WO2015034227A1 - 복수의 무선 네트워크를 지원하는 통신 환경에서 단말과 통신하는 무선 노드 및 무선 통신 방법 - Google Patents

복수의 무선 네트워크를 지원하는 통신 환경에서 단말과 통신하는 무선 노드 및 무선 통신 방법 Download PDF

Info

Publication number
WO2015034227A1
WO2015034227A1 PCT/KR2014/008145 KR2014008145W WO2015034227A1 WO 2015034227 A1 WO2015034227 A1 WO 2015034227A1 KR 2014008145 W KR2014008145 W KR 2014008145W WO 2015034227 A1 WO2015034227 A1 WO 2015034227A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
function
state
interface
radio
Prior art date
Application number
PCT/KR2014/008145
Other languages
English (en)
French (fr)
Inventor
조희정
고현수
최혜영
변일무
박경민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/916,333 priority Critical patent/US9974107B2/en
Publication of WO2015034227A1 publication Critical patent/WO2015034227A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/06Registration at serving network Location Register, VLR or user mobility server
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to mobile communication, and more particularly, to a wireless node for communicating with a terminal in a communication environment supporting a plurality of wireless networks, and a wireless communication method thereby.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • 1 is a schematic diagram of a structural diagram of an evolved mobile communication network.
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the E-UTRAN includes a base station (or eNodeB) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the base stations (or eNodeBs) 20 may be connected to each other via an X2 interface.
  • Layers of the Radio Interface Protocol between the UE and the base station (or eNodeB) 20 are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is well known in communication systems.
  • L1 first layer
  • L2 second layer
  • L3 third layer
  • a RRC Radio Resource Control
  • a RRC layer which provides a transfer service, located in the third layer, controls radio resources between the UE and the network.
  • the RRC layer exchanges RRC messages between the UE and the base station.
  • an EPC may correspond to some of them, and may include a Mobility Management Entity (MME) 51, a Serving Gateway (S-GW) 52, and a PDN GW (Packet Data Network). Gateway 53, and home subscriber server 54 (HSS).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • PDN GW Packet Data Network
  • the base station (or eNodeB) 20 is connected to the Mobility Management Entity (MME) 51 of the EPC through an S1 interface, and is connected to a Serving Gateway (S-GW) 52 through S1-U.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the S-GW 52 operates as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB 20 and the PDN GW 53.
  • the S-GW 52 serves as a local mobility anchor point. That is, packets may be routed through the S-GW 52 for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • the S-GW 52 may be connected to other 3GPP networks (RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (GSM (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access). It can also serve as an anchor point for mobility with a network).
  • 3GPP networks RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (GSM (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access). It can also serve as an anchor point for mobility with a network).
  • PDN GW (or P-GW) 53 corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW 53 may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the S-GW 52 and the PDN GW 53 are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option. have.
  • the MME 51 is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like. .
  • the MME 51 controls control plane functions related to subscriber and session management.
  • the MME 51 manages a number of eNodeBs 20 and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME 51 performs security procedures, terminal-to-network session handling, idle terminal location management, and the like.
  • FIG. 2 is a schematic diagram illustrating a network structure in which a small cell and a WLAN AP are added.
  • multiple WLAN APs may be located within the coverage of the base station 31 for the small cell. That is, various RATs (Radio Access Technology) exist around the UE. Accordingly, the UE can distribute data traffic among several Radio Access Technology (RAT).
  • the base station 31 for the small cell may be located within the coverage of a macro base station such as an existing eNodeB.
  • the P-GW 53 and the HSS 54 are connected with an access authentication authorization (AAA) server 56.
  • the P-GW 53 and the AAA server 56 may be connected to an evolved packet data gateway 57 (e-PDG).
  • e-PDG evolved packet data gateway 57
  • the ePDG 57 acts as a secure node for untrusted non-3GPP networks (eg, WLAN or Wi-Fi, etc.).
  • the ePDG 57 may be connected to a WLAN access gateway 58.
  • WAG 58 may play the role of P-GW in a Wi-Fi system.
  • an interface for establishing a connection or session between the terminal and the core network using the heterogeneous network may be required.
  • the present invention provides a method of establishing a wireless link with a terminal and a method of releasing a connection when the terminal can communicate through a wireless interface using different wireless protocols.
  • the present invention provides a method of performing operations of a wireless node and a terminal that can be changed according to a function that can be performed under the support of a core network.
  • a method of wireless communication comprising: transmitting function structure type information on a mobility management-related function that may be performed through a first air interface by a first air protocol; Establishing a wireless link with the terminal through a second wireless interface by a second wireless protocol; When the terminal requests a connection between the core network through the second air interface, establishing a connection based on a Non Access Stratum (NAS) protocol between the terminal and the core network; Releasing the wireless link; Communicating with the terminal to perform the mobility management related function through the second air interface.
  • NAS Non Access Stratum
  • a method of forming a radio link with the terminal and a method of releasing a connection are provided.
  • a method of performing operations of a wireless node and a terminal which can be changed according to a function that can be performed with the support of a core network.
  • 1 is a schematic diagram of a structural diagram of an evolved mobile communication network.
  • FIG. 2 is a schematic diagram illustrating a network structure in which a small cell and a WLAN AP are added.
  • FIG 3 is an exemplary view showing a comparison of an existing mobile communication network structure and an improved network structure according to the present invention.
  • 4A to 4D illustrate a conceptual diagram of a configuration of a Radio Entity (RE) for unified management of a base station and a WLAN AP according to the present invention for a multi-RAT UE.
  • RE Radio Entity
  • FIG. 5 is a diagram illustrating coverage of a wireless network according to an embodiment of the present invention.
  • FIG. 6 illustrates a functional structure of a wireless communication system according to an embodiment of the present invention.
  • FIG. 7 is a view for explaining a CRCM state between the UE and the RE according to an embodiment of the present invention.
  • FIG. 8 is a diagram for describing a CRCM state between a UE and an RE according to another embodiment of the present invention.
  • FIG. 9 is a view showing a state by the NAS protocol according to an embodiment of the present invention.
  • FIG. 10 is a view showing a functional sphere of a wireless communication system according to another embodiment of the present invention.
  • FIG. 11 is a view showing a state transition by the NAS protocol according to another embodiment of the present invention.
  • FIG. 12 is a view showing a functional structure of a wireless communication system according to another embodiment of the present invention.
  • FIG. 13 illustrates a state transition by a NAS protocol according to another embodiment of the present invention.
  • FIG. 14 illustrates a state transition by a NAS protocol according to another embodiment of the present invention.
  • 15 is a view showing the functional structure of a wireless communication system according to another embodiment of the present invention.
  • FIG. 16 illustrates a state transition by a NAS protocol according to another embodiment of the present invention.
  • 17 is a diagram illustrating a state transition by a NAS protocol according to another embodiment of the present invention.
  • FIG. 18 is a control flowchart illustrating an attach process between a terminal and a core network according to the present invention.
  • 19 is a control flowchart illustrating NAS signaling between a terminal and a core network according to an embodiment of the present invention.
  • 20 is a block diagram of a wireless communication system according to an embodiment of the present invention.
  • the wireless device may be fixed or mobile and may be called other terms such as a user equipment (UE), a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), and the like.
  • the terminal may be a portable device having a communication function such as a mobile phone, a PDA, a smart phone, a wireless modem, a laptop, or the like, or a non-portable device such as a PC or a vehicle-mounted device.
  • a base station generally refers to a fixed station for communicating with a wireless device, and may be referred to in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • LTE includes LTE and / or LTE-A.
  • the present specification describes a communication network, and the work performed in the communication network is performed in the process of controlling the network and transmitting data in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to
  • FIG 3 is an exemplary view showing a comparison of an existing mobile communication network structure and an improved network structure according to the present invention.
  • an enhanced MME (eMME) 510 and an enhanced GW (eGW) 520 are provided.
  • eMME enhanced MME
  • eGW enhanced GW
  • FIG. 5B illustrates that the eMME 510 and the eGW 520 are separated, they may be logically separated and physically integrated into one device.
  • FIG. 5B illustrates that the eGW 520 and the P-GW 530 are separated, they may be integrated into one device.
  • the eMME 510 may be connected not only to the eNodeB 200 and the base station 310 but also to a WLAN access point (AP). To this end, a new interface may be added between the eMME 510 and the WLAN AP.
  • the eGW 520 may be connected not only to the eNodeB 200 and the base station 310 but also to a WLAN access point (AP). To this end, a new interface may be added between the eGW 520 and the WLAN AP.
  • 4A to 4D illustrate a conceptual diagram of a configuration of a Radio Entity (RE) for unified management of a base station and a WLAN AP according to the present invention for a multi-RAT UE.
  • RE Radio Entity
  • the RE (Radio Entity) (or radio access device) 300 is a device newly proposed according to the present invention.
  • the base station 310 and the WLAN AP 320 are used. Make management easier.
  • the 4A illustrates the concept of an RE according to a first type, where the first type of RE 300 supports only the cellular base station 310.
  • the first type of RE 300 may be integrated into the cellular base station 310.
  • the first type of RE 300 is connected to the eGW 520 and the local GW 550 to transmit and receive user data, and to the eMME 510 to transmit and receive control data.
  • the eGW 520 may perform one or more of the functions of the S-GW and P-GW.
  • the local GW 520 is a gateway that enables access to a home network in a home or office.
  • the multi-RAT UE 100 and the RE 300 may be connected by an access stratum (AS) protocol, and the multi-RAT UE 100 and the eMME 510 may be connected to a terminal and a core network by a non-access stratum (NAS). Can be connected by protocol.
  • AS access stratum
  • NAS non-access stratum
  • an interface S1-eMME may be formed between the RE 300 and the eMME 510, and an interface S1-U1 may be formed between the RE 300 and the eGW 520.
  • the second type of RE 300 supports both the cellular base station 310 and the WLAN AP 320.
  • the second type RE 300 may be a device integrating the cellular base station 310 and the WLAN AP 320.
  • the multi-RAT UE 100 may be connected to the RE 300 via at least one of a cellular link or a Wi-Fi link.
  • 4C illustrates the concept of an RE according to the third type, wherein the third type of RE 300 is integrated into the cellular base station 310, but has an interface with the WLAN AP 320.
  • an S21-U1 interface is formed between the WLAN AP 320 and the eGW 520
  • an S21-eMME interface may be formed between the WLAN AP 320 and the eMME 510.
  • the terminal may directly access the core network through the WLAN AP 320, and the WLAN AP 320 and the RE 300. It is also possible to connect to the core network via the RE (300) using the interface between.
  • the subject that manages the connection between the WLAN AP 320 and the core network is determined. Can be.
  • the fourth type RE 300 is a concept in which a second type RE and a third type RE are mixed. That is, the fourth type RE 300 is an apparatus integrating the cellular base station 310 and the WLAN AP 320, and may further include an interface with the external WLAN AP 320-1.
  • the RE 300 may exist in a plurality of types, and the multi-RAT UE 100 may be connected to the RE 300 through at least one of a cellular link or a Wi-Fi link. .
  • the multi-RAT UE 100 may be connected to the core network by connecting to the RE 300 through at least one of a cellular link or a Wi-Fi link, and may be connected to the core network through the WLAN AP 320 when the multi-RAT UE 100 can communicate through the Wi-Fi link. You can also connect to the network.
  • the multi-RAT UE 100 may access the core network via the RE 300 using the interface between the WLAN AP 320 and the RE 300.
  • FIG. 5 is a diagram illustrating coverage of a wireless network according to an embodiment of the present invention.
  • the eMME forms an S1-eMME interface with all four REs (RE 1, RE 2, RE 3, and RE 4), and forms an interface with the eAP 3 that may correspond to the WLAN AP of FIG. 4. Doing.
  • RE 1 corresponds to the first type of RE of FIG. 4A providing only a cellular interface
  • RE 2 corresponds to a first type of RE connected to the cellular interface and eAP 4 to form an X2-eAP interface.
  • RE 3 corresponds to a third type as a wireless node supporting a cellular interface and a Wi-Fi interface.
  • RE 4 is a wireless node that supports a cellular interface and a Wi-Fi interface, and corresponds to a fourth type in which an interface is formed by being connected to eAP 3 and eAP 4.
  • eAP 1 to eAP 4 each independently form a Wi-Fi coverage area, and eAP 2 to eAP 4 forms an X2-eAP interface with RE 2 and RE 4.
  • eAP 3 also forms an S1-eAP interface with the eMME and is connected to the core network.
  • An X2-RE interface may be formed between the REs.
  • the size of the cellular coverage and the Wi-Fi coverage formed by the RE 3 and the RE4 are illustrated as the same for convenience of description, the sizes may be the same or different.
  • an interface for connection or session establishment or mobility management between the terminal and the core network using the heterogeneous network may exist. If a function that was performed using a conventional cellular network is performed through an interface using a WLAN, the load of the core network may be increased. Therefore, the function between the WLAN and the core network may be variously set according to the capability of the wireless environment or the core network.
  • the role of the terminal, the AP, or the base station may be changed differently according to the function of the WLAN supported by the core network, and the NAS message between the terminal and the core network may be adjusted differently.
  • Table 1 shows functions related to session management among functions according to the NAS protocol between the core network and the terminal.
  • bearer resource modification procedure to request a modification or release of bearer resources for a traffic flow aggregate or modification of a traffic flow aggregate by replacing packet filters or adding packet filters
  • ESM information request procedure to retrieve ESM information, ie protocol configuration options, APN, or both from the UE during the attach procedure
  • ESM status procedure to report at any time certain error conditions detected upon receipt of ESM protocol data notification procedure to inform the UE about events which are relevant for the upper layer which is using an EPS bearer context or has requested a procedure transaction.
  • session management may include procedures related to bearer contexts and transactions related procedures.
  • the procedure related to bearer context includes creating and deleting or modifying a basic EPS bearer context, and the transaction functions related to performing the procedure include requesting establishment of a default EPS bearer context to a packet data network (PDN) and disconnecting from the PDN.
  • PDN packet data network
  • PDN related functions such as request and bearer resource allocation request and modification related procedures for traffic flow may be included.
  • Table 2 shows the functions related to mobility management among the functions according to the NAS protocol between the core network and the terminal.
  • mobility management may include common procedures, specific procedures, and connection management procedures.
  • the common procedure is a procedure that performs globally unique temporary identifier (GUTI) reassignment, authentication, and security-related functions.
  • GUI globally unique temporary identifier
  • Specific procedures include procedures related to attach, detach, and TA update, and connection management procedures include service requests and paging procedures. And the like.
  • Table 3 classifies the types according to the functions supported by the core network through the wireless network by the Wi-Fi interface among the various functions of Table 1 and Table 2.
  • the control-related load that the core network must manage can increase, so the functions implemented through the Wi-Fi interface can be adjusted according to the nature and capabilities of the network.
  • a function for a specific procedure may be expressed as a function 1 (FG 1)
  • a function for a connection related procedure may be expressed as a function 2 (FG 2).
  • the function for the common section during mobility management is not supported only in case 1 by function structure type A, but is supported in all the other function structures type B to F.
  • type A in order for a terminal to receive data through a Wi-Fi interface, the state between the terminal, the cellular RAN and the core network CN must be connected.
  • the function structure type B may include a case 2 in which a function for a specific procedure is not supported during mobility management, and only a reconnection function such as a service request in a connection management procedure is supported, and a case 3 in which a connection management procedure mode is supported.
  • the state of the terminal and the core network is maintained in a registered state.
  • the registered state means that the Evolved Mobility Management (EMM) state is a registered state among the interfaces by the NAS protocol between the terminal and the core network, and indicates that the terminal and the core network are logically connected. That is, it must be attached between the terminal and the core network.
  • EMM Evolved Mobility Management
  • data can be transmitted / received even when not in a connection state between the terminal and the cellular network. This is because a connection related procedure such as a service request with a terminal can be performed through the Wi-Fi interface, so that the cellular module of the terminal can transmit and receive data even in an idle state instead of a connected state.
  • Functional structure type C represents a functional structure in which some of the common procedures and specific procedures are supported during mobility management, and the connection management procedure is not supported. In the functional structure type C, only connection / deregistration functions such as attach and detach are supported by the core network during a specific procedure.
  • Functional structure type D represents a functional structure in which the connection management procedure is supported, except for the common procedures and some of the specific procedures for supporting mobility and paging.
  • the functional structure type E indicates a functional structure in which a common procedure and a specific procedure are supported during mobility management, and the connection management procedure is not supported.
  • the function structure type F supports all the functions related to mobility management shown in Table 2 by the core network.
  • the terminal does not have a premise of the connection state between the terminal and the network terminals (the wireless node and the core network) that existed for the functional structure type A and the functional structure type B, the terminal is not connected to the Wi-Fi network. Data can be sent and received via the interface.
  • FIG. 6 illustrates a functional structure of a wireless communication system according to an embodiment of the present invention. Specifically, FIG. 6 shows a functional structure in the case of functional structure type A. As shown in FIG.
  • the terminal (hereinafter, multi-RAT UE) 100 is connected to the RE 300 corresponding to the wireless node, and the RE 300 is connected to the eMME 510 corresponding to the network controller in the core network. have.
  • the multi-RAT UE 100 may be logically or physically connected to the eMME 510 through the RE 300.
  • a wireless connection through a wireless interface may be established between the multi-RAT UE 100 and the RE 300, and an interface based on a NAS protocol is formed between the multi-RAT UE 100 and the eMME 510.
  • the multi-RAT UE 100 may include a wireless module 110 for interfacing with the RE 300 and a core module 120 for interfacing with the eMME 510.
  • the wireless module 110 includes a cellular module (Cellular) 111 for cellular connection and a Wi-Fi module (Wi-Fi) 113 for wireless connection via a Wi-Fi interface, and the core module 120 is mobile It may include a management module (MM) 121 and a session management module (SM) 123.
  • Cellular Cellular
  • Wi-Fi Wi-Fi module
  • MM management module
  • SM session management module
  • the RE 300 serves as an interface between the multi-RAT UE 100 and the eMME 510, and the cellular module 330 and the Wi-Fi connected to the wireless module 110 of the multi-RAT UE 100. It may include a Wi-Fi module 340.
  • the cellular module 330 of the RE 300 is connected to the cellular module 111 of the multi-RAT UE 100 to perform wireless communication, and the Wi-Fi module 340 of the RE 300 is a multi-RAT UE. It may be connected to the Wi-Fi module 113 of 100 to perform wireless communication.
  • the cellular module 330 of the RE 300 may correspond to the base station of FIG. 4, and the Wi-Fi module 340 may include an AP integrated or connected to the RE in FIG. 4. That is, the cellular module 330 and the Wi-Fi module 340 may correspond to a wireless node that performs wireless communication with the multi-RAT UE 100 through a wireless interface.
  • the eMME 510 may include a mobility management module (MM) 511 supporting mobility management function and a session management module (SM) 513 supporting session management function.
  • MM mobility management module
  • SM session management module
  • functions related to session management may be performed through a cellular interface and a Wi-Fi interface.
  • the session management module 123 of the multi-RAT UE 100 may be connected to both the cellular module 111 and the Wi-Fi module 113, and the session management module 513 of the eMME 510 may also be connected to the RE 300.
  • the session management module 513 of the eMME 510 may also be connected to the RE 300.
  • the mobility management module 121 of the multi-RAT UE 100 is connected to the cellular module 111 but is connected to the Wi-Fi module 113. Not.
  • the mobility management module 511 of the eMME 510 does not support the Wi-Fi interface. Referring to FIG. 6, it is confirmed that the mobility management module 511 is connected to only the cellular module 330 of the RE 300. Can be.
  • FIG 7 and 8 are views for explaining a CRCM state between the UE and the RE according to an embodiment of the present invention.
  • FIG. 7 illustrates the case where the RE is the second type shown in FIG. 4B
  • FIG. 8 illustrates the case where the RE is the third type shown in FIG. 4C.
  • the multi-RAT UE may be connected to the RE through the first RAT (RAT 1) and may be connected to the RE through the second RAT (RAT 2).
  • the first RAT may mean a wireless connection through a cellular network
  • the second RAT may mean a wireless connection through a Wi-Fi network.
  • This radio connection state is released (Release), when disassociation (Disassociation), radio link failure or user data is deactivated (User inactivity), the idle state (Idle) in the connected state (Connected) Can be switched to.
  • a module for managing a connection between a multi-RAT UE and a RE is changed to an active state and a deactivated state according to a connection state between the multi-RAT UE and the RE, and a common radio connection management (CRCM) Can be defined as
  • the state of the CRCM may transition with the state of the mobility management module of the eMME.
  • the CRCM becomes an active state only when the multi-RAT UE is connected to the first RAT.
  • Table 4 shows the CRCM state between the multi-RAT UE and the RE according to the function structure type A.
  • the CRCM when both the first RAT and the second RAT are not connected to the idle state, the CRCM becomes inactive, and when the first RAT and the second RAT are both connected, the CRCM is in an active state. do.
  • the CRCM is in an inactive state when the first RAT is in the idle state. This is because the mobility management function between the multi-RAT UE and the core network is not supported through the Wi-Fi interface, so the state of the CRCM linked with the state of the mobility management module of the eMME cannot be made active.
  • the CRCM in the case of the functional structure type A becomes an active state only when a wireless connection is established through the cellular interface, and the state of the CRCM and the connection state of the eMME and the multi-RAT UE are interworked with each other.
  • the CRCM may be managed by any specific device, the RE of FIG. 4.
  • FIG. 9 is a diagram illustrating a state by NAS protocol according to an embodiment of the present invention. Specifically, FIG. 9 shows the state of the terminal and the core network by the NAS protocol in the case of function structure type A. FIG.
  • An interface via a NAS protocol may be formed between the multi-RAT UE and the core network, and may be described through states of Evolved Connection Management (ECM) and Evolved Mobility Management (EMM) shown in FIG. 9.
  • ECM Evolved Connection Management
  • EMM Evolved Mobility Management
  • the state of the EMM may be described as a state of the mobility management module 121 of the multi-RAT UE 100 and the mobility management module 511 of the eMME 510 illustrated in FIG. 6.
  • An ECM is in a connected state may mean that a multi-RAT UE and a core network are physically connected, and an EMM is registered in a state in which an EMME is not a physical connection but an eMME is a multi-RAT.
  • the context of the UE may be stored to indicate a logically connected state.
  • the ECM states of the multi-RAT UE and the eMME may be changed by being coupled to the states of the CRCM shown in Table 4. That is, when the CRCM becomes active, the ECM may transition from the idle state to the connected state, and when the CRCM becomes the inactive state, the ECM may transition from the connected state to the idle state.
  • the EMM remains in the registered state as long as the connection state between the multi-RAT UE and the RE is maintained. In this state, even if a handover or U-plane separation occurs, no additional state transition occurs.
  • the ECM is coupled with the state of the CRCM and the CRCM is linked with the EMM.
  • the multi-RAT UE may perform session related functions through the Wi-Fi interface when the CRCM is active, the ECM is connected, and the EMM is registered.
  • Table 5 shows the CRCM state between the multi-RAT UE and the RE according to the function structure type B, C, D, E, and F.
  • the CRCM is active unless the first RAT and the second RAT are both idle, i.e. if at least one of the first and second RAT states is connected. It becomes a state.
  • the state of the RAT may transition from the connected state to the idle state when the radio connection relationship is release and / or disassociation, radio link failure, or user inactivity. have.
  • FIG. 10 is a view showing the functional structure of a wireless communication system according to another embodiment of the present invention. Specifically, FIG. 10 shows the functional structure in the case of the functional structure type B. In FIG.
  • function 1 of the function by the mobility management module may be performed by the cellular module 111, and function 2 may be performed by the Wi-Fi module 113. .
  • session related functionality is supported through cellular and Wi-Fi interfaces.
  • FIG. 11 is a view showing a state transition by the NAS protocol according to another embodiment of the present invention.
  • FIG. 11 illustrates a state transition that may occur when a session related function and a mobility related function are performed through a Wi-Fi interface in the case of a function structure type B.
  • FIG. 11 illustrates a state transition that may occur when a session related function and a mobility related function are performed through a Wi-Fi interface in the case of a function structure type B.
  • function structure type B only reconnection functions such as service request, both function 2 or function 2, are supported via the Wi-Fi interface.
  • the ECM may be idle, the CRCM is inactive, and the EMM may be powered up and the network may be selected (NW).
  • the core network may not know whether or not there is a multi-RAT UE.
  • the EMM When the EMM is in a registered state, when a radio link failure or power off occurs, the EMM changes to a deregistered state, and the ECM and CRCM also transition to an idle state and a deactive state.
  • the EMM is in the registered state, the ECM is in the connected state, the CRCM is in the active state, when there is no user activity (User Inactivity), the ECM transitions from the connected state to the idle state, and the CRCM transitions from the active state to the inactive state. However, even in this case, the state of the EMM is kept in the registered state.
  • the ECM may transition from the idle state back to the connected state and the CRCM may transition from the deactive state to the active state.
  • a state transition does not occur if any one of the plurality of RATs is connected to the radio link. That is, no state transition occurs due to a radio link failure of any one of the plurality of RATs.
  • FIG. 12 is a view showing a functional structure of a wireless communication system according to another embodiment of the present invention. Specifically, FIG. 12 shows the functional structure in the case of the functional structure type C and the functional structure type E. FIG. 12
  • function 1 of the function by the mobility management module may be performed by the Wi-Fi module 113, but function 2 is the Wi-Fi module 113.
  • Cannot be performed by Function 1 may also be performed by the cellular module 111.
  • the mobility management module 511 of the eMME 510 is connected to the mobility management module 121 of the multi-RAT UE 100 through the cellular interface, and the function 1 is connected to the cellular module 330 and the Wi-Fi module 340. ), But Function 2 can also be confirmed by not supporting it through the Wi-Fi interface.
  • session related functionality is supported through cellular and Wi-Fi interfaces.
  • FIG. 13 illustrates a state transition by a NAS protocol according to another embodiment of the present invention.
  • FIG. 13 illustrates a state transition that may occur when a session related function and a mobility related function are performed through a Wi-Fi interface in the case of a functional structure type C.
  • FIG. 13 illustrates a state transition that may occur when a session related function and a mobility related function are performed through a Wi-Fi interface in the case of a functional structure type C.
  • connection / deregistration functions such as attach and detach are supported through the Wi-Fi interface.
  • the ECM may be idle, the CRCM is inactive, and the EMM may be powered up and the network may be selected (NW).
  • the core network may not know whether or not there is a multi-RAT UE.
  • the ECM transitions to the connected state and the CRCM transitions to the active state.
  • the EMM also transitions to the registered state. In this state, even if a handover or U-plane separation occurs, no additional state transition occurs.
  • the EMM When the EMM is in a registered state, when a detach or attach is rejected, a radio link failure occurs, or a power off occurs, the EMM changes to a deregistered state, and the ECM and CRCM also transition to an idle state and a deactive state.
  • the EMM is in the registered state, the ECM is in the connected state, the CRCM is in the active state, when there is no user activity (User Inactivity), the ECM transitions from the connected state to the idle state, and the CRCM transitions from the active state to the inactive state. However, even in this case, the state of the EMM is kept in the registered state.
  • a state transition does not occur if any one of the plurality of RATs is connected to the radio link. That is, no state transition occurs due to a radio link failure of any one of the plurality of RATs.
  • FIG. 14 illustrates a state transition by a NAS protocol according to another embodiment of the present invention.
  • FIG. 14 illustrates a state transition that may occur when a session related function and a mobility related function are performed through a Wi-Fi interface in the case of a function structure type E.
  • FIG. 14 illustrates a state transition that may occur when a session related function and a mobility related function are performed through a Wi-Fi interface in the case of a function structure type E.
  • function 1 is all supported via the Wi-Fi interface, but function 2 is not. That is, in the function structure type E, the multi-RAT UE can perform attach, detach and TA update related functions through the Wi-Fi interface, and cannot perform paging related functions.
  • the ECM In a situation where the ECM is in the idle state, the CRCM is in the inactive state, and the EMM is in the deregistered state, power may be supplied or a network may be selected (network selection).
  • the core network may not know whether or not there is a multi-RAT UE.
  • the ECM transitions to the connected state and the CRCM transitions to the active state.
  • the EMM also transitions to the registered state. In this state, even if a handover or U-plane separation occurs, no additional state transition occurs.
  • the EMM is in the Registered state, if the Detach or Attach is rejected, if the TAU is rejected, if a radio link failure occurs, or if it is powered off, the EMM is changed to the Deregistered state, and the ECM and CRCM are also Transition to the deactive state.
  • EMM is registered, ECM is connected, CRCM is active, user inactivity or TAU is accepted, ECM transitions from connected to idle, and CRCM is active Transition to the deactive state at. However, even in this case, the state of the EMM is kept in the registered state.
  • the ECM may transition from the idle state to the connected state again, and the CRCM may transition from the deactive state to the active state.
  • a state transition does not occur if any one of the plurality of RATs is connected to the radio link. That is, no state transition occurs due to a radio link failure of any one of the plurality of RATs.
  • FIG. 15 is a view showing the functional structure of a wireless communication system according to another embodiment of the present invention. Specifically, FIG. 15 shows the functional structure in the case of the functional structure type D and the functional structure type F. As shown in FIG.
  • both the functions 1 and 2 by the mobility management module may be performed by the Wi-Fi module 113 and the cellular module 111.
  • the mobility management module 511 of the eMME 510 is connected to the cellular module 111 and the Wi-Fi module of the multi-RAT UE 100 through the cellular module 330 and the Wi-Fi module 340 of the RE 300. It can also be checked through the connection with (113).
  • session related functionality is supported through cellular and Wi-Fi interfaces.
  • FIG. 16 illustrates a state transition by a NAS protocol according to another embodiment of the present invention.
  • FIG. FIG. 16 illustrates a state transition that may occur when a session related function and a mobility related function are performed through a Wi-Fi interface in the case of a functional structure type D.
  • connection / deregistration function such as attach and detach in function 1 is supported through the Wi-Fi interface, and only paging related functions in function 2 may be performed.
  • the power may be supplied or the network may be selected (network selection).
  • the core network may not know whether or not there is a multi-RAT UE.
  • the ECM transitions to the connected state and the CRCM transitions to the active state.
  • the EMM also transitions to the registered state. In this state, even if a handover or U-plane separation occurs, no additional state transition occurs.
  • the EMM If the EMM is in the Registered state, if the Detach or Attach is rejected, if a radio link failure occurs, or if it is powered off, the EMM changes to the Deregistered state, and the ECM and CRCM also transition to the Idle and Deactive states. .
  • the ECM When the EMM is in the registered state, the ECM is in the connected state, the CRCM is in the active state, and there is no user inactivity, the ECM transitions from the connected state to the idle state, and the CRCM transitions from the active state to the inactive state. However, even in this case, the state of the EMM is kept in the registered state.
  • the ECM may transition from the idle state back to the connected state and the CRCM may transition from the deactive state to the active state.
  • a state transition does not occur if any one of the plurality of RATs is connected to the radio link. That is, no state transition occurs due to a radio link failure of any one of the plurality of RATs.
  • FIG. 17 is a diagram illustrating a state transition by a NAS protocol according to another embodiment of the present invention.
  • FIG. 17 illustrates a state transition that may occur when a session related function and a mobility related function are performed through a Wi-Fi interface in the case of a function structure type F.
  • FIG. 17 illustrates a state transition that may occur when a session related function and a mobility related function are performed through a Wi-Fi interface in the case of a function structure type F.
  • both a mobility related function and a session related function can be performed through the Wi-Fi interface.
  • the power may be supplied or the network may be selected (network selection).
  • the core network may not know whether the multi-RAT UE 100 exists.
  • the ECM transitions to the connected state and the CRCM transitions to the active state.
  • the EMM also transitions to the registered state. In this state, even if a handover or U-plane separation occurs, no additional state transition occurs.
  • the EMM is in the Registered state, if the Detach or Attach is rejected, if the TAU is rejected, if a radio link failure occurs, or if it is powered off, the EMM is changed to the Deregistered state, and the ECM and CRCM are also Transition to the deactive state.
  • EMM is registered, ECM is connected, CRCM is active, user inactivity or TAU is accepted, ECM transitions from connected to idle, and CRCM is active Transition to the deactive state at. However, even in this case, the state of the EMM is kept in the registered state.
  • the ECM may transition from the idle state to the connected state again, and the CRCM may transition from the deactive state to the active state.
  • a state transition does not occur if any one of the plurality of RATs is connected to the radio link. That is, no state transition occurs due to a radio link failure of any one of the plurality of RATs.
  • the UE may perform an operation that is appropriate to its situation in different RAT environments.
  • system information transmitted to the AP needs to be newly defined for the operation of the terminal.
  • This SI may include Wi-Fi AP type information.
  • a first type (Legacy AP) indicating a conventional AP in which no interface between the core network and the NAS is formed
  • a second type indicating a AP integrated in the RE shown in FIG. 4B (Physically collocated AP with RE)
  • a third type (Physically connected AP to RE) indicating an AP connected to the RE shown in FIG. 4C
  • a fourth type (Hybrid AP) indicating an AP belonging to a form in which the second type and the third type are combined. ) May be present.
  • the SI may include information (hereinafter, function type information) about a core function structure type that can be obtained in the process of setting an interface (for example, S1-eAP and X2-eAP) with an eMME or RE. .
  • function type information information about a core function structure type that can be obtained in the process of setting an interface (for example, S1-eAP and X2-eAP) with an eMME or RE.
  • the function type information is '000' or if it is set to '000' when the function type information is not explicitly obtained, this indicates that no function of Table 3 is performed through the Wi-Fi AP. Can be.
  • the function type information is '001', it indicates the function structure type A of Table 3, if the function type information is '010', it indicates the function structure type B of Table 3, if the function type information is '011', Function structure type C is shown, if the function type information is' 100 ', it shows function structure type D in Table 3, if the function type information is' 101', it shows function structure type E in Table 3, and the function type information is' 111 ', the functional structure type F of Table 3 may be indicated.
  • the SI may include a TA code (Tracking Area Code) obtained in the process of establishing an interface with the eMME or the RE (eg, S1-eAP, X2-eAP).
  • TA code Track Area Code
  • the multi-RAT UE may perform functions for mobility management-related procedures and session management-related procedures allowed through the Wi-Fi interface according to the core function type information received through the SI. .
  • the AP type is not the first type (Legacy AP) but the core functional structure type is '000', that is, the cellular interface and the Wi-Fi interface may operate based on a unified core network, but the Wi-Fi interface is used.
  • the multi-RAT UE cannot perform the functions of Table 3, the multi-RAT UE needs to connect to the cellular network so as to transmit / receive user data and change the wireless access state to the connected state and the state of the core network to the connected state.
  • the eMME transmits when the function structure type is A or B. It is necessary to know from which terminal a session management related message is transmitted.
  • an ID allocated to a multi-RAT UE may be utilized. For example, identification information (S1AP ID) between a wireless node such as a base station and an eMME, identification information between an AP and a wireless node such as a base station (X2-eAPAP ID), and identification information between a multi-RAT UE and an AP (MAC in an 802.11 MAC frame). address), etc., the eMME may identify the multi-RAT UE.
  • which terminal the session management related message is transmitted from may be identified using a security context related parameter.
  • a signal such as a type of security context flag, a NAS key set identifier, and a NAS COUNT may be transmitted and received between a multi-RAT UE and an eMME, and the path of session management related messages may be identified by all or part of these signals. Can be.
  • FIG. 18 is a control flowchart illustrating an attach process between a terminal and a core network according to an embodiment of the present invention.
  • FIG. 18 illustrates a process of attaching a terminal to a core network when transmitting data through a Wi-Fi interface that is a heterogeneous network in the conventional AP structure or the functional structure type A or B of Table 3.
  • the terminal may receive an SI including information on the core functional structure type (S1810).
  • the UE may request a message for RRC (Radio Resource Control) connection (RRC Connection Request), receive a connection setup message for this (RRC Connection Setup), and complete RRC connection setup (RRC Connection Setup Complete) ( S1820).
  • RRC Radio Resource Control
  • the terminal may transmit an RRC connection request message set to MO (Mobile Originated) -Signalling, in which a connection establishment cause is transmitted from the terminal, to the RE.
  • RRC connection request message set to MO Mobile Originated
  • the terminal may request an attach request and authentication process (Attach Request & Authentication) for the network registration through the cellular link for data transmission (S1830).
  • Attach Request & Authentication an attach request and authentication process
  • the eMME transmits an initial context setup request message to the RE (S1840), and the RE signals a bearer for attach acceptance to the UE according to the initial context setup request message (S1840).
  • a signaling bearer (S1850) and an initial context setup response message may be transmitted to the eMME (S1860).
  • the initial context setup request message may include an E-RAB ID, QoS, and NAS-PDU: Attach Accept
  • the initial context setup response message may include information indicating that the E-RAB ID and the RRC state are idle (RRC: idle). It may include.
  • the UE In response to the bearer signaling received from the RE, the UE signals a bearer for attach complete to the RE (S1870), and the received RE transmits an Uplink NAS Transport (NAS-PDS: Attach complete) to the eMME. It may be (S1880).
  • NAS-PDS Uplink NAS Transport
  • the ECM of the UE and the eMME transition to the connected state, and the EMM transitions to the registered state.
  • the RE may release the RRC connection state (RRC Connection Release) (S1890).
  • 19 is a control flowchart for explaining NAS signaling between a terminal and a core network according to an embodiment of the present invention.
  • the ECMs of the UE and the eMME are connected and the EMM is registered.
  • the eMME transmits the downlink NAS transport to the RE according to the above-described reason (S1910), and the received RE transmits the paging message for the downlink of the NAS signaling to the UE (S1920).
  • the UE may request a message for RRC (Radio Resource Control) connection (RRC Connection Request), receive a connection setup message for this (RRC Connection Setup), and complete RRC connection setup (RRC Connection Setup Complete) ( S1930).
  • RRC Radio Resource Control
  • the UE may transmit an RRC connection request message in which a connection establishment cause is set to MT-Signalling to the RE.
  • the RE may transmit an Uplink NAS Transport to the eMME (S1940), and the eMME may correspondingly transmit NAS Transport Complete to the RE (S1950).
  • the RE may release the RRC connection state (RRC Connection Release) (S1960).
  • 20 is a block diagram of a wireless communication system according to an embodiment of the present invention.
  • the base station 800 includes a processor 810, a memory 820, and an RF unit 830.
  • Processor 810 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 810.
  • the memory 820 is connected to the processor 810 and stores various information for driving the processor 810.
  • the RF unit 830 is connected to the processor 810 to transmit and / or receive a radio signal.
  • the base station 800 of FIG. 20 may include the above-described cellular base station, WLAN AP or RE.
  • the terminal 900 includes a processor 910, a memory 920, and an RF unit 930.
  • Processor 910 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 910.
  • the memory 920 is connected to the processor 910 and stores various information for driving the processor 910.
  • the RF unit 930 is connected to the processor 910 to transmit and / or receive a radio signal.
  • the terminal 900 of FIG. 20 may include the multi-RAT UE described above.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 단말, 무선 노드 및 코어 네트워크 간의 무선 통신에대한 것이다. 제1 무선 프로토콜에 의한 제1 무선 인터페이스와 제2 무선 프로토콜에 의한 제2 무선 인터페이스를 통하여 단말과 무선 링크를 형성할 수 있는 무선 노드는 제1 무선 프로토콜에 의한 제1 무선 인터페이스를 통하여 수행될 수 있는 이동성 관리 관련 기능에 대한 기능 구조 타입 정보를 단말에 전송하고, 제2 무선 프로토콜에 의한 제2 무선 인터페이스를 통하여 상기 단말과 무선링크를 형성하고, 상기 단말이 상기 제2 무선 인터페이스를 통하여 코어 네트워크 간의 연결을 요청하는 경우 상기 단말과 상기 코어 네트워크 간의 NAS(Non Access Stratum) 프로토콜에 의한 연결을 확립하고, 상기 무선 링크를 해제하고, 상기 단말과 통신하여 상기 제2 무선 인터페이스를 통하여 상기 이동성 관리 관련 기능을 수행할 수 있다.

Description

복수의 무선 네트워크를 지원하는 통신 환경에서 단말과 통신하는 무선 노드 및 무선 통신 방법
본 발명은 이동 통신에 관한 것으로서, 보다 상세하게는 복수의 무선 네트워크를 지원하는 통신 환경에서의 단말과 통신하는 무선 노드 및 그에 의한 무선 통신 방법에 관한 것에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)가 상용화되고 있다.
도 1은 진화된 이동 통신 네트워크의 구조도에 대한 개략도이다.
도시된 바와 같이, EPC(Evolved Packet Core)에 E-UTRAN(Evolved UMTS Terrestrial Radio Access Network)가 연결되어 있다.
상기 E-UTRAN은 UE(User Equipment)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(또는 eNodeB)(20)을 포함한다. 기지국(또는 eNodeB)(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다.
상기 UE와 기지국(또는 eNodeB)(20) 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 UE와 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 UE와 기지국간 RRC 메시지를 교환한다.
한편, EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, MME(Mobility Management Entity)(51), S-GW(Serving Gateway)(52), PDN GW(Packet Data Network Gateway)(53), 홈 가입자 서버(HSS; home subscriber server, 54)를 도시한다.
상기 기지국(또는 eNodeB)(20)은 S1 인터페이스를 통해 EPC의 MME(Mobility Management Entity)(51)과 연결되고, 그리고 S1-U를 통해 S-GW(Serving Gateway)(52)와 연결된다.
S-GW(52)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB(20)와 PDN GW(53) 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, UE(User Equipment)가 eNodeB(20)에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, S-GW(52)는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 S-GW(52)를 통해서 패킷들이 라우팅될 수 있다. 또한, S-GW(52)는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW) (53)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW(53)는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 S-GW(52)와 PDN GW(53)가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME(51)는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME(51)는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME(51)는 수많은 eNodeB(20)들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME(51)는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
한편, 최근 고속 데이터 트래픽은 매우 급격하게 증가하고 있다. 이러한 트래픽의 증가를 대처하기 위해서는, UE의 트래픽을 WLAN(Wi-Fi) 또는 소규모 셀(small cell)로 우회(offloading)시키기 위한 기술들이 소개되고 있다.
도 2는 소규모 셀 및 WLAN AP가 추가된 네트워크 구조를 나타내는 개략도이다.
도 2를 참조하면, 소규모 셀을 위한 기지국(31)의 커버리지 내에는 다수의 WLAN AP가 배치될 수 있다. 즉, UE의 주변에는 여러 RAT(Radio Access Technology)이 존재하게 된다. 따라서, UE는 여러 RAT(Radio Access Technology)들로 데이터 트래픽을 분산할 수 있다. 소규모 셀을 위한 기지국(31)은 기존 eNodeB와 같은 매크로 기지국의 커버리지 내에 배치될 수 있다.
도 2를 참조하여 알 수 있는 바와 같이, P-GW(53) 및 HSS(54)는 AAA(access authentication authorization) 서버(56)와 연결된다. P-GW(53) 및 AAA 서버(56)는 e-PDG(evolved packet data gateway, 57)와 연결될 수 있다. ePDG(57)는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, WLAN 또는 Wi-Fi 등)에 대한 보안 노드로서의 역할을 한다. ePDG(57)는 WAG(WLAN access gateway, 58)와 연결될 수 있다. WAG(58)는 Wi-Fi 시스템에서 P-GW의 역할을 담당할 수 있다.
이렇듯, 기존의 이동 통신망과 이종 네트워크의 결합이 이루어짐에 따라 이종 네트워크를 이용하여 단말과 코어 네트워크 간의 연결 또는 세션 확립을 위한 인터페이스가 필요할 수 있다
본 발명은 단말이 서로 다른 무선 프로토콜에 의한 무선 인터페이스를 통하여 통신할 수 있는 경우, 단말과 무선 링크를 형성하는 방법 및 연결을 해제하는 방법을 제공한다.
또한, 본 발명은 코어 네트워크의 지원 아래 수행될 수 있는 기능에 따라 변경될 수 있는 무선 노드 및 단말의 동작 수행 방법을 제공한다.
본 발명의 일 실시예에 따른 무선 통신 방법은 제1 무선 프로토콜에 의한 제1 무선 인터페이스를 통하여 수행될 수 있는 이동성 관리 관련 기능에 대한 기능 구조 타입 정보를 단말에 전송하는 단계와; 제2 무선 프로토콜에 의한 제2 무선 인터페이스를 통하여 상기 단말과 무선링크를 형성하는 단계와; 상기 단말이 상기 제2 무선 인터페이스를 통하여 코어 네트워크 간의 연결을 요청하는 경우, 상기 단말과 상기 코어 네트워크 간의 NAS(Non Access Stratum) 프로토콜에 의한 연결을 확립하는 단계와; 상기 무선 링크를 해제하는 단계와; 상기 단말과 통신하여 상기 제2 무선 인터페이스를 통하여 상기 이동성 관리 관련 기능을 수행하는 단계를 포함할 수 있다.
본 발명에 따르면 단말이 서로 다른 무선 프로토콜에 의한 무선 인터페이스를 통하여 통신할 수 있는 경우, 단말과 무선 링크를 형성하는 방법 및 연결을 해제하는 방법이 제공된다.
또한, 본 발명에 따르면, 코어 네트워크의 지원 아래 수행될 수 있는 기능에 따라 변경될 수 있는 무선 노드 및 단말의 동작 수행 방법이 제공된다.
도 1은 진화된 이동 통신 네트워크의 구조도에 대한 개략도이다.
도 2는 소규모 셀 및 WLAN AP가 추가된 네트워크 구조를 나타내는 개략도이다.
도 3은 기존의 이동통신 네트워크 구조와 본 발명에 따른 개선된 네트워크 구조를 비교하여 나타낸 예시도이다.
도 4a 내지 도 4d는 멀티 RAT UE를 위해 본 발명에 따라 기지국과 WLAN AP을 통합 관리하는 RE(Radio Entity)의 구성 개념도를 나타낸다.
도 5는 본 발명의 일 실시예에 다른 무선 네트워크의 커버리지를 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 무선 통신 시스템의 기능 구조를 나타낸 도면이다.
도 7는 본 발명의 일 실시예에 따른 단말과 RE 간의 CRCM 상태를 설명하기 위한 도면이다.
도 8은 본 발명의 다른 실시예에 따른 단말과 RE 간의 CRCM 상태를 설명하기 위한 도면이다.
도 9는 본 발명의 일 실시예에 따른 NAS 프로토콜에 의한 상태를 도시한 도면이다.
도 10은 본 발명의 다른 실시예에 따른 무선 통신 시스템의 기능 구를 나타낸 도면이다.
도 11은 본 발명의 다른 실시예에 따른 NAS 프로토콜에 의한 상태 천이를 도시한 도면이다.
도 12는 본 발명의 또 다른 실시예에 따른 무선 통신 시스템의 기능 구조를 나타낸 도면이다.
도 13은 본 발명의 또 다른 실시예에 따른 NAS 프로토콜에 의한 상태 천이를 도시한 도면이다.
도 14는 본 발명의 또 다른 실시예에 따른 NAS 프로토콜에 의한 상태 천이를 도시한 도면이다.
도 15는 본 발명의 또 다른 실시예에 따른 무선 통신 시스템의 기능 구조를 나타낸 도면이다.
도 16은 본 발명의 또 다른 실시예에 따른 NAS 프로토콜에 의한 상태 천이를 도시한 도면이다.
도 17은 본 발명의 또 다른 실시예에 따른 NAS 프로토콜에 의한 상태 천이를 도시한 도면이다.
도 18은 본 발명의 일 단말과 코어 네트워크와의 어태치 과정을 설명하기 위한 제어 흐름도이다.
도 19는 본 발명의 일 실시예에 따른 단말과 코어 네트워크와의 NAS 시그널링을 설명하기 위한 제어 흐름도다.
도 20은 본 발명의 일 실시예에 따른 무선 통신 시스템의 블록도이다.
무선기기는 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal) 등 다른 용어로 불릴 수 있다. 또한, 상기 단말은 휴대폰, PDA, 스마트 폰(Smart Phone), 무선 모뎀(Wireless Modem), 노트북 등과 같이 통신 기능을 갖춘 휴대 가능한 기기일 수 있거나, PC, 차량 탑재 장치와 같이 휴대 불가능한 기기일 수 있다. 기지국은 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서는 3GPP(3rd Generation Partnership Project) 3GPP LTE(long term evolution) 또는 3GPP LTE-A(LTE-Advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고, 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다. 이하에서, LTE라 함은 LTE 및/또는 LTE-A를 포함한다.
본 명세서는 통신 네트워크를 대상으로 설명하며, 통신 네트워크에서 이루어지는 작업은 해당 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 네트워크에 링크된 단말에서 작업이 이루어질 수 있다.
도 3은 기존의 이동통신 네트워크 구조와 본 발명에 따라 개선된 네트워크 구조를 비교하여 나타낸 예시도이다.
도 3의 (a)에 도시된 기존의 이동통신 네트워크 구조에 비하여, 도 3의 (b)에 도시된 개선된 네트워크 구조에 따르면, eMME(enhanced MME)(510)와 eGW(enhanced GW)(520)을 포함할 수 있다. 도 5의 (b)에서는 eMME(510)과 eGW(520)가 분리된 것으로 도시되었지만, 논리적으로만 분리되고 물리적으로는 하나의 장치내로 통합될 수 도 있다. 또한, 도 5의 (b)에서는 eGW(520)와 P-GW(530)이 분리된 것으로 도시되었지만, 하나의 장치 내로 통합될 수 도 있다.
eMME(510)는 eNodeB(200) 및 기지국(310)뿐만 아니라, WLAN 액세스 포인트(AP)와도 연결될 수 있다. 이를 위해, eMME(510)와 WLAN AP 간에 새로운 인터페이스가 추가될 수 있다. 마찬가지로, eGW(520)은 eNodeB(200) 및 기지국(310)뿐만 아니라, WLAN 액세스 포인트(AP)와도 연결될 수 있다. 이를 위해, eGW(520)와 WLAN AP 간에 새로운 인터페이스가 추가될 수 있다.
도 4a 내지 도 4d는 멀티 RAT UE를 위해 본 발명에 따라 기지국과 WLAN AP을 통합 관리하는 RE(Radio Entity)의 구성 개념도를 나타낸다.
먼저, RE(Radio Entity)(또는 무선 액세스 장치)(300)는 본 발명에 따라 새롭게 제시되는 기기로서, 멀티 RAT UE(100)의 지원을 강화하기 위해서, 기지국(310)과 WLAN AP(320)의 관리를 보다 용이하게 한다. 이러한 RE는 본 발명에 따르면 여러 타입이 존재할 수 있다.
도 4a는 제1 타입에 따른 RE의 개념을 나타낸 것으로서, 제1 타입의 RE(300)는 셀룰러 기지국(310)만을 지원한다. 이때, 제1 타입의 RE(300)는 셀룰러 기지국(310) 내에 통합될 수 있다. 제1 타입의 RE(300)는 사용자 데이터의 송수신을 위해서 eGW(520) 및 로컬 GW(550)과 연결되고, 제어 데이터의 송수신을 위해서는 eMME(510)과 연결된다. eGW(520)은 S-GW 및 P-GW의 기능 중 하나 이상을 수행할 수 있다. 로컬 GW(520)은 가정이나 사무실 내의 홈 네트워크에 접속가능하게 하는 게이트웨이이다.
멀티 RAT UE(100)와 RE(300) 사이는 AS(access stratum) 프로토콜로 연결될 수 있으며, 멀티 RAT UE(100)와 eMME(510) 사이는 단말과 코어 네트워크 간의 인터페이스인 NAS(Non Access Stratum) 프로토콜로 연결될 수 있다.
도시된 바와 같이, RE(300)와 eMME(510) 사이에는 S1-eMME라는 인터페이스가 형성될 수 있고, RE(300)와 eGW(520) 사이에는 S1-U1이라는 인터페이스가 형성될 수 있다.
도 4b는 제2 타입에 따른 RE의 개념을 나타낸 것으로서, 제2 타입의 RE(300)는 셀룰러 기지국 (310)과 WLAN AP(320)를 모두 지원한다. 이때, 제2 타입의 RE(300)는 셀룰러 기지국(310)과 WLAN AP(320)를 통합하는 장치일 수 있다.
도 4b에 따를 경우, 멀티 RAT UE(100)는 셀룰러 링크 또는 Wi-Fi 링크 중 적어도 하나를 통하여 RE(300)와 연결될 수 있다.
도 4c는 제3 타입에 따른 RE의 개념을 나타낸 것으로서, 제3 타입의 RE(300)는 셀룰러 기지국(310) 내에 통합되어 있되, WLAN AP(320)와의 인터페이스가 존재한다.
도시된 바와 같이, WLAN AP(320)와 eGW(520) 사이는 S21-U1이라는 인터터페이스가 형성되고, WLAN AP(320)와 eMME(510) 간에는 S21-eMME라는 인터페이스가 형성될 수 있다.
도 4d에 따를 경우, 멀티 RAT UE(100)가 Wi-Fi 링크를 통하여 통신 가능한 경우, 단말은 WLAN AP(320)를 통해서 직접적으로 코어 네트워크에 접속할 수도 있고, WLAN AP(320)와 RE(300) 간의 인터페이스를 이용하여 RE(300)를 거쳐 코어 네트워크에 접속 할 수도 있다.
제3 타입에 따른 RE(300)의 경우, 멀티 RAT UE(100)가 Wi-Fi 링크를 통하여 WLAN AP(320)에 접속되더라도, WLAN AP(320)와 코어 네트워크 사이의 연결을 주관하는 주체가 될 수 있다.
도 4d는 제4 타입에 따른 RE의 개념을 나타낸 것으로서, 제4 타입의 RE(300)는 제2 타입의 RE와 제3 타입의 RE가 혼합된 개념이다. 즉, 제4 타입의 RE(300)는 셀룰러 기지국(310)과 WLAN AP(320)를 통합하는 장치로서, 외부 WLAN AP(320-1)와의 인터페이스가 추가적으로 존재할 수 있다.
상술한 바와 같이 본 발명에 따를 경우, RE(300)는 복수의 타입으로 존재할 수 있고, 멀티 RAT UE(100)는 셀룰러 링크 또는 Wi-Fi 링크 중 적어도 하나를 통하여 RE(300)와 연결될 수 있다. 멀티 RAT UE(100)는 셀룰러 링크 또는 Wi-Fi 링크 중 적어도 하나를 통하여RE(300)와 연결되어 코어 네트워크에 접속할 수도 있고, Wi-Fi 링크를 통하여 통신 가능한 경우 WLAN AP(320)를 통하여 코어 네트워크에 접속할 수도 있다. 또는, 제3 타입에서 설명되었듯이, 멀티 RAT UE(100)는 WLAN AP(320)와 RE(300) 간의 인터페이스를 이용하여 RE(300)를 거쳐 코어 네트워크에 접속 할 수도 있다.
도 5는 본 발명의 일 실시예에 다른 무선 네트워크의 커버리지를 도시한 도면이다.
도 5를 참조하면, eMME는 모두 4개의 RE(RE 1, RE 2, RE 3, RE 4)와 S1-eMME 인터페이스를 형성하고 있고, 도 4의 WLAN AP에 대응할 수 있는 eAP 3과도 인터페이스를 형성하고 있다.
RE 1는 셀룰러 인터페이스만을 제공하는 도 4a의 제1 타입의 RE에 해당하고, RE 2는 셀룰러 인터페이스와 eAP 4와 연결되어 X2-eAP 인터페이스를 형성하는 제1 타입의 RE에 해당한다.
RE 3는 셀룰러 인터페이스와 Wi-Fi 인터페이스를 지원하는 무선 노드로서 제3 타입에 해당한다.
RE 4는 셀룰러 인터페이스와 Wi-Fi 인터페이스를 지원하는 무선 노드이면서 eAP 3과 eAP 4와 연결되어 인터페이스가 형성되어 있는 제4 타입에 해당한다.
eAP 1 내지 eAP 4는 각각 단독으로 Wi-Fi 커버리지 영역을 형성하고 있으며, eAP 2 내지 eAP 4는 RE 2와 RE 4와 X2-eAP 인터페이스를 형성하고 있다.
eAP 3은 eMME와도 S1-eAP 인터페이스를 형성하고 있어 코어 네트워크와 연결되어 있다.
RE들 간에는 X2-RE 인터페이스가 형성될 수 있다.
RE 3과 RE4에 의하여 형성되는 셀룰러 커버리지와 Wi-Fi 커버리지의 크기는 설명의 편의상 동일한 것으로 도시하였으나, 그 크기는 서로 동일할 수도 있고, 다를 수도 있다.
이렇듯, 기존의 이동 통신망과 이종 네트워크의 결합이 이루어짐에 따라 이종 네트워크를 이용하여 단말과 코어 네트워크 간의 연결 또는 세션 확립, 또는 이동성 관리를 위한 인터페이스가 존재할 수 있다. 기존의 셀룰러 네크워크를 이용하여 수행되였던 기능이 무선랜을 이용한 인터페이스를 통하여 수행되는 경우 코어 네트워크의 로드가 가중될 수 있다. 따라서, 무선랜과 코어 네트워크 사이의 기능은 무선 환경 또는 코어 네트워크의 능력 등에 따라 다양하게 설정될 수 있다.
즉, 코어 네트워크에 의하여 지원 가능한 무선랜의 기능에 따라 단말, AP 또는 기지국의 역할이 상이하게 변경될 수 있고, 단말과 코어 네트워크 간의 NAS 메시지 역시 상이하게 조정될 수 있다.
이하에서는, 단말(멀티 RAT 디바이스)이 WLAN AP를 통하여 수행할 수 있는 기능 및 이에 따른 단말과 코어 네트워크 간의 상태 천이에 대하여 살펴 본다.
표 1은 코어 네트워크와 단말 간의 NAS 프로토콜에 따른 기능 중 세션 관리(Session Management)에 관련된 기능을 나타내고 있다.
표 1
분류 세부기능 역할
Procedures related to bearer contexts default EPS bearer context activation to establish a default EPS bearer context between the UE and the EPC
dedicated EPS bearer context activation to establish an EPS bearer context with specific QoS and TFT between the UE and the EPC
EPS bearer context modification to modify an EPS bearer context with a specific QoS and TFT
EPS bearer context deactivation to deactivate an EPS bearer context or disconnect from a PDN by deactivating all EPS bearer contexts to the PDN
Transaction related procedures PDN connectivity procedure to request the setup of a default EPS bearer to a PDN
PDN disconnect procedure to request disconnection from one PDN
bearer resource allocation procedure to request an allocation of bearer resources for a traffic flow aggregate.
bearer resource modification procedure to request a modification or release of bearer resources for a traffic flow aggregate or modification of a traffic flow aggregate by replacing packet filters or adding packet filters
ESM information request procedure to retrieve ESM information, i.e. protocol configuration options, APN, or both from the UE during the attach procedure
ESM status procedure to report at any time certain error conditions detected upon receipt of ESM protocol data
notification procedure to inform the UE about events which are relevant for the upper layer which is using an EPS bearer context or has requested a procedure transaction.
표 1과 같이, 세션 관리에는 베어러 컨텍스트 관련 절차 (Procedures related to bearer contexts)와 이러한 절차 수행에 관련된 트랜잭션(Transaction related procedures)이 포함될 수 있다.
베어러 컨텍트스 관련 절차는 기본 EPS 베어러 컨텍스트 생성 및 이에 대한 삭제 또는 수정에 대한 것이 포함되고, 절차 수행에 관련된 트랜잭션 기능에는 PDN(packet data network)에 기본 EPS 베어러 컨텍스트의 설정 요청, PDN으로부터의 연결 해제 요청 등과 같은 PDN 관련 기능 및 트래픽 흐름을 위한 베어러 자원 할당 요청 및 수정 관련 절차 등이 포함될 수 있다.
표 2는 코어 네트워크와 단말 간의 NAS 프로토콜에 따른 기능 중 이동성 관리(Mobility Management)에 관련된 기능을 나타내고 있다.
표 2
분류 세부기능 역할
common procedures GUTI reallocation to reallocate a GUTI and optionally to provide a new TAI list
authentication to initiate authentication of the UE identity
security mode control to control NAS signalling security
identification to request the UE to provide the specified identity
EMM information to send certain information to the UE.
specific procedures attach
detach to request the release of an EMM context
tracking area updating to the network in order to perform an attach procedure
connection management procedures service request to request the establishment of a NAS signalling connection and of the radio and S1 bearers.
paging procedure
NAS messages
표 2는 참조하면, 이동성 관리에는 커먼 절차(common procedures), 특정 절차(specific procedures) 및 연결 관리 절차(connection management procedures) 등이 포함될 수 있다.
커먼 절차는 GUTI(Globally Unique Temporary Identifier) 재할당, 인증 및 보안 관련 기능을 수행하는 절차이고, 특정 절차는 어태치, 디태치 및 TA 업데이트 관련 절차를 포함하고, 연결 관리 절차는 서비스 요청, 페이징 절차 등을 포함할 수 있다.
표 3은 표 1 및 표 2의 여러 기능 중에서 코어 네트워크가 Wi-Fi 인터페이스에 의한 무선 네트워크를 통하여 지원하는 기능에 따라 그 타입을 분류한 것이다.
표 3
Session Management Mobility Management 비고 기능 구조 타입
common procedures specific procedures(FG 1) connection management procedures (FG 2)
1 O X X X 단말은 Cellular RAN 및 CN와의 상태가 Connected여야 함. 기능구조 A
2 O O X O(service request와 같은재접속 기능만 적용) 단말은 CN와의 상태가 Registered여야 함. 기능구조 B
3 O X O O 단말은 CN와의 상태가 Registered여야 함.
4 O O O(attach, detach와 같은 접속/등록해제 기능만 적용) X 기능구조 C
5 O O O(attach, detach와 같은 접속/등록해제 기능만 적용) O(Paging 제외) 기능구조 D
6 O O X 기능구조 E
7 O O O O 기능구조 F
기능구조본 발명의 일 실시예에 따르면, 표 3과 같이 Wi-Fi 인터페이스를 통한 세션 관리 기능은 코어 네트워크에 의하여 기본적으로 지원된다고 가정할 수 있다. 즉, 최소한 데이터의 전송만이라도 Wi-Fi 인터페이스를 통하여 단말이 제공받을 수 있는 것을 전제로 한다.
코어 네트워크가 지원하는 기능이 많아질수록 코어 네트워크가 관리해야 하는 제어 관련 로드가 증가할 수 있기 때문에 네트워크의 성질 및 능력에 따라 Wi-Fi 인터페이스를 통하여 구현되는 기능은 조절될 수 있을 것이다.
이하에서는 특정 절차에 대한 기능을 기능 1(FG 1)로, 연결 관련 절차에 대한 기능을 기능 2(FG 2)로 표현할 수 있다.
표 3을 참조하면, 이동성 관리 중 커먼 절처에 대한 기능은 기능 구조 타입 A에 의한 케이스 1에서만 지원되지 않고 나머지 기능 구조 타입 B 내지 F에서는 모두 지원된다.
타입 A에 의하면 단말이은 Wi-Fi 인터페이스를 통하여 데이터를 수신하기 위하여, 단말과 셀룰러 네트워크(Cellular RAN)와 코어 네트워크(CN) 사이의 상태는 연결 상태(Connected)가 유지되어야 한다.
기능 구조 타입 B는 이동성 관리 중 특정 절차에 대한 기능이 지원되지 않으며, 연결 관리 절차 중 서비스 요청과 같은 재접속 기능만이 지원되는 케이스 2와 연결 관리 절차 모드가 지원되는 케이스 3을 포함할 수 있다.
기능 구조 타입 B의 경우, 단말과 코어 네트워크와의 상태는 레지스터드 상태(registered)를 유지하여 한다. 레지스터드 상태는 단말과 코어 네트워크 간의 NAS 프로토콜에 의한 인터페이스 중 EMM(Evolved Mobility Management) 상태가 레지스터드 상태인 것을 의미하는 것으로, 단말과 코어 네트워크가 논리적으로 연결되어 있는 것을 나타낸다. 즉, 단말과 코어 네트워크 간에는 어태치되어 있는 상태를 유지해야 한다. 다만, 기능 구조 타입 B에서는 단말과 셀룰러 네트워크 간에는 연결 상태가 아닌 아이들 상태에서도 데이트 송수신이 가능하다. 이는 Wi-Fi 인터페이스를 통하여 단말과 서비스 요청과 같은 연결 관련 절차가 수행될 수 있기 때문에 단말의 셀룰러 모듈은 연결 상태가 아닌 아이들 상태에서도 데이터 송수신이 가능하다.
기능 구조 타입 C는 이동성 관리 중 커먼 절차와 특정 절차 중 일부가 지원되고, 연결 관리 절차는 지원되지 않는 기능 구조를 나타낸다. 기능 구조 타입 C에서는 특정 절차 중 어태치, 디태치와 같은 접속/등록 해제 기능만이 코어 네트워크에 의하여 지원된다.
기능 구조 타입 D는 이동성 관리 중 커먼 절차와 특정 절차 중 일부가 지원 및 페이징 관련 절차를 제외한 연결 관리 절차가 지원되는 기능 구조를 나타낸다.
기능 구조 타입 E는 이동성 관리 중 커먼 절차와 특정 절차가 지원되고, 연결 관리 절차는 지원되지 않는 기능 구조를 나타낸다.
기능 구조 타입 F는 표 2에 나타나 있는 이동성 관리에 관련된 모든 기능이코어 네트워크에 의하여 지원된다.
기능 구조 타입 C 내지 기능 구조 타입 F의 경우에는 기능 구조 타입 A 및 기능 구조 타입 B에 대하여 존재했던 단말과 네크워크 단(무선 노드와 코어 네트워크)에 대한 연결 상태에 대한 전제가 없어도 단말은 Wi-Fi 인터페이스를 통하여 데이터를 송수신할 수 있다.
이하에서는 각 타입에 따른 기능 구조, 이에 대응하는 AS(Access Stratum) 상태 및 Wi-Fi 인터페이스를 통한 동작에 따른 NAS 상태 천이에 대하여 살펴본다.
도 6은 본 발명의 일 실시예에 따른 무선 통신 시스템의 기능 구조를 나타낸 도면이다. 구체적으로 도 6은 기능 구조 타입 A인 경우의 기능 구조를 도시하고 있다.
도시된 바와 같이, 단말(이하, 멀티 RAT UE, 100)은 무선 노드에 해당하는 RE(300)와 연결되어 있고, RE(300)는 코어 네트워크 내 네트워크 컨트롤러에 해당하는 eMME(510)와 연결되어 있다. 멀티 RAT UE(100)는 RE(300)를 통하여 eMME(510)과 논리적 또는 물리적으로 연결될 수 있다.
멀티 RAT UE(100)와 RE(300)간에는 무선 인터페이스를 통한 무선 접속이 성립될 수 있으며, 멀티 RAT UE(100)와 eMME(510)간에는 NAS 프로토콜에 의한 인터페이스가 형성되어 있다.
멀티 RAT UE(100)는 RE(300)와의 인터페이스를 위한 무선 모듈(110) 및 eMME(510)와의 인터페이스를 위한 코어 모듈(120)을 포함할 수 있다.
무선 모듈(110)은 셀룰러 접속을 위한 셀룰러 모듈(Cellular, 111)과 Wi-Fi 인터페이스를 통한 무선 접속을 위한 Wi-Fi 모듈(Wi-Fi, 113)을 포함하고, 코어 모듈(120)은 이동성 관리 모듈(MM, 121)과 세션 관리 모듈(SM, 123)을 포함할 수 있다.
RE(300)는 멀티 RAT UE(100)와 eMME(510) 사이에서 이들의 인터페이스 역할을 하며, 멀티 RAT UE(100)의 무선 모듈(110)과 연결되어 있는 셀룰러 모듈(Cellular, 330)과 Wi-Fi 모듈(Wi-Fi, 340)을 포함할 수 있다.
RE(300)의 셀룰러 모듈(330)은 멀티 RAT UE(100)의 셀룰러 모듈(111)과 연결되어 무선 통신을 수행할 수 있고, RE(300)의 Wi-Fi 모듈(340)은 멀티 RAT UE(100)의 Wi-Fi 모듈(113)과 연결되어 무선 통신을 수행할 수 있다.
RE(300)의 셀룰러 모듈(330)은 도 4의 기지국에 대응할 수 있고, Wi-Fi 모듈(340)는 도 4에서 RE에 통합되거나 연결되어 있는 AP를 포함할 수 있다. 즉, 셀룰러 모듈(330)과 Wi-Fi 모듈(340)은 무선 인터페이스를 통하여 멀티 RAT UE(100)과 무선 통신을 수행하는 무선 노드에 해당할 수 있다.
eMME(510)는 이동성 관리 기능을 지원하는 이동성 관리 모듈(MM, 511)과 세션 관리 기능을 지원하는 세션 관리 모듈(SM, 513)을 포함할 수 있다.
기능 구조 타입 A의 경우, 세션 관리에 관련된 기능은 셀룰러 인터페이스와 Wi-Fi 인터페이스를 통하여 수행될 수 있다. 따라서, 멀티 RAT UE(100)의 세션 관리 모듈(123)은 셀룰러 모듈(111)과 Wi-Fi 모듈(113)에 모두 연결될 수 있고, eMME(510)의 세션 관리 모듈(513) 역시 RE(300)의 셀룰러 모듈(330)과 Wi-Fi 모듈(340)에 모두 연결되어 있다.
반면, 이동성 관리에 관련된 기능은 오직 셀룰러 인터페이스를 통해서만 지원되기 때문에 멀티 RAT UE(100)의 이동성 관리 모듈(121)은 셀룰러 모듈(111)과 연결되어 있지만 Wi-Fi 모듈(113)과는 연결되어 있지 않다.
이는 eMME(510)의 이동성 관리 모듈(511)이 Wi-Fi 인터페이스를 지원하지 않기 때문이며, 도 6을 통해 이동성 관리 모듈(511)은 RE(300)의 셀룰러 모듈(330)만과 연결되어 있음을 확인할 수 있다.
도 7과 도 8은 본 발명의 일 실시예에 따른 단말과 RE 간의 CRCM 상태를 설명하기 위한 도면이다.
도 7은 RE가 도 4b에 도시되어 있는 제2 타입인 경우를 도시한 것이고, 도 8은 RE가 도 4c에 도시되어 있는 제3 타입인 경우를 도시한 것이다.
도 7 및 도 8에 도시된 바와 같이, 멀티 RAT UE는 제1 RAT(RAT 1)을 통해 RE와 연결될 수 있고, 제2 RAT(RAT 2)을 통해 RE와 연결될 수 있다. 본 발명의 일 예에 따라 제1 RAT은 셀룰러 네트워크를 통한 무선 접속을 의미할 수 있고, 제2 RAT는 Wi-Fi 네트워크를 통한 무선 접속을 의미할 수 있다.
이러한 무선 접속 상태는 릴리즈 되거나(Release), 디스어소시에이션(Disassociation)이 발생하거나, 링크 실패(Radio link failure) 또는 유저 데이터가 비활성화 되는 경우(User inactivity), 연결 상태(Connected)에서 아이들 상태(Idle)로 전환될 수 있다.
이하, 본 발명에서는 멀티 RAT UE와 RE 간의 연결 상태에 따라 액티브 상태(Activated)와 디액티브 상태(Deactivated)로 변경되면서 멀티 RAT UE와 RE 사이의 연결을 관리하는 모듈을 CRCM(Common Radio Connection Management)로 정의할 수 있다. 본 실시예에 따를 경우, CRCM의 상태는 eMME의 이동성 관리 모듈의 상태와 연동하여 천이될 수 있다.
도 7 및 도 8과 같은 무선 접속이 성립하고, 기능 구조 타입 A가 적용되는 경우, 멀티 RAT UE가 제1 RAT와 연결되어 있는 연결 상태인 경우에만 CRCM는 액티브 상태가 된다.
표 4는 기능 구조 타입 A에 따른 멀티 RAT UE와 RE 간의 CRCM 상태를 나타낸 것이다.
표 4
Figure PCTKR2014008145-appb-T000001
표 4를 참조하면, 제1 RAT과 제2 RAT이 모두 연결되어 있지 않은 아이들 상태이면 CRCM은 디액티브 상태가 되고, 제1 RAT과 제2 RAT이 모두 연결되어 있는 연결 상태이면 CRCM은 액티브 상태가 된다.
한편, 제2 RAT가 연결 상태일지라도 제1 RAT이 아이들 상태이면 CRCM는 디액티브 상태가 된다. 이는 멀티 RAT UE과 코어 네트워크 사이에 이동성 관리 기능이 Wi-Fi 인터페이스를 통하여 지원되지 않기 때문에, eMME의 이동성 관리 모듈의 상태와 연동하는 CRCM의 상태는 액티브 상태가 될 수 없다.
즉, 기능 구조 타입 A의 경우의 CRCM는 셀룰러 인터페이스를 통한 무선 접속이 성립한 경우에만 액티브 상태가 되고, CRCM의 상태와 eMME와 멀티 RAT UE의 연결 상태는 서로 연동된다.
한편, 도 8과 같이, 멀티 RAT UE가 복수의 무선 접속 장치, 예를 들어, RE또는 AP에 연결된 상태인 경우, CRCM은 어느 특정 장치, 도 4의 RE에 의하여 관리될 수 있다.
도 9는 본 발명의 일 실시예에 다른 NAS 프로토콜에 의한 상태를 도시한 도면이다. 구체적으로, 도 9는 기능 구조 타입 A인 경우의 NAS 프로토콜에 의한 단말과 코어 네트워크의 상태를 도시하고 있다.
멀티 RAT UE와 코어 네트워크 사이에는 NAS 프로토콜을 통한 인터페이스가 형성될 수 있고, 도 9에 도시되어 있는 ECM(Evolved Connection Management)과 EMM(Evolved Mobility Management)의 상태를 통하여 설명될 수 있다. EMM의 상태는 도 6에 도시되어 있는 멀티 RAT UE(100)의 이동성 관리 모듈(121)과 eMME(510)의 이동성 관리 모듈(511)의 상태로 설명될 수 있다.
ECM이 연결 상태인 것은 멀티 RAT UE과 코어 네트워크가 물리적으로 연결되어 있는 것을 의미할 수 있고, EMM이 레지스터드 상태(registered)인 것은 멀티 RAT UE와 코어 네트워크가 물리적인 연결은 아니지만 eMME이 멀티 RAT UE의 컨텍스트를 저장하고 있어 논리적으로 연결되어 있는 상태를 나타낼 수 있다.
멀티 RAT UE와 eMME의 ECM 상태는 표 4에 나타난 CRCM의 상태에 커플링되어 변경될 수 있다. 즉, CRCM이 액티브 상태가 되면 ECM은 아이들 상태에서 연결 상태로 천이될 수 있고, CRCM이 디액티브 상태가 되면 ECM은 연결 상태에서 아이들 상태로 천이될 수 있다.
기능 구조 타입 A의 경우, 멀티 RAT UE과 RE의 연결 상태가 유지되는한 EMM는 레지스터드 상태로 유지된다. 이 상태에서 핸드오버나 사용자 플랜 분리(U-plane Separation)가 발생하더라도 추가적인 상태 천이는 발생하지 않는다.
기능 구조 타입 A의 경우, ECM은 CRCM의 상태와 커플링되어 있으며, CRCM은 EMM와 연동되어 있다. 멀티 RAT UE는 CRCM이 액티브 상태이고, ECM이 연결 상태이고, EMM이 레지스터드 상태이면, Wi-Fi 인터페이스를 통하여 세션 관련 기능을 수행할 수 있다.
표 5는 기능 구조 타입 B, C, D, E, F에 따른 멀티 RAT UE와 RE 간의 CRCM 상태를 나타낸 것이다.
표 5
Figure PCTKR2014008145-appb-T000002
표 5에 따를 경우, 제1 RAT과 제2 RAT가 모두 아이들 상태(idle)인 경우를 제외하면, 즉, 제1 RAT과 제2 RAT 상태가 적어도 하나라도 연결 상태(conntected)이면, CRCM은 액티브 상태가 된다.
RAT의 상태는 무선 연결 관계가 릴리스(release)및/또는 디어소시에이션(Disassociation)되거나, 무선 링크가 실패하거나(Radio link failure), 단말 비활성화(User inactivity)인 경우 연결 상태에서 아이들 상태로 천이할 수 있다.
도 10은 본 발명의 다른 실시예에 따른 무선 통신 시스템의 기능 구조를 나타낸 도면이다. 구체적으로 도 10은 기능 구조 타입 B인 경우의 기능 구조를 도시하고 있다.
도시된 바와 같이, 기능 구조 타입 B인 경우, 이동성 관리 모듈에 의한 기능 중 기능 1은 셀룰러 모듈(111)에 의하여 수행될 수 있고, 기능 2는 Wi-Fi 모듈(113)에 의하여 수행될 수 있다.
이는 eMME(510)의 이동성 관리 모듈(511)이 기능 1을 셀룰러 모듈(330)을 통하여 지원하고, 기능 2를 Wi-Fi 모듈(340)을 통하여 지원하는 것과 동일한 맥락을 갖는다.
도시되어 있는 바와 같이, 세션 관련 기능은 셀룰러 인터페이스와 Wi-Fi 인터페이스를 통하여 지원되고 있다.
도 11은 본 발명의 다른 실시예에 따른 NAS 프로토콜에 의한 상태 천이를 도시한 도면이다. 도 11은 기능 구조 타입 B의 경우 Wi-Fi 인터페이스를 통하여 세션 관련 기능과 이동성 관련 기능이 수행될 때 발생할 수 있는 상태 천이를 도시하고 있다.
기능 구조 타입 B의 경우, Wi-Fi 인터페이스를 통하여 기능 2 모두 또는 기능 2 중 서비스 요청과 같은 재접속 기능만이 지원된다.
도시된 바와 같이, ECM이 아이들 상태이고, CRCM가 디액티브 상태이고, EMM는 디레지스터드 상태인 상황에서는 전원 공급될 수도 있고 네트워크가 선택(NW(network) Selection)될 수도 있다. EMM가 디레지스터드 상태인 경우, 코어 네트워크는 멀티 RAT UE의 존재 여부를 모를 수 있다.
EMM도 레지스터드 상태가 되면, 이 상태에서 핸드오버나 사용자 플랜 분리(U-plane Separation)가 발생하더라도 추가적인 상태 천이는 발생하지 않는다. 기능 구조 타입 B의 경우에는 EMM가 디레지스터드 상태에서 레시스터드 상태로 천이하기 위한 어태치 등은 Wi-Fi 인터페이스를 통하여 수행될 수 없다.
EMM이 레지스터드 상태에서, 무선 링크 실패가 발생하거나 전원 오프가 되면, EMM은 디레지스터드 상태로 변경되고, ECM과 CRCM 역시 아이들 상태와 디액티브 상태로 천이한다.
EMM는 레지스터드 상태, ECM이 연결 상태이고, CRCM가 액티브 상태에서, 사용자 활동이 없으면(User Inactivity) ECM는 연결 상태에서 아이들 상태로 천이하고, CRCM는 액티브 상태에서 디액티브 상태로 천이한다. 다만, 이 경우에도 EMM의 상태는 레지스터드 상태로 유지된다.
만약, 새로운 통신이 발생하면(New Traffic), ECM는 다시 아이들 상태에서 연결 상태로 천이하고, CRCM는 디액티브 상태에서 액티브 상태로 천이할 수 있다.
EMM가 레지스터드 상태에서 디레지스터드 상태로 천이되는 이벤트 중 무선 링크 실패의 경우, 복수의 RAT 중 어느 하나라도 무선 링크가 연결되어 있다면 상태 천이는 발생하지 않는다. 즉, 복수의 RAT 중 어느 하나의 RAT의 무선 링크 실패로 인한 상태 천이는 발생하지 않는다.
도 12는 본 발명의 또 다른 실시예에 따른 무선 통신 시스템의 기능 구조를 나타낸 도면이다. 구체적으로 도 12는 기능 구조 타입 C와 기능 구조 타입 E인 경우의 기능 구조를 도시하고 있다.
도시된 바와 같이, 기능 구조 타입 C와 기능 구조 타입 E인 경우, 이동성 관리 모듈에 의한 기능 중 기능 1은 Wi-Fi 모듈(113)에 의하여 수행될 수 있지만, 기능 2는 Wi-Fi 모듈(113)에 의하여 수행될 수 없다. 기능 1은 셀룰러 모듈(111)에 의하여도 수행될 수 있다.
이는 eMME(510)의 이동성 관리 모듈(511)이 셀룰러 인터페이스를 통하여 멀티 RAT UE(100)의 이동성 관리 모듈(121)과 연결되어 있고, 기능 1을 셀룰러 모듈(330)과 Wi-Fi 모듈(340)을 통하여 지원하고 있지만, 기능 2는 Wi-Fi 인터페이스를 통하여 지원하지 않는 것을 통해서도 확인할 수 있다.
도시되어 있는 바와 같이, 세션 관련 기능은 셀룰러 인터페이스와 Wi-Fi 인터페이스를 통하여 지원되고 있다.
도 13은 본 발명의 또 다른 실시예에 따른 NAS 프로토콜에 의한 상태 천이를 도시한 도면이다. 도 13은 기능 구조 타입 C의 경우 Wi-Fi 인터페이스를 통하여 세션 관련 기능과 이동성 관련 기능이 수행될 때 발생할 수 있는 상태 천이를 도시하고 있다.
기능 구조 타입 C의 경우, Wi-Fi 인터페이스를 통하여 기능 1 중 어태치, 디태치와 같은 접속/ 등록 해제 기능 만이 지원된다.
도시된 바와 같이, ECM이 아이들 상태이고, CRCM가 디액티브 상태이고, EMM는 디레지스터드 상태인 상황에서는 전원 공급될 수도 있고 네트워크가 선택(NW(network) Selection)될 수도 있다. EMM가 디레지스터드 상태인 경우, 코어 네트워크는 멀티 RAT UE의 존재 여부를 모를 수 있다.
만약, 어태치가 수용되면(Attach Accept), ECM는 연결 상태로 천이하고, CRCM는 액티브 상태로 천이한다. 또한, EMM도 레지스터드 상태로 천이한다. 이 상태에서 핸드오버나 사용자 플랜 분리(U-plane Separation)가 발생하더라도 추가적인 상태 천이는 발생하지 않는다.
EMM이 레지스터드 상태에서, 디테치 또는 어태치가 거부되거나, 무선 링크 실패가 발생하거나 전원 오프가 되면, EMM은 디레지스터드 상태로 변경되고, ECM과 CRCM 역시 아이들 상태와 디액티브 상태로 천이한다.
EMM는 레지스터드 상태, ECM이 연결 상태이고, CRCM가 액티브 상태에서, 사용자 활동이 없으면(User Inactivity) ECM는 연결 상태에서 아이들 상태로 천이하고, CRCM는 액티브 상태에서 디액티브 상태로 천이한다. 다만, 이 경우에도 EMM의 상태는 레지스터드 상태로 유지된다.
EMM가 레지스터드 상태에서 디레지스터드 상태로 천이되는 이벤트 중 무선 링크 실패의 경우, 복수의 RAT 중 어느 하나라도 무선 링크가 연결되어 있다면 상태 천이는 발생하지 않는다. 즉, 복수의 RAT 중 어느 하나의 RAT의 무선 링크 실패로 인한 상태 천이는 발생하지 않는다.
도 14는 본 발명의 또 다른 실시예에 따른 NAS 프로토콜에 의한 상태 천이를 도시한 도면이다. 도 14는 기능 구조 타입 E의 경우 Wi-Fi 인터페이스를 통하여 세션 관련 기능과 이동성 관련 기능이 수행될 때 발생할 수 있는 상태 천이를 도시하고 있다.
기능 구조 타입 E의 경우, Wi-Fi 인터페이스를 통하여 기능 1은 모두 지원되지만, 기능 2은 지원되지 않는다. 즉, 기능 구조 타입 E에서, 멀티 RAT UE는 Wi-Fi 인터페이스를 통하여 어태치, 디태치 및 TA 업데이트 관련 기능을 수행할 수 있고, 페이징 관련 기능은 수행할 수 없다.
ECM이 아이들 상태이고, CRCM가 디액티브 상태이고, EMM는 디레지스터드 상태인 상황에서는 전원이 공급될 수도 있고 네트워크가 선택(NW(network) Selection)될 수도 있다. EMM가 디레지스터드 상태인 경우, 코어 네트워크는 멀티 RAT UE의 존재 여부를 모를 수 있다.
만약, 어태치가 수용되면(Attach Accept), ECM는 연결 상태로 천이하고, CRCM는 액티브 상태로 천이한다. 또한, EMM도 레지스터드 상태로 천이한다. 이 상태에서 핸드오버나 사용자 플랜 분리(U-plane Separation)가 발생하더라도 추가적인 상태 천이는 발생하지 않는다.
EMM이 레지스터드 상태에서, 디테치 또는 어태치가 거부되거나, TAU가 거부된 경우, 무선 링크 실패가 발생한 경우 또는 전원 오프가 되면, EMM은 디레지스터드 상태로 변경되고, ECM과 CRCM 역시 아이들 상태와 디액티브 상태로 천이한다.
EMM는 레지스터드 상태, ECM이 연결 상태이고, CRCM가 액티브 상태에서, 사용자 활동이 없거나(User Inactivity) TAU가 수용되면(TAU Accept), ECM는 연결 상태에서 아이들 상태로 천이하고, CRCM는 액티브 상태에서 디액티브 상태로 천이한다. 다만, 이 경우에도 EMM의 상태는 레지스터드 상태로 유지된다.
만약, TAU의 요청이 발생하면, ECM는 다시 아이들 상태에서 연결 상태로 천이하고, CRCM는 디액티브 상태에서 액티브 상태로 천이할 수 있다.
EMM가 레지스터드 상태에서 디레지스터드 상태로 천이되는 이벤트 중 무선 링크 실패의 경우, 복수의 RAT 중 어느 하나라도 무선 링크가 연결되어 있다면 상태 천이는 발생하지 않는다. 즉, 복수의 RAT 중 어느 하나의 RAT의 무선 링크 실패로 인한 상태 천이는 발생하지 않는다.
도 15는 본 발명의 또 다른 실시예에 따른 무선 통신 시스템의 기능 구조를 나타낸 도면이다. 구체적으로 도 15는 기능 구조 타입 D와 기능 구조 타입 F인 경우의 기능 구조를 도시하고 있다.
도시된 바와 같이, 기능 구조 타입 D와 기능 구조 타입 F인 경우, 이동성 관리 모듈에 의한 기능 1 및 기능 2가 모두가 Wi-Fi 모듈(113)과 셀룰러 모듈(111)에 의하여 수행될 수 있다.
이는 eMME(510)의 이동성 관리 모듈(511)이 RE(300)의 셀룰러 모듈(330)과 Wi-Fi 모듈(340)을 통하여 멀티 RAT UE(100)의 셀룰러 모듈(111)과 Wi-Fi 모듈(113)과 연결되어 있는 것을 통해서도 확인할 수 있다.
도시되어 있는 바와 같이, 세션 관련 기능은 셀룰러 인터페이스와 Wi-Fi 인터페이스를 통하여 지원되고 있다.
도 16은 본 발명의 또 다른 실시예에 따른 NAS 프로토콜에 의한 상태 천이를 도시한 도면이다. 도 16은 기능 구조 타입 D의 경우 Wi-Fi 인터페이스를 통하여 세션 관련 기능과 이동성 관련 기능이 수행될 때 발생할 수 있는 상태 천이를 도시하고 있다.
기능 구조 타입 D의 경우, Wi-Fi 인터페이스를 통하여 기능 1 중 어태치, 디태치와 같은 접속/ 등록 해제 기능 만이 지원되고, 기능 2 중 페이징 관련 기능만이 수행될 수 있다.
ECM이 아이들 상태이고, CRCM가 디액티브 상태이고, EMM는 디레지스터드 상태인 상황에서는 전원 공급될 수도 있고 네트워크가 선택(NW(network) Selection)될 수도 있다. EMM가 디레지스터드 상태인 경우, 코어 네트워크는 멀티 RAT UE의 존재 여부를 모를 수 있다.
만약, 어태치가 수용되면(Attach Accept), ECM는 연결 상태로 천이하고, CRCM는 액티브 상태로 천이한다. 또한, EMM도 레지스터드 상태로 천이한다. 이 상태에서 핸드오버나 사용자 플랜 분리(U-plane Separation)가 발생하더라도 추가적인 상태 천이는 발생하지 않는다.
EMM이 레지스터드 상태에서, 디테치 또는 어태치가 거부되거나, 무선 링크 실패가 발생한 경우 또는 전원 오프가 되면, EMM은 디레지스터드 상태로 변경되고, ECM과 CRCM 역시 아이들 상태와 디액티브 상태로 천이한다.
EMM는 레지스터드 상태, ECM이 연결 상태이고, CRCM가 액티브 상태에서, 사용자 활동이 없으면(User Inactivity), ECM는 연결 상태에서 아이들 상태로 천이하고, CRCM는 액티브 상태에서 디액티브 상태로 천이한다. 다만, 이 경우에도 EMM의 상태는 레지스터드 상태로 유지된다.
만약, 새로운 통신이 발생하면(New Traffic), ECM는 다시 아이들 상태에서 연결 상태로 천이하고, CRCM는 디액티브 상태에서 액티브 상태로 천이할 수 있다.
EMM가 레지스터드 상태에서 디레지스터드 상태로 천이되는 이벤트 중 무선 링크 실패의 경우, 복수의 RAT 중 어느 하나라도 무선 링크가 연결되어 있다면 상태 천이는 발생하지 않는다. 즉, 복수의 RAT 중 어느 하나의 RAT의 무선 링크 실패로 인한 상태 천이는 발생하지 않는다.
도 17은 본 발명의 또 다른 실시예에 따른 NAS 프로토콜에 의한 상태 천이를 도시한 도면이다. 도 17은 기능 구조 타입 F의 경우 Wi-Fi 인터페이스를 통하여 세션 관련 기능과 이동성 관련 기능이 수행될 때 발생할 수 있는 상태 천이를 도시하고 있다.
기능 구조 타입 F의 경우, Wi-Fi 인터페이스를 통하여 이동성 관련 기능 및 세션 관련 기능이 모두 수행될 수 있다.
ECM이 아이들 상태이고, CRCM가 디액티브 상태이고, EMM는 디레지스터드 상태인 상황에서는 전원 공급될 수도 있고 네트워크가 선택(NW(network) Selection)될 수도 있다. EMM가 디레지스터드 상태인 경우, 코어 네트워크는 멀티 RAT UE(100)의 존재 여부를 모를 수 있다.
만약, 어태치가 수용되면(Attach Accept), ECM는 연결 상태로 천이하고, CRCM는 액티브 상태로 천이한다. 또한, EMM도 레지스터드 상태로 천이한다. 이 상태에서 핸드오버나 사용자 플랜 분리(U-plane Separation)가 발생하더라도 추가적인 상태 천이는 발생하지 않는다.
EMM이 레지스터드 상태에서, 디테치 또는 어태치가 거부되거나, TAU가 거부된 경우, 무선 링크 실패가 발생한 경우 또는 전원 오프가 되면, EMM은 디레지스터드 상태로 변경되고, ECM과 CRCM 역시 아이들 상태와 디액티브 상태로 천이한다.
EMM는 레지스터드 상태, ECM이 연결 상태이고, CRCM가 액티브 상태에서, 사용자 활동이 없거나(User Inactivity) TAU가 수용되면(TAU Accept), ECM는 연결 상태에서 아이들 상태로 천이하고, CRCM는 액티브 상태에서 디액티브 상태로 천이한다. 다만, 이 경우에도 EMM의 상태는 레지스터드 상태로 유지된다.
만약, 새로운 통신이 발생하거나(New Traffic) TAU의 요청이 발생하면, ECM는 다시 아이들 상태에서 연결 상태로 천이하고, CRCM는 디액티브 상태에서 액티브 상태로 천이할 수 있다.
EMM가 레지스터드 상태에서 디레지스터드 상태로 천이되는 이벤트 중 무선 링크 실패의 경우, 복수의 RAT 중 어느 하나라도 무선 링크가 연결되어 있다면 상태 천이는 발생하지 않는다. 즉, 복수의 RAT 중 어느 하나의 RAT의 무선 링크 실패로 인한 상태 천이는 발생하지 않는다.
이와 같이 서로 다른 RAT 환경에서 단말은 자신의 상황에 적접한 동작을 수행할 수 있다. 이 경우 단말의 동작을 위하여 AP에 전송되는 시스템 정보(system information, 이하 SI)가 새롭게 정의될 필요가 있다.
이러한 SI는 Wi-Fi AP 타입 정보를 포함할 수 있다.
AP 타입에는 코어 네트워크와 NAS에 의한 인터페이스가 형성되지 않는 종래의 AP를 나타내는 제1 타입(Legacy AP), 도 4b에 도시되어 있는 RE에 통합되어 있는 AP를 나타내는 제2 타입(Physically collocated AP with RE), 도 4C에 도시되어 있는 RE에 연결되어 있는 AP를 나타내는 제3 타입(Physically connected AP to RE), 제2 타입과 제3 타입이 결합되어 있는 형태에 속하는 AP를 나타내는 제4 타입(Hybrid AP)이 존재할 수 있다.
또한, SI는 eMME 혹은 RE와 인터페이스(예를 들어, S1- eAP, X2-eAP)를 설정하는 과정에서 획득할 수 있는 코어 기능 구조 타입에 대한 정보(이하, 기능 타입 정보)를 포함할 수 있다.
이는 표 3에 나타나있는 Wi-Fi 인터페이스를 통하여 지원되는 기능을 식별하기 위한 것으로, 멀티 RAT UE는 기능 구조 타입에 대한 정보를 통하여 자신이 어떠한 기능을 수행할지 알 수 있다.
예를 들어, 기능 타입 정보가 ‘000’이거나 명시적으로 기능 타입 정보를을 획득하지 못한 경우에 ‘000’으로 설정되었다면, 이는 Wi-Fi AP를 통하여 표 3의 어떠한 기능도 수행하지 못하는 것을 나타낼 수 있다. 기능 타입 정보가 ‘001’이면, 표 3의 기능 구조 타입 A를 나타내고, 기능 타입 정보가 ‘010’이면, 표 3의 기능 구조 타입 B를 나타내고, 기능 타입 정보가 ‘011’이면, 표 3의 기능 구조 타입 C를 나타내고, 기능 타입 정보가 ‘100’이면, 표 3의 기능 구조 타입 D를 나타내고, 기능 타입 정보가 ‘101’이면, 표 3의 기능 구조 타입 E를 나타내고, 기능 타입 정보가 ‘111’이면, 표 3의 기능 구조 타입 F를 나타낼 수 있다.
또한, SI는 eMME 혹은 RE와의 인터페이스(예를 들어, S1-eAP, X2-eAP) 설정과정에서 획득한 TA 코드(Tracking Area Code)를 포함할 수 있다.
이렇게 SI가 멀티 RAT UE로 전송되면, 멀티 RAT UE는 SI를 통해 수신된 코어 기능 타입 정보에 따라 Wi-Fi 인터페이스를 통해 허용되는 이동성 관리 관련 절차 및 세션 관리 관련 절차에 대한 기능을 수행할 수 있다.
이때, AP 타입이 제1 타입(Legacy AP)은 아니지만 코어 기능 구조 타입이 ‘000’이라면, 즉, 셀룰러 인터페이스와 Wi-Fi 인터페이스가 단일화된 코어 네트워크 기반으로 동작할 수 있지만 Wi-Fi 인터페이스를 이용하여 표 3의 기능을 수행할 수 없는 경우, 멀티 RAT UE는 사용자 데이터를 송수신할 수 있도록 셀룰러 네트워크에 접속하여 무선 접속 상태를 연결 상태로, 코어 네트워크의 상태도 연결 상태로 전환해야 한다.
또한, eMME와 AP 간의 직접적인 인터페이스가 없으면서(예를 들어, AP가 RE 또는 셀룰러 접속을 위한 무선 노드와의 인터페이스를 통하여 간접적으로 연결되는 경우), 기능 구조 타입이 A 혹은 B일 때, eMME는 전송된 세션 관리 관련 메시지가 어떤 단말로부터 전송된 것인지를 알아야 한다.
이를 위하여 본 발명의 일 예에 따르면, 멀티 RAT UE에 할당되는 ID를 활용할 수 있다. 예를 들어, 기지국과 같은 무선 노드와 eMME 간의 식별 정보(S1AP ID), AP와 기지국과 같은 무선 노드 간의 식별 정보(X2-eAPAP ID), 멀티 RAT UE와 AP 간의 식별 정보(802.11 MAC frame 내의 MAC address) 등으로 eMME는 멀티 RAT UE를 식별 할 수 있다.
또 다른 예에 따르면, 세션 관리 관련 메시지가 어떤 단말로부터 전송된 것인지는 보안 컨텍스트(security context) 관련 파라메터를 활용하여 식별될 수도 있다. 예를 들어, 멀티 RAT UE와 eMME 사이에는 Type of security context flag, NAS key set identifier, NAS COUNT와 같은 신호가 송수신 될 수 있고, 이러한 신호의 전체 혹은 일부에 의하여 세션 관리 관련 메시지의 경로가 파악될 수 있다.
도 18은 본 발명의 일 실시예에 따른 단말과 코어 네트워크와의 어태치 과정을 설명하기 위한 제어 흐름도이다.
도 18은 종래의 AP 구조 또는 표 3의 기능 구조 타입 A 또는 B에서, 이종망인 Wi-Fi 인터페이스를 통하여 데이터를 전송하는 경우, 단말이 코어 네트워트에 어태치하는 과정을 설명하고 있다. 즉, 도 18에 따를 경우, 데이터는 셀룰러 인터페이스를 통하여 전송되지 않는다.
우선, 단말은 코어 기능 구조 타입에 대한 정보를 포함하는 SI를 수신할 수 있다(S1810).
단말은 RRC(Radio Resource Control) 연결을 위한 메시지를 요청하고(RRC Connection Request), 이에 대한 연결 설정 메시지를 수신하고(RRC Connection Setup), RRC 연결 설정을 완료할 수 있다(RRC Connection Setup Complete)(S1820).
단말은 연결 확립 코즈(establishment cause)가 단말로부터 전송되는 MO(Mobile Originated)-Signalling으로 설정된 RRC 연결 요청 메시지를 RE로 전송할 수 있다.
RRC 연결 설정 완료는 오직 어태치를 위한 연결임을 특정 정보, 예컨대, action code=Attach Only와 같은 코드 정보로 시그널링 될 수 있다. 즉, 단말은 RRC 연결을 설정하는 과정에서 RE에게 어태치만을 수행하는 것을 알릴 수 있다.
단말은 데이터 전송의 위하여 셀룰러 링크를 통해 네트워크 등록을 위한 어태치 및 인증 과정(Attach Request & Authentication)을 eMME에 요청할 수 있다(S1830).
eMME는 단말은 초기 컨텍스트 설정 요청 메시지(initial context setup request)를 RE에 전송하고(S1840), RE는 이러한 초기 컨텍스트 설정 요청 메시지에 따라 어태치 수용(Attach Accept)에 대한 베어러를 단말로 시그널링 하고(Signaling Bearer)(S1850), 초기 컨텍스트 설정 응답 메시지(initial context setup response)를 eMME로 전송할 수 있다(S1860).
초기 컨텍스트 설정 요청 메시지는 E-RAB ID, QoS, NAS-PDU: Attach Accept 등을 포함할 수 있고, 초기 컨텍스트 설정 응답 메시지는 E-RAB ID와 RRC 상태가 아이들 상태임을 알리는 정보(RRC: idle)를 포함할 수 있다.
단말은 RE로부터 수신한 베어러 시그널링에 대응하여 어태치 완료(attach complete)에 대한 베어러를 RE로 시그널링하고(S1870), 이를 수신한 RE는 Uplink NAS Transport(NAS-PDS: Attach complete)를 eMME으로 전송할 수 있다(S1880).
이렇게 어태치를 위한 RRC이 연결이 완료되면, 단말과 eMME의 ECM은 연결 상태로 천이하고, EMM은 레지스터드 상태로 천이한다.
RE는 어태치 절차가 완료되면, RRC 연결 상태를 해제할 수 있다(RRC Connection Release)(S1890).
도 19는 본 발명의 일 실시예에 따른 단말과 코어 네트워크와의 NAS 시그널링을 설명하기 위한 제어 흐름도이다.
도 9 역시 종래의 AP 구조 또는 표 3의 기능 구조 타입 A 또는 B에서, 보안 업데이트(security update), GUTI 재할당(reallocation), EMM 정보과 같은 NAS 메시지를 다운링크할 필요가 있는 경우, 단말이 코어 네트워트에 어태치하는 과정을 설명하고 있다. 데이터 다운 링크뿐만 아니라 NAS 시그널링의 다운 링크를 위한 페이징이 필요할 수 있고, 본 실시예에서는 이러한 페이징을 위하여 RRC 연결이 필요한 경우, 단말에게 전송되는 MT(Mobile Terminated) Sinaling을 새롭게 추가할 수 있다.
NAS 시그널링의 다운 링크를 할 수 있는 전제 조건으로, 단말과 eMME의 ECM은 연결 상태이고, EMM은 레지스터드 상태이다.
eMME는 상술한 이유에 따라 Downlink NAS Transport를 RE로 전송하고(S1910), 이를 수신한 RE는 NAS 시그널링의 다운 링크를 위한 페이징 메시지를 단말로 전송한다(S1920).
단말은 RRC(Radio Resource Control) 연결을 위한 메시지를 요청하고(RRC Connection Request), 이에 대한 연결 설정 메시지를 수신하고(RRC Connection Setup), RRC 연결 설정을 완료할 수 있다(RRC Connection Setup Complete)(S1930).
단말은 연결 확립 코즈(establishment cause)가 MT-Signalling으로 설정된 RRC 연결 요청 메시지를 RE로 전송할 수 있다.
RRC 연결이 설정되면 RE는 Uplink NAS Transport를 eMME로 전송하고(S1940), eMME은 이에 대응하여 NAS Transport Complete를 RE로 전송할 수 있다(S1950).
RE는 페이징을 위한 메시지 전송이 완료되면, RRC 연결 상태를 해제할 수 있다(RRC Connection Release)(S1960).
도 20은 본 발명의 일 실시예에 따른 무선 통신 시스템의 블록도이다.
기지국(800)은 프로세서(810; processor), 메모리(820; memory) 및 RF부(830; radio frequency unit)을 포함한다. 프로세서(810)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(810)에 의해 구현될 수 있다. 메모리(820)는 프로세서(810)와 연결되어, 프로세서(810)를 구동하기 위한 다양한 정보를 저장한다. RF부(830)는 프로세서(810)와 연결되어, 무선 신호를 전송 및/또는 수신한다. 도 20의 기지국(800)는 상술된 셀룰러 기지국, WLAN AP 또는 RE를 포함할 수 있다.
단말(900)은 프로세서(910), 메모리(920) 및 RF부(930)을 포함한다. 프로세서(910)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(910)에 의해 구현될 수 있다. 메모리(920)는 프로세서(910)와 연결되어, 프로세서(910)를 구동하기 위한 다양한 정보를 저장한다. RF부(930)는 프로세서(910)와 연결되어, 무선 신호를 전송 및/또는 수신한다. 도 20의 단말(900)는 상술된 멀티 RAT UE를 포함할 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로서 순서도를 기초로 설명되고 있으나, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당해 기술 분야에서 통상의 지식을 가진 자라면 순서도에 나타난 단계들이 배타적이지 않고, 다른 단계가 포함되거나, 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (12)

  1. 제1 무선 프로토콜에 의한 제1 무선 인터페이스를 통하여 수행될 수 있는 이동성 관리 관련 기능에 대한 기능 구조 타입 정보를 단말에 전송하는 단계와;
    제2 무선 프로토콜에 의한 제2 무선 인터페이스를 통하여 상기 단말과 무선링크를 형성하는 단계와;
    상기 단말이 상기 제2 무선 인터페이스를 통하여 코어 네트워크 간의 연결을 요청하는 경우, 상기 단말과 상기 코어 네트워크 간의 NAS(Non Access Stratum) 프로토콜에 의한 연결을 확립하는 단계와;
    상기 무선 링크를 해제하는 단계와;
    상기 단말과 통신하여 상기 제2 무선 인터페이스를 통하여 상기 이동성 관리 관련 기능을 수행하는 단계를 포함하는 것을 특징으로 하는 무선 노드의 무선 통신 방법.
  2. 제1항에 있어서,
    상기 단말이 상기 제2 무선 인터페이스를 통하여 상기 이동성 관리 관련 기능을 수행하는 동안 상기 단말과 상기 코어 네트워크 간의 NAS 프로토콜에 의한 연결은 유지되는 것을 특징으로 하는 방법.
  3. 제1항에 있어서,
    상기 제1 무선 인터페이스는 Wi-Fi 링크이고, 상기 제2 무선 인터페이스는 셀룰러 링크인 것을 특징으로 하는 방법.
  4. 제1항에 있어서,
    상기 이동성 관리 관련 기능은 상기 단말을 상기 코어 네트워크에 연결하는 어태치 및 디태치 기능, TA(Tracking Area) 업데이트 기능, 서비스 요청 기능, 페이징 기능 NAS 메시지 전송 기능 중 적어도 하나를 포함하는 것을 특징으로 하는 방법.
  5. 제4항에 있어서,
    상기 기능 구조 타입 정보가 상기 이동성 관리 관련 기능이 상기 제1 무선 인터페이스를 통하여 수행될 수 없다는 것을 나타내는 경우, 상기 단말과 상기 무선 링크를 형성하는 것을 특징으로 하는 방법.
  6. 제4항에 있어서,
    상기 기능 구조 타입 정보가 상기 이동성 관리 관련 기능 중 상기 어태치 및 디태치 기능이 상기 제1 무선 인터페이스를 통하여 수행될 수 없다는 것을 나타내는 경우, 상기 단말과 상기 무선 링크를 형성하는 것을 특징으로 하는 방법.
  7. 제1 무선 프로토콜에 의한 제1 무선 인터페이스와 제2 무선 프로토콜에 의한 제2 무선 인터페이스를 통하여 단말과 무선 링크를 형성할 수 있는 무선 노드에 있어서,
    신호 송수신부와;
    상기 신호 송수신부와 연결되어 있는 프로세서를 포함하고,
    상기 프로세서는 제1 무선 프로토콜에 의한 제1 무선 인터페이스를 통하여 수행될 수 있는 이동성 관리 관련 기능에 대한 기능 구조 타입 정보를 단말에 전송하고, 제2 무선 프로토콜에 의한 제2 무선 인터페이스를 통하여 상기 단말과 무선링크를 형성하고, 상기 단말이 상기 제2 무선 인터페이스를 통하여 코어 네트워크 간의 연결을 요청하는 경우 상기 단말과 상기 코어 네트워크 간의 NAS(Non Access Stratum) 프로토콜에 의한 연결을 확립하고, 상기 무선 링크를 해제하고, 상기 단말과 통신하여 상기 제2 무선 인터페이스를 통하여 상기 이동성 관리 관련 기능을 수행하는 것을 특징으로 하는 무선 노드.
  8. 제7항에 있어서,
    상기 단말이 상기 제2 무선 인터페이스를 통하여 상기 이동성 관리 관련 기능을 수행하는 동안 상기 단말과 상기 코어 네트워크 간의 NAS 프로토콜에 의한 연결은 유지되는 것을 특징으로 하는 무선 노드.
  9. 제7항에 있어서,
    상기 제1 무선 인터페이스는 Wi-Fi 링크이고, 상기 제2 무선 인터페이스는 셀룰러 링크인 것을 특징으로 하는 무선 노드.
  10. 제7항에 있어서,
    상기 이동성 관리 관련 기능은 상기 단말을 상기 코어 네트워크에 연결하는 어태치 및 디태치 기능, TA(Tracking Area) 업데이트 기능, 서비스 요청 기능, 페이징 기능 NAS 메시지 전송 기능 중 적어도 하나를 포함하는 것을 특징으로 하는 무선 노드.
  11. 제10항에 있어서,
    상기 기능 구조 타입 정보가 상기 이동성 관리 관련 기능이 상기 제1 무선 인터페이스를 통하여 수행될 수 없다는 것을 나타내는 경우, 상기 프로세서는 상기 단말과 상기 무선 링크를 형성하는 것을 특징으로 하는 무선 노드.
  12. 제10항에 있어서,
    상기 기능 구조 타입 정보가 상기 이동성 관리 관련 기능 중 상기 어태치 및 디태치 기능이 상기 제1 무선 인터페이스를 통하여 수행될 수 없다는 것을 나타내는 경우, 상기 프로세서는 상기 단말과 상기 무선 링크를 형성하는 것을 특징으로 하는 무선 노드.
PCT/KR2014/008145 2013-09-04 2014-09-01 복수의 무선 네트워크를 지원하는 통신 환경에서 단말과 통신하는 무선 노드 및 무선 통신 방법 WO2015034227A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/916,333 US9974107B2 (en) 2013-09-04 2014-09-01 Radio node communicating with terminal in communication environment supporting plurality of radio networks, and radio communication method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361873799P 2013-09-04 2013-09-04
US61/873,799 2013-09-04
US201361890325P 2013-10-14 2013-10-14
US61/890,325 2013-10-14

Publications (1)

Publication Number Publication Date
WO2015034227A1 true WO2015034227A1 (ko) 2015-03-12

Family

ID=52628631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008145 WO2015034227A1 (ko) 2013-09-04 2014-09-01 복수의 무선 네트워크를 지원하는 통신 환경에서 단말과 통신하는 무선 노드 및 무선 통신 방법

Country Status (2)

Country Link
US (1) US9974107B2 (ko)
WO (1) WO2015034227A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017003255A1 (en) * 2015-07-02 2017-01-05 Samsung Electronics Co., Ltd. Network selection method and base station
KR20170097487A (ko) * 2016-02-18 2017-08-28 한국전자통신연구원 통합 코어 망 서비스 이용방법과 이를 위한 통합 제어장치 및 그 시스템
US10499327B2 (en) 2015-07-02 2019-12-03 Samsung Electronics Co., Ltd Network selection method and base station

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11696250B2 (en) * 2016-11-09 2023-07-04 Intel Corporation UE and devices for detach handling
US10849186B2 (en) 2017-01-09 2020-11-24 Huawei Technologies Co., Ltd. System and methods for session management
US10327278B2 (en) * 2017-03-24 2019-06-18 Qualcomm Incorporated Mechanisms for establishing user plane connectivity for non-3GPP access
WO2018230778A1 (ko) * 2017-06-14 2018-12-20 엘지전자 주식회사 세션을 관리하는 방법 및 그 방법을 수행하는 smf 노드
CN113453176B (zh) * 2021-06-25 2022-12-09 亚太卫星宽带通信(深圳)有限公司 一种使卫星终端支持nas信令实现5g核心网管控的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809260B1 (ko) * 2006-10-18 2008-03-03 포항공과대학교 산학협력단 차세대 이동통신 네트워크에서의 상황 정보를 이용한핸드오버 결정 방법 및 장치
KR20100081167A (ko) * 2009-01-05 2010-07-14 (주) 엘지텔레콤 네트워크 접속경로 이분화방법 및 장치
KR101063573B1 (ko) * 2007-07-25 2011-09-07 엘지전자 주식회사 세션 이동 방법 및 세션 연속성을 지원하는 방법
WO2011139074A2 (ko) * 2010-05-04 2011-11-10 엘지전자 주식회사 서비스를 수행하는 방법 및 그 단말
KR20130035237A (ko) * 2011-09-29 2013-04-08 삼성전자주식회사 이동통신 시스템 및 그 이동통신 시스템에서 체감 성능을 개선하기 위한 정보 처리 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728377B2 (ja) * 2011-12-20 2015-06-03 株式会社日立製作所 無線通信システムおよび無線通信方法、ならびに移動端末

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809260B1 (ko) * 2006-10-18 2008-03-03 포항공과대학교 산학협력단 차세대 이동통신 네트워크에서의 상황 정보를 이용한핸드오버 결정 방법 및 장치
KR101063573B1 (ko) * 2007-07-25 2011-09-07 엘지전자 주식회사 세션 이동 방법 및 세션 연속성을 지원하는 방법
KR20100081167A (ko) * 2009-01-05 2010-07-14 (주) 엘지텔레콤 네트워크 접속경로 이분화방법 및 장치
WO2011139074A2 (ko) * 2010-05-04 2011-11-10 엘지전자 주식회사 서비스를 수행하는 방법 및 그 단말
KR20130035237A (ko) * 2011-09-29 2013-04-08 삼성전자주식회사 이동통신 시스템 및 그 이동통신 시스템에서 체감 성능을 개선하기 위한 정보 처리 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017003255A1 (en) * 2015-07-02 2017-01-05 Samsung Electronics Co., Ltd. Network selection method and base station
US10499327B2 (en) 2015-07-02 2019-12-03 Samsung Electronics Co., Ltd Network selection method and base station
US11115919B2 (en) 2015-07-02 2021-09-07 Samsung Electronics Co., Ltd Network selection method and base station
KR20170097487A (ko) * 2016-02-18 2017-08-28 한국전자통신연구원 통합 코어 망 서비스 이용방법과 이를 위한 통합 제어장치 및 그 시스템
KR102164823B1 (ko) * 2016-02-18 2020-10-13 한국전자통신연구원 통합 코어 망 서비스 이용방법과 이를 위한 통합 제어장치 및 그 시스템

Also Published As

Publication number Publication date
US20160227597A1 (en) 2016-08-04
US9974107B2 (en) 2018-05-15

Similar Documents

Publication Publication Date Title
WO2015034227A1 (ko) 복수의 무선 네트워크를 지원하는 통신 환경에서 단말과 통신하는 무선 노드 및 무선 통신 방법
WO2019160278A1 (ko) Ma pdu 세션의 수립을 처리하는 방안 그리고 amf 노드 및 smf 노드
WO2018174383A1 (ko) 세션 관리 방법 및 smf 노드
WO2018169343A1 (ko) 페이징을 수행하는 방법 및 기지국, 페이징을 지원하는 방법 및 네트워크 엔티티
WO2018231007A1 (ko) 요청에 대한 응답 방법 및 네트워크 장치
WO2018038497A1 (ko) 5g 이동통신에서 음성 통화를 위해 4g로 폴백하는 방법 및 사용자 장치
WO2018097601A1 (ko) 무선 통신 시스템에서의 등록 해제 방법 및 이를 위한 장치
WO2017188787A2 (ko) 무선 통신 시스템에서 기지국에 의해 수행되는 데이터 전달 방법 및 상기 방법을 이용하는 장치
WO2018128406A1 (ko) 무선 통신 시스템에서 lte/nr 인터워킹의 지원을 위한 인터페이스를 관리하는 방법 및 장치
WO2013137698A1 (ko) 무선 통신 시스템에서 nas 시그널링 요청 처리 방법 및 장치
WO2019098641A1 (ko) 서비스 요청 절차를 개시하는 방법 및 사용자 장치
WO2015034195A1 (ko) 멀티 rat 환경에서 위치 갱신 (location area update) 방법 및 페이징을 송수신하는 방법
WO2017135779A1 (ko) 무선 통신 시스템에서 rrc 연결 재개를 수행하는 방법 및 장치
WO2019074347A1 (en) USER EQUIPMENT (UE) AND CENTRAL NETWORK FOR MANAGING NETWORK WINDOW CONGESTION IN A WIRELESS COMMUNICATION SYSTEM
WO2017146523A1 (ko) 네트워크로의 연결 요청 방법 및 사용자기기
WO2018182254A1 (ko) 무선 통신 시스템에서 scg 실패 정보 메시지를 전송하는 방법 및 장치
WO2014104705A1 (en) Method and system for supporting fast recovery of user equipment
WO2011090339A2 (en) 1x message bundling
WO2016153307A1 (en) Method and apparatus for performing wt release procedure in wireless communication system
WO2019194528A1 (en) Method and apparatus for performing transmission
WO2019160281A1 (en) Method and apparatus for performing dc based handover
WO2018221942A1 (ko) 상향링크 서비스 품질을 관리하는 방법 및 상기 방법을 수행하는 기지국
WO2016111603A1 (ko) 무선 통신 시스템에서 pdn 연결 복구에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2014142487A1 (ko) 무선접속 시스템에서 온오프 스몰셀에 대한 정보를 관리하는 방법 및 이를 지원하는 장치
WO2013151332A1 (ko) 무선 통신 시스템에서 패킷 스위치 서비스 핸드오버 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841579

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14916333

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841579

Country of ref document: EP

Kind code of ref document: A1