WO2015035940A1 - 空气水农业系统 - Google Patents

空气水农业系统 Download PDF

Info

Publication number
WO2015035940A1
WO2015035940A1 PCT/CN2014/086414 CN2014086414W WO2015035940A1 WO 2015035940 A1 WO2015035940 A1 WO 2015035940A1 CN 2014086414 W CN2014086414 W CN 2014086414W WO 2015035940 A1 WO2015035940 A1 WO 2015035940A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
water
agricultural greenhouse
outlet
agriculture system
Prior art date
Application number
PCT/CN2014/086414
Other languages
English (en)
French (fr)
Inventor
喻朝庆
尹华
Original Assignee
清华大学
北京田园兰德科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310496072.5A external-priority patent/CN103598033A/zh
Priority claimed from CN201320649843.5U external-priority patent/CN203554969U/zh
Application filed by 清华大学, 北京田园兰德科技有限责任公司 filed Critical 清华大学
Priority to US15/021,297 priority Critical patent/US20160219797A1/en
Publication of WO2015035940A1 publication Critical patent/WO2015035940A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/247Watering arrangements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to the field of agricultural irrigation technology, and in particular to an air water agriculture system.
  • the global total area of arid and semi-arid regions accounts for about 35% of the total land area, and seasonal drought and water shortages exist in almost all regions of the world. Due to the uneven spatial and temporal distribution of precipitation and water resources, the zonal differences in vegetation distribution on the Earth's surface are significant; the productivity of ecosystems in desertification or drought-deficient areas is low, and the production of agriculture, animal husbandry and forestry and the social economy are difficult to develop due to severe restrictions on water resources.
  • agricultural water accounts for the vast majority. For example, China's agricultural water use accounts for more than 60%, and the northern region accounts for 75%. In the agricultural production process, most of the agricultural water is converted into gaseous water by evaporation and transpiration and released into the atmosphere. This unidirectional consumption of liquid water to gaseous water makes it difficult for agriculture and other industries in areas with water shortages to develop.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent. To this end, it is an object of the present invention to provide an air water agricultural system that can realize the recycling of water resources in an agricultural greenhouse.
  • An air water agriculture system includes: an agricultural greenhouse having an air inlet, an air outlet, and a water supply inlet; a gaseous water recovery device having an air inlet, an air outlet, and a liquid water outlet The air inlet is connected to an air outlet of the agricultural greenhouse, the liquid water outlet is connected to a water supply inlet of the agricultural greenhouse; and a power source is connected to the gaseous water recovery device.
  • the air water agriculture system prevents direct entry of gaseous water that evaporates and transpirations through an agricultural greenhouse Free atmosphere, the gaseous water discharged from the agricultural greenhouse is recovered and liquefied by the gaseous water recovery device to obtain liquid water, and the liquid water is again applied to the agricultural greenhouse for plant growth, thereby realizing the recycling of the farmland water, in consumption Complete agricultural production with less water resources, saving water resources and protecting the environment.
  • air water agriculture system may further have the following additional technical features:
  • the power source is a green energy source.
  • the green energy source is solar energy and/or wind energy.
  • the liquid water outlet of the gaseous water recovery unit is connected to a water storage facility, the water outlet of which is connected to the water supply inlet of the agricultural greenhouse.
  • the air water agriculture system further includes a rain collecting device for collecting rainwater, and the rain collecting device is connected to the water storage facility. Thereby reducing the energy consumption of the operating gaseous water recovery device.
  • the gaseous water recovery device includes an air refrigeration device and a liquid water recovery device, the air refrigeration device including: a casing, the air inlet, the air outlet, and the liquid water An outlet is respectively formed on the casing; a fan, the fan is connected to the power source, the fan is used to drive air to flow from the agricultural greenhouse into the casing; a heat exchange device, the heat exchange device Used to reduce the temperature of the air within the housing.
  • the heat exchange device includes an evaporator disposed in the housing for cooling air within the housing, and a compressor coupled to the evaporator and the power source.
  • the heat exchange device includes an air-to-air heat exchanger having a cross duct for exchanging heat between the air discharged from the agricultural greenhouse and the cold air.
  • the heat exchange device includes a water-gas heat exchanger having a duct and a water pipe, the air passage being in communication with the inside of the casing to utilize the water-gas heat exchanger
  • the low water temperature in the water pipe cools the air discharged from the agricultural greenhouse.
  • the heat exchange device further includes an underground air passage that communicates with the air outlet and the air inlet of the casing to directly use the ground temperature to perform air in the underground air passage. Cool down.
  • the gaseous water recovery device includes an underground air passage and a liquid water recovery device, an inlet of the underground air passage is configured as the air inlet, and an outlet of the underground air passage is configured to The air outlet, the liquid water outlet is disposed on the underground air duct, and the underground air duct directly cools air entering the underground air passage by using a ground temperature.
  • the gaseous water recovery device further comprises a gas liquid separator. Thereby ensuring the recycling of liquid water.
  • the gas-liquid separator is a wire mesh material piece.
  • a portion of the water pipe in the water-gas heat exchanger that protrudes from the casing is buried in a predetermined depth underground to reduce the temperature of the water circulating in the water pipe by the ground temperature.
  • the agricultural greenhouse is provided with a cultivation substrate, and the cultivation substrate is provided with an anti-seepage layer, and the agricultural greenhouse includes a drainage port for discharging liquid water in the cultivation substrate.
  • the drain is connected to the water supply inlet of the agricultural greenhouse.
  • the anti-seepage layer in the agricultural greenhouse according to the embodiment of the present invention is for preventing the moisture of the cultivation substrate from infiltrating into the ground, and the drainage port is for preventing the water content of the cultivation substrate from being supersaturated; the water and nutrients brought out by the drainage port are again fed through the water supply of the agricultural greenhouse. Enter the agricultural greenhouse to prevent water loss and environmental eutrophication.
  • FIG. 1 is a schematic view of an air water agriculture system in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic illustration of an air water agriculture system in accordance with an embodiment of the present invention.
  • Air water agriculture system 100 agricultural greenhouse 1, air inlet 10, drain 13
  • Air outlet 11 water supply inlet 12
  • gaseous water recovery device 2 air inlet 20
  • air outlet 21 air outlet 21
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
  • An air water agriculture system 100 includes: an agricultural greenhouse 1, a gaseous water recovery device 2, and a power source 3, wherein the agricultural greenhouse 1 has an air inlet 10, an air outlet 11, and a water supply inlet 12.
  • the agricultural greenhouse 1 is planted with plants.
  • the agricultural greenhouse 1 can isolate the gaseous water evaporated and transpiration from the agricultural greenhouse 1 from the natural atmosphere, providing the necessary conditions for the recovery and recycling of gaseous water.
  • the air inlet 10 allows the natural atmosphere to enter, supplements the carbon dioxide and oxygen required for plant growth, and cools the plant growth environment. Most or all of the air in the agricultural greenhouse 1 is discharged through the air outlet 11 and can be imported through the water supply. 12 Water is supplied to the agricultural greenhouse 1 to supplement the water required for plant growth.
  • the cultivation substrate of the agricultural greenhouse 1 has a barrier layer 7 under the culture substrate to prevent water infiltration of the cultivation substrate, and the agricultural greenhouse 1 includes a drain port 13 for discharging liquid water in the cultivation substrate, wherein
  • the cultivation environment of the plants in the agricultural greenhouse 1 may be a paddy field or a dry land.
  • the drain port 13 discharges water exceeding a necessary submerged depth, and the necessary submergence depth is specifically limited according to the growth requirements of different plants.
  • the drain port 13 discharges supersaturated water in the cultivation substrate to prevent excessive saturation of moisture in the cultivation substrate.
  • the drain port 13 is connected to the water supply inlet 12 of the agricultural greenhouse 1, at which time the moisture and nutrients taken out from the drain port 13 are re-entered into the agricultural greenhouse 1 through the water supply inlet of the agricultural greenhouse 1, thereby preventing water loss and environmental eutrophication.
  • the agricultural greenhouse 1 may be a plastic greenhouse or a relatively permanent artificial building made of a transparent material such as glass on the top, so that solar radiation can reach the plant leaves and meet the photosynthesis demand. More specifically, the top of the agricultural greenhouse 1 can be completely transparent, and of course, can partially cover the solar elements, so that part of the solar radiation reaches the plant leaves, which can meet the photosynthesis requirements of the plants, and can also shade and cool the agricultural greenhouse 1 Take care of power generation. Further, the top height of the building such as a greenhouse can be adjusted according to the plant height of the plant, and the volume of air in the agricultural greenhouse 1 can be reduced, thereby improving the water recovery rate.
  • the gaseous water recovery device 2 has an intake port 20, an air outlet 21, and a liquid water outlet 22, and the air inlet 20 is connected to the air outlet 11 of the agricultural greenhouse 1.
  • the liquid water outlet 22 is connected to the water supply inlet 12 of the agricultural greenhouse 1.
  • the gaseous water recovery device 2 is for recovering and liquefying the gaseous water in the air discharged from the agricultural greenhouse 1, and the liquid water collected by the gaseous water recovery device 2 is discharged into the agricultural greenhouse 1 through the liquid water outlet 22 and the water supply inlet 12. Thereby, the recycling of the production water in the agricultural greenhouse 1 is realized.
  • the gaseous water recovery device 2 can be any device as long as the gaseous water entering the device can be recovered and finally liquefied into liquid water. It is worth noting that when the ambient temperature in the agricultural greenhouse 1 is higher than the ambient temperature outside the agricultural greenhouse 1, part of the gaseous water in the agricultural greenhouse 1 will condense into liquid water on the inner wall of the agricultural greenhouse 1, at which time the agricultural greenhouse 1 The liquid water condensed on the inner wall can enter the gaseous water recovery device 2, that is, the gaseous water recovery device 2 also recovers the liquid water condensed on the inner wall of the agricultural greenhouse 1.
  • the power source 3 is connected to the gaseous water recovery unit 2 to drive the air flow and drive the gaseous water recovery unit 2 to operate. That is, the power source 3 drives air from the agricultural greenhouse 1 to the gaseous water recovery device 2.
  • the power source 3 is a green energy source, and optionally, the green energy source is solar energy and/or wind energy.
  • the power source 3 drives the gaseous water in the agricultural greenhouse 1 to enter the gaseous water recovery device 2 through the air outlet 11, the power source 3 drives the gaseous water recovery device 2, and the gaseous water recovery device 2 enters the gaseous water recovery device.
  • the gaseous water in 2 is recovered and liquefied, and the gaseous water finally becomes liquid water.
  • the liquid water in the gaseous water recovery device 2 enters the agricultural greenhouse 1 through the liquid water outlet 22 and the water supply inlet 12 to replenish the water required by the plant.
  • the air dehumidified by the gaseous water recovery device 2 is discharged to the natural atmosphere through the gas outlet 21.
  • the liquid water collected by the gaseous water recovery device 2 can be applied to the cultivation substrate by conventional flood irrigation, sprinkler irrigation, drip irrigation, drip irrigation under the membrane, etc., to meet the water consumption requirement of the plant.
  • the air water agriculture system 100 prevents the vaporized and transpiration gaseous water from entering the free atmosphere through the agricultural greenhouse 1, and recovers and liquefies the gaseous water discharged from the agricultural greenhouse 1 through the gaseous water recovery device 2 to obtain liquid water. And the liquid water is again applied to the agricultural greenhouse 1 for plant growth, thereby realizing the recycling of the production water in the agricultural greenhouse 1, and completing the agricultural production while consuming less water resources, saving water resources and The environment plays a protective role.
  • the air water agriculture system 100 includes a water storage facility 4,
  • the water storage facility 4 has a water inlet 40 and a water outlet 41, and the water inlet 40 of the water storage facility 4 is in communication with the liquid water outlet 22, that is, discharged from the gaseous water recovery device 2 as indicated by the dotted arrow in FIG.
  • the liquid water enters the water storage facility 4 through the liquid water outlet 22 for storage.
  • the water in the water storage facility 4 enters through the water outlet 41 and the water supply inlet 12 at this time.
  • the air water agriculture system 100 may also utilize other water sources 8, including other sources of water such as rainwater, surface water, and groundwater.
  • the airwater agriculture system 100 includes for collection.
  • the rainwater collecting device 6 of the rainwater is connected to the water storage facility 4, so that it can be used for collecting natural precipitation and further improving the utilization of water resources.
  • the water storage facility 4 further includes a rainwater collecting water inlet port 42, and the water storage facility 4 communicates with the rain collecting device 6 through the rainwater collecting water inlet 42.
  • the gaseous water recovery device 2 includes an air refrigeration device and a liquid water recovery device including: a casing 23, a fan 31, and a heat exchange device, wherein the intake air The port 20, the air outlet 21 and the liquid water outlet 22 are respectively formed on the casing 23, the fan 31 is connected to the power source, and the fan 31 is used to drive the air to flow from the agricultural greenhouse 1 into the casing 23, preferably, the fan 31 is provided Inside the air inlet 20.
  • the heat exchange device is used to reduce the temperature of the air within the housing.
  • the air refrigeration device cools and cools the air water entering the air, so that the air water reaches below the dew point temperature, and at this time, the gaseous water is condensed into liquid water or even solid water, wherein the liquid water or the liquid water needs to be
  • the solid water is converted into liquid water having a temperature suitable for plant growth, that is, the gaseous water is finally liquefied into liquid water, and finally the liquid water collecting device collects the liquid water.
  • the liquid water collecting device may be any device as long as it can be used for collecting liquid water.
  • the heat exchange device includes an evaporator 24 and a compressor 25 that is disposed within the housing 23 for cooling the air within the housing 23.
  • the compressor 25 is connected to the evaporator 24 and the power source 3.
  • the heat exchange device further includes a condenser (not shown) provided outside the casing 23, specifically, the compressor 25 has an exhaust port and At the air return port, the exhaust port of the compressor 25 is connected to the inlet of the condenser, the outlet of the condenser is connected to the inlet of the evaporator 24, the outlet of the evaporator 24 is connected to the return port, and the cooling is discharged from the exhaust port of the compressor 25.
  • the agent enters the condenser, and the refrigerant in the condenser exchanges heat with the air outside the casing 23 to lower the temperature of the refrigerant in the condenser, and the refrigerant discharged from the condenser enters the evaporator 24, the evaporator
  • the refrigerant in 24 exchanges heat with the air in the casing 23 to cool the air in the casing 23, and the refrigerant discharged from the evaporator 24 is discharged back to the compressor 25 through the return port to complete a refrigeration cycle.
  • the heat exchange device includes an air-to-air heat exchanger 28 having a cross duct for exchanging heat between the air discharged from the agricultural greenhouse 1 and the cold air. That is, the air-to-air heat exchanger 28 is disposed within the casing 23, and the air-to-air heat exchanger 28 can lower the temperature of the air discharged from the agricultural greenhouse 1.
  • the air-to-air heat exchanger 28 adopts the air-to-air heat exchanger of the prior art to achieve the purpose of cooling the air by using cold air, and the structure and working principle of the air-to-air heat exchanger 28 are Those skilled in the art are well known and will not be described in detail herein.
  • the heat exchange device includes a water-gas heat exchanger 26, the water-gas heat exchanger 26 is disposed in the casing 23, and the water-gas heat exchanger 26 has a duct and a water pipe, and a duct
  • the inside of the casing 23 is communicated to cool the air discharged from the agricultural greenhouse 1 by the low water temperature in the water pipe of the water-gas heat exchanger.
  • the low-temperature liquid water flows in the water pipe of the water-gas heat exchanger 26, and the air discharged from the agricultural greenhouse 1 enters the air passage of the water-gas heat exchanger 26 to be heated with the low water temperature in the water pipe. Exchange, thereby reducing the temperature of the air to form cold air.
  • a portion of the outflow housing 23 of the water pipe within the water-gas heat exchanger 26 is buried at a predetermined depth underground to reduce the temperature of the water circulating in the water pipe with a lower ground temperature.
  • the heat exchange device includes an underground air passage 30 having good thermal conductivity, and the underground air passage 30 is in communication with the air outlet 11 and the air inlet 20 of the agricultural greenhouse 1, and the ground temperature is directly used.
  • the air in the underground air duct 30 is cooled, that is, the underground air duct 30 is disposed outside the casing 23, and the underground air duct 30 is buried in the underground.
  • the air discharged from the agricultural greenhouse 1 enters the underground air duct 30 for pre-cooling and is discharged. Further cooling is performed into the housing 23.
  • the shape of the underground duct 30 shown in FIG. 2 is exemplary.
  • the gaseous water recovery device 2 includes an underground air passage and a liquid water recovery device, the inlet of the underground air passage is configured as an air inlet, and the outlet of the underground air passage is configured as an air outlet, and the liquid water outlet is provided.
  • the underground air duct directly cools the air entering the underground air passage to obtain liquid water by using the ground temperature, and the liquid water recovery device collects the liquid water obtained by liquefaction. That is to say, at this time, only the air temperature discharged from the agricultural greenhouse 1 is cooled by the ground temperature to obtain liquid water.
  • the gaseous water recovery device 2 may include four refrigeration modes: the first refrigeration mode is to form a refrigeration cycle between the evaporator, the compressor and the condenser through the refrigerant to achieve a pair The air discharged from the agricultural greenhouse 1 into the casing 23 is cooled.
  • the second cooling method is: by providing an underground air duct 30 buried in the ground, the air discharged from the agricultural greenhouse 1 can enter the underground air duct 30 to exchange heat with the underground environment, thereby achieving the purpose of cooling the air.
  • the third type of cooling is to reduce the temperature of the air discharged from the agricultural greenhouse 1 by using the air-to-air heat exchanger 28.
  • the fourth cooling method is to cool the air discharged from the agricultural greenhouse 1 by the water-gas heat exchanger 26 by using the low-temperature water.
  • the gaseous water recovery device 2 includes four types of refrigeration modes, and the above four types of refrigeration modes may be used alone, or may be used simultaneously or in cross-over. It is of course to be understood that several of the above described refrigeration methods are exemplary. Therefore, the air cooling apparatus 2 according to the embodiment of the present invention has a variety of cooling modes, which can meet different needs.
  • the air refrigerating apparatus 2 simultaneously uses the above four cooling modes, as indicated by the solid arrows in FIG. 2, under the action of the fan 31, the air in the agricultural greenhouse 1 enters from the air outlet 11.
  • the air exchanges heat with the subterranean environment in the underground air duct 30 for the first time to cool down, and the air that has cooled down for the first time enters the air-to-air heat exchanger 28 and enters the air from the underground air duct 30.
  • the cold air in the air heat exchanger 28 undergoes heat exchange for a second cooling.
  • the second cooling air is discharged from the air heat exchanger 28 and enters the air passage of the water-gas heat exchanger 26
  • the low water temperature in the water pipe of the water-gas heat exchanger 26 enters the water-gas heat exchanger.
  • the air in the air passage of 26 is cooled for the third time.
  • the air is discharged from the water-gas heat exchanger 26 and exchanges heat with the evaporator 24 for the fourth cooling.
  • the air from the air outlet 21 is discharged into the natural atmosphere.
  • the gaseous water in the air may condense into liquid water.
  • the liquid water collecting device collects and cools during the process of liquefaction. Liquid water.
  • an underground air passage 30, an air-to-air heat exchanger 28, a water-gas heat exchanger 26, an evaporator 24, and a gas-liquid separator 27 are sequentially disposed, and the liquid water collecting device is provided.
  • the water tanks are respectively disposed under the bottom wall of the underground air duct 30, below the air-to-air heat exchanger 28, below the water-gas heat exchanger 26, below the evaporator 24, and below the gas-liquid separator 27.
  • the liquid water will fall into the water tank by the action of gravity.
  • the liquid water flows in the water tank and finally flows into the water storage facility 4 for storage.
  • the above-mentioned cold air entering the air-to-air heat exchanger 28 may be cold air in the casing 23, and the above-mentioned cold air entering the air-to-air heat exchanger 28 may also be cold in the natural atmosphere. Air to save energy.
  • the air that has passed through four times of cooling passes through the gas-liquid separator 27, the gas-liquid separator 27 intercepts the water mist in the air, and finally the air that has passed through the gas-liquid separator 27 enters
  • the air-to-air heat exchanger 28 exchanges heat with the air that has been cooled once, and finally the air that has been cooled four times is discharged from the air outlet 21.
  • a thermal insulation layer may be provided in the housing 23 to increase energy utilization.
  • the gaseous water recovery device 2 further includes a gas-liquid separator 27, which is disposed in the casing 23. It is used to intercept water mist.
  • the gas-liquid separator 27 is a wire mesh material member.
  • the gas-liquid separator 27 is a wire mesh member, a fiber mesh member or a mixture of both.
  • the gas-liquid separator 27 is a mixture of metal and glass fiber mesh, thereby reducing cost. Further preferably, the gas-liquid separator 27 is a wire mesh mixed with a glass fiber, that is, the wire mesh and the glass fiber mesh are layered and mixed, and the steel mesh can intercept the water mist of the larger particles, and the hydrophilicity is better.
  • the fiberglass mesh separates the smaller particles of water from the air, allowing for the full collection of liquid water.
  • gas-liquid separator 27 may also be other equipment capable of collecting water mist, such as a device using a microporous membrane, a device having a centrifuge for achieving gas-liquid separation by the principle of inertia, or having a baffle device of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Greenhouses (AREA)

Abstract

一种空气水农业系统,包括:农业温室、气态水回收装置和动力源。农业温室具有空气进口、空气出口和供水进口。气态水回收装置具有进气口、出气口和液态水出口,进气口与农业温室的空气出口相连,液态水出口与农业温室供水口相连。动力源与气态水回收装置相连。

Description

空气水农业系统 技术领域
本发明涉及农业灌溉技术领域,具体地,涉及一种空气水农业系统。
背景技术
全球干旱、半干旱地区总面积约占陆地总面积的35%,季节性干旱缺水的现象几乎在世界所有地区都存在。由于降水和水资源时空分布不均,地球表面植被分布的地带性差异显著;荒漠化或干旱缺水地区生态系统生产力低下,农牧林业生产和社会经济由于水资源的严重限制而难以发展。在目前全世界的供水中,农业用水占绝大多数。例如,中国的农业用水占了60%以上,北方地区占到了75%。而在农业生产过程中,绝大多数农业用水都通过蒸发和蒸腾等方式转化为气态水并释放到大气。这种由液态水到气态水单向消耗方式导致水资源短缺地区的农业和其它产业难以发展。
在国内外水、热等自然资源条件较好的区域,往往由于人口过分集中,资源消耗巨大,环境破坏严重,社会经济发展的可持续性面临重大挑战。例如,中国东部粮食主产区目前承受的耕地、水资源和环境污染等压力越来越大,粮食安全问题始终困扰着国家和民族的生存和发展。应对这些问题的一种方式是改变传统农业的单向耗水模式,实现农田生态系统尺度的水分循环,以最少的水资源长期满足农业生产的用水需求。水资源问题得到解决后,全球和中国的荒漠化和干旱缺水地区有可能变成新兴的农牧林业生产基地。与此同时,这还将有助于促进太阳能、风能等可再生能源的大范围利用,革命性地推动解决当前人类社会面临的能源、粮食安全、荒漠化、生态破坏和环境污染等一系列重大问题,真正实现社会经济和生态文明的永续发展。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种可实现农业温室中水资源循环利用的空气水农业系统。
根据本发明的空气水农业系统,包括:农业温室,所述农业温室具有空气进口、空气出口和供水进口;气态水回收装置,所述气态水回收装置具有进气口、出气口和液态水出口,所述进气口与所述农业温室的空气出口相连,所述液态水出口与所述农业温室的供水进口相连;和动力源,所述动力源与所述气态水回收装置相连。
根据本发明的空气水农业系统,通过农业温室防止蒸发和蒸腾出来的气态水直接进入 自由大气,通过气态水回收装置对农业温室排出的气态水进行回收和液化得到液态水,并将此液态水再次施放到农业温室内以供植物生长,从而实现了农田用水的循环利用,在消耗较少水资源的情况下完成农业生产,节约了水资源且对环境起到保护作用。
另外,根据本发明上述实施例的空气水农业系统还可以具有如下附加的技术特征:
优选地,所述动力源为绿色能源。
具体地,所述绿色能源为太阳能和/或风能。
根据本发明的一些实施例,所述气态水回收装置的液态水出口与蓄水设施相连,所述蓄水设施的出水口与所述农业温室的供水进口相连。
进一步地,所述空气水农业系统还包括用于收集雨水的集雨装置,所述集雨装置与所述蓄水设施相连。从而减少运行气态水回收装置的能量消耗。
在本发明的一些实施例中,所述气态水回收装置包括空气制冷装置和液态水回收装置,所述空气制冷装置包括:壳体,所述进气口、所述出气口和所述液态水出口分别形成在所述壳体上;风机,所述风机和所述动力源相连,所述风机用于驱动空气从所述农业温室向所述壳体内流动;热交换装置,所述热交换装置用于降低所述壳体内的空气温度。
具体地,热交换装置包括蒸发器和压缩机,所述蒸发器设在所述壳体内用于冷却所述壳体内的空气,所述压缩机与所述蒸发器和所述动力源相连。
具体地,热交换装置包括空气-空气热交换器,所述空气-空气热交换器有交叉风道,用于将从所述农业温室排出的空气和冷空气进行热量交换。
具体地,热交换装置包括水-气热交换器,所述水-气热交换器具有风道和水管,所述风道与所述壳体内连通,以利用所述水-气热交换器的所述水管内的低水温对从所述农业温室排出的空气进行降温。
进一步地,所述热交换装置还包括地下风道,所述地下风道与所述空气出口和所述壳体的所述进气口连通,以利用地温直接对所述地下风道内的空气进行降温。
在本发明的另一些实施例中,所述气态水回收装置包括地下风道和液态水回收装置,所述地下风道的入口构造成所述进气口,所述地下风道的出口构造成所述出气口,所述液态水出口设在所述地下风道上,所述地下风道利用地温直接对进入到所述地下风道内的空气进行降温。
在本发明的进一步实施例中,所述气态水回收装置还包括气液分离器。从而保障液态水的回收利用。
优选地,所述气液分离器为丝网材料件。
具体地,所述水-气热交换器内的所述水管的伸出所述壳体的一部分埋在地下预定深度,以利用地温降低所述水管内循环流动的水的温度。
在本发明的具体实施例中,所述农业温室设有栽培基质,所述栽培基质下设有防渗层,所述农业温室包括用于排出所述栽培基质内的液态水的排水口,所述排水口和所述农业温室的供水进口相连。根据本发明实施例的农业温室中的防渗层用于防止栽培基质水分渗入地下,排水口用于防止栽培基质水分过饱和;所述排水口带出的水分和养分经过农业温室的供水进口再次进入农业温室,从而防止水分丢失和环境富营养化。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明实施例的空气水农业系统的示意图;
图2为根据本发明具体实施例的空气水农业系统的示意图。
附图标记:
空气水农业系统100、农业温室1、空气进口10、排水口13
空气出口11、供水进口12、气态水回收装置2、进气口20、出气口21、
液态水出口22、壳体23、
蒸发器24、压缩机25、水-气热交换器26、
气液分离器27、空气-空气热交换器28、风机31、
地下风道30、动力源3、蓄水设施4、进水口40、
出水口41、雨水收集进水口42、
集雨装置6、防渗材料层7、其它水源8
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本 发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
下面参考图1-图2描述根据本发明实施例的一种空气水农业系统100,其中空气水为空气中所含的气态水。
根据本发明实施例的空气水农业系统100,如图1所示,包括:农业温室1、气态水回收装置2和动力源3,其中,农业温室1具有空气进口10、空气出口11和供水进口12,农业温室1内种植有植物,农业温室1可以将农业温室1中蒸发和蒸腾出来的气态水与自然大气隔绝,为气态水回收和循环利用提供必要条件。该空气进口10允许自然大气进入,补充植物生长所需的二氧化碳和氧气等,且对植物生长环境进行降温等,农业温室1中的空气大部分或全部通过空气出口11排出,且可通过供水进口12向农业温室1内供水以补充植物生长所需要的水分。
可选地,如图1所示,农业温室1的栽培基质下有防渗材料层7以防止栽培基质水分下渗,农业温室1包括用于排出栽培基质中的液态水的排水口13,其中农业温室1内植物的栽培环境可为水田或旱地,当栽培环境为水田时,排水口13排出的是超过必要淹没深度的水分,该必要淹没深度根据不同植物的生长需要具体限定。当栽培环境为旱地时,排水口13排出的是栽培基质中的过饱和水以防止栽培基质中的水分过分饱和。排水口13和农业温室1的供水进口12相连,此时从排水口13带出的水分和养分经过农业温室1的供水进口再次进入农业温室1,从而防止水分丢失和环境富营养化。
具体地,农业温室1可为塑料温室大棚,也可以是顶部有玻璃等透明材料构成的较永久性的人工建筑,以使得太阳辐射可到达植物叶片并满足光合作用的需求。更具体地,农业温室1的顶部可完全透明,当然也可部分覆盖太阳能元件,让部分太阳能辐射达到植物叶片,既可满足植物的光合需求,又可对农业温室1进行遮阳和降温,还能兼顾发电。进一步地,还可根据植物的株高调整温室等建筑的顶部高度,减少农业温室1内的空气体积,从而提高水分回收率。
气态水回收装置2具有进气口20、出气口21和液态水出口22,进气口20与农业温室1的空气出口11相连。液态水出口22与农业温室1的供水进口12相连。具体而言,气态水回收装置2用于将农业温室1排出的空气中的气态水回收和液化,气态水回收装置2收集的液态水经过液态水出口22和供水进口12施放到农业温室1内,从而实现农业温室1内的生产用水的循环利用。
其中,值得说明的是,该气态水回收装置2可为任何装置,只要能对进入该装置内的气态水进行回收,最终液化成液态水即可。值得理解的是,当农业温室1内的环境温度高于农业温室1外的环境温度时,农业温室1内的部分气态水会在农业温室1的内壁上凝结成液态水,此时农业温室1的内壁上凝结出的液态水可进入到气态水回收装置2内,即气态水回收装置2也会回收凝结在农业温室1的内壁上的液态水。
动力源3与气态水回收装置2相连以驱动空气流动及驱动气态水回收装置2工作。也就是说,动力源3驱动空气从农业温室1流向气态水回收装置2。优选地,该动力源3为绿色能源,可选地,绿色能源为太阳能和/或风能。
具体而言,动力源3驱动农业温室1内的气态水通过空气出口11进入到气态水回收装置2中,动力源3驱动气态水回收装置2工作,气态水回收装置2对进入气态水回收装置2内的气态水进行回收和液化处理,气态水最终变成液态水,气态水回收装置2内的液态水通过液态水出口22和供水进口12进入到农业温室1内以补充植物所需要的水分,同时经过气态水回收装置2除湿后的空气通过出气口21排到自然大气中。具体地,可通过传统漫灌、喷灌、滴灌、膜下滴灌等方式将气态水回收装置2收集到的液态水施放到栽培基质中,满足植物耗水需求。
根据本发明实施例的空气水农业系统100,通过农业温室1防止蒸发和蒸腾出来的气态水进入自由大气,通过气态水回收装置2对农业温室1排出的气态水进行回收和液化以得到液态水,且将液态水再次施放到农业温室1内以供植物生长,从而实现了农业温室1中的生产用水的循环利用,在消耗较少水资源的情况下完成农业生产,节约了水资源且对环境起到保护作用。
在本发明的一些实施例中,如图1和图2所示,空气水农业系统100包括蓄水设施4, 蓄水设施4具有进水口40和出水口41,蓄水设施4的进水口40与液态水出口22连通,也就是说,如图2中的虚线箭头所示,从气态水回收装置2排出的液态水通过液态水出口22进入到蓄水设施4中进行储存,当需要对农业温室1中的植物进行补充水分时,此时蓄水设施4内的水通过出水口41和供水进口12进入到农业温室1内。
进一步地,如图1和图2所示,空气水农业系统100还可利用其他水源8,其他水源8包括雨水、地表水和地下水等水资源,具体地,空气水农业系统100包括用于收集雨水的集雨装置6,集雨装置6与蓄水设施4相连,从而可用于收集天然降水,进一步提高水资源的利用。具体地,如图1和图2所示,蓄水设施4还包括雨水收集进水口42,蓄水设施4通过雨水收集进水口42与集雨装置6连通。
在本发明的一些实施例中,如图2所示,气态水回收装置2包括空气制冷装置和液态水回收装置,空气制冷装置包括:壳体23、风机31和热交换装置,其中,进气口20、出气口21和液态水出口22分别形成在壳体23上,风机31与动力源相连,风机31用于驱动空气从农业温室1向壳体23内流动,优选地,风机31设在进气口20内。热交换装置用于降低壳体内的空气温度。也就是说,空气制冷装置对进入其的空气水进行制冷降温,以使得空气水达到露点温度以下,此时气态水遇冷凝结成液态水甚至固态水,其中,需要通过任何方式将液态水或者固态水转变为具有适于植物生长温度的液态水,即将气态水最终液化成液态水,最后液态水收集装置收集液态水。需要说明的是,液态水收集装置可为任何装置,只要可用于收集液态水即可。
具体地,热交换装置包括蒸发器24和压缩机25,蒸发器24设在壳体23内用于冷却壳体23内的空气。压缩机25与蒸发器24和动力源3相连,值得理解的是,热交换装置还包括设在壳体23外的冷凝器(图未示出),具体地,压缩机25具有排气口和回气口,压缩机25的排气口与冷凝器的入口相连,冷凝器的出口与蒸发器24的入口相连,蒸发器24的出口与回气口相连,从压缩机25的排气口排出的制冷剂进入到冷凝器中,冷凝器中的制冷剂与壳体23外的空气进行换热以降低冷凝器中的制冷剂的温度,从冷凝器排出的制冷剂进入到蒸发器24中,蒸发器24中的制冷剂与壳体23内的空气进行换热以冷却壳体23内的空气,从蒸发器24排出的制冷剂通过回气口排回到压缩机25中,以完成一次制冷循环。
具体地,如图2所示,热交换装置包括空气-空气换热器28,空气-空气热交换器28有交叉风道,用于对农业温室1排出的空气和冷空气进行热量交换。也就是说,空气-空气热交换器28设在壳体23内,空气-空气热交换器28可降低从农业温室1排出的空气的温度。其中,空气-空气热交换器28采用现有技术中的空气-空气热交换器,以实现采用冷空气对空气进行降温的目的,空气-空气热交换器28的结构和工作原理等已为本领域的技术人员所熟知,这里就不详细描述。
具体地,如图2所示,热交换装置包括水-气热交换器26,水-气热交换器26设在壳体23内,水-气热交换器26具有风道和水管,风道与壳体23内连通,以利用水-气热交换器的水管内的低水温对从农业温室1排出的空气进行降温。具体而言,水-气热交换器26的水管内流动的是低温的液态水,从农业温室1排出的空气进入到水-气热交换器26的风道内以与水管内的低水温进行热交换,从而降低空气的温度以形成冷空气。优选地,水-气热交换器26内的水管的伸出壳体23的一部分埋在地下预定深度,以利用较低的地温降低水管内循环流动的水的温度。
进一步地,如图2所示,热交换装置包括地下风道30,地下风道30具有良好热传导性,地下风道30与农业温室1的空气出口11和进气口20连通,利用地温直接对地下风道30内的空气进行降温,即地下风道30设在壳体23外,地下风道30埋设在地下,从农业温室1排出的空气进入到地下风道30内进行预降温后排入到壳体23内进行进一步降温。需要理解的是,图2所示的地下风道30的形状是示例性的。
在本发明的另一些实施例中,气态水回收装置2包括地下风道和液态水回收装置,地下风道的入口构造成进气口,地下风道的出口构造成出气口,液态水出口设在地下风道上,地下风道利用地温直接对进入到地下风道内的空气进行降温以得到液态水,液态水回收装置收集液化得到的液态水。也就是说,此时只利用地温对从农业温室1中排出的空气水进行降温以得到液态水。
也就是说,根据本发明实施例的气态水回收装置2,可包括四种制冷方式:第一种制冷方式是通过制冷剂在蒸发器、压缩机和冷凝器之间形成制冷循环,以实现对从农业温室1排入到壳体23内的空气进行降温的目的。
第二种制冷方式是:通过设有埋设在地下的地下风道30,从农业温室1排出的空气可进入地下风道30内以与地下环境进行热交换,从而实现对空气进行降温的目的。
第三种制冷方式是:通过利用空气-空气热交换器28降低从农业温室1排出的空气的温度。
第四种制冷方式是:通过水-气热交换器26以利用低温水对从农业温室1排出的空气进行降温。
换言之,根据本发明实施例的气态水回收装置2包括四种制冷方式,上述四种制冷方式可单独使用,也可同时使用或者是交叉使用。当然值得理解的是,上述的几种制冷方式是示例性的。从而根据本发明实施例的空气制冷装置2的制冷方式多样化,可满足不同的需求。
在本发明的优选实施例中,空气制冷装置2同时使用上述四种制冷方式,如图2中的实线箭头所示,在风机31的作用下,农业温室1内的空气从空气出口11进入到地下风道 30内,空气在地下风道30内与地下环境进行换热以进行第一次降温,经过第一次降温的空气从地下风道30进入到空气-空气热交换器28内与进入到空气-空气热交换器28内的冷空气进行换热以进行第二次降温。经过第二次降温的空气从空气换热器28排出并进入到水-气热交换器26的风道内,水-气热交换器26的水管内的低水温对进入到水-气热交换器26的风道内的空气进行第三次降温,经过三次降温的空气从水-气热交换器26排出并与蒸发器24进行换热以进行第四次降温,经过四次降温的空气从出气口21排出到自然大气中。其中,在每次降温的过程中,空气中的气态水都有可能冷凝成液态水,此时经过四次降温可充分保证大部分气态水液化成液态水,液态水收集装置收集降温过程中液化的液态水。
如图2所示,在空气的流动方向上,依次设置有地下风道30、空气-空气热交换器28、水-气热交换器26、蒸发器24和气液分离器27,液态水收集装置包括分别设在地下风道30内底壁、空气-空气热交换器28的下方、水-气热交换器26的下方、蒸发器24的下方和气液分离器27的下方的水槽,在每次降温的过程中,如果出现液态水,液态水将在重力的作用下落入到水槽内,如图2的虚线箭头所示,液态水在水槽内流动并最终流入到蓄水设施4内进行储存。
其中,上述的进入到空气-空气热交换器28内的冷空气可以是壳体23内的冷空气,上述的进入到空气-空气热交换器28内的冷空气也可以是自然大气中的冷空气以节省能源消耗。优选地,如图2中的实线箭头所示,经过四次降温的空气通过气液分离器27,气液分离器27拦截空气中的水雾,最后经过气液分离器27的空气进入到空气-空气热交换器28内以与经过一次降温的空气进行换热,最后经过四次降温的空气从出气口21排出。
为了防止能量耗散,在本发明的进一步实施例中,可在壳体23内设有保温隔热层,从而可提高能量利用率。
当壳体23内的温度高于0℃时,此时对气态水进行液化得到的凝露水会以不同粒径的雾滴形式悬浮于空气中,即以水雾的形式悬浮在空气中,为了保证液态水的充分回收,在本发明的一些实施例中,如图1和图2所示,气态水回收装置2还包括气液分离器27,该气液分离器27设在壳体23内用于拦截水雾。优选地,气液分离器27为丝网材料件,可选地,气液分离器27为金属丝网件、纤维丝网件或两者混编丝网件。更优选地,该气液分离器27为金属与玻璃纤维混编丝网,从而降低成本。进一步优选地,该气液分离器27为钢丝与玻璃纤维混编丝网,即将钢丝网和玻璃纤维网进行分层混编,钢丝网可将较大颗粒的水雾拦截,亲水性较好的玻璃纤维网可将颗粒较小的水雾与空气分离开,从而实现对液态水的充分收集。当然本发明不限于此,气液分离器27还可以为其他可收集水雾的设备,例如采用微孔过滤膜的设备、具有用惯性原理实现气液分离的离心机的设备或具有折流板的设备。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种空气水农业系统,其特征在于,包括:
    农业温室,所述农业温室具有空气进口、空气出口和供水进口;
    气态水回收装置,所述气态水回收装置具有进气口、出气口和液态水出口,所述进气口与所述农业温室的空气出口相连,所述液态水出口与所述农业温室的供水进口相连;和
    动力源,所述动力源与所述气态水回收装置相连。
  2. 根据权利要求1所述的空气水农业系统,其特征在于,所述动力源为绿色能源。
  3. 根据权利要求2所述的空气水农业系统,其特征在于,所述绿色能源为太阳能和/或风能。
  4. 根据权利要求1-3中任一项所述的空气水农业系统,其特征在于,所述气态水回收装置的液态水出口与蓄水设施相连,所述蓄水设施的出水口与所述农业温室的供水进口相连。
  5. 根据权利要求4所述的空气水农业系统,其特征在于,所述空气水农业系统还包括用于收集雨水的集雨装置,所述集雨装置与所述蓄水设施相连。
  6. 根据权利要求1所述的空气水农业系统,其特征在于,所述气态水回收装置包括空气制冷装置和液态水回收装置,所述空气制冷装置包括:
    壳体,所述进气口、所述出气口和所述液态水出口分别形成在所述壳体上;
    风机,所述风机和所述动力源相连,所述风机用于驱动空气从所述农业温室向所述壳体内流动;
    热交换装置,所述热交换装置用于降低所述壳体内的空气温度。
  7. 根据权利要求6所述的空气水农业系统,其特征在于,所述热交换装置包括:
    蒸发器和压缩机,所述蒸发器设在所述壳体内用于冷却所述壳体内的空气,所述压缩机与所述蒸发器和所述动力源相连。
  8. 根据权利要求6所述的空气水农业系统,其特征在于,所述热交换装置包括空气-空气热交换器,所述空气-空气热交换器有交叉风道,用于将从所述农业温室排出的空气与冷空气进行热量交换。
  9. 根据权利要求6所述的空气水农业系统,其特征在于,所述热交换装置包括水-气热交换器,所述水-气热交换器具有风道和水管,所述风道与所述壳体内连通,以利用所述水-气热交换器的所述水管内的水对从所述农业温室排出的空气进行降温。
  10. 根据权利要求7-9中任一项所述的空气水农业系统,其特征在于,所述热交换装置还包括地下风道,所述地下风道与所述空气出口和所述壳体的所述进气口连通,以利用地温直接对所述地下风道内的空气进行降温。
  11. 根据权利要求1所述的空气水农业系统,其特征在于,所述气态水回收装置包括地下风道和液态水回收装置,所述地下风道的入口构造成所述进气口,所述地下风道的出口构造成所述出气口,所述液态水出口设在所述地下风道上,所述地下风道利用地温直接对进入到所述地下风道内的空气进行降温。
  12. 根据权利要求1-11中任一项所述的空气水农业系统,其特征在于,所述气态水回收装置还包括气液分离器。
  13. 根据权利要求12所述的空气水农业系统,其特征在于,所述气液分离器为丝网材料件。
  14. 根据权利要求9所述的空气水农业系统,其特征在于,所述水-气热交换器内的所述水管的伸出所述壳体的一部分埋在地下预定深度,以利用地温降低所述水管内循环流动的水的温度。
  15. 根据权利要求1所述的空气水农业系统,其特征在于,所述农业温室设有栽培基质,所述栽培基质下设有防渗层,所述农业温室包括用于排出所述栽培基质内的液态水的排水口,所述排水口和所述农业温室的供水进口相连。
PCT/CN2014/086414 2013-09-12 2014-09-12 空气水农业系统 WO2015035940A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/021,297 US20160219797A1 (en) 2013-09-12 2014-09-12 Air water agricultural system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201320566064 2013-09-12
CN201320566064.9 2013-09-12
CN201310414919.0 2013-09-12
CN201310414919 2013-09-12
CN201320649843.5 2013-10-21
CN201310496072.5 2013-10-21
CN201310496072.5A CN103598033A (zh) 2013-09-12 2013-10-21 空气水农业系统
CN201320649843.5U CN203554969U (zh) 2013-09-12 2013-10-21 空气水农业系统

Publications (1)

Publication Number Publication Date
WO2015035940A1 true WO2015035940A1 (zh) 2015-03-19

Family

ID=52665091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086414 WO2015035940A1 (zh) 2013-09-12 2014-09-12 空气水农业系统

Country Status (2)

Country Link
US (1) US20160219797A1 (zh)
WO (1) WO2015035940A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107306694A (zh) * 2017-07-04 2017-11-03 天津春蔬园农业科技有限公司 一种新型温室湿度调节机构
WO2018146665A2 (en) * 2018-05-22 2018-08-16 Universidad Autónoma De Chiriquí Plant pot with controlled microenvironment for plants with special requirements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116034A (en) * 1998-02-25 2000-09-12 M & K Associates, Inc. System for producing fresh water from atmospheric air
CN1389095A (zh) * 2002-07-10 2003-01-08 北京师范大学 地-气热交换水蒸气回收系统
CN102972237A (zh) * 2012-06-26 2013-03-20 裴建生 一种从温控大棚中凝结制取灌溉水的装置
CN102986499A (zh) * 2012-11-07 2013-03-27 黑龙江海昌生物技术有限公司 一种基于地表温差的自供电辅冷空气汲水自灌溉系统
CN103598033A (zh) * 2013-09-12 2014-02-26 清华大学 空气水农业系统
CN203554969U (zh) * 2013-09-12 2014-04-23 清华大学 空气水农业系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116034A (en) * 1998-02-25 2000-09-12 M & K Associates, Inc. System for producing fresh water from atmospheric air
CN1389095A (zh) * 2002-07-10 2003-01-08 北京师范大学 地-气热交换水蒸气回收系统
CN102972237A (zh) * 2012-06-26 2013-03-20 裴建生 一种从温控大棚中凝结制取灌溉水的装置
CN102986499A (zh) * 2012-11-07 2013-03-27 黑龙江海昌生物技术有限公司 一种基于地表温差的自供电辅冷空气汲水自灌溉系统
CN103598033A (zh) * 2013-09-12 2014-02-26 清华大学 空气水农业系统
CN203554969U (zh) * 2013-09-12 2014-04-23 清华大学 空气水农业系统

Also Published As

Publication number Publication date
US20160219797A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
CN103598033A (zh) 空气水农业系统
CN105152247B (zh) 太阳能集热器和海水源热泵联合运行的海水淡化系统
CN204762612U (zh) 一种适用于海岛沙漠的自动灌溉装置
US20200018050A1 (en) Device and method for obtaining water from air on island
CN202577452U (zh) 一种从空气中取水的装置
CN202310744U (zh) 循环式地源冷水制冷/热系统
CN102992419A (zh) 淡化水方法、装置以及淡化水灌溉方法、装置
CN102373727A (zh) 太阳能造水站
CN203554969U (zh) 空气水农业系统
CN103510573B (zh) 一种收集空气中水资源的冷冻制水装置及制水方法
CN104236165A (zh) 太阳能蓄能冷热源风能塔热泵系统
CN108476823A (zh) 农用大棚加湿-除湿型盐水淡化系统
CN201892437U (zh) 闭式集成防霜热源塔
WO2015035940A1 (zh) 空气水农业系统
RU160016U1 (ru) Установка для получения воды
CN104131595A (zh) 阳光露水机(一种利用太阳能收集空气中水蒸气的方法)
CN204897461U (zh) 一种太阳能集热器和海水源热泵联合运行的海水淡化系统
CN210562402U (zh) 一种空气取水装置
CN103362175A (zh) 一种利用地下水冷源制取淡水的方法和装置
CN207379318U (zh) 一种具有冷凝聚液消雾功能的双曲线自然通风冷却塔
CN202503968U (zh) 种植大棚太阳能吸附式制冷装置
CN101698518B (zh) 利用含盐水蒸发进行降温的太阳能蒸馏水机的冷却装置
CN108131962A (zh) 基于深层土壤恒低温捕集高湿空气中水分的装置
CN207438699U (zh) 一种房屋用太阳能采暖通风设备
CN201520653U (zh) 一种太阳能蒸馏水机的蒸发式冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844798

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15021297

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844798

Country of ref document: EP

Kind code of ref document: A1