WO2015035775A1 - 全光信息交换装置及方法 - Google Patents

全光信息交换装置及方法 Download PDF

Info

Publication number
WO2015035775A1
WO2015035775A1 PCT/CN2014/075538 CN2014075538W WO2015035775A1 WO 2015035775 A1 WO2015035775 A1 WO 2015035775A1 CN 2014075538 W CN2014075538 W CN 2014075538W WO 2015035775 A1 WO2015035775 A1 WO 2015035775A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
port
wavelength
signal light
light
Prior art date
Application number
PCT/CN2014/075538
Other languages
English (en)
French (fr)
Inventor
王健
贺继方
付红岩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14844392.2A priority Critical patent/EP3046334B1/en
Publication of WO2015035775A1 publication Critical patent/WO2015035775A1/zh
Priority to US15/068,158 priority patent/US9618822B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3515All-optical modulation, gating, switching, e.g. control of a light beam by another light beam
    • G02F1/3521All-optical modulation, gating, switching, e.g. control of a light beam by another light beam using a directional coupler
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2746Optical coupling means with polarisation selective and adjusting means comprising non-reciprocal devices, e.g. isolators, FRM, circulators, quasi-isolators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2766Manipulating the plane of polarisation from one input polarisation to another output polarisation, e.g. polarisation rotators, linear to circular polarisation converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/004Transferring the modulation of modulated light, i.e. transferring the information from one optical carrier of a first wavelength to a second optical carrier of a second wavelength, e.g. all-optical wavelength converter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/004Transferring the modulation of modulated light, i.e. transferring the information from one optical carrier of a first wavelength to a second optical carrier of a second wavelength, e.g. all-optical wavelength converter
    • G02F2/006All-optical wavelength conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0035Construction using miscellaneous components, e.g. circulator, polarisation, acousto/thermo optical
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches

Definitions

  • the present invention relates to the field of communication technologies, and more particularly to an all-optical information exchange apparatus and method.
  • WDM Widelength Division Multiplexing
  • a specific manifestation of all-optical information exchange technology is that it exchanges data information carried between two different wavelengths, and further expects to be between multiple wavelengths. Or data information exchange between bands. Therefore, research on how to achieve all-optical information exchange has become a hot topic.
  • an object of embodiments of the present invention is to provide an all-optical information exchange apparatus and method for all-optical information exchange.
  • the embodiment of the present invention provides the following technical solutions:
  • an all-optical information exchange apparatus includes: a second-order nonlinear optical waveguide, a first optical coupler, a third optical coupler, a fourth optical coupler, and a first An optical filter, a second optical filter, and a first polarization controller, wherein:
  • the first port of the first polarization controller serves as a WDM signal optical input port, and the second port thereof is connected to the first port of the first optical coupler;
  • a second port of the first optical coupler is a WDM signal light output port, and a third port of the first optical coupler is connected to a first port of the first optical filter, the first light a fourth port of the coupler is coupled to the first port of the second optical filter;
  • a second port of the first optical filter is coupled to a first port of the third optical coupler, a second port of the second optical filter, and a first port of the fourth optical coupler Connected a first port of the second-order nonlinear optical waveguide is connected to a third port of the third optical coupler, a second port of the second-order nonlinear optical waveguide, and a third port of the fourth optical coupler Ports are connected;
  • the WDM signal light includes a first wavelength/band signal light and a second wavelength/band signal light, and in use, the first wavelength/band signal light can pass through the first optical filter, the second wavelength/band The signal light can pass through the second optical filter.
  • the method further includes a first optical isolator, the second port of the first polarization controller and the first port of the first optical coupler pass The first optical isolator is connected, the input port of the first optical isolator is connected to the second port of the first polarization controller, and the output port of the first optical isolator is connected to the first The first port of the optical clutch is connected.
  • the second optical coupler is further included, the first port of the second optical coupler The second port of the third optical coupler is connected, and the second port of the second optical coupler is connected to the second port of the fourth optical coupler.
  • control light providing device is further included.
  • control light providing device includes at least one of a control light generating device and a second polarization controller.
  • the second isolating device, the first port of the second polarization controller and the output of the control light generating device a port is connected, a second port of the second polarization controller is connected to an input port of the second optical isolator, an output port of the second optical isolator and a third port of the second optical coupler Connected.
  • the second-order nonlinear optical waveguide includes: light having a second-order nonlinear optical effect
  • the second harmonic optical effect of the waveguide includes a frequency doubling, a sum frequency, and a difference frequency.
  • the optical waveguide having the second-order nonlinear optical effect is a periodic polarization-inverted lithium niobate optical waveguide.
  • a possible implementation manner provides an all-optical information exchange method, which is used for exchanging data information carried by a first wavelength/band of signal light and a second wavelength/band of signal light in a WDM signal light;
  • the all-optical information exchange device exchanges data information carried by the first wavelength/band signal light and the second wavelength/band signal light in the WDM signal light;
  • the preset condition includes: the first optical filter can pass the first wavelength/band signal light, the second optical filter can pass the second wavelength/band signal light, and the second-order nonlinear optical waveguide corresponds to a polarization state, a polarization state of the input WDM signal light and a polarization state of the control light, the wavelength of the control light being equal to a quasi-phase matching wavelength of the second-order nonlinear optical waveguide, and The frequency of the control light is equal to one-half the sum of the center frequency of the first wavelength/band signal light and the center frequency of the second wavelength/band signal light.
  • FIG. 1 is a schematic diagram of all-optical information exchange according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an all-optical information exchange device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another structure of an all-optical information exchange device according to an embodiment of the present invention
  • FIG. 4 and FIG. 5 are schematic diagrams of second-order nonlinear optical effects according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a two-wavelength all-optical information exchange process according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another configuration process of the all-optical information exchange device according to the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another structure of the all-optical information exchange device according to the embodiment of the present invention;
  • FIG. 12 is still another schematic structural diagram of an all-optical information exchange device according to an embodiment of the present invention;
  • FIG. detailed description is a schematic diagram of another configuration process of the all-optical information exchange device according to the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another structure of the all-optical information exchange device according to the embodiment of the present invention.
  • FIG. 12 is still another schematic structural diagram of an all-optical information exchange device according to an embodiment of the present invention.
  • WDM wavelength division multiplexing, wavelength division multiplexing
  • the data information carried by the two optical wavelengths is exchanged as an example (the wavelengths of the two signal lights are /i sl , 4 2 respectively ).
  • the process is as follows: First, the composite signal light is separated by two optical filters, and the first signal light (wavelength A S1 ) and the second signal light (wavelength 2 ) are separated. Then, two wavelength converters are used to separately perform two independent wavelength conversions on the first signal light and the second signal light. After wavelength conversion, the wavelength of the first signal light is converted into 4 2 , the second signal The wavelength of light is converted from 4 2 to /1 51 .
  • each wavelength converter needs to use an additional optical filter to filter out the converted first signal light and the second signal light, and finally combine the two information exchanged signal lights.
  • Composite multiplexed signal light, the wavelength of light 42, carrying the data information of the original wavelength of the light carried by the combined length of Bo Houbo light, light having a wavelength carrying the original 42 is carried Data information, thus achieving all-optical information exchange.
  • Embodiments of the present invention provide an all-optical information exchange apparatus and an all-optical information exchange method based on an all-optical information exchange apparatus.
  • the all-optical information exchange device may include at least the following devices:
  • Second-order nonlinear optical waveguide 1 first optical coupler 2, third optical coupler 3, fourth optical coupler 4, first optical filter 5, second optical filter 6, and first polarization controller 7 , among them:
  • the first port 71 of the first polarization controller 7 is a WDM signal optical input port, and the second port 72 is connected to the first port 21 of the first optical coupler 2;
  • the second port 22 of the first optical coupler 2 is a WDM signal light output port, and the third port 23 of the first optical coupler 2 is connected to the first port 51 of the first optical filter 5, The fourth port 24 of the first optical clutch 2 is connected to the first port 61 of the second optical filter 6;
  • the second port 52 of the first optical filter 5 is connected to the first port 31 of the third optical coupler 3, and the second port 62 of the second optical filter 6 and the fourth optical bridge 4
  • the first port 41 is connected;
  • the first port 11 of the second-order nonlinear optical waveguide 1 is connected to the third port 33 of the third optical coupler 3, and the second port 12 of the second-order nonlinear optical waveguide 1 is coupled to the fourth optical
  • the third port 43 of the device 4 is connected;
  • the second port 32 of the third optical coupler 3 and the second port 42 of the fourth optical coupler 4 respectively serve as control light input ports;
  • the WDM signal light includes first wavelength/band signal light and second wavelength/band signal light.
  • the first wavelength/band signal light can pass through the first optical filter 5, and the second wavelength/band signal light can pass Second optical filter 6.
  • the first optical filter 5 and the second optical filter 6 may be low pass, high pass, band pass, band stop or other more complex type of filter as long as the desired wavelength or band can be filtered out.
  • first port 21 and the second port 22 of the first optical coupler 2 are located on the same side, and the third port 23 and the fourth port 24 are located on the other side.
  • first port 31 and the second port 32 of the third optical coupler 3 are on the same side, and the third port 33 is on the other side.
  • the first port 41 and the second port 42 of the fourth optical clutch 4 are on the same side, and the third port 43 is on the other side.
  • the ports on the same side have no signal transmission between each other, and the ports on the opposite side have signal light transmission between each other. Therefore, there is no signal light transmission between the first port 21 and the second port 22 of the first optical clutch 2, the first port 21 and the third port 23, the first port 21 and the fourth port 24, and the second port 22 There is signal light transmission between the third port 23, the second port 22 and the fourth port 24.
  • the WDM signal light is input from the first port 71 of the first optical coupler 2, and finally outputted from the second port 22, and the control light is respectively from the second of the third optical coupler 3.
  • the port 32 and the second port 42 of the fourth optical coupler 4 are input.
  • a second optical coupler 8 can be added. Wherein the first port 81 of the second optical clutch 8 is as described above The second port 32 of the third optical clutch 3 is connected, and the second port 82 of the second optical coupler 8 is connected to the second port 42 of the fourth optical coupler 4.
  • the first port 81 and the second port 82 of the second optical clutch 8 are on the same side, and the third port 83 is on the other side. Therefore, there is no signal light transmission between the first port 81 and the second port 82, and there is signal light transmission between the third port 83 and the first port 81, and between the third port 83 and the second port 82.
  • the control light can be input from the third port 83 and then output from the first port 81 and the second port 82, respectively, and then input to the second port 32 and the fourth optical coupler 4 of the third optical coupler 3, respectively.
  • Second port 42 can be input from the third port 83 and then output from the first port 81 and the second port 82, respectively, and then input to the second port 32 and the fourth optical coupler 4 of the third optical coupler 3, respectively.
  • the second optical coupler 8 can be a power plasmon splitter such that control light is equally input to the second port 32 and the second port 42.
  • the other optical couplers described above may also be power bisector couplers.
  • the second-order nonlinear optical waveguide refers to an optical waveguide device having a second-order nonlinear optical effect.
  • Second-order nonlinear optical effects may include frequency doubling, sum frequency, and difference frequency.
  • the wavelength of the signal light is ⁇
  • the wavelength of the control light is ⁇
  • the polarization state of the second-order nonlinear optical waveguide, the polarization state of the signal light, and the polarization of the control light are determined.
  • the states are consistent, and the wavelength of the control light is matched with the quasi-phase matching wavelength of the second-order nonlinear optical waveguide.
  • the signal light ( ⁇ 8 ) and the control light P ) of the same transmission direction are input to the second-order nonlinear optical waveguide, and the signal light ( ) and the control light (the corpse) are in the second-order nonlinear light.
  • Second-order nonlinear optical effects occur in the waveguide.
  • the photon quenching of the control light ( ) produces photons of the frequency doubled light ( A SH ), while the photons of the doubled light ( A SH ) are further converted into photons of the signal light ( ⁇ ) and the photons of the new free light).
  • the wavelength of the newly-generated idle light will be 4 2 (see FIG. 6 ), and the fresh idle light having a wavelength of 4 2 carries the data information of the signal light of the original wavelength.
  • the first optical coupler 2, the first optical filter 5, the second optical filter 6, the third optical coupler 3, the second-order nonlinear optical waveguide 1 and the fourth optical combiner 4 constitute a ring structure.
  • the all-optical information exchange is performed on the data information carried by the two optical wavelengths/1 51 and 2. It is assumed that the light of the wavelength can pass through the first optical filter 5, and the light of the wavelength 2 can pass the second light. Filter 6.
  • the all-optical information exchange process is as follows:
  • the WDM signal light is divided into two paths into the ring structure under the action of the first optical coupler 2, and the transmission directions of the two signals are opposite, one way is transmitted clockwise in the ring structure, one way Transmitting in a counterclockwise direction in the ring structure.
  • the transmission directions of the two control lights input from the second port 32 of the third optical coupler 3 and the second port 42 of the fourth optical coupler 4 are also Instead, all the way is transmitted in a clockwise direction in the ring structure, one way in the counterclockwise direction in the ring structure.
  • the WDM signal light transmitted in the clockwise direction is input to the first optical filter 5 via the third port 23 of the first optical coupler 2, since the light of the wavelength can pass through the first optical filter 5, Outputted from the output port 52 of the first optical filter 5 is signal light of a wavelength.
  • the composite light includes composite light carrying data information (wavelength of 4 2 ) and wavelength of light, and the composite light is filtered by the second light.
  • the second port 62 of the device 6 is input, since light having a wavelength of 4 2 can pass through the second optical filter 6, the first port 61 of the second optical filter 6 outputs light having a wavelength of 4 2 , and It carries the data information carried by the signal light of the original wavelength A S1 .
  • the WDM signal light transmitted in the counterclockwise direction is input to the second optical filter 6 via the fourth port 24 of the first optical coupler 2, since the light of the wavelength A S2 can pass through the second optical filter. 6. Therefore, the output from the output port 62 of the second optical filter 6 is signal light having a wavelength of /1 S2 .
  • the output from the first port 11 of the second-order nonlinear optical waveguide 1 is also composite light, which includes light carrying data information (wavelength is) and light of wavelength 2 , and the composite light is composed of the first optical filter.
  • the second port 52 of 5 is input, since light of wavelength A S1 can pass through the second optical filter 5, therefore, the first port 51 of the second optical filter 5 outputs light of wavelength A S1 , and an optical signal carrying data information 42 of the original wavelength is carried.
  • the signal light outputted by the second port 22 is still composite light, but the data information carried by the two optical wavelengths s l and S2 has been exchanged for all-optical information.
  • the all-optical information exchange device can also perform all-optical band conversion, that is, copy data information carried by signal light of one band (one band including multiple wavelengths) to another band signal. Light (multiple wavelengths).
  • Figure 9 shows the process of controllable all-optical band switching (dual band) based on second-order nonlinear optical waveguides.
  • the working principle shown in Figure 9 is similar to that of Figure 8. The difference is that in the all-optical band switching process, two bands of signal light are input, one band is / ⁇ ... ⁇ v and the other band is ⁇ .. ./ ⁇ . Wherein, each wavelength in each wavelength band is equally spaced (or unequal spacing). In the case of equal spacing, the two-wavelength is close to the wavelength of the control light ( )
  • the frequency of the control light is equal to twice the sum of the center frequency of the first wavelength/band signal light and the center frequency of the second wavelength/band signal light.
  • the frequency of the control light is also possible to make the frequency of the control light equal to the sum of the center frequency of the first wavelength/band signal light and the center frequency of the second wavelength/band signal light.
  • the first optical filter 5 and the second optical filter 6 can respectively pass the above two bands, for example, the first optical filter 5 can pass the signal light of the band ⁇ ... ⁇ , and the second optical filter 6 Signal light with the band A S1 ... X SN can be passed.
  • control light and the polarization state of the two-band signal light need to be identical, and are consistent with the polarization state corresponding to the optimal nonlinear effect in the second-order nonlinear optical waveguide 1.
  • the clockwise direction can be realized by the band ... ... to the band S1 ... ⁇ SN band conversion
  • counterclockwise can be realized by ... / 1 ⁇ to ... ⁇ 5 ⁇
  • the conversion of the band combined with the filtering action of the first optical filter 5 and the second optical filter 6, and the coupling action of the first optical coupler 2, can finally output the dual-band signal light after the all-optical band exchange.
  • the QPM wavelength of the second-order nonlinear optical waveguide may be temperature-controlled, and the wavelength or wavelength band through which the first filter 5 and the second filter 6 are allowed to pass may also be adjusted.
  • the second-order nonlinear optical waveguide can be temperature-controlled to adjust its QPM wavelength to match the wavelength of the control light.
  • the apparatus in all of the above embodiments may further include a first optical isolator 9.
  • the second port 72 of the first polarization controller 7 is connected to the first port 21 of the first optical coupler 2 via the first optical isolator 9: the input port 91 of the first optical isolator 9 and the above A second port 72 of a polarization controller 7 is coupled, and an output port 92 of the first optical isolator 9 is coupled to the first port 21 of the first optical coupler 2.
  • the apparatus in all of the above embodiments may further include a second optical isolator 10.
  • the apparatus in all of the above embodiments may further include a control light providing device 13.
  • the control light providing means 13 is for providing control light.
  • the above control light providing means 13 may include at least one of the control light generating means 14 and the second polarization controller 15.
  • Fig. 13 shows the case where both the control light generating means 14 and the second polarization controller 15 are included.
  • the first port 151 of the second polarization controller 15 is connected to the output port 141 of the control light generating device 14, and the second port 152 of the second polarization controller 15 is connected to the input port 101 of the second optical isolator 10.
  • the output port 102 of the second optical isolator 10 is connected to the third port 83 of the second optical coupler 8 described above.
  • the polarization state corresponding to the second-order nonlinear optical waveguide 1, the polarization state of the input WDM signal light, and the polarization state of the control light need to be consistent, and the first bias control light controller 7 can be used to adjust the input WDM signal light.
  • the polarization state of the second polarization controller 15 can adjust the polarization state of the control light, so that the input WDM signal can be made by adjusting the first bias control light controller 7 and the second polarization controller 15.
  • the polarization state of the light and the polarization state of the control light coincide with the polarization state of the second-order nonlinear optical waveguide 1.
  • a polarization controller can be provided for the second-order nonlinear optical waveguide 1, and at this time, the second polarization controller 15 can be omitted.
  • the embodiment of the present invention further provides an all-optical information exchange method, which is used for exchanging data carried by the first wavelength/band signal light and the second wavelength/band signal light in the WDM signal light.
  • Information includes:
  • the all-optical information exchange device exchanges data information carried by the first wavelength/band signal light and the second wavelength/band signal light in the WDM signal light.
  • the foregoing preset conditions may include: the first optical filter 5 may pass the first wavelength/band signal light, the second optical filter 6 may pass the second wavelength/band signal light, and the second-order nonlinear optical waveguide 1 corresponding polarization state, the polarization state of the input WDM signal light, the polarization state of the control light, the wavelength of the control light is equal to the quasi-phase matching wavelength of the second-order nonlinear optical waveguide, and the frequency of the control light is equal to the first The center of the wavelength/band signal light is one-half the sum of the center frequency of the second wavelength/band signal light.
  • the second-order nonlinear optical waveguide may be a periodic polarization-inverted lithium niobate optical waveguide or another optical waveguide having second-order nonlinearity.
  • the present invention has the following beneficial effects:
  • the all-optical information exchange device can utilize a single wavelength converter (ie, second-order nonlinear optical waveguide 1) and two optical filters, and utilizes a ring structure to realize all-optical wavelength exchange, and the device is relatively simple, thereby Can effectively reduce costs.
  • the present invention utilizes the second-order nonlinear optical wave second-order nonlinear optical effect wavelength conversion principle combined with the ring structure, and only needs a single continuous control light, does not require high optical power, and can realize not only dual-wavelength all-optical wavelength exchange, but also full implementation.
  • the optical band exchange is simple, and the power consumption can be effectively reduced, and the all-optical switching function is more perfect.
  • the all-optical information exchange device provided by the present invention can realize the all-optical information exchange for the variable input wavelength/band, and can adjust the control light wavelength and the quasi-phase matching wavelength of the temperature-controlled second-order nonlinear optical waveguide.
  • the all-optical switching function is flexible and tunable in practical applications.
  • the all-optical information exchange device provided by the present invention is a passive device and is realized by a second-order nonlinear effect, and has an ultra-fast response speed (on the order of fs), so that it is suitable for 40 Gbit/s, 160 Gbit/s, 640 Gbit/s and even Tbit/s ultra-high speed all-optical wavelength/band switching.
  • the all-optical information exchange device provided by the present invention has a second-order nonlinear effect in the second-order nonlinear optical waveguide, and the bidirectional wavelength/band conversion process has the characteristics of equalization of the upper and lower wavelength conversion efficiencies, and The nonlinear interaction process is low noise and therefore has good all-optical wavelength/band switching performance.

Abstract

本发明实施例公开了全光信息交换装置及方法,以实现全光信息交换。该全光信息交换装置至少包括:二阶非线性光波导、第一光耦合器、第三光耦合器、第四光耦合器、第一光滤波器、第二光滤波器和第一偏振控制器。在使用时,第一波长/波段信号光可通过第一光滤波器,第二波长/波段信号光可通过第二光滤波器。在本发明实施例中,在二阶非线性光波导的二阶非线性效应的作用下,两波长/波段信号光所携带的数据信息可相互交换,从而实现了全光信息交换。

Description

全光信息交换装置及方法
技术领域
本发明涉及通信技术领域, 更具体地说, 涉及全光信息交换装置及方法。
背景技术
在 WDM (波分复用)光通信系统中, 全光信息交换技术的一种具体表现 是, 在两个不同波长之间对其所携带数据信息实现交换, 进一步期望可以在 多个波长之间或者波段之间实现数据信息交换。 因此, 研究如何实现全光信 息交换, 成为一种热门。
发明内容
有鉴于此, 本发明实施例的目的在于提供全光信息交换装置及方法, 以 实现全光信息交换。
为实现上述目的, 本发明实施例提供如下技术方案:
根据本发明实施例的第一方面, 提供一种全光信息交换装置, 至少包括: 二阶非线性光波导、 第一光耦合器、 第三光辆合器、 第四光耦合器、 第一光 滤波器、 第二光滤波器和第一偏振控制器, 其中:
所述第一偏振控制器的第一端口作为 WDM信号光输入端口, 其第二端 口与所述第一光耦合器的第一端口相连接;
所述第一光辆合器的第二端口作为 WDM信号光输出端口, 所述第一光 耦合器的第三端口和所述第一光滤波器的第一端口相连接, 所述第一光耦合 器的第四端口和所述第二光滤波器的第一端口相连接;
所述第一光滤波器的第二端口和所述第三光耦合器的第一端口相连接, 所述第二光滤波器的第二端口和所述第四光辆合器的第一端口相连接; 所述二阶非线性光波导的第一端口与所述第三光耦合器的第三端口相连 接, 所述二阶非线性光波导的第二端口与所述第四光耦合器的第三端口相连 接;
所述第三光耦合器的第二端口和所述第四光耦合器的第二端口分别作为 控制光输入端口;
所述 WDM信号光包括第一波长 /波段信号光与第二波长 /波段信号光,在 使用时, 所述第一波长 /波段信号光可通过第一光滤波器, 所述第二波长 /波段 信号光可通过第二光滤波器。
结合第一方面, 在第一种可能的实现方式中, 还包括第一光隔离器, 所 述第一偏振控制器的第二端口与所述第一光辆合器的第一端口之间通过所述 第一光隔离器相连接, 所述第一光隔离器的输入端口与所述第一偏振控制器 的第二端口相连接, 所述第一光隔离器的输出端口与所述第一光辆合器的第 一端口相连接。
结合第一方面, 或第一方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 还包括第二光辆合器, 所述第二光耦合器的第一端口与所述第 三光辆合器的第二端口相连接, 所述第二光辆合器的第二端口与所述第四光 耦合器的第二端口相连接。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 还包括控制光提供装置。
结合第一方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述控制光提供装置包括控制光生成装置和第二偏振控制器中的至少一种。
结合第一方面的第四种可能的实现方式, 在第五种可能的实现方式中, 还包括第二隔离器, 所述第二偏振控制器的第一端口与所述控制光生成装置 的输出端口相连接, 所述第二偏振控制器的第二端口与所述第二光隔离器的 输入端口连接, 所述第二光隔离器的输出端口与所述第二光耦合器的第三端 口相连接。
结合第一方面, 或第一方面的第一种可能的实现方式, 或第一方面的第 二种可能的实现方式, 或第一方面的第三种可能的实现方式, 或第一方面的 第四种可能的实现方式, 或第一方面的第五种可能的实现方式, 在第六种可 能的实现方式中, 所述二阶非线性光波导包括, 具有二阶非线性光学效应的 光波导, 所述二阶非线性光学效应包括倍频、 和频以及差频。
结合第一方面的第六种可能的实现方式, 在第七种可能的实现方式中, 所述具有二阶非线性光学效应的光波导为周期极化反转铌酸锂光波导。
根据本发明实施例的第二方面, 结合第一方面, 或第一方面的第一种可 能的实现方式, 或第一方面的第二种可能的实现方式, 或第一方面的第三种 可能的实现方式, 或第一方面的第四种可能的实现方式, 或第一方面的第五 种可能的实现方式, 或第一方面的第六种可能的实现方式, 或第一方面的第 七种可能的实现方式,提供一种全光信息交换方法, 所述方法用于交换 WDM 信号光中第一波长 /波段的信号光与第二波长 /波段的信号光所携带数据信息; 所述方法包括:
在满足预设条件时, 利用所述全光信息交换装置交换 WDM信号光中第 一波长 /波段信号光与第二波长 /波段信号光所携带数据信息;
所述预设条件包括: 所述第一光滤波器可通过第一波长 /波段信号光, 所述第 二光滤波器可通过第二波长 /波段信号光, 所述二阶非线性光波导对应的偏振 态、 所述输入的 WDM信号光的偏振态和所述控制光的偏振态一致, 所述控 制光的波长与所述二阶非线性光波导的准相位匹配波长相等, 以及, 所述控 制光的频率, 等于第一波长 /波段信号光的中心频率与第二波长 /波段信号光的 中心频率之和的二分之一。
可见, 在本发明实施例中, 在二阶非线性效应的作用下, 两波长 /波段信 号光所携带的数据信息可相互交换, 从而实现了全光信息交换。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的全光信息交换示意图;
图 2为本发明实施例提供的全光信息交换装置结构示意图;
图 3为本发明实施例提供的全光信息交换装置另一结构示意图; 图 4和图 5为本发明实施例提供的二阶非线性光学效应示意图; 图 6和图 7为本发明实施例提供的利用二阶非线性效应进行全光信息交 换示意图;
图 8为本发明实施例提供的两波长全光信息交换过程示意图;
图 9为本发明实施例提供的两波段全光信息另一交换过程示意图; 图 10为本发明实施例提供的全光信息交换装置又一结构示意图; 图 11为本发明实施例提供的全光信息交换装置又一结构示意图; 图 12为本发明实施例提供的全光信息交换装置又一结构示意图; 图 13为本发明实施例提供的全光信息交换装置又一结构示意图。 具体实施方式
为了引用和清楚起见, 下文中使用的技术名词、 简写或缩写总结解释如 下:
WDM: wavelength division multiplexing, 波分复用;
QPM: quasi phase matched, 准 目位匹酉己。
例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显 然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基 于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所 获得的所有其他实施例, 都属于本发明保护的范围。
在现有的全光信息交换技术中, 如图 1 所示, 以交换两个光波长所携带 的数据信息为例 (两信号光的波长分别为 /isl、 42 )其过程如下: 首先使用两个光滤波器对复合信号光进行分离, 分离出第一信号光(波 长为 AS1 )与第二信号光(波长为 2 ) 。 然后再使用两个波长转换器分别对分 离出第一信号光和第二信号光进行两次独立的波长转换, 在进行波长转换后, 第一信号光的波长由 转换为 42, 第二信号光的波长由 42转换为 /151。 另外, 每个波长转换器之后还需要使用附加的光滤波器将转换后的第一信号光和第 二信号光滤出, 最后再将两个经过了信息交换的信号光进行合波。 合波后的 复合信号光中, 波长为 42的光, 携带了原波长为 的光所携带的数据信息, 而合波后波长为 的光, 携带了原波长为 42的光所携带的数据信息, 从而实 现了全光信息交换。
上述现有技术所具有的缺点是: 整个过程要经历多次光滤波和光波长转 换, 其需要使用两个波长转换器、 四个光滤波器等光学元器件。 因此, 系统 复杂, 成本高。
为迎合研究全光信息交换这一热门, 并同时解决现有技术中系统复杂, 成本高的问题。 本发明实施例提供了全光信息交换装置和基于全光信息交换 装置的全光信息交换方法。
请参见图 2, 上述全光信息交换装置至少可包括如下器件:
二阶非线性光波导 1、 第一光辆合器 2、 第三光耦合器 3、 第四光耦合器 4、 第一光滤波器 5、 第二光滤波器 6和第一偏振控制器 7, 其中:
上述第一偏振控制器 7的第一端口 71作为 WDM信号光输入端口, 其第 二端口 72与上述第一光耦合器 2的第一端口 21相连接;
上述第一光辆合器 2的第二端口 22作为 WDM信号光输出端口, 上述第 一光辆合器 2的第三端口 23和上述第一光滤波器 5的第一端口 51相连接, 上述第一光辆合器 2的第四端口 24和上述第二光滤波器 6的第一端口 61相 连接;
上述第一光滤波器 5的第二端口 52和上述第三光耦合器 3的第一端口 31 相连接, 上述第二光滤波器 6的第二端口 62和上述第四光辆合器 4的第一端 口 41相连接; 上述二阶非线性光波导 1的第一端口 11与上述第三光辆合器 3的第三端 口 33相连接,上述二阶非线性光波导 1的第二端口 12与上述第四光辆合器 4 的第三端口 43相连接;
上述第三光辆合器 3的第二端口 32和上述第四光耦合器 4的第二端口 42 分别作为控制光输入端口;
上述 WDM信号光包括第一波长 /波段信号光与第二波长 /波段信号光,在 使用时, 第一波长 /波段信号光可通过第一光滤波器 5, 第二波长 /波段信号光 可通过第二光滤波器 6。而第一光滤波器 5和第二光滤波器 6可为低通、高通、 带通、 带阻或其他更复杂类型的滤波器, 只要能将想要的波长或波段过滤出 来即可。
需要说明的是, 第一光耦合器 2的第一端口 21和第二端口 22位于同一 侧, 第三端口 23和第四端口 24位于另一侧。 相类似, 第三光耦合器 3的第 一端口 31和第二端口 32在同一侧, 第三端口 33在另一侧。 第四光辆合器 4 的第一端口 41和第二端口 42在同一侧, 第三端口 43在另一侧。
同一侧的端口彼此间无信号光传输, 异侧的端口彼此间有信号光传输。 因此, 第一光辆合器 2的第一端口 21和第二端口 22之间无信号光传输, 第 一端口 21与第三端口 23, 第一端口 21与第四端口 24, 第二端口 22与第三 端口 23、 第二端口 22与第四端口 24之间有信号光传输。
同理, 第三光辆合器 3的第一端口 31和第二端口 32之间无信号光传输, 第三端口 33与第一端口 31, 第三端口 33与第二端口 32之间有信号光传输; 第四光辆合器 4的第一端口 41和第二端口 42之间无信号光传输, 第三端口 43与第一端口 41, 第三端口 43与第二端口 42之间有信号光传输。
在进行全光信息交换过程中, WDM信号光,从第一光辆合器 2的第一端 口 71输入, 最终从第二端口 22输出, 控制光分别从第三光辆合器 3的第二 端口 32和第四光耦合器 4的第二端口 42输入。
在本发明其他实施例中, 还可添加其他器件来实现控制光分别从第三光 耦合器 3的第二端口 32和第四光辆合器 4的第二端口 42输入。 例如, 参见 图 3, 可添加第二光耦合器 8。 其中, 第二光辆合器 8的第一端口 81与上述 第三光辆合器 3的第二端口 32相连接, 第二光辆合器 8的第二端口 82与上 述第四光耦合器 4的第二端口 42相连接。
第二光辆合器 8的第一端口 81和第二端口 82在同一侧, 第三端口 83在 另一侧。 因此, 第一端口 81和第二端口 82之间无信号光传输, 第三端口 83 与第一端口 81, 第三端口 83与第二端口 82之间有信号光传输。 控制光可从 第三端口 83输入, 然后, 分别从第一端口 81和第二端口 82输出, 再分别输 入至第三光辆合器 3的第二端口 32和第四光辆合器 4的第二端口 42。
更具体的, 第二光辆合器 8可为功率等分光辆合器, 这样可实现控制光 等分输入第二端口 32和第二端口 42。 同理, 上述其他光辆合器亦可为功率等 分光耦合器。
在介绍上述各器件如何配合实现全光信息交换之前, 先介绍下二阶非线 性光波导的工作原理。
二阶非线性光波导是指具有二阶非线性光学效应的光波导器件。 而二阶 非线性光学效应可包括倍频、 和频以及差频等。
以一单波长信号光为例, 假定信号光的波长为 ^, 控制光的波长为^, 并 ^叚定, 二阶非线性光波导对应的偏振态、 信号光的偏振态、 控制光的偏振 态三者一致, 并且, 控制光的波长 ^与二阶非线性光波导的准相位匹配波长
( QPM )相等。 需要说明的是, 所谓的一致可指相同, 因为三者偏振态相同 时, 效果最佳。
请参见图 4和 5,向二阶非线性光波导中输入同一传输方向的信号光( λ8 ) 和控制光 P ) , 则信号光 ( )和控制光 ( Λ尸 )在二阶非线性光波导中发 生二阶非线性光学效应。 在二阶非线性光学效应下, 控制光( ) 的光子湮 灭产生了倍频光( ASH ) 的光子, 与此同时, 倍频光( ASH ) 的光子进一步转 换为信号光的光子( ^ )和新生空闲光的光子 ) 。 这其中的波长关系满 足 l / = 2 / ip = l / ^ + l / i,。 从频率上讲, 则倍频光的频率/ ^、 控制光的 频率 fp、 信号光的频率 Λ和新生空闲光的频率 /,之间的关系满足公式 fsH = 2 = fs + fi 这样, 当向二阶非线性光波导中输入同一传输方向的、 携带数据信息的 信号光和连续控制光时, 在二阶非线性效应的作用下, 信号光所携带的数据 信息会复制给空闲光, 即实现了由输入的信号光到输出的空闲光的全光波长 转换。
接下来考虑, 假定需要对两个光波长 AS1、 AS2所携带的数据信息进行全光 信息交换。 如将波长为 AS1的信号光作为前述的信号光( ) , 令控制光的波 长 满足公式 2/4 = 1/ + 1/ 2, 则根据前述的记载可知, 在二阶非线性效 应的作用下, 新生空闲光的波长将为 42 (请参见图 6 ) , 并且波长为 42的新 生空闲光携带原波长为 的信号光的数据信息。 同理, 如将波长为 42的信号 光作为前述的信号光( λ8 ),仍令控制光的波长 1Ρ满足公式 2/4 = 1 / ^ + 1 / ^, 则在二阶非线性效应的作用下, 新生空闲光的波长将为 (请参见图 7 ) , 并且波长为 的新生空闲光携带原波长为 2的信号光的数据信息。
也即, 令控制光的波长 满足公式 2 1 p = 1 / ASi + 1 / AS2, 或者, 令控制光 的频率 、 两波长信号光的频率 与^满足公式 2 = /sl + /S2, 则可实现两 个光波长 、 42所携带的数据信息的互换。
在介绍完二阶非线性光波导的工作原理后, 下面将介绍各器件如何配合 实现全光信息交换。
上述第一光辆合器 2、 第一光滤波器 5、 第二光滤波器 6、 第三光耦合器 3、 二阶非线性光波导 1和第四光辆合器 4构成环形结构。
仍以对两个光波长 /1512所携带的数据信息进行全光信息交换为例, 假 定波长为 的光可通过第一光滤波器 5, 而波长为 2的光可通过第二光滤波 器 6。 在满足一定的预设条件(本文下述将对预设条件进行详细说明 )时, 全 光信息交换过程如下:
请参见图 8, WDM信号光在第一光辆合器 2的作用下分为两路进入环形 结构, 并且这两路信号光的传输方向相反, 一路在环形结构中沿顺时针方向 传输, 一路在环形结构中沿逆时针方向传输。 而分别从第三光耦合器 3 的第 二端口 32和第四光辆合器 4的第二端口 42输入的两路控制光的传输方向也 相反, 一路在环形结构中沿顺时针方向传输, 一路在环形结构中沿逆时针方 向传输。
在图 8中, 沿顺时针方向传输的 WDM信号光经由第一光辆合器 2的第 三端口 23输入第一光滤波器 5, 由于波长为 的光可通过第一光滤波器 5, 因此从第一光滤波器 5的输出端口 52输出的是波长为 的信号光。波长为 的信号光与同沿顺时针方向传输的控制光从二阶非线性光波导 1 的第一端口 11输入, 在二阶非线性光波导 1中发生二阶非线性光学效应, 发生了波长转 换,在满足 2/4 = 1 / ^ + 1 / ^的情况下,携带数据信息的波长由 转换为 42
需要说明的是, 从二阶非线性光波导 1的第二端口 12输出的是复合光, 其包括携带数据信息的光(波长为 42 )以及波长为 的光, 复合光由第二光 滤波器 6的第二端口 62输入, 由于波长为 42的光可通过第二光滤波器 6, 因 此, 第二光滤波器 6的第一端口 61输出的是波长为 42的光, 并且, 其携带了 原波长为 AS1的信号光所携带的数据信息。
仍请参见图 8, 沿逆时针方向传输的 WDM信号光经由第一光辆合器 2 的第四端口 24输入第二光滤波器 6, 由于波长为 AS2的光可通过第二光滤波器 6, 因此从第二光滤波器 6的输出端口 62输出的是波长为 /lS2的信号光。 波长 为 的信号光与同沿逆时针方向传输的控制光从二阶非线性光波导 1的第二 端口 12输入, 在二阶非线性光波导 1中发生二阶非线性光学效应, 发生了波 长转换, 在满足 = 1 / ^1 + 1 / ^2的情况下, 携带数据信息的波长由 42转换 为 ^。
需要说明的是,从二阶非线性光波导 1的第一端口 11输出的也是复合光, 其包括携带数据信息的光(波长为 )以及波长为 2的光, 复合光由第一光 滤波器 5的第二端口 52输入, 由于波长为 AS1的光可通过第二光滤波器 5, 因 此, 第二光滤波器 5的第一端口 51输出的是波长为 AS1的光, 并且, 其携带了 原波长为 42的信号光所携带的数据信息。
第二光滤波器 6的第一端口 61输出的、波长为 42的信号光由第一光辆合 器 2的第三端口 23输入,第二光滤波器 5的第一端口 51输出的、波长为 /151的 信号光由第一光耦合器 2的第四端口 24输入, 两信号光在第一光辆合器中耦 合在一起, 这样, 由第二端口 22输出的信号光依然为复合光, 但两个光波长 slS2所携带的数据信息已经进行了全光信息交换。
除双波长外, 本发明所提供的全光信息交换装置还可进行全光波段转换, 也即, 将一个波段(一个波段包括多个波长)信号光所携带的数据信息复制 给另一个波段信号光(多个波长) 。
图 9 示出了基于二阶非线性光波导实现可控全光波段交换(双波段) 的 过程。 图 9所示工作原理与图 8类似, 所不同的是在全光波段交换过程中, 输入的是两个波段信号光, 一个波段为 /^ ... ^v , 另一个波段为 ^.../^。 其中, 每一波段中的各个波长等间距(也可不等间距)分布。 在等间距的情 况 下 , 两 波 段 与 控 制 光 ( ) 的 波 长 满 足 关 系 式
2/^^=1/^ + 1/^ = 1 ^2 + 1/ ^-1 = 1/ ^+1/ 151。 或者说, 控制光的频率, 等于第一波长 /波段信号光的中心频率与第二波长 /波段信号光的中心频率之 和的二倍。 对于不等间距的情况, 则也可令控制光的频率的二倍, 等于第一 波长 /波段信号光的中心频率与第二波长 /波段信号光的中心频率之和。
相类似的, 第一光滤波器 5和第二光滤波器 6可分别通过上述两个波段, 例如, 第一光滤波器 5可通过波段为 ^… ^的信号光, 而第二光滤波器 6 可通过波段为 AS1...XSN的信号光。
此外, 控制光和两个波段信号光的偏振态需一致, 并且与二阶非线性光 波导 1中发生最佳非线性效应对应的偏振态一致。
这样, 如图 9 所示, 顺时针方向可实现由波段为 ... ^到波段为 Sl ... ^SN波段转换,逆时针方向可实现由 ... /1^到 ...λ波段的转换, 结合第一光滤波器 5和第二光滤波器 6的滤波作用, 以及第一光辆合器 2的 耦合作用, 可最终输出经过全光波段交换后的双波段信号光。
在本发明其他实施例中,上述二阶非线性光波导的 QPM波长可进行温控 调节, 此外, 第一滤波器 5和第二滤波器 6允许通过的波长或波段也可调。
这是因为, 在实际应用中, 两个光波长(^、 2 )或光波段( ^ ... 和/^ ...λ )可能会发生变化, 为了实现双波长 /波段信号光间数据信息全光 交换, 需要选择控制光波长,使其满足关系式 2 / ρ = 1 / 1 + 1 / 2或令控制 光的频率等于两波长 /波段信号光的中心频率之和的二倍。
与此同时, 为了发生有效的级联二阶非线性效应, 当控制光波长发生改 变时, 可以温控二阶非线性光波导以调节其 QPM波长, 使其匹配控制光的波 长。 这样, 利用单个二阶非线性光波导、 两个光滤波器, 就可以实现可控全 光波长 /波段交换。
当然, 如需要对多于两个波长 /波段的信号光进行全光波长 /波段交换, 可 分多次进行。
为了保证光波的单向传输, 避免反向光波的影响, 请参见图 10, 在本发 明其他实施例中, 上述所有实施例中的装置, 还可包括第一光隔离器 9。
上述第一偏振控制器 7的第二端口 72与第一光辆合器 2的第一端口 21 之间通过第一光隔离器 9相连接: 第一光隔离器 9的输入端口 91与上述第一 偏振控制器 7的第二端口 72相连接, 第一光隔离器 9的输出端口 92与上述 第一光辆合器 2的第一端口 21相连接。
同理, 在本发明其他实施例中, 请参见图 11, 上述所有实施例中的装置, 还可包括第二光隔离器 10。
此外, 在本发明其他实施例中, 请参见图 12, 上述所有实施例中的装置 还可包括控制光提供装置 13。 控制光提供装置 13用于提供控制光。
上述控制光提供装置 13可包括控制光生成装置 14和第二偏振控制器 15 中的至少一种。 图 13则示出了同时包括控制光生成装置 14和第二偏振控制 器 15的情况。 其中, 第二偏振控制器 15的第一端口 151与控制光生成装置 14的输出端口 141相连接,第二偏振控制器 15的第二端口 152与上述第二光 隔离器 10的输入端口 101连接, 上述第二光隔离器 10的输出端口 102与主 述第二光耦合器 8的第三端口 83相连接。
前述提及了, 二阶非线性光波导 1对应的偏振态、 输入的 WDM信号光 的偏振态以及控制光的偏振态需一致, 第一偏控光控制器 7可用于调节输入 的 WDM信号光的偏振态,第二偏振控制器 15可调节控制光的偏振态,这样, 通过调节第一偏控光控制器 7和第二偏振控制器 15, 可使输入的 WDM信号 光的偏振态以及控制光的偏振态与二阶非线性光波导 1 对应的偏振态一致。 此外, 还可为二阶非线性光波导 1 配置偏振控制器, 此时, 第二偏振控制器 15就可不再配备了。
基于前述全光信息交换装置, 本发明实施例还提供了一种全光信息交换 方法, 上述方法用于交换 WDM信号光中第一波长 /波段信号光与第二波长 / 波段信号光所携带数据信息; 上述方法包括:
在满足预设条件时, 利用上述全光信息交换装置交换 WDM信号光中第 一波长 /波段信号光与第二波长 /波段信号光所携带数据信息。
基于前述的记载, 上述预设条件可包括: 第一光滤波器 5 可通过第一波 长 /波段信号光, 第二光滤波器 6可通过第二波长 /波段信号光, 二阶非线性光 波导 1对应的偏振态、 输入的 WDM信号光的偏振态、 控制光的偏振态一致, 控制光的波长与二阶非线性光波导的准相位匹配波长相等, 以及, 控制光的 频率, 等于第一波长 /波段信号光的中心频率与第二波长 /波段信号光的中心频 率之和的二分之一。
此外, 需要说明的是, 上述二阶非线性光波导具体可为周期极化反转铌 酸锂光波导或其他具有二阶非线性的光波导。
综上, 本发明具有如下有益效果:
一, 传统利用独立单向波长转换过程实现全光波长交换, 需要两个波长 转换器、 四个光滤波器等光学元器件, 装置复杂且成本高。 本发明所提供的 全光信息交换装置, 可利用单个波长转换器(即二阶非线性光波导 1 )、 两个 光滤波器, 巧妙利用环形结构实现全光波长交换, 并且装置相对简单, 从而 可以有效降低成本。
二, 本发明利用二阶非线性光波二阶非线性光学效应波长转换原理结合 环形结构, 仅需单个连续控制光, 无需很高光功率, 同时不仅可以实现双波 长全光波长交换, 还可以实现全光波段交换, 因而实现方式简单, 可以有效 降低功耗, 且全光交换功能更加完善。 三, 本发明所提供的全光信息交换装置, 对于可变输入波长 /波段, 可以 对应调节控制光波长以及温控二阶非线性光波导的准相位匹配波长来实现全 光信息交换, 因而在实际应用中全光交换功能灵活可调谐。
四, 本发明所提供的全光信息交换装置, 釆用的均是无源器件并利用二 阶非线性效应实现,具有超快响应速度(fs量级)特点, 因而适用于 40 Gbit/s、 160 Gbit/s、 640 Gbit/s甚至 Tbit/s超高速全光波长 /波段交换。
五, 本发明所提供的全光信息交换装置, 由于釆用的是二阶非线性光波 导中的二阶非线性效应, 双向波长 /波段转换过程具有上下波长转换效率均衡 对等的特点, 且非线性相互作用过程低噪声, 因而具有良好的全光波长 /波段 交换性能。
本说明书中各个实施例釆用递进的方式描述, 每个实施例重点说明的都 是与其他实施例的不同之处, 各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明, 使本领域专业技术人员能够实现或使用 本发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易 见的, 本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下, 在其它实施例中实现。 因此, 本发明将不会被限制于本文所示的这些实施例, 而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims

WO 2015/035775 ^ ^fj ^ ^ ^ PCT/CN2014/075538
1、 一种全光信息交换装置, 其特征在于, 至少包括: 二阶非线性光波导、 第一光耦合器、 第三光耦合器、 第四光耦合器、 第一光滤波器、 第二光滤波 器和第一偏振控制器, 其中:
所述第一偏振控制器的第一端口作为 WDM信号光输入端口, 其第二端 口与所述第一光耦合器的第一端口相连接;
所述第一光辆合器的第二端口作为 WDM信号光输出端口, 所述第一光 耦合器的第三端口和所述第一光滤波器的第一端口相连接, 所述第一光耦合 器的第四端口和所述第二光滤波器的第一端口相连接;
所述第一光滤波器的第二端口和所述第三光耦合器的第一端口相连接, 所述第二光滤波器的第二端口和所述第四光辆合器的第一端口相连接;
所述二阶非线性光波导的第一端口与所述第三光耦合器的第三端口相连 接, 所述二阶非线性光波导的第二端口与所述第四光耦合器的第三端口相连 接;
所述第三光耦合器的第二端口和所述第四光耦合器的第二端口分别作为 控制光输入端口;
所述 WDM信号光包括第一波长 /波段信号光与第二波长 /波段信号光,在 使用时, 所述第一波长 /波段信号光可通过第一光滤波器, 所述第二波长 /波段 信号光可通过第二光滤波器。
2、 如权利要求 1所述的装置, 其特征在于, 还包括第一光隔离器, 所述 第一偏振控制器的第二端口与所述第一光辆合器的第一端口之间通过所述第 一光隔离器相连接, 所述第一光隔离器的输入端口与所述第一偏振控制器的 第二端口相连接, 所述第一光隔离器的输出端口与所述第一光耦合器的第一 端口相连接。
3、 如权利要求 1或 2所述的装置, 其特征在于, 还包括第二光耦合器, 所述第二光辆合器的第一端口与所述第三光辆合器的第二端口相连接, 所述 第二光辆合器的第二端口与所述第四光耦合器的第二端口相连接。
4、 如权利要求 3所述的装置, 其特征在于, 还包括控制光提供装置。 WO 2015/035775 ^ ^fj ^ ^ ^ PCT/CN2014/075538
5、 如权利要求 4所述的装置, 其特征在于, 所述控制光提供装置包括控 制光生成装置和第二偏振控制器中的至少一种。
6、 如权利要求 5所述的装置, 其特征在于, 还包括第二隔离器, 所述第 二偏振控制器的第一端口与所述控制光生成装置的输出端口相连接, 所述第 二偏振控制器的第二端口与所述第二光隔离器的输入端口连接, 所述第二光 隔离器的输出端口与所述第二光辆合器的第三端口相连接。
7、 如权利要求 1-6任一项所述的装置, 其特征在于, 所述二阶非线性光 波导包括, 具有二阶非线性光学效应的光波导, 所述二阶非线性光学效应包 括倍频、 和频以及差频。
8、 如权利要求 7所述的装置, 其特征在于, 所述具有二阶非线性光学效 应的光波导为周期极化反转铌酸锂光波导。
9、 一种全光信息交换方法, 其特征在于, 基于如权利要求 1 - 8任一项 所述的全光信息交换装置, 所述方法用于交换 WDM信号光中第一波长 /波段 的信号光与第二波长 /波段的信号光所携带数据信息;
所述方法包括:
在满足预设条件时, 利用所述全光信息交换装置交换 WDM信号光中第 一波长 /波段信号光与第二波长 /波段信号光所携带数据信息;
所述预设条件包括: 所述第一光滤波器可通过第一波长 /波段信号光, 所 述第二光滤波器可通过第二波长 /波段信号光, 所述二阶非线性光波导对应的 偏振态、 所述输入的 WDM信号光的偏振态和所述控制光的偏振态一致, 所 述控制光的波长与所述二阶非线性光波导的准相位匹配波长相等, 以及, 所 述控制光的频率, 等于第一波长 /波段信号光的中心频率与第二波长 /波段信号 光的中心频率之和的二分之一。
+
PCT/CN2014/075538 2013-09-13 2014-04-16 全光信息交换装置及方法 WO2015035775A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14844392.2A EP3046334B1 (en) 2013-09-13 2014-04-16 Device and method for all-optical information exchange
US15/068,158 US9618822B2 (en) 2013-09-13 2016-03-11 Device and method for all-optical information exchange

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310419699.0A CN104469555B (zh) 2013-09-13 2013-09-13 全光信息交换装置及方法
CN201310419699.0 2013-09-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/068,158 Continuation US9618822B2 (en) 2013-09-13 2016-03-11 Device and method for all-optical information exchange

Publications (1)

Publication Number Publication Date
WO2015035775A1 true WO2015035775A1 (zh) 2015-03-19

Family

ID=52665007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075538 WO2015035775A1 (zh) 2013-09-13 2014-04-16 全光信息交换装置及方法

Country Status (4)

Country Link
US (1) US9618822B2 (zh)
EP (1) EP3046334B1 (zh)
CN (1) CN104469555B (zh)
WO (1) WO2015035775A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404190A (zh) * 2001-09-13 2003-03-19 华为技术有限公司 一种多波长输出光纤激光器
CN1490658A (zh) * 2003-08-29 2004-04-21 华中科技大学 差频型全光波长转换器
CN102931567A (zh) * 2012-11-01 2013-02-13 贵州大学 全光微波信号振荡器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4454763B2 (ja) * 2000-03-03 2010-04-21 富士通株式会社 信号光を波形整形するための方法、装置及びシステム
JP4043463B2 (ja) * 2004-09-02 2008-02-06 沖電気工業株式会社 光スイッチ
KR100658532B1 (ko) * 2004-12-02 2006-12-15 한국과학기술연구원 가변 다채널 필터
CN101303507B (zh) 2006-12-01 2011-04-20 华中科技大学 一种基于铌酸锂光波导环形腔的全光波长转换装置
JP4467557B2 (ja) * 2006-12-25 2010-05-26 富士通株式会社 光スイッチング方法及び光スイッチ
CN100442136C (zh) * 2006-12-28 2008-12-10 华中科技大学 一种非归零码到归零码全光码型转换装置
JP4683099B2 (ja) * 2008-09-16 2011-05-11 沖電気工業株式会社 光多値変調信号発生装置
JP2010206289A (ja) * 2009-02-27 2010-09-16 Fujitsu Ltd 光信号処理装置及び方法
CN101989024B (zh) * 2009-07-31 2013-04-17 华中科技大学 一种光信号的传输方法及装置
CN102547492B (zh) * 2011-12-17 2014-06-04 华中科技大学 一种基于二阶非线性的全光信息交换方法
JP6079192B2 (ja) * 2012-12-11 2017-02-15 富士通株式会社 光周波数多重装置及び偏光制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404190A (zh) * 2001-09-13 2003-03-19 华为技术有限公司 一种多波长输出光纤激光器
CN1490658A (zh) * 2003-08-29 2004-04-21 华中科技大学 差频型全光波长转换器
CN102931567A (zh) * 2012-11-01 2013-02-13 贵州大学 全光微波信号振荡器

Also Published As

Publication number Publication date
CN104469555B (zh) 2018-05-18
EP3046334B1 (en) 2017-11-15
EP3046334A4 (en) 2016-08-03
EP3046334A1 (en) 2016-07-20
US9618822B2 (en) 2017-04-11
US20160195792A1 (en) 2016-07-07
CN104469555A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
CN110333637A (zh) 基于马赫曾德尔干涉仪-微环耦合的可调非线性频率变换波导芯片
US11309965B2 (en) Efficiently combining multiple taps of an optical filter
WO2016070420A1 (zh) 一种模式转换器、多模波导传输装置及方法
US7822298B2 (en) Polarization component processor, method of processing polarization components and integrated photonic circuit employing the same
CN112068336A (zh) 一种基于周期极化铌酸锂波导的电控式偏振纠缠态产生芯片
CN105829963A (zh) 波长转换器
WO2021184993A1 (zh) 一种波分复用器和硅光集成芯片
US7706649B2 (en) Optical processing device and optical processing method
Popović Resonant optical modulators beyond conventional energy-efficiency and modulation frequency limitations
CN102594457B (zh) 一种针对复用信号的多功能可调谐全光码型转换器
CN117031630A (zh) 一种幺正光学路径模式转换器及转换方法
WO2015035775A1 (zh) 全光信息交换装置及方法
JP2016218173A (ja) 位相共役光変換器及びそれを用いた光伝送システム
TWI828111B (zh) 絕熱耦合相位調制模組、裝置與量子密鑰分發系統
Sharma et al. Silicon photonic wires for broadband polarization entanglement at telecommunication wavelengths
CN100442136C (zh) 一种非归零码到归零码全光码型转换装置
CN1786757A (zh) 一种全光码型转换装置
JP3936886B2 (ja) 光変調・光多重回路
CN201035286Y (zh) 一种非归零码到归零码全光码型转换装置
JP2013257354A (ja) モード合分波器、光送受信装置及び光通信システム
CN100442137C (zh) 基于非线性光波导环形镜的全光码型转换装置
CN112859240A (zh) 一种基于马赫增德尔干涉仪的可重构模式转换器
CN103576222B (zh) Cs-rz到nrz码型转换光纤光栅设计方法及其装置
WO2015192415A1 (zh) 一种同时实现三路dpsk信号1-2信号组播的方法
JP2014067060A (ja) 量子もつれ光子対発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014844392

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014844392

Country of ref document: EP