WO2015037823A1 - Method for producing 6-aminohexanoic acid or caprolactam from lysine - Google Patents

Method for producing 6-aminohexanoic acid or caprolactam from lysine Download PDF

Info

Publication number
WO2015037823A1
WO2015037823A1 PCT/KR2014/006485 KR2014006485W WO2015037823A1 WO 2015037823 A1 WO2015037823 A1 WO 2015037823A1 KR 2014006485 W KR2014006485 W KR 2014006485W WO 2015037823 A1 WO2015037823 A1 WO 2015037823A1
Authority
WO
WIPO (PCT)
Prior art keywords
lysine
caprolactam
acid
producing
treating
Prior art date
Application number
PCT/KR2014/006485
Other languages
French (fr)
Korean (ko)
Inventor
변성민
이수미
최현준
김용환
Original Assignee
광운대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광운대학교 산학협력단 filed Critical 광운대학교 산학협력단
Publication of WO2015037823A1 publication Critical patent/WO2015037823A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/005Amino acids other than alpha- or beta amino acids, e.g. gamma amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom

Definitions

  • the present invention relates to a process for preparing 6-aminonucleoanoic acid or caprolactam from lysine.
  • the present invention also relates to a process for producing nylon 6 from the caprolactam.
  • Caprolactam is an aromatic hydrocarbon compound compound which can be used as a raw material for producing nylon 6 or as a raw material for the production of engineering resins and films. Caprolactam is particularly high in economic value due to increasing demand for engineering resin applications. Nylon 6, produced from caprolactam as a raw material, is usually produced by ring opening synthesis reaction of ⁇ -caprolactam monomer.
  • the cyclonucleanone process converts benzene as a starting material to cyclohexane or phenol, and converts the cyclonucleic acid or phenol through cyclohexanone. Synthesis with cyclohexanone oxime and heating the intermediate under sulfuric acid. This chemical reaction is known as the Beckman rearrangement. Benzene, a starting material in the process, is produced through the purification of petroleum compounds.
  • caprolactam synthesis processes are all based on fossil raw materials, and not only emit a lot of environmental pollutants during the conversion process, but also have a problem of consuming a large amount of energy since the process is performed at high temperature and high pressure.
  • attempts to produce caprolactam from biomass-derived materials that is, attempts to produce biocaprolactam have been steadily progressing.
  • Nylon 6 produced in this way would be referred to as bioplastic because it is based on biomass and not on fossil raw materials, and may be classified as bionylon 6.
  • Bionylon 6 has the same physical properties as nylon 6, but is produced without the use of fossil raw materials, resulting in less emission of environmental pollutants during the production process. Can be.
  • a number of rudimentary chemical processes for producing caprolactam or its precursors through the chemical process of amino acid lysine are known as follows.
  • U. S. Patent No. 6,300, 496 discloses a process for producing caprolactam from lysine via 6-amino carpric acid via a chemical process.
  • US Pat. No. 7,399,855 discloses a technique for chemically converting lysine to caprolactam in an alcoholic organic solvent environment.
  • US Patent Publication No. 2010/014003 A technique for chemically converting lysine caprolactam under an organic solvent in which a chemical catalyst and hydrogen gas is present is disclosed.
  • all of these processes have the disadvantage that the reaction conditions are high temperature and high pressure conditions and toxic chemical catalysts are used.
  • the present inventors can produce 6-aminonucleoanoic acid without the above problems by treating lysine with cyclotalamino enzyme to produce homoproline and treating reductase to produce 6-aminonucleoanoic acid.
  • One aspect of the present invention comprises the steps of (a) treating L- lysine with a cyclotalamino enzyme to produce homoproline; And (b) treating the homoproline with a reductase.
  • the step (a) is carried out at a temperature of 25 ° C to 80 ° C It may be made, the step (a) may be made at a condition of pH 6 to 7.
  • Another aspect of the present invention provides a method of producing a homoproline comprising the steps of: (a) treating L-lysine with a cyclotalamino enzyme to produce homoproline; (b) treating the homoproline with a reductase to produce 6-aminonucleosanic acid; (c) treating the 6-aminonucleoanoic acid to produce a reduced 6-aminonucleoanoic acid; And (d) treating the reduced 6-aminonucleosanic acid with a hydrolase to proceed with dehydration reaction.
  • lactamase may be used.
  • dehydration reaction may be caused by using an alkaline catalyst in addition to hydrolase.
  • Another aspect of the present invention provides a method for producing nylon 6 comprising the step of condensing caprolactam produced by the above method with nylon 6.
  • 6-aminonucleoanoic acid or caprolactam can be more economically improved.
  • 1 is a diagram showing a biosynthetic pathway for synthesizing 6-aminonucleoanoic acid from lysine.
  • FIG. 3 is a flowchart showing the steps of producing nylon 6 from lysine.
  • Figure 4 shows the pET-22b (+)-spLCD recombinant gene sequence.
  • 5 is a photograph showing the results of SDS-PAGE analysis of the target protein (lysine cycle deamination enzyme) and the purity analysis using the same.
  • FIG. 6 is a graph showing the reaction specificity of lysine cycles and diamines for various substrates.
  • FIG. 7 is a graph comparing relative L-lysine conversion according to the type of buffer.
  • Figure 8 shows the reaction rate of the fluctuations—degrees change with temperature—extra note- ⁇ Graf.
  • 9 is a graph showing a change in conversion rate with a change in pH condition.
  • FIG. 10 is a graph showing the conversion of L-lysine and L-pipecolic acid production reaction using lysine cyclodiaminase under optimal conditions (200 mM PIPES buffer, pH 7.0, temperature 60 ° C., L-lysine). .
  • Figure 11 is a diagram showing the pET-22b (+ Hc plinase racemized recombinant gene sequence.
  • Figure 13 is a diagram showing the synthetic gene and amino acid sequence of Clostridium sticklandii-derived D-plin reductase A.
  • Figure 14 is a diagram showing the synthetic gene and amino acid sequence of D-proline reductase A derived from Bifidobacterium thermophilum RBL67.
  • 15 is a photograph showing the results of Western blot analysis for the expression of the target protein (D-proline reductase A), post-expression splitting, and purity analysis.
  • One aspect of the present invention comprises the steps of (a) treating L- lysine with a cyclotalamino enzyme to produce homoproline; And (W treating the homoproline with a reductase, a method for preparing 6-aminonucleosanoic acid (see Fig. 1). Homoproline is produced through the process of deamination, and the resulting homoproline is treated with reductase to produce 6-aminonucleosanic acid.
  • Lysines used in the present invention include commercially available L-lysine, such as L-lysine dihydrochloride, L-lysine hydrochloride, L-lysine phosphate, L-lysine diphosphate, L-lysine acetate and L-lysine. And L-lysine sources, and the steps necessary to bring L-lysine into proper condition for subsequent reaction are known to those of ordinary skill in the art. It is also well known in the art that commercially available lysine materials may be used and the step of separating L-lysine from D-lysine, for example, through separation of optical isomers and other separation and purification techniques. It will be self-evident to those who have it.
  • the de-amination process may be 25 0 C to 80 ° C, preferably from 40 ° C to 65 0 C, more preferably from 55 ° C to 60 o C. If the reaction temperature increases by 10 o C, the enzyme reaction rate increases approximately 2 times, but when the reaction temperature exceeds 80 o C, the enzyme instability increases and the reaction rate and conversion rate decrease drastically.
  • the deamination process is neutral condition, and may preferably be pH 6-7. This is because the protein is inactivated in the acidic pH range.
  • Another aspect of the present invention provides a method for producing a homoproline comprising the steps of: (a) treating L-lysine with a cyclotalamino enzyme to produce homoproline; (b) treating the homoproline with a reductase to produce 6-aminonucleosanic acid; (c) above 6- Treating the aminonucleosanic acid with a reducing agent to produce reduced 6-aminonucleosanool; And (d) treating the reduced 6-aminonucleosanic acid with a hydrolase or an alkali catalyst to provide dehydration reactions (see FIG. 2).
  • NADH or lipoate may be used when synthesized in vivo, and dithiotrattle or NADH may be used when synthesized in vivo.
  • the hydrolase may be used to synthesize caprolactam in vivo, and may be performed by causing dehydration by using an alkaline catalyst in addition to the hydrolase when synthesizing caprolactam in vivo.
  • the invention provides a process for producing nylon 6 comprising the step of polymerizing caprolactam produced by the process to nylon 6 (see FIG. 3).
  • the C-terminus of the lysine cyclodeaminse enzyme gene (EFH32217.1,297153222) derived from Streptomyces pristinaespiralis present in the NCBI gene bank can be easily isolated.
  • a histidine tag was added, and a gene having a new nucleotide sequence that could be selectively cleaved by a restriction enzyme of Nciel at the N-terminus and Xhol at the C-terminus was synthesized (FIG. 4).
  • the synthesized gene was specifically cleaved using Ndel / Xhol restriction enzyme and then attached to pET-22b (+) plasmid vector prepared by cleavage by the same restriction enzyme using lagease enzyme.
  • pET-22b ( +)-spLCD recombinant gene was constructed.
  • the produced recombinant gene has a T7 / lac gene moiety controlled by IPTG for expression, so that expression can be selectively induced by IPTG addition in the future.
  • the recombinant gene prepared in Example 1 was transformed into E. colistrain BL21 (DE3) for expression, and then cultured at 37 ° C. in LB medium containing ampicillin (lmg / ml). 0.1 M IPTG was administered to induce the expression of the target protein, followed by further incubation for 16 hours in a shaker at 200 rpm.
  • the obtained E. coli cells were harvested using a centrifuge, and then cells were disrupted using an ultrasonic grinder under crushing buffer (50 mM NaH 2 PO 4 , 300 mM NaCUOmM imidazole).
  • the crushed cell solution was added to the Ni-NTA column to selectively separate only lysine cyclodeaminase, a target protein to which a histidine tag was attached.
  • the enzyme solution was added to the reaction solution (10mM L-lysine, 0.4mM NAD + , 200mM pH6.9 PIPES buffers) and sampled at regular intervals. 10 ⁇ of H 2 SO 4 (v / v) was added. Concentrations of L-lysine and L-pipecolic acid (L-homoproline) were measured using HPLC with Chirobiotic TM T chiral column (5 ⁇ , 25 cm x 4.6 mm, Astec comp) and UV spectrometer. Quantification
  • Banung experiment was carried out using the enzyme obtained in Example 3 for a substrate of various lengths similar to lysine.
  • Substrates include L-2,3-diaminopropionic acid (L-2,3-diaminoprapiomc, L-C3), L-2,4-diaminopropionic acid, including L-lysine (L-C6).
  • L-2,4-diaminot) ii1; yricacicl, L-C4 L-ornithine (L-C5), D-ornithine (D— ornithine, D-C5), D-lysine ( D-lysine, D-C6), L-2,7 heptanoic acid (L-2,7-diaminoheptanoic acid, L-C7) and the like were used.
  • Example 6 is a graph showing the relative conversion of reactions with various substrates. As expected, the most converting substrate was L-lysine. In addition, it was confirmed that the C5 and C7 compounds also reacted.
  • the enzyme obtained in Example 3 exhibited broad substrate specificity with respect to carbon length while exhibiting strict optical specificity. In other words, the D-type substrate hardly reacted.
  • FIG. 7 shows the relative L- lysine conversion according to the type of buffer. As can be seen in Figure 7, the PIPES buffer showed the best activity. The PIPES buffer is presumed to be due to the small degradation activity for NADH used as a cof actor of the enzyme.
  • the reaction rate was measured while changing the reaction temperature as shown in FIG. 8.
  • the initial reaction rate at each temperature is 0.71xlO-7mol / Ls s (25 ° C), 1.57 lO-7mol / Ls s (37 ° C) and 4.65xlO-7mol / L-s (60 ° C), respectively. It was estimated. This is Increasing the reaction temperature by 10 ° C is consistent with the general rule that the reaction reaction doubles. Up to 60 o C, the reaction rate increased relatively, after which the instability of the enzyme increased, resulting in a rapid decrease in reaction rate and conversion rate.
  • the conversion rate of L-lysine was measured by using different buffers for each pH region (pH4-5: sodium acetate buffer, pH 6-8: sodium phosphate, pH 9-10: sodium carbonate). buffer). As shown in FIG. 9, the highest conversion was shown in the neutral pH condition, and the conversion was less than 10% under the acidic pH condition of pH 5. This is presumably due to the inactivation of proteins in the acidic pH region.
  • a histidine tag is added to the N-terminus for easy separation.
  • a gene having a new base sequence that can be selectively cleaved by Ndel at the end and Xhol restriction enzyme at the C-terminal end was synthesized (FIG. 11). The synthesized gene was specifically cleaved using Ndel / Xhol restriction enzyme and then attached to pET-22b (+) plasmid vector prepared by cleavage by the same restriction enzyme using T4 ligase enzyme.
  • -tc plinase racemized recombinant gene was constructed.
  • the recombinant gene produced has a part of the T7 / lac gene controlled by IPTG for expression, so that expression can be selectively induced by IPTG addition in the future.
  • E olistrainBL21 (DE3) E olistrainBL21 (DE3) was transformed and then cultured at 20 ° C. in LB medium containing ampicillin (lmg / ml). After administration of 0.1 M IPTG to induce the expression of the target protein, 48 hours were further incubated in a shaker at 200 rpm. The obtained E. coli cells were harvested using a centrifuge, and then cells were disrupted using an ultrasonic grinder under a crushing buffer (50 mM NaH 2 PO 4 , 300 mM NaCUOmM imidazole). The crushed cell solution was added to the Ni-NTA column to selectively separate only the histidine-tagged target protein racenase.
  • a crushing buffer 50 mM NaH 2 PO 4 , 300 mM NaCUOmM imidazole
  • Example 11 Expression optimization was performed to express the enzyme under optimal expression conditions (48hr after 20 o C incubation, 20 ° C induction) and reacted under the following conditions (200 mM, sodium acetate buffer, pH 6.0, temperature 37 ° C, L-proline). As a result, as can be seen in Figure 12, it can be seen that 90% racemization reaction in 1 hour. The reaction results of L-type and D-type resulted in equilibrium of reaction at the concentration of 50:50.
  • the synthesized gene was specifically cleaved using Ndel / Xhol restriction enzyme and then attached to pET-22 (+) plasmid vector prepared by cleavage by the same restriction enzyme using T4 ligase enzyme, resulting in pET-22b.
  • (+)-csPrdA I pET-22b (+)-MPrdA recombination gene was constructed.
  • the produced recombinant gene has a part of the T7 / lac gene controlled by IPTG for protein expression, so that overexpression can be selectively induced by IPTG addition in the future.
  • the recombinant gene prepared in Example 12 was transformed into a water-soluble E. coli (£: coli strain BL21 ( ⁇ ! ⁇ 3)) for expression, and then 37 ° C and 200 rpm in LB medium containing ampicillin (0.1 mg / ml) Incubated with. 1 mM to induce overexpression of the target protein. IPTG was administered and further cultured for 16 hours in a shaker at 25 ° C, 200 rpm. The obtained E. coli cells were harvested using a centrifuge, and then cells were disrupted using an ultrasonic grinder under a crushing buffer (50 mM NaH 2 P0, 300 mM NaCl, 10 mM imidazole). After disruption, the cell solution from which cell debris was removed was added to the Ni-NTA column to selectively separate only the 6 ⁇ -histidine-tagged target protein (D-Prinlin Reductase A).
  • thermophilum RBL67-derived D-plin reductase had 66.9 kDa when expressed for all enzymes, 19.8 kDa for alpha units having pyruboyl groups and 47.1 kDa for beta units after splitting after expression (Fig. 15). ).
  • Substrate conversion experiments were conducted on substrates (D-proline, D-homopropine) using the enzyme expressed in Example 13.
  • the reaction was carried out under the following reaction conditions (200mM, sodium acetate buffer, H 6.0, temperature 37 0 C, D-proline / D-homoproline), and as shown in Table 1 below, 90% reaction occurred in 10 hours. You can see the progress.
  • These results show that D-plin is converted to 5-aminopentanoic acid, and D-homoplin is converted to 6-aminohexanoic acid.
  • 6-aminonucleoanoic acid can be readily converted to caprolactam by a simple dehydration reaction catalyst.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a method for producing caprolactam or 6-aminohexanoic acid from lysine; and the production method of the present invention can create 6-aminohexanoic acid or caprolactam, having physical properties that are the same as those of existing nylon 6, by using lysine which is mass produced as an additive for feeds, thus improving economic viability, and without involving the use of fossil starting materials or toxic chemical catalysts, thus lessening the generation of environmentally polluting substances such as carbon dioxide.

Description

【명세서】  【Specification】
【발명의 명칭]  [Name of invention]
라이신으로부터의 6-아미노핵사노산 또는 카프로락탐의 제조방법  Method for preparing 6-aminonucleoanoic acid or caprolactam from lysine
【기술분야】 Technical Field
본 발명은 라이신으로부터 6-아미노핵사노산 또는 카프로락탐을 제조하는 방법에 관한 것이다.  The present invention relates to a process for preparing 6-aminonucleoanoic acid or caprolactam from lysine.
또한 본 발명은 상기 카프로락탐으로부터 나일론 6을 제조하는 방법에 관한 것이다.  The present invention also relates to a process for producing nylon 6 from the caprolactam.
【배경기술】 Background Art
카프로락탐 (Caprolactam)은 방향족 질화탄화수소 화합물 증 하나로서 나일론 6을 생산하기 위한 기초 원료로 사용되거나 또는 엔지니어링 수지 및 필름 등의 생산을 위한 원료로 사용될 수 있다. 카프로락탐은 특히 엔지니어링 수지 용도로의 수요가 증가하고 있어 경제적 가치가 매우 높아지고 있다. 카프로락탐을 원료로 하여 생산되는 나일론 6은 통상적으로 ε-카프로락탐 (ε-caprolactam) 단량체의 개환 증합 반웅에 의해 만들어 진다.  Caprolactam is an aromatic hydrocarbon compound compound which can be used as a raw material for producing nylon 6 or as a raw material for the production of engineering resins and films. Caprolactam is particularly high in economic value due to increasing demand for engineering resin applications. Nylon 6, produced from caprolactam as a raw material, is usually produced by ring opening synthesis reaction of ε-caprolactam monomer.
이러한 카프로락탐의 화학적 생산기술에는 크게 세 가지 공정이 있다. 이들 공정은 모두 석유유래 시클로핵산 또는 벤조산을 이용하는 공정으로, 그 중 하나는 시클로핵산 산화에 의해 생성되는 시클로핵사논 oxime HC1 공정이고, 다른 하나는 시클로핵산 산화에 의해 생성되는 시클로핵사논 공정이고, 또다른 하나는 벤조산을 이용한 시클로핵산 카복실산 공정이다.  There are three major processes for the chemical production of caprolactam. These processes are all using petroleum-derived cyclonucleic acid or benzoic acid, one of which is a cyclonucleanone oxime HC1 process produced by cyclonucleic acid oxidation, the other is a cyclonucleanone process produced by cyclonucleic acid oxidation, Another is a cyclonucleic acid carboxylic acid process with benzoic acid.
이 중 가장 널리 사용되는 공정은 시클로핵사논 공정이다. 시클로핵사논 공정은 벤젠을 출발물질로 하여 이를 시클로핵산 (cyclohexane) 또는 페놀 (phenol)로 전환하고, 상기 시클로핵산 또는 페놀을 시클로핵사논 (cyclohexanone)을 거쳐 시클로핵사논 옥심 (cyclohexanone oxime)으로 합성하고, 이 중간체를 황산 하에서 가열하는 단계로 이루어진다. 이 화학 반웅은 베크만 전위 (Beckman rearrangement)라고 알려져 있다. 상기 공정에서 출발물질인 벤젠은 석유 화합물들의 정제를 통해 생산된다. The most widely used of these is the cyclonucleanone process. The cyclonucleanone process converts benzene as a starting material to cyclohexane or phenol, and converts the cyclonucleic acid or phenol through cyclohexanone. Synthesis with cyclohexanone oxime and heating the intermediate under sulfuric acid. This chemical reaction is known as the Beckman rearrangement. Benzene, a starting material in the process, is produced through the purification of petroleum compounds.
이와 같은 현존하는 화학적 공정의 최대 단점은 부산물로서 과량의 암모니아가 생산 (4.5톤 /톤)된다는 것이다. 이에 다국적 석유화학회사들은 장기간에 걸쳐서 암모니아를 저감하는 공정을 개발하여 왔다.  The biggest disadvantage of this existing chemical process is that excess ammonia is produced (4.5 tonnes / ton) as a byproduct. Multinational petrochemical companies have developed processes to reduce ammonia over a long period of time.
또한 이들 카프로락탐 합성공정은 모두 화석원료를 기반으로 하며, 전환 공정 중 많은 환경오염 물질을 배출할 뿐 아니라 공정이 고온, 고압조건에서 이루어지므로 다량의 에너지를 소모하는 문제점을 가지고 있다. 이러한 문제를 해결하기 위하여 바이오매스 유래 물질로부터 카프로락탐을 생산하려는 시도, 즉 바이오 카프로락탐을 생산하려는 시도가 꾸준히 진행되고 있다.  In addition, these caprolactam synthesis processes are all based on fossil raw materials, and not only emit a lot of environmental pollutants during the conversion process, but also have a problem of consuming a large amount of energy since the process is performed at high temperature and high pressure. In order to solve this problem, attempts to produce caprolactam from biomass-derived materials, that is, attempts to produce biocaprolactam have been steadily progressing.
당으로부터 생산되는 라이신을 이용하여 카프로락탐이나 카프로락탐의 전구체인 6-아미노핵사노산 (aminohexanoic acid)을 생산할 경우 이들 물질을 탈수 증합하여 결과적으로 나일론 6을 합성할 수 있다. 이렇게 생산된 나일론 6은 화석원료를 기반으로 하지 않고 바이오매스를 기반으로 하였기 때문에 바이오플라스틱이라고 할 것이며, 바이오나일론 6으로 분류할 수 있을 것이다. 이러한 바이오나일론 6은 기존의 나일론 6과 물성은 동일하나, 화석원료를 이용하지 않고 생산되므로 생산과정 중 환경오염물질 배출이 적으며, 특히 지구온난화 가스인 이산화탄소가 거의 배출되지 않으므로 친환경적인 소재가 될 수 있다.  When lysine produced from sugar is used to produce caprolactam or 6-aminohexanoic acid, the precursor of caprolactam, these materials can be dehydrated and synthesized to result in nylon 6. Nylon 6 produced in this way would be referred to as bioplastic because it is based on biomass and not on fossil raw materials, and may be classified as bionylon 6. Bionylon 6 has the same physical properties as nylon 6, but is produced without the use of fossil raw materials, resulting in less emission of environmental pollutants during the production process. Can be.
아미노산 라이신을 화학공정을 통하여 카프로락탐이나 혹은 그 전구체를 생산하는 초보적인 수준의 화학공정은 아래와 같이 다수 알려져 있다. 미국특허 제 6,300,496호에는 화학공정을 통해 라이신으로부터 6-아미노카프르산 (6-amino carpric acid)을 거쳐 카프로락탐을 생산하는 공정이 개시되어 있다. 미국특허 제 7,399,855호에는 라이신을 알콜성 유기용제환경에서 카프로락탐으로 화학적으로 전환하는 기술이 개시되어 있다. 또한 미국특허 공개공보 2010/014003호에는 화학촉매와 수소가스가 존재하는 유기용제 하에서 라이신올 카프로락탐으로 화학적으로 전환하는 기술이 개시되어 있다. 그러나 이들 공정은 모두 반웅조건이 고온고압조건이고 유독성 화학촉매를 사용한다는 단점이 있다. A number of rudimentary chemical processes for producing caprolactam or its precursors through the chemical process of amino acid lysine are known as follows. U. S. Patent No. 6,300, 496 discloses a process for producing caprolactam from lysine via 6-amino carpric acid via a chemical process. US Pat. No. 7,399,855 discloses a technique for chemically converting lysine to caprolactam in an alcoholic organic solvent environment. In addition, US Patent Publication No. 2010/014003 A technique for chemically converting lysine caprolactam under an organic solvent in which a chemical catalyst and hydrogen gas is present is disclosed. However, all of these processes have the disadvantage that the reaction conditions are high temperature and high pressure conditions and toxic chemical catalysts are used.
미국특허 제 7,799,545호에는 생물학적 공정이나 화학융합공정을 통해 6- 아미노카프르산을 거처 카프로락탐을 생산하는 기술로서, 유전자조작기술을 이용하여 아디프산을 거쳐서 6-아미노카프르산 (aminocaprdc acid)이나 카프로락탐을 생산하는 기술이 개시되어 있다. 그러나 이 기술은 라이신을 이용하지 않기 때문에 경제성이 낮은 것으로 보인다. 【발명의 상세한 설명】  U.S. Pat.No. 7,799,545 describes a technique for producing caprolactam via 6-aminocapric acid through a biological process or a chemical fusion process. And caprolactam are disclosed. However, the technology does not use lysine, so it seems to be less economical. [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명자들은 라이신에 사이클로탈아미노 효소를 처리하여 호모프롤린을 생성하고 여기에 환원효소를 처리하여 6-아미노핵사노산을 생성하는 단계를 통해 상기와 같은 문제점 없이 6-아미노핵사노산을 생성할 수 있고, 상기 6- 아미노핵사노산을 환원하고 여기에 가수분해효소를 처리하여 탈수반웅을 진행함으로써 카프로락탐을 생산할 수 있으며, 이를 통해 나일론 6를 생산할 수 있다는 것을 규명함으로써 본 발명올 완성하였다.  The present inventors can produce 6-aminonucleoanoic acid without the above problems by treating lysine with cyclotalamino enzyme to produce homoproline and treating reductase to produce 6-aminonucleoanoic acid. By reducing the 6-aminonucleosanic acid and treating it with hydrolase, it is possible to produce caprolactam by proceeding with dehydration reaction, thereby completing the present invention by elucidating that nylon 6 can be produced.
따라서 본 발명의 목적은 친환경적으로 다량의 에너지 소모 없이 라이신으로부터 6-아미노핵사노산 또는 카프로락탐을 제조하는 방법과 이를 이용하여 나일론 6을 생산하는 방법을 제공하는 것이다.  It is therefore an object of the present invention to provide a method for producing 6-aminonucleoanoic acid or caprolactam from lysine and a method for producing nylon 6 using the same without environmentally friendly energy consumption.
【기술적 해결방법】 Technical Solution
본 발명의 일 태양은 (a) L-라이신에 사이클로탈아미노 효소를 처리하여 호모프롤린 (homoproline)을 생성하는 단계; 및 (b) 상기 호모프롤린에 환원효소를 처리하는 단계를 포함하는 6-아미노핵사노산의 제조방법을 제공한다. 본 발명의 일 태양에 따르면, 상기 단계 (a)는 25°C 내지 80°C의 온도에서 이루어질 수 있고, 상기 단계 (a)는 pH 6 내지 7의 조건에서 이루어질 수 있다. 본 발명의 또 다른 태양은 (a) L-라이신에 사이클로탈아미노 효소를 처리하여 호모프롤린 (homoproline)을 생성하는 단계; (b) 상기 호모프롤린에 환원효소를 처리하여 6-아미노핵사노산을 생성하는 단계; (c) 상기 6- 아미노핵사노산에 환원제를 처리하여 환원된 6-아미노핵사노산을 생성하는 단계; 및 (d) 상기 환원된 6-아미노핵사노산에 가수분해효소를 처리하여 탈수반웅을 진행하는 단계를 포함하는 카프로락탐의 제조방법을 제공한다. One aspect of the present invention comprises the steps of (a) treating L- lysine with a cyclotalamino enzyme to produce homoproline; And (b) treating the homoproline with a reductase. According to one aspect of the invention, the step (a) is carried out at a temperature of 25 ° C to 80 ° C It may be made, the step (a) may be made at a condition of pH 6 to 7. Another aspect of the present invention provides a method of producing a homoproline comprising the steps of: (a) treating L-lysine with a cyclotalamino enzyme to produce homoproline; (b) treating the homoproline with a reductase to produce 6-aminonucleosanic acid; (c) treating the 6-aminonucleoanoic acid to produce a reduced 6-aminonucleoanoic acid; And (d) treating the reduced 6-aminonucleosanic acid with a hydrolase to proceed with dehydration reaction.
여기서 환원제로서는 NADH, 리포에이트, 또는 디티오트레이톨이 사용될 수 있다.  Here, as the reducing agent, NADH, lipoate, or dithiothritol may be used.
가수분해 효소는 락타마아제가 사용될 수 있다. 생체 밖에서 카프로락탐을 합성할 경우 가수분해효소 외에도 알칼리촉매를 이용하여 탈수반웅을 일으킬 수 있다.  As the hydrolase, lactamase may be used. When caprolactam is synthesized outside of the body, dehydration reaction may be caused by using an alkaline catalyst in addition to hydrolase.
본 발명의 또 다른 태양은 상기 방법으로 생산된 카프로락탐을 나일론 6으로 증합하는 단계를 포함하는 나일론 6을 생산하는 방법을 제공한다.  Another aspect of the present invention provides a method for producing nylon 6 comprising the step of condensing caprolactam produced by the above method with nylon 6.
【유리한 효과】 Advantageous Effects
본 발명의 생산방법을 통해 기존 나일론 6과 동일한 물성의 나일론을 제공하면서도, 화석원료나 유독성 화학촉매를 이용하지 않아 이산화탄소 등 환경오염물질의 생성을 경감할 수 있다.  While providing a nylon of the same physical properties as the existing nylon 6 through the production method of the present invention, it is possible to reduce the generation of environmental pollutants such as carbon dioxide without using fossil raw materials or toxic chemical catalysts.
또한, 사료용 첨가제 등으로 대량 로 생산되는 라이신을 활용하여, 6- 아미노핵사노산 또는 카프로락탐을 생산함으로써 보다 경제성을 높일 수 있다.  In addition, by utilizing lysine, which is produced in large quantities as feed additives, 6-aminonucleoanoic acid or caprolactam can be more economically improved.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 라이신으로부터 6-아미노핵사노산을 합성하는 생합성 경로를 보여주는 그림이다.  1 is a diagram showing a biosynthetic pathway for synthesizing 6-aminonucleoanoic acid from lysine.
도 2는 라이신으로부터 카프로락람을 합성하는 생합성 경로를 보여주는 그림이다. 2 shows the biosynthetic pathway for synthesizing caprolactam from lysine Picture.
도 3은 라이신으로부터 나일론 6을 생산하는 단계를 보여주는 플로우차트이다.  3 is a flowchart showing the steps of producing nylon 6 from lysine.
도 4는 pET— 22b(+)-spLCD 재조합 유전자 서열올 보여주는 그림이다.  Figure 4 shows the pET-22b (+)-spLCD recombinant gene sequence.
도 5는 목적 단백질 (라이신 싸이클로 탈아민화 효소)의 SDS-PAGE 분석 및 이를 이용한 순도 분석 결과를 보여주는 사진이다.  5 is a photograph showing the results of SDS-PAGE analysis of the target protein (lysine cycle deamination enzyme) and the purity analysis using the same.
도 6은 다양한 기질에 대한 라이신 싸이클로 디아미네이즈의 반웅특이성을 보여주는 그래프이다.  FIG. 6 is a graph showing the reaction specificity of lysine cycles and diamines for various substrates.
도 7은 버퍼의 종류에 따른 상대적 L-라이신 전환율을 비교한 그래프이다. 도 8은 온도에 따른 반웅속—도ᅳ변화를ᅳ보 -여ᅳ주-^기래프이다.  7 is a graph comparing relative L-lysine conversion according to the type of buffer. Figure 8 shows the reaction rate of the fluctuations—degrees change with temperature—extra note- ^ Graf.
도 9는 pH 조건 변화에 따른 전환율 변화를 보여주는 그래프이다.  9 is a graph showing a change in conversion rate with a change in pH condition.
도 10은 최적환 된 조건 (200 mM PIPES buffer, pH 7.0, 온도 60oC, L- 라이신)에서의 라이신 싸이클로디아미네이즈를 이용한 L-라이신의 전환 및 L- 피페콜산 생산 반웅을 보여주는 그래프이다. 10 is a graph showing the conversion of L-lysine and L-pipecolic acid production reaction using lysine cyclodiaminase under optimal conditions (200 mM PIPES buffer, pH 7.0, temperature 60 ° C., L-lysine). .
도 11은 pET-22b(+Hc 프를린라세미화 재조합 유전자서열을 보여주는 그림이다.  Figure 11 is a diagram showing the pET-22b (+ Hc plinase racemized recombinant gene sequence.
도 12는 프롤린라세미화효소에 의한 기질 (프롤린, 호모프를린)반웅 전환 결과를 보여주는 그래프이다.  12 is a graph showing the results of conversion of substrates (proline, homoproline) reaction by proline racemase.
도 13은 Clostridium sticklandii 유래 D-프를린 환원효소 A의 합성 유전자 및 아미노산 서열을 보여주는 그림이다.  Figure 13 is a diagram showing the synthetic gene and amino acid sequence of Clostridium sticklandii-derived D-plin reductase A.
도 14는 Bifidobacterium thermophilum RBL67 유래 D-프를린 환원효소 A의 합성 유전자 및 아미노산 서열을 보여주는 그림이다.  Figure 14 is a diagram showing the synthetic gene and amino acid sequence of D-proline reductase A derived from Bifidobacterium thermophilum RBL67.
도 15는 목적 단백질 (D-프롤린 환원효소 A)의 발현과 발현 후 분할, 순수도 분석을 위한 웨스턴 블롯 분석 결과를 보여주는 사진이다.  15 is a photograph showing the results of Western blot analysis for the expression of the target protein (D-proline reductase A), post-expression splitting, and purity analysis.
【발명의 실시를 위한 형태】 본 발명의 일 태양은 (a) L-라이신에 사이클로탈아미노 효소를 처리하여 호모프를린 (homoproline)을 생성하는 단계; 및 (W 상기 호모프롤린에 환원효소를 처리하는 단계를 포함하는 6-아미노핵사노산의 제조방법을 제공한다 (도 1 참조). 도 1에 도시된 바와 같이 L-라이신에 사이클로 탈아미노 효소를 처리하여 탈아민화하는 과정을 통해 호모프롤린을 생성한다. 생성된 호모프를린에 환원효소를 처리하여 6-아미노핵사노산을 생성한다. [Form for implementation of invention] One aspect of the present invention comprises the steps of (a) treating L- lysine with a cyclotalamino enzyme to produce homoproline; And (W treating the homoproline with a reductase, a method for preparing 6-aminonucleosanoic acid (see Fig. 1). Homoproline is produced through the process of deamination, and the resulting homoproline is treated with reductase to produce 6-aminonucleosanic acid.
본 발명에 사용되는 라이신으로는, L-라이신 디히드로 클로라이드, L-라이신 히드로클로라이드, L-라이신 포스페이트, L-라이신 디포스페이트, L-라이신 아세테이트 및 L-라이신과 같은 상업적으로 이용 가능한 L-라이신 및 L-라이신 재료 (source)를 사용할 수 있으며, 후속 반웅을 위해 L-라이신이 적절한 상태가 되도록 하는데 필요한 단계들이 본 기술분야에서 통상의 지식을 가진 자에게 알려져 있다. 또한 상업적으로 이용 가능한 라이신 재료를 사용할 수 있고 예를 들면 광학 이성질체의 분리와 다른 분리 및 정제 기술올 통해 D-라이신에서 L- 라이신을 분리하는 단계가 추가될 수 있다는 것은 본 분야의 통상의 지식을 가진 자에게 자명하다 할 것이다.  Lysines used in the present invention include commercially available L-lysine, such as L-lysine dihydrochloride, L-lysine hydrochloride, L-lysine phosphate, L-lysine diphosphate, L-lysine acetate and L-lysine. And L-lysine sources, and the steps necessary to bring L-lysine into proper condition for subsequent reaction are known to those of ordinary skill in the art. It is also well known in the art that commercially available lysine materials may be used and the step of separating L-lysine from D-lysine, for example, through separation of optical isomers and other separation and purification techniques. It will be self-evident to those who have it.
온도 조건과 관련하여, 탈 아미노화 과정은 250C 내지 80°C, 바람직하게는 40°C 내지 650C, 보다 바람직하게는 55°C내지 60oC일 수 있다. 반웅온도가 10oC 증가할 경우 효소 반웅속도가 대략 2배 증가하나 반웅온도가 80oC를 초과하는 경우 효소의 불안정성이 커지게 되어 반웅속도 및 전환율이 급격하게 감소하게 된다.With respect to the temperature condition, the de-amination process may be 25 0 C to 80 ° C, preferably from 40 ° C to 65 0 C, more preferably from 55 ° C to 60 o C. If the reaction temperature increases by 10 o C, the enzyme reaction rate increases approximately 2 times, but when the reaction temperature exceeds 80 o C, the enzyme instability increases and the reaction rate and conversion rate decrease drastically.
H 조건과 관련하여, 탈 아미노화 과정은 중성 조건이며, 바람직하게는 pH 6 내지 7일 수 있다. 산성 pH 영역에서는 단백질이 웅집되면서 불활성화되기 때문이다.  With regard to the H conditions, the deamination process is neutral condition, and may preferably be pH 6-7. This is because the protein is inactivated in the acidic pH range.
본 발명의 또 다른 태양은 (a) L-라이신에 사이클로탈아미노 효소를 처리하여 호모프를린 (homoproline)을 생성하는 단계; (b) 상기 호모프롤린에 환원효소를 처리하여 6-아미노핵사노산을 생성하는 단계; (c) 상기 6- 아미노핵사노산에 환원제를 처리하여 환원된 6-아미노핵사노산올 생성하는 단계; 및 (d) 상기 환원된 6-아미노핵사노산에 가수분해효소 또는 알칼리촉매를 처리하여 탈수반웅을 진행하는 단계를 포함하는 카프로락탐의 제조방법을 제공한다 (도 2 참조). Another aspect of the present invention provides a method for producing a homoproline comprising the steps of: (a) treating L-lysine with a cyclotalamino enzyme to produce homoproline; (b) treating the homoproline with a reductase to produce 6-aminonucleosanic acid; (c) above 6- Treating the aminonucleosanic acid with a reducing agent to produce reduced 6-aminonucleosanool; And (d) treating the reduced 6-aminonucleosanic acid with a hydrolase or an alkali catalyst to provide dehydration reactions (see FIG. 2).
여기서 환원제로서는 생체 내에서 합성할 경우에는 NADH 또는 리포에이트가 사용될 수 있고 생체 밖에서 합성할 경우 디티오트레이틀, NADH가 사용될 수 있다.  Here, as a reducing agent, NADH or lipoate may be used when synthesized in vivo, and dithiotrattle or NADH may be used when synthesized in vivo.
가수분해 효소는 생체 내에서 카프로락탐을 합성할 경우 락타마아제가 사용될 수 있고, 생체 밖에서 카프로락탐을 합성할 경우 가수분해효소 외에도 알칼리촉매를 이용하여 탈수반웅을 일으킴으로써 수행 될 수 있다.  The hydrolase may be used to synthesize caprolactam in vivo, and may be performed by causing dehydration by using an alkaline catalyst in addition to the hydrolase when synthesizing caprolactam in vivo.
본 발명의 또 다른 양태에 따르면 본 발명은 상기 방법으로 생산된 카프로락탐을 나일론 6으로 중합하는 단계를 포함하는 나일론 6을 생산하는 방법을 제공한다 (도 3 참조). <실시예 1>  According to another aspect of the invention, the invention provides a process for producing nylon 6 comprising the step of polymerizing caprolactam produced by the process to nylon 6 (see FIG. 3). <Example 1>
NCBI 유전자 은행에 존재하는 스트렙토마이시스 프리스티네스피랄리스 (Streptomyces pristinaespiralis) 유래 라이신 사이클로디아미네이즈 (lysine cyclodeaminse) 효소 유전자의 염기서열 (EFH32217.1,297153222)을 이용하여 C-말단에는 쉽게 분리할 수 있도록 하는 히스티딘 태그를 추가하고 N-말단에는 Nciel, C-말단에는 Xhol의 제한효소에 의하여 선택적으로 절단될 수 있는 새로운 염기서열을 가지는 유전자를 합성하였다 (도 4). 합성된 유전자를 Ndel/Xhol 제한효소를 이용하여 특이적으로 절단한 후 이를 동일한 제한효소에 의하여 절단되어 준비된 pET-22b (+) 플라스미드 백터에 라이게이즈 효소를 이용하여 붙여 결과적으로 pET-22b(+)-spLCD 재조합 유전자를 제작하였다. 제작된 재조합 유전자는 발현을 위하여 IPTG에 의하여 제어되는 T7/lac 유전자 부분올 가지고 있어, 향후 IPTG 첨가에 의하여 선택적으로 발현이 유도될 수 있다. 〈실시예 2〉 The C-terminus of the lysine cyclodeaminse enzyme gene (EFH32217.1,297153222) derived from Streptomyces pristinaespiralis present in the NCBI gene bank can be easily isolated. A histidine tag was added, and a gene having a new nucleotide sequence that could be selectively cleaved by a restriction enzyme of Nciel at the N-terminus and Xhol at the C-terminus was synthesized (FIG. 4). The synthesized gene was specifically cleaved using Ndel / Xhol restriction enzyme and then attached to pET-22b (+) plasmid vector prepared by cleavage by the same restriction enzyme using lagease enzyme. As a result, pET-22b ( +)-spLCD recombinant gene was constructed. The produced recombinant gene has a T7 / lac gene moiety controlled by IPTG for expression, so that expression can be selectively induced by IPTG addition in the future. <Example 2>
실시예 1에서 제작된 재조합 유전자를 발현용 대장균 (E.colistrainBL21(DE3))으로 형질전환한 후 암피실린 (lmg/ml) 이 포함된 LB 배지에서 37°C에서 배양하였다. 0.1 M IPTG를 투여하여 목적 단백질의 발현을 유도한 후 200 rpm의 진탕배양기에서 16시간을 추가로 배양하였다. 획득한 대장균 균체를 원심분리기를 이용하여 수확한 후 파쇄 버퍼 (50mM NaH2PO4,300mM NaCUOmM imidazole)하에서 초음파 분쇄기를 이용하여 세포를 파쇄 하였다. 파쇄된 세포액을 Ni-NTA 컬럼에 추가하여 히스티딘태그가 부착된 목적 단백질인 라이신 싸이클로디탈아민화효소 (lysine cyclodeaminase)만올 선택적으로 분리하였다. 분리된 효소의 활성을 측정하기 위하여 반웅액 (10mM L-lysine, 0.4mM NAD+, 200mM pH6.9 PIPES buffers)에 효소액을 투입한 후 일정시간 간격으로 샘플링 한 후 반웅진행을 정지시키기 위하여 10 % H2S04(v/v) 10 μΐ을 투입하였다. 반웅기질인 L-라이신과 생성물인 피페콜산 (L-pipecolic acid, L-homoproline)의 농도는 Chirobiotic™ T 키랄컬럼 (5μπι, 25cm X 4.6mm, Astec comp)과 UV 분광계가 장착된 HPLC를 이용하여 정량하였다. The recombinant gene prepared in Example 1 was transformed into E. colistrain BL21 (DE3) for expression, and then cultured at 37 ° C. in LB medium containing ampicillin (lmg / ml). 0.1 M IPTG was administered to induce the expression of the target protein, followed by further incubation for 16 hours in a shaker at 200 rpm. The obtained E. coli cells were harvested using a centrifuge, and then cells were disrupted using an ultrasonic grinder under crushing buffer (50 mM NaH 2 PO 4 , 300 mM NaCUOmM imidazole). The crushed cell solution was added to the Ni-NTA column to selectively separate only lysine cyclodeaminase, a target protein to which a histidine tag was attached. In order to measure the activity of the isolated enzyme, the enzyme solution was added to the reaction solution (10mM L-lysine, 0.4mM NAD + , 200mM pH6.9 PIPES buffers) and sampled at regular intervals. 10 μΐ of H 2 SO 4 (v / v) was added. Concentrations of L-lysine and L-pipecolic acid (L-homoproline) were measured using HPLC with Chirobiotic ™ T chiral column (5μπι, 25 cm x 4.6 mm, Astec comp) and UV spectrometer. Quantification
〈실시예 3〉 <Example 3>
Ni-NTA 컬럼에 의하여 순수 분리 정제된 목적 효소단백질의 농도를 측정한 결과 6 mg/ml로 상당히 높은 농도를 나타내었다. 도 5에서는 목적 단백질의 순수도를 확인하기 위하여 SDS-PAGE 분석을 진행하였으며, 분석결과 40.3 kDa에서 목적 단백질이 용해된 상태로 얻어진 것을 확인할 수 있었다ᅳ 또한 불용해성 단백질의 비율이 상당히 낮아 목적 단백질이 매우 효과적으로 재조합 단백질의 형태로 대장균에서 발현 생산됨을 알 수 있었다. 〈실시예 4〉 As a result of measuring the concentration of the target enzyme protein purely purified by Ni-NTA column, the concentration was 6 mg / ml. In FIG. 5, SDS-PAGE analysis was performed to confirm the purity of the target protein. As a result, it was confirmed that the target protein was obtained in a dissolved state at 40.3 kDa. In addition, the ratio of the insoluble protein was considerably low. It was found that the production of E. coli in the form of recombinant protein is very effective. <Example 4>
라이신과 유사한 다양한 길이의 기질에 대하여 실시예 3에서 획득한효소를 이용하여 반웅실험을 진행하였다. 기질로는 L-라이신 (L-lysine, L-C6)을 포함하여 L-2,3-디아미노프로피온산 (L-2,3-diaminoprapiomc, L-C3), L-2,4- 디아미노프로피온산 (L-2,4-diaminot)ii1;yricacicl, L-C4), L-오르니틴 (L-OTnithine, L-C5), D-오르니틴 (D— ornithine, D-C5), D-라이신 (D-lysine, D-C6), L-2,7 헵탄산 (L-2,7- diaminoheptanoicacid, L-C7) 등이 사용되었다.  Banung experiment was carried out using the enzyme obtained in Example 3 for a substrate of various lengths similar to lysine. Substrates include L-2,3-diaminopropionic acid (L-2,3-diaminoprapiomc, L-C3), L-2,4-diaminopropionic acid, including L-lysine (L-C6). (L-2,4-diaminot) ii1; yricacicl, L-C4), L-ornithine (L-C5), D-ornithine (D— ornithine, D-C5), D-lysine ( D-lysine, D-C6), L-2,7 heptanoic acid (L-2,7-diaminoheptanoic acid, L-C7) and the like were used.
도 6은 다양한 기질에 따른 반웅의 상대적인 전환율을 보여주는 그래프이다. 예상한대로 가장 전환을이 높은 기질은 L—라이신인 것으로 나타났다. 그 밖에 C5, C7 화합물도 반웅하는 것을 확인할 수 있었다. 실시예 3에서 획득한 효소는 탄소길이에 대하여는 넓은 기질 특이성을 나타낸 반면 엄격한 광학특이성을 나타내었다. 즉, D형의 기질은 거의 반웅이 진행되지 않았다.  6 is a graph showing the relative conversion of reactions with various substrates. As expected, the most converting substrate was L-lysine. In addition, it was confirmed that the C5 and C7 compounds also reacted. The enzyme obtained in Example 3 exhibited broad substrate specificity with respect to carbon length while exhibiting strict optical specificity. In other words, the D-type substrate hardly reacted.
〈실시예 5〉 <Example 5>
반웅을 최적화하기 위하여 HEPES, Tris-HCl, MOPS, PIPES 및 인산칼름 (potassium phosphate, KPi)과 같은 여러 개의 버퍼를 시험하였다. 도 7에는 버퍼의 종류에 따른 상대적 L-라이신 전환율을 나타내었다. 도 7에서 볼 수 있는 것과 같이 PIPES 버퍼가 가장 우수한 활성을 나타내었다. PIPES 버퍼는, 효소의 보조인자 (cof actor)로 이용되는 NADH에 대한 분해 활성이 작기 때문인 것으로 추정된다.  Several buffers were tested such as HEPES, Tris-HCl, MOPS, PIPES and potassium phosphate (KPi) to optimize reaction. Figure 7 shows the relative L- lysine conversion according to the type of buffer. As can be seen in Figure 7, the PIPES buffer showed the best activity. The PIPES buffer is presumed to be due to the small degradation activity for NADH used as a cof actor of the enzyme.
〈실시예 6> <Example 6>
최적온도를 알아보기 위하여 도 8과 같이 반웅온도를 변화시키면서 반웅속도를 측정하였다. 각 온도에서 초기반웅 속도는 각각 0.71xlO-7mol/L · s (25°C), 1.57 lO-7mol/L · s (37°C) , 4.65xlO-7mol/L - s (60oC)으로 추정되었다. 이는 반웅온도가 10°C 증가하면 효소 반웅속도가 2배 증가한다는 일반적인 법칙에 부합하는 것으로 나타났다. 60oC까지는 상대적으로 지속적으로 반웅속도가 증가하였으며 그 이후에는 효소의 불안정성이 커져 반응속도 및 전환율이 급격하게 감소하는 것으로 나타났다. In order to determine the optimum temperature, the reaction rate was measured while changing the reaction temperature as shown in FIG. 8. The initial reaction rate at each temperature is 0.71xlO-7mol / Ls s (25 ° C), 1.57 lO-7mol / Ls s (37 ° C) and 4.65xlO-7mol / L-s (60 ° C), respectively. It was estimated. this is Increasing the reaction temperature by 10 ° C is consistent with the general rule that the reaction reaction doubles. Up to 60 o C, the reaction rate increased relatively, after which the instability of the enzyme increased, resulting in a rapid decrease in reaction rate and conversion rate.
〈실시예 7〉 <Example 7>
최적 반웅 pH를 결정하기 위하여 각 pH 영역별로 다른 버퍼를 이용하여 L- 라이신의 전환율을 측정하였다 (pH4 ~ 5: 아세트산나트름 버퍼, pH 6-8: 인산칼름, pH 9-10: 탄산나트름 버퍼). 도 9에서 볼 수 있듯이 중성 영역의 pH 조건에서 가장 높은 전환을을 보였으며, pH 5의 산성 pH 조건하에서는 10 % 미만의 전환율을 나타내었다. 이는 산성 pH 영역에서는 단백질이 웅집되면서 불활성화되기 때문인 것으로 추정된다.  In order to determine the optimum reaction pH, the conversion rate of L-lysine was measured by using different buffers for each pH region (pH4-5: sodium acetate buffer, pH 6-8: sodium phosphate, pH 9-10: sodium carbonate). buffer). As shown in FIG. 9, the highest conversion was shown in the neutral pH condition, and the conversion was less than 10% under the acidic pH condition of pH 5. This is presumably due to the inactivation of proteins in the acidic pH region.
〈실시예 8> <Example 8>
최적의 반웅조건 (200 mM PIPES buffer, pH 7.0, 온도 60oC, L-lysine)에서 반웅을 진행한 결과 도 10에서 볼 수 있듯이 90 % 이상의 전환율이 달성되었다. 이러한 높은 전환율이 달성될 수 있는 것은 탈아미노화 고리화 반웅이 비가역적 반웅이기 때문으로 추정된다. 라이신 싸이클로디아미네이즈를 통하여 in-vitw 및 in-vivo 상태에서 L-라이신으로부터 효과적으로 L-피페콜산 (L-호모프롤린)을 합성할 수 있을 것으로 판단된다. As a result of reaction in the optimum reaction conditions (200 mM PIPES buffer, pH 7.0, temperature 60 ° C, L-lysine) as shown in Figure 10, a conversion of more than 90% was achieved. It is assumed that this high conversion can be achieved because the deaminolated cyclization reaction is an irreversible reaction. It is believed that lysine cyclodiamines can effectively synthesize L-pipecolic acid (L-homoproline) from L-lysine in in-vitw and in-vivo states.
<실시예 9> Example 9
NCBI 유전자은행에 존재하는 크루즈트리파노소마 (Trypanosoma cruzi) 유래 프롤린라세미화 (proline racemase) 효소 유전자의 염기서열 (EAN89436, 70875934)을 이용하여 N-말단에는 쉽게 분리할 수 있도록 하는 히스티딘 태그를 추가하고 N- 말단에는 Ndel, C-말단에는 Xhol의 제한효소에 의하여 선택적으로 절단될 수 있는 새로운 염기서열을 가지는 유전자를 합성하였다 (도 11). 합성된 유전자를 Ndel/Xhol 제한효소를 이용하여 특이적으로 절단한 후 이를 동일한 제한효소에 의하여 절단되어 준비된 pET-22b(+) 플라스미드 백터에 T4 라이게이즈 효소를 이용하여 붙여 pET-22b(+)-tc프를린라세미화 재조합 유전자를 제작하였다. 제작된 재조합 유전자는 발현을 위하여 IPTG에 의하여 제어되는 T7/lac 유전자 부분을 가지고 있어, 향후 IPTG 첨가에 의하여 선택적으로 발현이 유도될 수 있다. Using a nucleotide sequence of the proline racemase enzyme gene (EAN89436, 70875934) from the Trypanosoma cruzi gene present in the NCBI gene bank, a histidine tag is added to the N-terminus for easy separation. A gene having a new base sequence that can be selectively cleaved by Ndel at the end and Xhol restriction enzyme at the C-terminal end was synthesized (FIG. 11). The synthesized gene was specifically cleaved using Ndel / Xhol restriction enzyme and then attached to pET-22b (+) plasmid vector prepared by cleavage by the same restriction enzyme using T4 ligase enzyme. ) -tc plinase racemized recombinant gene was constructed. The recombinant gene produced has a part of the T7 / lac gene controlled by IPTG for expression, so that expression can be selectively induced by IPTG addition in the future.
〈실시예 10〉 <Example 10>
실시예 9에서 제작된 재조합 유전자를 발현용 대장균 E. coli for expressing the recombinant gene prepared in Example 9
(E olistrainBL21(DE3))으로 형질전환한 후 암피실린 (lmg/ml) 이 포함된 LB 배지에서 20°C에서 배양하였다. 0.1 M IPTG를 투여하여 목적 단백질의 발현을 유도한 후 200 rpm의 진탕 배양기에서 48시간을 추가로 배양하였다. 획득된 대장균 균체를 원심분리기를 이용하여 수확한 후 파쇄버퍼 (50mM NaH2PO4,300mM NaCUOmM 이미다졸)하에서 초음파분쇄기를 이용하여 세포를 파쇄 하였다. 파쇄된 세포액을 Ni-NTA 컬럼에 추가하여 히스티딘 태그가 부착된 목적 단백질인 프를린라세미화효소만을 선택적으로 분리하였다. (E olistrainBL21 (DE3)) was transformed and then cultured at 20 ° C. in LB medium containing ampicillin (lmg / ml). After administration of 0.1 M IPTG to induce the expression of the target protein, 48 hours were further incubated in a shaker at 200 rpm. The obtained E. coli cells were harvested using a centrifuge, and then cells were disrupted using an ultrasonic grinder under a crushing buffer (50 mM NaH 2 PO 4 , 300 mM NaCUOmM imidazole). The crushed cell solution was added to the Ni-NTA column to selectively separate only the histidine-tagged target protein racenase.
분리된 효소의 활성을 측정하기 위하여 반웅액 (25mM L—프롤린, 200mM 아세트산나트름 버퍼, pH 6.0)에 0.97 mg/ml 농도의 효소액을 투입한 후 일정시간 간격으로 샘플링한 후 반웅진행을 정지시키기 위하여 10 %의 H2S04(v/v) 10 μΐ을 투입하였다. 반웅기질인 L-프를린과 생성물인 D-프롤린의 농도는 Chirobiotic™ T 키랄칼럼 (5μπι, 25cmX4.6mm, Astec comp)와 UV 분광계가 장착된 HPLC를 이용하여 정량하였다. In order to measure the activity of the isolated enzyme, 0.97 mg / ml of enzyme solution was added to the reaction solution (25 mM L—proline, 200 mM sodium acetate buffer, pH 6.0), sampled at regular intervals, and the reaction was stopped. 10 μl of 10% H 2 SO 4 (v / v) was added thereto. The concentration of semi-aqueous L-proline and product D-proline were quantified using Chirobiotic ™ T chiral column (5μπι, 25cmX4.6mm, Astec comp) and HPLC equipped with UV spectrometer.
〈실시예 11〉 발현 최적화를 실시하여 발현 최적조건 (20oC 배양 후 48hr, 20°C 인덕션)에서 효소를 발현하여 다음 조건 (200 mM, 아세트산나트륨 버퍼 , pH 6.0, 온도 37°C, L- 프롤린)하에 반웅을 진행한 결과 도 12에서 볼 수 있듯이 1시간 안에 90 % 라세미화 반웅이 진행된 것을 볼 수 있다. L-형 과 D-형의 반웅측정결과 50:50의 농도에서 반웅의 평형을 이루는 것을 알 수 있었다. <Example 11> Expression optimization was performed to express the enzyme under optimal expression conditions (48hr after 20 o C incubation, 20 ° C induction) and reacted under the following conditions (200 mM, sodium acetate buffer, pH 6.0, temperature 37 ° C, L-proline). As a result, as can be seen in Figure 12, it can be seen that 90% racemization reaction in 1 hour. The reaction results of L-type and D-type resulted in equilibrium of reaction at the concentration of 50:50.
〈실시예 12> <Example 12>
NCBI 유전자은행에 존재하는 Clostridium sticklandii 와 Bifidobacterium thennophilum RBL67 유래 D-프롤린 환원 효소 A 유전자의 염기서열 (YP_003937258.1, 310659537 I ΥΡ_007594109.1, 470203397)을 이용하여 대장균에 코돈을 최적화 한 후, C-말단과 Ν-말단에 발현 후 절단 과정을 거친 후에도 분리 정제가 가능하도록 6χ-히스티딘 태그를 추가하고 Ν-말단에는 Ndel, C- 말단에는 Xhol의 제한효소에 의하여 선택적으로 절단될 수 있는 특정 염기서열을 가지는 유전자를 합성하였다 (도 14). 합성된 유전자를 Ndel/Xhol 제한효소를 이용하여 특이적으로 절단한 후 이를 동일한 제한효소에 의하여 절단되어 준비된 pET-22 (+) 플라스미드 백터에 T4 라이게이즈 효소를 이용하여 붙여 결과적으로 pET-22b(+)-csPrdA I pET-22b(+)-MPrdA재조합 유전자를 제작하였다. 제작된 재조합 유전자는 단백질 발현을 위하여 IPTG에 의하여 제어되는 T7/lac 유전자 부분을 가지고 있어, 향후 IPTG 첨가에 의하여 선택적으로 과발현이 유도될 수 있다.  After optimizing codons in E. coli using the nucleotide sequences of the D-proline reductase A gene derived from Clostridium sticklandii and Bifidobacterium thennophilum RBL67 from the NCBI gene bank (YP_003937258.1, 310659537 I ΥΡ_007594109.1, 470203397), C-terminal 6χ-histidine tag is added to allow separation and purification even after expression and cleavage at Ν-terminal, and Nnucleotide at N-terminal and specific sequence that can be selectively cleaved by restriction enzyme of Xhol at C-terminal Branches synthesized genes (FIG. 14). The synthesized gene was specifically cleaved using Ndel / Xhol restriction enzyme and then attached to pET-22 (+) plasmid vector prepared by cleavage by the same restriction enzyme using T4 ligase enzyme, resulting in pET-22b. (+)-csPrdA I pET-22b (+)-MPrdA recombination gene was constructed. The produced recombinant gene has a part of the T7 / lac gene controlled by IPTG for protein expression, so that overexpression can be selectively induced by IPTG addition in the future.
〈실시예 13〉 <Example 13>
실시예 12에서 제작된 재조합 유전자를 발현용 수용성 대장균 (£: coli strain BL21 (λ! Ε3))에 형질전환한 후 암피실린 (0.1 mg/ml)이 포함된 LB 배지에서 37°C, 200 rpm 조건으로 배양하였다. 목적 단백질의 과발현을 유도하기 위하여 1 mM의 IPTG를 투여하여 25°C, 200 rpm의 진탕배양기에서 16시간을 추가로 배양하였다. 획득된 대장균 균체를 원심분리기를 이용하여 수확한 후 파쇄버퍼 (50mM NaH2P0 , 300 mM NaCl, 10 mM 이미다졸)하에서 초음파분쇄기를 이용하여 세포를 파쇄하였다. 파쇄 후 세포 파괴물을 제거한 세포액을 Ni-NTA 컬럼에 추가하여 6x- 히스티딘 태그가 부착된 목적 단백질 (D-프를린 환원효소 A)만을 선택적으로 분리하였다. The recombinant gene prepared in Example 12 was transformed into a water-soluble E. coli (£: coli strain BL21 (λ! Ε3)) for expression, and then 37 ° C and 200 rpm in LB medium containing ampicillin (0.1 mg / ml) Incubated with. 1 mM to induce overexpression of the target protein. IPTG was administered and further cultured for 16 hours in a shaker at 25 ° C, 200 rpm. The obtained E. coli cells were harvested using a centrifuge, and then cells were disrupted using an ultrasonic grinder under a crushing buffer (50 mM NaH 2 P0, 300 mM NaCl, 10 mM imidazole). After disruption, the cell solution from which cell debris was removed was added to the Ni-NTA column to selectively separate only the 6 × -histidine-tagged target protein (D-Prinlin Reductase A).
분리된 효소의 발현 유무와 순수도를 확인하기 위하여 SDS-PAGE 후 6x- 히스티딘 태그에 대한 항원 -항체 반웅을 이용하는 웨스턴 블롯 방법을 이용하였으며, Clostridium sticklandu 유래 D-프를린 환원효소는 전체 효소의 경우 발현시 69.5 kDa, 발현 후 분할 과정을 거친 후에는 피루보일 (Pyruvoyl)기를 갖는 알파유닛은 23.8kDa, 베타유닛은 45.7kDa을 갖는다. Bifidobacterium thermophilum RBL67 유래 D-프를린 환원효소는 전체 효소의 경우 발현 시 66.9 kDa, 발현 후 분할 과정을 거친 후에는 피루보일기를 갖는 알파유닛은 19.8 kDa, 베타유닛은 47.1 kDa을 갖는다 (도 15).  In order to confirm the expression and purity of the isolated enzyme, we used Western blot method using antigen-antibody reaction against 6x-histidine tag after SDS-PAGE, and Clostridium sticklandu-derived D-prine reductase was In case of expression, 69.5 kDa, the alpha unit having a pyruvoyl (Pyruvoyl) group is 23.8kDa, the beta unit is 45.7kDa after the post-expression split process. B-fidobacterium thermophilum RBL67-derived D-plin reductase had 66.9 kDa when expressed for all enzymes, 19.8 kDa for alpha units having pyruboyl groups and 47.1 kDa for beta units after splitting after expression (Fig. 15). ).
<실시예 14〉 <Example 14>
실시예 13에 의하여 발현된 효소를 이용하여 기질 (D-프롤린, D- 호모프로핀)을 반웅 전환 실험을 진행하였다. 다음 반웅 조건 (200mM, 아세트산 나트름 buffer, H 6.0, 온도 370C, D-프롤린 /D-호모프를린) 하에 반웅을 진행 한 결과 하기 표 1에서 볼 수 있듯이 10시간 안에 90% 반응이 진행 된 것을 볼 수 있다. 이러한 결과를 통하여 D-프를린은 5-아미노 ¾타노산 (5-aminopentanoic acid)으로 전환되며, D-호모프를린은 6-아미노핵사노산 (6-aminohexanoic acid)으로 전환되는 것을 확인할 수 있었다. 6-아미노핵사노산은 간단한 탈수 반웅 촉매에 의하여 카프로락탐으로 쉽게 전환될 수 있다. Substrate conversion experiments were conducted on substrates (D-proline, D-homopropine) using the enzyme expressed in Example 13. The reaction was carried out under the following reaction conditions (200mM, sodium acetate buffer, H 6.0, temperature 37 0 C, D-proline / D-homoproline), and as shown in Table 1 below, 90% reaction occurred in 10 hours. You can see the progress. These results show that D-plin is converted to 5-aminopentanoic acid, and D-homoplin is converted to 6-aminohexanoic acid. there was. 6-aminonucleoanoic acid can be readily converted to caprolactam by a simple dehydration reaction catalyst.
【표 1】 반응시간 (hr) D-프를린 전환율 (%) D-호모프를린 전환율 (%)Table 1 Response time (hr) D-proline conversion (%) D-homoproline conversion (%)
1 10 5 1 10 5
5 60 20  5 60 20
10 90 40  10 90 40

Claims

【청구의 범위】 【Scope of Claim】
【청구항 1] [Claim 1]
(a) L-라이신에 사이클로탈아미노 효소를 처리하여 호모프를린 (homoproline)을 생성하는 단계; 및 (a) producing homoproline by treating L-lysine with cyclodeaminase; and
(b) 상기 호모프를린에 환원효소를 처리하는 단계 (b) treating the homoproline with reductase
를 포함하는 6-아미노핵사노산의 제조방법. Method for producing 6-aminohexanoic acid comprising.
【청구항 2] [Claim 2]
제 1 항에 있어서, 상기 단계 (a)는 25°C 내지 80oC의 온도에서 이루어지는 방법. The method of claim 1, wherein step (a) is performed at a temperature of 25°C to 80oC .
【청구항 3] [Claim 3]
제 1 항에 있어서, 상기 단계 (a)는 pH 6 내지 7의 조건에서 이루어지는 방법. The method of claim 1, wherein step (a) is performed under conditions of pH 6 to 7.
【청구항 4】 【Claim 4】
(a) L-라이신에 사이클로탈아미노 효소를 처리하여 호모프롤린 (homoproline)을 생성하는 단계; (a) treating L-lysine with cyclodeaminase to produce homoproline;
(b) 상기 호모프를린에 환원효소를 처리하여 6-아미노핵사노산을 생성하는 단계; (b) producing 6-aminohexanoic acid by treating the homoproline with reductase;
(c) 상기 6-아미노핵사노산에 환원제를 처리하여 환원된 6-아미노핵사노산을 생성하는 단계; 및 (c) treating the 6-aminohexanoic acid with a reducing agent to produce reduced 6-aminohexanoic acid; and
(d) 상기 환원된 6-아미노핵사노산에 가수분해효소 또는 알칼리촉매를 처리하여 탈수반웅을 진행하는 단계 (d) performing a dehydration reaction by treating the reduced 6-aminohexanoic acid with a hydrolytic enzyme or an alkaline catalyst.
를 포함하는 카프로락탐의 제조방법. A method for producing caprolactam comprising.
【청구항 5] [Claim 5]
제 4 항에 있어서, In clause 4,
상기 환원제는 NADH, 티오트레이톨 또는 리포에이트인 방법. The method of claim 1, wherein the reducing agent is NADH, thiothreitol, or lipoate.
【청구항 6】 【Claim 6】
제 4 항에 있어서, According to claim 4,
상기 가수분해효소는 락타마아제인 방법. 【청구항 7] The method of claim 1, wherein the hydrolytic enzyme is lactamase. [Claim 7]
상기 제 4 항 내지 제 6 항 중 어느 한 항의 방법으로 생산된 카프로락탐을 나일론 6으로 증합하는 단계를 포함하는 나일론 6의 제조방법. A method for producing nylon 6, comprising the step of polymerizing caprolactam produced by the method of any one of claims 4 to 6 into nylon 6.
PCT/KR2014/006485 2013-09-10 2014-07-17 Method for producing 6-aminohexanoic acid or caprolactam from lysine WO2015037823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130108564 2013-09-10
KR10-2013-0108564 2013-09-10

Publications (1)

Publication Number Publication Date
WO2015037823A1 true WO2015037823A1 (en) 2015-03-19

Family

ID=52665890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006485 WO2015037823A1 (en) 2013-09-10 2014-07-17 Method for producing 6-aminohexanoic acid or caprolactam from lysine

Country Status (2)

Country Link
KR (1) KR101565253B1 (en)
WO (1) WO2015037823A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170002235A (en) * 2015-06-29 2017-01-06 광운대학교 산학협력단 Method for manufacturing the mutants proline racemase
CN110256268A (en) * 2019-07-02 2019-09-20 扬州中宝药业股份有限公司 A kind of preparation method of aminocaproic acid
WO2023020559A1 (en) * 2021-08-20 2023-02-23 中国石油化工股份有限公司 Antibacterial nylon 6 material, preparation method therefor, and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101951557B1 (en) 2017-07-12 2019-02-22 씨제이제일제당 (주) Microorganism expressing an active D-proline reductase and Method for producing active D-proline reductase using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194572B1 (en) * 1997-02-19 2001-02-27 Dsm N.V. Process to prepare ε-caprolactam
WO2005068643A2 (en) * 2004-01-19 2005-07-28 Dsm Ip Assets B.V. Biochemical synthesis of 6-amino caproic acid
KR20070050909A (en) * 2004-06-10 2007-05-16 보드 오브 트러스티즈 오브 미시건 스테이트 유니버시티 Synthesis of caprolactam from lysine
EP2123767A1 (en) * 2008-05-20 2009-11-25 DSM IP Assets B.V. Preparation of epsilon-caprolactam via lysine cyclisation
JP2010519297A (en) * 2007-02-20 2010-06-03 ボード オブ トラスティーズ オブ ミシガン ステイト ユニバーシティ Catalytic deamination for caprolactam production
US20110136186A1 (en) * 2008-05-20 2011-06-09 Petronella Catharina Raemakers-Franken Preparation of alpha-amino-epsilon-caprolactam via lysine cyclisation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194572B1 (en) * 1997-02-19 2001-02-27 Dsm N.V. Process to prepare ε-caprolactam
WO2005068643A2 (en) * 2004-01-19 2005-07-28 Dsm Ip Assets B.V. Biochemical synthesis of 6-amino caproic acid
KR20070050909A (en) * 2004-06-10 2007-05-16 보드 오브 트러스티즈 오브 미시건 스테이트 유니버시티 Synthesis of caprolactam from lysine
JP2010519297A (en) * 2007-02-20 2010-06-03 ボード オブ トラスティーズ オブ ミシガン ステイト ユニバーシティ Catalytic deamination for caprolactam production
EP2123767A1 (en) * 2008-05-20 2009-11-25 DSM IP Assets B.V. Preparation of epsilon-caprolactam via lysine cyclisation
US20110136186A1 (en) * 2008-05-20 2011-06-09 Petronella Catharina Raemakers-Franken Preparation of alpha-amino-epsilon-caprolactam via lysine cyclisation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170002235A (en) * 2015-06-29 2017-01-06 광운대학교 산학협력단 Method for manufacturing the mutants proline racemase
KR101722842B1 (en) 2015-06-29 2017-04-04 광운대학교 산학협력단 Method for manufacturing the mutants proline racemase
CN110256268A (en) * 2019-07-02 2019-09-20 扬州中宝药业股份有限公司 A kind of preparation method of aminocaproic acid
WO2023020559A1 (en) * 2021-08-20 2023-02-23 中国石油化工股份有限公司 Antibacterial nylon 6 material, preparation method therefor, and application thereof

Also Published As

Publication number Publication date
KR20150029526A (en) 2015-03-18
KR101565253B1 (en) 2015-11-13

Similar Documents

Publication Publication Date Title
Ma et al. Advances in cadaverine bacterial production and its applications
Jansen et al. Towards large scale fermentative production of succinic acid
Zhang et al. Application of an acyl-CoA ligase from Streptomyces aizunensis for lactam biosynthesis
KR100679638B1 (en) Microorganisms transformed with gene encoding formate ddehydrogenase d or e and method for preparing succinic acid using the same
CN109593805B (en) Method for synthesizing L-carnosine by using L-amino acid ligase one-step method
US20100035314A1 (en) Method for the enzymatic production of 2-hydroxy-2-methyl carboxylic acids
WO2015037823A1 (en) Method for producing 6-aminohexanoic acid or caprolactam from lysine
Zhou et al. Bioproduction of benzylamine from renewable feedstocks via a nine‐step artificial enzyme cascade and engineered metabolic pathways
CN104471069A (en) Method for the preparation of 2,4-dihydroxybutyrate
CN109652484B (en) Method for efficiently catalytically synthesizing L-carnosine by whole cells
Sierra et al. Progress in the metabolic engineering of bio-based lactams and their ω-amino acids precursors
CN109825538A (en) A kind of synthetic method of Chiral 2-amino-1-butanol
CN106893699B (en) Crude enzyme preparation, preparation method and application thereof
CN108728501A (en) Produce the enzymatic method of 2-Hydroxy-4-methylthiobutyric acid (MHA)
CN114341344A (en) Engineered microorganisms and methods for improving aldehyde dehydrogenase activity
Labib et al. Toward the sustainable production of the active Pharmaceutical Ingredient Metaraminol
Gabor et al. A novel penicillin acylase from the environmental gene pool with improved synthetic properties
KR20130057600A (en) Method for preparing glutaric acid using recombinant microorganism
CN106222231A (en) Method for rapidly producing high-optical-purity D-lysine
WO2005118829A3 (en) Biosynthetic production of 4-amino-4-deoxychorismate (adc) and [3r,4r]-4-amino-3-hydroxycyclohexa-1,5-diene-1-carboxylic acid (3,4-cha)
Würges et al. An Efficient Route to Both Enantiomers of allo‐Threonine by Simultaneous Amino Acid Racemase‐Catalyzed Isomerization of Threonine and Crystallization
KR101859221B1 (en) Recombinant Microorganism Producing Terephthalic Acid and Method for Producing Terephthalic Acid Using the Same
KR101812426B1 (en) METHOD FOR PRODUCING METHACRYLYL-CoA
US20110257358A1 (en) Method for preparing e-caprolactam from n-acyl-6-aminocaproic acid
Du et al. Enzymatic synthesis of L-tryptophan from D, L-2-amino-Δ2-thiazoline-4-carboxylic acid and indole by Pseudomonas sp. TS1138 L-2-amino-Δ2-thiazoline-4-carboxylic acid hydrolase, S-carbamyl-L-cysteine amidohydrolase and Escherichia coli L-tryptophanase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844104

Country of ref document: EP

Kind code of ref document: A1