WO2015040659A1 - Radio communication method, radio communication system, radio base station and radio terminal - Google Patents

Radio communication method, radio communication system, radio base station and radio terminal Download PDF

Info

Publication number
WO2015040659A1
WO2015040659A1 PCT/JP2013/005599 JP2013005599W WO2015040659A1 WO 2015040659 A1 WO2015040659 A1 WO 2015040659A1 JP 2013005599 W JP2013005599 W JP 2013005599W WO 2015040659 A1 WO2015040659 A1 WO 2015040659A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
radio
transmission
downlink
wireless
Prior art date
Application number
PCT/JP2013/005599
Other languages
French (fr)
Japanese (ja)
Inventor
耕太郎 椎▲崎▼
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2013/005599 priority Critical patent/WO2015040659A1/en
Publication of WO2015040659A1 publication Critical patent/WO2015040659A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to a radio communication method, a radio communication system, a radio base station, and a radio terminal.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-A
  • LTE-A LTE-A
  • CoMP Coordinatd Multiple Point
  • CoMP is a general term for technologies that coordinate transmission / reception with respect to wireless terminals between different wireless base stations.
  • transmission methods categories
  • Increasing the capacity of wireless communications has become an issue due to the widespread use of smartphones, and the importance of CoMP is expected to increase in the future.
  • the backhaul refers to a wired or wireless network that connects between wireless base stations or connects a wireless base station to a core network.
  • the non-ideal backhaul refers to a non-ideal backhaul, and specifically means a backhaul with a relatively large delay.
  • a backhaul with a relatively small delay is called an ideal backhaul.
  • an ideal backhaul was assumed, but it is assumed that high-speed backhaul laying using optical fibers is difficult. It is expected that the examination will be activated.
  • the disclosed technology has been made in view of the above, and provides a wireless communication method, a wireless communication system, a wireless base station, and a wireless terminal that can eliminate inconveniences that occur in CoMP based on non-ideal backhaul. Objective.
  • the disclosed wireless communication method is such that the first wireless base station and the second wireless base station cooperate with the first wireless terminal among the one or more wireless terminals.
  • a radio communication method for performing coordinated transmission for transmitting radio signals wherein the first radio base station transmits downlink scheduling information for performing the coordinated transmission to one of the one or more radio terminals.
  • the second radio terminal Transmitting to the radio terminal, transmits the downlink scheduling information to the second radio base station.
  • the wireless communication system, the wireless base station, and the wireless terminal disclosed in this case there is an effect that it is possible to eliminate inconveniences that occur in CoMP based on a non-ideal backhaul.
  • FIG. 1A to 1C are diagrams for explaining the concept of each CoMP method.
  • FIG. 2 is a diagram for explaining DPS, which is one method of CoMP.
  • FIG. 3 is a diagram for explaining the location of a problem in the present application.
  • FIG. 4 is a diagram for explaining the location of a problem in the present application.
  • FIG. 5 is a diagram showing an example of a processing sequence in the first embodiment of the present application.
  • FIG. 6 is a diagram showing an example of a processing sequence in the first embodiment of the present application.
  • FIG. 7 is a diagram illustrating an example of a processing sequence in the second embodiment of the present application.
  • FIG. 8 is a diagram illustrating an example of a network configuration of the wireless communication system according to each embodiment.
  • FIG. 1A to 1C are diagrams for explaining the concept of each CoMP method.
  • FIG. 2 is a diagram for explaining DPS, which is one method of CoMP.
  • FIG. 3 is a diagram for explaining the location of a problem
  • FIG. 9 is an example of a functional configuration diagram of a radio base station in the radio communication system of each embodiment.
  • FIG. 10 is an example of a functional configuration diagram of a wireless terminal in the wireless communication system of each embodiment.
  • FIG. 11 is an example of a hardware configuration diagram of a radio base station in the radio communication system of each embodiment.
  • FIG. 12 is an example of a hardware configuration diagram of a wireless terminal in the wireless communication system of each embodiment.
  • TP Transmission Point
  • TP is a concept that substantially corresponds to a radio base station. Therefore, in the present application, unless otherwise noted, the radio base station may be appropriately read as TP.
  • JT joint transmission
  • DPS dynamic point selection
  • SSPS semi-static point selection
  • CS coordinated scheduling
  • CB coordinated beamforming
  • FIG. 1A is a diagram illustrating the concept of JT, which is one of CoMP.
  • JT is a method in which a plurality of radio base stations 10a and 10b simultaneously transmit (joint transmission) the same data addressed to a certain radio terminal 20, and improve the reception quality and throughput addressed to the radio terminal 20.
  • FIG. 1B is a diagram showing the concept of DPS and SSPS, which are one of CoMP.
  • DPS the same data addressed to the radio terminal 20 is simultaneously present in a plurality of radio base stations 10a and 10b. However, data transmission addressed to the radio terminal 20 is performed from a single radio base station 10a and other base stations 10b. Is blanking, i.e. not transmitting. This enables instantaneous dynamic cell (base station) selection that follows fading fluctuations rather than normal cell (base station) selection in an LTE system based on time-averaged channel conditions.
  • SSPS is similar in concept to DPS, but cell switching is more gradual than PDS which switches cells every subframe.
  • FIG. 1C is a diagram showing the concept of CS and CB, which are one of CoMP.
  • CS and CB are transmitted from a single radio base station 10a or 10b to a radio terminal 20a or 20b in a certain subframe, and other radio base stations 10b or 10a reduce interference given to the transmission. It behaves like Here, in CS, other radio base stations perform muting to reduce interference with transmission by radio base station 10a or 10b. In CB, other radio base stations 10b or 10a perform beamforming. To reduce interference with transmission by the radio base station 10a or 10b.
  • FIG. 2 exemplifies a processing sequence in the case of executing DPS, which is one of the CoMP schemes, by the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c, which are three base stations. Yes.
  • DPS which is one of the CoMP schemes
  • the serving base station 10a the serving base station 10a
  • the first cooperative base station 10b the first cooperative base station 10b
  • the second cooperative base station 10c which are three base stations. Yes.
  • other CoMP schemes can be implemented by a similar processing sequence.
  • downlink data for example, download file
  • the serving base station 10a needs to perform scheduling for transmitting downlink data to the radio terminal 20.
  • scheduling the presence / absence of application of DPS, the transmission base station in DPS, transmission parameters for performing DPS, and the like are determined.
  • the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c each transmit a downlink reference signal in S102a to S102c of FIG.
  • the radio terminal 20 measures the quality of the downlink with each base station based on these reference signals. Thereafter, in S103, the radio terminal 20 feeds back a CQI (Channel Quality Indicator) indicating the downlink quality measured for each base station to the serving base station 10a.
  • CQI Channel Quality Indicator
  • the serving base station 10a performs the above-described scheduling based on the received CQI.
  • the serving base station 10a can determine the base station with the best downlink radio quality indicated by CQI as the DPS transmission base station.
  • the serving base station 10a has decided to transmit downlink data by DPS using the first coordinated base station 10b as a transmission base station.
  • the serving base station 10a also uses the modulation coding scheme (MCS: Modulation and Coding Scheme) and the resource block (sub-scheme) used for transmission of downlink data from the first cooperative base station 10b to the radio terminal 20 based on CQI.
  • MCS Modulation and Coding Scheme
  • Transmission parameters such as (carrier) can also be determined.
  • the transmission base station determined in S104 and these transmission parameters are collectively referred to as downlink scheduling information here.
  • the serving base station 10a transmits downlink data and downlink scheduling information to the first cooperative base station 10b via the backhaul based on the scheduling result in S104.
  • the serving base station 10a transmits downlink scheduling information to the second coordinated base station 10c via the backhaul based on the scheduling result in S104.
  • downlink data is transmitted to the first coordinated base station 10b which is a transmission base station, but is not transmitted to the second coordinated base station 10c which is not a transmission base station.
  • Figure 2 assumes an ideal backhaul. Therefore, the delay in signal transmission / reception via the backhaul in S105 and S106 is minimal.
  • the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c cooperate in downlink by DPS using the first cooperative base station 10b as a transmission base station.
  • Data is transmitted to the wireless terminal 20.
  • the first cooperative base station 10b which is a transmission base station in S107b, transmits downlink data to the radio terminal 20 based on the downlink scheduling information received in S105.
  • the serving base station 10a performs blanking (no transmission) to the radio terminal 20 based on its scheduling result in S104.
  • the second coordinated base station 10c performs blanking for the radio terminal 20 based on the downlink scheduling information received in S106.
  • DPS which is one of the CoMP schemes, can be executed appropriately in response to downlink radio quality.
  • FIG. 3 illustrates a processing sequence in the case of applying DPS, which is one of the CoMP schemes, but other CoMP schemes can be implemented by a similar processing sequence.
  • the transmission base station is determined to be the first coordinated base station 10b, and downlink data transmission parameters (MCS, resource block, etc.) are determined.
  • the serving base station 10a transmits downlink data and downlink scheduling information to the first cooperative base station 10b via the backhaul based on the scheduling result of S204.
  • the serving base station 10a transmits downlink scheduling information to the second coordinated base station 10c via the backhaul based on the scheduling result in S204.
  • FIG. 3 assumes a non-ideal backhaul. Therefore, the signal transmission / reception delay through the backhaul in S205 and S206 is relatively large. This delay is assumed to be several tens of milliseconds, for example. For this reason, as shown in FIG. 3, it is considered that the reception timing of the signals in S205 and S206 is considerably delayed from the transmission timing.
  • downlink quality measurement and CQI transmission by the wireless terminal 20 as described above are periodically performed. This is because scheduling should be performed based on as new radio quality as possible. On the other hand, when scheduling is performed based on the old radio quality, it is considered that the possibility of the scheduling becoming inappropriate increases.
  • the downlink quality measurement and CQI transmission period (referred to as CQI transmission period for convenience) by the radio terminal 20 is selectively selected from seven values of 2, 5, 10, 20, 40, 80, and 160. Can be set.
  • the unit is a subframe (one subframe is one millisecond).
  • the CQI transmission cycle in FIG. 3 is, for example, 20 subframes (20 milliseconds). It is assumed that the delay in transmitting and receiving the signal in S206 is 40 milliseconds.
  • the CQI transmission cycle (20 milliseconds) elapses from the CQI transmission in S203. Therefore, as illustrated in FIG. 3, before the reception of the signal of S206 is completed, the CQI transmission is performed again in S208 after the downlink reference signal is measured again in S207a to S207c.
  • the CQI transmission in S208 corresponds to the CQI transmission in the next cycle in S203. Thereby, at the timing of S209, scheduling can be performed based on the CQI of S208.
  • the downlink quality of the second cooperative base station 10c exceeds that of the first cooperative base station 10b in the CQI of S208. If it is assumed that the downlink data of S201 (note that it has not been transmitted to the radio terminal 20 at this stage) is scheduled based on the CQI of S208 at the timing of S209, the DPS transmission base station performs the first coordination. It will be determined not the base station 10b but the second cooperative base station 10c. Here, for simplicity, it is assumed that the transmission base station is determined based only on the quality of the downlink radio link.
  • the downlink data is not scheduled in S201 at the timing of S209, and in S210a to S210c of FIG. 3, the downlink data is transmitted by DPS using the first coordinated base station 10b as the transmission base station.
  • the scheduling of S204 it is determined that the downlink data transmission base station is the first cooperative base station 10b, and DPS transmission based on the determination is executed regardless of the subsequent change in downlink quality. It is. Therefore, in the determination of the transmission base station for DPS transmission, a situation occurs in which the latest downlink quality at the time of DPS transmission is not reflected.
  • the first cooperative base station 10b is actually transmitted although the second cooperative base station 10c is supposed to be the transmission base station from the viewpoint of communication efficiency. It becomes a base station.
  • Such a situation should be avoided as much as possible because it leads to a decrease in the throughput of the entire wireless communication system. This point is a major problem in FIG. 3, and further study is considered necessary.
  • the description has focused on the fact that the latest downlink quality at the time of DPS transmission is not reflected in the determination of the transmission base station for DPS transmission.
  • this problem is not limited to the determination of the transmission base station, but extends to the entire downlink scheduling in CoMP transmission.
  • the latest downlink quality at the time of DPS transmission is not reflected in the determination of downlink transmission parameters such as MCS used for DPS transmission and resource block allocation. This leads to a decrease in the throughput of the entire wireless communication system, as described with respect to the transmission base station.
  • FIG. 4 shows the processing sequence for such rescheduling.
  • FIG. 4 is largely the same as FIG. 3 except that information for notifying the result of rescheduling is transmitted after the scheduling of S209. Since this information notifies the scheduling result changed by rescheduling, it will be referred to as downlink scheduling change information.
  • downlink scheduling change information By notifying the downlink scheduling change information to the first coordinated base station 10b and the second coordinated base station 10c, these base stations can recognize the rescheduling result, and coordinated transmission such as DPS according to the change in downlink quality ( CoMP transmission) can be realized.
  • the downlink scheduling change information may be transmitted from the serving base station 10a to the first coordinated base station 10b or the second coordinated base station 10c via the backhaul. Seem.
  • FIG. 4 assumes a non-ideal backhaul. Therefore, when downlink scheduling change information is transmitted via the backhaul, a relatively large delay is involved in the transmission / reception.
  • downlink CoMP transmission for example, DPS
  • downlink scheduling information transmitted from the serving base station 10a to the cooperative base station via the backhaul There is a relatively large delay in reception. Therefore, when the serving base station 10a and the coordinated base station perform CoMP transmission based on downlink scheduling information, the latest downlink state is not reflected in the scheduling information, and thus the CoMP transmission is not appropriately performed. There is a problem that the situation can happen. Furthermore, even when trying to send downlink scheduling information reflecting the latest downlink state, the above problem cannot be solved because a relatively large delay is still involved via the backhaul. Such a problem is thought to be avoided as much as possible because it leads to a decrease in the throughput of the entire wireless communication system.
  • DPS downlink CoMP transmission
  • the first embodiment is an example of an embodiment that solves the above-described problem, and when the serving base station 10a changes the scheduling of cooperative transmission, the change is transmitted via the terminal 20 by the radio signal to the cooperative base station 20b. To send to.
  • the first radio base station and the second radio base station cooperate with each other to transmit a radio signal to the first radio terminal 20 among the one or more radio terminals 20.
  • a radio communication method for performing coordinated transmission wherein the first radio base station transmits downlink scheduling information for performing coordinated transmission to a second radio terminal 20 that is one of the one or more radio terminals 20.
  • the second radio terminal 20 is an embodiment related to a radio communication method for transmitting the downlink scheduling information to the second radio base station.
  • FIG. 5 is a diagram illustrating an example of a processing sequence according to the first embodiment.
  • a radio terminal 20 and a serving base station 10a, a first coordinated base station 10b, and a second coordinated base station 10c, which are three radio base stations 10, appear. .
  • the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c may be collectively referred to simply as a radio base station 10. Further, the first cooperative base station 10b and the second cooperative base station 10c may be collectively referred to simply as the cooperative base stations 10b to 10c.
  • the wireless terminal 20 does not need to be communicating with the serving base station 10a, but is assumed to be under the management (under management) of the serving base station 10a. Further, the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c, which are the three radio base stations 10, are in a cooperative relationship for performing cooperative transmission (CoMP transmission). In the LTE system, this cooperative relationship is defined by a set of radio base stations called a CoMP set. The CoMP set is notified in advance from the serving base station 10a to the radio terminal 20, so that the radio terminal 20 can communicate with the radio base stations 10 other than the serving base station 10a belonging to the CoMP set (the first coordinated base station 10b in FIG. 2 cooperative base stations 10c).
  • the above-described non-ideal backhaul is assumed. Therefore, it should be noted that a relatively large delay of, for example, several tens of milliseconds occurs in communication via the backhaul among the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c.
  • FIG. 5 shows an example of applying DPS, which is one of the CoMP methods, but it should be noted that this is only an example. The present invention is applicable regardless of the CoMP method.
  • downlink data is generated in the serving base station 10a.
  • Downlink data is data addressed to the radio terminal 20, and includes high-layer control signals (RRC signals and the like) in addition to user data (application data).
  • RRC signals and the like high-layer control signals
  • downlink data (user data) is generated in the wireless base station 10 located between the server and the wireless terminal 20.
  • the radio base station 10 transmits an RRC control signal to the radio terminal 20, downlink data is generated in the base station.
  • the downlink data generated in the radio base station 10 includes not only data generated from the radio base station 10 but also data generated by other devices and relayed by the radio base station 10. Please note.
  • the serving base station 10a transmits a downlink reference signal.
  • some downlink reference signals are defined.
  • a cell-specific reference signal Cell-specific reference signal
  • CSI Channel State information reference signal
  • the first coordinated base station 10b also transmits a downlink reference signal
  • the second coordinated base station 10c also transmits a downlink reference signal. These can be performed similarly to S302a. Note that S302a to S302c may be transmitted in the same subframe or in different subframes.
  • the wireless terminal 20 receives a downlink reference signal from the serving base station 10a.
  • the radio terminal 20 also receives a downlink reference signal from the first coordinated base station 10b, and in S302c, the radio terminal 20 also receives a downlink reference signal from the second coordinated base station 10c.
  • the radio terminal 20 measures the radio quality (downlink radio quality) from each radio base station 10 to the radio terminal 20 based on each received downlink reference signal.
  • the radio quality for example, a signal-to-noise power ratio (SNR: “Signal-to-Noise-power” Ratio), a signal-to-noise interference power ratio (SINR: “Signal-to-Interference” plus “Noise-power” Ratio), and the like can be used.
  • the radio terminal 20 generates CQI (Channel Quality Indicator) based on the downlink radio quality.
  • CQI is an index indicating downlink channel quality and is one of uplink control information defined in the LTE system. As the CQI is fed back to the radio base station 10, the radio base station 10 can grasp the downlink channel quality and can perform downlink scheduling and the like.
  • the radio terminal 20 transmits the CQI generated based on the downlink reference signals in S302a to S302c to the serving base station 10a.
  • the CQI is transmitted through a physical uplink control channel (PUCCH: “Physical” Uplink “Control” CHannel) or a physical uplink shared channel (PUSCH: “Physical” Uplink “Shared” CHannel).
  • PUCCH Physical Uplink control channel
  • PUSCH Physical uplink shared channel
  • the three CQIs generated in S302a to S302c may be transmitted in the same subframe or in different subframes.
  • the serving base station 10a performs scheduling for transmitting the downlink data generated in S301 based on the CQI received in S303.
  • the serving base station 10a makes various decisions for transmitting the downlink data generated in S301. In the following, these determinations will be described in order.
  • the serving base station 10a first determines the radio base station 10 (hereinafter referred to as a transmission base station for convenience) that transmits the downlink data generated in S301.
  • a transmission base station for convenience
  • downlink data generated in the serving base station 10 a is transmitted to the radio terminal 20 by the serving base station 10 a.
  • CoMP is applied in the present application
  • downlink data generated in the serving base station 10a can be transmitted to the radio terminal 20 other than the serving base station 10a (of course, the serving base station 10a transmits the downlink data). Needless to say, you can do that.)
  • the transmission base station is selected from the radio base stations 10 included in the aforementioned CoMP set.
  • the CoMP set includes three serving base stations 10a, a first coordinated base station 10b, and a second coordinated base station 10c, the serving base station 10a determines a transmission base station from these. It should be noted that the determination of the transmission base station also has an aspect of determining the CoMP scheme. For example, when there are a plurality of transmission base stations, JT, which is one of the CoMP schemes, is inevitably applied.
  • the serving base station 10a can determine the transmission base station based on the CQI received in S303. As an example, based on the CQI received in S303, the serving base station 10a can determine the radio base station 10 with the best downlink quality with the radio terminal 20 as the transmission base station. In this case, DPS or SSPS, which is one of the CoMP methods, is performed. As another example, based on the CQI received in S303, the serving base station 10a transmits the radio base station 10 having the best downlink quality with the radio terminal 20 and the second radio base station 10 as transmission bases. Can be determined as a station. In this case, JT, which is one of the CoMP methods, is performed.
  • the serving base station 10a determines that the serving base station 10a is a transmitting base station based on the CQI received in S303 and requests the coordinated base stations 10b to 10c to reduce interference. It can also be determined. In this case, CS or CB, which is one of the CoMP methods, is performed.
  • the serving base station 10a may determine the transmission base station in consideration of any element other than CQI. As an example, the serving base station 10a receives information on the load from the coordinated base stations 10b to 10c, and when there is only one radio base station 10 whose downlink quality is equal to or higher than a predetermined value and whose load is equal to or lower than a predetermined value.
  • the radio base station 10 can be determined as a transmission base station (for example, DPS is performed).
  • the serving base station 10a can determine the transmission base station based on the downlink radio quality of each radio base station 10 included in the CoMP set, and the load of each radio base station 10.
  • Such determination of the transmission base station is generally performed by scheduling applicable to downlink CoMP transmission in the LTE system, and various conventional techniques are known. Omit. Examples of the load mentioned here include data rates handled by the radio base station 10, radio resource usage rates, operating rates of hardware such as processors of the radio base station 10, and members mounted on the radio base station 10. This corresponds to the amount of heat generated.
  • the serving base station 10a next determines a parameter (hereinafter referred to as a downlink transmission parameter for convenience) for causing the previously determined transmission base station to transmit the downlink data generated in S301.
  • the downlink transmission parameters include various parameters for transmitting or receiving downlink data.
  • the downlink transmission parameters can include, for example, various parameters included in downlink control information (DCI: Downlink Control Information) defined by the LTE system.
  • DCI Downlink Control Information
  • Several formats are defined in DCI.
  • DCI format 1 is control information accompanying downlink data, and includes various parameters necessary for transmitting and receiving the downlink data.
  • the downlink transmission parameters include, for example, MCS (Modulation and Coding Scheme) indicating a coding scheme and a modulation scheme applied to downlink data, and resource block allocation (Resource Block allocation) indicating a resource block (subcarrier) to which downlink data is mapped. ) Etc. are included. These correspond to the parameters included in the DCI format 1 described above.
  • MCS Modulation and Coding Scheme
  • Resource Block allocation Resource Block allocation
  • the serving base station 10a can determine MCS and resource block allocation that are downlink transmission parameters based on the CQI received in S303. Further, these parameters may be determined in consideration of an arbitrary element other than CQI. Furthermore, these parameters can also be determined in consideration of the relationship with other radio terminals 20 under the serving base station 10a. The determination of these parameters is generally performed in downlink data scheduling in the LTE system, and various conventional techniques are known. Therefore, detailed description thereof is omitted here.
  • the downlink transmission parameter can include information related to the timing at which the transmission base station transmits downlink data. Since the transmission unit on the time axis in the LTE system is a subframe (1 millisecond), this timing is specified by a subframe (downlink subframe). Hereinafter, this information will be referred to as downlink subframe information for convenience.
  • downlink subframe information (including downlink transmission parameters) is transmitted from the serving base station 10a to the coordinated base stations 10b to 10c via the non-ideal backhaul.
  • a delay of several tens of milliseconds occurs in communication via the non-ideal backhaul. Due to this delay, there is a concern that if the transmission timing of the downlink subframe is too early, the notification of the transmission timing (reception of downlink subframe information by the cooperative base stations 10b to 10c) will not be in time for the transmission timing.
  • the transmission timing of the downlink subframe for example, after 50 subframes (after 50 milliseconds) in consideration of the non-ideal backhaul delay.
  • the transmission timing is 10 subframes later (10 milliseconds later). It becomes.
  • the coordinated base stations 10b to 10c can meet the transmission timing of the downlink subframe with a margin.
  • the transmission base station is first determined and then the downlink transmission parameters are determined, but it should be noted that the order of determination is not limited to this.
  • the transmission base station and the downlink transmission parameters can be determined together.
  • the combination of the radio base station 10 and the resource block (subcarrier) with the best CQI is selected, and the radio base station 10 is determined as the transmission base station and A resource block assignment can be determined based on the resource block.
  • the determination of the transmission base station and downlink transmission parameters is not limited to this example, and can be performed based on any method, rule, algorithm, or the like without departing from the spirit of the present application.
  • the serving base station 10a further transmits a parameter for transmitting the previously determined transmission base station and downlink transmission parameter change information to the cooperative base stations 10b to 10c via the uplink (hereinafter referred to as uplink for convenience. Called transmission parameters).
  • the transmission base station and downlink transmission parameters are once determined in S304, but these may be changed according to the subsequent change in the downlink state.
  • uplink transmission parameters for notifying the coordinated base stations 10b to 10c of the changed transmission base station and downlink transmission parameters are determined in advance.
  • the uplink transmission parameters include various parameters for transmitting or receiving change information. Although there is a small difference depending on whether the change information is transmitted using PUCCH or PUSCH, the uplink transmission parameters will be described below as an example when the change information is transmitted using PUSCH. Even when the change information is transmitted by PUCCH, it can be realized in the same manner, but details are omitted.
  • the uplink transmission parameters can include various parameters included in the DCI described above. As described above, several formats are defined for DCI. For example, DCI format 0 is control information that is notified prior to uplink data, and includes various parameters necessary for transmitting and receiving the uplink data. ing.
  • Uplink transmission parameters include, for example, MCS indicating a coding scheme and modulation scheme applied to uplink data, resource block allocation indicating a resource block (subcarrier) to which downlink data is mapped, and the like. These correspond to the parameters included in the DCI format 0 described above.
  • the serving base station 10a can determine MCS and resource block allocation that are uplink transmission parameters based on, for example, measurement results of uplink reference signals (not shown). Further, these parameters may be determined in consideration of arbitrary elements thereof. The determination of these parameters is generally performed in uplink data scheduling in the LTE system, and various conventional techniques are known. Therefore, detailed description thereof is omitted here.
  • the uplink transmission parameter can include information related to the timing at which the transmission base station transmits the change information.
  • this timing is specified by a subframe (uplink subframe).
  • uplink subframe information this information will be referred to as uplink subframe information.
  • the serving base station 10a determines the first coordinated base station 10b as the transmission base station by scheduling in S304.
  • this premise is merely an example for explaining a specific example of processing in the present embodiment. In the following, the description will proceed under this assumption.
  • downlink scheduling information information indicating the transmission base station described above and downlink transmission parameters may be collectively referred to as downlink scheduling information.
  • uplink transmission parameter described above may be referred to as uplink scheduling information.
  • the serving base station 10a transmits a signal including downlink data, downlink scheduling information, and uplink scheduling information to the first coordinated base station 10b via the backhaul.
  • the first cooperative base station 10b receives a signal including downlink data, downlink scheduling information, and uplink scheduling information from the serving base station 10a via the backhaul. It should be noted that the transmission / reception in S305 is performed via a backhaul (non-ideal backhole), so that a relatively large delay occurs.
  • the signal of S305 can be realized by the X2 signal in the LTE system.
  • downlink data, downlink scheduling information, and uplink scheduling information are transmitted and received as a single signal to the first coordinated base station 10b. However, these may be transmitted separately in a plurality of signals. .
  • the serving base station 10a transmits a signal including downlink data, downlink scheduling information, and uplink scheduling information to the second cooperative base station 10c via the backhaul.
  • the second cooperative base station 10c receives a signal including downlink data, downlink scheduling information, and uplink scheduling information from the serving base station 10a via the backhaul. Since S306 may be performed in the same manner as S305, description thereof is omitted.
  • downlink data is transmitted only to the transmission base station, whereas in S305 to S306 in FIG. 5, downlink data is transmitted to all the coordinated base stations 10b to 10c. Be careful about what is done. In this embodiment, since the transmission base station may be changed later, the downlink data is transmitted in advance to all the coordinated base stations 10b to 10c that can become the transmission base station.
  • the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c transmit downlink reference signals to the radio terminal 20, respectively.
  • the radio terminal 20 transmits CQI indicating the downlink quality measured based on the downlink reference signal in S307a to S307c to the serving base station 10a.
  • the serving base station 10a performs downlink data scheduling (rescheduling) in step S301 based on the CQI and the like in step S308.
  • S307 (S307a to S307c) to S309 correspond to the scheduling process performed in the next CQI transmission cycle after S302 to S304. That is, S307 to S309 are performed after the CQI transmission cycle has elapsed from S302 to S304. Thereafter, the same scheduling process is periodically performed every time the CQI transmission period elapses.
  • S307a to S307c and S308 may be performed in the same manner as S302a to S302c and S303, description thereof is omitted here.
  • S309 is the same process as S304, a detailed description thereof will be omitted. However, in the example of processing in the present embodiment shown in FIG. 5, the initial scheduling of downlink data (generated in S301) is performed in S304, whereas the rescheduling of the downlink data is performed in S309. Note that this is done.
  • the serving base station 10 a determines the second coordinated base station 10 c as the transmission base station by scheduling in S ⁇ b> 309. That is, it is assumed that downlink data scheduling (for example, a transmission base station) is changed in S309 due to a change in downlink radio quality or the like from the time of scheduling in S304.
  • downlink data scheduling for example, a transmission base station
  • this premise is merely an example for explaining a specific example of processing in the present embodiment. In the following, the description will proceed under this assumption.
  • the serving base station 10a transmits downlink scheduling change information and uplink scheduling information to the radio terminal 20.
  • the radio terminal 20 receives downlink scheduling change information and uplink scheduling information from the serving base station 10a.
  • the downlink scheduling change information is information indicating the scheduling of the downlink data changed in S309.
  • the information included in the downlink scheduling change information can include transmission base station information and downlink transmission parameters according to the information included in the downlink scheduling information.
  • the downlink scheduling information may include only the contents changed from the downlink scheduling information, or may include all downlink scheduling information based on the latest scheduling.
  • the uplink scheduling information transmitted / received in S310 is the same information that is transmitted from the serving base station 10a to the coordinated base stations 10b to 10c in S305 to S306. As a result, the uplink scheduling information is shared between the radio terminal 20 and each of the cooperative base stations 10b to 10c.
  • downlink scheduling change information and uplink scheduling information are transmitted from the serving base station 10a to the radio terminal 20 via a radio signal (downlink) in S310. It should be noted that although downlink scheduling information and uplink scheduling information are transmitted via the backhaul in S305 to S306, S310 is different from these. The technical significance of transmitting each piece of information via a radio signal in S310 will be described later.
  • the downlink scheduling change information in S310 may be transmitted via PDCCH or may be transmitted via PDSCH.
  • the downlink scheduling change information can be transmitted via the PDSCH by, for example, a downlink RRC signal.
  • the downlink scheduling change information can be transmitted via the PDCCH by the above-described DCI. It should be noted that in downlink transmission, it is not necessary to notify the radio terminal 20 of transmission parameters in advance as in uplink transmission, regardless of whether the transmission is through PDCCH or PDSCH.
  • the radio terminal 20 transmits the downlink scheduling change information received in S310 to the first coordinated base station 10b based on the uplink scheduling information received in S310.
  • the first cooperative base station 10b receives downlink scheduling change information from the radio terminal 20 based on the uplink scheduling information received in S305.
  • the uplink scheduling information includes uplink transmission parameters such as MCS for performing PUSCH transmission, resource block (subcarrier) allocation, timing (uplink subframe), and the like.
  • the radio terminal 20 transmits downlink scheduling change information to the first coordinated base station 10b based on these uplink transmission parameters indicated by the uplink scheduling information received in S310.
  • the first cooperative base station 10b receives downlink scheduling change information from the radio terminal 20 based on these uplink transmission parameters indicated by the uplink scheduling information received in S305.
  • the downlink scheduling information transmitted from the radio terminal 20 to the first cooperative base station 10b may be the one received in S311 as it is, or may be processed within a range that includes information necessary for the first cooperative base station 10b. You may use what you did.
  • the downlink scheduling change information is transmitted from the radio terminal 20 to the first cooperative base station 10b via the radio signal (uplink) in S311. Note that the downlink scheduling information is transmitted via the backhaul in S305 to S306, but S311 is different from these.
  • the downlink scheduling change information from the serving base station 10a to the first cooperative base station 10b can also be interpreted as being relayed by the radio terminal 20.
  • the downlink scheduling change information from the serving base station 10a to the first cooperative base station 10b is received by the radio terminal 20 on the downlink and transmitted on the uplink, thereby realizing relay transmission via the radio terminal 20 Will be.
  • downlink scheduling change information is transmitted from the serving base station 10a to the first coordinated base station 10b via the radio terminal 20.
  • the downlink scheduling change information is transmitted by a radio signal. Since the delay associated with the transmission / reception of the radio signal is minimal, the delay associated with the transmission of the downlink scheduling change information over S310 to S311 is considered to be about several subframes (several milliseconds).
  • the problem caused based on the premise of the non-ideal backhaul is the first embodiment shown in FIG. 5, although the non-ideal backhaul is assumed. Does not occur. More specifically, in FIG. 5, the serving base station 10a transmits the result of rescheduling downlink data in S309 to the coordinated base stations 10b to 10c as downlink scheduling change information in S310 to S312.
  • the downlink scheduling change information transmitted in S310 to S312 reflects the latest downlink quality. Therefore, if this downlink scheduling change information can be notified to the coordinated base stations 10b to 10c in time for the previously determined CoMP transmission timing, CoMP transmission reflecting the latest radio quality can be performed.
  • the radio terminal 20 transmits the downlink scheduling change information received in S310 to the second cooperative base station 10c based on the uplink scheduling information received in S310.
  • the second cooperative base station 10c receives downlink scheduling change information from the radio terminal 20 based on the uplink scheduling information received in S306. Since S312 may be performed in the same manner as S311, detailed description thereof is omitted here.
  • the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c perform CoMP transmission (cooperative transmission) of the downlink data to the wireless terminal 20.
  • the CoMP transmission here reflects the latest downlink quality, as described above.
  • the transmission base station is temporarily determined to be the first cooperative base station 10b in the scheduling of S304, but then the transmission base station is in the second cooperative state in the scheduling of S309.
  • the base station 10c is changed.
  • this change is notified from the serving base station 10a to the coordinated base stations 10b to 10c via the radio terminal 20 by downlink scheduling change information.
  • the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c wirelessly transmit downlink data in cooperation with DPS using the second cooperative base station 10c as a transmission base station. It transmits to the terminal 20.
  • the second cooperative base station 10c which is a transmission base station in S313c, transmits downlink data to the radio terminal 20 based on the downlink scheduling change information received in S312.
  • the serving base station 10a performs blanking (no transmission) to the radio terminal 20 based on its own scheduling result in S309.
  • the first cooperative base station 10b performs blanking for the radio terminal 20 based on the downlink scheduling change information received in S311.
  • wireless terminal 20 receives downlink data from the 2nd cooperation base station 10c.
  • DPS CoMP transmission
  • FIG. 6 shows another example of the processing sequence of the first embodiment.
  • FIG. 5 the scheduling of downlink data has been changed by rescheduling. That is, after the downlink data scheduling is performed once in the first scheduling (S304) in FIG. 5, the downlink data scheduling is changed in the second scheduling (S309) in accordance with a change in downlink quality or the like. It was.
  • FIG. 6 is a diagram showing a processing sequence when downlink data scheduling is not changed by rescheduling.
  • the serving base station 10 a determines the second coordinated base station 10 c as a transmission base station in the scheduling of S ⁇ b> 309. That is, the downlink data scheduling (for example, the transmission base station) is changed in S309 due to a change in downlink radio quality or the like from the time of scheduling in S304.
  • the serving base station 10a determines the first coordinated base station 10c as a transmission base station in the scheduling of S409. That is, it is assumed that scheduling of downlink data (for example, a transmission base station) is not changed in S409 due to a small change in downlink radio quality from the time of scheduling in S404.
  • the serving base station 10a, the first coordinated base station 10b, and the second coordinated base station 10c cooperate with each other by DPS using the first coordinated base station 10c as a transmission base station. Then, the downlink data is transmitted to the wireless terminal 20.
  • the transmission base station is determined to be the first coordinated base station 10b by the scheduling of S404, and thereafter the transmission base station is not changed by the scheduling of S409. Therefore, in S410a to S410c, DPS using the first coordinated base station 10c as a transmission base station is performed according to the determination in the scheduling in S404.
  • DPS CoMP transmission
  • S410a to S410c in FIG. 6 reflects the latest downlink quality, similar to the CoMP transmission (DPS) in S313a to S313c in FIG. Therefore, in the processing sequence shown in FIG. 6 as well, as in FIG. 5, it is considered that DPS, which is one of the CoMP schemes, can be executed appropriately in response to downlink radio quality.
  • the serving base station 10a and the coordinated base stations 10b to 10c perform CoMP transmission reflecting the latest downlink quality. Is possible. Therefore, 1st Embodiment has a remarkable effect which is not in the prior art that the fall of the throughput of the whole radio communications system is controlled.
  • the second embodiment is another example of the embodiment that solves the above-described problem.
  • the serving base station 10a notifies the scheduling of coordinated transmission
  • the notification is coordinated via the radio terminal 20 by a radio signal.
  • the data is transmitted to the base stations 10b to 10c.
  • the second embodiment Since the second embodiment has many points in common with the first embodiment, the second embodiment will be described in detail below with a focus on differences from the first embodiment. It should be noted that in the second embodiment, descriptions overlapping with those in the first embodiment are omitted as appropriate.
  • FIG. 7 is a diagram illustrating an example of a processing sequence according to the second embodiment. Since the premise of the second embodiment is the same as that of the first embodiment, the description is omitted here. However, it should be noted that the second embodiment also assumes a non-ideal backhaul as in the first embodiment.
  • S501 in FIG. 7 may be performed in the same manner as S301 in FIG. 5 according to the first embodiment, a description thereof will be omitted.
  • the serving base station performs scheduling in S502 of FIG. In the scheduling in S502, an uplink transmission parameter is determined.
  • an uplink transmission parameter is determined.
  • the serving base station 10a transmits a signal including downlink data and uplink scheduling information to the first coordinated base station 10b via the backhaul.
  • the first cooperative base station 10b receives a signal including downlink data and uplink scheduling information from the serving base station 10a via the backhaul.
  • S503 of FIG. 7 unlike S305 of FIG. 5 according to the first embodiment, it is not necessary to transmit a transmission base station or downlink scheduling information (transmission base station, downlink transmission parameters, downlink subframe information, etc.). .
  • the transmission of downlink data and uplink scheduling information in S503 may be performed in the same manner as the transmission in S305, and thus detailed description thereof is omitted here. It should be noted that the transmission / reception in S503 is performed via a backhaul (non-ideal backhole), so that a relatively large delay occurs.
  • the serving base station 10a transmits a signal including downlink data and uplink scheduling information to the second cooperative base station 10c via the backhaul.
  • the second cooperative base station 10c receives a signal including downlink data and uplink scheduling information from the serving base station 10a via the backhaul. Since S504 may be performed in the same manner as S503, description thereof is omitted.
  • the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c transmit downlink reference signals to the wireless terminal 20, respectively.
  • the radio terminal 20 transmits CQI indicating the downlink quality measured based on the downlink reference signal in S505a to S505c to the serving base station 10a.
  • the serving base station 10a performs downlink data scheduling in step S501 based on the CQI and the like in step S506.
  • the timing for performing these is the timing corresponding to the latest CQI transmission at the timing indicated by the uplink subframe information included in the uplink scheduling information transmitted and received in S503 to S504.
  • the latest downlink quality is reflected in the scheduling of S507, and downlink scheduling information (described later) transmitted thereafter reflects the latest downlink quality.
  • the serving base station 10a determines the second coordinated base station 10c as the transmission base station in the scheduling of S509.
  • this premise is merely an example for explaining a specific example of processing in the present embodiment. In the following, the description will proceed under this assumption.
  • the serving base station 10a transmits downlink scheduling information and uplink scheduling information to the radio terminal 20 based on the determination in the scheduling of S507.
  • the radio terminal 20 receives downlink scheduling information and uplink scheduling information from the serving base station 10a.
  • the radio terminal 20 transmits the downlink scheduling information received in S508 to the first coordinated base station 10b based on the uplink scheduling information received in S508.
  • the first cooperative base station 10b receives downlink scheduling information from the radio terminal 20 based on the uplink scheduling information received in S503.
  • the radio terminal 20 transmits the downlink scheduling information received in S508 to the second cooperative base station 10c based on the uplink scheduling information received in S508.
  • the second cooperative base station 10c receives downlink scheduling information from the radio terminal 20 based on the uplink scheduling information received in S504.
  • the latest downlink quality is reflected in the downlink scheduling information transmitted and received in S508 to S510.
  • downlink scheduling information is transmitted and received instead of downlink scheduling change information transmitted and received in S310 to S312 of FIG. 5 according to the first embodiment. This is because the downlink transmission scheduling information is transmitted via the back hose in S305 to S306 in FIG. 5 according to the first embodiment, but not transmitted in S503 to S504 in FIG.
  • transmission / reception of downlink scheduling information and uplink scheduling information in S508 may be performed in the same manner as transmission / reception of downlink scheduling change information and uplink scheduling information in S310, detailed description thereof is omitted here. Further, since transmission / reception of downlink scheduling information in S509 to S510 may be performed in the same manner as transmission / reception of downlink scheduling information in S311 to S312, detailed description thereof is omitted here.
  • the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c are cooperatively downloaded by DPS using the second cooperative base station 10c as a transmission base station. Data is transmitted to the wireless terminal 20.
  • the second cooperative base station 10c is set as the transmission base station in S511a to S511c. DPS is performed.
  • the CoMP transmission (DPS) in S511a to S511c in FIG. 7 reflects the latest downlink quality, similar to the CoMP transmission (DPS) in S313a to S313c in FIG. This is because the latest downlink quality is reflected in the downlink scheduling information as described above. Therefore, also in the processing sequence shown in FIG. 7, it is considered that DPS, which is one of the CoMP schemes, can be appropriately executed in response to the downlink radio quality, as in FIG.
  • the second embodiment described above it is possible to solve the above-described problem that occurs when a non-ideal backhaul is assumed. That is, according to the first embodiment, even when a non-ideal backhaul is assumed, the serving base station 10a and the coordinated base stations 10b to 10c perform CoMP transmission reflecting the latest downlink quality. Is possible. Therefore, 1st Embodiment has a remarkable effect which is not in the prior art that the fall of the throughput of the whole radio communications system is controlled.
  • the wireless terminal 20 that receives downlink data by CoMP transmission (cooperative transmission) and the wireless terminal 20 that relays downlink scheduling change information and the like via a wireless link are the same wireless terminal 20. is there.
  • the wireless terminal 20 receives downlink data by CoMP transmission in S313a to S313c, but the same wireless terminal 20 relays downlink scheduling change information via a wireless link in S310 to S312. Sending.
  • the wireless terminal 20 that receives downlink data by CoMP transmission and the wireless terminal 20 that relays downlink scheduling change information and the like via a wireless link are different wireless terminals 20. Note that it does not matter.
  • the radio terminal 20 transmits downlink scheduling change information transmitted and received between the radio base stations 10 in order to perform CoMP transmission. Relay transmission via wireless link.
  • the present invention is not based on the assumption that CoMP transmission (cooperative transmission) is performed, and the wireless terminal 20 can relay and transmit arbitrary information transmitted and received between the wireless base stations 10 via the wireless link. Is.
  • the radio terminal 20 can relay and transmit information including the scheduling result via a radio link.
  • the radio terminal 20 when a plurality of radio base stations 10 perform arbitrary processing in cooperation, the radio terminal 20 relays any information transmitted / received between the plurality of radio base stations 10 via a radio link. It is possible to send.
  • the wireless terminal 20 relays and transmits information transmitted and received between the wireless base stations 10.
  • the present invention may be such that a device other than the wireless terminal 20 performs relay transmission.
  • a wireless relay station wireless relay device
  • the wireless relay station 10 can relay and transmit information transmitted and received between the wireless base stations 10.
  • the third radio base station 10 can relay and transmit information transmitted and received between the first radio base station 10 and the second radio base station 10.
  • the non-ideal backhaul is between the first radio base station 10 and the second radio base station 10, but between the first radio base station 10 and the third radio base station 10 and third
  • the third wireless base station 10 performs relay transmission, so that the same effects as those of the above embodiments are obtained. It is possible to play.
  • each radio terminal 20 calculates the CQI for the downlink reference signal from each radio base station 10
  • the radio terminal 20 similarly determines downlink scheduling information for downlink data based on this, and notifies each radio base station 10 of the same. Good.
  • each radio base station 10 notifies the radio terminal 20 of the load information, so that the radio terminal 20 can determine downlink scheduling data while considering the load of each radio base station 20.
  • the invention is applied to a non-ideal backhaul, but the present invention is not limited to this. It is also one of the embodiments that the present invention is implemented as a preparation for becoming a non-ideal backhaul in the future due to the secular change or the like of the current ideal backhaul. Needless to say.
  • the wireless communication system 1 includes a wireless base station 10 and a wireless terminal 20.
  • the wireless communication system 1 includes a wireless base station 10 and a wireless terminal 20.
  • three radio base stations 10a to 10c and seven radio terminals 20a to 20g are shown, but it goes without saying that this is only an example.
  • Each radio base station 10 forms a cell.
  • Each wireless terminal 20 exists in a cell, in other words, is under the control (under management) of each wireless base station 10.
  • the radio terminals 20a to 20c are under the radio base station 10a
  • the radio terminals 20d to 20e are under the radio base station 10b
  • the radio terminals 20f to 20g are under the radio base station 10c. is there.
  • the wireless base station 10 is connected to the network device 3 via a wired connection, and the network device 3 is connected to the network 2 via a wired connection.
  • the radio base station 10 is provided so as to be able to transmit / receive data and control information to / from other radio base stations 10 via the network device 3 and the network 2.
  • the backhaul which is a network connecting wireless base stations, is assumed to be non-ideal. However, some of them may be ideal.
  • the radio base station 10 may separate the radio communication function with the radio terminal 20 and the digital signal processing and control function to be a separate device.
  • a device having a wireless communication function is referred to as RRH (Remote Radio Head)
  • BBU Base Band Unit
  • the RRH may be installed overhanging from the BBU, and may be wired with an optical fiber between them.
  • the radio base station 10 is a radio of various scales other than small radio base stations 10 (including a micro radio base station 10, a femto radio base station 10 and the like) such as a macro radio base station 10 and a pico radio base station 10. It may be the base station 10.
  • the relay station transmission / reception with the wireless terminal 20 and its control
  • the wireless base station 10 of the present application It is good.
  • the wireless terminal 20 communicates with the wireless base station 10 by wireless communication.
  • the wireless terminal 20 may be a wireless terminal 20 such as a mobile phone, a smartphone, a PDA (Personal Digital Assistant), a personal computer (Personal Computer), various devices or devices (such as sensor devices) having a wireless communication function. Further, when a relay station that relays radio communication between the radio base station 10 and the radio terminal 20 is used, the relay station (transmission / reception with the radio base station 10 and its control) is also included in the radio terminal 20 of this paper. It is good.
  • the network device 3 includes, for example, a communication unit and a control unit, and these components are connected so that signals and data can be input and output in one direction or in both directions.
  • the network device 3 is realized by a gateway, for example.
  • the communication unit is realized by an interface circuit
  • the control unit is realized by a processor and a memory.
  • each component of the radio base station 10 and the radio terminal 20 is not limited to the mode of each embodiment, and all or a part thereof depends on various loads, usage conditions, and the like. Thus, it can be configured to be functionally or physically distributed and integrated in arbitrary units.
  • the memory may be connected as an external device of the radio base station 10 and the radio terminal 20 via a network or a cable.
  • FIG. 9 is a functional block diagram showing an example of the configuration of the radio base station 10.
  • the radio base station 10 includes, for example, a radio transmission unit 11, a radio reception unit 12, a control unit 13, a storage unit 14, and a communication unit 15. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
  • the wireless transmission unit 11 and the wireless reception unit 12 are collectively referred to as a wireless communication unit 16.
  • the wireless transmission unit 11 transmits a data signal and a control signal by wireless communication via an antenna.
  • the antenna may be common for transmission and reception.
  • the radio transmission unit 11 transmits a radio signal (downlink radio signal) to the radio terminal 20.
  • the radio signal transmitted by the radio transmission unit 11 can include arbitrary user data and control information for the radio terminal 20 (encoding and modulation are performed).
  • radio signal transmitted by the radio transmission unit 11 include radio signals (arrows in the figure) transmitted from the radio base station 10 to the radio terminal 20 in FIGS. 5, 6, and 7. Is mentioned.
  • the radio signal transmitted by the radio transmission unit 11 is not limited to these, and includes any radio signal transmitted from each radio base station 10 to the radio terminal 20 in each of the above embodiments and modifications.
  • the wireless receiving unit 12 receives a data signal and a control signal by wireless communication via an antenna.
  • the radio reception unit 12 receives a radio signal (uplink radio signal) from the radio terminal 20.
  • the radio signal received by the radio reception unit 12 can include arbitrary user data and control information (encoded or modulated) transmitted by the radio terminal 20.
  • radio signal received by the radio receiving unit 12 include radio signals (arrows in the figure) received by the radio base station 10 from the radio terminal 20 in FIGS. 5, 6, and 7. It is done.
  • the signals received by the wireless reception unit 12 are not limited to these, and include any wireless signal that each wireless base station 10 receives from the wireless terminal 20 in each of the above embodiments and modifications.
  • the control unit 13 outputs data and control information to be transmitted to the wireless terminal 20 to the wireless transmission unit 11.
  • the control unit 13 inputs data and control information received from the wireless terminal 20 from the wireless reception unit 12.
  • the control unit 13 inputs and outputs data, control information, programs, and the like with the storage unit 14 described later.
  • the control unit 13 inputs / outputs data and control information transmitted / received to / from the other radio base station 10 and the like with the communication unit 15 described later. In addition to these, the control unit 13 performs various controls in the radio base station 10.
  • processing controlled by the control unit 13 include control on signals (arrows in the figure) transmitted and received by each radio base station 10 in FIGS. 5, 6, and 7, and each radio base station 10 The control for each process (rectangle in the figure) being performed is given.
  • the process which the control part 13 controls is not restricted to these, but includes the control regarding all the processes which each radio base station 10 performs by said each embodiment and modification.
  • the storage unit 14 stores various information such as data, control information, and programs.
  • the various information stored in the storage unit 14 includes all information that can be stored in each radio base station 10 in each of the above embodiments and modifications.
  • the communication unit 15 transmits / receives data and control information to / from another wireless base station 10 or the like via a wired signal or the like (which may be a wireless signal).
  • a wired signal or the like which may be a wireless signal.
  • Specific examples of the wired signal transmitted and received by the communication unit 15 include each wired signal transmitted and received by each wireless base station 10 with respect to the other wireless base station 10 in FIG. 5, FIG. 6, and FIG. Middle arrow).
  • the wired signals transmitted and received by the communication unit 15 are not limited to these, and include all wired signals transmitted and received by each wireless base station 10 from other wireless base stations 10 and the like in the above-described embodiments and modifications.
  • the radio base station 10 may transmit and receive radio signals to / from radio communication devices other than the radio terminal 20 (for example, other radio base stations 10 and relay stations) via the radio transmission unit 11 and the radio reception unit 12. .
  • FIG. 10 is a functional block diagram showing an example of the configuration of the wireless terminal 20.
  • the wireless terminal 20 includes, for example, a wireless transmission unit 21, a wireless reception unit 22, a control unit 23, and a storage unit 24. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
  • the wireless transmission unit 21 and the wireless reception unit 22 are collectively referred to as a wireless communication unit 25.
  • the wireless transmission unit 21 transmits a data signal and a control signal by wireless communication via an antenna.
  • the antenna may be common for transmission and reception.
  • the radio transmission unit 21 transmits a radio signal (uplink radio signal) to each radio base station 10.
  • the radio signal transmitted by the radio transmission unit 21 can include arbitrary user data, control information, and the like (encoded and modulated) for each radio base station 10.
  • radio signal transmitted by the radio transmission unit 21 include radio signals (arrows in the figure) transmitted from the radio terminal 20 to the radio base stations 10 in FIGS. 5, 6, and 7. Is mentioned.
  • the radio signal transmitted by the radio transmission unit 21 is not limited to these, and includes any radio signal transmitted from the radio terminal 20 to each radio base station 10 in each of the above embodiments and modifications.
  • the wireless receiving unit 22 receives data signals and control signals by wireless communication via an antenna.
  • the radio reception unit 22 receives a radio signal (downlink radio signal) from each radio base station 10.
  • the radio signal received by the radio reception unit 22 can include arbitrary user data, control information, and the like (encoded or modulated) transmitted by each radio base station 10.
  • radio signals received by the radio receiver 22 include radio signals (arrows in the figure) received by the radio terminal 20 from the radio base station 10 in FIGS. 5, 6, and 7. .
  • the signal received by the wireless reception unit 22 is not limited to these, and includes any wireless signal that the wireless terminal 20 receives from each wireless base station 10 in each of the above embodiments and modifications.
  • the control unit 23 outputs data and control information to be transmitted to each radio base station 10 to the radio transmission unit 21.
  • the control unit 23 inputs data and control information received from each radio base station 10 from the radio reception unit 22.
  • the control unit 23 inputs and outputs data, control information, programs, and the like with the storage unit 24 described later. In addition to these, the control unit 23 performs various controls in the wireless terminal 20.
  • control unit 23 Specific examples of processing controlled by the control unit 23 include control for each signal (arrow in the figure) transmitted and received by the wireless terminal 20 in FIGS. 5, 6, and 7, and the wireless terminal 20 performs. Control for each process (rectangle in the figure) is mentioned. The process which the control part 23 controls is not restricted to these, but includes the control regarding all the processes which the radio
  • the storage unit 24 stores various information such as data, control information, and programs.
  • the various information stored in the storage unit 24 includes all information that can be stored in the wireless terminal 20 in each of the above-described embodiments and modifications.
  • the wireless terminal 20 may transmit and receive wireless signals to and from wireless communication devices other than the wireless base station 10 via the wireless transmission unit 21 and the wireless reception unit 22.
  • FIG. 11 is a diagram illustrating an example of a hardware configuration of the radio base station 10.
  • the radio base station 10 includes, as hardware components, an RF (Radio Frequency) circuit 112 including an antenna 111, a processor 113, a memory 114, and a network IF (Interface) 115, for example. Have. These components are connected so that various signals and data can be input and output via a bus.
  • RF Radio Frequency
  • the processor 113 is, for example, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor). In the present application, the processor 113 may be realized by a digital electronic circuit. Examples of digital electronic circuits include ASIC (Application Specific Integrated Circuit), FPGA (Field-Programming Gate Array), LSI (Large Scale Integration), and the like.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programming Gate Array
  • LSI Large Scale Integration
  • the memory 114 includes at least one of RAM (Random Access Memory) such as SDRAM (Synchronous Dynamic Random Access Memory), ROM (Read Only Memory), and flash memory, and stores programs, control information, and data.
  • RAM Random Access Memory
  • SDRAM Serial Dynamic Random Access Memory
  • ROM Read Only Memory
  • flash memory stores programs, control information, and data.
  • the radio base station may include an auxiliary storage device (such as a hard disk) not shown.
  • the wireless transmission unit 11 and the wireless reception unit 12 are realized by the RF circuit 112, or the antenna 111 and the RF circuit 112, for example.
  • the control unit 13 is realized by, for example, the processor 113, the memory 114, a digital electronic circuit (not shown), and the like.
  • the storage unit 14 is realized by the memory 114, for example.
  • the communication unit 15 is realized by the network IF 115, for example.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of the wireless terminal 20.
  • the wireless terminal 20 includes, as hardware components, an RF (Radio Frequency) circuit 122 including an antenna 121, a processor 123, and a memory 124, for example. These components are connected so that various signals and data can be input and output via a bus.
  • RF Radio Frequency
  • the processor 123 is, for example, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor). In the present application, the processor 123 may be realized by a digital electronic circuit. Examples of digital electronic circuits include ASIC (Application Specific Integrated Circuit), FPGA (Field-Programming Gate Array), LSI (Large Scale Integration), and the like.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programming Gate Array
  • LSI Large Scale Integration
  • the memory 124 includes at least one of RAM (Random Access Memory) such as SDRAM (Synchronous Dynamic Random Access Memory), ROM (Read Only Memory), and flash memory, and stores programs, control information, and data.
  • RAM Random Access Memory
  • SDRAM Serial Dynamic Random Access Memory
  • ROM Read Only Memory
  • flash memory stores programs, control information, and data.
  • the wireless transmission unit 21 and the wireless reception unit 22 are realized by the RF circuit 122, the antenna 121, and the RF circuit 122, for example.
  • the control unit 23 is realized by, for example, the processor 123, the memory 124, a digital electronic circuit (not shown), and the like.
  • the storage unit 24 is realized by the memory 124, for example.
  • wireless communication system 1 wireless communication system 2 network 3 network device 10 wireless base station 20 wireless terminal

Abstract

The objective of the technique disclosed herein is to enable the solution of problems occurring in CoMP predicated on an unideal backhaul. A radio communication method disclosed herein is a radio communication method for performing a coordinated transmission in which first and second radio base stations are coordinated to transmit a radio signal to a first one of one or more radio terminals. According to this radio communication method, the first radio base station transmits, to a second radio terminal that is one of the one or more radio terminals, downstream scheduling information that is to be used for performing the coordinated transmission, and the second radio terminal transmits the downstream scheduling information to the second radio base station.

Description

無線通信方法、無線通信システム、無線基地局および無線端末Wireless communication method, wireless communication system, wireless base station, and wireless terminal
 本発明は、無線通信方法、無線通信システム、無線基地局および無線端末に関する。 The present invention relates to a radio communication method, a radio communication system, a radio base station, and a radio terminal.
 近年、携帯電話システム等の無線基地局を備える無線通信システム(セルラーシステム)において、無線通信の更なる高速化・大容量化等を図るため、次世代の無線通信技術について議論が行われている。例えば、標準化団体である3GPP(3rd Generation Partnership Project)では、LTE(Long Term Evolution)と呼ばれる通信規格や、LTEの無線通信技術をベースとしたLTE-A(LTE-Advanced)と呼ばれる通信規格が提案されている。以降では、特に断りが無い限り、「LTE」はLTEおよびLTE-Aに加え、これらを拡張したその他の無線通信システムを含むものとする。 In recent years, in a wireless communication system (cellular system) including a wireless base station such as a mobile phone system, discussions have been made on next-generation wireless communication technology in order to further increase the speed and capacity of the wireless communication. . For example, 3GPP (3rd Generation Partnership Project), a standardization organization, proposes a communication standard called LTE (Long Term Evolution) and a communication standard called LTE-A (LTE-Advanced) based on LTE wireless communication technology. Has been. Hereinafter, unless otherwise specified, “LTE” includes, in addition to LTE and LTE-A, other wireless communication systems in which these are expanded.
 3GPPではLTE(LTE-A)を構成する様々な要素技術が検討されているが、それらの技術の一つに多地点協調(CoMP: Coordinated Multiple Point)がある。CoMPは、端的に言えば、異なる無線基地局間において、無線端末に対する送受信を協調する技術での総称である。後述するようにCoMPにはいくつかの送信方式(カテゴリ)があるが、それらを適用することで空間ダイバーシチ効果の享受や、無線基地局間の干渉の抑制が可能となる。したがって、無線基地局が協調しない場合と比較して、CoMPによって通信特性を向上することができる。スマートフォンの普及等により無線通信の大容量化が課題となっており、CoMPの重要性は今後益々高まってことが予想される。 3GPP is studying various elemental technologies that make up LTE (LTE-A), and one of those technologies is CoMP (Coordinated Multiple Point). In short, CoMP is a general term for technologies that coordinate transmission / reception with respect to wireless terminals between different wireless base stations. As will be described later, there are several transmission methods (categories) in CoMP. By applying these, it is possible to enjoy the spatial diversity effect and suppress interference between radio base stations. Therefore, compared with the case where a radio base station does not cooperate, a communication characteristic can be improved by CoMP. Increasing the capacity of wireless communications has become an issue due to the widespread use of smartphones, and the importance of CoMP is expected to increase in the future.
 一方、近年の3GPPにおいてはnon-ideal backhaulに対する検討が開始されている。ここでバックホール(backhaul)とは、無線基地局間や無線基地局とコアネットワークを結ぶ有線または無線のネットワークを指す。そして非理想的バックホール(non-ideal backhaul)とは、理想的でないバックホールを指し、具体的には遅延が比較的大きなバックホールを意味する。これに対し、遅延が比較的小さなバックホールは理想的バックホール(ideal backhaul)と呼ばれる。従来の3GPPでの各種検討においては理想的バックホールが前提となっていたが、光ファイバ等による高速なバックホールの敷設が困難な状況も想定されるため、今後は非理想的バックホールを前提とした検討が活発化することが予想される。 On the other hand, the study on non-ideal backhaul has started in 3GPP in recent years. Here, the backhaul refers to a wired or wireless network that connects between wireless base stations or connects a wireless base station to a core network. The non-ideal backhaul refers to a non-ideal backhaul, and specifically means a backhaul with a relatively large delay. On the other hand, a backhaul with a relatively small delay is called an ideal backhaul. In various conventional 3GPP studies, an ideal backhaul was assumed, but it is assumed that high-speed backhaul laying using optical fibers is difficult. It is expected that the examination will be activated.
 ところで、3GPPにおける従来のCoMPの検討においては、無線基地局間で協調するための制御情報がバックホールを介して送受信されることが想定されている。しかしながら、従来の検討で前提とされていた理想的バックホールとは異なり、非理想的バックホールを前提とした場合、そのような制御情報の送受信に遅延が発生することが避けられないものと考えられる。そのため、このような非理想バックホールに伴う無線基地局間の通信遅延によって、LTEシステムにおいて何らかの不都合が生じる可能性が考えられる。しかしながら、非理想的バックホールを前提としたCoMPについてはこれまでほとんど検討が行われてこなかったため、前述したような不都合が表面化していない可能性がある。 By the way, in the conventional CoMP study in 3GPP, it is assumed that control information for cooperation between radio base stations is transmitted and received via a backhaul. However, unlike the ideal backhaul assumed in the conventional study, it is inevitable that a delay occurs in the transmission / reception of such control information when a non-ideal backhaul is assumed. It is done. Therefore, there is a possibility that some inconvenience may occur in the LTE system due to the communication delay between the radio base stations due to such non-ideal backhaul. However, since CoMP based on a non-ideal backhaul has not been studied so far, there is a possibility that the inconveniences described above have not surfaced.
 開示の技術は、上記に鑑みてなされたものであって、非理想バックホールを前提としたCoMPにおいて生じる不都合を解消できる無線通信方法、無線通信システム、無線基地局および無線端末を提供することを目的とする。 The disclosed technology has been made in view of the above, and provides a wireless communication method, a wireless communication system, a wireless base station, and a wireless terminal that can eliminate inconveniences that occur in CoMP based on non-ideal backhaul. Objective.
 上述した課題を解決し、目的を達成するために、開示の無線通信方法は、1以上の無線端末のうちの第1無線端末に対して第1無線基地局と第2無線基地局とが協調して無線信号を送信する協調送信を行う無線通信方法であって、前記第1無線基地局が、前記協調送信を行うための下りスケジューリング情報を前記1以上の無線端末の一つである第2無線端末に送信し、前記第2無線端末は、前記下りスケジューリング情報を前記第2無線基地局に送信する。 In order to solve the above-described problems and achieve the object, the disclosed wireless communication method is such that the first wireless base station and the second wireless base station cooperate with the first wireless terminal among the one or more wireless terminals. A radio communication method for performing coordinated transmission for transmitting radio signals, wherein the first radio base station transmits downlink scheduling information for performing the coordinated transmission to one of the one or more radio terminals. Transmitting to the radio terminal, the second radio terminal transmits the downlink scheduling information to the second radio base station.
 本件の開示する無線通信方法、無線通信システム、無線基地局および無線端末の一つの態様によれば、非理想バックホールを前提としたCoMPにおいて生じる不都合を解消できるという効果を奏する。 According to one aspect of the wireless communication method, the wireless communication system, the wireless base station, and the wireless terminal disclosed in this case, there is an effect that it is possible to eliminate inconveniences that occur in CoMP based on a non-ideal backhaul.
図1A~Cは、CoMPの各方式の概念を説明する図である。1A to 1C are diagrams for explaining the concept of each CoMP method. 図2は、CoMPの一方式であるDPSを説明する図である。FIG. 2 is a diagram for explaining DPS, which is one method of CoMP. 図3は、本願における問題の所在を説明する図である。FIG. 3 is a diagram for explaining the location of a problem in the present application. 図4は、本願における問題の所在を説明する図である。FIG. 4 is a diagram for explaining the location of a problem in the present application. 図5は、本願の第1実施形態における処理シーケンスの一例を示す図である。FIG. 5 is a diagram showing an example of a processing sequence in the first embodiment of the present application. 図6は、本願の第1実施形態における処理シーケンスの一例を示す図である。FIG. 6 is a diagram showing an example of a processing sequence in the first embodiment of the present application. 図7は、本願の第2実施形態における処理シーケンスの一例を示す図である。FIG. 7 is a diagram illustrating an example of a processing sequence in the second embodiment of the present application. 図8は、各実施形態の無線通信システムのネットワーク構成の一例を示す図である。FIG. 8 is a diagram illustrating an example of a network configuration of the wireless communication system according to each embodiment. 図9は、各実施形態の無線通信システムにおける無線基地局の機能構成図の一例である。FIG. 9 is an example of a functional configuration diagram of a radio base station in the radio communication system of each embodiment. 図10は、各実施形態の無線通信システムにおける無線端末の機能構成図の一例である。FIG. 10 is an example of a functional configuration diagram of a wireless terminal in the wireless communication system of each embodiment. 図11は、各実施形態の無線通信システムにおける無線基地局のハードウェア構成図の一例である。FIG. 11 is an example of a hardware configuration diagram of a radio base station in the radio communication system of each embodiment. 図12は、各実施形態の無線通信システムにおける無線端末のハードウェア構成図の一例である。FIG. 12 is an example of a hardware configuration diagram of a wireless terminal in the wireless communication system of each embodiment.
 以下、図面を用いながら、開示の無線通信方法、無線通信システム、無線基地局および無線端末の実施形態について説明する。尚、便宜上別個の実施形態として説明するが、各実施形態を組み合わせることで、組合せの効果を得て、更に、有用性を高めることもできることはいうまでもない。 Hereinafter, embodiments of the disclosed wireless communication method, wireless communication system, wireless base station, and wireless terminal will be described with reference to the drawings. In addition, although demonstrated as separate embodiment for convenience, it cannot be overemphasized that the effect of a combination can be acquired and usefulness can further be heightened by combining each embodiment.
 [問題の所在]
 まず、各実施形態を説明する前に、従来技術における問題の所在を説明する。この問題は、発明者が従来技術を仔細に検討した結果として新たに見出したものであり、従来は知られていなかったものであることに注意されたい。
[Location of problem]
First, before describing each embodiment, the location of problems in the prior art will be described. It should be noted that this problem has been newly found as a result of careful study of the prior art by the inventor and has not been known so far.
 まず、本願の前提技術であるCoMP(多地点協調)の概要を説明する。なお、CoMPにおいては一般的に、送信局をTP(Transmission Point)と称することがある。本願が取り扱う下りのCoMPにおいてはTPは無線基地局とほぼ対応する概念であるため、本願においては特に断りが無い限り、無線基地局をTPと適宜読み変えてもかまわない。 First, the outline of CoMP (multi-point coordination), which is a prerequisite technology of the present application, will be described. In CoMP, a transmitting station may be generally referred to as TP (Transmission Point). In downlink CoMP handled by the present application, TP is a concept that substantially corresponds to a radio base station. Therefore, in the present application, unless otherwise noted, the radio base station may be appropriately read as TP.
 前述したように、CoMPにはいくつかの送信方式(カテゴリ)が規定されている。ここで、下りのCoMPの送信方式としては、Joint Transmission(JT)、Dynamic Point Selection(DPS)、Semi-Static Point Selection(SSPS)、Coordinated Scheduling(CS)、Coordinated Beamforming(CB)等が知られている。 As mentioned above, several transmission methods (categories) are defined in CoMP. Here, joint transmission (JT), dynamic point selection (DPS), semi-static point selection (SSPS), coordinated scheduling (CS), coordinated beamforming (CB), etc. are known as downlink CoMP transmission methods. Yes.
 図1に基づいてCoMPの送信方式の概念を順に説明する。図1Aは、CoMPの一つであるJTの概念を示す図である。JTは、ある無線端末20宛の同一のデータを複数の無線基地局10aと10bが同時に送信(共同送信)するものであり、当該無線端末20宛の受信品質およびスループットを高めるものである。 The concept of CoMP transmission method will be described in order based on FIG. FIG. 1A is a diagram illustrating the concept of JT, which is one of CoMP. JT is a method in which a plurality of radio base stations 10a and 10b simultaneously transmit (joint transmission) the same data addressed to a certain radio terminal 20, and improve the reception quality and throughput addressed to the radio terminal 20.
 図1Bは、CoMPの一つであるDPSおよびSSPSの概念を示す図である。DPSは、無線端末20宛の同一のデータが同時に複数の無線基地局10aと10bに存在するが、無線端末20宛のデータ送信は単一の無線基地局10aから行われ、他の基地局10bはブランキング(blanking)すなわち不送信を行うというものである。これにより、時間平均されたチャネル状態に基づくLTEシステムにおける通常のセル(基地局)選択よりも、フェージング変動に追従した瞬時な動的セル(基地局)選択が可能となる。また、SSPSはDPSと基本的な概念は似ているが、サブフレーム毎にセルを切り替えるPDSよりもセルの切替えが緩やかなものとされている。 FIG. 1B is a diagram showing the concept of DPS and SSPS, which are one of CoMP. In DPS, the same data addressed to the radio terminal 20 is simultaneously present in a plurality of radio base stations 10a and 10b. However, data transmission addressed to the radio terminal 20 is performed from a single radio base station 10a and other base stations 10b. Is blanking, i.e. not transmitting. This enables instantaneous dynamic cell (base station) selection that follows fading fluctuations rather than normal cell (base station) selection in an LTE system based on time-averaged channel conditions. SSPS is similar in concept to DPS, but cell switching is more gradual than PDS which switches cells every subframe.
 図1Cは、CoMPの一つであるCSおよびCBの概念を示す図である。CSとCBとは、あるサブフレームにおいてある無線端末20aまたは20bに対して単一の無線基地局10aまたは10bから送信が行われるとともに、他無線基地局10bまたは10aは当該送信に与える干渉を低減するように振る舞うものである。ここで、CSにおいて他無線基地局はミューティング(muting)を行うことで無線基地局10aまたは10bによる送信への与干渉を低減し、CBにおいて他無線基地局10bまたは10aはビームフォーミング(beamforming)を行うことで無線基地局10aまたは10bによる送信への与干渉を低減する。 FIG. 1C is a diagram showing the concept of CS and CB, which are one of CoMP. CS and CB are transmitted from a single radio base station 10a or 10b to a radio terminal 20a or 20b in a certain subframe, and other radio base stations 10b or 10a reduce interference given to the transmission. It behaves like Here, in CS, other radio base stations perform muting to reduce interference with transmission by radio base station 10a or 10b. In CB, other radio base stations 10b or 10a perform beamforming. To reduce interference with transmission by the radio base station 10a or 10b.
 次に、図2に基づいてCoMPの一般的な処理シーケンスの一例を説明する。図2は、3つの基地局であるサービング基地局10a、第1協調基地局10b、および第2協調基地局10cによって、CoMP方式の一つであるDPSを実行する場合の処理シーケンスを例示している。しかしながら、他のCoMP方式についても同様の処理シーケンスにより実施することができることに留意されたい。 Next, an example of a general processing sequence of CoMP will be described based on FIG. FIG. 2 exemplifies a processing sequence in the case of executing DPS, which is one of the CoMP schemes, by the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c, which are three base stations. Yes. However, it should be noted that other CoMP schemes can be implemented by a similar processing sequence.
 ここで、図2においては、前述した理想的バックホールを前提とするものとする。 Here, in FIG. 2, it is assumed that the ideal backhaul described above is assumed.
 まず、図2のS101でサービング基地局10aに無線端末20宛の下りデータ(例えばダウンロードファイル)が発生したものとする。このとき、サービング基地局10aは、下りデータを無線端末20に送信するためのスケジューリングを行う必要がある。このスケジューリングにおいては、DPSの適用の有無や、DPSにおける送信基地局、DPSを行う際の送信パラメータ等の決定が行われる。 First, it is assumed that downlink data (for example, download file) addressed to the wireless terminal 20 is generated in the serving base station 10a in S101 of FIG. At this time, the serving base station 10a needs to perform scheduling for transmitting downlink data to the radio terminal 20. In this scheduling, the presence / absence of application of DPS, the transmission base station in DPS, transmission parameters for performing DPS, and the like are determined.
 このようなスケジューリングを可能とするため、図2のS102a~S102cでサービング基地局10a、第1協調基地局10b、および第2協調基地局10cはそれぞれ、下り参照信号を送信する。無線端末20はこれらの参照信号に基づいて、各基地局との間の下りリンクの品質を測定する。その後、S103で無線端末20は、各基地局毎に測定した下りリンク品質を示す指標であるCQI(Channel Quality Indicator)をサービング基地局10aにフィードバックする。 In order to enable such scheduling, the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c each transmit a downlink reference signal in S102a to S102c of FIG. The radio terminal 20 measures the quality of the downlink with each base station based on these reference signals. Thereafter, in S103, the radio terminal 20 feeds back a CQI (Channel Quality Indicator) indicating the downlink quality measured for each base station to the serving base station 10a.
 そしてS104でサービング基地局10aは、受信したCQIに基づいて前述したスケジューリングを行う。例えば、サービング基地局10aは、CQIが示す下りリンクの無線品質が最良である基地局をDPSの送信基地局と決定することができる。ここでは一例として、サービング基地局10aは、第1協調基地局10bを送信基地局とするDPSによって下りデータを送信することを決定したものとする。 In step S104, the serving base station 10a performs the above-described scheduling based on the received CQI. For example, the serving base station 10a can determine the base station with the best downlink radio quality indicated by CQI as the DPS transmission base station. Here, as an example, it is assumed that the serving base station 10a has decided to transmit downlink data by DPS using the first coordinated base station 10b as a transmission base station.
 このときサービング基地局10aは、やはりCQIに基づいて、第1協調基地局10bから無線端末20への下りデータの送信に用いられる変調符号化方式(MCS: Modulation and Coding Scheme)やリソースブロック(サブキャリア)等の送信パラメータの決定も併せて行うことができる。S104で決定した送信基地局とこれらの送信パラメータとを合わせて、ここでは下りスケジューリング情報と呼ぶことにする。 At this time, the serving base station 10a also uses the modulation coding scheme (MCS: Modulation and Coding Scheme) and the resource block (sub-scheme) used for transmission of downlink data from the first cooperative base station 10b to the radio terminal 20 based on CQI. Transmission parameters such as (carrier) can also be determined. The transmission base station determined in S104 and these transmission parameters are collectively referred to as downlink scheduling information here.
 次にS105でサービング基地局10aは、S104のスケジューリング結果に基づいて、第1協調基地局10bに対して下りデータと下りスケジューリング情報をバックホールを介して送信する。また、S106でサービング基地局10aは、S104のスケジューリング結果に基づいて、第2協調基地局10cに対して下りスケジューリング情報をバックホールを介して送信する。このとき、下りデータは送信基地局である第1協調基地局10bに対しては送信されるが、送信基地局ではない第2協調基地局10cに対しては送信されない。 Next, in S105, the serving base station 10a transmits downlink data and downlink scheduling information to the first cooperative base station 10b via the backhaul based on the scheduling result in S104. In S106, the serving base station 10a transmits downlink scheduling information to the second coordinated base station 10c via the backhaul based on the scheduling result in S104. At this time, downlink data is transmitted to the first coordinated base station 10b which is a transmission base station, but is not transmitted to the second coordinated base station 10c which is not a transmission base station.
 前述したように、図2は理想的バックホールを前提としている。そのため、S105やS106におけるバックホールを介した信号の送受信の遅延は最小限である。 As mentioned above, Figure 2 assumes an ideal backhaul. Therefore, the delay in signal transmission / reception via the backhaul in S105 and S106 is minimal.
 最後に図2のS107a~S107cで、サービング基地局10a、第1協調基地局10b、および第2協調基地局10cは、第1協調基地局10bを送信基地局とするDPSにより、協調して下りデータを無線端末20に送信する。このとき、S107bにおいて送信基地局である第1協調基地局10bは、S105で受信した下りスケジューリング情報に基づいて、無線端末20に対して下りデータを送信する。これに対し、S107aにおいてサービング基地局10aは、S104における自らのスケジューリング結果に基づいて、無線端末20に対してブランキング(無送信)を行う。また、107cにおいて第2協調基地局10cは、S106で受信した下りスケジューリング情報に基づいて、無線端末20に対してブランキングを行う。 Finally, in steps S107a to S107c in FIG. 2, the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c cooperate in downlink by DPS using the first cooperative base station 10b as a transmission base station. Data is transmitted to the wireless terminal 20. At this time, the first cooperative base station 10b, which is a transmission base station in S107b, transmits downlink data to the radio terminal 20 based on the downlink scheduling information received in S105. On the other hand, in S107a, the serving base station 10a performs blanking (no transmission) to the radio terminal 20 based on its scheduling result in S104. In 107c, the second coordinated base station 10c performs blanking for the radio terminal 20 based on the downlink scheduling information received in S106.
 図2に示した処理シーケンスによれば、CoMP方式の一つであるDPSを、下りリンクの無線品質に即応して適切に実行することができると考えられる。 According to the processing sequence shown in FIG. 2, it is considered that DPS, which is one of the CoMP schemes, can be executed appropriately in response to downlink radio quality.
 次に、図3および図4に基づいて本願における問題の所在を説明する。 Next, the location of the problem in the present application will be described based on FIG. 3 and FIG.
 図3に基づいてCoMPの処理シーケンスの他の一例を説明する。図3はCoMP方式の一つであるDPSを適用する場合の処理シーケンスを例示しているが、他のCoMP方式についても同様の処理シーケンスにより実施することができる。 Another example of the CoMP processing sequence will be described with reference to FIG. FIG. 3 illustrates a processing sequence in the case of applying DPS, which is one of the CoMP schemes, but other CoMP schemes can be implemented by a similar processing sequence.
 ここで、図3および後述する図4においては、前述した図2とは異なり、非理想的バックホールを前提とするものとする。 Here, in FIG. 3 and FIG. 4 described later, it is assumed that a non-ideal backhaul is assumed, unlike FIG. 2 described above.
 まず、図3のS201~S204は、図2のS101~S104と同様のためここでは説明を割愛する。S204では、S203のCQIに基づいて、送信基地局が第1協調基地局10bと決定されるとともに、下りデータの送信パラメータ(MCS、リソースブロック等)が決定される。 First, since S201 to S204 in FIG. 3 are the same as S101 to S104 in FIG. 2, description thereof is omitted here. In S204, based on the CQI of S203, the transmission base station is determined to be the first coordinated base station 10b, and downlink data transmission parameters (MCS, resource block, etc.) are determined.
 次に図3のS205でサービング基地局10aは、S204のスケジューリング結果に基づいて、第1協調基地局10bに対して下りデータと下りスケジューリング情報をバックホールを介して送信する。また、S206でサービング基地局10aは、S204のスケジューリング結果に基づいて、第2協調基地局10cに対して下りスケジューリング情報をバックホールを介して送信する。 Next, in S205 of FIG. 3, the serving base station 10a transmits downlink data and downlink scheduling information to the first cooperative base station 10b via the backhaul based on the scheduling result of S204. In S206, the serving base station 10a transmits downlink scheduling information to the second coordinated base station 10c via the backhaul based on the scheduling result in S204.
 ここで、前述したように、図3は非理想的バックホールを前提としている。そのため、S205やS206におけるバックホールを介した信号の送受信の遅延が比較的大きくなる。この遅延は例えば数十ミリ秒になることが想定される。そのため、図3に示されるように、S205やS206の信号の受信タイミングは送信タイミングからかなり遅れることになると考えられる。 Here, as described above, FIG. 3 assumes a non-ideal backhaul. Therefore, the signal transmission / reception delay through the backhaul in S205 and S206 is relatively large. This delay is assumed to be several tens of milliseconds, for example. For this reason, as shown in FIG. 3, it is considered that the reception timing of the signals in S205 and S206 is considerably delayed from the transmission timing.
 ところで、LTEシステムにおいては、前述したような無線端末20による下りリンクの品質測定及びCQIの送信は、周期的に行われる。スケジューリングはできるだけ新しい無線品質に基づいて行うべきだからである。反対に、古い無線品質に基づいてスケジューリングを行った場合、当該スケジューリングは不適切なものとなる可能性が高まると考えられる。 Incidentally, in the LTE system, downlink quality measurement and CQI transmission by the wireless terminal 20 as described above are periodically performed. This is because scheduling should be performed based on as new radio quality as possible. On the other hand, when scheduling is performed based on the old radio quality, it is considered that the possibility of the scheduling becoming inappropriate increases.
 LTEシステムにおいて、無線端末20による下りリンクの品質測定及びCQIの送信の周期(便宜上CQI送信周期と称する)は2、5、10、20、40、80、160の7種類の値を選択的に設定できる。ここで単位はサブフレーム(1サブフレームは1ミリ秒)である。 In the LTE system, the downlink quality measurement and CQI transmission period (referred to as CQI transmission period for convenience) by the radio terminal 20 is selectively selected from seven values of 2, 5, 10, 20, 40, 80, and 160. Can be set. Here, the unit is a subframe (one subframe is one millisecond).
 今、図3におけるCQI送信周期が例えば20サブフレーム(20ミリ秒)であるものとする。また、S206の信号の送受信における遅延が40ミリ秒であったものとする。 Now, assume that the CQI transmission cycle in FIG. 3 is, for example, 20 subframes (20 milliseconds). It is assumed that the delay in transmitting and receiving the signal in S206 is 40 milliseconds.
 このとき、S206の信号の送受信が遅延(40ミリ秒)している間に、S203におけるCQIの送信からCQI送信周期(20ミリ秒)が経過してしまう。そのため、図3に例示されるように、S206の信号の受信が完了する前に、S207a~S207cにおける下り参照信号の再度の測定を経て、S208で再度のCQI送信が行われてしまう。S208のCQI送信は、S203の次の周期のCQI送信に相当するものである。これにより、S209のタイミングでは、S208のCQIに基づいてスケジューリングを行うことができることになる。 At this time, while the transmission / reception of the signal in S206 is delayed (40 milliseconds), the CQI transmission cycle (20 milliseconds) elapses from the CQI transmission in S203. Therefore, as illustrated in FIG. 3, before the reception of the signal of S206 is completed, the CQI transmission is performed again in S208 after the downlink reference signal is measured again in S207a to S207c. The CQI transmission in S208 corresponds to the CQI transmission in the next cycle in S203. Thereby, at the timing of S209, scheduling can be performed based on the CQI of S208.
 ここで仮に、S208のCQIにおいて、第2協調基地局10cの下りリンクの品質が第1協調基地局10bのそれを上回っている場合を考える。もしS209のタイミングにおいて、S208のCQIに基づいてS201の下りデータ(この段階ではまだ無線端末20に送信されていないことに注意)のスケジューリングを行ったと仮定すると、DPSの送信基地局は第1協調基地局10bではなく第2協調基地局10cと決定されることになる。なお、ここでは簡単のため、送信基地局の決定は下り無線リンクの品質のみに基づいて決定されるものとする。 Here, it is assumed that the downlink quality of the second cooperative base station 10c exceeds that of the first cooperative base station 10b in the CQI of S208. If it is assumed that the downlink data of S201 (note that it has not been transmitted to the radio terminal 20 at this stage) is scheduled based on the CQI of S208 at the timing of S209, the DPS transmission base station performs the first coordination. It will be determined not the base station 10b but the second cooperative base station 10c. Here, for simplicity, it is assumed that the transmission base station is determined based only on the quality of the downlink radio link.
 しかしながら現実には、S209のタイミングでS201の下りデータのスケジューリングが行われることなく、図3のS210a~S210cにおいて下りデータは第1協調基地局10bを送信基地局とするDPSにより送信されてしまう。S204のスケジューリングにおいて、下りデータの送信基地局を第1協調基地局10bとすることが決定しており、その後の下りリンク品質の変化に依らず、その決定に基づくDPS送信が実行されてしまうためである。そのため、DPS送信の送信基地局の決定において、DPS送信時における最新の下りリンク品質が反映されないという事態が生じる。 However, in practice, the downlink data is not scheduled in S201 at the timing of S209, and in S210a to S210c of FIG. 3, the downlink data is transmitted by DPS using the first coordinated base station 10b as the transmission base station. In the scheduling of S204, it is determined that the downlink data transmission base station is the first cooperative base station 10b, and DPS transmission based on the determination is executed regardless of the subsequent change in downlink quality. It is. Therefore, in the determination of the transmission base station for DPS transmission, a situation occurs in which the latest downlink quality at the time of DPS transmission is not reflected.
 図3のような場合、本来であれば第2協調基地局10cが送信基地局となった方が通信効率等の観点では望ましいのにもかかわらず、実際には第1協調基地局10bが送信基地局となってしまうことになる。このような状況は、無線通信システム全体のスループットの低下にも繋がるため、できるだけ避けられるべきである。図3においてはこの点が大きな問題であり、更なる検討が必要であると考えられる。 In the case shown in FIG. 3, the first cooperative base station 10b is actually transmitted although the second cooperative base station 10c is supposed to be the transmission base station from the viewpoint of communication efficiency. It becomes a base station. Such a situation should be avoided as much as possible because it leads to a decrease in the throughput of the entire wireless communication system. This point is a major problem in FIG. 3, and further study is considered necessary.
 一方、図2のような、理想的バックホールの場合は、下りデータのスケジューリングS105、S106が、図示しない2回目のCQIよりも前に実施されることになり、上記のような問題は発生しない。 On the other hand, in the case of an ideal backhaul as shown in FIG. 2, scheduling of downlink data S105 and S106 is performed before the second CQI (not shown), and the above-described problem does not occur. .
 なお、上記の説明においては、DPS送信の送信基地局の決定において、DPS送信時における最新の下りリンク品質が反映されないことに焦点を当てて説明してきた。しかしながら、この問題は送信基地局の決定に留まらず、CoMP送信における下りスケジューリング全体に渡ることに留意されたい。例えば、DPS送信に使用されるMCSやリソースブロック割当て等の下り送信パラメータの決定についても、DPS送信時における最新の下りリンク品質が反映されない。これにより、送信基地局に関して述べたのと同様に、無線通信システム全体のスループットの低下にも繋がることになるため、好ましくないと考えられる。 In the above description, the description has focused on the fact that the latest downlink quality at the time of DPS transmission is not reflected in the determination of the transmission base station for DPS transmission. However, it should be noted that this problem is not limited to the determination of the transmission base station, but extends to the entire downlink scheduling in CoMP transmission. For example, the latest downlink quality at the time of DPS transmission is not reflected in the determination of downlink transmission parameters such as MCS used for DPS transmission and resource block allocation. This leads to a decrease in the throughput of the entire wireless communication system, as described with respect to the transmission base station.
 以上をまとめると、図3のような場合において、下りデータに対して一旦スケジューリング(S204のタイミング)が行われたとしても、その後の下りリンク品質の変化に応じて、下りデータの再スケジューリング(S209のタイミング)を行うのが望ましいものと考えられる。これにより、図3における前記の問題を解決することができるようにも思われる。 In summary, in the case shown in FIG. 3, even if scheduling (timing of S204) is once performed for downlink data, rescheduling of downlink data (S209) according to the subsequent change in downlink quality. It is considered desirable to perform ( Thereby, it seems that the above-mentioned problem in FIG. 3 can be solved.
 図4にこのような再スケジューリングを行う場合の処理シーケンスを示す。図4は図3と大部分が同じであるが、S209のスケジューリングの後に、再スケジューリングの結果を通知するための情報を送信している点のみが異なる。なお、この情報は、再スケジューリングにより変更されたスケジューリング結果を通知するものであるため、下りスケジューリング変更情報と称することにする。下りスケジューリング変更情報を第1協調基地局10bと第2協調基地局10cに通知することで、これらの基地局が再スケジューリング結果を認識でき、下りリンク品質の変化に応じてDPS等の協調送信(CoMP送信)を実現できるようになる。 Fig. 4 shows the processing sequence for such rescheduling. FIG. 4 is largely the same as FIG. 3 except that information for notifying the result of rescheduling is transmitted after the scheduling of S209. Since this information notifies the scheduling result changed by rescheduling, it will be referred to as downlink scheduling change information. By notifying the downlink scheduling change information to the first coordinated base station 10b and the second coordinated base station 10c, these base stations can recognize the rescheduling result, and coordinated transmission such as DPS according to the change in downlink quality ( CoMP transmission) can be realized.
 ここで、下りスケジューリング変更情報の送信は、S205やS206と同様に、サービング基地局10aから第1協調基地局10bや第2協調基地局10cに対してバックホールを介して行えばよいようにも思われる。しかしながら、前述したように図4においては非理想バックホールを前提としている。そのため、下りスケジューリング変更情報をバックホールを介して送信すると、その送受信に比較的大きな遅延が伴うことになる。 Here, similarly to S205 and S206, the downlink scheduling change information may be transmitted from the serving base station 10a to the first coordinated base station 10b or the second coordinated base station 10c via the backhaul. Seem. However, as described above, FIG. 4 assumes a non-ideal backhaul. Therefore, when downlink scheduling change information is transmitted via the backhaul, a relatively large delay is involved in the transmission / reception.
 このような場合、図4に示されるように、下りスケジューリング変更情報の受信がS210a~S210cにおけるDPSの実行に間に合わないと考えられる。その結果、図4においても、図3と同様に、その後の下りリンク品質の変化を反映することなく、S210a~S210cにおいて送信基地局を第1協調基地局10bとするDPSが実行されてしまうことになる。したがって、図4の処理シーケンスで、は図3の処理シーケンスにおける前記の問題を解決できないことになる。 In such a case, as shown in FIG. 4, it is considered that the reception of the downlink scheduling change information is not in time for the execution of the DPS in S210a to S210c. As a result, also in FIG. 4, as in FIG. 3, DPS with the transmission base station as the first coordinated base station 10b is executed in S210a to S210c without reflecting subsequent changes in downlink quality. become. Therefore, the processing sequence of FIG. 4 cannot solve the above-described problem in the processing sequence of FIG.
 以上で説明したように、非理想バックホールを前提として下りのCoMP送信(例えばDPS等)を行う場合、サービング基地局10aから協調基地局に対してバックホールを介して送信される下りスケジューリング情報の受信に比較的大きな遅延が伴う。そのため、下りスケジューリング情報に基づいてサービング基地局10aと協調基地局とがCoMP送信を行った場合に、当該スケジューリング情報には最新の下りリンク状態が反映されないため、当該CoMP送信が適切に行われない状況が起こり得るという問題がある。さらに、最新の下りリンク状態を反映した下りスケジューリング情報を送ろうにも、バックホールを介するとやはり比較的大きな遅延が伴うため、前記の問題を解決することはできない。このような問題は、無線通信システム全体のスループットの低下にも繋がるため、できるだけ避けられるべきであると考えられる。 As described above, when downlink CoMP transmission (for example, DPS) is performed on the premise of non-ideal backhaul, downlink scheduling information transmitted from the serving base station 10a to the cooperative base station via the backhaul There is a relatively large delay in reception. Therefore, when the serving base station 10a and the coordinated base station perform CoMP transmission based on downlink scheduling information, the latest downlink state is not reflected in the scheduling information, and thus the CoMP transmission is not appropriately performed. There is a problem that the situation can happen. Furthermore, even when trying to send downlink scheduling information reflecting the latest downlink state, the above problem cannot be solved because a relatively large delay is still involved via the backhaul. Such a problem is thought to be avoided as much as possible because it leads to a decrease in the throughput of the entire wireless communication system.
 以下では、以上で述べた問題を解決する各実施形態を説明する。 In the following, each embodiment for solving the above-described problem will be described.
 [第1実施形態]
 第1実施形態は、前述した問題を解決する実施形態の一例であり、サービング基地局10aが協調送信のスケジューリングを変更する場合に、当該変更を無線信号により端末20を経由して協調基地局20bに送信するものである。
[First Embodiment]
The first embodiment is an example of an embodiment that solves the above-described problem, and when the serving base station 10a changes the scheduling of cooperative transmission, the change is transmitted via the terminal 20 by the radio signal to the cooperative base station 20b. To send to.
 より具体的には、第1実施形態は、1以上の無線端末20のうちの第1無線端末20に対して第1無線基地局と第2無線基地局とが協調して無線信号を送信する協調送信を行う無線通信方法であって、前記第1無線基地局が、前記協調送信を行うための下りスケジューリング情報を前記1以上の無線端末20の一つである第2無線端末20に送信し、前記第2無線端末20は、前記下りスケジューリング情報を前記第2無線基地局に送信する無線通信方法に係る実施形態である。 More specifically, in the first embodiment, the first radio base station and the second radio base station cooperate with each other to transmit a radio signal to the first radio terminal 20 among the one or more radio terminals 20. A radio communication method for performing coordinated transmission, wherein the first radio base station transmits downlink scheduling information for performing coordinated transmission to a second radio terminal 20 that is one of the one or more radio terminals 20. The second radio terminal 20 is an embodiment related to a radio communication method for transmitting the downlink scheduling information to the second radio base station.
 図5は第1実施形態の処理シーケンスの一例を示す図である。 FIG. 5 is a diagram illustrating an example of a processing sequence according to the first embodiment.
 第1実施形態の前提を説明する。図5に示されるように、第1実施形態においては、無線端末20、および3つの無線基地局10であるサービング基地局10a、第1協調基地局10b、ならびに第2協調基地局10cが登場する。 The premise of the first embodiment will be described. As shown in FIG. 5, in the first embodiment, a radio terminal 20, and a serving base station 10a, a first coordinated base station 10b, and a second coordinated base station 10c, which are three radio base stations 10, appear. .
 なお、本実施形態及び以降の各実施形態においては、サービング基地局10a、第1協調基地局10b、および第2協調基地局10cを総称して、単に無線基地局10と称することがある。また、第1協調基地局10b、および第2協調基地局10cを総称して、単に協調基地局10b~10cと称することがある。 In the present embodiment and the following embodiments, the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c may be collectively referred to simply as a radio base station 10. Further, the first cooperative base station 10b and the second cooperative base station 10c may be collectively referred to simply as the cooperative base stations 10b to 10c.
 無線端末20はサービング基地局10aと通信中である必要はないが、サービング基地局10aの配下(管理下)にあるものとする。また、3つの無線基地局10であるサービング基地局10a、第1協調基地局10b、および第2協調基地局10cは、互いに協調送信(CoMP送信)を行うための協調関係にあるものする。LTEシステムにおいては、この協調関係はCoMPセットと呼ばれる無線基地局集合によって定義される。CoMPセットは予めサービング基地局10aから無線端末20に通知されており、これにより無線端末20はCoMPセットに属するサービング基地局10a以外の無線基地局10(図5における第1協調基地局10bと第2協調基地局10c)とを認識することができる。 The wireless terminal 20 does not need to be communicating with the serving base station 10a, but is assumed to be under the management (under management) of the serving base station 10a. Further, the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c, which are the three radio base stations 10, are in a cooperative relationship for performing cooperative transmission (CoMP transmission). In the LTE system, this cooperative relationship is defined by a set of radio base stations called a CoMP set. The CoMP set is notified in advance from the serving base station 10a to the radio terminal 20, so that the radio terminal 20 can communicate with the radio base stations 10 other than the serving base station 10a belonging to the CoMP set (the first coordinated base station 10b in FIG. 2 cooperative base stations 10c).
 また、第1実施形態においては、前述した非理想的バックホールを前提とする。そのためサービング基地局10a、第1協調基地局10b、及び第2協調基地局10cの間のバックホールを介した通信において、例えば数十ミリ秒の比較的大きな遅延が発生することに留意されたい。 In the first embodiment, the above-described non-ideal backhaul is assumed. Therefore, it should be noted that a relatively large delay of, for example, several tens of milliseconds occurs in communication via the backhaul among the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c.
 なお、図5に示される例では協調基地局10b~10cが2つとなっているが、これは一例にすぎないのは言うまでもない。本願発明は、協調基地局は1つ以上の任意の数である場合に適用可能である。 In the example shown in FIG. 5, there are two cooperative base stations 10b to 10c, but it goes without saying that this is only an example. The present invention is applicable when the number of coordinated base stations is one or more.
 また、図5はCoMP方式の一つであるDPSを適用する場合の一例を示しているが、これは一例にすぎないことに注意されたい。本願発明は、CoMP方式がいずれの場合であっても適用可能である。 Also, FIG. 5 shows an example of applying DPS, which is one of the CoMP methods, but it should be noted that this is only an example. The present invention is applicable regardless of the CoMP method.
 以下では図5に示される各処理について順を追って説明する。 Hereinafter, each process shown in FIG. 5 will be described in order.
 図5のS301でサービング基地局10aにおいて下りデータが発生する。下りデータは無線端末20宛のデータであり、ユーザデータ(アプリケーションデータ)の他に高レイヤの制御信号(RRC信号等)も含まれる。 In step S301 in FIG. 5, downlink data is generated in the serving base station 10a. Downlink data is data addressed to the radio terminal 20, and includes high-layer control signals (RRC signals and the like) in addition to user data (application data).
 例えば無線端末20がインターネット上のサーバからファイル(Webページや電子メール等も含む)をダウンロードする場合に、サーバと無線端末20の間に位置する無線基地局10に下りデータ(ユーザデータ)が発生する。また、無線基地局10が無線端末20にRRC制御信号を送信する場合に、基地局に下りデータが発生する。このように、無線基地局10において発生する下りデータとしては、無線基地局10が起点となって生成されるデータのみならず、他装置により生成されて無線基地局10により中継されるデータも含まれることに注意されたい。 For example, when the wireless terminal 20 downloads a file (including a web page or an e-mail) from a server on the Internet, downlink data (user data) is generated in the wireless base station 10 located between the server and the wireless terminal 20. To do. Further, when the radio base station 10 transmits an RRC control signal to the radio terminal 20, downlink data is generated in the base station. Thus, the downlink data generated in the radio base station 10 includes not only data generated from the radio base station 10 but also data generated by other devices and relayed by the radio base station 10. Please note.
 S302aでサービング基地局10aは、下り参照信号を送信する。LTEシステムにおいてはいくつかの下り参照信号が規定されているが、S302aでは例えばセル固有参照信号(Cell-specific reference signal)や、チャネル状態情報参照信号(CSI(Channel State Information) reference signal)のような無線品質測定用の下り参照信号を送信する。 In S302a, the serving base station 10a transmits a downlink reference signal. In the LTE system, some downlink reference signals are defined. In S302a, for example, a cell-specific reference signal (Cell-specific reference signal) or a channel state information reference signal (CSI (Channel State information) reference reference signal) A downlink reference signal for wireless quality measurement is transmitted.
 また、S302bで第1協調基地局10bも下り参照信号を送信し、S302cで第2協調基地局10cも下り参照信号を送信する。これらはS302aと同様に行うことができる。なお、S302a~S302cは同一のサブフレームで送信されても良いし、異なるサブフレームで送信されてもかまわない。 In S302b, the first coordinated base station 10b also transmits a downlink reference signal, and in S302c, the second coordinated base station 10c also transmits a downlink reference signal. These can be performed similarly to S302a. Note that S302a to S302c may be transmitted in the same subframe or in different subframes.
 これに対し、S302aで無線端末20は、サービング基地局10aから下り参照信号を受信する。また、S302bで無線端末20は第1協調基地局10bからも下り参照信号を受信し、S302cで無線端末20は第2協調基地局10cからも下り参照信号を受信する。 In contrast, in S302a, the wireless terminal 20 receives a downlink reference signal from the serving base station 10a. In S302b, the radio terminal 20 also receives a downlink reference signal from the first coordinated base station 10b, and in S302c, the radio terminal 20 also receives a downlink reference signal from the second coordinated base station 10c.
 このとき無線端末20は、受信したそれぞれの下り参照信号に基づいて、各無線基地局10から無線端末20への無線品質(下りリンクの無線品質)を測定する。ここでの無線品質としては例えば信号対雑音電力比(SNR: Signal to Noise power Ratio)、信号対雑音干渉電力比(SINR: Signal to Interference plus Noise power Ratio)等を用いることができる。そして、無線端末20は、下りリンクの無線品質に基づいてCQI(Channel Quality Indicator)を生成する。CQIは下りリンクの通信路品質を示す指標であり、LTEシステムにおいて規定されている上り制御情報の一つである。CQIが無線基地局10にフィードバックされることで、無線基地局10は下りリンクの通信路品質を把握することができ、下りリンクのスケジューリング等を行うことが可能となる。 At this time, the radio terminal 20 measures the radio quality (downlink radio quality) from each radio base station 10 to the radio terminal 20 based on each received downlink reference signal. As the radio quality here, for example, a signal-to-noise power ratio (SNR: “Signal-to-Noise-power” Ratio), a signal-to-noise interference power ratio (SINR: “Signal-to-Interference” plus “Noise-power” Ratio), and the like can be used. Then, the radio terminal 20 generates CQI (Channel Quality Indicator) based on the downlink radio quality. CQI is an index indicating downlink channel quality and is one of uplink control information defined in the LTE system. As the CQI is fed back to the radio base station 10, the radio base station 10 can grasp the downlink channel quality and can perform downlink scheduling and the like.
 S303で無線端末20は、S302a~S302cの下り参照信号をもとにそれぞれ生成したCQIをサービング基地局10aに送信する。CQIは、物理上り制御チャネル(PUCCH: Physical Uplink Control CHannel)または物理上り共有チャネル(PUSCH: Physical Uplink Shared CHannel)で送信される。S302a~S302cで生成された3つのCQIは、同一のサブフレームで送信されても良いし、異なるサブフレームで送信されてもかまわない。 In S303, the radio terminal 20 transmits the CQI generated based on the downlink reference signals in S302a to S302c to the serving base station 10a. The CQI is transmitted through a physical uplink control channel (PUCCH: “Physical” Uplink “Control” CHannel) or a physical uplink shared channel (PUSCH: “Physical” Uplink “Shared” CHannel). The three CQIs generated in S302a to S302c may be transmitted in the same subframe or in different subframes.
 次にS304でサービング基地局10aは、S303で受信したCQIに基づいて、S301で発生した下りデータを送信するためのスケジューリングを行う。S304のスケジューリングにおいて、サービング基地局10aはS301で発生した下りデータを送信するための種々の決定を行う。以下ではこれらの決定について順を追って説明する。 Next, in S304, the serving base station 10a performs scheduling for transmitting the downlink data generated in S301 based on the CQI received in S303. In the scheduling in S304, the serving base station 10a makes various decisions for transmitting the downlink data generated in S301. In the following, these determinations will be described in order.
 S304でサービング基地局10aは、まず、S301で発生した下りデータを送信する無線基地局10(以降は便宜上、これを送信基地局と称する)を決定する。通常のLTEシステムにおいては、サービング基地局10aに発生した下りデータは、当該サービング基地局10aが無線端末20に送信する。しかしながら、本願においてはCoMPの適用を前提としているため、サービング基地局10aに発生した下りデータは、当該サービング基地局10a以外が無線端末20に送信することができる(もちろん当該サービング基地局10aが送信しても良いことは言うまでもない)。 In S304, the serving base station 10a first determines the radio base station 10 (hereinafter referred to as a transmission base station for convenience) that transmits the downlink data generated in S301. In a normal LTE system, downlink data generated in the serving base station 10 a is transmitted to the radio terminal 20 by the serving base station 10 a. However, since CoMP is applied in the present application, downlink data generated in the serving base station 10a can be transmitted to the radio terminal 20 other than the serving base station 10a (of course, the serving base station 10a transmits the downlink data). Needless to say, you can do that.)
 送信基地局は、前述したCoMPセットに含まれる無線基地局10から選択される。本実施形態においてはCoMPセットにはサービング基地局10a、第1協調基地局10b、第2協調基地局10cの3つが含まれるため、サービング基地局10aは送信基地局をこれらの中から決定する。送信基地局の決定は、CoMP方式の決定という側面もあることに留意する。例えば送信基地局が複数の場合には、必然的に、CoMP方式の一つであるJTが適用されることになるからである。 The transmission base station is selected from the radio base stations 10 included in the aforementioned CoMP set. In the present embodiment, since the CoMP set includes three serving base stations 10a, a first coordinated base station 10b, and a second coordinated base station 10c, the serving base station 10a determines a transmission base station from these. It should be noted that the determination of the transmission base station also has an aspect of determining the CoMP scheme. For example, when there are a plurality of transmission base stations, JT, which is one of the CoMP schemes, is inevitably applied.
 S304でサービング基地局10aは、送信基地局の決定を、S303で受信したCQIに基づいて行うことができる。一例としては、サービング基地局10aはS303で受信したCQIに基づき、無線端末20との間の下りリンクの品質が最良の無線基地局10を、送信基地局と決定することができる。この場合、CoMP方式の一つであるDPSやSSPSが行われることになる。別の一例としては、サービング基地局10aはS303で受信したCQIに基づき、無線端末20との間の下りリンクの品質が最良の無線基地局10と2番目の無線基地局10とを、送信基地局と決定することができる。この場合、CoMP方式の一つであるJTが行われることになる。また、その他の例としては、サービング基地局10aはS303で受信したCQIに基づき、当該サービング基地局10aを送信基地局と決定するとともに、協調基地局10b~10cに干渉低減の依頼を行うことを決定することもできる。この場合、CoMP方式の一つであるCSやCBが行われることになる。 In S304, the serving base station 10a can determine the transmission base station based on the CQI received in S303. As an example, based on the CQI received in S303, the serving base station 10a can determine the radio base station 10 with the best downlink quality with the radio terminal 20 as the transmission base station. In this case, DPS or SSPS, which is one of the CoMP methods, is performed. As another example, based on the CQI received in S303, the serving base station 10a transmits the radio base station 10 having the best downlink quality with the radio terminal 20 and the second radio base station 10 as transmission bases. Can be determined as a station. In this case, JT, which is one of the CoMP methods, is performed. As another example, the serving base station 10a determines that the serving base station 10a is a transmitting base station based on the CQI received in S303 and requests the coordinated base stations 10b to 10c to reduce interference. It can also be determined. In this case, CS or CB, which is one of the CoMP methods, is performed.
 サービング基地局10aは、送信基地局の決定を、CQI以外の任意の要素を加味して行ってもよい。一例としては、サービング基地局10aは、協調基地局10b~10cから負荷に関する情報を受け取っておき、下りリンク品質が所定以上であり且つ負荷が所定以下である無線基地局10が1つしかない場合に、その無線基地局10を送信基地局(例えばDPSを行う)と決定することができる。このように、サービング基地局10aは、CoMPセットに含まれる各無線基地局10の下りリンク無線品質に加え、各無線基地局10の負荷等を踏まえ、送信基地局を決定することができる。このような送信基地局の決定は、LTEシステムにおいて下りのCoMP送信を適用可能なスケジューリングで一般的に行われていることであり種々の従来技術が知られているため、ここでは詳細な説明は割愛する。なお、ここで言う負荷の例としては、無線基地局10が扱うデータレートや、無線リソースの使用率、無線基地局10のプロセッサ等のハードウェアの稼働率、無線基地局10に搭載される部材の発熱量などが該当する。 S304でサービング基地局10aは、次に、先に決定した送信基地局にS301で発生した下りデータを送信させるためパラメータ(以降は便宜上、これを下り送信パラメータと称する)を決定する。 The serving base station 10a may determine the transmission base station in consideration of any element other than CQI. As an example, the serving base station 10a receives information on the load from the coordinated base stations 10b to 10c, and when there is only one radio base station 10 whose downlink quality is equal to or higher than a predetermined value and whose load is equal to or lower than a predetermined value. The radio base station 10 can be determined as a transmission base station (for example, DPS is performed). As described above, the serving base station 10a can determine the transmission base station based on the downlink radio quality of each radio base station 10 included in the CoMP set, and the load of each radio base station 10. Such determination of the transmission base station is generally performed by scheduling applicable to downlink CoMP transmission in the LTE system, and various conventional techniques are known. Omit. Examples of the load mentioned here include data rates handled by the radio base station 10, radio resource usage rates, operating rates of hardware such as processors of the radio base station 10, and members mounted on the radio base station 10. This corresponds to the amount of heat generated. In S304, the serving base station 10a next determines a parameter (hereinafter referred to as a downlink transmission parameter for convenience) for causing the previously determined transmission base station to transmit the downlink data generated in S301.
 ここで、下り送信パラメータには、下りデータを送信または受信するための種々のパラメータが含まれる。下り送信パラメータは、例えばLTEシステムで規定されている下り制御情報(DCI: Downlink Control Information)に含まれる各種パラメータを含むことができる。DCIにはいくつかのフォーマットが規定されているが、例えばDCIフォーマット1は下りデータに付随する制御情報であり、当該下りデータを送受信するために必要な各種パラメータが含まれている。 Here, the downlink transmission parameters include various parameters for transmitting or receiving downlink data. The downlink transmission parameters can include, for example, various parameters included in downlink control information (DCI: Downlink Control Information) defined by the LTE system. Several formats are defined in DCI. For example, DCI format 1 is control information accompanying downlink data, and includes various parameters necessary for transmitting and receiving the downlink data.
 下り送信パラメータには、例えば、下りデータに適用される符号化方式や変調方式を示すMCS(Modulation and Coding Scheme)、下りデータをマッピングするリソースブロック(サブキャリア)を示すリソースブロック割当(Resource Block allocation)等が含まれる。これらは、前述したDCIフォーマット1に含まれるパラメータに相当する。 The downlink transmission parameters include, for example, MCS (Modulation and Coding Scheme) indicating a coding scheme and a modulation scheme applied to downlink data, and resource block allocation (Resource Block allocation) indicating a resource block (subcarrier) to which downlink data is mapped. ) Etc. are included. These correspond to the parameters included in the DCI format 1 described above.
 サービング基地局10aは、下り送信パラメータであるMCSやリソースブロック割当の決定を、S303で受信したCQIに基づいて行うことができる。また、CQI以外の任意の要素を加味してこれらのパラメータを決定してもよい。さらに、サービング基地局10aの配下の他の無線端末20との関係も考慮して、これらのパラメータを決定することもできる。これらのパラメータの決定は、LTEシステムにおける下りデータのスケジューリングで一般的に行われていることであり種々の従来技術が知られているため、ここでは詳細な説明は割愛する。 The serving base station 10a can determine MCS and resource block allocation that are downlink transmission parameters based on the CQI received in S303. Further, these parameters may be determined in consideration of an arbitrary element other than CQI. Furthermore, these parameters can also be determined in consideration of the relationship with other radio terminals 20 under the serving base station 10a. The determination of these parameters is generally performed in downlink data scheduling in the LTE system, and various conventional techniques are known. Therefore, detailed description thereof is omitted here.
 引き続き、下り送信パラメータの説明を行う。下り送信パラメータには、前述したものに加え、例えば送信基地局が下りデータを送信するタイミングに関する情報を含むことができる。LTEシステムにおける時間軸上の送信単位はサブフレーム(1ミリ秒)であるため、このタイミングはサブフレーム(下りサブフレーム)で指定される。以降は便宜上、この情報を下りサブフレーム情報と称することにする。 Next, we will explain the downlink transmission parameters. In addition to the above-described parameters, for example, the downlink transmission parameter can include information related to the timing at which the transmission base station transmits downlink data. Since the transmission unit on the time axis in the LTE system is a subframe (1 millisecond), this timing is specified by a subframe (downlink subframe). Hereinafter, this information will be referred to as downlink subframe information for convenience.
 ところで、下りデータの送信タイミング(下りサブフレーム情報)の決定にあたっては、非理想バックホールの前提を考慮する必要があることに注意を要する。後述するように、本実施形態においては下りサブフレーム情報(を含む下り送信パラメータ)は、非理想バックホールを介してサービング基地局10aから協調基地局10b~10cに送信される。ここで、前述したように、非理想バックホールを介した通信には例えば数十ミリ秒の遅延が発生する。この遅延のために、下りサブフレームの送信タイミングが早すぎると、当該送信タイミングの通知(協調基地局10b~10cによる下りサブフレーム情報の受信)が当該送信タイミングに間に合わないことが懸念される。 By the way, when determining the transmission timing of downlink data (downlink subframe information), it is necessary to consider the premise of non-ideal backhaul. As will be described later, in this embodiment, downlink subframe information (including downlink transmission parameters) is transmitted from the serving base station 10a to the coordinated base stations 10b to 10c via the non-ideal backhaul. Here, as described above, for example, a delay of several tens of milliseconds occurs in communication via the non-ideal backhaul. Due to this delay, there is a concern that if the transmission timing of the downlink subframe is too early, the notification of the transmission timing (reception of downlink subframe information by the cooperative base stations 10b to 10c) will not be in time for the transmission timing.
 具体例で説明する。非理想バックホールを介した通信に最大で40ミリ秒の遅延が発生する場合を考える。今、仮に、下りサブフレームの送信タイミングを例えば10サブフレーム後(10ミリ秒後)と決定したものとする。この場合、下りサブフレームの送信タイミングの通知(協調基地局10b~10cによる下りサブフレーム情報の受信)の30サブフレーム前(30ミリ秒前)に当該送信タイミングが過ぎてしまう可能性が生じる。 This will be explained with a specific example. Consider a case where a maximum delay of 40 milliseconds occurs in communication via a non-ideal backhaul. Now, suppose that the transmission timing of the downlink subframe is determined to be, for example, after 10 subframes (after 10 milliseconds). In this case, there is a possibility that the transmission timing may be passed 30 subframes (30 milliseconds before) of notification of transmission timing of the downlink subframe (reception of downlink subframe information by the cooperative base stations 10b to 10c).
 したがって、下りサブフレームの送信タイミングを、非理想バックホールの遅延を考慮して例えば50サブフレーム後(50ミリ秒後)と決定するのが好ましい。こうすれば、下りサブフレームの送信タイミングの通知(協調基地局10b~10cによる下りサブフレーム情報の受信)が最大に遅延したとしても、当該送信タイミングはその10サブフレーム後(10ミリ秒後)となる。これにより、協調基地局10b~10cが下りサブフレームの送信タイミングを余裕をもって迎えることが可能となる。 Therefore, it is preferable to determine the transmission timing of the downlink subframe, for example, after 50 subframes (after 50 milliseconds) in consideration of the non-ideal backhaul delay. In this way, even if the notification of the transmission timing of the downlink subframe (reception of downlink subframe information by the cooperative base stations 10b to 10c) is delayed to the maximum, the transmission timing is 10 subframes later (10 milliseconds later). It becomes. As a result, the coordinated base stations 10b to 10c can meet the transmission timing of the downlink subframe with a margin.
 なお、上記の説明においては、まず送信基地局を決定してから下り送信パラメータを決定しているが、決定の順番はこれに限られないことに留意されたい。特に、送信基地局と下り送信パラメータを併せて決定することも可能である。一例としては、S303で受信したCQIに基づいて、当該CQIが最良となる無線基地局10及びリソースブロック(サブキャリア)の組合せを選択し、当該無線基地局10を送信基地局と決定するとともに当該リソースブロックに基づいてリソースブロック割当を決定することができる。この例に限らず、送信基地局と下り送信パラメータの決定は本願の趣旨を逸脱しない限り、任意の方法、規則、アルゴリズム等に基づいて行うことができる。 Note that, in the above description, the transmission base station is first determined and then the downlink transmission parameters are determined, but it should be noted that the order of determination is not limited to this. In particular, the transmission base station and the downlink transmission parameters can be determined together. As an example, based on the CQI received in S303, the combination of the radio base station 10 and the resource block (subcarrier) with the best CQI is selected, and the radio base station 10 is determined as the transmission base station and A resource block assignment can be determined based on the resource block. The determination of the transmission base station and downlink transmission parameters is not limited to this example, and can be performed based on any method, rule, algorithm, or the like without departing from the spirit of the present application.
 S304の説明に戻る。S304でサービング基地局10aは、さらに、先に決定した送信基地局や下り送信パラメータの変更情報を協調基地局10b~10cに上りリンクを介して送信するためのパラメータ(以降は便宜上、これを上り送信パラメータと称する)を決定する。本実施形態においては、S304で一旦は送信基地局や下り送信パラメータを決定するが、その後の下りリンクの状態の変化に応じてこれらが変更される場合がある。ここでは、そのような変更に備えて、変更された送信基地局や下り送信パラメータを協調基地局10b~10cに通知するための上り送信パラメータを予め決定しておくのである。 Return to description of S304. In S304, the serving base station 10a further transmits a parameter for transmitting the previously determined transmission base station and downlink transmission parameter change information to the cooperative base stations 10b to 10c via the uplink (hereinafter referred to as uplink for convenience. Called transmission parameters). In the present embodiment, the transmission base station and downlink transmission parameters are once determined in S304, but these may be changed according to the subsequent change in the downlink state. Here, in preparation for such a change, uplink transmission parameters for notifying the coordinated base stations 10b to 10c of the changed transmission base station and downlink transmission parameters are determined in advance.
 上り送信パラメータは、変更情報を送信または受信するための種々のパラメータが含まれる。変更情報をPUCCHで送信するかPUSCHで送信するかに応じて細かい違いはあるが、以下では一例として、変更情報をPUSCHで送信する場合について上り送信パラメータを説明する。変更情報をPUCCHで送信する場合にもこれと同様に実現することができるが詳細は割愛する。 The uplink transmission parameters include various parameters for transmitting or receiving change information. Although there is a small difference depending on whether the change information is transmitted using PUCCH or PUSCH, the uplink transmission parameters will be described below as an example when the change information is transmitted using PUSCH. Even when the change information is transmitted by PUCCH, it can be realized in the same manner, but details are omitted.
 上り送信パラメータには、前述したDCIに含まれる各種パラメータを含むことができる。前述したようにDCIにはいくつかのフォーマットが規定されているが、例えばDCIフォーマット0は上りデータに先だって通知される制御情報であり、当該上りデータを送受信するために必要な各種パラメータが含まれている。 The uplink transmission parameters can include various parameters included in the DCI described above. As described above, several formats are defined for DCI. For example, DCI format 0 is control information that is notified prior to uplink data, and includes various parameters necessary for transmitting and receiving the uplink data. ing.
 上り送信パラメータには、例えば、上りデータに適用される符号化方式や変調方式を示すMCS、下りデータをマッピングするリソースブロック(サブキャリア)を示すリソースブロック割当等が含まれる。これらは、前述したDCIフォーマット0に含まれるパラメータに相当する。 Uplink transmission parameters include, for example, MCS indicating a coding scheme and modulation scheme applied to uplink data, resource block allocation indicating a resource block (subcarrier) to which downlink data is mapped, and the like. These correspond to the parameters included in the DCI format 0 described above.
 サービング基地局10aは、上り送信パラメータであるMCSやリソースブロック割当の決定を、例えば上りの参照信号(不図示)の測定結果に基づいて行うことができる。また、それの任意の要素を加味してこれらのパラメータを決定してもよい。これらのパラメータの決定は、LTEシステムにおける上りデータのスケジューリングで一般的に行われていることであり種々の従来技術が知られているため、ここでは詳細な説明は割愛する。 The serving base station 10a can determine MCS and resource block allocation that are uplink transmission parameters based on, for example, measurement results of uplink reference signals (not shown). Further, these parameters may be determined in consideration of arbitrary elements thereof. The determination of these parameters is generally performed in uplink data scheduling in the LTE system, and various conventional techniques are known. Therefore, detailed description thereof is omitted here.
 引き続き、上り送信パラメータの説明を行う。上り送信パラメータには、前述したものに加え、例えば送信基地局が変更情報を送信するタイミングに関する情報を含むことができる。LTEシステムにおいては、このタイミングはサブフレーム(上りサブフレーム)で指定される。以降は便宜上、この情報を上りサブフレーム情報と称することにする。 Next, the uplink transmission parameters will be explained. In addition to the above-described parameters, for example, the uplink transmission parameter can include information related to the timing at which the transmission base station transmits the change information. In the LTE system, this timing is specified by a subframe (uplink subframe). Hereinafter, for convenience, this information will be referred to as uplink subframe information.
 変更情報の送信タイミング(上りサブフレーム情報)の決定にあたっては、非理想バックホールの前提を考慮する必要があることに注意を要する。この点は、下りデータの送信タイミング(下りサブフレーム情報)の決定に関して上記で具体的に説明したのと同様に行えばよいため、ここでは詳細な説明は割愛する。 Note that it is necessary to consider the premise of non-ideal backhaul when determining the transmission timing (uplink subframe information) of change information. Since this point may be performed in the same manner as described above regarding the determination of the transmission timing of downlink data (downlink subframe information), detailed description thereof is omitted here.
 ここで、図5に示される本実施形態における処理の一例においては、S304のスケジューリングでサービング基地局10aは、第1協調基地局10bを送信基地局として決定したものとする。なお、この前提は、本実施形態における処理の具体例を説明するための一例に過ぎないことは言うまでもない。以下ではこの前提の下で説明を進める。 Here, in an example of the processing in the present embodiment shown in FIG. 5, it is assumed that the serving base station 10a determines the first coordinated base station 10b as the transmission base station by scheduling in S304. Needless to say, this premise is merely an example for explaining a specific example of processing in the present embodiment. In the following, the description will proceed under this assumption.
 なお、以降の説明においては、上述した送信基地局を示す情報と下り送信パラメータとを併せて、下りスケジューリング情報と呼ぶ場合がある。また、上述した上り送信パラメータを、上りスケジューリング情報と呼ぶ場合がある。 In the following description, information indicating the transmission base station described above and downlink transmission parameters may be collectively referred to as downlink scheduling information. Further, the uplink transmission parameter described above may be referred to as uplink scheduling information.
 図5の説明に戻って、S305でサービング基地局10aは、バックホールを介して、第1協調基地局10bに下りデータ、下りスケジューリング情報、及び上りスケジューリング情報を含む信号を送信する。これに対し、S305で第1協調基地局10bは、バックホールを介して、サービング基地局10aから下りデータ、下りスケジューリング情報、及び上りスケジューリング情報を含む信号を受信する。S305の送受信は、バックホール(非理想バックホ-ル)を介して行われるため、比較的大きな遅延が発生することに留意されたい。 Referring back to FIG. 5, in S305, the serving base station 10a transmits a signal including downlink data, downlink scheduling information, and uplink scheduling information to the first coordinated base station 10b via the backhaul. On the other hand, in S305, the first cooperative base station 10b receives a signal including downlink data, downlink scheduling information, and uplink scheduling information from the serving base station 10a via the backhaul. It should be noted that the transmission / reception in S305 is performed via a backhaul (non-ideal backhole), so that a relatively large delay occurs.
 S305の信号は、LTEシステムにおけるX2信号により実現することができる。なお、S305においては、第1協調基地局10bに下りデータ、下りスケジューリング情報、及び上りスケジューリング情報を一つの信号で送受信しているが、これらを複数の信号に分けて送信することとしてもかまわない。 The signal of S305 can be realized by the X2 signal in the LTE system. In S305, downlink data, downlink scheduling information, and uplink scheduling information are transmitted and received as a single signal to the first coordinated base station 10b. However, these may be transmitted separately in a plurality of signals. .
 また、S306でサービング基地局10aは、バックホールを介して、第2協調基地局10cに下りデータ、下りスケジューリング情報、及び上りスケジューリング情報を含む信号を送信する。これに対し、S306で第2協調基地局10cは、バックホールを介して、サービング基地局10aから下りデータ、下りスケジューリング情報、及び上りスケジューリング情報を含む信号を受信する。S306はS305と同様に行えばよいため、説明は割愛する。 In S306, the serving base station 10a transmits a signal including downlink data, downlink scheduling information, and uplink scheduling information to the second cooperative base station 10c via the backhaul. On the other hand, in S306, the second cooperative base station 10c receives a signal including downlink data, downlink scheduling information, and uplink scheduling information from the serving base station 10a via the backhaul. Since S306 may be performed in the same manner as S305, description thereof is omitted.
 なお、図3のS205~S206においては下りデータは送信基地局のみに対して送信されるのに対し、図5のS305~S306においては下りデータは全ての協調基地局10b~10cに対して送信されることには注意を要する。本実施形態においては、後に送信基地局が変更される可能性があるため、送信基地局となり得る全ての協調基地局10b~10cに下りデータを予め送信しておくのである。 In S205 to S206 in FIG. 3, downlink data is transmitted only to the transmission base station, whereas in S305 to S306 in FIG. 5, downlink data is transmitted to all the coordinated base stations 10b to 10c. Be careful about what is done. In this embodiment, since the transmission base station may be changed later, the downlink data is transmitted in advance to all the coordinated base stations 10b to 10c that can become the transmission base station.
 次に図5のS307a~S307cでサービング基地局10a、第1協調基地局10b、および第2協調基地局10cは無線端末20に対し下り参照信号をそれぞれ送信する。また、S308で無線端末20は、S307a~S307cにおける下り参照信号に基づいて測定した下りリンク品質を示すCQIを、サービング基地局10aに送信する。そしてS309でサービング基地局10aは、S308のCQI等に基づいて、S301の下りデータのスケジューリング(再スケジューリング)を行う。 Next, in steps S307a to S307c in FIG. 5, the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c transmit downlink reference signals to the radio terminal 20, respectively. In S308, the radio terminal 20 transmits CQI indicating the downlink quality measured based on the downlink reference signal in S307a to S307c to the serving base station 10a. In step S309, the serving base station 10a performs downlink data scheduling (rescheduling) in step S301 based on the CQI and the like in step S308.
 図3について既に説明したように、LTEシステムにおいてはCQI送信周期が2、5、10、20、40、80、160の7種類の値から選択的に設定される(単位はサブフレーム=ミリ秒)。S307(S307a~S307c)~S309は、S302~S304の次のCQI送信周期において行われるスケジューリング処理に相当する。すなわち、S302~S304からCQI送信周期が経過した後に、S307~S309が行われる。そしてこれ以降も、CQI送信周期が経過する毎に、同様のスケジューリング処理が周期的に行われる。 As already described with reference to FIG. 3, in the LTE system, the CQI transmission cycle is selectively set from seven types of values of 2, 5, 10, 20, 40, 80, and 160 (the unit is subframe = millisecond). ). S307 (S307a to S307c) to S309 correspond to the scheduling process performed in the next CQI transmission cycle after S302 to S304. That is, S307 to S309 are performed after the CQI transmission cycle has elapsed from S302 to S304. Thereafter, the same scheduling process is periodically performed every time the CQI transmission period elapses.
 ここで、S307a~S307c、およびS308は、S302a~S302c、およびS303と同様に行えばよいため、ここでは説明を割愛する。 Here, since S307a to S307c and S308 may be performed in the same manner as S302a to S302c and S303, description thereof is omitted here.
 S309についても、S304と同様の処理であるため詳細な説明は割愛する。ただし、図5に示される本実施形態における処理の一例においては、S304では下りデータ(S301で発生したもの)の最初のスケジューリングが行われているのに対し、S309では当該下りデータの再スケジューリングが行われていることに留意されたい。 Since S309 is the same process as S304, a detailed description thereof will be omitted. However, in the example of processing in the present embodiment shown in FIG. 5, the initial scheduling of downlink data (generated in S301) is performed in S304, whereas the rescheduling of the downlink data is performed in S309. Note that this is done.
 ここで、図5に示される本実施形態における処理の一例においては、S309のスケジューリングでサービング基地局10aは、第2協調基地局10cを送信基地局として決定したものとする。すなわち、S304のスケジューリングの時点から下りリンクの無線品質の変化等が生じたことにより、S309において下りデータのスケジューリング(例えば送信基地局)が変更されたものとする。なお、この前提は、本実施形態における処理の具体例を説明するための一例に過ぎないことは言うまでもない。以下ではこの前提の下で説明を進める。 Here, in an example of processing in the present embodiment illustrated in FIG. 5, it is assumed that the serving base station 10 a determines the second coordinated base station 10 c as the transmission base station by scheduling in S <b> 309. That is, it is assumed that downlink data scheduling (for example, a transmission base station) is changed in S309 due to a change in downlink radio quality or the like from the time of scheduling in S304. Needless to say, this premise is merely an example for explaining a specific example of processing in the present embodiment. In the following, the description will proceed under this assumption.
 次にS310でサービング基地局10aは、下りスケジューリング変更情報と上りスケジューリング情報とを無線端末20に送信する。これに対し無線端末20は、下りスケジューリング変更情報と上りスケジューリング情報とをサービング基地局10aから受信する。 Next, in S310, the serving base station 10a transmits downlink scheduling change information and uplink scheduling information to the radio terminal 20. On the other hand, the radio terminal 20 receives downlink scheduling change information and uplink scheduling information from the serving base station 10a.
 ここで、下りスケジューリング変更情報とは、S309で変更された下りデータのスケジューリングを示す情報である。下りスケジューリング変更情報に含まれる情報は、下りスケジューリング情報に含まれる情報に準じ、送信基地局情報や下り送信パラメータを含むことができる。下りスケジューリング情報においては、下りスケジューリング情報から変更された内容のみを含むこととしても良いし、最新のスケジューリングに基づく全ての下りスケジューリング情報を含むようにしてもかまわない。 Here, the downlink scheduling change information is information indicating the scheduling of the downlink data changed in S309. The information included in the downlink scheduling change information can include transmission base station information and downlink transmission parameters according to the information included in the downlink scheduling information. The downlink scheduling information may include only the contents changed from the downlink scheduling information, or may include all downlink scheduling information based on the latest scheduling.
 また、S310で送受信される上りスケジューリング情報は、S305~S306でサービング基地局10aから各協調基地局10b~10cに送信されるものと同じ情報である。これにより、上りスケジューリング情報が無線端末20と各協調基地局10b~10cとで共有されることになる。 Further, the uplink scheduling information transmitted / received in S310 is the same information that is transmitted from the serving base station 10a to the coordinated base stations 10b to 10c in S305 to S306. As a result, the uplink scheduling information is shared between the radio terminal 20 and each of the cooperative base stations 10b to 10c.
 ここで着目すべき点は、S310で下りスケジューリング変更情報や上りスケジューリング情報がサービング基地局10aから無線端末20に対して無線信号(下りリンク)を介して送信されることである。S305~S306で下りスケジューリング情報や上りスケジューリング情報はバックホールを介して送信されているが、S310はこれらとは異なることに留意されたい。S310で各情報が無線信号を介して送信されることの技術的意義については後述する。 It should be noted that downlink scheduling change information and uplink scheduling information are transmitted from the serving base station 10a to the radio terminal 20 via a radio signal (downlink) in S310. It should be noted that although downlink scheduling information and uplink scheduling information are transmitted via the backhaul in S305 to S306, S310 is different from these. The technical significance of transmitting each piece of information via a radio signal in S310 will be described later.
 さて、S310の下りスケジューリング変更情報は、PDCCHを介して送信してもよいし、PDSCHを介して送信しても良い。下りスケジューリング変更情報は、例えば下りのRRC信号によって、PDSCHを介して送信することができる。また、下りスケジューリング変更情報は、前述したDCIによって、PDCCHを介して送信することができる。なお、下りの送信においては、PDCCHとPDSCHのいずれを介する場合であっても、上りの送信のように事前に送信パラメータを無線端末20に通知しておく必要はないことに留意されたい。 Now, the downlink scheduling change information in S310 may be transmitted via PDCCH or may be transmitted via PDSCH. The downlink scheduling change information can be transmitted via the PDSCH by, for example, a downlink RRC signal. Also, the downlink scheduling change information can be transmitted via the PDCCH by the above-described DCI. It should be noted that in downlink transmission, it is not necessary to notify the radio terminal 20 of transmission parameters in advance as in uplink transmission, regardless of whether the transmission is through PDCCH or PDSCH.
 次に図5のS311で無線端末20は、S310で受信した上りスケジューリング情報に基づいて、S310で受信した下りスケジューリング変更情報を第1協調基地局10bに送信する。これに対し、第1協調基地局10bは、S305で受信した上りスケジューリング情報に基づいて、下りスケジューリング変更情報を無線端末20から受信する。 Next, in S311 of FIG. 5, the radio terminal 20 transmits the downlink scheduling change information received in S310 to the first coordinated base station 10b based on the uplink scheduling information received in S310. On the other hand, the first cooperative base station 10b receives downlink scheduling change information from the radio terminal 20 based on the uplink scheduling information received in S305.
 前述したように、上りスケジューリング情報は、例えばPUSCH送信を行うためのMCS、リソースブロック(サブキャリア)割当、タイミング(上りサブフレーム)等の上り送信パラメータを含む。S311で無線端末20は、S310で受信した上りスケジューリング情報が示すこれらの上り送信パラメータに基づいて、下りスケジューリング変更情報を第1協調基地局10bに送信する。これに対し第1協調基地局10bは、S305で受信した上りスケジューリング情報が示すこれらの上り送信パラメータに基づいて、下りスケジューリング変更情報を無線端末20から受信する。 As described above, the uplink scheduling information includes uplink transmission parameters such as MCS for performing PUSCH transmission, resource block (subcarrier) allocation, timing (uplink subframe), and the like. In S311, the radio terminal 20 transmits downlink scheduling change information to the first coordinated base station 10b based on these uplink transmission parameters indicated by the uplink scheduling information received in S310. On the other hand, the first cooperative base station 10b receives downlink scheduling change information from the radio terminal 20 based on these uplink transmission parameters indicated by the uplink scheduling information received in S305.
 無線端末20が第1協調基地局10bに送信する下りスケジューリング情報は、S311で受信したものをそのまま用いても良いし、第1協調基地局10bに対して必要な情報を含む範囲で所定の加工を行ったものを用いることとしてもかまわない。 The downlink scheduling information transmitted from the radio terminal 20 to the first cooperative base station 10b may be the one received in S311 as it is, or may be processed within a range that includes information necessary for the first cooperative base station 10b. You may use what you did.
 ここで着目すべき点は、S311で下りスケジューリング変更情報が無線端末20から第1協調基地局10bに対して無線信号(上りリンク)を介して送信されることである。S305~S306で下りスケジューリング情報はバックホールを介して送信されているが、S311はこれらとは異なることに留意されたい。 The point to be noted here is that the downlink scheduling change information is transmitted from the radio terminal 20 to the first cooperative base station 10b via the radio signal (uplink) in S311. Note that the downlink scheduling information is transmitted via the backhaul in S305 to S306, but S311 is different from these.
 なお、S310およびS312を合わせれば、サービング基地局10aから第1協調基地局10bへの下りスケジューリング変更情報を、無線端末20が中継していると解釈することもできることに留意されたい。言い換えれば、サービング基地局10aから第1協調基地局10bへの下りスケジューリング変更情報を、無線端末20が下りリンクで受信して上りリンクで送信することで、無線端末20を経由した中継送信を実現していることになる。 It should be noted that if S310 and S312 are combined, the downlink scheduling change information from the serving base station 10a to the first cooperative base station 10b can also be interpreted as being relayed by the radio terminal 20. In other words, the downlink scheduling change information from the serving base station 10a to the first cooperative base station 10b is received by the radio terminal 20 on the downlink and transmitted on the uplink, thereby realizing relay transmission via the radio terminal 20 Will be.
 ここで、S310およびS311の技術的意義を説明する。S310およびS311により、下りリンクスケジューリング変更情報がサービング基地局10aから無線端末20を経由して第1協調基地局10bに送信されることになる。ここで、S310とS311のいずれにおいても、下りリンクスケジューリング変更情報は無線信号により送信されている。無線信号の送受信に伴う遅延は最小限であるため、S310~S311に渡る下りリンクスケジューリング変更情報の送信に伴う遅延は、数サブフレーム(数ミリ秒)程度に留まるものと考えられる。 Here, the technical significance of S310 and S311 will be described. Through S310 and S311, downlink scheduling change information is transmitted from the serving base station 10a to the first coordinated base station 10b via the radio terminal 20. Here, in both S310 and S311, the downlink scheduling change information is transmitted by a radio signal. Since the delay associated with the transmission / reception of the radio signal is minimal, the delay associated with the transmission of the downlink scheduling change information over S310 to S311 is considered to be about several subframes (several milliseconds).
 そのため、図3や図4においては非理想バックホールを前提としたことに基づいて生じた問題が、図5に示される第1実施形態においては、非理想バックホールを前提としているにもかかわらず生じない。より具体的には、図5ではS309でサービング基地局10aは下りデータの再スケジューリングを行った結果を、S310~S312で下りスケジューリング変更情報として各協調基地局10b~10cに送信する。ここで、S309の再スケジューリングにおいては最新の下りリンク品質が考慮されるため、S310~S312で送信される下りスケジューリング変更情報は最新の下りリンク品質が反映されたものとなっている。したがって、この下りスケジューリング変更情報を、先に決定したCoMP送信のタイミングに間に合うように協調基地局10b~10cに通知できれば、最新の無線品質を反映したCoMP送信を行うことが可能なことになる。 Therefore, in FIG. 3 and FIG. 4, the problem caused based on the premise of the non-ideal backhaul is the first embodiment shown in FIG. 5, although the non-ideal backhaul is assumed. Does not occur. More specifically, in FIG. 5, the serving base station 10a transmits the result of rescheduling downlink data in S309 to the coordinated base stations 10b to 10c as downlink scheduling change information in S310 to S312. Here, since the latest downlink quality is considered in the rescheduling in S309, the downlink scheduling change information transmitted in S310 to S312 reflects the latest downlink quality. Therefore, if this downlink scheduling change information can be notified to the coordinated base stations 10b to 10c in time for the previously determined CoMP transmission timing, CoMP transmission reflecting the latest radio quality can be performed.
 ここで、図4に示されるように、下りスケジューリング変更情報を非理想バックホールを介して協調基地局10b~10cに送信すると、遅延が大きいため、CoMP送信のタイミングに間に合わないという問題があった。しかしながら、図5に示される本実施形態においては、下りスケジューリング変更情報を無線リンクを介して協調基地局10b~10cに送信するため、遅延が少なく、CoMP送信のタイミングに間に合わせることが可能になる。したがって、本実施形態によれば、最新の無線品質を反映したCoMP送信を行うことが可能とすることができる。 Here, as shown in FIG. 4, when the downlink scheduling change information is transmitted to the coordinated base stations 10b to 10c via the non-ideal backhaul, there is a problem that the delay is large and the timing of CoMP transmission is not in time. . However, in the present embodiment shown in FIG. 5, since the downlink scheduling change information is transmitted to the coordinated base stations 10b to 10c via the radio link, there is little delay and it is possible to make it in time for the CoMP transmission timing. . Therefore, according to the present embodiment, it is possible to perform CoMP transmission reflecting the latest radio quality.
 図5の説明に戻って、S312で無線端末20は、S310で受信した上りスケジューリング情報に基づいて、S310で受信した下りスケジューリング変更情報を第2協調基地局10cに送信する。これに対し、第2協調基地局10cは、S306で受信した上りスケジューリング情報に基づいて、下りスケジューリング変更情報を無線端末20から受信する。S312はS311と同様に行えばよいため、ここでは詳細な説明を割愛する。 Returning to the description of FIG. 5, in S312, the radio terminal 20 transmits the downlink scheduling change information received in S310 to the second cooperative base station 10c based on the uplink scheduling information received in S310. On the other hand, the second cooperative base station 10c receives downlink scheduling change information from the radio terminal 20 based on the uplink scheduling information received in S306. Since S312 may be performed in the same manner as S311, detailed description thereof is omitted here.
 最後に、図5のS313a~S313cで、サービング基地局10a、第1協調基地局10b、および第2協調基地局10cは、下りデータを無線端末20にCoMP送信(協調送信)する。ここでのCoMP送信は、上記で説明したように、最新の下りリンク品質が反映されたものであることに留意する。 Finally, in S313a to S313c of FIG. 5, the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c perform CoMP transmission (cooperative transmission) of the downlink data to the wireless terminal 20. Note that the CoMP transmission here reflects the latest downlink quality, as described above.
 図5に示される本実施形態における処理の一例においては、S304のスケジューリングで送信基地局が一旦は第1協調基地局10bに決定されたが、その後にS309のスケジューリングで送信基地局が第2協調基地局10cに変更されている。また、この変更は、下りスケジューリング変更情報により、サービング基地局10aから無線端末20を経由して各協調基地局10b~10cに通知されている。したがって、S313a~S313cで、サービング基地局10a、第1協調基地局10b、および第2協調基地局10cは、第2協調基地局10cを送信基地局とするDPSにより、協調して下りデータを無線端末20に送信する。 In the example of processing in the present embodiment shown in FIG. 5, the transmission base station is temporarily determined to be the first cooperative base station 10b in the scheduling of S304, but then the transmission base station is in the second cooperative state in the scheduling of S309. The base station 10c is changed. In addition, this change is notified from the serving base station 10a to the coordinated base stations 10b to 10c via the radio terminal 20 by downlink scheduling change information. Accordingly, in S313a to S313c, the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c wirelessly transmit downlink data in cooperation with DPS using the second cooperative base station 10c as a transmission base station. It transmits to the terminal 20.
 具体的には、S313cにおいて送信基地局である第2協調基地局10cは、S312で受信した下りスケジューリング変更情報に基づいて、無線端末20に対して下りデータを送信する。これに対し、S313aにおいてサービング基地局10aは、S309における自らのスケジューリング結果に基づいて、無線端末20に対してブランキング(無送信)を行う。また、313bにおいて第1協調基地局10bは、S311で受信した下りスケジューリング変更情報に基づいて、無線端末20に対してブランキングを行う。そして無線端末20は、第2協調基地局10cから下りデータを受信する。 Specifically, the second cooperative base station 10c, which is a transmission base station in S313c, transmits downlink data to the radio terminal 20 based on the downlink scheduling change information received in S312. On the other hand, in S313a, the serving base station 10a performs blanking (no transmission) to the radio terminal 20 based on its own scheduling result in S309. In 313b, the first cooperative base station 10b performs blanking for the radio terminal 20 based on the downlink scheduling change information received in S311. And the radio | wireless terminal 20 receives downlink data from the 2nd cooperation base station 10c.
 図5のS313a~S313cにおけるCoMP送信(DPS)は、上記で説明したように、最新の下りリンク品質が反映されたものであることに留意する。したがって、図5に示した処理シーケンスにおいては、CoMP方式の一つであるDPSを、下りリンクの無線品質に即応して適切に実行することができると考えられる。 Note that the CoMP transmission (DPS) in S313a to S313c in FIG. 5 reflects the latest downlink quality as described above. Therefore, in the processing sequence shown in FIG. 5, it is considered that DPS, which is one of the CoMP schemes, can be appropriately executed in response to downlink radio quality.
 次に、図6に第1実施形態の処理シーケンスの他の一例を示す。 Next, FIG. 6 shows another example of the processing sequence of the first embodiment.
 上記で説明した図5においては、下りデータのスケジューリングが再スケジューリングによって変更されていた。すなわち、図5の1度目のスケジューリング(S304)において下りデータのスケジューリングが一旦行われた後に、下りリンク品質の変化等に応じて、2度目のスケジューリング(S309)において下りデータのスケジューリングが変更されていた。これに対し、図6は、下りデータのスケジューリングが再スケジューリングによって変更されない場合の処理シーケンスを示す図となっている。 In FIG. 5 described above, the scheduling of downlink data has been changed by rescheduling. That is, after the downlink data scheduling is performed once in the first scheduling (S304) in FIG. 5, the downlink data scheduling is changed in the second scheduling (S309) in accordance with a change in downlink quality or the like. It was. On the other hand, FIG. 6 is a diagram showing a processing sequence when downlink data scheduling is not changed by rescheduling.
 図6のS401~S408は、図5のS301~S308と同様であるため詳細は割愛する。 6 are the same as S301 to S308 in FIG. 5, and therefore the details are omitted.
 図6のS409についても、図5のS309と同様の処理であるため詳細な説明は割愛する。ただし、図5においては、S309のスケジューリングでサービング基地局10aは、第2協調基地局10cを送信基地局として決定している。すなわち、S304のスケジューリングの時点から下りリンクの無線品質の変化等が生じたことにより、S309において下りデータのスケジューリング(例えば送信基地局)が変更されている。これに対し、図6においては、S409のスケジューリングでサービング基地局10aは、第1協調基地局10cを送信基地局として決定するものとする。すなわち、S404のスケジューリングの時点から下りリンクの無線品質の変化が小さい等の理由により、S409において下りデータのスケジューリング(例えば送信基地局)が変更されないものとする。 6 is also the same process as S309 in FIG. 5, and thus detailed description thereof is omitted. However, in FIG. 5, the serving base station 10 a determines the second coordinated base station 10 c as a transmission base station in the scheduling of S <b> 309. That is, the downlink data scheduling (for example, the transmission base station) is changed in S309 due to a change in downlink radio quality or the like from the time of scheduling in S304. On the other hand, in FIG. 6, it is assumed that the serving base station 10a determines the first coordinated base station 10c as a transmission base station in the scheduling of S409. That is, it is assumed that scheduling of downlink data (for example, a transmission base station) is not changed in S409 due to a small change in downlink radio quality from the time of scheduling in S404.
 このとき、図6においては、図5のS310~S312に示されるような下りスケジューリング変更情報の送受信は行われない。図6のS409で下りデータのスケジューリングが変更されていないため、サービング基地局10aがスケジューリングの変更を第1協調基地局10bおよび第2協調基地局10cに通知する必要がそもそもないからである。 At this time, in FIG. 6, transmission / reception of the downlink scheduling change information as shown in S310 to S312 of FIG. 5 is not performed. This is because the scheduling of downlink data has not been changed in S409 of FIG. 6, and therefore the serving base station 10a does not need to notify the first cooperative base station 10b and the second cooperative base station 10c of the scheduling change in the first place.
 そして、図6においては、S410a~S410cで、サービング基地局10a、第1協調基地局10b、および第2協調基地局10cは、第1協調基地局10cを送信基地局とするDPSにより、協調して下りデータを無線端末20に送信する。図6に示される本実施形態における処理の一例においては、S404のスケジューリングで送信基地局が第1協調基地局10bに決定され、その後にS409のスケジューリングで送信基地局が変更されていない。そのため、S410a~S410cでは、S404のスケジューリングにおける決定に応じて、第1協調基地局10cを送信基地局とするDPSが行われるのである。 In FIG. 6, in S410a to S410c, the serving base station 10a, the first coordinated base station 10b, and the second coordinated base station 10c cooperate with each other by DPS using the first coordinated base station 10c as a transmission base station. Then, the downlink data is transmitted to the wireless terminal 20. In the example of processing in the present embodiment shown in FIG. 6, the transmission base station is determined to be the first coordinated base station 10b by the scheduling of S404, and thereafter the transmission base station is not changed by the scheduling of S409. Therefore, in S410a to S410c, DPS using the first coordinated base station 10c as a transmission base station is performed according to the determination in the scheduling in S404.
 図6のS410a~S410cにおけるCoMP送信(DPS)は、図5のS313a~S313cのCoMP送信(DPS)と同様に、最新の下りリンク品質が反映されたものであることに留意する。したがって、図6に示した処理シーケンスにおいても、図5と同様に、CoMP方式の一つであるDPSを、下りリンクの無線品質に即応して適切に実行することができると考えられる。 Note that the CoMP transmission (DPS) in S410a to S410c in FIG. 6 reflects the latest downlink quality, similar to the CoMP transmission (DPS) in S313a to S313c in FIG. Therefore, in the processing sequence shown in FIG. 6 as well, as in FIG. 5, it is considered that DPS, which is one of the CoMP schemes, can be executed appropriately in response to downlink radio quality.
 以上で説明した第1実施形態によれば、非理想バックホールを前提とした場合に生ずる前記の問題を解決することができる。すなわち、第1実施形態によれば、非理想バックホールを前提とする場合であっても、サービング基地局10aと協調基地局10b~10cとが最新の下りリンク品質を反映したCoMP送信を行うことが可能となる。したがって、第1実施形態は、無線通信システム全体のスループットの低下が抑制されるという従来技術には無い顕著な効果を奏するものである。 According to the first embodiment described above, it is possible to solve the above-described problem that occurs when a non-ideal backhaul is assumed. That is, according to the first embodiment, even when a non-ideal backhaul is assumed, the serving base station 10a and the coordinated base stations 10b to 10c perform CoMP transmission reflecting the latest downlink quality. Is possible. Therefore, 1st Embodiment has a remarkable effect which is not in the prior art that the fall of the throughput of the whole radio communications system is controlled.
 [第2実施形態]
 第2実施形態は、前述した問題を解決する実施形態の他の一例であり、サービング基地局10aが協調送信のスケジューリングを通知する場合に、当該通知を無線信号により無線端末20を経由して協調基地局10b~10cに送信するものである。
[Second Embodiment]
The second embodiment is another example of the embodiment that solves the above-described problem. When the serving base station 10a notifies the scheduling of coordinated transmission, the notification is coordinated via the radio terminal 20 by a radio signal. The data is transmitted to the base stations 10b to 10c.
 第2実施形態は第1実施形態と共通する点が多いため、以下では第2実施形態において第1実施形態と異なる点を中心に詳しく述べる。第2実施形態においては、第1実施形態と重複する説明は適宜割愛されていることに留意されたい。 Since the second embodiment has many points in common with the first embodiment, the second embodiment will be described in detail below with a focus on differences from the first embodiment. It should be noted that in the second embodiment, descriptions overlapping with those in the first embodiment are omitted as appropriate.
 図7は第2実施形態に処理シーケンスの一例を示す図である。第2実施形態の前提は第1実施形態のそれに準ずるので、ここでは説明を割愛する。ただ、第2実施形態においても、第1実施形態と同様に、非理想バックホールを前提とすることは留意されたい。 FIG. 7 is a diagram illustrating an example of a processing sequence according to the second embodiment. Since the premise of the second embodiment is the same as that of the first embodiment, the description is omitted here. However, it should be noted that the second embodiment also assumes a non-ideal backhaul as in the first embodiment.
 図7のS501は、第1実施形態に係る図5のS301と同様に行えばよいため説明を割愛する。 Since S501 in FIG. 7 may be performed in the same manner as S301 in FIG. 5 according to the first embodiment, a description thereof will be omitted.
 図7のS502でサービング基地局はスケジューリングを行う。S502でのスケジューリングにおいては、上り送信パラメータを決定する。S502でのスケジューリングにおいては、第1実施形態に係る図5のS304とは異なり、送信基地局、下り送信パラメータ、下りサブフレーム情報(下りデータの送信タイミング)の決定を行う必要はない。S502における上り送信パラメータの決定は、S304における上り送信パラメータの決定と同様に行えばよいためここでは詳細な説明を割愛する。 The serving base station performs scheduling in S502 of FIG. In the scheduling in S502, an uplink transmission parameter is determined. In the scheduling in S502, unlike S304 in FIG. 5 according to the first embodiment, it is not necessary to determine a transmission base station, downlink transmission parameters, and downlink subframe information (downlink data transmission timing). Since the determination of the uplink transmission parameter in S502 may be performed in the same manner as the determination of the uplink transmission parameter in S304, a detailed description is omitted here.
 図7のS503でサービング基地局10aは、バックホールを介して、第1協調基地局10bに下りデータ、及び上りスケジューリング情報を含む信号を送信する。これに対し、S503で第1協調基地局10bは、バックホールを介して、サービング基地局10aから下りデータ、及び上りスケジューリング情報を含む信号を受信する。 In S503 of FIG. 7, the serving base station 10a transmits a signal including downlink data and uplink scheduling information to the first coordinated base station 10b via the backhaul. On the other hand, in S503, the first cooperative base station 10b receives a signal including downlink data and uplink scheduling information from the serving base station 10a via the backhaul.
 図7のS503においては、第1実施形態に係る図5のS305とは異なり、送信基地局や下りスケジューリング情報(送信基地局、下り送信パラメータ、下りサブフレーム情報等)の送信を行う必要はない。S503における下りデータ、及び上りスケジューリング情報の送信は、S305における送信と同様に行えばよいためここでは詳細な説明を割愛する。なお、S503の送受信は、バックホール(非理想バックホ-ル)を介して行われるため、比較的大きな遅延が発生することに留意されたい。 In S503 of FIG. 7, unlike S305 of FIG. 5 according to the first embodiment, it is not necessary to transmit a transmission base station or downlink scheduling information (transmission base station, downlink transmission parameters, downlink subframe information, etc.). . The transmission of downlink data and uplink scheduling information in S503 may be performed in the same manner as the transmission in S305, and thus detailed description thereof is omitted here. It should be noted that the transmission / reception in S503 is performed via a backhaul (non-ideal backhole), so that a relatively large delay occurs.
 図7のS504でサービング基地局10aは、バックホールを介して、第2協調基地局10cに下りデータ、及び上りスケジューリング情報を含む信号を送信する。これに対し、S504で第2協調基地局10cは、バックホールを介して、サービング基地局10aから下りデータ、及び上りスケジューリング情報を含む信号を受信する。S504はS503と同様に行えばよいため、説明は割愛する。 In S504 of FIG. 7, the serving base station 10a transmits a signal including downlink data and uplink scheduling information to the second cooperative base station 10c via the backhaul. On the other hand, in S504, the second cooperative base station 10c receives a signal including downlink data and uplink scheduling information from the serving base station 10a via the backhaul. Since S504 may be performed in the same manner as S503, description thereof is omitted.
 次に図7のS505a~S505cでサービング基地局10a、第1協調基地局10b、および第2協調基地局10cは無線端末20に対し下り参照信号をそれぞれ送信する。また、S506a~S506cで無線端末20は、S505a~S505cにおける下り参照信号に基づいて測定した下りリンク品質を示すCQIを、サービング基地局10aに送信する。そしてS507でサービング基地局10aは、S506のCQI等に基づいて、S501の下りデータのスケジューリングを行う。 Next, in steps S505a to S505c in FIG. 7, the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c transmit downlink reference signals to the wireless terminal 20, respectively. In S506a to S506c, the radio terminal 20 transmits CQI indicating the downlink quality measured based on the downlink reference signal in S505a to S505c to the serving base station 10a. In step S507, the serving base station 10a performs downlink data scheduling in step S501 based on the CQI and the like in step S506.
 図7のS505a~S505c、S506、およびS507は、第1実施形態に係る図5のS302a~S302c、S303、およびS304と同様に行えばよいため、ここでは説明を割愛する。 7 may be performed in the same manner as S302a to S302c, S303, and S304 of FIG. 5 according to the first embodiment, and thus description thereof is omitted here.
 ただし、図7のS505a~S505c、S506、およびS507を行うタイミングについては注意を要する。これらを行うタイミングは、S503~S504で送受信された上りスケジューリング情報に含まれる上りサブフレーム情報が示すタイミングの直近のCQI送信に対応するタイミングとする。これにより、S507のスケジューリングに最新の下りリンク品質が反映され、その後に送信される下りスケジューリング情報(後述する)も最新の下りリンク品質が反映されたものとなる。 However, care should be taken with respect to the timing of performing S505a to S505c, S506, and S507 in FIG. The timing for performing these is the timing corresponding to the latest CQI transmission at the timing indicated by the uplink subframe information included in the uplink scheduling information transmitted and received in S503 to S504. As a result, the latest downlink quality is reflected in the scheduling of S507, and downlink scheduling information (described later) transmitted thereafter reflects the latest downlink quality.
 ここで、図7に示される本実施形態における処理の一例においては、S509のスケジューリングでサービング基地局10aは、第2協調基地局10cを送信基地局として決定したものとする。なお、この前提は、本実施形態における処理の具体例を説明するための一例に過ぎないことは言うまでもない。以下ではこの前提の下で説明を進める。 Here, in an example of processing in the present embodiment shown in FIG. 7, it is assumed that the serving base station 10a determines the second coordinated base station 10c as the transmission base station in the scheduling of S509. Needless to say, this premise is merely an example for explaining a specific example of processing in the present embodiment. In the following, the description will proceed under this assumption.
 次に図7のS508でサービング基地局10aは、S507のスケジューリングにおける決定に基づき、下りスケジューリング情報と上りスケジューリング情報とを無線端末20に送信する。これに対し無線端末20は、下りスケジューリング情報と上りスケジューリング情報とをサービング基地局10aから受信する。また、S509で無線端末20は、S508で受信した上りスケジューリング情報に基づいて、S508で受信した下りスケジューリング情報を第1協調基地局10bに送信する。これに対し、第1協調基地局10bは、S503で受信した上りスケジューリング情報に基づいて、下りスケジューリング情報を無線端末20から受信する。さらに、S510で無線端末20は、S508で受信した上りスケジューリング情報に基づいて、S508で受信した下りスケジューリング情報を第2協調基地局10cに送信する。これに対し、第2協調基地局10cは、S504で受信した上りスケジューリング情報に基づいて、下りスケジューリング情報を無線端末20から受信する。 Next, in S508 of FIG. 7, the serving base station 10a transmits downlink scheduling information and uplink scheduling information to the radio terminal 20 based on the determination in the scheduling of S507. On the other hand, the radio terminal 20 receives downlink scheduling information and uplink scheduling information from the serving base station 10a. In S509, the radio terminal 20 transmits the downlink scheduling information received in S508 to the first coordinated base station 10b based on the uplink scheduling information received in S508. On the other hand, the first cooperative base station 10b receives downlink scheduling information from the radio terminal 20 based on the uplink scheduling information received in S503. Further, in S510, the radio terminal 20 transmits the downlink scheduling information received in S508 to the second cooperative base station 10c based on the uplink scheduling information received in S508. On the other hand, the second cooperative base station 10c receives downlink scheduling information from the radio terminal 20 based on the uplink scheduling information received in S504.
 前述したように、S508~S510で送受信される下りスケジューリング情報には最新の下りリンク品質が反映されていることに留意する。 Note that as described above, the latest downlink quality is reflected in the downlink scheduling information transmitted and received in S508 to S510.
 図7のS508~S510においては、第1実施形態に係る図5のS310~S312において下りスケジューリング変更情報が送受信される代わりに、下りスケジューリング情報が送受信される。第1実施形態に係る図5のS305~S306においてはバックホースを介して下り送信スケジューリング情報が送信されるのに対し、図7のS503~S504においては送信されないためである。 7, downlink scheduling information is transmitted and received instead of downlink scheduling change information transmitted and received in S310 to S312 of FIG. 5 according to the first embodiment. This is because the downlink transmission scheduling information is transmitted via the back hose in S305 to S306 in FIG. 5 according to the first embodiment, but not transmitted in S503 to S504 in FIG.
 S508における下りスケジューリング情報および上りスケジューリング情報の送受信は、S310における下りスケジューリング変更情報および上りスケジューリング情報の送受信と同様に行えばよいためここでは詳細な説明を割愛する。また、S509~S510における下りスケジューリング情報の送受信は、S311~S312における下りスケジューリング情報の送受信と同様に行えばよいためここでは詳細な説明を割愛する。 Since transmission / reception of downlink scheduling information and uplink scheduling information in S508 may be performed in the same manner as transmission / reception of downlink scheduling change information and uplink scheduling information in S310, detailed description thereof is omitted here. Further, since transmission / reception of downlink scheduling information in S509 to S510 may be performed in the same manner as transmission / reception of downlink scheduling information in S311 to S312, detailed description thereof is omitted here.
 そして、図7のS511a~S511cで、サービング基地局10a、第1協調基地局10b、および第2協調基地局10cは、第2協調基地局10cを送信基地局とするDPSにより、協調して下りデータを無線端末20に送信する。図7に示される本実施形態における処理の一例においては、S507のスケジューリングで送信基地局が第2協調基地局10bに決定されたため、S511a~S511cでは第2協調基地局10cを送信基地局とするDPSが行われるのである。 Then, in S511a to S511c of FIG. 7, the serving base station 10a, the first cooperative base station 10b, and the second cooperative base station 10c are cooperatively downloaded by DPS using the second cooperative base station 10c as a transmission base station. Data is transmitted to the wireless terminal 20. In the example of processing in the present embodiment shown in FIG. 7, since the transmission base station is determined to be the second cooperative base station 10b by the scheduling of S507, the second cooperative base station 10c is set as the transmission base station in S511a to S511c. DPS is performed.
 図7のS511a~S511cにおけるCoMP送信(DPS)は、図5のS313a~S313cのCoMP送信(DPS)と同様に、最新の下りリンク品質が反映されたものであることに留意する。前述したように、下りスケジューリング情報に最新の下りリンク品質が反映されているからである。したがって、図7に示した処理シーケンスにおいても、図5と同様に、CoMP方式の一つであるDPSを、下りリンクの無線品質に即応して適切に実行することができると考えられる。 Note that the CoMP transmission (DPS) in S511a to S511c in FIG. 7 reflects the latest downlink quality, similar to the CoMP transmission (DPS) in S313a to S313c in FIG. This is because the latest downlink quality is reflected in the downlink scheduling information as described above. Therefore, also in the processing sequence shown in FIG. 7, it is considered that DPS, which is one of the CoMP schemes, can be appropriately executed in response to the downlink radio quality, as in FIG.
 以上で説明した第2実施形態によれば、非理想バックホールを前提とした場合に生ずる前記の問題を解決することができる。すなわち、第1実施形態によれば、非理想バックホールを前提とする場合であっても、サービング基地局10aと協調基地局10b~10cとが最新の下りリンク品質を反映したCoMP送信を行うことが可能となる。したがって、第1実施形態は、無線通信システム全体のスループットの低下が抑制されるという従来技術には無い顕著な効果を奏するものである。 According to the second embodiment described above, it is possible to solve the above-described problem that occurs when a non-ideal backhaul is assumed. That is, according to the first embodiment, even when a non-ideal backhaul is assumed, the serving base station 10a and the coordinated base stations 10b to 10c perform CoMP transmission reflecting the latest downlink quality. Is possible. Therefore, 1st Embodiment has a remarkable effect which is not in the prior art that the fall of the throughput of the whole radio communications system is controlled.
 [その他実施形態]
 ここでは上述した各実施形態以外の実施形態や変形例を説明する。これらは単独で実施することもできるし、前述した各実施形態と適宜組み合わせて実施することも可能である。
[Other embodiments]
Here, embodiments and modifications other than the above-described embodiments will be described. These can be carried out alone or in appropriate combination with the above-described embodiments.
 上述した各実施形態においては、CoMP送信(協調送信)により下りデータを受信する無線端末20と、下りスケジューリング変更情報等を無線リンクを介して中継送信する無線端末20とが、同じ無線端末20である。一例としては、図5において、S313a~S313cで無線端末20がCoMP送信により下りデータを受信しているが、S310~S312でこれと同じ無線端末20が下りスケジューリング変更情報を無線リンクを介して中継送信している。図6や図7においても同様である。しかしながら、上述した各実施形態においては、CoMP送信により下りデータを受信する無線端末20と、下りスケジューリング変更情報等を無線リンクを介して中継送信する無線端末20とが、別の無線端末20であってもかまわないことに留意されたい。 In each of the embodiments described above, the wireless terminal 20 that receives downlink data by CoMP transmission (cooperative transmission) and the wireless terminal 20 that relays downlink scheduling change information and the like via a wireless link are the same wireless terminal 20. is there. As an example, in FIG. 5, the wireless terminal 20 receives downlink data by CoMP transmission in S313a to S313c, but the same wireless terminal 20 relays downlink scheduling change information via a wireless link in S310 to S312. Sending. The same applies to FIG. 6 and FIG. However, in each of the embodiments described above, the wireless terminal 20 that receives downlink data by CoMP transmission and the wireless terminal 20 that relays downlink scheduling change information and the like via a wireless link are different wireless terminals 20. Note that it does not matter.
 また、上述した各実施形態においては、CoMP送信(協調送信)を実行することを前提としており、CoMP送信を行うために無線基地局10間で送受信する下りリンクスケジューリング変更情報等を無線端末20が無線リンクを介して中継送信している。しかしながら、本発明はCoMP送信(協調送信)を実行することを前提とするものではなく、無線基地局10間で送受信する任意の情報を無線端末20が無線リンクを介して中継送信することができるものである。一例としては、ある無線基地局10が他の無線基地局10が行う無線通信のスケジューリングを行うような場合に、スケジューリング結果を含む情報を無線端末20が無線リンクを介して中継送信することができる。本発明によれば、複数の無線基地局10が連携して任意の処理を行う場合に、当該複数の無線基地局10間で送受信される任意の情報を無線端末20が無線リンクを介して中継送信することが可能である。 In each of the above-described embodiments, it is assumed that CoMP transmission (cooperative transmission) is performed, and the radio terminal 20 transmits downlink scheduling change information transmitted and received between the radio base stations 10 in order to perform CoMP transmission. Relay transmission via wireless link. However, the present invention is not based on the assumption that CoMP transmission (cooperative transmission) is performed, and the wireless terminal 20 can relay and transmit arbitrary information transmitted and received between the wireless base stations 10 via the wireless link. Is. As an example, when one radio base station 10 performs scheduling of radio communication performed by another radio base station 10, the radio terminal 20 can relay and transmit information including the scheduling result via a radio link. . According to the present invention, when a plurality of radio base stations 10 perform arbitrary processing in cooperation, the radio terminal 20 relays any information transmitted / received between the plurality of radio base stations 10 via a radio link. It is possible to send.
 さらに、上述した各実施形態においては、無線基地局10間で送受信される情報を無線端末20が中継送信している。しかしながら、本発明は無線端末20以外の装置が中継送信を行うこととしてもかまわない。一例としては、無線基地局10間で送受信される情報を無線中継局(無線中継装置)が中継送信することも可能である。また、他の一例としては、第1の無線基地局10と第2の無線基地局10との間で送受信される情報を第3の無線基地局10が中継送信することも可能である。例えば、第1の無線基地局10と第2の無線基地局10との間が非理想バックホールであるが、第1の無線基地局10と第3の無線基地局10との間および第3の無線基地局10と第2の無線基地局10との間がそれぞれ理想的バックホールである場合に、第3の無線基地局10が中継送信を行うことで、上記各実施形態と同様の効果を奏することが可能である。 Further, in each of the above-described embodiments, the wireless terminal 20 relays and transmits information transmitted and received between the wireless base stations 10. However, the present invention may be such that a device other than the wireless terminal 20 performs relay transmission. As an example, a wireless relay station (wireless relay device) can relay and transmit information transmitted and received between the wireless base stations 10. As another example, the third radio base station 10 can relay and transmit information transmitted and received between the first radio base station 10 and the second radio base station 10. For example, the non-ideal backhaul is between the first radio base station 10 and the second radio base station 10, but between the first radio base station 10 and the third radio base station 10 and third When the wireless base station 10 and the second wireless base station 10 are ideal backhaul, the third wireless base station 10 performs relay transmission, so that the same effects as those of the above embodiments are obtained. It is possible to play.
 上述した各実施形態は、無線端末20からの各無線基地局10からの下り参照信号についてのCQIに基づいて、サービング基地局10aにて下りデータの下りスケジューリング情報を決定するものについて説明したが、本発明はこれに限定されるものではない。無線端末20が各無線基地局10からの下り参照信号についてのCQIを算出し、これに基づいて同じく無線端末20が下りデータの下りスケジューリング情報を決定し、各無線基地局10へ通知してもよい。更に、各無線基地局10が、それぞれの負荷情報を無線端末20に通知することにより、無線端末20は各無線基地局20の負荷を考慮しながら下りスケジューリングデータを決定することが可能となる。 In each of the above-described embodiments, description has been given of determining downlink scheduling information of downlink data in the serving base station 10a based on the CQI of the downlink reference signal from each radio base station 10 from the radio terminal 20. The present invention is not limited to this. Even if the radio terminal 20 calculates the CQI for the downlink reference signal from each radio base station 10, the radio terminal 20 similarly determines downlink scheduling information for downlink data based on this, and notifies each radio base station 10 of the same. Good. Further, each radio base station 10 notifies the radio terminal 20 of the load information, so that the radio terminal 20 can determine downlink scheduling data while considering the load of each radio base station 20.
 上述した各実施形態は、バックホールが非理想的なものに対して発明を適用するものについて説明したが、本発明はこれに限定されるものではない。現状理想的なバックホールのものも、経年変化等の理由で将来的に非理想的なバックホールとなることへの備えとして、本発明を実装しておくことも、実施形態の1つであることは言うまでもない。 In the above-described embodiments, the invention is applied to a non-ideal backhaul, but the present invention is not limited to this. It is also one of the embodiments that the present invention is implemented as a preparation for becoming a non-ideal backhaul in the future due to the secular change or the like of the current ideal backhaul. Needless to say.
 [各実施形態の無線通信システムのネットワーク構成]
 次に図8に基づいて、各実施形態の無線通信システム1のネットワーク構成を説明する。図8に示すように、無線通信システム1は、無線基地局10と、無線端末20とを有する。ここで、図8においては3つの無線基地局10a~10cと7つの無線端末20a~20gとが示されているが、これは一例にすぎないのは言うまでもない。
[Network configuration of wireless communication system of each embodiment]
Next, based on FIG. 8, the network configuration of the radio communication system 1 of each embodiment will be described. As illustrated in FIG. 8, the wireless communication system 1 includes a wireless base station 10 and a wireless terminal 20. Here, in FIG. 8, three radio base stations 10a to 10c and seven radio terminals 20a to 20g are shown, but it goes without saying that this is only an example.
 各無線基地局10は、セルを形成している。各無線端末20はセルに存在しており、言い換えれば各無線基地局10の配下(管理下)にある。図8においては一例として、無線端末20a~20cは無線基地局10aの配下にあり、無線端末20d~20eは無線基地局10bの配下にあり、無線端末20f~20gは無線基地局10cの配下にある。 Each radio base station 10 forms a cell. Each wireless terminal 20 exists in a cell, in other words, is under the control (under management) of each wireless base station 10. As an example in FIG. 8, the radio terminals 20a to 20c are under the radio base station 10a, the radio terminals 20d to 20e are under the radio base station 10b, and the radio terminals 20f to 20g are under the radio base station 10c. is there.
 無線基地局10は、有線接続を介してネットワーク装置3と接続されており、ネットワーク装置3は、有線接続を介してネットワーク2に接続されている。無線基地局10は、ネットワーク装置3およびネットワーク2を介して、他の無線基地局10とデータや制御情報を送受信可能に設けられている。 The wireless base station 10 is connected to the network device 3 via a wired connection, and the network device 3 is connected to the network 2 via a wired connection. The radio base station 10 is provided so as to be able to transmit / receive data and control information to / from other radio base stations 10 via the network device 3 and the network 2.
 上記各実施形態で説明したように、本願においては、無線基地局間を接続するネットワークであるバックホールは、非理想的なものを想定している。ただし、一部に理想的なものを含んでいてもかまわない。 As described in the above embodiments, in the present application, the backhaul, which is a network connecting wireless base stations, is assumed to be non-ideal. However, some of them may be ideal.
 無線基地局10は、無線端末20との無線通信機能とデジタル信号処理及び制御機能とを分離して別装置としてもよい。この場合、無線通信機能を備える装置をRRH(Remote Radio Head)、デジタル信号処理及び制御機能を備える装置をBBU(Base Band Unit)と呼ぶ。RRHはBBUから張り出されて設置され、それらの間は光ファイバなどで有線接続されてもよい。また、無線基地局10は、マクロ無線基地局10、ピコ無線基地局10等の小型無線基地局10(マイクロ無線基地局10、フェムト無線基地局10等を含む)の他、様々な規模の無線基地局10であってよい。また、無線基地局10と無線端末20との無線通信を中継する中継局が使用される場合、当該中継局(無線端末20との送受信及びその制御)も本願の無線基地局10に含まれることとしてもよい。 The radio base station 10 may separate the radio communication function with the radio terminal 20 and the digital signal processing and control function to be a separate device. In this case, a device having a wireless communication function is referred to as RRH (Remote Radio Head), and a device having a digital signal processing and control function is referred to as BBU (Base Band Unit). The RRH may be installed overhanging from the BBU, and may be wired with an optical fiber between them. Further, the radio base station 10 is a radio of various scales other than small radio base stations 10 (including a micro radio base station 10, a femto radio base station 10 and the like) such as a macro radio base station 10 and a pico radio base station 10. It may be the base station 10. When a relay station that relays wireless communication between the wireless base station 10 and the wireless terminal 20 is used, the relay station (transmission / reception with the wireless terminal 20 and its control) is also included in the wireless base station 10 of the present application. It is good.
 一方、無線端末20は、無線通信で無線基地局10と通信を行う。 Meanwhile, the wireless terminal 20 communicates with the wireless base station 10 by wireless communication.
 無線端末20は、携帯電話機、スマートフォン、PDA(Personal Digital Assistant)、パーソナルコンピュータ(Personal Computer)、無線通信機能を有する各種装置や機器(センサー装置等)などの無線端末20であってよい。また、無線基地局10と無線端末20との無線通信を中継する中継局が使用される場合、当該中継局(無線基地局10との送受信及びその制御)も本稿の無線端末20に含まれることとしてもよい。 The wireless terminal 20 may be a wireless terminal 20 such as a mobile phone, a smartphone, a PDA (Personal Digital Assistant), a personal computer (Personal Computer), various devices or devices (such as sensor devices) having a wireless communication function. Further, when a relay station that relays radio communication between the radio base station 10 and the radio terminal 20 is used, the relay station (transmission / reception with the radio base station 10 and its control) is also included in the radio terminal 20 of this paper. It is good.
 ネットワーク装置3は、例えば通信部と制御部とを備え、これら各構成部分が、一方向または双方向に、信号やデータの入出力が可能なように接続されている。ネットワーク装置3は、例えばゲートウェイにより実現される。ネットワーク装置3のハードウェア構成としては、例えば通信部はインタフェース回路、制御部はプロセッサとメモリとで実現される。 The network device 3 includes, for example, a communication unit and a control unit, and these components are connected so that signals and data can be input and output in one direction or in both directions. The network device 3 is realized by a gateway, for example. As a hardware configuration of the network device 3, for example, the communication unit is realized by an interface circuit, and the control unit is realized by a processor and a memory.
 なお、無線基地局10、無線端末20の各構成要素の分散・統合の具体的態様は、各実施形態の態様に限定されず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することもできる。例えば、メモリを、無線基地局10、無線端末20の外部装置としてネットワークやケーブル経由で接続するようにしてもよい。 In addition, the specific mode of distribution / integration of each component of the radio base station 10 and the radio terminal 20 is not limited to the mode of each embodiment, and all or a part thereof depends on various loads, usage conditions, and the like. Thus, it can be configured to be functionally or physically distributed and integrated in arbitrary units. For example, the memory may be connected as an external device of the radio base station 10 and the radio terminal 20 via a network or a cable.
 [各実施形態の無線通信システムにおける各装置の機能構成]
 次に、図9~図10に基づいて、各実施形態の無線通信システムにおける各装置の機能構成を説明する。
[Functional Configuration of Each Device in Radio Communication System of Each Embodiment]
Next, the functional configuration of each device in the wireless communication system of each embodiment will be described with reference to FIGS.
 図9は、無線基地局10の構成の一例を示す機能ブロック図である。図9に示すように、無線基地局10は、例えば、無線送信部11と、無線受信部12と、制御部13と、記憶部14と、通信部15とを備える。これら各構成部分は、一方向または双方向に、信号やデータの入出力が可能なように接続されている。なお、無線送信部11と無線受信部12とをまとめて無線通信部16と称する。 FIG. 9 is a functional block diagram showing an example of the configuration of the radio base station 10. As illustrated in FIG. 9, the radio base station 10 includes, for example, a radio transmission unit 11, a radio reception unit 12, a control unit 13, a storage unit 14, and a communication unit 15. Each of these components is connected so that signals and data can be input and output in one direction or in both directions. The wireless transmission unit 11 and the wireless reception unit 12 are collectively referred to as a wireless communication unit 16.
 無線送信部11は、データ信号や制御信号を、アンテナを介して無線通信で送信する。なお、アンテナは送信と受信で共通でもよい。無線送信部11は、無線端末20に対して無線信号(下りの無線信号)を送信する。無線送信部11が送信する無線信号には、無線端末20向けの任意のユーザデータや制御情報等(符号化や変調等がなされる)を含むことができる。 The wireless transmission unit 11 transmits a data signal and a control signal by wireless communication via an antenna. The antenna may be common for transmission and reception. The radio transmission unit 11 transmits a radio signal (downlink radio signal) to the radio terminal 20. The radio signal transmitted by the radio transmission unit 11 can include arbitrary user data and control information for the radio terminal 20 (encoding and modulation are performed).
 無線送信部11が送信する無線信号の具体例としては、図5、図6、および図7において各無線基地局10が無線端末20に対して送信している各無線信号(図中の矢印)が挙げられる。無線送信部11が送信する無線信号は、これらに限らず、上記の各実施形態および変形例で各無線基地局10が無線端末20に対し送信するあらゆる無線信号を含む。 Specific examples of the radio signal transmitted by the radio transmission unit 11 include radio signals (arrows in the figure) transmitted from the radio base station 10 to the radio terminal 20 in FIGS. 5, 6, and 7. Is mentioned. The radio signal transmitted by the radio transmission unit 11 is not limited to these, and includes any radio signal transmitted from each radio base station 10 to the radio terminal 20 in each of the above embodiments and modifications.
 無線受信部12は、データ信号や制御信号を、アンテナを介して無線通信で受信する。無線受信部12は、無線端末20から無線信号(上りの無線信号)を受信する。無線受信部12が受信する無線信号には、無線端末20により送信される任意のユーザデータや制御情報等(符号化や変調等がなされる)を含むことができる。 The wireless receiving unit 12 receives a data signal and a control signal by wireless communication via an antenna. The radio reception unit 12 receives a radio signal (uplink radio signal) from the radio terminal 20. The radio signal received by the radio reception unit 12 can include arbitrary user data and control information (encoded or modulated) transmitted by the radio terminal 20.
 無線受信部12が受信する無線信号の具体例としては、図5、図6、および図7において各無線基地局10が無線端末20から受信している各無線信号(図中の矢印)が挙げられる。無線受信部12が受信する信号は、これらに限らず、上記の各実施形態および変形例で各無線基地局10が無線端末20から受信するあらゆる無線信号を含む。 Specific examples of the radio signal received by the radio receiving unit 12 include radio signals (arrows in the figure) received by the radio base station 10 from the radio terminal 20 in FIGS. 5, 6, and 7. It is done. The signals received by the wireless reception unit 12 are not limited to these, and include any wireless signal that each wireless base station 10 receives from the wireless terminal 20 in each of the above embodiments and modifications.
 制御部13は、無線端末20に送信するデータや制御情報を無線送信部11に出力する。制御部13は、無線端末20から受信されるデータや制御情報を無線受信部12から入力する。制御部13は、後述する記憶部14との間でデータ、制御情報、プログラム等の入出力を行う。制御部13は、後述する通信部15との間で、他の無線基地局10等を相手に送受信するデータや制御情報の入出力を行う。制御部13はこれら以外にも無線基地局10における種々の制御を行う。 The control unit 13 outputs data and control information to be transmitted to the wireless terminal 20 to the wireless transmission unit 11. The control unit 13 inputs data and control information received from the wireless terminal 20 from the wireless reception unit 12. The control unit 13 inputs and outputs data, control information, programs, and the like with the storage unit 14 described later. The control unit 13 inputs / outputs data and control information transmitted / received to / from the other radio base station 10 and the like with the communication unit 15 described later. In addition to these, the control unit 13 performs various controls in the radio base station 10.
 制御部13が制御する処理の具体例としては、図5、図6、および図7において各無線基地局10が送受信している各信号(図中の矢印)に対する制御、および各無線基地局10が行っている各処理(図中の矩形)に対する制御が挙げられる。制御部13が制御する処理は、これらに限らず、上記の各実施形態および変形例で各無線基地局10が実行するあらゆる処理に関する制御を含む。 Specific examples of processing controlled by the control unit 13 include control on signals (arrows in the figure) transmitted and received by each radio base station 10 in FIGS. 5, 6, and 7, and each radio base station 10 The control for each process (rectangle in the figure) being performed is given. The process which the control part 13 controls is not restricted to these, but includes the control regarding all the processes which each radio base station 10 performs by said each embodiment and modification.
 記憶部14は、データ、制御情報、プログラム等の各種情報の記憶を行う。記憶部14が記憶する各種情報は、上記の各実施形態および変形例で各無線基地局10において記憶されうるあらゆる情報を含む。 The storage unit 14 stores various information such as data, control information, and programs. The various information stored in the storage unit 14 includes all information that can be stored in each radio base station 10 in each of the above embodiments and modifications.
 通信部15は、有線信号等(無線信号でも構わない)を介して、他の無線基地局10等を相手にデータや制御情報を送受信する。通信部15が送受信する有線信号等の具体例としては、図5、図6、および図7において各無線基地局10が他の無線基地局10を相手に送受信している各有線信号等(図中の矢印)が挙げられる。通信部15が送受信する有線信号等は、これらに限らず、上記の各実施形態および変形例で各無線基地局10が他の無線基地局10等を相手に送受信するあらゆる有線信号等を含む。 The communication unit 15 transmits / receives data and control information to / from another wireless base station 10 or the like via a wired signal or the like (which may be a wireless signal). Specific examples of the wired signal transmitted and received by the communication unit 15 include each wired signal transmitted and received by each wireless base station 10 with respect to the other wireless base station 10 in FIG. 5, FIG. 6, and FIG. Middle arrow). The wired signals transmitted and received by the communication unit 15 are not limited to these, and include all wired signals transmitted and received by each wireless base station 10 from other wireless base stations 10 and the like in the above-described embodiments and modifications.
 なお、無線基地局10は、無線送信部11や無線受信部12を介して無線端末20以外の無線通信装置(例えば他の無線基地局10や中継局)と無線信号を送受信してもかまわない。 The radio base station 10 may transmit and receive radio signals to / from radio communication devices other than the radio terminal 20 (for example, other radio base stations 10 and relay stations) via the radio transmission unit 11 and the radio reception unit 12. .
 図10は、無線端末20の構成の一例を示す機能ブロック図である。図10に示すように、無線端末20は、例えば、無線送信部21と、無線受信部22と、制御部23と、記憶部24とを備える。これら各構成部分は、一方向または双方向に、信号やデータの入出力が可能なように接続されている。なお、無線送信部21と無線受信部22とをまとめて無線通信部25と称する。 FIG. 10 is a functional block diagram showing an example of the configuration of the wireless terminal 20. As illustrated in FIG. 10, the wireless terminal 20 includes, for example, a wireless transmission unit 21, a wireless reception unit 22, a control unit 23, and a storage unit 24. Each of these components is connected so that signals and data can be input and output in one direction or in both directions. The wireless transmission unit 21 and the wireless reception unit 22 are collectively referred to as a wireless communication unit 25.
 無線送信部21は、データ信号や制御信号を、アンテナを介して無線通信で送信する。なお、アンテナは送信と受信で共通でもよい。無線送信部21は、各無線基地局10に対して無線信号(上りの無線信号)を送信する。無線送信部21が送信する無線信号には、各無線基地局10向けの任意のユーザデータや制御情報等(符号化や変調等がなされる)を含むことができる。 The wireless transmission unit 21 transmits a data signal and a control signal by wireless communication via an antenna. The antenna may be common for transmission and reception. The radio transmission unit 21 transmits a radio signal (uplink radio signal) to each radio base station 10. The radio signal transmitted by the radio transmission unit 21 can include arbitrary user data, control information, and the like (encoded and modulated) for each radio base station 10.
 無線送信部21が送信する無線信号の具体例としては、図5、図6、および図7において無線端末20が各無線基地局10に対して送信している各無線信号(図中の矢印)が挙げられる。無線送信部21が送信する無線信号は、これらに限らず、上記の各実施形態および変形例で無線端末20が各無線基地局10に対し送信するあらゆる無線信号を含む。 Specific examples of the radio signal transmitted by the radio transmission unit 21 include radio signals (arrows in the figure) transmitted from the radio terminal 20 to the radio base stations 10 in FIGS. 5, 6, and 7. Is mentioned. The radio signal transmitted by the radio transmission unit 21 is not limited to these, and includes any radio signal transmitted from the radio terminal 20 to each radio base station 10 in each of the above embodiments and modifications.
 無線受信部22は、データ信号や制御信号を、アンテナを介して無線通信で受信する。無線受信部22は、各無線基地局10から無線信号(下りの無線信号)を受信する。無線受信部22が受信する無線信号には、各無線基地局10により送信される任意のユーザデータや制御情報等(符号化や変調等がなされる)を含むことができる。 The wireless receiving unit 22 receives data signals and control signals by wireless communication via an antenna. The radio reception unit 22 receives a radio signal (downlink radio signal) from each radio base station 10. The radio signal received by the radio reception unit 22 can include arbitrary user data, control information, and the like (encoded or modulated) transmitted by each radio base station 10.
 無線受信部22が受信する無線信号の具体例としては、図5、図6、および図7において無線端末20が無線基地局10から受信している各無線信号(図中の矢印)が挙げられる。無線受信部22が受信する信号は、これらに限らず、上記の各実施形態および変形例で無線端末20が各無線基地局10から受信するあらゆる無線信号を含む。 Specific examples of radio signals received by the radio receiver 22 include radio signals (arrows in the figure) received by the radio terminal 20 from the radio base station 10 in FIGS. 5, 6, and 7. . The signal received by the wireless reception unit 22 is not limited to these, and includes any wireless signal that the wireless terminal 20 receives from each wireless base station 10 in each of the above embodiments and modifications.
 制御部23は、各無線基地局10に送信するデータや制御情報を無線送信部21に出力する。制御部23は、各無線基地局10から受信されるデータや制御情報を無線受信部22から入力する。制御部23は、後述する記憶部24との間でデータ、制御情報、プログラム等の入出力を行う。制御部23はこれら以外にも無線端末20における種々の制御を行う。 The control unit 23 outputs data and control information to be transmitted to each radio base station 10 to the radio transmission unit 21. The control unit 23 inputs data and control information received from each radio base station 10 from the radio reception unit 22. The control unit 23 inputs and outputs data, control information, programs, and the like with the storage unit 24 described later. In addition to these, the control unit 23 performs various controls in the wireless terminal 20.
 制御部23が制御する処理の具体例としては、図5、図6、および図7において無線端末20が送受信している各信号(図中の矢印)に対する制御、および無線端末20が行っている各処理(図中の矩形)に対する制御が挙げられる。制御部23が制御する処理は、これらに限らず、上記の各実施形態および変形例で無線端末20が実行するあらゆる処理に関する制御を含む。 Specific examples of processing controlled by the control unit 23 include control for each signal (arrow in the figure) transmitted and received by the wireless terminal 20 in FIGS. 5, 6, and 7, and the wireless terminal 20 performs. Control for each process (rectangle in the figure) is mentioned. The process which the control part 23 controls is not restricted to these, but includes the control regarding all the processes which the radio | wireless terminal 20 performs by said each embodiment and modification.
 記憶部24は、データ、制御情報、プログラム等の各種情報の記憶を行う。記憶部24が記憶する各種情報は、上記の各実施形態および変形例で無線端末20において記憶されうるあらゆる情報を含む。 The storage unit 24 stores various information such as data, control information, and programs. The various information stored in the storage unit 24 includes all information that can be stored in the wireless terminal 20 in each of the above-described embodiments and modifications.
 なお、無線端末20は、無線送信部21や無線受信部22を介して無線基地局10以外の無線通信装置と無線信号を送受信してもかまわない。 Note that the wireless terminal 20 may transmit and receive wireless signals to and from wireless communication devices other than the wireless base station 10 via the wireless transmission unit 21 and the wireless reception unit 22.
 [各実施形態の無線通信システムにおける各装置のハードウェア構成]
 図11~図12に基づいて、各実施形態および各変形例の無線通信システムにおける各装置のハードウェア構成を説明する。
[Hardware Configuration of Each Device in Radio Communication System of Each Embodiment]
Based on FIGS. 11 to 12, the hardware configuration of each device in the wireless communication system of each embodiment and each modification will be described.
 図11は、無線基地局10のハードウェア構成の一例を示す図である。図11に示すように、無線基地局10は、ハードウェアの構成要素として、例えばアンテナ111を備えるRF(Radio Frequency)回路112と、プロセッサ113と、メモリ114と、ネットワークIF(Interface)115とを有する。これら各構成要素は、バスを介して各種信号やデータの入出力が可能なように接続されている。 FIG. 11 is a diagram illustrating an example of a hardware configuration of the radio base station 10. As shown in FIG. 11, the radio base station 10 includes, as hardware components, an RF (Radio Frequency) circuit 112 including an antenna 111, a processor 113, a memory 114, and a network IF (Interface) 115, for example. Have. These components are connected so that various signals and data can be input and output via a bus.
 プロセッサ113は、例えばCPU(Central Processing Unit)やDSP(Digital Signal Processor)である。本願においては、プロセッサ113をデジタル電子回路で実現することとしてもかまわない。デジタル電子回路としては例えば、例えばASIC(Application Specific Integrated Circuit)、FPGA(Field-Programming Gate Array)、LSI(Large Scale Integration)等が挙げられる。 The processor 113 is, for example, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor). In the present application, the processor 113 may be realized by a digital electronic circuit. Examples of digital electronic circuits include ASIC (Application Specific Integrated Circuit), FPGA (Field-Programming Gate Array), LSI (Large Scale Integration), and the like.
 メモリ114は、例えばSDRAM(Synchronous Dynamic Random Access Memory)等のRAM(Random Access Memory)、ROM(Read Only Memory)、およびフラッシュメモリの少なくともいずれかを含み、プログラムや制御情報やデータを格納する。この他に、無線基地局は不図示の補助記憶装置(ハードディスク等)等を備えていても良い。 The memory 114 includes at least one of RAM (Random Access Memory) such as SDRAM (Synchronous Dynamic Random Access Memory), ROM (Read Only Memory), and flash memory, and stores programs, control information, and data. In addition, the radio base station may include an auxiliary storage device (such as a hard disk) not shown.
 図9に示す無線基地局10の機能構成と図11に示す無線基地局10のハードウェア構成との対応を説明する。無線送信部11および無線受信部12(あるいは無線通信部16)は、例えばRF回路112、あるいはアンテナ111およびRF回路112により実現される。制御部13は、例えばプロセッサ113、メモリ114、不図示のデジタル電子回路等により実現される。記憶部14は、例えばメモリ114により実現される。通信部15は、例えばネットワークIF115により実現される。 The correspondence between the functional configuration of the radio base station 10 shown in FIG. 9 and the hardware configuration of the radio base station 10 shown in FIG. 11 will be described. The wireless transmission unit 11 and the wireless reception unit 12 (or the wireless communication unit 16) are realized by the RF circuit 112, or the antenna 111 and the RF circuit 112, for example. The control unit 13 is realized by, for example, the processor 113, the memory 114, a digital electronic circuit (not shown), and the like. The storage unit 14 is realized by the memory 114, for example. The communication unit 15 is realized by the network IF 115, for example.
 図12は、無線端末20のハードウェア構成の一例を示す図である。図12に示すように、無線端末20は、ハードウェアの構成要素として、例えばアンテナ121を備えるRF(Radio Frequency)回路122と、プロセッサ123と、メモリ124とを有する。これら各構成要素は、バスを介して各種信号やデータの入出力が可能なように接続されている。 FIG. 12 is a diagram illustrating an example of a hardware configuration of the wireless terminal 20. As illustrated in FIG. 12, the wireless terminal 20 includes, as hardware components, an RF (Radio Frequency) circuit 122 including an antenna 121, a processor 123, and a memory 124, for example. These components are connected so that various signals and data can be input and output via a bus.
 プロセッサ123は、例えばCPU(Central Processing Unit)やDSP(Digital Signal Processor)である。本願においては、プロセッサ123をデジタル電子回路で実現することとしてもかまわない。デジタル電子回路としては例えば、例えばASIC(Application Specific Integrated Circuit)、FPGA(Field-Programming Gate Array)、LSI(Large Scale Integration)等が挙げられる。 The processor 123 is, for example, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor). In the present application, the processor 123 may be realized by a digital electronic circuit. Examples of digital electronic circuits include ASIC (Application Specific Integrated Circuit), FPGA (Field-Programming Gate Array), LSI (Large Scale Integration), and the like.
 メモリ124は、例えばSDRAM(Synchronous Dynamic Random Access Memory)等のRAM(Random Access Memory)、ROM(Read Only Memory)、およびフラッシュメモリの少なくともいずれかを含み、プログラムや制御情報やデータを格納する。 The memory 124 includes at least one of RAM (Random Access Memory) such as SDRAM (Synchronous Dynamic Random Access Memory), ROM (Read Only Memory), and flash memory, and stores programs, control information, and data.
 図10に示す無線端末20の機能構成と図12に示す無線端末20のハードウェア構成との対応を説明する。無線送信部21および無線受信部22(あるいは無線通信部25)は、例えばRF回路122、あるいはアンテナ121およびRF回路122により実現される。制御部23は、例えばプロセッサ123、メモリ124、不図示のデジタル電子回路等により実現される。記憶部24は、例えばメモリ124により実現される。 The correspondence between the functional configuration of the wireless terminal 20 shown in FIG. 10 and the hardware configuration of the wireless terminal 20 shown in FIG. 12 will be described. The wireless transmission unit 21 and the wireless reception unit 22 (or the wireless communication unit 25) are realized by the RF circuit 122, the antenna 121, and the RF circuit 122, for example. The control unit 23 is realized by, for example, the processor 123, the memory 124, a digital electronic circuit (not shown), and the like. The storage unit 24 is realized by the memory 124, for example.
 1 無線通信システム
 2 ネットワーク
 3 ネットワーク装置
 10 無線基地局
 20 無線端末
1 wireless communication system 2 network 3 network device 10 wireless base station 20 wireless terminal

Claims (12)

  1.  1以上の無線端末のうちの第1無線端末に対して第1無線基地局と第2無線基地局とが協調して無線信号を送信する協調送信を行う無線通信方法であって、
     前記第1無線基地局が、前記協調送信を行うための下りスケジューリング情報を前記1以上の無線端末の一つである第2無線端末に送信し、
     前記第2無線端末は、前記下りスケジューリング情報を前記第2無線基地局に送信する
     無線通信方法。 
    A wireless communication method for performing cooperative transmission in which a first wireless base station and a second wireless base station cooperate to transmit a wireless signal to a first wireless terminal among one or more wireless terminals,
    The first radio base station transmits downlink scheduling information for performing the coordinated transmission to a second radio terminal that is one of the one or more radio terminals,
    The radio communication method in which the second radio terminal transmits the downlink scheduling information to the second radio base station.
  2.  前記第1無線端末は、前記第1無線基地局との間の下りリンクに基づいて測定した第1品質と、前記第2無線基地局との間の下りリンクに基づいて測定した第2品質とを前記第1局に送信し、
     前記第1無線基地局は前記第1品質と前記第2品質とに基づいて前記下りスケジューリング情報を生成する
     請求項1記載の無線通信方法。 
    The first radio terminal has a first quality measured based on a downlink with the first radio base station, and a second quality measured based on a downlink with the second radio base station, To the first station,
    The radio communication method according to claim 1, wherein the first radio base station generates the downlink scheduling information based on the first quality and the second quality.
  3.  前記第1無線基地局が前記1以上の無線端末を介さずに該第2無線基地局に情報を送信する場合の最大遅延が、前記第1品質と前記第2品質の前記送信を行う周期よりも大きい
     請求項2記載の無線通信方法。 
    The maximum delay in the case where the first radio base station transmits information to the second radio base station without going through the one or more radio terminals is based on a cycle in which the transmission of the first quality and the second quality is performed. The wireless communication method according to claim 2.
  4.  前記第1無線基地局は、前記第2無線基地局が前記第2無線端末から前記下りスケジューリング情報を受信するための上りスケジューリング情報を、前記1以上の無線端末を介さずに該第2無線基地局に送信する
     請求項1~3のいずれかに記載の無線通信方法。 
    The first radio base station transmits uplink scheduling information for the second radio base station to receive the downlink scheduling information from the second radio terminal without passing through the one or more radio terminals. The wireless communication method according to claim 1, wherein the wireless communication method transmits to a station.
  5.  前記下りスケジューリング情報は、前記協調送信における送信無線基地局を示す情報を含む
     請求項1~4のいずれかに記載の無線通信方法。 
    The radio communication method according to claim 1, wherein the downlink scheduling information includes information indicating a transmission radio base station in the coordinated transmission.
  6.  前記下りスケジューリング情報は、前記協調送信における符号化方式および変調方式を示す情報、および前記協調送信で用いるサブキャリアを示す情報の少なくとも一つを含む
     請求項1~5のいずれかに記載の無線通信方法。 
    The radio communication according to any one of claims 1 to 5, wherein the downlink scheduling information includes at least one of information indicating an encoding scheme and a modulation scheme in the coordinated transmission, and information indicating a subcarrier used in the coordinated transmission. Method.
  7.  前記下りスケジューリング情報は、前記協調送信を行うタイミングを示す情報を含む
     請求項1~6のいずれかに記載の無線通信方法。 
    7. The radio communication method according to claim 1, wherein the downlink scheduling information includes information indicating a timing for performing the coordinated transmission.
  8.  前記第1無線基地局は、前記協調送信で送信する下りデータを、前記第2無線基地局が送信を行わない可能性がある場合であっても、前記1以上の無線端末を介さずに該第2無線基地局に送信する
     請求項1~7のいずれかに記載の無線通信方法。 
    Even if there is a possibility that the second radio base station does not transmit the downlink data transmitted by the coordinated transmission, the first radio base station does not pass through the one or more radio terminals. The radio communication method according to claim 1, wherein the radio communication method transmits to the second radio base station.
  9.  前記第1無線端末と前記第2無線端末は同一の無線端末である
     請求項1~8のいずれかに記載の無線通信方法。 
    The radio communication method according to any one of claims 1 to 8, wherein the first radio terminal and the second radio terminal are the same radio terminal.
  10.  1以上の無線端末と、
     前記1以上の無線端末のうちの第1無線端末に対して協調して無線信号を送信する協調送信を行う第1無線基地局および第2無線基地局と
    を備え、
     前記第1無線基地局が、前記協調送信を行うための下りスケジューリング情報を前記1以上の無線端末の一つである第2無線端末に送信し、
     前記第2無線端末は、前記下りスケジューリング情報を前記第2無線基地局に送信する
     無線通信システム。 
    One or more wireless terminals;
    A first radio base station and a second radio base station that perform coordinated transmission for transmitting radio signals in cooperation with the first radio terminal among the one or more radio terminals;
    The first radio base station transmits downlink scheduling information for performing the coordinated transmission to a second radio terminal that is one of the one or more radio terminals,
    The second radio terminal is a radio communication system that transmits the downlink scheduling information to the second radio base station.
  11.  無線端末に対して第1無線基地局と第2無線基地局とが協調して無線信号を送信する協調送信を行う無線通信システムにおける該無線端末であって、
     前記第1無線基地局から、前記協調送信を行うための下りスケジューリング情報を受信する受信部と
     前記下りスケジューリング情報を前記第2無線基地局に送信する送信部
    を備える無線端末。 
    The wireless terminal in a wireless communication system that performs cooperative transmission in which the first wireless base station and the second wireless base station cooperate to transmit a wireless signal to the wireless terminal,
    A radio terminal comprising: a reception unit that receives downlink scheduling information for performing the coordinated transmission from the first radio base station; and a transmission unit that transmits the downlink scheduling information to the second radio base station.
  12.  1以上の無線端末のうちの第1無線端末に対して無線基地局と他無線基地局とが協調して無線信号を送信する協調送信を行う無線通信システムにおける該無線基地局であって、
     前記協調送信を行うための下りスケジューリング情報を前記1以上の無線端末の一つである第2無線端末に送信するとともに、前記第2無線端末から前記下りスケジューリング情報を受信した前記他無線基地局と前記協調送信を行う送信部
    を備える無線基地局。
    The radio base station in a radio communication system that performs coordinated transmission in which a radio base station and another radio base station cooperate to transmit a radio signal to a first radio terminal of one or more radio terminals,
    The downlink scheduling information for performing the coordinated transmission is transmitted to a second radio terminal that is one of the one or more radio terminals, and the other radio base station that has received the downlink scheduling information from the second radio terminal and A radio base station comprising a transmission unit that performs the coordinated transmission.
PCT/JP2013/005599 2013-09-20 2013-09-20 Radio communication method, radio communication system, radio base station and radio terminal WO2015040659A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/005599 WO2015040659A1 (en) 2013-09-20 2013-09-20 Radio communication method, radio communication system, radio base station and radio terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/005599 WO2015040659A1 (en) 2013-09-20 2013-09-20 Radio communication method, radio communication system, radio base station and radio terminal

Publications (1)

Publication Number Publication Date
WO2015040659A1 true WO2015040659A1 (en) 2015-03-26

Family

ID=52688348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005599 WO2015040659A1 (en) 2013-09-20 2013-09-20 Radio communication method, radio communication system, radio base station and radio terminal

Country Status (1)

Country Link
WO (1) WO2015040659A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018033071A1 (en) * 2016-08-19 2018-02-22 中兴通讯股份有限公司 Method and apparatus for collaborative control among wireless access points
WO2023153354A1 (en) * 2022-02-14 2023-08-17 Kddi株式会社 Network node, control method, and program for improving efficiency of communications using a plurality of propagation waves

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278265A (en) * 2007-04-27 2008-11-13 Ntt Docomo Inc Mobile communication system, base station device, mobile station device, and scheduling method
WO2011148588A1 (en) * 2010-05-28 2011-12-01 パナソニック株式会社 Base station, mobile communication system, and interference suppression method
WO2012175360A1 (en) * 2011-06-20 2012-12-27 Ntt Docomo, Inc. Apparatus and method for determining a cluster of base stations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278265A (en) * 2007-04-27 2008-11-13 Ntt Docomo Inc Mobile communication system, base station device, mobile station device, and scheduling method
WO2011148588A1 (en) * 2010-05-28 2011-12-01 パナソニック株式会社 Base station, mobile communication system, and interference suppression method
WO2012175360A1 (en) * 2011-06-20 2012-12-27 Ntt Docomo, Inc. Apparatus and method for determining a cluster of base stations

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018033071A1 (en) * 2016-08-19 2018-02-22 中兴通讯股份有限公司 Method and apparatus for collaborative control among wireless access points
WO2023153354A1 (en) * 2022-02-14 2023-08-17 Kddi株式会社 Network node, control method, and program for improving efficiency of communications using a plurality of propagation waves

Similar Documents

Publication Publication Date Title
US10050734B2 (en) Network node and method for enabling interference alignment of transmissions to user equipments
US11265867B2 (en) Wireless communication system, wireless base station, wireless terminal, and wireless communication method
JP6245270B2 (en) Wireless communication method, wireless communication system, wireless station, and wireless terminal
US20120281683A1 (en) Interference Mitigation in Downlink Signal Communication to a Mobile Terminal
US10700760B1 (en) Minimizing block error rate (BLER) associated with a beam switch
US20160278095A1 (en) Network Nodes, a User Equipment and Methods Therein for Handling Cellular and D2D Communications in a Wireless Communications Network
CN107079373B (en) System and method for adaptive cooperative mode selection strategy of wireless network
EP3097654B1 (en) Method for full duplex communications using array of antennas and associated full duplex wireless communication device
KR20140040829A (en) Coordinated set selecting method and device
US9954634B2 (en) Wireless communication method, and wireless communication apparatus
US20210036800A1 (en) Minimizing block error rate (bler) associated with a beam switch
WO2013140434A1 (en) Radio communication method, radio communication system, radio station, and radio terminal
WO2017195238A1 (en) Wireless base station and wireless communication method
KR20120088149A (en) Methods and apparatus for precoding with limited coordination between cells in wireless communication system
JP5661599B2 (en) Wireless communication system, mobile station, base station, and communication control method
CN110326233B (en) Method and apparatus for reception in a wireless communication system
WO2015040659A1 (en) Radio communication method, radio communication system, radio base station and radio terminal
JPWO2010150896A1 (en) Wireless communication system, wireless base station, and wireless communication method
US11742904B2 (en) Method and apparatus for multi-user multi-antenna transmission
EP3942706A1 (en) Radio network node and method performed therein for handling a transmission in a wireless communication network
US9622185B2 (en) Wireless communication method, wireless communication system, wireless station, and wireless terminal for adjusting transmission power
EP3925257B1 (en) Methods and devices for inter-cell interference estimation
US20150215099A1 (en) System and Method for Channel Quality Feedback
KR101705992B1 (en) Heterogeneous network system and method for signal transmission control using the same
JP2014236437A (en) Communication device and communication control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP