WO2015034150A2 - Blade for gas turbine - Google Patents

Blade for gas turbine Download PDF

Info

Publication number
WO2015034150A2
WO2015034150A2 PCT/KR2014/002210 KR2014002210W WO2015034150A2 WO 2015034150 A2 WO2015034150 A2 WO 2015034150A2 KR 2014002210 W KR2014002210 W KR 2014002210W WO 2015034150 A2 WO2015034150 A2 WO 2015034150A2
Authority
WO
WIPO (PCT)
Prior art keywords
wing
blade
passages
gas turbine
outside
Prior art date
Application number
PCT/KR2014/002210
Other languages
French (fr)
Korean (ko)
Other versions
WO2015034150A3 (en
Inventor
조명환
심재경
Original Assignee
삼성테크윈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성테크윈 주식회사 filed Critical 삼성테크윈 주식회사
Publication of WO2015034150A2 publication Critical patent/WO2015034150A2/en
Publication of WO2015034150A3 publication Critical patent/WO2015034150A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/185Two-dimensional patterned serpentine-like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling

Definitions

  • Embodiments relate to blades for gas turbines, and more particularly, to blades for gas turbines, wherein the blades are cooled uniformly throughout and can increase the operating efficiency of the gas turbine.
  • a gas turbine is a device that generates power by compressing air by a compressor and burning fuel to heat the compressed air and then expand the air through the turbine.
  • the gas turbine has a turbine blade in contact with the combustion gas, and as the output of the gas turbine increases, the temperature of the combustion gas also increases, so the turbine blade must be able to be cooled efficiently.
  • turbine blades are cooled using compressed cooling air extracted from a compressor of a gas turbine. Since the compressed air compressed by the compressor is produced for use in the combustor of the gas turbine, increasing the amount of compressed air extracted from the compressor for cooling the turbine blades lowers the overall efficiency of the gas turbine.
  • Korean Laid-Open Patent Publication No. 2013-0023353 installs a meandering flow path (snake flow path) which is bent and extends along the inside of the turbine blade, but in order to uniformly cool the entire high-temperature turbine blade, the meandering flow path is formed in the entire turbine blade. Many bends should be formed to extend along the area. This increases the pressure loss of the compressed air passing through the meandering flow path and reduces the overall efficiency of the gas turbine since the use of high pressure compressed air is required to achieve cooling performance.
  • Japanese Laid-Open Patent Publication No. 2001-132406 attempts to improve the cooling effect of the end of the turbine blade by installing a meandering flow path inside the turbine blade and adding a separate flow path to the end of the turbine blade. When using a flow path, there is a limit in uniformly cooling the entire area of the hot turbine blade.
  • Korean Laid-Open Patent Publication No. 2006-0030114 is provided with a plurality of cooling ducts inside the turbine blades, and through a bore in the switching portion of the cooling ducts to prevent a portion of the turbine blades from being heated to a high temperature.
  • a technique for further supplying compressed air for cooling is disclosed. According to such a configuration, since the amount of compressed air extracted from the compressor must be increased, not only the operation efficiency of the gas turbine is lowered, but also the cooling effect is uniform so that the overall temperature distribution of the turbine blade is uniform.
  • Japanese Laid-Open Patent Publication No. 2003-322003 attempts to reduce the amount of compressed air required for cooling by installing a serpentine flow path (a meandering flow path), a front supply flow path, and a rear supply flow path inside the turbine blade. Heat may be concentrated in a portion of the cooling effect so that the overall temperature distribution of the turbine blades is uniform.
  • An object of the embodiments is to provide a blade for a gas turbine with improved cooling efficiency.
  • Another object of the embodiments is to minimize the pressure loss of the compressed air used to cool the blades for the gas turbine.
  • Another object of the embodiments is to uniformly cool the entire area of the blade for the gas turbine.
  • a blade for a gas turbine includes a wing having a leading edge and a trailing edge and having a streamlined cross section, an inlet through which compressed air is introduced from the outside, and a support for supporting one end of the wing, and one end of the inlet. It is provided with a plurality of meandering passages connected to each of which extends in parallel in the interior of the wing to pass the compressed air introduced from the inlets.
  • the meandering flow passages are connected to the inlets, and extend inflow passages extending along the leading edge from one end to the other end of the wing, discharge passages extending along the trailing edge of the wing, and an intermediate path connecting the inflow passages and the discharge flow passages.
  • Flow paths may be provided.
  • the meandering flow passages are connected to each of the inflow passages and bent at the other ends of the wings and connected to the intermediate flow passages, and connected to each of the intermediate flow passages and bent at one end of the wing and connected to the discharge passages.
  • Lower curved flow paths may be further provided.
  • the meandering flow passages may include a first flow passage, a second flow passage, and a third flow passage arranged in parallel from the leading edge of the wing.
  • the wing may include front through holes formed through the leading edge to connect the inflow passage of the first flow passage to the outside.
  • the wing unit may include upper holes formed through the other end of the wing unit to connect the upper curved passage and the discharge passage of the first passage to the outside.
  • the wing may include rear holes formed through the trailing edge portion to connect the discharge passage of the third flow passage to the outside.
  • the wing portion may have intermediate through holes formed to penetrate the meandering passages to the outside at an intermediate surface connecting the leading edge and the trailing edge.
  • the intermediate through holes may have first intermediate through holes connecting at least one of the inflow passages to the outside.
  • the intermediate apertures may have second intermediate apertures that connect at least one of the intermediate passages to the outside.
  • the intermediate apertures may have third intermediate apertures connecting at least one of the discharge passages to the outside.
  • At least one of the lower bends can be enlarged to pass through the support.
  • the wing portion may be reduced in cross-sectional area from one end to the other end.
  • the blade for a gas turbine has a streamlined cross-section having a support having an inlet through which compressed air is introduced from the outside, and having one end connected to the support and extending from the one end to the other end and extending from the one end to the other.
  • Wing part having a discharge, connected to each of the inlets so that the compressed air introduced from the inlet flows into the inlet flow paths extending along the leading edge of the wing and extending along the trailing edge of the wing is discharged from the other end of the wing to the outside It includes a plurality of meandering passages extending in parallel with intermediate passages connecting the passages and the inflow passages and the discharge passages.
  • the blade for a gas turbine has a plurality of meandering flow paths extending in parallel in the inside of the wing, it is possible to minimize the pressure of the compressed air required for cooling the overall operating efficiency of the gas turbine This is greatly increased.
  • a plurality of meandering flow paths installed to extend in parallel in the inside of the wing may perform a cooling function independently of each other, the entire area of the wing may be uniformly cooled.
  • FIG. 1 is a perspective view of a blade for a gas turbine according to one embodiment.
  • FIG. 2 is a conceptual diagram schematically illustrating a layout structure of a cooling channel of the blade for a gas turbine of FIG. 1.
  • FIG. 3 is a cross-sectional view of the blade for the gas turbine of FIG. 1.
  • FIG. 4 is a cross-sectional view taken along the line VI-VI of the blade for the gas turbine of FIG. 3.
  • FIG. 5 is a cross-sectional view taken along the line VV of the blade for the gas turbine of FIG. 3.
  • FIG. 6 is a photograph of simulation data showing pressure loss of a blade for a gas turbine of the comparative example manufactured for comparison with the blade for a gas turbine of FIG. 1.
  • FIG. 7 is a simulation data photograph showing the pressure loss during operation of the blade for a gas turbine.
  • FIG. 1 is a perspective view of a blade for a gas turbine according to one embodiment
  • FIG. 2 is a conceptual view schematically showing a structure of a cooling channel of the blade for a gas turbine of FIG. 1
  • FIG. 3 is a diagram of the blade for a gas turbine of FIG. 1. It is a cross section.
  • the gas turbine blade 100 according to the embodiment shown in FIGS. 1 to 3 has a streamlined wing portion 20, a support portion 10 for supporting the wing portion 20, and an inside of the wing portion 20. It has meandering flow paths 7 which are formed.
  • the bottom 20b of one end of the wing 20 is connected to the support 10, and the wing 20 extends in a direction away from the support 10.
  • the wing unit 20 is a part that serves to generate a rotational force by contacting the hot combustion gas of the gas turbine.
  • the wing portion 20 has a streamlined cross section, is located on the upstream side of the flow of air, and the front edge portion 20f is in contact with the hot air first, and the trailing edge portion 20r located on the downstream side of the flow of air. And an intermediate surface 20m which connects the leading edge portion 20f and the trailing edge portion 20r and forms a streamlined curved surface.
  • meandering passages 7 through which compressed air passes are formed in the wing 20 to uniformly cool the blade 100 for the gas turbine as a whole.
  • the meandering flow paths 7 are bent and formed in a shape such that a snake twists and passes inside the wing 20.
  • the meandering passages 7 of the blade 100 for a gas turbine according to the embodiment are arranged in parallel and extend in the same direction, the first passage 30, the second passage 40, and the third passage 50. ).
  • the 1st flow path 30, the 2nd flow path 40, and the 3rd flow path 50 are arrange
  • the meandering passages 7 are made up of three flow paths, but the embodiment is not limited to the number of meandering passages 7 and may vary in various numbers according to the size of the wing 20. It can be modified.
  • the support 10 supports the wing 20 and functions to connect the blade 100 for the gas turbine to the body of the blade assembly.
  • the support part 10 includes inlets 31a, 41a, and 51a through which compressed air is introduced from the outside.
  • Each of the inlets 31a, 41a, 51a of the support 10 is connected to one end of the meandering passages 7.
  • the compressed air supplied from the outside is introduced through the inlets 31a, 41a, and 51a of the support 10, the compressed air can flow along the meandering passages 7 through the entire area of the wing 20. have.
  • the meandering flow paths 7 include inlet flow paths 31, 41, and 51 extending along the leading edge part 20f in a direction from the one end of the wing part 20 toward the other end (Z-axis direction). Discharge passages 35, 45, 55 extending along the trailing edge portion 20r of 20, each of the inflow passages 31, 41, 51 and each of the discharge passages 35, 45, 55. Intermediate flow paths (33, 43, 53) for connecting the.
  • the inflow passage 31 of the first flow passage 30 is disposed to contact the leading edge 20f of the wing portion 20.
  • the leading edge portion 20f includes front through holes 21 formed to penetrate the inflow passage 31 of the first flow passage 30 to the outside.
  • the front through holes 21 may be formed to be inclined with respect to the direction from one end of the wing portion 20 toward the other end.
  • the front through holes 21 discharge a portion of the compressed air passing through the first flow path 30 to the outside of the wing 20 so that the compressed air covers the leading edge 20f to cover the leading edge film.
  • Each of the inflow passages 31, 41, and 51 is connected to the upper curved passages 32, 42, and 52.
  • the upper curved flow paths 32, 42, and 52 are bent at the other end of the wing 20 and are connected to each of the intermediate flow paths 33, 43, and 53.
  • FIG. 4 is a cross-sectional view taken along the line VI-VI of the blade for the gas turbine of FIG. 3
  • FIG. 5 is a cross-sectional view taken along the line V-V of the blade for the gas turbine of FIG.
  • the wing 20 has a cross-sectional area that decreases from one end connected to the support 10 to the other end.
  • the wing 20 maintains a streamlined cross-sectional shape with respect to the entire area from one end to the other end.
  • each of the circle with the arrow and the dot inside and the circle with the x-shape therein indicates the traveling direction of the compressed air flowing along the inside of the meandering flow paths 7.
  • a circle with a dot therein indicates a flow of compressed air traveling in a direction exiting the drawing, and a circle with x-shape inside indicates a flow of compressed air traveling in a direction entering the drawing.
  • the upper curved flow path 32 of the first flow path 30 among the upper curved flow paths 32, 42, and 52 is disposed to contact the upper surface portion 20t of the other end of the wing portion 20.
  • the wing portion 20 has upper holes 23 formed to penetrate the upper surface portion 20t.
  • the upper through holes 23 connect the upper curved flow path 32 and the upper ends of the discharge flow paths 35, 45, and 55 of the first flow path 30 to the outside.
  • the upper through holes 23 allow a part of the compressed air passing through the first flow path 30 to be discharged to the outside of the wing 20, so that the other end of the wing 20 is discharged by the discharged compressed air. It functions to cool.
  • the intermediate passages 33, 43, 53 extend in a direction substantially parallel to the inflow passages 31, 41, 51 and the intermediate passages 33, 43, 53.
  • the intermediate flow paths 33, 43, 53 are connected to the lower bend flow paths 34, 44, 54 formed at one end of the wing 20.
  • Lower curved flow paths 34, 44, and 54 are connected to each of the intermediate flow paths 33, 43, and 53, and are bent at one end of the wing 20 so that each of the discharge flow paths 35, 45, and 55 are respectively. Is connected to.
  • the lower curved flow path 34 of the first flow path 30 among the lower curved flow paths 34, 44, and 54 extends from one end of the wing part 20 toward the support part 10 so as to pass through the support part 10. It is provided with an enlarged portion 54b.
  • the embodiment is not limited by the structure of the enlarged portion 54b, and the lower curved flow paths 44 of the second flow path 40 or the third flow path 50 among the lower curved flow paths 34, 44, and 54. , 54 may also extend to extend toward the support 10.
  • the discharge passages 35, 45, and 55 extend in parallel along the trailing edge portion 20r in a direction from one end of the wing portion 20 toward the other end (Z-axis direction).
  • the discharge flow path 55 of the third flow path 50 among the discharge flow paths 35, 45, and 55 is disposed to contact the trailing edge portion 20r of the wing portion 20.
  • the wing portion 20 has rear holes 24 formed to penetrate the trailing edge portion 20r.
  • the rear through holes 24 connect the discharge passage 55 of the third passage 50 to the outside.
  • the rear through holes 24 allow a part of the compressed air passing through the third flow path 50 to be discharged to the outside of the wing 20, and thus the rear edge portion 20r of the wing 20 by the discharged compressed air. It functions to cool.
  • intermediate apertures 22a, 22b, 22c are formed in the intermediate surface 20m connecting the front edge 20f and the trailing edge 20r of the wing 20.
  • the intermediate through holes 22a, 22b and 22c are formed to penetrate the intermediate surface 20m to connect the meandering passages 7 to the outside.
  • the intermediate through holes 22a, 22b and 22c allow the compressed air passing through the meandering passages 7 to be discharged to the outside of the wing 20 so that the compressed air forms a film on the intermediate surface 20m so that the intermediate surface (20m) to cool the film (film cooling).
  • the intermediate through holes 22a, 22b, and 22c may be formed of the first intermediate through holes 22a connecting at least one of the inflow passages 31, 41, and 51 to the outside, and the intermediate through holes 33, 43, 53.
  • Second intermediate holes 22b connecting at least one to the outside and third intermediate holes 22c connecting at least one of the discharge passages 35, 45 and 55 to the outside.
  • Embodiments are defined by the position and number of arrangement of the front through holes 21, the upper through holes 23, the rear through holes 24, and the intermediate through holes 22a, 22b and 22c shown in the drawings. It can be modified in various arrangements and numbers.
  • FIG. 6 is a photograph of simulation data showing pressure loss of a blade for a gas turbine of the comparative example manufactured for comparison with the blade for a gas turbine of FIG. 1.
  • FIG. 6 is a meandering line having a first flow path 30, a second flow path 40, and a third flow path 50 in the wing 20 of the blade for the gas turbine shown in the embodiment shown in FIGS. 1 to 5.
  • the degree of pressure loss when the flow paths 7 are provided is shown.
  • FIG. 7 is a simulation data photograph showing the pressure loss during operation of the blade for a gas turbine.
  • FIG. 7 shows the degree of pressure loss when a meandering passage 307 is provided on the wing 300 of the blade for the gas turbine, which continues and extends along the inside of the wing 300.
  • the bent portion (307a, 307b) When installing one meandering flow path 307 in the wing 300, in order to uniformly cool the entire area of the wing 300, the bent portion (307a, 307b) must be provided a lot. However, as the number of bends 307a and 307b of the meandering passage 307 increases, the pressure loss of the compressed air in the meandering passage 307 increases.
  • the compressed air having a high pressure of 3.20 ⁇ 10 6 Pa needs to be supplied to the meandering passage 307 so that the minimum pressure value is 2.35 ⁇ 10 6 Pa in the meandering passage 307.
  • compressed air extracted from the high compression stage of the gas turbine should be used. If the pressure of the compressed air required to cool the blade for the gas turbine is increased, the overall efficiency of the gas turbine is reduced because high pressure compressed air has to be consumed for cooling.
  • Embodiments relate to blades for a gas turbine that can cool the wings uniformly throughout and increase the operating efficiency of the gas turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

A blade for a gas turbine comprises: a blade part comprising a front edge part and a rear edge part and having a streamlined cross section; a supporting part comprising inlets in which compressed air flows from the outside and supporting one end of the blade part; and a plurality of serpentine channels of which one end is connected with each inlet and which extend in parallel inside of the blade part so as to enable the compressed air received through each inlet to pass therethrough.

Description

가스 터빈용 블레이드Blades for Gas Turbines
실시예들은 가스 터빈용 블레이드에 관한 것으로, 보다 상세하게는 날개부가 전체적으로 균일하게 냉각되며 가스 터빈의 작동 효율을 증가시킬 수 있는 가스 터빈용 블레이드에 관한 것이다.Embodiments relate to blades for gas turbines, and more particularly, to blades for gas turbines, wherein the blades are cooled uniformly throughout and can increase the operating efficiency of the gas turbine.
가스 터빈은 압축기에 의해 공기를 압축하고 연료를 연소시켜 압축된 공기를 가열한 다음 터빈을 통해 공기를 팽창시킴으로써 동력을 발생시키는 장치이다. 가스 터빈은 연소 가스(combustion gas)와 접촉하는 터빈 블레이드를 구비하는데, 가스 터빈의 출력이 더 증가함에 따라 연소 가스의 온도도 높아지므로 터빈 블레이드를 효율적으로 냉각시킬 수 있어야 한다. A gas turbine is a device that generates power by compressing air by a compressor and burning fuel to heat the compressed air and then expand the air through the turbine. The gas turbine has a turbine blade in contact with the combustion gas, and as the output of the gas turbine increases, the temperature of the combustion gas also increases, so the turbine blade must be able to be cooled efficiently.
일반적으로 터빈 블레이드는 가스 터빈의 압축기로부터 추출된 압축된 냉각 공기를 이용하여 냉각된다. 압축기에 의해 압축된 압축 공기는 가스 터빈의 연소기에서 사용하기 위해 생성되는 것이므로, 터빈 블레이드의 냉각을 위해 압축기로부터 추출되는 압축 공기의 양을 증가시킨다면 가스 터빈의 전체 효율이 저하된다.In general, turbine blades are cooled using compressed cooling air extracted from a compressor of a gas turbine. Since the compressed air compressed by the compressor is produced for use in the combustor of the gas turbine, increasing the amount of compressed air extracted from the compressor for cooling the turbine blades lowers the overall efficiency of the gas turbine.
한국 공개특허공보 제2013-0023353호는 터빈 블레이드의 내부를 따라 굴곡되며 연장되는 사행 유로(뱀형상 유로)를 설치하지만, 고온의 터빈 블레이드의 전체를 균일하게 냉각하기 위해서는 사행 유로가 터빈 블레이드의 전체 영역을 따라 연장하도록 굴곡부가 많이 형성되어야 한다. 이로 인해 사행 유로를 통과하는 압축 공기의 압력 손실이 증가하며, 냉각 성능을 얻기 위해서는 고압의 압축 공기를 사용해야 하므로 가스 터빈의 전체 효율이 저하된다.Korean Laid-Open Patent Publication No. 2013-0023353 installs a meandering flow path (snake flow path) which is bent and extends along the inside of the turbine blade, but in order to uniformly cool the entire high-temperature turbine blade, the meandering flow path is formed in the entire turbine blade. Many bends should be formed to extend along the area. This increases the pressure loss of the compressed air passing through the meandering flow path and reduces the overall efficiency of the gas turbine since the use of high pressure compressed air is required to achieve cooling performance.
일본 공개특허공보 제2001-132406호는 터빈 블레이드의 내부에 사행 유로를 설치하고 터빈 블레이드의 단부에 별도의 유로를 부가하여 터빈 블레이드의 단부의 냉각 효과를 향상시키는 것을 시도하지만, 이와 같이 하나의 사행 유로를 사용하는 경우에는 고온의 터빈 블레이드의 전체 영역을 균일하게 냉각시키는 데 한계가 존재한다.Japanese Laid-Open Patent Publication No. 2001-132406 attempts to improve the cooling effect of the end of the turbine blade by installing a meandering flow path inside the turbine blade and adding a separate flow path to the end of the turbine blade. When using a flow path, there is a limit in uniformly cooling the entire area of the hot turbine blade.
한국 공개특허공보 제2006-0030114호는 터빈 블레이드의 내측에 복수 개의 냉각용 덕트를 설치하고, 터빈 블레이드의 일부분이 고온으로 가열되는 것을 방지하기 위해 냉각용 덕트의 전환부에 보어(bore)를 통해 냉각용 압축 공기를 추가 공급하는 기술이 개시된다. 이와 같은 구성에 의하면 압축기로부터 추출된 압축 공기의 양이 증가되어야 하므로, 가스 터빈의 작동 효율이 저하될 뿐만 아니라 터빈 블레이드의 전체적인 온도 분포가 균일해지도록 냉각하는 효과는 약하다.Korean Laid-Open Patent Publication No. 2006-0030114 is provided with a plurality of cooling ducts inside the turbine blades, and through a bore in the switching portion of the cooling ducts to prevent a portion of the turbine blades from being heated to a high temperature. A technique for further supplying compressed air for cooling is disclosed. According to such a configuration, since the amount of compressed air extracted from the compressor must be increased, not only the operation efficiency of the gas turbine is lowered, but also the cooling effect is uniform so that the overall temperature distribution of the turbine blade is uniform.
일본 공개특허공보 제2003-322003호는 터빈 블레이드의 내부에 뱀형상 유로(사행 유로)와, 전방의 공급유로, 후방의 공급 유로를 설치하여 냉각에 필요한 압축 공기의 양을 감소시키려 하지만, 터빈 블레이드의 일부분에 열이 집중될 수 있으므로 터빈 블레이드의 전체적인 온도 분포가 균일해지도록 냉각하는 효과가 약하다.Japanese Laid-Open Patent Publication No. 2003-322003 attempts to reduce the amount of compressed air required for cooling by installing a serpentine flow path (a meandering flow path), a front supply flow path, and a rear supply flow path inside the turbine blade. Heat may be concentrated in a portion of the cooling effect so that the overall temperature distribution of the turbine blades is uniform.
실시예들의 목적은 냉각 효율이 향상된 가스 터빈용 블레이드를 제공하는 데 있다.An object of the embodiments is to provide a blade for a gas turbine with improved cooling efficiency.
실시예들의 다른 목적은 가스 터빈용 블레이드의 냉각에 사용되는 압축 공기의 압력 손실을 최소화하는 데 있다.Another object of the embodiments is to minimize the pressure loss of the compressed air used to cool the blades for the gas turbine.
실시예들의 또 다른 목적은 가스 터빈용 블레이드의 전체 영역을 균일하게 냉각하는 데 있다.Another object of the embodiments is to uniformly cool the entire area of the blade for the gas turbine.
일 실시예에 관한 가스 터빈용 블레이드는, 전연부와 후연부를 구비하며 유선형 단면을 갖는 날개부와, 외부로부터 압축 공기가 유입되는 유입구들을 구비하며 날개부의 일단부를 지지하는 지지부와, 일단이 유입구들의 각각에 연결되어 유입구들에서 유입된 압축 공기가 통과하도록 날개부의 내부에서 병렬적으로 연장하는 복수 개의 사행유로들을 구비한다.A blade for a gas turbine according to an embodiment includes a wing having a leading edge and a trailing edge and having a streamlined cross section, an inlet through which compressed air is introduced from the outside, and a support for supporting one end of the wing, and one end of the inlet. It is provided with a plurality of meandering passages connected to each of which extends in parallel in the interior of the wing to pass the compressed air introduced from the inlets.
사행유로들은, 유입구들에 연결되어 날개부의 일단부로부터 타단부를 향하여 전연부를 따라 연장하는 유입유로들과, 날개부의 후연부를 따라 연장하는 배출유로들과, 유입유로들과 배출유로들을 연결하는 중간유로들을 구비할 수 있다.The meandering flow passages are connected to the inlets, and extend inflow passages extending along the leading edge from one end to the other end of the wing, discharge passages extending along the trailing edge of the wing, and an intermediate path connecting the inflow passages and the discharge flow passages. Flow paths may be provided.
사행유로들은, 유입유로들의 각각에 연결되어 날개부의 타단부에서 굴곡되어 중간유로들에 연결되는 상부 굴곡유로들과, 중간유로들의 각각에 연결되며 날개부의 일단부에서 굴곡되어 배출유로들에 연결되는 하부 굴곡유로들을 더 구비할 수 있다.The meandering flow passages are connected to each of the inflow passages and bent at the other ends of the wings and connected to the intermediate flow passages, and connected to each of the intermediate flow passages and bent at one end of the wing and connected to the discharge passages. Lower curved flow paths may be further provided.
사행유로들은 날개부의 전연부로부터 차례로 병렬적으로 배치된 제1 유로와, 제2 유로와, 제3 유로를 구비할 수 있다.The meandering flow passages may include a first flow passage, a second flow passage, and a third flow passage arranged in parallel from the leading edge of the wing.
날개부는 제1 유로의 유입유로를 외부와 연결하도록 전연부에 관통하여 형성되는 전면 통공들을 구비할 수 있다.The wing may include front through holes formed through the leading edge to connect the inflow passage of the first flow passage to the outside.
날개부는 제1 유로의 상부 굴곡유로와 배출유로들을 외부와 연결하도록 날개부의 타단부를 관통하여 형성되는 상부 통공들을 구비할 수 있다.The wing unit may include upper holes formed through the other end of the wing unit to connect the upper curved passage and the discharge passage of the first passage to the outside.
날개부는 제3 유로의 배출유로를 외부와 연결하도록 후연부에 관통하여 형성되는 후면 통공들을 구비할 수 있다.The wing may include rear holes formed through the trailing edge portion to connect the discharge passage of the third flow passage to the outside.
날개부는 전연부와 후연부를 연결하는 중간 표면에서 사행유로들을 외부와 연결하도록 관통하여 형성되는 중간 통공들을 구비할 수 있다.The wing portion may have intermediate through holes formed to penetrate the meandering passages to the outside at an intermediate surface connecting the leading edge and the trailing edge.
중간 통공들은 유입유로들의 적어도 하나를 외부와 연결하는 제1 중간 통공들을 구비할 수 있다.The intermediate through holes may have first intermediate through holes connecting at least one of the inflow passages to the outside.
중간 통공들은 중간유로들의 적어도 하나를 외부와 연결하는 제2 중간 통공들을 구비할 수 있다.The intermediate apertures may have second intermediate apertures that connect at least one of the intermediate passages to the outside.
중간 통공들은 배출유로들의 적어도 하나를 외부와 연결하는 제3 중간 통공들을 구비할 수 있다.The intermediate apertures may have third intermediate apertures connecting at least one of the discharge passages to the outside.
하부 굴곡유로들 중 적어도 하나는 지지부를 통과하도록 확대될 수 있다.At least one of the lower bends can be enlarged to pass through the support.
날개부는 일단부로부터 타단부로 갈수록 단면적이 축소될 수 있다.The wing portion may be reduced in cross-sectional area from one end to the other end.
다른 실시예에 관한 가스 터빈용 블레이드는, 외부로부터 압축 공기가 유입되는 유입구들을 구비하는 지지부와, 일단부가 지지부에 연결되고, 일단부로부터 타단부를 향해 연장하는 전연부와 후연부를 구비하며 유선형 단면을 갖는 날개부와, 유입구들에서 유입된 압축 공기가 유입되도록 유입구들의 각각에 연결되어 날개부의 전연부를 따라 연장하는 유입유로들과 날개부의 후연부를 따라 연장하여 날개부의 타단부에서 외부로 연결되는 배출유로들과 유입유로들과 배출유로들을 연결하는 중간유로들을 구비하여 병렬적으로 연장하는 복수 개의 사행유로들을 구비한다.The blade for a gas turbine according to another embodiment has a streamlined cross-section having a support having an inlet through which compressed air is introduced from the outside, and having one end connected to the support and extending from the one end to the other end and extending from the one end to the other. Wing part having a discharge, connected to each of the inlets so that the compressed air introduced from the inlet flows into the inlet flow paths extending along the leading edge of the wing and extending along the trailing edge of the wing is discharged from the other end of the wing to the outside It includes a plurality of meandering passages extending in parallel with intermediate passages connecting the passages and the inflow passages and the discharge passages.
상술한 바와 같은 실시예들에 관한 가스 터빈용 블레이드에 의하면 날개부의 내부에서 병렬적으로 연장하는 복수 개의 사행유로들을 구비하므로 냉각을 위해 필요한 압축 공기의 압력을 최소화할 수 있어서 가스 터빈의 전체적인 작동 효율이 크게 증가된다.According to the blade for a gas turbine according to the embodiments as described above has a plurality of meandering flow paths extending in parallel in the inside of the wing, it is possible to minimize the pressure of the compressed air required for cooling the overall operating efficiency of the gas turbine This is greatly increased.
또한 날개부의 내부에서 병렬적으로 연장하도록 설치된 복수 개의 사행유로들이 각각이 독립적으로 냉각 기능을 수행할 수 있으므로 날개부의 전체 영역을 균일하게 냉각할 수 있다.In addition, since a plurality of meandering flow paths installed to extend in parallel in the inside of the wing may perform a cooling function independently of each other, the entire area of the wing may be uniformly cooled.
도 1은 일 실시예에 관한 가스 터빈용 블레이드의 사시도이다.1 is a perspective view of a blade for a gas turbine according to one embodiment.
도 2는 도 1의 가스 터빈용 블레이드의 냉각 유로의 배치 구조를 개략적으로 나타낸 개념도이다.FIG. 2 is a conceptual diagram schematically illustrating a layout structure of a cooling channel of the blade for a gas turbine of FIG. 1.
도 3은 도 1의 가스 터빈용 블레이드의 단면도이다.3 is a cross-sectional view of the blade for the gas turbine of FIG. 1.
도 4는 도 3의 가스 터빈용 블레이드의 Ⅵ-Ⅵ의 선을 따라 취한 단면도이다.4 is a cross-sectional view taken along the line VI-VI of the blade for the gas turbine of FIG. 3.
도 5는 도 3의 가스 터빈용 블레이드의 Ⅴ-Ⅴ의 선을 따라 취한 단면도이다.FIG. 5 is a cross-sectional view taken along the line VV of the blade for the gas turbine of FIG. 3.
도 6은 도 1의 가스 터빈용 블레이드와의 비교를 위해 제작된 비교예의 가스 터빈용 블레이드의 압력 손실을 나타내는 모의실험 데이터 사진이다.FIG. 6 is a photograph of simulation data showing pressure loss of a blade for a gas turbine of the comparative example manufactured for comparison with the blade for a gas turbine of FIG. 1.
도 7은 가스 터빈용 블레이드의 동작 중의 압력 손실을 나타내는 모의실험 데이터 사진이다.7 is a simulation data photograph showing the pressure loss during operation of the blade for a gas turbine.
이하, 첨부 도면의 실시예들을 통하여, 실시예들에 관한 가스 터빈용 블레이드의 구성과 작용을 상세히 설명한다. 설명 중에 사용되는 '및/또는'의 표현은 관련 요소들의 하나 또는 요소들의 조합을 의미한다.Hereinafter, with reference to the embodiments of the accompanying drawings, the configuration and operation of the blade for the gas turbine according to the embodiments will be described in detail. The expression 'and / or' as used in the description refers to one or a combination of elements.
도 1은 일 실시예에 관한 가스 터빈용 블레이드의 사시도이고, 도 2는 도 1의 가스 터빈용 블레이드의 냉각 유로의 배치 구조를 개략적으로 나타낸 개념도이며, 도 3은 도 1의 가스 터빈용 블레이드의 단면도이다.1 is a perspective view of a blade for a gas turbine according to one embodiment, and FIG. 2 is a conceptual view schematically showing a structure of a cooling channel of the blade for a gas turbine of FIG. 1, and FIG. 3 is a diagram of the blade for a gas turbine of FIG. 1. It is a cross section.
도 1 내지 도 3에 나타난 실시예에 관한 가스 터빈용 블레이드(100)는 유선형의 날개부(20)와, 날개부(20)를 지지하는 지지부(10)와, 날개부(20)의 내부에 형성되는 사행유로들(7)을 구비한다. The gas turbine blade 100 according to the embodiment shown in FIGS. 1 to 3 has a streamlined wing portion 20, a support portion 10 for supporting the wing portion 20, and an inside of the wing portion 20. It has meandering flow paths 7 which are formed.
날개부(20)의 일단부의 바닥부(20b)는 지지부(10)에 연결되고, 날개부(20)는 지지부(10)로부터 멀어지는 방향으로 연장한다. 날개부(20)는 가스 터빈의 고온의 연소 가스와 접촉함으로써 회전력을 발생시키는 역할을 수행하는 부분이다.The bottom 20b of one end of the wing 20 is connected to the support 10, and the wing 20 extends in a direction away from the support 10. The wing unit 20 is a part that serves to generate a rotational force by contacting the hot combustion gas of the gas turbine.
날개부(20)는 유선형의 단면을 가지며, 공기의 흐름의 상류 측에 위치하며 고온의 공기와 가장 먼저 접촉하는 전연부(20f)와, 공기의 흐름의 하류 측에 위치하는 후연부(20r)와, 전연부(20f)와 후연부(20r)를 연결하며 유선형의 만곡된 표면을 형성하는 중간 표면(20m)을 구비한다.The wing portion 20 has a streamlined cross section, is located on the upstream side of the flow of air, and the front edge portion 20f is in contact with the hot air first, and the trailing edge portion 20r located on the downstream side of the flow of air. And an intermediate surface 20m which connects the leading edge portion 20f and the trailing edge portion 20r and forms a streamlined curved surface.
도 2 및 도 3에 도시된 것과 같이, 날개부(20)의 내부에는 가스 터빈용 블레이드(100)를 전체적으로 균일하게 냉각하기 위하여 압축 공기가 통과하는 사행유로들(7; meandering passages)이 형성된다. 사행유로들(7)은 날개부(20)의 내부에서 뱀이 구불구불하게 지나가는 것과 같은 형상으로 굴곡되며 형성된다. 2 and 3, meandering passages 7 through which compressed air passes are formed in the wing 20 to uniformly cool the blade 100 for the gas turbine as a whole. . The meandering flow paths 7 are bent and formed in a shape such that a snake twists and passes inside the wing 20.
실시예에 관한 가스 터빈용 블레이드(100)의 사행유로들(7)은 병렬적으로 배치되며 동일한 방향으로 연장하는 제1 유로(30)와, 제2 유로(40)와, 제3 유로(50)를 구비한다. 제1 유로(30)와, 제2 유로(40)와, 제3 유로(50)는 날개부(20)의 전연부(20f)로부터 차례로 병렬적으로 배치된다.The meandering passages 7 of the blade 100 for a gas turbine according to the embodiment are arranged in parallel and extend in the same direction, the first passage 30, the second passage 40, and the third passage 50. ). The 1st flow path 30, the 2nd flow path 40, and the 3rd flow path 50 are arrange | positioned in parallel from the leading edge part 20f of the blade | wing part 20 in order.
도시된 실시예에서는 사행유로들(7)은 세 개의 유로들로 이루어지지만, 실시예는 이러한 사행유로들(7)의 개수에 의해 한정되는 것은 아니며 날개부(20)의 크기에 맞추어 다양한 개수로 변형될 수 있다.In the illustrated embodiment, the meandering passages 7 are made up of three flow paths, but the embodiment is not limited to the number of meandering passages 7 and may vary in various numbers according to the size of the wing 20. It can be modified.
날개부(20)의 일단부는 지지부(10)에 의해 지지된다. 지지부(10)는 날개부(20)를 지지함과 아울러 가스 터빈용 블레이드(100)를 블레이드 조립체의 본체에 연결할 수 있게 하는 기능을 수행한다. 지지부(10)는 외부로부터 압축 공기가 유입되는 유입구들(31a, 41a, 51a)을 구비한다. One end of the wing 20 is supported by the support 10. The support 10 supports the wing 20 and functions to connect the blade 100 for the gas turbine to the body of the blade assembly. The support part 10 includes inlets 31a, 41a, and 51a through which compressed air is introduced from the outside.
지지부(10)의 유입구들(31a, 41a, 51a)의 각각은 사행유로들(7)의 일단에 연결된다. 지지부(10)의 유입구들(31a, 41a, 51a)을 통해 외부로부터 공급된 압축 공기가 유입되면, 압축 공기는 사행유로들(7)을 따라 날개부(20)의 전체 영역을 거치도록 흐를 수 있다.Each of the inlets 31a, 41a, 51a of the support 10 is connected to one end of the meandering passages 7. When the compressed air supplied from the outside is introduced through the inlets 31a, 41a, and 51a of the support 10, the compressed air can flow along the meandering passages 7 through the entire area of the wing 20. have.
사행유로들(7)은 날개부(20)의 일단부로부터 타단부를 향하는 방향(Z축 방향)으로 전연부(20f)를 따라 연장하는 유입유로들(31, 41, 51)과, 날개부(20)의 후연부(20r)를 따라 연장하는 배출유로들(35, 45, 55)과, 유입유로들(31, 41, 51)의 각각과 배출유로들(35, 45, 55)의 각각을 연결하는 중간유로들(33, 43, 53)을 구비한다. The meandering flow paths 7 include inlet flow paths 31, 41, and 51 extending along the leading edge part 20f in a direction from the one end of the wing part 20 toward the other end (Z-axis direction). Discharge passages 35, 45, 55 extending along the trailing edge portion 20r of 20, each of the inflow passages 31, 41, 51 and each of the discharge passages 35, 45, 55. Intermediate flow paths (33, 43, 53) for connecting the.
제1 유로(30)의 유입유로(31)는 날개부(20)의 전연부(20f)와 접하도록 배치된다. 전연부(20f)는 제1 유로(30)의 유입유로(31)를 외부와 연결하도록 관통하여 형성되는 전면 통공들(21)을 구비한다. 전면 통공들(21)은 날개부(20)의 일단부로부터 타단부를 향하는 방향에 대하여 경사를 이루며 형성될 수 있다. 전면 통공들(21)은 제1 유로(30)를 통과하는 압축 공기의 일부를 날개부(20)의 외부로 배출하여 압축 공기가 전연부(20f)를 덮어 전연부막(leading edge film)을 형성함으로써 전연부(20f)를 냉각할 수 있게 한다.The inflow passage 31 of the first flow passage 30 is disposed to contact the leading edge 20f of the wing portion 20. The leading edge portion 20f includes front through holes 21 formed to penetrate the inflow passage 31 of the first flow passage 30 to the outside. The front through holes 21 may be formed to be inclined with respect to the direction from one end of the wing portion 20 toward the other end. The front through holes 21 discharge a portion of the compressed air passing through the first flow path 30 to the outside of the wing 20 so that the compressed air covers the leading edge 20f to cover the leading edge film. By forming, the front edge 20f can be cooled.
유입유로들(31, 41, 51)의 각각에는 상부 굴곡유로들(32, 42, 52)이 연결된다. 상부 굴곡유로들(32, 42, 52)은 날개부(20)의 타단부에서 굴곡되어 중간유로들(33, 43, 53)의 각각에 연결된다.Each of the inflow passages 31, 41, and 51 is connected to the upper curved passages 32, 42, and 52. The upper curved flow paths 32, 42, and 52 are bent at the other end of the wing 20 and are connected to each of the intermediate flow paths 33, 43, and 53.
도 4는 도 3의 가스 터빈용 블레이드의 Ⅵ-Ⅵ의 선을 따라 취한 단면도이고, 도 5는 도 3의 가스 터빈용 블레이드의 Ⅴ-Ⅴ의 선을 따라 취한 단면도이다.4 is a cross-sectional view taken along the line VI-VI of the blade for the gas turbine of FIG. 3, and FIG. 5 is a cross-sectional view taken along the line V-V of the blade for the gas turbine of FIG.
날개부(20)는 지지부(10)에 연결된 일단부로부터 타단부로 갈수록 단면적이 축소된다. 날개부(20)는 일단부에서 타단부까지의 전체 영역에 대하여 유선형의 단면 형상을 유지한다. The wing 20 has a cross-sectional area that decreases from one end connected to the support 10 to the other end. The wing 20 maintains a streamlined cross-sectional shape with respect to the entire area from one end to the other end.
도 4 및 도 5에서 화살표와 내부에 점을 갖는 원과 내부에 x자를 갖는 원의 각각은 사행유로들(7)의 내부를 따라 흐르는 압축 공기의 진행 방향을 나타낸다. 내부에 점을 갖는 원은 도면에서 나오는 방향으로 진행하는 압축 공기의 흐름을 나타내고, 내부에 x자를 갖는 원은 도면으로 들어가는 방향으로 진행하는 압축 공기의 흐름을 나타낸다.In Figs. 4 and 5, each of the circle with the arrow and the dot inside and the circle with the x-shape therein indicates the traveling direction of the compressed air flowing along the inside of the meandering flow paths 7. A circle with a dot therein indicates a flow of compressed air traveling in a direction exiting the drawing, and a circle with x-shape inside indicates a flow of compressed air traveling in a direction entering the drawing.
상부 굴곡유로들(32, 42, 52) 중 제1 유로(30)의 상부 굴곡유로(32)는 날개부(20)의 타단부의 상면부(20t)와 접하도록 배치된다.The upper curved flow path 32 of the first flow path 30 among the upper curved flow paths 32, 42, and 52 is disposed to contact the upper surface portion 20t of the other end of the wing portion 20.
날개부(20)는 상면부(20t)를 관통하도록 형성되는 상부 통공들(23)을 구비한다. 상부 통공들(23)은 제1 유로(30)의 상부 굴곡유로(32)와 배출유로들(35, 45, 55)의 상단을 외부로 연결한다. 상부 통공들(23)은 제1 유로(30)를 통과하는 압축 공기의 일부분이 날개부(20)의 외부로 배출되게 함으로써, 배출된 압축 공기에 의해 날개부(20)의 타단부(tip)를 냉각하는 기능을 한다.The wing portion 20 has upper holes 23 formed to penetrate the upper surface portion 20t. The upper through holes 23 connect the upper curved flow path 32 and the upper ends of the discharge flow paths 35, 45, and 55 of the first flow path 30 to the outside. The upper through holes 23 allow a part of the compressed air passing through the first flow path 30 to be discharged to the outside of the wing 20, so that the other end of the wing 20 is discharged by the discharged compressed air. It functions to cool.
중간유로들(33, 43, 53)은 유입유로들(31, 41, 51) 및 중간유로들(33, 43, 53)에 대해 대략 평행한 방향으로 연장한다. 중간유로들(33, 43, 53)은 날개부(20)의 일단부에 형성되는 하부 굴곡유로들(34, 44, 54)에 연결된다. 하부 굴곡유로들(34, 44, 54)은 중간유로들(33, 43, 53)의 각각에 연결되며 날개부(20)의 일단부에서 굴곡되어 배출유로들(35, 45, 55)의 각각에 연결된다. The intermediate passages 33, 43, 53 extend in a direction substantially parallel to the inflow passages 31, 41, 51 and the intermediate passages 33, 43, 53. The intermediate flow paths 33, 43, 53 are connected to the lower bend flow paths 34, 44, 54 formed at one end of the wing 20. Lower curved flow paths 34, 44, and 54 are connected to each of the intermediate flow paths 33, 43, and 53, and are bent at one end of the wing 20 so that each of the discharge flow paths 35, 45, and 55 are respectively. Is connected to.
하부 굴곡유로들(34, 44, 54) 중 제1 유로(30)의 하부 굴곡유로(34)는 지지부(10)를 통과하도록 날개부(20)의 일단부에서 지지부(10)를 향하여 확대되도록 연장되는 확대부(54b)를 구비한다. 실시예는 이러한 확대부(54b)의 구조에 의해 한정되는 것은 아니며, 하부 굴곡유로들(34, 44, 54) 중 제2 유로(40)나 제3 유로(50)의 하부 굴곡유로들(44, 54)도 지지부(10)를 향하여 확대되도록 연장될 수 있다.The lower curved flow path 34 of the first flow path 30 among the lower curved flow paths 34, 44, and 54 extends from one end of the wing part 20 toward the support part 10 so as to pass through the support part 10. It is provided with an enlarged portion 54b. The embodiment is not limited by the structure of the enlarged portion 54b, and the lower curved flow paths 44 of the second flow path 40 or the third flow path 50 among the lower curved flow paths 34, 44, and 54. , 54 may also extend to extend toward the support 10.
배출유로들(35, 45, 55)은 날개부(20)의 일단부로부터 타단부를 향하는 방향(Z축 방향)으로 후연부(20r)를 따라 병렬적으로 연장한다. 배출유로들(35, 45, 55) 중 제3 유로(50)의 배출 유로(55)는 날개부(20)의 후연부(20r)에 접하도록 배치된다.The discharge passages 35, 45, and 55 extend in parallel along the trailing edge portion 20r in a direction from one end of the wing portion 20 toward the other end (Z-axis direction). The discharge flow path 55 of the third flow path 50 among the discharge flow paths 35, 45, and 55 is disposed to contact the trailing edge portion 20r of the wing portion 20.
날개부(20)는 후연부(20r)를 관통하도록 형성되는 후면 통공들(24)을 구비한다. 후면 통공들(24)은 제3 유로(50)의 배출 유로(55)를 외부로 연결한다. 후면 통공들(24)은 제3 유로(50)를 통과하는 압축 공기의 일부분이 날개부(20)의 외부로 배출되게 함으로써, 배출된 압축 공기에 의해 날개부(20)의 후연부(20r)를 냉각하는 기능을 한다.The wing portion 20 has rear holes 24 formed to penetrate the trailing edge portion 20r. The rear through holes 24 connect the discharge passage 55 of the third passage 50 to the outside. The rear through holes 24 allow a part of the compressed air passing through the third flow path 50 to be discharged to the outside of the wing 20, and thus the rear edge portion 20r of the wing 20 by the discharged compressed air. It functions to cool.
도 1을 참조하면, 날개부(20)의 전연부(20f)와 후연부(20r)를 연결하는 중간 표면(20m)에 중간 통공들(22a, 22b, 22c)이 형성된다. 중간 통공들(22a, 22b, 22c)은 중간 표면(20m)을 관통하도록 형성되어 사행유로들(7)을 외부로 연결한다.Referring to FIG. 1, intermediate apertures 22a, 22b, 22c are formed in the intermediate surface 20m connecting the front edge 20f and the trailing edge 20r of the wing 20. The intermediate through holes 22a, 22b and 22c are formed to penetrate the intermediate surface 20m to connect the meandering passages 7 to the outside.
중간 통공들(22a, 22b, 22c)은 사행유로들(7)을 통과하는 압축 공기가 날개부(20)의 외부로 배출되게 하여, 압축 공기가 중간 표면(20m)의 위에 막을 형성하여 중간 표면(20m)을 냉각시키는 기능(film cooling)을 한다.The intermediate through holes 22a, 22b and 22c allow the compressed air passing through the meandering passages 7 to be discharged to the outside of the wing 20 so that the compressed air forms a film on the intermediate surface 20m so that the intermediate surface (20m) to cool the film (film cooling).
중간 통공들(22a, 22b, 22c)은 유입유로들(31, 41, 51)의 적어도 하나를 외부와 연결하는 제1 중간 통공들(22a)과, 중간유로들(33, 43, 53)의 적어도 하나를 외부와 연결하는 제2 중간 통공들(22b)과, 배출유로들(35, 45, 55)의 적어도 하나를 외부와 연결하는 제3 중간 통공들(22c)을 구비한다. The intermediate through holes 22a, 22b, and 22c may be formed of the first intermediate through holes 22a connecting at least one of the inflow passages 31, 41, and 51 to the outside, and the intermediate through holes 33, 43, 53. Second intermediate holes 22b connecting at least one to the outside and third intermediate holes 22c connecting at least one of the discharge passages 35, 45 and 55 to the outside.
실시예들은 도면에 도시된 전면 통공들(21)과, 상부 통공들(23)과, 후면 통공들(24)과, 중간 통공들(22a, 22b, 22c)의 배치 위치 및 개수에 의해 한정되는 것은 아니며 다양한 배치 구조와 개수로 변형될 수 있다.Embodiments are defined by the position and number of arrangement of the front through holes 21, the upper through holes 23, the rear through holes 24, and the intermediate through holes 22a, 22b and 22c shown in the drawings. It can be modified in various arrangements and numbers.
도 6은 도 1의 가스 터빈용 블레이드와의 비교를 위해 제작된 비교예의 가스 터빈용 블레이드의 압력 손실을 나타내는 모의실험 데이터 사진이다.FIG. 6 is a photograph of simulation data showing pressure loss of a blade for a gas turbine of the comparative example manufactured for comparison with the blade for a gas turbine of FIG. 1.
도 6은 도 1 내지 도 5에 나타난 실시예에 나타난 가스 터빈용 블레이드의 날개부(20)에 제1 유로(30)와, 제2 유로(40)와, 제3 유로(50)를 갖는 사행유로들(7)을 설치하였을 때의 압력 손실의 정도를 나타낸다. 6 is a meandering line having a first flow path 30, a second flow path 40, and a third flow path 50 in the wing 20 of the blade for the gas turbine shown in the embodiment shown in FIGS. 1 to 5. The degree of pressure loss when the flow paths 7 are provided is shown.
도 6을 참조하면, 사행유로들(7)에 2.449 X 106 Pa의 비교적 낮은 압력의 압축 공기를 공급하여도 사행유로들(7)의 내부의 최저압력의 값이 2.349 X 106 Pa이 된다. 즉 복수 개의 사행유로들(7)을 사용함으로써 날개부(20)의 냉각을 위해 필요한 압축 공기의 압력을 크게 감소시킬 수 있다.Referring to FIG. 6, even when compressed air having a relatively low pressure of 2.449 X 10 6 Pa is supplied to the meandering passages 7, the minimum pressure inside the meandering passages 7 becomes 2.349 X 10 6 Pa. . That is, by using the plurality of meandering passages 7, the pressure of the compressed air required for cooling the wing 20 may be greatly reduced.
도 7은 가스 터빈용 블레이드의 동작 중의 압력 손실을 나타내는 모의실험 데이터 사진이다.7 is a simulation data photograph showing the pressure loss during operation of the blade for a gas turbine.
도 7은 가스 터빈용 블레이드의 날개부(300)에 날개부(300)의 내부를 따라 계속 이어지며 연장하는 하나의 사행유로(307)를 설치하였을 때의 압력 손실의 정도를 나타낸다. FIG. 7 shows the degree of pressure loss when a meandering passage 307 is provided on the wing 300 of the blade for the gas turbine, which continues and extends along the inside of the wing 300.
날개부(300)에 하나의 사행유로(307)를 설치할 때에는 날개부(300)의 전체 영역을 균일하게 냉각하기 위해서 굴곡부(307a, 307b)를 많이 설치해야 한다. 그러나 사행유로(307)의 굴곡부(307a, 307b)의 개수가 증가할수록 사행유로(307)에서의 압축 공기의 압력 손실이 크게 증가하는 단점이 있다. When installing one meandering flow path 307 in the wing 300, in order to uniformly cool the entire area of the wing 300, the bent portion (307a, 307b) must be provided a lot. However, as the number of bends 307a and 307b of the meandering passage 307 increases, the pressure loss of the compressed air in the meandering passage 307 increases.
도 7을 참조하면, 사행유로(307)의 내부에서 최저 압력의 값이 2.35 X 106 Pa 되게 하려면 사행유로(307)에 3.20 X 106 Pa의 높은 압력의 압축 공기를 공급해야 한다.Referring to FIG. 7, the compressed air having a high pressure of 3.20 × 10 6 Pa needs to be supplied to the meandering passage 307 so that the minimum pressure value is 2.35 × 10 6 Pa in the meandering passage 307.
압축 공기의 압력을 높이기 위해서는 가스 터빈의 높은 압축단에서 추출된 압축 공기를 사용해야 한다. 가스 터빈용 블레이드를 냉각시키기 위해 필요한 압축 공기의 압력이 증가한다면, 높은 압력의 압축 공기를 냉각을 위해 소모해야 하므로 가스 터빈의 전체적인 효율이 감소한다. To increase the pressure of the compressed air, compressed air extracted from the high compression stage of the gas turbine should be used. If the pressure of the compressed air required to cool the blade for the gas turbine is increased, the overall efficiency of the gas turbine is reduced because high pressure compressed air has to be consumed for cooling.
그러나 도 1 내지 도 6에 나타난 실시예에 관한 가스 터빈용 블레이드에 의하면 날개부(20)의 냉각을 위해 필요한 압축 공기의 압력을 최소화할 수 있으므로, 가스 터빈의 전체적인 작동 효율이 크게 증가된다.However, according to the blade for a gas turbine according to the embodiment shown in FIGS. 1 to 6, since the pressure of the compressed air required for cooling the wing portion 20 can be minimized, the overall operating efficiency of the gas turbine is greatly increased.
또한 도 7에서와 같이 하나의 사행유로가 길게 연장하도록 날개부에 설치되면, 사행유로를 통과하며 가열된 압축 공기의 온도가 사행유로의 후단부로 갈수록 더 높아지므로 날개부의 일부 영역에서의 냉각이 효과적으로 이루어질 수 없다.In addition, as shown in FIG. 7, when one meandering passage is installed on the wing to extend long, the temperature of the compressed compressed air passing through the meandering passage increases toward the rear end of the meandering passage, so that cooling in some areas of the wing is effectively performed. Can't be done.
그러나 도 1 내지 도 6에 나타난 실시예에 관한 가스 터빈용 블레이드에서는 복수 개의 사행유로들(7)이 병렬적으로 연장하도록 설치되기 때문에 사행유로들(7)의 각각에서 압축 공기가 통과하는 경로가 짧아져 가열된 압축 공기가 날개부(20)의 내부에 머무르는 시간이 감소된다. 즉 병렬적으로 배치된 사행유로들(7)의 각각이 독립적으로 냉각 기능을 수행할 수 있으므로, 날개부(20)의 전체 영역에 걸쳐 균일한 냉각이 이루어질 수 있다.However, in the blade for the gas turbine according to the embodiment shown in FIGS. 1 to 6, since a plurality of meandering passages 7 are installed to extend in parallel, a path through which compressed air passes in each of the meandering passages 7 is determined. The shortened time for which the heated compressed air stays inside the wing 20 is reduced. That is, since each of the meandering flow paths 7 arranged in parallel may independently perform a cooling function, uniform cooling may be performed over the entire area of the wing 20.
상술한 실시예들에 대한 구성과 효과에 대한 설명은 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.The configuration and effects of the above-described embodiments are merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the invention should be defined by the appended claims.
실시예들은 날개부가 전체적으로 균일하게 냉각되며 가스 터빈의 작동 효율을 증가시킬 수 있는 가스 터빈용 블레이드에 관한 것이다.Embodiments relate to blades for a gas turbine that can cool the wings uniformly throughout and increase the operating efficiency of the gas turbine.

Claims (19)

  1. 전연부와 후연부를 구비하며 유선형 단면을 갖는 날개부;A wing having a leading edge and a trailing edge and having a streamlined cross section;
    외부로부터 압축 공기가 유입되는 유입구들을 구비하며 상기 날개부의 일단부를 지지하는 지지부; 및A support part having one inlet port through which compressed air is introduced from the outside and supporting one end of the wing part; And
    일단이 상기 유입구들의 각각에 연결되어 상기 유입구들에서 유입된 압축 공기가 통과하도록 상기 날개부의 내부에서 병렬적으로 연장하는 복수 개의 사행유로들;을 구비하는, 가스 터빈용 블레이드.And a plurality of meandering passages, one end of which is connected in parallel to each of the inlets and extends in parallel in the wing to allow compressed air introduced from the inlets to pass therethrough.
  2. 제1항에 있어서,The method of claim 1,
    상기 사행유로들은, The meandering euros,
    상기 유입구들에 연결되어 상기 날개부의 상기 일단부로부터 타단부를 향하여 상기 전연부를 따라 연장하는 유입유로들과, 상기 날개부의 상기 후연부를 따라 연장하는 배출유로들과, 상기 유입유로들과 상기 배출유로들을 연결하는 중간유로들을 구비하는, 가스 터빈용 블레이드.Inflow passages connected to the inlets and extending along the leading edge toward the other end from the one end of the wing, discharge passages extending along the trailing edge of the wing, the inflow passages and the discharge passage. A blade for a gas turbine, having intermediate flow paths connecting the two.
  3. 제2항에 있어서,The method of claim 2,
    상기 사행유로들은,The meandering euros,
    상기 유입유로들의 각각에 연결되어 상기 날개부의 상기 타단부에서 굴곡되어 상기 중간유로들에 연결되는 상부 굴곡유로들과, 상기 중간유로들의 각각에 연결되며 상기 날개부의 상기 일단부에서 굴곡되어 상기 배출유로들에 연결되는 하부 굴곡유로들을 더 구비하는, 가스 터빈용 블레이드. Upper curved flow paths connected to each of the inflow passages and bent at the other end of the wing part and connected to the intermediate flow paths, and connected to each of the intermediate flow paths, and are bent at the one end of the wing part to discharge the discharge flow path. A blade for a gas turbine, further comprising lower curved flow paths connected to the field.
  4. 제3항에 있어서,The method of claim 3,
    상기 사행유로들은 상기 날개부의 상기 전연부로부터 차례로 병렬적으로 배치된 제1 유로와, 제2 유로와, 제3 유로를 구비하는, 가스 터빈용 블레이드.The meandering flow passages include a first flow passage, a second flow passage, and a third flow passage arranged in parallel from the leading edge of the wing portion, the blade for a gas turbine.
  5. 제3항에 있어서,The method of claim 3,
    상기 날개부는 상기 제1 유로의 상기 유입유로를 외부와 연결하도록 상기 전연부에 관통하여 형성되는 전면 통공들을 구비하는, 가스 터빈용 블레이드.The blade portion has a gas turbine blade having front through-holes formed through the leading edge to connect the inflow passage of the first flow passage to the outside.
  6. 제3항에 있어서,The method of claim 3,
    상기 날개부는 상기 제1 유로의 상기 상부 굴곡유로와 상기 배출유로들을 외부와 연결하도록 상기 날개부의 타단부를 관통하여 형성되는 상부 통공들을 구비하는, 가스 터빈용 블레이드.The blade unit has a gas turbine blade having upper through-holes formed through the other end of the wing portion to connect the upper curved flow path and the discharge flow path of the first flow path with the outside.
  7. 제3항에 있어서,The method of claim 3,
    상기 날개부는 상기 제3 유로의 상기 배출유로를 외부와 연결하도록 상기 후연부에 관통하여 형성되는 후면 통공들을 구비하는, 가스 터빈용 블레이드.The blade portion has a gas turbine blade having back through-holes formed through the trailing edge portion to connect the discharge passage of the third flow path to the outside.
  8. 제3항에 있어서,The method of claim 3,
    상기 날개부는 상기 전연부와 상기 후연부를 연결하는 중간 표면에서 상기 사행유로들을 외부와 연결하도록 관통하여 형성되는 중간 통공들을 구비하는, 가스 터빈용 블레이드.And the wing portion has intermediate through holes formed to penetrate the meandering passages to the outside at an intermediate surface connecting the leading edge portion and the trailing edge portion.
  9. 제8항에 있어서,The method of claim 8,
    상기 중간 통공들은 상기 유입유로들의 적어도 하나를 외부와 연결하는 제1 중간 통공들을 구비하는, 가스 터빈용 블레이드.Wherein said intermediate apertures have first intermediate apertures connecting at least one of said inflow passages to the outside.
  10. 제8항에 있어서,The method of claim 8,
    상기 중간 통공들은 상기 중간유로들의 적어도 하나를 외부와 연결하는 제2 중간 통공들을 구비하는, 가스 터빈용 블레이드.And the intermediate apertures have second intermediate apertures connecting at least one of the intermediate passages to the outside.
  11. 제8항에 있어서,The method of claim 8,
    상기 중간 통공들은 상기 배출유로들의 적어도 하나를 외부와 연결하는 제3 중간 통공들을 구비하는, 가스 터빈용 블레이드.And the intermediate apertures have third intermediate apertures connecting at least one of the discharge passages to the outside.
  12. 제3항에 있어서,The method of claim 3,
    상기 하부 굴곡유로들 중 적어도 하나는 상기 지지부를 통과하도록 확대되는, 가스 터빈용 블레이드.At least one of the lower bends extends through the support.
  13. 제3항에 있어서,The method of claim 3,
    상기 날개부는 상기 일단부로부터 상기 타단부로 갈수록 단면적이 축소되는, 가스 터빈용 블레이드.The blade portion is a gas turbine blade, the cross-sectional area is reduced from the one end to the other end.
  14. 외부로부터 압축 공기가 유입되는 유입구들을 구비하는 지지부;A support having inlets through which compressed air is introduced from the outside;
    일단부가 상기 지지부에 연결되고, 상기 일단부로부터 타단부를 향해 연장하는 전연부와 후연부를 구비하며 유선형 단면을 갖는 날개부; 및A wing portion having one end portion connected to the support portion and having a leading edge portion and a trailing edge portion extending from the one end portion to the other end portion and having a streamlined cross section; And
    상기 유입구들에서 유입된 압축 공기가 유입되도록 상기 유입구들의 각각에 연결되어 상기 날개부의 상기 전연부를 따라 연장하는 유입유로들과, 상기 날개부의 상기 후연부를 따라 연장하여 상기 날개부의 상기 타단부에서 외부로 연결되는 배출유로들과, 상기 유입유로들과 상기 배출유로들을 연결하는 중간유로들을 구비하여 병렬적으로 연장하는 복수 개의 사행유로들;을 구비하는, 가스 터빈용 블레이드.Inflow passages connected to each of the inlets so that the compressed air introduced from the inlets are introduced and extend along the leading edge of the wing, and extend along the trailing edge of the wing to extend from the other end of the wing to the outside. And a plurality of meandering passages extending in parallel with discharge passages connected to each other, and intermediate passages connecting the inflow passages and the discharge passages.
  15. 제14항에 있어서,The method of claim 14,
    상기 사행유로들은,The meandering euros,
    상기 유입유로들의 각각에 연결되어 상기 날개부의 상기 타단부에서 굴곡되어 상기 중간유로들에 연결되는 상부 굴곡유로들과, 상기 중간유로들의 각각에 연결되며 상기 날개부의 상기 일단부에서 굴곡되어 상기 배출유로들에 연결되는 하부 굴곡유로들을 더 구비하는, 가스 터빈용 블레이드. Upper curved flow paths connected to each of the inflow passages and bent at the other end of the wing part and connected to the intermediate flow paths, and connected to each of the intermediate flow paths, and are bent at the one end of the wing part to discharge the discharge flow path. A blade for a gas turbine, further comprising lower curved flow paths connected to the field.
  16. 제15항에 있어서,The method of claim 15,
    상기 날개부는 상기 유입유로들의 어느 하나를 외부와 연결하도록 상기 전연부에 관통하여 형성되는 전면 통공들을 구비하는, 가스 터빈용 블레이드.The blade portion comprises a front through-holes formed through the leading edge to connect any one of the inflow passages to the outside, blade for a gas turbine.
  17. 제15항에 있어서,The method of claim 15,
    상기 날개부는 상기 상부 굴곡유로들의 어느 하나와 상기 배출유로들을 외부와 연결하도록 상기 날개부의 타단부를 관통하여 형성되는 상부 통공들을 구비하는, 가스 터빈용 블레이드.The blade portion has a gas turbine blade having upper through holes formed through the other end of the wing portion to connect any one of the upper curved passages and the discharge passage to the outside.
  18. 제15항에 있어서,The method of claim 15,
    상기 날개부는 상기 배출유로의 어느 하나를 외부와 연결하도록 상기 후연부에 관통하여 형성되는 후면 통공들을 구비하는, 가스 터빈용 블레이드.The blade portion has a blade for the gas turbine having a rear through-hole formed through the trailing edge portion to connect any one of the discharge passage to the outside.
  19. 제15항에 있어서,The method of claim 15,
    상기 날개부는 상기 전연부와 상기 후연부를 연결하는 중간 표면에서 상기 사행유로들을 외부와 연결하도록 관통하여 형성되는 중간 통공들을 구비하는, 가스 터빈용 블레이드.And the wing portion has intermediate through holes formed to penetrate the meandering passages to the outside at an intermediate surface connecting the leading edge portion and the trailing edge portion.
PCT/KR2014/002210 2013-09-04 2014-03-17 Blade for gas turbine WO2015034150A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130106295A KR20150027630A (en) 2013-09-04 2013-09-04 Blade for gas turbine
KR10-2013-0106295 2013-09-04

Publications (2)

Publication Number Publication Date
WO2015034150A2 true WO2015034150A2 (en) 2015-03-12
WO2015034150A3 WO2015034150A3 (en) 2015-11-12

Family

ID=52629062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002210 WO2015034150A2 (en) 2013-09-04 2014-03-17 Blade for gas turbine

Country Status (2)

Country Link
KR (1) KR20150027630A (en)
WO (1) WO2015034150A2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607356B2 (en) * 2002-01-11 2003-08-19 General Electric Company Crossover cooled airfoil trailing edge
JP4137508B2 (en) * 2002-05-02 2008-08-20 ゼネラル・エレクトリック・カンパニイ Turbine airfoil with metering plate for refresh holes
US7210906B2 (en) * 2004-08-10 2007-05-01 Pratt & Whitney Canada Corp. Internally cooled gas turbine airfoil and method
US7296972B2 (en) * 2005-12-02 2007-11-20 Siemens Power Generation, Inc. Turbine airfoil with counter-flow serpentine channels
US7645122B1 (en) * 2006-12-01 2010-01-12 Florida Turbine Technologies, Inc. Turbine rotor blade with a nested parallel serpentine flow cooling circuit

Also Published As

Publication number Publication date
KR20150027630A (en) 2015-03-12
WO2015034150A3 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
EP2708701B1 (en) Engine comprising an air cooling design for tail-cone generator installation
CN101629520B (en) Combustor transition piece aft end cooling and related method
EP3333368B1 (en) Cooling structure for vane
WO2017217622A1 (en) Air guide cap and combustion duct having same
WO2016200144A1 (en) Battery pack thermal management system for electric vehicle
US10094285B2 (en) Gas turbine outer case active ambient cooling including air exhaust into sub-ambient cavity
CN101644191B (en) Transition duct aft end frame cooling and related method
WO2013129788A1 (en) Turbine seal assembly and turbine apparatus comprising the turbine seal assembly
US7642004B2 (en) Holder for cooling battery modules
EP2770168A2 (en) Gas turbine engine with an active tip clearance control
WO2012124215A1 (en) Gas turbine rotor blade, and gas turbine
CN106351701B (en) Cooling structure for stationary bucket
EP3089569B1 (en) Subrack and terminal
JP2015063994A (en) Internally cooled transition duct aft frame
JP6835493B2 (en) Cooling structure for fixed blades
WO2015034150A2 (en) Blade for gas turbine
JP2017025907A (en) Cooling structure for stationary blade
CN210071279U (en) Temperature control wind tunnel device based on quartz lamp heating
CN105972637B (en) Combustion chamber with double walls
WO2016003020A1 (en) Combustor assembly
WO2017200171A1 (en) Cooler for display, and display device having same
WO2020180064A1 (en) Cold water manufacturing apparatus
CN105848436A (en) Switch cabinet
CN211351066U (en) Connector and communication device
WO2023132561A1 (en) Fluid heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842772

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842772

Country of ref document: EP

Kind code of ref document: A2