WO2015040717A1 - Gas-barrier film and process for producing same - Google Patents

Gas-barrier film and process for producing same Download PDF

Info

Publication number
WO2015040717A1
WO2015040717A1 PCT/JP2013/075319 JP2013075319W WO2015040717A1 WO 2015040717 A1 WO2015040717 A1 WO 2015040717A1 JP 2013075319 W JP2013075319 W JP 2013075319W WO 2015040717 A1 WO2015040717 A1 WO 2015040717A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
film
gas
alkoxysilane
layer
Prior art date
Application number
PCT/JP2013/075319
Other languages
French (fr)
Japanese (ja)
Inventor
飛鳥 政宏
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to PCT/JP2013/075319 priority Critical patent/WO2015040717A1/en
Priority to JP2013543080A priority patent/JP5663100B1/en
Publication of WO2015040717A1 publication Critical patent/WO2015040717A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates

Definitions

  • the present invention relates to a gas barrier film excellent in gas barrier properties and flexibility against oxygen, water vapor, and the like, and a method for producing the same.
  • the gas barrier film is used as a packaging bag for foods and pharmaceuticals, and according to the gas barrier film, it is possible to prevent the quality of the contents of the packaging bag from being changed due to the influence of oxygen, water vapor or the like.
  • the gas barrier film is also used as a part of a product structure such as a solar cell module, a liquid crystal display panel, and an organic EL (electroluminescence) display panel, or as a package material for an element included in the product structure. ing.
  • the gas barrier film can prevent the elements contained in the product structure from deteriorating in performance due to contact with oxygen or water vapor.
  • a synthetic resin film such as a polyvinyl alcohol film or an ethylene-vinyl alcohol copolymer film is used.
  • the synthetic resin film has a problem that the water vapor barrier property is insufficient, and the oxygen barrier property is lowered under high humidity.
  • Patent Document 1 discloses that a transparent synthetic resin plate is formed on both surfaces of the transparent synthetic resin plate, and silicon oxide, aluminum oxide, zinc oxide, indium tin oxide, silicon nitride, magnesium fluoride, and the like.
  • a gas barrier film having a metal oxide film is disclosed.
  • Patent Document 2 discloses a gas barrier film comprising a transparent thermoplastic film and a transmission barrier layer made of a compound of elements of zinc, tin and oxygen, and having a zinc mass ratio of 5% to 70%. ing.
  • a layer A composed of a compound of at least one element of a group of zircon, aluminum, zinc, tin, silicon, and titanium containing at least one of oxygen and nitrogen elements on a substrate;
  • a gas barrier formed by alternately laminating layers B composed of a compound of at least one element of the group of zircon, aluminum, zinc, tin, silicon, and titanium containing at least one of oxygen, nitrogen, and carbon elements A functional film is disclosed.
  • the gas barrier film also has flexibility.
  • the flexibility of the metal oxide film is low. Therefore, when the gas barrier film is bent, the metal oxide film is cracked, and there is a problem that the gas barrier property of the gas barrier film is lowered.
  • the gas barrier film must have excellent transparency in order to increase the visibility of the packaged contents and the image displayed on the display panel or to transmit light such as sunlight. Is also sought.
  • the transparency of the metal oxide film is low, there is a problem that the transparency of the gas barrier film is low as a result.
  • an object of the present invention is to provide a gas barrier film excellent in gas barrier properties, transparency and flexibility.
  • the gas barrier film of the present invention is A transparent film, And is laminated and integrated on one surface of the transparent film, and has the general formula (1): ZnSn a O b N c (wherein a is 2.1 to 15, b is 0.5 to 22, c is from 0.05 to 1.1), and a gas barrier layer containing an oxynitride, It is characterized by including.
  • the gas barrier layer containing zinc and tin oxynitrides represented by the above general formula (1) is not only excellent in gas barrier properties but also excellent in transparency and flexibility. Therefore, the gas barrier film of the present invention using such a gas barrier layer is excellent in gas barrier properties, transparency and flexibility, and thereby a solar cell module that can be installed along a curved surface, A liquid crystal display panel, an organic EL display panel, and the like can be provided.
  • Sectional drawing of the gas barrier film which is one Embodiment of this invention is shown.
  • Sectional drawing of the gas-barrier film which is other one Embodiment of this invention is shown.
  • the gas barrier film of the present invention has a transparent film and a gas barrier layer laminated and integrated on one surface of the transparent film.
  • a transparent synthetic resin As the resin constituting the transparent film, a transparent synthetic resin is used.
  • a polyolefin resin such as polyethylene and polypropylene, a vinyl resin such as polyvinyl alcohol and a saponified ethylene-vinyl acetate copolymer; polyethylene terephthalate, polyethylene Polyester resins such as isophthalate, polyethylene naphthalate, polyethylene-2,6-naphthalate and polybutylene terephthalate; Polyether resins such as polyoxymethylene; Polyamide resins such as nylon-6 and nylon-6,6; Polycarbonate Polyimide; polyetherimide; polyethersulfone; polysulfone; polyetheretherketone; polyetherketoneketone and the like can be used.
  • these synthetic resins may be used independently and can also use 2 or more types together.
  • the transparent film may contain known additives such as an antistatic agent, an ultraviolet absorber, a plasticizer, a lubricant, and a colorant as necessary.
  • the thickness of the transparent film is preferably 3 to 300 ⁇ m, more preferably 12 to 300 ⁇ m, and particularly preferably 50 to 200 ⁇ m.
  • the total light transmittance of the transparent film is preferably 80% or more, more preferably 85 to 100%.
  • a transparent film having a total light transmittance of 80% or more is excellent in transparency.
  • the gas barrier film having such a transparent film a liquid crystal display panel and an organic EL display excellent in image visibility.
  • a panel and a solar cell module with high power generation efficiency can be provided.
  • the total light transmittance of a transparent film can be measured, for example using a haze meter (Nippon Denshoku Industries Co., Ltd. product name NDH2000) by the method based on JISK7105, for example.
  • a haze meter Nippon Denshoku Industries Co., Ltd. product name NDH2000
  • a gas barrier layer is preferably laminated and integrated on one surface of the transparent film via a smoothing layer. Therefore, the gas barrier film of the present invention has a transparent film, a smoothing layer laminated and integrated on one surface of the transparent film, and a gas barrier layer laminated and integrated on one surface of the smoothing layer. It is preferable.
  • the transparent film may have a convex portion that is difficult to cover with a gas barrier layer on one side.
  • a gas barrier layer is formed on one surface of such a transparent film, the tip of the convex portion of the transparent film is exposed from the surface of the gas barrier layer without being covered with the gas barrier layer, which may reduce the gas barrier properties of the gas barrier film.
  • the smoothing layer is excellent in surface smoothness, and can cover the whole convex part of a transparent film. By using such a smoothing layer, the gas barrier property of the gas barrier film can be improved.
  • the maximum height Ry of one surface of the smoothing layer on which the gas barrier layer is laminated and integrated is preferably 100 nm or less, more preferably 80 nm or less, particularly preferably 50 nm or less, and most preferably 0.1 to 20 nm.
  • a smoothing layer having a maximum height Ry that is too large may have convex portions that are difficult to cover with the gas barrier layer due to the unevenness of one or both of the transparent film and the smoothing layer.
  • the tip portion of such a convex portion protrudes from the surface of the gas barrier layer without being covered with the gas barrier layer, and thereby has a gas barrier property. Reduces the gas barrier properties of the film.
  • the surface roughness R a of one surface of the smoothing layer gas barrier layer is laminated and integrated is preferably 0.1 ⁇ 50 nm, more preferably 0.1 ⁇ 30 nm, particularly preferably 0.1 ⁇ 15 nm.
  • a smoothing layer having a surface roughness Ra exceeding 100 nm may be difficult to completely cover with a gas barrier layer. Further, the smoothing layer having a surface roughness Ra of less than 0.1 nm may reduce the adhesion with the gas barrier layer. When the gas barrier film is bent or rolled, the smoothing layer having low adhesion is peeled off from the smoothing layer, thereby reducing the gas barrier property of the gas barrier film.
  • the maximum height R y and surface roughness R a in a plane gas barrier layer is laminated and integrated in the smoothing layer can be measured by a method based on JIS B0601 (1982 years).
  • the maximum height R y and the surface roughness Ra can be measured using, for example, a non-contact three-dimensional micro surface shape measurement system (product name RST-Plus manufactured by Wyco).
  • a specific measurement method is as follows. First, in accordance with JIS B0601 (1982), the maximum height R y or the surface roughness Ra is set to a measurement length of 1 ⁇ m at any five locations on the surface where the gas barrier layer of the smoothing layer is laminated and integrated. taking measurement. The arithmetic mean value of the measured value of the maximum height R y, or surface roughness R a thereby obtained, the maximum height in a plane gas barrier layer is laminated and integrated in the smoothing layer R y or surface roughness R a .
  • Smoothing layer having a maximum height R y and surface roughness R a in the range described above, excellent in surface smoothness.
  • Such a smoothing layer can be formed using a material that can form a coating film having a smooth surface and does not reduce the transparency of the transparent film.
  • Examples of such a smoothing layer include (1) a transparent synthetic resin coating layer, (2) a layer formed by a sol-gel method using a composition containing a metal alkoxide, and (3) a radical polymerizable group. And a layer containing a reaction product of a composition containing an alkoxysilane (A) having a radical and an alkoxysilane (B) having no radical polymerizable group.
  • the transparent synthetic resin coating layer can be formed by a method of applying a composition containing a transparent synthetic resin to one surface of a transparent film.
  • the composition can be prepared by dispersing or dissolving a transparent synthetic resin in a solvent.
  • Preferred examples of the transparent synthetic resin include acrylic resins, methacrylic resins, and epoxy resins.
  • the solvent include toluene, ethyl acetate, ethanol and the like.
  • the content of the transparent synthetic resin in the composition is preferably 10 to 40% by weight.
  • a transparent synthetic resin coating layer can be produced on one surface of the transparent film by removing the solvent contained in the applied composition.
  • the removal of the solvent can be performed, for example, by heating the applied composition.
  • a layer formed by a sol-gel method using a composition containing a metal alkoxide is obtained by applying a composition containing a metal alkoxide such as tetramethoxysilane to one surface of the transparent film, hydrolyzing and dehydrating the metal alkoxide. After forming a sol, the applied composition can be heated to remove the moisture and sinter the resulting gel.
  • the composition further includes a curing catalyst and a solvent as required.
  • a layer containing a reaction product of a composition containing an alkoxysilane (A) having a radically polymerizable group and an alkoxysilane (B) not having a radically polymerizable group is formed on one surface of the transparent film.
  • the layer containing the reaction product of the composition containing the alkoxysilane (A) having a radical polymerizable group and the alkoxysilane (B) having no radical polymerizable group is formed by the method described above.
  • a radical polymer of alkoxysilane (A) is formed, but also a dehydration condensate of alkoxysilane (B) is formed so as to crosslink the main chain of the radical polymer. Therefore, it has a dense network structure.
  • Such a layer having a dense network structure is not only excellent in surface smoothness and transparency, but also can highly prevent permeation of gases such as oxygen and water vapor.
  • the radical polymerizable group means a group capable of addition polymerization by radical polymerization.
  • examples of such radically polymerizable groups include groups having an unsaturated double bond, and specifically include allyl groups, isopropenyl groups, maleoyl groups, styryl groups, vinylbenzyl groups, (meth) Examples include an acryloxy group, a (meth) acryloxyalkyl group, and a vinyl group.
  • (Meth) acryloxy means acryloxy or methacryloxy.
  • a (meth) acryloxy group, a (meth) acryloxyalkyl group and a vinyl group are preferably exemplified. Since the alkoxysilane (A) having these groups is excellent in radical polymerization reactivity, it can be highly polymerized. Thereby, a smooth network layer having a dense network structure and excellent gas barrier properties can be formed.
  • the alkoxysilane (A) preferably has one radical polymerizable group.
  • alkoxysilane (A) having a radical polymerizable group examples include alkoxysilanes represented by the following general formula (I).
  • R 1 represents a (meth) acryloxyalkyl group having 4 to 9 carbon atoms or a vinyl group
  • R 2 represents an alkyl group having 1 to 8 carbon atoms which may be substituted with an alkoxy group
  • R 3 represents an alkyl group having 1 to 4 carbon atoms
  • n is 0 or 1.
  • examples of the (meth) acryloxyalkyl group having 4 to 9 carbon atoms include (meth) acryloxymethyl group, 2- (meth) acryloxyethyl group, and 3- (meth) ) An acryloxypropyl group is preferred.
  • R 2 in the general formula (I) is an alkyl group having 1 to 8 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. , Heptyl group, octyl group and the like.
  • the hydrogen atom which comprises the alkyl group may be substituted by the alkoxy group.
  • Preferred examples of the alkyl group having 1 to 8 carbon atoms that is substituted with an alkoxy group include a methoxymethyl group, a 2-methoxyethyl group, and a 2-ethoxyethyl group.
  • alkoxysilane represented by the general formula (I) include 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, and 3-methacryloxypropyltriethoxy.
  • alkoxysilanes (A) may be used individually by 1 type, and may use 2 or more types together. Of these, 3- (meth) acryloxypropyltrimethoxysilane is preferred because of its excellent radical polymerization reactivity.
  • the alkoxysilane (B) does not have a radical polymerizable group.
  • an alkoxysilane (B) an alkoxysilane represented by the following general formula (II) is preferably used. (Wherein R 4 and R 5 each represents an alkyl group having 1 to 8 carbon atoms, and m is an integer of 0 to 2)
  • R 4 and R 5 in the general formula (II) are each an alkyl group having 1 to 8 carbon atoms, and preferably an alkyl group having 1 to 4 carbon atoms.
  • R 4 and R 5 include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • m is preferably 0.
  • the alkoxysilane (B) represented by the general formula (II) can give a cross-linked structure between the main chains of the polymer obtained by radical polymerization of the alkoxysilane (A), thereby being excellent in the smoothing layer. It is possible to impart gas barrier properties.
  • alkoxysilane (B) examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane. According to these, a dense cross-linked structure can be uniformly formed between the main chains of the alkoxysilane (A) polymer. Alkoxysilane (B) may be used individually by 1 type, and may use 2 or more types together.
  • the content of the alkoxysilane (B) in the composition is preferably 1 to 100 parts by weight, more preferably 1 to 50 parts by weight, particularly 1 to 20 parts by weight, based on 100 parts by weight of the alkoxysilane (A). preferable.
  • the content of the alkoxysilane (B) in the composition is preferably 1 to 100 parts by weight, more preferably 1 to 50 parts by weight, particularly 1 to 20 parts by weight, based on 100 parts by weight of the alkoxysilane (A).
  • there is too little content of the alkoxysilane (B) in a composition there exists a possibility that sufficient crosslinked structure cannot be formed between the principal chains of the polymer of alkoxysilane (A).
  • the smoothing layer obtained may become white and transparency may fall.
  • the composition further contains polyfunctional (meth) acrylate (C) in addition to the above-described alkoxysilane (A) and alkoxysilane (B).
  • the polyfunctional (meth) acrylate (C) means a (meth) acrylate having two or more (meth) acryloyl groups in one molecule. Moreover, polyfunctional (meth) acrylate (C) does not contain a silicon atom.
  • the composition further contains a polyfunctional (meth) acrylate (C) the copolymer is obtained by radical polymerization of alkoxysilane (A) and polyfunctional (meth) acrylate (C) by irradiation with active energy rays. Is formed.
  • the (meth) acryloyl group means an acryloyl group or a methacryloyl group.
  • (meth) acrylate means an acrylate or a methacrylate.
  • polyfunctional (meth) acrylate (C) dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tetraethylene glycol di (meth) acrylate
  • Bifunctional (meth) acrylates such as: trimethylolpropane tri (meth) acrylate, trifunctional (meth) acrylates such as pentaerythritol tri (meth) acrylate; tetramethylolmethane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate
  • tetrafunctional (meth) acrylates such as 6-functional (meth) acrylates such as dipentaerythritol hexa (meth) acrylate.
  • Polyfunctional (meth) acrylate (C) may be used independently and may use 2 or more types together.
  • the content of the polyfunctional (meth) acrylate (C) in the composition is preferably from 0.1 to 200 parts by weight, more preferably from 10 to 150 parts by weight, more preferably from 20 to 20 parts by weight based on 100 parts by weight of the alkoxysilane (A). 120 parts by weight are particularly preferred.
  • the composition contains water in addition to the alkoxysilane (A) and alkoxysilane (B) described above.
  • water By containing water, the hydrolysis reaction and dehydration condensation reaction between the alkoxy group of the alkoxysilane (A) radical polymer and the alkoxy group of the alkoxysilane (B) are promoted, and the radical of the alkoxysilane (A). It becomes possible to form a network structure in which alkoxysilane (B) is crosslinked between the main chains of the polymer.
  • the water content in the composition is preferably 0.1 to 40 parts by weight, more preferably 1 to 30 parts by weight, and particularly preferably 2 to 20 parts by weight with respect to 100 parts by weight of the alkoxysilane (A). If the content of water in the composition is too small, excessive time is required to sufficiently advance the hydrolysis reaction and dehydration condensation reaction of the alkoxy group of the alkoxysilane (B), and the production efficiency of the gas barrier film is increased. There is a risk of lowering. Moreover, when there is too much content of the water in a composition, there exists a possibility that the water which exists excessively may inhibit the polymerization reaction of alkoxysilane (A).
  • the composition preferably further contains an acid catalyst in addition to water.
  • Acid catalysts include inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid; and organic acids such as formic acid and acetic acid. Of these, nitric acid is preferable. According to nitric acid, hydrolysis of the alkoxy group can be promoted moderately.
  • the content of the acid catalyst in the composition is preferably 0.001 to 5 parts by weight, more preferably 0.01 to 1 part by weight with respect to 100 parts by weight of water. If the amount of the acid catalyst added is too small, the effect obtained by adding the acid catalyst may not be sufficient. Moreover, when there is too much addition amount of an acid catalyst, there exists a possibility that the acidity of a gas-barrier resin layer may become high. A gas barrier film containing a gas barrier resin layer having a high acidity may be deteriorated at an early stage.
  • the applied composition After applying a composition containing alkoxysilane (A), alkoxysilane (B) and water on one surface of the transparent film, the applied composition is irradiated with active energy rays.
  • active energy rays applied to the composition include ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • an electron beam is preferable because it has sufficient energy for radical polymerization of alkoxysilane (A).
  • the acceleration voltage of the electron beam is preferably 10 to 100 kV, and more preferably 10 to 50 kV. Further, the irradiation amount of the electron beam is preferably 50 to 200 kGy, and more preferably 100 to 175 kGy.
  • Radiation polymerization of the alkoxysilane (A) contained in the composition is performed by irradiating the composition coated on one surface of the transparent film with active energy rays. Moreover, when the said composition contains polyfunctional (meth) acrylate (C), radical polymerization of alkoxysilane (A) and polyfunctional (meth) acrylate (C) is performed by irradiation of the said active energy ray. Do.
  • composition contains water, with or after the initiation of the radical polymerization of alkoxysilane (A), or after the initiation, the alkoxy group and / or alkoxy group possessed by the radical polymer of alkoxysilane (A) Hydrolysis and dehydration condensation reaction between the substituted alkoxy group and the alkoxy group contained in the alkoxysilane (B), and hydrolysis and dehydration condensation reaction between the alkoxy groups contained in the alkoxysilane (B) occur.
  • the composition coated on one side of the transparent film is irradiated with active energy rays, and then these are preferably heated at a temperature of 40 to 150 ° C., more preferably 40 to It is preferable to leave it at 120 ° C. in an environment with a relative humidity of preferably 40 to 80%, more preferably 50 to 70%.
  • the standing time is preferably 0.1 to 10 hours, more preferably 0.5 to 3 hours.
  • the smoothing layer examples include the above-described layers (1) to (3).
  • the layer (3) is preferable because of excellent surface smoothness and gas barrier properties.
  • the smoothing layer may contain inert particles. It is possible to more easily adjust the maximum height R y and surface roughness R a of the smoothing layer by using the inert particles.
  • inert particles substances that do not cause a chemical reaction with other materials constituting the smoothing layer are used.
  • inert inorganic particles such as Al 2 O 3 particles, SiO 2 particles, TiO 2 particles, BaSO 4 particles, CaCO 3 particles, talc particles, and kaolin particles
  • inert organic particles such as crosslinked polystyrene particles and acrylic particles. Particles.
  • the average particle size of the inert particles is preferably 0.1 to 300 nm, more preferably 0.5 to 150 nm, and particularly preferably 1 to 30 nm. If the average particle diameter of the inert particles is too small, the inert particles may aggregate to reduce the transparency and surface smoothness of the smoothing layer. Moreover, when the average particle diameter of an inert particle is too large, there exists a possibility that the surface smoothness of a smoothing layer may fall.
  • the average particle diameter of the inert particles means a cumulative 50% value of the volume particle size distribution determined by the laser diffraction / scattering method.
  • inert particles may be added to the composition used to form the smoothing layer.
  • the radical polymerizable group is used. What is necessary is just to use the composition containing the alkoxysilane (A) which has, the alkoxysilane (B) which does not have a radically polymerizable group, water, and an inert particle.
  • the content of inert particles in the composition is preferably 1 to 150 parts by weight and more preferably 5 to 100 parts by weight with respect to 100 parts by weight of the alkoxysilane (A). If the content of the inert particles in the composition is too small, the effect of the inert particles may not be sufficiently obtained. Moreover, when there is too much content of the inert particle in a composition, there exists a possibility that the surface smoothness of a smoothing layer may fall.
  • the thickness of the smoothing layer is preferably 100 nm to 10 ⁇ m, more preferably 200 nm to 5 ⁇ m, and particularly preferably 500 nm to 3 ⁇ m.
  • the smoothing layer having a thickness of less than 100 nm may not have sufficient surface smoothness.
  • the rigidity becomes too high, and the flexibility of the gas barrier film may be lowered.
  • the thickness of the smoothing layer is determined by the following method. First, a cross section of the smoothing layer is photographed at a magnification of 10,000 times or more using a scanning electron microscope. Next, the thickness of five or more arbitrary positions is measured in the smoothing layer from the obtained photographed image, and the arithmetic average value is taken as the thickness of the smoothing layer.
  • the gas barrier layer used in the gas barrier film of the present invention has a general formula (1): ZnSn a O b N c (wherein a is 2.1 to 15 and b is 0.5 to 22) , C is 0.05 to 1.1).
  • the oxynitride represented by the general formula (1) contains a nitrogen atom and a tin atom.
  • the gas barrier property of the gas barrier layer can be improved by nitrogen atoms of oxynitride, and appropriate flexibility can be imparted to the gas barrier layer by tin atoms of oxynitride. Therefore, even when the gas barrier film using the gas barrier layer containing oxynitride is bent or rolled, the gas barrier layer does not crack and can maintain excellent gas barrier properties.
  • a represents the ratio (atomic ratio) of the number of tin atoms to the number of zinc atoms, and is limited to 2.1 to 15, preferably 2.1 to 10, preferably 2.2 to 5 Is more preferable. If the atomic ratio a of tin atoms is too small in the general formula (1), the gas barrier property and flexibility of the gas barrier layer may be lowered. Further, if the atomic ratio a of tin atoms is too large in the general formula (1), the transparency of the gas barrier layer may be lowered.
  • b represents the ratio (atomic ratio) of the number of oxygen atoms to the number of zinc atoms, and is limited to 0.5 to 22, preferably 0.55 to 20, more preferably 1 to 4 preferable. If the atomic ratio b of oxygen atoms is too large in the general formula (1), the flexibility of the gas barrier layer may be lowered. In addition, if the atomic ratio b of oxygen atoms is too small in the general formula (1), the transparency and flexibility of the gas barrier layer may be lowered.
  • C in the general formula (1) represents the ratio of the number of nitrogen atoms to the number of zinc atoms (atomic ratio), and is limited to 0.05 to 1.1, preferably 0.15 to 1, More preferable is 0.5. If the atomic ratio c of nitrogen atoms is too large in the general formula (1), the transparency of the gas barrier layer may be lowered. Further, if the atomic ratio c of nitrogen atoms is too small in the general formula (1), the gas barrier property of the gas barrier layer may be lowered.
  • the gas barrier layer may contain, for example, aluminum or the like in addition to zinc and tin oxynitride, but is preferably made of only zinc and tin oxynitride.
  • the ratio of zinc atom, tin atom, oxygen atom and nitrogen atom in zinc and tin oxynitrides contained in the gas barrier layer is, for example, XPS (X-ray photoelectron, product name ESCALAB-200R manufactured by VG Scientific Fix Co., Ltd.) It can be measured using a spectroscopic surface analyzer.
  • XPS X-ray photoelectron, product name ESCALAB-200R manufactured by VG Scientific Fix Co., Ltd.
  • Mg can be used for the X-ray anode of the XPS surface analyzer, and measurement can be performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA).
  • the energy resolution is set to be 1.5 eV to 1.7 eV when defined by the half width of a clean Ag 3d 5/2 peak.
  • a range of binding energies of 0 eV to 1100 eV is measured at a data acquisition interval of 1.0 eV to determine what elements are detected.
  • the data acquisition interval is set to 0.2 eV, and the photoelectron peak giving the maximum intensity is narrow-scanned to measure the spectrum of each element.
  • the obtained spectrum is COMMON DATA PROCESSING SYSTEM manufactured by VAMAS-SCA-JAPAN (preferably Ver. 2.3 or later) so as not to cause a difference in the content calculation result due to a difference in measuring apparatus or computer.
  • the value of the content of each analysis target element can be determined as the atomic concentration (at%).
  • the thickness of the gas barrier layer is preferably 20 to 600 nm, more preferably 150 to 550 nm, and particularly preferably 50 to 300 nm. If the thickness of the gas barrier layer is too thin, sufficient gas barrier properties may not be imparted to the gas barrier film. Moreover, when the thickness of a gas barrier layer is too thick, there exists a possibility that the flexibility of a gas barrier layer may fall. When a gas barrier layer with low flexibility is used, when the gas barrier film is bent or rolled, cracks occur in the gas barrier layer, thereby reducing the gas barrier properties of the gas barrier film.
  • the thickness of a gas barrier layer is calculated
  • the maximum height R y of one surface of the smoothing layer on which the gas barrier layers are laminated and integrated and the thickness T b of the gas barrier layer satisfy the relationship represented by the following formula: R y ⁇ T b . According to the smoothing layer and the gas barrier layer satisfying such a relationship, excellent gas barrier properties can be imparted to the gas barrier film.
  • a physical vapor deposition method In order to produce a gas barrier layer containing the oxynitride represented by the general formula (1) on one surface of the transparent film, it is preferable to use a physical vapor deposition method.
  • the physical vapor deposition method the atomic ratio of zinc atoms, tin atoms, oxygen atoms, and nitrogen atoms contained in the oxynitride in the gas barrier layer can be easily adjusted.
  • Examples of such physical vapor deposition include vacuum deposition, ion plating, and sputtering. Among these, sputtering is preferred, and DC magnetron sputtering is more preferred.
  • a gas barrier layer In order to produce a gas barrier layer by DC magnetron sputtering, for example, an alloy of zinc and tin is used as a target, oxygen gas and nitrogen gas are used as decomposition gases, and zinc and tin are formed on one surface of a transparent film by DC magnetron sputtering.
  • a gas barrier layer can be formed by depositing and depositing oxynitride.
  • the atomic ratio of zinc atoms and tin atoms in the alloy of zinc and tin and the amount of oxygen gas and nitrogen gas introduced can be adjusted to a desired range.
  • the film forming chamber of the DC magnetron sputtering apparatus is 1.33 ⁇ 10 ⁇ 2 Pa (1.0 ⁇ 10 ⁇ 4 Torr) or less, particularly 0
  • the pressure in the film forming chamber is 6.67 ⁇ 10 ⁇ 2 Pa (5.0 ⁇ 10 ⁇ 4 Torr) to 1 Introducing an inert gas such as argon gas and a decomposition gas containing oxygen gas and nitrogen gas until .33 Pa (1.0 ⁇ 10 ⁇ 2 Torr) is reached, and zinc and tin oxynitrides are formed by DC magnetron sputtering. It is preferable to start the film formation.
  • the gas barrier film 10 of the present invention has a transparent film 11 and a gas barrier layer 12 laminated and integrated on one surface of the transparent film 11.
  • the gas barrier layer 12 is preferably laminated and integrated so as to cover the entire surface of the transparent film 11.
  • the gas barrier film 10 of the present invention comprises a transparent film 11, a smoothing layer 13 laminated and integrated on one surface of the transparent film 11, and a surface of the smoothing layer 13. It may have a gas barrier layer 12 that is laminated and integrated.
  • the smoothing layer 13 that covers the unevenness of the one surface and is excellent in surface smoothness is laminated and integrated on one surface of the transparent film 11, one surface of the transparent film 11 is formed from the surface of the gas barrier layer 12. It is possible to prevent the portion from being exposed without being covered with the gas barrier layer, and to provide the gas barrier film 10 having excellent gas barrier properties.
  • the gas barrier film of the present invention is used in packaging of articles that require blocking of various gases such as water vapor and oxygen, and packaging for preventing deterioration of food, industrial products, pharmaceuticals, and the like. It is done.
  • the gas barrier film of the present invention is used as a part of a product structure such as a solar cell module, a liquid crystal display panel, and an organic EL (electroluminescence) display panel, or as a product. It can be used as a packaging material for an element used in the structure. According to the gas barrier film, it is possible to prevent the elements used in the product structure from deteriorating in performance due to contact with oxygen or water vapor.
  • the gas barrier film of this invention is used as a back surface side protection sheet or a light-receiving surface side protection sheet of a solar cell module or a thin film solar cell.
  • the back surface side protective sheet and the light receiving surface side protective sheet are used for protecting a power generating element and a sealing resin such as an ethylene-vinyl acetate copolymer in a solar cell module or a thin film solar cell.
  • FIG. 3 shows a schematic longitudinal sectional view of a solar cell module A using the gas barrier film of the present invention.
  • the solar cell module A includes a power generation element 20, a pair of sealing materials 30 and 30 ′ sandwiching the power generation element 20, and a transparent protective member laminated and integrated on the surface of one sealing material 30 40 and a back side protective sheet 50 laminated and integrated on the back side of the other sealing material 30 ′.
  • the gas barrier film of the present invention is preferably used as the back side protective sheet 50.
  • FIG. 4 shows a schematic longitudinal sectional view of a thin film solar cell B using the gas barrier film of the present invention.
  • the thin-film solar cell B includes a transparent protective member 60, a power generating element 70 formed on the back surface of the transparent protective member 60, and a seal integrated and laminated on the back surfaces of the transparent protective member 60 and the power generating element 70. It includes a material 80 and a back surface side protective sheet 90 laminated and integrated on the back surface of the sealing material 80.
  • the gas barrier film of the present invention is preferably used as the back side protective sheet 90.
  • the power generation element 70 is preferably formed directly on the back surface of the transparent protective member 60.
  • the power generating elements 20 and 70 are not particularly limited, and are made of a transparent electrode made of a metal oxide thin film or the like and materials such as amorphous silicon, microcrystalline silicon, gallium-arsenic, copper-indium-selenium, CIS, and CdTe.
  • a transparent electrode made of a metal oxide thin film or the like and materials such as amorphous silicon, microcrystalline silicon, gallium-arsenic, copper-indium-selenium, CIS, and CdTe.
  • the sealing materials 30, 30 ′ and 80 are not particularly limited, and ethylene-vinyl acetate copolymer films and the like are used.
  • the transparent protective members 40 and 60 are not particularly limited, and a glass plate or the like is used.
  • Example 1 Preparation of smoothing layer On one surface of a polyethylene naphthalate film (thickness 75 ⁇ m, total light transmittance 88%), 100 parts by weight of 3-methacryloxypropyltrimethoxysilane, 16 parts by weight of tetraethoxysilane, tripropylene glycol diacrylate 100 After applying a smoothing layer forming composition containing 8 parts by weight of water and 8 parts by weight of water with a gravure coater, an electron beam irradiation device (product name EC300 / 165/800 manufactured by ESI Co., Ltd.) is applied to the applied smoothing layer forming composition.
  • an electron beam irradiation device product name EC300 / 165/800 manufactured by ESI Co., Ltd.
  • the 3-methacryloxypropyl group and tripropylene glycol diacrylate of 3-methacryloxypropyltrimethoxysilane are present by irradiating an electron beam under the conditions of an acceleration voltage of 10 kV and an irradiation dose of 170 kGy. Radical polymerization with the acryloyl group After forming a cal polymer, a polyethylene naphthalate film having a smoothing layer-forming composition irradiated with an electron beam on the entire surface is allowed to stand in an environment of 120 ° C. and 50% relative humidity for 0.5 hours.
  • the pressure (P 2 ) in the film chamber was 0.5 Pa (3.5 ⁇ 10 ⁇ 3 Torr). Thereafter, a power of 1.9 kW is applied to the cathode, and a polyethylene naphthalate film having a smoothing layer is transported at a transport speed of 0.5 m / min so that the smoothing layer becomes a sputtering surface, thereby having a smoothing layer.
  • a gas barrier layer made of ZnSn 10 O 20 N 1 was entirely formed on one surface of the smoothing layer.
  • a gas barrier film in which a polyethylene naphthalate film, a smoothing layer, and a gas barrier layer were laminated and integrated in this order was obtained.
  • Example 2 Preparation of smoothing layer On one surface of a polyethylene naphthalate film (thickness 75 ⁇ m, total light transmittance 88%), 100 parts by weight of 3-methacryloxypropyltrimethoxysilane, 10 parts by weight of tetraethoxysilane, and tripropylene glycol diacrylate 120 For smoothing layer formation, a smoothing layer forming composition containing 10 parts by weight of water, 10 parts by weight of water, and 100 parts by weight of alumina particles (Al 2 O 3 , average particle diameter 10 nm) was applied by a gravure coater.
  • a smoothing layer forming composition containing 10 parts by weight of water, 10 parts by weight of water, and 100 parts by weight of alumina particles (Al 2 O 3 , average particle diameter 10 nm) was applied by a gravure coater.
  • a polyethylene naphthalate film having a smoothing layer-forming composition that has been irradiated with an electron beam over the entire surface is 120 ° C., relative
  • a dehydration condensation product of tetraethoxysilane that crosslinks between the main chains of the radical polymer is formed by performing hydrolysis and dehydration condensation reaction between ethoxy groups of ethoxysilane, and is laminated on one surface of a polyethylene naphthalate film.
  • the pressure (P 2 ) in the film chamber was 0.5 Pa (3.5 ⁇ 10 ⁇ 3 Torr).
  • a power of 1.9 kW is applied to the cathode, and a polyethylene naphthalate film having a smoothing layer is transported at a transport speed of 0.5 m / min so that the smoothing layer becomes a sputtering surface, thereby having a smoothing layer.
  • a gas barrier layer made of ZnSn 3.3 O 0.67 N 0.5 was entirely formed on one surface of the smoothing layer.
  • a gas barrier film in which a polyethylene naphthalate film, a smoothing layer, and a gas barrier layer were laminated and integrated in this order was obtained.
  • Example 3 Preparation of smoothing layer
  • a smoothing layer (thickness 3 ⁇ m, maximum height R) formed by laminating and integrating the entire surface of a polyethylene naphthalate film (thickness 75 ⁇ m, total light transmittance 88%).
  • the pressure (P 2 ) in the film chamber was 0.5 Pa (3.5 ⁇ 10 ⁇ 3 Torr).
  • a power of 1.9 kW is applied to the cathode, and a polyethylene naphthalate film having a smoothing layer is transported at a transport speed of 0.5 m / min so that the smoothing layer becomes a sputtering surface, thereby having a smoothing layer.
  • Example 4 Preparation of smoothing layer On one surface of a polyethylene naphthalate film (thickness 75 ⁇ m, total light transmittance 88%), 100 parts by weight of 3-methacryloxypropyltrimethoxysilane, 10 parts by weight of tetraethoxysilane, and tripropylene glycol diacrylate 120
  • a smoothing layer forming composition containing 10 parts by weight of water, 10 parts by weight of water, and 100 parts by weight of alumina particles (Al 2 O 3 , average particle diameter 10 nm) was applied by a gravure coater.
  • a polyethylene naphthalate film having a smoothing layer-forming composition that has been irradiated with an electron beam over the entire surface is 120 ° C., relative
  • a dehydration condensation product of tetraethoxysilane that crosslinks between the main chains of the radical polymer is formed by performing hydrolysis and dehydration condensation reaction between ethoxy groups of ethoxysilane, and is laminated on one surface of a polyethylene naphthalate film.
  • the pressure (P 2 ) in the film chamber was 0.5 Pa (3.5 ⁇ 10 ⁇ 3 Torr). Thereafter, a power of 1.9 kW is applied to the cathode, and a polyethylene naphthalate film having a smoothing layer is transported at a transport speed of 0.5 m / min so that the smoothing layer becomes a sputtering surface, thereby having a smoothing layer.
  • a gas barrier layer made of ZnSn 6.5 O 10 N 0.6 was formed on the entire surface of the smoothing layer.
  • a gas barrier film in which a polyethylene naphthalate film, a smoothing layer, and a gas barrier layer were laminated and integrated in this order was obtained.
  • Example 5 A polyethylene naphthalate film and a gas barrier layer were laminated and integrated in this order in the same manner as in Example 4 except that a gas barrier layer was formed on one surface of the polyethylene naphthalate film without forming a smoothing layer. A gas barrier film was obtained.
  • Example 6 to 11 and Comparative Examples 7 to 12 In the preparation of the gas barrier layer, the composition of the target, the pressure in the deposition chamber after depressurization (P 1 ), the composition of the raw material gas introduced into the deposition chamber, and the pressure in the deposition chamber after introduction of the gas (P 2 ) are respectively shown.
  • a gas barrier film in which a polyethylene naphthalate film, a smoothing layer, and a gas barrier layer were laminated and integrated in this order was obtained in the same manner as in Example 4 except that changes were made as shown in 1 and 2.
  • Table 3 shows the composition of the oxynitride constituting the gas barrier layer produced in each example and comparative example.
  • Example 12 In the preparation of the smoothing layer, 3-methacryloxypropyltrimethoxysilane 100 parts by weight, tetraethoxysilane 64 parts by weight, tripropylene glycol diacrylate 100 parts by weight, water 27 parts by weight, ethanol 20 parts by weight, and alumina particles (Al Using a composition for forming a smoothing layer containing 100 parts by weight of 2 O 3 and an average particle diameter of 30 nm, a smoothing layer (thickness: 1 ⁇ m, maximum height) that is laminated and integrated on one surface of a polyethylene naphthalate film.
  • Table 3 shows the composition of oxynitride constituting the gas barrier layer.
  • Example 13 In the production of the gas barrier layer, the composition of the target, the pressure in the deposition chamber after decompression (P 1 ), the composition of the raw material gas introduced into the deposition chamber, the pressure in the deposition chamber after introducing the gas (P 2 ), and smoothing
  • the polyethylene naphthalate film having a smoothing layer was changed as shown in Table 1 for the transport speed of the polyethylene naphthalate film having a smoothing layer when the polyethylene naphthalate film having a layer was passed through the film forming chamber.
  • a gas barrier film was obtained in the same manner as in Example 2 except that the polyethylene naphthalate film, the smoothing layer, and the gas barrier layer were laminated and integrated in this order, except that was passed through the film formation chamber once.
  • the composition of the oxynitride constituting the gas barrier layer is shown in Table 3.
  • Example 14 to 17 In the production of the gas barrier layer, the composition of the target, the pressure in the deposition chamber after decompression (P 1 ), the composition of the raw material gas introduced into the deposition chamber, the pressure in the deposition chamber after introducing the gas (P 2 ), and smoothing Except having changed the conveyance speed of the polyethylene naphthalate film which has a smoothing layer at the time of letting the polyethylene naphthalate film which has a layer pass into a film-forming room as shown in Table 1, respectively, it carried out similarly to Example 2. Then, a gas barrier film in which a polyethylene naphthalate film, a smoothing layer, and a gas barrier layer were laminated and integrated in this order was obtained. Table 3 shows the composition of the oxynitride constituting the gas barrier layer produced in each example.
  • the water vapor transmission rate (g / m 2 ⁇ day) is determined by a method in accordance with JIS K7129B. Measurement was performed under the conditions of a temperature of 40 ° C. and a relative humidity of 90% using a GTR Tech apparatus name GTR-2100).
  • the water vapor transmission rate of the gas barrier film before the flexibility test is described in the column of “Water vapor transmission rate (before test)” in Table 3, and the water vapor transmission rate of the gas barrier film after the flexibility test is shown in “3. It was described in the column of “Water vapor transmission rate (after test)”.
  • a gas barrier film is wound around a 150 mm ⁇ ABS rod so that the gas barrier layer is on the outside, and 15 minutes after the completion of winding, the procedure for opening the gas barrier film by unfolding the gas barrier film is one cycle. did. This cycle was repeated 50 times. Thereafter, a cross-cut test was performed in accordance with JIS K5400. This cross cut test was performed as follows. First, using a single-edged razor, eleven notches were cut vertically and horizontally at intervals of 1 mm on the surface of the gas barrier layer to make 100 1 mm square cells. The vertical cut and the horizontal cut intersected at an angle of 90 °.
  • a grid is peeled from the smoothing layer means a state in which an area of 50% or more of each grid is separated from the smoothing layer. A: No peeling was observed.
  • the total light transmittance in the thickness direction of the gas barrier film is measured using a haze meter (Nippon Denshoku Co., Ltd. Suspension Meter NDH2000) according to a method in accordance with JIS K7105. Sex was evaluated.
  • the gas barrier film of the present invention is excellent in gas barrier properties and flexibility. Therefore, according to such a gas barrier film, a solar cell module, a liquid crystal display panel, an organic EL display panel, etc. that can be bent or rolled and can be installed along a curved surface are provided. Can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Provided is a gas-barrier film which is excellent in terms of gas-barrier property, transparency, and flexibility. This gas-barrier film is characterized by comprising a transparent film and a gas-barrier layer formed on and integrated with one surface of the transparent film, the gas-barrier layer comprising an oxynitride represented by general formula (1): ZnSnaObNc (wherein a is 2.1-15, b is 0.5-22, and c is 0.05-1.1). With such gas-barrier film, it is possible to provide a solar cell module, a liquid-crystal display panel, an organic EL display panel, etc. which can be bent or rolled up and can be disposed along a curved surface.

Description

ガスバリア性フィルム及びその製造方法Gas barrier film and method for producing the same
 本発明は、酸素や水蒸気などに対するガスバリア性、及び可撓性に優れるガスバリア性フィルム、並びにその製造方法に関する。 The present invention relates to a gas barrier film excellent in gas barrier properties and flexibility against oxygen, water vapor, and the like, and a method for producing the same.
 ガスバリア性フィルムは、食品や医薬品の包装袋として用いられており、ガスバリア性フィルムによれば、酸素や水蒸気などの影響による包装袋の内容物の品質が変化することを防止できる。また、ガスバリア性フィルムは、太陽電池モジュール、液晶表示パネル、有機EL(エレクトロルミネッセンス)表示パネルなどの製品構成体の一部として、又は製品構成体に含まれている素子のパッケージ材料としても用いられている。ガスバリア性フィルムにより、製品構成体に含まれている素子が、酸素や水蒸気に触れて性能劣化するのを防止することができる。 The gas barrier film is used as a packaging bag for foods and pharmaceuticals, and according to the gas barrier film, it is possible to prevent the quality of the contents of the packaging bag from being changed due to the influence of oxygen, water vapor or the like. The gas barrier film is also used as a part of a product structure such as a solar cell module, a liquid crystal display panel, and an organic EL (electroluminescence) display panel, or as a package material for an element included in the product structure. ing. The gas barrier film can prevent the elements contained in the product structure from deteriorating in performance due to contact with oxygen or water vapor.
 このようなガスバリア性フィルムとしては、ポリビニルアルコールフィルムやエチレン-ビニルアルコール共重合体フィルムなどの合成樹脂フィルムが用いられている。しかしながら、合成樹脂フィルムは、水蒸気バリア性が不充分であり、高湿度下では酸素バリア性も低下するといった問題点を有している。 As such a gas barrier film, a synthetic resin film such as a polyvinyl alcohol film or an ethylene-vinyl alcohol copolymer film is used. However, the synthetic resin film has a problem that the water vapor barrier property is insufficient, and the oxygen barrier property is lowered under high humidity.
 そこで、合成樹脂フィルムと、この合成樹脂フィルム上に形成されている金属酸化物膜とを有しているガスバリア性フィルムが知られている。 Therefore, a gas barrier film having a synthetic resin film and a metal oxide film formed on the synthetic resin film is known.
 例えば、特許文献1には、透明合成樹脂板と、この透明合成樹脂板の両面に形成されており、且つ酸化ケイ素、酸化アルミニウム、酸化亜鉛、インジウムスズ酸化物、窒化ケイ素及びフッ化マグネシウムなどの金属酸化物膜とを有しているガスバリア性フィルムが開示されている。 For example, Patent Document 1 discloses that a transparent synthetic resin plate is formed on both surfaces of the transparent synthetic resin plate, and silicon oxide, aluminum oxide, zinc oxide, indium tin oxide, silicon nitride, magnesium fluoride, and the like. A gas barrier film having a metal oxide film is disclosed.
 また、特許文献2には、透明熱可塑性フィルムと、亜鉛、スズ及び酸素の元素の化合物からなり、亜鉛の質量割合が5%~70%である透過バリア層とを含むガスバリア性フィルムが開示されている。 Patent Document 2 discloses a gas barrier film comprising a transparent thermoplastic film and a transmission barrier layer made of a compound of elements of zinc, tin and oxygen, and having a zinc mass ratio of 5% to 70%. ing.
 さらに、特許文献3では、基板上に、酸素、窒素元素のうちの少なくとも1つを含むジルコン、アルミニウム、亜鉛、スズ、ケイ素、チタンのグループの少なくとも1つの元素の化合物から構成される層Aと、酸素、窒素、炭素元素のうちの少なくとも1つを含むジルコン、アルミニウム、亜鉛、スズ、ケイ素、チタンのグループの少なくとも1つの元素の化合物から構成される層Bとが交互に積層されてなるガスバリア性フィルムが開示されている。 Further, in Patent Document 3, a layer A composed of a compound of at least one element of a group of zircon, aluminum, zinc, tin, silicon, and titanium containing at least one of oxygen and nitrogen elements on a substrate; , A gas barrier formed by alternately laminating layers B composed of a compound of at least one element of the group of zircon, aluminum, zinc, tin, silicon, and titanium containing at least one of oxygen, nitrogen, and carbon elements A functional film is disclosed.
特許第4203237号公報Japanese Patent No. 4203237 国際公開第2008/135109号International Publication No. 2008/135109 国際公開第2009/127373号International Publication No. 2009/127373
 近年、太陽電池モジュール、液晶表示パネル、及び有機EL表示パネルには曲面への設置も可能とするために可撓性を有していることが望まれている。したがって、ガスバリア性フィルムにも可撓性を有していることが望まれている。しかしながら、従来のガスバリア性フィルムでは、金属酸化物膜の可撓性が低い。そのため、ガスバリア性フィルムを曲げると、金属酸化物膜にひび割れが発生して、ガスバリア性フィルムのガスバリア性が低下する問題があった。 In recent years, it has been desired that solar cell modules, liquid crystal display panels, and organic EL display panels have flexibility in order to enable installation on curved surfaces. Therefore, it is desired that the gas barrier film also has flexibility. However, in the conventional gas barrier film, the flexibility of the metal oxide film is low. Therefore, when the gas barrier film is bent, the metal oxide film is cracked, and there is a problem that the gas barrier property of the gas barrier film is lowered.
 また、ガスバリア性フィルムには、包装した内容物や表示パネルに表示された画像の視認性を高めたり、太陽光などの光を透過させたりするために、優れた透明性を有していることも求められている。しかしながら、金属酸化物膜の透明性が低いために、結果としてガスバリア性フィルムの透明性も低いという問題もあった。 In addition, the gas barrier film must have excellent transparency in order to increase the visibility of the packaged contents and the image displayed on the display panel or to transmit light such as sunlight. Is also sought. However, since the transparency of the metal oxide film is low, there is a problem that the transparency of the gas barrier film is low as a result.
 そこで、本発明は、ガスバリア性、透明性及び可撓性に優れたガスバリア性フィルムを提供することを目的とする。 Therefore, an object of the present invention is to provide a gas barrier film excellent in gas barrier properties, transparency and flexibility.
 本発明のガスバリア性フィルムは、
 透明フィルムと、
 上記透明フィルムの一面に積層一体化されており、且つ一般式(1):ZnSnabc(式中、aは2.1~15であり、bは0.5~22であり、cは0.05~1.1である)で示される酸化窒化物を含むガスバリア層と、
を含んでいることを特徴とする。
The gas barrier film of the present invention is
A transparent film,
And is laminated and integrated on one surface of the transparent film, and has the general formula (1): ZnSn a O b N c (wherein a is 2.1 to 15, b is 0.5 to 22, c is from 0.05 to 1.1), and a gas barrier layer containing an oxynitride,
It is characterized by including.
 上記一般式(1)で示される亜鉛及び錫の酸化窒化物を含むガスバリア層は、ガスバリア性に優れるだけでなく、透明性及び可撓性にも優れている。したがって、このようなガスバリア層を用いてなる本発明のガスバリア性フィルムはガスバリア性、透明性及び可撓性に優れており、これにより曲面に沿った状態に設置することが可能な太陽電池モジュール、液晶表示パネル、及び有機EL表示パネルなどを提供することができる。 The gas barrier layer containing zinc and tin oxynitrides represented by the above general formula (1) is not only excellent in gas barrier properties but also excellent in transparency and flexibility. Therefore, the gas barrier film of the present invention using such a gas barrier layer is excellent in gas barrier properties, transparency and flexibility, and thereby a solar cell module that can be installed along a curved surface, A liquid crystal display panel, an organic EL display panel, and the like can be provided.
本発明の一実施形態であるガスバリア性フィルムの断面図を示す。Sectional drawing of the gas barrier film which is one Embodiment of this invention is shown. 本発明の他の一実施形態であるガスバリア性フィルムの断面図を示す。Sectional drawing of the gas-barrier film which is other one Embodiment of this invention is shown. 本発明の他の一実施形態である太陽電池モジュールの縦断面図である。It is a longitudinal cross-sectional view of the solar cell module which is other one Embodiment of this invention. 本発明の他の一実施形態である薄膜太陽電池の縦断面図である。It is a longitudinal cross-sectional view of the thin film solar cell which is other one Embodiment of this invention.
 本発明のガスバリア性フィルムは、透明フィルムと、上記透明フィルムの一面に積層一体化されてなるガスバリア層とを有する。 The gas barrier film of the present invention has a transparent film and a gas barrier layer laminated and integrated on one surface of the transparent film.
 (透明フィルム)
 透明フィルムを構成する樹脂としては、透明な合成樹脂が用いられ、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリビニルアルコール、エチレン-酢酸ビニル共重合体鹸化物などのビニル系樹脂;ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂;ポリオキシメチレンなどのポリエーテル系樹脂;ナイロン-6、ナイロン-6,6などのポリアミド系樹脂;ポリカーボネート系樹脂;ポリイミド;ポリエーテルイミド;ポリエーテルスルフォン;ポリスルフォン;ポリエーテルエーテルケトン;ポリエーテルケトンケトンなどが使用できる。また、これらの合成樹脂は、単独で用いられてもよく、二種以上を併用することもできる。
(Transparent film)
As the resin constituting the transparent film, a transparent synthetic resin is used. For example, a polyolefin resin such as polyethylene and polypropylene, a vinyl resin such as polyvinyl alcohol and a saponified ethylene-vinyl acetate copolymer; polyethylene terephthalate, polyethylene Polyester resins such as isophthalate, polyethylene naphthalate, polyethylene-2,6-naphthalate and polybutylene terephthalate; Polyether resins such as polyoxymethylene; Polyamide resins such as nylon-6 and nylon-6,6; Polycarbonate Polyimide; polyetherimide; polyethersulfone; polysulfone; polyetheretherketone; polyetherketoneketone and the like can be used. Moreover, these synthetic resins may be used independently and can also use 2 or more types together.
 透明フィルムには、必要に応じて、帯電防止剤、紫外線吸収剤、可塑剤、滑剤、着色剤などの公知の添加剤が含有されていてもよい。透明フィルムの厚みは、3~300μmが好ましく、12~300μmがより好ましく、50~200μmが特に好ましい。 The transparent film may contain known additives such as an antistatic agent, an ultraviolet absorber, a plasticizer, a lubricant, and a colorant as necessary. The thickness of the transparent film is preferably 3 to 300 μm, more preferably 12 to 300 μm, and particularly preferably 50 to 200 μm.
 透明フィルムの全光線透過率は、80%以上が好ましく、85~100%がより好ましい。80%以上の全光線透過率を有する透明フィルムは透明性に優れており、このような透明フィルムを有しているガスバリア性フィルムによれば、画像の視認性に優れる液晶表示パネル及び有機EL表示パネル、並びに発電効率が高い太陽電池モジュールを提供することができる。 The total light transmittance of the transparent film is preferably 80% or more, more preferably 85 to 100%. A transparent film having a total light transmittance of 80% or more is excellent in transparency. According to the gas barrier film having such a transparent film, a liquid crystal display panel and an organic EL display excellent in image visibility. A panel and a solar cell module with high power generation efficiency can be provided.
 なお、透明フィルムの全光線透過率は、例えば、JIS K7105に準拠した方法により、例えば、ヘーズメータ(日本電色工業株式会社製 製品名NDH2000)を用いて測定することができる。 In addition, the total light transmittance of a transparent film can be measured, for example using a haze meter (Nippon Denshoku Industries Co., Ltd. product name NDH2000) by the method based on JISK7105, for example.
 (平滑化層)
 透明フィルムの一面には、平滑化層を介してガスバリア層が積層一体化されていることが好ましい。したがって、本発明のガスバリア性フィルムは、透明フィルムと、この透明フィルムの一面に積層一体化されている平滑化層と、この平滑化層の一面に積層一体化されているガスバリア層とを有していることが好ましい。
(Smoothing layer)
A gas barrier layer is preferably laminated and integrated on one surface of the transparent film via a smoothing layer. Therefore, the gas barrier film of the present invention has a transparent film, a smoothing layer laminated and integrated on one surface of the transparent film, and a gas barrier layer laminated and integrated on one surface of the smoothing layer. It is preferable.
 透明フィルムがその一面にガスバリア層によって被覆することが困難な凸部を有している場合がある。このような透明フィルムの一面にガスバリア層を形成すると、ガスバリア層表面から透明フィルムが有する凸部の先端がガスバリア層によって被覆されずに露出し、これによりガスバリア性フィルムのガスバリア性を低下させる虞れがある。しかしながら、平滑化層は、表面平滑性に優れており、透明フィルムの凸部を全面的に被覆することができる。このような平滑化層を用いることによって、ガスバリア性フィルムのガスバリア性を向上させることができる。 The transparent film may have a convex portion that is difficult to cover with a gas barrier layer on one side. When a gas barrier layer is formed on one surface of such a transparent film, the tip of the convex portion of the transparent film is exposed from the surface of the gas barrier layer without being covered with the gas barrier layer, which may reduce the gas barrier properties of the gas barrier film. There is. However, the smoothing layer is excellent in surface smoothness, and can cover the whole convex part of a transparent film. By using such a smoothing layer, the gas barrier property of the gas barrier film can be improved.
 ガスバリア層が積層一体化される平滑化層の一面の最大高さRyは、100nm以下が好ましく、80nm以下がより好ましく、50nm以下が特に好ましく、0.1~20nmが最も好ましい。最大高さRyが大き過ぎる平滑化層では、透明フィルム又は平滑化層の何れか一方或いは双方の凹凸に起因して、ガスバリア層によって被覆し難い凸部を有している虞れがある。このような凸部の先端部分は、スパッタリング法などの物理気相成長法によって平滑化層の一面にガスバリア層を作製する際に、ガスバリア層により被覆されずガスバリア層表面から突出し、これによりガスバリア性フィルムのガスバリア性を低下させる。 The maximum height Ry of one surface of the smoothing layer on which the gas barrier layer is laminated and integrated is preferably 100 nm or less, more preferably 80 nm or less, particularly preferably 50 nm or less, and most preferably 0.1 to 20 nm. A smoothing layer having a maximum height Ry that is too large may have convex portions that are difficult to cover with the gas barrier layer due to the unevenness of one or both of the transparent film and the smoothing layer. When the gas barrier layer is formed on one surface of the smoothing layer by a physical vapor deposition method such as a sputtering method, the tip portion of such a convex portion protrudes from the surface of the gas barrier layer without being covered with the gas barrier layer, and thereby has a gas barrier property. Reduces the gas barrier properties of the film.
 また、ガスバリア層が積層一体化される平滑化層の一面の表面粗さRaは、0.1~50nmが好ましく、0.1~30nmがより好ましく、0.1~15nmが特に好ましい。表面粗さRaが100nmを超える平滑化層は、ガスバリア層によって完全に被覆することが困難となる虞れがある。また、表面粗さRaが0.1nm未満である平滑化層は、ガスバリア層との密着性が低下する虞れがある。密着性が低い平滑化層は、ガスバリア性フィルムを撓ませたり丸めたりした場合に、平滑化層から剥離して、ガスバリア性フィルムのガスバリア性を低下させる。 The surface roughness R a of one surface of the smoothing layer gas barrier layer is laminated and integrated is preferably 0.1 ~ 50 nm, more preferably 0.1 ~ 30 nm, particularly preferably 0.1 ~ 15 nm. A smoothing layer having a surface roughness Ra exceeding 100 nm may be difficult to completely cover with a gas barrier layer. Further, the smoothing layer having a surface roughness Ra of less than 0.1 nm may reduce the adhesion with the gas barrier layer. When the gas barrier film is bent or rolled, the smoothing layer having low adhesion is peeled off from the smoothing layer, thereby reducing the gas barrier property of the gas barrier film.
 本発明において、平滑化層のガスバリア層が積層一体化される面における最大高さRy及び表面粗さRaは、JIS B0601(1982年)に準拠した方法により測定することができる。最大高さRy及び表面粗さRaの測定は、例えば、非接触三次元微小表面形状測定システム(Wyco社製 製品名RST-Plus)を用いて行うことができる。具体的な測定方法は、次の通りである。まず、JIS B0601(1982年)に準拠し、平滑化層のガスバリア層が積層一体化される面における任意の5箇所について、測定長さ1μmとして、最大高さRy又は表面粗さRaを測定する。これにより得られた最大高さRy又は表面粗さRaの測定値の相加平均値を、平滑化層のガスバリア層が積層一体化される面における最大高さRy又は表面粗さRaとする。 In the present invention, the maximum height R y and surface roughness R a in a plane gas barrier layer is laminated and integrated in the smoothing layer can be measured by a method based on JIS B0601 (1982 years). The maximum height R y and the surface roughness Ra can be measured using, for example, a non-contact three-dimensional micro surface shape measurement system (product name RST-Plus manufactured by Wyco). A specific measurement method is as follows. First, in accordance with JIS B0601 (1982), the maximum height R y or the surface roughness Ra is set to a measurement length of 1 μm at any five locations on the surface where the gas barrier layer of the smoothing layer is laminated and integrated. taking measurement. The arithmetic mean value of the measured value of the maximum height R y, or surface roughness R a thereby obtained, the maximum height in a plane gas barrier layer is laminated and integrated in the smoothing layer R y or surface roughness R a .
 上述した範囲内の最大高さRy及び表面粗さRaを有する平滑化層は、表面平滑性に優れている。このような平滑化層の形成は、平滑な表面を有する塗膜を形成でき、透明フィルムの透明性を低下させない材料を用いて行うことができる。このような平滑化層としては、例えば、(1)透明な合成樹脂の塗布層、(2)金属アルコキシドを含む組成物を用いたゾルゲル法により形成された層、及び(3)ラジカル重合性基を有するアルコキシシラン(A)、及びラジカル重合性基を有しないアルコキシシラン(B)を含む組成物の反応生成物を含む層などが挙げられる。 Smoothing layer having a maximum height R y and surface roughness R a in the range described above, excellent in surface smoothness. Such a smoothing layer can be formed using a material that can form a coating film having a smooth surface and does not reduce the transparency of the transparent film. Examples of such a smoothing layer include (1) a transparent synthetic resin coating layer, (2) a layer formed by a sol-gel method using a composition containing a metal alkoxide, and (3) a radical polymerizable group. And a layer containing a reaction product of a composition containing an alkoxysilane (A) having a radical and an alkoxysilane (B) having no radical polymerizable group.
 (1)透明な合成樹脂の塗布層は、透明な合成樹脂を含む組成物を、透明フィルムの一面に塗布する方法によって形成することができる。組成物は、透明な合成樹脂を溶剤中に分散又は溶解させることにより調製できる。透明な合成樹脂としては、例えば、アクリル系樹脂、メタクリル系樹脂、及びエポキシ系樹脂などが好ましく挙げられる。溶剤としては、トルエン、酢酸エチル、エタノールなどが挙げられる。また、組成物中における透明な合成樹脂の含有量は、10~40重量%が好ましい。 (1) The transparent synthetic resin coating layer can be formed by a method of applying a composition containing a transparent synthetic resin to one surface of a transparent film. The composition can be prepared by dispersing or dissolving a transparent synthetic resin in a solvent. Preferred examples of the transparent synthetic resin include acrylic resins, methacrylic resins, and epoxy resins. Examples of the solvent include toluene, ethyl acetate, ethanol and the like. Further, the content of the transparent synthetic resin in the composition is preferably 10 to 40% by weight.
 組成物の塗布後、塗布した組成物に含まれている溶剤を除去することによって、透明フィルムの一面に透明な合成樹脂の塗布層を作製することができる。溶剤の除去は、例えば、塗布した組成物を加熱するなどによって行うことができる。 After application of the composition, a transparent synthetic resin coating layer can be produced on one surface of the transparent film by removing the solvent contained in the applied composition. The removal of the solvent can be performed, for example, by heating the applied composition.
 (2)金属アルコキシドを含む組成物を用いたゾルゲル法により形成された層は、テトラメトキシシランなどの金属アルコキシドを含む組成物を透明フィルムの一面に塗布し、金属アルコキシドを加水分解及び脱水縮合させてゾルとした後、塗布した組成物を加熱することにより水分を除いて生じたゲルを焼結する方法により作製することができる。組成物は、必要に応じて硬化触媒及び溶剤をさらに含む。 (2) A layer formed by a sol-gel method using a composition containing a metal alkoxide is obtained by applying a composition containing a metal alkoxide such as tetramethoxysilane to one surface of the transparent film, hydrolyzing and dehydrating the metal alkoxide. After forming a sol, the applied composition can be heated to remove the moisture and sinter the resulting gel. The composition further includes a curing catalyst and a solvent as required.
 (3)ラジカル重合性基を有するアルコキシシラン(A)、及びラジカル重合性基を有しないアルコキシシラン(B)を含む組成物の反応生成物を含む層は、透明フィルムの一面に、ラジカル重合性基を有するアルコキシシラン(A)、ラジカル重合性基を有しないアルコキシシラン(B)、及び水を含む組成物を塗布した後、塗布した上記組成物に活性エネルギー線を照射することによって上記アルコキシシラン(A)が有するラジカル重合性基のラジカル重合を行った後又はラジカル重合を行いながら、上記ラジカル重合により得られたラジカル重合体が有するアルコキシ基と上記アルコキシシラン(B)が有するアルコキシ基とを加水分解及び脱水縮合反応させる方法により作製することができる。これにより、ラジカル重合性基を有するアルコキシシラン(A)、ラジカル重合性基を有しないアルコキシシラン(B)及び水を含む組成物を硬化させてなる層を形成することができる。 (3) A layer containing a reaction product of a composition containing an alkoxysilane (A) having a radically polymerizable group and an alkoxysilane (B) not having a radically polymerizable group is formed on one surface of the transparent film. After applying a composition containing an alkoxysilane (A) having a group, an alkoxysilane (B) not having a radical polymerizable group, and water, the applied composition is irradiated with active energy rays to thereby obtain the alkoxysilane. An alkoxy group possessed by the radical polymer obtained by the radical polymerization and an alkoxy group possessed by the alkoxysilane (B) after radical polymerization of the radical polymerizable group possessed by (A) or while performing radical polymerization. It can be produced by a method of hydrolysis and dehydration condensation reaction. Thereby, the layer formed by hardening the composition containing the alkoxysilane (A) which has a radically polymerizable group, the alkoxysilane (B) which does not have a radically polymerizable group, and water can be formed.
 ラジカル重合性基を有するアルコキシシラン(A)、及びラジカル重合性基を有しないアルコキシシラン(B)を含む組成物の反応生成物を含む層は、上述した方法によって形成される。このような層では、アルコキシシラン(A)のラジカル重合体が単に形成されているだけでなく、このラジカル重合体の主鎖間を架橋するようにアルコキシシラン(B)の脱水縮合物が形成されていることによって緻密な網目構造を有している。このような緻密な網目構造を有する層は、表面平滑性や透明性に優れるだけでなく、酸素や水蒸気などのガスの透過を高く防止することができる。 The layer containing the reaction product of the composition containing the alkoxysilane (A) having a radical polymerizable group and the alkoxysilane (B) having no radical polymerizable group is formed by the method described above. In such a layer, not only a radical polymer of alkoxysilane (A) is formed, but also a dehydration condensate of alkoxysilane (B) is formed so as to crosslink the main chain of the radical polymer. Therefore, it has a dense network structure. Such a layer having a dense network structure is not only excellent in surface smoothness and transparency, but also can highly prevent permeation of gases such as oxygen and water vapor.
 本発明において、ラジカル重合性基は、ラジカル重合によって付加重合することが可能な基を意味する。このようなラジカル重合性基としては、不飽和二重結合を有している基が挙げられ、具体的には、アリル基、イソプロペニル基、マレオイル基、スチリル基、ビニルベンジル基、(メタ)アクリロキシ基、(メタ)アクリロキシアルキル基及びビニル基などが挙げられる。なお、(メタ)アクリロキシとはアクリロキシ又はメタクリロキシを意味する。 In the present invention, the radical polymerizable group means a group capable of addition polymerization by radical polymerization. Examples of such radically polymerizable groups include groups having an unsaturated double bond, and specifically include allyl groups, isopropenyl groups, maleoyl groups, styryl groups, vinylbenzyl groups, (meth) Examples include an acryloxy group, a (meth) acryloxyalkyl group, and a vinyl group. (Meth) acryloxy means acryloxy or methacryloxy.
 アルコキシシラン(A)が有するラジカル重合性基としては、(メタ)アクリロキシ基、(メタ)アクリロキシアルキル基及びビニル基が好ましく挙げられる。これらの基を有するアルコキシシラン(A)は、ラジカル重合反応性に優れることから、高度に重合することができる。これにより、緻密な網目構造を形成してガスバリア性に優れる平滑化層を形成することができる。アルコキシシラン(A)は、1個のラジカル重合性基を有していることが好ましい。 As the radical polymerizable group possessed by the alkoxysilane (A), a (meth) acryloxy group, a (meth) acryloxyalkyl group and a vinyl group are preferably exemplified. Since the alkoxysilane (A) having these groups is excellent in radical polymerization reactivity, it can be highly polymerized. Thereby, a smooth network layer having a dense network structure and excellent gas barrier properties can be formed. The alkoxysilane (A) preferably has one radical polymerizable group.
 ラジカル重合性基を有するアルコキシシラン(A)としては、下記一般式(I)で示されるアルコキシシランが好ましく挙げられる。 Preferred examples of the alkoxysilane (A) having a radical polymerizable group include alkoxysilanes represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000003

(式中、R1は炭素数4~9の(メタ)アクリロキシアルキル基、又はビニル基を表し、R2はアルコキシ基で置換されていてもよい炭素数1~8のアルキル基を表し、R3は炭素数1~4のアルキル基を表し、且つnは0又は1である。)
Figure JPOXMLDOC01-appb-C000003

(Wherein R 1 represents a (meth) acryloxyalkyl group having 4 to 9 carbon atoms or a vinyl group, R 2 represents an alkyl group having 1 to 8 carbon atoms which may be substituted with an alkoxy group, R 3 represents an alkyl group having 1 to 4 carbon atoms, and n is 0 or 1.)
 上記一般式(I)のR1において、炭素数4~9の(メタ)アクリロキシアルキル基としては、(メタ)アクリロキシメチル基、2-(メタ)アクリロキシエチル基、及び3-(メタ)アクリロキシプロピル基などが好ましく挙げられる。 In R 1 of the general formula (I), examples of the (meth) acryloxyalkyl group having 4 to 9 carbon atoms include (meth) acryloxymethyl group, 2- (meth) acryloxyethyl group, and 3- (meth) ) An acryloxypropyl group is preferred.
 また、上記一般式(I)のR2は炭素数1~8のアルキル基であり、このようなアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などが挙げられる。また、アルキル基を構成している水素原子がアルコキシ基で置換されていてもよい。アルコキシ基で置換されている炭素数1~8のアルキル基としては、例えば、メトキシメチル基、2-メトキシエチル基、2-エトキシエチル基などが好ましく挙げられる。 R 2 in the general formula (I) is an alkyl group having 1 to 8 carbon atoms. Examples of such an alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. , Heptyl group, octyl group and the like. Moreover, the hydrogen atom which comprises the alkyl group may be substituted by the alkoxy group. Preferred examples of the alkyl group having 1 to 8 carbon atoms that is substituted with an alkoxy group include a methoxymethyl group, a 2-methoxyethyl group, and a 2-ethoxyethyl group.
 一般式(I)で示されるアルコキシシランとして具体的には、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピル-トリス(2-メトキシエトキシ)シラン、3-メタクリロキシプロピル-トリス(2-メトキシエトキシ)シラン、ビニルトリメトキシシラン、及びビニルトリエトキシシランが挙げられる。これらのアルコキシシラン(A)は一種単独で使用してもよく、二種以上を併用してもよい。なかでも、ラジカル重合反応性に優れることから、3-(メタ)アクリロキシプロピルトリメトキシシランが好ましく挙げられる。 Specific examples of the alkoxysilane represented by the general formula (I) include 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, and 3-methacryloxypropyltriethoxy. Silane, 3-acryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-acryloxypropyl-tris (2- Methoxyethoxy) silane, 3-methacryloxypropyl-tris (2-methoxyethoxy) silane, vinyltrimethoxysilane, and vinyltriethoxysilane. These alkoxysilanes (A) may be used individually by 1 type, and may use 2 or more types together. Of these, 3- (meth) acryloxypropyltrimethoxysilane is preferred because of its excellent radical polymerization reactivity.
 アルコキシシラン(B)は、ラジカル重合性基を有しないものである。このようなアルコキシシラン(B)としては、下記一般式(II)で示されるアルコキシシランが好ましく用いられる。
Figure JPOXMLDOC01-appb-C000004

(式中、R及びRはそれぞれ炭素数1~8のアルキル基を表し、mは0~2の整数である。)
The alkoxysilane (B) does not have a radical polymerizable group. As such an alkoxysilane (B), an alkoxysilane represented by the following general formula (II) is preferably used.
Figure JPOXMLDOC01-appb-C000004

(Wherein R 4 and R 5 each represents an alkyl group having 1 to 8 carbon atoms, and m is an integer of 0 to 2)
 上記一般式(II)のR及びRは、炭素数1~8のアルキル基であり、好ましくは炭素数1~4のアルキル基である。R及びRとしては、例えば、メチル基、エチル基、プロピル基、及びブチル基が挙げられる。mは0であるのが好ましい。 R 4 and R 5 in the general formula (II) are each an alkyl group having 1 to 8 carbon atoms, and preferably an alkyl group having 1 to 4 carbon atoms. Examples of R 4 and R 5 include a methyl group, an ethyl group, a propyl group, and a butyl group. m is preferably 0.
 上記一般式(II)で示されるアルコキシシラン(B)は、アルコキシシラン(A)のラジカル重合により得られる重合体の主鎖間に架橋構造を付与することができ、これにより平滑化層に優れたガスバリア性を付与することが可能となる。 The alkoxysilane (B) represented by the general formula (II) can give a cross-linked structure between the main chains of the polymer obtained by radical polymerization of the alkoxysilane (A), thereby being excellent in the smoothing layer. It is possible to impart gas barrier properties.
 なかでもアルコキシシラン(B)としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、及びテトラブトキシシランが好ましく挙げられる。これらによれば、アルコキシシラン(A)の重合体の主鎖間に緻密な架橋構造を均一に形成することができる。アルコキシシラン(B)は一種単独で使用してもよく、二種以上を併用してもよい。 Of these, preferred examples of the alkoxysilane (B) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane. According to these, a dense cross-linked structure can be uniformly formed between the main chains of the alkoxysilane (A) polymer. Alkoxysilane (B) may be used individually by 1 type, and may use 2 or more types together.
 組成物におけるアルコキシシラン(B)の含有量としては、アルコキシシラン(A)100重量部に対して、1~100重量部が好ましく、1~50重量部がより好ましく、1~20重量部が特に好ましい。組成物におけるアルコキシシラン(B)の含有量が少な過ぎると、アルコキシシラン(A)の重合体の主鎖間に十分な架橋構造を形成できない虞れがある。また、組成物におけるアルコキシシラン(B)の含有量が多過ぎると、得られる平滑化層が白色となって透明性が低下する虞れがある。 The content of the alkoxysilane (B) in the composition is preferably 1 to 100 parts by weight, more preferably 1 to 50 parts by weight, particularly 1 to 20 parts by weight, based on 100 parts by weight of the alkoxysilane (A). preferable. When there is too little content of the alkoxysilane (B) in a composition, there exists a possibility that sufficient crosslinked structure cannot be formed between the principal chains of the polymer of alkoxysilane (A). Moreover, when there is too much content of the alkoxysilane (B) in a composition, there exists a possibility that the smoothing layer obtained may become white and transparency may fall.
 組成物は、上述したアルコキシシラン(A)及びアルコキシシラン(B)の他に、多官能(メタ)アクリレート(C)をさらに含んでいることが好ましい。多官能(メタ)アクリレート(C)は、1分子中に2個以上の(メタ)アクリロイル基を有する(メタ)アクリレートを意味する。また、多官能(メタ)アクリレート(C)はケイ素原子を含んでいない。組成物が多官能(メタ)アクリレート(C)をさらに含んでいる場合、活性エネルギー線の照射によってアルコキシシラン(A)と多官能(メタ)アクリレート(C)とがラジカル重合することにより共重合体が形成される。このような多官能(メタ)アクリレート(C)を用いることによって、表面平滑性及びガスバリア性が優れる平滑化層を短時間で形成することができる。なお、(メタ)アクリロイル基とは、アクリロイル基又はメタクリロイル基を意味する。また、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。 It is preferable that the composition further contains polyfunctional (meth) acrylate (C) in addition to the above-described alkoxysilane (A) and alkoxysilane (B). The polyfunctional (meth) acrylate (C) means a (meth) acrylate having two or more (meth) acryloyl groups in one molecule. Moreover, polyfunctional (meth) acrylate (C) does not contain a silicon atom. When the composition further contains a polyfunctional (meth) acrylate (C), the copolymer is obtained by radical polymerization of alkoxysilane (A) and polyfunctional (meth) acrylate (C) by irradiation with active energy rays. Is formed. By using such a polyfunctional (meth) acrylate (C), a smoothing layer having excellent surface smoothness and gas barrier properties can be formed in a short time. The (meth) acryloyl group means an acryloyl group or a methacryloyl group. Moreover, (meth) acrylate means an acrylate or a methacrylate.
 多官能(メタ)アクリレート(C)としては、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレートなどの2官能(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどの3官能(メタ)アクリレート;テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなどの4官能(メタ)アクリレート;ジペンタエリスリトールヘキサ(メタ)アクリレートなどの6官能(メタ)アクリレートなどが挙げられる。多官能(メタ)アクリレート(C)は、単独で用いられてもよく、二種以上を併用してもよい。 As polyfunctional (meth) acrylate (C), dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tetraethylene glycol di (meth) acrylate Bifunctional (meth) acrylates such as: trimethylolpropane tri (meth) acrylate, trifunctional (meth) acrylates such as pentaerythritol tri (meth) acrylate; tetramethylolmethane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate And tetrafunctional (meth) acrylates such as 6-functional (meth) acrylates such as dipentaerythritol hexa (meth) acrylate. Polyfunctional (meth) acrylate (C) may be used independently and may use 2 or more types together.
 組成物における多官能(メタ)アクリレート(C)の含有量は、アルコキシシラン(A)100重量部に対して、0.1~200重量部が好ましく、10~150重量部がより好ましく、20~120重量部が特に好ましい。多官能(メタ)アクリレート(C)の含有量を上記範囲内とすることにより、ガスバリア性に優れている平滑化層を形成することができる。 The content of the polyfunctional (meth) acrylate (C) in the composition is preferably from 0.1 to 200 parts by weight, more preferably from 10 to 150 parts by weight, more preferably from 20 to 20 parts by weight based on 100 parts by weight of the alkoxysilane (A). 120 parts by weight are particularly preferred. By making content of polyfunctional (meth) acrylate (C) into the said range, the smoothing layer excellent in gas barrier property can be formed.
 また、組成物は、上述したアルコキシシラン(A)及びアルコキシシラン(B)の他に水を含む。水を含むことによって、アルコキシシラン(A)のラジカル重合体が有するアルコキシ基とアルコキシシラン(B)が有するアルコキシ基との加水分解反応及び脱水縮合反応を促進させて、アルコキシシラン(A)のラジカル重合体の主鎖間にアルコキシシラン(B)が架橋した網目構造を形成することが可能となる。 The composition contains water in addition to the alkoxysilane (A) and alkoxysilane (B) described above. By containing water, the hydrolysis reaction and dehydration condensation reaction between the alkoxy group of the alkoxysilane (A) radical polymer and the alkoxy group of the alkoxysilane (B) are promoted, and the radical of the alkoxysilane (A). It becomes possible to form a network structure in which alkoxysilane (B) is crosslinked between the main chains of the polymer.
 組成物中における水の含有量は、アルコキシシラン(A)100重量部に対して、0.1~40重量部が好ましく、1~30重量部がより好ましく、2~20重量部が特に好ましい。組成物における水の含有量が少な過ぎると、アルコキシシラン(B)が有するアルコキシ基の加水分解反応及び脱水縮合反応を十分に進行させるのに過度の時間が必要となり、ガスバリア性フィルムの製造効率が低下する虞れがある。また、組成物における水の含有量が多過ぎると、過剰に存在する水がアルコキシシラン(A)の重合反応を阻害する虞れがある。 The water content in the composition is preferably 0.1 to 40 parts by weight, more preferably 1 to 30 parts by weight, and particularly preferably 2 to 20 parts by weight with respect to 100 parts by weight of the alkoxysilane (A). If the content of water in the composition is too small, excessive time is required to sufficiently advance the hydrolysis reaction and dehydration condensation reaction of the alkoxy group of the alkoxysilane (B), and the production efficiency of the gas barrier film is increased. There is a risk of lowering. Moreover, when there is too much content of the water in a composition, there exists a possibility that the water which exists excessively may inhibit the polymerization reaction of alkoxysilane (A).
 アルコキシシラン(A)やアルコキシシラン(B)が有しているアルコキシ基の加水分解反応を促進させるために、組成物は、水に加えて、酸触媒をさらに含有していることが好ましい。酸触媒としては、塩酸、硫酸、及び硝酸などの無機酸;並びに、ギ酸、及び酢酸などの有機酸が挙げられる。なかでも、硝酸が好ましい。硝酸によれば、アルコキシ基の加水分解を適度に促進させることができる。 In order to promote the hydrolysis reaction of the alkoxy group of alkoxysilane (A) or alkoxysilane (B), the composition preferably further contains an acid catalyst in addition to water. Acid catalysts include inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid; and organic acids such as formic acid and acetic acid. Of these, nitric acid is preferable. According to nitric acid, hydrolysis of the alkoxy group can be promoted moderately.
 組成物中における酸触媒の含有量は、水100重量部に対して、0.001~5重量部が好ましく、0.01~1重量部がより好ましい。酸触媒の添加量が少な過ぎると、酸触媒の添加により得られる効果が十分でない虞れがある。また、酸触媒の添加量が多過ぎると、ガスバリ性樹脂層の酸性度が高くなる虞れがある。酸性度の高いガスバリア性樹脂層を含んでいるガスバリア性フィルムは、早期に劣化する虞れがある。 The content of the acid catalyst in the composition is preferably 0.001 to 5 parts by weight, more preferably 0.01 to 1 part by weight with respect to 100 parts by weight of water. If the amount of the acid catalyst added is too small, the effect obtained by adding the acid catalyst may not be sufficient. Moreover, when there is too much addition amount of an acid catalyst, there exists a possibility that the acidity of a gas-barrier resin layer may become high. A gas barrier film containing a gas barrier resin layer having a high acidity may be deteriorated at an early stage.
 透明フィルムの一面にアルコキシシラン(A)、アルコキシシラン(B)及び水を含む組成物を塗布した後、塗布した組成物に活性エネルギー線を照射する。組成物に照射する活性エネルギー線としては、紫外線、電子線、α線、β線、及びγ線などが挙げられる。なかでもアルコキシシラン(A)のラジカル重合を行うのに十分なエネルギーを有することから、電子線が好ましく挙げられる。 After applying a composition containing alkoxysilane (A), alkoxysilane (B) and water on one surface of the transparent film, the applied composition is irradiated with active energy rays. Examples of active energy rays applied to the composition include ultraviolet rays, electron beams, α rays, β rays, and γ rays. Among them, an electron beam is preferable because it has sufficient energy for radical polymerization of alkoxysilane (A).
 塗布した組成物に電子線を照射する場合、電子線の加速電圧は、10~100kVが好ましく、10~50kVがより好ましい。また、電子線の照射量は、50~200kGyが好ましく、100~175kGyがより好ましい。 When the applied composition is irradiated with an electron beam, the acceleration voltage of the electron beam is preferably 10 to 100 kV, and more preferably 10 to 50 kV. Further, the irradiation amount of the electron beam is preferably 50 to 200 kGy, and more preferably 100 to 175 kGy.
 透明フィルムの一面に塗布した組成物に活性エネルギー線を照射することによって、上記組成物に含まれているアルコキシシラン(A)のラジカル重合を行う。また、上記組成物が多官能(メタ)アクリレート(C)を含んでいる場合には、上記活性エネルギー線の照射によって、アルコキシシラン(A)及び多官能(メタ)アクリレート(C)のラジカル重合を行う。 Radiation polymerization of the alkoxysilane (A) contained in the composition is performed by irradiating the composition coated on one surface of the transparent film with active energy rays. Moreover, when the said composition contains polyfunctional (meth) acrylate (C), radical polymerization of alkoxysilane (A) and polyfunctional (meth) acrylate (C) is performed by irradiation of the said active energy ray. Do.
 また、組成物には水が含まれていることから、アルコキシシラン(A)のラジカル重合の開始と共に又は開始した後に、アルコキシシラン(A)のラジカル重合体が有するアルコキシ基及び/又はアルコキシ基で置換されたアルコキシ基と、アルコキシシラン(B)が有するアルコキシ基との加水分解及び脱水縮合反応、及び、アルコキシシラン(B)が有するアルコキシ基同士との加水分解及び脱水縮合反応が生じる。このような加水分解及び脱水縮合反応を十分に行うためには、透明フィルムの一面に塗布した組成物に活性エネルギー線を照射した後、これらを好ましくは温度40~150℃、より好ましくは40~120℃にて、好ましくは相対湿度40~80%、より好ましくは50~70%の環境下に放置するのが好ましい。放置時間は、0.1~10時間が好ましく、0.5~3時間がより好ましい。 In addition, since the composition contains water, with or after the initiation of the radical polymerization of alkoxysilane (A), or after the initiation, the alkoxy group and / or alkoxy group possessed by the radical polymer of alkoxysilane (A) Hydrolysis and dehydration condensation reaction between the substituted alkoxy group and the alkoxy group contained in the alkoxysilane (B), and hydrolysis and dehydration condensation reaction between the alkoxy groups contained in the alkoxysilane (B) occur. In order to sufficiently perform such hydrolysis and dehydration condensation reaction, the composition coated on one side of the transparent film is irradiated with active energy rays, and then these are preferably heated at a temperature of 40 to 150 ° C., more preferably 40 to It is preferable to leave it at 120 ° C. in an environment with a relative humidity of preferably 40 to 80%, more preferably 50 to 70%. The standing time is preferably 0.1 to 10 hours, more preferably 0.5 to 3 hours.
 平滑化層としては、上述した(1)~(3)の層が挙げられるが、なかでも表面平滑性及びガスバリア性に優れていることから(3)の層が好ましく挙げられる。 Examples of the smoothing layer include the above-described layers (1) to (3). Among them, the layer (3) is preferable because of excellent surface smoothness and gas barrier properties.
 平滑化層は、不活性粒子を含んでいてもよい。不活性粒子を用いることにより平滑化層の最大高さRy及び表面粗さRaをより容易に調整することが可能となる。 The smoothing layer may contain inert particles. It is possible to more easily adjust the maximum height R y and surface roughness R a of the smoothing layer by using the inert particles.
 不活性粒子としては、平滑化層を構成する他の材料と化学反応を起こすことのない物質が用いられる。例えば、Al23粒子、SiO2粒子、TiO2粒子、BaSO4粒子、CaCO3粒子、タルク粒子、及びカオリン粒子などの不活性無機粒子、並びに架橋ポリスチレン粒子、及びアクリル粒子などの不活性有機粒子が挙げられる。 As the inert particles, substances that do not cause a chemical reaction with other materials constituting the smoothing layer are used. For example, inert inorganic particles such as Al 2 O 3 particles, SiO 2 particles, TiO 2 particles, BaSO 4 particles, CaCO 3 particles, talc particles, and kaolin particles, and inert organic particles such as crosslinked polystyrene particles and acrylic particles. Particles.
 不活性粒子の平均粒子径は、0.1~300nmが好ましく、0.5~150nmが好ましく、1~30nmが特に好ましい。不活性粒子の平均粒子径が小さ過ぎると、不活性粒子が凝集を起こして、平滑化層の透明性や表面平滑性を低下させる虞れがある。また、不活性粒子の平均粒子径が大き過ぎると、平滑化層の表面平滑性が低下する虞れがある。 The average particle size of the inert particles is preferably 0.1 to 300 nm, more preferably 0.5 to 150 nm, and particularly preferably 1 to 30 nm. If the average particle diameter of the inert particles is too small, the inert particles may aggregate to reduce the transparency and surface smoothness of the smoothing layer. Moreover, when the average particle diameter of an inert particle is too large, there exists a possibility that the surface smoothness of a smoothing layer may fall.
 なお、本発明において不活性粒子の平均粒子径とは、レーザー回折・散乱法によって求めた体積粒度分布の累積50%の値を意味する。 In the present invention, the average particle diameter of the inert particles means a cumulative 50% value of the volume particle size distribution determined by the laser diffraction / scattering method.
 不活性粒子を含む平滑化層を形成するためには、平滑化層を形成するために用いられる組成物に不活性粒子を添加すればよい。例えば、ラジカル重合性基を有するアルコキシシラン(A)、ラジカル重合性基を有しないアルコキシシラン(B)及び水を含む組成物を硬化させてなる層を形成するためには、ラジカル重合性基を有するアルコキシシラン(A)、ラジカル重合性基を有しないアルコキシシラン(B)、水、及び不活性粒子を含む組成物を用いればよい。 In order to form a smoothing layer containing inert particles, inert particles may be added to the composition used to form the smoothing layer. For example, in order to form a layer formed by curing a composition comprising an alkoxysilane (A) having a radical polymerizable group, an alkoxysilane (B) not having a radical polymerizable group, and water, the radical polymerizable group is used. What is necessary is just to use the composition containing the alkoxysilane (A) which has, the alkoxysilane (B) which does not have a radically polymerizable group, water, and an inert particle.
 組成物中における不活性粒子の含有量は、アルコキシシラン(A)100重量部に対して、1~150重量部が好ましく、5~100重量部がより好ましい。組成物中における不活性粒子の含有量が少な過ぎると、不活性粒子による効果が十分に得られない虞れがある。また、組成物中における不活性粒子の含有量が多過ぎると、平滑化層の表面平滑性が低下する虞れがある。 The content of inert particles in the composition is preferably 1 to 150 parts by weight and more preferably 5 to 100 parts by weight with respect to 100 parts by weight of the alkoxysilane (A). If the content of the inert particles in the composition is too small, the effect of the inert particles may not be sufficiently obtained. Moreover, when there is too much content of the inert particle in a composition, there exists a possibility that the surface smoothness of a smoothing layer may fall.
 平滑化層の厚さは、100nm~10μmが好ましく、200nm~5μmがより好ましく、500nm~3μmが特に好ましい。厚みが100nm未満である平滑化層では十分な表面平滑性を有していない虞れがある。また、厚みが10μmを超える平滑化層では、剛性が高くなり過ぎてガスバリア性フィルムの可撓性を低下させる虞れがある。 The thickness of the smoothing layer is preferably 100 nm to 10 μm, more preferably 200 nm to 5 μm, and particularly preferably 500 nm to 3 μm. The smoothing layer having a thickness of less than 100 nm may not have sufficient surface smoothness. Moreover, in the smoothing layer whose thickness exceeds 10 μm, the rigidity becomes too high, and the flexibility of the gas barrier film may be lowered.
 なお、本発明において、平滑化層の厚みは、次の方法により求められる。先ず、平滑化層の断面を走査電子顕微鏡を用いて10,000倍以上の倍率で撮影する。次に、得られた撮影像から平滑化層においてそれぞれ任意の5箇所以上の厚みを測定し、その相加平均値を平滑化層の厚みとする。 In the present invention, the thickness of the smoothing layer is determined by the following method. First, a cross section of the smoothing layer is photographed at a magnification of 10,000 times or more using a scanning electron microscope. Next, the thickness of five or more arbitrary positions is measured in the smoothing layer from the obtained photographed image, and the arithmetic average value is taken as the thickness of the smoothing layer.
 (ガスバリア層)
 本発明のガスバリア性フィルムに用いられているガスバリア層は、一般式(1):ZnSnabc(式中、aは2.1~15であり、bは0.5~22であり、cは0.05~1.1である)で示される酸化窒化物を含む。上記一般式(1)で示される酸化窒化物は窒素原子及び錫原子を含んでいる。酸化窒化物の窒素原子によりガスバリア層のガスバリア性を向上できると共に、酸化窒化物の錫原子によりガスバリア層に適度な可撓性を付与することができる。したがって、酸化窒化物を含むガスバリア層を用いてなるガスバリア性フィルムは、撓ませたり丸めたりしたとしても、ガスバリア層にひび割れが発生することがなく優れたガスバリア性を維持することができる。
(Gas barrier layer)
The gas barrier layer used in the gas barrier film of the present invention has a general formula (1): ZnSn a O b N c (wherein a is 2.1 to 15 and b is 0.5 to 22) , C is 0.05 to 1.1). The oxynitride represented by the general formula (1) contains a nitrogen atom and a tin atom. The gas barrier property of the gas barrier layer can be improved by nitrogen atoms of oxynitride, and appropriate flexibility can be imparted to the gas barrier layer by tin atoms of oxynitride. Therefore, even when the gas barrier film using the gas barrier layer containing oxynitride is bent or rolled, the gas barrier layer does not crack and can maintain excellent gas barrier properties.
 上記一般式(1)におけるaは、亜鉛原子数に対する錫原子数の比(原子比)を示し、2.1~15に限定されるが、2.1~10が好ましく、2.2~5がより好ましい。上記一般式(1)において錫原子の原子比aが少な過ぎると、ガスバリア層のガスバリア性や可撓性が低下する虞れがある。また、上記一般式(1)において錫原子の原子比aが多過ぎると、ガスバリア層の透明性が低下する虞れがある。 In the general formula (1), a represents the ratio (atomic ratio) of the number of tin atoms to the number of zinc atoms, and is limited to 2.1 to 15, preferably 2.1 to 10, preferably 2.2 to 5 Is more preferable. If the atomic ratio a of tin atoms is too small in the general formula (1), the gas barrier property and flexibility of the gas barrier layer may be lowered. Further, if the atomic ratio a of tin atoms is too large in the general formula (1), the transparency of the gas barrier layer may be lowered.
 上記一般式(1)におけるbは、亜鉛原子数に対する酸素原子数の比(原子比)を示し、0.5~22に限定されるが、0.55~20が好ましく、1~4がより好ましい。上記一般式(1)において酸素原子の原子比bが多過ぎるとガスバリア層の可撓性が低下する虞れがある。また、上記一般式(1)において酸素原子の原子比bが少な過ぎるとガスバリア層の透明性や可撓性が低下する虞れがある。 In the general formula (1), b represents the ratio (atomic ratio) of the number of oxygen atoms to the number of zinc atoms, and is limited to 0.5 to 22, preferably 0.55 to 20, more preferably 1 to 4 preferable. If the atomic ratio b of oxygen atoms is too large in the general formula (1), the flexibility of the gas barrier layer may be lowered. In addition, if the atomic ratio b of oxygen atoms is too small in the general formula (1), the transparency and flexibility of the gas barrier layer may be lowered.
 上記一般式(1)におけるcは、亜鉛原子数に対する窒素原子数の比(原子比)を示し、0.05~1.1に限定されるが、0.15~1が好ましく、0.2~0.5がより好ましい。上記一般式(1)において窒素原子の原子比cが多過ぎるとガスバリア層の透明性が低下する虞れがある。また、上記一般式(1)において窒素原子の原子比cが少な過ぎるとガスバリア層のガスバリア性が低下する虞れがある。 C in the general formula (1) represents the ratio of the number of nitrogen atoms to the number of zinc atoms (atomic ratio), and is limited to 0.05 to 1.1, preferably 0.15 to 1, More preferable is 0.5. If the atomic ratio c of nitrogen atoms is too large in the general formula (1), the transparency of the gas barrier layer may be lowered. Further, if the atomic ratio c of nitrogen atoms is too small in the general formula (1), the gas barrier property of the gas barrier layer may be lowered.
 ガスバリア層は、亜鉛及び錫の酸化窒化物の他に、例えば、アルミニウムなどを含んでいてもよいが、亜鉛及び錫の酸化窒化物のみからなることが好ましい。 The gas barrier layer may contain, for example, aluminum or the like in addition to zinc and tin oxynitride, but is preferably made of only zinc and tin oxynitride.
 ガスバリア層に含まれている亜鉛及び錫の酸化窒化物における亜鉛原子、錫原子、酸素原子及び窒素原子の比は、例えば、VGサイエンティフィックス社製 製品名ESCALAB-200RなどのXPS(X線光電子分光)表面分析装置を用いて測定することができる。 The ratio of zinc atom, tin atom, oxygen atom and nitrogen atom in zinc and tin oxynitrides contained in the gas barrier layer is, for example, XPS (X-ray photoelectron, product name ESCALAB-200R manufactured by VG Scientific Fix Co., Ltd.) It can be measured using a spectroscopic surface analyzer.
 XPS表面分析装置のX線アノードにはMgを用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定することができる。エネルギー分解能は、清浄なAg3d5/2ピークの半値幅で規定したとき、1.5eV~1.7eVとなるように設定する。 Mg can be used for the X-ray anode of the XPS surface analyzer, and measurement can be performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA). The energy resolution is set to be 1.5 eV to 1.7 eV when defined by the half width of a clean Ag 3d 5/2 peak.
 XPS表面分析装置による測定として、具体的には、先ず、結合エネルギー0eV~1100eVの範囲を、データ取り込み間隔1.0eVで測定し、いかなる元素が検出されるかを求める。次に、検出された、エッチングイオン種を除く全ての元素について、データの取り込み間隔を0.2eVとして、その最大強度を与える光電子ピークについてナロースキャンを行うことにより、各元素のスペクトルを測定する。そして、得られたスペクトルは、測定装置やコンピュータの違いによる含有率算出結果の違いを生じせしめなくするために、VAMAS-SCA-JAPAN製のCOMMON DATA PROCESSING SYSTEM (Ver.2.3以降が好ましい)で処理を行い、これにより各分析ターゲットの元素(窒素、酸素、亜鉛、錫等)の含有率の値を原子数濃度(atomic concentration:at%)として求めることができる。 Specifically, as the measurement by the XPS surface analyzer, first, a range of binding energies of 0 eV to 1100 eV is measured at a data acquisition interval of 1.0 eV to determine what elements are detected. Next, with respect to all the detected elements except the etching ion species, the data acquisition interval is set to 0.2 eV, and the photoelectron peak giving the maximum intensity is narrow-scanned to measure the spectrum of each element. The obtained spectrum is COMMON DATA PROCESSING SYSTEM manufactured by VAMAS-SCA-JAPAN (preferably Ver. 2.3 or later) so as not to cause a difference in the content calculation result due to a difference in measuring apparatus or computer. Thus, the value of the content of each analysis target element (nitrogen, oxygen, zinc, tin, etc.) can be determined as the atomic concentration (at%).
 定量処理をおこなう前に、各元素についてCoun Scaleのキャリブレーションを行うことにより、5ポイントについてスムージング処理を行う。定量処理では、バックグラウンドを除去したピークエリア強度(cps・eV)を用いる。バックグラウンド処理には、Shirleyによる方法が用いられる。また、Shirley法については、D.A.Shirley,Phys.Rev.,B5,4709(1972)を参考にすることができる。 Before performing the quantitative process, a smoothing process is performed for 5 points by calibrating the Count Scale for each element. In the quantitative processing, the peak area intensity (cps · eV) from which the background is removed is used. For background processing, a method by Shirley is used. For the Shirley method, see D.C. A. Shirley, Phys. Rev. , B5, 4709 (1972).
 ガスバリア層の厚みは、20~600nmが好ましく、150~550nmがより好ましく、50~300nmが特に好ましい。ガスバリア層の厚みが薄過ぎると、十分なガスバリア性をガスバリア性フィルムに付与できない虞れがある。また、ガスバリア層の厚みが厚過ぎると、ガスバリア層の可撓性が低下する虞れがある。可撓性が低いガスバリア層を用いると、ガスバリア性フィルムを撓ませたり丸めたりしたりした場合に、ガスバリア層にひび割れが発生し、そのためガスバリア性フィルムのガスバリア性を低下させる。 The thickness of the gas barrier layer is preferably 20 to 600 nm, more preferably 150 to 550 nm, and particularly preferably 50 to 300 nm. If the thickness of the gas barrier layer is too thin, sufficient gas barrier properties may not be imparted to the gas barrier film. Moreover, when the thickness of a gas barrier layer is too thick, there exists a possibility that the flexibility of a gas barrier layer may fall. When a gas barrier layer with low flexibility is used, when the gas barrier film is bent or rolled, cracks occur in the gas barrier layer, thereby reducing the gas barrier properties of the gas barrier film.
 なお、本発明において、ガスバリア層の厚みは、上述した平滑化層の厚みの測定方法と同様の方法により求められる。 In addition, in this invention, the thickness of a gas barrier layer is calculated | required by the method similar to the measuring method of the thickness of the smoothing layer mentioned above.
 ガスバリア層が積層一体化される平滑化層の一面の最大高さRyと、ガスバリア層の厚みTbとは、次式:Ry<Tbで示される関係を満たしていることが好ましい。このような関係を満たしている平滑化層及びガスバリア層によれば、ガスバリア性フィルムに優れたガスバリア性を付与することができる。 It is preferable that the maximum height R y of one surface of the smoothing layer on which the gas barrier layers are laminated and integrated and the thickness T b of the gas barrier layer satisfy the relationship represented by the following formula: R y <T b . According to the smoothing layer and the gas barrier layer satisfying such a relationship, excellent gas barrier properties can be imparted to the gas barrier film.
 透明フィルムの一面に上記一般式(1)で示される酸化窒化物を含むガスバリア層を作製するには、物理気相成長法を用いて行うのが好ましい。物理気相成長法によれば、ガスバリア層中の酸化窒化物に含まれる亜鉛原子、錫原子、酸素原子及び窒素原子の原子比を容易に調整することができる。このような物理気相成長法としては、真空蒸着法、イオンプレーティング法、及びスパッタリング法が挙げられ、なかでもスパッタリング法が好ましく挙げられ、DCマグネトロンスパッタリング法がより好ましく挙げられる。 In order to produce a gas barrier layer containing the oxynitride represented by the general formula (1) on one surface of the transparent film, it is preferable to use a physical vapor deposition method. According to the physical vapor deposition method, the atomic ratio of zinc atoms, tin atoms, oxygen atoms, and nitrogen atoms contained in the oxynitride in the gas barrier layer can be easily adjusted. Examples of such physical vapor deposition include vacuum deposition, ion plating, and sputtering. Among these, sputtering is preferred, and DC magnetron sputtering is more preferred.
 DCマグネトロンスパッタリング法によりガスバリア層を作製するには、例えば、ターゲットとして亜鉛及び錫の合金を用い、分解ガスとして酸素ガス及び窒素ガスを用い、DCマグネトロンスパッタリング法により、透明フィルムの一面に亜鉛及び錫の酸化窒化物を堆積して成膜することによりガスバリア層を形成することができる。 In order to produce a gas barrier layer by DC magnetron sputtering, for example, an alloy of zinc and tin is used as a target, oxygen gas and nitrogen gas are used as decomposition gases, and zinc and tin are formed on one surface of a transparent film by DC magnetron sputtering. A gas barrier layer can be formed by depositing and depositing oxynitride.
 亜鉛及び錫の合金における亜鉛原子及び錫原子の原子比や、酸素ガス及び窒素ガスの導入量を調整することにより、得られる酸化窒化物の亜鉛原子、錫原子、酸素ガス及び窒素ガスの原子比を所望の範囲に調整することができる。 By adjusting the atomic ratio of zinc atoms and tin atoms in the alloy of zinc and tin and the amount of oxygen gas and nitrogen gas introduced, the atomic ratio of zinc atoms, tin atoms, oxygen gas and nitrogen gas in the resulting oxynitride Can be adjusted to a desired range.
 DCマグネトロンスパッタリング法によって亜鉛及び錫の酸化窒化物を成膜する際に、DCマグネトロンスパッタリング装置の成膜室内を1.33×10-2Pa(1.0×10-4Torr)以下、特に0.27×10-4Pa(2.0×10-5Torr)以下に減圧した後に、上記成膜室内の圧力が6.67×10-2Pa(5.0×10-4Torr)~1.33Pa(1.0×10-2Torr)となるまで、アルゴンガスなどの不活性ガス、並びに酸素ガス及び窒素ガスを含む分解ガスを導入し、DCマグネトロンスパッタリング法によって亜鉛及び錫の酸化窒化物の成膜を開始するのが好ましい。 When a zinc and tin oxynitride film is formed by the DC magnetron sputtering method, the film forming chamber of the DC magnetron sputtering apparatus is 1.33 × 10 −2 Pa (1.0 × 10 −4 Torr) or less, particularly 0 After the pressure is reduced to less than or equal to .27 × 10 −4 Pa (2.0 × 10 −5 Torr), the pressure in the film forming chamber is 6.67 × 10 −2 Pa (5.0 × 10 −4 Torr) to 1 Introducing an inert gas such as argon gas and a decomposition gas containing oxygen gas and nitrogen gas until .33 Pa (1.0 × 10 −2 Torr) is reached, and zinc and tin oxynitrides are formed by DC magnetron sputtering. It is preferable to start the film formation.
 (ガスバリア性フィルム)
 本発明のガスバリア性フィルム10は、図1に示すように、透明フィルム11と、上記透明フィルム11の一面に積層一体化されてなるガスバリア層12とを有している。このように透明フィルム11の一面全面を被覆するようにガスバリア層12が積層一体化されていることが好ましい。これによりガスバリア性及び可撓性に優れるガスバリア性フィルム10を提供することができる。
(Gas barrier film)
As shown in FIG. 1, the gas barrier film 10 of the present invention has a transparent film 11 and a gas barrier layer 12 laminated and integrated on one surface of the transparent film 11. Thus, the gas barrier layer 12 is preferably laminated and integrated so as to cover the entire surface of the transparent film 11. Thereby, the gas barrier film 10 excellent in gas barrier properties and flexibility can be provided.
 また、本発明のガスバリア性フィルム10は、図2に示すように、透明フィルム11と、上記透明フィルム11の一面に積層一体化されてなる平滑化層13と、上記平滑化層13の一面に積層一体化されてなるガスバリア層12とを有していてもよい。このように、透明フィルム11の一面に、この一面が有する凹凸を被覆して表面平滑性に優れる平滑化層13が積層一体化されていることによって、ガスバリア層12の表面から透明フィルム11の一部がガスバリア層に被覆されずに露出するのを抑制することができ、ガスバリア性に優れるガスバリア性フィルム10を提供することが可能となる。 Further, as shown in FIG. 2, the gas barrier film 10 of the present invention comprises a transparent film 11, a smoothing layer 13 laminated and integrated on one surface of the transparent film 11, and a surface of the smoothing layer 13. It may have a gas barrier layer 12 that is laminated and integrated. As described above, since the smoothing layer 13 that covers the unevenness of the one surface and is excellent in surface smoothness is laminated and integrated on one surface of the transparent film 11, one surface of the transparent film 11 is formed from the surface of the gas barrier layer 12. It is possible to prevent the portion from being exposed without being covered with the gas barrier layer, and to provide the gas barrier film 10 having excellent gas barrier properties.
 本発明のガスバリア性フィルムが用いられる用途としては、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、食品や工業用品及び医薬品等の変質を防止するための包装などの用途が挙げられる。また、このような包装用用途の他にも、本発明のガスバリア性フィルムは、太陽電池モジュール、液晶表示パネル、及び有機EL(エレクトロルミネッセンス)表示パネルなどの製品構成体の一部として、或いは製品構成体に用いられる素子のパッケージ材料として用いることができる。ガスバリア性フィルムによれば、製品構成体に使用される素子が、酸素や水蒸気に触れて性能劣化するのを防止することができる。なかでも、本発明のガスバリア性フィルムは、太陽電池モジュールや薄膜太陽電池の裏面側保護シート又は受光面側保護シートとして用いられるのが好ましい。裏面側保護シート及び受光面側保護シートは、太陽電池モジュールや薄膜太陽電池において発電素子とエチレン-酢酸ビニル共重合体などの封止樹脂とを保護するために用いられる。 Applications for which the gas barrier film of the present invention is used include packaging of articles that require blocking of various gases such as water vapor and oxygen, and packaging for preventing deterioration of food, industrial products, pharmaceuticals, and the like. It is done. In addition to such packaging applications, the gas barrier film of the present invention is used as a part of a product structure such as a solar cell module, a liquid crystal display panel, and an organic EL (electroluminescence) display panel, or as a product. It can be used as a packaging material for an element used in the structure. According to the gas barrier film, it is possible to prevent the elements used in the product structure from deteriorating in performance due to contact with oxygen or water vapor. Especially, it is preferable that the gas barrier film of this invention is used as a back surface side protection sheet or a light-receiving surface side protection sheet of a solar cell module or a thin film solar cell. The back surface side protective sheet and the light receiving surface side protective sheet are used for protecting a power generating element and a sealing resin such as an ethylene-vinyl acetate copolymer in a solar cell module or a thin film solar cell.
 図3に、本発明のガスバリア性フィルムを用いた太陽電池モジュールAの模式縦断面図を示す。太陽電池モジュールAは、発電素子20と、この発電素子20を挟持している一対の封止材30、30' と、一方の封止材30の表面上に積層一体化されている透明保護部材40と、他方の封止材30' の裏面側に積層一体化されている裏面側保護シート50とを含んでいる。そして、本発明のガスバリア性フィルムは、裏面側保護シート50として好ましく用いられる。 FIG. 3 shows a schematic longitudinal sectional view of a solar cell module A using the gas barrier film of the present invention. The solar cell module A includes a power generation element 20, a pair of sealing materials 30 and 30 ′ sandwiching the power generation element 20, and a transparent protective member laminated and integrated on the surface of one sealing material 30 40 and a back side protective sheet 50 laminated and integrated on the back side of the other sealing material 30 ′. The gas barrier film of the present invention is preferably used as the back side protective sheet 50.
 図4に、本発明のガスバリア性フィルムを用いた薄膜太陽電池Bの模式縦断面図を示す。薄膜太陽電池Bは、透明保護部材60と、この透明保護部材60の裏面上に形成されている発電素子70と、透明保護部材60及び発電素子70の裏面上に積層一体化されている封止材80と、封止材80の裏面上に積層一体化されている裏面側保護シート90とを含んでいる。そして、本発明のガスバリア性フィルムは、裏面側保護シート90として好ましく用いられる。発電素子70は、透明保護部材60の裏面上に直接形成されていることが好ましい。 FIG. 4 shows a schematic longitudinal sectional view of a thin film solar cell B using the gas barrier film of the present invention. The thin-film solar cell B includes a transparent protective member 60, a power generating element 70 formed on the back surface of the transparent protective member 60, and a seal integrated and laminated on the back surfaces of the transparent protective member 60 and the power generating element 70. It includes a material 80 and a back surface side protective sheet 90 laminated and integrated on the back surface of the sealing material 80. The gas barrier film of the present invention is preferably used as the back side protective sheet 90. The power generation element 70 is preferably formed directly on the back surface of the transparent protective member 60.
 発電素子20、70としては、特に制限されず、金属酸化物薄膜等からなる透明電極と、アモルファスシリコン、微結晶シリコン、ガリウム-砒素、銅-インジウム-セレン、CIS、及びCdTeなどの材料等からなる光起電力層と、金属薄膜などからなる背面電極とを、この順で積層した積層体などが挙げられる。封止材30、30' 及び80としては、特に制限されず、エチレン-酢酸ビニル共重合体フィルムなどが用いられる。そして、透明保護部材40、60としては、特に制限されず、ガラス板などが用いられる。 The power generating elements 20 and 70 are not particularly limited, and are made of a transparent electrode made of a metal oxide thin film or the like and materials such as amorphous silicon, microcrystalline silicon, gallium-arsenic, copper-indium-selenium, CIS, and CdTe. The laminated body which laminated | stacked the photovoltaic layer which consists of, and the back electrode which consists of a metal thin film etc. in this order is mentioned. The sealing materials 30, 30 ′ and 80 are not particularly limited, and ethylene-vinyl acetate copolymer films and the like are used. The transparent protective members 40 and 60 are not particularly limited, and a glass plate or the like is used.
 以下に、本発明を実施例を用いてより具体的に説明するが、本発明はこれに限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
 (実施例1)
 1.平滑化層の作製
 ポリエチレンナフタレートフィルム(厚さ75μm、全光線透過率88%)の一面に、3-メタクリロキシプロピルトリメトキシシラン100重量部、テトラエトキシシラン16重量部、トリプロピレングリコールジアクリレート100重量部、及び水8重量部含む平滑化層形成用組成物を、グラビアコーターにより塗布した後、塗布した平滑化層形成用組成物に電子線照射装置(ESI社製 製品名EC300/165/800)を用いて、加速電圧10kV、照射線量170kGyの条件で電子線を照射することによって3-メタクリロキシプロピルトリメトキシシランが有している3-メタクリロキシプロピル基と及びトリプロピレングリコールジアクリレートが有しているアクリロイル基とのラジカル重合を行ってラジカル重合体を形成した後、電子線照射を行った平滑化層形成用組成物を一面全面に有するポリエチレンナフタレートフィルムを120℃、相対湿度50%の環境下に0.5時間放置することによって、ラジカル重合体における3-メタクリロキシプロピルトリメトキシシランに由来するメトキシ基とテトラエトキシシランのエトキシ基との加水分解及び脱水縮合反応、及び、テトラエトキシシランのエトキシ基同士の加水分解及び脱水縮合反応を行うことにより上記ラジカル重合体の主鎖間を架橋するテトラエトキシシランの脱水縮合物を形成し、ポリエチレンナフタレートフィルムの一面に全面的に積層一体化されてなる平滑化層(厚み3μm、最大高さRy0.9nm、表面粗さRa0.5nm)を得た。
Example 1
1. Preparation of smoothing layer On one surface of a polyethylene naphthalate film (thickness 75 μm, total light transmittance 88%), 100 parts by weight of 3-methacryloxypropyltrimethoxysilane, 16 parts by weight of tetraethoxysilane, tripropylene glycol diacrylate 100 After applying a smoothing layer forming composition containing 8 parts by weight of water and 8 parts by weight of water with a gravure coater, an electron beam irradiation device (product name EC300 / 165/800 manufactured by ESI Co., Ltd.) is applied to the applied smoothing layer forming composition. ), The 3-methacryloxypropyl group and tripropylene glycol diacrylate of 3-methacryloxypropyltrimethoxysilane are present by irradiating an electron beam under the conditions of an acceleration voltage of 10 kV and an irradiation dose of 170 kGy. Radical polymerization with the acryloyl group After forming a cal polymer, a polyethylene naphthalate film having a smoothing layer-forming composition irradiated with an electron beam on the entire surface is allowed to stand in an environment of 120 ° C. and 50% relative humidity for 0.5 hours. , Hydrolysis and dehydration condensation reaction of methoxy group derived from 3-methacryloxypropyltrimethoxysilane and ethoxy group of tetraethoxysilane in radical polymer, and hydrolysis and dehydration condensation reaction between ethoxy groups of tetraethoxysilane To form a dehydration condensate of tetraethoxysilane that crosslinks between the main chains of the radical polymer, and a smoothing layer (thickness 3 μm, maximum) Height Ry 0.9 nm, surface roughness Ra 0.5 nm).
 2.ガスバリア層の作製
 DCマグネトロンスパッタリング装置の成膜室内に設置されているカソードに、ターゲットとして95重量%の亜鉛と5重量%の錫との合金(亜鉛原子:錫原子(原子比)=10:1)を装着し、成膜室内を減圧して、減圧後の成膜室内の圧力(P1)を1.1×10-2Pa(1.0×10-4Torr)以下にした後、アルゴンガス(流量100Sccm)と、原料ガスとして酸素ガス及び窒素ガスの混合ガス(流量20Sccm、酸素ガス:窒素ガス(分子比)=96:4)とを成膜室内に導入し、ガス導入後の成膜室内の圧力(P2)を0.5Pa(3.5×10-3Torr)とした。その後、1.9kWの電力をカソードに印加し、0.5m/分の搬送速度で平滑化層を有するポリエチレンナフタレートフィルムを平滑化層がスパッタリング面となるように搬送させ、平滑化層を有するポリエチレンナフタレートフィルムを成膜室内に6回通過させることにより、平滑化層の一面に全面的にZnSn10201からなるガスバリア層(厚み500nm)を作製した。これにより、ポリエチレンナフタレートフィルム、平滑化層、及びガスバリア層がこの順で積層一体化されてなるガスバリア性フィルムを得た。
2. Production of gas barrier layer An alloy of 95 wt% zinc and 5 wt% tin as a target (zinc atom: tin atom (atomic ratio)) = 10: 1 on a cathode installed in a film forming chamber of a DC magnetron sputtering apparatus. ), The pressure in the film formation chamber is reduced, and the pressure (P 1 ) in the film formation chamber after the pressure reduction is reduced to 1.1 × 10 −2 Pa (1.0 × 10 −4 Torr) or less. A gas (flow rate of 100 Sccm) and a mixed gas of oxygen gas and nitrogen gas (flow rate of 20 Sccm, oxygen gas: nitrogen gas (molecular ratio) = 96: 4) as a source gas are introduced into the film formation chamber, and the gas composition after the gas introduction is introduced. The pressure (P 2 ) in the film chamber was 0.5 Pa (3.5 × 10 −3 Torr). Thereafter, a power of 1.9 kW is applied to the cathode, and a polyethylene naphthalate film having a smoothing layer is transported at a transport speed of 0.5 m / min so that the smoothing layer becomes a sputtering surface, thereby having a smoothing layer. By passing the polyethylene naphthalate film six times through the film forming chamber, a gas barrier layer (thickness: 500 nm) made of ZnSn 10 O 20 N 1 was entirely formed on one surface of the smoothing layer. As a result, a gas barrier film in which a polyethylene naphthalate film, a smoothing layer, and a gas barrier layer were laminated and integrated in this order was obtained.
 (実施例2)
 1.平滑化層の作製
 ポリエチレンナフタレートフィルム(厚さ75μm、全光線透過率88%)の一面に、3-メタクリロキシプロピルトリメトキシシラン100重量部、テトラエトキシシラン10重量部、トリプロピレングリコールジアクリレート120重量部、水10重量部、及びアルミナ粒子(Al23、平均粒子径10nm)100重量部を含む平滑化層形成用組成物を、グラビアコーターにより塗布した後、塗布した平滑化層形成用組成物に電子線照射装置(ESI社製 製品名EC300/165/800)を用いて、加速電圧20kV、照射線量175kGyの条件で電子線を照射することによって3-メタクリロキシプロピルトリメトキシシランが有している3-メタクリロキシプロピル基と及びトリプロピレングリコールジアクリレートが有しているアクリロイル基とのラジカル重合を行ってラジカル重合体を形成した後、電子線照射を行った平滑化層形成用組成物を一面全面に有するポリエチレンナフタレートフィルムを120℃、相対湿度50%の環境下に1時間放置することによって、ラジカル重合体における3-メタクリロキシプロピルトリメトキシシランに由来するメトキシ基とテトラエトキシシランのエトキシ基との加水分解及び脱水縮合反応、及び、テトラエトキシシランのエトキシ基同士の加水分解及び脱水縮合反応を行うことにより上記ラジカル重合体の主鎖間を架橋するテトラエトキシシランの脱水縮合物を形成し、ポリエチレンナフタレートフィルムの一面に全面的に積層一体化されてなる平滑化層(厚み1μm、最大高さRy10nm、表面粗さRa3nm)を得た。
(Example 2)
1. Preparation of smoothing layer On one surface of a polyethylene naphthalate film (thickness 75 μm, total light transmittance 88%), 100 parts by weight of 3-methacryloxypropyltrimethoxysilane, 10 parts by weight of tetraethoxysilane, and tripropylene glycol diacrylate 120 For smoothing layer formation, a smoothing layer forming composition containing 10 parts by weight of water, 10 parts by weight of water, and 100 parts by weight of alumina particles (Al 2 O 3 , average particle diameter 10 nm) was applied by a gravure coater. By using an electron beam irradiation apparatus (product name EC300 / 165/800 manufactured by ESI) to irradiate the composition with an electron beam under the conditions of an acceleration voltage of 20 kV and an irradiation dose of 175 kGy, 3-methacryloxypropyltrimethoxysilane is present. 3-methacryloxypropyl groups and tripropylene glycol dia After forming a radical polymer by performing radical polymerization with acryloyl groups possessed by acrylate, a polyethylene naphthalate film having a smoothing layer-forming composition that has been irradiated with an electron beam over the entire surface is 120 ° C., relative By leaving it in an environment of 50% humidity for 1 hour, hydrolysis and dehydration condensation reaction of methoxy group derived from 3-methacryloxypropyltrimethoxysilane and ethoxy group of tetraethoxysilane in the radical polymer, and tetra A dehydration condensation product of tetraethoxysilane that crosslinks between the main chains of the radical polymer is formed by performing hydrolysis and dehydration condensation reaction between ethoxy groups of ethoxysilane, and is laminated on one surface of a polyethylene naphthalate film. integrated smoothing layer formed (thickness 1 [mu] m, maximum height R y 10 nm, Table Roughness was obtained R a 3 nm).
 2.ガスバリア層の作製
 DCマグネトロンスパッタリング装置の成膜室内に設置されているカソードに、ターゲットとして14重量%の亜鉛と86重量%の錫との合金(亜鉛原子:錫原子(原子比)=0.3:1)を装着し、成膜室内を減圧して、減圧後の成膜室内の圧力(P1)を1.33×10-2Pa(10×10-4Torr)以下にした後、アルゴンガス(流量100Sccm)と、原料ガスとして酸素ガス及び窒素ガスの混合ガス(流量20Sccm、酸素ガス:窒素ガス(分子比)=92:8)とを成膜室内に導入し、ガス導入後の成膜室内の圧力(P2)を0.5Pa(3.5×10-3Torr)とした。その後、1.9kWの電力をカソードに印加し、0.5m/分の搬送速度で平滑化層を有するポリエチレンナフタレートフィルムを平滑化層がスパッタリング面となるように搬送させ、平滑化層を有するポリエチレンナフタレートフィルムを成膜室内に6回通過させることにより、平滑化層の一面に全面的にZnSn3.30.670.5からなるガスバリア層(厚み500nm)を作製した。これにより、ポリエチレンナフタレートフィルム、平滑化層、及びガスバリア層がこの順で積層一体化されてなるガスバリア性フィルムを得た。
2. Preparation of Gas Barrier Layer An alloy of 14% by weight zinc and 86% by weight tin as a target (zinc atom: tin atom (atomic ratio)) = 0.3 is applied to a cathode installed in a film forming chamber of a DC magnetron sputtering apparatus. 1), the pressure inside the film formation chamber is reduced, and the pressure (P 1 ) in the film formation chamber after the pressure reduction is reduced to 1.33 × 10 −2 Pa (10 × 10 −4 Torr) or less, and then argon is added. A gas (flow rate of 100 Sccm) and a mixed gas of oxygen gas and nitrogen gas (flow rate of 20 Sccm, oxygen gas: nitrogen gas (molecular ratio) = 92: 8) as a raw material gas are introduced into the film formation chamber, and the composition after the gas introduction is completed. The pressure (P 2 ) in the film chamber was 0.5 Pa (3.5 × 10 −3 Torr). Thereafter, a power of 1.9 kW is applied to the cathode, and a polyethylene naphthalate film having a smoothing layer is transported at a transport speed of 0.5 m / min so that the smoothing layer becomes a sputtering surface, thereby having a smoothing layer. By passing the polyethylene naphthalate film six times through the film forming chamber, a gas barrier layer (thickness: 500 nm) made of ZnSn 3.3 O 0.67 N 0.5 was entirely formed on one surface of the smoothing layer. As a result, a gas barrier film in which a polyethylene naphthalate film, a smoothing layer, and a gas barrier layer were laminated and integrated in this order was obtained.
 (実施例3)
 1.平滑化層の作製
 実施例1と同様にして、ポリエチレンナフタレートフィルム(厚さ75μm、全光線透過率88%)の一面全面に積層一体化されてなる平滑化層(厚み3μm、最大高さRy0.9nm、表面粗さRa0.5nm)を作製した。
Example 3
1. Preparation of smoothing layer In the same manner as in Example 1, a smoothing layer (thickness 3 μm, maximum height R) formed by laminating and integrating the entire surface of a polyethylene naphthalate film (thickness 75 μm, total light transmittance 88%). y 0.9 nm, surface roughness R a 0.5 nm).
 2.ガスバリア層の作製
 DCマグネトロンスパッタリング装置の成膜室内に設置されているカソードに、ターゲットとして20重量%の亜鉛と80重量%の錫との合金(亜鉛原子:錫原子(原子比)=9:20)を装着し、成膜室内を減圧して、減圧後の成膜室内の圧力(P1)を1.1×10-2Pa(1.0×10-4Torr)以下にした後、アルゴンガス(流量100Sccm)と、原料ガスとして酸素ガス及び窒素ガスの混合ガス(流量20Sccm、酸素ガス:窒素ガス(分子比)=78:22)とを成膜室内に導入し、ガス導入後の成膜室内の圧力(P2)を0.5Pa(3.5×10-3Torr)とした。その後、1.9kWの電力をカソードに印加し、0.5m/分の搬送速度で平滑化層を有するポリエチレンナフタレートフィルムを平滑化層がスパッタリング面となるように搬送させ、平滑化層を有するポリエチレンナフタレートフィルムを成膜室内に6回通過させることにより、平滑化層の一面に全面的にZnSn2.20.550.18からなるガスバリア層(厚み480nm)を作製した。これにより、ポリエチレンナフタレートフィルム、平滑化層、及びガスバリア層がこの順で積層一体化されてなるガスバリア性フィルムを得た。
2. Production of gas barrier layer An alloy of 20 wt% zinc and 80 wt% tin as a target (zinc atom: tin atom (atomic ratio)) = 9:20 on a cathode installed in a film forming chamber of a DC magnetron sputtering apparatus. ), The pressure in the film formation chamber is reduced, and the pressure (P 1 ) in the film formation chamber after the pressure reduction is reduced to 1.1 × 10 −2 Pa (1.0 × 10 −4 Torr) or less. A gas (flow rate of 100 Sccm) and a mixed gas of oxygen gas and nitrogen gas (flow rate of 20 Sccm, oxygen gas: nitrogen gas (molecular ratio) = 78: 22) as a source gas are introduced into the film formation chamber, and the gas composition after the gas introduction is introduced. The pressure (P 2 ) in the film chamber was 0.5 Pa (3.5 × 10 −3 Torr). Thereafter, a power of 1.9 kW is applied to the cathode, and a polyethylene naphthalate film having a smoothing layer is transported at a transport speed of 0.5 m / min so that the smoothing layer becomes a sputtering surface, thereby having a smoothing layer. A gas barrier layer (thickness: 480 nm) made of ZnSn 2.2 O 0.55 N 0.18 was entirely formed on one surface of the smoothing layer by passing the polyethylene naphthalate film through the film formation chamber six times. As a result, a gas barrier film in which a polyethylene naphthalate film, a smoothing layer, and a gas barrier layer were laminated and integrated in this order was obtained.
 (比較例1~6)
 ガスバリア層の作製において、ターゲットの組成、減圧後の成膜室内の圧力(P1)、成膜室内に導入した原料ガス組成、ガス導入後の成膜室内の圧力(P2)を、それぞれ表2に示した通りに変更した以外は、実施例1と同様にして、ポリエチレンナフタレートフィルム、平滑化層、及びガスバリア層がこの順で積層一体化されてなるガスバリア性フィルムを得た。各比較例において作製したガスバリア層を構成する酸化物又は酸化窒化物の組成は、それぞれ表3に示した。
(Comparative Examples 1 to 6)
In the preparation of the gas barrier layer, the composition of the target, the pressure in the deposition chamber after depressurization (P 1 ), the composition of the raw material gas introduced into the deposition chamber, and the pressure in the deposition chamber after introduction of the gas (P 2 ) are respectively shown. A gas barrier film was obtained in the same manner as in Example 1 except that the polyethylene naphthalate film, the smoothing layer, and the gas barrier layer were laminated and integrated in this order except that the change was made as shown in 2. Table 3 shows the composition of the oxide or oxynitride constituting the gas barrier layer produced in each comparative example.
 (実施例4)
 1.平滑化層の作製
 ポリエチレンナフタレートフィルム(厚さ75μm、全光線透過率88%)の一面に、3-メタクリロキシプロピルトリメトキシシラン100重量部、テトラエトキシシラン10重量部、トリプロピレングリコールジアクリレート120重量部、水10重量部、及びアルミナ粒子(Al23、平均粒子径10nm)100重量部を含む平滑化層形成用組成物を、グラビアコーターにより塗布した後、塗布した平滑化層形成用組成物に電子線照射装置(ESI社製 製品名EC300/165/800)を用いて、加速電圧20kV、照射線量175kGyの条件で電子線を照射することによって3-メタクリロキシプロピルトリメトキシシランが有している3-メタクリロキシプロピル基と及びトリプロピレングリコールジアクリレートが有しているアクリロイル基とのラジカル重合を行ってラジカル重合体を形成した後、電子線照射を行った平滑化層形成用組成物を一面全面に有するポリエチレンナフタレートフィルムを120℃、相対湿度50%の環境下に1時間放置することによって、ラジカル重合体における3-メタクリロキシプロピルトリメトキシシランに由来するメトキシ基とテトラエトキシシランのエトキシ基との加水分解及び脱水縮合反応、及び、テトラエトキシシランのエトキシ基同士の加水分解及び脱水縮合反応を行うことにより上記ラジカル重合体の主鎖間を架橋するテトラエトキシシランの脱水縮合物を形成し、ポリエチレンナフタレートフィルムの一面に全面的に積層一体化されてなる平滑化層(厚み1μm、最大高さRy10nm、表面粗さRa3nm)を得た。
Example 4
1. Preparation of smoothing layer On one surface of a polyethylene naphthalate film (thickness 75 μm, total light transmittance 88%), 100 parts by weight of 3-methacryloxypropyltrimethoxysilane, 10 parts by weight of tetraethoxysilane, and tripropylene glycol diacrylate 120 For smoothing layer formation, a smoothing layer forming composition containing 10 parts by weight of water, 10 parts by weight of water, and 100 parts by weight of alumina particles (Al 2 O 3 , average particle diameter 10 nm) was applied by a gravure coater. By using an electron beam irradiation apparatus (product name EC300 / 165/800 manufactured by ESI) to irradiate the composition with an electron beam under the conditions of an acceleration voltage of 20 kV and an irradiation dose of 175 kGy, 3-methacryloxypropyltrimethoxysilane is present. 3-methacryloxypropyl groups and tripropylene glycol dia After forming a radical polymer by performing radical polymerization with acryloyl groups possessed by acrylate, a polyethylene naphthalate film having a smoothing layer-forming composition that has been irradiated with an electron beam over the entire surface is 120 ° C., relative By leaving it in an environment of 50% humidity for 1 hour, hydrolysis and dehydration condensation reaction of methoxy group derived from 3-methacryloxypropyltrimethoxysilane and ethoxy group of tetraethoxysilane in the radical polymer, and tetra A dehydration condensation product of tetraethoxysilane that crosslinks between the main chains of the radical polymer is formed by performing hydrolysis and dehydration condensation reaction between ethoxy groups of ethoxysilane, and is laminated on one surface of a polyethylene naphthalate film. integrated smoothing layer formed (thickness 1 [mu] m, maximum height R y 10 nm, Table Roughness was obtained R a 3 nm).
 2.ガスバリア層の作製
 DCマグネトロンスパッタリング装置の成膜室内に設置されているカソードに、ターゲットとして8重量%の亜鉛と92重量%の錫との合金(亜鉛原子:錫原子(原子比)=2:13)を装着し、成膜室内を減圧して、減圧後の成膜室内の圧力(P1)を1.4×10-2Pa(1.1×10-4Torr)以下にした後、アルゴンガス(流量100Sccm)と、原料ガスとして酸素ガス及び窒素ガスの混合ガス(流量20Sccm、酸素ガス:窒素ガス(分子比)=95:5)とを成膜室内に導入し、ガス導入後の成膜室内の圧力(P2)を0.5Pa(3.5×10-3Torr)とした。その後、1.9kWの電力をカソードに印加し、0.5m/分の搬送速度で平滑化層を有するポリエチレンナフタレートフィルムを平滑化層がスパッタリング面となるように搬送させ、平滑化層を有するポリエチレンナフタレートフィルムを成膜室内に6回通過させることにより、平滑化層の一面に全面的にZnSn6.5100.6からなるガスバリア層(厚み500nm)を作製した。これにより、ポリエチレンナフタレートフィルム、平滑化層、及びガスバリア層がこの順で積層一体化されてなるガスバリア性フィルムを得た。
2. Preparation of Gas Barrier Layer An alloy of 8% by weight zinc and 92% by weight tin as a target (zinc atom: tin atom (atomic ratio) = 2: 13) is placed on the cathode installed in the film forming chamber of the DC magnetron sputtering apparatus. ), The pressure in the film formation chamber is reduced, and the pressure (P 1 ) in the film formation chamber after the pressure reduction is reduced to 1.4 × 10 −2 Pa (1.1 × 10 −4 Torr) or less. A gas (flow rate of 100 Sccm) and a mixed gas of oxygen gas and nitrogen gas (flow rate of 20 Sccm, oxygen gas: nitrogen gas (molecular ratio) = 95: 5) as a raw material gas are introduced into the film formation chamber, and the gas composition after the gas introduction is introduced. The pressure (P 2 ) in the film chamber was 0.5 Pa (3.5 × 10 −3 Torr). Thereafter, a power of 1.9 kW is applied to the cathode, and a polyethylene naphthalate film having a smoothing layer is transported at a transport speed of 0.5 m / min so that the smoothing layer becomes a sputtering surface, thereby having a smoothing layer. By passing the polyethylene naphthalate film six times through the film forming chamber, a gas barrier layer (thickness: 500 nm) made of ZnSn 6.5 O 10 N 0.6 was formed on the entire surface of the smoothing layer. As a result, a gas barrier film in which a polyethylene naphthalate film, a smoothing layer, and a gas barrier layer were laminated and integrated in this order was obtained.
 (実施例5)
 ポリエチレンナフタレートフィルムの一面に、平滑化層を形成せずに、ガスバリア層を作製した以外は、実施例4と同様にして、ポリエチレンナフタレートフィルム、及びガスバリア層がこの順で積層一体化されてなるガスバリア性フィルムを得た。
(Example 5)
A polyethylene naphthalate film and a gas barrier layer were laminated and integrated in this order in the same manner as in Example 4 except that a gas barrier layer was formed on one surface of the polyethylene naphthalate film without forming a smoothing layer. A gas barrier film was obtained.
 (実施例6~11及び比較例7~12)
 ガスバリア層の作製において、ターゲットの組成、減圧後の成膜室内の圧力(P1)、成膜室内に導入した原料ガス組成、ガス導入後の成膜室内の圧力(P2)を、それぞれ表1及び2に示した通りに変更した以外は、実施例4と同様にして、ポリエチレンナフタレートフィルム、平滑化層、及びガスバリア層がこの順で積層一体化されてなるガスバリア性フィルムを得た。各実施例及び比較例において作製したガスバリア層を構成する酸化窒化物の組成は、それぞれ表3に示した。
(Examples 6 to 11 and Comparative Examples 7 to 12)
In the preparation of the gas barrier layer, the composition of the target, the pressure in the deposition chamber after depressurization (P 1 ), the composition of the raw material gas introduced into the deposition chamber, and the pressure in the deposition chamber after introduction of the gas (P 2 ) are respectively shown. A gas barrier film in which a polyethylene naphthalate film, a smoothing layer, and a gas barrier layer were laminated and integrated in this order was obtained in the same manner as in Example 4 except that changes were made as shown in 1 and 2. Table 3 shows the composition of the oxynitride constituting the gas barrier layer produced in each example and comparative example.
 (実施例12)
 平滑化層の作製において、3-メタクリロキシプロピルトリメトキシシラン100重量部、テトラエトキシシラン64重量部、トリプロピレングリコールジアクリレート100重量部、水27重量部、エタノール20重量部、及びアルミナ粒子(Al23、平均粒子径30nm)100重量部を含む平滑化層形成用組成物を用いて、ポリエチレンナフタレートフィルムの一面に全面的に積層一体化されてなる平滑化層(厚み1μm、最大高さRy86nm、表面粗さRa8nm)を得た以外は、実施例2と同様にして、ポリエチレンナフタレートフィルム、平滑化層、及びガスバリア層がこの順で積層一体化されてなるガスバリア性フィルムを得た。ガスバリア層を構成する酸化窒化物の組成は、それぞれ表3に示した。
Example 12
In the preparation of the smoothing layer, 3-methacryloxypropyltrimethoxysilane 100 parts by weight, tetraethoxysilane 64 parts by weight, tripropylene glycol diacrylate 100 parts by weight, water 27 parts by weight, ethanol 20 parts by weight, and alumina particles (Al Using a composition for forming a smoothing layer containing 100 parts by weight of 2 O 3 and an average particle diameter of 30 nm, a smoothing layer (thickness: 1 μm, maximum height) that is laminated and integrated on one surface of a polyethylene naphthalate film. Gas barrier properties obtained by laminating and integrating a polyethylene naphthalate film, a smoothing layer, and a gas barrier layer in this order in the same manner as in Example 2 except that the roughness R y 86 nm and the surface roughness R a 8 nm were obtained. A film was obtained. Table 3 shows the composition of oxynitride constituting the gas barrier layer.
 (実施例13)
 ガスバリア層の作製において、ターゲットの組成、減圧後の成膜室内の圧力(P1)、成膜室内に導入した原料ガス組成、ガス導入後の成膜室内の圧力(P2)、及び平滑化層を有するポリエチレンナフタレートフィルムを成膜室内に通過させる際の平滑化層を有するポリエチレンナフタレートフィルムの搬送速度を、それぞれ表1に示した通りに変更し、平滑化層を有するポリエチレンナフタレートフィルムを成膜室内に1回通過させた以外は、実施例2と同様にして、ポリエチレンナフタレートフィルム、平滑化層、及びガスバリア層がこの順で積層一体化されてなるガスバリア性フィルムを得た。ガスバリア層を構成する酸化窒化物の組成は表3に示した。
(Example 13)
In the production of the gas barrier layer, the composition of the target, the pressure in the deposition chamber after decompression (P 1 ), the composition of the raw material gas introduced into the deposition chamber, the pressure in the deposition chamber after introducing the gas (P 2 ), and smoothing The polyethylene naphthalate film having a smoothing layer was changed as shown in Table 1 for the transport speed of the polyethylene naphthalate film having a smoothing layer when the polyethylene naphthalate film having a layer was passed through the film forming chamber. A gas barrier film was obtained in the same manner as in Example 2 except that the polyethylene naphthalate film, the smoothing layer, and the gas barrier layer were laminated and integrated in this order, except that was passed through the film formation chamber once. The composition of the oxynitride constituting the gas barrier layer is shown in Table 3.
 (実施例14~17)
 ガスバリア層の作製において、ターゲットの組成、減圧後の成膜室内の圧力(P1)、成膜室内に導入した原料ガス組成、ガス導入後の成膜室内の圧力(P2)、及び平滑化層を有するポリエチレンナフタレートフィルムを成膜室内に通過させる際の平滑化層を有するポリエチレンナフタレートフィルムの搬送速度を、それぞれ表1に示した通りに変更した以外は、実施例2と同様にして、ポリエチレンナフタレートフィルム、平滑化層、及びガスバリア層がこの順で積層一体化されてなるガスバリア性フィルムを得た。各実施例で作製したガスバリア層を構成する酸化窒化物の組成は、それぞれ表3に示した。
(Examples 14 to 17)
In the production of the gas barrier layer, the composition of the target, the pressure in the deposition chamber after decompression (P 1 ), the composition of the raw material gas introduced into the deposition chamber, the pressure in the deposition chamber after introducing the gas (P 2 ), and smoothing Except having changed the conveyance speed of the polyethylene naphthalate film which has a smoothing layer at the time of letting the polyethylene naphthalate film which has a layer pass into a film-forming room as shown in Table 1, respectively, it carried out similarly to Example 2. Then, a gas barrier film in which a polyethylene naphthalate film, a smoothing layer, and a gas barrier layer were laminated and integrated in this order was obtained. Table 3 shows the composition of the oxynitride constituting the gas barrier layer produced in each example.
 (評価)
 上記で作製したガスバリア性フィルムの水蒸気透過率、可撓性及び透明性をそれぞれ下記手順に従って評価した。結果を表1に示す。
(Evaluation)
The water vapor permeability, flexibility, and transparency of the gas barrier film produced above were evaluated according to the following procedures. The results are shown in Table 1.
 (水蒸気透過率)
 150mmφのABSロッドに、ガスバリア性フィルムをそのガスバリア層が外側になるように巻き付け、巻き付けを完了してから15分後、ガスバリア性フィルムを展開することによりガスバリア性フィルムを開放する要領を1サイクルとした。このサイクルを50回繰り返すことにより可撓性試験を行った。
(Water vapor transmission rate)
A gas barrier film is wound around a 150 mmφ ABS rod so that the gas barrier layer is on the outside, and 15 minutes after the completion of winding, the procedure for opening the gas barrier film by unfolding the gas barrier film is one cycle. did. The flexibility test was performed by repeating this cycle 50 times.
 そして、可撓性試験前及び可撓性試験後のガスバリア性フィルムのそれぞれについて、水蒸気透過率(g/m2・day)を、JIS K7129Bに準拠した方法により、ガス・蒸気透過率測定装置(GTRテック社製 装置名GTR-2100)を用いて、温度40℃、相対湿度90%の条件下で測定した。可撓性試験前のガスバリア性フィルムの水蒸気透過率を表3の「水蒸気透過率(試験前)」の欄に記載し、可撓性試験後のガスバリア性フィルムの水蒸気透過率を表3の「水蒸気透過率(試験後)」の欄に記載した。 Then, for each of the gas barrier films before and after the flexibility test, the water vapor transmission rate (g / m 2 · day) is determined by a method in accordance with JIS K7129B. Measurement was performed under the conditions of a temperature of 40 ° C. and a relative humidity of 90% using a GTR Tech apparatus name GTR-2100). The water vapor transmission rate of the gas barrier film before the flexibility test is described in the column of “Water vapor transmission rate (before test)” in Table 3, and the water vapor transmission rate of the gas barrier film after the flexibility test is shown in “3. It was described in the column of “Water vapor transmission rate (after test)”.
 (可撓性)
 150mmφのABSロッドに、ガスバリア性フィルムをそのガスバリア層が外側になるように巻き付け、巻き付けを完了してから15分後、ガスバリア性フィルムを展開することによりガスバリア性フィルムを開放する要領を1サイクルとした。このサイクルを50回繰り返した。その後、JIS K5400に準拠して碁盤目試験を行った。この碁盤目試験は、次の通りに行った。先ず、片刃のカミソリを用いて、ガスバリア層表面に、1mm間隔で縦横に11本ずつの切り込みを入れ、1mm角の枡目を100個作成した。なお、縦方向の切り込みと、横方向の切り込みとは90°の角度をなして交差していた。次に、100個の枡目の上に市販の粘着テープを貼り付け、粘着テープの先端部を手でもってガスバリア層の表面に対して垂直方向に粘着テープを剥がした。そして、この粘着テープの剥離に伴って平滑化層から剥がれた枡目の個数を測定し、下記の基準に従って可撓性の評価を行った。「枡目が平滑化層から剥がれた」とは、それぞれの枡目について、枡目のうちの50%以上の面積が平滑化層から分離された状態をいう。
  A:全く剥離が認められない
  B:剥がれた枡目の個数が1個以上5個未満であった。
  C:剥がれた枡目の個数が5個以上10個未満であった。
  D:剥がれた枡目の個数が10個以上であった。
(Flexibility)
A gas barrier film is wound around a 150 mmφ ABS rod so that the gas barrier layer is on the outside, and 15 minutes after the completion of winding, the procedure for opening the gas barrier film by unfolding the gas barrier film is one cycle. did. This cycle was repeated 50 times. Thereafter, a cross-cut test was performed in accordance with JIS K5400. This cross cut test was performed as follows. First, using a single-edged razor, eleven notches were cut vertically and horizontally at intervals of 1 mm on the surface of the gas barrier layer to make 100 1 mm square cells. The vertical cut and the horizontal cut intersected at an angle of 90 °. Next, a commercially available adhesive tape was affixed on 100 squares, and the adhesive tape was peeled off in a direction perpendicular to the surface of the gas barrier layer with the tip of the adhesive tape by hand. And the number of the meshes which peeled from the smoothing layer with peeling of this adhesive tape was measured, and the flexible evaluation was performed according to the following reference | standard. “A grid is peeled from the smoothing layer” means a state in which an area of 50% or more of each grid is separated from the smoothing layer.
A: No peeling was observed. B: The number of peeled squares was 1 or more and less than 5.
C: The number of squares peeled off was 5 or more and less than 10.
D: The number of squares peeled off was 10 or more.
 (透明性)
 ガスバリア性フィルムの厚み方向の全光線透過率を、JIS K7105に準拠した方法により、ヘーズ測定器(日本電色工業株式会社製 懸濁計 NDH2000)を用いて測定し、これによりガスバリア性フィルムの透明性を評価した。
(transparency)
The total light transmittance in the thickness direction of the gas barrier film is measured using a haze meter (Nippon Denshoku Co., Ltd. Suspension Meter NDH2000) according to a method in accordance with JIS K7105. Sex was evaluated.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明のガスバリア性フィルムはガスバリア性及び可撓性に優れる。したがって、このようなガスバリア性フィルムによれば、撓ませたり丸めたりすることが可能であり、曲面に沿った状態に設置することが可能な太陽電池モジュール、液晶表示パネル、有機EL表示パネルなどを提供することができる。 The gas barrier film of the present invention is excellent in gas barrier properties and flexibility. Therefore, according to such a gas barrier film, a solar cell module, a liquid crystal display panel, an organic EL display panel, etc. that can be bent or rolled and can be installed along a curved surface are provided. Can be provided.
  10 ガスバリア性フィルム
  11 透明フィルム
  12 ガスバリア層
  13 平滑化層
  20、70  発電素子
  30、30’、80 封止材
  40、60  透明保護部材
  50、90  裏面側保護シート
  A 太陽電池モジュール
  B 薄膜太陽電池
DESCRIPTION OF SYMBOLS 10 Gas barrier film 11 Transparent film 12 Gas barrier layer 13 Smoothing layer 20, 70 Electric power generation element 30, 30 ', 80 Sealing material 40, 60 Transparent protective member 50, 90 Back surface side protection sheet A Solar cell module B Thin film solar cell

Claims (5)

  1.  透明フィルムと、
     上記透明フィルムの一面に積層一体化されており、且つ一般式(1):ZnSnabc(式中、aは2.1~15であり、bは0.5~22であり、cは0.05~1.1である)で示される酸化窒化物を含むガスバリア層と、
    を含んでいることを特徴とするガスバリア性フィルム。
    A transparent film,
    And is laminated and integrated on one surface of the transparent film, and has the general formula (1): ZnSn a O b N c (wherein a is 2.1 to 15, b is 0.5 to 22, c is from 0.05 to 1.1), and a gas barrier layer containing an oxynitride,
    A gas barrier film comprising:
  2.  ガスバリア層が、透明フィルムの一面に、ラジカル重合性基を有するアルコキシシラン(A)、及びラジカル重合性基を有しないアルコキシシラン(B)を含む組成物の反応生成物を含む平滑化層を介して積層一体化されていることを特徴とする請求項1に記載のガスバリア性フィルム。 The gas barrier layer has a smoothing layer containing a reaction product of a composition containing an alkoxysilane (A) having a radical polymerizable group and an alkoxysilane (B) having no radical polymerizable group on one surface of the transparent film. The gas barrier film according to claim 1, wherein the gas barrier film is laminated and integrated.
  3.  アルコキシシラン(A)が下記一般式(I)で示されるアルコキシシランであり、且つアルコキシシラン(B)が下記一般式(II)で示されるアルコキシシランであることを特徴とする請求項2に記載のガスバリア性フィルム。
    Figure JPOXMLDOC01-appb-C000001

    (式中、R1は炭素数4~9の(メタ)アクリロキシアルキル基、又はビニル基を表し、R2はアルコキシ基で置換されていてもよい炭素数1~8のアルキル基を表し、R3は炭素数1~4のアルキル基を表し、且つnは0又は1である。)
    Figure JPOXMLDOC01-appb-C000002

    (式中、R及びRはそれぞれ炭素数1~8のアルキル基を表し、mは0~2の整数である。)
    The alkoxysilane (A) is an alkoxysilane represented by the following general formula (I), and the alkoxysilane (B) is an alkoxysilane represented by the following general formula (II). Gas barrier film.
    Figure JPOXMLDOC01-appb-C000001

    (Wherein R 1 represents a (meth) acryloxyalkyl group having 4 to 9 carbon atoms or a vinyl group, R 2 represents an alkyl group having 1 to 8 carbon atoms which may be substituted with an alkoxy group, R 3 represents an alkyl group having 1 to 4 carbon atoms, and n is 0 or 1.)
    Figure JPOXMLDOC01-appb-C000002

    (Wherein R 4 and R 5 each represents an alkyl group having 1 to 8 carbon atoms, and m is an integer of 0 to 2)
  4.  透明フィルムの一面に、物理気相成長法によって、一般式(1):ZnSnabc(式中、aは2.1~15であり、bは0.5~22であり、cは0.05~1.1である)で示される酸化窒化物を含むガスバリア層を形成する工程を有することを特徴とするガスバリア性フィルムの製造方法。 On one surface of the transparent film, the general formula (1): ZnSn a O b N c (wherein a is 2.1 to 15, b is 0.5 to 22, A gas barrier layer containing a oxynitride represented by the formula (1) is from 0.05 to 1.1).
  5.  物理気相成長法が、スパッタリング法であることを特徴とする請求項4に記載のガスバリア性フィルムの製造方法。 The method for producing a gas barrier film according to claim 4, wherein the physical vapor deposition method is a sputtering method.
PCT/JP2013/075319 2013-09-19 2013-09-19 Gas-barrier film and process for producing same WO2015040717A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/075319 WO2015040717A1 (en) 2013-09-19 2013-09-19 Gas-barrier film and process for producing same
JP2013543080A JP5663100B1 (en) 2013-09-19 2013-09-19 Gas barrier film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075319 WO2015040717A1 (en) 2013-09-19 2013-09-19 Gas-barrier film and process for producing same

Publications (1)

Publication Number Publication Date
WO2015040717A1 true WO2015040717A1 (en) 2015-03-26

Family

ID=52569384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075319 WO2015040717A1 (en) 2013-09-19 2013-09-19 Gas-barrier film and process for producing same

Country Status (2)

Country Link
JP (1) JP5663100B1 (en)
WO (1) WO2015040717A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164387A1 (en) * 2016-03-25 2017-09-28 リンテック株式会社 Gas barrier film and method for producing gas barrier film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123068A (en) * 2020-02-07 2021-08-30 尾池工業株式会社 Gas barrier film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121202A (en) * 2010-12-07 2012-06-28 Sekisui Chem Co Ltd Gas barrier film
JP2013047361A (en) * 2011-08-29 2013-03-07 Mitsubishi Materials Corp Sputtering target, method for production thereof, thin film using the target, and thin film sheet and laminated sheet provided with the thin film
JP2013067015A (en) * 2011-09-20 2013-04-18 Sekisui Chem Co Ltd Gas barrier film and method for producing the same
JP2013224005A (en) * 2012-03-19 2013-10-31 Sekisui Chem Co Ltd Gas barrier film and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063750A (en) * 1998-08-20 2000-02-29 Jsr Corp Coating composition and coating film
JP5520528B2 (en) * 2008-07-10 2014-06-11 東レ・ダウコーニング株式会社 Gas-barrier cured organopolysiloxane resin film and method for producing the same
JP5739684B2 (en) * 2011-02-07 2015-06-24 積水化学工業株式会社 Gas barrier film and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121202A (en) * 2010-12-07 2012-06-28 Sekisui Chem Co Ltd Gas barrier film
JP2013047361A (en) * 2011-08-29 2013-03-07 Mitsubishi Materials Corp Sputtering target, method for production thereof, thin film using the target, and thin film sheet and laminated sheet provided with the thin film
JP2013067015A (en) * 2011-09-20 2013-04-18 Sekisui Chem Co Ltd Gas barrier film and method for producing the same
JP2013224005A (en) * 2012-03-19 2013-10-31 Sekisui Chem Co Ltd Gas barrier film and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164387A1 (en) * 2016-03-25 2017-09-28 リンテック株式会社 Gas barrier film and method for producing gas barrier film
JPWO2017164387A1 (en) * 2016-03-25 2019-01-31 リンテック株式会社 Gas barrier film and method for producing gas barrier film
TWI699289B (en) * 2016-03-25 2020-07-21 日商琳得科股份有限公司 Gas barrier film and manufacturing method of gas barrier film

Also Published As

Publication number Publication date
JPWO2015040717A1 (en) 2017-03-02
JP5663100B1 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5890592B2 (en) Barrier film, method for producing barrier film, and article including barrier film
EP2298551B1 (en) Gas barrier film and device
JP6274213B2 (en) Gas barrier film
WO2014119750A1 (en) Gas barrier film
US20160108282A1 (en) Gas barrier film and method for producing the same
JP2011051195A (en) Composite film
CN108156813B (en) Multilayer barrier coatings
JP2011143550A (en) Gas-barrier film
JP2015531704A (en) Barrier assembly manufacturing method
JP5695505B2 (en) Gas barrier film and method for producing the same
JP2014205855A (en) Composition for forming gas barrier resin layer, gas barrier film formed by using the same and method for producing the same
JP5663100B1 (en) Gas barrier film and method for producing the same
JP7061284B2 (en) Barrier film
JP5119312B2 (en) Gas barrier film
JP2013224005A (en) Gas barrier film and method of manufacturing the same
WO2014119754A1 (en) Gas barrier film, method for producing same, and electronic device using same
JP5739684B2 (en) Gas barrier film and method for producing the same
TWI748269B (en) Barrier film, and electrical or electronic element comprising the same
JP5093391B2 (en) Method for producing gas barrier film
WO2015133620A1 (en) Gas barrier film
JP2013067015A (en) Gas barrier film and method for producing the same
JP7017041B2 (en) Laminate
JP2018052040A (en) Laminate
EP3337658A1 (en) Composite article including a multilayer barrier assembly and methods of making the same
EP3872225A1 (en) Barrier film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013543080

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893818

Country of ref document: EP

Kind code of ref document: A1