WO2015037213A1 - Solar battery cell, solar battery module, and production method for solar battery module - Google Patents

Solar battery cell, solar battery module, and production method for solar battery module Download PDF

Info

Publication number
WO2015037213A1
WO2015037213A1 PCT/JP2014/004569 JP2014004569W WO2015037213A1 WO 2015037213 A1 WO2015037213 A1 WO 2015037213A1 JP 2014004569 W JP2014004569 W JP 2014004569W WO 2015037213 A1 WO2015037213 A1 WO 2015037213A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solar battery
solar
solar cell
opening
Prior art date
Application number
PCT/JP2014/004569
Other languages
French (fr)
Japanese (ja)
Inventor
明史 樋口
秀昭 奥宮
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2015037213A1 publication Critical patent/WO2015037213A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to, for example, a solar cell, a solar cell module in which electrodes of a plurality of solar cells are electrically connected to each other by a tab wire via a conductive adhesive, and a method for manufacturing the solar cell module.
  • the present invention relates to a solar battery cell, a solar battery module, and a manufacturing method thereof that can reduce the cost by reducing the area of the Ag electrode on the back surface of the cell.
  • tab wires are connected to front and back electrodes of a plurality of adjacent solar cells, and both sides of the solar cells are connected to a front cover on the light receiving surface side and a back surface side through a sealing resin.
  • the structure is protected by a backsheet.
  • solder connection is conventionally performed.
  • the solder connection has a large internal stress due to heat at the time of connection, which may cause a connection failure or flow out of the solder.
  • connection by a conductive adhesive film has been proposed (see Patent Document 1).
  • Patent Document 2 an opening is provided in the connection portion with the tab wire on the Al back electrode, and the silicon surface of the silicon cell substrate exposed through the opening is bonded to the conductive adhesive.
  • a solar cell module is disclosed.
  • Ag is used as the electrode material in the solar battery cell. Since such Ag is expensive and leads to an increase in the cost of solar cells, there is a movement to reduce the amount of use.
  • connection method using the conductive adhesive film can use bus bar-less solar cells unlike solder connection, it is an effective connection corresponding to the movement to reduce the amount of Ag used. It can be said that it is a method.
  • the present invention has been made in view of the above-described technical problems, and it is possible to obtain good connection reliability and output characteristics while reducing the amount of Ag used for the back electrode. It aims at providing a battery cell, a solar cell module, and its manufacturing method.
  • the solar cell of the present invention is a solar cell provided with at least finger electrodes.
  • the connection region where the tab wire is connected is provided in the solar cell provided with an Al electrode on the entire back surface.
  • An opening is provided along the connection region, and an Ag electrode is provided so as to straddle the opening.
  • the solar cell module of the present invention is connected through a conductive adhesive in which the electrode of the solar cell and the tab wire are cured, and further includes a sealing material and a transparent substrate. Were laminated.
  • the manufacturing method of the solar cell module of the present invention is the method of manufacturing a solar cell module in which a plurality of solar cells are connected by a tab wire, and an Al electrode is provided on the entire back surface of the solar cell, In the connection region to which the tab wire is connected, an opening is provided along the connection region, an Ag electrode is provided so as to straddle the opening, and a conductive adhesive is connected between the electrode of the solar battery cell and the tab wire. And the transparent base material is laminated, and then sealed with a sealing material.
  • the solar battery cell, the solar battery module, and the manufacturing method thereof according to the present invention it is possible to obtain good connection reliability and output characteristics while reducing the amount of Ag used for the back electrode. .
  • FIG. 5 is a partially enlarged view of FIG. 4. It is a flowchart for demonstrating the manufacturing method of the solar cell module which concerns on the 1st Embodiment of this invention.
  • the solar cell module and the manufacturing method thereof according to the present invention is a solar cell module in which a solar cell and a tab wire are connected via a conductive adhesive, and the area of the Ag electrode on the back surface of the solar cell is reduced. It is possible to reduce the cost.
  • this invention relates to the manufacturing method of the photovoltaic cell which has the following structures, a photovoltaic module, and a photovoltaic module.
  • a back electrode an Al electrode is provided on the entire back surface of the solar battery cell.
  • an opening is provided in the Al electrode along the connection area of the tab wire, and silicon (Si) is exposed in the opening (that is, in the groove-shaped opening). Si is exposed).
  • Si silicon
  • a ladder-shaped Ag electrode is disposed in the opening of the Al electrode.
  • FIG. 1 shows a connection relationship between solar cells and tab wires according to the first embodiment of the present invention
  • FIG. 2 shows a partial cross-sectional view of the solar cell module
  • FIG. 3 shows a solar cell module. A side cross-sectional portion is shown and described.
  • FIG. 2 corresponds to a cross-sectional view taken along the line AA ′ of FIG.
  • a metal wire such as a copper wire having a thermal contraction rate different from that of the solar battery cell 1 is provided along an Ag electrode (not shown).
  • a tab wire 7 as a main material is joined via a conductive adhesive 6.
  • the conductive adhesive 6 is made of a material in which fine conductive particles are dispersed in a film-like insulating resin material. By pressurizing and heating, the conductive adhesive 6 can be bonded via the conductive particles. Thus, it has an electrical connection function in the thickness direction and an insulation function in the direction perpendicular to the thickness direction.
  • the conductive adhesive 6 may be a paste in addition to a film.
  • Examples of the conductive particles used in the conductive adhesive include metal particles such as nickel, gold, and copper, those obtained by applying gold plating to resin particles, and insulating the outermost layer of particles obtained by applying gold plating to resin particles. The thing etc. which gave the film can be adopted.
  • the composition of the binder resin layer of the conductive adhesive contains, for example, a film forming resin, a liquid epoxy resin, a latent curing agent, and a silane coupling agent. Specifically, various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin can be used as the film forming resin.
  • liquid epoxy resin commercially available epoxy resins such as naphthalene epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin and the like can be used.
  • latent curing agent various curing agents such as a heat curing type and a UV curing type can be employed.
  • silane coupling agent an epoxy system, an amino system, a mercapto sulfide system, a ureido system, etc. are employable. However, it is not limited to these.
  • the solar cell 1 has a light receiving surface Ag electrode 4 disposed on the semiconductor substrate 5 on the light receiving surface side, and the back surface is entirely covered with the Al electrode 2, which will be described in detail later.
  • a partial opening is provided, the silicon of the semiconductor substrate 5 is exposed, and a ladder-like back surface Ag electrode 3 is disposed in the opening.
  • the light-receiving surface Ag electrode 4 may be configured by forming a current collecting finger electrode made of Ag and a bus bar electrode for output extraction so as to be orthogonal to each other in the same layer.
  • the use of P-type crystalline silicon solar cells is taken as an example.
  • the silicon semiconductor substrate 5 is mainly composed of an N-type layer 13 in which electrons are conducted by addition of impurities and a P-type layer 12 in which holes are conducted, and this pn junction has a basic structure. When light is applied to the pn junction, electrons and holes are generated, an electromotive force is generated, and a current flows. A high-concentration p + layer 11 is also provided on the back side to reduce electrical resistance.
  • one end of the tab wire 7 is wired over substantially the entire length of the light receiving surface Ag electrode 4 of the solar battery cell 1 and bonded to the light receiving surface Ag electrode 4 via the conductive adhesive 6.
  • the tab wire 7 is electrically connected.
  • the other end of the tab wire 7 is electrically connected to the back surface Ag electrode 3 of the adjacent solar battery cell 1 through the conductive adhesive 6.
  • the solar battery cell 1 is electrically connected to the adjacent solar battery cell by joining the tab wire 7 via the Ag electrodes 3 and 4.
  • the tab wire 7 may be subjected to rust prevention treatment such as tin plating or pre-coating on the surface of the metal wire instead of using a single metal wire in order to improve the weather resistance.
  • the conductive adhesive 6 and the tab wire 7 may not be separately provided but may be a tab wire 7 in which the conductive adhesive 6 is applied to the surface of the metal wire. More specifically, the tab wire 7 with the conductive adhesive may be used by applying a conductive adhesive to the copper foil and cutting it into a slit shape. In this case, steps such as temporary sticking of the conductive adhesive on the solar battery cell 1 can be omitted.
  • the solar cell module has an ethylene / acetic acid between a transparent tempered glass 22 supported by a predetermined aluminum frame 21 and serving as a light receiving surface, and a weather resistant film 23.
  • a transparent resin 24 such as a vinyl copolymer (EVA; Ethylene-Vinyl ⁇ Acetate) is embedded, and a plurality of solar cells 1 are arranged in the transparent resin 24 according to a predetermined rule.
  • FIG. 4 shows a characteristic pattern of the back surface of the solar cell according to the first embodiment of the present invention
  • FIG. 5 shows a partially enlarged view of FIG. 4 for explanation.
  • the Al electrode 2 is uniformly provided on the back surface of the semiconductor substrate 5 of the solar cell 1 of the P-type Si crystal system, and the connection portion of the tab wire 7 An opening 2a in which silicon is exposed without forming the Al electrode 2 in the same width or wide area as the tab line 7 is provided, and bridging is performed from one Al electrode to the other Al electrode of the opening 2a.
  • a plurality of Ag electrodes 3 are formed for one opening 2 a and are electrically connected to the Al electrode 2.
  • the back surface Ag electrode 3 is connected to the tab wire 7 via the conductive adhesive 6 to form a string and a matrix of the solar battery cell 1.
  • the Al electrode is formed after the Ag electrode is formed by screen printing. However, the present invention is not limited to this.
  • the Al electrode including the p + layer 11 is formed, and the Ag electrode 3 is located in the gap between the p + layer 11 and the Al electrode.
  • the width a3 of the bridging Ag electrode 3 may be 0.1 mm to 1.5 mm.
  • the length a1 of the Ag electrode 3 is 4 mm
  • the width a2 of the opening 2a is 2 mm
  • the width a3 of the Ag electrode is 0.2 mm.
  • the present invention is not limited to this.
  • the bridging Ag electrode 3 has a strip shape.
  • a conductive adhesive film is produced as the conductive adhesive 6 (step S1), and the conductive adhesive film is applied to the portion where the light receiving surface and back surface tab wire 7 of the solar battery cell 1 are joined at 60 ° C. for 0.5 to Temporarily fix in 2 seconds (step S2). Subsequently, the attachment position of the conductive adhesive film is inspected (step S3). If a positional deviation is detected, adjustment is performed (step S4), and the conductive adhesive film is temporarily attached again. When the positional deviation is not detected (step S3 is branched to OK), a tab line is temporarily pasted between the plurality of solar cells, and strings are formed (step S5). After that, the tab wire and each electrode of the solar battery cell are finally pressure-bonded via the conductive adhesive film by being hot-pressed from above the tab wire (step S6).
  • the tab wire 7 is placed on the conductive adhesive film, and the heater head from the light receiving surface side and the back surface of the solar battery cell 1 is used, for example, the actual temperature of the pressure bonding portion is 180 ° C., the pressure bonding time Crimping is performed for 15 sec under a pressure of 2 MPa.
  • a rubber sheet for buffering (Shinetsu Chemical Industry's SolarSheet-20LSP / 200 ⁇ m thickness) is sandwiched between the tab wire 7 and the heater head, but is not particularly limited.
  • the solar cell module is manufactured by sealing with the transparent resin 24 (step S7).
  • the amount of Ag paste used on the back surface while ensuring the connection strength and cell output between the back surface of the solar cell and the tab wire. It is possible to reduce costs by reducing the cost.
  • an electrode made of copper or the like is formed on the back surface of the semiconductor substrate by, for example, screen printing or sputtering.
  • FIG. 7 shows and explains the back surface pattern of the solar battery cell according to the second embodiment of the present invention.
  • the opening 30a of the Al electrode 30 on the back surface of the solar battery cell may be divided into a plurality of regions with respect to the tab wire connection direction.
  • openings 30a are provided in four regions in one tab line joining region, and three strip-shaped Ag electrodes 31 are provided in each opening 30a as one Al electrode of the opening 30a.
  • To the other Al electrode arrangement region so as to be bridged and conductive.
  • the amount of Ag paste used is further reduced as compared to the first embodiment while sufficiently securing the connection strength. Costs can be further reduced.
  • FIG. 8 shows and explains the back surface pattern of the solar battery cell according to the third embodiment of the present invention.
  • the opening 40a of the Al electrode 40 on the back surface of the solar battery cell is continuously divided over the junction region of the tab line or divided into a plurality of regions as shown in FIG. It may be provided.
  • the Ag electrode 41 having a rectangular area with a large area at the center of the opening 40a bridges from one Al electrode to the other Al electrode of the opening 40a. It is in the point of being joined and conducting.
  • the Ag electrode is not strip-shaped, but has a feature in that it has regions having different widths.
  • the area of the Ag electrode is larger than that of the first and second embodiments, so that sufficient bonding strength is ensured.
  • the cell output can be sufficiently increased.
  • FIG. 9 shows and explains a back surface pattern of a solar battery cell according to the fourth embodiment of the present invention.
  • the opening 50a of the Al electrode 50 on the back surface of the solar battery cell is continuously divided over the junction area of the tab line or divided into a plurality of areas as previously shown in FIG. It may be provided.
  • the characteristic of this embodiment is that the Ag electrode 51 having a bent portion bent at the center of the opening 50a is joined and bridged so as to bridge from one Al electrode to the other Al electrode of the opening 50a. There is in point.
  • the Ag electrode is not a simple strip shape, but has a feature that it has a partially bent region.
  • the area covering the opening is larger than that of a simple strip-shaped Ag electrode.
  • the cell output can be sufficiently increased while ensuring.
  • FIG. 10 shows and explains the back surface pattern of the solar battery cell according to the fifth embodiment of the present invention.
  • the opening 60a of the Al electrode 60 on the back surface of the solar battery cell is continuously divided over the joint area of the tab line or divided into a plurality of areas as previously shown in FIG. It may be provided.
  • the feature of this embodiment is that the portion of the Ag electrode 61 that contacts the Al electrode 60 is large, and the portion of the opening 60a that bridges from one Al electrode to the other Al electrode is strip-shaped. There is in point.
  • the Ag electrode 61 is firmly connected to one Al electrode and the other Al electrode of the opening 60a in a region having a large area, and extends so as to bridge between the two.
  • the Ag electrode is reliably bonded to the Al electrode by the large area while securing sufficient bonding strength. Since it conducts, it becomes possible to improve the cell output.
  • a strip-shaped Ag electrode is disposed in the opening of the Al electrode on the back surface of the solar cell described in the first embodiment, and a tab wire is attached to the Ag electrode via a conductive adhesive.
  • a conductive adhesive is attached to the Ag electrode via a conductive adhesive.
  • the cell output measurement was performed with a solar simulator (Nisshinbo Mechatronics model PVS1116i) in the state after the tab wire bonding.
  • the measurement conditions were based on JIS C8913 (Crystal solar cell output measurement method). And since the output dispersion
  • Example 1 In Example 1, the width of the Ag electrode was 0.2 mm and the pitch was 2.2 mm. The amount of Ag used (area: Ref ratio) is 0.091, and the Ag reduction rate is 90.9%. As a result of the measurement, the cell output was 16.04%, which was a good result.
  • Example 2 In Example 1, the width of the Ag electrode was 0.5 mm and the pitch was 2.2 mm. As a result, the amount of Ag used (area: Ref ratio) is 0.227, and the Ag reduction rate is 77.3%. As a result of the measurement, the cell output was 16.12%, which was a good result.
  • Example 3 In Example 3, the width of the Ag electrode was 1.0 mm and the pitch was 2.2 mm. The amount of Ag used (area: Ref ratio) is 0.455, and the Ag reduction rate is 54.5%. As a result of the measurement, the cell output was 16.09%, which was a favorable result.
  • Example 4 In Example 4, the width of the Ag electrode was 0.1 mm and the pitch was 2.2 mm. The amount of Ag used (area: Ref ratio) is 0.045, and the Ag reduction rate is 95.5%. As a result of the measurement, the cell output was 15.95%, which was a good result.
  • Example 5 In Example 5, the width of the Ag electrode was 1.5 mm and the pitch was 2.2 mm. The amount of Ag used (area: Ref ratio) is 0.682, and the Ag reduction rate is 31.8%. As a result of the measurement, the cell output was 16.11%.
  • Comparative Example 1 is an example in which an Ag electrode is provided over the entire length of the tab wire joining region, and the amount of Ag used in this case is 1.
  • the cell output of 16.10% in Comparative Example 1 is a good / defective judgment criterion in Examples 1 to 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

[Problem] The purpose of the present invention is to reduce the amount of Ag paste used on a back surface of a cell and to reduce cell cost while assuring cell output and the connection strength of the back surface and a tab wire. [Solution] The present invention is a solar battery cell (1) wherein, with regard to a solar battery cell that comprises at least a finger electrode, an Al electrode (2) is provided to a back surface, an opening (2a) is provided to a connection region along the connection region, which is connected by a tab wire, and a Ag electrode (3) is provided so as to span the opening (2a). The width of the Ag electrode may be 0.1-1.5 mm and is preferably 0.2-1.0 mm.

Description

太陽電池セル、太陽電池モジュール及びその製造方法SOLAR CELL, SOLAR CELL MODULE, AND MANUFACTURING METHOD THEREOF
 本発明は、例えば、太陽電池セル、複数の太陽電池セルの各電極が導電性接着剤を介してタブ線によって互いに電気的に接続された太陽電池モジュール、及びその製造方法に係り、特に太陽電池セルの裏面のAg電極の面積を小さくしてコストダウンを可能とした太陽電池セル、太陽電池モジュール及びその製造方法に関する。 The present invention relates to, for example, a solar cell, a solar cell module in which electrodes of a plurality of solar cells are electrically connected to each other by a tab wire via a conductive adhesive, and a method for manufacturing the solar cell module. The present invention relates to a solar battery cell, a solar battery module, and a manufacturing method thereof that can reduce the cost by reducing the area of the Ag electrode on the back surface of the cell.
 従来、結晶シリコン系太陽電池モジュールでは、複数の隣接する太陽電池セルの表裏の電極にタブ線が接続され、太陽電池セルの両側が封止樹脂を介して受光面側の表面カバーと裏面側のバックシートで保護された構造となっている。 Conventionally, in a crystalline silicon-based solar cell module, tab wires are connected to front and back electrodes of a plurality of adjacent solar cells, and both sides of the solar cells are connected to a front cover on the light receiving surface side and a back surface side through a sealing resin. The structure is protected by a backsheet.
 そして、太陽電池セルにタブ線を接続する際、従来は半田接続を行なっているが、当該半田接続は接続時の熱による内部応力が大きいため接続不良の要因となることや、半田の流れ出しにより受光面積が縮小すること等に鑑みて、導電性接着フィルムによる接続が提案されている(特許文献1参照)。 And, when connecting the tab wire to the solar cell, solder connection is conventionally performed. However, the solder connection has a large internal stress due to heat at the time of connection, which may cause a connection failure or flow out of the solder. In view of the reduction of the light receiving area, etc., connection by a conductive adhesive film has been proposed (see Patent Document 1).
 このように導電性接着フィルムにより接続する場合、半田接続に比べて、材料費の上乗せや新規設備の導入が必要であるというコスト面での問題が挙げられる。また、太陽電池セルの裏面のAl電極とタブ線を導電性接着フィルムを介して直接接続する場合、Al電極の強度が弱いため、接続強度が確保できないという問題があった。 In this way, when connecting with a conductive adhesive film, there is a problem in terms of cost that it is necessary to add material costs and introduce new equipment compared to solder connection. Further, when the Al electrode on the back surface of the solar battery cell and the tab wire are directly connected via the conductive adhesive film, there is a problem that the connection strength cannot be secured because the strength of the Al electrode is weak.
 そこで、例えば特許文献2では、Al裏面電極に、タブ線との接続部に開口部が設けられており、開口部を介して露出されているシリコンセル基板のシリコン表面と導電性接着剤が接着される太陽電池モジュールが開示されている。 Therefore, for example, in Patent Document 2, an opening is provided in the connection portion with the tab wire on the Al back electrode, and the silicon surface of the silicon cell substrate exposed through the opening is bonded to the conductive adhesive. A solar cell module is disclosed.
 一方、太陽電池セルでは、その電極材としてAgが使用されている。かかるAgは高価であり、太陽電池セルのコストアップに繋がることから、使用量を削減する動きがある。 On the other hand, Ag is used as the electrode material in the solar battery cell. Since such Ag is expensive and leads to an increase in the cost of solar cells, there is a movement to reduce the amount of use.
特開2008-300403号公報JP 2008-300403 A 特開2011-228418号公報JP 2011-228418 A
 しかしながら、電極材としてのAgの使用量を単に削減するのでは、接続信頼性や出力低下が引き起こされ、不具合が発生する可能性がある。 However, simply reducing the amount of Ag used as the electrode material may cause connection reliability and output degradation, and may cause problems.
 一方、導電性接着フィルムを使用した接続方法は、半田接続と異なりバスバーレスの太陽電池セルを使用することが可能であることから、上記のAgの使用量を削減する動きに対応した効果的な接続方法であるといえる。 On the other hand, since the connection method using the conductive adhesive film can use bus bar-less solar cells unlike solder connection, it is an effective connection corresponding to the movement to reduce the amount of Ag used. It can be said that it is a method.
 そこで、本発明は上述の技術的な課題に鑑みてなされたもので、裏面電極に使用されるAgの使用量の削減を図りつつも、良好な接続信頼性、出力特性を得ることができる太陽電池セル、太陽電池モジュール、及びその製造方法を提供することを目的とする。 Accordingly, the present invention has been made in view of the above-described technical problems, and it is possible to obtain good connection reliability and output characteristics while reducing the amount of Ag used for the back electrode. It aims at providing a battery cell, a solar cell module, and its manufacturing method.
 上述した技術的な課題を解決するため、本発明の太陽電池セルは、少なくともフィンガー電極を備えた太陽電池セルにおいて、裏面には全面にAl電極が設けられ、タブ線が接続する接続領域には、前記接続領域に沿って開口部が設けられ、前記開口部を跨ぐようにAg電極が設けられている。 In order to solve the technical problem described above, the solar cell of the present invention is a solar cell provided with at least finger electrodes. In the solar cell provided with an Al electrode on the entire back surface, the connection region where the tab wire is connected is provided. An opening is provided along the connection region, and an Ag electrode is provided so as to straddle the opening.
 上述した技術的な課題を解決するため、本発明の太陽電池モジュールは、上記太陽電池セルの電極とタブ線とが硬化した導電性接着剤を介して接続され、更に封止材、透明基材を積層した。 In order to solve the technical problem described above, the solar cell module of the present invention is connected through a conductive adhesive in which the electrode of the solar cell and the tab wire are cured, and further includes a sealing material and a transparent substrate. Were laminated.
 また、本発明の太陽電池モジュールの製造方法は、複数の太陽電池セルをタブ線により接続する太陽電池モジュールの製造方法において、前記太陽電池セルの裏面全面にAl電極を設け、前記太陽電池セルの前記タブ線が接続する接続領域には、当該接続領域に沿って開口部を設け、前記開口部を跨ぐようにAg電極を設け、前記太陽電池セルの電極とタブ線とを導電性接着剤を介して接続し、透明基材を積層した後、封止材により封止する。 Moreover, the manufacturing method of the solar cell module of the present invention is the method of manufacturing a solar cell module in which a plurality of solar cells are connected by a tab wire, and an Al electrode is provided on the entire back surface of the solar cell, In the connection region to which the tab wire is connected, an opening is provided along the connection region, an Ag electrode is provided so as to straddle the opening, and a conductive adhesive is connected between the electrode of the solar battery cell and the tab wire. And the transparent base material is laminated, and then sealed with a sealing material.
 本発明に係る太陽電池セル、太陽電池モジュール、及びその製造方法によれば、裏面電極に使用されるAgの使用量の削減を図りつつも、良好な接続信頼性、出力特性を得ることができる。 According to the solar battery cell, the solar battery module, and the manufacturing method thereof according to the present invention, it is possible to obtain good connection reliability and output characteristics while reducing the amount of Ag used for the back electrode. .
本発明の第1の実施形態に係る太陽電池セルの構成を示す斜視図である。It is a perspective view which shows the structure of the photovoltaic cell which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る太陽電池セルの構成図である。It is a lineblock diagram of a photovoltaic cell concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る太陽電池モジュールの側面断面図である。It is side surface sectional drawing of the solar cell module which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態の太陽電池セルの裏面パターンを示す図である。It is a figure which shows the back surface pattern of the photovoltaic cell of the 1st Embodiment of this invention. 図4の一部拡大図である。FIG. 5 is a partially enlarged view of FIG. 4. 本発明の第1の実施形態に係る太陽電池モジュールの製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the solar cell module which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態の太陽電池セルの裏面パターンを示す図である。It is a figure which shows the back surface pattern of the photovoltaic cell of the 2nd Embodiment of this invention. 本発明の第3の実施形態の太陽電池セルの裏面パターンを示す図である。It is a figure which shows the back surface pattern of the photovoltaic cell of the 3rd Embodiment of this invention. 本発明の第4の実施形態の太陽電池セルの裏面パターンを示す図である。It is a figure which shows the back surface pattern of the photovoltaic cell of the 4th Embodiment of this invention. 本発明の第5の実施形態の太陽電池セルの裏面パターンを示す図である。It is a figure which shows the back surface pattern of the photovoltaic cell of the 5th Embodiment of this invention.
 以下、本発明の太陽電池セル、太陽電池モジュール及びその製造方法に係る好適な実施形態について図面を参照しながら説明する。なお、本発明の太陽電池セル、太陽電池モジュール及びその製造方法は、以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において、適宜変更可能である。 Hereinafter, preferred embodiments according to the solar battery cell, the solar battery module, and the manufacturing method thereof of the present invention will be described with reference to the drawings. Note that the solar battery cell, solar battery module, and manufacturing method thereof of the present invention are not limited to the following descriptions, and can be appropriately changed without departing from the gist of the present invention.
 本発明の太陽電池モジュール及びその製造方法は、導電性接着剤を介して太陽電池セルとタブ線とが接続されている太陽電池モジュールにおいて、太陽電池セルの裏面のAg電極の面積を小さくして、コストダウンを図ることを可能とするものである。 The solar cell module and the manufacturing method thereof according to the present invention is a solar cell module in which a solar cell and a tab wire are connected via a conductive adhesive, and the area of the Ag electrode on the back surface of the solar cell is reduced. It is possible to reduce the cost.
 すなわち、本発明は、以下の構成を有する太陽電池セル、太陽電池モジュール、太陽電池モジュールの製造方法に関する。
 1)裏面電極として、太陽電池セルの裏面全面にAl電極が設けられている。
 2) 太陽電池セルの裏面では、タブ線の接続領域に沿ってAl電極に開口部が設けられており、当該開口部ではシリコン(Si)が露出している(即ち、溝状の開口部においてSiが露出している)。
 3)Al電極の開口部には、例えばはしご状のAg電極が配置される。
That is, this invention relates to the manufacturing method of the photovoltaic cell which has the following structures, a photovoltaic module, and a photovoltaic module.
1) As a back electrode, an Al electrode is provided on the entire back surface of the solar battery cell.
2) On the back surface of the solar battery cell, an opening is provided in the Al electrode along the connection area of the tab wire, and silicon (Si) is exposed in the opening (that is, in the groove-shaped opening). Si is exposed).
3) For example, a ladder-shaped Ag electrode is disposed in the opening of the Al electrode.
 以下、本発明の実施形態について詳述する。 Hereinafter, embodiments of the present invention will be described in detail.
 <第1の実施形態> <First embodiment>
 図1には本発明の第1の実施形態に係る太陽電池セルとタブ線との接続関係を示し、図2には当該太陽電池モジュールの一部断面図を示し、図3には太陽電池モジュールの側面断面部を示し、説明する。なお、図2は後述する図5のA-A'断面図に相当する。 FIG. 1 shows a connection relationship between solar cells and tab wires according to the first embodiment of the present invention, FIG. 2 shows a partial cross-sectional view of the solar cell module, and FIG. 3 shows a solar cell module. A side cross-sectional portion is shown and described. FIG. 2 corresponds to a cross-sectional view taken along the line AA ′ of FIG.
 図1に示されるように、太陽電池セル1の表裏面には、それぞれ、ここでは不図示のAg電極に沿って、当該太陽電池セル1とは熱収縮率が異なる銅線等の金属線を主材料とするタブ線7が、導電性接着剤6を介して接合される。 As shown in FIG. 1, on the front and back surfaces of the solar battery cell 1, a metal wire such as a copper wire having a thermal contraction rate different from that of the solar battery cell 1 is provided along an Ag electrode (not shown). A tab wire 7 as a main material is joined via a conductive adhesive 6.
 ここで、導電性接着剤6としては、フィルム状の絶縁樹脂材料中に微細な導電性粒子を分散させた素材からなり、加圧及び加温することにより、接着機能とともに、導電性粒子を介して厚み方向には電気的接続機能を有し、厚み方向と垂直方向には絶縁機能を有するものである。尚、導電性接着剤6は、フィルム状のほか、ペースト状のものであってもよい。 Here, the conductive adhesive 6 is made of a material in which fine conductive particles are dispersed in a film-like insulating resin material. By pressurizing and heating, the conductive adhesive 6 can be bonded via the conductive particles. Thus, it has an electrical connection function in the thickness direction and an insulation function in the direction perpendicular to the thickness direction. In addition, the conductive adhesive 6 may be a paste in addition to a film.
 導電性接着剤に用いられる導電性粒子としては、例えば、ニッケル、金、銅などの金属粒子、樹脂粒子に金めっきなどを施したもの、樹脂粒子に金めっきを施した粒子の最外層に絶縁被膜を施したもの等を採用することができる。導電性接着剤のバインダ樹脂層の組成は、例えば、膜形成樹脂、液状エポキシ樹脂、潜在性硬化剤、シランカップリング剤を含有する。具体的には、膜形成樹脂としては、エポキシ樹脂、変性エポキシ樹脂、ウレタン樹脂、フェノキシ樹脂等の種々の樹脂を使用できる。液状エポキシ樹脂としては、ナフタレン方エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂等、市販のエポキシ樹脂が全て採用可能である。潜在硬化剤としては、加熱硬化型、UV硬化型等の各種硬化剤を採用することができる。そして、シランカップリング剤としては、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系などを採用することができる。ただし、これらには限定されない。 Examples of the conductive particles used in the conductive adhesive include metal particles such as nickel, gold, and copper, those obtained by applying gold plating to resin particles, and insulating the outermost layer of particles obtained by applying gold plating to resin particles. The thing etc. which gave the film can be adopted. The composition of the binder resin layer of the conductive adhesive contains, for example, a film forming resin, a liquid epoxy resin, a latent curing agent, and a silane coupling agent. Specifically, various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin can be used as the film forming resin. As the liquid epoxy resin, commercially available epoxy resins such as naphthalene epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin and the like can be used. As the latent curing agent, various curing agents such as a heat curing type and a UV curing type can be employed. And as a silane coupling agent, an epoxy system, an amino system, a mercapto sulfide system, a ureido system, etc. are employable. However, it is not limited to these.
 そして、図2に示されるように、太陽電池セル1は、半導体基板5の上、受光面側に受光面Ag電極4が配設され、裏面側は全面Al電極2で覆われて詳細は後述するように一部開口が設けられ、半導体基板5のシリコンが剥き出しにされ、当該開口部に例えばはしご状の裏面Ag電極3が配設されている。即ち、受光面Ag電極4は、Agからなる集電用のフィンガー電極及び出力取り出し用のバスバー電極が同一層で互いに直交するように形成されて構成されていてよい。なお、この実施形態では、P型結晶系シリコン太陽電池セルを採用することを例に挙げている。 As shown in FIG. 2, the solar cell 1 has a light receiving surface Ag electrode 4 disposed on the semiconductor substrate 5 on the light receiving surface side, and the back surface is entirely covered with the Al electrode 2, which will be described in detail later. Thus, a partial opening is provided, the silicon of the semiconductor substrate 5 is exposed, and a ladder-like back surface Ag electrode 3 is disposed in the opening. That is, the light-receiving surface Ag electrode 4 may be configured by forming a current collecting finger electrode made of Ag and a bus bar electrode for output extraction so as to be orthogonal to each other in the same layer. In this embodiment, the use of P-type crystalline silicon solar cells is taken as an example.
 シリコンの半導体基板5は、不純物添加により主に電子が導電するN型層13と正孔が導電するP型層12からなり、このp-n接合が基本構造となっている。p-n接合に光を照射すると電子と正孔が生成し、起電力が生じ、電流が流れる。裏面側には高濃度のp+層11も設けられており、電気抵抗を減らしている。 The silicon semiconductor substrate 5 is mainly composed of an N-type layer 13 in which electrons are conducted by addition of impurities and a P-type layer 12 in which holes are conducted, and this pn junction has a basic structure. When light is applied to the pn junction, electrons and holes are generated, an electromotive force is generated, and a current flows. A high-concentration p + layer 11 is also provided on the back side to reduce electrical resistance.
 そして、図2に示されるように、タブ線7の一端を、太陽電池セル1の受光面Ag電極4の略全長にわたって配線し、受光面Ag電極4と導電性接着剤6を介して接合し、当該タブ線7と電気的に接続している。また、タブ線7の他端を、導電性接着剤6を介して隣接する太陽電池セル1の裏面Ag電極3と電気的に接続している。すなわち、太陽電池セル1は、Ag電極3,4を介してタブ線7と接合することにより、隣接する太陽電池セルと電気的に接続している。 Then, as shown in FIG. 2, one end of the tab wire 7 is wired over substantially the entire length of the light receiving surface Ag electrode 4 of the solar battery cell 1 and bonded to the light receiving surface Ag electrode 4 via the conductive adhesive 6. The tab wire 7 is electrically connected. Further, the other end of the tab wire 7 is electrically connected to the back surface Ag electrode 3 of the adjacent solar battery cell 1 through the conductive adhesive 6. In other words, the solar battery cell 1 is electrically connected to the adjacent solar battery cell by joining the tab wire 7 via the Ag electrodes 3 and 4.
 タブ線7は、その耐候性向上のために、金属線単体を使用するのではなく、金属線表面に錫メッキやプリコート等の防錆処理を施すとよい。また、導電性接着剤6とタブ線7とを別個単体とするのではなく、導電性接着剤6を金属線表面に塗布したタブ線7としてもよい。より具体的には、銅箔に導電性接着剤を塗布し、それをスリット状に切断することで、導電性接着剤付きのタブ線7を使用してもよい。この場合、太陽電池セル1上への導電性接着剤の仮貼付等の工程を省略できる。 The tab wire 7 may be subjected to rust prevention treatment such as tin plating or pre-coating on the surface of the metal wire instead of using a single metal wire in order to improve the weather resistance. In addition, the conductive adhesive 6 and the tab wire 7 may not be separately provided but may be a tab wire 7 in which the conductive adhesive 6 is applied to the surface of the metal wire. More specifically, the tab wire 7 with the conductive adhesive may be used by applying a conductive adhesive to the copper foil and cutting it into a slit shape. In this case, steps such as temporary sticking of the conductive adhesive on the solar battery cell 1 can be omitted.
 こうして、太陽電池モジュールは、図3の断面図に示されるように、所定のアルミニウムフレーム21に支持された、受光面となる透明強化ガラス22と、耐候性フィルム23との間に、エチレン・酢酸ビニル共重合体(EVA;Ethylene-Vinyl Acetate)等の透明樹脂24を埋め込み、この透明樹脂24内に複数の太陽電池セル1が所定の規則にしたがって配列されて構成される。 Thus, as shown in the cross-sectional view of FIG. 3, the solar cell module has an ethylene / acetic acid between a transparent tempered glass 22 supported by a predetermined aluminum frame 21 and serving as a light receiving surface, and a weather resistant film 23. A transparent resin 24 such as a vinyl copolymer (EVA; Ethylene-Vinyl 太陽 Acetate) is embedded, and a plurality of solar cells 1 are arranged in the transparent resin 24 according to a predetermined rule.
 次に、図4には本発明の第1の実施形態に係る太陽電池セルの特徴的な裏面のパターンを図示し、図5には図4の一部拡大図を示し、説明する。 Next, FIG. 4 shows a characteristic pattern of the back surface of the solar cell according to the first embodiment of the present invention, and FIG. 5 shows a partially enlarged view of FIG. 4 for explanation.
 これら図4,5示されるように、このP型Si結晶系の太陽電池セル1の半導体基板5の裏面には、Al電極2が一様に設けられており、タブ線7の接続部分に当該タブ線7と同じ幅若しくは広い領域にAl電極2が形成されずシリコンが露出している開口部2aを設け、当該開口部2aの一方のAl電極から他方のAl電極にかけて、橋渡しをするような形で、1つの開口部2aに対して複数個のAg電極3を形成し、Al電極2と導通させている。この裏面Ag電極3は、前述したように、導電性接着剤6を介してタブ線7と接続され、太陽電池セル1のストリング、及びマトリクスが構成される。実際には、Ag電極がスクリーン印刷により形成された後に、Al電極を形成するようにしているが、これには限定されない。p+層11も含めてAl電極となり、p+層11とAl電極の間の隙間にAg電極3が位置することになる。 As shown in FIGS. 4 and 5, the Al electrode 2 is uniformly provided on the back surface of the semiconductor substrate 5 of the solar cell 1 of the P-type Si crystal system, and the connection portion of the tab wire 7 An opening 2a in which silicon is exposed without forming the Al electrode 2 in the same width or wide area as the tab line 7 is provided, and bridging is performed from one Al electrode to the other Al electrode of the opening 2a. In form, a plurality of Ag electrodes 3 are formed for one opening 2 a and are electrically connected to the Al electrode 2. As described above, the back surface Ag electrode 3 is connected to the tab wire 7 via the conductive adhesive 6 to form a string and a matrix of the solar battery cell 1. Actually, the Al electrode is formed after the Ag electrode is formed by screen printing. However, the present invention is not limited to this. The Al electrode including the p + layer 11 is formed, and the Ag electrode 3 is located in the gap between the p + layer 11 and the Al electrode.
 この橋渡しのAg電極3の幅a3は、0.1mm~1.5mm幅としてもよい。この図5の例では、Ag電極3の長さa1を4mm、開口部2aの幅a2を2mm、Ag電極の幅a3を0.2mmとしているが、これには限定されない。この例では、橋渡しのAg電極3は短冊状になっている。 The width a3 of the bridging Ag electrode 3 may be 0.1 mm to 1.5 mm. In the example of FIG. 5, the length a1 of the Ag electrode 3 is 4 mm, the width a2 of the opening 2a is 2 mm, and the width a3 of the Ag electrode is 0.2 mm. However, the present invention is not limited to this. In this example, the bridging Ag electrode 3 has a strip shape.
 ここで、図6のフローチャートを参照して、本発明の第1の実施形態に係る太陽電池モジュールの製造方法の各工程を説明する。 Here, with reference to the flowchart of FIG. 6, each process of the manufacturing method of the solar cell module which concerns on the 1st Embodiment of this invention is demonstrated.
 導電性接着剤6としての導電性接着フィルムを作製し(ステップS1)、太陽電池セル1の受光面及び裏面のタブ線7を接合する部分に、導電性接着フィルムを60℃、0.5~2secで仮固定する(ステップS2)。続いて、導電性接着フィルムの貼着位置の検査を行い(ステップS3)、位置ズレが検出された場合は調整を行い(ステップS4)、再度導電性接着フィルムが仮貼りされる。位置ズレが検出されなかった場合には(ステップS3をOKに分岐)、複数の太陽電池セル間にわたってタブ線が仮貼りされ、ストリングスが形成される(ステップS5)。その後、タブ線上より熱加圧されることにより導電性接着フィルムを介してタブ線と太陽電池セルの各電極とが本圧着される(ステップS6)。 A conductive adhesive film is produced as the conductive adhesive 6 (step S1), and the conductive adhesive film is applied to the portion where the light receiving surface and back surface tab wire 7 of the solar battery cell 1 are joined at 60 ° C. for 0.5 to Temporarily fix in 2 seconds (step S2). Subsequently, the attachment position of the conductive adhesive film is inspected (step S3). If a positional deviation is detected, adjustment is performed (step S4), and the conductive adhesive film is temporarily attached again. When the positional deviation is not detected (step S3 is branched to OK), a tab line is temporarily pasted between the plurality of solar cells, and strings are formed (step S5). After that, the tab wire and each electrode of the solar battery cell are finally pressure-bonded via the conductive adhesive film by being hot-pressed from above the tab wire (step S6).
 この本圧着では、導電性接着フィルムの上にタブ線7を乗せ、太陽電池セル1の受光面側と裏面のタブ線7上から、ヒーターヘッドで、例えば、圧着部実温180℃、圧着時間15sec、加圧力2MPaの条件で圧着する。なお、タブ線7とヒーターヘッドの間には、緩衝のためのラバーシート(信越化学工業製 SolarSheet-20LSP/200μm厚)を挟んでいるが特に限定されない。こうして、透明樹脂24により封止されることで(ステップS7)、太陽電池モジュールが製造されることになる。 In this main pressure bonding, the tab wire 7 is placed on the conductive adhesive film, and the heater head from the light receiving surface side and the back surface of the solar battery cell 1 is used, for example, the actual temperature of the pressure bonding portion is 180 ° C., the pressure bonding time Crimping is performed for 15 sec under a pressure of 2 MPa. A rubber sheet for buffering (Shinetsu Chemical Industry's SolarSheet-20LSP / 200 μm thickness) is sandwiched between the tab wire 7 and the heater head, but is not particularly limited. Thus, the solar cell module is manufactured by sealing with the transparent resin 24 (step S7).
 以上説明した第1の実施形態に係る太陽電池セル、太陽電池モジュール及びその製造方法によれば、太陽電池セルの裏面とタブ線の接続強度及びセル出力を確保しながら、裏面のAgペースト使用量を低減させて、コストを低減させることが可能である。 According to the solar cell, solar cell module, and manufacturing method thereof according to the first embodiment described above, the amount of Ag paste used on the back surface while ensuring the connection strength and cell output between the back surface of the solar cell and the tab wire. It is possible to reduce costs by reducing the cost.
 尚、裏面電極としては、前述したAg電極の他に、銅等からなる電極が、例えばスクリーン印刷やスパッタ等により半導体基板の裏面に形成される。 As the back electrode, in addition to the Ag electrode described above, an electrode made of copper or the like is formed on the back surface of the semiconductor substrate by, for example, screen printing or sputtering.
<第2の実施形態> <Second Embodiment>
 図7には本発明の第2の実施形態に係る太陽電池セルの裏面パターンを示し説明する。 FIG. 7 shows and explains the back surface pattern of the solar battery cell according to the second embodiment of the present invention.
 同図に示されるように、太陽電池セルの裏面のAl電極30の開口部30aは、タブ線の接続方向に対して、複数の領域に分かれていてもよい。この例では、1本のタブ線の接合領域において、4つの領域に開口部30aが設けられており、各開口部30aに3本の短冊状のAg電極31が開口部30aの一方のAl電極から他方のAl電極配設領域へと橋渡しするように接合されており、導通されている。 As shown in the figure, the opening 30a of the Al electrode 30 on the back surface of the solar battery cell may be divided into a plurality of regions with respect to the tab wire connection direction. In this example, openings 30a are provided in four regions in one tab line joining region, and three strip-shaped Ag electrodes 31 are provided in each opening 30a as one Al electrode of the opening 30a. To the other Al electrode arrangement region so as to be bridged and conductive.
 以上説明した第2の実施形態に係る太陽電池セル、太陽電池モジュール及びその製造方法によれば、接続強度を十分に確保しつつ、Agペースト使用量を第1の実施形態よりもさらに低減させ、コスト低減をより一層図ることが可能となる。 According to the solar cell, the solar battery module and the manufacturing method thereof according to the second embodiment described above, the amount of Ag paste used is further reduced as compared to the first embodiment while sufficiently securing the connection strength. Costs can be further reduced.
<第3の実施形態> <Third Embodiment>
 図8には本発明の第3の実施形態に係る太陽電池セルの裏面パターンを示し説明する。 FIG. 8 shows and explains the back surface pattern of the solar battery cell according to the third embodiment of the present invention.
 同図に示されるように、太陽電池セルの裏面のAl電極40の開口部40aは、タブ線の接合領域にわたって連続的に、あるいは図7で先に示したように複数の領域に分割されて設けられていてよい。この実施の形態で特徴的なのは、その開口部40aに、中央部に面積の大きい矩形領域を備えたAg電極41が、開口部40aの一方のAl電極から他方のAl電極へと橋渡しするように接合され、導通されている点にある。つまり、Ag電極が短冊状ではなく、一部幅が異なる領域を持っている点に特徴を有する。 As shown in the figure, the opening 40a of the Al electrode 40 on the back surface of the solar battery cell is continuously divided over the junction region of the tab line or divided into a plurality of regions as shown in FIG. It may be provided. What is characteristic in this embodiment is that the Ag electrode 41 having a rectangular area with a large area at the center of the opening 40a bridges from one Al electrode to the other Al electrode of the opening 40a. It is in the point of being joined and conducting. In other words, the Ag electrode is not strip-shaped, but has a feature in that it has regions having different widths.
 以上説明した第3の実施形態に係る太陽電池セル、太陽電池モジュール及びその製造方法によれば、第1、第2実施形態に比してAg電極の面積が大きいので、十分な接合強度を確保しながら、セル出力を十分に高めることができる。 According to the solar cell, the solar battery module, and the manufacturing method thereof according to the third embodiment described above, the area of the Ag electrode is larger than that of the first and second embodiments, so that sufficient bonding strength is ensured. However, the cell output can be sufficiently increased.
<第4の実施形態> <Fourth Embodiment>
 図9には本発明の第4の実施形態に係る太陽電池セルの裏面パターンを示し説明する。 FIG. 9 shows and explains a back surface pattern of a solar battery cell according to the fourth embodiment of the present invention.
 同図に示されるように、太陽電池セルの裏面のAl電極50の開口部50aは、タブ線の接合領域にわたって連続的に、あるいは図7で先に示したように複数の領域に分割されて設けられていてよい。この実施の形態で特徴的なのは、開口部50aの中央で屈曲した屈曲部を有するAg電極51が、開口部50aの一方のAl電極から他方のAl電極へと橋渡しするように接合され、導通されている点にある。つまり、Ag電極が単なる短冊状ではなく、一部屈曲する領域を持っている点に特徴を有する。 As shown in the figure, the opening 50a of the Al electrode 50 on the back surface of the solar battery cell is continuously divided over the junction area of the tab line or divided into a plurality of areas as previously shown in FIG. It may be provided. The characteristic of this embodiment is that the Ag electrode 51 having a bent portion bent at the center of the opening 50a is joined and bridged so as to bridge from one Al electrode to the other Al electrode of the opening 50a. There is in point. In other words, the Ag electrode is not a simple strip shape, but has a feature that it has a partially bent region.
 以上説明した第4の実施形態に係る太陽電池セル、太陽電池モジュール及びその製造方法によれば、単なる短冊状のAg電極に比べれば、開口部を覆う面積は大きくなるので、十分な接合強度を確保しながらセル出力を十分に高めることができる。 According to the solar cell, the solar battery module, and the manufacturing method thereof according to the fourth embodiment described above, the area covering the opening is larger than that of a simple strip-shaped Ag electrode. The cell output can be sufficiently increased while ensuring.
<第5の実施形態> <Fifth Embodiment>
 図10には本発明の第5の実施形態に係る太陽電池セルの裏面パターンを示し説明する。 FIG. 10 shows and explains the back surface pattern of the solar battery cell according to the fifth embodiment of the present invention.
 同図に示されるように、太陽電池セルの裏面のAl電極60の開口部60aは、タブ線の接合領域にわたって連続的に、あるいは図7で先に示したように複数の領域に分割されて設けられていてよい。この実施の形態で特徴的なのは、Ag電極61のAl電極60に接触する部分が大きくなっており、開口部60aの一方のAl電極から他方のAl電極へと橋渡しする部分は短冊状になっている点にある。つまり、この実施形態では、Ag電極61が、開口部60aの一方のAl電極、他方のAl電極に大きい面積の領域部分でしっかりと導通し、両間を橋渡しするように延びている。 As shown in the figure, the opening 60a of the Al electrode 60 on the back surface of the solar battery cell is continuously divided over the joint area of the tab line or divided into a plurality of areas as previously shown in FIG. It may be provided. The feature of this embodiment is that the portion of the Ag electrode 61 that contacts the Al electrode 60 is large, and the portion of the opening 60a that bridges from one Al electrode to the other Al electrode is strip-shaped. There is in point. In other words, in this embodiment, the Ag electrode 61 is firmly connected to one Al electrode and the other Al electrode of the opening 60a in a region having a large area, and extends so as to bridge between the two.
 以上説明した第5の実施形態に係る太陽電池セル、太陽電池モジュール及びその製造方法によれば、十分な接合強度を確保しながら、Ag電極が、Al電極と面積の大きい領域により確実に接合され導通するので、セル出力を良好なものとすることが可能となる。 According to the solar battery cell, the solar battery module, and the manufacturing method thereof according to the fifth embodiment described above, the Ag electrode is reliably bonded to the Al electrode by the large area while securing sufficient bonding strength. Since it conducts, it becomes possible to improve the cell output.
 次に本発明の実施例について詳述する。 Next, embodiments of the present invention will be described in detail.
 ここでは、先に第1の実施形態で説明した、太陽電池セルの裏面のAl電極の開口部に短冊状のAg電極を配設し、当該Ag電極に導電性接着剤を介してタブ線を接続する構成について、そのAg電極の幅を種々変更することでAg使用量を変更した場合に、セル出力に変化が見られるかを検討した。 Here, a strip-shaped Ag electrode is disposed in the opening of the Al electrode on the back surface of the solar cell described in the first embodiment, and a tab wire is attached to the Ag electrode via a conductive adhesive. Regarding the configuration to be connected, whether the cell output is changed when the amount of Ag used is changed by variously changing the width of the Ag electrode was examined.
 セル出力測定は、タブ線接合後の状態で、ソーラーシミュレータ(日清紡メカトロニクス製 形式PVS1116i)により行った。測定条件は、JIS C8913(結晶系太陽電池セル出力測定方法)に準拠した。そして、シミュレータによる出力ばらつきが0.5%想定されるため、0.5%を超える出力低下を有意差としてNG判定とした。 The cell output measurement was performed with a solar simulator (Nisshinbo Mechatronics model PVS1116i) in the state after the tab wire bonding. The measurement conditions were based on JIS C8913 (Crystal solar cell output measurement method). And since the output dispersion | variation by a simulator is assumed 0.5%, the output fall over 0.5% was considered as NG determination as a significant difference.
(実施例1)
 実施例1では、Ag電極の幅を0.2mm、ピッチを2.2mmとした。これによるAg使用量(面積:Ref比)は0.091となり、Ag削減率は90.9%となる。測定の結果、セル出力は16.04%となり良好な結果であった。
Example 1
In Example 1, the width of the Ag electrode was 0.2 mm and the pitch was 2.2 mm. The amount of Ag used (area: Ref ratio) is 0.091, and the Ag reduction rate is 90.9%. As a result of the measurement, the cell output was 16.04%, which was a good result.
(実施例2)
 実施例1では、Ag電極の幅を0.5mm、ピッチを2.2mmとした。これによるAg使用量(面積:Ref比)は0.227となり、Ag削減率は77.3%となる。測定の結果、セル出力は16.12%となり良好な結果であった。
(Example 2)
In Example 1, the width of the Ag electrode was 0.5 mm and the pitch was 2.2 mm. As a result, the amount of Ag used (area: Ref ratio) is 0.227, and the Ag reduction rate is 77.3%. As a result of the measurement, the cell output was 16.12%, which was a good result.
(実施例3)
 実施例3では、Ag電極の幅を1.0mm、ピッチを2.2mmとした。これによるAg使用量(面積:Ref比)は0.455となり、Ag削減率は54.5%となる。測定の結果、セル出力は16.09%となり良好な結果であった。
Example 3
In Example 3, the width of the Ag electrode was 1.0 mm and the pitch was 2.2 mm. The amount of Ag used (area: Ref ratio) is 0.455, and the Ag reduction rate is 54.5%. As a result of the measurement, the cell output was 16.09%, which was a favorable result.
(実施例4)
 実施例4では、Ag電極の幅を0.1mm、ピッチを2.2mmとした。これによるAg使用量(面積:Ref比)は0.045となり、Ag削減率は95.5%となる。測定の結果、セル出力は15.95%となり良好な結果であった。
Example 4
In Example 4, the width of the Ag electrode was 0.1 mm and the pitch was 2.2 mm. The amount of Ag used (area: Ref ratio) is 0.045, and the Ag reduction rate is 95.5%. As a result of the measurement, the cell output was 15.95%, which was a good result.
(実施例5)
 実施例5では、Ag電極の幅を1.5mm、ピッチを2.2mmとした。これによるAg使用量(面積:Ref比)は0.682となり、Ag削減率は31.8%となる。測定の結果、セル出力は16.11%となった。
(Example 5)
In Example 5, the width of the Ag electrode was 1.5 mm and the pitch was 2.2 mm. The amount of Ag used (area: Ref ratio) is 0.682, and the Ag reduction rate is 31.8%. As a result of the measurement, the cell output was 16.11%.
(比較例1)
 比較例1は、タブ線の接合領域の全長に亘ってAg電極を配設する例であり、この場合のAg使用量を1とした。そして、この比較例1のセル出力16.10%が実施例1から4の良/不良の判定基準となる。
(Comparative Example 1)
Comparative Example 1 is an example in which an Ag electrode is provided over the entire length of the tab wire joining region, and the amount of Ag used in this case is 1. The cell output of 16.10% in Comparative Example 1 is a good / defective judgment criterion in Examples 1 to 4.
 以上の結果をまとめると表1のようになる。
Figure JPOXMLDOC01-appb-T000001
 ここで、○、△の指標は以下を意味している。
 ○:Ref比出力変動:0.5%未満(16.02~16.18)
 △:Ref比出力変動:0.5%以上、若しくはAg削減率50%以下
The above results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Here, the indicators of ○ and Δ mean the following.
○: Ref ratio output fluctuation: less than 0.5% (16.02 to 16.18)
Δ: Ref ratio output fluctuation: 0.5% or more, or Ag reduction rate 50% or less
 以上より、セル裏面とタブ線の接続強度及びセル出力を確保しながら、裏面のAgペースト使用量を低減させ、セルコストを低減させることが可能となった。特に、Ag電極の幅を0.1~1.5mm、好ましくは0.2~1.0mmとした場合に、良好なセル出力が得られることが明らかになった。 From the above, it became possible to reduce the amount of Ag paste used on the back surface and reduce the cell cost while securing the connection strength and cell output between the cell back surface and the tab wire. In particular, it has been found that good cell output can be obtained when the width of the Ag electrode is 0.1 to 1.5 mm, preferably 0.2 to 1.0 mm.
 なお、Ag電極の幅が極度に細い場合、抵抗値が上昇することにより、通電による発熱が生じ、出力が低下するものと考えられる。 In addition, when the width | variety of an Ag electrode is extremely thin, it will be thought that a heat | fever generate | occur | produces by electricity supply and an output falls because resistance value rises.
 1 太陽電池セル
 2 Al電極
 3 裏面Ag電極
 4 受光面Ag電極
 5 半導体基板
 6 導電性接着剤
 7 タブ線
11 p+層
12 P型層
13 N型層
21 アルミフレーム
22 透明強化ガラス
23 耐候性フィルム
24 透明樹脂
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Al electrode 3 Back surface Ag electrode 4 Light-receiving surface Ag electrode 5 Semiconductor substrate 6 Conductive adhesive 7 Tab wire 11 P + layer 12 P type layer 13 N type layer 21 Aluminum frame 22 Transparent tempered glass 23 Weather resistant film 24 Transparent resin

Claims (12)

  1.  少なくともフィンガー電極を備えた太陽電池セルにおいて、
     裏面には全面にAl電極が設けられ、
     タブ線が接続する接続領域には、前記接続領域に沿って開口部が設けられ、
     前記開口部を跨ぐようにAg電極が設けられている
     太陽電池セル。
    In a solar battery cell having at least finger electrodes,
    An Al electrode is provided on the entire back surface,
    The connection area to which the tab line connects is provided with an opening along the connection area,
    An Ag electrode is provided so as to straddle the opening.
  2.  前記開口部ではSiが露出している
     請求項1に記載の太陽電池セル。
    The solar cell according to claim 1, wherein Si is exposed in the opening.
  3.  前記Ag電極が短冊状である
     請求項1又は2に記載の太陽電池セル。
    The solar cell according to claim 1, wherein the Ag electrode has a strip shape.
  4.  前記Ag電極の幅が0.1mm~1.5mmである
     請求項1乃至3のいずれかに記載の太陽電池セル。
    4. The solar battery cell according to claim 1, wherein a width of the Ag electrode is 0.1 mm to 1.5 mm.
  5.  前記Ag電極の幅が0.2~1.0mmである
     請求項1乃至3のいずれかに記載の太陽電池セル。
    The solar battery cell according to any one of claims 1 to 3, wherein a width of the Ag electrode is 0.2 to 1.0 mm.
  6.  前記Ag電極が、幅の異なる領域を有する
     請求項1乃至5のいずれかに記載の太陽電池セル。
    The solar cell according to claim 1, wherein the Ag electrode has regions having different widths.
  7.  前記Ag電極が、屈曲した部分を有する
     請求項1乃至5のいずれかに記載の太陽電池セル。
    The solar cell according to claim 1, wherein the Ag electrode has a bent portion.
  8.  前記Ag電極は、前記Al電極と接合する領域の面積が大きい
     請求項1乃至5のいずれかに記載の太陽電池セル。
    The photovoltaic cell according to any one of claims 1 to 5, wherein the Ag electrode has a large area of a region joined to the Al electrode.
  9.  P型シリコン結晶系である
     請求項1乃至8のいずれかに記載の太陽電池セル。
    The solar cell according to claim 1, which is a P-type silicon crystal system.
  10.  請求項1乃至9のいずれかに記載の太陽電池セルの電極とタブ線とが硬化した導電性接着剤を介して接続され、
     更に封止材、透明基材を積層した
     太陽電池モジュール。
    The electrode of the solar battery cell according to any one of claims 1 to 9 and the tab wire are connected via a cured conductive adhesive,
    Furthermore, a solar cell module in which a sealing material and a transparent substrate are laminated.
  11.  複数の太陽電池セルをタブ線により接続する太陽電池モジュールの製造方法において、
     前記太陽電池セルの裏面全面にAl電極を設け、
     前記太陽電池セルの前記タブ線が接続する接続領域には、当該接続領域に沿って開口部を設け、
     前記開口部を跨ぐようにAg電極を設け、
     前記太陽電池セルの電極とタブ線とを導電性接着剤を介して接続し、
     透明基材を積層した後、封止材により封止する
     太陽電池モジュールの製造方法。
    In the method for manufacturing a solar cell module in which a plurality of solar cells are connected by tab wires,
    An Al electrode is provided on the entire back surface of the solar cell,
    In the connection region to which the tab wire of the solar battery cell is connected, an opening is provided along the connection region,
    An Ag electrode is provided so as to straddle the opening,
    The electrode of the solar battery cell and the tab wire are connected via a conductive adhesive,
    A method for manufacturing a solar cell module, in which a transparent substrate is laminated and then sealed with a sealing material.
  12.  前記Ag電極の幅が0.1mm~1.5mm、好ましくは0.2~1.0mmである
     請求項11に記載の太陽電池モジュールの製造方法。
    The method for manufacturing a solar cell module according to claim 11, wherein the width of the Ag electrode is 0.1 mm to 1.5 mm, preferably 0.2 mm to 1.0 mm.
PCT/JP2014/004569 2013-09-11 2014-09-05 Solar battery cell, solar battery module, and production method for solar battery module WO2015037213A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-187973 2013-09-11
JP2013187973A JP2015056463A (en) 2013-09-11 2013-09-11 Solar cell, solar cell module and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2015037213A1 true WO2015037213A1 (en) 2015-03-19

Family

ID=52665344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004569 WO2015037213A1 (en) 2013-09-11 2014-09-05 Solar battery cell, solar battery module, and production method for solar battery module

Country Status (2)

Country Link
JP (1) JP2015056463A (en)
WO (1) WO2015037213A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006492A (en) * 2015-07-24 2015-10-28 苏州宇邦新型材料股份有限公司 Segmented serrated solder strip and photovoltaic module and preparation method thereof
JP2017120810A (en) * 2015-12-28 2017-07-06 日立化成株式会社 Solar cell and solar cell module
CN107195713B (en) * 2017-06-06 2023-11-24 合肥协鑫集成新能源科技有限公司 Photovoltaic shingle assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144943A (en) * 1996-11-12 1998-05-29 Sharp Corp Solar cell and its manufacture
JP2002043596A (en) * 2000-07-28 2002-02-08 Kyocera Corp Solar cell element
JP2004031740A (en) * 2002-06-27 2004-01-29 Kyocera Corp Solar cell element and solar cell module
WO2007001004A1 (en) * 2005-06-29 2007-01-04 Mitsubishi Electric Corporation Solar battery cell
JP2008294383A (en) * 2006-10-13 2008-12-04 Hitachi Chem Co Ltd Solar battery cell connection method, and solar battery module
JP2012244175A (en) * 2011-05-20 2012-12-10 Lg Electronics Inc Solar cell and solar cell module
JP2013098230A (en) * 2011-10-28 2013-05-20 Dexerials Corp Conductive adhesive, solar cell module, and method of manufacturing solar cell module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011001999A1 (en) * 2011-04-12 2012-10-18 Schott Solar Ag solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144943A (en) * 1996-11-12 1998-05-29 Sharp Corp Solar cell and its manufacture
JP2002043596A (en) * 2000-07-28 2002-02-08 Kyocera Corp Solar cell element
JP2004031740A (en) * 2002-06-27 2004-01-29 Kyocera Corp Solar cell element and solar cell module
WO2007001004A1 (en) * 2005-06-29 2007-01-04 Mitsubishi Electric Corporation Solar battery cell
JP2008294383A (en) * 2006-10-13 2008-12-04 Hitachi Chem Co Ltd Solar battery cell connection method, and solar battery module
JP2012244175A (en) * 2011-05-20 2012-12-10 Lg Electronics Inc Solar cell and solar cell module
JP2013098230A (en) * 2011-10-28 2013-05-20 Dexerials Corp Conductive adhesive, solar cell module, and method of manufacturing solar cell module

Also Published As

Publication number Publication date
JP2015056463A (en) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5602498B2 (en) Solar cell module
KR101465924B1 (en) Production method for solar cell module, and solar cell module
WO2008023795A1 (en) Solar battery module and solar battery module manufacturing method
JP6319396B2 (en) Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
JP6043971B2 (en) Solar cell module and method for manufacturing solar cell module
JP5892584B2 (en) Solar cell module and method for manufacturing solar cell module
JP5798772B2 (en) Solar cell module, method for manufacturing solar cell module, tab wire
WO2012077557A1 (en) Solar cell module, method for producing solar cell module, solar cell, and method for connecting tab wire
EP2562820A1 (en) Solar cell module, and production method for solar cell module
JP5923732B2 (en) Solar cell module
US20140124034A1 (en) Solar cell module and solar cell module manufacturing method
JP2012084560A (en) Crystalline solar cell module
WO2015037213A1 (en) Solar battery cell, solar battery module, and production method for solar battery module
JP2010157553A (en) Interconnect sheet, solar cell with the interconnect cell, solar cell module, and method of manufacturing the solar cell with the interconnect sheet, and method of manufacturing the solar cell moidule
KR102041274B1 (en) Electrically conductive adhesive agent, solar cell module, and method for producing solar cell module
JP5759220B2 (en) Solar cell module and method for manufacturing solar cell module
WO2016002721A1 (en) Solar-cell module, conductive member for use in solar cell module, and sealing film
KR20150056040A (en) Solar cell, solar cell module and method of manufacturing solar cell module
JP2011108982A (en) Solar cell module
JP2015012117A (en) Solar cell module and manufacturing method therefor
JP2017120810A (en) Solar cell and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844094

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844094

Country of ref document: EP

Kind code of ref document: A1