or a polymerizable functional group and a second side chain is formed on one of the pair of substrates. On the other hand, after forming the second alignment film,
    A pair of substrates are disposed so that the first alignment film and the second alignment film face each other, and liquid crystal molecules having negative dielectric anisotropy are included between the first alignment film and the second alignment film. Sealing the liquid crystal layer, then
    Crosslinking or polymerizing the first side chain in the polymer compound to give a pretilt to the liquid crystal molecules;
    Including steps,
    The second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment, or alternatively,
    The second side chain has a dipole moment in the range of angles greater than 0 degrees and less than 90 degrees from its major axis direction, and has a structure that induces vertical orientation, or alternatively
    The second side chain is a method for manufacturing a liquid crystal display device having the following structural formula (11).
    Figure JPOXMLDOC01-appb-I000004
    here,
    (A) m and n are each independently 0 or 1,
    (B) each ring R independently represents a phenylene group, a cycloalkylene group, a phenylene group substituted with a fluorine atom or a chlorine atom, or a cycloalkylene group substituted with a fluorine atom or a chlorine atom;
    (C) Ring X represents a phenylene group or a cycloalkylene group,
    With respect to (d) A 4,
    A group consisting of fluorine atom, chlorine atom, —CN, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 2 CHF 2 , and —OCF 2 CHFCF 3 A group,
    A group composed of a fluorine-containing alkyl group having 1 to 18 carbon atoms, a fluorine-containing aromatic ring group, a fluorine-containing aliphatic ring group, a fluorine-containing heterocyclic group, and a macrocyclic group composed of these is a second group, However, in the fluorine-containing alkyl group in the second group, any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced by —CH═CH— or —C≡C—
    A group composed of an alkyl group having 1 to 18 carbon atoms, an aliphatic cyclic group, a heterocyclic group, and a macrocyclic group composed of these is defined as the third group, provided that the alkyl group in the third group is Any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced with —CH═CH— or — May be replaced by C≡C-
    A group composed of a fluorine-containing alkyl group having 3 to 18 carbon atoms, a fluorine-containing aromatic ring group, a fluorine-containing aliphatic ring group, a fluorine-containing heterocyclic group, and a macrocyclic group composed of these is defined as a fourth group, However, in the fluorine-containing alkyl group in the fourth group, any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced by —CH═CH— or —C≡C—
    A group composed of an alkyl group having 3 to 18 carbon atoms, an aliphatic ring group, a heterocyclic group, and a macrocyclic group composed of these is defined as a fifth group, provided that the alkyl group in the fifth group is Any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced with —CH═CH— or — May be replaced by C≡C-
    (D-1) All of A 1 , A 2 , A 3 are hydrogen atoms and m = 1, n = 0, or m = 0, n = 1, or m = n When = 1, A 4 is one kind of atom or group selected from the first group or the second group,
    (D-2) When A 3 is a hydrogen atom and m = 0 and n = 0, A 4 is one kind of group selected from the fourth group,
    (D-3) When at least one of A 1 , A 2 , A 3 is a fluorine atom or a chlorine atom and m = 1, n = 0, or m = 0, n = 1, or , M = n = 1, A 4 is a hydrogen atom, one kind of atom or group selected from the first group, the second group and the third group,
    (D-4) When A 3 is a fluorine atom or a chlorine atom, and m = 0 and n = 0, A 4 is selected from a hydrogen atom, the first group, the fourth group, and the fifth group One kind of atom or group.
  8.  一対の基板の一方に、感光性官能基を有する第1の側鎖、及び、第2の側鎖を有する高分子化合物から成る第1配向膜を形成し、一対の基板の他方に、第2配向膜を形成した後、
     一対の基板を、第1配向膜と第2配向膜とが対向するように配置し、第1配向膜と第2配向膜との間に、負の誘電率異方性を有する液晶分子を含む液晶層を封止し、次いで、
     高分子化合物における第1の側鎖を変形させて、液晶分子にプレチルトを付与する、
    工程を含み、
     第2の側鎖は、誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
     第2の側鎖は、その長軸方向から0度を超え、90度未満の角度の範囲内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
     第2の側鎖は、以下の構造式(11)を有する液晶表示装置の製造方法。
    Figure JPOXMLDOC01-appb-I000005
    (a)m及びnは、それぞれ独立に、0又は1であり、
    (b)環Rは、それぞれ独立に、フェニレン基、シクロアルキレン基、フッ素原子若しくは塩素原子で置換されたフェニレン基、又は、フッ素原子若しくは塩素原子で置換されたシクロアルキレン基を表し、
    (c)環Xは、フェニレン基又はシクロアルキレン基を表し、
    (d)A4に関して、
     フッ素原子、塩素原子、-CN、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-OCF2CHF2、及び、-OCF2CHFCF3から構成された群を第1群とし、
     炭素原子数1乃至18のフッ素含有アルキル基、フッ素含有芳香環基、フッ素含有脂肪族環基、フッ素含有複素環基、及び、これらから成る大環状基から構成された群を第2群とし、但し、第2群におけるフッ素含有アルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
     炭素原子数1乃至18のアルキル基、脂肪族環基、複素環基、及び、これらから成る大環状基から構成された群を第3群とし、但し、第3群におけるアルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
     炭素原子数3乃至18のフッ素含有アルキル基、フッ素含有芳香環基、フッ素含有脂肪族環基、フッ素含有複素環基、及び、これらから成る大環状基から構成された群を第4群とし、但し、第4群におけるフッ素含有アルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
     炭素原子数3乃至18のアルキル基、脂肪族環基、複素環基、及び、これらから成る大環状基から構成された群を第5群とし、但し、第5群におけるアルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
    (d-1)A1,A2,A3の全てが水素原子であり、且つ、m=1,n=0の場合、又は、m=0,n=1の場合、又は、m=n=1の場合、A4は、第1群又は第2群から選択された1種類の原子又は基であり、
    (d-2)A3が水素原子であり、且つ、m=0,n=0の場合、A4は、第4群から選択された1種類の基であり、
    (d-3)A1,A2,A3の少なくとも1つがフッ素原子又は塩素原子であり、且つ、m=1,n=0の場合、又は、m=0,n=1の場合、又は、m=n=1の場合、A4は、水素原子、第1群、第2群及び第3群から選択された1種類の原子又は基であり、
    (d-4)A3がフッ素原子又は塩素原子であり、且つ、m=0,n=0の場合、A4は、水素原子、第1群、第4群及び第5群から選択された1種類の原子又は基である。
    A first alignment film composed of a polymer compound having a first side chain having a photosensitive functional group and a second side chain is formed on one of the pair of substrates, and a second alignment film is formed on the other of the pair of substrates. After forming the alignment film,
    A pair of substrates are disposed so that the first alignment film and the second alignment film face each other, and liquid crystal molecules having negative dielectric anisotropy are included between the first alignment film and the second alignment film. Sealing the liquid crystal layer, then
    Deforming the first side chain of the polymer compound to give a pretilt to the liquid crystal molecules;
    Including steps,
    The second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment, or alternatively,
    The second side chain has a dipole moment in the range of angles greater than 0 degrees and less than 90 degrees from its major axis direction, and has a structure that induces vertical orientation, or alternatively
    The second side chain is a method for manufacturing a liquid crystal display device having the following structural formula (11).
    Figure JPOXMLDOC01-appb-I000005
    (A) m and n are each independently 0 or 1,
    (B) each ring R independently represents a phenylene group, a cycloalkylene group, a phenylene group substituted with a fluorine atom or a chlorine atom, or a cycloalkylene group substituted with a fluorine atom or a chlorine atom;
    (C) Ring X represents a phenylene group or a cycloalkylene group,
    With respect to (d) A 4,
    A group consisting of fluorine atom, chlorine atom, —CN, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 2 CHF 2 , and —OCF 2 CHFCF 3 A group,
    A group composed of a fluorine-containing alkyl group having 1 to 18 carbon atoms, a fluorine-containing aromatic ring group, a fluorine-containing aliphatic ring group, a fluorine-containing heterocyclic group, and a macrocyclic group composed of these is a second group, However, in the fluorine-containing alkyl group in the second group, any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced by —CH═CH— or —C≡C—
    A group composed of an alkyl group having 1 to 18 carbon atoms, an aliphatic cyclic group, a heterocyclic group, and a macrocyclic group composed of these is defined as the third group, provided that the alkyl group in the third group is Any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced with —CH═CH— or — May be replaced by C≡C-
    A group composed of a fluorine-containing alkyl group having 3 to 18 carbon atoms, a fluorine-containing aromatic ring group, a fluorine-containing aliphatic ring group, a fluorine-containing heterocyclic group, and a macrocyclic group composed of these is defined as a fourth group, However, in the fluorine-containing alkyl group in the fourth group, any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced by —CH═CH— or —C≡C—
    A group composed of an alkyl group having 3 to 18 carbon atoms, an aliphatic ring group, a heterocyclic group, and a macrocyclic group composed of these is defined as a fifth group, provided that the alkyl group in the fifth group is Any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced with —CH═CH— or — May be replaced by C≡C-
    (D-1) All of A 1 , A 2 , A 3 are hydrogen atoms and m = 1, n = 0, or m = 0, n = 1, or m = n When = 1, A 4 is one kind of atom or group selected from the first group or the second group,
    (D-2) When A 3 is a hydrogen atom and m = 0 and n = 0, A 4 is one kind of group selected from the fourth group,
    (D-3) When at least one of A 1 , A 2 , A 3 is a fluorine atom or a chlorine atom and m = 1, n = 0, or m = 0, n = 1, or , M = n = 1, A 4 is a hydrogen atom, one kind of atom or group selected from the first group, the second group and the third group,
    (D-4) When A 3 is a fluorine atom or a chlorine atom, and m = 0 and n = 0, A 4 is selected from a hydrogen atom, the first group, the fourth group, and the fifth group One kind of atom or group.
  9.  一対の基板の一方に、架橋性官能基又は感光性官能基を有する第1の側鎖、及び、第2の側鎖を有する高分子化合物から成る第1配向膜を形成し、一対の基板の他方に、第2配向膜を形成した後、
     一対の基板を、第1配向膜と第2配向膜とが対向するように配置し、第1配向膜と第2配向膜との間に、負の誘電率異方性を有する液晶分子を含む液晶層を封止し、次いで、
     高分子化合物にエネルギー線を照射して、液晶分子にプレチルトを付与する、
    工程を含み、
     第2の側鎖は、誘電異方性を誘起する構造を有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
     第2の側鎖は、その長軸方向から0度を超え、90度未満の角度の範囲内に双極子モーメントを有し、且つ、垂直配向性を誘起する構造を有し、あるいは又、
     第2の側鎖は、以下の構造式(11)を有する液晶表示装置の製造方法。
    Figure JPOXMLDOC01-appb-I000006
    ここで、
    (a)m及びnは、それぞれ独立に、0又は1であり、
    (b)環Rは、それぞれ独立に、フェニレン基、シクロアルキレン基、フッ素原子若しくは塩素原子で置換されたフェニレン基、又は、フッ素原子若しくは塩素原子で置換されたシクロアルキレン基を表し、
    (c)環Xは、フェニレン基又はシクロアルキレン基を表し、
    (d)A4に関して、
     フッ素原子、塩素原子、-CN、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-OCF2CHF2、及び、-OCF2CHFCF3から構成された群を第1群とし、
     炭素原子数1乃至18のフッ素含有アルキル基、フッ素含有芳香環基、フッ素含有脂肪族環基、フッ素含有複素環基、及び、これらから成る大環状基から構成された群を第2群とし、但し、第2群におけるフッ素含有アルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
     炭素原子数1乃至18のアルキル基、脂肪族環基、複素環基、及び、これらから成る大環状基から構成された群を第3群とし、但し、第3群におけるアルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
     炭素原子数3乃至18のフッ素含有アルキル基、フッ素含有芳香環基、フッ素含有脂肪族環基、フッ素含有複素環基、及び、これらから成る大環状基から構成された群を第4群とし、但し、第4群におけるフッ素含有アルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
     炭素原子数3乃至18のアルキル基、脂肪族環基、複素環基、及び、これらから成る大環状基から構成された群を第5群とし、但し、第5群におけるアルキル基にあっては、隣接しない任意の-(CH2)-は、-O-、-S-、-CO-で置き換えられてもよく、また、任意の-(CH2)-は、-CH=CH-又は-C≡C-で置き換えられてもよく、
    (d-1)A1,A2,A3の全てが水素原子であり、且つ、m=1,n=0の場合、又は、m=0,n=1の場合、又は、m=n=1の場合、A4は、第1群又は第2群から選択された1種類の原子又は基であり、
    (d-2)A3が水素原子であり、且つ、m=0,n=0の場合、A4は、第4群から選択された1種類の基であり、
    (d-3)A1,A2,A3の少なくとも1つがフッ素原子又は塩素原子であり、且つ、m=1,n=0の場合、又は、m=0,n=1の場合、又は、m=n=1の場合、A4は、水素原子、第1群、第2群及び第3群から選択された1種類の原子又は基であり、
    (d-4)A3がフッ素原子又は塩素原子であり、且つ、m=0,n=0の場合、A4は、水素原子、第1群、第4群及び第5群から選択された1種類の原子又は基である。
    A first alignment film composed of a polymer compound having a first side chain having a crosslinkable functional group or a photosensitive functional group and a second side chain is formed on one of the pair of substrates. On the other hand, after forming the second alignment film,
    A pair of substrates are disposed so that the first alignment film and the second alignment film face each other, and liquid crystal molecules having negative dielectric anisotropy are included between the first alignment film and the second alignment film. Sealing the liquid crystal layer, then
    Irradiate the polymer compound with energy rays to give the liquid crystal molecules a pretilt,
    Including steps,
    The second side chain has a structure that induces dielectric anisotropy and a structure that induces vertical alignment, or alternatively,
    The second side chain has a dipole moment in the range of angles greater than 0 degrees and less than 90 degrees from its major axis direction, and has a structure that induces vertical orientation, or alternatively
    The second side chain is a method for manufacturing a liquid crystal display device having the following structural formula (11).
    Figure JPOXMLDOC01-appb-I000006
    here,
    (A) m and n are each independently 0 or 1,
    (B) each ring R independently represents a phenylene group, a cycloalkylene group, a phenylene group substituted with a fluorine atom or a chlorine atom, or a cycloalkylene group substituted with a fluorine atom or a chlorine atom;
    (C) Ring X represents a phenylene group or a cycloalkylene group,
    With respect to (d) A 4,
    A group consisting of fluorine atom, chlorine atom, —CN, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 2 CHF 2 , and —OCF 2 CHFCF 3 A group,
    A group composed of a fluorine-containing alkyl group having 1 to 18 carbon atoms, a fluorine-containing aromatic ring group, a fluorine-containing aliphatic ring group, a fluorine-containing heterocyclic group, and a macrocyclic group composed of these is a second group, However, in the fluorine-containing alkyl group in the second group, any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced by —CH═CH— or —C≡C—
    A group composed of an alkyl group having 1 to 18 carbon atoms, an aliphatic cyclic group, a heterocyclic group, and a macrocyclic group composed of these is defined as the third group, provided that the alkyl group in the third group is Any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced with —CH═CH— or — May be replaced by C≡C-
    A group composed of a fluorine-containing alkyl group having 3 to 18 carbon atoms, a fluorine-containing aromatic ring group, a fluorine-containing aliphatic ring group, a fluorine-containing heterocyclic group, and a macrocyclic group composed of these is defined as a fourth group, However, in the fluorine-containing alkyl group in the fourth group, any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced by —CH═CH— or —C≡C—
    A group composed of an alkyl group having 3 to 18 carbon atoms, an aliphatic ring group, a heterocyclic group, and a macrocyclic group composed of these is defined as a fifth group, provided that the alkyl group in the fifth group is Any non-adjacent — (CH 2 ) — may be replaced by —O—, —S—, —CO—, and any — (CH 2 ) — may be replaced with —CH═CH— or — May be replaced by C≡C-
    (D-1) All of A 1 , A 2 , A 3 are hydrogen atoms and m = 1, n = 0, or m = 0, n = 1, or m = n When = 1, A 4 is one kind of atom or group selected from the first group or the second group,
    (D-2) When A 3 is a hydrogen atom and m = 0 and n = 0, A 4 is one kind of group selected from the fourth group,
    (D-3) When at least one of A 1 , A 2 , A 3 is a fluorine atom or a chlorine atom and m = 1, n = 0, or m = 0, n = 1, or , M = n = 1, A 4 is a hydrogen atom, one kind of atom or group selected from the first group, the second group and the third group,
    (D-4) When A 3 is a fluorine atom or a chlorine atom, and m = 0 and n = 0, A 4 is selected from a hydrogen atom, the first group, the fourth group, and the fifth group One kind of atom or group.
PCT/JP2014/071323 2013-09-20 2014-08-12 Liquid crystal display device, and manufacturing method therefor WO2015040984A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013195131 2013-09-20
JP2013-195131 2013-09-20

Publications (1)

Publication Number Publication Date
WO2015040984A1 true WO2015040984A1 (en) 2015-03-26

Family

ID=52688641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071323 WO2015040984A1 (en) 2013-09-20 2014-08-12 Liquid crystal display device, and manufacturing method therefor

Country Status (2)

Country Link
TW (1) TWI655483B (en)
WO (1) WO2015040984A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105777940A (en) * 2016-04-29 2016-07-20 江南大学 Water-soluble light-sensitive chitosan derivative and method for preparing same
CN105777939A (en) * 2016-04-29 2016-07-20 江南大学 Application of photosensitive chitosan derivative colloid particles serving as emulsifier

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI574075B (en) * 2015-07-30 2017-03-11 友達光電股份有限公司 Liquid crystal display panel and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100099A (en) * 2009-10-06 2011-05-19 Jsr Corp Liquid crystal aligning agent, method of producing liquid crystal aligning film, and liquid crystal display element
JP2012032601A (en) * 2010-07-30 2012-02-16 Sony Corp Liquid crystal display device and method for manufacturing the same
JP2012159825A (en) * 2011-01-11 2012-08-23 Jsr Corp Liquid crystal aligning agent, liquid crystal display element, liquid crystal alignment film and polyorganosiloxane compound
JP2013210566A (en) * 2012-03-30 2013-10-10 Sony Corp Liquid crystal display device and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980057674A (en) * 1996-12-30 1998-09-25 손욱 Composition for forming an alignment film, an alignment film formed therefrom and a liquid crystal display device comprising the alignment film
JP5630013B2 (en) * 2009-01-30 2014-11-26 ソニー株式会社 Manufacturing method of liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100099A (en) * 2009-10-06 2011-05-19 Jsr Corp Liquid crystal aligning agent, method of producing liquid crystal aligning film, and liquid crystal display element
JP2012032601A (en) * 2010-07-30 2012-02-16 Sony Corp Liquid crystal display device and method for manufacturing the same
JP2012159825A (en) * 2011-01-11 2012-08-23 Jsr Corp Liquid crystal aligning agent, liquid crystal display element, liquid crystal alignment film and polyorganosiloxane compound
JP2013210566A (en) * 2012-03-30 2013-10-10 Sony Corp Liquid crystal display device and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105777940A (en) * 2016-04-29 2016-07-20 江南大学 Water-soluble light-sensitive chitosan derivative and method for preparing same
CN105777939A (en) * 2016-04-29 2016-07-20 江南大学 Application of photosensitive chitosan derivative colloid particles serving as emulsifier
CN105777939B (en) * 2016-04-29 2018-07-03 江南大学 A kind of application of photosensitive chitosan derivatives colloidal particle as emulsifier

Also Published As

Publication number Publication date
TW201518822A (en) 2015-05-16
TWI655483B (en) 2019-04-01

Similar Documents

Publication Publication Date Title
US7586561B2 (en) Liquid crystal display and method of manufacturing the same
KR100732025B1 (en) Substrate for liquid crystal display and liquid crystal display utilizing the same
TWI467291B (en) Liquid crystal display device and method for manufacturing the same
US9146425B2 (en) Liquid crystal display and method of manufacturing the same
KR102343429B1 (en) Liquid crystal display
JP5906570B2 (en) Liquid crystal display device and manufacturing method thereof
JP2002277877A (en) Liquid crystal display and its manufacturing method
JP5741050B2 (en) Liquid crystal display device and manufacturing method thereof
US5880797A (en) LCD with different surface free energies between insulator and pixel electrode
US20090153786A1 (en) Multi-domain liquid crystal display device and method for fabricating the same
JP5953885B2 (en) Liquid crystal display device and manufacturing method thereof
WO2015040984A1 (en) Liquid crystal display device, and manufacturing method therefor
JP5939614B2 (en) Alignment film and liquid crystal display device using the same
US11635660B2 (en) Liquid crystal display device and manufacturing method therefor
US20010052956A1 (en) Liquid crystal display having a surface grating film with axially symmetric multi-aligned arrays of 2-dimensional surface relief gratings
JP2005215115A (en) Liquid crystal display device
KR100813512B1 (en) Liquid crystal display
JP4383825B2 (en) Liquid crystal display
WO2021039219A1 (en) Liquid crystal display device
WO2010007761A1 (en) Liquid crystal display device
JP2008102557A (en) Liquid crystal display device
JP6174194B2 (en) Alignment film and liquid crystal display device using the same
KR20010008192A (en) MVA-LCD using a photopolymer
JP2006039069A (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP