WO2015040906A1 - Charged-particle-beam device - Google Patents

Charged-particle-beam device Download PDF

Info

Publication number
WO2015040906A1
WO2015040906A1 PCT/JP2014/066091 JP2014066091W WO2015040906A1 WO 2015040906 A1 WO2015040906 A1 WO 2015040906A1 JP 2014066091 W JP2014066091 W JP 2014066091W WO 2015040906 A1 WO2015040906 A1 WO 2015040906A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
particle beam
beam apparatus
photoelectric conversion
charged
Prior art date
Application number
PCT/JP2014/066091
Other languages
French (fr)
Japanese (ja)
Inventor
大西 毅
富松 聡
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Publication of WO2015040906A1 publication Critical patent/WO2015040906A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/248Components associated with high voltage supply

Definitions

  • the present invention relates to a charged particle beam apparatus that irradiates a charged particle beam using a high voltage and a high-voltage power supply thereof.
  • a circuit called Cockcroft-Walton (CW) has been used for a long time as a high-voltage power source for charged particle beam devices such as electron microscopes.
  • CW circuit a voltage doubler circuit in which a capacitor and a diode are combined in a ladder shape is provided on the secondary side of the transformer, and a high voltage is generated when alternating current is input to the primary side of the transformer.
  • a filter circuit for reducing the AC component is installed on the output side, but the ripple cannot be completely removed, and the AC component remains as noise in the output voltage.
  • Patent Document 1 discloses a technique for detecting the residual noise and superimposing the inverted signal on the high voltage side via an additionally provided filter column to cancel the noise component. Has been.
  • the inventor of the present application diligently studied to reduce the alternating current component of the output voltage of the high-voltage power supply and improve the beam convergence performance and the energy resolution of the charged particle beam apparatus, and as a result, the following knowledge was obtained.
  • Patent Document 1 it is possible to improve the CW circuit and suppress the noise amplitude, but it is difficult to completely remove the noise component, and the noise component remains in the output voltage.
  • the size of the apparatus increases due to the addition of a filter column.
  • CW circuit Another disadvantage of using the CW circuit is that a large alternating current is driven on the primary side of the transformer, which may be a noise source. Conductive noise via the GND and wiring of the device, induction noise due to magnetic field radiation, and the like are generated. For this reason, noise countermeasures on the apparatus side are required.
  • the CW circuit of the high voltage power source that accelerates the charged beam is installed away from the charged particle beam apparatus main body. For this reason, the installation area of the apparatus is increased, and the apparatus is increased in size by a long high-voltage cable or the like.
  • An object of the present invention relates to the realization of a charged particle beam apparatus using a high-voltage power supply having a principle different from that of a CW circuit.
  • the present invention includes a high-voltage power source having a plurality of photoelectric conversion elements connected in series and a light source, and a charged particle beam apparatus that applies a high voltage generated by the plurality of photoelectric conversion elements by light emitted from the light source to the charged particle source About.
  • the high voltage that is output does not include an alternating current component, and the charged particles emitted from the charged particle beam are accelerated only with their own energy spread. And energy resolution does not deteriorate. For this reason, a charged particle beam apparatus having high beam convergence performance and high energy analysis performance can be realized, and the apparatus can be miniaturized.
  • FIG. 1 is an internal configuration diagram of a high-voltage power supply according to a first embodiment
  • Circuit diagram of high-voltage power supply according to Embodiment 1 1 is a configuration diagram of a photoelectric conversion unit according to a first embodiment.
  • FIG. Configuration diagram of solar cell array 101 according to Example 1 Stack connection diagram of photoelectric conversion unit according to Example 1 The enlarged view of the connection terminal of the solar cell array 101 concerning Example 1.
  • FIG. Configuration diagram of TEM according to Example 3 Configuration diagram of TEM according to Example 4 The figure which shows the preparation methods of the substantially cylindrical spherical solar cell array concerning Example 4.
  • FIG. 1 is an internal configuration diagram of a high-voltage power supply according to a first embodiment
  • Circuit diagram of high-voltage power supply according to Embodiment 1 1 is a configuration diagram of a photoelectric conversion unit according to a first embodiment.
  • FIG. 4 The figure which shows the preparation methods of the substantially cylindrical solar cell array concerning Example 4.
  • FIG. 4 The figure explaining the relationship between the substantially cylindrical spherical solar cell array concerning Example 4, and a substantially cylindrical light emission part.
  • Configuration diagram of SEM according to Example 5 Configuration diagram of an ion microscope according to Example 6
  • a charged particle beam apparatus including a high voltage power source having a plurality of photoelectric conversion elements connected in series and a light source, and applying a high voltage generated in the plurality of photoelectric conversion elements by light irradiated from the light source to the charged particle source.
  • the photoelectric conversion element is a solar cell.
  • the photoelectric conversion element is a spherical solar cell.
  • a plurality of photoelectric conversion elements are arranged in a transparent plate-like structure while being folded back at the ends.
  • a plurality of photoelectric conversion elements are arranged in a spiral shape in a transparent cylindrical structure.
  • the light source is an LED.
  • the high-voltage power supply has a cooling means for cooling the light source.
  • the maximum output voltage of the high-voltage power supply is 1 kV or more.
  • the high voltage power source is held by a gantry that holds the charged particle beam casing.
  • the embodiment discloses that the output of the high voltage power supply is electrically connected to the charged particle beam source without going through the high voltage cable.
  • the embodiment discloses that feedback control is performed by increasing or decreasing the light emission amount of the light source so that the high voltage becomes a constant voltage.
  • voltage adjusting means is provided on the output side of the photoelectric conversion element.
  • the embodiment discloses that the charged particle beam apparatus is a transmission electron microscope.
  • the embodiment discloses that the charged particle beam apparatus is a scanning transmission electron microscope.
  • the embodiment discloses that the charged particle beam apparatus is a scanning electron microscope.
  • the embodiment discloses that the charged particle beam apparatus is an ion microscope.
  • the embodiment discloses that the charged particle beam apparatus includes a monochromator that reduces the energy width of the charged particle beam.
  • the charged particle beam apparatus includes an electron beam energy loss spectrometer.
  • the charged particle beam apparatus includes a spherical aberration corrector.
  • the embodiment discloses that the charged particle source is a cold cathode field emission electron source.
  • FIG. 1 is a configuration diagram of a scanning transmission electron microscope (scanning transmission electron microscope: hereinafter abbreviated as STEM) according to the present embodiment.
  • STEM scanning transmission electron microscope
  • the high-voltage power supply 100 includes a light emitting unit 102 that generates the light 1, a solar cell array 101 that receives the light 1 and generates a high voltage, and a control circuit 103 that controls the output voltage.
  • the output high voltage is applied to the electron gun 104 via the high voltage cable 111.
  • the electron gun 104 of the STEM body is a cold cathode field emission electron source (Cold Field Emission Electron Source: hereinafter abbreviated as Cold-FE electron source), and the energy spread of emitted electrons is about 0.3 eV.
  • Cold-FE electron source Cold-FE electron source
  • the energy spread is improved to 0.05 eV.
  • the beam is converged and scanned on the sample 108 which is a thin film.
  • Electrons that have passed through the sample 108 are detected by the STEM detector 109 and imaged, or are guided to an electron beam energy loss spectroscopy (hereinafter referred to as EELS) apparatus 110 and transmitted through the sample. Energy spectroscopy is performed.
  • EELS electron beam energy loss spectroscopy
  • FIG. 2 is an internal structural diagram of the high-voltage power supply according to this embodiment.
  • FIG. 3 is a circuit diagram of the high-voltage power supply according to this embodiment.
  • the control circuit 103 divides the high output voltage (HV) from the photoelectric conversion unit 130 by the dividing resistors 131 and 132, and an error amplifier 136 detects an error from the reference voltage of the reference voltage power supply 134 controlled by the output voltage setting 135. The amount of light emitted from the light emitting unit 102 driven by a direct current is controlled.
  • HV high output voltage
  • This feedback control configuration allows the electron beam acceleration voltage to be set with high accuracy while maintaining low ripple performance. Also, the output voltage can be varied by varying the reference voltage.
  • FIG. 4 is a configuration diagram of the photoelectric conversion unit according to the first embodiment.
  • the planar solar cell array 101 and the planar light emitting unit 102 (LED panel) have a laminated structure.
  • a large number of solar cells are arranged in the planar solar cell array 101.
  • a large number of LEDs are arranged in the planar light emitting unit 102. And it arrange
  • spherical solar cells Spherer (registered trademark)
  • the spherical solar cell can be easily mounted in a transparent panel and has a large surface area with respect to volume, efficient power generation is possible.
  • FIG. 5 is a cross-sectional view of the solar cell array 101 according to this example.
  • a large number of spherical solar cells are embedded in a matrix in the transparent panel of the solar cell array 101.
  • one surface (opposite surface to the light irradiation) of the solar cell array 101 is composed of a reflective material 140 (mirror surface).
  • FIG. 6 is a configuration diagram of the solar cell array 101 according to the present embodiment.
  • (A) is a top view
  • (b) is a cross-sectional view, and shows a method of mounting a solar cell on the solar cell 101.
  • Many solar cells connected in series and connected in a daisy chain have one end at the upper left corner of the transparent panel, and are arranged horizontally from there, folded back at the left and right ends of the transparent panel, and the other end is transparent It ends at the lower right end of the panel and is mounted on the transparent panel like a warp of fabric.
  • the solar cells 101 are in the form of an equally spaced matrix.
  • Both ends of the solar cells connected in series are connected to a + terminal 141 and a ⁇ terminal 142, the + terminal 141 is provided at the upper left end of the transparent panel (front surface), and the ⁇ terminal 142 is a transparent panel (back surface). Is provided at the lower right end of the.
  • FIG. 7 is a stacking connection diagram of photoelectric conversion units according to this example.
  • the light emitting unit 102 and the solar cell array 101 are one set, and four sets are arranged.
  • the solar cell arrays 101 adjacent to each other with the light emitting unit 102 interposed therebetween have the + terminal and the ⁇ terminal connected by a connection cable, and the solar cells of the photoelectric conversion unit are connected in series as a whole.
  • the + terminal and the ⁇ terminal are provided on the opposite sides opposite to each other at the symmetrical position with respect to the center of the transparent panel.
  • FIG. 8 is an enlarged view of the connection terminals of the solar cell array 101 according to this example.
  • the solar cell array 101 is provided with the connection hole 152 as the above-described + ⁇ terminal.
  • the connection hole 152 has a tapered shape so as to be fitted to the tapered high voltage connector 101 in the connection cable. Since the connection hole 152 is tapered, the high-voltage connector 151 can be easily connected, and an air layer does not remain on the connection surface.
  • the number of stages of the CW circuit is limited to several tens of stages in consideration of efficiency, and therefore, the AC voltage amplitude needs to be increased as the voltage increases. For this reason, it becomes difficult to reduce the ripple as the voltage increases.
  • the circuit of the present embodiment is particularly useful from a high voltage of 1 kV or higher where CW circuits are frequently used, and its usefulness is increased for higher voltage generation.
  • the STEM according to this example uses a high-voltage power source composed of a light emitting unit and a solar cell array, there is no high-voltage ripple noise, so 0.05 eV energy realized with a Cold-FE electron source and a monochromator The beam can be accelerated without deteriorating the spread. Therefore, high beam convergence characteristics and high energy resolution of EELS can be realized.
  • a high-intensity LED with a small calorific value is used, but there is still a certain amount of heat generation. If this heat is transmitted to the detection resistor, the control unit, etc., a high voltage drift is generated. It may cause Therefore, in the present embodiment, a cooling plate for releasing heat generated from the light emitting unit 102 to the outside is added.
  • a cooling plate for releasing heat generated from the light emitting unit 102 to the outside is added.
  • FIG. 9 is a cross-sectional view of the photoelectric conversion unit according to this example.
  • the photoelectric conversion unit according to FIG. 9A one set of the light emitting unit 102 and the solar cell array 101 are integrated, and a cooling plate is provided on the surface opposite to the surface where the light emitting unit 102 contacts the solar cell array 101. 153 is provided.
  • the cooling plate 153 is made of a material having good thermal conductivity such as copper or aluminum. Thereby, the heat generated from the light emitting unit can escape to the outside of the photoelectric conversion unit.
  • a cooler such as a Peltier element or a cooling medium such as oil or water may be used in addition to the cooling plate.
  • the photoelectric conversion unit according to FIG. 9B is a further modification of the photoelectric conversion unit according to FIG. 9A, and the cooling plate also serves as a reflection plate.
  • Two photoelectric conversion units are integrated so as to sandwich a plate 154 that serves both as a cooling plate and a reflection plate.
  • the plate 154 that serves both as a cooling plate and a reflecting plate has a good thermal conductivity and is made of a material whose surface is a mirror surface.
  • a plate 154 that serves both as a cooling plate and a reflecting plate functions as a reflecting plate by contacting the solar cell array.
  • FIG. 10 is a configuration diagram of a transmission electron microscope (hereinafter referred to as TEM) according to the present embodiment.
  • TEM transmission electron microscope
  • the high-voltage power supply 100 is arranged in the frame of the apparatus main body. Further, since it is a TEM, the spherical aberration corrector 112 is for TEM, and the EELS device 113 is a two-dimensional image filter.
  • a high-voltage power supply composed of a light emitting unit and a solar cell array is a high-voltage power supply that does not use alternating current, in addition to the feature of low output ripple.
  • the apparatus can be mounted in the vicinity of a sensitive charged particle beam device casing. According to this embodiment, the apparatus becomes compact and the installation floor area can be reduced.
  • FIG. 11 is a configuration diagram of a TEM according to the present embodiment. Hereinafter, the difference from the first to third embodiments will be mainly described.
  • the vertically long high voltage power supply 120 has a substantially cylindrical shape, in which a substantially cylindrical solar cell array is disposed, and further, a substantially cylindrical light emitting section is disposed inside thereof.
  • the vertically long high-voltage power supply 120 is disposed on the charged particle beam device housing so as to be parallel to the charged particle beam device housing (optical axis).
  • the upper portion of the vertically-structured high-voltage power supply 120 is substantially the same height as the electron source 104 and is supported on the charged particle beam apparatus housing by a horizontal member.
  • FIG. 12 is a diagram showing a method for producing a substantially cylindrical spherical solar cell array.
  • a plurality of spherical solar cells 161 connected in series and connected in a row are mounted in several stages in parallel on a transparent flexible sheet 160. I'm looking for.
  • a substantially cylindrical spherical solar cell array in which a plurality of spherical solar cells are connected in series in a spiral shape can be realized.
  • FIG. 13 is a diagram showing a method for producing a substantially cylindrical solar cell array.
  • planar solar cells 163 are arranged and mounted on a transparent flexible substrate 162 in the same manner as in FIG.
  • a spherical solar cell with few restrictions on mounting is suitable for a vertically long high-voltage power supply, but a similar effect can be expected by devising mounting even with a normal planar solar cell.
  • FIG. 14 is a diagram for explaining the relationship between the substantially cylindrical spherical solar cell array and the substantially cylindrical light emitting unit according to the present embodiment, and the substantially cylindrical light emission inside the approximately cylindrical solar cell array 170.
  • a state is shown in which a body 171 is inserted to produce a substantially cylindrical photoelectric conversion unit.
  • the substantially cylindrical light-emitting body 171 is desirably mounted in the vicinity of the solar cell within the range allowed by the withstand voltage.
  • a plurality of high-brightness LEDs are mounted on the surface of the cylinder.
  • FIG. 15 is an explanatory diagram of the internal structure of the vertically long high-voltage power supply according to this embodiment.
  • Three substantially cylindrical photoelectric conversion units are connected in multiple stages in the vertical direction.
  • Three substantially cylindrical spherical solar cell arrays are connected in series to form one huge substantially cylindrical spherical solar cell array in which a plurality of spherical solar cells are spirally connected in series.
  • the high-voltage output terminal 172 of this huge substantially cylindrical spherical solar cell array is arranged at the upper part, and the GND terminal 173 is arranged at the lower part.
  • the light emission control line 174 that can control each of the substantially cylindrical light emitters is disposed at the lower part.
  • FIG. 16 is a block diagram of a scanning electron microscope (Scanning Electron Microscope: hereinafter abbreviated as SEM) according to the present embodiment.
  • SEM Scanning Electron Microscope
  • Cold-FE is used as the electron source 104, and the monochromator 105 and the spherical aberration corrector 106 are mounted. Further, a secondary electron detector 181 is mounted in the sample chamber 180.
  • the acceleration voltage of the electron beam is a maximum of 30 kV.
  • chromatic aberration is reduced by using a combination of a high-voltage power source and a monochromator configured by a light emitting unit and a solar cell array, and spherical aberration is reduced by using in combination with a spherical aberration corrector, A beam with high convergence performance can be formed, and high-magnification SEM images can be observed.
  • FIG. 17 is a configuration diagram of an ion microscope according to the present embodiment. Hereinafter, the difference from the first to fifth embodiments will be mainly described.
  • a gas field ion source (hereinafter referred to as GFIS) is used as the ion source 200.
  • the energy width of ions emitted from this ion source is 1 eV or less, and this value is significantly smaller than that of other ion sources. Therefore, it is possible to make the best use of the performance of the ion source by using it in combination with a high voltage power source composed of a light emitting part and a solar cell array.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 The present invention pertains to a charged-particle-beam device provided with a high-voltage power supply (100) having a light source (102) and a plurality of serially connected photoelectric conversion elements (101), the charged-particle-beam device applying, onto a charged particle source (104), a high voltage generated in the plurality of photoelectric conversion elements (101) by light emitted by the light source (102), in order to achieve a charged-particle-beam device in which a high-voltage power supply operating under a principle different from that of a Cockcroft-Walton circuit is used. According to the present invention, the outputted high voltage does not contain an AC component, and charged particles released from a charged particle beam are accelerated so as to involve only the energy dispersion inherent in the charged particles; therefore, degradation in beam conversion performance and in energy resolution is prevented. It therefore becomes possible to realize a charged-particle-beam device having exhibiting high beam convergence performance and high energy analysis performance, and also to reduce the size of the device.

Description

荷電粒子線装置Charged particle beam equipment
 本発明は、高電圧を利用して荷電粒子線を照射する荷電粒子線装置や、その高圧電源に関する。 The present invention relates to a charged particle beam apparatus that irradiates a charged particle beam using a high voltage and a high-voltage power supply thereof.
 電子顕微鏡をはじめとする荷電粒子線装置の高圧電源には、コッククロフト・ウォルトン(CW)と呼ばれる回路が古くから使われ続けている。CW回路では、トランスの二次側にコンデンサとダイオードをラダー状に組み合わせた倍電圧回路が設けられており、トランスの一次側に交流を入力すると高電圧が発生する。交流成分を低減するフィルター回路が出力側に設置されているが、リップルを完全には除去することはできず、出力電圧に交流成分がノイズとして残留する。 A circuit called Cockcroft-Walton (CW) has been used for a long time as a high-voltage power source for charged particle beam devices such as electron microscopes. In the CW circuit, a voltage doubler circuit in which a capacitor and a diode are combined in a ladder shape is provided on the secondary side of the transformer, and a high voltage is generated when alternating current is input to the primary side of the transformer. A filter circuit for reducing the AC component is installed on the output side, but the ripple cannot be completely removed, and the AC component remains as noise in the output voltage.
 特開平8-116673号(特許文献1)には、この残留ノイズを検出して、反転させた信号を追加で設けたフィルターカラム経由で高電圧側に重畳し、ノイズ成分を相殺する技術が開示されている。 Japanese Patent Application Laid-Open No. 8-116673 (Patent Document 1) discloses a technique for detecting the residual noise and superimposing the inverted signal on the high voltage side via an additionally provided filter column to cancel the noise component. Has been.
特開平8-116673号JP-A-8-116673
 本願発明者が、高圧電源の出力電圧の交流成分を小さくし、荷電粒子線装置のビーム収束性能の向上やエネルギー分解能の向上を図ることについて鋭意検討した結果、次の知見を得るに至った。 The inventor of the present application diligently studied to reduce the alternating current component of the output voltage of the high-voltage power supply and improve the beam convergence performance and the energy resolution of the charged particle beam apparatus, and as a result, the following knowledge was obtained.
 特許文献1の技術においては、CW回路を改善して、ノイズの振幅を抑制することはできるが、ノイズ成分を完全に除去することは困難であり、出力電圧にノイズ成分が残留する。また、フィルターカラムの追加などにより、装置が大型化する。 In the technique of Patent Document 1, it is possible to improve the CW circuit and suppress the noise amplitude, but it is difficult to completely remove the noise component, and the noise component remains in the output voltage. In addition, the size of the apparatus increases due to the addition of a filter column.
 CW回路を用いる別の欠点としては、大きな交流電流をトランスの一次側で駆動するため、これがノイズ源となることがある。装置のGNDや配線を経由した伝導ノイズ、磁界放射による誘導ノイズ等が発生する。このため、装置側でのノイズ対策が必要となる。一般的には、荷電ビームを加速する高圧電源のCW回路は、荷電粒子線装置本体から離して設置される。このため、装置の設置面積が広くなり、また、長い高圧ケーブル等で装置が大型化してしまう。 Another disadvantage of using the CW circuit is that a large alternating current is driven on the primary side of the transformer, which may be a noise source. Conductive noise via the GND and wiring of the device, induction noise due to magnetic field radiation, and the like are generated. For this reason, noise countermeasures on the apparatus side are required. Generally, the CW circuit of the high voltage power source that accelerates the charged beam is installed away from the charged particle beam apparatus main body. For this reason, the installation area of the apparatus is increased, and the apparatus is increased in size by a long high-voltage cable or the like.
 本発明の目的は、CW回路と異なる原理の高圧電源を用いた荷電粒子線装置を実現することに関する。 An object of the present invention relates to the realization of a charged particle beam apparatus using a high-voltage power supply having a principle different from that of a CW circuit.
 本発明は、直列接続された複数の光電変換素子と光源を有する高圧電源を備え、光源から照射して光により複数の光電変換素子で発生する高電圧を荷電粒子源に印加する荷電粒子線装置に関する。 The present invention includes a high-voltage power source having a plurality of photoelectric conversion elements connected in series and a light source, and a charged particle beam apparatus that applies a high voltage generated by the plurality of photoelectric conversion elements by light emitted from the light source to the charged particle source About.
 本発明によれば、出力される高電圧は交流成分を含まず、荷電粒子線から放出される荷電粒子が、それ自身が本来持つエネルギー広がりのみを持って加速されるため、ビーム収束性能の劣化やエネルギー分解能の劣化が起こらない。このため、高いビーム収束性能、高いエネルギー分析性能の荷電粒子線装置を実現でき、装置の小型化も可能となる。 According to the present invention, the high voltage that is output does not include an alternating current component, and the charged particles emitted from the charged particle beam are accelerated only with their own energy spread. And energy resolution does not deteriorate. For this reason, a charged particle beam apparatus having high beam convergence performance and high energy analysis performance can be realized, and the apparatus can be miniaturized.
実施例1にかかるSTEMの構成図Configuration diagram of STEM according to Example 1 実施例1にかかる高圧電源の内部構成図FIG. 1 is an internal configuration diagram of a high-voltage power supply according to a first embodiment 実施例1にかかる高圧電源の回路図Circuit diagram of high-voltage power supply according to Embodiment 1 実施例1にかかる光電変換ユニットの構成図1 is a configuration diagram of a photoelectric conversion unit according to a first embodiment. 実施例1にかかる太陽電池アレイ101の断面図Sectional drawing of the solar cell array 101 concerning Example 1. FIG. 実施例1にかかる太陽電池アレイ101の構成図Configuration diagram of solar cell array 101 according to Example 1 実施例1にかかる光電変換ユニットの積層接続図Stack connection diagram of photoelectric conversion unit according to Example 1 実施例1にかかる太陽電池アレイ101の接続端子の拡大図The enlarged view of the connection terminal of the solar cell array 101 concerning Example 1. FIG. 実施例2にかかる光電変換ユニット130の断面図Sectional drawing of the photoelectric conversion unit 130 concerning Example 2. FIG. 実施例3にかかるTEMの構成図Configuration diagram of TEM according to Example 3 実施例4にかかるTEMの構成図Configuration diagram of TEM according to Example 4 実施例4にかかる略円筒状の球状太陽電池アレイの作製方法を示す図The figure which shows the preparation methods of the substantially cylindrical spherical solar cell array concerning Example 4. FIG. 実施例4にかかる略円筒状の太陽電池アレイの作製方法を示す図The figure which shows the preparation methods of the substantially cylindrical solar cell array concerning Example 4. FIG. 実施例4にかかる略円筒状の球状太陽電池アレイと略円筒状の発光部との関係を説明する図The figure explaining the relationship between the substantially cylindrical spherical solar cell array concerning Example 4, and a substantially cylindrical light emission part. 実施例4にかかる縦長構造の高圧電源の内部構造の説明図Explanatory drawing of the internal structure of the vertically long high-voltage power supply according to the fourth embodiment. 実施例5にかかるSEMの構成図Configuration diagram of SEM according to Example 5 実施例6にかかるイオン顕微鏡の構成図Configuration diagram of an ion microscope according to Example 6
 実施例では、直列接続された複数の光電変換素子と光源を有する高圧電源を備え、光源から照射した光により複数の光電変換素子で発生する高電圧を荷電粒子源に印加する荷電粒子線装置を開示する。 In an embodiment, a charged particle beam apparatus including a high voltage power source having a plurality of photoelectric conversion elements connected in series and a light source, and applying a high voltage generated in the plurality of photoelectric conversion elements by light irradiated from the light source to the charged particle source. Disclose.
 また、実施例では、光電変換素子が、太陽電池であることを開示する。 Also, in the examples, it is disclosed that the photoelectric conversion element is a solar cell.
 また、実施例では、光電変換素子が、球状太陽電池であることを開示する。 Also, the examples disclose that the photoelectric conversion element is a spherical solar cell.
 また、実施例では、透明な板状の構造体に複数の光電変換素子が端部で折り返しされながら配置されていることを開示する。 Also, in the embodiment, it is disclosed that a plurality of photoelectric conversion elements are arranged in a transparent plate-like structure while being folded back at the ends.
 また、実施例では、透明な筒状の構造体に複数の光電変換素子がらせん状に配置されていることを開示する。 Also, in the embodiment, it is disclosed that a plurality of photoelectric conversion elements are arranged in a spiral shape in a transparent cylindrical structure.
 また、実施例では、光源が、LEDであることを開示する。 In the embodiment, it is disclosed that the light source is an LED.
 また、実施例では、高圧電源が、光源を冷却する冷却手段を有することを開示する。 In the embodiment, it is disclosed that the high-voltage power supply has a cooling means for cooling the light source.
 また、実施例では、高圧電源の最大出力電圧が1kV以上であることを開示する。 Also, in the embodiment, it is disclosed that the maximum output voltage of the high-voltage power supply is 1 kV or more.
 また、実施例では、高圧電源が、荷電粒子線筐体を保持する架台に保持されていることを開示する。 Also, in the embodiment, it is disclosed that the high voltage power source is held by a gantry that holds the charged particle beam casing.
 また、実施例では、高圧電源の出力が高圧ケーブルを介さずに荷電粒子線源に電気的に接続されていることを開示する。 Also, the embodiment discloses that the output of the high voltage power supply is electrically connected to the charged particle beam source without going through the high voltage cable.
 また、実施例では、高電圧が一定の電圧となるように、光源の発光量を増減させ、フィードバック制御することを開示する。 Also, the embodiment discloses that feedback control is performed by increasing or decreasing the light emission amount of the light source so that the high voltage becomes a constant voltage.
 また、実施例では、光電変換素子の出力側に電圧調整手段を設けることを開示する。 Also, in the embodiment, it is disclosed that voltage adjusting means is provided on the output side of the photoelectric conversion element.
 また、実施例では、荷電粒子線装置が透過型電子顕微鏡であることを開示する。 Also, the embodiment discloses that the charged particle beam apparatus is a transmission electron microscope.
 また、実施例では、荷電粒子線装置が走査透過型電子顕微鏡であることを開示する。 Also, the embodiment discloses that the charged particle beam apparatus is a scanning transmission electron microscope.
 また、実施例では、荷電粒子線装置が走査型電子顕微鏡であることを開示する。 In addition, the embodiment discloses that the charged particle beam apparatus is a scanning electron microscope.
 また、実施例では、荷電粒子線装置がイオン顕微鏡であることを開示する。 In addition, the embodiment discloses that the charged particle beam apparatus is an ion microscope.
 また、実施例では、荷電粒子線装置が、荷電粒子線のエネルギー幅を小さくするモノクロメーターを備えることを開示する。 Also, the embodiment discloses that the charged particle beam apparatus includes a monochromator that reduces the energy width of the charged particle beam.
 また、実施例では、荷電粒子線装置が、電子線エネルギー損失分光装置を備えることを開示する。 Also, in the embodiment, it is disclosed that the charged particle beam apparatus includes an electron beam energy loss spectrometer.
 また、実施例では、荷電粒子線装置が、球面収差補正器を備えることを開示する。 Also, in the embodiment, it is disclosed that the charged particle beam apparatus includes a spherical aberration corrector.
 また、実施例では、荷電粒子源が冷陰極電界放射電子源であることを開示する。 Also, the embodiment discloses that the charged particle source is a cold cathode field emission electron source.
 以下、上記及びその他の本発明の新規な特徴と効果について図面を参酌して説明する。なお、図面は専ら説明のために用いるものであり、権利範囲を限定するものではない。 Hereinafter, the above and other novel features and effects of the present invention will be described with reference to the drawings. It should be noted that the drawings are used exclusively for explanation and do not limit the scope of rights.
 図1は、本実施例にかかる走査透過電子顕微鏡(Scanning Transmission Electron Microscope:以下STEMと略す)の構成図である。 FIG. 1 is a configuration diagram of a scanning transmission electron microscope (scanning transmission electron microscope: hereinafter abbreviated as STEM) according to the present embodiment.
 高圧電源100は、光1を発生させる発光部102、光1を受光して高電圧を発生させる太陽電池アレイ101、および出力電圧を制御する制御回路103を有する。出力された高電圧は、高圧ケーブル111を介して電子銃104に印加される。 The high-voltage power supply 100 includes a light emitting unit 102 that generates the light 1, a solar cell array 101 that receives the light 1 and generates a high voltage, and a control circuit 103 that controls the output voltage. The output high voltage is applied to the electron gun 104 via the high voltage cable 111.
 STEM本体の電子銃104は、冷陰極電界放射電子源(Cold Field Emission Electron Source:以下Cold-FE電子源と略す)であり、放出される電子のエネルギー広がりは約0.3eVである。放出電子をモノクロメーター105によりフィルタリングすることにより、エネルギー広がりを0.05eVまで改善する。その後、球面収差補正器106により球面収差を低減した状態で、薄膜である試料108上にビームを収束し、走査する。試料108を透過した電子は、STEM検出器109で検出されて画像化されるか、電子線エネルギー損失分光(Electron Energy Loss Spectroscopy:以下EELSと略す)装置110に導かれて、試料を透過した電子のエネルギー分光が行われる。 The electron gun 104 of the STEM body is a cold cathode field emission electron source (Cold Field Emission Electron Source: hereinafter abbreviated as Cold-FE electron source), and the energy spread of emitted electrons is about 0.3 eV. By filtering the emitted electrons with the monochromator 105, the energy spread is improved to 0.05 eV. Thereafter, in a state where the spherical aberration is reduced by the spherical aberration corrector 106, the beam is converged and scanned on the sample 108 which is a thin film. Electrons that have passed through the sample 108 are detected by the STEM detector 109 and imaged, or are guided to an electron beam energy loss spectroscopy (hereinafter referred to as EELS) apparatus 110 and transmitted through the sample. Energy spectroscopy is performed.
 図2は、本実施例にかかる高圧電源の内部構造図である。また、図3は、本実施例にかかる高圧電源の回路図である。高圧電源100では、発光部102と太陽電池アレイ101をセットにして光電変換ユニット130としてまとめている。制御回路103は、光電変換ユニット130からの高圧の出力電圧(HV)を分割抵抗131および132により分圧し、出力電圧設定135により制御される基準電圧電源134の基準電圧との誤差を誤差増幅器136で増幅して、直流電流で駆動される発光部102の発光量を制御する。基準電圧電源134の出力電圧をVi[V]、分割抵抗131および132をそれぞれR1[Ω]およびR2[Ω]とした場合、太陽電池アレイ101の出力電圧Vo[V]は、Vo=Vi×(R1+R2)/R2となる。 FIG. 2 is an internal structural diagram of the high-voltage power supply according to this embodiment. FIG. 3 is a circuit diagram of the high-voltage power supply according to this embodiment. In the high-voltage power supply 100, the light emitting unit 102 and the solar cell array 101 are combined as a photoelectric conversion unit 130. The control circuit 103 divides the high output voltage (HV) from the photoelectric conversion unit 130 by the dividing resistors 131 and 132, and an error amplifier 136 detects an error from the reference voltage of the reference voltage power supply 134 controlled by the output voltage setting 135. The amount of light emitted from the light emitting unit 102 driven by a direct current is controlled. When the output voltage of the reference voltage power supply 134 is Vi [V] and the dividing resistors 131 and 132 are R1 [Ω] and R2 [Ω], respectively, the output voltage Vo [V] of the solar cell array 101 is Vo = Vi × (R1 + R2) / R2.
 このフィードバック制御構成により、低リップル性能を維持したまま、高い精度で電子ビームの加速電圧を設定できる。また、基準電圧を可変することで、出力電圧も可変できる。 This feedback control configuration allows the electron beam acceleration voltage to be set with high accuracy while maintaining low ripple performance. Also, the output voltage can be varied by varying the reference voltage.
 図4は、実施例1にかかる光電変換ユニットの構成図である。100kVレベルの高電圧を発生させるために、平面状の太陽電池アレイ101と平面状の発光部102(LEDパネル)が積層構造となっている。平面状の太陽電池アレイ101には、多数の太陽電池が配置されている。平面状の発光部102には、多数のLEDが配置されている。そして、発光部102の発光面と、太陽電池アレイ101の受光面が向かい合うように配置されている。LEDはエネルギー損失が少なく、効率の良い発光が可能であるため、本実施例の発光部102として利用するのに好適である。また、太陽電池アレイ101においては、球状太陽電池(スフェラー(登録商標))を用いている。球状太陽電池は、透明パネル内への実装が容易であり、体積に対しての表面積も大きいため、効率の良い発電が可能となる。 FIG. 4 is a configuration diagram of the photoelectric conversion unit according to the first embodiment. In order to generate a high voltage of 100 kV level, the planar solar cell array 101 and the planar light emitting unit 102 (LED panel) have a laminated structure. A large number of solar cells are arranged in the planar solar cell array 101. A large number of LEDs are arranged in the planar light emitting unit 102. And it arrange | positions so that the light emission surface of the light emission part 102 and the light-receiving surface of the solar cell array 101 may face each other. Since the LED has little energy loss and can emit light efficiently, it is suitable for use as the light emitting unit 102 of this embodiment. In the solar cell array 101, spherical solar cells (Spherer (registered trademark)) are used. Since the spherical solar cell can be easily mounted in a transparent panel and has a large surface area with respect to volume, efficient power generation is possible.
 図5は、本実施例にかかる太陽電池アレイ101の断面図である。太陽電池アレイ101の透明パネル内には、多数の球状太陽電池がマトリックス状に埋め込まれている。また、太陽電池アレイ101の一面(光照射の反対面)は、反射材140(鏡面)で構成されている。これにより、反射材140からの反射光も球状太陽電池に当たるため、太陽電池アレイ101の発電効率を向上させることができる。 FIG. 5 is a cross-sectional view of the solar cell array 101 according to this example. A large number of spherical solar cells are embedded in a matrix in the transparent panel of the solar cell array 101. Moreover, one surface (opposite surface to the light irradiation) of the solar cell array 101 is composed of a reflective material 140 (mirror surface). Thereby, since the reflected light from the reflector 140 also hits the spherical solar cell, the power generation efficiency of the solar cell array 101 can be improved.
 図6は、本実施例にかかる太陽電池アレイ101の構成図である。(a)は上面図、(b)は断面図であり、太陽電池101に太陽電池を実装する手法が示されている。直列接続されて数珠繋ぎとなっている多数の太陽電池は、その一端が透明パネルの左上端部にあり、そこから水平方向に配置されつつ、透明パネルの左右両端で折り返されて、その他端は透明パネルの右下端部で終わっており、透明パネルに織物の縦糸の如く実装されている。太陽電池101は等間隔なマトリックス状となっている。直列接続されている太陽電池の両端は、+端子141および-端子142と接続されており、+端子141は透明パネル(表面)の左上端部に設けられ、-端子142は透明パネル(裏面)の右下端部に設けられている。この構成により、電圧発生時の透明パネル内および表面の電界分布が一部に集中することなく分散し、小さい面積で耐圧を確保したり、高圧リークの危険性を低減したりする効果が得られる。 FIG. 6 is a configuration diagram of the solar cell array 101 according to the present embodiment. (A) is a top view, (b) is a cross-sectional view, and shows a method of mounting a solar cell on the solar cell 101. Many solar cells connected in series and connected in a daisy chain have one end at the upper left corner of the transparent panel, and are arranged horizontally from there, folded back at the left and right ends of the transparent panel, and the other end is transparent It ends at the lower right end of the panel and is mounted on the transparent panel like a warp of fabric. The solar cells 101 are in the form of an equally spaced matrix. Both ends of the solar cells connected in series are connected to a + terminal 141 and a − terminal 142, the + terminal 141 is provided at the upper left end of the transparent panel (front surface), and the − terminal 142 is a transparent panel (back surface). Is provided at the lower right end of the. With this configuration, the electric field distribution in the transparent panel and on the surface at the time of voltage generation is dispersed without being concentrated in part, and the effect of securing a breakdown voltage in a small area and reducing the risk of high-voltage leakage is obtained. .
 図7は、本実施例にかかる光電変換ユニットの積層接続図である。発光部102と太陽電池アレイ101が1セットとなっており、それが4セット配置されている。発光部102を挟んで隣り合う太陽電池アレイ101同士は、+端子と-端子が接続ケーブルで接続されており、光電変換ユニットの太陽電池は全体として直列接続となっている。太陽電池アレイ101において、+端子と-端子が透明パネル中心に対して対称位置に表裏反対側に設けられていることにより、太陽電池アレイ101の積層接続時において、接続ケーブル150を最短にできる。 FIG. 7 is a stacking connection diagram of photoelectric conversion units according to this example. The light emitting unit 102 and the solar cell array 101 are one set, and four sets are arranged. The solar cell arrays 101 adjacent to each other with the light emitting unit 102 interposed therebetween have the + terminal and the − terminal connected by a connection cable, and the solar cells of the photoelectric conversion unit are connected in series as a whole. In the solar cell array 101, the + terminal and the − terminal are provided on the opposite sides opposite to each other at the symmetrical position with respect to the center of the transparent panel.
 図8は、本実施例にかかる太陽電池アレイ101の接続端子の拡大図である。太陽電池アレイ101には、上述した+-端子として接続穴152が設けられている。接続穴152は、接続ケーブルにおけるテーパー状の高圧コネクタ101と嵌含するようなテーパー状となっている。接続穴152がテーパー状となっていることにより、高圧コネクタ151が接続しやすく、接続面に空気層が残らない。 FIG. 8 is an enlarged view of the connection terminals of the solar cell array 101 according to this example. The solar cell array 101 is provided with the connection hole 152 as the above-described + − terminal. The connection hole 152 has a tapered shape so as to be fitted to the tapered high voltage connector 101 in the connection cable. Since the connection hole 152 is tapered, the high-voltage connector 151 can be easily connected, and an air layer does not remain on the connection surface.
 一般的に、CW回路の段数は、効率を考慮すると数十段が限界であるため、電圧が高くなるほど交流電圧振幅を大きくする必要がある。このため、高電圧になるほど、リップルを小さくするのは困難となる。本実施例の回路は、CW回路が多用される1kV以上の高電圧から特に有用性があり、より高い電圧発生に対してその有用性が増すことになる。 Generally, the number of stages of the CW circuit is limited to several tens of stages in consideration of efficiency, and therefore, the AC voltage amplitude needs to be increased as the voltage increases. For this reason, it becomes difficult to reduce the ripple as the voltage increases. The circuit of the present embodiment is particularly useful from a high voltage of 1 kV or higher where CW circuits are frequently used, and its usefulness is increased for higher voltage generation.
 本実施例にかかるSTEMは、発光部と太陽電池アレイで構成された高圧電源を使用することにより、高電圧のリップルノイズが無いため、Cold-FE電子源とモノクロメーターで実現した0.05eVのエネルギー広がりを劣化させること無く、ビームの加速が可能となる。このため、高いビーム収束特性とEELSの高いエネルギー分解能が実現できる。 Since the STEM according to this example uses a high-voltage power source composed of a light emitting unit and a solar cell array, there is no high-voltage ripple noise, so 0.05 eV energy realized with a Cold-FE electron source and a monochromator The beam can be accelerated without deteriorating the spread. Therefore, high beam convergence characteristics and high energy resolution of EELS can be realized.
 実施例1にかかる光電変換ユニット130においては発熱量の小さい高輝度LEDが用いられているが、それでも、ある程度の発熱はあり、この熱が検出抵抗や制御部などに伝わると、高電圧のドリフトの原因となる可能性がある。そこで、本実施例においては、発光部102からの発熱を外へ逃がす冷却板が追加されている。以下、実施例1との相違点を中心に説明する。 In the photoelectric conversion unit 130 according to the first embodiment, a high-intensity LED with a small calorific value is used, but there is still a certain amount of heat generation. If this heat is transmitted to the detection resistor, the control unit, etc., a high voltage drift is generated. It may cause Therefore, in the present embodiment, a cooling plate for releasing heat generated from the light emitting unit 102 to the outside is added. Hereinafter, the difference from the first embodiment will be mainly described.
 図9は、本実施例にかかる光電変換ユニットの断面図である。図9(a)にかかる光電変換ユニットにおいては、1セットの発光部102と太陽電池アレイ101が一体となっており、発光部102が太陽電池アレイ101と接する面と反対側の面に冷却板153が設けられている。冷却板153は、銅やアルミニウムといった熱伝導性能の良い材料で構成されている。これにより、発光部からの発熱を、光電変換ユニットの外部に逃がすことができる。なお、発光部を冷却する冷却手段としては、冷却板の他、ペルチェ素子などのクーラーや、油や水などの冷却媒体などを用いてもよい。 FIG. 9 is a cross-sectional view of the photoelectric conversion unit according to this example. In the photoelectric conversion unit according to FIG. 9A, one set of the light emitting unit 102 and the solar cell array 101 are integrated, and a cooling plate is provided on the surface opposite to the surface where the light emitting unit 102 contacts the solar cell array 101. 153 is provided. The cooling plate 153 is made of a material having good thermal conductivity such as copper or aluminum. Thereby, the heat generated from the light emitting unit can escape to the outside of the photoelectric conversion unit. In addition, as a cooling means for cooling the light emitting unit, a cooler such as a Peltier element or a cooling medium such as oil or water may be used in addition to the cooling plate.
 図9(b)にかかる光電変換ユニットは、図9(a)にかかる光電変換ユニットの更なる変形例であり、冷却板が反射板も兼用している。冷却板と反射板を兼用する板154を挟むようにして、2つの光電変換ユニットが一体となっている。冷却板と反射板を兼用する板154は、熱伝導性能が良く、その表面が鏡面となる材料で構成されている。冷却板と反射板を兼用する板154は、太陽電池アレイと接することにより反射板として機能している。 The photoelectric conversion unit according to FIG. 9B is a further modification of the photoelectric conversion unit according to FIG. 9A, and the cooling plate also serves as a reflection plate. Two photoelectric conversion units are integrated so as to sandwich a plate 154 that serves both as a cooling plate and a reflection plate. The plate 154 that serves both as a cooling plate and a reflecting plate has a good thermal conductivity and is made of a material whose surface is a mirror surface. A plate 154 that serves both as a cooling plate and a reflecting plate functions as a reflecting plate by contacting the solar cell array.
 本実施例の光電変換ユニットによれば、更に安定でエネルギー変換効率の高いシステムが実現できる。 According to the photoelectric conversion unit of this embodiment, a more stable system with high energy conversion efficiency can be realized.
 図10は、本実施例にかかる透過型電子顕微鏡(Transmission Electron Microscope:以下TEMと略す)の構成図である。以下、実施例1および2との相違点を中心に説明する。 FIG. 10 is a configuration diagram of a transmission electron microscope (hereinafter referred to as TEM) according to the present embodiment. Hereinafter, the difference from the first and second embodiments will be mainly described.
 実施例1との大きな相違点は、高圧電源100が装置本体の架台内に配置されている点である。また、TEMであるため、球面収差補正器112はTEM用のものが用いられ、EELS装置113は二次元のImage Filterが用いられている。 The major difference from the first embodiment is that the high-voltage power supply 100 is arranged in the frame of the apparatus main body. Further, since it is a TEM, the spherical aberration corrector 112 is for TEM, and the EELS device 113 is a two-dimensional image filter.
 発光部と太陽電池アレイで構成された高圧電源は、出力リップルが小さいという特徴以外に、交流を使わない高圧電源であるということから、外部に放射されるノイズが極小という特徴もあり、ノイズに敏感な荷電粒子線装置筐体の近傍に実装できるメリットがある。本実施例によれば、装置がコンパクトになり、設置床面積も小さくできる。 A high-voltage power supply composed of a light emitting unit and a solar cell array is a high-voltage power supply that does not use alternating current, in addition to the feature of low output ripple. There is an advantage that it can be mounted in the vicinity of a sensitive charged particle beam device casing. According to this embodiment, the apparatus becomes compact and the installation floor area can be reduced.
 図11は、本実施例にかかるTEMの構成図である。以下、実施例1~3との相違点を中心に説明する。 FIG. 11 is a configuration diagram of a TEM according to the present embodiment. Hereinafter, the difference from the first to third embodiments will be mainly described.
 実施例3との大きな相違点は、高圧電源を縦長とし、高圧の出力端子を電子銃に直接接続する構成として、高価な高圧ケーブルを排除した点である。本実施例にかかる縦長構造の高圧電源120は略円筒状であり、その内部に、略円筒状の太陽電池アレイが配置され、更にその内側に略円筒状の発光部が配置されている。縦長構造の高圧電源120は、荷電粒子線装置筐体の上に、荷電粒子線装置筐体(光軸)と平行となるように配置されている。縦長構造の高圧電源120の上部は、電子源104と略同じ高さであり、水平方向の部材により荷電粒子線装置筐体に支持されている。 The major difference from Example 3 is that an expensive high-voltage cable is eliminated as a configuration in which the high-voltage power source is vertically long and the high-voltage output terminal is directly connected to the electron gun. The vertically long high voltage power supply 120 according to the present embodiment has a substantially cylindrical shape, in which a substantially cylindrical solar cell array is disposed, and further, a substantially cylindrical light emitting section is disposed inside thereof. The vertically long high-voltage power supply 120 is disposed on the charged particle beam device housing so as to be parallel to the charged particle beam device housing (optical axis). The upper portion of the vertically-structured high-voltage power supply 120 is substantially the same height as the electron source 104 and is supported on the charged particle beam apparatus housing by a horizontal member.
 図12は、略円筒状の球状太陽電池アレイの作製方法を示す図である。図12に示すように、直列接続されて数珠繋ぎとなっている複数の球状太陽電池161が、透明なフレキシブルシート160に平行に数段実装されており、フレキシブルシート160の右側端では、配線が一段さがっている。このシートを円筒状に曲げて丸めて端部を接続することにより、複数の球状太陽電池がらせん状に直列接続されている略円筒状の球状太陽電池アレイが実現できる。 FIG. 12 is a diagram showing a method for producing a substantially cylindrical spherical solar cell array. As shown in FIG. 12, a plurality of spherical solar cells 161 connected in series and connected in a row are mounted in several stages in parallel on a transparent flexible sheet 160. I'm looking for. By bending the sheet into a cylindrical shape and rounding and connecting the ends, a substantially cylindrical spherical solar cell array in which a plurality of spherical solar cells are connected in series in a spiral shape can be realized.
 図13は、略円筒状の太陽電池アレイの作製方法を示す図である。図13に示すように、透明なフレキシブル基板162に面状の太陽電池163を図12と同様に並べて実装している。縦長構造の高圧電源には実装上の制限の少ない球状太陽電池が好適であるが、通常の面状太陽電池でも実装を工夫することにより同様の効果が期待できる。 FIG. 13 is a diagram showing a method for producing a substantially cylindrical solar cell array. As shown in FIG. 13, planar solar cells 163 are arranged and mounted on a transparent flexible substrate 162 in the same manner as in FIG. A spherical solar cell with few restrictions on mounting is suitable for a vertically long high-voltage power supply, but a similar effect can be expected by devising mounting even with a normal planar solar cell.
 図14は、本実施例にかかる略円筒状の球状太陽電池アレイと略円筒状の発光部との関係を説明する図であり、略円筒状の太陽電池アレイ170の内部に略円筒状の発光体171を挿入して、略円筒状の光電変換ユニットを作製する様子を示している。略円筒状の発光体171は、耐圧の許す範囲で太陽電池の近傍に実装することが望ましく、本実施例では、筒の表面に高輝度LEDを複数実装して作製している。 FIG. 14 is a diagram for explaining the relationship between the substantially cylindrical spherical solar cell array and the substantially cylindrical light emitting unit according to the present embodiment, and the substantially cylindrical light emission inside the approximately cylindrical solar cell array 170. A state is shown in which a body 171 is inserted to produce a substantially cylindrical photoelectric conversion unit. The substantially cylindrical light-emitting body 171 is desirably mounted in the vicinity of the solar cell within the range allowed by the withstand voltage. In this embodiment, a plurality of high-brightness LEDs are mounted on the surface of the cylinder.
 図15は、本実施例にかかる縦長構造の高圧電源の内部構造の説明図である。3つの略円筒状の光電変換ユニットが上下に多段接続されている。3つの略円筒状の球状太陽電池アレイは直列接続されており、複数の球状太陽電池がらせん状に直列接続されている一つの巨大な略円筒状の球状太陽電池アレイを構成している。この巨大な略円筒状の球状太陽電池アレイの高圧出力端子172は上部に配置され、GND端子173は下部に配置されている。また、略円筒状の発光体をそれぞれ制御できる発光制御回線174は、下部に配置されている。このような構成により、図11に示すような、荷電粒子線装置筐体と高圧電源を繋ぐ高圧ケーブルの無い荷電粒子線装置が実現できる。本構成は、高圧ケーブルを完全に無くすだけではなく、通常よりも短くすることにも応用できる。 FIG. 15 is an explanatory diagram of the internal structure of the vertically long high-voltage power supply according to this embodiment. Three substantially cylindrical photoelectric conversion units are connected in multiple stages in the vertical direction. Three substantially cylindrical spherical solar cell arrays are connected in series to form one huge substantially cylindrical spherical solar cell array in which a plurality of spherical solar cells are spirally connected in series. The high-voltage output terminal 172 of this huge substantially cylindrical spherical solar cell array is arranged at the upper part, and the GND terminal 173 is arranged at the lower part. The light emission control line 174 that can control each of the substantially cylindrical light emitters is disposed at the lower part. With such a configuration, a charged particle beam apparatus without a high voltage cable connecting the charged particle beam apparatus housing and the high voltage power source as shown in FIG. 11 can be realized. This configuration can be applied not only to completely eliminate the high-voltage cable but also to make it shorter than usual.
 図16は、本実施例にかかる走査型電子顕微鏡(Scanning Electron Microscope:以下SEMと略す)の構成図である。以下、実施例1~4との相違点を中心に説明する。 FIG. 16 is a block diagram of a scanning electron microscope (Scanning Electron Microscope: hereinafter abbreviated as SEM) according to the present embodiment. Hereinafter, the difference from the first to fourth embodiments will be mainly described.
 本実施例にかかるSEMにおいては、電子源104としてはCold-FEを用いており、モノクロメーター105および球面収差補正器106を搭載している。また、試料室180には、二次電子検出器181を搭載している。電子ビームの加速電圧は最大30kVとなっている。 In the SEM according to this example, Cold-FE is used as the electron source 104, and the monochromator 105 and the spherical aberration corrector 106 are mounted. Further, a secondary electron detector 181 is mounted in the sample chamber 180. The acceleration voltage of the electron beam is a maximum of 30 kV.
 本実施例においては、発光部と太陽電池アレイで構成された高圧電源とモノクロメーターを組み合わせて用いることで色収差を低減し、球面収差補正器と組み合わせて用いることで球面収差を低減することにより、収束性能の高いビームを形成し、高倍率のSEM像の観察が可能となる。 In this embodiment, chromatic aberration is reduced by using a combination of a high-voltage power source and a monochromator configured by a light emitting unit and a solar cell array, and spherical aberration is reduced by using in combination with a spherical aberration corrector, A beam with high convergence performance can be formed, and high-magnification SEM images can be observed.
 図17は、本実施例にかかるイオン顕微鏡の構成図である。以下、実施例1~5との相違点を中心に説明する。 FIG. 17 is a configuration diagram of an ion microscope according to the present embodiment. Hereinafter, the difference from the first to fifth embodiments will be mainly described.
 本実施例にかかるイオン顕微鏡においては、イオン源200としてガス電界電離イオン源(Gas Field Ion Source:以下GFISと省略)を用いている。このイオン源から放出されるイオンのエネルギー幅は1eV以下であり、この値は他のイオン源と比較し著しく小さい。従って、発光部と太陽電池アレイで構成された高圧電源と組み合わせて用いることにより、イオン源の性能を最大限活かすことが可能となる。 In the ion microscope according to the present embodiment, a gas field ion source (hereinafter referred to as GFIS) is used as the ion source 200. The energy width of ions emitted from this ion source is 1 eV or less, and this value is significantly smaller than that of other ion sources. Therefore, it is possible to make the best use of the performance of the ion source by using it in combination with a high voltage power source composed of a light emitting part and a solar cell array.
1…光 100…高圧電源 101…太陽電池アレイ 102…発光部 103…制御回路 104…電子源 105…モノクロメーター 106…球面収差補正器 107…試料ステージ 108…試料 109…STEM検出器 110…EELS装置 111…高圧ケーブル 112…球面収差補正器 120…縦長構造の高圧電源 130…光電変換ユニット 131…分割抵抗1 132…分割抵抗2 134…基準電圧電源 135…出力電圧設定 136…誤差増幅器 140…反射板 141…+端子 142…-端子 150…接続ケーブル 151…高圧コネクタ 152…接続端子 153…冷却板 154…冷却板と反射板を兼用する板 160…フレキシブルシート 161…球状太陽電池 162…フレキシブル基板 163…太陽電池 170…略円筒状の球状太陽電池アレイ 171…略円筒状の発光体 172…高圧出力端子 172…GND端子 173…発光制御回線 180…試料室 181…二次電子検出器 200…イオン源 DESCRIPTION OF SYMBOLS 1 ... Light 100 ... High voltage power supply 101 ... Solar cell array 102 ... Light emission part 103 ... Control circuit 104 ... Electron source 105 ... Monochromator 106 ... Spherical aberration corrector 107 ... Sample stage 108 ... Sample 109 ... STEM detector 110 ... EELS apparatus 111 ... High voltage cable 112 ... Spherical aberration corrector 120 ... Vertical high voltage power supply 130 ... Photoelectric conversion unit 131 ... Division resistor 1 132 ... Division resistor 2 134 ... Reference voltage power supply 135 ... Output voltage setting 136 ... Error amplifier 140 ... Reflector 141 ... + terminal 142 ...- terminal 150 ... connection cable 151 ... high voltage connector 152 ... connection terminal 153 ... cooling plate 154 ... plate that combines cooling plate and reflector 160 ... flexible sheet 161 ... spherical solar cell 162 ... flexible Substrate 163 ... Solar cell 170 ... Spherical cylindrical solar cell array 171 ... Substantially cylindrical light emitter 172 ... High-voltage output terminal 172 ... GND terminal 173 ... Light emission control line 180 ... Sample chamber 181 ... Secondary electron detector 200 ... Ion source

Claims (20)

  1.  直列接続された複数の光電変換素子と光源を有する高圧電源を備え、前記光源から照射した光により前記複数の光電変換素子で発生する高電圧を荷電粒子源に印加する荷電粒子線装置。 A charged particle beam apparatus comprising a high voltage power source having a plurality of photoelectric conversion elements connected in series and a light source, and applying a high voltage generated in the plurality of photoelectric conversion elements by light irradiated from the light source to the charged particle source.
  2.  請求項1記載の荷電粒子線装置において、
     前記光電変換素子が、太陽電池であることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    The charged particle beam device, wherein the photoelectric conversion element is a solar cell.
  3.  請求項1記載の荷電粒子線装置において、
     前記光電変換素子が、球状太陽電池であることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    A charged particle beam device, wherein the photoelectric conversion element is a spherical solar cell.
  4.  請求項1記載の荷電粒子線装置において、
     透明な板状の構造体に前記複数の光電変換素子が端部で折り返しされながら配置されていることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    A charged particle beam device, wherein the plurality of photoelectric conversion elements are arranged on a transparent plate-like structure while being folded back at an end.
  5.  請求項1記載の荷電粒子線装置において、
     透明な筒状の構造体に前記複数の光電変換素子がらせん状に配置されていることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    A charged particle beam apparatus, wherein the plurality of photoelectric conversion elements are spirally arranged in a transparent cylindrical structure.
  6.  請求項1記載の荷電粒子線装置において、
     前記光源が、LEDであることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    The charged particle beam device, wherein the light source is an LED.
  7.  請求項1記載の荷電粒子線装置において、
     前記高圧電源が、前記光源を冷却する冷却手段を有することを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    The charged particle beam apparatus, wherein the high-voltage power source has a cooling means for cooling the light source.
  8.  請求項1記載の荷電粒子線装置において、
     前記高圧電源の最大出力電圧が1kV以上であることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    The charged particle beam apparatus, wherein the maximum output voltage of the high-voltage power supply is 1 kV or more.
  9.  請求項1記載の荷電粒子線装置において、
     前記高圧電源が、荷電粒子線筐体を保持する架台に保持されていることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    The charged particle beam apparatus, wherein the high-voltage power source is held by a gantry that holds a charged particle beam casing.
  10.  請求項1記載の荷電粒子線装置において、
     前記高圧電源の出力が高圧ケーブルを介さずに前記荷電粒子線源に電気的に直接されていることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    The charged particle beam apparatus characterized in that the output of the high voltage power source is electrically directly connected to the charged particle beam source without going through a high voltage cable.
  11.  請求項1記載の荷電粒子線装置において、
     前記高電圧が一定の電圧となるように、前記光源の発光量を増減させ、フィードバック制御することを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    A charged particle beam apparatus, wherein feedback control is performed by increasing / decreasing a light emission amount of the light source so that the high voltage becomes a constant voltage.
  12.  請求項1記載の荷電粒子線装置において、
     前記光電変換素子の出力側に電圧調整手段を設けることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    A charged particle beam apparatus comprising voltage adjusting means on an output side of the photoelectric conversion element.
  13.  請求項1記載の荷電粒子線装置において、
     当該荷電粒子線装置が透過型電子顕微鏡であることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    The charged particle beam apparatus is a transmission electron microscope.
  14.  請求項1記載の荷電粒子線装置において、
     当該荷電粒子線装置が走査透過型電子顕微鏡であることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    The charged particle beam apparatus is a scanning transmission electron microscope.
  15.  請求項1記載の荷電粒子線装置において、
     当該荷電粒子線装置が走査型電子顕微鏡であることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    The charged particle beam apparatus is a scanning electron microscope.
  16.  請求項1記載の荷電粒子線装置において、
     当該荷電粒子線装置がイオン顕微鏡であることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    The charged particle beam apparatus is an ion microscope.
  17.  請求項1記載の荷電粒子線装置において、
     荷電粒子線のエネルギー幅を小さくするモノクロメーターを備えることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    A charged particle beam apparatus comprising a monochromator for reducing the energy width of a charged particle beam.
  18.  請求項1記載の荷電粒子線装置において、
     電子線エネルギー損失分光装置を備えることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    A charged particle beam apparatus comprising an electron beam energy loss spectrometer.
  19.  請求項1記載の荷電粒子線装置において、
     球面収差補正器を備えることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    A charged particle beam apparatus comprising a spherical aberration corrector.
  20.  請求項1記載の荷電粒子線装置において、
     前記荷電粒子源が冷陰極電界放射電子源であることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to claim 1,
    A charged particle beam apparatus, wherein the charged particle source is a cold cathode field emission electron source.
PCT/JP2014/066091 2013-09-20 2014-06-18 Charged-particle-beam device WO2015040906A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-194809 2013-09-20
JP2013194809A JP2017004590A (en) 2013-09-20 2013-09-20 Charged particle beam device

Publications (1)

Publication Number Publication Date
WO2015040906A1 true WO2015040906A1 (en) 2015-03-26

Family

ID=52688569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066091 WO2015040906A1 (en) 2013-09-20 2014-06-18 Charged-particle-beam device

Country Status (2)

Country Link
JP (1) JP2017004590A (en)
WO (1) WO2015040906A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4059326B1 (en) 2019-11-11 2023-07-12 Signify Holding B.V. An led filament lamp and a method of producing a spiral led filament

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736100U (en) * 1993-12-17 1995-07-04 日新ハイボルテージ株式会社 Grid control device for electron beam irradiation device
JPH08116673A (en) * 1994-09-20 1996-05-07 Jeol Ltd Dc high voltage generator
JP2004221386A (en) * 2003-01-16 2004-08-05 Sony Corp Inspection and measurement device and inspection and measurement method of particulate semiconductor
JP2004303547A (en) * 2003-03-31 2004-10-28 Hitachi High-Technologies Corp Electron beam device with aberration corrector
JP2006156155A (en) * 2004-11-30 2006-06-15 Jeol Ltd High voltage generator of electrically-charged particle beam device
JP2011009254A (en) * 2009-06-23 2011-01-13 Stanley Electric Co Ltd Led light source for test and solar cell evaluation device including the same
JP2011181501A (en) * 2010-03-01 2011-09-15 Carl Zeiss Nts Gmbh Transmission electron microscope
JP2013084489A (en) * 2011-10-12 2013-05-09 Hitachi High-Technologies Corp Ion source and ion beam device using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736100U (en) * 1993-12-17 1995-07-04 日新ハイボルテージ株式会社 Grid control device for electron beam irradiation device
JPH08116673A (en) * 1994-09-20 1996-05-07 Jeol Ltd Dc high voltage generator
JP2004221386A (en) * 2003-01-16 2004-08-05 Sony Corp Inspection and measurement device and inspection and measurement method of particulate semiconductor
JP2004303547A (en) * 2003-03-31 2004-10-28 Hitachi High-Technologies Corp Electron beam device with aberration corrector
JP2006156155A (en) * 2004-11-30 2006-06-15 Jeol Ltd High voltage generator of electrically-charged particle beam device
JP2011009254A (en) * 2009-06-23 2011-01-13 Stanley Electric Co Ltd Led light source for test and solar cell evaluation device including the same
JP2011181501A (en) * 2010-03-01 2011-09-15 Carl Zeiss Nts Gmbh Transmission electron microscope
JP2013084489A (en) * 2011-10-12 2013-05-09 Hitachi High-Technologies Corp Ion source and ion beam device using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEOL LTD.: "Denshi Kenbikyo no Dengen", JIPII JOURNAL OF TECHNICAL DISCLOSURE NO. 92-9240, 15 April 1992 (1992-04-15) *

Also Published As

Publication number Publication date
JP2017004590A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
CN101395691B (en) Multi x-ray generator and multi-radiography system
US8675817B2 (en) Industrial X-ray generator
TWI601179B (en) Apparatus for observing sample and method for observing sample
US6653547B2 (en) Solar energy converter
US9159528B2 (en) Electron beam apparatus
EP2297763A2 (en) Charged particle detection system and method
JP7286778B2 (en) Charged particle detector with gain element and manufacturing method thereof
TW202407738A (en) Lens assembly for manipulating electron beamlet
RU2005100770A (en) SECONDARY ELECTRON SENSOR, IN PARTICULAR, IN THE SCANNING ELECTRONIC MICROSCOPE
WO2015040906A1 (en) Charged-particle-beam device
KR100967346B1 (en) Tube current cotrolling circuit of field emission X-ray tube
TW202338893A (en) Aperture assembly, beam manipulator unit, method of manipulating charged particle beams, and charged particle projection apparatus
EP4176460A1 (en) Charged-particle multi-beam column, charged-particle multi-beam column array, inspection method
JP4829734B2 (en) Ion mobility meter and ion mobility measuring method
US20170003403A1 (en) Device and method for radiation dosimetry
US20070051879A1 (en) Image Intensifier Device and Method
WO2021131436A1 (en) Scintillator, measurement apparatus, mass spectrometer, and electron microscope
CN117223082A (en) Charged particle evaluation system and method
RU2431120C2 (en) Internal gain ir image raster receiver
US20100202590A1 (en) X-ray tube with a catching device for backscattered electrons, and operating method therefor
TWI835224B (en) Charged-particle optical device
TWI813242B (en) Charged-particle apparatus
RU2622397C2 (en) High-voltage hybrid photosensitive device for detecting low-intensity radiation
TW202347391A (en) Detector assembly, charged particle device, apparatus, and methods
TW202328812A (en) Charged particle apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP