WO2015035851A1 - 一种传输数据的方法及设备 - Google Patents

一种传输数据的方法及设备 Download PDF

Info

Publication number
WO2015035851A1
WO2015035851A1 PCT/CN2014/084810 CN2014084810W WO2015035851A1 WO 2015035851 A1 WO2015035851 A1 WO 2015035851A1 CN 2014084810 W CN2014084810 W CN 2014084810W WO 2015035851 A1 WO2015035851 A1 WO 2015035851A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
core device
route
backup
gateway interface
Prior art date
Application number
PCT/CN2014/084810
Other languages
English (en)
French (fr)
Inventor
郝征
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19183604.8A priority Critical patent/EP3618369B1/en
Priority to EP14843338.6A priority patent/EP3035609B1/en
Priority to AU2014320926A priority patent/AU2014320926B2/en
Publication of WO2015035851A1 publication Critical patent/WO2015035851A1/zh
Priority to US15/068,281 priority patent/US10298487B2/en
Priority to US16/391,596 priority patent/US10819623B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and device for transmitting data. Background technique
  • the mobile bearer network is used to carry communication data between the base station and the base station controller; the mobile bearer network includes a core device.
  • the base station sends data to the base station controller
  • the base station first sends data to the core device, and then the core device sends the data.
  • the base station controller transmits data to the base station
  • the base station controller transmits the data to the core device, and then the core device transmits the data to the base station.
  • the mobile bearer network includes two core devices, which are a primary core device and a backup core device.
  • the primary core device activates the link between the primary core device and the base station, and The MLPPP (Multilink Point to Point Protocol) negotiation is performed with the base station through the link. If the negotiation is successful, the status of the base station gateway interface in the primary core device is set to a normal working state, and the base station in the primary core device is set.
  • the controller gateway interface state is a primary state, generating a first route between the primary core device and the base station, and generating a second route between the primary core device and the base station controller.
  • data can be transmitted through the first route and the second route.
  • the link between the primary core device and the base station fails, the link between the backup core device and the base station is activated, and the backup core device performs MLPPP negotiation with the base station through the link. If the negotiation succeeds, the backup core device is set.
  • the gateway interface state of the intermediate base station is in a normal working state, generating a third route between the backup core device and the base station, and sending the third route to the primary core device, so that the data transmitted between the base station and the base station controller passes the third route. And the second route is transmitted.
  • the negotiation time is long and the first route does not work during the MLPPP negotiation between the backup core device and the base station, thereby causing data loss between the base station controller and the base station to be lost.
  • a method of transmitting data comprising:
  • the primary route includes a first route between the primary core device and the first network element, and the primary core device and the second network element a second route between the first network element and the second network element by using the primary route;
  • the backup core device Sending, to the backup core device, the identity identifier ID and the status of the first gateway interface that is connected to the first network element, where the primary core device generates the first network element and the first a backup route between the two network elements, the backup route including a third route between the backup core device and the first network element, and a fourth between the backup core device and the second network element Routing
  • the generating a primary route between the first network element and the second network element includes:
  • the state of the first gateway interface that is connected to the first network element that is included in the primary core device is set to a normal working state, and the first between the primary core device and the first network element is generated.
  • the first route and the second route between the primary core device and the second network element form a primary route between the first network element and the second network element.
  • the second route between the second network element is configured to form a fourth route between the backup core device and the second network element.
  • the third route and the fourth route are used to form a backup route between the first network element and the second network element.
  • the generating a primary route between the first network element and the second network element includes: Activating a link between the primary core device and the first network element, and performing MLPPP negotiation with the first network element by using the link;
  • the state of the first gateway interface that is connected to the first network element that is included in the primary core device is set to a normal working state, and the first between the primary core device and the first network element is generated.
  • the method further includes:
  • the method further includes:
  • the first core device includes the first network element that is connected to the first network element.
  • the ID and status of the gateway interface are sent to the backup core device, so that the backup core device sets the state of the second gateway interface that is connected to the first network element to an inactive state.
  • the data between the first network element and the second network element is transmitted through the backup route.
  • the generating, according to an ID and a state of a first gateway interface that is connected to the first network element, The backup route between the first network element and the second network element includes: Setting the state of the second gateway interface connected to the first network element, which is included in the backup core device, to be normal according to the ID and state of the first gateway interface that is connected to the first network element a third route between the backup core device and the first network element, and the third route is sent to the primary core device, so that the primary core device uses the third route and The fourth route between the backup core device and the second network element constitutes a backup route between the first network element and the second network element.
  • the generating, according to the ID and state of the first gateway interface that is connected to the first network element, The backup route between the first network element and the second network element includes:
  • the method further includes:
  • the method further includes:
  • the primary core device that is sent by the primary core device includes the first ID and status of the first gateway interface connected to a network element;
  • an apparatus for transmitting data includes:
  • a first generation module configured to generate a primary route between the first network element and the second network element, where the primary route includes a first route between the primary core device and the first network element, and the primary core device Transmitting, by the second route, the data between the first network element and the second network element by using the second route between the first network element and the second network element;
  • a first sending module configured to send, to the backup core device, an identity identifier and a status of the first gateway interface that is connected to the first network element, and the backup core device generates the a backup route between the network element and the second network element, where the backup route includes a third route between the backup core device and the first network element, and the backup core device and the second a fourth route between network elements;
  • the first transmission module is configured to: when the first route fails, transmit data between the first network element and the second network element by using the backup route.
  • the first generating module includes:
  • a first negotiation unit configured to activate a link between the primary core device and the first network element, and perform a multi-link point-to-point protocol MLPPP negotiation with the first network element by using the link;
  • a first generating unit configured to: if the negotiation is successful, setting a state of the first gateway interface that is connected to the first network element that is included in the primary core device to a normal working state, and generating the primary core device and the first a first route between a network element;
  • the first component is configured to form the first route and the second route between the primary core device and the second network element to form a primary route between the first network element and the second network element.
  • the device further includes:
  • a first receiving module configured to receive a third route between the backup core device and the first network element that is sent by the backup core device
  • a first component module configured to form a fifth route between the primary core device and the backup core device and a second route between the second core element of the primary core device to form the backup core device and a fourth route between the second network elements;
  • a second component module configured to form the third route and the fourth route to form a backup route between the first network element and the second network element.
  • the first generating module includes:
  • a second negotiation unit configured to activate a link between the primary core device and the first network element, and perform MLPPP negotiation with the first network element by using the link;
  • a second generating unit configured to: if the negotiation is successful, setting a state of the first gateway interface that is connected to the first network element that is included in the primary core device to a normal working state, and generating the primary core device and the first a first route between a network element; a second component, configured to send the first route to the access device, so that the access device uses the first route and the second route between the primary core device and the second network element Forming a primary route between the first network element and the second network element.
  • the device further includes:
  • a second sending module configured to: if an abnormal alarm of the primary core device, the ID and status of the first gateway interface that is connected to the first network element, and the primary core device The abnormal alarm information is sent to the backup core device, so that the backup core sets the state of the second gateway interface that is connected to the first network element to be inactive.
  • the device further includes:
  • a third sending module configured to: if the user manually sets the first gateway interface status of the primary core device that is connected to the first network element to be inactive, the primary core device includes the The ID and the status of the first gateway interface connected to the network element are sent to the backup core device, so that the backup core device sets the state of the second gateway interface that is connected to the first network element to be inactive. status.
  • a device for transmitting data is provided, where the device includes:
  • a second receiving module configured to receive an identity ID and a status of the first gateway interface that is connected to the first network element that is sent by the primary core device;
  • a second generation module configured to generate a backup route between the first network element and the second network element according to an ID and a state of the first gateway interface that is connected to the first network element ;
  • a second transmission module configured to: when the primary route between the first network element and the second network element fails, transmit the first network element and the second network element by using the backup route Data between.
  • the second generating module includes:
  • a first setting unit configured to connect, according to an ID and a state of the first gateway interface that is connected to the first network element, that the primary core device is connected to the first network element The status of the gateway interface is set to the normal working state;
  • a first sending unit configured to generate a third route between the backup core device and the first network element, where The third route is sent to the primary core device, so that the primary core device forms the third route and the fourth route between the backup core device and the second network element to form the first network element and the A backup route between the second network elements.
  • the second generating module includes:
  • a second setting unit configured to connect, according to an ID and a state of the first gateway interface that is connected to the first network element, the second core device that is connected to the first network element The status of the gateway interface is set to the normal working state;
  • a second sending unit configured to generate a third route between the backup core device and the first network element, and send the third route to the access device, so that the access device
  • the route and the fourth route between the backup core device and the second network element form a backup route between the first network element and the second network element.
  • the device further includes:
  • a third receiving module configured to receive an ID and a status of the first gateway interface that is connected to the first network element, and abnormal alarm information of the primary core device that is sent by the primary core device;
  • a first setting module configured to connect, according to an ID and a state of the first gateway interface that is connected to the first network element, the second core device that is connected to the first network element The status of the gateway interface is set to inactive.
  • the device further includes:
  • a fourth receiving module configured to: if the user manually sets the state of the first gateway interface that is connected to the first network element that is included in the primary core device to be inactive, receive the primary core sent by the primary core device The ID and status of the first gateway interface connected to the first network element included in the device;
  • an apparatus for transmitting data configured to connect, according to the ID and state of the first gateway interface that is connected to the first network element, the second core device that is connected to the first network element The status of the gateway interface is set to inactive.
  • an apparatus for transmitting data is provided, the apparatus comprising a first memory and a first process for performing the method of transmitting data.
  • an apparatus for transmitting data is provided, the apparatus comprising a second memory and a second process for performing the method of transmitting data.
  • the primary route and the backup route between the base station and the base station controller are stored in the primary core device. If the first route between the primary core device and the base station fails, the backup core device and the base station are not required to be backed up.
  • FIG. 1 is a flowchart of a method for transmitting data according to Embodiment 1 of the present invention
  • FIG. 2 is a system architecture diagram of a transmission data according to Embodiment 2 of the present invention.
  • FIG. 3 is a flowchart of a method for transmitting data according to Embodiment 2 of the present invention.
  • FIG. 4 is a system architecture diagram of a transmission data according to Embodiment 3 of the present invention.
  • FIG. 5 is a flowchart of a method for transmitting data according to Embodiment 3 of the present invention.
  • FIG. 6 is a flowchart of a method for transmitting data according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic structural diagram of an apparatus for transmitting data according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic structural diagram of an apparatus for transmitting data according to Embodiment 6 of the present invention.
  • FIG. 9 is a schematic structural diagram of an apparatus for transmitting data according to Embodiment 7 of the present invention.
  • FIG. 10 is a schematic structural diagram of an apparatus for transmitting data according to Embodiment 8 of the present invention. detailed description
  • the first core device and the second core device may each be a router.
  • the base station may send data to the base station by using the first core device and/or the second core device.
  • the controller and when the base station controller transmits data to the base station, the base station controller may also transmit data to the base station through the first core device and/or the second core device.
  • Embodiment 1 An embodiment of the present invention provides a method for transmitting data. Referring to FIG. 1, the method includes:
  • S101 Generate a primary route between the first network element and the second network element, where the primary route includes a first route between the primary core device and the first network element, and a second between the primary core device and the second network element. Routing, the data between the first network element and the second network element is transmitted through the primary route;
  • S102 Send the identity ID and the status of the first gateway interface that is connected to the first network element to the backup core device, so that the backup core device generates a backup route between the first network element and the second network element.
  • the backup route includes a third route between the backup core device and the first network element, and a fourth route between the backup core device and the second network element.
  • the execution entity of the embodiment of the present invention may be a main core device.
  • the primary route and the backup route between the base station and the base station controller are stored in the primary core device. If the first route between the primary core device and the base station fails, the backup core device and the base station are not required to be backed up.
  • the backup core device and the base station controller are not required to be backed up.
  • For the MLPPP negotiation only the route for transmitting data between the primary core device base station and the base station controller is switched to the backup route, and the data communication between the base station and the base station controller is implemented through the backup route. Since the time required to switch the route for transmitting data between the base station and the base station controller to the backup route is extremely short, when the link between the primary core device and the base station fails, the data transmitted between the base station controller and the base station is reduced. Lost.
  • Embodiments of the present invention provide a method for transmitting data.
  • the system architecture shown in FIG. 2 includes a base station, a base station controller, a first core device, and a second core device.
  • One of the first core device and the second core device is a primary core device, and the other is a backup core device.
  • the first network element is a base station
  • the second network element is a base station controller
  • the first gateway interface that is connected to the first network element included in the primary core device is a base station gateway interface included in the primary core device, and is backed up.
  • the second gateway interface connected to the first network element included in the core device is a base station gateway interface included in the backup core device.
  • the method includes:
  • S201 Performing active/standby state negotiation between the first core device and the second core device, and determining the primary core device and the backup core device;
  • the first core device and the second core device may each be a router.
  • the base station may send data through the first core device and/or the second core device.
  • the base station controller may also transmit data to the base station through the first core device and/or the second core device.
  • the first core device and the second core device respectively set a gateway interface for the base station, and the first core
  • the base station gateway interface included in the device and the second base device include a base station gateway interface configured with the same IPdnternet Protocol, a protocol interconnected between the networks, and the first core device and the second core device respectively set a gateway for the base station controller. interface.
  • the first core device sends a first negotiation packet to the second core device, where the first negotiation packet carries the priority of the first core device, the state of the base station gateway interface included by the first core device, and the first core.
  • the second core device sends a second negotiation packet to the first core device, where the second negotiation packet carries the priority of the second core device
  • the state of the base station gateway interface included in the second core device and the base station controller network included in the second core device The status of the interface, the first core device receives the second negotiation message, and if the status of the base station gateway interface included in the second core device and the status of the base station controller gateway interface included in the second core device are normal, the second The priority of the core device is compared with the priority of the first core device. If the priority of the second core device is less than the priority of the first core device, the first core device sets the first core device as the primary core device, and the setting The second core device is a backup core device.
  • the priority of the first core device is less than the priority of the second core device, setting the second core device as the primary core device, and setting the first core device as the backup core device.
  • the first core device is set as the primary core device.
  • the first core device and the second core device periodically send negotiation packets to each other to perform active/standby state negotiation.
  • the first core device does not receive the second negotiation packet sent by the second core device within the preset time, determine that the second core device is faulty, set the first core device as the primary core device, and set the second core.
  • the device is a backup core device; if the second core device does not receive the first negotiation packet sent by the first core device within a preset time, determining that the first core device is faulty, setting the second core device as the primary core device, and Set the first core device as the backup core device.
  • the primary core device activates a link between the base station and the base station, and performs MLPPP negotiation with the base station through the link. Specifically, the primary core device sends a PPP (Point to Point Protocol) to the base station through the link. The point protocol is the negotiation packet, and the base station receives the PPP negotiation message. If the base station determines to establish an MLPPP link with the primary core device, the base station sends an acknowledgment message to the primary core device, and when the primary core device receives the acknowledgment message, it determines The primary core device negotiates successfully with the base station.
  • PPP Point to Point Protocol
  • the base station sends a reject packet to the primary core device, and the primary core device fails to negotiate with the base station.
  • S203 If the negotiation is successful, setting a state of the base station gateway interface included in the primary core device to a normal working state, and generating a first route between the primary core device and the base station;
  • the negotiation is successful, setting the status of the corresponding base station gateway interface to a normal working state according to the ID (identity, identity identification number) of the base station gateway interface included in the primary core device, and establishing a base station gateway interface included in the primary core device.
  • the MLPPP link between the base stations determines the MLPPP link as the first route between the primary core device and the base station.
  • the normal working state set by the base station gateway interface included in the primary core device is negotiated, and may also be referred to as a negotiated normal working state.
  • the second route when the base station controller sends data to the base station, first sends the data to the primary core device through the second route, and then sends the data to the base station; when the primary core device fails, the base station controller and the backup core device are generated.
  • the backup second route when the base station controller sends data to the base station, first sends the data to the backup core device through the backup second route, and then sends the data to the base station.
  • the primary core device combines the first route and the second route between the primary core device and the base station controller to form a primary route between the base station and the base station controller.
  • the primary route is stored in the primary core device.
  • the primary core device sends the ID and status of the base station gateway interface that is included in the primary core device to the backup core device.
  • the status of the base station gateway interface included in the primary core device is a normal working state.
  • the backup core device receives the ID and status of the base station gateway interface included in the primary core device sent by the primary core device, and sets the state of the base station gateway interface included in the primary core device to work normally according to the ID and status of the base station gateway interface included in the primary core device.
  • the backup core device receives the ID and state of the base station gateway interface included in the primary core device sent by the primary core device, and obtains the base station gateway interface included in the backup core device according to the ID of the base station gateway interface included in the primary core device,
  • the state of the base station gateway interface included in the primary core device is a normal working state
  • the state of the base station gateway interface included in the obtained backup core device is set to a normal working state.
  • the state set by the base station gateway interface included in the backup core device is set by the state of the base station gateway interface included in the primary core device, that is, the normal working state of the base station gateway interface included in the backup core device may be the normal working state of the backup. .
  • the primary core device sends the abnormality alarm information to the backup core device, and the backup core device receives the primary core device, including the ID and the status of the base station gateway interface.
  • the status of the base station gateway interface included in the base node is set to be inactive according to the ID of the base station gateway interface included in the primary core device.
  • the primary core device sends the ID and status of the base station gateway interface that is included in the primary core device to the backup core device, so that the backup core device receives the The base station gateway interface ID and status are set to the inactive state of the base station gateway interface included in the base station.
  • setting the state of the base station gateway interface included in the backup core device has the highest priority, that is, the base station gateway interface set by the backup core device after performing MLPPP negotiation with the base station.
  • the priority of the state is greater than the priority of the state of the base station gateway interface set by the backup core device according to the state of the base station gateway interface included in the primary core device, that is, the priority of the negotiated normal working state is greater than the priority of the backup normal working state.
  • the backup core device generates a third route between the core device and the base station, and sends the third route to the primary core device.
  • the backup core device establishes an MLPPP link between the base station gateway interface and the base station, and determines the link as a third route between the backup core device and the base station, and sends the third route to the primary core device.
  • the primary core device receives the third route, and forms a fourth route between the third route and the backup core device and the base station controller to form a backup route between the base station and the base station controller.
  • the primary core device receives the third route, and the fifth route between the backup core device and the primary core device and the second route between the primary core device and the base station controller form a backup between the backup core device and the base station controller.
  • the fourth route forms a backup route between the third route and the backup core device and the base station controller to form a backup route between the base station and the base station controller.
  • the primary core device receives the third route, and the third route and the fourth route between the backup core device and the base station controller are backed up and stored in the primary core device, and the storage base station and the base station are controlled by the primary core device.
  • Two routes between the devices namely primary route and backup route.
  • the base station and the base station controller transmit data through the primary route stored in the primary core device.
  • the primary core device stores two routes, that is, the primary route and the backup route. When the primary route fails, traffic can be quickly switched to the backup route, which speeds up network convergence.
  • the link between the primary core device and the base station fails, that is, the first route between the primary core device and the base station fails, and the route for transmitting data between the base station and the base station controller is switched to the backup route,
  • the backup route transmits data between the base station and the base station controller.
  • the active/standby status between the primary core device and the backup core device does not change.
  • the data sent by the base station controller to the base station is first sent to the primary core. device.
  • the primary route and the backup route between the base station and the base station controller are stored in the primary core device. If the first route between the primary core device and the base station fails, the backup core device and the base station are not required to be backed up.
  • the backup core device and the base station controller are not required to be backed up.
  • For the MLPPP negotiation only the route for transmitting data between the primary core device base station and the base station controller is switched to the backup route, and the data communication between the base station and the base station controller is implemented through the backup route. Since the time required to switch the data transmission between the base station and the base station controller to the backup route is extremely short, when the link between the primary core device and the base station fails, the data transmitted between the base station controller and the base station can be reduced. Lost.
  • Embodiments of the present invention provide a method for transmitting data.
  • the system architecture shown in FIG. 4 includes a base station, a base station controller, an access device, a first core device, and a second core device.
  • One of the first core device and the second core device is a primary core device, and the other is The core device is backed up, and in the embodiment of the present invention, the first network element is a base station controller, and the second network element is a base station, and the first gateway interface that is connected to the first network element included in the primary core device is a base station included in the primary core device.
  • the controller gateway interface, the second gateway interface connected to the first network element included in the backup core device is a base station controller gateway interface included in the backup core device.
  • the method includes:
  • S301 Perform an active/standby state negotiation between the first core device and the second core device, and determine the primary core device and the backup core device.
  • the first core device and the second core device may each be a router.
  • the base station may send data through the first core device and/or the second core device.
  • the base station controller may also transmit data to the base station through the first core device and/or the second core device.
  • the first core device and the second core device respectively set a gateway interface for the base station, and the first core
  • the base station controller gateway interface included in the device and the base station controller gateway interface included in the second core device are configured with the same IP (Internet Protocol) protocol, and the first core device and the second core device are respectively The base station sets up a gateway interface.
  • IP Internet Protocol
  • the first core device sends a first negotiation packet to the second core device, where the first negotiation packet carries the priority of the first core device, the state of the base station gateway interface included by the first core device, and the first core.
  • the second core device sends a second negotiation packet to the first core device, where the second negotiation packet carries the priority of the second core device
  • the state of the base station gateway interface included in the second core device and the base station controller network included in the second core device The status of the interface, the first core device receives the second negotiation message, and if the status of the base station gateway interface included in the second core device and the status of the base station controller gateway interface included in the second core device are normal, the second The priority of the core device is compared with the priority of the first core device. If the priority of the second core device is less than the priority of the first core device, the first core device sets the first core device as the primary core device, and the setting The second core device is a backup core device.
  • the priority of the first core device is less than the priority of the second core device, setting the second core device as the primary core device, and setting the first core device as the backup core device.
  • the first core device and the second core device periodically send negotiation packets to each other to perform active/standby state negotiation.
  • the first core device does not receive the second negotiation packet sent by the second core device within the preset time, determine that the second core device is faulty, set the first core device as the primary core device, and set the second core.
  • the device is a backup core device; if the second core device does not receive the first negotiation packet sent by the first core device within a preset time, determining that the first core device is faulty, setting the second core device as the primary core device, and Set the core device to be the backup core device.
  • the primary core device activates a link between the primary core device and the base station controller, and performs MLPPP negotiation with the base station controller through the link.
  • the primary core device sends a PPP (Point to Point Protocol) negotiation packet to the base station controller, and the base station controller receives the PPP negotiation packet, if the base station controller determines to establish the MLPPP with the primary core device. If the link is received, the base station controller sends an acknowledgment message to the primary core device. When the primary core device receives the acknowledgment message, it determines that the primary core device negotiates with the base station controller successfully. Further, if the base station controller does not agree to establish an MLPPP link with the primary core device, the base station controller sends a reject message to the primary core device, and the primary core device fails to negotiate with the base station controller.
  • PPP Point to Point Protocol
  • the negotiation is successful, according to the ID of the base station controller gateway interface included in the primary core device.
  • the normal working state set by the base station controller gateway interface included in the primary core device is negotiated, and may also be referred to as a negotiated normal working state.
  • S304 The primary core device sends the first route to the access device.
  • the access device transmits an access layer transmission device in the network.
  • the access device receives the first route, and combines the first route and the second route between the primary core device and the base station into a primary route between the base station and the base station controller.
  • the access device receives the first route, and the sixth route between the primary core device and the access device and the seventh route between the access device and the base station form a second route between the primary core device and the base station,
  • the first route and the second route between the primary core device and the base station form a primary route between the base station and the base station controller.
  • the primary route is stored in the access device.
  • the primary core device sends the ID and status of the base station controller gateway interface that it includes to the backup core device.
  • the status of the base station controller gateway interface included in the main core device is a normal working state.
  • the backup core device receives the ID and status of the base station controller gateway interface included in the primary core device sent by the primary core device, and sets the base station controller gateway included in the base controller gateway interface interface and the state included in the primary core device. The status of the interface is normal.
  • the backup core device receives the ID and status of the base station controller gateway interface included in the primary core device sent by the primary core device, and obtains the base station controller included in the backup core device according to the ID of the base station controller gateway interface included in the primary core device.
  • the state of the gateway interface of the base station controller included in the acquired backup core device is a normal working state.
  • the state set by the base station controller gateway interface included in the backup core device is set by the state of the base station controller gateway interface included in the primary core device, that is, the base station controller gateway included in the backup core device is connected.
  • the normal working state of the port can be the normal working state of the backup.
  • the primary core device sends the abnormality alarm information to the backup core device, and the backup core device receives the primary core device.
  • the status of the base station controller gateway interface included in the base controller is not in the working state according to the ID of the base station controller gateway interface included in the main core device.
  • the primary core device sends the ID and status of the base station controller gateway interface included to the backup core device to enable the backup.
  • the core device sets the state of the base station controller gateway interface included in the base station controller to the inactive state according to the received base station controller gateway interface ID and status.
  • setting the status of the base station controller gateway interface included in the backup core device has the highest priority, that is, after the backup core device performs MLPPP negotiation with the base station controller.
  • the priority of the set base station controller gateway interface is greater than the priority of the backup core device according to the state of the base station controller gateway interface set by the primary core device, and the priority of the normal working state is negotiated.
  • the level is greater than the priority of the backup normal working state.
  • the backup core device generates a third route between the core device and the base station controller, and sends the third route to the access device.
  • the backup core device establishes an MLPPP link between the base station controller gateway interface and the base station controller, and determines the link as a third route between the backup core device and the base station controller, and the third route is Send to the access device.
  • the access device receives the third route, and forms a third route between the third route and the backup core device and the base station to form a backup route between the base station and the base station controller.
  • the access device receives the third route, and the eighth route between the backup core device and the access device and the seventh route between the access device and the base station form a fourth route between the backup core device and the base station,
  • the fourth route between the third route and the backup core device and the base station constitutes a backup route between the base station and the base station controller.
  • the primary core device receives the third route, and the third route and the fourth route between the backup core device and the base station are backed up and stored in the access device, where the access device stores the base station and the base station controller. Two routes between the primary route and the backup route.
  • the base station and the base station controller transmit data through the primary route stored in the access device.
  • the main core device stores two routes, that is, a primary route and a backup route.
  • a primary route fails, It can quickly switch traffic to backup routes, speeding up network convergence.
  • the primary core device may first send the first route to the access device, and then send the ID and status of the base station controller gateway interface included therein to the backup core device, or may first include the base station controller gateway interface thereof.
  • the ID and the status are sent to the backup core device, and the first route is sent to the access device.
  • the first route and the ID of the base station controller gateway interface included in the main core device are sent.
  • the order of the status is not limited.
  • the link between the primary core device and the base station controller fails, that is, the first route between the primary core device and the base station controller fails, and the route for transmitting data between the base station and the base station controller is switched to
  • the backup route transfers data between the base station and the base station controller through the backup route.
  • the primary route and the backup route between the base station and the base station controller are stored in the access device, and if the first route between the primary core device and the base station controller fails, the core device does not need to be backed up.
  • the MLPPP negotiation with the base station controller only needs the access device to switch the route for transmitting data between the base station and the base station controller to the backup route, and implement data communication between the base station and the base station controller through the backup route. Since the time required to switch the route for transmitting data between the base station and the base station controller to the backup route is extremely short, when the link between the primary core device and the base station controller fails, the transmission between the base station controller and the base station can be reduced. The data is lost.
  • An embodiment of the present invention provides a method for transmitting data. Referring to FIG. 6, the method includes:
  • S401 Receive an identity ID and a status of a first gateway interface that is connected to the first network element, that is sent by the primary core device, and that is sent by the primary core device.
  • S402 Generate a backup route between the first network element and the second network element according to the ID and state of the first gateway interface that is connected to the first network element.
  • the execution entity of the embodiment of the present invention may be a backup core device.
  • the primary route and the backup route between the base station and the base station controller are stored in the access device, and if the first route between the primary core device and the base station controller fails, the core device does not need to be backed up.
  • MLPPP negotiation with the base station controller requires only the access device to transmit data between the base station and the base station controller.
  • an embodiment of the present invention provides an apparatus for transmitting data, where the apparatus includes:
  • the first generation module 501 is configured to generate a primary route between the first network element and the second network element, where the primary route includes a first route between the primary core device and the first network element, and the primary core device and the second network a second route between the elements, the data between the first network element and the second network element is transmitted through the primary route;
  • the first sending module 502 is configured to send, to the backup core device, the identity ID and the status of the first gateway interface that is connected to the first network element, and the backup core device generates the first network element and the second network.
  • the backup route between the backup core device includes a third route between the backup core device and the first network element, and a fourth route between the backup core device and the second network element.
  • the first transmission module 503 is configured to: when the first route fails, transmit data between the first network element and the second network element by using a backup route.
  • the first generating module 501 includes:
  • a first negotiation unit configured to activate a link between the primary core device and the first network element, and perform a multi-link point-to-point protocol MLPPP negotiation with the first network element by using the link;
  • a first generating unit configured to: if the negotiation succeeds, setting a state of the first gateway interface that is connected to the first network element included in the main core device to a normal working state, and generating a first between the primary core device and the first network element
  • the first component is configured to form a first route between the first network element and the second core element and a second route between the first network element and the second network element.
  • the device further includes:
  • a first receiving module configured to receive a third route between the backup core device and the first network element sent by the backup core device
  • the first component module is configured to form a fourth route between the primary core device and the backup core device and a second route between the second core element of the primary core device to form a fourth route between the backup core device and the second network element.
  • the second component module is configured to form a third route and a fourth route to form a backup route between the first network element and the second network element.
  • the first generating module 501 includes: a second negotiation unit, configured to activate a link between the primary core device and the first network element, and perform MLPPP negotiation with the first network element by using the link;
  • a second generating unit configured to: if the negotiation succeeds, setting a state of the first gateway interface that is connected to the first network element, where the primary core device is connected, to a normal working state, and generating a first between the primary core device and the first network element a second component, configured to send the first route to the access device, where the access device combines the first route and the second route between the primary core device and the second network element to form the first network element and the second The primary route between NEs.
  • the device further includes:
  • the second sending module is configured to send, to the backup core device, the ID and status of the first gateway interface that is connected to the first network element and the abnormal alarm information of the primary core device, if the primary core device has an abnormal alarm. , causing the backup core to set the state of the second gateway interface that is connected to the first network element to be inactive.
  • the device further includes:
  • a third sending module configured to: if the user manually sets the first gateway interface status of the primary core device that is connected to the first network element to be inactive, the first gateway connected to the first network element included in the primary core device The ID and status of the interface are sent to the backup core device, so that the backup core device sets the state of the second gateway interface that is connected to the first network element to be inactive.
  • the primary route and the backup route between the base station and the base station controller are stored in the primary core device. If the first route between the primary core device and the base station fails, the backup core device and the base station are not required to be backed up.
  • the backup core device and the base station controller are not required to be backed up.
  • For the MLPPP negotiation only the route for transmitting data between the primary core device base station and the base station controller is switched to the backup route, and the data communication between the base station and the base station controller is implemented through the backup route. Since the time required to switch the data transmission between the base station and the base station controller to the backup route is extremely short, when the link between the primary core device and the base station fails, the data transmitted between the base station controller and the base station can be reduced. Lost.
  • An embodiment of the present invention provides a device for transmitting data.
  • the device includes:
  • the second receiving module 601 is configured to receive an identity ID and a status of the first gateway interface that is connected to the first network element that is included in the primary core device that is sent by the primary core device;
  • the second generation module 602 is configured to generate a backup route between the first network element and the second network element according to the ID and state of the first gateway interface that is connected to the first network element,
  • the second transmission module 603 is configured to: when the primary route between the first network element and the second network element fails, transmit data between the first network element and the second network element by using a backup route.
  • the second generation module 602 includes:
  • a first setting unit configured to set, according to an ID and a state of the first gateway interface that is connected to the first network element, that is included in the primary core device, a state of the second gateway interface that is connected to the first network element Normal working condition;
  • the first sending unit is configured to generate a third route between the backup core device and the first network element, and send the third route to the primary core device, so that the primary core device and the third core and the backup core device and the second network element
  • the fourth route between the two constitutes a backup route between the first network element and the second network element.
  • the second generating module 602 includes:
  • a second setting unit configured to set, according to an ID and a state of the first gateway interface that is connected to the first network element, the primary core device, to a state of the second gateway interface that is connected to the first network element Normal working condition;
  • a second sending unit configured to generate a third route between the backup core device and the first network element, and send the third route to the access device, so that the access device sets the third route and the backup core device and the second network element
  • the fourth route between the two constitutes a backup route between the first network element and the second network element.
  • the device further includes:
  • a third receiving module configured to receive an ID and a status of the first gateway interface that is connected to the first network element, and an abnormal alarm information of the primary core device, where the primary core device sends the primary core device;
  • a first setting module configured to set, according to an ID and a state of the first gateway interface that is connected to the first network element, that is included in the primary core device, a state of the second gateway interface that is connected to the first network element Not working.
  • the device further includes:
  • a fourth receiving module configured to: if the user manually sets the state of the first gateway interface that is connected to the first network element that is included in the primary core device to be inactive, the primary core device that is sent by the primary core device includes the first network element ID and status of the connected first gateway interface;
  • a second setting module configured to set, according to an ID and a state of the first gateway interface that is connected to the first network element, that is included in the primary core device, a state of the second gateway interface that is connected to the first network element Not working.
  • the primary route and the backup route between the base station and the base station controller are stored in the access device, and if the first route between the primary core device and the base station controller fails, the core device does not need to be backed up.
  • the MLPPP negotiation with the base station controller only needs the access device to switch the route for transmitting data between the base station and the base station controller to the backup route, and implement data communication between the base station and the base station controller through the backup route. Due to the base station and The time required for the route switching between the base station controllers to switch to the backup route is particularly short, so when the link between the primary core device and the base station controller fails, the data loss transmitted between the base station controller and the base station can be reduced.
  • An embodiment of the present invention provides a device for transmitting data.
  • the device includes:
  • the first memory 701 and the first processor 702 are configured to perform a method for transmitting data as described below, including:
  • the primary route includes a first route between the primary core device and the first network element, and the primary core device and the second network element a second route between the first network element and the second network element by using the primary route;
  • the backup core device Sending, to the backup core device, the identity identifier ID and the status of the first gateway interface that is connected to the first network element, where the primary core device generates the first network element and the first a backup route between the two network elements, the backup route including a third route between the backup core device and the first network element, and a fourth between the backup core device and the second network element Routing
  • the generating a primary route between the first network element and the second network element includes:
  • the state of the first gateway interface that is connected to the first network element that is included in the primary core device is set to a normal working state, and the first between the primary core device and the first network element is generated.
  • the first route and the second route between the primary core device and the second network element form a primary route between the first network element and the second network element.
  • the method further includes:
  • the second route between the second network element is configured to form a fourth route between the backup core device and the second network element.
  • the third route and the fourth route are used to form a backup route between the first network element and the second network element.
  • the generating a primary route between the first network element and the second network element includes:
  • the state of the first gateway interface that is connected to the first network element that is included in the primary core device is set to a normal working state, and the first between the primary core device and the first network element is generated.
  • the method further includes:
  • the method further includes:
  • the first core device includes the first network element that is connected to the first network element.
  • the ID and status of the gateway interface are sent to the backup core device, so that the backup core device sets the state of the second gateway interface that is connected to the first network element to an inactive state.
  • the primary route and the backup route between the base station and the base station controller are stored in the primary core device. If the first route between the primary core device and the base station fails, the backup core device and the base station are not required to be backed up.
  • the backup core device and the base station controller are not required to be backed up.
  • For the MLPPP negotiation only the route for transmitting data between the primary core device base station and the base station controller is switched to the backup route, and the data communication between the base station and the base station controller is implemented through the backup route. Since the time required to switch the data transmission between the base station and the base station controller to the backup route is extremely short, when the link between the primary core device and the base station fails, the data transmitted between the base station controller and the base station can be reduced. Lost.
  • An embodiment of the present invention provides a device for transmitting data.
  • the device includes:
  • the second memory 801 and the second processor 802 are configured to perform a method for transmitting data as described below, including:
  • the data between the first network element and the second network element is transmitted through the backup route.
  • the backup route between the first network element and the second network element is generated according to the ID and state of the first gateway interface that is connected to the first network element, Includes:
  • the method further includes:
  • the method further includes:
  • the primary core device that is sent by the primary core device includes the first ID and status of the first gateway interface connected to a network element;
  • the primary route and the backup route between the base station and the base station controller are stored in the access device, and if the first route between the primary core device and the base station controller fails, the core device does not need to be backed up.
  • MLPPP negotiation with the base station controller requires only the access device to transmit data between the base station and the base station controller.
  • the data transmission device provided by the foregoing embodiment transmits data
  • only the division of each functional module is used for example.
  • the function distribution may be completed by different functional modules according to requirements.
  • the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the device for transmitting data provided by the foregoing embodiment is the same as the method for transmitting the data. For the specific implementation process, refer to the method embodiment, and details are not described herein again.
  • the storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种传输数据的方法及设备,属于通信领域。该方法包括:生成第一网元与第二网元之间的主路由,主路由包括主核心设备与第一网元之间的第一路由和主核心设备与第二网元之间的第二路由,通过主路由传输第一网元与第二网元之间的数据;将主核心设备包括的与第一网元相连的第一网关接口的身份标识ID和状态发送给备份核心设备,使备份核心设备生成第一网元与第二网元之间的备份路由,备份路由包括备份核心设备与第一网元之间的第三路由和备份核心设备与第二网元之间的第四路由;当第一路由出现故障时,通过备份路由传输第一网元与第二网元之间的数据。本发明可以降低切换路由的时间,进而减少基站与基站控制器之间传输的数据丢失。

Description

一种传输数据的方法及设备 本申请要求于 2013年 09月 13日提交中国专利局、 申请号为 201310419790. 2、 发 明名称为 "一种传输数据的方法及设备"的中国专利申请的优先权, 其全部内容通过引 用结合在本申请中。
技术领域
本发明涉及通信领域, 特别涉及一种传输数据的方法及设备。 背景技术
移动承载网用于承载基站与基站控制器之间的通信数据; 移动承载网包括核心设 备, 当基站向基站控制器发送数据时, 基站首先将数据发送到核心设备, 再由核心设备 将数据发送到基站控制器, 而当基站控制器向基站发送数据时, 基站控制器首先将数据 发送到核心设备, 再由核心设备将数据发送到基站。
目前, 移动承载网包括的核心设备有两种, 分别为主核心设备和备份核心设备, 当 基站开始与基站控制器之间传输数据时, 主核心设备激活其与基站之间的链路, 并通过 该链路与基站进行 MLPPP (Multilink Point to Point Protocol , 多链路点对点协议) 协商, 如果协商成功, 则设置主核心设备中基站网关接口的状态为正常工作状态, 以及 设置主核心设备中基站控制器网关接口状态为主状态, 生成主核心设备与基站之间的第 一路由, 以及生成主核心设备与基站控制器之间的第二路由。 当基站与基站控制器之间 进行数据通信时, 可以通过第一路由和第二路由传输数据。 其中, 当主核心设备与基站 之间的链路发生故障时, 激活备份核心设备与基站之间的链路, 备份核心设备通过该链 路与基站进行 MLPPP协商, 如果协商成功, 则设置备份核心设备中基站的网关接口状态 为正常工作状态, 生成备份核心设备与基站之间的第三路由并将该第三路由发送给主核 心设备, 使基站与基站控制器之间传输的数据通过第三路由和第二路由传输。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题:
由于备份核心设备需要与基站进行 MLPPP协商,协商的时间较长并且在备份核心设 备与基站进行 MLPPP协商的过程中第一路由行不通, 从而导致基站控制器与基站之间传 输的数据丢失的较多。 发明内容
为了解决现有技术的问题, 本发明实施例提供了一种传输数据的方法及设备。 所述 技术方案如下:
第一方面, 提供了一种传输数据的方法, 所述方法包括:
生成第一网元与第二网元之间的主路由,所述主路由包括主核心设备与所述第一网 元之间的第一路由和所述主核心设备与所述第二网元之间的第二路由,通过所述主路由 传输所述第一网元与所述第二网元之间的数据;
将所述主核心设备包括的与所述第一网元相连的第一网关接口的身份标识 ID和状 态发送给备份核心设备, 使所述备份核心设备生成所述第一网元与所述第二网元之间的 备份路由,所述备份路由包括所述备份核心设备与所述第一网元之间的第三路由和所述 备份核心设备与所述第二网元之间的第四路由;
当所述第一路由出现故障时,通过所述备份路由传输所述第一网元与所述第二网元 之间的数据。
结合第一方面, 在上述第一方面的第一种可能的实现方式中, 所述生成第一网元与 第二网元之间的主路由, 包括:
激活主核心设备与第一网元之间的链路, 并通过所述链路与所述第一网元进行多链 路点对点协议 MLPPP协商;
如果协商成功, 则设置所述主核心设备包括的与所述第一网元相连的第一网关接口 的状态为正常工作状态, 生成所述主核心设备与所述第一网元之间的第一路由;
将所述第一路由和所述主核心设备与所述第二网元之间的第二路由组成所述第一 网元与第二网元之间的主路由。
结合第一方面或第一方面的第一种可能的实现方式,在上述第一方面的第二种可能 的实现方式中,所述将所述主核心设备包括的与所述第一网元相连的第一网关接口的身 份标识 ID和状态发送给备份核心设备之后, 还包括:
接收备份核心设备发送的所述备份核心设备与所述第一网元之间的第三路由; 将所述主核心设备与所述备份核心设备之间的第五路由和所述主核心设备所述第 二网元之间的第二路由组成所述备份核心设备与所述第二网元之间的第四路由;
将所述第三路由和所述第四路由组成所述第一网元与所述第二网元之间的备份路 由。
结合第一方面, 在上述第一方面的第三种可能的实现方式中, 所述生成第一网元与 第二网元之间的主路由, 包括: 激活主核心设备与第一网元之间的链路, 并通过所述链路与所述第一网元进行 MLPPP协商;
如果协商成功, 则设置所述主核心设备包括的与所述第一网元相连的第一网关接口 的状态为正常工作状态, 生成所述主核心设备与所述第一网元之间的第一路由;
将所述第一路由发送给接入设备, 使所述接入设备将所述第一路由和所述主核心设 备与所述第二网元之间的第二路由组成所述第一网元与所述第二网元之间的主路由。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第三种可能的实 现方式中的任一种可能的实现方式, 在上述第一方面的第四种可能的实现方式中, 所述 方法还包括:
如果所述主核心设备存在异常告警, 则将所述主核心设备包括的与所述第一网元相 连的第一网关接口的 ID和状态以及所述主核心设备的异常告警信息发送给所述备份核 心设备, 使所述备份核心将其包括的与所述第一网元相连的第二网关接口的状态设置为 不工作状态。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第三种可能的实 现方式中的任一种可能的实现方式, 在上述第一方面的第五种可能的实现方式中, 所述 方法还包括:
如果用户手动设置所述主核心设备包括的与所述第一网元相连的第一网关接口状 态为不工作状态,则将所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID 和状态发送给所述备份核心设备, 使所述备份核心设备将其包括的与所述第一网元相连 的第二网关接口的状态设置为不工作状态。 第二方面, 提供了一种传输数据的方法, 所述方法包括:
接收主核心设备发送的所述主核心设备包括的与第一网元相连的第一网关接口的 身份标识 ID和状态;
根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 生 成所述第一网元与第二网元之间的备份路由;
当所述第一网元与所述第二网元之间的主路由出现故障时,通过所述备份路由传输 所述第一网元与所述第二网元之间的数据。
结合第二方面, 在上述第二方面的第一种可能的实现方式中, 所述根据所述主核心 设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 生成所述第一网元与第 二网元之间的备份路由, 包括: 根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 将 备份核心设备包括的与所述第一网元连接的第二网关接口的状态设置为正常工作状态; 生成所述备份核心设备与所述第一网元之间的第三路由,将所述第三路由发送给所 述主核心设备, 使所述主核心设备将所述第三路由和所述备份核心设备与第二网元之间 的第四路由组成所述第一网元与所述第二网元之间的备份路由。
结合第二方面, 在上述第二方面的第二种可能的实现方式中, 所述根据所述主核心 设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 生成所述第一网元与第 二网元之间的备份路由, 包括:
根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 将 备份核心设备包括的与所述第一网元相连的第二网关接口的状态设置为正常工作状态; 生成所述备份核心设备与所述第一网元之间的第三路由,将所述第三路由发送给接 入设备, 使所述接入设备将所述第三路由和所述备份核心设备与第二网元之间的第四路 由组成所述第一网元与所述第二网元之间的备份路由。
结合第二方面、第二方面的第一种可能的实现方式或第二方面的第二种可能的实现 方式, 在上述第二方面的第三种可能的实现方式中, 所述方法还包括:
接收所述主核心设备发送的所述主核心设备包括的与所述第一网元相连的第一网 关接口的 ID和状态以及所述主核心设备的异常告警信息;
根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 将 备份核心设备包括的与所述第一网元相连的第二网关接口的状态设置为不工作状态。
结合第二方面、第二方面的第一种可能的实现方式或第二方面的第二种可能的实现 方式, 在上述第二方面的第三种可能的实现方式中, 所述方法还包括:
如果用户手动设置所述主核心设备包括的与所述第一网元相连的第一网关接口的 状态为不工作状态,接收所述主核心设备发送的所述主核心设备包括的与所述第一网元 相连的第一网关接口的 ID和状态;
根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 将 备份核心设备包括的与所述第一网元相连的第二网关接口的状态设置为不工作状态。 第三方面, 提供了一种传输数据的设备, 所述设备包括:
第一生成模块, 用于生成第一网元与第二网元之间的主路由, 所述主路由包括主核 心设备与所述第一网元之间的第一路由和所述主核心设备与所述第二网元之间的第二 路由, 通过所述主路由传输所述第一网元与所述第二网元之间的数据; 第一发送模块,用于将所述主核心设备包括的与所述第一网元相连的第一网关接口 的身份标识 ID和状态发送给备份核心设备, 使所述备份核心设备生成所述第一网元与 所述第二网元之间的备份路由,所述备份路由包括所述备份核心设备与所述第一网元之 间的第三路由和所述备份核心设备与所述第二网元之间的第四路由;
第一传输模块, 用于当所述第一路由出现故障时, 通过所述备份路由传输所述第一 网元与所述第二网元之间的数据。
结合第三方面, 在上述第三方面的第一种可能的实现方式中, 所述第一生成模块包 括:
第一协商单元, 用于激活主核心设备与第一网元之间的链路, 并通过所述链路与所 述第一网元进行多链路点对点协议 MLPPP协商;
第一生成单元, 用于如果协商成功, 则设置所述主核心设备包括的与所述第一网元 相连的第一网关接口的状态为正常工作状态, 生成所述主核心设备与所述第一网元之间 的第一路由;
第一组成单元,用于将所述第一路由和所述主核心设备与所述第二网元之间的第二 路由组成所述第一网元与第二网元之间的主路由。
结合第三方面或第三方面的第一种可能的实现方式,在上述第三方面的第二种可能 的实现方式中, 所述设备还包括:
第一接收模块,用于接收备份核心设备发送的所述备份核心设备与所述第一网元之 间的第三路由;
第一组成模块,用于将所述主核心设备与所述备份核心设备之间的第五路由和所述 主核心设备所述第二网元之间的第二路由组成所述备份核心设备与所述第二网元之间 的第四路由;
第二组成模块,用于将所述第三路由和所述第四路由组成所述第一网元与所述第二 网元之间的备份路由。
结合第三方面, 在上述第三方面的第三种可能的实现方式中, 所述第一生成模块包 括:
第二协商单元, 用于激活主核心设备与第一网元之间的链路, 并通过所述链路与所 述第一网元进行 MLPPP协商;
第二生成单元, 用于如果协商成功, 则设置所述主核心设备包括的与所述第一网元 相连的第一网关接口的状态为正常工作状态, 生成所述主核心设备与所述第一网元之间 的第一路由; 第二组成单元, 用于将所述第一路由发送给接入设备, 使所述接入设备将所述第一 路由和所述主核心设备与所述第二网元之间的第二路由组成所述第一网元与所述第二 网元之间的主路由。
结合第三方面或第三方面的第一种可能的实现方式至第三方面的第三种可能的实 现方式中的任一种可能的实现方式, 在上述第三方面的第四种可能的实现方式中, 所述 设备还包括:
第二发送模块, 用于如果所述主核心设备存在异常告警, 则将所述主核心设备包括 的与所述第一网元相连的第一网关接口的 ID和状态以及所述主核心设备的异常告警信 息发送给所述备份核心设备, 使所述备份核心将其包括的与所述第一网元相连的第二网 关接口的状态设置为不工作状态。
结合第三方面或第三方面的第一种可能的实现方式至第三方面的第三种可能的实 现方式中的任一种可能的实现方式, 在上述第三方面的第五种可能的实现方式中, 所述 设备还包括:
第三发送模块,用于如果用户手动设置所述主核心设备包括的与所述第一网元相连 的第一网关接口状态为不工作状态, 则将所述主核心设备包括的与所述第一网元相连的 第一网关接口的 ID和状态发送给所述备份核心设备, 使所述备份核心设备将其包括的 与所述第一网元相连的第二网关接口的状态设置为不工作状态。 第四方面, 提供了一种传输数据的设备, 所述设备包括:
第二接收模块,用于接收主核心设备发送的所述主核心设备包括的与第一网元相连 的第一网关接口的身份标识 ID和状态;
第二生成模块,用于根据所述主核心设备包括的与所述第一网元相连的第一网关接 口的 ID和状态, 生成所述第一网元与第二网元之间的备份路由;
第二传输模块, 用于当所述第一网元与所述第二网元之间的主路由出现故障时, 通 过所述备份路由传输所述第一网元与所述第二网元之间的数据。
结合第四方面, 在上述第四方面的第一种可能的实现方式中, 所述第二生成模块包 括:
第一设置单元,用于根据所述主核心设备包括的与所述第一网元相连的第一网关接 口的 ID和状态, 将备份核心设备包括的与所述第一网元连接的第二网关接口的状态设 置为正常工作状态;
第一发送单元, 用于生成所述备份核心设备与所述第一网元之间的第三路由, 将所 述第三路由发送给所述主核心设备, 使所述主核心设备将所述第三路由和所述备份核心 设备与第二网元之间的第四路由组成所述第一网元与所述第二网元之间的备份路由。
结合第四方面, 在上述第四方面的第二种可能的实现方式中, 所述第二生成模块包 括:
第二设置单元,用于根据所述主核心设备包括的与所述第一网元相连的第一网关接 口的 ID和状态, 将备份核心设备包括的与所述第一网元相连的第二网关接口的状态设 置为正常工作状态;
第二发送单元, 用于生成所述备份核心设备与所述第一网元之间的第三路由, 将所 述第三路由发送给接入设备, 使所述接入设备将所述第三路由和所述备份核心设备与第 二网元之间的第四路由组成所述第一网元与所述第二网元之间的备份路由。
结合第四方面、第四方面的第一种可能的实现方式或第四方面的第二种可能的实现 方式, 在上述第四方面的第三种可能的实现方式中, 所述设备还包括:
第三接收模块,用于接收所述主核心设备发送的所述主核心设备包括的与所述第一 网元相连的第一网关接口的 ID和状态以及所述主核心设备的异常告警信息;
第一设置模块,用于根据所述主核心设备包括的与所述第一网元相连的第一网关接 口的 ID和状态, 将备份核心设备包括的与所述第一网元相连的第二网关接口的状态设 置为不工作状态。
结合第四方面、第四方面的第一种可能的实现方式或第四方面的第二种可能的实现 方式, 在上述第四方面的第三种可能的实现方式中, 所述设备还包括:
第四接收模块,用于如果用户手动设置所述主核心设备包括的与所述第一网元相连 的第一网关接口的状态为不工作状态,接收所述主核心设备发送的所述主核心设备包括 的与所述第一网元相连的第一网关接口的 ID和状态;
第二设置模块,用于根据所述主核心设备包括的与所述第一网元相连的第一网关接 口的 ID和状态, 将备份核心设备包括的与所述第一网元相连的第二网关接口的状态设 置为不工作状态。 第五方面, 提供了一种传输数据的设备, 所述设备包括第一存储器和第一处理, 用 于执行所述传输数据的方法。 第六方面, 提供了一种传输数据的设备, 所述设备包括第二存储器和第二处理, 用 于执行所述传输数据的方法。 在本发明实施例中,在主核心设备中存储基站与基站控制器之间的主路由和备份路 由, 如果主核心设备与基站之间的第一路由发生故障时, 不需要备份核心设备与基站进 行 MLPPP协商, 只需要主核心设备基站与基站控制器之间传输数据的路由切换到备份路 由, 通过备份路由实现基站与基站控制器之间的数据通信。 由于将基站与基站控制器之 间传输数据的路由切换为备份路由需要的时间特别短,所以当主核心设备与基站之间的 链路发生故障时, 可以减少基站控制器与基站之间传输的数据丢失。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要使用 的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对 于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得 其他的附图。
图 1是本发明实施例一提供的 种传输数据的方法流程图;
图 2是本发明实施例二提供的 种传输数据的系统架构图;
图 3是本发明实施例二提供的 种传输数据的方法流程图;
图 4是本发明实施例三提供的 种传输数据的系统架构图;
图 5是本发明实施例三提供的 种传输数据的方法流程图;
图 6是本发明实施例四提供的 种传输数据的方法流程图;
图 7是本发明实施例五提供的 种传输数据的设备结构示意图;
图 8是本发明实施例六提供的 种传输数据的设备结构示意图;
图 9是本发明实施例七提供的 种传输数据的设备结构示意图;
图 10是本发明实施例八提供的一种传输数据的设备结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式 作进一步地详细描述。
在本发明实施例中第一核心设备和第二核心设备均可以为一个路由器, 当基站向基 站控制器发送数据时, 基站可以通过第一核心设备和 /或第二核心设备将数据发送到基 站控制器, 并且当基站控制器向基站发送数据时, 基站控制器也可以通过第一核心设备 和 /或第二核心设备将数据发送到基站。
实施例一 本发明实施例提供了一种传输数据的方法, 参见图 1, 该方法包括:
S101 : 生成第一网元与第二网元之间的主路由, 该主路由包括主核心设备与第一网 元之间的第一路由和主核心设备与第二网元之间的第二路由,通过该主路由传输第一网 元与第二网元之间的数据;
S102: 将主核心设备包括的与第一网元相连的第一网关接口的身份标识 ID和状态 发送给备份核心设备, 使备份核心设备生成第一网元与第二网元之间的备份路由, 所述 备份路由包括备份核心设备与第一网元之间的第三路由和备份核心设备与第二网元之 间的第四路由;
S103:当第一路由出现故障时,通过备份路由传输第一网元与第二网元之间的数据。 其中, 本发明实施例的执行主体可以为主核心设备。
在本发明实施例中,在主核心设备中存储基站与基站控制器之间的主路由和备份路 由, 如果主核心设备与基站之间的第一路由发生故障时, 不需要备份核心设备与基站进 行 MLPPP协商, 只需要主核心设备基站与基站控制器之间传输数据的路由切换到备份路 由, 通过备份路由实现基站与基站控制器之间的数据通信。 由于将基站与基站控制器之 间传输数据的路由切换为备份路由需要的时间特别短,所以当主核心设备与基站之间的 链路发生故障时, 减少了基站控制器与基站之间传输的数据丢失。 实施例二
本发明实施例提供了一种传输数据的方法。其中,如图 2所示的系统架构包括基站、 基站控制器、 第一核心设备和第二核心设备, 第一核心设备和第二核心设备中一个为主 核心设备, 另一个为备份核心设备, 且在本发明实施例中第一网元为基站, 第二网元为 基站控制器, 主核心设备包括的与第一网元相连的第一网关接口为主核心设备包括的基 站网关接口, 备份核心设备包括的与第一网元相连的第二网关接口为备份核心设备包括 的基站网关接口。 参见图 3, 该方法包括:
S201 : 第一核心设备与第二核心设备之间进行主备状态协商, 确定主核心设备和备 份核心设备;
其中, 在本发明实施例中第一核心设备和第二核心设备均可以为一个路由器, 当基 站向基站控制器发送数据时, 基站可以通过第一核心设备和 /或第二核心设备将数据发 送到基站控制器, 并且当基站控制器向基站发送数据时, 基站控制器也可以通过第一核 心设备和 /或第二核心设备将数据发送到基站。
其中, 第一核心设备和第二核心设备分别为基站设置一个网关接口, 且将第一核心 设备包括的基站网关接口和第二核心设备包括的基站网关接口配置相同的 IPdnternet Protocol , 网络之间互连的协议)地址, 并且第一核心设备和第二核心设备分别为基站 控制器设置一个网关接口。
具体地, 第一核心设备向第二核心设备发送第一协商报文, 该第一协商报文中携带 第一核心设备的优先级、第一核心设备包括的基站网关接口的状态和第一核心设备包括 的基站控制器网关接口的状态, 第二核心设备接收该第一协商报文, 如果第一核心设备 包括的基站网关接口的状态和第一核心设备包括的基站控制器网关接口的状态为正常 状态, 则将第一核心设备的优先级和第二核心设备的优先级进行比较, 如果第一核心设 备的优先级大于第二核心设备的优先级, 则第二核心设备设置第一核心设备为主核心设 备, 以及设置第二核心设备为备份核心设备; 相应地, 第二核心设备向第一核心设备发 送第二协商报文, 该第二协商报文中携带第二核心设备的优先级、 第二核心设备包括的 基站网关接口的状态和第二核心设备包括的基站控制器网关接口的状态,第一核心设备 接收该第二协商报文, 如果第二核心设备包括的基站网关接口的状态和第二核心设备包 括的基站控制器网关接口的状态为正常状态, 则将第二核心设备的优先级和第一核心设 备的优先级进行比较, 如果第二核心设备的优先级小于第一核心设备的优先级, 则第一 核心设备设置第一核心设备为主核心设备, 以及设置第二核心设备为备份核心设备。
进一步地, 如果第一核心设备的优先级小于第二核心设备的优先级, 则设置第二核 心设备为主核心设备, 以及设置第一核心设备为备份核心设备。
进一步地, 如果第一核心设备包括的基站网关接口的状态为故障状态或基站控制器 网关接口的状态为故障状态, 则设置第二核心设备为主核心设备, 相应地, 如果第二核 心设备包括的基站网关接口的状态为故障状态或基站控制器网关接口的状态为故障状 态, 则设置第一核心设备为主核心设备。
其中, 第一核心设备与第二核心设备之间周期性地互相发送协商报文, 以进行主备 状态协商。
其中, 如果第一核心设备在预设时间内没有接收到第二核心设备发送的第二协商报 文, 则确定第二核心设备故障, 设置第一核心设备为主核心设备, 以及设置第二核心设 备为备份核心设备; 如果第二核心设备在预设时间内没有接收到第一核心设备发送的第 一协商报文, 则确定第一核心设备故障, 设置第二核心设备为主核心设备, 以及设置第 一核心设备为备份核心设备。
S202:主核心设备激活其与基站之间的链路,并通过该链路与基站进行 MLPPP协商; 具体地, 主核心设备通过该链路向基站发送 PPP (Point to Point Protocol , 点对 点协议) 协商报文, 基站接收该 PPP协商报文, 如果基站确定与主核心设备建立 MLPPP 链接, 则基站向主核心设备发送确认报文, 当主核心设备接收到该确认报文时, 则确定 主核心设备与基站协商成功。
进一步地, 如果基站不同意与主核心设备建立 MLPPP链接, 则基站向主核心设备发 送一个拒绝报文, 主核心设备与基站协商失败。
S203: 如果协商成功, 则设置主核心设备包括的基站网关接口的状态为正常工作状 态, 生成主核心设备与基站之间的第一路由;
具体地, 如果协商成功, 则根据主核心设备包括的基站网关接口的 ID ( Identity, 身份标识号码), 设置对应的基站网关接口的状态为正常工作状态, 建立主核心设备包 括的基站网关接口与基站之间的 MLPPP链路, 将该 MLPPP链路确定为主核心设备与基站 之间的第一路由。
其中, 此时为主核心设备中包括的基站网关接口设置的正常工作状态是协商得到, 也可以称为协商正常工作状态。
进一步地, 将主核心设备中基站控制器网关接口的状态设置为主状态, 以及将备份 核心设备中基站控制器网关接口的状态设置为备状态, 生成基站控制器与主核心设备之 间的第二路由, 当基站控制器向基站发送数据时, 首先通过第二路由将数据发送到主核 心设备中, 再将数据发送到基站中; 当主核心设备故障时, 生成基站控制器与备份核心 设备之间的备份第二路由, 当基站控制器向基站发送数据时, 首先通过该备份第二路由 将数据发送到备份核心设备中, 再将数据发送到基站中。
S204: 主核心设备将第一路由和主核心设备与基站控制器之间的第二路由组成基站 与基站控制器之间的主路由;
进一步地, 将该主路由存储在主核心设备中。
S205: 主核心设备将其包括的基站网关接口的 ID和状态发送给备份核心设备; 其中, 主核心设备包括的基站网关接口的状态为正常工作状态。
S206: 备份核心设备接收主核心设备发送的主核心设备包括的基站网关接口的 ID 和状态, 根据主核心设备包括的基站网关接口的 ID和状态, 设置自身包括的基站网关 接口的状态为正常工作状态;
具体地,备份核心设备接收主核心设备发送的主核心设备包括的基站网关接口的 ID 和状态,根据主核心设备包括的基站网关接口的 ID,获取备份核心设备包括的基站网关 接口, 由于接收的主核心设备包括的基站网关接口的状态为正常工作状态, 则设置获取 的备份核心设备包括的基站网关接口的状态为正常工作状态。 其中,此时为备份核心设备包括的基站网关接口设置的状态是通过主核心设备包括 的基站网关接口的状态设置的, 即备份核心设备包括的基站网关接口的正常工作状态可 以为备份正常工作状态。
进一步地, 如果主核心设备存在异常告警, 则主核心设备发送其包括的基站网关接 口的 ID和状态的同时, 将该异常告警信息发送给备份核心设备, 备份核心设备接收到 主核心设备包括的基站网关接口的 ID和状态以及异常告警信息后, 根据主核心设备包 括的基站网关接口的 ID, 设置自身包括的基站网关接口的状态为不工作状态。
可选地, 如果用户手动设置主核心设备包括的基站网关接口的状态为不工作状态, 则主核心设备将其包括的基站网关接口的 ID和状态发送给备份核心设备, 使备份核心 设备根据接收的基站网关接口 ID和状态, 设置自身包括的基站网关接口的状态为不工 作状态。
进一步地, 备份核心设备与基站之间进行正常的 MLPPP协商后, 设置备份核心设备 包括的基站网关接口的状态的优先级最高, 即备份核心设备通过与基站进行 MLPPP协商 后设置的基站网关接口的状态的优先级大于备份核心设备根据主核心设备包括的基站 网关接口的状态设置的基站网关接口的状态的优先级, 也即协商正常工作状态的优先级 大于备份正常工作状态的优先级。
S207: 备份核心设备生成其与基站之间的第三路由, 并将第三路由发送给主核心设 备;
具体地, 备份核心设备建立其包括的基站网关接口与基站之间的 MLPPP链接, 将该 链接确定为备份核心设备与基站之间的第三路由, 并将该第三路由发送给主核心设备。
S208: 主核心设备接收第三路由, 将第三路由和备份核心设备与基站控制器之间的 第四路由组成基站与基站控制器之间的备份路由;
具体地, 主核心设备接收第三路由, 将备份核心设备与主核心设备之间的第五路由 和主核心设备与基站控制器之间的第二路由组成备份核心设备与基站控制器之间的第 四路由,将第三路由和备份核心设备与基站控制器之间的第四路由组成基站与基站控制 器之间的备份路由。
其中, 当主核心设备接收第三路由, 将第三路由和备份核心设备与基站控制器之间 的第四路由组成备份路由并存储在主核心设备中,此时主核心设备中存储基站与基站控 制器之间的两条路由, 即主路由和备份路由。
其中, 当主路由和备份路由都正常时, 基站与基站控制器之间通过主核心设备中存 储的主路由传输数据。 其中,在主核心设备中存储两个路由, 即主路由和备份路由, 当主路由出现故障时, 可以快速地将流量切换到备份路由, 加快了网络收敛的速度。
S209 : 当主核心设备与基站之间的第一路由发生故障时, 通过备份路由传输基站与 基站控制器之间的数据。
具体地, 当主核心设备与基站之间的链路发生故障时, 即主核心设备与基站之间的 第一路由发生故障, 将基站与基站控制器之间传输数据的路由切换到备份路由, 通过备 份路由传输基站与基站控制器之间的数据。
其中, 当主核心设备与基站之间的链路发生故障时, 主核心设备和备份核心设备之 间的主备状态没有发生变化,此时基站控制器向基站发送的数据首先还是先发送到主核 心设备。
在本发明实施例中,在主核心设备中存储基站与基站控制器之间的主路由和备份路 由, 如果主核心设备与基站之间的第一路由发生故障时, 不需要备份核心设备与基站进 行 MLPPP协商, 只需要主核心设备基站与基站控制器之间传输数据的路由切换到备份路 由, 通过备份路由实现基站与基站控制器之间的数据通信。 由于将基站与基站控制器之 间传输数据的路由切换为备份路由需要的时间特别短,所以当主核心设备与基站之间的 链路发生故障时, 可以减少基站控制器与基站之间传输的数据丢失。 实施例三
本发明实施例提供了一种传输数据的方法。其中,如图 4所示的系统架构包括基站、 基站控制器、 接入设备、 第一核心设备和第二核心设备, 第一核心设备和第二核心设备 中一个为主核心设备, 另一个为备份核心设备, 且在本发明实施例中第一网元为基站控 制器, 第二网元为基站, 主核心设备包括的与第一网元相连的第一网关接口为主核心设 备包括的基站控制器网关接口, 备份核心设备包括的与第一网元相连的第二网关接口为 备份核心设备包括的基站控制器网关接口。 参见图 5, 该方法包括:
S301 : 第一核心设备与第二核心设备之间进行主备状态协商, 确定主核心设备和备 份核心设备;
其中, 在本发明实施例中第一核心设备和第二核心设备均可以为一个路由器, 当基 站向基站控制器发送数据时, 基站可以通过第一核心设备和 /或第二核心设备将数据发 送到基站控制器, 并且当基站控制器向基站发送数据时, 基站控制器也可以通过第一核 心设备和 /或第二核心设备将数据发送到基站。
其中, 第一核心设备和第二核心设备分别为基站设置一个网关接口, 且将第一核心 设备包括的基站控制器网关接口和第二核心设备包括的基站控制器网关接口配置相同 的 IP ( Internet Protocol , 网络之间互连的协议) 地址, 并且第一核心设备和第二核 心设备分别为基站设置一个网关接口。
具体地, 第一核心设备向第二核心设备发送第一协商报文, 该第一协商报文中携带 第一核心设备的优先级、第一核心设备包括的基站网关接口的状态和第一核心设备包括 的基站控制器网关接口的状态, 第二核心设备接收该第一协商报文, 如果第一核心设备 包括的基站网关接口的状态和第一核心设备包括的基站控制器网关接口的状态为正常 状态, 则将第一核心设备的优先级和第二核心设备的优先级进行比较, 如果第一核心设 备的优先级大于第二核心设备的优先级, 则第二核心设备设置第一核心设备为主核心设 备, 以及设置第二核心设备为备份核心设备; 相应地, 第二核心设备向第一核心设备发 送第二协商报文, 该第二协商报文中携带第二核心设备的优先级、 第二核心设备包括的 基站网关接口的状态和第二核心设备包括的基站控制器网关接口的状态,第一核心设备 接收该第二协商报文, 如果第二核心设备包括的基站网关接口的状态和第二核心设备包 括的基站控制器网关接口的状态为正常状态, 则将第二核心设备的优先级和第一核心设 备的优先级进行比较, 如果第二核心设备的优先级小于第一核心设备的优先级, 则第一 核心设备设置第一核心设备为主核心设备, 以及设置第二核心设备为备份核心设备。
进一步地, 如果第一核心设备的优先级小于第二核心设备的优先级, 则设置第二核 心设备为主核心设备, 以及设置第一核心设备为备份核心设备。
其中, 第一核心设备与第二核心设备之间周期性地互相发送协商报文, 以进行主备 状态协商。
其中, 如果第一核心设备在预设时间内没有接收到第二核心设备发送的第二协商报 文, 则确定第二核心设备故障, 设置第一核心设备为主核心设备, 以及设置第二核心设 备为备份核心设备; 如果第二核心设备在预设时间内没有接收到第一核心设备发送的第 一协商报文, 则确定第一核心设备故障, 设置第二核心设备为主核心设备, 以及设置第 —核心设备为备份核心设备。
S302: 主核心设备激活其与基站控制器之间的链路, 并通过该链路与基站控制器进 行 MLPPP协商;
具体地, 主核心设备通过该链路向基站控制器发送 PPP (Point to Point Protocol , 点对点协议)协商报文, 基站控制器接收该 PPP协商报文, 如果基站控制器确定与主核 心设备建立 MLPPP链接, 则基站控制器向主核心设备发送确认报文, 当主核心设备接收 到该确认报文时, 则确定主核心设备与基站控制器协商成功。 进一步地, 如果基站控制器不同意与主核心设备建立 MLPPP链接, 则基站控制器向 主核心设备发送一个拒绝报文, 主核心设备与基站控制器协商失败。
S303: 如果协商成功, 则设置主核心设备包括的基站控制器网关接口的状态为正常 工作状态, 生成主核心设备与基站控制器之间的第一路由;
具体地, 如果协商成功, 则根据主核心设备包括的基站控制器网关接口的 ID
( identity, 身份标识号码), 设置对应的基站控制器网关接口的状态为正常工作状态, 建立主核心设备包括的基站控制器网关接口与基站控制器之间的 MLPPP 链路, 将该 MLPPP链路确定为主核心设备与基站控制器之间的第一路由。
其中,此时为主核心设备中包括的基站控制器网关接口设置的正常工作状态是协商 得到, 也可以称为协商正常工作状态。
S304: 主核心设备将该第一路由发送给接入设备;
其中, 接入设备传输网络中的接入层传输设备。
S305: 接入设备接收第一路由, 将第一路由和主核心设备与基站之间的第二路由组 成基站与基站控制器之间的主路由;
具体地, 接入设备接收第一路由, 将主核心设备与接入设备之间的第六路由和接入 设备与基站之间的第七路由组成主核心设备与基站之间的第二路由,将第一路由和主核 心设备与基站之间的第二路由组成基站与基站控制器之间的主路由。
进一步地, 将该主路由存储在接入设备中。
S306: 主核心设备将其包括的基站控制器网关接口的 ID和状态发送给备份核心设 备;
其中, 主核心设备包括的基站控制器网关接口的状态为正常工作状态。
S307: 备份核心设备接收主核心设备发送的主核心设备包括的基站控制器网关接口 的 ID和状态, 根据主核心设备包括的基站控制器网关接口的 ID和状态, 设置自身包括 的基站控制器网关接口的状态为正常工作状态;
具体地, 备份核心设备接收主核心设备发送的主核心设备包括的基站控制器网关接 口的 ID和状态, 根据主核心设备包括的基站控制器网关接口的 ID, 获取备份核心设备 包括的基站控制器网关接口, 由于接收的主核心设备包括的基站控制器网关接口的状态 为正常工作状态, 则设置获取的备份核心设备包括的基站控制器网关接口的状态为正常 工作状态。
其中,此时为备份核心设备包括的基站控制器网关接口设置的状态是通过主核心设 备包括的基站控制器网关接口的状态设置的, 即备份核心设备包括的基站控制器网关接 口的正常工作状态可以为备份正常工作状态。
进一步地, 如果主核心设备存在异常告警, 则主核心设备发送其包括的基站控制器 网关接口的 ID和状态的同时, 将该异常告警信息发送给备份核心设备, 备份核心设备 接收到主核心设备包括的基站控制器网关接口的 ID和状态以及异常告警信息后, 根据 主核心设备包括的基站控制器网关接口的 ID,设置自身包括的基站控制器网关接口的状 态为不工作状态。
可选地, 如果用户手动设置主核心设备包括的基站控制器网关接口的状态为不工作 状态, 则主核心设备将其包括的基站控制器网关接口的 ID和状态发送给备份核心设备, 使备份核心设备根据接收的基站控制器网关接口 ID和状态, 设置自身包括的基站控制 器网关接口的状态为不工作状态。
进一步地, 备份核心设备与基站控制器之间进行正常的 MLPPP协商后, 设置备份核 心设备包括的基站控制器网关接口的状态的优先级最高, 即备份核心设备通过与基站控 制器进行 MLPPP协商后设置的基站控制器网关接口的状态的优先级大于备份核心设备根 据主核心设备包括的基站控制器网关接口的状态设置的基站控制器网关接口的状态的 优先级, 也即协商正常工作状态的优先级大于备份正常工作状态的优先级。
S308 : 备份核心设备生成其与基站控制器之间的第三路由, 并将第三路由发送给接 入设备;
具体地, 备份核心设备建立其包括的基站控制器网关接口与基站控制器之间的 MLPPP链接, 将该链接确定为备份核心设备与基站控制器之间的第三路由, 并将该第三 路由发送给接入设备。
S309 : 接入设备接收第三路由, 将第三路由和备份核心设备与基站之间的第四路由 组成基站与基站控制器之间的备份路由;
具体地, 接入设备接收第三路由, 将备份核心设备与接入设备之间的第八路由和接 入设备与基站之间的第七路由组成备份核心设备与基站之间的第四路由,将第三路由和 备份核心设备与基站之间的第四路由组成基站与基站控制器之间的备份路由。
其中, 当主核心设备接收第三路由, 将第三路由和备份核心设备与基站之间的第四 路由组成备份路由并存储在接入设备中,此时接入设备中存储基站与基站控制器之间的 两条路由, 即主路由和备份路由。
其中, 当主路由和备份路由都正常时, 基站与基站控制器之间通过接入设备中存储 的主路由传输数据。
其中,在主核心设备中存储两个路由, 即主路由和备份路由, 当主路由出现故障时, 可以快速地将流量切换到备份路由, 加快了网络收敛的速度。
其中, 主核心设备可以先将第一路由发送给接入设备, 然后将其包括的基站控制器 网关接口的 ID和状态发送给备份核心设备, 也可以先将其包括的基站控制器网关接口 的 ID和状态发送给备份核心设备, 再将第一路由发送给接入设备, 当然, 也可以同时 发送,本发明实施例对发送第一路由和发送主核心设备包括的基站控制器网关接口的 ID 和状态的先后顺序不进行限定。
S310: 当主核心设备与基站控制器之间的第一路由发生故障时, 通过备份路由传输 基站与基站控制器之间的数据。
具体地, 当主核心设备与基站控制器之间的链路发生故障时, 即主核心设备与基站 控制器之间的第一路由发生故障,将基站与基站控制器之间传输数据的路由切换到备份 路由, 通过备份路由传输基站与基站控制器之间的数据。
在本发明实施例中, 在接入设备中存储基站与基站控制器之间的主路由和备份路 由, 如果主核心设备与基站控制器之间的第一路由发生故障时, 不需要备份核心设备与 基站控制器进行 MLPPP协商, 只需要接入设备将基站与基站控制器之间传输数据的路由 切换到备份路由, 通过备份路由实现基站与基站控制器之间的数据通信。 由于将基站与 基站控制器之间传输数据的路由切换为备份路由需要的时间特别短,所以当主核心设备 与基站控制器之间的链路发生故障时, 可以减少基站控制器与基站之间传输的数据丢 失。 实施例四
本发明实施例提供了一种传输数据的方法, 参见图 6, 该方法包括:
S401 : 接收主核心设备发送的主核心设备包括的与第一网元相连的第一网关接口的 身份标识 ID和状态;
S402: 根据主核心设备包括的与第一网元相连的第一网关接口的 ID和状态, 生成 第一网元与第二网元之间的备份路由;
S403: 当第一网元与第二网元之间的主路由出现故障时, 通过该备份路由传输第一 网元与第二网元之间的数据。
其中, 本发明实施例的执行主体可以为备份核心设备。
在本发明实施例中, 在接入设备中存储基站与基站控制器之间的主路由和备份路 由, 如果主核心设备与基站控制器之间的第一路由发生故障时, 不需要备份核心设备与 基站控制器进行 MLPPP协商, 只需要接入设备将基站与基站控制器之间传输数据的路由 切换到备份路由, 通过备份路由实现基站与基站控制器之间的数据通信。 由于将基站与 基站控制器之间传输数据的路由切换为备份路由需要的时间特别短,所以当主核心设备 与基站控制器之间的链路发生故障时, 可以减少基站控制器与基站之间传输的数据丢 失。 实施例五
参见图 7, 本发明实施例提供了一种传输数据的设备, 该设备包括:
第一生成模块 501, 用于生成第一网元与第二网元之间的主路由, 该主路由包括主 核心设备与第一网元之间的第一路由和主核心设备与第二网元之间的第二路由,通过该 主路由传输第一网元与第二网元之间的数据;
第一发送模块 502, 用于将主核心设备包括的与第一网元相连的第一网关接口的身 份标识 ID和状态发送给备份核心设备, 使备份核心设备生成第一网元与第二网元之间 的备份路由, 备份路由包括备份核心设备与第一网元之间的第三路由和备份核心设备与 第二网元之间的第四路由;
第一传输模块 503, 用于当第一路由出现故障时, 通过备份路由传输第一网元与第 二网元之间的数据。
其中, 第一生成模块 501包括:
第一协商单元, 用于激活主核心设备与第一网元之间的链路, 并通过链路与第一网 元进行多链路点对点协议 MLPPP协商;
第一生成单元, 用于如果协商成功, 则设置主核心设备包括的与第一网元相连的第 一网关接口的状态为正常工作状态, 生成主核心设备与第一网元之间的第一路由; 第一组成单元,用于将第一路由和主核心设备与第二网元之间的第二路由组成第一 网元与第二网元之间的主路由。
进一步地, 设备还包括:
第一接收模块,用于接收备份核心设备发送的备份核心设备与第一网元之间的第三 路由;
第一组成模块,用于将主核心设备与备份核心设备之间的第五路由和主核心设备第 二网元之间的第二路由组成备份核心设备与第二网元之间的第四路由;
第二组成模块,用于将第三路由和第四路由组成第一网元与第二网元之间的备份路 由。
可选地, 第一生成模块 501包括: 第二协商单元, 用于激活主核心设备与第一网元之间的链路, 并通过链路与第一网 元进行 MLPPP协商;
第二生成单元, 用于如果协商成功, 则设置主核心设备包括的与第一网元相连的第 一网关接口的状态为正常工作状态, 生成主核心设备与第一网元之间的第一路由; 第二组成单元, 用于将第一路由发送给接入设备, 使接入设备将第一路由和主核心 设备与第二网元之间的第二路由组成第一网元与第二网元之间的主路由。
进一步地, 设备还包括:
第二发送模块, 用于如果主核心设备存在异常告警, 则将主核心设备包括的与第一 网元相连的第一网关接口的 ID和状态以及主核心设备的异常告警信息发送给备份核心 设备, 使备份核心将其包括的与第一网元相连的第二网关接口的状态设置为不工作状 态。
进一步地, 设备还包括:
第三发送模块,用于如果用户手动设置主核心设备包括的与第一网元相连的第一网 关接口状态为不工作状态,则将主核心设备包括的与第一网元相连的第一网关接口的 ID 和状态发送给备份核心设备, 使备份核心设备将其包括的与第一网元相连的第二网关接 口的状态设置为不工作状态。
在本发明实施例中,在主核心设备中存储基站与基站控制器之间的主路由和备份路 由, 如果主核心设备与基站之间的第一路由发生故障时, 不需要备份核心设备与基站进 行 MLPPP协商, 只需要主核心设备基站与基站控制器之间传输数据的路由切换到备份路 由, 通过备份路由实现基站与基站控制器之间的数据通信。 由于将基站与基站控制器之 间传输数据的路由切换为备份路由需要的时间特别短,所以当主核心设备与基站之间的 链路发生故障时, 可以减少基站控制器与基站之间传输的数据丢失。 实施例六
本发明实施例提供了一种传输数据的设备, 参见图 8, 该设备包括:
第二接收模块 601, 用于接收主核心设备发送的主核心设备包括的与第一网元相连 的第一网关接口的身份标识 ID和状态;
第二生成模块 602, 用于根据主核心设备包括的与第一网元相连的第一网关接口的 ID和状态, 生成第一网元与第二网元之间的备份路由;
第二传输模块 603, 用于当第一网元与第二网元之间的主路由出现故障时, 通过备 份路由传输第一网元与第二网元之间的数据。 其中, 第二生成模块 602包括:
第一设置单元, 用于根据主核心设备包括的与第一网元相连的第一网关接口的 ID 和状态,将备份核心设备包括的与第一网元连接的第二网关接口的状态设置为正常工作 状态;
第一发送单元, 用于生成备份核心设备与第一网元之间的第三路由, 将第三路由发 送给主核心设备, 使主核心设备将第三路由和备份核心设备与第二网元之间的第四路由 组成第一网元与第二网元之间的备份路由。
可选地, 第二生成模块 602包括:
第二设置单元, 用于根据主核心设备包括的与第一网元相连的第一网关接口的 ID 和状态,将备份核心设备包括的与第一网元相连的第二网关接口的状态设置为正常工作 状态;
第二发送单元, 用于生成备份核心设备与第一网元之间的第三路由, 将第三路由发 送给接入设备, 使接入设备将第三路由和备份核心设备与第二网元之间的第四路由组成 第一网元与第二网元之间的备份路由。
进一步地, 设备还包括:
第三接收模块,用于接收主核心设备发送的主核心设备包括的与第一网元相连的第 一网关接口的 ID和状态以及主核心设备的异常告警信息;
第一设置模块, 用于根据主核心设备包括的与第一网元相连的第一网关接口的 ID 和状态,将备份核心设备包括的与第一网元相连的第二网关接口的状态设置为不工作状 态。
进一步地, 设备还包括:
第四接收模块,用于如果用户手动设置主核心设备包括的与第一网元相连的第一网 关接口的状态为不工作状态,接收主核心设备发送的主核心设备包括的与第一网元相连 的第一网关接口的 ID和状态;
第二设置模块, 用于根据主核心设备包括的与第一网元相连的第一网关接口的 ID 和状态,将备份核心设备包括的与第一网元相连的第二网关接口的状态设置为不工作状 态。
在本发明实施例中, 在接入设备中存储基站与基站控制器之间的主路由和备份路 由, 如果主核心设备与基站控制器之间的第一路由发生故障时, 不需要备份核心设备与 基站控制器进行 MLPPP协商, 只需要接入设备将基站与基站控制器之间传输数据的路由 切换到备份路由, 通过备份路由实现基站与基站控制器之间的数据通信。 由于将基站与 基站控制器之间传输数据的路由切换为备份路由需要的时间特别短,所以当主核心设备 与基站控制器之间的链路发生故障时, 可以减少基站控制器与基站之间传输的数据丢 失。 实施例七
本发明实施例提供了一种传输数据的设备, 参见图 9, 该设备包括:
第一存储器 701和第一处理器 702, 用于执行如下所述的一种传输数据的方法, 包 括:
生成第一网元与第二网元之间的主路由,所述主路由包括主核心设备与所述第一网 元之间的第一路由和所述主核心设备与所述第二网元之间的第二路由,通过所述主路由 传输所述第一网元与所述第二网元之间的数据;
将所述主核心设备包括的与所述第一网元相连的第一网关接口的身份标识 ID和状 态发送给备份核心设备, 使所述备份核心设备生成所述第一网元与所述第二网元之间的 备份路由,所述备份路由包括所述备份核心设备与所述第一网元之间的第三路由和所述 备份核心设备与所述第二网元之间的第四路由;
当所述第一路由出现故障时,通过所述备份路由传输所述第一网元与所述第二网元 之间的数据。
其中, 所述生成第一网元与第二网元之间的主路由, 包括:
激活主核心设备与第一网元之间的链路, 并通过所述链路与所述第一网元进行多链 路点对点协议 MLPPP协商;
如果协商成功, 则设置所述主核心设备包括的与所述第一网元相连的第一网关接口 的状态为正常工作状态, 生成所述主核心设备与所述第一网元之间的第一路由;
将所述第一路由和所述主核心设备与所述第二网元之间的第二路由组成所述第一 网元与第二网元之间的主路由。
进一步地,所述将所述主核心设备包括的与所述第一网元相连的第一网关接口的身 份标识 ID和状态发送给备份核心设备之后, 还包括:
接收备份核心设备发送的所述备份核心设备与所述第一网元之间的第三路由; 将所述主核心设备与所述备份核心设备之间的第五路由和所述主核心设备所述第 二网元之间的第二路由组成所述备份核心设备与所述第二网元之间的第四路由;
将所述第三路由和所述第四路由组成所述第一网元与所述第二网元之间的备份路 由。 可选地, 所述生成第一网元与第二网元之间的主路由, 包括:
激活主核心设备与第一网元之间的链路, 并通过所述链路与所述第一网元进行 MLPPP协商;
如果协商成功, 则设置所述主核心设备包括的与所述第一网元相连的第一网关接口 的状态为正常工作状态, 生成所述主核心设备与所述第一网元之间的第一路由;
将所述第一路由发送给接入设备, 使所述接入设备将所述第一路由和所述主核心设 备与所述第二网元之间的第二路由组成所述第一网元与所述第二网元之间的主路由。
进一步地, 所述方法还包括:
如果所述主核心设备存在异常告警, 则将所述主核心设备包括的与所述第一网元相 连的第一网关接口的 ID和状态以及所述主核心设备的异常告警信息发送给所述备份核 心设备, 使所述备份核心将其包括的与所述第一网元相连的第二网关接口的状态设置为 不工作状态。
进一步地, 所述方法还包括:
如果用户手动设置所述主核心设备包括的与所述第一网元相连的第一网关接口状 态为不工作状态,则将所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID 和状态发送给所述备份核心设备, 使所述备份核心设备将其包括的与所述第一网元相连 的第二网关接口的状态设置为不工作状态。
在本发明实施例中,在主核心设备中存储基站与基站控制器之间的主路由和备份路 由, 如果主核心设备与基站之间的第一路由发生故障时, 不需要备份核心设备与基站进 行 MLPPP协商, 只需要主核心设备基站与基站控制器之间传输数据的路由切换到备份路 由, 通过备份路由实现基站与基站控制器之间的数据通信。 由于将基站与基站控制器之 间传输数据的路由切换为备份路由需要的时间特别短,所以当主核心设备与基站之间的 链路发生故障时, 可以减少基站控制器与基站之间传输的数据丢失。 实施例八
本发明实施例提供了一种传输数据的设备, 参见图 10, 该设备包括:
第二存储器 801和第二处理器 802, 用于执行如下所述的一种传输数据的方法, 包 括:
接收主核心设备发送的所述主核心设备包括的与第一网元相连的第一网关接口的 身份标识 ID和状态;
根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 生 成所述第一网元与第二网元之间的备份路由;
当所述第一网元与所述第二网元之间的主路由出现故障时,通过所述备份路由传输 所述第一网元与所述第二网元之间的数据。
其中, 所述根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID 和状态, 生成所述第一网元与第二网元之间的备份路由, 包括:
根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 将 备份核心设备包括的与所述第一网元连接的第二网关接口的状态设置为正常工作状态; 生成所述备份核心设备与所述第一网元之间的第三路由,将所述第三路由发送给所 述主核心设备, 使所述主核心设备将所述第三路由和所述备份核心设备与第二网元之间 的第四路由组成所述第一网元与所述第二网元之间的备份路由。
可选地,所述根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID 和状态, 生成所述第一网元与第二网元之间的备份路由, 包括:
根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 将 备份核心设备包括的与所述第一网元相连的第二网关接口的状态设置为正常工作状态; 生成所述备份核心设备与所述第一网元之间的第三路由,将所述第三路由发送给接 入设备, 使所述接入设备将所述第三路由和所述备份核心设备与第二网元之间的第四路 由组成所述第一网元与所述第二网元之间的备份路由。
进一步地, 所述方法还包括:
接收所述主核心设备发送的所述主核心设备包括的与所述第一网元相连的第一网 关接口的 ID和状态以及所述主核心设备的异常告警信息;
根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 将 备份核心设备包括的与所述第一网元相连的第二网关接口的状态设置为不工作状态。
进一步地, 所述方法还包括:
如果用户手动设置所述主核心设备包括的与所述第一网元相连的第一网关接口的 状态为不工作状态,接收所述主核心设备发送的所述主核心设备包括的与所述第一网元 相连的第一网关接口的 ID和状态;
根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 将 备份核心设备包括的与所述第一网元相连的第二网关接口的状态设置为不工作状态。
在本发明实施例中, 在接入设备中存储基站与基站控制器之间的主路由和备份路 由, 如果主核心设备与基站控制器之间的第一路由发生故障时, 不需要备份核心设备与 基站控制器进行 MLPPP协商, 只需要接入设备将基站与基站控制器之间传输数据的路由 切换到备份路由, 通过备份路由实现基站与基站控制器之间的数据通信。 由于将基站与 基站控制器之间传输数据的路由切换为备份路由需要的时间特别短,所以当主核心设备 与基站控制器之间的链路发生故障时, 可以减少基站控制器与基站之间传输的数据丢 失。
需要说明的是: 上述实施例提供的传输数据的设备在传输数据时, 仅以上述各功能 模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功能分配由不同的功能 模块完成, 即将设备的内部结构划分成不同的功能模块, 以完成以上描述的全部或者部 分功能。 另外, 上述实施例提供的传输数据的设备与传输数据的方法实施例属于同一构 思, 其具体实现过程详见方法实施例, 这里不再赘述。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来 完成, 也可以通过程序来指令相关的硬件完成, 的程序可以存储于一种计算机可读存储 介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
以上仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种传输数据的方法, 其特征在于, 所述方法包括:
生成第一网元与第二网元之间的主路由,所述主路由包括主核心设备与所述第一网 元之间的第一路由和所述主核心设备与所述第二网元之间的第二路由,通过所述主路由 传输所述第一网元与所述第二网元之间的数据;
将所述主核心设备包括的与所述第一网元相连的第一网关接口的身份标识 ID和状 态发送给备份核心设备, 使所述备份核心设备生成所述第一网元与所述第二网元之间的 备份路由,所述备份路由包括所述备份核心设备与所述第一网元之间的第三路由和所述 备份核心设备与所述第二网元之间的第四路由;
当所述第一路由出现故障时,通过所述备份路由传输所述第一网元与所述第二网元 之间的数据。
2、 如权利要求 1所述的方法, 其特征在于, 所述生成第一网元与第二网元之间的 主路由, 包括:
激活主核心设备与第一网元之间的链路, 并通过所述链路与所述第一网元进行多链 路点对点协议 MLPPP协商;
如果协商成功, 则设置所述主核心设备包括的与所述第一网元相连的第一网关接口 的状态为正常工作状态, 生成所述主核心设备与所述第一网元之间的第一路由;
将所述第一路由和所述主核心设备与所述第二网元之间的第二路由组成所述第一 网元与第二网元之间的主路由。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述将所述主核心设备包括的与 所述第一网元相连的第一网关接口的身份标识 ID和状态发送给备份核心设备之后, 还 包括:
接收备份核心设备发送的所述备份核心设备与所述第一网元之间的第三路由; 将所述主核心设备与所述备份核心设备之间的第五路由和所述主核心设备所述第 二网元之间的第二路由组成所述备份核心设备与所述第二网元之间的第四路由;
将所述第三路由和所述第四路由组成所述第一网元与所述第二网元之间的备份路 由。
4、 如权利要求 1所述的方法, 其特征在于, 所述生成第一网元与第二网元之间的 主路由, 包括:
激活主核心设备与第一网元之间的链路, 并通过所述链路与所述第一网元进行
MLPPP协商; 如果协商成功, 则设置所述主核心设备包括的与所述第一网元相连的第一网关接口 的状态为正常工作状态, 生成所述主核心设备与所述第一网元之间的第一路由;
将所述第一路由发送给接入设备, 使所述接入设备将所述第一路由和所述主核心设 备与所述第二网元之间的第二路由组成所述第一网元与所述第二网元之间的主路由。
5、 如权利要求 1-4任一权利要求所述的方法, 其特征在于, 所述方法还包括: 如果所述主核心设备存在异常告警, 则将所述主核心设备包括的与所述第一网元相 连的第一网关接口的 ID和状态以及所述主核心设备的异常告警信息发送给所述备份核 心设备, 使所述备份核心将其包括的与所述第一网元相连的第二网关接口的状态设置为 不工作状态。
6、 如权利要求 1-4任一权利要求所述的方法, 其特征在于, 所述方法还包括: 如果用户手动设置所述主核心设备包括的与所述第一网元相连的第一网关接口状 态为不工作状态,则将所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID 和状态发送给所述备份核心设备, 使所述备份核心设备将其包括的与所述第一网元相连 的第二网关接口的状态设置为不工作状态。
7、 一种传输数据的方法, 其特征在于, 所述方法包括:
接收主核心设备发送的所述主核心设备包括的与第一网元相连的第一网关接口的 身份标识 ID和状态;
根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 生 成所述第一网元与第二网元之间的备份路由;
当所述第一网元与所述第二网元之间的主路由出现故障时,通过所述备份路由传输 所述第一网元与所述第二网元之间的数据。
8、 如权利要求 7所述的方法, 其特征在于, 所述根据所述主核心设备包括的与所 述第一网元相连的第一网关接口的 ID和状态, 生成所述第一网元与第二网元之间的备 份路由, 包括:
根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 将 备份核心设备包括的与所述第一网元连接的第二网关接口的状态设置为正常工作状态; 生成所述备份核心设备与所述第一网元之间的第三路由,将所述第三路由发送给所 述主核心设备, 使所述主核心设备将所述第三路由和所述备份核心设备与第二网元之间 的第四路由组成所述第一网元与所述第二网元之间的备份路由。
9、 如权利要求 7所述的方法, 其特征在于, 所述根据所述主核心设备包括的与所 述第一网元相连的第一网关接口的 ID和状态, 生成所述第一网元与第二网元之间的备 份路由, 包括:
根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 将 备份核心设备包括的与所述第一网元相连的第二网关接口的状态设置为正常工作状态; 生成所述备份核心设备与所述第一网元之间的第三路由,将所述第三路由发送给接 入设备, 使所述接入设备将所述第三路由和所述备份核心设备与第二网元之间的第四路 由组成所述第一网元与所述第二网元之间的备份路由。
10、 如权利要求 7-9任一权利要求所述的方法, 其特征在于, 所述方法还包括: 接收所述主核心设备发送的所述主核心设备包括的与所述第一网元相连的第一网 关接口的 ID和状态以及所述主核心设备的异常告警信息;
根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 将 备份核心设备包括的与所述第一网元相连的第二网关接口的状态设置为不工作状态。
11、 如权利要求 7-9任一权利要求所述的方法, 其特征在于, 所述方法还包括: 如果用户手动设置所述主核心设备包括的与所述第一网元相连的第一网关接口的 状态为不工作状态,接收所述主核心设备发送的所述主核心设备包括的与所述第一网元 相连的第一网关接口的 ID和状态;
根据所述主核心设备包括的与所述第一网元相连的第一网关接口的 ID和状态, 将 备份核心设备包括的与所述第一网元相连的第二网关接口的状态设置为不工作状态。
12、 一种传输数据的设备, 其特征在于, 所述设备包括:
第一生成模块, 用于生成第一网元与第二网元之间的主路由, 所述主路由包括主核 心设备与所述第一网元之间的第一路由和所述主核心设备与所述第二网元之间的第二 路由, 通过所述主路由传输所述第一网元与所述第二网元之间的数据;
第一发送模块,用于将所述主核心设备包括的与所述第一网元相连的第一网关接口 的身份标识 ID和状态发送给备份核心设备, 使所述备份核心设备生成所述第一网元与 所述第二网元之间的备份路由,所述备份路由包括所述备份核心设备与所述第一网元之 间的第三路由和所述备份核心设备与所述第二网元之间的第四路由;
第一传输模块, 用于当所述第一路由出现故障时, 通过所述备份路由传输所述第一 网元与所述第二网元之间的数据。
13、 如权利要求 12所述的设备, 其特征在于, 所述第一生成模块包括: 第一协商单元, 用于激活主核心设备与第一网元之间的链路, 并通过所述链路与所 述第一网元进行多链路点对点协议 MLPPP协商;
第一生成单元, 用于如果协商成功, 则设置所述主核心设备包括的与所述第一网元 相连的第一网关接口的状态为正常工作状态, 生成所述主核心设备与所述第一网元之间 的第一路由;
第一组成单元,用于将所述第一路由和所述主核心设备与所述第二网元之间的第二 路由组成所述第一网元与第二网元之间的主路由。
14、 如权利要求 12或 13所述的设备, 其特征在于, 所述设备还包括:
第一接收模块,用于接收备份核心设备发送的所述备份核心设备与所述第一网元之 间的第三路由;
第一组成模块,用于将所述主核心设备与所述备份核心设备之间的第五路由和所述 主核心设备所述第二网元之间的第二路由组成所述备份核心设备与所述第二网元之间 的第四路由;
第二组成模块,用于将所述第三路由和所述第四路由组成所述第一网元与所述第二 网元之间的备份路由。
15、 如权利要求 12所述的设备, 其特征在于, 所述第一生成模块包括: 第二协商单元, 用于激活主核心设备与第一网元之间的链路, 并通过所述链路与所 述第一网元进行 MLPPP协商;
第二生成单元, 用于如果协商成功, 则设置所述主核心设备包括的与所述第一网元 相连的第一网关接口的状态为正常工作状态, 生成所述主核心设备与所述第一网元之间 的第一路由;
第二组成单元, 用于将所述第一路由发送给接入设备, 使所述接入设备将所述第一 路由和所述主核心设备与所述第二网元之间的第二路由组成所述第一网元与所述第二 网元之间的主路由。
16、 如权利要求 12-15任一权利要求所述的设备, 其特征在于, 所述设备还包括: 第二发送模块, 用于如果所述主核心设备存在异常告警, 则将所述主核心设备包括 的与所述第一网元相连的第一网关接口的 ID和状态以及所述主核心设备的异常告警信 息发送给所述备份核心设备, 使所述备份核心将其包括的与所述第一网元相连的第二网 关接口的状态设置为不工作状态。
17、 如权利要求 12-15任一权利要求所述的设备, 其特征在于, 所述设备还包括: 第三发送模块,用于如果用户手动设置所述主核心设备包括的与所述第一网元相连 的第一网关接口状态为不工作状态, 则将所述主核心设备包括的与所述第一网元相连的 第一网关接口的 ID和状态发送给所述备份核心设备, 使所述备份核心设备将其包括的 与所述第一网元相连的第二网关接口的状态设置为不工作状态。
18、 一种传输数据的设备, 其特征在于, 所述设备包括:
第二接收模块,用于接收主核心设备发送的所述主核心设备包括的与第一网元相连 的第一网关接口的身份标识 ID和状态;
第二生成模块,用于根据所述主核心设备包括的与所述第一网元相连的第一网关接 口的 ID和状态, 生成所述第一网元与第二网元之间的备份路由;
第二传输模块, 用于当所述第一网元与所述第二网元之间的主路由出现故障时, 通 过所述备份路由传输所述第一网元与所述第二网元之间的数据。
19、 如权利要求 18所述的设备, 其特征在于, 所述第二生成模块包括: 第一设置单元,用于根据所述主核心设备包括的与所述第一网元相连的第一网关接 口的 ID和状态, 将备份核心设备包括的与所述第一网元连接的第二网关接口的状态设 置为正常工作状态;
第一发送单元, 用于生成所述备份核心设备与所述第一网元之间的第三路由, 将所 述第三路由发送给所述主核心设备, 使所述主核心设备将所述第三路由和所述备份核心 设备与第二网元之间的第四路由组成所述第一网元与所述第二网元之间的备份路由。
20、 如权利要求 18所述的设备, 其特征在于, 所述第二生成模块包括: 第二设置单元,用于根据所述主核心设备包括的与所述第一网元相连的第一网关接 口的 ID和状态, 将备份核心设备包括的与所述第一网元相连的第二网关接口的状态设 置为正常工作状态;
第二发送单元, 用于生成所述备份核心设备与所述第一网元之间的第三路由, 将所 述第三路由发送给接入设备, 使所述接入设备将所述第三路由和所述备份核心设备与第 二网元之间的第四路由组成所述第一网元与所述第二网元之间的备份路由。
21、 如权利要求 18-20任一权利要求所述的设备, 其特征在于, 所述设备还包括: 第三接收模块,用于接收所述主核心设备发送的所述主核心设备包括的与所述第一 网元相连的第一网关接口的 ID和状态以及所述主核心设备的异常告警信息;
第一设置模块,用于根据所述主核心设备包括的与所述第一网元相连的第一网关接 口的 ID和状态, 将备份核心设备包括的与所述第一网元相连的第二网关接口的状态设 置为不工作状态。
22、 如权利要求 18-20任一权利要求所述的设备, 其特征在于, 所述设备还包括: 第四接收模块,用于如果用户手动设置所述主核心设备包括的与所述第一网元相连 的第一网关接口的状态为不工作状态,接收所述主核心设备发送的所述主核心设备包括 的与所述第一网元相连的第一网关接口的 ID和状态; 第二设置模块,用于根据所述主核心设备包括的与所述第一网元相连的第一网关接 口的 ID和状态, 将备份核心设备包括的与所述第一网元相连的第二网关接口的状态设 置为不工作状态。
23、 一种传输数据的设备, 其特征在于, 所述设备包括第一存储器和第一处理, 用 于执行如权利要求 1-6所述传输数据的方法。
24、 一种传输数据的设备, 其特征在于, 所述设备包括第二存储器和第二处理, 用 于执行如权利要求 7-11所述传输数据的方法。
PCT/CN2014/084810 2013-09-13 2014-08-20 一种传输数据的方法及设备 WO2015035851A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19183604.8A EP3618369B1 (en) 2013-09-13 2014-08-20 Method and device for transmitting data
EP14843338.6A EP3035609B1 (en) 2013-09-13 2014-08-20 Data transmission method and device
AU2014320926A AU2014320926B2 (en) 2013-09-13 2014-08-20 Data transmission method and device
US15/068,281 US10298487B2 (en) 2013-09-13 2016-03-11 Method and device for transmitting data
US16/391,596 US10819623B2 (en) 2013-09-13 2019-04-23 Method and device for transmitting data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310419790.2 2013-09-13
CN201310419790.2A CN103634209B (zh) 2013-09-13 2013-09-13 一种传输数据的方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/068,281 Continuation US10298487B2 (en) 2013-09-13 2016-03-11 Method and device for transmitting data

Publications (1)

Publication Number Publication Date
WO2015035851A1 true WO2015035851A1 (zh) 2015-03-19

Family

ID=50214852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084810 WO2015035851A1 (zh) 2013-09-13 2014-08-20 一种传输数据的方法及设备

Country Status (5)

Country Link
US (2) US10298487B2 (zh)
EP (2) EP3035609B1 (zh)
CN (1) CN103634209B (zh)
AU (1) AU2014320926B2 (zh)
WO (1) WO2015035851A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103634209B (zh) * 2013-09-13 2017-02-08 华为技术有限公司 一种传输数据的方法及设备
CN104579774B (zh) * 2014-12-31 2018-08-03 北京山石网科信息技术有限公司 主控设备的切换方法和装置
CN107222545B (zh) * 2017-06-20 2020-04-21 北京全域医疗技术集团有限公司 一种数据传输方法及装置
CN107426756B (zh) * 2017-08-23 2021-04-27 京信通信系统(中国)有限公司 热备份通信系统及其通信接口控制模块
US11018926B2 (en) * 2018-02-14 2021-05-25 Cisco Technology, Inc. Redundant layer 2 domain interconnection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098201A (zh) * 2009-12-14 2011-06-15 中兴通讯股份有限公司 一种实现l2tp用户接入备份的方法及网络系统
CN103052106A (zh) * 2012-12-20 2013-04-17 华为技术有限公司 跨设备的线性复用段保护方法、网关及控制器
CN103634209A (zh) * 2013-09-13 2014-03-12 华为技术有限公司 一种传输数据的方法及设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7342890B1 (en) * 2002-12-20 2008-03-11 Juniper Networks, Inc. Data duplication for transmission over computer networks
US8264951B2 (en) * 2007-12-19 2012-09-11 Alcatel Lucent Resilient PPP/ML-PPP services over multi-chassis APS protected routers
CN101227397B (zh) * 2008-01-28 2012-06-27 华为技术有限公司 保护链路的方法、设备和系统
CN102201987A (zh) * 2011-05-10 2011-09-28 中兴通讯股份有限公司 一种三层接口直连路由备份方法及系统
CN102325037B (zh) * 2011-05-25 2016-01-20 中兴通讯股份有限公司 一种伪线双归网络的切换方法、系统和双归属运营商设备
US9288140B2 (en) * 2012-07-09 2016-03-15 Coriant Operations, Inc. Multichassis failover and recovery for MLPPP wireless backhaul
CN103229536B (zh) * 2012-12-27 2017-04-19 华为技术有限公司 双网备份的方法、设备和无线通信系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098201A (zh) * 2009-12-14 2011-06-15 中兴通讯股份有限公司 一种实现l2tp用户接入备份的方法及网络系统
CN103052106A (zh) * 2012-12-20 2013-04-17 华为技术有限公司 跨设备的线性复用段保护方法、网关及控制器
CN103634209A (zh) * 2013-09-13 2014-03-12 华为技术有限公司 一种传输数据的方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3035609A4 *

Also Published As

Publication number Publication date
EP3618369A1 (en) 2020-03-04
EP3035609B1 (en) 2019-07-24
AU2014320926B2 (en) 2017-07-20
US20160197821A1 (en) 2016-07-07
US10298487B2 (en) 2019-05-21
US10819623B2 (en) 2020-10-27
EP3035609A4 (en) 2016-08-24
CN103634209A (zh) 2014-03-12
EP3618369B1 (en) 2021-05-19
CN103634209B (zh) 2017-02-08
EP3035609A1 (en) 2016-06-22
AU2014320926A1 (en) 2016-04-14
US20190253344A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
US10819623B2 (en) Method and device for transmitting data
CN101984606A (zh) 基于lacp的设备级冗余保护方法及系统
WO2009023996A1 (fr) Procédé de mise en œuvre d'une interconnexion de réseau par l'intermédiaire d'une agrégation de liaisons
EP2702729A1 (en) Expedited graceful ospf restart
WO2014106387A1 (zh) 建立控制通道的方法、转发设备和控制设备
CN107465613B (zh) 链路聚合接口通信状态切换方法及装置
EP2696542A1 (en) Method, ToR switch, and system for implementing protection switchover based on TRILL network
WO2014059867A1 (zh) 链路聚合组中流量路径的协商方法及装置
CN103490951A (zh) 基于bfd的多跳链路中双向转发检测方法
WO2015039512A1 (zh) 一种池元素状态信息同步的方法、池注册器和池元素
CN105763442B (zh) 主备倒换lacp聚合链路不中断的pon系统及方法
US20150305074A1 (en) Content delivery method
JP5983733B2 (ja) 通信システム、制御装置、通信装置、情報中継方法及びプログラム
WO2015032260A1 (zh) 路由更新方法和路由设备
WO2011143891A1 (zh) 用户业务信息备份方法和装置
WO2015085801A1 (zh) Trill网络中边缘路由桥设备的故障处理方法和装置
WO2014044088A1 (zh) L2tp网络的保护方法、装置及系统
CN101394642A (zh) 一种上报链路异常信息的方法、装置和系统
JPWO2007023966A1 (ja) 通信装置、通信方法および通信プロトコル処理方法、通信端末装置およびその通信方法、ならびに通信システムおよびその通信方法
KR101587332B1 (ko) 컨트롤러와 네트워크 장치 간 연결 상태 확인 방법
WO2021027353A1 (zh) 一种处理报文的方法和第一网络设备
KR101586151B1 (ko) 컨트롤러와 네트워크 장치 간 재연결 방법
WO2010148756A1 (zh) 一种控制终端进行重接入的方法及系统
CN102271045A (zh) 一种基于vpn实例的设备间备份的方法、设备和系统
EP2725738B1 (en) Method, device and system for transmitting data streams

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014843338

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014320926

Country of ref document: AU

Date of ref document: 20140820

Kind code of ref document: A