WO2015039805A1 - Verfahren zum betreiben eines ultraschallsensors eines kraftfahrzeugs beim aussenden eines sendesignals, ultraschallsensorvorrichtung und kraftfahrzeug - Google Patents

Verfahren zum betreiben eines ultraschallsensors eines kraftfahrzeugs beim aussenden eines sendesignals, ultraschallsensorvorrichtung und kraftfahrzeug Download PDF

Info

Publication number
WO2015039805A1
WO2015039805A1 PCT/EP2014/066990 EP2014066990W WO2015039805A1 WO 2015039805 A1 WO2015039805 A1 WO 2015039805A1 EP 2014066990 W EP2014066990 W EP 2014066990W WO 2015039805 A1 WO2015039805 A1 WO 2015039805A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
frequency
ultrasonic sensor
signal
motor vehicle
Prior art date
Application number
PCT/EP2014/066990
Other languages
English (en)
French (fr)
Inventor
Tobias Haar
Original Assignee
Valeo Schalter Und Sensoren Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Schalter Und Sensoren Gmbh filed Critical Valeo Schalter Und Sensoren Gmbh
Priority to EP14750460.9A priority Critical patent/EP3047299A1/de
Publication of WO2015039805A1 publication Critical patent/WO2015039805A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S15/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse-modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S15/60Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • G01S15/876Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals
    • G01S7/5276Extracting wanted echo signals using analogue techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/937Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details
    • G01S2015/938Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details in the bumper area

Definitions

  • the invention relates to a method for operating an ultrasonic sensor of a
  • the invention when sending a transmission signal in an area surrounding the motor vehicle.
  • the invention also relates to an ultrasonic sensor device which is designed to carry out such a method and has an ultrasonic sensor and a control device which serves to drive the ultrasonic sensor.
  • the invention also relates to a motor vehicle, in particular a motor vehicle
  • Ultrasonic sensors for motor vehicles are already known from the prior art. They are usually used to assist the driver in performing
  • the ultrasonic sensors belong to one
  • Driver assistance device or a driver assistance system which or which is referred to as a parking aid.
  • ultrasonic sensors are now increasingly used outside of this actual parking assistance functionality, such as
  • the ultrasonic sensors By means of the ultrasonic sensors, overall distances between the motor vehicle and target objects or obstacles located in its surroundings can be measured.
  • the ultrasonic sensors work according to the echo delay principle. This means that the distance measurement in ultrasound technology takes place by means of an echolocation method.
  • the ultrasonic sensor transmits a transmission signal - ultrasound - and receives a reception signal, which is also a sound signal and which is that of a
  • ultrasonic waves are emitted, reflected by an object and again received and evaluated by the same ultrasonic sensor and / or another ultrasonic sensor of the same motor vehicle.
  • the distance and possibly also the relative position of the target object relative to the motor vehicle are then determined.
  • so-called cross measurements are also known in which a first ultrasonic sensor emits the transmission signal, but the reception signal is received by another ultrasonic sensor of the same motor vehicle. It is also state of the art (eg DE 10 201 1 109 915 A1) to modulate the transmission signal of an ultrasonic sensor, so that with the transmission signal a specific
  • Codeword - namely an identifier - is transmitted.
  • This transmission signal can then be from other interference signals or sound signals from other sensors or other
  • the received signal can be distinguished from the ultrasound signals of other motor vehicles;
  • each ultrasonic sensor sends a transmission signal with an associated specific identifier and can then recognize its own sound signal again.
  • the reception signal must also be able to be demodulated. It must therefore be checked whether the received received signal has the same identifier as the transmission signal and thus is the transmission signal reflected by an object.
  • the received received signals are checked for their coding by means of correlation. The result of the correlation is a measure of the match between the received
  • Ultrasound signal and the expected thus, a correlation between the received signal and a reference signal is calculated, the reference signal corresponding to the transmitted signal transmitted. If a relatively large correlation between the received signal and the reference signal is detected, then it is determined that the received signal is the own signal of the ultrasonic sensor.
  • Doppler shift means that the frequency of the transmitted transmission signal shifts and the received signal has a reception frequency different from the transmission frequency of the transmission signal. Due to the Doppler shift, the demodulation of the received signal is relatively complex. For the
  • Doppler banks must be used to reliably demodulate the received signal even with a Doppler shift and thus be able to recover the above-mentioned codeword safely.
  • This object is achieved by a method by an ultrasonic sensor device and by a motor vehicle with the features according to the respective independent claims.
  • Advantageous embodiments of the invention are the subject of the dependent claims, the description and the figures.
  • a method according to the invention serves for operating an ultrasonic sensor of a motor vehicle when emitting a transmission signal into an environmental region of the motor vehicle. A Doppler shift which the probing signal is likely to undergo in the surrounding area is estimated. Then one will
  • the Doppler shift is estimated in advance even before the transmission signal is transmitted and the transmission frequency is determined as a function of the probable Doppler shift
  • Transmission signal is the effort in the demodulation of the received signal in
  • the received signal has a predetermined reception frequency or a reception frequency which is in a predetermined frequency value range.
  • the above-mentioned double banks for signal demodulation can be dispensed with or the number of required Doppler banks can be significantly reduced.
  • This effect is also helpful when coding or modulating transmit signals.
  • the frequency band can be restricted as a whole, and thus the Doppler banks responsible for the decoding in the receiver can be optimized. Also at
  • Cross measurements facilitate the demodulation of received signals from other sensors.
  • the determination of the transmission frequency is preferably such that a predetermined base transmission frequency, which is usually in the prior art for the transmission signal is used and is stored permanently in the ultrasonic sensor or a control device to increase or reduce the estimated Doppler shift, namely depending on the character or the direction of the Doppler shift.
  • the transmission frequency for the transmission signal is preferably set so that the reception frequency of the reception signal corresponds to the abovementioned base transmission frequency, which is shifted by the estimated Doppler shift in determining the transmission frequency for the transmission signal and thus influenced.
  • Reception frequency of the received signal is thus equal to the ideal or optimal base frequency, which reduces the effort in the evaluation of the received signal in the receiver to a minimum.
  • the reception frequency of the reception signal is constant by setting the transmission frequency - i. to a constant value - is regulated.
  • a membrane of the ultrasonic sensor is thereby excited to emit a respective transmission signal at the fixed transmission frequency. If the reception frequency is regulated to a constant value-in particular to the abovementioned base transmission frequency-then the plurality of Doppler banks can thus be dispensed with in the receiver.
  • the estimation of the Doppler shift can in principle be made in many different ways. In principle, it can be provided that, for the estimation of the Doppler shift, an own speed or the own speed of the motor vehicle relative to the roadway is first detected and taken into account in the estimation of the Doppler shift. In the simplest case, the estimate of the Doppler shift can even be based solely on the
  • the Doppler shift can be calculated directly from the airspeed here.
  • Target object is determined and estimating the Doppler shift below
  • Ultrasonic sensor from previous measurement cycles takes place. Additionally or alternatively, current measured values of a sensor other than the ultrasound sensor may also be taken into account, such as a lidar sensor and / or a radar sensor and / or another ultrasound sensor. If the signals from the immediately preceding measuring cycle of the ultrasonic sensor are taken into account, then the estimation of the Doppler shift can be carried out particularly precisely and without much effort.
  • the transmission signal is transmitted modulated, so that a predetermined code word is impressed on the transmission signal by this modulation.
  • a predetermined code word is impressed on the transmission signal by this modulation.
  • Sending signal emitted by a first ultrasonic sensor and the associated received signal is received by a second ultrasonic sensor and demodulated in the second ultrasonic sensor.
  • For putting in the transmission signals can thus be distinguished from other interference signals from external sources of interference. It is also possible to operate several ultrasonic sensors simultaneously, their signals
  • An inventive ultrasonic sensor device for a motor vehicle comprises an ultrasonic sensor for emitting a transmission signal in an environmental region of the motor vehicle and a control device for driving the ultrasonic sensor.
  • the control device is designed to estimate a Doppler shift of the transmission signal in the surrounding area, to set the transmission frequency for the transmission signal such that a reception frequency of a reception signal, that of the reception signal
  • Doppler shift shifted transmission frequency corresponds, is within a predetermined frequency range, and to control the ultrasonic sensor for transmitting the transmission signal with the specified transmission frequency.
  • a motor vehicle according to the invention in particular a passenger car, comprises an ultrasonic sensor device according to the invention.
  • FIG. 1 is a schematic representation of a motor vehicle with a
  • Fig. 3 to 5 are schematic representations for explaining the method.
  • the motor vehicle 1 is for example a passenger car.
  • the motor vehicle 1 comprises an ultrasonic sensor device 2, which has a plurality of ultrasonic sensors 3 and an electronic control device 4, for example in the form of a microcontroller or control device.
  • the number and arrangement of the ultrasonic sensors 3 are shown in FIG. 1 by way of example only and may vary depending on the embodiment. In the embodiment, a plurality of
  • the ultrasonic sensors 3 can each be arranged in a recess of the respective bumper 5, 6, so that the membranes of the respective ultrasonic sensors 3 are arranged within the respective continuous recess of the bumper 5, 6.
  • a concealed installation of the ultrasonic sensors 3 behind the respective bumper 5, 6 may be provided.
  • the membranes of the ultrasonic sensors 3 at the back the respective bumper 5, 6 arranged adjacent and send the ultrasonic signals through the material of the bumper 5, 6 through.
  • the ultrasonic sensors 3 are each for detecting distances to in one
  • a plurality of driver assistance systems may be provided, which are designed to provide different functionalities in the motor vehicle 1, based on the measured distances of the ultrasonic sensors 3.
  • driver assistance systems for example, the following systems can be provided: a parking assistance system, in which the measured distances acoustically and / or optically output
  • an automatic parking assistance system for automatically calculating a parking path and for automatic parking, an automatic brake assistance system which is used for autonomous braking of the motor vehicle 1 on the basis of a collision risk detected on the basis of the measured values of the ultrasonic sensors 3, a system for
  • the control device 4 can separately determine the transmission frequency of the respective transmission signal for each ultrasonic sensor 3 and control the ultrasonic sensor 3 for transmitting the transmission signal at the previously defined transmission frequency.
  • the method starts in a step S1 and proceeds to a further step S2, in which a new measurement cycle of the ultrasonic sensor 3 is initiated.
  • a Doppler shift fD is estimated, which the transmission signal in the surrounding area 7 is expected to experience. In other words, it is estimated how much the frequency of the transmission signal is likely to shift as it propagates in the surrounding area 7.
  • the intrinsic speed of the motor vehicle 1 is first detected and evaluated relative to the roadway.
  • a relative speed between motor vehicle 1 and target object 8 can also be determined and used in the estimation of
  • Doppler shift are taken into account.
  • the signals of the ultrasonic sensors 3 from previous measurement cycles and / or signals from other sensors can be taken into account.
  • the transmission frequency fS for the to be transmitted is taken into account.
  • step S5 Doppler shift fD shifted to the transmission frequency fS.
  • step S5 the transmission signal is transmitted with the transmission frequency fS already set.
  • step S6 the associated received signal is transmitted through it
  • a modulation When transmitting the transmission signal optionally also a modulation can be made. This may be, for example, a phase modulation and / or an amplitude modulation and / or a frequency modulation. Will one
  • Frequency modulation made, it may be at the above
  • Transmit frequency fS to the average frequency of the transmission signal act.
  • a predetermined code word is impressed on the transmission signal to enable the transmission signal of other signals
  • step S6 Upon receiving the received signal according to step S6, a corresponding demodulation of the received signal is then performed. In the present case, this can be done without much effort since the reception frequency corresponds to the base transmission frequency fB or lies within a tolerance range around this value.
  • FIG. 3 shows a scenario with the motor vehicle 1 and the target object 8 without one
  • FIG. 4 shows a scenario with a relative movement between motor vehicle 1 and target object 8 according to the prior art.
  • the method according to the invention is illustrated in FIG. 5.
  • the reception frequency fE is then A and thus corresponds to the base transmission frequency fB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs (1) beim Aussenden eines Sendesignals in einen Umgebungsbereich des Kraftfahrzeugs (1), gekennzeichnet durch Schätzen einer Dopplerverschiebung (fD), welche das Sendesignals in dem Umgebungsbereich voraussichtlich erfahren wird, durch Festlegen einer Sendefrequenz (fS) für das Sendesignal so, dass eine Empfangsfrequenz (fE) eines Empfangssignals, welche der um die geschätzte Dopplerverschiebung (fD) verschobenen Sendefrequenz (fS) entspricht, in einem vorgegebenen Frequenzwertebereich liegt, insbesondere einer Basissendefrequenz (fB) entspricht, und durch Aussenden des Sendesignals mit der festgelegten Sendefrequenz (fS).

Description

Verfahren zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs beim Aussenden eines Sendesignals, Ultraschallsensorvorrichtung und Kraftfahrzeug
Die Erfindung betrifft ein Verfahren zum Betreiben eines Ultraschallsensors eines
Kraftfahrzeugs beim Aussenden eines Sendesignals in einen Umgebungsbereich des Kraftfahrzeugs. Die Erfindung betrifft außerdem eine Ultraschallsensorvorrichtung, welche zum Durchführen eines solchen Verfahrens ausgebildet ist und einen Ultraschallsensor sowie eine Steuereinrichtung aufweist, die zum Ansteuern des Ultraschallsensors dient. Die Erfindung betrifft au ßerdem ein Kraftfahrzeug, insbesondere einen
Personenkraftwagen, mit einer solchen Ultraschallsensorvorrichtung.
Ultraschallsensoren für Kraftfahrzeuge sind bereits aus dem Stand der Technik bekannt. Sie werden üblicherweise zum Unterstützen des Fahrers beim Durchführen von
Parkvorgängen eingesetzt. Hier gehören die Ultraschallsensoren zu einer
Fahrerassistenzeinrichtung bzw. einem Fahrerassistenzsystem, welche bzw. welches als Parkhilfe bezeichnet wird. Jedoch werden Ultraschallsensoren heutzutage auch immer häufiger außerhalb dieser eigentlichen Parkhilfefunktionalität eingesetzt, wie
beispielsweise zur Fahrunterstützung mit aktiven Bremseingriffen aufgrund einer detektierten Kollisionsgefahr, d.h. bei automatischen Bremsassistenzsystemen, bei Systemen zur Totwinkelüberwachung, bei Systemen zur Abstandshaltung, bei
Kollisionserkennungssystemen und dergleichen. Mittels der Ultraschallsensoren können insgesamt Abstände zwischen dem Kraftfahrzeug und in dessen Umgebung befindlichen Zielobjekten bzw. Hindernissen gemessen werden. Die Ultraschallsensoren arbeiten dabei nach dem Echolaufzeitprinzip. Dies bedeutet, dass die Abstandsmessung in der Ultraschalltechnologie mittels eines Echolaufzeitverfahrens bzw. Echolotverfahrens erfolgt. Der Ultraschallsensor sendet ein Sendesignal - Ultraschall - und empfängt ein Empfangssignal, das ebenfalls ein Schallsignal ist und welches das von einem
fahrzeugexternen Objekt reflektierte Sendesignal ist. Es werden also Ultraschallwellen ausgesendet, von einem Objekt reflektiert und wieder durch denselben Ultraschallsensor und/oder einen anderen Ultraschallsensor desselben Kraftfahrzeugs empfangen und ausgewertet. In Abhängigkeit von der gemessenen Laufzeit der Ultraschallwelle wird dann der Abstand und gegebenenfalls auch die relative Position des Zielobjekts relativ zum Kraftfahrzeug bestimmt. Es sind also auch so genannte Kreuzmessungen bekannt, bei denen ein erster Ultraschallsensor das Sendesignal aussendet, das Empfangssignal jedoch durch einen anderen Ultraschallsensor desselben Kraftfahrzeugs empfangen wird. Es ist auch Stand der Technik (z.B. DE 10 201 1 109 915 A1 ), das Sendesignal eines Ultraschallsensors zu modulieren, sodass mit dem Sendesignal ein spezifisches
Codewort - nämlich eine Kennung - übertragen wird. Dieses Sendesignal kann dann von anderen Störsignalen bzw. von Schallsignalen anderer Sensoren bzw. anderer
Kraftfahrzeuge unterschieden werden. Auf der einen Seite kann somit das empfangene Signal von Ultraschallsignalen anderer Kraftfahrzeuge unterschieden werden;
andererseits wird somit auch ein gleichzeitiger Betrieb mehrerer Ultraschallsensoren ein und desselben Kraftfahrzeugs ermöglicht. In diesem Falle sendet jeder Ultraschallsensor ein Sendesignal mit einer zugeordneten spezifischen Kennung und kann dann das eigene Schallsignal wieder erkennen.
Wenn das Sendesignal moduliert ist, so muss auch das Empfangssignal demoduliert werden können. Es muss also überprüft werden, ob das empfangene Empfangssignal dieselbe Kennung wie das Sendesignal aufweist und somit das von einem Objekt reflektierte Sendesignal ist. Nach heutigem Stand der Technik werden die empfangenen Empfangssignale mittels Korrelation auf ihre Codierung hin überprüft. Das Ergebnis der Korrelation ist ein Maß für die Übereinstimmung zwischen dem empfangenen
Ultraschallsignal und dem erwarteten. Es wird also eine Korrelation zwischen dem empfangenen Signal und einem Referenzsignal berechnet, wobei das Referenzsignal dem ausgesendeten Sendesignal entspricht. Wird eine relativ große Korrelation zwischen dem Empfangssignal und dem Referenzsignal erkannt, so wird festgestellt, dass es sich bei dem Empfangssignal um das eigene Signal des Ultraschallsensors handelt.
Im Betrieb eines Ultraschallsensors kommt es jedoch auch zu einer Dopplerverschiebung des Sendesignals in dem Umgebungsbereich des Kraftfahrzeugs. Diese
Dopplerverschiebung bedeutet, dass sich die Frequenz des ausgesendeten Sendesignals verschiebt und das Empfangssignal eine von der Sendefrequenz des Sendesignals unterschiedliche Empfangsfrequenz aufweist. Aufgrund der Dopplerverschiebung gestaltet sich die Demodulation des Empfangssignals relativ aufwändig. Für die
Demodulation des Empfangssignals müssen so genannte Doppler-Bänke genutzt werden, um das Empfangssignal auch bei einer Dopplerverschiebung zuverlässig demodulieren und somit das oben genannte Codewort sicher zurückgewinnen zu können.
Es ist Aufgabe der Erfindung, den Aufwand bei dem Empfangen eines Empfangssignals durch einen Ultraschallsensor, insbesondere beim Demodulieren des Empfangssignals, im Vergleich zum Stand der Technik zu reduzieren. Diese Aufgabe wird erfindungsgemäß durch ein Verfahren, durch eine Ultraschallsensorvorrichtung sowie durch ein Kraftfahrzeug mit den Merkmalen gemäß den jeweiligen unabhängigen Patentansprüchen gelöst. Vorteilhafte Ausführungen der Erfindung sind Gegenstand der abhängigen Patentansprüche, der Beschreibung und der Figuren.
Ein erfindungsgemäßes Verfahren dient zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs beim Aussenden eines Sendesignals in einen Umgebungsbereich des Kraftfahrzeugs. Es wird eine Dopplerverschiebung, welche das Sendesignal in dem Umgebungsbereich voraussichtlich erfahren wird, geschätzt. Dann wird eine
Sendefrequenz für das Sendesignal so festgelegt, dass eine Empfangsfrequenz eines Empfangssignals, welche der um die geschätzte Dopplerverschiebung verschobenen Sendefrequenz entspricht, in einem vorgegebenen Frequenzwertebereich liegt. Dann wird das Sendesignal mit der so festgelegten Sendefrequenz ausgesendet.
Erfindungsgemäß ist demnach vorgesehen, dass die Dopplerverschiebung noch vor dem Aussenden des Sendesignals im Voraus abgeschätzt wird und die Sendefrequenz abhängig von der voraussichtlichen Dopplerverschiebung festgelegt wird, um ein
Empfangssignal mit einer gewünschten Empfangsfrequenz zu erreichen. Mit anderen Worten wird somit die Empfangsfrequenz des Empfangssignals auf den vorgegebenen Frequenzwertebereich gesteuert. Eine solche Vorgehensweise hat den Vorteil, dass die Verarbeitung des Empfangssignals beim Empfänger im Vergleich zum Stand der Technik erheblich vereinfacht wird. Insbesondere beim Aussenden eines modulierten
Sendesignals wird der Aufwand bei der Demodulation des Empfangssignals im
Empfänger erheblich reduziert. Das Empfangssignal weist nämlich eine vorgegebene Empfangsfrequenz auf bzw. eine Empfangsfrequenz, die in einem vorgegebenen Frequenzwertebereich liegt. Somit kann insbesondere auf die oben genannten Doppier- Bänke zur Signaldemodulierung verzichtet werden oder die Anzahl der erforderlichen Doppler-Bänke kann deutlich reduziert werden. Dieser Effekt ist auch bei der Codierung bzw. bei der Modulation von Sendesignalen hilfreich. Das Frequenzband kann nämlich insgesamt eingeschränkt werden, und es können somit die Doppler-Bänke optimiert werden, die für die Decodierung im Empfänger verantwortlich sind. Auch bei
Kreuzmessungen wird die Demodulierung von Empfangssignalen anderer Sensoren erleichtert.
Die Festlegung der Sendefrequenz erfolgt vorzugsweise derart, dass eine vorgegebene Basissendefrequenz, welche üblicherweise im Stand der Technik für das Sendesignal verwendet wird und fest in dem Ultraschallsensor oder einem Steuergerät abgelegt ist, um die geschätzte Dopplerverschiebung erhöht oder reduziert wird, nämlich abhängig von dem Zeichen bzw. der Richtung der Dopplerverschiebung.
Die Sendefrequenz für das Sendesignal wird vorzugsweise so festgelegt, dass die Empfangsfrequenz des Empfangssignals der oben genannten Basissendefrequenz entspricht, welche bei dem Festlegen der Sendefrequenz für das Sendesignal um die geschätzte Dopplerverschiebung verschoben und somit beeinflusst wird. Die
Empfangsfrequenz des Empfangssignals ist somit gleich der idealen bzw. optimalen Basissendefrequenz, was den Aufwand bei der Auswertung des Empfangssignals im Empfänger auf ein Minimum reduziert.
Es kann optional auch vorgesehen sein, dass über eine Vielzahl von Messzyklen des Ultraschallsensors hinweg die Empfangsfrequenz des Empfangssignals durch das Festlegen der Sendefrequenz konstant - d.h. auf einen konstanten Wert - geregelt wird. Bei jedem Messzyklus wird dabei eine Membran des Ultraschallsensors zum Aussenden jeweils eines Sendesignals mit der festgelegten Sendefrequenz angeregt. Wird die Empfangsfrequenz auf einen konstanten Wert - insbesondere auf die oben genannte Basissendefrequenz - geregelt, so kann im Empfänger somit auf die Vielzahl von Doppler-Bänken verzichtet werden.
Die Schätzung der Dopplerverschiebung kann grundsätzlich auf unterschiedlichste Art und Weise vorgenommen werden. Grundsätzlich kann vorgesehen sein, dass für die Schätzung der Doppler-Verschiebung zunächst eine Eigengeschwindigkeit bzw. die eigene Geschwindigkeit des Kraftfahrzeugs relativ zur Fahrbahn erfasst und bei der Schätzung der Dopplerverschiebung berücksichtigt wird. Im einfachsten Fall kann die Schätzung der Dopplerverschiebung sogar ausschließlich anhand der
Eigengeschwindigkeit erfolgen, sodass angenommen wird, dass sich die Zielobjekte bzw. Hindernisse in dem Umgebungsbereich des Kraftfahrzeugs nicht bewegen. Diese Annahme kann insbesondere beim Durchführen von Parkmanövern getroffen werden. Die Dopplerverschiebung kann hier direkt aus der Eigengeschwindigkeit berechnet werden.
Es kann jedoch optional auch vorgesehen sein, dass eine Relativgeschwindigkeit zwischen dem Kraftfahrzeug und einem in dem Umgebungsbereich befindlichen
Zielobjekt bestimmt wird und das Schätzen der Dopplerverschiebung unter
Berücksichtigung der Relativgeschwindigkeit erfolgt. Dies verbessert die Genauigkeit der Schätzung. Beispielsweise kann dies so durchgeführt werden, dass die Schätzung der
Dopplerverschiebung anhand von Messwerten bzw. Empfangssignalen des
Ultraschallsensors aus vorherigen Messzyklen erfolgt. Ergänzend oder alternativ können auch aktuelle Messwerte eines von dem Ultraschallsensor verschiedenen Sensors berücksichtigt werden, wie beispielsweise eines Lidar-Sensors und/oder eines Radar- Sensors und/oder eines anderen Ultraschallsensors. Werden die Signale aus dem unmittelbar vorherigen Messzyklus des Ultraschallsensors berücksichtigt, so kann die Schätzung der Dopplerverschiebung besonders präzise und ohne viel Aufwand erfolgen.
Bevorzugt wird das Sendesignal moduliert ausgesendet, sodass durch diese Modulation ein vorbestimmtes Codewort dem Sendesignal aufgeprägt wird. Auf diese Art und Weise können beispielsweise Kreuzmessungen durchgeführt werden, bei denen das
Sendesignal durch einen ersten Ultraschallsensor ausgesendet und das zugehörige Empfangssignal durch einen zweiten Ultraschallsensor empfangen und in dem zweiten Ultraschallsensor demoduliert wird. Au ßerdem können die Sendesignale somit von anderen Störsignalen externer Störquellen unterschieden werden. Es ist auch ein gleichzeitiger Betrieb mehrerer Ultraschallsensoren möglich, deren Signale
unterschiedlich codiert werden.
Eine erfindungsgemäße Ultraschallsensorvorrichtung für ein Kraftfahrzeug umfasst einen Ultraschallsensor zum Aussenden eines Sendesignals in einen Umgebungsbereich des Kraftfahrzeugs sowie eine Steuereinrichtung zum Ansteuern des Ultraschallsensors. Die Steuereinrichtung ist dazu ausgelegt, eine Dopplerverschiebung des Sendesignals in dem Umgebungsbereich zu schätzen, die Sendefrequenz für das Sendesignal so festzulegen, dass eine Empfangsfrequenz eines Empfangssignals, die der um die geschätzte
Dopplerverschiebung verschobenen Sendefrequenz entspricht, in einem vorgegebenen Frequenzwertebereich liegt, und den Ultraschallsensor zum Aussenden des Sendesignals mit der festgelegten Sendefrequenz anzusteuern.
Ein erfindungsgemäßes Kraftfahrzeug, insbesondere ein Personenkraftwagen, umfasst eine erfindungsgemäße Ultraschallsensorvorrichtung.
Die mit Bezug auf das erfindungsgemäße Verfahren vorgestellten bevorzugten
Ausführungsformen und deren Vorteile gelten entsprechend für die erfindungsgemäße Ultraschallsensorvorrichtung sowie für das erfindungsgemäße Kraftfahrzeug. Weitere Merkmale der Erfindung ergeben sich aus den Ansprüchen, den Figuren und der Figurenbeschreibung. Alle vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen
Kombinationen oder aber in Alleinstellung verwendbar.
Die Erfindung wird nun anhand eines bevorzugten Ausführungsbeispiels sowie unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert.
Es zeigen:
Fig. 1 in schematischer Darstellung ein Kraftfahrzeug mit einer
Ultraschallsensorvorrichtung nach einer Ausführungsform der Erfindung;
Fig. 2 ein Flussdiagramm eines Verfahrens gemäß einer Ausführungsform der
Erfindung; und
Fig. 3 bis 5 schematische Darstellungen zur Erläuterung des Verfahrens.
Ein in Fig. 1 dargestelltes Kraftfahrzeug 1 ist beispielsweise ein Personenkraftwagen. Das Kraftfahrzeug 1 umfasst eine Ultraschallsensorvorrichtung 2, welche eine Vielzahl von Ultraschallsensoren 3 sowie eine elektronische Steuereinrichtung 4 beispielsweise in Form eines MikroControllers bzw. Steuergeräts aufweist. Die Anzahl und die Anordnung der Ultraschallsensoren 3 sind in Fig. 1 lediglich beispielhaft dargestellt und können je nach Ausführungsform variieren. Im Ausführungsbeispiel sind eine Vielzahl von
Ultraschallsensoren 3 an einem vorderen Stoßfänger 5 angeordnet, eine Vielzahl von Ultraschallsensoren 3 sind auch an einem hinteren Stoßfänger 6 des Kraftfahrzeugs 1 angeordnet. Hinsichtlich der Einbauart der Ultraschallsensoren 3 können zwei alternative Ausführungsformen vorgesehen sein. Zum einen können die Ultraschallsensoren 3 jeweils in einer Aussparung des jeweiligen Stoßfängers 5, 6 angeordnet sein, sodass die Membranen der jeweiligen Ultraschallsensoren 3 innerhalb der jeweiligen durchgängigen Aussparung des Stoßfängers 5, 6 angeordnet sind. Zum anderen kann jedoch auch ein verdeckter Einbau der Ultraschallsensoren 3 hinter dem jeweiligen Stoßfänger 5, 6 vorgesehen sein. Hier sind die Membranen der Ultraschallsensoren 3 an der Rückseite des jeweiligen Stoßfängers 5, 6 anliegend angeordnet und senden die Ultraschallsignale durch das Material des Stoßfängers 5, 6 hindurch aus.
Die Ultraschallsensoren 3 sind jeweils zum Erfassen von Abständen zu in einem
Umgebungsbereich 7 des Kraftfahrzeugs 1 befindlichen Zielobjekten 8 bzw. Hindernissen ausgebildet. Die jeweils gemessenen Abstandswerte werden von den
Ultraschallsensoren 3 an die zentrale Steuereinrichtung 4 übermittelt, welche die
Messwerte der Ultraschallsensoren 3 verarbeitet. In dem Kraftfahrzeug 1 können mehrere Fahrerassistenzsysteme vorgesehen sein, welche zum Bereitstellen unterschiedlicher Funktionalitäten in dem Kraftfahrzeug 1 ausgebildet sind, und zwar anhand der gemessenen Abstände der Ultraschallsensoren 3. Als Fahrerassistenzsysteme können beispielsweise folgende Systeme vorgesehen sein: ein Parkhilfesystem, bei welchem die gemessenen Abstände akustisch und/oder optisch ausgegeben werden, ein
automatisches Parkassistenzsystem zum automatischen Berechnen einer Parkbahn und zum automatischen Einparken, ein automatisches Bremsassistenzsystem, welches zum autonomen Bremsen des Kraftfahrzeugs 1 aufgrund einer anhand der Messwerte der Ultraschallsensoren 3 detektierten Kollisionsgefahr dient, ein System zur
Totwinkelüberwachung, ein System zur Abstandshaltung, ein
Kollisionserkennungssystem und dergleichen.
Die Steuereinrichtung 4 kann zu jedem Ultraschallsensor 3 separat die Sendefrequenz des jeweiligen Sendesignals festlegen und den Ultraschallsensor 3 zum Aussenden des Sendesignals mit der zuvor festgelegten Sendefrequenz ansteuern.
Ein Verfahren gemäß einer Ausführungsform der Erfindung wird nun Bezug nehmend auf Fig. 2 näher erläutert. Das Verfahren startet in einem Schritt S1 und geht zu einem weiteren Schritt S2 über, in welchem ein neuer Messzyklus des Ultraschallsensors 3 eingeleitet wird. In einem weiteren Schritt S3 wird eine Dopplerverschiebung fD geschätzt, welche das Sendesignal in dem Umgebungsbereich 7 voraussichtlich erfahren wird. Mit anderen Worten wird abgeschätzt, wie stark sich die Frequenz des Sendesignals bei dessen Ausbreitung in dem Umgebungsbereich 7 voraussichtlich verschieben wird. Zu diesem Zwecke wird zunächst die Eigengeschwindigkeit des Kraftfahrzeugs 1 relativ zur Fahrbahn erfasst und ausgewertet. Optional kann auch eine Relativgeschwindigkeit zwischen Kraftfahrzeug 1 und Zielobjekt 8 ermittelt und bei der Schätzung der
Dopplerverschiebung berücksichtigt werden. Dabei können beispielsweise die Signale der Ultraschallsensoren 3 aus vorherigen Messzyklen und/oder Signale anderer Sensoren berücksichtigt werden. In einem weiteren Schritt S4 wird die Sendefrequenz fS für das auszusendende
Sendesignal so festgelegt, dass eine Empfangsfrequenz eines Empfangssignals, die der um die geschätzte Dopplerverschiebung fD verschobenen Sendefrequenz fS entspricht, einer Basissendefrequenz fB entspricht. Beim Festlegen der Sendefrequenz fS wird also die abgelegte und vorgegebene Basissendefrequenz fB um die ermittelte
Dopplerverschiebung fD auf die Sendefrequenz fS verschoben. In einem weiteren Schritt S5 wird das Sendesignal mit der bereits festgelegten Sendefrequenz fS ausgesendet. In einem weiteren Schritt S6 wird das zugehörige Empfangssignal durch denselben
Ultraschallsensor 3 und/oder durch einen anderen Ultraschallsensor 3 empfangen. Die Schritte S1 bis S6 werden dann wiederholt.
Beim Aussenden des Sendesignals kann optional auch eine Modulation vorgenommen werden. Es kann sich hier beispielsweise um eine Phasenmodulation und/oder eine Amplitudenmodulation und/oder eine Frequenzmodulation handeln. Wird eine
Frequenzmodulation vorgenommen, so kann es sich bei der oben genannten
Sendefrequenz fS um die mittlere Frequenz des Sendesignals handeln. Durch die vorgenommene Modulation wird dem Sendesignal ein vorbestimmtes Codewort aufgeprägt, um zu ermöglichen, dass das Sendesignal von anderen Signalen
unterschieden werden kann. Beim Empfangen des Empfangssignals gemäß Schritt S6 wird dann eine entsprechende Demodulation des Empfangssignals durchgeführt. Dies kann vorliegend ohne viel Aufwand vorgenommen werden, da die Empfangsfrequenz der Basissendefrequenz fB entspricht bzw. in einem Toleranzbereich um diesen Wert liegt.
Das Verfahren kann auch anhand der Fig. 3 bis 5 veranschaulicht werden: Fig. 3 zeigt dabei ein Szenario mit dem Kraftfahrzeug 1 und dem Zielobjekt 8 ohne eine
Relativbewegung und ohne die erfindungsgemäße Anpassung der Sendefrequenz fS, d.h. gemäß dem Stand der Technik. Das Sendesignal wird hier mit der Sendefrequenz fS=fB=A ausgesendet. Da keine Relativbewegung vorliegt, ist auch die
Empfangsfrequenz fE gleich der Sendefrequenz fS und somit gleich A. Fig. 4 zeigt ein Szenario mit einer Relativbewegung zwischen Kraftfahrzeug 1 und Zielobjekt 8 gemäß dem Stand der Technik. Auch hier wird eine Sendefrequenz fS gewählt, die gleich der Basissendefrequenz fB ist. Aufgrund der Relativgeschwindigkeit verschiebt sich nun die Empfangsfrequenz fE, sodass gilt: fE=B. Hingegen ist das erfindungsgemäße Verfahren in Fig. 5 veranschaulicht. Hier wird die Basissendefrequenz fB um die geschätzte Dopplerverschiebung fD verschoben, sodass: fS=fB+fD=C. Die Empfangsfrequenz fE beträgt dann A und entspricht somit der Basissendefrequenz fB.

Claims

Patentansprüche
1 . Verfahren zum Betreiben eines Ultraschallsensors (3) eines Kraftfahrzeugs (1 ) beim Aussenden eines Sendesignals in einen Umgebungsbereich (7) des
Kraftfahrzeugs (1 ),
gekennzeichnet durch:
- Schätzen einer Dopplerverschiebung (fD) des Sendesignals in dem
Umgebungsbereich (7),
Festlegen einer Sendefrequenz (fS) für das Sendesignal so, dass eine
Empfangsfrequenz (fE) eines Empfangssignals, welche der um die geschätzte Dopplerverschiebung (fD) verschobenen Sendefrequenz (fS) entspricht, in einem vorgegebenen Frequenzwertebereich liegt, und
- Aussenden des Sendesignals mit der festgelegten Sendefrequenz (fS).
2. Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet, dass
die Sendefrequenz (fS) für das Sendesignal so festgelegt wird, dass die
Empfangsfrequenz (fE) des Empfangssignals einer Basissendefrequenz (fB) entspricht, welche bei dem Festlegen der Sendefrequenz (fS) für das Sendesignal durch die geschätzte Dopplerverschiebung (fD) beeinflusst wird.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
über eine Vielzahl von Messzyklen des Ultraschallsensors (3) hinweg die
Empfangsfrequenz (fE) des Empfangssignals durch das Festlegen der
Sendefrequenz (fS) konstant geregelt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das Schätzen der Dopplerverschiebung (fD) abhängig von einer
Eigengeschwindigkeit des Kraftfahrzeugs (1 ) erfolgt.
5. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass eine Relativgeschwindigkeit zwischen dem Kraftfahrzeug (1 ) und einem in dem Umgebungsbereich (7) befindlichen Zielobjekt (8) bestimmt wird und das Schätzen der Dopplerverschiebung (fD) unter Berücksichtigung der Relativgeschwindigkeit erfolgt.
6. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das Schätzen der Dopplerverschiebung (fD) anhand eines in einem vorherigen Messzyklus des Ultraschallsensors (3) empfangenen Empfangssignals und/oder anhand von Messwerten eines von dem Ultraschallsensor (3) verschiedenen Sensors erfolgt.
7. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das Sendesignal moduliert ausgesendet wird und durch diese Modulation ein vorbestimmtes Codewort dem Sendesignal aufgeprägt wird.
8. Ultraschallsensorvorrichtung (2) für ein Kraftfahrzeug (1 ), mit einem
Ultraschallsensor (3) zum Aussenden eines Sendesignals in einen
Umgebungsbereich (7) des Kraftfahrzeugs (1 ), und mit einer Steuereinrichtung (4) zum Ansteuern des Ultraschallsensors (3), wobei die Steuereinrichtung (4) dazu ausgelegt ist, eine Sendefrequenz (fS) des Sendesignals festzulegen,
dadurch gekennzeichnet, dass
die Steuereinrichtung (4) dazu ausgelegt ist,
- eine Dopplerverschiebung (fD) des Sendesignals in dem Umgebungsbereich (7) zu schätzen,
- die Sendefrequenz (fS) für das Sendesignal so festzulegen, dass eine
Empfangsfrequenz (fE) eines Empfangssignals, welche der um die geschätzte Dopplerverschiebung (fD) verschobenen Sendefrequenz (fS) entspricht, in einem vorgegebenen Frequenzwertebereich liegt, und
- den Ultraschallsensor (3) zum Aussenden des Sendesignals mit der
festgelegten Sendefrequenz (fS) anzusteuern.
9. Kraftfahrzeug (1 ) mit einer Ultraschallsensorvorrichtung (2) nach Anspruch 8.
PCT/EP2014/066990 2013-09-17 2014-08-07 Verfahren zum betreiben eines ultraschallsensors eines kraftfahrzeugs beim aussenden eines sendesignals, ultraschallsensorvorrichtung und kraftfahrzeug WO2015039805A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14750460.9A EP3047299A1 (de) 2013-09-17 2014-08-07 Verfahren zum betreiben eines ultraschallsensors eines kraftfahrzeugs beim aussenden eines sendesignals, ultraschallsensorvorrichtung und kraftfahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013015411.1A DE102013015411A1 (de) 2013-09-17 2013-09-17 Verfahren zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs beim Aussenden eines Sendesignals, Ultraschallsensorvorrichtung und Kraftfahrzeug
DE102013015411.1 2013-09-17

Publications (1)

Publication Number Publication Date
WO2015039805A1 true WO2015039805A1 (de) 2015-03-26

Family

ID=51302971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/066990 WO2015039805A1 (de) 2013-09-17 2014-08-07 Verfahren zum betreiben eines ultraschallsensors eines kraftfahrzeugs beim aussenden eines sendesignals, ultraschallsensorvorrichtung und kraftfahrzeug

Country Status (3)

Country Link
EP (1) EP3047299A1 (de)
DE (1) DE102013015411A1 (de)
WO (1) WO2015039805A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020139778A1 (en) * 2018-12-26 2020-07-02 Texas Instruments Incorporated Ultrasonic echo processing in presence of doppler shift
CN111722229A (zh) * 2019-03-20 2020-09-29 爱信精机株式会社 物体检测装置
US11644555B2 (en) 2018-07-27 2023-05-09 Texas Instruments Incorporated Threshold generation for coded ultrasonic sensing
US11733377B2 (en) 2018-05-07 2023-08-22 Texas Instruments Incorporated Time of flight and code signature detection for coded ultrasonic transmission

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018110182B4 (de) * 2018-04-27 2023-03-30 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs mit Berücksichtigung einer Doppler-Verschiebung, Steuergerät, Ultraschallsensorvorrichtung sowie Fahrerassistenzsystem

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148409A (en) * 1989-04-28 1992-09-15 Nissan Motor Company, Ltd. Ultrasonic ground speedometer utilizing doppler effect
DE4315091A1 (de) * 1992-05-13 1993-11-18 Toyota Motor Co Ltd Dopplereffekt-Fahrgeschwindigkeitsdetektor
DE102011109915A1 (de) * 2011-08-10 2013-02-14 Valeo Schalter Und Sensoren Gmbh Verfahren zum Bestimmen der Herkunft eines von einem Ultraschallsensor eines Kraftfahrzeugs empfangenen Empfangssignals, Fahererassistenzeinrichtung und Kraftfahrzeug

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006032542A1 (de) * 2006-07-13 2008-01-17 Robert Bosch Gmbh Verfahren zur Abstandsmessung und Ultraschallabstandssensor
DE102011109830A1 (de) * 2011-08-09 2013-02-14 Valeo Schalter Und Sensoren Gmbh Verfahren zum Bestimmen der Herkunft eines von einem Ultraschallsensor eines Kraftfahrzeugs empfangenen Empfangssignals, Fahrerassistenzeinrichtung und Kraftfahrzeug

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148409A (en) * 1989-04-28 1992-09-15 Nissan Motor Company, Ltd. Ultrasonic ground speedometer utilizing doppler effect
DE4315091A1 (de) * 1992-05-13 1993-11-18 Toyota Motor Co Ltd Dopplereffekt-Fahrgeschwindigkeitsdetektor
DE102011109915A1 (de) * 2011-08-10 2013-02-14 Valeo Schalter Und Sensoren Gmbh Verfahren zum Bestimmen der Herkunft eines von einem Ultraschallsensor eines Kraftfahrzeugs empfangenen Empfangssignals, Fahererassistenzeinrichtung und Kraftfahrzeug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3047299A1 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11733377B2 (en) 2018-05-07 2023-08-22 Texas Instruments Incorporated Time of flight and code signature detection for coded ultrasonic transmission
US11644555B2 (en) 2018-07-27 2023-05-09 Texas Instruments Incorporated Threshold generation for coded ultrasonic sensing
WO2020139778A1 (en) * 2018-12-26 2020-07-02 Texas Instruments Incorporated Ultrasonic echo processing in presence of doppler shift
US11378686B2 (en) 2018-12-26 2022-07-05 Texas Instruments Incorporated Ultrasonic echo processing in presence of Doppler shift
CN111722229A (zh) * 2019-03-20 2020-09-29 爱信精机株式会社 物体检测装置
CN111722229B (zh) * 2019-03-20 2024-05-14 株式会社爱信 物体检测装置

Also Published As

Publication number Publication date
DE102013015411A1 (de) 2015-03-19
EP3047299A1 (de) 2016-07-27

Similar Documents

Publication Publication Date Title
DE102012015967B4 (de) Verfahren zum Dekodieren eines von einem Ultraschallsensor eines Kraftfahrzeugs empfangenen Empfangssignals, Fahrerassistenzeinrichtung und Kraftfahrzeug
EP1517157B1 (de) Verfahren und Vorrichtung zur Abstandsmessung
DE102011109915B4 (de) Verfahren zum Bestimmen der Herkunft eines von einem Ultraschallsensor eines Kraftfahrzeugs empfangenen Empfangssignals, Fahererassistenzeinrichtung und Kraftfahrzeug
WO2015090842A1 (de) Verfahren zum detektieren von zielechos in einem empfangssignal eines ultraschallsensors eines kraftfahrzeugs, ultraschallsensoreinrichtung und kraftfahrzeug
DE102013008953B4 (de) Verfahren zum Betreiben einer Radareinrichtung eines Fahrzeugs, insbesondere eines Kraftwagens, sowie Radareinrichtung für ein Fahrzeug, insbesondere einen Kraftwagen
WO2011141289A1 (de) Verfahren und vorrichtung zur bestimmung der position eines objektes relativ zu einem fahrzeug, insbesondere einem kraftfahrzeug, zur verwendung in einem fahrerassistenzsystem des fahrzeuges
WO2005023613A1 (de) Vorrichtung und verfahren zur erfassung eines momentanen abstandes eines kraftfahreugs von einem hindernis
EP3226028A1 (de) Verfahren zum betreiben eines ultraschallsensors eines kraftfahrzeugs mit bestimmung der luftfeuchtigkeit, fahrerassistenzsystem sowie kraftfahrzeug
EP2251710A2 (de) Ultraschallobjekterfassungssystem und Verfahren zur Erfassung von Objekten mit Hilfe von Ultraschall
EP3047299A1 (de) Verfahren zum betreiben eines ultraschallsensors eines kraftfahrzeugs beim aussenden eines sendesignals, ultraschallsensorvorrichtung und kraftfahrzeug
EP3071990A1 (de) Verfahren zum bestimmen des signal-rausch-verhältnisses eines zielechos in einem ultraschallsensor
EP3134749A1 (de) Verfahren zum erkennen eines blockierten zustands eines ultraschallsensors eines kraftfahrzeugs, ultraschallsensorvorrichtung und kraftfahrzeug
DE102017104147B4 (de) Verfahren zum Betreiben einer Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit verbesserter Signalauswertung, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
EP2845028B1 (de) Verfahren zum betreiben eines abstandssensors zur umfelderkennung
DE102013205167A1 (de) Störungsunterdrückung bei Tote-Winkel-Überwachung
DE102012017367B4 (de) Verfahren zum Bestimmen des Signal-Rausch-Verhältnisses eines Zielechos eines von einem Ultraschallsensor eines Kraftfahrzeugs empfangenen Empfangssignals, Fahrerassistenzeinrichtung und Kraftfahrzeug
DE102017118883A1 (de) Verfahren zum Betreiben einer Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit Anpassung eines zeitlichen Verlaufs einer Amplitude bei frequenzmodulierten Anregungssignalen
EP2780737B1 (de) Fahrerassistenzeinrichtung für ein kraftfahrzeug, kraftfahrzeug und verfahren zum betreiben einer fahrerassistenzeinrichtung in einem kraftfahrzeug
WO2015090849A1 (de) Verfahren zum betreiben einer mehrzahl von ultraschallsensoren eines kraftfahrzeugs, ultraschallsensoreinrichtung und kraftfahrzeug
EP3602119B1 (de) Verfahren zum erfassen eines objekts in einem umgebungsbereich eines kraftfahrzeugs mit klassifizierung des objekts, ultraschallsensorvorrichtung sowie kraftfahrzeug
EP3195009B1 (de) Verfahren zum betreiben einer ultraschallsensorvorrichtung eines kraftfahrzeugs, ultraschallsensorvorrichtung, fahrerassistenzsystem sowie kraftfahrzeug
DE102017122477B4 (de) Verfahren zum Betreiben eines Ultraschallsensors für ein Kraftfahrzeug mit Objekterkennung im Nahbereich und im Fernbereich, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102011120447B4 (de) Verfahren zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs, Fahrerassistenzeinrichtung und Kraftfahrzeug
EP3221714B1 (de) Verfahren zum erfassen eines objekts in einem umgebungsbereich eines kraftfahrzeugs, steuereinrichtung, fahrerassistenzsystem sowie kraftfahrzeug
WO2014095605A1 (de) Verfahren zur detektion eines störsignalanteils in einem elektrischen empfangssignal eines ultraschallsensors, ultraschallsensorvorrichtung und kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14750460

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014750460

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014750460

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE