WO2015037675A1 - Benzothienopyrimidine compound, method for producing same and organic electroluminescent element containing same - Google Patents

Benzothienopyrimidine compound, method for producing same and organic electroluminescent element containing same Download PDF

Info

Publication number
WO2015037675A1
WO2015037675A1 PCT/JP2014/074122 JP2014074122W WO2015037675A1 WO 2015037675 A1 WO2015037675 A1 WO 2015037675A1 JP 2014074122 W JP2014074122 W JP 2014074122W WO 2015037675 A1 WO2015037675 A1 WO 2015037675A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
general formula
yield
Prior art date
Application number
PCT/JP2014/074122
Other languages
French (fr)
Japanese (ja)
Inventor
内田 直樹
陽子 本間
尚志 飯田
華奈 藤田
恵理子 太田
裕太 森中
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2015037675A1 publication Critical patent/WO2015037675A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds

Definitions

  • the present invention relates to a benzothienopyrimidine compound useful as a component of an organic electroluminescent device, a method for producing the same, and an organic electroluminescent device containing the same.
  • An organic electroluminescent element has a basic structure in which a light-emitting layer containing a light-emitting material is sandwiched between a hole transport layer and an electron transport layer, and an anode and a cathode are attached to the outside of the light-emitting layer.
  • This element utilizes light emission (fluorescence or phosphorescence) accompanying exciton deactivation caused by recombination of holes and electrons, and is applied to displays and the like.
  • the hole transport layer is divided into a hole transport layer and a hole injection layer, the light emitting layer is divided into an electron blocking layer, a light emitting layer and a hole blocking layer, and the electron transport layer is divided into an electron transport layer and an electron injection layer. May be configured.
  • dibenzothiophene compounds for example, Patent Document 1
  • nitrogen-substituted dibenzothiophene compounds for example, see Patent Document 2-3
  • improvement is desired in that the device has a higher driving voltage and a longer life is required.
  • Organic electroluminescence devices have begun to be used in various display devices, but further improvements in device performance such as longer life, higher luminous efficiency, and lower drive voltage are required. More specifically, there is a demand for the development of a carrier transport material that achieves a long life, high luminous efficiency, low driving voltage, and suppression of voltage rise during driving.
  • the carrier transport materials for the electron injection material and the electron transport material, there are new materials that drive the device at a low voltage due to excellent electron injection properties and electron transport properties, and have high luminous efficiency and drive the device for a long time. It is desired.
  • the organic electroluminescent element material is generally heated to a high temperature in a vacuum at the time of sublimation purification and vapor deposition for producing the organic electroluminescent element, and a material having higher heat resistance is required.
  • the present inventors have found that the benzothienopyrimidine compound represented by the general formula (1) of the present invention has higher electron durability and higher resistance than conventionally known compounds. It has been found that the hole durability is remarkably improved. From such knowledge, when the benzothienopyrimidine compound is used as an electron transport layer in an organic electroluminescent device, the organic electroluminescent device has a longer life than when a known or general-purpose electron transport material is used. The inventors have found that the voltage rise during driving is suppressed, and have completed the present invention.
  • the present inventors have found that by replacing the 2-position and 4-position of benzothienopyrimidine with an aromatic group, the heat resistance of the compound can be improved and the thermal deterioration of the material can be suppressed, and the present invention is completed. It came to.
  • the present invention relates to a benzothienopyrimidine compound represented by the following general formula (1) (hereinafter also referred to as “compound (1)”), a production method thereof, and an organic electroluminescent device containing the same. .
  • R 1 to R 4 each independently represents an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group)
  • Ar 1 and Ar 2 are each independently an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group)
  • this invention can provide a very useful manufacturing intermediate in order to manufacture the said compound (1) industrially.
  • the benzothienopyrimidine compound of the present invention is excellent in electron durability and hole durability.
  • the benzothienopyrimidine compound of the present invention is used as an electron transport layer in an organic electroluminescent device, the organic electroluminescent device has a long life, and An increase in voltage during driving is suppressed. Moreover, it is excellent in heat resistance than a conventionally well-known benzothienopyrimidine compound.
  • FIG. 1 is a cross-sectional view of an organic electroluminescent element produced in Evaluation Example 1 or the like.
  • FIG. 2 is a cross-sectional view of an organic electroluminescent element produced in Evaluation Example 10 or the like.
  • the present invention relates to the above compound (1), a production method thereof, and an organic electroluminescence device containing the compound.
  • the present invention also relates to a production intermediate for producing the above compound (1).
  • the aromatic group having 4 to 66 carbon atoms defines only a ring skeleton that may be condensed or linked, and the carbon number of the aromatic group does not include the carbon number of the substituent.
  • the aromatic group having 4 to 66 carbon atoms the aromatic group is not particularly limited as long as it is an aromatic hydrocarbon group, a heteroaromatic group, or a group in which these are condensed or linked.
  • the aromatic group having 4 to 66 carbon atoms represents an aromatic group having 4 to 66 carbon atoms in the ring skeleton and may be condensed or linked. Note that the aromatic group having 4 to 66 carbon atoms does not include the carbon number of a substituent that may be separately provided.
  • the aromatic group having 4 to 66 carbon atoms is not particularly limited as long as it is an aromatic hydrocarbon group, a heteroaromatic group, or a group in which these are condensed or linked.
  • the aromatic group having 4 to 66 carbon atoms is not particularly limited, and examples thereof include a phenyl group, a biphenylyl group, a terphenyl group, a naphthyl group, a naphthylphenyl group, a phenylnaphthyl group, a naphthylbiphenyl group, and a biphenylnaphthyl group.
  • the alkyl group having 3 to 10 carbon atoms is not particularly limited.
  • the alkoxy group having 3 to 10 carbon atoms is not particularly limited, and examples thereof include an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, and an n-pentyloxy group.
  • Sec-pentyloxy group cyclopentyloxy group, n-hexyloxy group, cyclohexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, benzyloxy group, or phenethyloxy Groups and the like.
  • the halogenated alkyl group having 1 to 3 carbon atoms is not particularly limited, and examples thereof include chloromethyl group, dichloromethyl group, trichloromethyl group, fluoromethyl group, difluoromethyl group, trifluoromethyl group, chloroethyl group, dichloromethane.
  • Examples include an ethyl group, trichloroethyl group, pentachloroethyl group, fluoroethyl group, difluoroethyl group, trifluoroethyl group, pentafluoroethyl group, chloropropyl group, or fluoropropyl group.
  • the halogenated alkoxy group having 1 to 3 carbon atoms is not particularly limited, and examples thereof include a chloromethyloxy group, a dichloromethyloxy group, a trichloromethyloxy group, a fluoromethyloxy group, a difluoromethyloxy group, Fluoromethyloxy group, chloroethyloxy group, dichloroethyloxy group, trichloroethyloxy group, pentachloroethyloxy group, fluoroethyloxy group, difluoroethyloxy group, trifluoroethyloxy group, pentafluoroethyloxy group, chloro A propyloxy group, a fluoropropyloxy group, etc. are mentioned.
  • the diarylamino group having 10 to 36 carbon atoms represents an amino group in which two kinds of aryl groups which may be different from each other are bonded, and means a group having 10 to 36 carbon atoms as a whole.
  • the diarylamino group having 10 to 36 carbon atoms is not particularly limited.
  • N, N-diphenylamino group, N-tolyl-N-phenylamino group, N, N-ditolylamino group, or N, N-dibiphenyl is preferable in that the compound (1) has excellent electron transport material characteristics.
  • An amino group is preferred.
  • the sulfide group having 3 to 10 carbon atoms is not particularly limited.
  • the aromatic group having 4 to 66 carbon atoms is each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, or a methoxy group.
  • And may have a plurality of substituents. When there are a plurality of substituents, each substituent may be the same or different.
  • the substituent that the aromatic group having 4 to 66 carbon atoms in R 1 to R 4 , Ar 1 , and Ar 2 may have is a methyl group or a carbon number in terms of excellent electron transport material characteristics. 10-36 diarylamino groups are preferred.
  • R 1 to R 4 are each independently an aromatic group having 4 to 30 carbon atoms in terms of excellent electron transport material characteristics (these substituents are each independently a fluorine atom, a methyl group, an ethyl group, A substituent of an alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, or a halogenated alkoxy group having 1 to 3 carbon atoms A hydrogen atom, a deuterium atom, a fluorine atom, a methyl group, an ethyl group, or an alkyl group having 3 to 10 carbon atoms, preferably a phenyl group, a biphenyl group, a phenanthryl group, Pyrenyl, fluoranthenyl, pyridyl, pyrimidyl, quinolyl, isoquinolyl
  • the aromatic group having 4 to 30 carbon atoms is not particularly limited, but among the substituents exemplified in the aromatic group having 4 to 66 carbon atoms, the total number of carbon atoms is 30 or less. Things can be illustrated.
  • the aromatic group having 4 to 30 carbon atoms defines only a ring skeleton that may be condensed or linked, and the carbon number of the aromatic group does not include the carbon number of the substituent.
  • the aromatic group in the aromatic group having 4 to 30 carbon atoms is not particularly limited as long as it is an aromatic hydrocarbon group, a heteroaromatic group, or a condensed or linked group thereof.
  • the aromatic group having 4 to 30 carbon atoms is not particularly limited, and examples thereof include a phenyl group, a biphenylyl group, a terphenyl group, a naphthyl group, a naphthylphenyl group, a phenylnaphthyl group, a naphthylbiphenyl group, and a biphenylnaphthyl group.
  • any one of them is a condensed ring aromatic group having 7 to 18 carbon atoms or any one of the following general formulas (2) to (9), because of excellent electron transport material properties.
  • the substituents represented by these groups are each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, an alkoxy group having 3 to 10 carbon atoms, Preferably a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms as a substituent.
  • Either one is a condensed aromatic group having 7 to 18 carbon atoms or a substituent represented by any one of the following general formulas (2) to (9) (these substituents are each independently Methyl group or dia having 10 to 36 carbon atoms Ruamino may be substituted with a group.) Is more preferable.
  • Ar 1 and Ar 2 one of them is a condensed aromatic group having 7 to 18 carbon atoms (fluorine atom, methyl group, ethyl group, 3 to 10 carbon atoms, because of excellent electron transport material properties.
  • 18 substituted ring aromatic groups which may be substituted with a methyl group or a diarylamino group having 10 to 36 carbon atoms
  • Ar 1 and Ar 2 are each independently a phenyl group, a condensed aromatic group having 7 to 18 carbon atoms, and the following general formulas (2) to (2) to A substituent represented by any one of the general formula (9) (these substituents are each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, It may have an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms as a substituent.
  • Ar 1 and Ar 2 are each independently a phenyl group, a condensed aromatic group having 7 to 18 carbon atoms, and the following general formula: Any of (2) to general formula (9) (These substituents may be each independently substituted with a methyl group or a diarylamino group having 10 to 36 carbon atoms). It is more preferable.
  • Ar 1 and Ar 2 both are independently a phenyl group, a condensed ring aromatic group having 7 to 18 carbon atoms (a fluorine atom, a methyl group, an ethyl group) because of excellent electron transport material properties.
  • An alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or the number of carbon atoms 10 to 36 diarylamino groups may be substituted.
  • Ar 1 and Both of Ar 2 are each independently a condensed aromatic group having 7 to 18 carbon atoms (which may be substituted with a methyl group or a diarylamino group having 10 to 36 carbon atoms) or the following general formula (2 )
  • a substituent represented by any of these is more preferable.
  • each Ar 3 is independently an aromatic group having 4 to 30 carbon atoms (each independently a fluorine atom, methyl group, ethyl group, 3 to 10 carbon atoms) Alkyl group, methoxy group, ethoxy group, alkoxy group having 3 to 10 carbon atoms, halogenated alkyl group having 1 to 3 carbon atoms, halogenated alkoxy group having 1 to 3 carbon atoms, or diarylamino having 10 to 36 carbon atoms And a methyl group, an ethyl group, a methoxy group, an ethoxy group, a diarylamino group having 10 to 36 carbon atoms, or a hydrogen atom.
  • the condensed aromatic group having 7 to 18 carbon atoms defines only the condensed ring skeleton, and the number of carbon atoms of the substituent is not included in the number of carbon atoms of the condensed aromatic group.
  • the condensed ring aromatic group having 7 to 18 carbon atoms is composed of a condensed ring aromatic hydrocarbon group having 7 to 18 carbon atoms and a condensed ring heteroaromatic group having 7 to 18 carbon atoms, and is not particularly limited.
  • the aromatic group having 4 to 30 carbon atoms in the general formulas (2) to (9) has the same definition as the aromatic group having 4 to 30 carbon atoms represented by R 1 to R 4 and is particularly limited. However, the same substituents as those exemplified for R 1 to R 4 can be exemplified.
  • diarylamino group having 10 to 36 carbon atoms in the general formulas (2) to (9) is not particularly limited, but is exemplified in the diarylamino group having 10 to 36 carbon atoms in the general formula (1). The same thing as what was done can be illustrated.
  • the diarylamino group having 10 to 36 carbon atoms is not particularly limited.
  • Ar 1 and Ar 2 are a condensed aromatic group of 7 to 18 or a substituent represented by any one of the general formulas (2) to (9), each independently a fluorine atom, Methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group, alkoxy group having 3 to 10 carbon atoms, halogenated alkyl group having 1 to 3 carbon atoms, halogenated alkoxy having 1 to 3 carbon atoms And may have a substituent selected from the group consisting of a group and a diarylamino group having 10 to 36 carbon atoms, and the substituent may be plural. When there are a plurality of substituents, each substituent may be the same or different.
  • Ar 3 is each independently an aromatic group having 4 to 30 carbon atoms (each independently) in terms of excellent electron transport properties.
  • they are each independently an aromatic group having 4 to 24 carbon atoms (each independently having a fluorine atom, a methyl group, a methoxy group, or a diarylamino group having 10 to 36 carbon atoms as a substituent).
  • Ar 3 is each independently a phenyl group, pyridylphenyl group, phenylpyridyl group, diphenylpyridyl group, diphenylpyridylphenyl group, pyrimidylphenyl group, quinolylphenyl group, isoquinolylphenyl group, Naphtyl, biphenylyl, fluorenyl, benzofluorenyl, dibenzofluorenyl, terphenyl, anthryl, phenanthryl, pyrenyl, chrysenyl, triphenylenyl, pyridyl, bipyridyl, terpyridyl, quinolyl Group, isoquinolyl group, indolyl group, imidazo
  • Ar 3 is each independently a phenyl group, pyridylphenyl group, phenylpyridyl group, diphenylpyridyl group, diphenylpyridylphenyl group, pyrimidylphenyl group, quinolylphenyl group, isoquinolylphenyl.
  • Ar 3 is each independently a phenyl group, pyridylphenyl group, phenylpyridyl group, diphenylpyridyl group, diphenylpyridylphenyl group, pyrimidylphenyl group, quinolylphenyl group, isoquinolylphenyl.
  • the aromatic group having 4 to 24 carbon atoms is an aromatic group having a ring skeleton having 4 to 24 carbon atoms and may be condensed or linked. Note that the aromatic group having 4 to 24 carbon atoms does not include the carbon number of a substituent that may be separately provided.
  • the aromatic group in the aromatic group having 4 to 24 carbon atoms is not particularly limited as long as it is an aromatic hydrocarbon group, a heteroaromatic group, or a condensed or linked group thereof.
  • the aromatic group having 4 to 24 carbon atoms is not particularly limited, but among the substituents exemplified in the aromatic group having 4 to 66 carbon atoms, those having a total number of carbon atoms of 24 or less.
  • benzothienopyrimidine compound represented by the general formula (1) include the following compounds 1 to 140, but the present invention is not limited thereto.
  • the benzothienopyrimidine compound (1) of the present invention is prepared by the following reaction formula (1), reaction formula (2), or reaction formula in the presence of a base, a metal catalyst, or a base and a metal catalyst. It can be produced by the method shown in (12).
  • the compound represented by the general formula (10) is generally referred to as the compound (10).
  • R 1 to R 4 are each independently an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group)
  • Ar 1 and Ar 2 are each independently an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group)
  • Ar 11 , Ar 12 and Ar 13 are each independently an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group). , An ethoxy group, an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms as a substituent.
  • X 1 to X 4 each independently represents an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group or an ethoxy group).
  • X 5 to X 6 and Y each independently represent a hydrogen atom, deuterium atom, fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group, or 3 to 10 carbon atoms.
  • X 7 represents a leaving group.
  • Z represents a chlorine atom, a bromine atom, a triflate or an iodine atom.
  • the compound (10) used by Reaction formula (1) can be manufactured by the method shown by following Reaction formula (3) or Reaction formula (13) in presence of a base or an acid.
  • the compound (11) can be obtained by the following reaction formula (4) and the method represented by the reaction formula (5), or the reaction formula (14) and the reaction formula (15). It can be produced by the method shown.
  • Ar 11 and Ar 12 are each independently an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group)
  • R 5 represents a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, or an aromatic group having 5 to 10 carbon atoms.
  • X 1 to X 4 are each independently an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, It may have an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms as a substituent.
  • X 5 to X 6 each independently represent a hydrogen atom, a deuterium atom, a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, or an alkoxy having 3 to 10 carbon atoms.
  • X 7 represents a leaving group.
  • Z represents a chlorine atom, a bromine atom, a triflate or an iodine atom.
  • R 5 represents a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, or an aromatic group having 5 to 10 carbon atoms.
  • the alkyl group having 3 to 10 carbon atoms has the same definition as above.
  • the aromatic group having 5 to 10 carbon atoms is not particularly limited, and examples thereof include a pyridyl group, a phenyl group, a tolyl group, a tert-butylphenyl group, a naphthyl group, a quinolyl group, and an isoquinolyl group.
  • Z represents a chlorine atom, a bromine atom, a triflate or an iodine atom.
  • a chlorine atom or a bromine atom is preferable in terms of good reaction yield and easy availability.
  • the leaving group represented by X 1 to X 7 and Y is not particularly limited.
  • a metal-containing group for example, Li, Na MgCl, MgBr, MgI, CuCl, CuBr, CuI, AlCl 2 , AlBr 2 , Al (Me) 2 , Al (Et) 2 , Al ( i Bu) 2 , Sn (Me) 3 ,
  • ZnR 24 examples include ZnCl, ZnBr, ZnI, etc.), Si (R 21 ) 3 (for example, SiMe 3 , SiPh 3 , SiMePh 2 , SiCl 3, SiF 3, Si (OMe ) 3, Si (OEt) 3, Si (OMe) 2 OH , etc.), BF 3 K, B ( OR 22) 2 ( e.g., B OH) 2, B (OMe) 2, B (O i Pr) 2, B (OBu) 2, B (OPh) 2 or the like), B (OR 23) 3, etc.) and the like.
  • Si (R 21 ) 3 for example, SiMe 3 , SiPh 3 , SiMePh 2 , SiCl 3, SiF 3, Si (OMe ) 3, Si (OEt) 3, Si (OMe) 2 OH , etc.
  • B ( OR 22) 2 e.g., B OH) 2, B (OMe) 2, B (O i Pr) 2, B (OBu
  • the metal-containing group represented by X 1 to X 7 and Y may be coordinated with a ligand such as ethers or amines. There is no limit as long as it does not.
  • Examples of B (OR 23 ) 3 include those represented by the following (I) to (III).
  • chlorine atom, bromine atom, triflate, iodine atom, B (OR 22 ) 2 , or B (OR 23 ) 3 is selected from the viewpoint of ease of post-reaction treatment and raw material procurement. preferable.
  • reaction formula (1) As shown in the reaction of the reaction formula (1), the compound (1) of the present invention is obtained by reacting the compound (10) or the compound (11) with the compound (21) in the presence of a metal catalyst or in the presence of a base and a metal catalyst. And can be synthesized by performing a coupling reaction.
  • a metal catalyst is a palladium catalyst, a nickel catalyst, or a copper catalyst in reaction of Reaction formula (1) at the point which the efficiency etc. of a coupling reaction are excellent.
  • X 1 to X 7 and Y are a hydrogen atom, a chlorine atom, a bromine atom, a triflate, an iodine atom, B (OR 22 ) 2 , or Si (R 21 ) 3 , it is essential to add a base. .
  • phase transfer catalyst can be added in the reaction of the reaction formula (1).
  • the phase transfer catalyst is not particularly limited.
  • 18-crown-6-ether or the like can be used.
  • the amount added is an arbitrary amount within a range that does not significantly inhibit the reaction.
  • the metal catalyst used in the reaction of the reaction formula (1) is not particularly limited, and examples thereof include a palladium catalyst, a copper catalyst, and a nickel catalyst.
  • the palladium catalyst is not particularly limited, and examples thereof include salts of palladium chloride, palladium acetate, palladium trifluoroacetate, palladium nitrate, and the like. Further, ⁇ -allyl palladium chloride dimer, palladium acetylacetonate, bis (dibenzylideneacetone) palladium, tris (dibenzylideneacetone) dipalladium, dichlorobis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) palladium, tri (tert Examples include -butyl) phosphine palladium and dichloro (1,1'-bis (diphenylphosphino) ferrocene) palladium.
  • a palladium complex having a tertiary phosphine as a ligand such as dichlorobis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) palladium, tri (tert-butyl) phosphinepalladium, is preferable in terms of high yield, and is available. In terms of ease, tri (tert-butyl) phosphine palladium is more preferable.
  • the copper catalyst is not particularly limited, and examples thereof include copper chloride, copper bromide, copper iodide, copper oxide, and copper triflate. Among these, copper oxide and copper iodide are preferable from the viewpoint of excellent coupling reaction results, and copper oxide is more preferable from the viewpoint of easy availability.
  • the nickel catalyst is not particularly limited.
  • dichloro [1,1′-bis (diphenylphosphino) ferrocene] nickel Examples of the four include nickel complexes having tertiary phosphine as a ligand) and dichloro (N, N, N ′, N′-tetramethylethylenediamine) nickel.
  • dichloro (dimethoxyethane) nickel, dichloro [1,4-bis (diphenylphosphino) butane] nickel, and dichloro (N, N, N ', N'-tetramethylethylenediamine) nickel have excellent coupling reaction results.
  • dichloro (dimethoxyethane) nickel and dichloro [1,4-bis (diphenylphosphino) butane] nickel are more preferable in terms of easy availability.
  • a tertiary phosphine is added to a palladium salt, nickel salt or complex thereof. Can be adjusted. The adjustment can be performed separately from the reaction and then added to the reaction system, or can be performed in the reaction system.
  • the tertiary phosphine is not particularly limited.
  • triphenylphosphine trimethylphosphine, tributylphosphine, tri (tert-butyl) phosphine, tricyclohexylphosphine, tert-butyldiphenylphosphine, 9,9-dimethyl.
  • (tert-butyl) phosphine or 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl is preferred because it is readily available and yields are good.
  • the addition amount of the tertiary phosphine is 1 mol of palladium salt, nickel salt or complex thereof (in terms of palladium or nickel atom).
  • the amount is preferably 0.1 to 10 times mol, and more preferably 0.3 to 5 times mol in terms of good yield.
  • a ligand separately to said copper catalyst.
  • the ligand added to the copper catalyst is not particularly limited.
  • 2,2′-bipyridine, 1,10-phenanthroline, N, N, N ′, N′-tetramethylethylenediamine, triphenyl Examples include phosphine, 2- (dicyclohexylphosphino) biphenyl, and the like. Of these, 1,10-phenanthroline is preferred because it is readily available and yields are good.
  • the base that can be used is not particularly limited.
  • potassium carbonate, potassium phosphate, or sodium hydroxide is preferable in terms of a good yield.
  • the reaction of reaction formula (1) is preferably carried out in a solvent.
  • the solvent is not particularly limited, and examples thereof include water, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF), toluene, benzene, diethyl ether, 1,4-dioxane, ethanol, butanol or xylene. These may be exemplified, and these may be used in appropriate combination. Of these, a mixed solvent of 1,4-dioxane, xylene, toluene and butanol or a mixed solvent of xylene and butanol is preferable in terms of a good yield.
  • the compound (21) in the reaction formula (1) is not particularly limited, but examples thereof include the compounds represented by the following 4-1 to 4-63.
  • substituents are each independently a fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group, alkoxy group having 3 to 10 carbon atoms, or 1 to 3 carbon atoms.
  • a halogenated methyl group, a halogenated methoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms may be used as a substituent.
  • Y is the same definition as Y in the general formula (21).
  • substituents are each independently a fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group, alkoxy group having 3 to 10 carbon atoms, or 1 to 3 carbon atoms.
  • a halogenated methyl group, a halogenated methoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms may be used as a substituent.
  • Y is the same definition as Y in the general formula (21).
  • Compound (21) is, for example, J. Tsuji, "Palladium Reagents and Catalysts", John Wiley & Sons, 2004, Journal of Organic Chemistry, 60, 7508-7510, 1995, Journal 16: Journal of Japan. 10, 941-944, 2008, or Chemistry of Materials, 20, 595-15953, 2008.
  • any hydrogen atom in compound (21) may be substituted with a deuterium atom.
  • the compound (10) or (11) is reacted with the compound (21) in the presence or absence of a base in the presence of a metal catalyst to produce the compound (1) of the present invention.
  • the target product can be obtained in good yield.
  • the amount of the metal catalyst used in the reaction formula (1) is not particularly limited as long as it is a so-called catalyst amount, but is 0.1% with respect to 1 mol of the compound (10) or (11) in terms of good yield. It is preferred that the amount be 0.01 mol (converted to metal atoms).
  • the amount of the base used is not particularly limited, but it is preferably 0.5 to 10 times by mole, and 1 to 4 times by mole in terms of good yield, relative to 1 mole of compound (21). Is more preferable.
  • the compound (10) and the compound (11) industrially supply a compound such as the compound (1) that is remarkably excellent in low driving voltage property, high light emission efficiency, and long life of the organic electroluminescence device. Therefore, it is an excellent material and is very valuable industrially.
  • reaction formulas (2), (3) and (4) will be described.
  • the reactions of the reaction formulas (2), (3) and (4) can be carried out by subjecting the compounds described in the respective reaction formulas to a ring condensation reaction in the presence of a base or an acid, respectively.
  • the base that can be used in the reactions of the reaction formulas (2), (3) and (4) is not particularly limited, and examples thereof include potassium tert-butoxide, sodium hydroxide, potassium hydroxide and sodium carbonate.
  • potassium tert-butoxide is preferred because of its good yield.
  • the acid that can be used in the reaction is not particularly limited, and examples thereof include hydrochloric acid, sulfuric acid, carbonic acid, phosphoric acid, acetic acid, benzoic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, and p-toluenesulfone.
  • Examples include acids and various Lewis acids.
  • sulfuric acid is preferred because of its good yield.
  • the reactions of reaction formulas (2), (3) and (4) are preferably carried out in a solvent.
  • the solvent is not particularly limited, and examples thereof include water, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF), toluene, benzene, diethyl ether, 1,4-dioxane, ethanol, butanol or xylene. These may be exemplified, and these may be used in appropriate combination. Of these, THF, DMF, and xylene are preferable in terms of good yield.
  • the amount of the base used is not particularly limited, but is preferably 0.5 to 10-fold mol per mol of the compounds (13), (16) and (19), and the yield is good. More preferably, it is 1.1 to 4.0 moles.
  • reaction formula (2) can be performed in one pot, but can also be performed stepwise as shown in the following reaction formulas (6) and (7).
  • Ar 1 , Ar 2 , R 1 to R 4 , and Z have the same definitions as those in Reaction Formula (2).
  • Compounds (12) to (14) used in the reaction of reaction formula (2) can be produced using a known production method, or commercially available products can be used.
  • the compound (12) is not particularly limited, and examples thereof include the following compounds represented by 5-1 to 5-38.
  • the compound (13) is not particularly limited, and examples thereof include the compounds represented by the following 6-1 to 6-15.
  • the compound (14) is not particularly limited, and examples thereof include the compounds represented by the following 7-1 to 7-39.
  • Reaction formula (2) can be decomposed into reaction formulas (6) and (7). That is, in this reaction, compound (12) is produced by reacting compound (12) with compound (13) in the presence of a base. The compound (22) is reacted with the compound (14) as represented by the reaction formula (7) to obtain the compound (1) of the present invention.
  • the amount of the base to be used is not particularly limited, but is preferably 0.5 to 10 times mol per mol of the compound (13), and 1.1 to 4.0 times in terms of good yield. More preferably, it is a mole.
  • the molar ratio of the compound (12) and the compound (13) used in the reaction formula (6) is not particularly limited, but the compound (12) is 0.1 to 10-fold mol per mol of the compound (13).
  • the compound (22) In terms of a good yield of the compound (22), it is preferably 1.1 to 2.0 moles. There is no particular limitation on the molar ratio of the compound (22) and the compound (14) used in the reaction formula (7), but the compound (14) is 0.1 to 20-fold mol with respect to 1 mol of the compound (22). In view of a good yield of the benzothienopyrimidine compound (1) of the present invention, 1.0 to 5 times is preferable.
  • reaction formula (12) can be performed in one pot, but can also be performed stepwise as shown in the following reaction formulas (16) and (17).
  • Ar 1 , Ar 2 , R 1 to R 4 , and Z have the same definitions as those in Reaction Formula (2).
  • Compounds (12) to (14) used in the reaction of reaction formula (2) can be produced using a known production method, or commercially available products can be used.
  • the compound (25) is not particularly limited, and examples thereof include the compounds represented by the following 25-1 to 25-38.
  • the compound (26) is not particularly limited, and examples thereof include the compounds represented by the following 26-1 to 26-15.
  • Compound (14) is not particularly limited, and examples thereof include the same compounds as those in Reaction Formula (2).
  • Reaction formula (2) can be decomposed into reaction formulas (16) and (17). That is, in this reaction, compound (22) is produced by reacting compound (25) with compound (26) in the presence of a base.
  • Compound (1) of the present invention is obtained by reacting Compound (22) with Compound (14) as represented by Reaction Formula (17).
  • the amount of the base used is not particularly limited, but it is preferably 0.5 to 10 times by mole with respect to 1 mole of compound (26), and 1.1 to 4.0 times in terms of good yield. More preferably, it is a mole.
  • the molar ratio of the compound (25) and the compound (26) used in the reaction formula (16) is not particularly limited, but the compound (25) is 0.1 to 10-fold mol per mol of the compound (26).
  • the compound (22) In terms of a good yield of the compound (22), it is preferably 1.1 to 2.0 moles. There is no particular limitation on the molar ratio of the compound (22) and the compound (14) used in the reaction formula (17), but the compound (14) is 0.1 to 20-fold mol with respect to 1 mol of the compound (22). In view of a good yield of the benzothienopyrimidine compound (1) of the present invention, 1.0 to 5 times is preferable.
  • reaction formula (3) can be carried out in one pot, but can also be carried out stepwise as shown in the following reaction formulas (8) and (9).
  • Ar 11 , Ar 12 , X 1 to X 6 , and Z have the same definitions as in reaction formula (3).
  • Compounds (15) to (17) can be produced using known methods, or commercially available products can also be used.
  • the compound (15) is not particularly limited, and examples thereof include the compounds represented by the following 8-1 to 8-10.
  • the compound (16) is not particularly limited, and examples thereof include the compounds represented by the following 9-1 to 9-5.
  • the compound (17) is not particularly limited, and examples thereof include the compounds represented by the following 10-1 to 10-12.
  • Reaction formula (3) is a method for producing the compound (10) of the present invention by reacting the compound (15), the compound (16) and the compound (17) in the presence of a base or an acid.
  • Reaction formula (3) can be decomposed into reaction formulas (8) and (9). That is, in this reaction, compound (23) is produced by reacting compound (15) with compound (16) in the presence of a base.
  • the compound (10) of the present invention is obtained by reacting the compound (23) with the compound (17) as represented by the reaction formula (9). Although the compound (23) may be isolated, it may be used for the reaction (9) which is the next step in one pot without isolation.
  • the amount of the base to be used is not particularly limited, but is preferably 0.5 to 10 times by mole with respect to 1 mole of the compound (16), and 1.1 to 4.0 times in terms of good yield. More preferably, it is a mole.
  • the molar ratio of the compound (15) and the compound (16) used in the reaction formula (8) is not particularly limited, but the compound (15) is 0.1 to 10-fold mol per mol of the compound (16). In terms of good yield of compound (23), it is preferably 1.1 to 2.0 moles. There is no particular limitation on the molar ratio of the compound (23) and the compound (17) used in the reaction formula (9), but the compound (17) is 0.1 to 20-fold mol with respect to 1 mol of the compound (23). In view of good yield of the compound (10) of the present invention, 1.0 to 5 times is preferable.
  • Reaction formula (13) can be performed in one pot, but can also be performed stepwise as shown in reaction formulas (18) and (19) below.
  • reaction formulas (18) and (19) In the general formula, Ar 11 , Ar 12 , X 1 to X 6 , and Z have the same definitions as in reaction formula (3).
  • Compounds (27) to (28) can be produced using known methods, or commercially available products can also be used.
  • the compound (27) is not particularly limited, and examples thereof include the compounds represented by the following 27-1 to 27-10.
  • the compound (28) is not particularly limited, and examples thereof include the compounds represented by the following 28-1 to 28-5.
  • Compound (17) is not particularly limited, and examples thereof include the same compounds as those in Reaction Formula (3).
  • Reaction formula (13) is a method for producing compound (10) of the present invention by reacting compound (27), compound (28) and compound (17) in the presence of a base or acid.
  • Reaction formula (13) can be decomposed into reaction formulas (18) and (19). That is, in this reaction, compound (23) is produced by reacting compound (27) with compound (28) in the presence of a base.
  • the compound (10) of the present invention is obtained by reacting the compound (23) with the compound (17) as represented by the reaction formula (9). Although the compound (23) may be isolated, it may be used for the reaction (9) which is the next step in one pot without isolation.
  • the amount of the base to be used is not particularly limited, but is preferably 0.5 to 10 times by mole with respect to 1 mole of compound (28), and 1.1 to 4.0 times in terms of good yield. More preferably, it is a mole.
  • the molar ratio of the compound (27) and the compound (28) used in the reaction formula (18) is not particularly limited, but the compound (27) is 0.1 to 10 moles per 1 mole of the compound (28). In terms of good yield of compound (23), it is preferably 1.1 to 2.0 moles.
  • the molar ratio of the compound (23) and the compound (17) used in the reaction formula (19) is not particularly limited, but the compound (17) is 0.1 to 20-fold mol with respect to 1 mol of the compound (23). In view of good yield of the compound (10) of the present invention, 1.0 to 5 times is preferable.
  • reaction formula (4) will be described.
  • the reaction formula (4) can be performed in one pot, but can also be performed stepwise as shown in the following reaction formulas (10) and (11).
  • Ar 12 , X 1 to X 4 , X 6 , X 7 , Z, and R 5 have the same definitions as in Reaction Formula (4).
  • Reaction formula (4) is a method for producing compound (20) by reacting compound (18), compound (19) and compound (17) in the presence of a base or acid.
  • the compound (18) is not particularly limited, and examples thereof include compounds represented by methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, benzyl acetate, phenyl acetate, and naphthyl acetate. can do.
  • Reaction formula (4) can be decomposed into reaction formulas (10) and (11). That is, in this reaction, Compound (24) is produced by reacting Compound (18) with Compound (19) in the presence of a base.
  • the compound (20) of the present invention is obtained by reacting the compound (24) with the compound (17) as represented by the reaction formula (11).
  • the compound (24) may be isolated, it may be used for the reaction (11) which is the next step in one pot without isolation.
  • the amount of the base to be used is not particularly limited, but is preferably 0.5 to 10 times by mole with respect to 1 mole of compound (18), and 1.1 to 4.0 times in terms of good yield. More preferably, it is a mole.
  • the molar ratio of the compound (18) and the compound (19) used in the reaction formula (10) is not particularly limited, but the compound (18) is 0.1 to 10-fold mol per mol of the compound (19). In terms of good yield of compound (24), it is preferably 1.1 to 2.0 moles.
  • the molar ratio of the compound (24) and the compound (17) used in the reaction formula (11) is not particularly limited, but the compound (17) is 0.1 to 20-fold mol with respect to 1 mol of the compound (24). In view of good yield of the compound (20), 1.0 to 5 times is preferable.
  • Reaction formula (5) is a method for producing compound (11) by reacting compound (20) with a halogenating agent or sulfonylating agent in the presence or absence of a base.
  • the halogenating agent is not particularly limited, and examples thereof include thienyl chloride, thienyl bromide, thienyl iodide, phosphoryl chloride, phosphoryl bromide, and phosphoryl iodide.
  • the sulfonylating agent is not particularly limited, and examples thereof include trifluoromethanesulfonic acid anhydride, toluenesulfonic acid anhydride, toluenesulfonic acid chloride, methanesulfonic acid chloride, and nitrobenzenesulfonic acid chloride.
  • a base used by Reaction formula (5) The same thing as the base shown by Reaction formula (2), (3) and (4) can be used.
  • the amount of the reactant is preferably 0.1 to 20 moles per mole of the compound (20). From the viewpoint of good yield of the benzothienopyrimidine compound (11) of the present invention, 1.0 to 5 times is preferable.
  • reaction formula (14) will be described.
  • the reaction formula (14) can be performed in one pot, but can also be performed stepwise as shown in the following reaction formulas (20) and (11).
  • Ar 12 , X 1 to X 4 , X 6 , X 7 , Z, and R 5 have the same definitions as in Reaction Formula (4).
  • Reaction formula (14) is a method for producing compound (20) by reacting compound (29), compound (28) and compound (17) in the presence of a base or acid. Although it does not specifically limit as compound (29), For example, methyl thioglycolate, ethyl thioglycolate, propyl thioglycolate, butyl thioglycolate, pentyl thioglycolate, hexyl thioglycolate, phenyl thioglycolate And compounds represented by benzylthioglycolate and naphthylthioglycolate. Reaction formula (14) can be decomposed into reaction formulas (20) and (11).
  • compound (29) reacts with compound (28) in the presence of a base to produce compound (24).
  • the compound (20) of the present invention is obtained by reacting the compound (24) with the compound (17) as represented by the reaction formula (11). Although the compound (24) may be isolated, it may be used for the reaction (11) which is the next step in one pot without isolation.
  • the amount of the base to be used is not particularly limited, but is preferably 0.5 to 10 times by mole with respect to 1 mole of compound (28), and 1.1 to 4.0 times in terms of good yield. More preferably, it is a mole.
  • the molar ratio of the compound (29) and the compound (28) used in the reaction formula (20) is not particularly limited.
  • the compound (24) In terms of good yield of compound (24), it is preferably 1.1 to 2.0 moles.
  • the molar ratio of the compound (24) and the compound (17) used in the reaction formula (11) is not particularly limited, but the compound (17) is 0.1 to 20-fold mol with respect to 1 mol of the compound (24). In view of good yield of the compound (20), 1.0 to 5 times is preferable.
  • the purity of the compounds (1), (10) and (11) of the present invention can be increased by carrying out treatments such as reprecipitation, concentration, filtration and purification after the completion of each reaction.
  • purification may be performed by recrystallization, silica gel column chromatography, sublimation, or the like, if necessary.
  • the present invention is an organic electroluminescence device containing a benzothienopyrimidine compound represented by the general formula (1), and the benzothienopyrimidine compound is preferably used for an electron transport layer, an electron injection layer, or a light emitting layer.
  • the benzothienopyrimidine compound represented by the general formula (1) can be preferably used as an electron transporting material (electron transporting material, electron injecting material, etc.) of an organic electroluminescence device.
  • electron transporting material electron transporting material, electron injecting material, etc.
  • anode for the anode, the hole injection layer, the hole transport layer, the electron blocking layer, the light emitting layer, the light emitting layer dopant, the light emitting layer host, the cathode, and the like used in combination, generally known materials are selected by those skilled in the art. Can be used.
  • the configuration of the organic electroluminescent element may be any conventionally known one, and is not particularly limited.
  • the film-forming by a vacuum evaporation method can be mentioned as a preferable example.
  • Film formation by the vacuum evaporation method can be performed by using a general-purpose vacuum evaporation apparatus.
  • the vacuum degree of the vacuum chamber when forming a film by the vacuum evaporation method is such that the production tact time for producing the organic electroluminescent element is short and the production cost is superior, so that commonly used diffusion pumps, turbo molecular pumps, cryogenic pumps are used.
  • the thin film for organic electroluminescent elements which consists of a compound (1) can also be manufactured by the solution coating method.
  • the compound (1) is dissolved in an organic solvent such as chloroform, dichloromethane, 1,2-dichloroethane, chlorobenzene, toluene, ethyl acetate or tetrahydrofuran, and a spin coating method, ink jet method, casting method or Film formation by a dip method or the like is also possible.
  • the benzothienopyrimidine compound represented by the general formula (1) of the present invention has high solubility in chloroform, dichloromethane, 1,2-dichloroethane, chlorobenzene, toluene, ethyl acetate, tetrahydrofuran, etc.
  • a general-purpose apparatus was used. Film formation by a spin coat method, an ink jet method, a cast method, a dip method or the like is also possible.
  • a typical structure of the organic electroluminescence device that can obtain the effects of the present invention includes a substrate, an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode.
  • the anode and cathode of the organic electroluminescent element are connected to a power source through an electrical conductor.
  • the organic electroluminescent device operates by applying a potential between the anode and the cathode. Holes are injected into the organic electroluminescent device from the anode, and electrons are injected into the organic electroluminescent device at the cathode.
  • the organic electroluminescent device is typically placed on a substrate, and the anode or cathode can be in contact with the substrate.
  • the electrode in contact with the substrate is called the lower electrode for convenience.
  • the lower electrode is an anode, but the organic electroluminescence device of the present invention is not limited to such a form.
  • the substrate may be light transmissive or opaque depending on the intended emission direction. The light transmission characteristics can be confirmed by electroluminescence emission through the substrate. Generally, transparent glass or plastic is used as the substrate.
  • the substrate may be a composite structure including multiple material layers.
  • the anode When the electroluminescent emission is confirmed through the anode, the anode is formed by passing or substantially passing through the emission.
  • Common transparent anode (anode) materials used in the present invention include indium-tin oxide (ITO), indium-zinc oxide (IZO), or tin oxide.
  • ITO indium-tin oxide
  • IZO indium-zinc oxide
  • tin oxide other metal oxides such as aluminum or indium-doped tin oxide, magnesium-indium oxide, or nickel-tungsten oxide are also preferably used.
  • metal nitrides such as gallium nitride, metal selenides such as zinc selenide, or metal sulfides such as zinc sulfide can be used as the anode.
  • the anode can be modified with plasma deposited fluorocarbon.
  • the transmission characteristics of the anode are not important, and any conductive material that is transparent, opaque or reflective can be used.
  • Examples of conductors for this application include gold, iridium, molybdenum, palladium, platinum and the like.
  • the hole injection layer can be provided between the anode and the hole transport layer.
  • the material of the hole injection layer is useful for improving the film formation characteristics of an organic material layer such as a hole transport layer and a hole injection layer, and facilitating injection of holes into the hole transport layer.
  • Examples of materials suitable for use in the hole injection layer include porphyrin compounds, plasma deposited fluorocarbon polymers, and amines having aromatic rings such as biphenyl groups, carbazole groups, such as m-MTDATA (4,4 ' , 4 ′′ -tris [(3-methylphenyl) phenylamino] triphenylamine), 2T-NATA (4,4 ′, 4 ′′ -tris [(N-naphthalen-2-yl) -N-phenylamino ] Triphenylamine), triphenylamine, tolylamine, tolyldiphenylamine, N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine, N, N, N′N′-tetrakis (4-methylphenyl) -1,1′-biphenyl-4,4′-diamine, MeO-TPD N, N, N′
  • the hole transport layer of the organic electroluminescence device preferably contains one or more hole transport compounds (hole transport materials) such as aromatic tertiary amines.
  • Aromatic tertiary amines are compounds that contain one or more trivalent nitrogen atoms that are bonded only to carbon atoms, and one or more of these carbon atoms have an aromatic ring. Forming.
  • the aromatic tertiary amine can be an arylamine, such as a monoarylamine, diarylamine, triarylamine, or a polymeric arylamine.
  • a benzothienopyrimidine compound represented by the general formula (1) can be used as a hole transport material, and an aromatic tertiary amine having one or more amino groups can be used as another material. Can do. Furthermore, a polymeric hole transport material can be used. For example, poly (N-vinylcarbazole) (PVK), polythiophene, polypyrrole, polyaniline and the like can be used.
  • PVK poly (N-vinylcarbazole)
  • PVK polythiophene
  • polypyrrole polyaniline and the like
  • NPD N, N′-bis (naphthalen-1-yl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine
  • ⁇ -NPD N, N '-Di (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine
  • TPBi 1,3,5-tris (1-phenyl-1H-benzimidazole) 2-yl) benzene
  • TPD N, N′-bis (3-methylphenyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine
  • a layer containing methane (F 4 -TCNQ) or the like may be provided, and the hole transport layer may be doped with these compounds.
  • the light emitting layer of the organic electroluminescent element contains a phosphorescent material or a fluorescent material. In this case, light emission occurs as a result of recombination of electron-hole pairs in this region.
  • the light-emitting layer may be formed from a single material that includes both small molecules and polymers, but more commonly is formed from a host material doped with a guest compound, where light emission is primarily from a dopant, Any color can be emitted.
  • a benzothienopyrimidine compound represented by the general formula (1) can be used as the host material of the light emitting layer.
  • examples of other materials include a biphenyl group, a fluorenyl group, a triphenylsilyl group, a carbazole group, Examples thereof include compounds having a pyrenyl group or an anthranyl group, and these materials can be used alone or in combination with a benzothienopyrimidine compound represented by the general formula (1).
  • DPVBi 4,4′-bis (2,2-diphenylvinyl) -1,1′-biphenyl
  • BCzVBi 4,4′-bis (9-ethyl-3-carbazovinylene) 1,1 '-Biphenyl
  • TBADN (2-tert-butyl-9,10-di (2-naphthyl) anthracene
  • ADN (9,10-di (2-naphthyl) anthracene)
  • CBP 4,4'-bis ( Carbazol-9-yl) biphenyl
  • CDBP 4,4′-bis (carbazol-9-yl) -2,2′-dimethylbiphenyl
  • the host material in the light emitting layer may be an electron transport material as defined below, a hole transport material as defined above, another material that supports hole-electron recombination, or a combination of these materials
  • fluorescent dopants include pyrene, anthracene, tetracene, xanthene, perylene, rubrene, coumarin, rhodamine and quinacridone, dicyanomethylenepyran compounds, thiopyran compounds, polymethine compounds, pyrylium or thiapyrylium compounds, fluorene derivatives, perifanthene derivatives, indeno Examples include perylene derivatives, bis (azinyl) amine boron compounds, bis (azinyl) methane compounds, carbostyryl compounds, and compounds that exhibit thermally activated delayed fluorescence.
  • Examples of useful phosphorescent dopants include organometallic complexes of transition metals such as iridium, platinum, palladium, osmium.
  • Examples of dopants include Alq 3 (tris (8-hydroxyquinoline) aluminum)), DPAVBi (4,4′-bis [4- (di-para-tolylamino) styryl] biphenyl), perylene, Ir (PPy) 3 ( And tris (2-phenylpyridine) iridium (III), FlrPic (bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III)), and the like.
  • a benzothienopyrimidine compound represented by the general formula (1) of the present invention can be used as the thin film forming material used to form the electron transport layer of the organic electroluminescence device of the present invention.
  • the electron transporting layer may contain other electron transporting materials.
  • other electron transporting materials include alkali metal complexes, alkaline earth metal complexes, and earth metal complexes. Desirable alkali metal complexes, alkaline earth metal complexes, or earth metal complexes include, for example, 8-hydroxyquinolinate lithium (Liq), bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinate).
  • a hole blocking layer may be provided between the light emitting layer and the electron transport layer for the purpose of improving carrier balance.
  • Preferred compounds for the hole blocking layer include BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen (4,7-diphenyl-1,10-phenanthroline), BAlq (bis (2 -Methyl-8-quinolinolato) -4- (phenylphenolato) aluminum), bis (10-hydroxybenzo [h] quinolinato) beryllium) and the like.
  • an electron injection layer may be provided for the purpose of improving electron injection properties and improving device characteristics (for example, light emission efficiency, low voltage driving, or high durability).
  • Preferred compounds for the electron injection layer include benzothienopyrimidine compounds represented by the general formula (1), fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, and perylenetetracarboxylic acid. Examples include acid, fluorenylidenemethane, anthraquinodimethane, and anthrone.
  • the above-mentioned metal complexes alkali metal oxides, alkaline earth oxides, rare earth oxides, alkali metal halides, alkaline earth halides, rare earth halides, SiO x , AlO x , SiN x , SiON, AlON, GeO X, LiO X, LiON, TiO X, TiON, TaO X, TaON, TaN X, various oxides of C, etc. may be used an inorganic compound such as a nitride, and oxynitride.
  • the cathode used in the present invention can be formed from almost any conductive material.
  • Desirable cathode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, indium , Lithium / aluminum mixtures, rare earth metals and the like.
  • compound B-1 (1.36 g), 4- (2-pyridyl) phenylboronic acid (1.43 g), palladium acetate (13.5 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′ , 6'-Triisopropylbiphenyl (85.8 mg) was added to toluene (30 mL), and 3M aqueous potassium carbonate solution (4.8 mL) and 1-butanol (4.8 mL) were added, followed by heating for 2.5 hours. Refluxed. The reaction mixture was allowed to cool to room temperature, and water and methanol were added.
  • compound B-1 (1.12 g), 9-phenanthreneboronic acid (581 mg), and tetrakis (triphenylphosphine) palladium (57.8 mg) were added to THF (24 mL), and 4N-sodium hydroxide was added. Aqueous solution (1.9 mL) was added and then heated to reflux for 16 hours. The reaction mixture was allowed to cool to room temperature, and water was added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a gray solid.
  • compound B-2 (1.14 g), 4- (2-pyridyl) phenylboronic acid (497 mg), palladium acetate (9.4 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6 '-Triisopropylbiphenyl (59.5 mg) was added to toluene (21 mL), 3M aqueous potassium carbonate solution (2.1 mL) and 1-butanol (2.1 mL) were added, and the mixture was heated to reflux for 3 hours. After allowing the reaction mixture to cool, water and methanol were added.
  • compound B-1 (2.50 g), 4- (2-pyridyl) phenylboronic acid (1.32 g), and tetrakis (triphenylphosphine) palladium (128 mg) were added to THF (55 mL), and 3M aqueous potassium carbonate solution (4.4 mL) was added, and then the mixture was heated to reflux for 23 hours. The reaction mixture was allowed to cool to room temperature, and water was added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a gray solid.
  • compound B-3 (1.32 g), 1-pyreneboronic acid (738 mg), palladium acetate (11.2 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl ( 47.7 mg) was added to THF (50 mL), 3M-potassium carbonate aqueous solution (5.0 mL) was added, and the mixture was heated to reflux for 2 hours. The reaction mixture was allowed to cool to room temperature, and water was added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a gray solid.
  • 1 H-NMR (CDCl 3 ), ⁇ (ppm): 7.30-7.34 (m, 1H), 7.57-7.65 (m, 4H), 7.70 (dd, J 8.
  • compound B-3 (1.32 g), 3-fluorantheneboronic acid (738 mg), palladium acetate (11.2 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-tri Isopropyl biphenyl (47.7 mg) was added to THF (50 mL), 3M-potassium carbonate aqueous solution (5.0 mL) was further added, and the mixture was heated to reflux for 6 hours. The reaction mixture was allowed to cool to room temperature, and water was added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a gray solid.
  • compound B-4 (1.44 g), 4- (2-pyridyl) phenylboronic acid (640 mg), palladium acetate (12.0 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6 '-Triisopropylbiphenyl (76.6 mg) was added to THF (27 mL), 3M-potassium carbonate aqueous solution (2.1 mL) was further added, and the mixture was heated to reflux for 17 hours. The reaction mixture was allowed to cool to room temperature, and water was added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a gray solid.
  • compound B-5 (1.71 g), 2-bromopyridine (493 mg), copper (I) oxide (18.6 mg), 1,10-phenanthroline (46.9 mg), potassium carbonate (719 mg), And 18-crown-6-ether (137 mg) was added to xylene and heated to reflux for 17 hours.
  • the reaction product was allowed to cool to room temperature, and water and methanol were added.
  • the precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a brown solid.
  • compound B-6 (1.75 g), 4- (2-pyridyl) phenylboronic acid (1.85 g), palladium acetate (17.4 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′ , 6'-Triisopropylbiphenyl (73.8 mg) was added to THF (39 mL), 3M aqueous potassium carbonate solution (6.2 mL) was added thereto, and then the mixture was heated to reflux for 16 hours. After allowing the reaction mixture to cool, water and methanol were added.
  • compound B-9 (496 mg), 9-phenanthreneboronic acid (533 mg), and tetrakis (triphenylphosphine) palladium (23.1 mg) were added to THF (20 mL), and 3M aqueous potassium carbonate solution was added thereto. (1.6 mL) was added and then heated to reflux for 19 hours. The reaction mixture was allowed to cool to room temperature, and water and methanol were added.
  • compound B-3 (470 mg), bispinacolatodiboron (295 mg), tris (dibenzylideneacetone) dipalladium (16.0 mg), 2-dicyclohexylphosphino-2 ', 4', 6'- Triisopropylbiphenyl (17.0 mg) and potassium acetate (175 mg) were suspended in 1,4-dioxane (30.0 mL), and the mixture was heated and stirred at 80 ° C. for 16 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration.
  • compound B-13 (240 mg), 5-bromo-2,2′-bipyridine (110 mg), palladium acetate (1.8 mg) and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-tri Isopropylbiphenyl (7.4 mg) was suspended in 1,4-dioxane (13.0 mL), 3M-potassium carbonate aqueous solution (0.26 mL) was further added, and the mixture was heated and stirred at 100 ° C. for 24 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration.
  • compound B-14 (700 mg), 4- (2-pyridyl) phenylboronic acid (581 mg), palladium acetate (18.0 mg) and 2-dicyclohexylphosphino-2 ', 4', 6'-tri Isopropyl biphenyl (76.0 mg) was suspended in 1,4-dioxane (44.0 mL), 3M-potassium carbonate aqueous solution (0.89 mL) was further added, and the mixture was heated and stirred at 100 ° C. for 5 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration.
  • compound B-15 (500 mg), 4- (2-pyridyl) phenylboronic acid (436 mg), palladium acetate (11.0 mg) and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-tri Isopropylbiphenyl (47.5 mg) was suspended in 1,4-dioxane (33.0 mL), 3M-potassium carbonate aqueous solution (0.66 mL) was further added, and the mixture was heated and stirred at 100 ° C. for 16 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration.
  • compound B-16 (1.01 g), 4- (2-pyridyl) phenylboronic acid (876 mg), palladium acetate (9.0 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6 '-Triisopropylbiphenyl (57.2 mg) was suspended in THF (40.0 mL), 3M-potassium carbonate aqueous solution (2.9 mL) was further added, and the mixture was heated to reflux for 60 hours. The reaction mixture was allowed to cool, water and methanol were added, and the precipitated solid was collected by filtration.
  • compound B-2 (1.50 g), 4- (3-pyridyl) phenylboronic acid (652 mg), palladium acetate (12.3 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6 '-Triisopropylbiphenyl (78.1 mg) was suspended in 1,4-dioxane (55.0 mL), 3M-potassium carbonate aqueous solution (1.82 mL) was further added, and the mixture was heated and stirred at 90 ° C. for 24 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration.
  • compound B-2 (10.0 g), bis (binacolato) diboron (5.95 g), tris (dibenzylideneacetone) bispalladium (286 mg), 2-dicyclohexylphosphino-2 ', 4', 6 '-Triisopropylbiphenyl (297 mg) and potassium acetate (3.06 g) were suspended in 1,4-dioxane (310 mL), and the mixture was heated and stirred at 80 ° C. for 24 hours. The reaction mixture was allowed to cool, and the solvent was evaporated under reduced pressure.
  • compound B-17 (1.75 g), 3-chloro-6-phenylpyridine (622 mg), palladium acetate (12.3 mg), and 2-dicyclohexylphosphino-2 ', 4', 6'- Triisopropylbiphenyl (78.1 mg) was suspended in 1,4-dioxane (55.0 mL), 3M-potassium carbonate aqueous solution (1.82 mL) was further added, and the mixture was heated and stirred at 95 ° C. for 24 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration.
  • compound B-17 (1.75 g), 5-bromo-2,2′-bipyridine (771 mg), and tetrakis (triphenylphosphino) palladium (63.0 mg) were added to 1,4-dioxane ( (55.0 mL), 3M aqueous potassium carbonate solution (1.82 mL) was added, and the mixture was stirred with heating at 95 ° C. for 18 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration.
  • compound B-2 (1.50 g), 4-isoquinolylboronic acid (567 mg), palladium acetate (12.3 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-tri Isopropyl biphenyl (78.1 mg) was suspended in 1,4-dioxane (55.0 mL), 3M-potassium carbonate aqueous solution (1.8 mL) was further added, and the mixture was stirred with heating at 90 ° C. for 20 hr. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration.
  • compound B-2 (1.50 g), 8-quinolylboronic acid (567 mg), palladium acetate (12.3 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl ( 78.1 mg) was suspended in 1,4-dioxane (55.0 mL), 3M aqueous potassium carbonate solution (1.82 mL) was further added, and the mixture was stirred with heating at 90 ° C. for 20 hr. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration.
  • compound B-1 (1.81 g), phenylboronic acid (1.17 g), palladium acetate (18.0 mg) and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl ( 114 mg) was suspended in THF (40 mL), 3M aqueous potassium carbonate solution (6.4 mL) was added, and the mixture was heated to reflux for 26 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration.
  • compound B-10 (1.23 g), 4- (4,6-diphenylpyridin-2-yl) phenylboronic acid (1.15 g), palladium acetate (12.3 mg), and 2-dicyclohexylphosphine Fino-2 ′, 4 ′, 6′-triisopropylbiphenyl (78.1 mg) was suspended in 1,4-dioxane (55.0 mL), and further 3M-potassium carbonate aqueous solution (1.82 mL) was added. The mixture was stirred at 7 ° C. for 7 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration.
  • compound B-10 (1.23 g), 4- (2,6-diphenylpyridin-4-yl) phenylboronic acid (1.15 g), palladium acetate (12.3 mg), and 2-dicyclohexylphosphine Fino-2 ′, 4 ′, 6′-triisopropylbiphenyl (78.1 mg) was suspended in 1,4-dioxane (55.0 mL), and further 3M-potassium carbonate aqueous solution (1.82 mL) was added. The mixture was stirred at 7 ° C. for 7 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration.
  • compound B-17 (1.75 g), 2-bromopyridine (518 mg), and tetrakis (triphenylphosphino) palladium (63.0 mg) were suspended in 1,4-dioxane (55.0 mL). Further, 3M-potassium carbonate aqueous solution (1.82 mL) was added, and the mixture was heated and stirred at 95 ° C. for 123 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration.
  • compound B-19 (1.59 g), 4- (2-pyridyl) phenylboronic acid (1.43 g), and tetrakis (triphenylphosphino) palladium (69.3 mg) were added to THF (60 mL). The suspension was suspended, 3M aqueous potassium carbonate solution (4.8 mL) was added, and the mixture was heated to reflux for 24 hours. The reaction mixture was allowed to cool to room temperature, and water and methanol were added.
  • the precipitated solid is purified by column chromatography (developing solvent: chloroform), whereby 6-chloro-2- [4,4 ′′ -bis (2-pyridyl)-[1,1 ′: 3 ′, 1 ′ '] -Terphenyl-5'-yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (B-20) yellow powder (yield 1.57 g, 77% yield), and 6- Chloro-2- [5-bromo-4 '-(2-pyridyl) biphenyl-3-yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (B-21) yellow powder (Yield 0 .153 g, yield 8.5%).
  • compound B-22 (800 mg), 4- (2-pyridyl) phenylboronic acid (860 mg), palladium acetate (8.8 mg), and 2-dicyclohexylphosphino-2 ', 4', 6'- Triisopropylbiphenyl (56.0 mg) was suspended in 1,4-dioxane (40.0 mL), 3M-potassium carbonate aqueous solution (2.6 mL) was further added, and the mixture was heated and stirred at 90 ° C. for 23 hours. After allowing to cool, water was added, and the precipitated solid was collected by filtration.
  • compound B-1 (904 mg), carbazole (702 mg), palladium acetate (9.0 mg), potassium carbonate (1.16 g), and 18-crown-6-ether (106 mg) were added to xylene (20 mL). The suspension was further added, and a 1M-toluene solution (120 ⁇ L) of tri (tert-butyl) phosphine was added, and the mixture was heated to reflux for 5 hours.
  • compound B-17 (1.75 g), 1-chloroisoquinoline (537 mg), palladium acetate (12.3 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl ( 78.1 mg) was suspended in 1,4-dioxane (55.0 mL), 3M-potassium carbonate aqueous solution (1.82 mL) was further added, and the mixture was heated and stirred at 90 ° C. for 5 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration.
  • compound B-17 (1.75 g), 2-chloro-4,6-diphenylpyridine (872 mg), palladium acetate (12.3 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6 '-Triisopropylbiphenyl (78.9 mg) was suspended in 1,4-dioxane (55.0 mL), 3M aqueous potassium carbonate solution (1.82 mL) was further added, and the mixture was stirred with heating at 85 ° C. for 16 hr. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration.
  • compound B-24 (1.34 g), 4- (2-pyridyl) phenylboronic acid (1.24 g), palladium acetate (12.0 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′ , 6'-Triisopropylbiphenyl (76.3 mg) was suspended in THF (53.0 mL), 3M-potassium carbonate aqueous solution (5.3 mL) was added, and the mixture was heated to reflux for 22 hours.
  • compound B-17 (1.28 g), 8- (4-chlorophenyl) quinoline (527 mg), palladium acetate (9.0 mg), and 2-dicyclohexylphosphino-2 ', 4', 6'- Triisopropylbiphenyl (57.2 mg) was suspended in THF (22.0 mL), 3M-potassium carbonate aqueous solution (1.33 mL) was further added, and the mixture was heated to reflux for 17 hours. The reaction mixture was allowed to cool, water and methanol were added, and the precipitated solid was collected by filtration.
  • Example 1 Compound C-1 yellow powder (1.58 g, purity 99.7% before sublimation) was sublimated by heating to a vaporization section temperature of 330 ° C. and a collection section temperature of 280 ° C. under a vacuum of 1.0 ⁇ 10 ⁇ 3 Pa. Purification gave white powder of compound C-1 (yield 1.20 g, yield 76%, purity 99.8%).
  • Comparative Purification Example 1 Compound ETL-3 gray powder (1.54 g, purity 99.7% before sublimation) was sublimated by heating to a vaporization section temperature of 240 ° C. and a collection section temperature of 220 ° C. under a vacuum of 5.0 ⁇ 10 ⁇ 4 Pa. Purification gave white powder of compound ETL-3 (yield 1.20 g, yield 78%, purity 99.4%).
  • Evaluation Example 1 As the substrate, a glass substrate with an ITO transparent electrode in which an indium-tin oxide (ITO) film having a width of 2 mm was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface-treated by oxygen plasma cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 as shown in FIG. First, the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 ⁇ 10 ⁇ 4 Pa.
  • ITO indium-tin oxide
  • a hole injection layer 2 a first hole transport layer 3, a second hole transport layer 4, a light emitting layer 5, an electron transport layer are formed as an organic compound layer on the glass substrate with an ITO transparent electrode shown by 1 in FIG. 6 and the electron injection layer 7 were sequentially formed, and then the cathode layer 8 was formed.
  • all the materials which comprise each layer of an organic electroluminescent element were vacuum-deposited by the resistance heating system.
  • HTL-1 was vacuum-deposited with a film thickness of 65 nm at a film formation rate of 0.15 nm / second.
  • HAT-CN was vacuum-deposited at a film thickness of 0.025 nm / second to a film thickness of 5 nm.
  • HTL-2 was vacuum-deposited with a film thickness of 10 nm at a film formation rate of 0.15 nm / second.
  • the electron transport layer 6 the compound C-1 synthesized in Example 2 of the present invention was vacuum-deposited with a film thickness of 30 nm at a film formation rate of 0.15 nm / second.
  • Liq was vacuum-deposited with a film thickness of 0.005 nm / second and a film thickness of 0.5 nm.
  • a metal mask was disposed so as to be orthogonal to the ITO stripe, and the cathode layer 8 was formed.
  • the cathode layer 8 is formed by vacuum-depositing magnesium / silver (weight ratio 80/20) and silver in this order at film thicknesses of 80 nm and 20 nm at a film formation rate of 0.5 nm / second and 0.2 nm / second, respectively.
  • a two-layer structure was adopted. Each film thickness was measured with a stylus type film thickness meter (DEKTAK, manufactured by Veeco).
  • this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less.
  • a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin manufactured by Nagase ChemteX Corporation were used.
  • Evaluation Example 2 In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescent element was produced in the same manner as in Evaluation Example 1 except that Compound C-2 synthesized in Example 3 was used instead of Compound C-1. .
  • Evaluation Example 3 In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescence device was produced in the same manner as in Evaluation Example 1, except that Compound C-3 synthesized in Example 4 was used instead of Compound C-1. .
  • Evaluation Example 4 In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescent device was produced in the same manner as in Evaluation Example 1 except that Compound C-4 synthesized in Example 5 was used instead of Compound C-1. .
  • Evaluation Example 5 In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescent element was produced in the same manner as in Evaluation Example 1 except that Compound C-5 synthesized in Example 6 was used instead of Compound C-1. .
  • Evaluation Example 6 In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescent element was produced in the same manner as in Evaluation Example 1 except that Compound C-14 synthesized in Example 19 was used instead of Compound C-1. .
  • Evaluation Example 7 In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescent element was produced in the same manner as in Evaluation Example 1 except that Compound C-15 synthesized in Example 20 was used instead of Compound C-1. .
  • Evaluation Example 8 In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescent element was produced in the same manner as in Evaluation Example 1, except that Compound C-18 synthesized in Example 25 was used instead of Compound C-1. .
  • Evaluation Example 9 In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescent element was produced in the same manner as in Evaluation Example 1, except that Compound C-23 synthesized in Example 32 was used instead of Compound C-1. .
  • a direct current was applied to the organic electroluminescent devices produced in Evaluation Examples 1 to 9 and Reference Example 1, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON.
  • the lifetime characteristic (h) the luminance decay time during continuous lighting when a current density of 10 mA / cm 2 was passed was measured. Further, the time when the luminance (cd / m 2 ) was reduced by 20% and the drive voltage increase when the device was driven for 20 hours were measured.
  • Table 1 shows the measurement results together with the initial voltage (V) and the initial current efficiency (cd / A) when a current density of 10 mA / cm 2 was passed.
  • the element lifetime (h) of each evaluation example is expressed as a relative value with the time (h) when the luminance (cd / m 2 ) of the element in Reference Example 1 is reduced by 20% from the initial value being 100. .
  • Evaluation Example 10 As the substrate, a glass substrate with an ITO transparent electrode in which an indium-tin oxide (ITO) film having a width of 2 mm was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface-treated by oxygen plasma cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 as shown in FIG. First, the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 ⁇ 10 ⁇ 4 Pa.
  • ITO indium-tin oxide
  • a hole injection layer 12, a first hole transport layer 13, a second hole transport layer 14, a light emitting layer 15 and an electron transport layer are formed as an organic compound layer on the glass substrate with an ITO transparent electrode indicated by 11 in FIG. 16 were sequentially formed, and then the cathode layer 17 was formed.
  • all the materials which comprise each layer of an organic electroluminescent element were vacuum-deposited by the resistance heating system.
  • HTL-1 was vacuum-deposited with a film thickness of 65 nm at a film formation rate of 0.15 nm / second.
  • HAT-CN was vacuum-deposited with a film thickness of 0.025 nm / second and a film thickness of 5 nm.
  • HTL-2 was vacuum-deposited at a film formation rate of 0.15 nm / second to a film thickness of 10 nm.
  • the cathode layer 17 is formed by vacuum-depositing magnesium / silver (weight ratio 80/20) and silver in this order at film thicknesses of 80 nm and 20 nm at a film formation rate of 0.5 nm / second and 0.2 nm / second, respectively.
  • a two-layer structure was adopted. Each film thickness was measured with a stylus type film thickness meter (DEKTAK, manufactured by Veeco).
  • DEKTAK stylus type film thickness meter
  • this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less.
  • a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin manufactured by Nagase ChemteX Corporation were used.
  • Evaluation Example 11 An organic electroluminescent device was produced in the same manner as in Evaluation Example 10 except that Compound C-2 synthesized in Example 3 was used instead of Compound C-1 in the electron transport layer 16 of Evaluation Example 10. .
  • Evaluation Example 12 An organic electroluminescent device was produced in the same manner as in Evaluation Example 10 except that Compound C-3 synthesized in Example 4 was used in place of Compound C-1 in the electron transport layer 16 of Evaluation Example 10. .
  • Evaluation Example 13 An organic electroluminescent device was produced in the same manner as in Evaluation Example 10 except that Compound C-4 synthesized in Example 5 was used in place of Compound C-1 in the electron transport layer 16 of Evaluation Example 10. .
  • Evaluation Example 14 An organic electroluminescent device was produced in the same manner as in Evaluation Example 10 except that Compound C-10 synthesized in Example 15 was used in place of Compound C-1 in the electron transport layer 16 of Evaluation Example 10. .
  • Evaluation Example 15 In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescence device was produced in the same manner as in Evaluation Example 10 except that Compound C-12 synthesized in Example 17 was used instead of Compound C-1. .
  • Evaluation Example 16 In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescent element was produced in the same manner as in Evaluation Example 10, except that Compound C-13 synthesized in Example 18 was used instead of Compound C-1. .
  • Evaluation Example 17 In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescent element was produced in the same manner as in Evaluation Example 10 except that Compound C-15 synthesized in Example 20 was used instead of Compound C-1. .
  • Evaluation Example 18 In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescence device was produced in the same manner as in Evaluation Example 10 except that Compound C-17 synthesized in Example 23 was used instead of Compound C-1. .
  • Evaluation Example 19 In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescence device was produced in the same manner as in Evaluation Example 10 except that Compound C-20 synthesized in Example 28 was used instead of Compound C-1. .
  • Evaluation Example 20 In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescent element was produced in the same manner as in Evaluation Example 10, except that Compound C-21 synthesized in Example 29 was used instead of Compound C-1. .
  • Evaluation Example 21 In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescent element was produced in the same manner as in Evaluation Example 10 except that Compound C-22 synthesized in Example 31 was used instead of Compound C-1. .
  • Evaluation Example 22 In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescent element was produced in the same manner as in Evaluation Example 10 except that Compound C-23 synthesized in Example 32 was used instead of Compound C-1. .
  • Evaluation Example 23 In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescent element was produced in the same manner as in Evaluation Example 10, except that Compound C-24 synthesized in Example 34 was used instead of Compound C-1. .
  • Evaluation Example 24 In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescence device was produced in the same manner as in Evaluation Example 10 except that Compound C-25 synthesized in Example 35 was used instead of Compound C-1. .
  • a direct current was applied to the organic electroluminescence devices produced in Evaluation Examples 10 to 24, Reference Example 2 and Reference Example 3, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON. did.
  • the lifetime characteristic (h) the luminance decay time during continuous lighting when a current density of 10 mA / cm 2 was passed was measured. Further, the time when the luminance (cd / m 2 ) was reduced by 10% and the drive voltage increase when the device was driven for 50 hours were measured.
  • Table 2 shows the measurement results together with the initial voltage (V) and the initial current efficiency (cd / A) when a current density of 10 mA / cm 2 was passed.
  • the driving voltage (V) and current efficiency (cd / A) of each evaluation example are shown as relative values when the measured value in Reference Example 2 (ETL-1) is 100.
  • the element lifetime (h) of each evaluation example is shown as a relative value with the time (h) when the luminance (cd / m 2 ) of the element in Reference Example 2 is reduced by 10% from the initial value being 100.
  • Evaluation Example 25 As the substrate, a glass substrate with an ITO transparent electrode in which an indium-tin oxide (ITO) film having a width of 2 mm was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface-treated by oxygen plasma cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 as shown in FIG. First, the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 ⁇ 10 ⁇ 4 Pa.
  • ITO indium-tin oxide
  • a hole injection layer 12, a first hole transport layer 13, a second hole transport layer 14, a light emitting layer 15 and an electron transport layer are formed as an organic compound layer on the glass substrate with an ITO transparent electrode indicated by 11 in FIG. 16 were sequentially formed, and then the cathode layer 17 was formed.
  • all the materials which comprise each layer of an organic electroluminescent element were vacuum-deposited by the resistance heating system.
  • HTL-1 was vacuum-deposited with a film thickness of 65 nm at a film formation rate of 0.15 nm / second.
  • HAT-CN was vacuum-deposited with a film thickness of 0.025 nm / second and a film thickness of 5 nm.
  • HTL-2 was vacuum-deposited at a film formation rate of 0.15 nm / second to a film thickness of 10 nm.
  • the cathode layer 17 is formed by vacuum-depositing magnesium / silver (weight ratio 80/20) and silver in this order at film thicknesses of 80 nm and 20 nm at a film formation rate of 0.5 nm / second and 0.2 nm / second, respectively.
  • a two-layer structure was adopted. Each film thickness was measured with a stylus type film thickness meter (DEKTAK, manufactured by Veeco).
  • DEKTAK stylus type film thickness meter
  • this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less.
  • a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin manufactured by Nagase ChemteX Corporation were used.
  • Evaluation Comparative Example 1 An organic electroluminescent element was produced in the same manner as in Evaluation Example 25 except that ETL-3 synthesized in Synthesis Example 1 was used in place of C-26 in the electron transport layer 16 of Evaluation Example 25.
  • Evaluation Comparative Example 2 An organic electroluminescent device was produced in the same manner as in Evaluation Example 25 except that ETL-4 synthesized in Synthesis Example 2 was used in place of C-26 in the electron transport layer 16 of Evaluation Example 25.
  • a direct current was applied to the organic electroluminescent elements produced in Evaluation Example 25, Evaluation Comparative Example 1 and Evaluation Comparative Example 2, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON. did.
  • the initial voltage (V) and the initial current efficiency (cd / A) when a current density of 5 mA / cm 2 was passed were measured.
  • Table 3 shows the results of measuring the drive voltage rise when the device was driven for 50 hours when a current density of 40 mA / cm 2 was passed and the device was continuously lit.
  • the drive voltage (V) and current efficiency (cd / A) in each evaluation example are shown as relative values when the measured value in Evaluation Comparative Example 2 (ETL-4) is 100.
  • the organic electroluminescent device using the benzothienopyrimidine compound of the present invention has a low driving voltage, excellent current efficiency, and excellent driving voltage rise suppression effect. It was.
  • the organic electroluminescent device using the benzothienopyrimidine compound of the present invention can be driven for a long time compared to the organic electroluminescent device using the existing material.
  • the benzothienopyrimidine compound of the present invention can be applied to a light emitting host layer and the like in addition to the electron transport layer of this example.
  • the present invention can be applied not only to an element using a fluorescent light emitting material but also to various organic electroluminescent elements using a phosphorescent light emitting material.
  • the benzothienopyrimidine compound of the present invention has high solubility, and it is possible to produce an element using not only a vacuum deposition method but also a coating method. Furthermore, it is useful not only for applications such as flat panel displays but also for illumination applications that require low power consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

Provided is a novel electron transport material which has excellent heat resistance and high luminous efficiency, and which enables an element to be driven at a low voltage by excellent electron injection properties and electron transport characteristics thereof, while enabling the element to be driven for a long period of time. A benzothienopyrimidine compound represented by general formula (1) is used. (In the formula, each of R1-R4 independently represents an aromatic group which may be substituted by a specific substituent and has 4-66 carbon atoms, a hydrogen atom, a deuterium atom, a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3-10 carbon atoms, a methoxy group, an ethoxy group, an alkoxy group having 3-10 carbon atoms, a methylthio group, an ethylthio group, a sulfide group having 3-10 carbon atoms or a diarylamino group having 10-36 carbon atoms; and each of Ar1 and Ar2 independently represents an aromatic group which may be substituted by a specific substituent and has 4-66 carbon atoms.)

Description

ベンゾチエノピリミジン化合物、その製造方法、及びそれを含有する有機電界発光素子Benzothienopyrimidine compound, method for producing the same, and organic electroluminescent device containing the same
 本発明は、有機電界発光素子の構成成分として有用なベンゾチエノピリミジン化合物、その製造方法、及びそれを含有する有機電界発光素子に関するものである。 The present invention relates to a benzothienopyrimidine compound useful as a component of an organic electroluminescent device, a method for producing the same, and an organic electroluminescent device containing the same.
 有機電界発光素子は、発光材料を含有する発光層を正孔輸送層と電子輸送層で挟み、さらにその外側に陽極と陰極を取付けたものを基本的な構成とし、発光層に注入された正孔及び電子の再結合により生ずる励起子失活に伴う光の放出(蛍光又は燐光)を利用する素子であり、ディスプレイ等へ応用されている。なお、正孔輸送層は正孔輸送層と正孔注入層に、発光層は、電子ブロック層と発光層と正孔ブロック層に、電子輸送層は電子輸送層と電子注入層に分割して構成される場合もある。 An organic electroluminescent element has a basic structure in which a light-emitting layer containing a light-emitting material is sandwiched between a hole transport layer and an electron transport layer, and an anode and a cathode are attached to the outside of the light-emitting layer. This element utilizes light emission (fluorescence or phosphorescence) accompanying exciton deactivation caused by recombination of holes and electrons, and is applied to displays and the like. The hole transport layer is divided into a hole transport layer and a hole injection layer, the light emitting layer is divided into an electron blocking layer, a light emitting layer and a hole blocking layer, and the electron transport layer is divided into an electron transport layer and an electron injection layer. May be configured.
 近年、トリアジン及びピリミジン化合物を発光層及び電子輸送層等に用いた有機電界発光素子が多数報告されているが、発光効率特性、駆動電圧特性、長寿命特性において、完全に市場要求を満たしているとは言えず、更に優れた材料が求められている。 In recent years, many organic electroluminescent devices using triazine and pyrimidine compounds in the light emitting layer and the electron transporting layer have been reported, but they completely satisfy the market requirements in terms of luminous efficiency characteristics, driving voltage characteristics, and long life characteristics. However, there is a need for better materials.
 電子輸送材料等としては、ジベンゾチオフェン化合物(例えば特許文献1)や窒素置換ジベンゾチオフェン化合物が開示(例えば、特許文献2-3参照)されており、これらを用いて素子の寿命を改善する提案がされているが、素子が高駆動電圧化する点、及び更なる長寿命化が求められている点で改善が望まれている。 As electron transport materials, etc., dibenzothiophene compounds (for example, Patent Document 1) and nitrogen-substituted dibenzothiophene compounds have been disclosed (for example, see Patent Document 2-3), and proposals for improving the lifetime of the device using these compounds have been made. However, improvement is desired in that the device has a higher driving voltage and a longer life is required.
 また、有機電界発光素子に限らず、多くの用途に窒素置換ジベンゾチオフェン化合物の使用が提案されているが、これらの化合物の製造法は殆ど報告されておらず、簡便な合成法が求められている。 Moreover, the use of nitrogen-substituted dibenzothiophene compounds has been proposed for many uses, not limited to organic electroluminescent devices, but there have been few reports on the production methods of these compounds, and a simple synthesis method has been demanded. Yes.
国際公開第2007/069569号パンフレットInternational Publication No. 2007/069569 Pamphlet 特開2011-84531号公報JP 2011-84531 A 国際公開第2013/038650号パンフレットInternational Publication No. 2013/038650 Pamphlet
 有機電界発光素子は様々な表示機器への利用が始まっているが、長寿命化、高発光効率化、低駆動電圧化等、更なる素子の高性能化が要求されている。より具体的には、長寿命、高発光効率、低駆動電圧化、駆動時の電圧上昇抑制を達成するキャリア輸送材料の開発が要求されている。 Organic electroluminescence devices have begun to be used in various display devices, but further improvements in device performance such as longer life, higher luminous efficiency, and lower drive voltage are required. More specifically, there is a demand for the development of a carrier transport material that achieves a long life, high luminous efficiency, low driving voltage, and suppression of voltage rise during driving.
 前記キャリア輸送材料のうち電子注入材料及び電子輸送材料については、優れた電子注入性及び電子輸送特性により素子を低電圧で駆動させると共に、発光効率が高く、素子を長時間駆動させる新たな材料が望まれている。
 また、有機電界発光素子用材料は、昇華精製時及び有機電界発光素子作製のための蒸着時に真空中で高温に加熱することが一般的であり、より耐熱性が高い材料が要求されている。
Among the carrier transport materials, for the electron injection material and the electron transport material, there are new materials that drive the device at a low voltage due to excellent electron injection properties and electron transport properties, and have high luminous efficiency and drive the device for a long time. It is desired.
Moreover, the organic electroluminescent element material is generally heated to a high temperature in a vacuum at the time of sublimation purification and vapor deposition for producing the organic electroluminescent element, and a material having higher heat resistance is required.
 また、有用な化合物であるベンゾチエノピリミジン化合物の簡便な合成が望まれている。 Also, simple synthesis of benzothienopyrimidine compounds, which are useful compounds, is desired.
 本発明者らは、先の課題を解決すべく鋭意検討を重ねた結果、本発明の一般式(1)で表されるベンゾチエノピリミジン化合物が、従来公知の化合物に比べて、電子耐久性及び正孔耐久性が顕著に向上することを見いだした。このような知見から、当該ベンゾチエノピリミジン化合物を有機電界発光素子における電子輸送層として用いた場合、公知又は汎用の電子輸送材を用いた場合に比べて、有機電界発光素子が長寿命化し、また駆動時の電圧上昇が抑制することを見出し、本発明を完成するに至った。
 また、本発明者らはベンゾチエノピリミジンの2位及び4位を芳香族基で置換することで化合物の耐熱性が向上し、材料の熱劣化を抑制しうることを見出し、本発明を完成するに至った。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the benzothienopyrimidine compound represented by the general formula (1) of the present invention has higher electron durability and higher resistance than conventionally known compounds. It has been found that the hole durability is remarkably improved. From such knowledge, when the benzothienopyrimidine compound is used as an electron transport layer in an organic electroluminescent device, the organic electroluminescent device has a longer life than when a known or general-purpose electron transport material is used. The inventors have found that the voltage rise during driving is suppressed, and have completed the present invention.
In addition, the present inventors have found that by replacing the 2-position and 4-position of benzothienopyrimidine with an aromatic group, the heat resistance of the compound can be improved and the thermal deterioration of the material can be suppressed, and the present invention is completed. It came to.
 すなわち本発明は、下記の一般式(1)で表されるベンゾチエノピリミジン化合物(以下、「化合物(1)」とも称する)、その製造方法、及びそれを含有する有機電界発光素子に関するものである。 That is, the present invention relates to a benzothienopyrimidine compound represented by the following general formula (1) (hereinafter also referred to as “compound (1)”), a production method thereof, and an organic electroluminescent device containing the same. .
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、R~Rは、各々独立して、炭素数4~66の芳香族基(各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)、水素原子、重水素原子、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、メチルチオ基、エチルチオ基、炭素数3~10のスルフィド基、又は炭素数10~36のジアリールアミノ基を表す。
Ar及びArは、各々独立して、炭素数4~66の芳香族基(各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)を表す。)
 また、本発明は、前記化合物(1)を工業的に製造するために極めて有用な製造中間体を提供することができる。
(Wherein R 1 to R 4 each independently represents an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group) A substituent, an ethoxy group, an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms A hydrogen atom, a deuterium atom, a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, an alkoxy group having 3 to 10 carbon atoms, methylthio, A group, an ethylthio group, a sulfide group having 3 to 10 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms.
Ar 1 and Ar 2 are each independently an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group) A substituent having an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms. Is also possible. )
Moreover, this invention can provide a very useful manufacturing intermediate in order to manufacture the said compound (1) industrially.
 本発明のベンゾチエノピリミジン化合物は電子耐久性及び正孔耐久性に優れ、本発明のベンゾチエノピリミジン化合物を有機電界発光素子における電子輸送層として用いた場合、有機電界発光素子が長寿命化し、また駆動時の電圧上昇が抑制される。また、従来公知のベンゾチエノピリミジン化合物より耐熱性に優れる。 The benzothienopyrimidine compound of the present invention is excellent in electron durability and hole durability. When the benzothienopyrimidine compound of the present invention is used as an electron transport layer in an organic electroluminescent device, the organic electroluminescent device has a long life, and An increase in voltage during driving is suppressed. Moreover, it is excellent in heat resistance than a conventionally well-known benzothienopyrimidine compound.
図1は、評価実施例1等で作製する有機電界発光素子の断面図である。FIG. 1 is a cross-sectional view of an organic electroluminescent element produced in Evaluation Example 1 or the like. 図2は、評価実施例10等で作製する有機電界発光素子の断面図である。FIG. 2 is a cross-sectional view of an organic electroluminescent element produced in Evaluation Example 10 or the like.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明は、上記の化合物(1)、その製造方法、及びそれを含有する有機電界発光素子に関するものである。 The present invention relates to the above compound (1), a production method thereof, and an organic electroluminescence device containing the compound.
 また、本発明は上記の化合物(1)を製造するための製造中間体に関するものである。 The present invention also relates to a production intermediate for producing the above compound (1).
 本願の化合物(1)における置換基はそれぞれ以下のように定義される。 The substituents in the compound (1) of the present application are defined as follows.
 炭素数4~66の芳香族基は、縮合又は連結していてもよい環骨格のみを規定するものであり、当該芳香族基の炭素数に置換基の炭素数は含まれない。当該炭素数4~66の芳香族基において、芳香族基は、芳香族炭化水素基、ヘテロ芳香族基、又はこれらが縮合又は連結したものであれば、特に限定されるものではない。 The aromatic group having 4 to 66 carbon atoms defines only a ring skeleton that may be condensed or linked, and the carbon number of the aromatic group does not include the carbon number of the substituent. In the aromatic group having 4 to 66 carbon atoms, the aromatic group is not particularly limited as long as it is an aromatic hydrocarbon group, a heteroaromatic group, or a group in which these are condensed or linked.
 すなわち、炭素数4~66の芳香族基は、環骨格の全炭素数が4~66であって、縮合又は連結していてもよい芳香族基を表わす。なお、当該炭素数4~66の芳香族基には、別途有してもよい置換基の炭素数は含まれない。当該炭素数4~66の芳香族基は、芳香族炭化水素基、ヘテロ芳香族基、又はこれらが縮合又は連結したものであれば、特に限定されるものではない。 That is, the aromatic group having 4 to 66 carbon atoms represents an aromatic group having 4 to 66 carbon atoms in the ring skeleton and may be condensed or linked. Note that the aromatic group having 4 to 66 carbon atoms does not include the carbon number of a substituent that may be separately provided. The aromatic group having 4 to 66 carbon atoms is not particularly limited as long as it is an aromatic hydrocarbon group, a heteroaromatic group, or a group in which these are condensed or linked.
 当該炭素数4~66の芳香族基としては、特に限定するものではないが、例えば、フェニル基、ビフェニリル基、テルフェニル基、ナフチル基、ナフチルフェニル基、フェニルナフチル基、ナフチルビフェニル基、ビフェニルナフチル基、ジフェニルナフチル基、フェニルナフチルフェニル基、アントリル基、アントリルフェニル基、フェニルアントリル基、フェニルアントリルフェニル基、フェナントリル基、フェナントリルフェニル基、フェニルフェナントリル基、ピレニル基、フェニルピレニル基、ピレニルフェニル基、フルオレニル基、フルオレニルフェニル基、フェニルフルオレニル基、フルオランテニル基、フェニルフルオランテニル基、フルオランテニルフェニル基、ペリレニル基、フェニルペリレニル基、ペリレニルフェニル基、トリフェニレニル基、フェニルトリフェニレニル基、トリフェニレニルフェニル基、テトラセニル基、フェニルトテラセニル基、テトラセニルフェニル基、クリセニル基、フェニルクリセニル基、クリセニルフェニル基(以上、連結又は縮合していても良い芳香族炭化水素基)、ピリジル基、フェニルピリジル基、ピリジルフェニル基、ビピリジル基、ビフェニルピリジル基、ピリジルビフェニル基、ジフェニルピリジル基、ジフェニルピリジルフェニル基、ピリミジル基、フェニルピリミジル基、ピリミジルフェニル基、ピラジル基、フェニルピラジル基、ピラジルフェニル基、トリアジニル基、フェニルトリアジル基、トリアジルフェニル基、キノリル基、フェニルキノリル基、キノリルフェニル基、ピリジルキノリル基、イソキノリル基、フェニルイソキノリル基、イソキノリルフェニル基、ピリジルイソキノリル基、キノキサリニル基、フェニルキノキサリニル基、キノキサリニルフェニル基、アクリジニル基、フェニルアクリジニル基、アクリジニルフェニル基、フェナントリジニル基、フェニルフェナントリジニル基、フェナントリジニルフェニル基、フェナントロリニル基、フェニルフェナントロリニル基、フェナントロリニルフェニル基、ピロリル基、フェニルピロリル基、ピロリルフェニル基、ピリジルピロリル基、フラニル基、フェニルフラニル基、フラニルフェニル基、ピリジルフラニル基、チエニル基、フェニルチエニル基、チエニルフェニル基、イミダゾリル基、フェニルイミダゾリル基、イミダゾリルフェニル基、オキサゾリル基、フェニルオキサゾリル基、オキサゾリルフェニル基、イソキサゾリル基、フェニルイソキサゾリル基、イソキサゾリルフェニル基、オキサジアゾリル基、フェニルオキサジアゾリル基、オキサジアゾリルフェニル基、チアゾリル基、フェニルチアゾリル基、チアゾリルフェニル基、インドリル基、フェニルインドリル基、インドリルフェニル基、ベンゾフラニル基、フェニルベンゾフラニル基、ベンゾフラニルフェニル基、ベンゾチアゾリル基、フェニルベンゾチアゾリル基、ベンゾチアゾリルフェニル基、ベンゾイミダゾリル基、フェニルベンゾイミダゾリル基、ベンゾイミダゾリルフェニル基、ベンゾオキサゾリル基、フェニルベンゾオキサゾリル基、ベンゾオキサゾリルフェニル基、ベンゾチアゾリル基、フェニルベンゾチアゾリル基、ベンゾチアゾリルフェニル基、ジベンゾフラニル基、フェニルジベンゾフラニル基、ジベンゾフラニルフェニル基、ジベンゾチエニル基、フェニルジベンゾチエニル基、ジベンゾチエニルフェニル基、カルバゾリル基、フェニルカルバゾリル基、カルバゾリルフェニル基、ピリジルカルバゾリル基、ピリジルフェニルカルバゾリル基、カルボリニル基、フェニルカルボリニル基、カルボリニルフェニル基、インドロカルバゾリル基、フェニルインドロカルバゾリル基、フェニルインドロカルバゾリルフェニル基、インドロカルバゾリルフェニル基、インドロジベンゾチエニル基、フェニルインドロジベンゾチエニル基、又はインドロジベンゾチエニルフェニル基(以上、連結又は縮合していても良いヘテロ芳香族基)等が挙げられる。 The aromatic group having 4 to 66 carbon atoms is not particularly limited, and examples thereof include a phenyl group, a biphenylyl group, a terphenyl group, a naphthyl group, a naphthylphenyl group, a phenylnaphthyl group, a naphthylbiphenyl group, and a biphenylnaphthyl group. Group, diphenylnaphthyl group, phenylnaphthylphenyl group, anthryl group, anthrylphenyl group, phenylanthryl group, phenylanthrylphenyl group, phenanthrylphenyl group, phenanthrylphenyl group, phenylphenanthryl group, pyrenyl group, phenylpyrene group Nyl group, pyrenylphenyl group, fluorenyl group, fluorenylphenyl group, phenylfluorenyl group, fluoranthenyl group, phenylfluoranthenyl group, fluoranthenylphenyl group, perylenyl group, phenylperylenyl group, perylenylphenol Group, triphenylenyl group, phenyltriphenylenyl group, triphenylenylphenyl group, tetracenyl group, phenyltoteracenyl group, tetracenylphenyl group, chrysenyl group, phenylchrysenyl group, chrysenylphenyl group (above, Aromatic hydrocarbon group which may be linked or condensed), pyridyl group, phenylpyridyl group, pyridylphenyl group, bipyridyl group, biphenylpyridyl group, pyridylbiphenyl group, diphenylpyridyl group, diphenylpyridylphenyl group, pyrimidyl group, phenyl Pyrimidyl group, pyrimidylphenyl group, pyrazyl group, phenylpyrazyl group, pyrazylphenyl group, triazinyl group, phenyltriazyl group, triazylphenyl group, quinolyl group, phenylquinolyl group, quinolylphenyl group, Pyridylquinolyl group, iso Noryl group, phenylisoquinolyl group, isoquinolylphenyl group, pyridylisoquinolyl group, quinoxalinyl group, phenylquinoxalinyl group, quinoxalinylphenyl group, acridinyl group, phenylacridinyl group, acridinyl Phenyl group, phenanthridinyl group, phenylphenanthridinyl group, phenanthridinylphenyl group, phenanthrolinyl group, phenylphenanthrolinyl group, phenanthrolinylphenyl group, pyrrolyl group, phenylpyrrolyl group , Pyrrolylphenyl group, pyridylpyrrolyl group, furanyl group, phenylfuranyl group, furanylphenyl group, pyridylfuranyl group, thienyl group, phenylthienyl group, thienylphenyl group, imidazolyl group, phenylimidazolyl group, imidazolylphenyl group , Oxazolyl group, phenylo Xazolyl group, oxazolylphenyl group, isoxazolyl group, phenylisoxazolyl group, isoxazolylphenyl group, oxadiazolyl group, phenyloxadiazolyl group, oxadiazolylphenyl group, thiazolyl group, phenylthiazolyl group, Thiazolylphenyl group, indolyl group, phenylindolyl group, indolylphenyl group, benzofuranyl group, phenylbenzofuranyl group, benzofuranylphenyl group, benzothiazolyl group, phenylbenzothiazolyl group, benzothiazolylphenyl group , Benzimidazolyl group, phenylbenzoimidazolyl group, benzoimidazolylphenyl group, benzoxazolyl group, phenylbenzoxazolyl group, benzoxazolylphenyl group, benzothiazolyl group, phenylbenzothiazolyl group, benzothiol Zolylphenyl group, dibenzofuranyl group, phenyldibenzofuranyl group, dibenzofuranylphenyl group, dibenzothienyl group, phenyldibenzothienyl group, dibenzothienylphenyl group, carbazolyl group, phenylcarbazolyl group, carbazolylphenyl group, pyridyl Carbazolyl group, Pyridylphenylcarbazolyl group, Carborinyl group, Phenylcarborinyl group, Carborinylphenyl group, Indolocarbazolyl group, Phenylindolocarbazolyl group, Phenylindolocarbazolylphenyl group , An indolocarbazolylphenyl group, an indolobenzothienyl group, a phenylindolobenzothienyl group, or an indolobenzothienylphenyl group (the heteroaromatic group which may be linked or condensed).
 炭素数3~10のアルキル基としては、特に限定するものではないが、例えば、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、sec-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、ベンジル基、又はフェネチル基等が挙げられる。 The alkyl group having 3 to 10 carbon atoms is not particularly limited. For example, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, sec -Pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, benzyl group, or phenethyl group.
 炭素数3~10のアルコキシ基としては、特に限定するものではないが、例えば、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、sec-ペンチルオキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、ベンジルオキシ基、又はフェネチルオキシ基等が挙げられる。 The alkoxy group having 3 to 10 carbon atoms is not particularly limited, and examples thereof include an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, and an n-pentyloxy group. Sec-pentyloxy group, cyclopentyloxy group, n-hexyloxy group, cyclohexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, benzyloxy group, or phenethyloxy Groups and the like.
 炭素数1~3のハロゲン化アルキル基としては、特に限定するものではないが、例えば、クロロメチル基、ジクロロメチル基、トリクロロメチル基、フロロメチル基、ジフロロメチル基、トリフロロメチル基、クロロエチル基、ジクロロエチル基、トリクロロエチル基、ペンタクロロエチル基、フロロエチル基、ジフロロエチル基、トリフロロエチル基、ペンタフロロエチル基、クロロプロピル基、又はフロロプロピル基等が挙げられる。 The halogenated alkyl group having 1 to 3 carbon atoms is not particularly limited, and examples thereof include chloromethyl group, dichloromethyl group, trichloromethyl group, fluoromethyl group, difluoromethyl group, trifluoromethyl group, chloroethyl group, dichloromethane. Examples include an ethyl group, trichloroethyl group, pentachloroethyl group, fluoroethyl group, difluoroethyl group, trifluoroethyl group, pentafluoroethyl group, chloropropyl group, or fluoropropyl group.
 炭素数1~3のハロゲン化アルコキシ基としては、特に限定するものではないが、例えば、クロロメチルオキシ基、ジクロロメチルオキシ基、トリクロロメチルオキシ基、フロロメチルオキシ基、ジフロロメチルオキシ基、トリフロロメチルオキシ基、クロロエチルオキシ基、ジクロロエチルオキシ基、トリクロロエチルオキシ基、ペンタクロロエチルオキシ基、フロロエチルオキシ基、ジフロロエチルオキシ基、トリフロロエチルオキシ基、ペンタフロロエチルオキシ基、クロロプロピルオキシ基、又はフロロプロピルオキシ基等が挙げられる。 The halogenated alkoxy group having 1 to 3 carbon atoms is not particularly limited, and examples thereof include a chloromethyloxy group, a dichloromethyloxy group, a trichloromethyloxy group, a fluoromethyloxy group, a difluoromethyloxy group, Fluoromethyloxy group, chloroethyloxy group, dichloroethyloxy group, trichloroethyloxy group, pentachloroethyloxy group, fluoroethyloxy group, difluoroethyloxy group, trifluoroethyloxy group, pentafluoroethyloxy group, chloro A propyloxy group, a fluoropropyloxy group, etc. are mentioned.
 炭素数10~36のジアリールアミノ基は、異なっていても良い2種類のアリール基が結合したアミノ基を表わし、全体の炭素数が10~36であるものを意味する。 The diarylamino group having 10 to 36 carbon atoms represents an amino group in which two kinds of aryl groups which may be different from each other are bonded, and means a group having 10 to 36 carbon atoms as a whole.
 炭素数10~36のジアリールアミノ基としては、特に限定するものではないが、例えば、N,N-ジフェニルアミノ基、N-トリル-N-フェニルアミノ基、N,N-ジトリルアミノ基、N,N-ジビフェニルアミノ基、N,N-ジ(テルフェニル)アミノ基、N-フェニル-N-ナフチルアミノ基、N-フェニル-N-ビフェニルアミノ基、N-フェニル-N-テルフェニルアミノ基、又はN-ビフェニル-N-テルフェニルアミノ基等が挙げられる。これらのうち、化合物(1)の電子輸送材料特性に優れる点で、N,N-ジフェニルアミノ基、N-トリル-N-フェニルアミノ基、N,N-ジトリルアミノ基、又はN,N-ジビフェニルアミノ基が好ましい。 The diarylamino group having 10 to 36 carbon atoms is not particularly limited. For example, N, N-diphenylamino group, N-tolyl-N-phenylamino group, N, N-ditolylamino group, N, N -Dibiphenylamino group, N, N-di (terphenyl) amino group, N-phenyl-N-naphthylamino group, N-phenyl-N-biphenylamino group, N-phenyl-N-terphenylamino group, or And N-biphenyl-N-terphenylamino group. Among these, N, N-diphenylamino group, N-tolyl-N-phenylamino group, N, N-ditolylamino group, or N, N-dibiphenyl is preferable in that the compound (1) has excellent electron transport material characteristics. An amino group is preferred.
 炭素数3~10のスルフィド基としては、特に限定するものではないが、例えば、n-プロピルスルフィド基、イソプロピルスルフィド基、n-ブチルスルフィド基、sec-ブチルスルフィド基、tert-ブチルスルフィド基、n-ペンチルスルフィド基、sec-ペンチルスルフィド基、シクロペンチルスルフィド基、n-ヘキシルスルフィド基、シクロヘキシルスルフィド基、n-ヘプチルスルフィド基、n-オクチルスルフィド基、n-ノニルスルフィド基、n-デシルスルフィド基、ベンジルスルフィド基、又はフェネチルスルフィド基等が挙げられる。 The sulfide group having 3 to 10 carbon atoms is not particularly limited. For example, n-propyl sulfide group, isopropyl sulfide group, n-butyl sulfide group, sec-butyl sulfide group, tert-butyl sulfide group, n -Pentyl sulfide group, sec-pentyl sulfide group, cyclopentyl sulfide group, n-hexyl sulfide group, cyclohexyl sulfide group, n-heptyl sulfide group, n-octyl sulfide group, n-nonyl sulfide group, n-decyl sulfide group, benzyl Examples thereof include a sulfide group or a phenethyl sulfide group.
 R~R、Ar、及びArにおいて、炭素数4~66の芳香族基は、各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、及び炭素数10~36のジアリールアミノ基からなる群より選ばれる置換基を有していてもよく、当該置換基は複数であってもよい。複数の置換基がある場合、それぞれの置換基については同一であっても異なっていてもよい。 In R 1 to R 4 , Ar 1 , and Ar 2 , the aromatic group having 4 to 66 carbon atoms is each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, or a methoxy group. , An ethoxy group, an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, and a diarylamino group having 10 to 36 carbon atoms. And may have a plurality of substituents. When there are a plurality of substituents, each substituent may be the same or different.
 なお、R~R、Ar、及びArにおける炭素数4~66の芳香族基が有していてもよい置換基としては、電子輸送材料特性に優れる点で、メチル基又は炭素数10~36のジアリールアミノ基が好ましい。 The substituent that the aromatic group having 4 to 66 carbon atoms in R 1 to R 4 , Ar 1 , and Ar 2 may have is a methyl group or a carbon number in terms of excellent electron transport material characteristics. 10-36 diarylamino groups are preferred.
 R~Rは、電子輸送材料特性に優れる点で、各々独立して、炭素数4~30の芳香族基(これらの置換基は、各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、又は炭素数1~3のハロゲン化アルコキシ基を置換基として有していてもよい。)、水素原子、重水素原子、フッ素原子、メチル基、エチル基、又は炭素数3~10のアルキル基であることが好ましく、フェニル基、ビフェニル基、フェナントリル基、ピレニル基、フルオランテニル基、ピリジル基、ピリミジル基、キノリル基、イソキノリル基、ピリジルフェニル基、ピリミジルフェニル基、カルバゾリル基、ピリジルカルバゾリル基、若しくはジピリジルカルバゾリル基(これらの置換基は、各々独立して、フッ素原子、メチル基、エチル基、メトキシ基、又はエトキシ基を置換基として有していてもよい。)、水素原子、重水素原子、フッ素原子、メチル基、エチル基、又は炭素数3~10のアルキル基であることがより好ましく、各々独立して、フェニル基、ビフェニリル基、アントリル基、フェナントリル基、ピリミジルフェニル基、若しくはピリジルフェニル基(これらの置換基はメチル基を有していてもよい。)、水素原子、重水素原子、フェニル基、又はメチル基であることがさらに好ましく、水素原子、フェニル基、又は重水素原子であることがさらに好ましい。 R 1 to R 4 are each independently an aromatic group having 4 to 30 carbon atoms in terms of excellent electron transport material characteristics (these substituents are each independently a fluorine atom, a methyl group, an ethyl group, A substituent of an alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, or a halogenated alkoxy group having 1 to 3 carbon atoms A hydrogen atom, a deuterium atom, a fluorine atom, a methyl group, an ethyl group, or an alkyl group having 3 to 10 carbon atoms, preferably a phenyl group, a biphenyl group, a phenanthryl group, Pyrenyl, fluoranthenyl, pyridyl, pyrimidyl, quinolyl, isoquinolyl, pyridylphenyl, pyrimidylphenyl, carbazolyl, pyridylcarbazolyl, Is a dipyridylcarbazolyl group (these substituents may each independently have a fluorine atom, a methyl group, an ethyl group, a methoxy group, or an ethoxy group), a hydrogen atom, a heavy atom More preferably a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, or an alkyl group having 3 to 10 carbon atoms, each independently a phenyl group, a biphenylyl group, an anthryl group, a phenanthryl group, a pyrimidylphenyl group Or a pyridylphenyl group (these substituents may have a methyl group), a hydrogen atom, a deuterium atom, a phenyl group, or a methyl group, more preferably a hydrogen atom, a phenyl group, or More preferably, it is a deuterium atom.
 なお、前記炭素数4~30の芳香族基としては、特に限定するものではないが、前述の炭素数4~66の芳香族基において例示した置換基のうち、炭素数の総数が30以下のものを例示することができる。 The aromatic group having 4 to 30 carbon atoms is not particularly limited, but among the substituents exemplified in the aromatic group having 4 to 66 carbon atoms, the total number of carbon atoms is 30 or less. Things can be illustrated.
 すなわち、炭素数4~30の芳香族基は、縮合又は連結していてもよい環骨格のみを規定するものであり、当該芳香族基の炭素数に置換基の炭素数は含まれない。当該炭素数4~30の芳香族基における芳香族基は、芳香族炭化水素基、ヘテロ芳香族基、又はこれらが縮合又は連結したものであれば、特に限定されるものではない。 That is, the aromatic group having 4 to 30 carbon atoms defines only a ring skeleton that may be condensed or linked, and the carbon number of the aromatic group does not include the carbon number of the substituent. The aromatic group in the aromatic group having 4 to 30 carbon atoms is not particularly limited as long as it is an aromatic hydrocarbon group, a heteroaromatic group, or a condensed or linked group thereof.
 当該炭素数4~30の芳香族基としては、特に限定するものではないが、例えば、フェニル基、ビフェニリル基、テルフェニル基、ナフチル基、ナフチルフェニル基、フェニルナフチル基、ナフチルビフェニル基、ビフェニルナフチル基、ジフェニルナフチル基、フェニルナフチルフェニル基、アントリル基、アントリルフェニル基、フェニルアントリル基、フェニルアントリルフェニル基、フェナントリル基、フェナントリルフェニル基、フェニルフェナントリル基、ピレニル基、フェニルピレニル基、ピレニルフェニル基、フルオレニル基、フルオレニルフェニル基、フェニルフルオレニル基、フルオランテニル基、フェニルフルオランテニル基、フルオランテニルフェニル基、ペリレニル基、フェニルペリレニル基、ペリレニルフェニル基、トリフェニレニル基、フェニルトリフェニレニル基、トリフェニレニルフェニル基、テトラセニル基、フェニルトテラセニル基、テトラセニルフェニル基、クリセニル基、フェニルクリセニル基、クリセニルフェニル基(以上、連結又は縮合していても良い芳香族炭化水素基)、ピリジル基、フェニルピリジル基、ピリジルフェニル基、ビピリジル基、ビフェニルピリジル基、ピリジルビフェニル基、ジフェニルピリジル基、ジフェニルピリジルフェニル基、ピリミジル基、フェニルピリミジル基、ピリミジルフェニル基、ピラジル基、フェニルピラジル基、ピラジルフェニル基、トリアジニル基、フェニルトリアジル基、トリアジルフェニル基、キノリル基、フェニルキノリル基、キノリルフェニル基、ピリジルキノリル基、イソキノリル基、フェニルイソキノリル基、イソキノリルフェニル基、ピリジルイソキノリル基、キノキサリニル基、フェニルキノキサリニル基、キノキサリニルフェニル基、アクリジニル基、フェニルアクリジニル基、アクリジニルフェニル基、フェナントリジニル基、フェニルフェナントリジニル基、フェナントリジニルフェニル基、フェナントロリニル基、フェニルフェナントロリニル基、フェナントロリニルフェニル基、ピロリル基、フェニルピロリル基、ピロリルフェニル基、ピリジルピロリル基、フラニル基、フェニルフラニル基、フラニルフェニル基、ピリジルフラニル基、チエニル基、フェニルチエニル基、チエニルフェニル基、イミダゾリル基、フェニルイミダゾリル基、イミダゾリルフェニル基、オキサゾリル基、フェニルオキサゾリル基、オキサゾリルフェニル基、イソキサゾリル基、フェニルイソキサゾリル基、イソキサゾリルフェニル基、オキサジアゾリル基、フェニルオキサジアゾリル基、オキサジアゾリルフェニル基、チアゾリル基、フェニルチアゾリル基、チアゾリルフェニル基、インドリル基、フェニルインドリル基、インドリルフェニル基、ベンゾフラニル基、フェニルベンゾフラニル基、ベンゾフラニルフェニル基、ベンゾチアゾリル基、フェニルベンゾチアゾリル基、ベンゾチアゾリルフェニル基、ベンゾイミダゾリル基、フェニルベンゾイミダゾリル基、ベンゾイミダゾリルフェニル基、ベンゾオキサゾリル基、フェニルベンゾオキサゾリル基、ベンゾオキサゾリルフェニル基、ベンゾチアゾリル基、フェニルベンゾチアゾリル基、ベンゾチアゾリルフェニル基、ジベンゾフラニル基、フェニルジベンゾフラニル基、ジベンゾフラニルフェニル基、ジベンゾチエニル基、フェニルジベンゾチエニル基、ジベンゾチエニルフェニル基、カルバゾリル基、フェニルカルバゾリル基、カルバゾリルフェニル基、ピリジルカルバゾリル基、ピリジルフェニルカルバゾリル基、ジピリジルカルバゾリル基、カルボリニル基、フェニルカルボリニル基、カルボリニルフェニル基、インドロカルバゾリル基、フェニルインドロカルバゾリル基、インドロカルバゾリルフェニル基、フェニルインドロカルバゾリルフェニル基、インドロジベンゾチエニル基、フェニルインドロジベンゾチエニル基、又はインドロジベンゾチエニルフェニル基(以上、連結又は縮合していても良いヘテロ芳香族基)等が挙げられる。 The aromatic group having 4 to 30 carbon atoms is not particularly limited, and examples thereof include a phenyl group, a biphenylyl group, a terphenyl group, a naphthyl group, a naphthylphenyl group, a phenylnaphthyl group, a naphthylbiphenyl group, and a biphenylnaphthyl group. Group, diphenylnaphthyl group, phenylnaphthylphenyl group, anthryl group, anthrylphenyl group, phenylanthryl group, phenylanthrylphenyl group, phenanthrylphenyl group, phenanthrylphenyl group, phenylphenanthryl group, pyrenyl group, phenylpyrene group Nyl group, pyrenylphenyl group, fluorenyl group, fluorenylphenyl group, phenylfluorenyl group, fluoranthenyl group, phenylfluoranthenyl group, fluoranthenylphenyl group, perylenyl group, phenylperylenyl group, perylenylphenol Group, triphenylenyl group, phenyltriphenylenyl group, triphenylenylphenyl group, tetracenyl group, phenyltoteracenyl group, tetracenylphenyl group, chrysenyl group, phenylchrysenyl group, chrysenylphenyl group (above, Aromatic hydrocarbon group which may be linked or condensed), pyridyl group, phenylpyridyl group, pyridylphenyl group, bipyridyl group, biphenylpyridyl group, pyridylbiphenyl group, diphenylpyridyl group, diphenylpyridylphenyl group, pyrimidyl group, phenyl Pyrimidyl group, pyrimidylphenyl group, pyrazyl group, phenylpyrazyl group, pyrazylphenyl group, triazinyl group, phenyltriazyl group, triazylphenyl group, quinolyl group, phenylquinolyl group, quinolylphenyl group, Pyridylquinolyl group, iso Noryl group, phenylisoquinolyl group, isoquinolylphenyl group, pyridylisoquinolyl group, quinoxalinyl group, phenylquinoxalinyl group, quinoxalinylphenyl group, acridinyl group, phenylacridinyl group, acridinyl Phenyl group, phenanthridinyl group, phenylphenanthridinyl group, phenanthridinylphenyl group, phenanthrolinyl group, phenylphenanthrolinyl group, phenanthrolinylphenyl group, pyrrolyl group, phenylpyrrolyl group , Pyrrolylphenyl group, pyridylpyrrolyl group, furanyl group, phenylfuranyl group, furanylphenyl group, pyridylfuranyl group, thienyl group, phenylthienyl group, thienylphenyl group, imidazolyl group, phenylimidazolyl group, imidazolylphenyl group , Oxazolyl group, phenylo Xazolyl group, oxazolylphenyl group, isoxazolyl group, phenylisoxazolyl group, isoxazolylphenyl group, oxadiazolyl group, phenyloxadiazolyl group, oxadiazolylphenyl group, thiazolyl group, phenylthiazolyl group, Thiazolylphenyl group, indolyl group, phenylindolyl group, indolylphenyl group, benzofuranyl group, phenylbenzofuranyl group, benzofuranylphenyl group, benzothiazolyl group, phenylbenzothiazolyl group, benzothiazolylphenyl group , Benzimidazolyl group, phenylbenzoimidazolyl group, benzoimidazolylphenyl group, benzoxazolyl group, phenylbenzoxazolyl group, benzoxazolylphenyl group, benzothiazolyl group, phenylbenzothiazolyl group, benzothiol Zolylphenyl group, dibenzofuranyl group, phenyldibenzofuranyl group, dibenzofuranylphenyl group, dibenzothienyl group, phenyldibenzothienyl group, dibenzothienylphenyl group, carbazolyl group, phenylcarbazolyl group, carbazolylphenyl group, pyridyl Carbazolyl group, pyridylphenylcarbazolyl group, dipyridylcarbazolyl group, carbolinyl group, phenylcarbolinyl group, carbolinylphenyl group, indolocarbazolyl group, phenylindolocarbazolyl group, indolo Carbazolylphenyl group, phenylindolocarbazolylphenyl group, indolobenzothienyl group, phenylindolobenzothienyl group, or indolobenzothienylphenyl group (above, heteroaromatic group which may be linked or condensed) ) Etc. It is below.
 Ar及びArについては、電子輸送材料特性に優れる点で、いずれか一方が、炭素数7~18の縮環芳香族基若しくは下記一般式(2)乃至一般式(9)のいずれかで表される置換基(これらの置換基は、各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)であることが好ましく、いずれか一方が、炭素数7~18の縮環芳香族基若しくは下記一般式(2)乃至一般式(9)のいずれかで表される置換基(これらの置換基は、各々独立して、メチル基又は炭素数10~36のジアリールアミノ基で置換されていてもよい。)であることがより好ましい。 As for Ar 1 and Ar 2 , any one of them is a condensed ring aromatic group having 7 to 18 carbon atoms or any one of the following general formulas (2) to (9), because of excellent electron transport material properties. The substituents represented by these groups are each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, an alkoxy group having 3 to 10 carbon atoms, Preferably a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms as a substituent. Either one is a condensed aromatic group having 7 to 18 carbon atoms or a substituent represented by any one of the following general formulas (2) to (9) (these substituents are each independently Methyl group or dia having 10 to 36 carbon atoms Ruamino may be substituted with a group.) Is more preferable.
 すなわち、Ar及びArについては、電子輸送材料特性に優れる点で、いずれか一方が、炭素数7~18の縮環芳香族基(フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)又は下記一般式(2)乃至一般式(9)のいずれかで表される置換基であることが好ましく、いずれか一方が、炭素数7~18の縮環芳香族基(メチル基又は炭素数10~36のジアリールアミノ基で置換されていてもよい。)又は下記一般式(2)乃至一般式(9)のいずれかで表される置換基であることがより好ましい。 That is, with respect to Ar 1 and Ar 2 , one of them is a condensed aromatic group having 7 to 18 carbon atoms (fluorine atom, methyl group, ethyl group, 3 to 10 carbon atoms, because of excellent electron transport material properties. Alkyl group, methoxy group, ethoxy group, alkoxy group having 3 to 10 carbon atoms, halogenated alkyl group having 1 to 3 carbon atoms, halogenated alkoxy group having 1 to 3 carbon atoms, or diarylamino having 10 to 36 carbon atoms Or a substituent represented by any one of the following general formulas (2) to (9), preferably one of which has 7 to 7 carbon atoms. 18 substituted ring aromatic groups (which may be substituted with a methyl group or a diarylamino group having 10 to 36 carbon atoms) or any one of the following general formulas (2) to (9) More preferred to be a group .
 さらに、Ar及びArについては、電子輸送材料特性に優れる点で、両方が、各々独立して、フェニル基、炭素数7~18の縮環芳香族基、及び下記一般式(2)乃至一般式(9)のいずれかで表される置換基(これらの置換基は、各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)からなる群より選ばれる置換基であることが好ましく、Ar及びArの両方が、各々独立して、フェニル基、炭素数7~18の縮環芳香族基、及び下記一般式(2)乃至一般式(9)のいずれかで表される置換基(これらの置換基は、各々独立して、メチル基又は炭素数10~36のジアリールアミノ基で置換されていてもよい。)からなる群より選ばれる置換基であることがより好ましい。 Further, Ar 1 and Ar 2 are each independently a phenyl group, a condensed aromatic group having 7 to 18 carbon atoms, and the following general formulas (2) to (2) to A substituent represented by any one of the general formula (9) (these substituents are each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, It may have an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms as a substituent. It is preferably a substituent selected from the group consisting of: Ar 1 and Ar 2 are each independently a phenyl group, a condensed aromatic group having 7 to 18 carbon atoms, and the following general formula: Any of (2) to general formula (9) (These substituents may be each independently substituted with a methyl group or a diarylamino group having 10 to 36 carbon atoms). It is more preferable.
 すなわち、Ar及びArについては、電子輸送材料特性に優れる点で、両方が、各々独立して、フェニル基、炭素数7~18の縮環芳香族基(フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)又は下記一般式(2)乃至一般式(9)のいずれかで表される置換基であることが好ましく、Ar及びArの両方が、各々独立して、炭素数7~18の縮環芳香族基(メチル基又は炭素数10~36のジアリールアミノ基で置換されていてもよい。)又は下記一般式(2)乃至一般式(9)のいずれかで表される置換基であることがより好ましい。 That is, with respect to Ar 1 and Ar 2 , both are independently a phenyl group, a condensed ring aromatic group having 7 to 18 carbon atoms (a fluorine atom, a methyl group, an ethyl group) because of excellent electron transport material properties. An alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or the number of carbon atoms 10 to 36 diarylamino groups may be substituted.) Or a substituent represented by any one of the following general formulas (2) to (9), Ar 1 and Both of Ar 2 are each independently a condensed aromatic group having 7 to 18 carbon atoms (which may be substituted with a methyl group or a diarylamino group having 10 to 36 carbon atoms) or the following general formula (2 ) To general formula (9) A substituent represented by any of these is more preferable.
 以下に、一般式(2)~(9)で表される置換基を示す。
Figure JPOXMLDOC01-appb-C000014
The substituents represented by the general formulas (2) to (9) are shown below.
Figure JPOXMLDOC01-appb-C000014
(一般式(2)~(9)中、Arは、各々独立して、炭素数4~30の芳香族基(各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)、メチル基、エチル基、メトキシ基、エトキシ基、炭素数10~36のジアリールアミノ基又は水素原子を表わす。)
 なお、炭素数7~18の縮環芳香族基は、縮環骨格のみを規定するものであり、当該縮環芳香族基の炭素数に置換基の炭素数は含まれない。当該炭素数7~18の縮環芳香族基は、炭素数7~18の縮環芳香族炭化水素基及び炭素数7~18の縮環ヘテロ芳香族基からなり、特に限定するものではないが、例えば、ナフチル基、フルオレニル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、トリフェニレニル基、ペリレニル基、キノリル基、イソキノリル基、アクリジニル基、フェナントリジニル基、フェナントロリル基、インドリル基、インドリジニル基、ベンゾイミダゾリル基、アザインドリジニル基、ベンゾチアゾリル基、ベンゾフラニル基、ベンゾチエニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、インドロカルバゾリル基、又はインドロジベンゾチエニル基が挙げられる。
(In the general formulas (2) to (9), each Ar 3 is independently an aromatic group having 4 to 30 carbon atoms (each independently a fluorine atom, methyl group, ethyl group, 3 to 10 carbon atoms) Alkyl group, methoxy group, ethoxy group, alkoxy group having 3 to 10 carbon atoms, halogenated alkyl group having 1 to 3 carbon atoms, halogenated alkoxy group having 1 to 3 carbon atoms, or diarylamino having 10 to 36 carbon atoms And a methyl group, an ethyl group, a methoxy group, an ethoxy group, a diarylamino group having 10 to 36 carbon atoms, or a hydrogen atom.)
Note that the condensed aromatic group having 7 to 18 carbon atoms defines only the condensed ring skeleton, and the number of carbon atoms of the substituent is not included in the number of carbon atoms of the condensed aromatic group. The condensed ring aromatic group having 7 to 18 carbon atoms is composed of a condensed ring aromatic hydrocarbon group having 7 to 18 carbon atoms and a condensed ring heteroaromatic group having 7 to 18 carbon atoms, and is not particularly limited. For example, naphthyl group, fluorenyl group, anthryl group, phenanthryl group, pyrenyl group, chrysenyl group, triphenylenyl group, perylenyl group, quinolyl group, isoquinolyl group, acridinyl group, phenanthridinyl group, phenanthryl group, indolyl group, indolizinyl group , Benzimidazolyl group, azaindolidinyl group, benzothiazolyl group, benzofuranyl group, benzothienyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group, dibenzofuranyl group, dibenzothienyl group, indolocarbazolyl group, or An indolobenzothienyl group is mentioned.
 また、一般式(2)~(9)における炭素数4~30の芳香族基は、R~Rで示した炭素数4~30の芳香族基と同じ定義であり、特に限定するものではないが、R~Rで例示した置換基と同じ置換基を例示することができる。 In addition, the aromatic group having 4 to 30 carbon atoms in the general formulas (2) to (9) has the same definition as the aromatic group having 4 to 30 carbon atoms represented by R 1 to R 4 and is particularly limited. However, the same substituents as those exemplified for R 1 to R 4 can be exemplified.
 また、一般式(2)~(9)における炭素数10~36のジアリールアミノ基は、特に限定するものではないが、前述の一般式(1)における炭素数10~36のジアリールアミノ基において例示したものと同じものを例示することができる。 Further, the diarylamino group having 10 to 36 carbon atoms in the general formulas (2) to (9) is not particularly limited, but is exemplified in the diarylamino group having 10 to 36 carbon atoms in the general formula (1). The same thing as what was done can be illustrated.
 炭素数10~36のジアリールアミノ基としては、特に限定するものではないが、例えば、N,N-ジフェニルアミノ基、N-トリル-N-フェニルアミノ基、N,N-ジトリルアミノ基、N,N-ジビフェニルアミノ基、N,N-ジ(テルフェニル)アミノ基、N-フェニル-N-ナフチルアミノ基、N-フェニル-N-ビフェニルアミノ基、N-フェニル-N-テルフェニルアミノ基、又はN-ビフェニル-N-テルフェニルアミノ基等が挙げられる。 The diarylamino group having 10 to 36 carbon atoms is not particularly limited. For example, N, N-diphenylamino group, N-tolyl-N-phenylamino group, N, N-ditolylamino group, N, N -Dibiphenylamino group, N, N-di (terphenyl) amino group, N-phenyl-N-naphthylamino group, N-phenyl-N-biphenylamino group, N-phenyl-N-terphenylamino group, or And N-biphenyl-N-terphenylamino group.
 Ar及びArにおいて好ましい、7~18の縮環芳香族基、又は前記一般式(2)乃至一般式(9)のいずれかで表される置換基は、各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、及び炭素数10~36のジアリールアミノ基からなる群より選ばれる置換基を有していてもよく、当該置換基は複数であってもよい。複数の置換基がある場合、それぞれの置換基については同一であっても異なっていてもよい。 Preferred in Ar 1 and Ar 2 are a condensed aromatic group of 7 to 18 or a substituent represented by any one of the general formulas (2) to (9), each independently a fluorine atom, Methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group, alkoxy group having 3 to 10 carbon atoms, halogenated alkyl group having 1 to 3 carbon atoms, halogenated alkoxy having 1 to 3 carbon atoms And may have a substituent selected from the group consisting of a group and a diarylamino group having 10 to 36 carbon atoms, and the substituent may be plural. When there are a plurality of substituents, each substituent may be the same or different.
 なお、一般式(2)~(9)で表される置換基のうち、電子輸送特性に優れる点で、一般式(2)、(3)、(5)、(7)、又は(9)で表される置換基が好ましい。 Of the substituents represented by the general formulas (2) to (9), the general formula (2), (3), (5), (7), or (9) The substituent represented by these is preferable.
 なお、一般式(2)~(9)で表される置換基において、Arは、電子輸送特性に優れる点で、各々独立して、炭素数4~30の芳香族基(各々独立して、フッ素原子、メチル基、メトキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)、メチル基、エチル基、炭素数10~36のジアリールアミノ基又は水素原子であることが好ましく、各々独立して、炭素数4~24の芳香族基(各々独立して、フッ素原子、メチル基、メトキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)、メチル基、エチル基、炭素数10~36のジアリールアミノ基又は水素原子であることがより好ましい。
 これらのうち、Arは、各々独立して、フェニル基、ピリジルフェニル基、フェニルピリジル基、ジフェニルピリジル基、ジフェニルピリジルフェニル基、ピリミジルフェニル基、キノリルフェニル基、イソキノリルフェニル基、ナフチル基、ビフェニリル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、テルフェニル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、トリフェニレニル基、ピリジル基、ビピリジル基、テルピリジル基、キノリル基、イソキノリル基、インドリル基、イミダゾリル基、ベンゾイミダゾリル基、チアゾール基、カルバゾリル基、フェニルカルバゾリル基、ピリジルカルバゾリル基、ジピリジルカルバゾリル基、カルボリニル基、フェニルカルボリニル基、ピリジルカルボリニル基、若しくはジベンゾチエニル基(これらの置換基は、各々独立して、フッ素原子、メチル基、メトキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)、メチル基、エチル基、炭素数10~36のジアリールアミノ基、又は水素原子であることがより好ましい。
 さらに、これらのうち、Arは、各々独立して、フェニル基、ピリジルフェニル基、フェニルピリジル基、ジフェニルピリジル基、ジフェニルピリジルフェニル基、ピリミジルフェニル基、キノリルフェニル基、イソキノリルフェニル基、ナフチル基、ビフェニリル基、フルオレニル基、ベンゾフルオレニル基、テルフェニル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、トリフェニレニル基、ピリジル基、ビピリジル基、テルピリジル基、キノリル基、イソキノリル基、インドリル基、ベンゾイミダゾリル基、カルバゾリル基、フェニルカルバゾリル基、ピリジルカルバゾリル基、ジピリジルカルバゾリル基、カルボリニル基、フェニルカルボリニル基、ピリジルカルボリニル基、若しくはジベンゾチエニル基(これらの置換基は、各々独立して、フッ素原子、メチル基、メトキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有してもよい。)、メチル基、エチル基、炭素数10~36のジアリールアミノ基、又は水素原子であることがよりに好ましい。
 さらに、これらのうち、Arは、各々独立して、フェニル基、ピリジルフェニル基、フェニルピリジル基、ジフェニルピリジル基、ジフェニルピリジルフェニル基、ピリミジルフェニル基、キノリルフェニル基、イソキノリルフェニル基、ナフチル基、ビフェニリル基、フルオレニル基、ベンゾフルオレニル基、テルフェニル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、トリフェニレニル基、ピリジル基、ビピリジル基、テルピリジル基、キノリル基、イソキノリル基、インドリル基、ベンゾイミダゾリル基、カルバゾリル基、フェニルカルバゾリル基、ピリジルカルバゾリル基、ジピリジルカルバゾリル基、カルボリニル基、フェニルカルボリニル基、ピリジルカルボリニル基、若しくはジベンゾチエニル基(これらの置換基は、各々独立してメチル基を置換基として有してもよい。)、又は水素原子であることがより好ましい。
In the substituents represented by the general formulas (2) to (9), Ar 3 is each independently an aromatic group having 4 to 30 carbon atoms (each independently) in terms of excellent electron transport properties. , A fluorine atom, a methyl group, a methoxy group, or a diarylamino group having 10 to 36 carbon atoms as a substituent), a methyl group, an ethyl group, a diarylamino group having 10 to 36 carbon atoms, or hydrogen Preferably, they are each independently an aromatic group having 4 to 24 carbon atoms (each independently having a fluorine atom, a methyl group, a methoxy group, or a diarylamino group having 10 to 36 carbon atoms as a substituent). And a methyl group, an ethyl group, a diarylamino group having 10 to 36 carbon atoms, or a hydrogen atom is more preferable.
Among these, Ar 3 is each independently a phenyl group, pyridylphenyl group, phenylpyridyl group, diphenylpyridyl group, diphenylpyridylphenyl group, pyrimidylphenyl group, quinolylphenyl group, isoquinolylphenyl group, Naphtyl, biphenylyl, fluorenyl, benzofluorenyl, dibenzofluorenyl, terphenyl, anthryl, phenanthryl, pyrenyl, chrysenyl, triphenylenyl, pyridyl, bipyridyl, terpyridyl, quinolyl Group, isoquinolyl group, indolyl group, imidazolyl group, benzimidazolyl group, thiazole group, carbazolyl group, phenylcarbazolyl group, pyridylcarbazolyl group, dipyridylcarbazolyl group, carbolinyl group, phenylcarbolinyl group, pyridyl group A carbolinyl group or a dibenzothienyl group (these substituents may each independently have a fluorine atom, a methyl group, a methoxy group, or a diarylamino group having 10 to 36 carbon atoms as a substituent). More preferably a methyl group, an ethyl group, a diarylamino group having 10 to 36 carbon atoms, or a hydrogen atom.
Furthermore, among these, Ar 3 is each independently a phenyl group, pyridylphenyl group, phenylpyridyl group, diphenylpyridyl group, diphenylpyridylphenyl group, pyrimidylphenyl group, quinolylphenyl group, isoquinolylphenyl. Group, naphthyl group, biphenylyl group, fluorenyl group, benzofluorenyl group, terphenyl group, anthryl group, phenanthryl group, pyrenyl group, chrysenyl group, triphenylenyl group, pyridyl group, bipyridyl group, terpyridyl group, quinolyl group, isoquinolyl group , Indolyl group, benzimidazolyl group, carbazolyl group, phenylcarbazolyl group, pyridylcarbazolyl group, dipyridylcarbazolyl group, carbolinyl group, phenylcarbolinyl group, pyridylcarbolinyl group, or dibenzothienyl group (this These substituents may each independently have a fluorine atom, a methyl group, a methoxy group, or a diarylamino group having 10 to 36 carbon atoms as a substituent), a methyl group, an ethyl group, a carbon It is more preferably a diarylamino group of several tens to 36 or a hydrogen atom.
Furthermore, among these, Ar 3 is each independently a phenyl group, pyridylphenyl group, phenylpyridyl group, diphenylpyridyl group, diphenylpyridylphenyl group, pyrimidylphenyl group, quinolylphenyl group, isoquinolylphenyl. Group, naphthyl group, biphenylyl group, fluorenyl group, benzofluorenyl group, terphenyl group, anthryl group, phenanthryl group, pyrenyl group, chrysenyl group, triphenylenyl group, pyridyl group, bipyridyl group, terpyridyl group, quinolyl group, isoquinolyl group , Indolyl group, benzimidazolyl group, carbazolyl group, phenylcarbazolyl group, pyridylcarbazolyl group, dipyridylcarbazolyl group, carbolinyl group, phenylcarbolinyl group, pyridylcarbolinyl group, or dibenzothienyl group (this These substituents may each independently have a methyl group as a substituent.), Or more preferably a hydrogen atom.
 なお、前記炭素数4~24の芳香族基は、環骨格の全炭素数が4~24であって縮合又は連結していてもよい芳香族基を示す。なお、当該炭素数4~24の芳香族基には、別途有してもよい置換基の炭素数は含まれない。当該炭素数4~24の芳香族基における芳香族基は、芳香族炭化水素基、ヘテロ芳香族基、又はこれらが縮合又は連結したものであれば、特に限定されるものではない。 The aromatic group having 4 to 24 carbon atoms is an aromatic group having a ring skeleton having 4 to 24 carbon atoms and may be condensed or linked. Note that the aromatic group having 4 to 24 carbon atoms does not include the carbon number of a substituent that may be separately provided. The aromatic group in the aromatic group having 4 to 24 carbon atoms is not particularly limited as long as it is an aromatic hydrocarbon group, a heteroaromatic group, or a condensed or linked group thereof.
 当該炭素数4~24の芳香族基としては、特に限定するものではないが、前述の炭素数4~66の芳香族基において例示した置換基のうち、炭素数の総数が24以下のものを例示することができ、例えば、フェニル基、ピリジルフェニル基、フェニルピリジル基、ジフェニルピリジル基、ジフェニルピリジルフェニル基、ピリミジルフェニル基、ピリミジルフェニル基、キノリルフェニル基、イソキノリルフェニル基、ナフチル基、ビフェニリル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、テルフェニル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、トリフェニレニル基、ピリジル基、ビピリジル基、テルピリジル基、キノリル基、イソキノリル基、インドリル基、イミダゾリル基、ベンゾイミダゾリル基、チアゾール基、カルバゾリル基、フェニルカルバゾリル基、ピリジルカルバゾリル基、ジピリジルカルバゾリル基、カルボリニル基、フェニルカルボリニル基、ピリジルカルボリニル基、又はジベンゾチエニル基があげられる。 The aromatic group having 4 to 24 carbon atoms is not particularly limited, but among the substituents exemplified in the aromatic group having 4 to 66 carbon atoms, those having a total number of carbon atoms of 24 or less. For example, phenyl group, pyridylphenyl group, phenylpyridyl group, diphenylpyridyl group, diphenylpyridylphenyl group, pyrimidylphenyl group, pyrimidylphenyl group, quinolylphenyl group, isoquinolylphenyl group , Naphthyl group, biphenylyl group, fluorenyl group, benzofluorenyl group, dibenzofluorenyl group, terphenyl group, anthryl group, phenanthryl group, pyrenyl group, chrysenyl group, triphenylenyl group, pyridyl group, bipyridyl group, terpyridyl group, Quinolyl group, isoquinolyl group, indolyl group, imidazolyl group, ben Imidazolyl group, a thiazole group, carbazolyl group, phenylcarbazolyl group, pyridyl carbazolyl group, dipyridyl carbazolyl group, carbolinyl group, phenyl carbonium Li group, pyridylcarbonitrile Li group, or dibenzothienyl group.
 一般式(1)で表されるベンゾチエノピリミジン化合物の具体例としては、以下の化合物1から140を例示できるが、本発明はこれらに限定されるものではない。 Specific examples of the benzothienopyrimidine compound represented by the general formula (1) include the following compounds 1 to 140, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 次に、本発明の製造方法について説明する。 Next, the manufacturing method of the present invention will be described.
 本発明のベンゾチエノピリミジン化合物(1)は、塩基の存在下、金属触媒の存在下、又は塩基及び金属触媒の存在下に、次の反応式(1)、反応式(2)、又は反応式(12)で示される方法により製造することができる。 The benzothienopyrimidine compound (1) of the present invention is prepared by the following reaction formula (1), reaction formula (2), or reaction formula in the presence of a base, a metal catalyst, or a base and a metal catalyst. It can be produced by the method shown in (12).
 また、これ以降、一般式(10)で表される化合物については略儀的に化合物(10)と称する。なお、化合物(11)を含めその他の化合物についても同義とする。 Further, hereinafter, the compound represented by the general formula (10) is generally referred to as the compound (10). In addition, it is synonymous also about other compounds including a compound (11).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(一般式中、
~Rは、各々独立して、炭素数4~66の芳香族基(各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)、水素原子、重水素原子、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、メチルチオ基、エチルチオ基、炭素数3~10のスルフィド基、又は炭素数10~36のジアリールアミノ基を表す。
Ar及びArは、各々独立して、炭素数4~66の芳香族基(各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)を表す。
Ar11、Ar12及びAr13は、各々独立して、炭素数4~66の芳香族基(各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)を表す。
~Xは、各々独立して、炭素数4~66の芳香族基(各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)、水素原子、重水素原子、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、メチルチオ基、エチルチオ基、炭素数3~10のスルフィド基、炭素数10~36のジアリールアミノ基、又は脱離基を表す。
~X及びYは、各々独立して、水素原子、重水素原子、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、メチルチオ基、エチルチオ基、炭素数3~10のスルフィド基、炭素数10~36のジアリールアミノ基又は脱離基を表す。
は脱離基を表す。
Zは、塩素原子、臭素原子、トリフラート又はヨウ素原子を表す。
なお、一般式(10)において、X~Xのうち少なくとも一つは脱離基である。)
 また、反応式(1)で用いる化合物(10)は、塩基又は酸の存在下に、次の反応式(3)、又は反応式(13)で示される方法により製造することができる。同様に、化合物(11)は、塩基又は酸の存在下に、次の反応式(4)、及び反応式(5)で示される方法、又は反応式(14)、及び反応式(15)で示される方法により製造することができる。
(In the general formula,
R 1 to R 4 are each independently an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group) A substituent having an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms. Or a hydrogen atom, a deuterium atom, a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, an alkoxy group having 3 to 10 carbon atoms, a methylthio group, or an ethylthio group. Represents a sulfide group having 3 to 10 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms.
Ar 1 and Ar 2 are each independently an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group) A substituent having an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms. Is also possible.
Ar 11 , Ar 12 and Ar 13 are each independently an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group). , An ethoxy group, an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms as a substituent. It may be.)
X 1 to X 4 each independently represents an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group or an ethoxy group). A substituent having an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms. Or a hydrogen atom, a deuterium atom, a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, an alkoxy group having 3 to 10 carbon atoms, a methylthio group, or an ethylthio group. Represents a sulfide group having 3 to 10 carbon atoms, a diarylamino group having 10 to 36 carbon atoms, or a leaving group.
X 5 to X 6 and Y each independently represent a hydrogen atom, deuterium atom, fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group, or 3 to 10 carbon atoms. An alkoxy group, a methylthio group, an ethylthio group, a sulfide group having 3 to 10 carbon atoms, a diarylamino group having 10 to 36 carbon atoms, or a leaving group.
X 7 represents a leaving group.
Z represents a chlorine atom, a bromine atom, a triflate or an iodine atom.
In general formula (10), at least one of X 1 to X 6 is a leaving group. )
Moreover, the compound (10) used by Reaction formula (1) can be manufactured by the method shown by following Reaction formula (3) or Reaction formula (13) in presence of a base or an acid. Similarly, in the presence of a base or an acid, the compound (11) can be obtained by the following reaction formula (4) and the method represented by the reaction formula (5), or the reaction formula (14) and the reaction formula (15). It can be produced by the method shown.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(一般式中、
Ar11及びAr12は、各々独立して、炭素数4~66の芳香族基(各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)を表す。
はメチル基、エチル基、炭素数3~10のアルキル基、又は炭素数5~10の芳香族基を表す。
~Xは各々独立して、炭素数4~66の芳香族基(各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)、水素原子、重水素原子、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、メチルチオ基、エチルチオ基、炭素数3~10のスルフィド基、炭素数10~36のジアリールアミノ基、又は脱離基を表す。
~Xは、各々独立して、水素原子、重水素原子、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、メチルチオ基、エチルチオ基、炭素数3~10のスルフィド基、炭素数10~36のジアリールアミノ基、又は脱離基を表す。
は脱離基を表す。
Zは、塩素原子、臭素原子、トリフラート又はヨウ素原子を表す。
なお、一般式(10)及びそれに準ずる一般式(15)、(16)及び(17)において、X~Xの少なくとも一つは脱離基である。)
 Rは、メチル基、エチル基、炭素数3~10のアルキル基、又は炭素数5~10の芳香族基を表す。炭素数3~10のアルキル基は、前記と同じ定義を表す。炭素数5~10の芳香族基としては、特に限定するものではないが、例えば、ピリジル基、フェニル基、トリル基、tert-ブチルフェニル基、ナフチル基、キノリル基、イソキノリル基等が挙げられる。
(In the general formula,
Ar 11 and Ar 12 are each independently an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group) A substituent having an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms. Is also possible.
R 5 represents a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, or an aromatic group having 5 to 10 carbon atoms.
X 1 to X 4 are each independently an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, It may have an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms as a substituent. Hydrogen atom, deuterium atom, fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group, alkoxy group having 3 to 10 carbon atoms, methylthio group, ethylthio group, It represents a sulfide group having 3 to 10 carbon atoms, a diarylamino group having 10 to 36 carbon atoms, or a leaving group.
X 5 to X 6 each independently represent a hydrogen atom, a deuterium atom, a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, or an alkoxy having 3 to 10 carbon atoms. Represents a group, a methylthio group, an ethylthio group, a sulfide group having 3 to 10 carbon atoms, a diarylamino group having 10 to 36 carbon atoms, or a leaving group.
X 7 represents a leaving group.
Z represents a chlorine atom, a bromine atom, a triflate or an iodine atom.
In general formula (10) and general formulas (15), (16) and (17) corresponding thereto, at least one of X 1 to X 6 is a leaving group. )
R 5 represents a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, or an aromatic group having 5 to 10 carbon atoms. The alkyl group having 3 to 10 carbon atoms has the same definition as above. The aromatic group having 5 to 10 carbon atoms is not particularly limited, and examples thereof include a pyridyl group, a phenyl group, a tolyl group, a tert-butylphenyl group, a naphthyl group, a quinolyl group, and an isoquinolyl group.
 Zは、塩素原子、臭素原子、トリフラート又はヨウ素原子を表す。このうち、反応収率がよく、入手の容易さ等の点で、塩素原子又は臭素原子が好ましい。 Z represents a chlorine atom, a bromine atom, a triflate or an iodine atom. Among these, a chlorine atom or a bromine atom is preferable in terms of good reaction yield and easy availability.
 X~X及びYで表される脱離基としては、特に限定するものではないが、例えば、水素原子、塩素原子、臭素原子、トリフラート、ヨウ素原子、金属含有基(例えば、Li、Na、MgCl、MgBr、MgI、CuCl、CuBr、CuI、AlCl、AlBr、Al(Me)、Al(Et)、Al(Bu)、Sn(Me)、Sn(Bu)、SnF、ZnR24(R24は、ハロゲン原子を表す。ZnR24としては、ZnCl、ZnBr、ZnI等が例示できる)、Si(R21(例えば、SiMe、SiPh、SiMePh、SiCl、SiF、Si(OMe)、Si(OEt)、Si(OMe)OH等)、BFK、B(OR22(例えば、B(OH)、B(OMe)、B(OPr)、B(OBu)、B(OPh)等)、B(OR23等)等が例示できる。 The leaving group represented by X 1 to X 7 and Y is not particularly limited. For example, a hydrogen atom, a chlorine atom, a bromine atom, a triflate, an iodine atom, a metal-containing group (for example, Li, Na MgCl, MgBr, MgI, CuCl, CuBr, CuI, AlCl 2 , AlBr 2 , Al (Me) 2 , Al (Et) 2 , Al ( i Bu) 2 , Sn (Me) 3 , Sn (Bu) 3 , SnF 3 , ZnR 24 (R 24 represents a halogen atom. Examples of ZnR 24 include ZnCl, ZnBr, ZnI, etc.), Si (R 21 ) 3 (for example, SiMe 3 , SiPh 3 , SiMePh 2 , SiCl 3, SiF 3, Si (OMe ) 3, Si (OEt) 3, Si (OMe) 2 OH , etc.), BF 3 K, B ( OR 22) 2 ( e.g., B OH) 2, B (OMe) 2, B (O i Pr) 2, B (OBu) 2, B (OPh) 2 or the like), B (OR 23) 3, etc.) and the like.
 X~X及びYで表される金属含有基には、エーテル類やアミン類などの配位子が配位していても良く、配位子の種類としては反応式(1)を阻害しないものであれば制限はない。 The metal-containing group represented by X 1 to X 7 and Y may be coordinated with a ligand such as ethers or amines. There is no limit as long as it does not.
 また、B(OR22としては、次の(I)から(VII)で示されるものが例示でき、収率がよい点で(II)で示されるものが好ましい。
Figure JPOXMLDOC01-appb-C000030
Moreover, as B (OR < 22 >) 2 , what is shown by following (I) to (VII) can be illustrated, and what is shown by (II) is a point with a sufficient yield.
Figure JPOXMLDOC01-appb-C000030
 前記B(OR23としては次の(I)から(III)で示されるものが例示できる。
Figure JPOXMLDOC01-appb-C000031
Examples of B (OR 23 ) 3 include those represented by the following (I) to (III).
Figure JPOXMLDOC01-appb-C000031
 これらの脱離基のうち、反応後処理の容易性、原料調達の容易さの点で、塩素原子、臭素原子、トリフラート、ヨウ素原子、B(OR22、又はB(OR23が好ましい。 Among these leaving groups, chlorine atom, bromine atom, triflate, iodine atom, B (OR 22 ) 2 , or B (OR 23 ) 3 is selected from the viewpoint of ease of post-reaction treatment and raw material procurement. preferable.
 次に反応式(1)について説明する。
 反応式(1)の反応に示すように、本願発明の化合物(1)は、金属触媒の存在下又は塩基及び金属触媒の存在下、化合物(10)又は化合物(11)と化合物(21)を用いて、カップリング反応を行うことで合成することが出来る。
 なお、カップリング反応の効率等が優れる点で、反応式(1)の反応において、金属触媒は、パラジウム触媒、ニッケル触媒又は銅触媒であることが好ましい。
 なお、反応式(1)の反応において、塩基を加えて反応を行うことも可能であり、反応収率が向上する点で、塩基を添加することが好ましい。ただし、X~X及びYが水素原子、塩素原子、臭素原子、トリフラート、ヨウ素原子、B(OR22、又はSi(R21の場合は、塩基を加えることを必須とする。
Next, reaction formula (1) will be described.
As shown in the reaction of the reaction formula (1), the compound (1) of the present invention is obtained by reacting the compound (10) or the compound (11) with the compound (21) in the presence of a metal catalyst or in the presence of a base and a metal catalyst. And can be synthesized by performing a coupling reaction.
In addition, it is preferable that a metal catalyst is a palladium catalyst, a nickel catalyst, or a copper catalyst in reaction of Reaction formula (1) at the point which the efficiency etc. of a coupling reaction are excellent.
In the reaction of reaction formula (1), it is also possible to carry out the reaction by adding a base, and it is preferable to add a base from the viewpoint of improving the reaction yield. However, when X 1 to X 7 and Y are a hydrogen atom, a chlorine atom, a bromine atom, a triflate, an iodine atom, B (OR 22 ) 2 , or Si (R 21 ) 3 , it is essential to add a base. .
 また、反応式(1)の反応において、相関移動触媒を添加することもできる。相関移動触媒としては、特に限定するものではないが、例えば、18-クラウン-6-エーテル等を用いることができる。なお、その添加量としては、反応を著しく阻害しない範囲の任意の量である。 Further, a phase transfer catalyst can be added in the reaction of the reaction formula (1). The phase transfer catalyst is not particularly limited. For example, 18-crown-6-ether or the like can be used. The amount added is an arbitrary amount within a range that does not significantly inhibit the reaction.
 反応式(1)の反応に用いる金属触媒としては、特に限定するものではないが、例えば、パラジウム触媒、銅触媒、ニッケル触媒があげられる。 The metal catalyst used in the reaction of the reaction formula (1) is not particularly limited, and examples thereof include a palladium catalyst, a copper catalyst, and a nickel catalyst.
 パラジウム触媒としては、特に限定するものではないが、例えば、塩化パラジウム、酢酸パラジウム、トリフルオロ酢酸パラジウム、硝酸パラジウム等の塩を例示することができる。さらに、π-アリルパラジウムクロリドダイマー、パラジウムアセチルアセトナト、ビス(ジベンジリデンアセトン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム、トリ(tert-ブチル)ホスフィンパラジウム及びジクロロ(1,1′-ビス(ジフェニルホスフィノ)フェロセン)パラジウム等を例示することができる。中でも、ジクロロビス(トリフェニルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム、トリ(tert-ブチル)ホスフィンパラジウム等の第三級ホスフィンを配位子として有するパラジウム錯体は収率がよい点で好ましく、入手容易である点で、トリ(tert-ブチル)ホスフィンパラジウムがさらに好ましい。 The palladium catalyst is not particularly limited, and examples thereof include salts of palladium chloride, palladium acetate, palladium trifluoroacetate, palladium nitrate, and the like. Further, π-allyl palladium chloride dimer, palladium acetylacetonate, bis (dibenzylideneacetone) palladium, tris (dibenzylideneacetone) dipalladium, dichlorobis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) palladium, tri (tert Examples include -butyl) phosphine palladium and dichloro (1,1'-bis (diphenylphosphino) ferrocene) palladium. Among them, a palladium complex having a tertiary phosphine as a ligand, such as dichlorobis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) palladium, tri (tert-butyl) phosphinepalladium, is preferable in terms of high yield, and is available. In terms of ease, tri (tert-butyl) phosphine palladium is more preferable.
 銅触媒としては、特に限定するものではないが、例えば、塩化銅、臭化銅、ヨウ化銅、酸化銅、銅トリフラートがあげられる。中でも、酸化銅、ヨウ化銅が、カップリング反応成績に優れる点で、好ましく、入手容易である点で、酸化銅が更に好ましい。 The copper catalyst is not particularly limited, and examples thereof include copper chloride, copper bromide, copper iodide, copper oxide, and copper triflate. Among these, copper oxide and copper iodide are preferable from the viewpoint of excellent coupling reaction results, and copper oxide is more preferable from the viewpoint of easy availability.
 ニッケル触媒としては、特に限定するものではないが、例えば、塩化ニッケル、臭化ニッケル、塩化ニッケル水和物、ジクロロ(ジメトキシエタン)ニッケル、ジクロロ[1,2-ビス(ジフェニルホスフィノ)エタン]ニッケル、ジクロロ[1,3-ビス(ジフェニルホスフィノ)プロパン]ニッケル、ジクロロ[1,4-ビス(ジフェニルホスフィノ)ブタン]ニッケル、ジクロロ[1,1′-ビス(ジフェニルホスフィノ)フェロセン]ニッケル(前記4つは、第三級ホスフィンを配位子として有するニッケル錯体の一例)、ジクロロ(N,N,N′,N′-テトラメチルエチレンジアミン)ニッケルがあげられる。中でも、ジクロロ(ジメトキシエタン)ニッケル、ジクロロ[1,4-ビス(ジフェニルホスフィノ)ブタン]ニッケル、ジクロロ(N,N,N′,N′-テトラメチルエチレンジアミン)ニッケルが、カップリング反応成績に優れる点で、好ましく、入手容易である点で、ジクロロ(ジメトキシエタン)ニッケル、ジクロロ[1,4-ビス(ジフェニルホスフィノ)ブタン]ニッケルがさらに好ましい。 The nickel catalyst is not particularly limited. For example, nickel chloride, nickel bromide, nickel chloride hydrate, dichloro (dimethoxyethane) nickel, dichloro [1,2-bis (diphenylphosphino) ethane] nickel Dichloro [1,3-bis (diphenylphosphino) propane] nickel, dichloro [1,4-bis (diphenylphosphino) butane] nickel, dichloro [1,1′-bis (diphenylphosphino) ferrocene] nickel ( Examples of the four include nickel complexes having tertiary phosphine as a ligand) and dichloro (N, N, N ′, N′-tetramethylethylenediamine) nickel. Among them, dichloro (dimethoxyethane) nickel, dichloro [1,4-bis (diphenylphosphino) butane] nickel, and dichloro (N, N, N ', N'-tetramethylethylenediamine) nickel have excellent coupling reaction results. In terms of this point, dichloro (dimethoxyethane) nickel and dichloro [1,4-bis (diphenylphosphino) butane] nickel are more preferable in terms of easy availability.
 なお、上記の第三級ホスフィンを配位子として有するパラジウム錯体及び第三級ホスフィンを配位子として有するニッケル錯体については、パラジウム塩、ニッケル塩又はそれらの錯化合物に第三級ホスフィンを添加して調整することができる。なお、当該調整は、反応とは別に行ったうえで反応系中に加えることもできるし、反応系中で行うこともできる。 For palladium complexes having the above tertiary phosphine as a ligand and nickel complexes having a tertiary phosphine as a ligand, a tertiary phosphine is added to a palladium salt, nickel salt or complex thereof. Can be adjusted. The adjustment can be performed separately from the reaction and then added to the reaction system, or can be performed in the reaction system.
 第三級ホスフィンとしては、特に限定するものではないが、例えば、トリフェニルホスフィン、トリメチルホスフィン、トリブチルホスフィン、トリ(tert-ブチル)ホスフィン、トリシクロヘキシルホスフィン、tert-ブチルジフェニルホスフィン、9,9-ジメチル-4,5-ビス(ジフェニルホスフィノ)キサンテン、2-(ジフェニルホスフィノ)-2′-(N,N-ジメチルアミノ)ビフェニル、2-(ジ-tert-ブチルホスフィノ)ビフェニル、2-(ジシクロヘキシルホスフィノ)ビフェニル、ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1′-ビス(ジフェニルホスフィノ)フェロセン、トリ(2-フリル)ホスフィン、トリ(o-トリル)ホスフィン、トリス(2,5-キシリル)ホスフィン、(±)-2,2′-ビス(ジフェニルホスフィノ)-1,1′-ビナフチル、2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル等を例示することができる。このうち、入手容易であり、収率がよい点で、(tert-ブチル)ホスフィン又は2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニルが好ましい。 The tertiary phosphine is not particularly limited. For example, triphenylphosphine, trimethylphosphine, tributylphosphine, tri (tert-butyl) phosphine, tricyclohexylphosphine, tert-butyldiphenylphosphine, 9,9-dimethyl. -4,5-bis (diphenylphosphino) xanthene, 2- (diphenylphosphino) -2 '-(N, N-dimethylamino) biphenyl, 2- (di-tert-butylphosphino) biphenyl, 2- ( Dicyclohexylphosphino) biphenyl, bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, 1,1'-bis (dipheny Phosphino) ferrocene, tri (2-furyl) phosphine, tri (o-tolyl) phosphine, tris (2,5-xylyl) phosphine, (±) -2,2′-bis (diphenylphosphino) -1,1 ′ -Binaphthyl, 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl and the like can be exemplified. Of these, (tert-butyl) phosphine or 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl is preferred because it is readily available and yields are good.
 パラジウム塩、ニッケル塩又はそれらの錯化合物に第三級ホスフィンを添加する場合、第三級ホスフィンの添加量は、パラジウム塩、ニッケル塩又はそれらの錯化合物の1モル(パラジウム若しくはニッケル原子換算)に対して0.1~10倍モルであることが好ましく、収率がよい点で0.3~5倍モルであることがさらに好ましい。 When a tertiary phosphine is added to a palladium salt, nickel salt or complex thereof, the addition amount of the tertiary phosphine is 1 mol of palladium salt, nickel salt or complex thereof (in terms of palladium or nickel atom). On the other hand, the amount is preferably 0.1 to 10 times mol, and more preferably 0.3 to 5 times mol in terms of good yield.
 なお、上記の銅触媒には、別途、配位子を添加することも可能である。銅触媒に添加する配位子としては、特に限定するものではないが、例えば、2,2′-ビピリジン、1,10-フェナントロリン、N,N,N′,N′-テトラメチルエチレンジアミン、トリフェニルホスフィン、2-(ジシクロヘキシルホスフィノ)ビフェニル等を例示することができる。このうち、入手容易であり、収率がよい点で、1,10-フェナントロリンが好ましい。 In addition, it is also possible to add a ligand separately to said copper catalyst. The ligand added to the copper catalyst is not particularly limited. For example, 2,2′-bipyridine, 1,10-phenanthroline, N, N, N ′, N′-tetramethylethylenediamine, triphenyl Examples include phosphine, 2- (dicyclohexylphosphino) biphenyl, and the like. Of these, 1,10-phenanthroline is preferred because it is readily available and yields are good.
 反応式(1)において、用いることのできる塩基としては、特に限定するものではないが、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸カリウム、酢酸ナトリウム、リン酸カリウム、リン酸ナトリウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等を例示することができる。このうち、収率がよい点で、炭酸カリウム、リン酸カリウム又は水酸化ナトリウムが好ましい。 In the reaction formula (1), the base that can be used is not particularly limited. For example, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, potassium acetate, sodium acetate , Potassium phosphate, sodium phosphate, sodium fluoride, potassium fluoride, cesium fluoride and the like. Among these, potassium carbonate, potassium phosphate, or sodium hydroxide is preferable in terms of a good yield.
 反応式(1)の反応は、溶媒中で実施することが好ましい。溶媒としては、特に制限はないが、例えば、水、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)、トルエン、ベンゼン、ジエチルエーテル、1,4-ジオキサン、エタノール、ブタノール又はキシレン等を例示することができ、これらを適宜組み合わせて用いてもよい。このうち、収率がよい点で、1,4-ジオキサン、キシレン、トルエン及びブタノールの混合溶媒、又はキシレン及びブタノールの混合溶媒が好ましい。 The reaction of reaction formula (1) is preferably carried out in a solvent. The solvent is not particularly limited, and examples thereof include water, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF), toluene, benzene, diethyl ether, 1,4-dioxane, ethanol, butanol or xylene. These may be exemplified, and these may be used in appropriate combination. Of these, a mixed solvent of 1,4-dioxane, xylene, toluene and butanol or a mixed solvent of xylene and butanol is preferable in terms of a good yield.
 反応式(1)における化合物(21)としては、特に限定するものではないが、例えば、次の4-1~4-63で表される化合物を例示することができる。 The compound (21) in the reaction formula (1) is not particularly limited, but examples thereof include the compounds represented by the following 4-1 to 4-63.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(これらの置換基は、各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化メチル基、炭素数1~3のハロゲン化メトキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有してもよい。
また、Yは、上記一般式(21)におけるYと同じ定義である。)
(These substituents are each independently a fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group, alkoxy group having 3 to 10 carbon atoms, or 1 to 3 carbon atoms. A halogenated methyl group, a halogenated methoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms may be used as a substituent.
Y is the same definition as Y in the general formula (21). )
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(これらの置換基は、各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化メチル基、炭素数1~3のハロゲン化メトキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有してもよい。
また、Yは、上記一般式(21)におけるYと同じ定義である。)
(These substituents are each independently a fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group, alkoxy group having 3 to 10 carbon atoms, or 1 to 3 carbon atoms. A halogenated methyl group, a halogenated methoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms may be used as a substituent.
Y is the same definition as Y in the general formula (21). )
 化合物(21)は、例えば、J.Tsuji著、「Palladium Reagents and Catalysts」,John Wiley & Sons,2004年、Journal of Organic Chemistry,60巻,7508-7510,1995年、Journal of Organic Chemistry,65巻,164-168,2000年、Organic Letters,10巻,941-944,2008年、又はChemistry of Materials,20巻,5951-5953,2008年に開示されている方法を用いて製造することができる。また化合物(21)中の任意の水素原子は重水素原子に置換されていてもよい。 Compound (21) is, for example, J. Tsuji, "Palladium Reagents and Catalysts", John Wiley & Sons, 2004, Journal of Organic Chemistry, 60, 7508-7510, 1995, Journal 16: Journal of Japan. 10, 941-944, 2008, or Chemistry of Materials, 20, 595-15953, 2008. In addition, any hydrogen atom in compound (21) may be substituted with a deuterium atom.
 反応式(1)は、化合物(10)又は(11)を、塩基の存在下又は非存在下に、金属触媒の存在下、化合物(21)と反応させ、本発明の化合物(1)を製造する方法であり、鈴木-宮浦反応の反応条件を適用することにより、収率よく目的物を得ることができる。 In the reaction formula (1), the compound (10) or (11) is reacted with the compound (21) in the presence or absence of a base in the presence of a metal catalyst to produce the compound (1) of the present invention. By applying the reaction conditions of the Suzuki-Miyaura reaction, the target product can be obtained in good yield.
 反応式(1)で用いる金属触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、化合物(10)又は(11)の1モルに対して、0.1~0.01倍モル(金属原子換算)であることが好ましい。 The amount of the metal catalyst used in the reaction formula (1) is not particularly limited as long as it is a so-called catalyst amount, but is 0.1% with respect to 1 mol of the compound (10) or (11) in terms of good yield. It is preferred that the amount be 0.01 mol (converted to metal atoms).
 塩基の使用量は特に制限はないが、化合物(21)の1モルに対して、0.5~10倍モルであることが好ましく、収率がよい点で、1~4倍モルであることがさらに好ましい。 The amount of the base used is not particularly limited, but it is preferably 0.5 to 10 times by mole, and 1 to 4 times by mole in terms of good yield, relative to 1 mole of compound (21). Is more preferable.
 反応式(1)で用いる化合物(10)又は(11)と化合物(21)とのモル比に特に制限はないが、化合物(10)又は(11)の脱離基1モルに対して、1~10倍モルの化合物(21)を用いることが好ましく、収率がよい点で1~3倍モルの化合物(21)を用いることがさらに好ましい。 There is no particular limitation on the molar ratio of the compound (10) or (11) and the compound (21) used in the reaction formula (1), but 1 mole per 1 mole of the leaving group of the compound (10) or (11). It is preferable to use ˜10 times mol of compound (21), and more preferably 1 to 3 times mol of compound (21) in terms of good yield.
 なお、化合物(10)及び化合物(11)は、化合物(1)のような、有機電界発光素子の低駆動電圧性、高発光効率性、長寿命性に顕著に優れる化合物を工業的に供給するために優れた材料であり、工業的に非常に価値が高いものである。 In addition, the compound (10) and the compound (11) industrially supply a compound such as the compound (1) that is remarkably excellent in low driving voltage property, high light emission efficiency, and long life of the organic electroluminescence device. Therefore, it is an excellent material and is very valuable industrially.
 次に、反応式(2)、(3)及び(4)について説明する。
 反応式(2)、(3)及び(4)の反応は、それぞれ、塩基又は酸の存在下、それぞれの反応式に記載した化合物を縮環反応させることによって行うことができる。
 反応式(2)、(3)及び(4)の反応において、用いることのできる塩基としては、特に限定するものではないが、例えば、カリウムtert-ブトキシド、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸カリウム、酢酸ナトリウム、リン酸カリウム、リン酸ナトリウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等を例示することができる。このうち、収率がよい点で、カリウムtert-ブトキシドが好ましい。
 また、当該反応に用いることのできる酸としては、特に限定するものではないが、例えば、塩酸、硫酸、炭酸、リン酸、酢酸、安息香酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸、各種ルイス酸等があげられる。ルイス酸としてはAlCl、Al(OTf)、ZnCl、ZnBr、ZnI、Zn(OTf)、FeCl、FeCl、BF、GaCl、InCl、InBr、InI、In(OTf)、Yb(OTf)、SiMeCl、SiMeI、SiMeOTf等があげられる。このうち、収率が良い点で、硫酸が好ましい。
 反応式(2)、(3)及び(4)の反応は、溶媒中で実施することが好ましい。溶媒としては、特に制限はないが、例えば、水、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)、トルエン、ベンゼン、ジエチルエーテル、1,4-ジオキサン、エタノール、ブタノール又はキシレン等を例示することができ、これらを適宜組み合わせて用いてもよい。このうち、収率がよい点で、THF、DMF、キシレンが好ましい。
 塩基の使用量は特に制限はないが、化合物(13)、(16)及び(19)の1モルに対して、0.5~10倍モルであることが好ましく、収率がよい点で、1.1~4.0倍モルであることがさらに好ましい。
Next, reaction formulas (2), (3) and (4) will be described.
The reactions of the reaction formulas (2), (3) and (4) can be carried out by subjecting the compounds described in the respective reaction formulas to a ring condensation reaction in the presence of a base or an acid, respectively.
The base that can be used in the reactions of the reaction formulas (2), (3) and (4) is not particularly limited, and examples thereof include potassium tert-butoxide, sodium hydroxide, potassium hydroxide and sodium carbonate. And potassium carbonate, lithium carbonate, cesium carbonate, potassium acetate, sodium acetate, potassium phosphate, sodium phosphate, sodium fluoride, potassium fluoride, cesium fluoride, and the like. Of these, potassium tert-butoxide is preferred because of its good yield.
The acid that can be used in the reaction is not particularly limited, and examples thereof include hydrochloric acid, sulfuric acid, carbonic acid, phosphoric acid, acetic acid, benzoic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, and p-toluenesulfone. Examples include acids and various Lewis acids. The Lewis acid AlCl 3, Al (OTf) 3 , ZnCl 2, ZnBr 2, ZnI 2, Zn (OTf) 2, FeCl 2, FeCl 3, BF 3, GaCl 3, InCl 3, InBr 3, InI 3, In (OTf) 3 , Yb (OTf) 3 , SiMe 3 Cl, SiMe 3 I, SiMe 3 OTf, and the like. Of these, sulfuric acid is preferred because of its good yield.
The reactions of reaction formulas (2), (3) and (4) are preferably carried out in a solvent. The solvent is not particularly limited, and examples thereof include water, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF), toluene, benzene, diethyl ether, 1,4-dioxane, ethanol, butanol or xylene. These may be exemplified, and these may be used in appropriate combination. Of these, THF, DMF, and xylene are preferable in terms of good yield.
The amount of the base used is not particularly limited, but is preferably 0.5 to 10-fold mol per mol of the compounds (13), (16) and (19), and the yield is good. More preferably, it is 1.1 to 4.0 moles.
 次に反応式(2)の反応について説明する。
 なお、前記反応式(2)については、ワンポットで行ことも可能であるが、それぞれ下記反応式(6)と(7)のようにステップワイズに行うこともできる。
Figure JPOXMLDOC01-appb-C000034
(一般式中、Ar、Ar、R~R、Zについては、反応式(2)と同じ定義を示す。)
Next, the reaction of the reaction formula (2) will be described.
The reaction formula (2) can be performed in one pot, but can also be performed stepwise as shown in the following reaction formulas (6) and (7).
Figure JPOXMLDOC01-appb-C000034
(In the general formula, Ar 1 , Ar 2 , R 1 to R 4 , and Z have the same definitions as those in Reaction Formula (2).)
 反応式(2)の反応に用いる化合物(12)~(14)は、公知の製造方法を用いて製造することもできるし、市販品を用いることもできる。 Compounds (12) to (14) used in the reaction of reaction formula (2) can be produced using a known production method, or commercially available products can be used.
 化合物(12)としては、特に限定するものではないが、例えば、次の5-1~5-38で表される化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000035
The compound (12) is not particularly limited, and examples thereof include the following compounds represented by 5-1 to 5-38.
Figure JPOXMLDOC01-appb-C000035
 化合物(13)としては、特に限定するものではないが、例えば、次の6-1~6-15で表される化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000036
The compound (13) is not particularly limited, and examples thereof include the compounds represented by the following 6-1 to 6-15.
Figure JPOXMLDOC01-appb-C000036
 化合物(14)としては、特に限定するものではないが、例えば、次の7-1~7-39で表される化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000037
The compound (14) is not particularly limited, and examples thereof include the compounds represented by the following 7-1 to 7-39.
Figure JPOXMLDOC01-appb-C000037
 反応式(2)は反応式(6)及び(7)に分解できる。即ち、本反応は化合物(12)が塩基存在下、化合物(13)と反応することにより化合物(22)が生成される。この化合物(22)が反応式(7)で表される様に化合物(14)と反応することで本発明の化合物(1)が得られる。
 塩基の使用量は特に制限はないが、化合物(13)の1モルに対して、0.5~10倍モルであることが好ましく、収率がよい点で、1.1~4.0倍モルであることがさらに好ましい。
 反応式(6)で用いる化合物(12)と化合物(13)とのモル比に特に制限はないが、化合物(13)の1モルに対して、化合物(12)が0.1~10倍モルであることが好ましく、化合物(22)の収率がよい点で、1.1~2.0倍モルであることが好ましい。
 反応式(7)で用いる化合物(22)と化合物(14)とのモル比に特に制限はないが、化合物(22)の1モルに対して、化合物(14)が0.1~20倍モルが好ましく、本発明のベンゾチエノピリミジン化合物(1)の収率がよい点で1.0~5倍が好ましい。
Reaction formula (2) can be decomposed into reaction formulas (6) and (7). That is, in this reaction, compound (12) is produced by reacting compound (12) with compound (13) in the presence of a base. The compound (22) is reacted with the compound (14) as represented by the reaction formula (7) to obtain the compound (1) of the present invention.
The amount of the base to be used is not particularly limited, but is preferably 0.5 to 10 times mol per mol of the compound (13), and 1.1 to 4.0 times in terms of good yield. More preferably, it is a mole.
The molar ratio of the compound (12) and the compound (13) used in the reaction formula (6) is not particularly limited, but the compound (12) is 0.1 to 10-fold mol per mol of the compound (13). In terms of a good yield of the compound (22), it is preferably 1.1 to 2.0 moles.
There is no particular limitation on the molar ratio of the compound (22) and the compound (14) used in the reaction formula (7), but the compound (14) is 0.1 to 20-fold mol with respect to 1 mol of the compound (22). In view of a good yield of the benzothienopyrimidine compound (1) of the present invention, 1.0 to 5 times is preferable.
 次に反応式(12)の反応について説明する。
 なお、前記反応式(12)については、ワンポットで行ことも可能であるが、それぞれ下記反応式(16)と(17)のようにステップワイズに行うこともできる。
Figure JPOXMLDOC01-appb-C000038
(一般式中、Ar、Ar、R~R、Zについては、反応式(2)と同じ定義を示す。)
Next, reaction of Reaction formula (12) is demonstrated.
The reaction formula (12) can be performed in one pot, but can also be performed stepwise as shown in the following reaction formulas (16) and (17).
Figure JPOXMLDOC01-appb-C000038
(In the general formula, Ar 1 , Ar 2 , R 1 to R 4 , and Z have the same definitions as those in Reaction Formula (2).)
 反応式(2)の反応に用いる化合物(12)~(14)は、公知の製造方法を用いて製造することもできるし、市販品を用いることもできる。 Compounds (12) to (14) used in the reaction of reaction formula (2) can be produced using a known production method, or commercially available products can be used.
 化合物(25)としては、特に限定するものではないが、例えば、次の25-1~25-38で表される化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000039
The compound (25) is not particularly limited, and examples thereof include the compounds represented by the following 25-1 to 25-38.
Figure JPOXMLDOC01-appb-C000039
 化合物(26)としては、特に限定するものではないが、例えば、次の26-1~26-15で表される化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000040
The compound (26) is not particularly limited, and examples thereof include the compounds represented by the following 26-1 to 26-15.
Figure JPOXMLDOC01-appb-C000040
 化合物(14)としては、特に限定するものではないが、反応式(2)と同様の化合物を例示することができる。 Compound (14) is not particularly limited, and examples thereof include the same compounds as those in Reaction Formula (2).
 反応式(2)は反応式(16)及び(17)に分解できる。即ち、本反応は化合物(25)が塩基存在下、化合物(26)と反応することにより化合物(22)が生成される。この化合物(22)が反応式(17)で表される様に化合物(14)と反応することで本発明の化合物(1)が得られる。
 塩基の使用量は特に制限はないが、化合物(26)の1モルに対して、0.5~10倍モルであることが好ましく、収率がよい点で、1.1~4.0倍モルであることがさらに好ましい。
 反応式(16)で用いる化合物(25)と化合物(26)とのモル比に特に制限はないが、化合物(26)の1モルに対して、化合物(25)が0.1~10倍モルであることが好ましく、化合物(22)の収率がよい点で、1.1~2.0倍モルであることが好ましい。
 反応式(17)で用いる化合物(22)と化合物(14)とのモル比に特に制限はないが、化合物(22)の1モルに対して、化合物(14)が0.1~20倍モルが好ましく、本発明のベンゾチエノピリミジン化合物(1)の収率がよい点で1.0~5倍が好ましい。
Reaction formula (2) can be decomposed into reaction formulas (16) and (17). That is, in this reaction, compound (22) is produced by reacting compound (25) with compound (26) in the presence of a base. Compound (1) of the present invention is obtained by reacting Compound (22) with Compound (14) as represented by Reaction Formula (17).
The amount of the base used is not particularly limited, but it is preferably 0.5 to 10 times by mole with respect to 1 mole of compound (26), and 1.1 to 4.0 times in terms of good yield. More preferably, it is a mole.
The molar ratio of the compound (25) and the compound (26) used in the reaction formula (16) is not particularly limited, but the compound (25) is 0.1 to 10-fold mol per mol of the compound (26). In terms of a good yield of the compound (22), it is preferably 1.1 to 2.0 moles.
There is no particular limitation on the molar ratio of the compound (22) and the compound (14) used in the reaction formula (17), but the compound (14) is 0.1 to 20-fold mol with respect to 1 mol of the compound (22). In view of a good yield of the benzothienopyrimidine compound (1) of the present invention, 1.0 to 5 times is preferable.
 次に反応式(3)の反応について説明する。
 反応式(3)については、ワンポットで行うことも可能であるが、それぞれ下記反応式(8)と(9)のようにステップワイズに行うこともできる。
Figure JPOXMLDOC01-appb-C000041
(一般式中、Ar11、Ar12、X~X、Zについては、反応式(3)と同じ定義を示す。)
Next, the reaction of the reaction formula (3) will be described.
Reaction formula (3) can be carried out in one pot, but can also be carried out stepwise as shown in the following reaction formulas (8) and (9).
Figure JPOXMLDOC01-appb-C000041
(In the general formula, Ar 11 , Ar 12 , X 1 to X 6 , and Z have the same definitions as in reaction formula (3).)
 化合物(15)~(17)は、公知の方法を用いて製造することもできるし、市販品を用いることもできる。 Compounds (15) to (17) can be produced using known methods, or commercially available products can also be used.
 化合物(15)としては、特に限定するものではないが、例えば、次の8-1~8-10で表される化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000042
The compound (15) is not particularly limited, and examples thereof include the compounds represented by the following 8-1 to 8-10.
Figure JPOXMLDOC01-appb-C000042
 化合物(16)としては、特に限定するものではないが、例えば、次の9-1~9-5で表される化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000043
The compound (16) is not particularly limited, and examples thereof include the compounds represented by the following 9-1 to 9-5.
Figure JPOXMLDOC01-appb-C000043
 化合物(17)としては、特に限定するものではないが、例えば、次の10-1~10-12で表される化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000044
The compound (17) is not particularly limited, and examples thereof include the compounds represented by the following 10-1 to 10-12.
Figure JPOXMLDOC01-appb-C000044
 反応式(3)は塩基又は酸存在下に、化合物(15)と化合物(16)と化合物(17)を反応させ、本発明の化合物(10)を製造する方法である。 Reaction formula (3) is a method for producing the compound (10) of the present invention by reacting the compound (15), the compound (16) and the compound (17) in the presence of a base or an acid.
 反応式(3)は反応式(8)及び(9)に分解できる。即ち、本反応は化合物(15)が塩基存在下、化合物(16)と反応することにより化合物(23)が生成される。この化合物(23)が反応式(9)で表される様に化合物(17)と反応することで本発明の化合物(10)が得られる。
 化合物(23)は単離してもよいが、単離せず、ワンポットで次工程である反応(9)に用いてもよい。
 塩基の使用量は特に制限はないが、化合物(16)の1モルに対して、0.5~10倍モルであることが好ましく、収率がよい点で、1.1~4.0倍モルであることがさらに好ましい。
 反応式(8)で用いる化合物(15)と化合物(16)とのモル比に特に制限はないが、化合物(16)の1モルに対して、化合物(15)が0.1~10倍モルであることが好ましく、化合物(23)の収率がよい点で、1.1~2.0倍モルであることが好ましい。
 反応式(9)で用いる化合物(23)と化合物(17)とのモル比に特に制限はないが、化合物(23)の1モルに対して、化合物(17)が0.1~20倍モルが好ましく、本発明の化合物(10)の収率がよい点で1.0~5倍が好ましい。
Reaction formula (3) can be decomposed into reaction formulas (8) and (9). That is, in this reaction, compound (23) is produced by reacting compound (15) with compound (16) in the presence of a base. The compound (10) of the present invention is obtained by reacting the compound (23) with the compound (17) as represented by the reaction formula (9).
Although the compound (23) may be isolated, it may be used for the reaction (9) which is the next step in one pot without isolation.
The amount of the base to be used is not particularly limited, but is preferably 0.5 to 10 times by mole with respect to 1 mole of the compound (16), and 1.1 to 4.0 times in terms of good yield. More preferably, it is a mole.
The molar ratio of the compound (15) and the compound (16) used in the reaction formula (8) is not particularly limited, but the compound (15) is 0.1 to 10-fold mol per mol of the compound (16). In terms of good yield of compound (23), it is preferably 1.1 to 2.0 moles.
There is no particular limitation on the molar ratio of the compound (23) and the compound (17) used in the reaction formula (9), but the compound (17) is 0.1 to 20-fold mol with respect to 1 mol of the compound (23). In view of good yield of the compound (10) of the present invention, 1.0 to 5 times is preferable.
 次に反応式(13)の反応について説明する。
 反応式(13)については、ワンポットで行ことも可能であるが、それぞれ下記反応式(18)と(19)のようにステップワイズに行うこともできる。
Figure JPOXMLDOC01-appb-C000045
(一般式中、Ar11、Ar12、X~X、Zについては、反応式(3)と同じ定義を示す。)
Next, reaction of Reaction formula (13) is demonstrated.
Reaction formula (13) can be performed in one pot, but can also be performed stepwise as shown in reaction formulas (18) and (19) below.
Figure JPOXMLDOC01-appb-C000045
(In the general formula, Ar 11 , Ar 12 , X 1 to X 6 , and Z have the same definitions as in reaction formula (3).)
 化合物(27)~(28)は、公知の方法を用いて製造することもできるし、市販品を用いることもできる。 Compounds (27) to (28) can be produced using known methods, or commercially available products can also be used.
 化合物(27)としては、特に限定するものではないが、例えば、次の27-1~27-10で表される化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000046
The compound (27) is not particularly limited, and examples thereof include the compounds represented by the following 27-1 to 27-10.
Figure JPOXMLDOC01-appb-C000046
 化合物(28)としては、特に限定するものではないが、例えば、次の28-1~28-5で表される化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000047
The compound (28) is not particularly limited, and examples thereof include the compounds represented by the following 28-1 to 28-5.
Figure JPOXMLDOC01-appb-C000047
 化合物(17)としては、特に限定するものではないが、反応式(3)と同様の化合物を例示することができる。 Compound (17) is not particularly limited, and examples thereof include the same compounds as those in Reaction Formula (3).
 反応式(13)は塩基又は酸存在下に、化合物(27)と化合物(28)と化合物(17)を反応させ、本発明の化合物(10)を製造する方法である。
 反応式(13)は反応式(18)及び(19)に分解できる。即ち、本反応は化合物(27)が塩基存在下、化合物(28)と反応することにより化合物(23)が生成される。この化合物(23)が反応式(9)で表される様に化合物(17)と反応することで本発明の化合物(10)が得られる。
 化合物(23)は単離してもよいが、単離せず、ワンポットで次工程である反応(9)に用いてもよい。
 塩基の使用量は特に制限はないが、化合物(28)の1モルに対して、0.5~10倍モルであることが好ましく、収率がよい点で、1.1~4.0倍モルであることがさらに好ましい。
 反応式(18)で用いる化合物(27)と化合物(28)とのモル比に特に制限はないが、化合物(28)の1モルに対して、化合物(27)が0.1~10倍モルであることが好ましく、化合物(23)の収率がよい点で、1.1~2.0倍モルであることが好ましい。
 反応式(19)で用いる化合物(23)と化合物(17)とのモル比に特に制限はないが、化合物(23)の1モルに対して、化合物(17)が0.1~20倍モルが好ましく、本発明の化合物(10)の収率がよい点で1.0~5倍が好ましい。
Reaction formula (13) is a method for producing compound (10) of the present invention by reacting compound (27), compound (28) and compound (17) in the presence of a base or acid.
Reaction formula (13) can be decomposed into reaction formulas (18) and (19). That is, in this reaction, compound (23) is produced by reacting compound (27) with compound (28) in the presence of a base. The compound (10) of the present invention is obtained by reacting the compound (23) with the compound (17) as represented by the reaction formula (9).
Although the compound (23) may be isolated, it may be used for the reaction (9) which is the next step in one pot without isolation.
The amount of the base to be used is not particularly limited, but is preferably 0.5 to 10 times by mole with respect to 1 mole of compound (28), and 1.1 to 4.0 times in terms of good yield. More preferably, it is a mole.
The molar ratio of the compound (27) and the compound (28) used in the reaction formula (18) is not particularly limited, but the compound (27) is 0.1 to 10 moles per 1 mole of the compound (28). In terms of good yield of compound (23), it is preferably 1.1 to 2.0 moles.
The molar ratio of the compound (23) and the compound (17) used in the reaction formula (19) is not particularly limited, but the compound (17) is 0.1 to 20-fold mol with respect to 1 mol of the compound (23). In view of good yield of the compound (10) of the present invention, 1.0 to 5 times is preferable.
 次に反応式(4)について説明する。
 前記反応式(4)については、ワンポットで行ことも可能であるが、それぞれ下記反応式(10)と(11)のようにステップワイズに行うこともできる。
Figure JPOXMLDOC01-appb-C000048
(一般式中、Ar12、X~X、X、X、Z、Rについては、反応式(4)と同じ定義を示す。)
Next, reaction formula (4) will be described.
The reaction formula (4) can be performed in one pot, but can also be performed stepwise as shown in the following reaction formulas (10) and (11).
Figure JPOXMLDOC01-appb-C000048
(In the general formula, Ar 12 , X 1 to X 4 , X 6 , X 7 , Z, and R 5 have the same definitions as in Reaction Formula (4).)
 反応式(4)は塩基又は酸存在下に、化合物(18)と化合物(19)と化合物(17)を反応させ、化合物(20)を製造する方法である。
 化合物(18)としては、特に限定するものではないが、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸ヘキシル、酢酸ベンジル、酢酸フェニル、酢酸ナフチルで表される化合物を例示することができる。
Reaction formula (4) is a method for producing compound (20) by reacting compound (18), compound (19) and compound (17) in the presence of a base or acid.
The compound (18) is not particularly limited, and examples thereof include compounds represented by methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, benzyl acetate, phenyl acetate, and naphthyl acetate. can do.
 反応式(4)は反応式(10)及び(11)に分解できる。即ち、本反応は化合物(18)が塩基存在下、化合物(19)と反応することにより化合物(24)が生成される。この化合物(24)が反応式(11)で表される様に化合物(17)と反応することで本発明の化合物(20)が得られる。
 化合物(24)は単離してもよいが、単離せず、ワンポットで次工程である反応(11)に用いてもよい。
 塩基の使用量は特に制限はないが、化合物(18)の1モルに対して、0.5~10倍モルであることが好ましく、収率がよい点で、1.1~4.0倍モルであることがさらに好ましい。
 反応式(10)で用いる化合物(18)と化合物(19)とのモル比に特に制限はないが、化合物(19)の1モルに対して、化合物(18)が0.1~10倍モルであることが好ましく、化合物(24)の収率がよい点で、1.1~2.0倍モルであることが好ましい。
 反応式(11)で用いる化合物(24)と化合物(17)とのモル比に特に制限はないが、化合物(24)の1モルに対して、化合物(17)が0.1~20倍モルが好ましく、化合物(20)の収率がよい点で1.0~5倍が好ましい。
Reaction formula (4) can be decomposed into reaction formulas (10) and (11). That is, in this reaction, Compound (24) is produced by reacting Compound (18) with Compound (19) in the presence of a base. The compound (20) of the present invention is obtained by reacting the compound (24) with the compound (17) as represented by the reaction formula (11).
Although the compound (24) may be isolated, it may be used for the reaction (11) which is the next step in one pot without isolation.
The amount of the base to be used is not particularly limited, but is preferably 0.5 to 10 times by mole with respect to 1 mole of compound (18), and 1.1 to 4.0 times in terms of good yield. More preferably, it is a mole.
The molar ratio of the compound (18) and the compound (19) used in the reaction formula (10) is not particularly limited, but the compound (18) is 0.1 to 10-fold mol per mol of the compound (19). In terms of good yield of compound (24), it is preferably 1.1 to 2.0 moles.
The molar ratio of the compound (24) and the compound (17) used in the reaction formula (11) is not particularly limited, but the compound (17) is 0.1 to 20-fold mol with respect to 1 mol of the compound (24). In view of good yield of the compound (20), 1.0 to 5 times is preferable.
 次に反応式(5)について説明する。
 反応式(5)は、塩基の存在下又は非存在下に化合物(20)に対しハロゲン化剤又はスルホニル化剤を反応させ、化合物(11)を製造する方法である。前記ハロゲン化剤としては、特に限定するものではないが、例えば、塩化チエニル、臭化チエニル、ヨウ化チエニル、塩化ホスホリル、臭化ホスホリル、及びヨウ化ホスホリル等が挙げられる。前記スルホニル化剤としては、特に限定するものではないが、例えば、トリフルオロメタンスルホン酸無水物、トルエンスルホン酸無水物、トルエンスルホン酸クロリド、メタンスルホン酸クロリド、及びニトロベンゼンスルホン酸クロリド等が挙げられる。
 反応式(5)で用いられる塩基としては、特に限定するものではないが、反応式(2)、(3)及び(4)で示した塩基と同じものを用いることができる。
 反応式(5)の反応で用いる化合物(20)と反応剤とのモル比に特に制限はないが、化合物(20)の1モルに対して、反応剤が0.1~20倍モルは好ましく、本発明のベンゾチエノピリミジン化合物(11)の収率がよい点で1.0~5倍が好ましい。
Next, reaction formula (5) will be described.
Reaction formula (5) is a method for producing compound (11) by reacting compound (20) with a halogenating agent or sulfonylating agent in the presence or absence of a base. The halogenating agent is not particularly limited, and examples thereof include thienyl chloride, thienyl bromide, thienyl iodide, phosphoryl chloride, phosphoryl bromide, and phosphoryl iodide. The sulfonylating agent is not particularly limited, and examples thereof include trifluoromethanesulfonic acid anhydride, toluenesulfonic acid anhydride, toluenesulfonic acid chloride, methanesulfonic acid chloride, and nitrobenzenesulfonic acid chloride.
Although it does not specifically limit as a base used by Reaction formula (5), The same thing as the base shown by Reaction formula (2), (3) and (4) can be used.
There is no particular limitation on the molar ratio of the compound (20) and the reactant used in the reaction of the reaction formula (5), but the amount of the reactant is preferably 0.1 to 20 moles per mole of the compound (20). From the viewpoint of good yield of the benzothienopyrimidine compound (11) of the present invention, 1.0 to 5 times is preferable.
 次に反応式(14)について説明する。
 前記反応式(14)については、ワンポットで行ことも可能であるが、それぞれ下記反応式(20)と(11)のようにステップワイズに行うこともできる。
Figure JPOXMLDOC01-appb-C000049
(一般式中、Ar12、X~X、X、X、Z、Rについては、反応式(4)と同じ定義を示す。)
Next, reaction formula (14) will be described.
The reaction formula (14) can be performed in one pot, but can also be performed stepwise as shown in the following reaction formulas (20) and (11).
Figure JPOXMLDOC01-appb-C000049
(In the general formula, Ar 12 , X 1 to X 4 , X 6 , X 7 , Z, and R 5 have the same definitions as in Reaction Formula (4).)
 反応式(14)は塩基又は酸存在下に、化合物(29)と化合物(28)と化合物(17)を反応させ、化合物(20)を製造する方法である。
 化合物(29)としては、特に限定するものではないが、例えば、メチルチオグリコレート、エチルチオグリコレート、プロピルチオグリコレート、ブチルチオグリコレート、ペンチルチオグリコレート、ヘキシルチオグリコレート、フェニルチオグリコレート、ベンジルチオグリコレート、ナフチルチオグリコレートで表される化合物を例示することができる。
 反応式(14)は反応式(20)及び(11)に分解できる。即ち、本反応は化合物(29)が塩基存在下、化合物(28)と反応することにより化合物(24)が生成される。この化合物(24)が反応式(11)で表される様に化合物(17)と反応することで本発明の化合物(20)が得られる。
 化合物(24)は単離してもよいが、単離せず、ワンポットで次工程である反応(11)に用いてもよい。
 塩基の使用量は特に制限はないが、化合物(28)の1モルに対して、0.5~10倍モルであることが好ましく、収率がよい点で、1.1~4.0倍モルであることがさらに好ましい。
 反応式(20)で用いる化合物(29)と化合物(28)とのモル比に特に制限はないが、化合物(28)の1モルに対して、化合物(29)が0.1~10倍モルであることが好ましく、化合物(24)の収率がよい点で、1.1~2.0倍モルであることが好ましい。
 反応式(11)で用いる化合物(24)と化合物(17)とのモル比に特に制限はないが、化合物(24)の1モルに対して、化合物(17)が0.1~20倍モルが好ましく、化合物(20)の収率がよい点で1.0~5倍が好ましい。
Reaction formula (14) is a method for producing compound (20) by reacting compound (29), compound (28) and compound (17) in the presence of a base or acid.
Although it does not specifically limit as compound (29), For example, methyl thioglycolate, ethyl thioglycolate, propyl thioglycolate, butyl thioglycolate, pentyl thioglycolate, hexyl thioglycolate, phenyl thioglycolate And compounds represented by benzylthioglycolate and naphthylthioglycolate.
Reaction formula (14) can be decomposed into reaction formulas (20) and (11). That is, in this reaction, compound (29) reacts with compound (28) in the presence of a base to produce compound (24). The compound (20) of the present invention is obtained by reacting the compound (24) with the compound (17) as represented by the reaction formula (11).
Although the compound (24) may be isolated, it may be used for the reaction (11) which is the next step in one pot without isolation.
The amount of the base to be used is not particularly limited, but is preferably 0.5 to 10 times by mole with respect to 1 mole of compound (28), and 1.1 to 4.0 times in terms of good yield. More preferably, it is a mole.
The molar ratio of the compound (29) and the compound (28) used in the reaction formula (20) is not particularly limited. In terms of good yield of compound (24), it is preferably 1.1 to 2.0 moles.
The molar ratio of the compound (24) and the compound (17) used in the reaction formula (11) is not particularly limited, but the compound (17) is 0.1 to 20-fold mol with respect to 1 mol of the compound (24). In view of good yield of the compound (20), 1.0 to 5 times is preferable.
 本願発明の化合物(1)、(10)及び(11)については、それぞれの反応終了後に再沈殿、濃縮、ろ過、精製等の処理を行うことで純度を高めることができる。さらに高純度化するために、必要に応じて、再結晶、シリカゲルカラムクロマトグラフィー又は昇華等で精製してもよい。 The purity of the compounds (1), (10) and (11) of the present invention can be increased by carrying out treatments such as reprecipitation, concentration, filtration and purification after the completion of each reaction. In order to further increase the purity, purification may be performed by recrystallization, silica gel column chromatography, sublimation, or the like, if necessary.
 本願発明は、一般式(1)で表されるベンゾチエノピリミジン化合物を含む有機電界発光素子であり、当該ベンゾチエノピリミジン化合物は電子輸送層、電子注入層、又は発光層に好ましく用いられる。 The present invention is an organic electroluminescence device containing a benzothienopyrimidine compound represented by the general formula (1), and the benzothienopyrimidine compound is preferably used for an electron transport layer, an electron injection layer, or a light emitting layer.
 一般式(1)で表されるベンゾチエノピリミジン化合物は、有機電界発光素子の電子輸送性材料(電子輸送材料、電子注入材料等)として好ましく用いることができる。この際、組合せて用いられる陽極、正孔注入層、正孔輸送層、電子ブロッキング層、発光層、発光層ドーパント、発光層ホスト、陰極等については、一般公知の材料を当業者の選択の範囲で用いることができる。 The benzothienopyrimidine compound represented by the general formula (1) can be preferably used as an electron transporting material (electron transporting material, electron injecting material, etc.) of an organic electroluminescence device. At this time, for the anode, the hole injection layer, the hole transport layer, the electron blocking layer, the light emitting layer, the light emitting layer dopant, the light emitting layer host, the cathode, and the like used in combination, generally known materials are selected by those skilled in the art. Can be used.
 当該有機電界発光素子の構成については、従来公知のものであればよく、特に限定されない。 The configuration of the organic electroluminescent element may be any conventionally known one, and is not particularly limited.
 本発明の化合物(1)を含んでなる有機電界発光素子用薄膜の製造方法に特に限定はないが、好ましい例としては真空蒸着法による成膜を挙げることができる。真空蒸着法による成膜は、汎用の真空蒸着装置を用いることにより行うことができる。真空蒸着法で膜を形成する際の真空槽の真空度は、有機電界発光素子作製の製造タクトタイムが短く製造コストが優位である点で、一般的に用いられる拡散ポンプ、ターボ分子ポンプ、クライオポンプ等により到達し得る1×10-2~1×10-6Pa程度が好ましいく、蒸着速度は形成する膜の厚さによるが0.005~10nm/秒が好ましい。また、溶液塗布法によっても化合物(1)から成る有機電界発光素子用薄膜を製造することが出来る。例えば、化合物(1)を、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン、トルエン、酢酸エチル又はテトラヒドロフラン等の有機溶媒に溶解し、汎用の装置を用いたスピンコート法、インクジェット法、キャスト法又はディップ法等による成膜も可能である。 Although there is no limitation in particular in the manufacturing method of the thin film for organic electroluminescent elements containing the compound (1) of this invention, The film-forming by a vacuum evaporation method can be mentioned as a preferable example. Film formation by the vacuum evaporation method can be performed by using a general-purpose vacuum evaporation apparatus. The vacuum degree of the vacuum chamber when forming a film by the vacuum evaporation method is such that the production tact time for producing the organic electroluminescent element is short and the production cost is superior, so that commonly used diffusion pumps, turbo molecular pumps, cryogenic pumps are used. It is preferably about 1 × 10 −2 to 1 × 10 −6 Pa that can be reached by a pump or the like, and the deposition rate is preferably 0.005 to 10 nm / second, depending on the thickness of the film to be formed. Moreover, the thin film for organic electroluminescent elements which consists of a compound (1) can also be manufactured by the solution coating method. For example, the compound (1) is dissolved in an organic solvent such as chloroform, dichloromethane, 1,2-dichloroethane, chlorobenzene, toluene, ethyl acetate or tetrahydrofuran, and a spin coating method, ink jet method, casting method or Film formation by a dip method or the like is also possible.
 本発明の一般式(1)で表されるベンゾチエノピリミジン化合物は、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン、トルエン、酢酸エチル、テトラヒドロフラン等に対する溶解度が高いため、汎用の装置を用いた、スピンコ-ト法、インクジェット法、キャスト法、ディップ法等による成膜も可能である。 Since the benzothienopyrimidine compound represented by the general formula (1) of the present invention has high solubility in chloroform, dichloromethane, 1,2-dichloroethane, chlorobenzene, toluene, ethyl acetate, tetrahydrofuran, etc., a general-purpose apparatus was used. Film formation by a spin coat method, an ink jet method, a cast method, a dip method or the like is also possible.
 本発明の効果が得られる有機電界発光素子の典型的な構造としては、基板、陽極、正孔注入層、正孔輸送層発光層、電子輸送層、及び陰極を含む。
 有機電界発光素子の陽極及び陰極は、電気的な導体を介して電源に接続されている。陽極と陰極との間に電位を加えることにより、有機電界発光素子は作動する。正孔は陽極から有機電界発光素子内に注入され、電子は陰極で有機電界発光素子内に注入される。
 有機電界発光素子は、典型的には基板に被せられ、陽極又は陰極は基板と接触することができる。基板と接触する電極は便宜上、下側電極と呼ばれる。一般的には、下側電極は陽極であるが、本発明の有機電界発光素子においてはそのような形態に限定されるものではない。
A typical structure of the organic electroluminescence device that can obtain the effects of the present invention includes a substrate, an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode.
The anode and cathode of the organic electroluminescent element are connected to a power source through an electrical conductor. The organic electroluminescent device operates by applying a potential between the anode and the cathode. Holes are injected into the organic electroluminescent device from the anode, and electrons are injected into the organic electroluminescent device at the cathode.
The organic electroluminescent device is typically placed on a substrate, and the anode or cathode can be in contact with the substrate. The electrode in contact with the substrate is called the lower electrode for convenience. Generally, the lower electrode is an anode, but the organic electroluminescence device of the present invention is not limited to such a form.
 基板は、意図される発光方向に応じて、光透過性又は不透明であってよい。光透過特性は、基板を通してエレクトロルミネッセンス発光により確認できる。一般的には、透明ガラス又はプラスチックが基板として採用される。基板は、多重の材料層を含む複合構造であってよい。 The substrate may be light transmissive or opaque depending on the intended emission direction. The light transmission characteristics can be confirmed by electroluminescence emission through the substrate. Generally, transparent glass or plastic is used as the substrate. The substrate may be a composite structure including multiple material layers.
 エレクトロルミネッセンス発光を、陽極を通して確認する場合、陽極は当該発光を通すか又は実質的に通すもので形成される。
 本発明において使用される一般的な透明アノード(陽極)材料は、インジウム-錫酸化物(ITO)、インジウム-亜鉛酸化物(IZO)、又は酸化錫が挙げられる。さらに、その他の金属酸化物、例えばアルミニウム又はインジウム・ドープ型酸化錫、マグネシウム-インジウム酸化物、又はニッケル-タングステン酸化物も好ましく用いられる。これらの酸化物に加えて、金属窒化物、例えば窒化ガリウム、金属セレン化物、例えばセレン化亜鉛、又は金属硫化物である、例えば硫化亜鉛を陽極として使用することができる。陽極は、プラズマ蒸着されたフルオロカーボンで改質することができる。
When the electroluminescent emission is confirmed through the anode, the anode is formed by passing or substantially passing through the emission.
Common transparent anode (anode) materials used in the present invention include indium-tin oxide (ITO), indium-zinc oxide (IZO), or tin oxide. Further, other metal oxides such as aluminum or indium-doped tin oxide, magnesium-indium oxide, or nickel-tungsten oxide are also preferably used. In addition to these oxides, metal nitrides such as gallium nitride, metal selenides such as zinc selenide, or metal sulfides such as zinc sulfide can be used as the anode. The anode can be modified with plasma deposited fluorocarbon.
 陰極を通してだけエレクトロルミネッセンス発光が確認される場合、陽極の透過特性は重要ではなく、透明、不透明又は反射性の任意の導電性材料を使用することができる。この用途のための導体の一例としては、金、イリジウム、モリブデン、パラジウム、白金等が挙げられる。 When the electroluminescence emission is confirmed only through the cathode, the transmission characteristics of the anode are not important, and any conductive material that is transparent, opaque or reflective can be used. Examples of conductors for this application include gold, iridium, molybdenum, palladium, platinum and the like.
 正孔注入層は、陽極と正孔輸送層との間に設けることができる。正孔注入層の材料は、正孔輸送層や正孔注入層等の有機材料層の膜形成特性を改善し、正孔輸送層内に正孔を注入するのを容易にするのに役立つ。正孔注入層内で使用するのに適した材料の一例としては、ポルフィリン化合物、プラズマ蒸着型フルオロカーボン・ポリマー、及びビフェニル基、カルバゾール基等芳香環を有するアミン、例えばm-MTDATA(4,4′,4′′-トリス[(3-メチルフェニル)フェニルアミノ]トリフェニルアミン)、2T-NATA(4,4′,4′′-トリス[(N-ナフタレン-2-イル)-N-フェニルアミノ]トリフェニルアミン)、トリフェニルアミン、トリトリルアミン、トリルジフェニルアミン、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-1,1′-ビフェニル-4,4′-ジアミン、N,N,N′N′-テトラキス(4-メチルフェニル)-1,1′-ビフェニル-4,4′-ジアミン、MeO-TPD(N,N,N′N′-テトラキス(4-メトキシフェニル)-1,1′-ビフェニル-4,4′-ジアミン)、N,N′-ジフェニル-N,N′-ジナフチル-1,1′-ビフェニル-4,4′-ジアミン、N,N′-ビス(メチルフェニル)-N,N′-ビス(4-ノルマルブチルフェニル)フェナントレン-9,10-ジアミン、N,N′-ジフェニル-N,N′-ビス(9-フェニルカルバゾール-3-イル)-1,1′-ビフェニル-4,4′-ジアミン等が挙げられる。 The hole injection layer can be provided between the anode and the hole transport layer. The material of the hole injection layer is useful for improving the film formation characteristics of an organic material layer such as a hole transport layer and a hole injection layer, and facilitating injection of holes into the hole transport layer. Examples of materials suitable for use in the hole injection layer include porphyrin compounds, plasma deposited fluorocarbon polymers, and amines having aromatic rings such as biphenyl groups, carbazole groups, such as m-MTDATA (4,4 ' , 4 ″ -tris [(3-methylphenyl) phenylamino] triphenylamine), 2T-NATA (4,4 ′, 4 ″ -tris [(N-naphthalen-2-yl) -N-phenylamino ] Triphenylamine), triphenylamine, tolylamine, tolyldiphenylamine, N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine, N, N, N′N′-tetrakis (4-methylphenyl) -1,1′-biphenyl-4,4′-diamine, MeO-TPD N, N, N′N′-tetrakis (4-methoxyphenyl) -1,1′-biphenyl-4,4′-diamine), N, N′-diphenyl-N, N′-dinaphthyl-1,1 ′ -Biphenyl-4,4'-diamine, N, N'-bis (methylphenyl) -N, N'-bis (4-normalbutylphenyl) phenanthrene-9,10-diamine, N, N'-diphenyl-N N'-bis (9-phenylcarbazol-3-yl) -1,1'-biphenyl-4,4'-diamine and the like.
 有機電界発光素子の正孔輸送層は、1種以上の正孔輸送化合物(正孔輸送材料)、例えば芳香族第三アミンを含有することが好ましい。芳香族第三アミンは、1つ以上の三価窒素原子を含有する化合物であり、この三価窒素原子は炭素原子だけに結合されており、これらの炭素原子の1つ以上が芳香族環を形成している。具体的には、芳香族第三アミンは、アリールアミン、例えばモノアリールアミン、ジアリールアミン、トリアリールアミン、又は高分子アリールアミンであってよい。 The hole transport layer of the organic electroluminescence device preferably contains one or more hole transport compounds (hole transport materials) such as aromatic tertiary amines. Aromatic tertiary amines are compounds that contain one or more trivalent nitrogen atoms that are bonded only to carbon atoms, and one or more of these carbon atoms have an aromatic ring. Forming. Specifically, the aromatic tertiary amine can be an arylamine, such as a monoarylamine, diarylamine, triarylamine, or a polymeric arylamine.
 正孔輸送材料としては、一般式(1)で表されるベンゾチエノピリミジン化合物をもちいることができる、その他の材料としては、1つ以上のアミノ基を有する芳香族第三アミンを使用することができる。さらに、高分子正孔輸送材料を使用することができる。例えばポリ(N-ビニルカルバゾール)(PVK)、ポリチオフェン、ポリピロール、ポリアニリン等を使用することができる。
 具体的には、NPD(N,N′-ビス(ナフタレン-1-イル)-N,N′-ジフェニル-1,1′-ビフェニル-4,4′-ジアミン)、α-NPD(N,N′-ジ(1-ナフチル)-N,N′-ジフェニル-1,1′-ビフェニル-4,4′-ジアミン)、TPBi(1,3,5-トリス(1-フェニル-1H-ベンズイミダゾール-2-イル)ベンゼン)、TPD(N,N′-ビス(3-メチルフェニル)-N,N′-ジフェニル-1,1′-ビフェニル-4,4′-ジアミン)等が挙げられる。
A benzothienopyrimidine compound represented by the general formula (1) can be used as a hole transport material, and an aromatic tertiary amine having one or more amino groups can be used as another material. Can do. Furthermore, a polymeric hole transport material can be used. For example, poly (N-vinylcarbazole) (PVK), polythiophene, polypyrrole, polyaniline and the like can be used.
Specifically, NPD (N, N′-bis (naphthalen-1-yl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine), α-NPD (N, N '-Di (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine), TPBi (1,3,5-tris (1-phenyl-1H-benzimidazole) 2-yl) benzene), TPD (N, N′-bis (3-methylphenyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine) and the like.
 正孔注入層と正孔輸送層の間に、電荷発生層としてジピラジノ[2,3-f:2′,3′-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)、7,7′,8,8′-テトラシアノキノジメタン(TCNQ)、2,3,5,6-テトラフルオロ-7,7′,8,8′-テトラシアノキノジメタン(F-TCNQ)等を含む層を設けてもよく、又、正孔輸送層にこれらの化合物をドープしてもよい。 Dipyrazino [2,3-f: 2 ′, 3′-h] quinoxaline-2,3,6,7,10,11-hexacarbonitrile as a charge generation layer between the hole injection layer and the hole transport layer (HAT-CN), 7,7 ', 8,8'-tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7', 8,8'-tetracyanoquinodi A layer containing methane (F 4 -TCNQ) or the like may be provided, and the hole transport layer may be doped with these compounds.
 有機電界発光素子の発光層は、燐光材料又は蛍光材料を含み、この場合、この領域で電子・正孔対が再結合された結果として発光を生じる。発光層は、低分子及びポリマー双方を含む単一材料から形成されていてもよいが、より一般的には、ゲスト化合物でドーピングされたホスト材料から形成されており、発光は主としてドーパントから生じ、任意の色を発することができる。 The light emitting layer of the organic electroluminescent element contains a phosphorescent material or a fluorescent material. In this case, light emission occurs as a result of recombination of electron-hole pairs in this region. The light-emitting layer may be formed from a single material that includes both small molecules and polymers, but more commonly is formed from a host material doped with a guest compound, where light emission is primarily from a dopant, Any color can be emitted.
 発光層のホスト材料としては、一般式(1)で表されるベンゾチエノピリミジン化合物をもちいることができる、その他の材料としては、例えば、ビフェニル基、フルオレニル基、トリフェニルシリル基、カルバゾール基、ピレニル基、又はアントラニル基を有する化合物が挙げられ、これらの材料は単独で用いることもできるし、一般式(1)で表されるベンゾチエノピリミジン化合物と混合して用いることもできる。
 具体的には、DPVBi(4,4′-ビス(2,2-ジフェニルビニル)-1,1′-ビフェニル)、BCzVBi(4,4′-ビス(9-エチル-3-カルバゾビニレン)1,1′-ビフェニル)、TBADN(2-ターシャルブチル-9,10-ジ(2-ナフチル)アントラセン)、ADN(9,10-ジ(2-ナフチル)アントラセン)、CBP(4,4′-ビス(カルバゾール-9-イル)ビフェニル)、CDBP(4,4′-ビス(カルバゾール-9-イル)-2,2′-ジメチルビフェニル)、9,10-ビス(ビフェニル)アントラセン等が挙げられる。
 発光層内のホスト材料は、下記に定義の電子輸送材料、上記に定義の正孔輸送材料、正孔・電子再結合をサポートする別の材料、又はこれら材料の組み合わせであってよい。
As the host material of the light emitting layer, a benzothienopyrimidine compound represented by the general formula (1) can be used. Examples of other materials include a biphenyl group, a fluorenyl group, a triphenylsilyl group, a carbazole group, Examples thereof include compounds having a pyrenyl group or an anthranyl group, and these materials can be used alone or in combination with a benzothienopyrimidine compound represented by the general formula (1).
Specifically, DPVBi (4,4′-bis (2,2-diphenylvinyl) -1,1′-biphenyl), BCzVBi (4,4′-bis (9-ethyl-3-carbazovinylene) 1,1 '-Biphenyl), TBADN (2-tert-butyl-9,10-di (2-naphthyl) anthracene), ADN (9,10-di (2-naphthyl) anthracene), CBP (4,4'-bis ( Carbazol-9-yl) biphenyl), CDBP (4,4′-bis (carbazol-9-yl) -2,2′-dimethylbiphenyl), 9,10-bis (biphenyl) anthracene and the like.
The host material in the light emitting layer may be an electron transport material as defined below, a hole transport material as defined above, another material that supports hole-electron recombination, or a combination of these materials.
 蛍光ドーパントの一例としては、ピレン、アントラセン、テトラセン、キサンテン、ペリレン、ルブレン、クマリン、ローダミン及びキナクリドン、ジシアノメチレンピラン化合物、チオピラン化合物、ポリメチン化合物、ピリリウム、又はチアピリリウム化合物、フルオレン誘導体、ペリフランテン誘導体、インデノペリレン誘導体、ビス(アジニル)アミンホウ素化合物、ビス(アジニル)メタン化合物、カルボスチリル化合物、又は熱活性遅延蛍光を発現する化合物等が挙げられる。
 有用な燐光ドーパントの一例としては、イリジウム、白金、パラジウム、オスミウム等の遷移金属の有機金属錯体が挙げられる。
 ドーパントの一例として、Alq(トリス(8-ヒドロキシキノリン)アルミニウム))、DPAVBi(4,4′-ビス[4-(ジ-パラ-トリルアミノ)スチリル] ビフェニル)、ペリレン、Ir(PPy)(トリス(2-フェニルピリジン)イリジウム(III)、FlrPic(ビス(3,5-ジフルオロ-2-(2-ピリジル)フェニル-(2-カルボキシピリジル)イリジウム(III)等が挙げられる。
Examples of fluorescent dopants include pyrene, anthracene, tetracene, xanthene, perylene, rubrene, coumarin, rhodamine and quinacridone, dicyanomethylenepyran compounds, thiopyran compounds, polymethine compounds, pyrylium or thiapyrylium compounds, fluorene derivatives, perifanthene derivatives, indeno Examples include perylene derivatives, bis (azinyl) amine boron compounds, bis (azinyl) methane compounds, carbostyryl compounds, and compounds that exhibit thermally activated delayed fluorescence.
Examples of useful phosphorescent dopants include organometallic complexes of transition metals such as iridium, platinum, palladium, osmium.
Examples of dopants include Alq 3 (tris (8-hydroxyquinoline) aluminum)), DPAVBi (4,4′-bis [4- (di-para-tolylamino) styryl] biphenyl), perylene, Ir (PPy) 3 ( And tris (2-phenylpyridine) iridium (III), FlrPic (bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III)), and the like.
 本発明の有機電界発光素子の電子輸送層を形成するのに使用する薄膜形成材料は、本発明の一般式(1)で表されるベンゾチエノピリミジン化合物を用いることができる。なお、当該電子輸送層には、他の電子輸送性材料を含んでいてもよい。他の電子輸送性材料としては、アルカリ金属錯体、アルカリ土類金属錯体、土類金属錯体等が挙げられる。
 望ましいアルカリ金属錯体、アルカリ土類金属錯体、又は土類金属錯体としては、例えば、8-ヒドロキシキノリナートリチウム(Liq)、ビス(8-ヒドロキシキノリナート)亜鉛、ビス(8-ヒドロキシキノリナート)銅、ビス(8-ヒドロキシキノリナート)マンガン、トリス(8-ヒドロキシキノリナート)アルミニウム、トリス(2-メチル-8-ヒドロキシキノリナート)アルミニウム、トリス(8-ヒドロキシキノリナート)ガリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2-メチル-8-キノリナート)クロロガリウム、ビス(2-メチル-8-キノリナート)(o-クレゾラート)ガリウム、ビス(2-メチル-8-キノリナート)-1-ナフトラートアルミニウム、ビス(2-メチル-8-キノリナート)-2-ナフトラートガリウム等が挙げられる。
A benzothienopyrimidine compound represented by the general formula (1) of the present invention can be used as the thin film forming material used to form the electron transport layer of the organic electroluminescence device of the present invention. Note that the electron transporting layer may contain other electron transporting materials. Examples of other electron transporting materials include alkali metal complexes, alkaline earth metal complexes, and earth metal complexes.
Desirable alkali metal complexes, alkaline earth metal complexes, or earth metal complexes include, for example, 8-hydroxyquinolinate lithium (Liq), bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinate). ) Copper, bis (8-hydroxyquinolinato) manganese, tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium Bis (10-hydroxybenzo [h] quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) (O-cresolate) gallium, bis (2-methyl-8-quino) Inert) -1-naphthoquinone Trad aluminum, bis (2-methyl-8-quinolinato) -2-naphthoquinone Trad gallium, and the like.
 発光層と電子輸送層との間に、キャリアバランスを改善させる目的で、正孔阻止層を設けてもよい。正孔阻止層として望ましい化合物は、BCP(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン)、Bphen(4,7-ジフェニル-1,10-フェナントロリン)、BAlq(ビス(2-メチル-8-キノリノラート)-4-(フェニルフェノラート)アルミニウム)、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム)等が挙げられる。 A hole blocking layer may be provided between the light emitting layer and the electron transport layer for the purpose of improving carrier balance. Preferred compounds for the hole blocking layer include BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen (4,7-diphenyl-1,10-phenanthroline), BAlq (bis (2 -Methyl-8-quinolinolato) -4- (phenylphenolato) aluminum), bis (10-hydroxybenzo [h] quinolinato) beryllium) and the like.
 本発明の有機電界発光素子においては、電子注入性を向上させ、素子特性(例えば、発光効率、低電圧駆動、又は高耐久性)を向上させる目的で、電子注入層を設けてもよい。
 電子注入層として望ましい化合物としては、一般式(1)で表されるベンゾチエノピリミジン化合物、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、又はアントロン等が挙げられる。また、上記に記した金属錯体やアルカリ金属酸化物、アルカリ土類酸化物、希土類酸化物、アルカリ金属ハロゲン化物、アルカリ土類ハロゲン化物、希土類ハロゲン化物、SiOX 、AlOX 、SiNX 、SiON、AlON、GeOX 、LiOX 、LiON、TiOX 、TiON、TaOX 、TaON、TaNX 、Cなどの各種酸化物、窒化物、及び酸化窒化物のような無機化合物も使用できる。
In the organic electroluminescent device of the present invention, an electron injection layer may be provided for the purpose of improving electron injection properties and improving device characteristics (for example, light emission efficiency, low voltage driving, or high durability).
Preferred compounds for the electron injection layer include benzothienopyrimidine compounds represented by the general formula (1), fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, and perylenetetracarboxylic acid. Examples include acid, fluorenylidenemethane, anthraquinodimethane, and anthrone. In addition, the above-mentioned metal complexes, alkali metal oxides, alkaline earth oxides, rare earth oxides, alkali metal halides, alkaline earth halides, rare earth halides, SiO x , AlO x , SiN x , SiON, AlON, GeO X, LiO X, LiON, TiO X, TiON, TaO X, TaON, TaN X, various oxides of C, etc. may be used an inorganic compound such as a nitride, and oxynitride.
 発光が陽極を通してのみ見られる場合、本発明において使用される陰極は、ほぼ任意の導電性材料から形成することができる。望ましい陰極材料としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。 If light emission is seen only through the anode, the cathode used in the present invention can be formed from almost any conductive material. Desirable cathode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, indium , Lithium / aluminum mixtures, rare earth metals and the like.
 以下、合成例、実施例、比較例及び参考例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail with reference to synthesis examples, examples, comparative examples, and reference examples, but the present invention is not construed as being limited thereto.
 実施例1
Figure JPOXMLDOC01-appb-C000050
Example 1
Figure JPOXMLDOC01-appb-C000050
 アルゴン気流下、アセトフェノン(2.64g)、及び3-クロロ-1,2-ベンズイソチアゾール(3.39g)をDMF(20mL)に加え、そこにカリウムtert-ブトキシドのDMF懸濁液(50mL)を滴下し、次いで100℃で20時間撹拌した。反応混合物を室温まで放冷後、水を加えた。析出した固体を水で洗浄し、次いでヘキサンで洗浄し、目的の3-アミノ-2-ベンゾイルベンゾ[b]チオフェン(A-1)の黄色粉末(収量4.3g,収率86%)を得た。
 H-NMR(DMSO-d)、δ(ppm):7.38(t,J=7.2Hz,1H),7.45-7.54(m,4H),7.74(d,J=8.1Hz,2H),7.78(d,J=8.1Hz,1H),8.20(d,J=8.1Hz,1H),8.27(s,2H).
Under an argon stream, acetophenone (2.64 g) and 3-chloro-1,2-benzisothiazole (3.39 g) were added to DMF (20 mL), and potassium tert-butoxide in DMF suspension (50 mL). And then stirred at 100 ° C. for 20 hours. The reaction mixture was allowed to cool to room temperature, and water was added. The precipitated solid was washed with water and then with hexane to obtain the desired 3-amino-2-benzoylbenzo [b] thiophene (A-1) yellow powder (yield 4.3 g, yield 86%). It was.
1 H-NMR (DMSO-d 6 ), δ (ppm): 7.38 (t, J = 7.2 Hz, 1H), 7.45-7.54 (m, 4H), 7.74 (d, J = 8.1 Hz, 2H), 7.78 (d, J = 8.1 Hz, 1H), 8.20 (d, J = 8.1 Hz, 1H), 8.27 (s, 2H).
 アルゴン気流下、化合物A-1(1.27g)、3-ブロモ-5-クロロベンゾニトリル(2.16g)、及びカリウムtert-ブトキシド(842mg)をキシレン(25mL)に加え、140℃で4.5時間撹拌した。反応混合物を室温まで放冷後、メタノールを加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄し薄褐色固体を得た。これをo-キシレンで再結晶することで目的の2-(3-ブロモ-5-クロロフェニル)-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-1)の薄褐色粉末(収量1.42g、収率63%)を得た。
 H-NMR(CDCl)、δ(ppm):7.61-7.70(m,5H),7.73(t,J=7.6Hz,1H),7.96(d,J=8.0Hz,1H),8.36(d,J=8.0Hz,2H),8.72-8.75(m,2H),8.83(s,1H).
Under a stream of argon, Compound A-1 (1.27 g), 3-bromo-5-chlorobenzonitrile (2.16 g), and potassium tert-butoxide (842 mg) were added to xylene (25 mL), and 4. Stir for 5 hours. The reaction mixture was allowed to cool to room temperature, and methanol was added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a light brown solid. This was recrystallized from o-xylene to give a light brown powder of the desired 2- (3-bromo-5-chlorophenyl) -4-phenyl [1] benzothieno [3,2-d] pyrimidine (B-1) ( Yield 1.42 g, 63% yield).
1 H-NMR (CDCl 3 ), δ (ppm): 7.61-7.70 (m, 5H), 7.73 (t, J = 7.6 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 8.36 (d, J = 8.0 Hz, 2H), 8.72-8.75 (m, 2H), 8.83 (s, 1H).
 実施例2
Figure JPOXMLDOC01-appb-C000051
Example 2
Figure JPOXMLDOC01-appb-C000051
 アルゴン気流下、化合物B-1(1.36g)、4-(2-ピリジル)フェニルボロン酸(1.43g)、酢酸パラジウム(13.5mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(85.8mg)をトルエン(30mL)に加え、さらに3M-炭酸カリウム水溶液(4.8mL)及び1-ブタノール(4.8mL)を添加し、次いで2.5時間加熱還流した。反応混合物を室温まで放冷後、水及びメタノールを加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄し灰色固体を得た。この灰色固体をo-キシレンで再結晶し、目的の2-[4,4′′-ビス(2-ピリジル)-[1,1′:3′,1′′]-テルフェニル-5′-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-1)の黄色粉末(収量1.59g,収率82%)を得た。
 H-NMR(CDCl)、δ(ppm):7.30(dd,J=7.5,4.8Hz,2H),7.62-7.71(m,4H),7.74(t,J=7.5Hz,1H),7.834(t,J=7.5Hz,2H),7.87(d,J=7.9Hz,2H),7.98(d,J=7.9Hz,1H),7.99(d,J=8.4Hz,4H),8.10(s,1H),8.22(d,J=8.4Hz,4H),8.44(d,J=8.2Hz,2H),8.78(d,J=4.8Hz,2H),8.81(d,J=7.8Hz,1H),9.10(s,2H).
Under an argon stream, compound B-1 (1.36 g), 4- (2-pyridyl) phenylboronic acid (1.43 g), palladium acetate (13.5 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′ , 6'-Triisopropylbiphenyl (85.8 mg) was added to toluene (30 mL), and 3M aqueous potassium carbonate solution (4.8 mL) and 1-butanol (4.8 mL) were added, followed by heating for 2.5 hours. Refluxed. The reaction mixture was allowed to cool to room temperature, and water and methanol were added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a gray solid. This gray solid was recrystallized from o-xylene, and the desired 2- [4,4 ″ -bis (2-pyridyl)-[1,1 ′: 3 ′, 1 ″]-terphenyl-5′- A yellow powder (yield 1.59 g, 82% yield) of [yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (C-1) was obtained.
1 H-NMR (CDCl 3 ), δ (ppm): 7.30 (dd, J = 7.5, 4.8 Hz, 2H), 7.62-7.71 (m, 4H), 7.74 ( t, J = 7.5 Hz, 1H), 7.834 (t, J = 7.5 Hz, 2H), 7.87 (d, J = 7.9 Hz, 2H), 7.98 (d, J = 7) .9 Hz, 1H), 7.99 (d, J = 8.4 Hz, 4H), 8.10 (s, 1H), 8.22 (d, J = 8.4 Hz, 4H), 8.44 (d , J = 8.2 Hz, 2H), 8.78 (d, J = 4.8 Hz, 2H), 8.81 (d, J = 7.8 Hz, 1H), 9.10 (s, 2H).
 実施例3
Figure JPOXMLDOC01-appb-C000052
Example 3
Figure JPOXMLDOC01-appb-C000052
 アルゴン気流下、化合物B-1(1.12g)、9-フェナントレンボロン酸(581mg)、及びテトラキス(トリフェニルホスフィン)パラジウム(57.8mg)をTHF(24mL)に加え、さらに4N-水酸化ナトリウム水溶液(1.9mL)を添加し、次いで16時間加熱還流した。反応混合物を室温まで放冷後、水を加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄し灰色固体を得た。この灰色固体をトルエンで再結晶し、2-[3-クロロ-5-(9-フェナントリル)フェニル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-2)の黄色粉末(収量1.16g,収率85%)を得た。
 H-NMR(CDCl)、δ(ppm):7.59-7.76(m,10H),7.84(s,1H),7.95(m,3H),8.37(d,J=8.0Hz,2H),8.71(d,J=7.8Hz,1H),8.79(d,J=8.2Hz,1H),8.83-8.86(m,2H),8.89(s,1H).
Under an argon stream, compound B-1 (1.12 g), 9-phenanthreneboronic acid (581 mg), and tetrakis (triphenylphosphine) palladium (57.8 mg) were added to THF (24 mL), and 4N-sodium hydroxide was added. Aqueous solution (1.9 mL) was added and then heated to reflux for 16 hours. The reaction mixture was allowed to cool to room temperature, and water was added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a gray solid. This gray solid was recrystallized from toluene to give a yellow powder of 2- [3-chloro-5- (9-phenanthryl) phenyl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (B-2) (Yield 1.16 g, 85% yield).
1 H-NMR (CDCl 3 ), δ (ppm): 7.59-7.76 (m, 10H), 7.84 (s, 1H), 7.95 (m, 3H), 8.37 (d , J = 8.0 Hz, 2H), 8.71 (d, J = 7.8 Hz, 1H), 8.79 (d, J = 8.2 Hz, 1H), 8.83-8.86 (m, 2H), 8.89 (s, 1H).
 アルゴン気流下、化合物B-2(1.14g)、4-(2-ピリジル)フェニルボロン酸(497mg)、酢酸パラジウム(9.4mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(59.5mg)をトルエン(21mL)に加え、さらに3M-炭酸カリウム水溶液(2.1mL)及び1-ブタノール(2.1mL)を添加し、次いで3時間加熱還流した。反応混合物を放冷後、水及びメタノールを加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄し灰色固体を得た。この灰色固体をトルエンで再結晶し、目的の2-[5-(9-フェナントリル)-4′-(2-ピリジル)ビフェニル-3-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-2)の黄色粉末(収量1.23g,収率89%)を得た。
 H-NMR(CDCl)、δ(ppm):7.26-7.30(m,1H),7.58-7.66(m,5H),7.68-7.76(m,4H),7.80(t,J=7.5Hz,1H),7.84(d,J=7.7Hz,1H),7.94(s,1H),7.96(d,J=8.0Hz,1H),7.99-8.02(m,4H),8.12(d,J=8.3Hz,1H),8.19(d,J=8.6Hz,2H),8.41(d,J=8.1Hz,2H),8.74(d,J=8.2Hz,1H),8.76(d,J=4.9Hz,1H),8.81(d,J=8.4Hz,1H),8.86(d,J=8.0Hz,1H),8.99(s,1H),9.21(s,1H).
Under an argon stream, compound B-2 (1.14 g), 4- (2-pyridyl) phenylboronic acid (497 mg), palladium acetate (9.4 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6 '-Triisopropylbiphenyl (59.5 mg) was added to toluene (21 mL), 3M aqueous potassium carbonate solution (2.1 mL) and 1-butanol (2.1 mL) were added, and the mixture was heated to reflux for 3 hours. After allowing the reaction mixture to cool, water and methanol were added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a gray solid. This gray solid was recrystallized from toluene to give the desired 2- [5- (9-phenanthryl) -4 '-(2-pyridyl) biphenyl-3-yl] -4-phenyl [1] benzothieno [3,2- d] A yellow powder (yield 1.23 g, yield 89%) of pyrimidine (C-2) was obtained.
1 H-NMR (CDCl 3 ), δ (ppm): 7.26-7.30 (m, 1H), 7.58-7.66 (m, 5H), 7.68-7.76 (m, 4H), 7.80 (t, J = 7.5 Hz, 1H), 7.84 (d, J = 7.7 Hz, 1H), 7.94 (s, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.9-8.02 (m, 4H), 8.12 (d, J = 8.3 Hz, 1H), 8.19 (d, J = 8.6 Hz, 2H), 8.41 (d, J = 8.1 Hz, 2H), 8.74 (d, J = 8.2 Hz, 1H), 8.76 (d, J = 4.9 Hz, 1H), 8.81 (d , J = 8.4 Hz, 1H), 8.86 (d, J = 8.0 Hz, 1H), 8.99 (s, 1H), 9.21 (s, 1H).
 実施例4
Figure JPOXMLDOC01-appb-C000053
Example 4
Figure JPOXMLDOC01-appb-C000053
 アルゴン気流下、化合物B-1(2.50g)、4-(2-ピリジル)フェニルボロン酸(1.32g)、及びテトラキス(トリフェニルホスフィン)パラジウム(128mg)をTHF(55mL)に加え、さらに3M-炭酸カリウム水溶液(4.4mL)を添加し、次いで23時間加熱還流した。反応混合物を室温まで放冷後、水を加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄し灰色固体を得た。この灰色固体をキシレンで再結晶し、2-[3-クロロ-4′-(2-ピリジル)ビフェニル-5-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-3)の黄色粉末(収量2.66g,収率91%)を得た。
 H-NMR(CDCl)、δ(ppm):7.28-7.32(m,1H),7.62-7.70(m,4H),7.34(t,J=7.5Hz,1H),7.80(s,1H),7.82-7.87(m,2H),7.89(d,J=8.4Hz,2H),7.97(d,J=7.9Hz,1H),8.19(d,J=8.4Hz,2H),8.40(d,J=8.1Hz,2H),8.76-8.79(m,3H),8.97(s,1H).
Under an argon stream, compound B-1 (2.50 g), 4- (2-pyridyl) phenylboronic acid (1.32 g), and tetrakis (triphenylphosphine) palladium (128 mg) were added to THF (55 mL), and 3M aqueous potassium carbonate solution (4.4 mL) was added, and then the mixture was heated to reflux for 23 hours. The reaction mixture was allowed to cool to room temperature, and water was added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a gray solid. This gray solid was recrystallized from xylene to give 2- [3-chloro-4 '-(2-pyridyl) biphenyl-5-yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (B- 3) of yellow powder (yield 2.66 g, yield 91%) was obtained.
1 H-NMR (CDCl 3 ), δ (ppm): 7.28-7.32 (m, 1H), 7.62-7.70 (m, 4H), 7.34 (t, J = 7. 5 Hz, 1H), 7.80 (s, 1H), 7.82-7.87 (m, 2H), 7.89 (d, J = 8.4 Hz, 2H), 7.97 (d, J = 7.9 Hz, 1H), 8.19 (d, J = 8.4 Hz, 2H), 8.40 (d, J = 8.1 Hz, 2H), 8.76-8.79 (m, 3H), 8.97 (s, 1H).
 アルゴン気流下、化合物 B-3(1.32g)、1-ピレンボロン酸(738mg)、酢酸パラジウム(11.2mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(47.7mg)をTHF(50mL)に加え、さらに3M-炭酸カリウム水溶液(5.0mL)を添加し、次いで2時間加熱還流した。反応混合物を室温まで放冷後、水を加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄し灰色固体を得た。この灰色固体をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン:クロロホルム=50:50(体積比)の混合溶媒)で精製することで目的の2-[5-(1-ピレニル)-4′-(2-ピリジル)ビフェニル-3-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-3)の黄色粉末(収量1.72g,収率99%)を得た。
 H-NMR(CDCl)、δ(ppm):7.30-7.34(m,1H),7.57-7.65(m,4H),7.70(dd,J=8.1,7.1Hz,1H),7.82-7.87(m,2H),7.95(d,J=8.0Hz,1H),8.03(d,J=8.4Hz,2H),8.06(d,J=7.6Hz,1H),8.09(s,1H),8.09(d,J=9.2Hz,1H),8.16(d,J=3.1H,2H),8.18-8.23(m,4H),8.25(d,J=7.7Hz,1H),8.33(d,J=7.9Hz,1H),8.37(d,J=9.2Hz,1H),8.40(d,J=8.0Hz,2H),8.74(d,J=7.5Hz,1H),8.78(d,J=4.8Hz,1H),9.07(s,1H),9,22(s,1H).
Under an argon stream, compound B-3 (1.32 g), 1-pyreneboronic acid (738 mg), palladium acetate (11.2 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl ( 47.7 mg) was added to THF (50 mL), 3M-potassium carbonate aqueous solution (5.0 mL) was added, and the mixture was heated to reflux for 2 hours. The reaction mixture was allowed to cool to room temperature, and water was added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a gray solid. This gray solid is purified by silica gel column chromatography (developing solvent: mixed solvent of toluene: chloroform = 50: 50 (volume ratio)) to give the desired 2- [5- (1-pyrenyl) -4 ′-(2 A yellow powder (1.72 g, 99% yield) of -pyridyl) biphenyl-3-yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (C-3) was obtained.
1 H-NMR (CDCl 3 ), δ (ppm): 7.30-7.34 (m, 1H), 7.57-7.65 (m, 4H), 7.70 (dd, J = 8. 1, 7.1 Hz, 1H), 7.82-7.87 (m, 2H), 7.95 (d, J = 8.0 Hz, 1H), 8.03 (d, J = 8.4 Hz, 2H) ), 8.06 (d, J = 7.6 Hz, 1H), 8.09 (s, 1H), 8.09 (d, J = 9.2 Hz, 1H), 8.16 (d, J = 3) .1H, 2H), 8.18-8.23 (m, 4H), 8.25 (d, J = 7.7 Hz, 1H), 8.33 (d, J = 7.9 Hz, 1H), 8 .37 (d, J = 9.2 Hz, 1H), 8.40 (d, J = 8.0 Hz, 2H), 8.74 (d, J = 7.5 Hz, 1H), 8.78 (d, J = 4.8 Hz, 1H), 9.07 s, 1H), 9,22 (s, 1H).
 実施例5
Figure JPOXMLDOC01-appb-C000054
Example 5
Figure JPOXMLDOC01-appb-C000054
 アルゴン気流下、化合物B-3(1.32g)、3-フルオランテンボロン酸(738mg)、酢酸パラジウム(11.2mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(47.7mg)をTHF(50mL)に加え、さらに3M-炭酸カリウム水溶液(5.0mL)を添加し、次いで6時間加熱還流した。反応混合物を室温まで放冷後、水を加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄し灰色固体を得た。この灰色固体をキシレンで再結晶することで目的の2-[5-(3-フルオランテニル)-4′-(2-ピリジル)ビフェニル-3-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-4)の黄色粉末(収量1.31g,収率76%)を得た。
 H-NMR(CDCl)、δ(ppm):7.28-7.31(m,1H),7.43-7.46(m,2H),7.61-7.73(m,6H),7.80-7.85(m,2H),7.87(d,J=7.1Hz,1H),7.95-8.01(m,3H),8.01(d,J=8.4Hz,2H),8.03(d,J=6.8Hz,1H),8.06(s,1H),8.10(d,J=7.1Hz,1H),8.12(d,J=8.4Hz,1H),8.20(d,J=8.4Hz,2H),8.41(d,J=8.1Hz,2H),8.75-8.78(m,2H),9.04(s,1H),9.18(s,1H).
Under an argon stream, compound B-3 (1.32 g), 3-fluorantheneboronic acid (738 mg), palladium acetate (11.2 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-tri Isopropyl biphenyl (47.7 mg) was added to THF (50 mL), 3M-potassium carbonate aqueous solution (5.0 mL) was further added, and the mixture was heated to reflux for 6 hours. The reaction mixture was allowed to cool to room temperature, and water was added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a gray solid. This gray solid was recrystallized from xylene to give the desired 2- [5- (3-fluoranthenyl) -4 '-(2-pyridyl) biphenyl-3-yl] -4-phenyl [1] benzothieno [3 , 2-d] pyrimidine (C-4) as a yellow powder (yield 1.31 g, yield 76%).
1 H-NMR (CDCl 3 ), δ (ppm): 7.28-7.31 (m, 1H), 7.43-7.46 (m, 2H), 7.61-7.73 (m, 6H), 7.80-7.85 (m, 2H), 7.87 (d, J = 7.1 Hz, 1H), 7.95-8.01 (m, 3H), 8.01 (d, J = 8.4 Hz, 2H), 8.03 (d, J = 6.8 Hz, 1H), 8.06 (s, 1H), 8.10 (d, J = 7.1 Hz, 1H), 8. 12 (d, J = 8.4 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 8.41 (d, J = 8.1 Hz, 2H), 8.75-8.78 (M, 2H), 9.04 (s, 1H), 9.18 (s, 1H).
 実施例6
Figure JPOXMLDOC01-appb-C000055
Example 6
Figure JPOXMLDOC01-appb-C000055
 アルゴン気流下、化合物B-1(1.32g)、3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)カルバゾール(897mg)、及びテトラキストリフェニルホスフィンパラジウム(40.9mg)をTHF(29mL)に加え、さらに3M-炭酸カリウム水溶液(6.1mL)を添加し、次いで24時間加熱還流した。反応混合物を室温まで放冷後、水を加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄し灰色固体を得た。この灰色固体をキシレンで再結晶し、2-[3-クロロ-5-(カルバゾール-3-イル)フェニル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-4)の褐色粉末(収量1.44mg,収率92%)を得た。
 H-NMR(DMSO-d)、δ(ppm):7.22(t,J=7.1Hz,1H),7.44(t,J=7.6Hz,1H),7.54(d,J=8.1Hz,1H),7.66(d,J=8.4Hz,1H),7.70-7.78(m,4H),7.84-7.90(m,2H),8.05(s,1H),8.28(d,J=8.0Hz,1H),8.32(d,J=7.8Hz,1H),8.37(d,J=8.0Hz,2H),8.62(s,1H),8.66(s,1H),8.79(d,J=7.8Hz,1H),8.98(s,1H),11.44(s,1H).
Compound B-1 (1.32 g), 3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) carbazole (897 mg), and tetrakistriphenylphosphine under an argon stream Palladium (40.9 mg) was added to THF (29 mL), 3M-potassium carbonate aqueous solution (6.1 mL) was added, and the mixture was heated to reflux for 24 hours. The reaction mixture was allowed to cool to room temperature, and water was added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a gray solid. This gray solid was recrystallized from xylene to give 2- [3-chloro-5- (carbazol-3-yl) phenyl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (B-4). A brown powder (yield 1.44 mg, yield 92%) was obtained.
1 H-NMR (DMSO-d 6 ), δ (ppm): 7.22 (t, J = 7.1 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.54 ( d, J = 8.1 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.70-7.78 (m, 4H), 7.84-7.90 (m, 2H) ), 8.05 (s, 1H), 8.28 (d, J = 8.0 Hz, 1H), 8.32 (d, J = 7.8 Hz, 1H), 8.37 (d, J = 8) 0.0 Hz, 2H), 8.62 (s, 1H), 8.66 (s, 1H), 8.79 (d, J = 7.8 Hz, 1H), 8.98 (s, 1H), 11. 44 (s, 1H).
 アルゴン気流下、化合物B-4(1.44g)、4-(2-ピリジル)フェニルボロン酸(640mg)、酢酸パラジウム(12.0mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(76.6mg)をTHF(27mL)に加え、さらに3M-炭酸カリウム水溶液(2.1mL)を添加し、次いで17時間加熱還流した。反応混合物を室温まで放冷後、水を加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄し灰色固体を得た。この灰色固体をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン:クロロホルム=50:50(体積比)の混合溶媒)で精製することで目的の2-[5-(カルバゾール-3-イル)-4′-(2-ピリジル)ビフェニル-3-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-5)の黄色粉末(収量1.71g,収率97%)を得た。
 H-NMR(DMSO-d)、δ(ppm):7.22(t,J=7.4Hz,1H),7.41(dd,J=7.4,4.8Hz,1H),7.44(t,J=7.6Hz,1H),7.55(d,J=8.1Hz,1H),7.68(d,J=8.4Hz,1H),7.70-7.79(m,4H),7.86(t,J=7.6Hz,1H),7.93-7.99(m,2H),8.08-8.12(m,3H),8.27-8.35(m,5H),8.39(d,J=8.0Hz,2H),8.73(s,1H),8.74(d,J=4.8Hz,1H),8.81(d,J=7.8Hz,1H),8.98(s,1H),9.05(s,1H),11.42(s,1H).
Under an argon stream, compound B-4 (1.44 g), 4- (2-pyridyl) phenylboronic acid (640 mg), palladium acetate (12.0 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6 '-Triisopropylbiphenyl (76.6 mg) was added to THF (27 mL), 3M-potassium carbonate aqueous solution (2.1 mL) was further added, and the mixture was heated to reflux for 17 hours. The reaction mixture was allowed to cool to room temperature, and water was added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a gray solid. The gray solid is purified by silica gel column chromatography (developing solvent: mixed solvent of toluene: chloroform = 50: 50 (volume ratio)) to give the desired 2- [5- (carbazol-3-yl) -4′- A yellow powder (yield 1.71 g, 97%) of (2-pyridyl) biphenyl-3-yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (B-5) was obtained.
1 H-NMR (DMSO-d 6 ), δ (ppm): 7.22 (t, J = 7.4 Hz, 1H), 7.41 (dd, J = 7.4, 4.8 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.55 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.70-7 .79 (m, 4H), 7.86 (t, J = 7.6 Hz, 1H), 7.93-7.99 (m, 2H), 8.08-8.12 (m, 3H), 8 .27-8.35 (m, 5H), 8.39 (d, J = 8.0 Hz, 2H), 8.73 (s, 1H), 8.74 (d, J = 4.8 Hz, 1H) , 8.81 (d, J = 7.8 Hz, 1H), 8.98 (s, 1H), 9.05 (s, 1H), 11.42 (s, 1H).
 アルゴン気流下、化合物B-5(1.71g)、2-ブロモピリジン(493mg)、酸化銅(I)(18.6mg)、1,10-フェナントロリン(46.9mg)、炭酸カリウム(719mg)、及び18-クラウン-6-エーテル(137mg)をキシレンに加え、17時間加熱還流した。反応物を室温まで放冷後、水及びメタノールを加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄し、褐色固体を得た。得られた固体をキシレンで再結晶することで目的の2-[5-[9-(2-ピリジル)カルバゾール-3-イル]-4′-(2-ピリジル)ビフェニル-3-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-5)の白色粉末(収量1.34g、収率70%)を得た。
 H-NMR(CDCl)δ(ppm):7.28-7.31(m,1H)、7.36-7.41(m,2H),7.51(t,J=7.7Hz,1H),7.61-7.68(m,4H),7.70-7.76(m,2H),7,82(t,J=7.6Hz,1H),7.87(d,J=7.8Hz,1H),7.92-8.04(m,7H),8.17(s,1H),8.22(d,J=8.3Hz,2H),8.28(d,J=7.7Hz,1H),8.85(d,J=8.2Hz,2H),8.57(s,1H),8.77-8.81(m,2H),8.82(d,J=8.4Hz,1H),9.09(s,1H),9.14(s,1H).
Under an argon stream, compound B-5 (1.71 g), 2-bromopyridine (493 mg), copper (I) oxide (18.6 mg), 1,10-phenanthroline (46.9 mg), potassium carbonate (719 mg), And 18-crown-6-ether (137 mg) was added to xylene and heated to reflux for 17 hours. The reaction product was allowed to cool to room temperature, and water and methanol were added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a brown solid. The obtained solid was recrystallized from xylene to give the desired 2- [5- [9- (2-pyridyl) carbazol-3-yl] -4 '-(2-pyridyl) biphenyl-3-yl] -4 A white powder (yield 1.34 g, 70% yield) of -phenyl [1] benzothieno [3,2-d] pyrimidine (C-5) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.28-7.31 (m, 1H), 7.36-7.41 (m, 2H), 7.51 (t, J = 7.7 Hz) , 1H), 7.61-7.68 (m, 4H), 7.70-7.76 (m, 2H), 7, 82 (t, J = 7.6 Hz, 1H), 7.87 (d , J = 7.8 Hz, 1H), 7.92-8.04 (m, 7H), 8.17 (s, 1H), 8.22 (d, J = 8.3 Hz, 2H), 8.28. (D, J = 7.7 Hz, 1H), 8.85 (d, J = 8.2 Hz, 2H), 8.57 (s, 1H), 8.77-8.81 (m, 2H), 8 .82 (d, J = 8.4 Hz, 1H), 9.09 (s, 1H), 9.14 (s, 1H).
 実施例7
Figure JPOXMLDOC01-appb-C000056
Example 7
Figure JPOXMLDOC01-appb-C000056
 アルゴン気流下、化合物A-1(1.52g)、及び5-ブロモ-2-クロロベンゾニトリル(1.95g)をTHF(12mL)に溶解させ、そこにカリウムtert-ブトキシド(741mg)のTHF懸濁液(18mL)を滴下し、次いで30℃で16時間撹拌した。次いで反応混合物に水及びメタノールを加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄することで目的の2-(5-ブロモ-2-クロロフェニル)-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-6)の黄白色固体(収量2.00g、収率74%)を得た。
 H-NMR(CDCl)δ(ppm):7.47(d,J=8.5Hz,1H),8.56(dd,J=8.5,2.4Hz,1H),7.59-7.68(m,4H),7.74(dd,J=8.0,7.6Hz,1H),7.79(d,J=8.0Hz,1H),8.21(d,J=2.4Hz,1H),8.36(d,J=8.1Hz,2H),8.71(d,J=8.0Hz,1H).
Under a stream of argon, Compound A-1 (1.52 g) and 5-bromo-2-chlorobenzonitrile (1.95 g) were dissolved in THF (12 mL), and potassium tert-butoxide (741 mg) in THF was dissolved therein. A turbid liquid (18 mL) was added dropwise and then stirred at 30 ° C. for 16 hours. Water and methanol were then added to the reaction mixture. The precipitated solid is washed with water, washed with methanol, and further washed with hexane to give the desired 2- (5-bromo-2-chlorophenyl) -4-phenyl [1] benzothieno [3,2-d] pyrimidine A yellowish white solid (yield 2.00 g, yield 74%) of (B-6) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.47 (d, J = 8.5 Hz, 1H), 8.56 (dd, J = 8.5, 2.4 Hz, 1H), 7.59 −7.68 (m, 4H), 7.74 (dd, J = 8.0, 7.6 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 8.21 (d, J = 2.4 Hz, 1H), 8.36 (d, J = 8.1 Hz, 2H), 8.71 (d, J = 8.0 Hz, 1H).
 実施例8
Figure JPOXMLDOC01-appb-C000057
Example 8
Figure JPOXMLDOC01-appb-C000057
 アルゴン気流下、化合物B-6(1.75g)、4-(2-ピリジル)フェニルボロン酸(1.85g)、酢酸パラジウム(17.4mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(73.8mg)をTHF(39mL)に加え、そこに3M-炭酸カリウム水溶液(6.2mL)を添加し、次いで16時間加熱還流した。反応混合物を放冷後、水及びメタノールを加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄し、目的の2-[4,4′′-ビス(2-ピリジル)-[1,1′:4′,1′′]-テルフェニル-5′-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-6)の褐色固体(収量2.40g,収率96%)を得た。
 H-NMR(CDCl)δ(ppm):7.23(dd,J=6.6,4.7Hz,1H),7.26-7.29(m,1H),7.36-7.44(m,3H),7.50(d,J=8.4Hz,2H),7.57(t,J=7.5Hz,1H),7.66-7.84(m,8H),7.88-7.94(m,4H),8.00(d,J=6.6Hz,2H),8.17(d,J=8.4Hz,2H),8.57(d,J=1.9Hz,1H),8.57(d,J=7.5Hz,1H),8.71(d,J=4.7Hz,1H),8.76(d,J=4.7Hz,1H).
Under an argon stream, compound B-6 (1.75 g), 4- (2-pyridyl) phenylboronic acid (1.85 g), palladium acetate (17.4 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′ , 6'-Triisopropylbiphenyl (73.8 mg) was added to THF (39 mL), 3M aqueous potassium carbonate solution (6.2 mL) was added thereto, and then the mixture was heated to reflux for 16 hours. After allowing the reaction mixture to cool, water and methanol were added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain the desired 2- [4,4 ″ -bis (2-pyridyl)-[1,1 ′: 4 ′, 1 ″. ] -Terphenyl-5'-yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (C-6) was obtained as a brown solid (yield 2.40 g, yield 96%).
1 H-NMR (CDCl 3 ) δ (ppm): 7.23 (dd, J = 6.6, 4.7 Hz, 1H), 7.26-7.29 (m, 1H), 7.36-7 .44 (m, 3H), 7.50 (d, J = 8.4 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.66-7.84 (m, 8H) , 7.88-7.94 (m, 4H), 8.00 (d, J = 6.6 Hz, 2H), 8.17 (d, J = 8.4 Hz, 2H), 8.57 (d, J = 1.9 Hz, 1H), 8.57 (d, J = 7.5 Hz, 1H), 8.71 (d, J = 4.7 Hz, 1H), 8.76 (d, J = 4.7 Hz) , 1H).
 実施例9
Figure JPOXMLDOC01-appb-C000058
Example 9
Figure JPOXMLDOC01-appb-C000058
 アルゴン気流下、3′-ブロモアセトフェノン(1.39mL)、及び3-クロロ-1,2-ベンズイソチアゾール(1.70g)をDMF(5.0mL)に加え、そこにカリウムtert-ブトキシド(1.68g)のDMF懸濁液(15.0mL)を滴下し、次いで100℃で4時間撹拌した。反応混合物を室温まで放冷後、水を加えた。析出した固体を水で洗浄し、さらにヘキサンで洗浄した。得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒;クロロホルム)で精製することで目的の3-アミノ-2-(3′-ブロモベンゾイル)ベンゾ[b]チオフェン(A-2)の黄色粉末(収量3.04g,収率91%)を得た。
 H-NMR(DMSO-d)δ(ppm):7.38(dd,J=8.1,7.1Hz,1H),7.53(t,J=7.8Hz,1H),7.59(dd,J=8.0,7.1Hz,1H),7.78-7.81(m,2H),7.87(d,J=8.1Hz,1H),7.92(s,1H),8.29(d,J=8.0Hz,1H),8.41(s,2H).
Under a stream of argon, 3′-bromoacetophenone (1.39 mL) and 3-chloro-1,2-benzisothiazole (1.70 g) were added to DMF (5.0 mL), and potassium tert-butoxide (1 .68 g) of DMF suspension (15.0 mL) was added dropwise and then stirred at 100 ° C. for 4 hours. The reaction mixture was allowed to cool to room temperature, and water was added. The precipitated solid was washed with water and further washed with hexane. The obtained solid was purified by silica gel column chromatography (developing solvent: chloroform) to give the desired 3-amino-2- (3′-bromobenzoyl) benzo [b] thiophene (A-2) yellow powder (yield) 3.04 g, yield 91%) was obtained.
1 H-NMR (DMSO-d 6 ) δ (ppm): 7.38 (dd, J = 8.1, 7.1 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7 .59 (dd, J = 8.0, 7.1 Hz, 1H), 7.78-7.81 (m, 2H), 7.87 (d, J = 8.1 Hz, 1H), 7.92 ( s, 1H), 8.29 (d, J = 8.0 Hz, 1H), 8.41 (s, 2H).
 アルゴン気流下、化合物A-2(3.02g)、3-ブロモベンゾニトリル(2.48g)、及び硫酸ナトリウム(3.87g)をDMF(18mL)に加え、そこにカリウムtert-ブトキシド(1.12g)のDMF懸濁液(27mL)を滴下し、次いで30℃で21時間撹拌した。次いで反応混合物にメタノールを加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄し薄褐色固体を得た。これをo-キシレンで再結晶することで目的の2-(3-ブロモフェニル)-4-(3-ブロモフェニル)[1]ベンゾチエノ[3,2-d]ピリミジン(B-7)の薄褐色粉末(収量3.68g、収率82%)を得た。
 H-NMR(CDCl)δ(ppm):7.46(t,J=7.9Hz,1H),7.54(t,J=7.9Hz,1H),7.64-7.69(m,2H),7.72-7.77(m,2H),7.97(d,J=8.0Hz,1H),8.29(d,J=7.8Hz,1H),8.50(s,1H),8.72(d,J=7.8Hz,1H),8.75(d,J=7.9Hz,1H),8.92(s,1H).
Under a stream of argon, Compound A-2 (3.02 g), 3-bromobenzonitrile (2.48 g), and sodium sulfate (3.87 g) were added to DMF (18 mL), and potassium tert-butoxide (1. 12 g) of DMF suspension (27 mL) was added dropwise and then stirred at 30 ° C. for 21 hours. Methanol was then added to the reaction mixture. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to obtain a light brown solid. By recrystallizing this from o-xylene, the desired 2- (3-bromophenyl) -4- (3-bromophenyl) [1] benzothieno [3,2-d] pyrimidine (B-7) light brown A powder (yield 3.68 g, yield 82%) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.46 (t, J = 7.9 Hz, 1H), 7.54 (t, J = 7.9 Hz, 1H), 7.64-7.69 (M, 2H), 7.72-7.77 (m, 2H), 7.97 (d, J = 8.0 Hz, 1H), 8.29 (d, J = 7.8 Hz, 1H), 8 .50 (s, 1H), 8.72 (d, J = 7.8 Hz, 1H), 8.75 (d, J = 7.9 Hz, 1H), 8.92 (s, 1H).
 実施例10
Figure JPOXMLDOC01-appb-C000059
Example 10
Figure JPOXMLDOC01-appb-C000059
 アルゴン気流下、化合物B-7(1.99g)、4-(2-ピリジル)フェニルボロン酸(1.91g)、及びビス(トリフェニルホスフィノ)パラジウムジクロリド(56mg)、をTHF(40mL)に加え、そこに3M-炭酸カリウム水溶液(6.4mL)を添加し、次いで16時間加熱還流した。反応混合物を室温まで放冷後、水及びメタノールを加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄し、目的の2-[4′-(2-ピリジル)ビフェニル-3-イル]-4-[4′-(2-ピリジル)ビフェニル-3-イル][1]ベンゾチエノ[3,2-d]ピリミジン(C-7)の褐色固体(収量2.05g,収率80%)を得た。
 H-NMR(CDCl)δ(ppm):7.29-7.32(m,2H),7.66(dd,J=7.9,7.1Hz,1H),7.68(t,J=7.7Hz,1H),7.73(dd,J=8.0,7.1Hz,1H),7.77(t,J=7.8Hz,1H),7.80-7.87(m,5H),7.90-7.92(m,1H),7.91(d,J=8.5Hz,2H),7.94(d,J=8.5Hz,2H),7.99(d,J=7.9Hz,1H),8.19(d,J=8.5Hz,2H),8.20(d,J=8.5Hz,2H),8.41(d,J=7.8Hz,1H),8.71(s,1H),8.75-8.80(m,3H),8.82(d,J=7.9Hz,1H),9.13(s,1H).
Under a stream of argon, Compound B-7 (1.99 g), 4- (2-pyridyl) phenylboronic acid (1.91 g), and bis (triphenylphosphino) palladium dichloride (56 mg) were added to THF (40 mL). In addition, 3M aqueous potassium carbonate solution (6.4 mL) was added thereto, and then the mixture was heated to reflux for 16 hours. The reaction mixture was allowed to cool to room temperature, and water and methanol were added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to give the desired 2- [4 '-(2-pyridyl) biphenyl-3-yl] -4- [4'-(2-pyridyl) ) Biphenyl-3-yl] [1] benzothieno [3,2-d] pyrimidine (C-7) as a brown solid (yield 2.05 g, yield 80%).
1 H-NMR (CDCl 3 ) δ (ppm): 7.29-7.32 (m, 2H), 7.66 (dd, J = 7.9, 7.1 Hz, 1H), 7.68 (t , J = 7.7 Hz, 1H), 7.73 (dd, J = 8.0, 7.1 Hz, 1H), 7.77 (t, J = 7.8 Hz, 1H), 7.80-7. 87 (m, 5H), 7.90-7.92 (m, 1H), 7.91 (d, J = 8.5 Hz, 2H), 7.94 (d, J = 8.5 Hz, 2H), 7.9 (d, J = 7.9 Hz, 1H), 8.19 (d, J = 8.5 Hz, 2H), 8.20 (d, J = 8.5 Hz, 2H), 8.41 (d , J = 7.8 Hz, 1H), 8.71 (s, 1H), 8.75-8.80 (m, 3H), 8.82 (d, J = 7.9 Hz, 1H), 9.13. (S, 1H).
 実施例11
Figure JPOXMLDOC01-appb-C000060
Example 11
Figure JPOXMLDOC01-appb-C000060
 アルゴン気流下、化合物A-1(253mg)、3′-シアノ-4-(2-ピリジル)ビフェニル(103mg)、及び硫酸ナトリウム(426mg)をTHF(2mL)に加え、そこにカリウムtert-ブトキシド(123mg)のTHF懸濁液(3.0mL)を滴下し、次いで30℃で撹拌した。その後、1時間毎3回に分けて3′-シアノ-4-(2-ピリジル)ビフェニル(103mgずつ、合計309mg)を追加し、その後21時間撹拌した。その後、21時間加熱還流した。反応混合物を室温まで放冷後、水及びメタノールを加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄することで目的の2-[4′-(2-ピリジル)ビフェニル-3-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-8)の白色固体(収量58mg、収率12%)を得た。
 H-NMR(CDCl)δ(ppm):7.40-7.43(m,1H),7.61-7.75(m,6H),7.83(d,J=8.2Hz,1H),7.92-7.98(m,5H),8.23(d,J=8.2Hz,2H),8.41(d,J=8.2Hz,2H),8.78(d,J=7.8Hz,1H),8.81-8.84(m,2H),9.10(s,1H).
Under a stream of argon, Compound A-1 (253 mg), 3′-cyano-4- (2-pyridyl) biphenyl (103 mg), and sodium sulfate (426 mg) were added to THF (2 mL), and potassium tert-butoxide ( 123 mg) in THF (3.0 mL) was added dropwise and then stirred at 30 ° C. Thereafter, 3'-cyano-4- (2-pyridyl) biphenyl (103 mg, total 309 mg) was added in three portions every hour, and then stirred for 21 hours. Then, it heated and refluxed for 21 hours. The reaction mixture was allowed to cool to room temperature, and water and methanol were added. The precipitated solid is washed with water, washed with methanol, and further washed with hexane to give the desired 2- [4 '-(2-pyridyl) biphenyl-3-yl] -4-phenyl [1] benzothieno [3] , 2-d] pyrimidine (C-8) was obtained as a white solid (58 mg, 12% yield).
1 H-NMR (CDCl 3 ) δ (ppm): 7.40-7.43 (m, 1H), 7.61-7.75 (m, 6H), 7.83 (d, J = 8.2 Hz) , 1H), 7.92-7.98 (m, 5H), 8.23 (d, J = 8.2 Hz, 2H), 8.41 (d, J = 8.2 Hz, 2H), 8.78 (D, J = 7.8 Hz, 1H), 8.81-8.84 (m, 2H), 9.10 (s, 1H).
 実施例12
Figure JPOXMLDOC01-appb-C000061
Example 12
Figure JPOXMLDOC01-appb-C000061
 アルゴン気流下、化合物A-1(1.01g)、4-ブロモベンゾニトリル(801mg)、及び硫酸ナトリウム(1.70g)をTHF(8.0mL)に加え、そこにカリウムtert-ブトキシド(494mg)のTHF懸濁液(12.0mL)を滴下し、次いで30℃で17時間撹拌した。次いで4-ブロモベンゾニトリル(364mg)を追加し、さらに2時間加熱還流した。反応混合物を室温まで放冷後、水及びメタノールを加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄することで目的の2-(4-ブロモフェニル)-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-8)の黄白色固体(収量684mg、収率41%)を得た。
 H-NMR(CDCl)δ(ppm):7.61-7.75(m,5H),7.71(d,J=8.7Hz,2H),7.97(d,J=8.0Hz,1H),8.38(d,J=8.1Hz,2H),8.68(d,J=8.7Hz,2H),8.75(d,J=7.8Hz,1H).
Under a stream of argon, Compound A-1 (1.01 g), 4-bromobenzonitrile (801 mg), and sodium sulfate (1.70 g) were added to THF (8.0 mL), and potassium tert-butoxide (494 mg) was added thereto. Of THF (12.0 mL) was added dropwise and then stirred at 30 ° C. for 17 hours. Subsequently, 4-bromobenzonitrile (364 mg) was added, and the mixture was further heated to reflux for 2 hours. The reaction mixture was allowed to cool to room temperature, and water and methanol were added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to give the desired 2- (4-bromophenyl) -4-phenyl [1] benzothieno [3,2-d] pyrimidine (B- 8) was obtained as a pale yellow solid (yield 684 mg, yield 41%).
1 H-NMR (CDCl 3 ) δ (ppm): 7.61-7.75 (m, 5H), 7.71 (d, J = 8.7 Hz, 2H), 7.97 (d, J = 8 0.0 Hz, 1H), 8.38 (d, J = 8.1 Hz, 2H), 8.68 (d, J = 8.7 Hz, 2H), 8.75 (d, J = 7.8 Hz, 1H) .
 実施例13
Figure JPOXMLDOC01-appb-C000062
Example 13
Figure JPOXMLDOC01-appb-C000062
 アルゴン気流下、化合物B-8(682mg)、ビス(4-ビフェニリル)アミン(576mg)、炭酸カリウム(496mg)、及び18-クラウン-6-エーテル(86.2mg)をキシレン(6.6mL)に加え、100℃に加熱した。次いで、酢酸パラジウム(7.3mg)、及びトリ(tert-ブチル)ホスフィンの1M-トルエン溶液(98μL)をキシレン(1.6mL)に加えた混合物を、前述の100℃に加熱した溶液を加え、次いで17時間加熱還流した。反応混合物を室温まで放冷後、水及びメタノールを加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄し、目的の2-[4-ビス(4-ビフェニリル)アミノフェニル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-9)の灰色固体(収量901mg,収率84%)を得た。
 H-NMR(CDCl)δ(ppm):7.31-7.38(m,8H),7.45-7.49(m,4H),7.59(d,J=8.6Hz,4H),7.61-7.68(m,8H),7.72(t,J=7.8Hz,1H),7.96(d,J=8.0Hz,1H),8.39(d,J=8.0Hz,2H),8.70(d,J=8.7Hz,2H),8.77-8.78(m,1).
Under an argon stream, Compound B-8 (682 mg), bis (4-biphenylyl) amine (576 mg), potassium carbonate (496 mg), and 18-crown-6-ether (86.2 mg) were added to xylene (6.6 mL). In addition, it was heated to 100 ° C. Next, a mixture of palladium acetate (7.3 mg) and tri (tert-butyl) phosphine in 1M-toluene (98 μL) added to xylene (1.6 mL) was added to the solution heated to 100 ° C. as described above. Subsequently, it heated and refluxed for 17 hours. The reaction mixture was allowed to cool to room temperature, and water and methanol were added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane, and the desired 2- [4-bis (4-biphenylyl) aminophenyl] -4-phenyl [1] benzothieno [3,2-d A gray solid (yield 901 mg, 84% yield) of pyrimidine (C-9) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.31-7.38 (m, 8H), 7.45-7.49 (m, 4H), 7.59 (d, J = 8.6 Hz) 4H), 7.61-7.68 (m, 8H), 7.72 (t, J = 7.8 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 8.39. (D, J = 8.0 Hz, 2H), 8.70 (d, J = 8.7 Hz, 2H), 8.77-8.78 (m, 1).
 実施例14
Figure JPOXMLDOC01-appb-C000063
Example 14
Figure JPOXMLDOC01-appb-C000063
 アルゴン気流下、化合物A-1(1.01g)、3,5-ジブロモベンゾニトリル(1.15g)、及び硫酸ナトリウム(1.70g)をTHF(8.0mL)に加え、そこにカリウムtert-ブトキシド(494mg)のTHF懸濁液(12mL)を滴下し、次いで30℃で17時間撹拌した。次いで、3,5-ジブロモベンゾニトリル(522mg)を追加し、さらに5時間加熱還流した。反応混合物を室温まで放冷後、水及びメタノールを加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄することで目的の2-(3,5-ジブロモフェニル)-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-9)の白色固体(収量1.36g、収率69%)を得た。
 H-NMR(CDCl)δ(ppm):7.64-7.70(m,4H),7.73(dd,J=8.0,7.1Hz,1H),7.82(s,1H),7.96(d,J=8.0Hz,1H),8.36(d,J=8.1Hz,2H),8.73(d.J=7.9Hz,1H),8.87(s,2H).
Under a stream of argon, Compound A-1 (1.01 g), 3,5-dibromobenzonitrile (1.15 g), and sodium sulfate (1.70 g) were added to THF (8.0 mL), and potassium tert- A suspension of butoxide (494 mg) in THF (12 mL) was added dropwise and then stirred at 30 ° C. for 17 hours. Subsequently, 3,5-dibromobenzonitrile (522 mg) was added, and the mixture was further heated to reflux for 5 hours. The reaction mixture was allowed to cool to room temperature, and water and methanol were added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to give the desired 2- (3,5-dibromophenyl) -4-phenyl [1] benzothieno [3,2-d] pyrimidine ( B-9) was obtained as a white solid (yield 1.36 g, yield 69%).
1 H-NMR (CDCl 3 ) δ (ppm): 7.64-7.70 (m, 4H), 7.73 (dd, J = 8.0, 7.1 Hz, 1H), 7.82 (s , 1H), 7.96 (d, J = 8.0 Hz, 1H), 8.36 (d, J = 8.1 Hz, 2H), 8.73 (d.J = 7.9 Hz, 1H), 8 .87 (s, 2H).
 実施例15
Figure JPOXMLDOC01-appb-C000064
Example 15
Figure JPOXMLDOC01-appb-C000064
 アルゴン気流下、化合物B-9(496mg)、9-フェナントレンボロン酸(533mg)、及びテトラキス(トリフェニルホスフィン)パラジウム(23.1mg)、をTHF(20mL)に加え、そこに3M-炭酸カリウム水溶液(1.6mL)を添加し、次いで19時間加熱還流した。反応混合物を室温まで放冷後、水及びメタノールを加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄し、目的の2-[3,5-ジ(9-フェナントリル)フェニル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-10)の褐色固体(収量647g,収率94%)を得た。
 H-NMR(CDCl)δ(ppm):7.54-7.75(m,13H),7.92(s,1H),7.95(d,J=8.0Hz,1H),7.99(s,2H),8.00(d,J=8.0Hz,2H),8.23(d,J=8.0Hz,2H),8.38(d,J=7.9Hz,2H),8.70(d,J=7.7Hz,1H),8.79(d,J=8.3Hz,2H),8.85(d,J=8.0Hz,2H),9.07(s,2H).
Under an argon stream, compound B-9 (496 mg), 9-phenanthreneboronic acid (533 mg), and tetrakis (triphenylphosphine) palladium (23.1 mg) were added to THF (20 mL), and 3M aqueous potassium carbonate solution was added thereto. (1.6 mL) was added and then heated to reflux for 19 hours. The reaction mixture was allowed to cool to room temperature, and water and methanol were added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane, and the desired 2- [3,5-di (9-phenanthryl) phenyl] -4-phenyl [1] benzothieno [3,2- d] A brown solid (yield 647 g, yield 94%) of pyrimidine (C-10) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.54-7.75 (m, 13H), 7.92 (s, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.9 (s, 2H), 8.00 (d, J = 8.0 Hz, 2H), 8.23 (d, J = 8.0 Hz, 2H), 8.38 (d, J = 7.9 Hz) , 2H), 8.70 (d, J = 7.7 Hz, 1H), 8.79 (d, J = 8.3 Hz, 2H), 8.85 (d, J = 8.0 Hz, 2H), 9 .07 (s, 2H).
 実施例16
Figure JPOXMLDOC01-appb-C000065
Example 16
Figure JPOXMLDOC01-appb-C000065
 アルゴン気流下、化合物B-1(2.45g)、フェニルボロン酸(727mg)、及びビス(トリフェニルホスフィン)パラジウムジクロリド(38.0mg)をTHF(22mL)に加え、さらに3M-炭酸カリウム水溶液(4.0mL)を添加し、次いで24時間加熱還流した。反応混合物を室温まで放冷後、水を加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄し、目的の2-[5-クロロビフェニル-3-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-10)の褐色粉末(収量2.33g,収率96%)を得た。
 H-NMR(CDCl)、δ(ppm):7.45(t,J=7.4Hz,1H),7.54(t,J=7.5Hz,2H),7.61-7.77(m,8H),7.96(d,J=8.0Hz,1H),8.38(d,J=8.1Hz,2H),8.74-8.76(m,2H),8.90(s,1H).
Under an argon stream, Compound B-1 (2.45 g), phenylboronic acid (727 mg), and bis (triphenylphosphine) palladium dichloride (38.0 mg) were added to THF (22 mL), and 3M aqueous potassium carbonate solution ( 4.0 mL) was added and then heated to reflux for 24 hours. The reaction mixture was allowed to cool to room temperature, and water was added. The precipitated solid was washed with water, washed with methanol, and further washed with hexane to give the desired 2- [5-chlorobiphenyl-3-yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine. A brown powder (Yield 2.33 g, Yield 96%) of (B-10) was obtained.
1 H-NMR (CDCl 3 ), δ (ppm): 7.45 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.5 Hz, 2H), 7.61-7. 77 (m, 8H), 7.96 (d, J = 8.0 Hz, 1H), 8.38 (d, J = 8.1 Hz, 2H), 8.74-8.76 (m, 2H), 8.90 (s, 1H).
 アルゴン気流下、化合物B-10(2.30g)、ビスピナコラートジボロン(1.43g)、トリス(ジベンジリデンアセトン)ジパラジウム(141mg)、2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(220mg)、酢酸カリウム(1.11g)を1,4-ジオキサン(25.6mL)に加え、19時間加熱還流した。反応混合物を放冷後、不溶物を濾過した。濾液をシリカゲルカラムクロマトグラフィー(展開溶媒;クロロホルム)で精製することで目的の2-[5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ビフェニル-3-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-11)の白色粉末(収量2.25g,収率81%)を得た。
 H-NMR(CDCl)、δ(ppm):1.45(s,12H),7.42(t,J=7.4Hz,1H),7.53(t,J=7.4Hz,2H),7.61-7.70(m,4H),7.72(dd,J=7.9,7.1Hz,1H),7.83(d,J=8.2Hz,2H),7.97(d,J=7.9Hz,1H),8.23(s,1H),8.41(d,J=8.2Hz,2H),8.83(d,J=7.8Hz,1H),9.13(s,1H),9.16(s,1H).
Under an argon stream, Compound B-10 (2.30 g), bispinacolatodiboron (1.43 g), tris (dibenzylideneacetone) dipalladium (141 mg), 2-dicyclohexylphosphino-2 ′, 4 ′, 6 '-Triisopropylbiphenyl (220 mg) and potassium acetate (1.11 g) were added to 1,4-dioxane (25.6 mL), and the mixture was heated to reflux for 19 hours. The reaction mixture was allowed to cool, and the insoluble material was filtered off. The filtrate was purified by silica gel column chromatography (developing solvent; chloroform) to give the desired 2- [5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) biphenyl- A white powder (yield 2.25 g, yield 81%) of 3-yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (B-11) was obtained.
1 H-NMR (CDCl 3 ), δ (ppm): 1.45 (s, 12H), 7.42 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.4 Hz, 2H), 7.61-7.70 (m, 4H), 7.72 (dd, J = 7.9, 7.1 Hz, 1H), 7.83 (d, J = 8.2 Hz, 2H), 7.97 (d, J = 7.9 Hz, 1H), 8.23 (s, 1H), 8.41 (d, J = 8.2 Hz, 2H), 8.83 (d, J = 7.8 Hz) , 1H), 9.13 (s, 1H), 9.16 (s, 1H).
 アルゴン気流下、化合物B-11(1.20g)、3-ブロモ-6,9-ジ(2-ピリジル)カルバゾール(978mg)、ビス(トリフェニルホスフィン)パラジウムジクロリド(31.2mg)をTHF(22mL)に加え、さらに3M-炭酸カリウム水溶液(1.5mL)を添加し、次いで22時間加熱還流した。反応混合物を室温まで放冷後、水を加えた。有機層を抽出し、溶媒を減圧留去した後にメタノールを加え、白褐色固体を析出させた。この白褐色固体をろ取することで、目的の2-[5-[6,9-ジ(2-ピリジル)カルバゾール-3-イル]ビフェニル-3-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-11)の褐色粉末(収量1.14g,収率70%)を得た。
 H-NMR(CDCl)、δ(ppm):7.26(dd,J=7.4,4.9Hz,1H),7.39(dd,J=7.4,4.9Hz,1H),7.47(t,J=7.4Hz,1H),7.56-7.74(m,7H),7.76(d,J=8.1Hz,1H),7.82(d,J=7.5Hz,1H),7.90-8.04(m,8H),8.12(s,1H),8.18(d,J=8.7Hz,1H),8.43(d,J=8.2Hz,2H),8.65(s,1H),8.76(d,J=4.9Hz,1H),8.80-8.83(m,2H),8.93(s,1H),9.03(s,1H),9.13(s,1H).
Under an argon stream, Compound B-11 (1.20 g), 3-bromo-6,9-di (2-pyridyl) carbazole (978 mg), bis (triphenylphosphine) palladium dichloride (31.2 mg) were added in THF (22 mL). 3M-potassium carbonate aqueous solution (1.5 mL) was added, and then heated to reflux for 22 hours. The reaction mixture was allowed to cool to room temperature, and water was added. The organic layer was extracted, the solvent was distilled off under reduced pressure, and methanol was added to precipitate a white brown solid. By filtering this white brown solid, the desired 2- [5- [6,9-di (2-pyridyl) carbazol-3-yl] biphenyl-3-yl] -4-phenyl [1] benzothieno [1] A brown powder of 3.2-d] pyrimidine (C-11) was obtained (yield 1.14 g, yield 70%).
1 H-NMR (CDCl 3 ), δ (ppm): 7.26 (dd, J = 7.4, 4.9 Hz, 1H), 7.39 (dd, J = 7.4, 4.9 Hz, 1H) ), 7.47 (t, J = 7.4 Hz, 1H), 7.56-7.74 (m, 7H), 7.76 (d, J = 8.1 Hz, 1H), 7.82 (d , J = 7.5 Hz, 1H), 7.90-8.04 (m, 8H), 8.12 (s, 1H), 8.18 (d, J = 8.7 Hz, 1H), 8.43 (D, J = 8.2 Hz, 2H), 8.65 (s, 1H), 8.76 (d, J = 4.9 Hz, 1H), 8.80-8.83 (m, 2H), 8 .93 (s, 1H), 9.03 (s, 1H), 9.13 (s, 1H).
 実施例17
Figure JPOXMLDOC01-appb-C000066
Example 17
Figure JPOXMLDOC01-appb-C000066
 アルゴン気流下、化合物B-2(1.00g)、3-ピリジルボロン酸(291mg)、酢酸パラジウム(8.2mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(34.7mg)をTHF(18mL)に加え、さらに3M-炭酸カリウム水溶液(2.4mL)を添加し、次いで24時間加熱還流した。その後、酢酸パラジウム(8.2mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(34.7mg)のTHF溶液(5mL)を反応混合物に添加し、次いで24時間加熱還流した。反応混合物を室温まで放冷後、水を加えた。THFを減圧留去した後にメタノールを加え、白褐色固体を析出させた。この白褐色固体をろ取することで、目的の2-[5-(9-フェナントリル)-3-(3-ピリジル)フェニル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-12)の白褐色粉末(収量1.08g,収率100%)を得た。
 H-NMR(CDCl)、δ(ppm):7.47(t,J=7.9,4.8Hz,1H),7.58-7.76(m,9H),7.91(s,1H),7.93(s,1H),7.96(d,J=8.0Hz,1H),7.99(d,J=7.9Hz,1H),8.07(d,J=8.3Hz,1H),8.15(d,J=7.9Hz,1H),8.38(d,J=8.1Hz,2H),8.68(d,J=4.8Hz,1H),8.73(d,J=7.9Hz,1H),8.80(d,J=8.1Hz,1H),8.85(d,J=8.2Hz,1H),9.02(s,1H),9.13(s,1H),9.14(s,1H).
Compound B-2 (1.00 g), 3-pyridylboronic acid (291 mg), palladium acetate (8.2 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl under an argon stream (34.7 mg) was added to THF (18 mL), 3M-potassium carbonate aqueous solution (2.4 mL) was further added, and the mixture was heated to reflux for 24 hours. Thereafter, palladium acetate (8.2 mg) and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (34.7 mg) in THF (5 mL) were added to the reaction mixture, then for 24 hours. Heated to reflux. The reaction mixture was allowed to cool to room temperature, and water was added. After THF was distilled off under reduced pressure, methanol was added to precipitate a white brown solid. By filtering this white brown solid, the desired 2- [5- (9-phenanthryl) -3- (3-pyridyl) phenyl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine ( C-12) was obtained as a white brown powder (yield 1.08 g, yield 100%).
1 H-NMR (CDCl 3 ), δ (ppm): 7.47 (t, J = 7.9, 4.8 Hz, 1H), 7.58-7.76 (m, 9H), 7.91 ( s, 1H), 7.93 (s, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 7.9 Hz, 1H), 8.07 (d, J = 8.3 Hz, 1H), 8.15 (d, J = 7.9 Hz, 1H), 8.38 (d, J = 8.1 Hz, 2H), 8.68 (d, J = 4.8 Hz) , 1H), 8.73 (d, J = 7.9 Hz, 1H), 8.80 (d, J = 8.1 Hz, 1H), 8.85 (d, J = 8.2 Hz, 1H), 9 .02 (s, 1H), 9.13 (s, 1H), 9.14 (s, 1H).
 実施例18
Figure JPOXMLDOC01-appb-C000067
Example 18
Figure JPOXMLDOC01-appb-C000067
 アルゴン気流下、化合物B-1(500mg)、4-ジフェニルボロン酸(482mg)、酢酸パラジウム(5.0mg)及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(21.0mg)をトルエン(30.0mL)及び1-ブタノール(7mL)の混合溶媒に懸濁し、さらに3M-炭酸カリウム水溶液(0.74mL)を添加し、21時間100℃で加熱撹拌した。反応混合物を放冷後、メタノールを加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、トルエン180mLとメタノール80mLの混合溶媒で再結晶することで、目的の4-フェニル-2-(1,1′:4′,1′′:3′′,1′′′:4′′′,1′′′′-キンクエフェニル-5′′-イル)-[1]ベンゾチエノ[3,2-d]ピリミジン(C-13)の白色粉末(収量706mg,収率99%)を得た。
 H-NMR(CDCl)δ(ppm):7.39(t,J=7.6Hz,2H),7.50(t,J=7.7Hz,4H),7.61-7.74(m,9H),7.78(d,J=8.3Hz,4H),7.93(d,J=8.3Hz,4H),7.96(d,J=8.0Hz,1H),8.06(s,1H),8.41(d,J=6.8Hz,2H),8.79(d,J=8.0Hz,1H),9.06(d,J=1.5Hz,2H).
Under a stream of argon, Compound B-1 (500 mg), 4-diphenylboronic acid (482 mg), palladium acetate (5.0 mg) and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (21. 0 mg) was suspended in a mixed solvent of toluene (30.0 mL) and 1-butanol (7 mL), 3M-potassium carbonate aqueous solution (0.74 mL) was further added, and the mixture was heated and stirred at 100 ° C. for 21 hours. The reaction mixture was allowed to cool, methanol was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and recrystallized with a mixed solvent of 180 mL of toluene and 80 mL of methanol to obtain the desired 4-phenyl-2- (1,1 ′: 4 ′, 1 ″: 3 ″, 1 ″ ″: 4 ″ ″, 1 ″ ″ ′-kinquephenyl-5 ″ -yl)-[1] benzothieno [3,2-d] pyrimidine (C-13) white A powder (yield 706 mg, yield 99%) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.39 (t, J = 7.6 Hz, 2H), 7.50 (t, J = 7.7 Hz, 4H), 7.61-7.74 (M, 9H), 7.78 (d, J = 8.3 Hz, 4H), 7.93 (d, J = 8.3 Hz, 4H), 7.96 (d, J = 8.0 Hz, 1H) , 8.06 (s, 1H), 8.41 (d, J = 6.8 Hz, 2H), 8.79 (d, J = 8.0 Hz, 1H), 9.06 (d, J = 1. 5Hz, 2H).
 実施例19
Figure JPOXMLDOC01-appb-C000068
Example 19
Figure JPOXMLDOC01-appb-C000068
 アルゴン気流下、化合物B-1(500mg)、9-アントラセンボロン酸(270mg)、酢酸パラジウム(5.0mg)及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(21.0mg)を1,4-ジオキサン(11.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(0.74mL)を添加し、16時間80℃で加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール及びヘキサンで洗浄し、さらにトルエン38mLで再結晶することで、目的の2-[3-(9-アントラシル)-5-クロロフェニル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-12)の白色粉末(収量584mg,収率96%)を得た。
 H-NMR(CDCl)δ(ppm):7.40(t,J=7.8Hz,2H),7.50(t,J=7.0Hz,2H),5.53-7.61(m,5H),7.67(t,J=7.2Hz,1H),7.76(d,J=9.2Hz,2H),7.91(d,J=8.5Hz,1H),8.08(d,J=8.3Hz,2H),8.32(d,J=8.2Hz,2H),8.56(s,1H),8.64(d,J=7.8Hz,1H),8.76(s,1H),8.95(s,1H).
Under a stream of argon, Compound B-1 (500 mg), 9-anthraceneboronic acid (270 mg), palladium acetate (5.0 mg) and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (21. 0 mg) was suspended in 1,4-dioxane (11.0 mL), 3M-potassium carbonate aqueous solution (0.74 mL) was further added, and the mixture was heated and stirred at 80 ° C. for 16 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and further recrystallized with 38 mL of toluene to obtain the desired 2- [3- (9-anthracyl) -5-chlorophenyl] -4-phenyl [1] benzothieno [ A white powder (yield 584 mg, yield 96%) of 3,2-d] pyrimidine (B-12) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.40 (t, J = 7.8 Hz, 2H), 7.50 (t, J = 7.0 Hz, 2H), 5.53-7.61 (M, 5H), 7.67 (t, J = 7.2 Hz, 1H), 7.76 (d, J = 9.2 Hz, 2H), 7.91 (d, J = 8.5 Hz, 1H) , 8.08 (d, J = 8.3 Hz, 2H), 8.32 (d, J = 8.2 Hz, 2H), 8.56 (s, 1H), 8.64 (d, J = 7. 8 Hz, 1H), 8.76 (s, 1H), 8.95 (s, 1H).
 アルゴン気流下、化合物B-12(536mg)、4-(2-ピリジル)フェニルボロン酸(233mg)、酢酸パラジウム(4.4mg)及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(18.6mg)を1,4-ジオキサン(10.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(0.65mL)を添加し、16時間80℃で加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール及びヘキサンで洗浄し、さらにトルエン180mLとメタノール80mLの混合溶媒で再結晶することで、目的の2-[5-(9-アントラシル)-4′-(2-ピリジル)ビフェニル-3-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-14)の白色粉末(収量578mg,収率89%)を得た。
 H-NMR(DMSO-d)δ(ppm):7.39(dd,J=7.9Hz,4.5Hz,1H),7.50(t,J=7.6Hz,2H),7.59(t,J=7.0Hz,2H),7.63-7.72(m,4H),7.76(d,J=8.5Hz,2H),7.83(t,J=7.2Hz,1H),7.92(t,J=7.9Hz,1H),8.02(s,1H),8.06(d,J=7.3Hz,1H),8.08(d,J=8.6Hz,2H),8.22-8.33(m,7H),8.68-8.72(m,3H),8.80(s,1H),9.28(s,1H).
Under a stream of argon, Compound B-12 (536 mg), 4- (2-pyridyl) phenylboronic acid (233 mg), palladium acetate (4.4 mg) and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-tri Isopropylbiphenyl (18.6 mg) was suspended in 1,4-dioxane (10.0 mL), 3M-potassium carbonate aqueous solution (0.65 mL) was further added, and the mixture was heated and stirred at 80 ° C. for 16 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and further recrystallized with a mixed solvent of 180 mL of toluene and 80 mL of methanol to obtain the desired 2- [5- (9-anthracyl) -4 ′-(2-pyridyl). ) Biphenyl-3-yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (C-14) was obtained as a white powder (yield 578 mg, 89%).
1 H-NMR (DMSO-d 6 ) δ (ppm): 7.39 (dd, J = 7.9 Hz, 4.5 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7 .59 (t, J = 7.0 Hz, 2H), 7.63-7.72 (m, 4H), 7.76 (d, J = 8.5 Hz, 2H), 7.83 (t, J = 7.2 Hz, 1H), 7.92 (t, J = 7.9 Hz, 1H), 8.02 (s, 1H), 8.06 (d, J = 7.3 Hz, 1H), 8.08 ( d, J = 8.6 Hz, 2H), 8.22-8.33 (m, 7H), 8.68-8.72 (m, 3H), 8.80 (s, 1H), 9.28 ( s, 1H).
 実施例20
Figure JPOXMLDOC01-appb-C000069
Example 20
Figure JPOXMLDOC01-appb-C000069
 アルゴン気流下、化合物B-3(450mg)、4-ジフェニルボロン酸(203mg)、酢酸パラジウム(3.8mg)及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(16.3mg)をトルエン(23.0mL)及び1-ブタノール(5mL)の混合溶媒に懸濁し、さらに3M-炭酸カリウム水溶液(0.57mL)を添加し、16時間100℃で加熱撹拌した。反応混合物を放冷後、メタノールを加え、析出した固体をろ取した。得られた固体を水、メタノール、及びヘキサンで洗浄し、さらにトルエン80mLとメタノール100mLの混合溶媒で再結晶することで、目的の4-フェニル-2-[4-(2-ピリジル)-1,1′:3′,1′′:4′′,1′′′-クアテルフェニル-5′-イル][1]ベンゾチエノ[3,2-d]ピリミジン(C-15)の白色粉末(収量398mg,収率72%)を得た。
 H-NMR(CDCl)δ(ppm):7.26-7.29(m,1H),7.40(t,J=7.0Hz,1H),7.49(t,J=7.8Hz,2H),7.61-7.74(m,7H),8.78-7.86(m,4H),7.93(d,J=8.2Hz,2H),7.96(d,J=8.2Hz,3H),8.07(s,1H),8.19(d,J=8.2Hz,2H),8.41(d,J=8.1Hz,2H),8.75(d,J=4.7Hz,1H),8.79(d,J=7.3Hz,1H),9.07(s,2H).
Under an argon stream, compound B-3 (450 mg), 4-diphenylboronic acid (203 mg), palladium acetate (3.8 mg) and 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (16. 3 mg) was suspended in a mixed solvent of toluene (23.0 mL) and 1-butanol (5 mL), 3M-potassium carbonate aqueous solution (0.57 mL) was added, and the mixture was heated and stirred at 100 ° C. for 16 hours. The reaction mixture was allowed to cool, methanol was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol, and hexane, and further recrystallized with a mixed solvent of 80 mL of toluene and 100 mL of methanol to obtain the desired 4-phenyl-2- [4- (2-pyridyl) -1, 1 ′: 3 ′, 1 ″: 4 ″, 1 ″ ″-quaterphenyl-5′-yl] [1] benzothieno [3,2-d] pyrimidine (C-15) white powder (yield 398 mg, 72% yield).
1 H-NMR (CDCl 3 ) δ (ppm): 7.26-7.29 (m, 1H), 7.40 (t, J = 7.0 Hz, 1H), 7.49 (t, J = 7 .8 Hz, 2H), 7.61-7.74 (m, 7H), 8.78-7.86 (m, 4H), 7.93 (d, J = 8.2 Hz, 2H), 7.96 (D, J = 8.2 Hz, 3H), 8.07 (s, 1H), 8.19 (d, J = 8.2 Hz, 2H), 8.41 (d, J = 8.1 Hz, 2H) , 8.75 (d, J = 4.7 Hz, 1H), 8.79 (d, J = 7.3 Hz, 1H), 9.07 (s, 2H).
 実施例21
Figure JPOXMLDOC01-appb-C000070
Example 21
Figure JPOXMLDOC01-appb-C000070
 アルゴン気流下、化合物B-3(470mg)、ビスピナコラートジボロン(295mg)、トリス(ジベンジリデンアセトン)ジパラジウム(16.0mg)、2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(17.0mg)及び酢酸カリウム(175mg)を1,4-ジオキサン(30.0mL)に懸濁し、16時間80℃で加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体をシリカゲルクロマトグラフィー(展開溶媒:クロロホルム)で精製することで目的の2-[5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-4′-(2-ピリジル)ビフェニル-3-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-13)の白色粉末(収量241mg,収率44%)を得た。
 H-NMR(CDCl)δ(ppm):1.44(s,12H),7.60-7.68(m,5H),7.71(t,J=7.2Hz,1H),7.78-7.84(m,2H),7.92-7.96(m,3H),8.14(d,J=8.3Hz,2H),8.26(s,1H),8.40(d,J=7.0Hz,2H),8.74(d,J=5.9Hz,1H),8.81(d,J=7.0Hz,1H),9.16(dd,J=2.0Hz,1.9Hz,2H).
Under an argon stream, compound B-3 (470 mg), bispinacolatodiboron (295 mg), tris (dibenzylideneacetone) dipalladium (16.0 mg), 2-dicyclohexylphosphino-2 ', 4', 6'- Triisopropylbiphenyl (17.0 mg) and potassium acetate (175 mg) were suspended in 1,4-dioxane (30.0 mL), and the mixture was heated and stirred at 80 ° C. for 16 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was purified by silica gel chromatography (developing solvent: chloroform) to give the desired 2- [5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -4 '-(2-pyridyl) biphenyl-3-yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (B-13) as a white powder (241 mg, 44% yield) It was.
1 H-NMR (CDCl 3 ) δ (ppm): 1.44 (s, 12H), 7.60-7.68 (m, 5H), 7.71 (t, J = 7.2 Hz, 1H), 7.78-7.84 (m, 2H), 7.92-7.96 (m, 3H), 8.14 (d, J = 8.3 Hz, 2H), 8.26 (s, 1H), 8.40 (d, J = 7.0 Hz, 2H), 8.74 (d, J = 5.9 Hz, 1H), 8.81 (d, J = 7.0 Hz, 1H), 9.16 (dd , J = 2.0 Hz, 1.9 Hz, 2H).
 アルゴン気流下、化合物B-13(240mg)、5-ブロモ-2,2′-ビピリジン(110mg)、酢酸パラジウム(1.8mg)及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(7.4mg)を1,4-ジオキサン(13.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(0.26mL)を添加し、24時間100℃で加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール及びヘキサンで洗浄し、さらにトルエン15mLで再結晶することで、目的の2-[5-(2,2′-ビピリジン-5-イル)-4′-(2-ピリジル)ビフェニル-3-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-16)の白色粉末(収量170mg,収率68%)を得た。
 H-NMR(CDCl)δ(ppm):7.26-7.29(m,1H),7.35(t,J=6.4Hz,1H),7.62-7.74(m,5H),7.79-7.89(m,3H),7.96(d,J=8.0Hz,3H),8.07(s,1H),8.20(d,J=8.3Hz,2H),8.28(dd,J=8.0Hz,2.0Hz,1H),8.41(d,J=7.3Hz,2H),8.51(d,J=8.0Hz,1H),8.58(d,J=8.3Hz,1H),8.75(t,J=4.8Hz,2H),8.79(d,J=8.0Hz,1H),9.10(s,1H),9.14(s,1H),9.19(s,1H).
Under an argon stream, compound B-13 (240 mg), 5-bromo-2,2′-bipyridine (110 mg), palladium acetate (1.8 mg) and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-tri Isopropylbiphenyl (7.4 mg) was suspended in 1,4-dioxane (13.0 mL), 3M-potassium carbonate aqueous solution (0.26 mL) was further added, and the mixture was heated and stirred at 100 ° C. for 24 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and further recrystallized with 15 mL of toluene to obtain the desired 2- [5- (2,2′-bipyridin-5-yl) -4 ′-(2- A white powder (yield 170 mg, 68%) of pyridyl) biphenyl-3-yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (C-16) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.26-7.29 (m, 1H), 7.35 (t, J = 6.4 Hz, 1H), 7.62-7.74 (m , 5H), 7.79-7.89 (m, 3H), 7.96 (d, J = 8.0 Hz, 3H), 8.07 (s, 1H), 8.20 (d, J = 8 .3 Hz, 2H), 8.28 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 8.41 (d, J = 7.3 Hz, 2H), 8.51 (d, J = 8. 0 Hz, 1H), 8.58 (d, J = 8.3 Hz, 1H), 8.75 (t, J = 4.8 Hz, 2H), 8.79 (d, J = 8.0 Hz, 1H), 9.10 (s, 1H), 9.14 (s, 1H), 9.19 (s, 1H).
 実施例22
Figure JPOXMLDOC01-appb-C000071
Example 22
Figure JPOXMLDOC01-appb-C000071
 アルゴン気流下、4-アセチルビフェニル(2.00g)及び3-クロロ-1,2-ベンズイソチアゾール(2.43g)をDMF(4.0mL)に加え、そこにカリウムtert-ブトキシドのDMF溶液(1.98g/20.0mL)を滴下し、次いで16時間100℃で加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水で洗浄し、シリカゲルクロマトグラフィー(展開溶媒:クロロホルム)で精製することで、目的の3-アミノ-2-(4-フェニルベンゾイル)ベンゾ[b]チオフェン(A-3)の黄色粉末(収量1.23g,収率32%)を得た。
 H-NMR(CDCl)δ(ppm):7.03(s,2H),7.38-7.43(m,2H),7.47-7.54(m,3H),7.66(d,J=7.4Hz,2H),7.70-7.76(m,4H),7.99(d,J=8.2Hz,2H).
Under an argon stream, 4-acetylbiphenyl (2.00 g) and 3-chloro-1,2-benzisothiazole (2.43 g) were added to DMF (4.0 mL), and potassium tert-butoxide in DMF solution ( 1.98 g / 20.0 mL) was added dropwise, and then heated and stirred at 100 ° C. for 16 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water and purified by silica gel chromatography (developing solvent: chloroform) to obtain the desired 3-amino-2- (4-phenylbenzoyl) benzo [b] thiophene (A-3). A yellow powder (yield 1.23 g, yield 32%) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.03 (s, 2H), 7.38-7.43 (m, 2H), 7.47-7.54 (m, 3H), 7. 66 (d, J = 7.4 Hz, 2H), 7.70-7.76 (m, 4H), 7.99 (d, J = 8.2 Hz, 2H).
 アルゴン気流下、化合物A-3(1.23g)、3-ブロモ-5-クロロベンゾニトリル(889mg)及び硫酸ナトリウム(1.59g)をTHF(3.0mL)に加え、そこにカリウムtert-ブトキシドのTHF溶液(461mg/16.0mL)を滴下し、次いで16時間30℃で加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体をメタノールで洗浄し、目的の2-(3-ブロモ-5-クロロフェニル)-4-(4-ビフェニル)-[1]ベンゾチエノ[3,2-d]ピリミジン(B-14)の薄黄色粉末(収量1.13g,収率57%)を得た。
 H-NMR(CDCl)δ(ppm):7.43(t,J=7.4Hz,1H),7.50(t,J=7.5Hz,2H),7.64-7.66(m,2H),7.72(d,J=7.7Hz,2H),7.73(t,J=8.1Hz,1H),7.88(d,J=8.5Hz,2H),7.97(d,J=8.2Hz,1H),8.45(d,J=8.5Hz,2H),8.73(s,1H),8.74(d,J=8.2Hz,1H),8.84(s,1H).
Under a stream of argon, compound A-3 (1.23 g), 3-bromo-5-chlorobenzonitrile (889 mg) and sodium sulfate (1.59 g) were added to THF (3.0 mL), and potassium tert-butoxide was added thereto. In THF (461 mg / 16.0 mL) was added dropwise, and then the mixture was stirred with heating at 30 ° C. for 16 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with methanol to obtain the desired 2- (3-bromo-5-chlorophenyl) -4- (4-biphenyl)-[1] benzothieno [3,2-d] pyrimidine (B-14). A pale yellow powder (yield 1.13 g, 57% yield) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.43 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.5 Hz, 2H), 7.64-7.66 (M, 2H), 7.72 (d, J = 7.7 Hz, 2H), 7.73 (t, J = 8.1 Hz, 1H), 7.88 (d, J = 8.5 Hz, 2H) 7.97 (d, J = 8.2 Hz, 1H), 8.45 (d, J = 8.5 Hz, 2H), 8.73 (s, 1H), 8.74 (d, J = 8. 2 Hz, 1H), 8.84 (s, 1H).
 実施例23
Figure JPOXMLDOC01-appb-C000072
Example 23
Figure JPOXMLDOC01-appb-C000072
 アルゴン気流下、化合物B-14(700mg)、4-(2-ピリジル)フェニルボロン酸(581mg)、酢酸パラジウム(18.0mg)及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(76.0mg)を1,4-ジオキサン(44.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(0.89mL)を添加し、5時間100℃で加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール及びヘキサンで洗浄し、さらにトルエン100mLで再結晶することで、目的の4-(4-ビフェニル)-2-[4,4′′-ジ(2-ピリジル)-1,1′:3′,1′′-テルフェニル-5′-イル][1]ベンゾチエノ[3,2-d]ピリミジン(C-17)の白色粉末(収量950mg,収率99%)を得た。
 H-NMR(CDCl)δ(ppm):7.28(d,J=7.2Hz,2H),7.43(t,J=7.4Hz,1H),7.52(t,J=7.53Hz,2H),7.65(t,J=6.9Hz,1H),7.72(t,J=8.5Hz,1H),7.73(d,J=7.5Hz,2H),7.78-7.86(m,4H),7.89(d,J=8.5Hz,2H),7.97(d,J=8.4Hz,5H),8.08(s,1H),8.19(d,J=8.4Hz,4H),8.51(d,J=8.5Hz,2H)8.75(d,J=5.0Hz,2H)8.79(d,J=7.7Hz,1H),9.10(d,J=1.8Hz,2H).
Under an argon stream, compound B-14 (700 mg), 4- (2-pyridyl) phenylboronic acid (581 mg), palladium acetate (18.0 mg) and 2-dicyclohexylphosphino-2 ', 4', 6'-tri Isopropyl biphenyl (76.0 mg) was suspended in 1,4-dioxane (44.0 mL), 3M-potassium carbonate aqueous solution (0.89 mL) was further added, and the mixture was heated and stirred at 100 ° C. for 5 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and further recrystallized with 100 mL of toluene to obtain the desired 4- (4-biphenyl) -2- [4,4 ″ -di (2-pyridyl)- 1,1 ′: 3 ′, 1 ″ -terphenyl-5′-yl] [1] benzothieno [3,2-d] pyrimidine (C-17) white powder (yield 950 mg, yield 99%) Obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.28 (d, J = 7.2 Hz, 2H), 7.43 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.53 Hz, 2H), 7.65 (t, J = 6.9 Hz, 1H), 7.72 (t, J = 8.5 Hz, 1H), 7.73 (d, J = 7.5 Hz, 2H), 7.78-7.86 (m, 4H), 7.89 (d, J = 8.5 Hz, 2H), 7.97 (d, J = 8.4 Hz, 5H), 8.08 ( s, 1H), 8.19 (d, J = 8.4 Hz, 4H), 8.51 (d, J = 8.5 Hz, 2H) 8.75 (d, J = 5.0 Hz, 2H) 79 (d, J = 7.7 Hz, 1H), 9.10 (d, J = 1.8 Hz, 2H).
 実施例24
Figure JPOXMLDOC01-appb-C000073
Example 24
Figure JPOXMLDOC01-appb-C000073
 アルゴン気流下、2-アセトナフタレン(2.00g)、及び3-クロロ-1,2-ベンズイソチアゾール(2.11g)をDMF(4.0mL)に加え、そこにカリウムtert-ブトキシドのDMF溶液(1.98g/20.0mL)を滴下し、次いで16時間100℃で加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水で洗浄し、シリカゲルクロマトグラフィー(展開溶媒:クロロホルム)で精製することで、目的の3-アミノ-2-(2-ナフトイル)ベンゾ[b]チオフェン(A-4)の黄色粉末(収量1.51g,収率42%)を得た。
 H-NMR(CDCl)δ(ppm):7.05(s,2H),7.42(t,J=7.6Hz,1H),7.50(t,J=7.6Hz,1H),7.56-7.61(m,2H),7.72(d,J=8.1Hz,1H),7.76(d,J=8.1Hz,1H),7.91(d,J=6.8Hz,1H),7.95-7.99(m,3H),8.47(s,1H).
Under an argon stream, 2-acetonaphthalene (2.00 g) and 3-chloro-1,2-benzisothiazole (2.11 g) were added to DMF (4.0 mL), and potassium tert-butoxide in DMF was added thereto. (1.98 g / 20.0 mL) was added dropwise, and then the mixture was heated and stirred at 100 ° C. for 16 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water and purified by silica gel chromatography (developing solvent: chloroform) to give the desired 3-amino-2- (2-naphthoyl) benzo [b] thiophene (A-4) yellow A powder (yield 1.51 g, yield 42%) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.05 (s, 2H), 7.42 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H) ), 7.56-7.61 (m, 2H), 7.72 (d, J = 8.1 Hz, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.91 (d , J = 6.8 Hz, 1H), 7.95-7.99 (m, 3H), 8.47 (s, 1H).
 アルゴン気流下、化合物A-4(1.51g)、3-ブロモ-5-クロロベンゾニトリル(1.19g)及び硫酸ナトリウム(2.12g)をTHF(5.0mL)に加え、そこにカリウムtert-ブトキシドのTHF溶液(614mg/25.0mL)を滴下し、次いで16時間30℃で加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体をメタノールで洗浄し、目的の2-(3-ブロモ-5-クロロフェニル)-4-(2-ナフチル)[1]ベンゾチエノ[3,2-d]ピリミジン(B-15)の薄黄色粉末(収量1.74g,収率69%)を得た。
 H-NMR(CDCl)δ(ppm):7.62-7.64(m,2H),7.66-7.68(m,2H),7.73(t,J=7.6Hz,1H),7.97(d,J=8.1Hz,2H),8.08-8.12(m,2H),8.46(dd,J=8.5Hz,2.3Hz,1H),8.74-8.76(m,2H),8.82(s,1H),8.85(t,J=1.8Hz,1H).
Under a stream of argon, Compound A-4 (1.51 g), 3-bromo-5-chlorobenzonitrile (1.19 g) and sodium sulfate (2.12 g) were added to THF (5.0 mL), and potassium tert. -A solution of butoxide in THF (614 mg / 25.0 mL) was added dropwise, and the mixture was stirred with heating at 30 ° C for 16 hr. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with methanol to obtain a thin film of the desired 2- (3-bromo-5-chlorophenyl) -4- (2-naphthyl) [1] benzothieno [3,2-d] pyrimidine (B-15). A yellow powder (yield 1.74 g, 69% yield) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.62-7.64 (m, 2H), 7.66-7.68 (m, 2H), 7.73 (t, J = 7.6 Hz) , 1H), 7.97 (d, J = 8.1 Hz, 2H), 8.08-8.12 (m, 2H), 8.46 (dd, J = 8.5 Hz, 2.3 Hz, 1H) , 8.74-8.76 (m, 2H), 8.82 (s, 1H), 8.85 (t, J = 1.8 Hz, 1H).
 実施例25
Figure JPOXMLDOC01-appb-C000074
Example 25
Figure JPOXMLDOC01-appb-C000074
 アルゴン気流下、化合物B-15(500mg)、4-(2-ピリジル)フェニルボロン酸(436mg)、酢酸パラジウム(11.0mg)及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(47.5mg)を1,4-ジオキサン(33.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(0.66mL)を添加し、16時間100℃で加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール及びヘキサンで洗浄し、さらにトルエン100mLで再結晶することで、目的の4-(2-ナフチル)-2-[4,4′′-ジ(2-ピリジル)-1,1′:3′,1′′-テルフェニル-5′-イル][1]ベンゾチエノ[3,2-d]ピリミジン(C-18)の白色粉末(収量530mg,収率77%)を得た。
 H-NMR(CDCl)δ(ppm):7.27(d,J=7.2Hz,2H),7.61-7.68(m,3H),7.71(t,J=7.9Hz,1H),7.78-7.86(m,4H),7.97(d,J=8.4Hz,6H),8.07-8.12(m,3H),8.19(d,J=8.4Hz,4H),8.54(dd,J=8.4Hz,2.0Hz,1H),8.76(d,J=5.1Hz,2H),8.80(d,J=7.6Hz,1H),8.88(s,1H),9.11(d,J=1.5Hz,2H).
Under an argon stream, compound B-15 (500 mg), 4- (2-pyridyl) phenylboronic acid (436 mg), palladium acetate (11.0 mg) and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-tri Isopropylbiphenyl (47.5 mg) was suspended in 1,4-dioxane (33.0 mL), 3M-potassium carbonate aqueous solution (0.66 mL) was further added, and the mixture was heated and stirred at 100 ° C. for 16 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and further recrystallized with 100 mL of toluene to obtain the desired 4- (2-naphthyl) -2- [4,4 ″ -di (2-pyridyl)- 1,1 ′: 3 ′, 1 ″ -terphenyl-5′-yl] [1] benzothieno [3,2-d] pyrimidine (C-18) as a white powder (yield 530 mg, 77%) Obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.27 (d, J = 7.2 Hz, 2H), 7.61-7.68 (m, 3H), 7.71 (t, J = 7 .9 Hz, 1H), 7.78-7.86 (m, 4H), 7.97 (d, J = 8.4 Hz, 6H), 8.07-8.12 (m, 3H), 8.19 (D, J = 8.4 Hz, 4H), 8.54 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 8.76 (d, J = 5.1 Hz, 2H), 8.80 ( d, J = 7.6 Hz, 1H), 8.88 (s, 1H), 9.11 (d, J = 1.5 Hz, 2H).
 実施例26
Figure JPOXMLDOC01-appb-C000075
Example 26
Figure JPOXMLDOC01-appb-C000075
 アルゴン気流下、8-アセチルキノリン(1.90g)、及び3-クロロ-1,2-ベンズイソチアゾール(1.79g)をDMF(6.5mL)に加え、そこにカリウムtert-ブトキシド(1.43g)のDMF懸濁液(20.0mL)を滴下し、次いで80℃で17時間撹拌した。反応混合物を室温まで放冷後、水を加えた。析出した固体を水で洗浄し、次いでヘキサンで洗浄し、目的の8-キノリル-(3-アミノベンゾ[b]チオフェン-2-イル)ケトン(A-5)の黄色粉末(収量2.00g,収率62%)を得た。
 H-NMR(DMSO-d)、δ(ppm):7.41(dd,J=8.0,7.1Hz,1H),7.50(dd,J=8.0,7.1Hz,1H),7.59(dd,J=8.3,4.2Hz,1H),7.66(d,J=8.0Hz,1H),7.71(dd,J=8.1,7.1Hz,1H),7.80(d,J=7.1Hz,1H),8.13(d,J=8.1Hz,1H),8.18(s,2H),8.25(d,J=8.0Hz,1H),8.46(d,J=8.3Hz,1H),8.85(d,J=4.2Hz,1H).
Under an argon stream, 8-acetylquinoline (1.90 g) and 3-chloro-1,2-benzisothiazole (1.79 g) were added to DMF (6.5 mL), and potassium tert-butoxide (1. 43 g) of DMF suspension (20.0 mL) was added dropwise and then stirred at 80 ° C. for 17 hours. The reaction mixture was allowed to cool to room temperature, and water was added. The precipitated solid was washed with water and then with hexane, and the desired 8-quinolyl- (3-aminobenzo [b] thiophen-2-yl) ketone (A-5) yellow powder (yield 2.00 g, yield) 62%).
1 H-NMR (DMSO-d 6 ), δ (ppm): 7.41 (dd, J = 8.0, 7.1 Hz, 1H), 7.50 (dd, J = 8.0, 7.1 Hz) , 1H), 7.59 (dd, J = 8.3, 4.2 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.71 (dd, J = 8.1). 7.1 Hz, 1H), 7.80 (d, J = 7.1 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H), 8.18 (s, 2H), 8.25 ( d, J = 8.0 Hz, 1H), 8.46 (d, J = 8.3 Hz, 1H), 8.85 (d, J = 4.2 Hz, 1H).
 アルゴン気流下、化合物A-5(1.98g)及び3-ブロモ-5-クロロベンゾニトリル(2.11g)をTHF(33mL)に加え、そこにカリウムtert-ブトキシド(802mg)のTHF溶液(32.5mL)を滴下し、30℃で27時間撹拌した。反応混合物を室温まで放冷後、水及びメタノールを加えた。析出した固体を水で洗浄し、メタノールで洗浄し、さらにヘキサンで洗浄することで目的の2-(3-ブロモ-5-クロロフェニル)-4-(8-キノリル)[1]ベンゾチエノ[3,2-d]ピリミジン(B-16)の薄褐色粉末(収量1.60g、収率49%)を得た。
 H-NMR(CDCl)、δ(ppm):7.55(dd,J=8.3,4.2Hz,1H),7.61-7.70(m,3H),7.80-7.84(m,2H),8.11(d,J=8.2Hz,1H),8.15(d,J=7.1Hz,1H),8.36(d,J=8.3Hz,1H),8.71(s,1H),8.76(d,J=7.4Hz,1H),8.82(s,1H),8.95(d,J=5,2Hz,1H).
Under a stream of argon, Compound A-5 (1.98 g) and 3-bromo-5-chlorobenzonitrile (2.11 g) were added to THF (33 mL), and a solution of potassium tert-butoxide (802 mg) in THF (32 0.5 mL) was added dropwise and stirred at 30 ° C. for 27 hours. The reaction mixture was allowed to cool to room temperature, and water and methanol were added. The precipitated solid is washed with water, washed with methanol, and further washed with hexane to give the desired 2- (3-bromo-5-chlorophenyl) -4- (8-quinolyl) [1] benzothieno [3,2 -D] A light brown powder (yield 1.60 g, 49% yield) of pyrimidine (B-16) was obtained.
1 H-NMR (CDCl 3 ), δ (ppm): 7.55 (dd, J = 8.3, 4.2 Hz, 1H), 7.61-7.70 (m, 3H), 7.80- 7.84 (m, 2H), 8.11 (d, J = 8.2 Hz, 1H), 8.15 (d, J = 7.1 Hz, 1H), 8.36 (d, J = 8.3 Hz) , 1H), 8.71 (s, 1H), 8.76 (d, J = 7.4 Hz, 1H), 8.82 (s, 1H), 8.95 (d, J = 5, 2 Hz, 1H) ).
 実施例27
Figure JPOXMLDOC01-appb-C000076
Example 27
Figure JPOXMLDOC01-appb-C000076
 アルゴン気流下、化合物B-16(1.01g)、4-(2-ピリジル)フェニルボロン酸(876mg)、酢酸パラジウム(9.0mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(57.2mg)をTHF(40.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(2.9mL)を添加し、60時間加熱還流した。反応混合物を放冷後、水及びメタノールを加え、析出した固体をろ取した。得られた固体を水、メタノール及びヘキサンで洗浄し、さらにトルエンで再結晶することで、目的の2-[4,4′′-ジ(2-ピリジル)-1,1′:3′,1′′-テルフェニル-5′-イル]-4-(8-キノリル)[1]ベンゾチエノ[3,2-d]ピリミジン(C-19)の白色粉末(収量1.00g,収率79%)を得た。
 H-NMR(CDCl)δ(ppm):7.26-7.29(m,2H),7.55(dd,J=8.3,4.2Hz,1H),7.63(dd,J=7.5,7.2,1H),7.67(dd,J=7.5,7.2,1H),7.78-7.85(m,6H),7.97(d,J=8.4Hz,4H),8.08(s,1H),8.11(d,J=8.2Hz,1H),8.18(d,J=8.4Hz,4H),8.23(d,J=7.1Hz,1H),8.36(d,J=8.3Hz,1H),8.76(d,J=4.7Hz,2H),8.81(d,J=7.2Hz,1H),8.99(d,J=4.2Hz,1H),9.08(s,2H).
Under an argon stream, compound B-16 (1.01 g), 4- (2-pyridyl) phenylboronic acid (876 mg), palladium acetate (9.0 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6 '-Triisopropylbiphenyl (57.2 mg) was suspended in THF (40.0 mL), 3M-potassium carbonate aqueous solution (2.9 mL) was further added, and the mixture was heated to reflux for 60 hours. The reaction mixture was allowed to cool, water and methanol were added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and recrystallized with toluene to obtain the desired 2- [4,4 ″ -di (2-pyridyl) -1,1 ′: 3 ′, 1 ""-Terphenyl-5'-yl] -4- (8-quinolyl) [1] benzothieno [3,2-d] pyrimidine (C-19) white powder (yield 1.00 g, yield 79%) Got.
1 H-NMR (CDCl 3 ) δ (ppm): 7.26-7.29 (m, 2H), 7.55 (dd, J = 8.3, 4.2 Hz, 1H), 7.63 (dd , J = 7.5, 7.2, 1H), 7.67 (dd, J = 7.5, 7.2, 1H), 7.78-7.85 (m, 6H), 7.97 ( d, J = 8.4 Hz, 4H), 8.08 (s, 1H), 8.11 (d, J = 8.2 Hz, 1H), 8.18 (d, J = 8.4 Hz, 4H), 8.23 (d, J = 7.1 Hz, 1H), 8.36 (d, J = 8.3 Hz, 1H), 8.76 (d, J = 4.7 Hz, 2H), 8.81 (d , J = 7.2 Hz, 1H), 8.99 (d, J = 4.2 Hz, 1H), 9.08 (s, 2H).
 実施例28
Figure JPOXMLDOC01-appb-C000077
Example 28
Figure JPOXMLDOC01-appb-C000077
 アルゴン気流下、化合物B-2(1.50mg)、4-ビフェニルボロン酸(650mg)、酢酸パラジウム(12.3mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(78.1mg)を1,4-ジオキサン(55.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.82mL)を添加し、22時間90℃で加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、トルエン 30mLで再結晶することで、目的の2-[5-(9-フェナントリル)-1,1′:4′,1′′-テルフェニル-3-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-20)の白色粉末(収量1.66g,収率91%)を得た。
 H-NMR(CDCl)δ(ppm):7.38(t,J=7.4Hz,1H),7.46-7.50(m,2H),7.57-7.74(m,11H),7.77(d,J=8.4Hz,2H),7,92-7.99(m,6H),8.10(d,J=8.3Hz,1H),8.38(d,J=8.1Hz,2H),8.73(d,J=7.8Hz,1H),8.79(d,J=8.2Hz,1H),8.84(d,J=8.1Hz,1H),8.95(s,1H),9.17(s,1H).
Compound B-2 (1.50 mg), 4-biphenylboronic acid (650 mg), palladium acetate (12.3 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl under an argon stream (78.1 mg) was suspended in 1,4-dioxane (55.0 mL), 3M-potassium carbonate aqueous solution (1.82 mL) was further added, and the mixture was heated and stirred at 90 ° C. for 22 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and recrystallized with 30 mL of toluene to obtain the desired 2- [5- (9-phenanthryl) -1,1 ′: 4 ′, 1 ″ -terphenyl. A white powder (yield 1.66 g, yield 91%) of -3-yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (C-20) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.38 (t, J = 7.4 Hz, 1H), 7.46-7.50 (m, 2H), 7.57-7.74 (m 11H), 7.77 (d, J = 8.4 Hz, 2H), 7, 92-7.9 (m, 6H), 8.10 (d, J = 8.3 Hz, 1H), 8.38. (D, J = 8.1 Hz, 2H), 8.73 (d, J = 7.8 Hz, 1H), 8.79 (d, J = 8.2 Hz, 1H), 8.84 (d, J = 8.1 Hz, 1H), 8.95 (s, 1H), 9.17 (s, 1H).
 実施例29
Figure JPOXMLDOC01-appb-C000078
Example 29
Figure JPOXMLDOC01-appb-C000078
 アルゴン気流下、化合物B-2(1.50g)、4-(3-ピリジル)フェニルボロン酸(652mg)、酢酸パラジウム(12.3mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(78.1mg)を1,4-ジオキサン(55.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.82mL)を添加し、24時間90℃で加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、トルエン50mLで再結晶することで、目的の2-[5-(9-フェナントリル)-4′-(3-ピリジル)ビフェニル-3-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-21)の白色粉末(収量1.32g,収率73%)を得た。
 H-NMR(CDCl)δ(ppm):7.57-7.75(m,10H),7.77(d,J=8.4Hz,2H),7.91(s,1H),7.94-7.98(m,3H),8.02(d,J=8.4Hz,2H),8.07(d,J=8.2Hz,1H),8.33(d,J=8.1Hz,1H),8.37(d,J=8.0Hz,2H),8.67(d,J=5.2Hz,1H),8.72(d,J=7.7Hz,1H),8.79(d,J=8.3Hz,1H),8.85(s,J=8.2Hz,1H),8.99(s,1H),9.01(s,1H),9.16(s,1H).
Under an argon stream, compound B-2 (1.50 g), 4- (3-pyridyl) phenylboronic acid (652 mg), palladium acetate (12.3 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6 '-Triisopropylbiphenyl (78.1 mg) was suspended in 1,4-dioxane (55.0 mL), 3M-potassium carbonate aqueous solution (1.82 mL) was further added, and the mixture was heated and stirred at 90 ° C. for 24 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and recrystallized with 50 mL of toluene to obtain the desired 2- [5- (9-phenanthryl) -4 ′-(3-pyridyl) biphenyl-3-yl]. A white powder (yield 1.32 g, yield 73%) of -4-phenyl [1] benzothieno [3,2-d] pyrimidine (C-21) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.57-7.75 (m, 10H), 7.77 (d, J = 8.4 Hz, 2H), 7.91 (s, 1H), 7.94-7.98 (m, 3H), 8.02 (d, J = 8.4 Hz, 2H), 8.07 (d, J = 8.2 Hz, 1H), 8.33 (d, J = 8.1 Hz, 1H), 8.37 (d, J = 8.0 Hz, 2H), 8.67 (d, J = 5.2 Hz, 1H), 8.72 (d, J = 7.7 Hz, 1H), 8.79 (d, J = 8.3 Hz, 1H), 8.85 (s, J = 8.2 Hz, 1H), 8.99 (s, 1H), 9.01 (s, 1H) , 9.16 (s, 1H).
 実施例30
Figure JPOXMLDOC01-appb-C000079
Example 30
Figure JPOXMLDOC01-appb-C000079
 アルゴン気流下、化合物B-2(10.0g)、ビス(ビナコラト)ジボロン(5.95g)、トリス(ジベンジリデンアセトン)ビスパラジウム(286mg)、2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(297mg)、及び酢酸カリウム(3.06g)を1,4-ジオキサン(310mL)に懸濁し、24時間80℃で加熱撹拌した。反応混合物を放冷後、溶媒を減圧留去した。固体を水に分散させてろ取し、得られた固体を水、メタノール、ヘキサンで洗浄することで、目的の2-[3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-5-(9-フェナントリル)フェニル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-17)の白色粉末(収量11.7g,収率100%)を得た。
 H-NMR(CDCl)δ(ppm):1.43(s,12H),7.54-7.71(m,9H),7.84(s,1H),7.91-7.95(m,2H),7.99(d,J=8.3Hz,1H),8.15(s,1H),8.36(d,J=8.1Hz,2H),8.73-8.77(m,2H),8.81(d,J=8.1Hz,1H),9.03(s,1H),9.25(s,1H).
Under an argon stream, compound B-2 (10.0 g), bis (binacolato) diboron (5.95 g), tris (dibenzylideneacetone) bispalladium (286 mg), 2-dicyclohexylphosphino-2 ', 4', 6 '-Triisopropylbiphenyl (297 mg) and potassium acetate (3.06 g) were suspended in 1,4-dioxane (310 mL), and the mixture was heated and stirred at 80 ° C. for 24 hours. The reaction mixture was allowed to cool, and the solvent was evaporated under reduced pressure. The solid was dispersed in water and collected by filtration, and the obtained solid was washed with water, methanol, and hexane to obtain the desired 2- [3- (4,4,5,5-tetramethyl-1,3,2). -Dioxaborolan-2-yl) -5- (9-phenanthryl) phenyl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (B-17) white powder (yield 11.7 g, yield 100) %).
1 H-NMR (CDCl 3 ) δ (ppm): 1.43 (s, 12H), 7.54-7.71 (m, 9H), 7.84 (s, 1H), 7.91-7. 95 (m, 2H), 7.9 (d, J = 8.3 Hz, 1H), 8.15 (s, 1H), 8.36 (d, J = 8.1 Hz, 2H), 8.73- 8.77 (m, 2H), 8.81 (d, J = 8.1 Hz, 1H), 9.03 (s, 1H), 9.25 (s, 1H).
 実施例31
Figure JPOXMLDOC01-appb-C000080
Example 31
Figure JPOXMLDOC01-appb-C000080
 アルゴン気流下、化合物B-17(1.75g)、3-クロロ-6-フェニルピリジン(622mg)、酢酸パラジウム(12.3mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(78.1mg)を1,4-ジオキサン(55.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.82mL)を添加し、24時間95℃で加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、トルエン 30mLで再結晶することで、目的の2-[3-(9-フェナントリル)-5-(6-フェニルピリジン-3-イル)フェニル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-22)の白色粉末(収量1.48g,収率81%)を得た。
 H-NMR(CDCl)δ(ppm):7.46(t,J=7.3Hz,1H),7.51-7.74(m,11H),7.89-7.99(m,5H),8.07-8.11(m,3H),8.22(d,J=8.3Hz,1H),8.38(d,J=8.8Hz,2H),8.728d,J=7.8Hz,1H),8.79(d,J=8.2Hz,1H),8.85(d,J=8.2Hz,1H),9.01(s,1H),9.19(s,1H),9.23(s,1H).
Under an argon stream, compound B-17 (1.75 g), 3-chloro-6-phenylpyridine (622 mg), palladium acetate (12.3 mg), and 2-dicyclohexylphosphino-2 ', 4', 6'- Triisopropylbiphenyl (78.1 mg) was suspended in 1,4-dioxane (55.0 mL), 3M-potassium carbonate aqueous solution (1.82 mL) was further added, and the mixture was heated and stirred at 95 ° C. for 24 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and recrystallized with 30 mL of toluene to obtain the desired 2- [3- (9-phenanthryl) -5- (6-phenylpyridin-3-yl) phenyl]. A white powder (yield 1.48 g, yield 81%) of -4-phenyl [1] benzothieno [3,2-d] pyrimidine (C-22) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.46 (t, J = 7.3 Hz, 1H), 7.51-7.74 (m, 11H), 7.89-7.99 (m , 5H), 8.07-8.11 (m, 3H), 8.22 (d, J = 8.3 Hz, 1H), 8.38 (d, J = 8.8 Hz, 2H), 8.728d , J = 7.8 Hz, 1H), 8.79 (d, J = 8.2 Hz, 1H), 8.85 (d, J = 8.2 Hz, 1H), 9.01 (s, 1H), 9 .19 (s, 1H), 9.23 (s, 1H).
 実施例32
Figure JPOXMLDOC01-appb-C000081
Example 32
Figure JPOXMLDOC01-appb-C000081
 アルゴン気流下、化合物B-17(1.75g)、5-ブロモ-2,2′-ビピリジン(771mg)、及びテトラキス(トリフェニルホスフィノ)パラジウム(63.0mg)、を1,4-ジオキサン(55.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.82mL)を添加し、18時間95℃で加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、トルエン 40mLで再結晶することで、目的の2-[3-(9-フェナントリル)-5-(2,2′-ビピリジン-5-イル)フェニル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-23)の白色粉末(収量1.33g,収率73%)を得た。
 H-NMR(CDCl)δ(ppm):7.33(dd,J=7.4,4.8Hz,1H),7.57-7.73(m,9H),7.86(t,J=7.7Hz,1H),7.91(s,1H),7.93(d,J=8.0Hz,1H),7.96-7.98(m,2H),8.07(d,J=8.2Hz,1H),8.27(d,J=8.3Hz,1H),8.37(d,J=8.0Hz,2H),8.49(d,J=8.0Hz,1H),8.55(d,J=8.3Hz,1H),8.70-8.74(m,2H),8.78(dmJ=8.2Hz,1H),8.84(d,J=8.1Hz,1H),9.01(s,1H),9.19(s,1H),9.21(s,1H).
Under an argon stream, compound B-17 (1.75 g), 5-bromo-2,2′-bipyridine (771 mg), and tetrakis (triphenylphosphino) palladium (63.0 mg) were added to 1,4-dioxane ( (55.0 mL), 3M aqueous potassium carbonate solution (1.82 mL) was added, and the mixture was stirred with heating at 95 ° C. for 18 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and recrystallized with 40 mL of toluene to obtain the desired 2- [3- (9-phenanthryl) -5- (2,2′-bipyridin-5-yl). A white powder (yield 1.33 g, 73% yield) of phenyl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (C-23) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.33 (dd, J = 7.4, 4.8 Hz, 1H), 7.57-7.73 (m, 9H), 7.86 (t , J = 7.7 Hz, 1H), 7.91 (s, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.96-7.98 (m, 2H), 8.07 (D, J = 8.2 Hz, 1H), 8.27 (d, J = 8.3 Hz, 1H), 8.37 (d, J = 8.0 Hz, 2H), 8.49 (d, J = 8.0 Hz, 1H), 8.55 (d, J = 8.3 Hz, 1H), 8.70-8.74 (m, 2H), 8.78 (dmJ = 8.2 Hz, 1H), 8. 84 (d, J = 8.1 Hz, 1H), 9.01 (s, 1H), 9.19 (s, 1H), 9.21 (s, 1H).
 実施例33
Figure JPOXMLDOC01-appb-C000082
Example 33
Figure JPOXMLDOC01-appb-C000082
 アルゴン気流下、化合物B-1(22.6g)、ビスピナコラートジボロン(14.0g)、酢酸カリウム(10.8g)、及びビス(トリフェニルホスフィン)パラジウムジクロリド(702mg)を1,4-ジオキサン(250mL)に懸濁し、21時間100℃で加熱撹拌した。反応混合物を放冷後、溶媒を減圧留去した。得られた固体をクロロホルムに懸濁させた後、これを濾過した。濾液に水を加え、分液抽出した有機層を無水硫酸マグネシウムで乾燥した。得られた有機層から溶媒を減圧留去し、目的の2-[3-クロロ-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-18)の白色粉末(収量17.5g,収率70%)を得た。
 H-NMR(CDCl)δ(ppm):1.44(s,12H),7.61-7.74(m,5H),7.94-7,96(m,2H),8.38(d,J=8.1Hz,2H),8.79(d,J=7.2Hz,1H),8.87(s,1H),9.04(s,1H).
Under an argon stream, Compound B-1 (22.6 g), bispinacolatodiboron (14.0 g), potassium acetate (10.8 g), and bis (triphenylphosphine) palladium dichloride (702 mg) were added in 1,4- Suspended in dioxane (250 mL) and stirred with heating at 100 ° C. for 21 hours. The reaction mixture was allowed to cool, and the solvent was evaporated under reduced pressure. The obtained solid was suspended in chloroform and then filtered. Water was added to the filtrate, and the separated and extracted organic layer was dried over anhydrous magnesium sulfate. The solvent was distilled off from the obtained organic layer under reduced pressure to obtain the desired 2- [3-chloro-5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl]. A white powder (yield 17.5 g, yield 70%) of -4-phenyl [1] benzothieno [3,2-d] pyrimidine (B-18) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 1.44 (s, 12H), 7.61-7.74 (m, 5H), 7.94-7, 96 (m, 2H), 8. 38 (d, J = 8.1 Hz, 2H), 8.79 (d, J = 7.2 Hz, 1H), 8.87 (s, 1H), 9.04 (s, 1H).
 実施例34
Figure JPOXMLDOC01-appb-C000083
Example 34
Figure JPOXMLDOC01-appb-C000083
 アルゴン気流下、化合物B-2(1.50g)、4-イソキノリルボロン酸(567mg)、酢酸パラジウム(12.3mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(78.1mg)を1,4-ジオキサン(55.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.8mL)を添加し、90℃で20時間加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、トルエン15mLで再結晶することで、目的の2-[3-(4-イソキノリル)-5-(9-フェナントリル)フェニル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-24)の白色粉末(収量1.22g,収率70%)を得た。
 H-NMR(CDCl):δ7.56-7.78(m,9H),7.83(s,1H),7.93-8.16(m,6H),8.33(d,J=8.0Hz,2H),8.42(d,J=8.9,2H),8.68(d,J=7.5Hz,1H),8.77-8.79(m,2H),8.85(d,J=8.2Hz,1H),9.03(s,1H),9.20(s,1H),9.56(s,1H).
Under an argon stream, compound B-2 (1.50 g), 4-isoquinolylboronic acid (567 mg), palladium acetate (12.3 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-tri Isopropyl biphenyl (78.1 mg) was suspended in 1,4-dioxane (55.0 mL), 3M-potassium carbonate aqueous solution (1.8 mL) was further added, and the mixture was stirred with heating at 90 ° C. for 20 hr. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and recrystallized with 15 mL of toluene to obtain the desired 2- [3- (4-isoquinolyl) -5- (9-phenanthryl) phenyl] -4-phenyl [ 1] White powder of benzothieno [3,2-d] pyrimidine (C-24) (yield 1.22 g, yield 70%) was obtained.
1 H-NMR (CDCl 3 ): δ 7.56-7.78 (m, 9H), 7.83 (s, 1H), 7.93-8.16 (m, 6H), 8.33 (d, J = 8.0 Hz, 2H), 8.42 (d, J = 8.9, 2H), 8.68 (d, J = 7.5 Hz, 1H), 8.77-8.79 (m, 2H) ), 8.85 (d, J = 8.2 Hz, 1H), 9.03 (s, 1H), 9.20 (s, 1H), 9.56 (s, 1H).
 実施例35
Figure JPOXMLDOC01-appb-C000084
Example 35
Figure JPOXMLDOC01-appb-C000084
 アルゴン気流下、化合物B-2(1.50g)、8-キノリルボロン酸(567mg)、酢酸パラジウム(12.3mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(78.1mg)を1,4-ジオキサン(55.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.82mL)を添加し、90℃で20時間加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、トルエン20mLで再結晶することで、目的の2-[3-(9-フェナントリル)-5-(8-キノリル)フェニル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-25)の白色粉末(収量1.37g,収率78%)を得た。
 H-NMR(CDCl):δ7.48(dd,J=8.2,4.1Hz,1H),7.52-7.73(m,10H),7.90-7.94(m,2H),7.97-8.00(m,2H),8.03(d,J=7.2Hz,1H),8.08(s,1H),8.29(d,J=8.5Hz,1H),8.36-8.38(m,3H),8.68(d,J=7.5Hz,1H),8,77(d,J=7.9Hz,1H),8.82(d,J=8.0Hz,1H),9.03(s,1H),9.07(d,J=4.1Hz,1H),9.20(s,1H).
Under an argon stream, compound B-2 (1.50 g), 8-quinolylboronic acid (567 mg), palladium acetate (12.3 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl ( 78.1 mg) was suspended in 1,4-dioxane (55.0 mL), 3M aqueous potassium carbonate solution (1.82 mL) was further added, and the mixture was stirred with heating at 90 ° C. for 20 hr. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and recrystallized with 20 mL of toluene to obtain the desired 2- [3- (9-phenanthryl) -5- (8-quinolyl) phenyl] -4-phenyl [ 1] A white powder of benzothieno [3,2-d] pyrimidine (C-25) (yield 1.37 g, yield 78%) was obtained.
1 H-NMR (CDCl 3 ): δ 7.48 (dd, J = 8.2, 4.1 Hz, 1H), 7.52-7.73 (m, 10H), 7.90-7.94 (m , 2H), 7.97-8.00 (m, 2H), 8.03 (d, J = 7.2 Hz, 1H), 8.08 (s, 1H), 8.29 (d, J = 8 .5 Hz, 1 H), 8.36-8.38 (m, 3 H), 8.68 (d, J = 7.5 Hz, 1 H), 8, 77 (d, J = 7.9 Hz, 1 H), 8 .82 (d, J = 8.0 Hz, 1H), 9.03 (s, 1H), 9.07 (d, J = 4.1 Hz, 1H), 9.20 (s, 1H).
 実施例36
Figure JPOXMLDOC01-appb-C000085
Example 36
Figure JPOXMLDOC01-appb-C000085
 アルゴン気流下、化合物B-1(1.81g)、フェニルボロン酸(1.17g)、酢酸パラジウム(18.0mg)及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(114mg)をTHF(40mL)に懸濁し、さらに3M-炭酸カリウム水溶液(6.4mL)を添加し、26時間加熱還流した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール及びヘキサンで洗浄し、目的の4-フェニル-2-[1,1′:3′,1′′-テルフェニル-5′-イル][1]ベンゾチエノ[3,2-d]ピリミジン(C-26)の灰色粉末(収量1.89g,収率96%)を得た。
 H-NMR(CDCl)δ(ppm):7.46(t,J=7.4Hz,2H),7.56(dd,8.2,7.4Hz,4H),7.60-7.73(m,5H),7.85(d,J=8.2Hz,4H),7.96(d,J=7.9Hz,1H),7.98(s,1H),8.41(d,J=8.1Hz,2H),8.78(d,J=7.9Hz,1H),9.01(s,2H).
Under an argon stream, compound B-1 (1.81 g), phenylboronic acid (1.17 g), palladium acetate (18.0 mg) and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl ( 114 mg) was suspended in THF (40 mL), 3M aqueous potassium carbonate solution (6.4 mL) was added, and the mixture was heated to reflux for 26 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and the desired 4-phenyl-2- [1,1 ′: 3 ′, 1 ″ -terphenyl-5′-yl] [1] benzothieno [3, A gray powder (yield 1.89 g, yield 96%) of 2-d] pyrimidine (C-26) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.46 (t, J = 7.4 Hz, 2H), 7.56 (dd, 8.2, 7.4 Hz, 4H), 7.60-7 .73 (m, 5H), 7.85 (d, J = 8.2 Hz, 4H), 7.96 (d, J = 7.9 Hz, 1H), 7.98 (s, 1H), 8.41 (D, J = 8.1 Hz, 2H), 8.78 (d, J = 7.9 Hz, 1H), 9.01 (s, 2H).
 実施例37
Figure JPOXMLDOC01-appb-C000086
Example 37
Figure JPOXMLDOC01-appb-C000086
 アルゴン気流下、化合物B-10(1.23g)、4-(4,6-ジフェニルピリジン-2-イル)フェニルボロン酸(1.15g)、酢酸パラジウム(12.3mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(78.1mg)を1,4-ジオキサン(55.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.82mL)を添加し、90℃で7時間加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、トルエン 50mLで再結晶することで、目的の2-[4-(4,6-ジフェニルピリジン-2-イル)-1,1′:3′,1′′-テルフェニル-5′-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-27)の白色粉末(収量1.75g,収率89%)を得た。
 H-NMR(CDCl):δ7.43-7.49(m,3H),7.52-7.58(m,6H),7.62-7.69(m,4H),7.72(dd,J=8.0,7.1Hz,1H),7.85(d,J=8.2Hz,2H),7.93(d,J=8.4Hz,2H),7.96(d,J=8.0Hz,1H),7.99(s,2H),8.00(d,J=8.4Hz,2H),8.03(s,1H),8.28(d,J=8.5Hz,4H),8.41(d,J=8.2Hz,2H),8.78(d,J=7.3Hz,1H),9.04(s,1H),9.07(s,1H).
Under an argon stream, compound B-10 (1.23 g), 4- (4,6-diphenylpyridin-2-yl) phenylboronic acid (1.15 g), palladium acetate (12.3 mg), and 2-dicyclohexylphosphine Fino-2 ′, 4 ′, 6′-triisopropylbiphenyl (78.1 mg) was suspended in 1,4-dioxane (55.0 mL), and further 3M-potassium carbonate aqueous solution (1.82 mL) was added. The mixture was stirred at 7 ° C. for 7 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and recrystallized with 50 mL of toluene to obtain the desired 2- [4- (4,6-diphenylpyridin-2-yl) -1,1 ′: 3 ′. , 1 ″ -terphenyl-5′-yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (C-27) as a white powder (yield 1.75 g, yield 89%) It was.
1 H-NMR (CDCl 3 ): δ 7.43-7.49 (m, 3H), 7.52-7.58 (m, 6H), 7.62-7.69 (m, 4H), 7. 72 (dd, J = 8.0, 7.1 Hz, 1H), 7.85 (d, J = 8.2 Hz, 2H), 7.93 (d, J = 8.4 Hz, 2H), 7.96 (D, J = 8.0 Hz, 1H), 7.9 (s, 2H), 8.00 (d, J = 8.4 Hz, 2H), 8.03 (s, 1H), 8.28 (d , J = 8.5 Hz, 4H), 8.41 (d, J = 8.2 Hz, 2H), 8.78 (d, J = 7.3 Hz, 1H), 9.04 (s, 1H), 9 .07 (s, 1H).
 実施例38
Figure JPOXMLDOC01-appb-C000087
Example 38
Figure JPOXMLDOC01-appb-C000087
 アルゴン気流下、化合物B-10(1.23g)、4-(2,6-ジフェニルピリジン-4-イル)フェニルボロン酸(1.15g)、酢酸パラジウム(12.3mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(78.1mg)を1,4-ジオキサン(55.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.82mL)を添加し、90℃で7時間加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、トルエン50mLで再結晶することで、目的の2-[4-(2,6-ジフェニルピリジン-4-イル)-1,1′:3′,1′′-テルフェニル-5′-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-28)の白色粉末(収量1.86g,収率95%)を得た。
 H-NMR(CDCl):δ7.43-7.69(m,13H),7.71(dd,J=8.0,7.1Hz,1H),7.80(d,J=8.2Hz,2H),7.86(d,J=8.2Hz,2H),7.93(s,1H),7.96(d,J=7.9Hz,1H),7.98-8.00(m,3H),8.05(s,1H),8.26(d,J=8.3Hz,2H),8.38-8.43(m,4H),8.79(d,J=7.8Hz,1H),9.03(s,1H),9.09(s,1H).
Under an argon stream, compound B-10 (1.23 g), 4- (2,6-diphenylpyridin-4-yl) phenylboronic acid (1.15 g), palladium acetate (12.3 mg), and 2-dicyclohexylphosphine Fino-2 ′, 4 ′, 6′-triisopropylbiphenyl (78.1 mg) was suspended in 1,4-dioxane (55.0 mL), and further 3M-potassium carbonate aqueous solution (1.82 mL) was added. The mixture was stirred at 7 ° C. for 7 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and recrystallized with 50 mL of toluene to obtain the desired 2- [4- (2,6-diphenylpyridin-4-yl) -1,1 ′: 3 ′. , 1 ″ -terphenyl-5′-yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (C-28) as a white powder (yield 1.86 g, yield 95%) It was.
1 H-NMR (CDCl 3 ): δ 7.43-7.69 (m, 13H), 7.71 (dd, J = 8.0, 7.1 Hz, 1H), 7.80 (d, J = 8 .2 Hz, 2H), 7.86 (d, J = 8.2 Hz, 2H), 7.93 (s, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.98-8 0.00 (m, 3H), 8.05 (s, 1H), 8.26 (d, J = 8.3 Hz, 2H), 8.38-8.43 (m, 4H), 8.79 (d , J = 7.8 Hz, 1H), 9.03 (s, 1H), 9.09 (s, 1H).
 実施例39
Figure JPOXMLDOC01-appb-C000088
Example 39
Figure JPOXMLDOC01-appb-C000088
 アルゴン気流下、化合物B-17(1.75g)、2-ブロモピリジン(518mg)、及びテトラキス(トリフェニルホスフィノ)パラジウム(63.0mg)、を1,4-ジオキサン(55.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.82mL)を添加し、95℃で123時間加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、トルエン15mLとメタノール20mLの混合溶媒で再結晶することで、目的の2-[3-(9-フェナントリル)-5-(2-ピリジル)フェニル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-29)の白色粉末(収量974mg,収率60%)を得た。
 H-NMR(CDCl):δ7.31(dd,J=7.4,4.8Hz,1H),7.55-7.73(m,9H),7.85(t,J=7.7Hz,1H),7.92-7.96(m,3H),8.01(d,J=8.0Hz,1H),8.07(d,J=8.2Hz,1H),8.38(m,3H),8.74(d,J=7.6Hz,1H),8.77-8.80(m,2H),8.83(d,J=7.8Hz,1H),9.01(s,1H),9.47(s,1H).
Under an argon stream, compound B-17 (1.75 g), 2-bromopyridine (518 mg), and tetrakis (triphenylphosphino) palladium (63.0 mg) were suspended in 1,4-dioxane (55.0 mL). Further, 3M-potassium carbonate aqueous solution (1.82 mL) was added, and the mixture was heated and stirred at 95 ° C. for 123 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and recrystallized with a mixed solvent of 15 mL of toluene and 20 mL of methanol to obtain the desired 2- [3- (9-phenanthryl) -5- (2-pyridyl) phenyl. ] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (C-29) was obtained as a white powder (yield 974 mg, yield 60%).
1 H-NMR (CDCl 3 ): δ 7.31 (dd, J = 7.4, 4.8 Hz, 1H), 7.55-7.73 (m, 9H), 7.85 (t, J = 7 .7 Hz, 1H), 7.92-7.96 (m, 3H), 8.01 (d, J = 8.0 Hz, 1H), 8.07 (d, J = 8.2 Hz, 1H), 8 .38 (m, 3H), 8.74 (d, J = 7.6 Hz, 1H), 8.77-8.80 (m, 2H), 8.83 (d, J = 7.8 Hz, 1H) , 9.01 (s, 1H), 9.47 (s, 1H).
 実施例40
Figure JPOXMLDOC01-appb-C000089
Example 40
Figure JPOXMLDOC01-appb-C000089
 アルゴン気流下、メルカプトアセトフェノン(1.52g)、及び3-クロロ-2-フルオロベンゾニトリル(15.6g)をDMF(15mL)に懸濁し、0℃で撹拌した。次いで4N-水酸化カリウム水溶液を滴下した後、30分、50℃で加熱撹拌した。その後、水30mLを添加し、放冷後、析出物を濾別することで、目的の3-アミノ-2-ベンゾイル-7-クロロベンゾ[b]チオフェン(A-6)の黄色粉末(収量1.73g,収率60%)を得た。
 H-NMR(CDCl)δ(ppm):7.47(t,J=7.9Hz,1H),7.51-7.60(m,3H),7.68(dd,J=7.9,0.8Hz,1H),7.77(d,J=8.0Hz,2H),8.25(dd,J=7.9,0.8Hz,1H),8.35(s,2H).
Under an argon stream, mercaptoacetophenone (1.52 g) and 3-chloro-2-fluorobenzonitrile (15.6 g) were suspended in DMF (15 mL) and stirred at 0 ° C. Next, 4N-potassium hydroxide aqueous solution was added dropwise, and the mixture was stirred with heating at 50 ° C. for 30 min. Thereafter, 30 mL of water was added, and the mixture was allowed to cool, and then the precipitate was filtered off to give a yellow powder of the desired 3-amino-2-benzoyl-7-chlorobenzo [b] thiophene (A-6) (yield 1. 73 g, yield 60%).
1 H-NMR (CDCl 3 ) δ (ppm): 7.47 (t, J = 7.9 Hz, 1H), 7.51-7.60 (m, 3H), 7.68 (dd, J = 7 .9, 0.8 Hz, 1H), 7.77 (d, J = 8.0 Hz, 2H), 8.25 (dd, J = 7.9, 0.8 Hz, 1H), 8.35 (s, 2H).
 アルゴン雰囲気下、化合物A-6(1.50g)、3,5-ジブロモベンゾニトリル(1.50g)、及びリン酸カリウム(2.21g)をDMF(10.4mL)に懸濁し、室温で22時間撹拌した。その後、水を添加し、析出物を濾別することで、目的の2-(3,5-ジブロモフェニル)-6-クロロ-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-19)の灰色粉末(収量2.33g、収率84%)を得た。)
 H-NMR(CDCl)δ(ppm):7.62(t,J=7.8Hz,1H),7.66-7.71(m,3H),7.73(d,J=7.8Hz,1H),7.83(s,1H),8.35(d,J=7.8Hz,2H),8.63(d,J=7.7Hz,1H),8.84(s,2H).
Under an argon atmosphere, Compound A-6 (1.50 g), 3,5-dibromobenzonitrile (1.50 g), and potassium phosphate (2.21 g) were suspended in DMF (10.4 mL), and the mixture was stirred at room temperature. Stir for hours. Thereafter, water is added, and the precipitate is filtered off to obtain the desired 2- (3,5-dibromophenyl) -6-chloro-4-phenyl [1] benzothieno [3,2-d] pyrimidine (B -19) gray powder (yield 2.33 g, 84% yield). )
1 H-NMR (CDCl 3 ) δ (ppm): 7.62 (t, J = 7.8 Hz, 1H), 7.66-7.71 (m, 3H), 7.73 (d, J = 7 .8 Hz, 1H), 7.83 (s, 1H), 8.35 (d, J = 7.8 Hz, 2H), 8.63 (d, J = 7.7 Hz, 1H), 8.84 (s) , 2H).
 実施例41
Figure JPOXMLDOC01-appb-C000090
Example 41
Figure JPOXMLDOC01-appb-C000090
 アルゴン雰囲気下、化合物B-19(1.59g)、4-(2-ピリジル)フェニルボロン酸(1.43g)、及びテトラキス(トリフェニルホスフィノ)パラジウム(69.3mg)をTHF(60mL)に懸濁し、更に3M-炭酸カリウム水溶液(4.8mL)を添加し、24時間加熱還流した。反応混合物を室温まで放冷後、水及びメタノールを加えた。析出した固体をカラムクロマトグラフィーで精製(展開溶媒:クロロホルム)することで、6-クロロ-2-[4,4′′-ビス(2-ピリジル)-[1,1′:3′,1′′]-テルフェニル-5′-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-20)の黄色粉末(収量1.57g,収率77%)、及び6-クロロ-2-[5-ブロモ-4′-(2-ピリジル)ビフェニル-3-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-21)の黄色粉末(収量0.153g,収率8.5%)を得た。
 化合物B-20のH-NMR(CDCl)δ(ppm):7.29(dd,J=7.1,4.8Hz,2H),7.61-7.74(m,5H),7.82(dd,J=7.8,7.1Hz,2H),7.86(d,J=7.8Hz,2H),7.97(d,J=8.4Hz,4H),8.09(s,1H),8.20(d,J=8.4Hz,4H),8.43(d,J=7.9Hz,2H),8.71(d,J=7.8Hz,1H),8.77(d,J=4.8Hz,2H),9.07(s,2H).
 化合物B-21のH-NMR(CDCl)δ(ppm):7.28-7.31(m,1H),7,63(t,J=7.8Hz,1H),7.66(m,3H),7.73(d,J=7.8Hz,1H),7.80-7.85(m,2H),7.87(d,J=8.4Hz,2H),7.96(s,1H),8.18(d,J=8.4Hz,2H),8.40(d,J=8.1Hz,2H),8.68(d,J=7.8Hz,1H),8.76(d,=4.8Hz,1H),8.92(s,1H),9.00(s,1H).
Under an argon atmosphere, compound B-19 (1.59 g), 4- (2-pyridyl) phenylboronic acid (1.43 g), and tetrakis (triphenylphosphino) palladium (69.3 mg) were added to THF (60 mL). The suspension was suspended, 3M aqueous potassium carbonate solution (4.8 mL) was added, and the mixture was heated to reflux for 24 hours. The reaction mixture was allowed to cool to room temperature, and water and methanol were added. The precipitated solid is purified by column chromatography (developing solvent: chloroform), whereby 6-chloro-2- [4,4 ″ -bis (2-pyridyl)-[1,1 ′: 3 ′, 1 ′ '] -Terphenyl-5'-yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (B-20) yellow powder (yield 1.57 g, 77% yield), and 6- Chloro-2- [5-bromo-4 '-(2-pyridyl) biphenyl-3-yl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (B-21) yellow powder (Yield 0 .153 g, yield 8.5%).
1 H-NMR (CDCl 3 ) δ (ppm) of Compound B-20: 7.29 (dd, J = 7.1, 4.8 Hz, 2H), 7.61-7.74 (m, 5H), 7.82 (dd, J = 7.8, 7.1 Hz, 2H), 7.86 (d, J = 7.8 Hz, 2H), 7.97 (d, J = 8.4 Hz, 4H), 8 .09 (s, 1H), 8.20 (d, J = 8.4 Hz, 4H), 8.43 (d, J = 7.9 Hz, 2H), 8.71 (d, J = 7.8 Hz, 1H), 8.77 (d, J = 4.8 Hz, 2H), 9.07 (s, 2H).
1 H-NMR (CDCl 3 ) δ (ppm) of Compound B-21: 7.28-7.31 (m, 1H), 7, 63 (t, J = 7.8 Hz, 1H), 7.66 ( m, 3H), 7.73 (d, J = 7.8 Hz, 1H), 7.80-7.85 (m, 2H), 7.87 (d, J = 8.4 Hz, 2H), 7. 96 (s, 1H), 8.18 (d, J = 8.4 Hz, 2H), 8.40 (d, J = 8.1 Hz, 2H), 8.68 (d, J = 7.8 Hz, 1H) ), 8.76 (d, = 4.8 Hz, 1H), 8.92 (s, 1H), 9.00 (s, 1H).
 実施例42
Figure JPOXMLDOC01-appb-C000091
Example 42
Figure JPOXMLDOC01-appb-C000091
 アルゴン気流下、化合物B-20(1.57g)、フェニルボロン酸(338mg)、酢酸パラジウム(10.4mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(66.0mg)をTHF(60mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.8mL)を添加し、5時間加熱還流した。放冷後、水及びメタノールを加え、析出した固体をろ取することで、目的の2-[4,4′′-ビス(2-ピリジル)-[1,1′:3′,1′′]-テルフェニル-5′-イル]-4,6-ジフェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-30)の白色粉末(収量1.63g,収率98%)を得た。
 H-NMR(CDCl)δ(ppm):7.29(dd,J=7.1,4.8Hz,2H),7.52(t,J=7.4Hz,1H),7.58-7.67(m,5H),7.72-7.80(m,4H),7.82(dd,J=7.9,7.1Hz,2H),7.86(d,J=7.9Hz,2H),7.99(d,J=8.4Hz,4H),8.10(s,J=1H),8.21(d,J=8.4Hz,4H),8.39(d,J=8.1Hz,2H),8.78(d,J=4.8Hz,2H),8.81(d,J=6.6Hz,1H),9.11(s,2H).
Under an argon stream, Compound B-20 (1.57 g), phenylboronic acid (338 mg), palladium acetate (10.4 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (66 0.0 mg) was suspended in THF (60 mL), 3M aqueous potassium carbonate solution (1.8 mL) was further added, and the mixture was heated to reflux for 5 hours. After allowing to cool, water and methanol are added, and the precipitated solid is collected by filtration to give the desired 2- [4,4 ″ -bis (2-pyridyl)-[1,1 ′: 3 ′, 1 ″. ] -Terphenyl-5'-yl] -4,6-diphenyl [1] benzothieno [3,2-d] pyrimidine (C-30) was obtained as a white powder (yield 1.63 g, yield 98%). .
1 H-NMR (CDCl 3 ) δ (ppm): 7.29 (dd, J = 7.1, 4.8 Hz, 2H), 7.52 (t, J = 7.4 Hz, 1H), 7.58 −7.67 (m, 5H), 7.72-7.80 (m, 4H), 7.82 (dd, J = 7.9, 7.1 Hz, 2H), 7.86 (d, J = 7.9 Hz, 2H), 7.99 (d, J = 8.4 Hz, 4H), 8.10 (s, J = 1H), 8.21 (d, J = 8.4 Hz, 4H), 8. 39 (d, J = 8.1 Hz, 2H), 8.78 (d, J = 4.8 Hz, 2H), 8.81 (d, J = 6.6 Hz, 1H), 9.11 (s, 2H) ).
 実施例43
Figure JPOXMLDOC01-appb-C000092
Example 43
Figure JPOXMLDOC01-appb-C000092
 アルゴン気流下、化合物A-1(1.00g)、3,4-ジクロロベンゾニトリル(747mg)、及び硫酸ナトリウム(1.68g)をテトラヒドロフラン(5.0mL)に懸濁し、さらにテトラヒドロフラン(15.0mL)に溶解したtert-ブトキシカリウム(487mg)を滴下した後、反応系を50℃で18時間加熱撹拌した。放冷後、水とメタノールを加え、析出した固体をろ取した。得られた固体を水、メタノールで洗浄し、目的の2-(3,4-ジクロロフェニル)-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-22)の白色粉末(収量1.21g,収率75%)を得た。
 H-NMR(DMSO-d)δ(ppm):7.59-7.67(m,5H),7.71(dd,J=8.0,7.2Hz,1H),7.95(d,J=7.9Hz,1H),8.35(d,J=8.1Hz,2H),8.62(d,J=8.4Hz,1H),8.71(d,J=7.9Hz,1H),8.87(s,1H).
Under a stream of argon, Compound A-1 (1.00 g), 3,4-dichlorobenzonitrile (747 mg), and sodium sulfate (1.68 g) were suspended in tetrahydrofuran (5.0 mL), and tetrahydrofuran (15.0 mL) was further suspended. Tert-Butoxypotassium (487 mg) dissolved in) was added dropwise, and the reaction system was heated and stirred at 50 ° C. for 18 hours. After allowing to cool, water and methanol were added, and the precipitated solid was collected by filtration. The obtained solid was washed with water and methanol, and the desired 2- (3,4-dichlorophenyl) -4-phenyl [1] benzothieno [3,2-d] pyrimidine (B-22) white powder (yield 1 .21 g, 75% yield).
1 H-NMR (DMSO-d 6 ) δ (ppm): 7.59-7.67 (m, 5H), 7.71 (dd, J = 8.0, 7.2 Hz, 1H), 7.95 (D, J = 7.9 Hz, 1H), 8.35 (d, J = 8.1 Hz, 2H), 8.62 (d, J = 8.4 Hz, 1H), 8.71 (d, J = 7.9 Hz, 1H), 8.87 (s, 1H).
 アルゴン気流下、化合物B-22(800mg)、4-(2-ピリジル)フェニルボロン酸(860mg)、酢酸パラジウム(8.8mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(56.0mg)を1,4-ジオキサン(40.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(2.6mL)を添加し、90℃で23時間加熱撹拌した。放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、トルエン20mLで再結晶することで、目的の4-フェニル-2-[4,4′′-ビス(2-ピリジル)-1,1′:2′,1′′-テルフェニル-4′-イル][1]ベンゾチエノ[3,2-d]ピリミジン(C-31)の白色粉末(収量883mg,収率70%)を得た。
 H-NMR(DMSO-d)δ(ppm):7.19-7.24(m,2H),7.40(d,J=8.4Hz,2H),7.47(d,J=8.5Hz,2H),7.58-7.75(m,10H),7.91(d,J=8.5Hz,2H),7.95(m,3H),8.40(d,J=8.2Hz,2H),8.67-8.70(m,2H),8.75(d,J=7.9Hz,1H),8.86(d,J=8.1Hz,1H),8.91(s,1H).
Under an argon stream, compound B-22 (800 mg), 4- (2-pyridyl) phenylboronic acid (860 mg), palladium acetate (8.8 mg), and 2-dicyclohexylphosphino-2 ', 4', 6'- Triisopropylbiphenyl (56.0 mg) was suspended in 1,4-dioxane (40.0 mL), 3M-potassium carbonate aqueous solution (2.6 mL) was further added, and the mixture was heated and stirred at 90 ° C. for 23 hours. After allowing to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol, and hexane, and recrystallized with 20 mL of toluene to obtain the desired 4-phenyl-2- [4,4 ″ -bis (2-pyridyl) -1,1 ′: A white powder (yield 883 mg, yield 70%) of 2 ′, 1 ″ -terphenyl-4′-yl] [1] benzothieno [3,2-d] pyrimidine (C-31) was obtained.
1 H-NMR (DMSO-d 6 ) δ (ppm): 7.19-7.24 (m, 2H), 7.40 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H), 7.58-7.75 (m, 10H), 7.91 (d, J = 8.5 Hz, 2H), 7.95 (m, 3H), 8.40 (d , J = 8.2 Hz, 2H), 8.67-8.70 (m, 2H), 8.75 (d, J = 7.9 Hz, 1H), 8.86 (d, J = 8.1 Hz, 1H), 8.91 (s, 1H).
 実施例44
Figure JPOXMLDOC01-appb-C000093
Example 44
Figure JPOXMLDOC01-appb-C000093
 アルゴン気流下、メルカプトアセトフェノン(1.82g)、及び3-ブロモ-6-フルオロベンゾニトリル(2.4g)をDMF(10mL)に懸濁し、0℃で撹拌した。これに4N-水酸化カリウム水溶液(6.0mL)を滴下した後、50分、65℃で加熱撹拌した。次いで、水を加え、放冷後、析出物を濾別することで、目的の3-アミノ-2-ベンゾイル-5-ブロモベンゾ[b]チオフェン(A-7)の黄色粉末(収量2.56g,収率66%)を得た。
 H-NMR(DMSO-d)δ(ppm):7.49-7.58(m,3H),7.67(d,J=8.6Hz,1H),7.75(d,J=8.1Hz,2H),7.80(d,J=8.6Hz,1H),8.25(s,2H),8.54(s,1H).
Under an argon stream, mercaptoacetophenone (1.82 g) and 3-bromo-6-fluorobenzonitrile (2.4 g) were suspended in DMF (10 mL) and stirred at 0 ° C. 4N-potassium hydroxide aqueous solution (6.0 mL) was added dropwise thereto, and then the mixture was heated and stirred at 65 ° C. for 50 minutes. Then, after adding water and allowing to cool, the precipitate was filtered off to give a yellow powder of the desired 3-amino-2-benzoyl-5-bromobenzo [b] thiophene (A-7) (yield 2.56 g, Yield 66%).
1 H-NMR (DMSO-d 6 ) δ (ppm): 7.49-7.58 (m, 3H), 7.67 (d, J = 8.6 Hz, 1H), 7.75 (d, J = 8.1 Hz, 2H), 7.80 (d, J = 8.6 Hz, 1H), 8.25 (s, 2H), 8.54 (s, 1H).
 アルゴン雰囲気下、化合物A-7(1.67g)、ベンゾニトリル(1.60g)、及びリン酸カリウム(2.20g)をDMF(10mL)に懸濁し、80℃で18時間加熱撹拌した。その後、水及びメタノールを添加し、氷浴で撹拌した。析出した固体を濾別し、水及びメタノールで洗浄することで、目的の8-ブロモ-2,4-ジフェニル[1]ベンゾチエノ[3,2-d]ピリミジン(B-23)の黄色粉末(収量459mg,収率21%)を得た。
 H-NMR(DMSO-d)δ(ppm):7.53-7.69(m,6H),7.80(d,J=8.5Hz,1H),7.83(d,J=8.5Hz,1H),8.38(d,J=8.1Hz,2H),8.79(d,J=8.2Hz,2H),8.88(s,1H).
Under an argon atmosphere, Compound A-7 (1.67 g), benzonitrile (1.60 g), and potassium phosphate (2.20 g) were suspended in DMF (10 mL), and the mixture was heated and stirred at 80 ° C. for 18 hours. Then, water and methanol were added and stirred with an ice bath. The precipitated solid was filtered off and washed with water and methanol to give the desired 8-bromo-2,4-diphenyl [1] benzothieno [3,2-d] pyrimidine (B-23) yellow powder (yield) 459 mg, 21% yield).
1 H-NMR (DMSO-d 6 ) δ (ppm): 7.53-7.69 (m, 6H), 7.80 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H), 8.38 (d, J = 8.1 Hz, 2H), 8.79 (d, J = 8.2 Hz, 2H), 8.88 (s, 1H).
 実施例45
Figure JPOXMLDOC01-appb-C000094
Example 45
Figure JPOXMLDOC01-appb-C000094
 アルゴン気流下、化合物B-1(904mg)、カルバゾール(702mg)、酢酸パラジウム(9.0mg)、炭酸カリウム(1.16g)、及び18-クラウン-6-エーテル(106mg)をキシレン(20mL)に懸濁し、さらにトリ(tert-ブチル)ホスフィンの1M-トルエン溶液(120μL)を添加し、5時間加熱還流した。反応混合物を放冷後、水及びメタノールを加え、析出した固体をろ取することで、目的の2-(3,5-ジカルバゾリルフェニル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-32)の灰色粉末(収量1.22g,収率91%)を得た。
 H-NMR(CDCl)δ(ppm):7.37(d,J=7.3Hz,4H),7.50(dd,J=8.2,7.3Hz,4H),7.58-7.64(m,4H),7.68(d,J=8.2Hz,4H),7.72(t,J=7.2Hz,1H),7.96-7.98(m,2H),8.22(d,J=7.8Hz,4H),8.37(d,J=7.7Hz,2H),8.66(d,J=7.8Hz,1H),9.13(s,2H).
Under an argon stream, compound B-1 (904 mg), carbazole (702 mg), palladium acetate (9.0 mg), potassium carbonate (1.16 g), and 18-crown-6-ether (106 mg) were added to xylene (20 mL). The suspension was further added, and a 1M-toluene solution (120 μL) of tri (tert-butyl) phosphine was added, and the mixture was heated to reflux for 5 hours. The reaction mixture is allowed to cool, water and methanol are added, and the precipitated solid is collected by filtration to give the desired 2- (3,5-dicarbazolylphenyl] -4-phenyl [1] benzothieno [3,2 -D] A gray powder (yield 1.22 g, yield 91%) of pyrimidine (C-32) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.37 (d, J = 7.3 Hz, 4H), 7.50 (dd, J = 8.2, 7.3 Hz, 4H), 7.58 −7.64 (m, 4H), 7.68 (d, J = 8.2 Hz, 4H), 7.72 (t, J = 7.2 Hz, 1H), 7.96-7.98 (m, 2H), 8.22 (d, J = 7.8 Hz, 4H), 8.37 (d, J = 7.7 Hz, 2H), 8.66 (d, J = 7.8 Hz, 1H), 9. 13 (s, 2H).
 実施例46
Figure JPOXMLDOC01-appb-C000095
Example 46
Figure JPOXMLDOC01-appb-C000095
 アルゴン気流下、化合物B-17(1.75g)、1-クロロイソキノリン(537mg)、酢酸パラジウム(12.3mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(78.1mg)を1,4-ジオキサン(55.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.82mL)を添加し、90℃で5時間加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄した後、カラムクロマトグラフィーで精製(展開溶媒:クロロホルム)することで、目的の2-[3-(1-イソキノリル)-5-(9-フェナントリル)フェニル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-33)の白色粉末(収量290mg,収率17%)を得た。
 H-NMR(CDCl)δ(ppm):7.52-7.75(m,12H),7.92-7.95(m,3H),7.97(d,J=7.8Hz,1H),8.04(s,1H),8.17(d,J=8.2Hz,1H),8.35-8.37(m,3H),8.67(d,J=7.5Hz,1H),8.72(d,J=5.8Hz,1H),8.77(d,J=8.0Hz,1H),8.83(d,J=7.9Hz,1H),9.10(s,1H),9.23(s,1H).
Under an argon stream, compound B-17 (1.75 g), 1-chloroisoquinoline (537 mg), palladium acetate (12.3 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl ( 78.1 mg) was suspended in 1,4-dioxane (55.0 mL), 3M-potassium carbonate aqueous solution (1.82 mL) was further added, and the mixture was heated and stirred at 90 ° C. for 5 hours. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and then purified by column chromatography (developing solvent: chloroform) to give the desired 2- [3- (1-isoquinolyl) -5- (9-phenanthryl) A white powder (yield 290 mg, 17%) of phenyl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (C-33) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.52 to 7.75 (m, 12H), 7.92-7.95 (m, 3H), 7.97 (d, J = 7.8 Hz) , 1H), 8.04 (s, 1H), 8.17 (d, J = 8.2 Hz, 1H), 8.35-8.37 (m, 3H), 8.67 (d, J = 7 .5 Hz, 1 H), 8.72 (d, J = 5.8 Hz, 1 H), 8.77 (d, J = 8.0 Hz, 1 H), 8.83 (d, J = 7.9 Hz, 1 H) , 9.10 (s, 1H), 9.23 (s, 1H).
 実施例47
Figure JPOXMLDOC01-appb-C000096
Example 47
Figure JPOXMLDOC01-appb-C000096
 アルゴン気流下、化合物B-1(243mg)、4-(4,6-ジメチルピリミジン-2-イル)フェニルボロン酸(400mg)、酢酸パラジウム(2.40mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(15.0mg)を1,4-ジオキサン(11.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(720μL)を添加し、70℃で20時間加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、トルエン10mLで再結晶することで、目的の4-フェニル-2-[4,4′′-ビス(4,6-ジメチルピリミジン-2-イル)-1,1′:3′,1′′-テルフェニル-5′-イル][1]ベンゾチエノ[3,2-d]ピリミジン(C-34)の白色粉末(収量289mg,収率76%)を得た。
 H-NMR(CDCl)δ(ppm):2.58(s,12H),6.96(s,2H),7.60-7.73(m,5H),7.95-7.97(m,5H),8.09(s,1H),8.42(d,J=8.2Hz,2H),8.62(d,J=8.5Hz,4H),8.78(d,J=7.7Hz,1H),9.09(s,2H).
Under an argon stream, Compound B-1 (243 mg), 4- (4,6-dimethylpyrimidin-2-yl) phenylboronic acid (400 mg), palladium acetate (2.40 mg), and 2-dicyclohexylphosphino-2 ′ , 4 ′, 6′-triisopropylbiphenyl (15.0 mg) suspended in 1,4-dioxane (11.0 mL), 3M aqueous potassium carbonate solution (720 μL) was added, and the mixture was stirred with heating at 70 ° C. for 20 hours. did. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and recrystallized with 10 mL of toluene to obtain the desired 4-phenyl-2- [4,4 ″ -bis (4,6-dimethylpyrimidin-2-yl]. ) -1,1 ′: 3 ′, 1 ″ -terphenyl-5′-yl] [1] benzothieno [3,2-d] pyrimidine (C-34) white powder (yield 289 mg, 76% yield) )
1 H-NMR (CDCl 3 ) δ (ppm): 2.58 (s, 12H), 6.96 (s, 2H), 7.60-7.73 (m, 5H), 7.95-7. 97 (m, 5H), 8.09 (s, 1H), 8.42 (d, J = 8.2 Hz, 2H), 8.62 (d, J = 8.5 Hz, 4H), 8.78 ( d, J = 7.7 Hz, 1H), 9.09 (s, 2H).
 実施例48
Figure JPOXMLDOC01-appb-C000097
Example 48
Figure JPOXMLDOC01-appb-C000097
 アルゴン気流下、化合物B-17(1.75g)、2-クロロ-4,6-ジフェニルピリジン(872mg)、酢酸パラジウム(12.3mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(78.9mg)を1,4-ジオキサン(55.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.82mL)を添加し、85℃で16時間加熱撹拌した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール、ヘキサンで洗浄し、トルエン50mLで再結晶することで、目的の2-[3-(9-フェナントリル)-5-(4,6-ジフェニルピリジン-2-イル)フェニル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-35)の白色粉末(収量1.56g,収率77%)を得た。
 H-NMR(CDCl)δ(ppm):7.23-7.74(m,15H),7.82(d,J=8.2Hz,2H),7.93-7.95(m,2H),7.98(s,1H),7.99(d,J=7.7Hz,1H),8.11(d,J=8.3Hz,1H),8.15(s,1H),8.30(d,J=8.2Hz,2H),8.43(d,J=8.1Hz,2H),8.55(s,1H),8.74(d,J=7.9Hz,1H),8.79(d,J=8.3Hz,1H),8.85(d,J=8.1Hz,1H),9.03(s,1H),9.73(s,1H).
Under an argon stream, compound B-17 (1.75 g), 2-chloro-4,6-diphenylpyridine (872 mg), palladium acetate (12.3 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6 '-Triisopropylbiphenyl (78.9 mg) was suspended in 1,4-dioxane (55.0 mL), 3M aqueous potassium carbonate solution (1.82 mL) was further added, and the mixture was stirred with heating at 85 ° C. for 16 hr. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and recrystallized with 50 mL of toluene to obtain the desired 2- [3- (9-phenanthryl) -5- (4,6-diphenylpyridin-2-yl). A white powder (yield 1.56 g, yield 77%) of phenyl] -4-phenyl [1] benzothieno [3,2-d] pyrimidine (C-35) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.23-7.74 (m, 15H), 7.82 (d, J = 8.2 Hz, 2H), 7.93-7.95 (m , 2H), 7.98 (s, 1H), 7.99 (d, J = 7.7 Hz, 1H), 8.11 (d, J = 8.3 Hz, 1H), 8.15 (s, 1H) ), 8.30 (d, J = 8.2 Hz, 2H), 8.43 (d, J = 8.1 Hz, 2H), 8.55 (s, 1H), 8.74 (d, J = 7) .9 Hz, 1H), 8.79 (d, J = 8.3 Hz, 1H), 8.85 (d, J = 8.1 Hz, 1H), 9.03 (s, 1H), 9.73 (s) , 1H).
 実施例49
Figure JPOXMLDOC01-appb-C000098
Example 49
Figure JPOXMLDOC01-appb-C000098
 アルゴン気流下、1-アセチルナフタレン(3.57g)、及び3-クロロ-1,2-ベンズイソチアゾ-ル(3.39g)をDMF(10mL)に加え、そこにカリウムtert-ブトキシドのDMF懸濁液(30mL)を滴下し、次いで80℃で5時間撹拌した。反応混合物を室温まで放冷後、水及びクロロホルムを加えた。分液操作により、有機層を抽出し、無水硫酸マグネシウムで乾燥させた。これをカラムクロマトグラフィーで精製(展開溶媒:ヘキサン/クロロホルム)することで、目的の3-アミノ-2-(1-ナフトイル)ベンゾ[b]チオフェン(A-8)の黄色液体(収量3.56g,収率59%)を得た。
 H-NMR(DMSO-d)、δ(ppm):7.44(dd,J=8.0,7.1Hz,1H),7.52-7.64(m,4H),7.71-7.75(m,2H),7.93(d,J=8.5Hz,1H),8.04(d,J=8.7Hz,1H),8.09(d,J=8.2Hz,1H),8.30(d,J=8.0Hz,1H),8.40(s,2H).
Under an argon stream, 1-acetylnaphthalene (3.57 g) and 3-chloro-1,2-benzisothiazol (3.39 g) were added to DMF (10 mL), and a DMF suspension of potassium tert-butoxide was added thereto. (30 mL) was added dropwise and then stirred at 80 ° C. for 5 hours. The reaction mixture was allowed to cool to room temperature, and water and chloroform were added. The organic layer was extracted by liquid separation operation and dried over anhydrous magnesium sulfate. This was purified by column chromatography (developing solvent: hexane / chloroform) to give the desired 3-amino-2- (1-naphthoyl) benzo [b] thiophene (A-8) yellow liquid (yield 3.56 g). Yield 59%).
1 H-NMR (DMSO-d 6 ), δ (ppm): 7.44 (dd, J = 8.0, 7.1 Hz, 1H), 7.52-7.64 (m, 4H), 7. 71-7.75 (m, 2H), 7.93 (d, J = 8.5 Hz, 1H), 8.04 (d, J = 8.7 Hz, 1H), 8.09 (d, J = 8 .2 Hz, 1 H), 8.30 (d, J = 8.0 Hz, 1 H), 8.40 (s, 2 H).
 アルゴン気流下、化合物A-8(3.50g)、3-ブロモ-5-クロロベンゾニトリル(2.75g)、及びリン酸カリウム(4.88g)をDMF(23mL)に加え、室温で17時間撹拌した。その後、3-ブロモ-5-クロロベンゾニトリル(2.75g)を追加し、100℃で30分加熱撹拌した。反応混合物を室温まで放冷後、メタノールを加えた。析出した固体を水及びメタノールで洗浄することで、目的の2-(3-ブロモ-5-クロロフェニル)-4-(1-ナフチル)[1]ベンゾチエノ[3,2-d]ピリミジン(B-24)の薄褐色粉末(収量1.34g、収率23%)を得た。
 H-NMR(DMSO-d)、δ(ppm):7.54(dd,J=8.5,6.8Hz,1H),7.61(dd,J=8.1,6.8Hz,1H),7.66-7.74(m,4H),7.89(d,J=7.7Hz,1H),7.96(d,J=7.1Hz,1H),8.03(d,J=8.1Hz,1H),8.06(d,J=8.8Hz,1H),8.11(d,J=8.3Hz,1H),8.69(s,1H),8.77-8.81(m,2H).
Under a stream of argon, Compound A-8 (3.50 g), 3-bromo-5-chlorobenzonitrile (2.75 g) and potassium phosphate (4.88 g) were added to DMF (23 mL), and the mixture was stirred at room temperature for 17 hours. Stir. Thereafter, 3-bromo-5-chlorobenzonitrile (2.75 g) was added, and the mixture was heated with stirring at 100 ° C. for 30 minutes. The reaction mixture was allowed to cool to room temperature, and methanol was added. The precipitated solid was washed with water and methanol to give the desired 2- (3-bromo-5-chlorophenyl) -4- (1-naphthyl) [1] benzothieno [3,2-d] pyrimidine (B-24 ) Was obtained (yield 1.34 g, yield 23%).
1 H-NMR (DMSO-d 6 ), δ (ppm): 7.54 (dd, J = 8.5, 6.8 Hz, 1H), 7.61 (dd, J = 8.1, 6.8 Hz) , 1H), 7.66-7.74 (m, 4H), 7.89 (d, J = 7.7 Hz, 1H), 7.96 (d, J = 7.1 Hz, 1H), 8.03 (D, J = 8.1 Hz, 1H), 8.06 (d, J = 8.8 Hz, 1H), 8.11 (d, J = 8.3 Hz, 1H), 8.69 (s, 1H) , 8.77-8.81 (m, 2H).
 実施例50
Figure JPOXMLDOC01-appb-C000099
Example 50
Figure JPOXMLDOC01-appb-C000099
 アルゴン気流下、化合物B-24(1.34g)、4-(2-ピリジル)フェニルボロン酸(1.24g)、酢酸パラジウム(12.0mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(76.3mg)をTHF(53.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(5.3mL)を添加し、22時間加熱還流した。反応混合物を放冷後、水及びメタノール加え、析出した固体をろ取することで、目的の2-[4,4′′-ビス(2-ピリジル)-[1,1′:3′,1′′]-テルフェニル-5′-イル]-4-(1-ナフチル)[1]ベンゾチエノ[3,2-d]ピリミジン(C-36)の灰色粉末(収量1.68g,収率99%)を得た。
 H-NMR(CDCl)δ(ppm):7.26-7.29(m,2H),7.54(dd,J=8.5,6.9Hz,1H),7.61(dd,J=7.6,7.4Hz,1H),7.65-7.73(m,3H),7.78(m,4H),7.89(d,J=7.0Hz,1H),7.95(d,J=8.4Hz,4H),8.03(d,J=8.0Hz,1H),8.04(d,J=7.0Hz,1H),8.10-8.12(m,2H),8.17(d,J=8.4Hz,4H),8.25(d,J=8.5Hz,1H),8.76(d,J=4.6z,2H),8.84(d,J=7.3Hz,1H),9.07(s,2H).
Under an argon stream, compound B-24 (1.34 g), 4- (2-pyridyl) phenylboronic acid (1.24 g), palladium acetate (12.0 mg), and 2-dicyclohexylphosphino-2 ′, 4 ′ , 6'-Triisopropylbiphenyl (76.3 mg) was suspended in THF (53.0 mL), 3M-potassium carbonate aqueous solution (5.3 mL) was added, and the mixture was heated to reflux for 22 hours. The reaction mixture is allowed to cool, water and methanol are added, and the precipitated solid is collected by filtration to give the desired 2- [4,4 ″ -bis (2-pyridyl)-[1,1 ′: 3 ′, 1 ”] -Terphenyl-5′-yl] -4- (1-naphthyl) [1] benzothieno [3,2-d] pyrimidine (C-36) gray powder (yield 1.68 g, yield 99%) )
1 H-NMR (CDCl 3 ) δ (ppm): 7.26-7.29 (m, 2H), 7.54 (dd, J = 8.5, 6.9 Hz, 1H), 7.61 (dd , J = 7.6, 7.4 Hz, 1H), 7.65-7.73 (m, 3H), 7.78 (m, 4H), 7.89 (d, J = 7.0 Hz, 1H) 7.95 (d, J = 8.4 Hz, 4H), 8.03 (d, J = 8.0 Hz, 1H), 8.04 (d, J = 7.0 Hz, 1H), 8.10− 8.12 (m, 2H), 8.17 (d, J = 8.4 Hz, 4H), 8.25 (d, J = 8.5 Hz, 1H), 8.76 (d, J = 4.6z) , 2H), 8.84 (d, J = 7.3 Hz, 1H), 9.07 (s, 2H).
 実施例51
Figure JPOXMLDOC01-appb-C000100
Example 51
Figure JPOXMLDOC01-appb-C000100
 アルゴン気流下、化合物B-17(1.28g)、8-(4-クロロフェニル)キノリン(527mg)、酢酸パラジウム(9.0mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(57.2mg)をTHF(22.0mL)に懸濁し、さらに3M-炭酸カリウム水溶液(1.33mL)を添加し、17時間加熱還流した。反応混合物を放冷後、水及びメタノールを加え、析出した固体をろ取した。これをカラムクロマトグラフィーで精製(展開溶媒:ヘキサン/クロロホルム)することで、目的の2-[5-(9-フェナントリル)-4′-(8-キノリル)ビフェニル-3-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(C-37)の白色粉末(収量98mg,収率14%)を得た。
 H-NMR(CDCl)δ(ppm):7.45(dd,J=8.3,4.1Hz,1H),7.49-7.53(m,1H),7.58-7.74(m,10H),7.82-7.87(m,1H),7.88(d,J=8.3Hz,2H),7.94(s,1H),7.96-8.00(m,1H),7.99(d,J=8.3Hz,2H),8.03(s,1H),8.13(d,J=8.4Hz,1H),8.24(d,J=8.3Hz,1H),8.32-8.34(m,1H),8.41(d,J=8.1Hz,2H),8.75(d,J=7.8Hz,1H),8.79(d,J=7.6Hz,1H),8.85(d,J=8.0Hz,1H),8.95(s,1H),9.02(d,J=4.1Hz,1H),9.23(s,1H).
Under an argon stream, compound B-17 (1.28 g), 8- (4-chlorophenyl) quinoline (527 mg), palladium acetate (9.0 mg), and 2-dicyclohexylphosphino-2 ', 4', 6'- Triisopropylbiphenyl (57.2 mg) was suspended in THF (22.0 mL), 3M-potassium carbonate aqueous solution (1.33 mL) was further added, and the mixture was heated to reflux for 17 hours. The reaction mixture was allowed to cool, water and methanol were added, and the precipitated solid was collected by filtration. This was purified by column chromatography (developing solvent: hexane / chloroform) to give the desired 2- [5- (9-phenanthryl) -4 '-(8-quinolyl) biphenyl-3-yl] -4-phenyl. [1] A white powder (98 mg, 14% yield) of benzothieno [3,2-d] pyrimidine (C-37) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.45 (dd, J = 8.3, 4.1 Hz, 1H), 7.49-7.53 (m, 1H), 7.58-7 .74 (m, 10H), 7.82-7.87 (m, 1H), 7.88 (d, J = 8.3 Hz, 2H), 7.94 (s, 1H), 7.96-8 0.00 (m, 1H), 7.9 (d, J = 8.3 Hz, 2H), 8.03 (s, 1H), 8.13 (d, J = 8.4 Hz, 1H), 8.24 (D, J = 8.3 Hz, 1H), 8.32-8.34 (m, 1H), 8.41 (d, J = 8.1 Hz, 2H), 8.75 (d, J = 7. 8 Hz, 1H), 8.79 (d, J = 7.6 Hz, 1H), 8.85 (d, J = 8.0 Hz, 1H), 8.95 (s, 1H), 9.02 (d, J = 4.1 Hz, 1H), 9.2 (S, 1H).
 合成例1
Figure JPOXMLDOC01-appb-C000101
Synthesis example 1
Figure JPOXMLDOC01-appb-C000101
 アルゴン雰囲気下、化合物A-7(1.29g)をホルムアミド(16mL)に懸濁し、室温で撹拌した。これに濃硫酸を滴下した後、22時間、180℃で加熱撹拌した。反応物を放冷後、水を添加した。析出物を濾別することで、目的の8-ブロモ-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジンの灰色粉末(収量1.16g,収率95%)を得た。
 H-NMR(CDCl)δ(ppm):7.60-7.67(m,3H),7.79-7.84(m,2H),8.24(d,J=7.6Hz,2H),8.76(s,1H),9.42(s,1H).
Under an argon atmosphere, Compound A-7 (1.29 g) was suspended in formamide (16 mL) and stirred at room temperature. After concentrated sulfuric acid was added dropwise thereto, the mixture was heated and stirred at 180 ° C. for 22 hours. After allowing the reaction to cool, water was added. The precipitate was filtered off to obtain the desired 8-bromo-4-phenyl [1] benzothieno [3,2-d] pyrimidine gray powder (yield 1.16 g, yield 95%).
1 H-NMR (CDCl 3 ) δ (ppm): 7.60-7.67 (m, 3H), 7.79-7.84 (m, 2H), 8.24 (d, J = 7.6 Hz) , 2H), 8.76 (s, 1H), 9.42 (s, 1H).
 アルゴン気流下、8-ブロモ-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(1.10g)、5′-m-テルフェニルボロン酸(972mg)、酢酸パラジウム(14.5mg)、及び2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(92.1mg)をTHF(32mL)に懸濁し、さらに3M-炭酸カリウム水溶液(2.4mL)を添加し、66時間加熱還流した。反応混合物を放冷後、水を加え、析出した固体をろ取した。得られた固体を水、メタノール及びヘキサンで洗浄し、目的の8-[1,1′:3′,1′′-テルフェニル-5′-イル]-4-フェニル[1]ベンゾチエノ[3,2-d]ピリミジン(ETL-3)の灰色粉末(収量1.54g,収率98%)を得た。
 H-NMR(CDCl)δ(ppm):7.44(t,J=7.3Hz,2H),7.53(dd,J=7.8,7.3Hz,4H),7.60-7.67(m,3H),7.77(d,J=7.8Hz,4H),7.87(s,1H),7.97(s,2H),8.04(d,J=8.4Hz,1H),8.08(d,J=8.4Hz,1H),8.28(d,J=7.9Hz,2H),8.95(s,1H),9.45(s,1H).
Under an argon stream, 8-bromo-4-phenyl [1] benzothieno [3,2-d] pyrimidine (1.10 g), 5′-m-terphenylboronic acid (972 mg), palladium acetate (14.5 mg), And 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (92.1 mg) were suspended in THF (32 mL), and 3M aqueous potassium carbonate solution (2.4 mL) was added for 66 hours. Heated to reflux. The reaction mixture was allowed to cool, water was added, and the precipitated solid was collected by filtration. The obtained solid was washed with water, methanol and hexane, and the desired 8- [1,1 ′: 3 ′, 1 ″ -terphenyl-5′-yl] -4-phenyl [1] benzothieno [3, A gray powder (yield 1.54 g, yield 98%) of 2-d] pyrimidine (ETL-3) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.44 (t, J = 7.3 Hz, 2H), 7.53 (dd, J = 7.8, 7.3 Hz, 4H), 7.60 −7.67 (m, 3H), 7.77 (d, J = 7.8 Hz, 4H), 7.87 (s, 1H), 7.97 (s, 2H), 8.04 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 8.28 (d, J = 7.9 Hz, 2H), 8.95 (s, 1H), 9.45. (S, 1H).
 合成例2
Figure JPOXMLDOC01-appb-C000102
Synthesis example 2
Figure JPOXMLDOC01-appb-C000102
 アルゴン気流下、メルカプトアセトフェノン(3.04g)、及び3-シアノ-2-フルオロピリジン(2.44g)をDMF(20mL)に懸濁し、0℃で撹拌した。これに4N-水酸化カリウム水溶液(10mL)を滴下した後、室温で14時間撹拌した。その後、水を加え、反応物を放冷後、析出物を濾別することで、目的の3-アミノ-2-ベンゾイル-5-チエノ[5,4-b]ピリジンの黄色粉末(収量2.92g,収率57%)を得た。
 H-NMR(DMSO-d):δ7.51(dd,J=8.2,4.6Hz,1H),7.53-7.62(m,3H),7.80(d,J=8.0Hz,2H),8.44(s,2H),8.68(d,J=8.2Hz,1H),8.74(d,J=4.6Hz,1H).
Under an argon stream, mercaptoacetophenone (3.04 g) and 3-cyano-2-fluoropyridine (2.44 g) were suspended in DMF (20 mL) and stirred at 0 ° C. To this was added dropwise 4N-potassium hydroxide aqueous solution (10 mL), followed by stirring at room temperature for 14 hours. Thereafter, water was added, the reaction product was allowed to cool, and the precipitate was filtered off to give a desired yellow powder of 3-amino-2-benzoyl-5-thieno [5,4-b] pyridine (yield 2. 92 g, 57% yield).
1 H-NMR (DMSO-d 6 ): δ 7.51 (dd, J = 8.2, 4.6 Hz, 1H), 7.53-7.62 (m, 3H), 7.80 (d, J = 8.0 Hz, 2H), 8.44 (s, 2H), 8.68 (d, J = 8.2 Hz, 1H), 8.74 (d, J = 4.6 Hz, 1H).
 アルゴン雰囲気下、3-アミノ-2-ベンゾイル-5-チエノ[5,4-b]ピリジン(2.54g)、及び3′,5′-ジクロロアセトフェノン(3.12g)を酢酸(20mL)に懸濁し、室温で撹拌した。これに濃硫酸を滴下した後、42時間、還流した。反応物を放冷後、水を添加した。析出物をカラムクロマトグラフィーで精製(展開溶媒:クロロホルム)することで、目的の2-(3,5-ジクロロフェニル)-4-フェニルチエノ[3,2-b:5,4-b′]ジピリジンの白色粉末(収量1.54g,収率38%)を得た。
 H-NMR(CDCl)δ7.48(s,1H),7.55(dd,J=7.9,4.7Hz,1H),7.57-7.66(m,3H),7.85(d,J=8.2Hz,2H),7.88(s,1H),8.15(s,2H),8.80(d,J=4.7Hz,1H),8.89(d,J=7.9Hz,1H).
Under an argon atmosphere, 3-amino-2-benzoyl-5-thieno [5,4-b] pyridine (2.54 g) and 3 ′, 5′-dichloroacetophenone (3.12 g) were suspended in acetic acid (20 mL). Cloudy and stirred at room temperature. After concentrated sulfuric acid was added dropwise thereto, the mixture was refluxed for 42 hours. After allowing the reaction to cool, water was added. By purifying the precipitate by column chromatography (developing solvent: chloroform), the desired 2- (3,5-dichlorophenyl) -4-phenylthieno [3,2-b: 5,4-b ′] dipyridine A white powder (yield 1.54 g, yield 38%) was obtained.
1 H-NMR (CDCl 3 ) δ 7.48 (s, 1H), 7.55 (dd, J = 7.9, 4.7 Hz, 1H), 7.57-7.66 (m, 3H), 7 .85 (d, J = 8.2 Hz, 2H), 7.88 (s, 1H), 8.15 (s, 2H), 8.80 (d, J = 4.7 Hz, 1H), 8.89 (D, J = 7.9 Hz, 1H).
 アルゴン気流下、2-(3,5-ジクロロフェニル)-4-フェニルチエノ[3,2-b:5,4-b′]ジピリジン(1.00g)、フェニルボロン酸(718mg)、酢酸パラジウム(27.6mg)及び2-ジtert-ブチルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(173mg)を1,4-ジオキサン(12mL)に懸濁し、さらに3M-炭酸カリウム水溶液(4.0mL)を添加し、15時間加熱還流した。反応混合物を放冷後、水を加え、デカンテーションにより水層を除去した。得られた固体をカラムクロマトグラフィーで精製(展開溶媒:クロロホルム)することで、目的の2-[1,1′:3′,1′′-テルフェニル-5′-イル]-4-フェニルチエノ[3,2-b:5,4-b′]ジピリジン(ETL-4)の灰色粉末(収量417mg,収率35%)を得た。
 H-NMR(CDCl):δ7.45(t,J=7.4Hz,2H),7.51(dd,J=7.9,4.7Hz,1H),7.52-7.65(m,7H),7.79(d,J=8.2Hz,4H),7.87(d,J=8.2Hz,2H),7.93(s,1H),8.02(s,1H),8.42(s,2H),8.78(d,J=4.7Hz,1H),8.89(d,J=7.9Hz,1H).
Under an argon stream, 2- (3,5-dichlorophenyl) -4-phenylthieno [3,2-b: 5,4-b ′] dipyridine (1.00 g), phenylboronic acid (718 mg), palladium acetate (27 6 mg) and 2-ditert-butylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (173 mg) are suspended in 1,4-dioxane (12 mL), and 3M aqueous potassium carbonate solution (4. 0 mL) was added and heated to reflux for 15 hours. The reaction mixture was allowed to cool, water was added, and the aqueous layer was removed by decantation. The obtained solid is purified by column chromatography (developing solvent: chloroform) to give the desired 2- [1,1 ′: 3 ′, 1 ″ -terphenyl-5′-yl] -4-phenylthieno. A gray powder (yield 417 mg, yield 35%) of [3,2-b: 5,4-b ′] dipyridine (ETL-4) was obtained.
1 H-NMR (CDCl 3 ): δ 7.45 (t, J = 7.4 Hz, 2H), 7.51 (dd, J = 7.9, 4.7 Hz, 1H), 7.52-7.65 (M, 7H), 7.79 (d, J = 8.2 Hz, 4H), 7.87 (d, J = 8.2 Hz, 2H), 7.93 (s, 1H), 8.02 (s , 1H), 8.42 (s, 2H), 8.78 (d, J = 4.7 Hz, 1H), 8.89 (d, J = 7.9 Hz, 1H).
 精製例1(実施例)
 化合物C-1の黄色粉末(1.58g、昇華前純度99.7%)を1.0×10-3Paの真空条件下、気化部温度330℃、捕集部温度280℃に加熱し昇華精製を行なうことで化合物C-1の白色粉末(収量1.20g、収率76%、純度99.8%)を得た。
Purification Example 1 (Example)
Compound C-1 yellow powder (1.58 g, purity 99.7% before sublimation) was sublimated by heating to a vaporization section temperature of 330 ° C. and a collection section temperature of 280 ° C. under a vacuum of 1.0 × 10 −3 Pa. Purification gave white powder of compound C-1 (yield 1.20 g, yield 76%, purity 99.8%).
 精製例2(実施例)
 化合物C-26の黄色粉末(1.68g、昇華前純度99.7%)を5.0×10-4Paの真空条件下、気化部温度240℃、捕集部温度220℃に加熱し昇華精製を行なうことで化合物C-26の白色粉末(収量1.53g、収率91%、純度99.9%)を得た。
Purification Example 2 (Example)
Compound C-26 yellow powder (1.68 g, purity 99.7% before sublimation) was sublimated by heating to a vaporization part temperature of 240 ° C. and a collection part temperature of 220 ° C. under a vacuum of 5.0 × 10 −4 Pa. Purification gave a white powder of compound C-26 (yield 1.53 g, yield 91%, purity 99.9%).
 比較精製例1(比較例)
 化合物ETL-3の灰色粉末(1.54g、昇華前純度99.7%)を5.0×10-4Paの真空条件下、気化部温度240℃、捕集部温度220℃に加熱し昇華精製を行なうことで化合物ETL-3の白色粉末(収量1.20g、収率78%、純度99.4%)を得た。
Comparative Purification Example 1 (Comparative Example)
Compound ETL-3 gray powder (1.54 g, purity 99.7% before sublimation) was sublimated by heating to a vaporization section temperature of 240 ° C. and a collection section temperature of 220 ° C. under a vacuum of 5.0 × 10 −4 Pa. Purification gave white powder of compound ETL-3 (yield 1.20 g, yield 78%, purity 99.4%).
 比較精製例1に比べて、本発明のベンゾチエノピリミジン化合物は昇華後純度が向上しており、耐熱性に優れていることが分かった。 Compared with Comparative Purification Example 1, the benzothienopyrimidine compound of the present invention was found to have improved post-sublimation purity and excellent heat resistance.
 本発明のベンゾチエノピリミジン化合物を構成成分とする有機電界発光素子の作製と性能評価
 以下に示す試験例により本発明を説明するが、本発明はこれらに限定されない。また、用いる化合物の構造式及びその略称を以下に示す。
Figure JPOXMLDOC01-appb-C000103
Preparation and performance evaluation of organic electroluminescent device comprising benzothienopyrimidine compound of the present invention as a constituent component The present invention will be described by the following test examples, but the present invention is not limited thereto. In addition, structural formulas and abbreviations of the compounds used are shown below.
Figure JPOXMLDOC01-appb-C000103
 評価実施例1
 基板には、2mm幅の酸化インジウム-スズ(ITO)膜がストライプ状にパターンされたITO透明電極付きガラス基板を用いた。この基板をイソプロピルアルコールで洗浄した後、酸素プラズマ洗浄にて表面処理を行った。洗浄後の基板に、真空蒸着法で各層の真空蒸着を行い、断面図を図1に示すような発光面積4mm有機電界発光素子を作製した。
 まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。その後、図1の1で示すITO透明電極付きガラス基板上に有機化合物層として、正孔注入層2、第一正孔輸送層3、第二正孔輸送層4、発光層5、電子輸送層6及び電子注入層7を順次成膜し、その後陰極層8を成膜した。
 なお、有機電界発光素子の各層をなす材料はいずれも抵抗加熱方式により真空蒸着した。
 正孔注入層2としては、HTL-1を0.15nm/秒の成膜速度で65nmの膜厚で真空蒸着した。
 第一正孔輸送層3としては、HAT-CNを0.025nm/秒の成膜速度で5nmの膜厚で真空蒸着した。
 第二正孔輸送層4としてはHTL-2を0.15nm/秒の成膜速度で10nmの膜厚で真空蒸着した。
 発光層5としては、EML-1とEML-2を0.18nm/秒の成膜速度で25nmの膜厚(EML-1/EML-2=95.4/4.6(重量比)の共蒸着)で真空蒸着した。
 電子輸送層6としては、本発明の実施例2で合成した化合物C-1を0.15nm/秒の成膜速度で30nmの膜厚で真空蒸着した。
 電子注入層7としてはLiqを0.005nm/秒の成膜速度で0.5nmの膜厚で真空蒸着した。
 最後に、ITOストライプと直行するようにメタルマスクを配し、陰極層8を成膜した。陰極層8は、マグネシウム/銀(重量比80/20)、銀を、この順番に、それぞれ0.5nm/秒、0.2nm/秒の成膜速度で80nm、20nmの膜厚で真空蒸着し、2層構造とした。
 それぞれの膜厚は、触針式膜厚測定計(DEKTAK、Veeco社製)で測定した。さらに、この素子を酸素及び水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと前記成膜基板エポキシ型紫外線硬化樹脂(ナガセケムテックス社製)を用いた。
Evaluation Example 1
As the substrate, a glass substrate with an ITO transparent electrode in which an indium-tin oxide (ITO) film having a width of 2 mm was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface-treated by oxygen plasma cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 as shown in FIG.
First, the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 × 10 −4 Pa. Thereafter, a hole injection layer 2, a first hole transport layer 3, a second hole transport layer 4, a light emitting layer 5, an electron transport layer are formed as an organic compound layer on the glass substrate with an ITO transparent electrode shown by 1 in FIG. 6 and the electron injection layer 7 were sequentially formed, and then the cathode layer 8 was formed.
In addition, all the materials which comprise each layer of an organic electroluminescent element were vacuum-deposited by the resistance heating system.
As the hole injection layer 2, HTL-1 was vacuum-deposited with a film thickness of 65 nm at a film formation rate of 0.15 nm / second.
As the first hole transport layer 3, HAT-CN was vacuum-deposited at a film thickness of 0.025 nm / second to a film thickness of 5 nm.
As the second hole transport layer 4, HTL-2 was vacuum-deposited with a film thickness of 10 nm at a film formation rate of 0.15 nm / second.
As the light emitting layer 5, both EML-1 and EML-2 are formed at a film formation rate of 0.18 nm / second and a film thickness of 25 nm (EML-1 / EML-2 = 95.4 / 4.6 (weight ratio)). Vacuum deposition was performed.
As the electron transport layer 6, the compound C-1 synthesized in Example 2 of the present invention was vacuum-deposited with a film thickness of 30 nm at a film formation rate of 0.15 nm / second.
As the electron injection layer 7, Liq was vacuum-deposited with a film thickness of 0.005 nm / second and a film thickness of 0.5 nm.
Finally, a metal mask was disposed so as to be orthogonal to the ITO stripe, and the cathode layer 8 was formed. The cathode layer 8 is formed by vacuum-depositing magnesium / silver (weight ratio 80/20) and silver in this order at film thicknesses of 80 nm and 20 nm at a film formation rate of 0.5 nm / second and 0.2 nm / second, respectively. A two-layer structure was adopted.
Each film thickness was measured with a stylus type film thickness meter (DEKTAK, manufactured by Veeco). Furthermore, this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less. For the sealing, a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin (manufactured by Nagase ChemteX Corporation) were used.
 評価実施例2
 評価実施例1の電子輸送層6において、化合物C-1に代えて、実施例3で合成した化合物C-2を用いた以外は、評価実施例1と同じ方法で有機電界発光素子を作製した。
Evaluation Example 2
In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescent element was produced in the same manner as in Evaluation Example 1 except that Compound C-2 synthesized in Example 3 was used instead of Compound C-1. .
 評価実施例3
 評価実施例1の電子輸送層6において、化合物C-1に代えて、実施例4で合成した化合物C-3を用いた以外は、評価実施例1と同じ方法で有機電界発光素子を作製した。
Evaluation Example 3
In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescence device was produced in the same manner as in Evaluation Example 1, except that Compound C-3 synthesized in Example 4 was used instead of Compound C-1. .
 評価実施例4
 評価実施例1の電子輸送層6において、化合物C-1に代えて、実施例5で合成した化合物C-4を用いた以外は、評価実施例1と同じ方法で有機電界発光素子を作製した。
Evaluation Example 4
In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescent device was produced in the same manner as in Evaluation Example 1 except that Compound C-4 synthesized in Example 5 was used instead of Compound C-1. .
 評価実施例5
 評価実施例1の電子輸送層6において、化合物C-1に代えて、実施例6で合成した化合物C-5を用いた以外は、評価実施例1と同じ方法で有機電界発光素子を作製した。
Evaluation Example 5
In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescent element was produced in the same manner as in Evaluation Example 1 except that Compound C-5 synthesized in Example 6 was used instead of Compound C-1. .
 評価実施例6
 評価実施例1の電子輸送層6において、化合物C-1に代えて、実施例19で合成した化合物C-14を用いた以外は、評価実施例1と同じ方法で有機電界発光素子を作製した。
Evaluation Example 6
In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescent element was produced in the same manner as in Evaluation Example 1 except that Compound C-14 synthesized in Example 19 was used instead of Compound C-1. .
 評価実施例7
 評価実施例1の電子輸送層6において、化合物C-1に代えて、実施例20で合成した化合物C-15を用いた以外は、評価実施例1と同じ方法で有機電界発光素子を作製した。
Evaluation Example 7
In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescent element was produced in the same manner as in Evaluation Example 1 except that Compound C-15 synthesized in Example 20 was used instead of Compound C-1. .
 評価実施例8
 評価実施例1の電子輸送層6において、化合物C-1に代えて、実施例25で合成した化合物C-18を用いた以外は、評価実施例1と同じ方法で有機電界発光素子を作製した。
Evaluation Example 8
In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescent element was produced in the same manner as in Evaluation Example 1, except that Compound C-18 synthesized in Example 25 was used instead of Compound C-1. .
 評価実施例9
 評価実施例1の電子輸送層6において、化合物C-1に代えて、実施例32で合成した化合物C-23を用いた以外は、評価実施例1と同じ方法で有機電界発光素子を作製した。
Evaluation Example 9
In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescent element was produced in the same manner as in Evaluation Example 1, except that Compound C-23 synthesized in Example 32 was used instead of Compound C-1. .
 参考例1
 評価実施例1の電子輸送層6において、化合物C-1に代えて、公知の電子輸送材料であるETL-1を用いた以外は、評価実施例1と同じ方法で有機電界発光素子を作製した。
Reference example 1
In the electron transport layer 6 of Evaluation Example 1, an organic electroluminescent element was produced in the same manner as in Evaluation Example 1 except that ETL-1, which is a known electron transport material, was used instead of Compound C-1. .
 評価実施例1~9、及び参考例1で作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。寿命特性(h)としては、電流密度10mA/cmを流した時の連続点灯時の輝度減衰時間を測定した。また、輝度(cd/m)が20%減じた時の時間及び素子20時間駆動させた時の駆動電圧上昇を測定した。その他、電流密度10mA/cmを流した時の初期電圧(V)、及び初期電流効率(cd/A)と合わせて測定結果を表1に示した。なお、各評価実施例の素子寿命(h)については、参考例1における素子の輝度(cd/m)が初期から20%減じた時の時間(h)を100として、相対値で示した。 A direct current was applied to the organic electroluminescent devices produced in Evaluation Examples 1 to 9 and Reference Example 1, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON. As the lifetime characteristic (h), the luminance decay time during continuous lighting when a current density of 10 mA / cm 2 was passed was measured. Further, the time when the luminance (cd / m 2 ) was reduced by 20% and the drive voltage increase when the device was driven for 20 hours were measured. In addition, Table 1 shows the measurement results together with the initial voltage (V) and the initial current efficiency (cd / A) when a current density of 10 mA / cm 2 was passed. Note that the element lifetime (h) of each evaluation example is expressed as a relative value with the time (h) when the luminance (cd / m 2 ) of the element in Reference Example 1 is reduced by 20% from the initial value being 100. .
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000104
 参考例1に比べて、本発明のベンゾチエノピリミジン化合物を使用した有機電界発光素子は寿命特性、電圧上昇抑制効果に優れていることが分かった。 Compared to Reference Example 1, it was found that the organic electroluminescent device using the benzothienopyrimidine compound of the present invention was superior in life characteristics and voltage rise suppression effect.
 評価実施例10
 基板には、2mm幅の酸化インジウム-スズ(ITO)膜がストライプ状にパターンされたITO透明電極付きガラス基板を用いた。この基板をイソプロピルアルコールで洗浄した後、酸素プラズマ洗浄にて表面処理を行った。洗浄後の基板に、真空蒸着法で各層の真空蒸着を行い、断面図を図2に示すような発光面積4mm有機電界発光素子を作製した。
 まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。その後、図2の11で示すITO透明電極付きガラス基板上に有機化合物層として、正孔注入層12、第一正孔輸送層13、第二正孔輸送層14、発光層15及び電子輸送層16を順次成膜し、その後陰極層17を成膜した。
 なお、有機電界発光素子の各層をなす材料はいずれも抵抗加熱方式により真空蒸着した。
 正孔注入層12としては、HTL-1を0.15nm/秒の成膜速度で65nmの膜厚で真空蒸着した。
 第一正孔輸送層13としては、HAT-CNを0.025nm/秒の成膜速度で5nmの膜厚で真空蒸着した。
 第二正孔輸送層14としてはHTL-2を0.15nm/秒の成膜速度で10nmの膜厚で真空蒸着した。
 発光層15としては、EML-1とEML-2を0.18nm/秒の成膜速度で25nmの膜厚(EML-1/EML-2=95.4/4.6(重量比)の共蒸着)で真空蒸着した。
 電子輸送層16としては、本発明の実施例2で合成したC-1とLiqを0.15nm/秒の成膜速度で30nmの膜厚(C-1/Liq=50/50(重量比)の共蒸着)で真空蒸着した。
 最後に、ITOストライプと直行するようにメタルマスクを配し、陰極層17を成膜した。陰極層17は、マグネシウム/銀(重量比80/20)、銀を、この順番に、それぞれ0.5nm/秒、0.2nm/秒の成膜速度で80nm、20nmの膜厚で真空蒸着し、2層構造とした。
 それぞれの膜厚は、触針式膜厚測定計(DEKTAK、Veeco社製)で測定した。
 さらに、この素子を酸素及び水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと前記成膜基板エポキシ型紫外線硬化樹脂(ナガセケムテックス社製)を用いた。
Evaluation Example 10
As the substrate, a glass substrate with an ITO transparent electrode in which an indium-tin oxide (ITO) film having a width of 2 mm was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface-treated by oxygen plasma cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 as shown in FIG.
First, the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 × 10 −4 Pa. Thereafter, a hole injection layer 12, a first hole transport layer 13, a second hole transport layer 14, a light emitting layer 15 and an electron transport layer are formed as an organic compound layer on the glass substrate with an ITO transparent electrode indicated by 11 in FIG. 16 were sequentially formed, and then the cathode layer 17 was formed.
In addition, all the materials which comprise each layer of an organic electroluminescent element were vacuum-deposited by the resistance heating system.
As the hole injection layer 12, HTL-1 was vacuum-deposited with a film thickness of 65 nm at a film formation rate of 0.15 nm / second.
As the first hole transport layer 13, HAT-CN was vacuum-deposited with a film thickness of 0.025 nm / second and a film thickness of 5 nm.
As the second hole transport layer 14, HTL-2 was vacuum-deposited at a film formation rate of 0.15 nm / second to a film thickness of 10 nm.
As the light-emitting layer 15, EML-1 and EML-2 are formed at a film formation rate of 0.18 nm / sec and a film thickness of 25 nm (EML-1 / EML-2 = 95.4 / 4.6 (weight ratio)). Vacuum deposition was performed.
As the electron transport layer 16, C-1 and Liq synthesized in Example 2 of the present invention were formed to a film thickness of 30 nm at a film formation rate of 0.15 nm / second (C-1 / Liq = 50/50 (weight ratio)). Vacuum co-evaporation).
Finally, a metal mask was arranged so as to be orthogonal to the ITO stripe, and the cathode layer 17 was formed. The cathode layer 17 is formed by vacuum-depositing magnesium / silver (weight ratio 80/20) and silver in this order at film thicknesses of 80 nm and 20 nm at a film formation rate of 0.5 nm / second and 0.2 nm / second, respectively. A two-layer structure was adopted.
Each film thickness was measured with a stylus type film thickness meter (DEKTAK, manufactured by Veeco).
Furthermore, this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less. For the sealing, a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin (manufactured by Nagase ChemteX Corporation) were used.
 評価実施例11
 評価実施例10の電子輸送層16において、化合物C-1に代えて、実施例3で合成した化合物C-2を用いた以外は、評価実施例10と同じ方法で有機電界発光素子を作製した。
Evaluation Example 11
An organic electroluminescent device was produced in the same manner as in Evaluation Example 10 except that Compound C-2 synthesized in Example 3 was used instead of Compound C-1 in the electron transport layer 16 of Evaluation Example 10. .
 評価実施例12
 評価実施例10の電子輸送層16において、化合物C-1に代えて、実施例4で合成した化合物C-3を用いた以外は、評価実施例10と同じ方法で有機電界発光素子を作製した。
Evaluation Example 12
An organic electroluminescent device was produced in the same manner as in Evaluation Example 10 except that Compound C-3 synthesized in Example 4 was used in place of Compound C-1 in the electron transport layer 16 of Evaluation Example 10. .
 評価実施例13
 評価実施例10の電子輸送層16において、化合物C-1に代えて、実施例5で合成した化合物C-4を用いた以外は、評価実施例10と同じ方法で有機電界発光素子を作製した。
Evaluation Example 13
An organic electroluminescent device was produced in the same manner as in Evaluation Example 10 except that Compound C-4 synthesized in Example 5 was used in place of Compound C-1 in the electron transport layer 16 of Evaluation Example 10. .
 評価実施例14
 評価実施例10の電子輸送層16において、化合物C-1に代えて、実施例15で合成した化合物C-10を用いた以外は、評価実施例10と同じ方法で有機電界発光素子を作製した。
Evaluation Example 14
An organic electroluminescent device was produced in the same manner as in Evaluation Example 10 except that Compound C-10 synthesized in Example 15 was used in place of Compound C-1 in the electron transport layer 16 of Evaluation Example 10. .
 評価実施例15
 評価実施例10の電子輸送層16において、化合物C-1に代えて、実施例17で合成した化合物C-12を用いた以外は、評価実施例10と同じ方法で有機電界発光素子を作製した。
Evaluation Example 15
In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescence device was produced in the same manner as in Evaluation Example 10 except that Compound C-12 synthesized in Example 17 was used instead of Compound C-1. .
 評価実施例16
 評価実施例10の電子輸送層16において、化合物C-1に代えて、実施例18で合成した化合物C-13を用いた以外は、評価実施例10と同じ方法で有機電界発光素子を作製した。
Evaluation Example 16
In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescent element was produced in the same manner as in Evaluation Example 10, except that Compound C-13 synthesized in Example 18 was used instead of Compound C-1. .
 評価実施例17
 評価実施例10の電子輸送層16において、化合物C-1に代えて、実施例20で合成した化合物C-15を用いた以外は、評価実施例10と同じ方法で有機電界発光素子を作製した。
Evaluation Example 17
In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescent element was produced in the same manner as in Evaluation Example 10 except that Compound C-15 synthesized in Example 20 was used instead of Compound C-1. .
 評価実施例18
 評価実施例10の電子輸送層16において、化合物C-1に代えて、実施例23で合成した化合物C-17を用いた以外は、評価実施例10と同じ方法で有機電界発光素子を作製した。
Evaluation Example 18
In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescence device was produced in the same manner as in Evaluation Example 10 except that Compound C-17 synthesized in Example 23 was used instead of Compound C-1. .
 評価実施例19
 評価実施例10の電子輸送層16において、化合物C-1に代えて、実施例28で合成した化合物C-20を用いた以外は、評価実施例10と同じ方法で有機電界発光素子を作製した。
Evaluation Example 19
In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescence device was produced in the same manner as in Evaluation Example 10 except that Compound C-20 synthesized in Example 28 was used instead of Compound C-1. .
 評価実施例20
 評価実施例10の電子輸送層16において、化合物C-1に代えて、実施例29で合成した化合物C-21を用いた以外は、評価実施例10と同じ方法で有機電界発光素子を作製した。
Evaluation Example 20
In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescent element was produced in the same manner as in Evaluation Example 10, except that Compound C-21 synthesized in Example 29 was used instead of Compound C-1. .
 評価実施例21
 評価実施例10の電子輸送層16において、化合物C-1に代えて、実施例31で合成した化合物C-22を用いた以外は、評価実施例10と同じ方法で有機電界発光素子を作製した。
Evaluation Example 21
In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescent element was produced in the same manner as in Evaluation Example 10 except that Compound C-22 synthesized in Example 31 was used instead of Compound C-1. .
 評価実施例22
 評価実施例10の電子輸送層16において、化合物C-1に代えて、実施例32で合成した化合物C-23を用いた以外は、評価実施例10と同じ方法で有機電界発光素子を作製した。
Evaluation Example 22
In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescent element was produced in the same manner as in Evaluation Example 10 except that Compound C-23 synthesized in Example 32 was used instead of Compound C-1. .
 評価実施例23
 評価実施例10の電子輸送層16において、化合物C-1に代えて、実施例34で合成した化合物C-24を用いた以外は、評価実施例10と同じ方法で有機電界発光素子を作製した。
Evaluation Example 23
In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescent element was produced in the same manner as in Evaluation Example 10, except that Compound C-24 synthesized in Example 34 was used instead of Compound C-1. .
 評価実施例24
 評価実施例10の電子輸送層16において、化合物C-1に代えて、実施例35で合成した化合物C-25を用いた以外は、評価実施例10と同じ方法で有機電界発光素子を作製した。
Evaluation Example 24
In the electron transport layer 16 of Evaluation Example 10, an organic electroluminescence device was produced in the same manner as in Evaluation Example 10 except that Compound C-25 synthesized in Example 35 was used instead of Compound C-1. .
 参考例2
 評価実施例6の電子輸送層16において、化合物C-1に代えて、公知の電子輸送材料であるETL-1を用いた以外は、評価実施例6と同じ方法で有機電界発光素子を作製した。
Reference example 2
In the electron transport layer 16 of Evaluation Example 6, an organic electroluminescent element was produced in the same manner as in Evaluation Example 6, except that ETL-1 which is a known electron transport material was used instead of Compound C-1. .
 参考例3
 評価実施例6の電子輸送層16において、C-1に代えて、公知の電子輸送材料であるETL-2を用いた以外は、評価実施例6と同じ方法で有機電界発光素子を作製した。
Reference example 3
In the electron transport layer 16 of Evaluation Example 6, an organic electroluminescent element was produced in the same manner as in Evaluation Example 6, except that ETL-2, which is a known electron transport material, was used instead of C-1.
 評価実施例10~24、参考例2、及び参考例3で作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。寿命特性(h)としては、電流密度10mA/cmを流した時の連続点灯時の輝度減衰時間を測定した。また、輝度(cd/m)が10%減じた時の時間及び素子50時間駆動させた時の駆動電圧上昇を測定した。その他、電流密度10mA/cmを流した時の初期電圧(V)、及び初期電流効率(cd/A)と合わせて測定結果を表2に示した。なお、各評価実施例の駆動電圧(V)及び電流効率(cd/A)については、参考例2(ETL-1)の測定値を100としたときの相対値で示した。各評価実施例の素子寿命(h)については、参考例2における素子の輝度(cd/m)が初期から10%減じた時の時間(h)を100として、相対値で示した。 A direct current was applied to the organic electroluminescence devices produced in Evaluation Examples 10 to 24, Reference Example 2 and Reference Example 3, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON. did. As the lifetime characteristic (h), the luminance decay time during continuous lighting when a current density of 10 mA / cm 2 was passed was measured. Further, the time when the luminance (cd / m 2 ) was reduced by 10% and the drive voltage increase when the device was driven for 50 hours were measured. In addition, Table 2 shows the measurement results together with the initial voltage (V) and the initial current efficiency (cd / A) when a current density of 10 mA / cm 2 was passed. The driving voltage (V) and current efficiency (cd / A) of each evaluation example are shown as relative values when the measured value in Reference Example 2 (ETL-1) is 100. The element lifetime (h) of each evaluation example is shown as a relative value with the time (h) when the luminance (cd / m 2 ) of the element in Reference Example 2 is reduced by 10% from the initial value being 100.
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000105
 参考例2に比べて、本発明のベンゾチエノピリミジン化合物を使用した有機電界発光素子は寿命特性に顕著に優れ、電圧上昇抑制効果においても優れていることが分かった。 Compared with Reference Example 2, it was found that the organic electroluminescence device using the benzothienopyrimidine compound of the present invention was remarkably excellent in life characteristics and also excellent in the voltage rise suppressing effect.
 参考例3に比べて、本発明のベンゾチエノピリミジン化合物を使用した有機電界発光素子は電流効率に優れることが分かった。 Compared to Reference Example 3, it was found that the organic electroluminescent device using the benzothienopyrimidine compound of the present invention was superior in current efficiency.
 評価実施例25
 基板には、2mm幅の酸化インジウム-スズ(ITO)膜がストライプ状にパターンされたITO透明電極付きガラス基板を用いた。この基板をイソプロピルアルコールで洗浄した後、酸素プラズマ洗浄にて表面処理を行った。洗浄後の基板に、真空蒸着法で各層の真空蒸着を行い、断面図を図2に示すような発光面積4mm有機電界発光素子を作製した。
 まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。その後、図2の11で示すITO透明電極付きガラス基板上に有機化合物層として、正孔注入層12、第一正孔輸送層13、第二正孔輸送層14、発光層15及び電子輸送層16を順次成膜し、その後陰極層17を成膜した。
 なお、有機電界発光素子の各層をなす材料はいずれも抵抗加熱方式により真空蒸着した。
 正孔注入層12としては、HTL-1を0.15nm/秒の成膜速度で65nmの膜厚で真空蒸着した。
 第一正孔輸送層13としては、HAT-CNを0.025nm/秒の成膜速度で5nmの膜厚で真空蒸着した。
 第二正孔輸送層14としてはHTL-2を0.15nm/秒の成膜速度で10nmの膜厚で真空蒸着した。
 発光層15としては、EML-1とEML-2を0.18nm/秒の成膜速度で25nmの膜厚(EML-1/EML-2=95.4/4.6(重量比)の共蒸着)で真空蒸着した。
 電子輸送層16としては、本発明の実施例-36で合成したC-26とLiqを0.15nm/秒の成膜速度で30nmの膜厚(C-26/Liq=50/50(重量比)の共蒸着)で真空蒸着した。
 最後に、ITOストライプと直行するようにメタルマスクを配し、陰極層17を成膜した。陰極層17は、マグネシウム/銀(重量比80/20)、銀を、この順番に、それぞれ0.5nm/秒、0.2nm/秒の成膜速度で80nm、20nmの膜厚で真空蒸着し、2層構造とした。
 それぞれの膜厚は、触針式膜厚測定計(DEKTAK、Veeco社製)で測定した。
 さらに、この素子を酸素及び水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと前記成膜基板エポキシ型紫外線硬化樹脂(ナガセケムテックス社製)を用いた。
Evaluation Example 25
As the substrate, a glass substrate with an ITO transparent electrode in which an indium-tin oxide (ITO) film having a width of 2 mm was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface-treated by oxygen plasma cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 as shown in FIG.
First, the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 × 10 −4 Pa. Thereafter, a hole injection layer 12, a first hole transport layer 13, a second hole transport layer 14, a light emitting layer 15 and an electron transport layer are formed as an organic compound layer on the glass substrate with an ITO transparent electrode indicated by 11 in FIG. 16 were sequentially formed, and then the cathode layer 17 was formed.
In addition, all the materials which comprise each layer of an organic electroluminescent element were vacuum-deposited by the resistance heating system.
As the hole injection layer 12, HTL-1 was vacuum-deposited with a film thickness of 65 nm at a film formation rate of 0.15 nm / second.
As the first hole transport layer 13, HAT-CN was vacuum-deposited with a film thickness of 0.025 nm / second and a film thickness of 5 nm.
As the second hole transport layer 14, HTL-2 was vacuum-deposited at a film formation rate of 0.15 nm / second to a film thickness of 10 nm.
As the light-emitting layer 15, EML-1 and EML-2 are formed at a film formation rate of 0.18 nm / sec and a film thickness of 25 nm (EML-1 / EML-2 = 95.4 / 4.6 (weight ratio)). Vacuum deposition was performed.
As the electron transport layer 16, C-26 and Liq synthesized in Example-36 of the present invention were formed at a film formation rate of 0.15 nm / second and a film thickness of 30 nm (C-26 / Liq = 50/50 (weight ratio)). ) Co-evaporation).
Finally, a metal mask was arranged so as to be orthogonal to the ITO stripe, and the cathode layer 17 was formed. The cathode layer 17 is formed by vacuum-depositing magnesium / silver (weight ratio 80/20) and silver in this order at film thicknesses of 80 nm and 20 nm at a film formation rate of 0.5 nm / second and 0.2 nm / second, respectively. A two-layer structure was adopted.
Each film thickness was measured with a stylus type film thickness meter (DEKTAK, manufactured by Veeco).
Furthermore, this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less. For the sealing, a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin (manufactured by Nagase ChemteX Corporation) were used.
 評価比較例1
 評価実施例25の電子輸送層16において、C-26に代えて、合成例1で合成したETL-3を用いた以外は、評価実施例25と同じ方法で有機電界発光素子を作製した。
Evaluation Comparative Example 1
An organic electroluminescent element was produced in the same manner as in Evaluation Example 25 except that ETL-3 synthesized in Synthesis Example 1 was used in place of C-26 in the electron transport layer 16 of Evaluation Example 25.
 評価比較例2
 評価実施例25の電子輸送層16において、C-26に代えて、合成例2で合成したETL-4を用いた以外は、評価実施例25と同じ方法で有機電界発光素子を作製した。
Evaluation Comparative Example 2
An organic electroluminescent device was produced in the same manner as in Evaluation Example 25 except that ETL-4 synthesized in Synthesis Example 2 was used in place of C-26 in the electron transport layer 16 of Evaluation Example 25.
 評価実施例25、評価比較例1、及び評価比較例2で作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。電流密度5mA/cmを流した時の初期電圧(V)、及び初期電流効率(cd/A)を測定した。また、電流密度40mA/cmを流し、素子を連続点灯させた際、素子を50時間駆動させた時の駆動電圧上昇を測定した結果を表3に示した。なお、各評価実施例の駆動電圧(V)及び電流効率(cd/A)については、評価比較例2(ETL-4)の測定値を100としたときの相対値で示した。 A direct current was applied to the organic electroluminescent elements produced in Evaluation Example 25, Evaluation Comparative Example 1 and Evaluation Comparative Example 2, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON. did. The initial voltage (V) and the initial current efficiency (cd / A) when a current density of 5 mA / cm 2 was passed were measured. Table 3 shows the results of measuring the drive voltage rise when the device was driven for 50 hours when a current density of 40 mA / cm 2 was passed and the device was continuously lit. The drive voltage (V) and current efficiency (cd / A) in each evaluation example are shown as relative values when the measured value in Evaluation Comparative Example 2 (ETL-4) is 100.
Figure JPOXMLDOC01-appb-T000106
Figure JPOXMLDOC01-appb-T000106
 評価比較例1及び2に比べて、本発明のベンゾチエノピリミジン化合物を使用した有機電界発光素子は駆動電圧が低く、電流効率に優れ、また、駆動電圧上昇抑制効果にも優れていることが分かった。 Compared to Evaluation Comparative Examples 1 and 2, the organic electroluminescent device using the benzothienopyrimidine compound of the present invention has a low driving voltage, excellent current efficiency, and excellent driving voltage rise suppression effect. It was.
 本発明のベンゾチエノピリミジン化合物を用いた有機電界発光素子は、既存材料を用いた有機電界発光素子に比較して、長時間駆動することができる。また、本発明のベンゾチエノピリミジン化合物は、本実施例の電子輸送層以外にも、発光ホスト層などにも適用可能である。更に、蛍光発光材料を用いた素子だけではなく、燐光発光材料を用いた様々な有機電界発光素子への適用も可能である。又、本発明のベンゾチエノピリミジン化合物は溶解度も高く、真空蒸着法ばかりでなく塗布法を用いた素子作成も可能である。更に、フラットパネルディスプレイなどの用途以外にも、低消費電力が求められる照明用途などにも有用である。 The organic electroluminescent device using the benzothienopyrimidine compound of the present invention can be driven for a long time compared to the organic electroluminescent device using the existing material. Further, the benzothienopyrimidine compound of the present invention can be applied to a light emitting host layer and the like in addition to the electron transport layer of this example. Furthermore, the present invention can be applied not only to an element using a fluorescent light emitting material but also to various organic electroluminescent elements using a phosphorescent light emitting material. Further, the benzothienopyrimidine compound of the present invention has high solubility, and it is possible to produce an element using not only a vacuum deposition method but also a coating method. Furthermore, it is useful not only for applications such as flat panel displays but also for illumination applications that require low power consumption.
 1  ITO透明電極付きガラス基板
 2  正孔注入層
 3  第一正孔輸送層
 4  第二正孔輸送層
 5  発光層
 6  電子輸送層
 7  電子注入層
 8  陰極層
 11  ITO透明電極付きガラス基板
 12  正孔注入層
 13  第一正孔輸送層
 14  第二正孔輸送層
 15  発光層
 16  電子輸送層
 17  陰極層
DESCRIPTION OF SYMBOLS 1 Glass substrate with ITO transparent electrode 2 Hole injection layer 3 First hole transport layer 4 Second hole transport layer 5 Light emitting layer 6 Electron transport layer 7 Electron injection layer 8 Cathode layer 11 Glass substrate with ITO transparent electrode 12 Hole Injection layer 13 First hole transport layer 14 Second hole transport layer 15 Light emitting layer 16 Electron transport layer 17 Cathode layer

Claims (17)

  1.  一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R~Rは、各々独立して、炭素数4~66の芳香族基(各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)、水素原子、重水素原子、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、メチルチオ基、エチルチオ基、炭素数3~10のスルフィド基、又は炭素数10~36のジアリールアミノ基を表す。
    Ar及びArは、各々独立して、炭素数4~66の芳香族基(各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)を表す。)
    で表されるベンゾチエノピリミジン化合物。
    General formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 to R 4 each independently represents an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group) A substituent, an ethoxy group, an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms A hydrogen atom, a deuterium atom, a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, an alkoxy group having 3 to 10 carbon atoms, methylthio, A group, an ethylthio group, a sulfide group having 3 to 10 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms.
    Ar 1 and Ar 2 are each independently an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group) A substituent having an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms. Is also possible. )
    A benzothienopyrimidine compound represented by the formula:
  2.  R~Rが、各々独立して、炭素数4~30の芳香族基(各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、又は炭素数1~3のハロゲン化アルコキシ基を置換基として有していてもよい。)、水素原子、重水素原子、フッ素原子、メチル基、エチル基、又は炭素数3~10のアルキル基である、請求項1に記載のベンゾチエノピリミジン化合物。 R 1 to R 4 are each independently an aromatic group having 4 to 30 carbon atoms (each independently a fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group) , An optionally substituted alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, or a halogenated alkoxy group having 1 to 3 carbon atoms as a substituent), a hydrogen atom, deuterium The benzothienopyrimidine compound according to claim 1, which is an atom, a fluorine atom, a methyl group, an ethyl group, or an alkyl group having 3 to 10 carbon atoms.
  3.  Ar及びArのいずれか一方が、炭素数7~18の縮環芳香族基(フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)又は下記一般式(2)乃至一般式(9)のいずれかで表される置換基を表し、他方が、炭素数4~66の芳香族基(各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)を表す、請求項1又は2に記載のベンゾチエノピリミジン化合物。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)~(9)中、Arは、各々独立して、炭素数4~30の芳香族基(各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)、メチル基、エチル基、メトキシ基、エトキシ基、炭素数10~36のジアリールアミノ基又は水素原子を表わす。)
    Any one of Ar 1 and Ar 2 is a condensed aromatic group having 7 to 18 carbon atoms (fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group, carbon number 3 (Alternatively, it may have an alkoxy group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms). Or a substituent represented by any one of the following general formulas (2) to (9), the other being an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, a methyl group, ethyl Group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group, alkoxy group having 3 to 10 carbon atoms, halogenated alkyl group having 1 to 3 carbon atoms, halogenated alkoxy group having 1 to 3 carbon atoms, or carbon Diaryl of several 10 to 36 The amino group which may have a substituent.) Represents a benzo-thieno pyrimidine compound according to claim 1 or 2.
    Figure JPOXMLDOC01-appb-C000002
    (In the general formulas (2) to (9), each Ar 3 is independently an aromatic group having 4 to 30 carbon atoms (each independently a fluorine atom, methyl group, ethyl group, 3 to 10 carbon atoms) Alkyl group, methoxy group, ethoxy group, alkoxy group having 3 to 10 carbon atoms, halogenated alkyl group having 1 to 3 carbon atoms, halogenated alkoxy group having 1 to 3 carbon atoms, or diarylamino having 10 to 36 carbon atoms And a methyl group, an ethyl group, a methoxy group, an ethoxy group, a diarylamino group having 10 to 36 carbon atoms, or a hydrogen atom.)
  4.  Arが、各々独立して、炭素数4~30の芳香族基(各々独立して、フッ素原子、メチル基、メトキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)、メチル基、エチル基、炭素数10~36のジアリールアミノ基又は水素原子である、請求項3に記載のベンゾチエノピリミジン化合物。 Ar 3 each independently has an aromatic group having 4 to 30 carbon atoms (each independently has a fluorine atom, a methyl group, a methoxy group, or a diarylamino group having 10 to 36 carbon atoms as a substituent). The benzothienopyrimidine compound according to claim 3, which is a methyl group, an ethyl group, a diarylamino group having 10 to 36 carbon atoms, or a hydrogen atom.
  5.  金属触媒の存在下又は塩基及び金属触媒の存在下に、一般式(10)で表される化合物又は一般式(11)で表される化合物と、一般式(21)で表される化合物とをカップリング反応させることを特徴とする、請求項1に記載の一般式(1)で表されるベンゾチエノピリミジン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (一般式中、
    ~R、Ar、及びArは、請求項1と同じである。
    Ar11、Ar12及びAr13は、各々独立して、炭素数4~66の芳香族基(各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)を表す。
    ~Xは、各々独立して、炭素数4~66の芳香族基(各々独立して、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のハロゲン化アルコキシ基、又は炭素数10~36のジアリールアミノ基を置換基として有していてもよい。)、水素原子、重水素原子、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、メチルチオ基、エチルチオ基、炭素数3~10のスルフィド基、炭素数10~36のジアリールアミノ基、又は脱離基を表す。
    ~X及びYは、各々独立して、水素原子、重水素原子、フッ素原子、メチル基、エチル基、炭素数3~10のアルキル基、メトキシ基、エトキシ基、炭素数3~10のアルコキシ基、メチルチオ基、エチルチオ基、炭素数3~10のスルフィド基、炭素数10~36のジアリールアミノ基、又は脱離基を表す。
    は脱離基を表す。
    なお、一般式(10)におてい、X~Xのうち少なくとも一つは脱離基である。)
    In the presence of a metal catalyst or in the presence of a base and a metal catalyst, a compound represented by the general formula (10) or a compound represented by the general formula (11) and a compound represented by the general formula (21) A method for producing a benzothienopyrimidine compound represented by the general formula (1) according to claim 1, wherein a coupling reaction is performed.
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula,
    R 1 to R 4 , Ar 1 , and Ar 2 are the same as in claim 1.
    Ar 11 , Ar 12 and Ar 13 are each independently an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group). , An ethoxy group, an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms as a substituent. It may be.)
    X 1 to X 4 each independently represents an aromatic group having 4 to 66 carbon atoms (each independently a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group or an ethoxy group). A substituent having an alkoxy group having 3 to 10 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, or a diarylamino group having 10 to 36 carbon atoms. Or a hydrogen atom, a deuterium atom, a fluorine atom, a methyl group, an ethyl group, an alkyl group having 3 to 10 carbon atoms, a methoxy group, an ethoxy group, an alkoxy group having 3 to 10 carbon atoms, a methylthio group, or an ethylthio group. Represents a sulfide group having 3 to 10 carbon atoms, a diarylamino group having 10 to 36 carbon atoms, or a leaving group.
    X 5 to X 6 and Y each independently represent a hydrogen atom, deuterium atom, fluorine atom, methyl group, ethyl group, alkyl group having 3 to 10 carbon atoms, methoxy group, ethoxy group, or 3 to 10 carbon atoms. An alkoxy group, a methylthio group, an ethylthio group, a sulfide group having 3 to 10 carbon atoms, a diarylamino group having 10 to 36 carbon atoms, or a leaving group.
    X 7 represents a leaving group.
    In the general formula (10), at least one of X 1 to X 6 is a leaving group. )
  6.  塩基又は酸存在下、一般式(12)、一般式(13)及び一般式(14)で表される化合物を縮環反応させることを特徴とする、請求項1に記載の一般式(1)で表されるベンゾチエノピリミジン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (一般式中、R~R、Ar、及びArは、請求項1と同じ。Zは脱離基を表す。)
    The compound represented by general formula (12), general formula (13) and general formula (14) is subjected to a ring condensation reaction in the presence of a base or an acid. The manufacturing method of the benzothienopyrimidine compound represented by these.
    Figure JPOXMLDOC01-appb-C000004
    (In the general formula, R 1 to R 4 , Ar 1 , and Ar 2 are the same as in claim 1. Z represents a leaving group.)
  7.  塩基又は酸存在下、一般式(25)、一般式(26)及び一般式(14)で表される化合物を縮環反応させることを特徴とする、請求項1に記載の一般式(1)で表されるベンゾチエノピリミジン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (一般式中、R~R、Ar、及びArは、請求項1と同じである。Zは脱離基を表す。)
    The compound represented by the general formula (25), the general formula (26), and the general formula (14) is subjected to a ring condensation reaction in the presence of a base or an acid. The manufacturing method of the benzothienopyrimidine compound represented by these.
    Figure JPOXMLDOC01-appb-C000005
    (In the general formula, R 1 to R 4 , Ar 1 , and Ar 2 are the same as in claim 1. Z represents a leaving group.)
  8.  塩基又は酸存在下、一般式(22)及び一般式(14)で表される化合物を縮環反応させることを特徴とする、請求項1に記載の一般式(1)で表されるベンゾチエノピリミジン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    (一般式中、R~R、Ar、及びArは、請求項1と同じである。)
    The benzothieno represented by the general formula (1) according to claim 1, wherein the compound represented by the general formula (22) and the general formula (14) is subjected to a ring condensation reaction in the presence of a base or an acid. A method for producing a pyrimidine compound.
    Figure JPOXMLDOC01-appb-C000006
    (In the general formula, R 1 to R 4 , Ar 1 , and Ar 2 are the same as in claim 1).
  9.  塩基又は酸存在下、一般式(15)、一般式(16)及び一般式(17)で表される化合物を縮環反応させることを特徴とする、請求項5に記載の一般式(10)で表されるベンゾチエノピリミジン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    (一般式中、Ar11、Ar12、X~X、及びZは請求項5と同じである。)
    The general formula (10) according to claim 5, wherein the compound represented by the general formula (15), the general formula (16), and the general formula (17) is subjected to a ring condensation reaction in the presence of a base or an acid. The manufacturing method of the benzothienopyrimidine compound represented by these.
    Figure JPOXMLDOC01-appb-C000007
    (In the general formula, Ar 11 , Ar 12 , X 1 to X 6 , and Z are the same as in claim 5).
  10.  塩基又は酸存在下、一般式(27)、一般式(28)及び一般式(17)で表される化合物を縮環反応させることを特徴とする、請求項5に記載の一般式(10)で表されるベンゾチエノピリミジン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000008
    (一般式中、Ar11、Ar12、X~X、及びZは請求項5と同じである。)
    6. The general formula (10) according to claim 5, wherein the compound represented by the general formula (27), the general formula (28) and the general formula (17) is subjected to a ring condensation reaction in the presence of a base or an acid. The manufacturing method of the benzothienopyrimidine compound represented by these.
    Figure JPOXMLDOC01-appb-C000008
    (In the general formula, Ar 11 , Ar 12 , X 1 to X 6 , and Z are the same as in claim 5).
  11.  塩基又は酸存在下、一般式(23)及び一般式(17)で表される化合物を縮環反応させることを特徴とする、請求項5に記載の一般式(10)で表されるベンゾチエノピリミジン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000009
    (一般式中、Ar11、Ar12、及びX~Xは、請求項5と同じ)
    The benzothieno represented by the general formula (10) according to claim 5, wherein the compound represented by the general formula (23) and the general formula (17) is subjected to a ring condensation reaction in the presence of a base or an acid. A method for producing a pyrimidine compound.
    Figure JPOXMLDOC01-appb-C000009
    (In the general formula, Ar 11 , Ar 12 , and X 1 to X 6 are the same as in claim 5)
  12.  塩基の存在下又は非存在下に、一般式(20)で表される化合物とハロゲン化剤又はスルホニル化剤とを反応させることを特徴とする、請求項5に記載の一般式(11)で表されるベンゾチエノピリミジン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000010
    (一般式中、Ar12、X~X、X、Xは、請求項5と同じである。)
    In the general formula (11) according to claim 5, wherein the compound represented by the general formula (20) is reacted with a halogenating agent or a sulfonylating agent in the presence or absence of a base. A method for producing a represented benzothienopyrimidine compound.
    Figure JPOXMLDOC01-appb-C000010
    (In the general formula, Ar 12 , X 1 to X 4 , X 6 , and X 7 are the same as in claim 5).
  13.  請求項5に記載の一般式(10)で表されるベンゾチエノピリミジン化合物。
    Figure JPOXMLDOC01-appb-C000011
    (一般式中、Ar11、Ar12、X~Xは、請求項5と同じである。)
    A benzothienopyrimidine compound represented by the general formula (10) according to claim 5.
    Figure JPOXMLDOC01-appb-C000011
    (In the general formula, Ar 11 , Ar 12 , and X 1 to X 6 are the same as in claim 5.)
  14.  請求項5に記載の一般式(11)で表されるベンゾチエノピリミジン化合物。
    Figure JPOXMLDOC01-appb-C000012
    (一般式中、Ar12、X~X、X、及びXは請求項5と同じである。)
    A benzothienopyrimidine compound represented by the general formula (11) according to claim 5.
    Figure JPOXMLDOC01-appb-C000012
    (In the general formula, Ar 12 , X 1 to X 4 , X 6 , and X 7 are the same as in claim 5).
  15.  請求項1に記載のベンゾチエノピリミジン化合物を含んでなる有機電界発光素子。 An organic electroluminescent device comprising the benzothienopyrimidine compound according to claim 1.
  16.  ベンゾチエノピリミジン化合物を電子注入層、電子輸送層、又は発光層に含んでなる請求項15に記載の有機電界発光素子。 The organic electroluminescence device according to claim 15, comprising a benzothienopyrimidine compound in an electron injection layer, an electron transport layer, or a light emitting layer.
  17.  請求項1に記載のベンゾチエノピリミジン化合物を含んでなる有機電界発光素子用材料。 A material for an organic electroluminescent device comprising the benzothienopyrimidine compound according to claim 1.
PCT/JP2014/074122 2013-09-11 2014-09-11 Benzothienopyrimidine compound, method for producing same and organic electroluminescent element containing same WO2015037675A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-188348 2013-09-11
JP2013188348 2013-09-11
JP2013259544 2013-12-16
JP2013-259544 2013-12-16

Publications (1)

Publication Number Publication Date
WO2015037675A1 true WO2015037675A1 (en) 2015-03-19

Family

ID=52665775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074122 WO2015037675A1 (en) 2013-09-11 2014-09-11 Benzothienopyrimidine compound, method for producing same and organic electroluminescent element containing same

Country Status (3)

Country Link
JP (2) JP6507534B2 (en)
TW (1) TW201527302A (en)
WO (1) WO2015037675A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2910555A1 (en) * 2014-02-24 2015-08-26 Universal Display Corporation Organic electroluminescent materials and devices
WO2015182547A1 (en) * 2014-05-28 2015-12-03 東レ株式会社 Fluoranthene derivative, electronic device containing same, light-emitting element, and photoelectric conversion element
CN106206963A (en) * 2015-05-29 2016-12-07 株式会社半导体能源研究所 Light-emitting component, light-emitting device, display device, electronic equipment and illuminator
WO2016193845A1 (en) * 2015-05-29 2016-12-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
WO2017037571A1 (en) * 2015-09-04 2017-03-09 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
WO2017109637A1 (en) * 2015-12-25 2017-06-29 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
US20170200903A1 (en) * 2014-05-28 2017-07-13 Duk San Neolux Co., Ltd. Compound for organic electronic element, and organic electronic element and electronic device using same
KR101921215B1 (en) * 2015-07-06 2018-11-22 삼성에스디아이 주식회사 Compound for organic optoelectronic device, composition for optoelectronic device, organic optoelectronic device and display device
WO2018234926A1 (en) * 2017-06-22 2018-12-27 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
WO2018234932A1 (en) * 2017-06-23 2018-12-27 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
CN111051313A (en) * 2017-09-20 2020-04-21 株式会社半导体能源研究所 Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
CN111094297A (en) * 2017-09-26 2020-05-01 三星Sdi株式会社 Organic compound, composition, organic photoelectric device and display device
CN111278833A (en) * 2018-03-28 2020-06-12 株式会社Lg化学 Heterocyclic compound and organic light-emitting device comprising same
CN111356694A (en) * 2018-03-28 2020-06-30 株式会社Lg化学 Compound and organic light emitting diode comprising same
WO2022063744A1 (en) 2020-09-24 2022-03-31 Merck Patent Gmbh Organic electroluminescent device
US11637263B2 (en) 2017-11-02 2023-04-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device each including TADF organic compound

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6507534B2 (en) * 2013-09-11 2019-05-08 東ソー株式会社 Benzothienopyrimidine compound, method for producing the same, and organic electroluminescent device containing the same
KR101930365B1 (en) 2014-01-10 2018-12-18 삼성에스디아이 주식회사 Condensed cyclic compound, and organic light emitting device including the same
JP6500340B2 (en) * 2014-04-18 2019-04-17 東ソー株式会社 Benzofuropyrimidine compound, method for producing the same, and use thereof
KR20160007380A (en) * 2014-07-11 2016-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, compound, display module, lighting module, light-emitting device, display device, lighting device, and electronic device
KR101842584B1 (en) * 2015-02-13 2018-03-27 삼성에스디아이 주식회사 Organic compound for optoelectric device and organic optoelectric device and display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084531A (en) * 2009-10-19 2011-04-28 Konica Minolta Holdings Inc Material for organic electroluminescent element, organic electroluminescent element, illumination device and display device
KR20140000611A (en) * 2012-06-22 2014-01-03 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20140013351A (en) * 2012-07-23 2014-02-05 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20140014959A (en) * 2012-07-27 2014-02-06 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20140014956A (en) * 2012-07-27 2014-02-06 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20140017233A (en) * 2012-07-31 2014-02-11 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20140046209A (en) * 2012-10-10 2014-04-18 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20140091487A (en) * 2013-01-11 2014-07-21 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201240976A (en) * 2010-12-27 2012-10-16 Tosoh Corp 1,3,5-triazine compound, method of producing same, and organic electroluminescent device containing same as structural component
JP6136311B2 (en) * 2012-02-06 2017-05-31 Jnc株式会社 Electron transport material and organic electroluminescent device using the same
JP2013179198A (en) * 2012-02-29 2013-09-09 Toyo Ink Sc Holdings Co Ltd Material for organic electroluminescent element and application thereof
US9553274B2 (en) * 2013-07-16 2017-01-24 Universal Display Corporation Organic electroluminescent materials and devices
JP6507534B2 (en) * 2013-09-11 2019-05-08 東ソー株式会社 Benzothienopyrimidine compound, method for producing the same, and organic electroluminescent device containing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084531A (en) * 2009-10-19 2011-04-28 Konica Minolta Holdings Inc Material for organic electroluminescent element, organic electroluminescent element, illumination device and display device
KR20140000611A (en) * 2012-06-22 2014-01-03 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20140013351A (en) * 2012-07-23 2014-02-05 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20140014959A (en) * 2012-07-27 2014-02-06 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20140014956A (en) * 2012-07-27 2014-02-06 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20140017233A (en) * 2012-07-31 2014-02-11 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20140046209A (en) * 2012-10-10 2014-04-18 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20140091487A (en) * 2013-01-11 2014-07-21 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE REGISTRY CAS; 2006, accession no. 00463-54-9 *

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157808A (en) * 2014-02-24 2015-09-03 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent materials and devices
US9502656B2 (en) 2014-02-24 2016-11-22 Universal Display Corporation Organic electroluminescent materials and devices
EP2910555A1 (en) * 2014-02-24 2015-08-26 Universal Display Corporation Organic electroluminescent materials and devices
US20170200903A1 (en) * 2014-05-28 2017-07-13 Duk San Neolux Co., Ltd. Compound for organic electronic element, and organic electronic element and electronic device using same
WO2015182547A1 (en) * 2014-05-28 2015-12-03 東レ株式会社 Fluoranthene derivative, electronic device containing same, light-emitting element, and photoelectric conversion element
US10734588B2 (en) * 2014-05-28 2020-08-04 Duk San Neolux Co., Ltd Compound for organic electronic element, and organic electronic element and electronic device using same
JP2016225618A (en) * 2015-05-29 2016-12-28 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, display device, electronic apparatus, and lighting device
CN110600628A (en) * 2015-05-29 2019-12-20 株式会社半导体能源研究所 Light-emitting element, light-emitting device, display device, electronic device, and lighting device
JP7150932B2 (en) 2015-05-29 2022-10-11 株式会社半導体エネルギー研究所 Light-emitting elements, lighting devices, light-emitting devices, display devices, and electronic devices
TWI777294B (en) * 2015-05-29 2022-09-11 日商半導體能源研究所股份有限公司 Light-emitting element, light-emitting device, display device, electronic device, and lighting device
CN106206963B (en) * 2015-05-29 2020-06-30 株式会社半导体能源研究所 Light-emitting element, light-emitting device, display device, electronic device, and lighting device
CN106206963A (en) * 2015-05-29 2016-12-07 株式会社半导体能源研究所 Light-emitting component, light-emitting device, display device, electronic equipment and illuminator
WO2016193845A1 (en) * 2015-05-29 2016-12-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
CN107615509A (en) * 2015-05-29 2018-01-19 株式会社半导体能源研究所 Light-emitting component, light-emitting device, display device, electronic equipment and lighting device
US10586932B2 (en) 2015-05-29 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
CN110600628B (en) * 2015-05-29 2022-06-14 株式会社半导体能源研究所 Light-emitting element, light-emitting device, display device, electronic device, and lighting device
JP2021114624A (en) * 2015-05-29 2021-08-05 株式会社半導体エネルギー研究所 Light-emitting element, illumination device, light-emitting device, display device, and electronic apparatus
TWI751972B (en) * 2015-05-29 2022-01-11 日商半導體能源研究所股份有限公司 Light-emitting element, light-emitting device, display device, electronic device, and lighting device
KR101921215B1 (en) * 2015-07-06 2018-11-22 삼성에스디아이 주식회사 Compound for organic optoelectronic device, composition for optoelectronic device, organic optoelectronic device and display device
JP2017197513A (en) * 2015-09-04 2017-11-02 株式会社半導体エネルギー研究所 Compound, light-emitting element, display device, electronic device, and lighting device
US10230055B2 (en) 2015-09-04 2019-03-12 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
US11276824B2 (en) 2015-09-04 2022-03-15 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
CN108137611A (en) * 2015-09-04 2018-06-08 株式会社半导体能源研究所 Compound, light-emitting component, display device, electronic equipment and lighting device
CN108137611B (en) * 2015-09-04 2021-05-28 株式会社半导体能源研究所 Compound, light-emitting element, display device, electronic device, and lighting device
WO2017037571A1 (en) * 2015-09-04 2017-03-09 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
JP2017203039A (en) * 2015-12-25 2017-11-16 株式会社半導体エネルギー研究所 Compound
CN108431010B (en) * 2015-12-25 2021-10-15 株式会社半导体能源研究所 Compound, light-emitting element, display device, electronic device, and lighting device
WO2017109637A1 (en) * 2015-12-25 2017-06-29 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
JP2017119682A (en) * 2015-12-25 2017-07-06 株式会社半導体エネルギー研究所 Compound, light-emitting element, display device, electronic device, and lighting device
CN108431010A (en) * 2015-12-25 2018-08-21 株式会社半导体能源研究所 Compound, light-emitting component, display device, electronic equipment and lighting device
US10586931B2 (en) 2015-12-25 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
US11088332B2 (en) 2015-12-25 2021-08-10 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
JP2021143181A (en) * 2015-12-25 2021-09-24 株式会社半導体エネルギー研究所 Compound, light-emitting element, display device, electronic apparatus, and lighting device
EP3642208A4 (en) * 2017-06-22 2020-12-23 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
WO2018234926A1 (en) * 2017-06-22 2018-12-27 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
WO2018234932A1 (en) * 2017-06-23 2018-12-27 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US11456424B2 (en) 2017-06-23 2022-09-27 Semiconductor Energy Laboratory Co., Ltd. Phosphorescent host material
CN110785421A (en) * 2017-06-23 2020-02-11 株式会社半导体能源研究所 Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US11469380B2 (en) 2017-09-20 2022-10-11 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
CN111051313A (en) * 2017-09-20 2020-04-21 株式会社半导体能源研究所 Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
CN111051313B (en) * 2017-09-20 2023-06-20 株式会社半导体能源研究所 Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
CN111094297A (en) * 2017-09-26 2020-05-01 三星Sdi株式会社 Organic compound, composition, organic photoelectric device and display device
US11637263B2 (en) 2017-11-02 2023-04-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device each including TADF organic compound
US11956981B2 (en) 2017-11-02 2024-04-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and light device each including TADF organic compound
CN111356694A (en) * 2018-03-28 2020-06-30 株式会社Lg化学 Compound and organic light emitting diode comprising same
CN111278833A (en) * 2018-03-28 2020-06-12 株式会社Lg化学 Heterocyclic compound and organic light-emitting device comprising same
CN111356694B (en) * 2018-03-28 2022-10-11 株式会社Lg化学 Compound and organic light emitting diode comprising same
US11479562B2 (en) 2018-03-28 2022-10-25 Lg Chem, Ltd. Heterocyclic compound and organic light-emitting device comprising same
WO2022063744A1 (en) 2020-09-24 2022-03-31 Merck Patent Gmbh Organic electroluminescent device

Also Published As

Publication number Publication date
JP6822508B2 (en) 2021-01-27
JP6507534B2 (en) 2019-05-08
JP2015134745A (en) 2015-07-27
TW201527302A (en) 2015-07-16
JP2019131575A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP6822508B2 (en) A benzothienopyrimidine compound, a method for producing the same, and an organic electroluminescent device containing the same.
TWI721379B (en) Pyrimidine derivatives and organic electroluminescence devices
JP6421474B2 (en) Cyclic azine compound, method for producing the same, and organic electroluminescent device using the same
US9780310B2 (en) Heterocyclic compound for organic electroluminescent device and its application
JP5353233B2 (en) Anthracene derivative compound having pyridylphenyl group and organic electroluminescence device
JP5556168B2 (en) Anthracene derivative having pyridylnaphthyl group and organic electroluminescent device
KR102429199B1 (en) An amine derivative and an organic electroluminescence device thereof
CN111433216A (en) Heterocyclic compound and organic light-emitting device comprising same
JP7063407B2 (en) Cyclic azine compounds, their production methods, production intermediates, and uses
KR20190049525A (en) Hetero-cyclic compound and organic light emitting device comprising same
WO2014024446A1 (en) Compound having triphenylene ring structure, and organic electroluminescent element
JP7231108B2 (en) Materials for organic EL elements, organic EL elements, display devices and lighting devices
JP7297601B2 (en) Triazine compounds with ortho structure
JP6672774B2 (en) Novel carbazole compounds and their uses
KR20160077735A (en) An electroluminescent compound and an electroluminescent device comprising the same
JP6862767B2 (en) Triazine compounds, their production methods, production intermediates, and applications
JP2017075114A (en) Self-organizable polycyclic aromatic compound and organic el element prepared therewith
JP7361564B2 (en) Triazine compounds containing Group 14 elements
TW202045479A (en) Trisubstituted benzene compound having nitrogen-containing hetero ring in molecular terminus and organic electroluminescence element
TWI546295B (en) Compound having substituted orthoterphenyl structure, and organic electroluminescent device
WO2021079915A1 (en) Triazine compound having pyridyl group and pyridine compound
JP6349902B2 (en) Anthracene derivatives and organic EL devices
WO2015182769A1 (en) Quinazoline and benzoquinazoline compounds and production and use of same
KR101800872B1 (en) New material for transporting electron and organic electroluminescent device comprising the same
JP5949354B2 (en) Carbazole compounds having substituents containing electron-accepting nitrogen-containing heteroaryl and organic electroluminescent devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844060

Country of ref document: EP

Kind code of ref document: A1