WO2015033990A1 - Square-plate-shaped zinc oxide particles and method for producing same - Google Patents

Square-plate-shaped zinc oxide particles and method for producing same Download PDF

Info

Publication number
WO2015033990A1
WO2015033990A1 PCT/JP2014/073294 JP2014073294W WO2015033990A1 WO 2015033990 A1 WO2015033990 A1 WO 2015033990A1 JP 2014073294 W JP2014073294 W JP 2014073294W WO 2015033990 A1 WO2015033990 A1 WO 2015033990A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
oxide particles
length
long side
zinc
Prior art date
Application number
PCT/JP2014/073294
Other languages
French (fr)
Japanese (ja)
Inventor
知念亜矢子
小林恵太
齋藤晴信
聡 小森
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Priority to JP2015526783A priority Critical patent/JP5867658B2/en
Publication of WO2015033990A1 publication Critical patent/WO2015033990A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/0254Platelets; Flakes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/27Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • A61Q1/06Lipsticks
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/22Particle morphology extending in two dimensions, e.g. plate-like with a polygonal circumferential shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Definitions

  • the present invention relates to rectangular plate-like zinc oxide particles and a method for producing the same.
  • Zinc oxide particles have various properties such as cosmetics, resin compositions, paints, and inks that require these properties because they have UV shielding performance, electrical conductivity, visible light transparency, and infrared shielding effectiveness. Used in Control of the shape of the zinc oxide particles is performed so as to have excellent properties in each of these applications.
  • Patent Document 1 describes flaky zinc oxide particles that can be used as an ultraviolet absorber, and describes the use of these in various applications.
  • Patent Document 2 describes a zinc oxide powder in which primary particles are aggregated in a plate shape by hydrothermal synthesis.
  • Patent Document 3 describes the production of plate-like zinc oxide particles.
  • the known plate-like zinc oxide particles are usually hexagonal, and the square plate-like zinc oxide particles are not known and the production method is not known.
  • An object of this invention is to provide the square plate-like zinc oxide particle which is a novel shape which is not known until now, and its manufacturing method.
  • the ratio of the long side length to the short side length is 1.00 to 1.30, and the long side length to thickness ratio (long side)
  • the square plate-like zinc oxide particles are characterized in that the side length / thickness is 3 to 100.
  • the length of the long side is preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the rectangular plate-like zinc oxide particles preferably have a zinc oxide content of 85% by weight or more, and no foreign phase is observed from the XRD pattern.
  • the present invention has a step (1) of mixing raw material zinc oxide, zinc nitrate, and trivalent and / or tetravalent metal elements in a solvent, and the method for producing the rectangular plate-like zinc oxide particles as described above But there is.
  • the trivalent and / or tetravalent metal element is present in the raw material zinc oxide.
  • a part or all of the trivalent and / or tetravalent metal element is dissolved and / or dispersed in the solvent.
  • This invention is also cosmetics containing the square plate-shaped zinc oxide particle mentioned above.
  • the present invention is also a resin composition containing the square plate-like zinc oxide particles described above.
  • the present invention is also a coating composition containing the square plate-like zinc oxide particles described above.
  • the present invention is also an ink composition containing the square plate-like zinc oxide particles described above.
  • square plate-like zinc oxide particles that have excellent ultraviolet shielding performance, conductivity, and slipperiness, and can be suitably used in the fields of cosmetics, resin compositions, paints, inks, and the like. can do.
  • FIG. 1 is an electron micrograph of zinc oxide obtained in Example 1.
  • FIG. 4 is a view showing an electron micrograph of zinc oxide obtained in Example 3.
  • FIG. 4 is an electron micrograph of zinc oxide obtained in Example 4.
  • FIG. 6 is a view showing an electron micrograph of zinc oxide obtained in Example 5.
  • FIG. 6 is an electron micrograph of zinc oxide obtained in Example 6.
  • FIG. 6 is an electron micrograph of zinc oxide obtained in Example 7.
  • FIG. 6 is an electron micrograph of zinc oxide obtained in Example 8.
  • FIG. 2 is an electron micrograph of zinc oxide obtained in Comparative Example 1.
  • FIG. 6 is an electron micrograph of zinc oxide obtained in Comparative Example 2.
  • FIG. It is a figure which shows the electron micrograph of the zinc oxide obtained by the comparative example 3. It is a figure which shows the electron micrograph of the zinc oxide obtained by the comparative example 4.
  • FIG. 2 is a diagram showing an XRD pattern of zinc oxide obtained in Example 1.
  • FIG. 4 is a diagram showing an XRD pattern of zinc oxide obtained in Example 3.
  • FIG. 6 is a diagram showing an XRD pattern of zinc oxide obtained in Example 4.
  • FIG. 6 is a diagram showing an XRD pattern of zinc oxide obtained in Example 5.
  • FIG. 6 is a diagram showing an XRD pattern of zinc oxide obtained in Example 6.
  • FIG. 6 is a diagram showing an XRD pattern of zinc oxide obtained in Example 7.
  • FIG. 6 is a diagram showing an XRD pattern of zinc oxide obtained in Example 8.
  • FIG. 6 is a diagram showing an XRD pattern of zinc oxide obtained in Comparative Example 1.
  • FIG. It is a figure which shows the XRD pattern of the zinc oxide obtained by the comparative example 2.
  • It is a figure which shows the XRD pattern of the zinc oxide obtained by the comparative example 3.
  • 2 is a diagram showing a UV reflectance spectrum of zinc oxide obtained in Example 1.
  • the present invention is zinc oxide particles having a square plate shape.
  • the square plate shape is a quadrangular plate shape, preferably a square plate shape, a rectangular plate shape, a parallelogram plate shape, or a rhombus plate shape.
  • the rectangular plate-like zinc oxide particles of the present invention have a ratio of the length of the long side to the length of the short side, that is, the length of the long side / the length of the short side is 1.00 to 1.30.
  • Square plate-like zinc oxide particles having a ratio of length to thickness, that is, the length / thickness of the long side is 3 to 100. Zinc oxide particles having such a square plate shape have not been known so far and have been completed by the present invention.
  • the square plate-like zinc oxide particles of the present invention are plate-like, they have good slip properties, and particularly when used as a blending component in cosmetics, excellent usability is expected. Furthermore, it can mix
  • long side refers to the length of the longest side of the quadrangular shape
  • short side refers to the length of the shortest side of the quadrangular shape. In the case of a square plate shape or a rhombus plate shape, the lengths of all sides are the same. In this case, the length of the long side / the length of the short side is 1.00.
  • the square plate-like zinc oxide particles of the present invention have a long side length / short side length of 1.00 to 1.30.
  • the length of the long side / the length of the short side is shown in a photograph taken with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.) at a magnification such that 10 particles can be contained in one field of view.
  • SEM scanning electron microscope
  • JSM-7000F manufactured by JEOL Ltd.
  • the length of each long side / the length of the short side of each plate-like particle was calculated, and the average value of 50 plate-like particles was calculated. By setting it as the said range, it is preferable at the point that slipperiness improves.
  • the ratio is more preferably 1.00 to 1.25.
  • the rectangular plate-like zinc oxide particles of the present invention have a long side length / thickness of 3 to 100. By setting it as the thing within the said range, it will have a favorable plate-shaped shape and the objective of this invention mentioned above can be achieved favorably.
  • the ratio is more preferably 4 to 70, and preferably 5 to 50.
  • the length / thickness of the long side is the same as when measuring the length of the long side / the length of the short side, and the length / thickness of the long side is calculated with the plate-like side face as the thickness.
  • the average value of 50 plate-like particles is measured by a method of calculating.
  • the square plate-like zinc oxide particles of the present invention preferably have a long side length of 5 ⁇ m or more and 100 ⁇ m or less. If the thickness is less than 5 ⁇ m, there may be a problem in that the slipperiness is deteriorated, and if it exceeds 100 ⁇ m, a problem may occur in that the dispersibility in the resin is deteriorated.
  • the lower limit of the length of the long side is more preferably 10 ⁇ m
  • the upper limit of the length of the long side is more preferably 70 ⁇ m.
  • the length of the long side is the same as the case of measuring the length of the long side / the length of the short side, and the length of the long side of the plate-like particles is measured to obtain 50 plate-like particles. It is measured by the method of calculating the average value of.
  • the rectangular plate-like zinc oxide particles of the present invention preferably have a zinc oxide content of 85% by weight or more (in terms of metal element oxide). That is, it is preferable that the component other than zinc oxide contained as an impurity is a certain ratio or less, so that a decrease in the ultraviolet shielding effect can be suppressed.
  • the content rate of zinc oxide here was analyzed with the wavelength dispersion type
  • the average friction coefficient is preferably 0.85 or less, and more preferably 0.80 or less. Particles in such a numerical range show good performance in use feeling when blended in cosmetics.
  • the average deviation of the friction coefficient is preferably 0.015 or less, and more preferably 0.013 or less. When the average deviation of the friction coefficient is within the above range, it is preferable in that a smooth feel can be obtained.
  • the average friction coefficient mentioned above and the average deviation of a friction coefficient are the values measured by the method explained in full detail in the Example.
  • raw material zinc oxide and zinc nitrate are mixed in the presence of a certain amount of trivalent and / or tetravalent metal elements.
  • some of the trivalent and / or tetravalent metal elements are incorporated in the rectangular plate-like zinc oxide, and the abundance thereof is preferably 7.5 mol% or less.
  • the crystallinity of zinc oxide is lowered and the ultraviolet shielding performance is lowered, which is not preferable.
  • the upper limit is more preferably 4.5 mol%, still more preferably 3.6 mol%, and even more preferably 2.5 mol%.
  • the lower limit is preferably 0.004 mol%, more preferably 0.04 mol%, still more preferably 0.25 mol%.
  • the rectangular plate-like zinc oxide particles of the present invention as described above are a plate-like zinc oxide having a step (1) of mixing raw material zinc oxide, zinc nitrate, and trivalent and / or tetravalent metal elements in a solvent. It can be obtained by a method for producing particles. Such a manufacturing method is also one aspect of the present invention. That is, in the method for producing zinc oxide particles by dissolving and reprecipitating a part of the raw material zinc oxide in a zinc nitrate solution, the process is mixed in the presence of a trivalent and / or tetravalent metal element. It has characteristics. At this time, it is preferable that the raw material zinc oxide is not completely dissolved and is in a slurry state. By producing zinc oxide particles by such a novel production method, zinc oxide particles having the above-described characteristic shape can be obtained.
  • the production method of the present invention is characterized in that in the step (1), the raw material zinc oxide and zinc nitrate are mixed in the presence of a trivalent and / or tetravalent metal element.
  • the tetravalent metal element may be dissolved in a slurry liquid medium, or may be mixed in the raw material zinc oxide in the state of oxide, hydroxide, etc. It may be in a state of being dispersed in the slurry in the form of a metal compound such as an oxide or a metal powder. That is, it may be present in any state such as ions, metals, oxides, hydroxides, etc., in the slurry as the reaction system regardless of the form.
  • the step (1) is a trivalent and / or tetravalent metal element dissolved in a liquid medium in a slurry in a ionic state (first aspect), or raw material zinc oxide It is preferable to use a material containing a trivalent and / or tetravalent metal element (second embodiment).
  • the trivalent and / or tetravalent metal element is not particularly limited, and examples thereof include aluminum, tin, titanium, gallium, and indium. Among these, aluminum is preferable because it is inexpensive and has high safety. Moreover, when providing electroconductivity, aluminum or gallium is preferable and gallium is more preferable.
  • the trivalent and / or tetravalent metal element is preferably used in a proportion of 0.01 mol% to 10 mol% with respect to the zinc element of the raw material zinc oxide. It is preferably used at a rate of 0.1 mol% to 8.0 mol%, more preferably at a rate of 0.5 mol% to 5.0 mol%.
  • the liquid medium constituting the slurry is preferably water or a mixed liquid of water and an aqueous organic solvent, and most preferably water.
  • the aqueous organic solvent can be mixed with water such as lower alcohols such as methanol and ethanol, water such as acetone, ethylene glycol, diethylene glycol, and polyethylene glycol at an arbitrary ratio.
  • the aqueous organic solvent is preferably used in an amount of 1 to 30% by weight based on the total amount of the mixed solvent.
  • the raw material zinc oxide is not particularly limited in its particle diameter, particle shape, etc., but for example, those having a spherical shape, an elliptical shape, a petal shape, a needle shape, a tetrapot shape, a whisker shape, or a rod shape are used. can do.
  • the raw material zinc oxide may be a commercially available one, or may be synthesized and used.
  • commercially available products include FINEX-50 (manufactured by Sakai Chemical Industry Co., Ltd.), zinc oxide type I (manufactured by Sakai Chemical Industry Co., Ltd.), and the like.
  • the synthesis method in the case of synthesizing and using is not specifically limited, For example, the various zinc oxides obtained by baking the precursor compound which baked and becomes zinc oxide can be used.
  • the precursor compound is not particularly limited, and examples thereof include zinc hydroxide, zinc carbonate, basic zinc carbonate, zinc sulfate, and zinc nitrate.
  • the raw material zinc oxide needs to contain a trivalent and / or tetravalent metal element.
  • the method for producing zinc oxide containing a trivalent and / or tetravalent metal element is not particularly limited.
  • a zinc salt aqueous solution and a trivalent and / or tetravalent metal element-containing aqueous solution are mixed, By adjusting the pH of the mixed solution, a hydroxide precipitate is formed, and the resulting precipitate is filtered and then baked, a solid phase method, a coprecipitation method, a spray drying method, an in-liquid surface treatment method, etc. be able to.
  • Zinc salts such as hydrochloric acid, nitric acid, a sulfuric acid, an acetic acid, an oxalic acid, a fatty acid
  • Zinc salts such as hydrochloric acid, nitric acid, a sulfuric acid, an acetic acid, an oxalic acid, a fatty acid
  • This can be dissolved in a solvent such as water, alcohol or a mixed solvent thereof and used as an aqueous zinc salt solution.
  • dissolving these with an acid etc. may be sufficient.
  • the trivalent and / or tetravalent metal element-containing aqueous solution is not particularly limited, and the raw materials include aluminum nitrate, aluminum sulfate, aluminum chloride, gallium nitrate, gallium sulfate, gallium chloride, gallium oxide, indium chloride, indium oxide, and tetrachloride. Titanium, titanyl sulfate, titanium tetraisopropoxide, sodium titanate, tin nitrate, tin chloride, tin oxide, zirconium chloride, zirconium nitrate, zirconium oxide and the like can be used. In the above method, these compounds are preferably used to form an aqueous solution containing 10 to 300 g / kg of a trivalent and / or tetravalent metal element as a metal salt containing no hydration water.
  • the raw material zinc oxide is preferably in a concentration of 1 to 40% by weight based on the total amount of the mixed slurry.
  • the concentration is more preferably 1 to 20% by weight, and further preferably 5 to 10% by weight.
  • the zinc nitrate is preferably 5 to 50% by weight as a metal salt containing no hydration water with respect to the total amount of the above mixed slurry.
  • the concentration is more preferably 10 to 40% by weight, and further preferably 15 to 30% by weight.
  • step (1) it is necessary to use zinc nitrate. This is because when other zinc salt compounds such as zinc chloride and zinc sulfate are used, the square plate-like zinc oxide particles of the present invention having the specific shape as described above cannot be obtained.
  • an ionic compound of a trivalent and / or tetravalent metal element is added to the slurry, and in the presence of a trivalent and / or tetravalent metal ion. Mix.
  • the said process (1) it mixes using the raw material zinc oxide containing a trivalent and / or tetravalent metal element.
  • the ionic compound of a trivalent and / or tetravalent metal element that can be used in the first aspect is not particularly limited.
  • aluminum nitrate, aluminum sulfate, aluminum chloride, gallium nitrate, gallium sulfate examples include gallium chloride, indium chloride, titanium tetrachloride, titanyl sulfate, titanium tetraisopropoxide, sodium titanate, tin nitrate, tin chloride, zirconium chloride, and zirconium nitrate.
  • the mixing in the above step (1) can be carried out while stirring the slurry at a normal pressure, hydrothermal, or solvothermal slurry temperature of 30 ° C. to 200 ° C.
  • the slurry temperature is more preferably 45 ° C. to 180 ° C., and further preferably 45 ° C. to 110 ° C.
  • mixing time depends on the mixing temperature, it can be carried out in 0.5 to 5 hours.
  • the slurry can be prepared by mixing raw material zinc oxide and other necessary components in a liquid medium. Moreover, you may use a dispersing agent as needed.
  • the dispersant is not particularly limited, and the amount used is preferably 1 to 10% by weight.
  • the slurry having been subjected to the above step (1) is then filtered, and washed with water, dried and fired as necessary to obtain the desired rectangular plate-like zinc oxide particles.
  • the firing temperature is preferably 300 to 1000 ° C. If it is 300 degreeC or more, it is preferable at the point which crystallinity is high and the ultraviolet-ray shielding effect becomes high.
  • the firing atmosphere is not particularly limited, and examples thereof include air, oxygen, nitrogen, carbon dioxide, hydrogen, argon, and methane.
  • firing in a reducing atmosphere is preferred.
  • the firing time depends on the firing temperature, it is preferably 1 to 5 hours.
  • the square plate-like zinc oxide obtained by firing in this manner is particularly preferable because it is easy to prevent a heterogeneous phase from being seen from the XRD pattern.
  • surface treatment may be performed as necessary.
  • the slurry containing the square plate-like zinc compound particles after completion of the mixing in the step (1) may be subjected to surface treatment as it is, and then the filtered square plate-like zinc compound is again treated.
  • the surface treatment may be performed by dispersing in water, the surface treatment may be performed by dispersing again in water after firing, or the surface treatment may be performed as it is after firing. Also good.
  • the square plate-like zinc compound referred to here is a square plate-like zinc oxide and / or a square plate-like zinc compound that is fired to form a square plate-like zinc oxide, which may be a kind of compound or several types. A mixture of these compounds may also be used.
  • the surface treatment is not particularly limited, and the surface on which a film is formed with at least one compound selected from the group consisting of silicon oxide, hydrated silicon oxide, aluminum oxide, and aluminum hydroxide.
  • Examples thereof include surface treatment with a water repellent organic compound, surface treatment with a coupling agent such as a silane coupling agent and a titanium coupling agent. A combination of these two or more surface treatments may be used.
  • the formation of the film with at least one compound selected from the group consisting of silicon oxide, silicon oxide hydrate, aluminum oxide, and aluminum hydroxide is performed by using a Si source compound and / or an Al source compound. Can be performed by a method such as precipitation on the powder surface by hydrolysis, thermal decomposition, or the like.
  • a Si source compound and / or a Al source compound tetraalkoxysilane or its hydrolytic condensate, sodium silicate, potassium silicate, aluminum alkoxide or its hydrolytic condensate, sodium aluminate and the like, readily SiO 2 Ya A compound that converts to Al (OH) 3 or Al 2 O 3 can be used.
  • the method using acids such as a sulfuric acid, hydrochloric acid, acetic acid, nitric acid, is mentioned.
  • the neutralization method in this silica treatment method using an aqueous dispersion is a method in which an acid is added to the dispersion and then an Si source compound and / or an Al source compound is added. An Si source compound and / or an Al source is added to the dispersion. Either a method of adding an acid after adding the compound, or a method of simultaneously adding an Si source compound and / or an Al source compound and an acid to the dispersion may be used.
  • the treatment with the water repellent organic compound is not particularly limited, and examples thereof include silicone oil, alkyl silane, alkyl titanate, alkyl aluminate, polyolefin, polyester, metal soap, amino acid, amino acid salt and the like. Of these, silicone oil is preferred because of its chemical stability.
  • this silicone oil examples include dimethylpolysiloxane (for example, KF-96A-100cs manufactured by Shin-Etsu Chemical Co., Ltd., DM10 manufactured by Asahi Kasei Wacker Silicone), methyl hydrogen polysiloxane (for example, KF-99P manufactured by Shin-Etsu Chemical Co., Ltd., Toray Industries, Inc.) SH1107C manufactured by Dow Corning), (dimethicone / methicone) copolymer (for example, KF-9901 manufactured by Shin-Etsu Chemical), methylphenyl silicone (for example, KF-50-100cs manufactured by Shin-Etsu Chemical), amino-modified silicone (for example, Shin-Etsu Chemical) KF-8015 manufactured by Toray Dow Corning, JP-8500 Conditioning Agent, ADM 6060 manufactured by Asahi Kasei Wacker Silicone, triethoxysilylethyl polydimethylsiloxyethyl dimethicone
  • Examples of the treatment with the silane coupling agent include vinyltris (2-methoxyethoxy) silane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 3-glycol.
  • the treatment with the titanium coupling agent includes tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, tetramethyl titanate, titanium acetylacetonate, titanium tetraacetylacetonate, titanium ethylacetoacetate. , Titanium octanediolate, titanium lactate, titanium triethanolamate, and polyhydroxytitanium stearate.
  • the surface treatment is preferably performed at a ratio of 1 to 10% by weight with respect to the total amount of the powder after the treatment. By setting it within the range, it is preferable in terms of improving slipperiness, improving moisture resistance, and improving dispersibility in the resin.
  • the square plate-like zinc oxide particles of the present invention can be mixed with other components and blended in cosmetics, inks, paints and the like.
  • cosmetics inks, paints and the like.
  • it since it has the above-mentioned characteristics, it is preferable in that a cosmetic having excellent stability and ultraviolet shielding effect can be obtained.
  • the cosmetic is not particularly limited, and by mixing the square plate-like zinc oxide particles of the present invention with cosmetic raw materials as necessary, UV protective cosmetics such as sunscreen agents; base makeup cosmetics such as foundations A point makeup cosmetic such as lipstick can be obtained. Moreover, since it has the characteristic of ultraviolet-ray shielding ability, when using for cosmetics, the outstanding ultraviolet-ray shielding performance is shown.
  • the cosmetics can be in any form of oily cosmetics, aqueous cosmetics, O / W cosmetics, and W / O cosmetics. Especially, it can use especially suitably in a sunscreen agent.
  • the cosmetic may be used in combination with any aqueous component or oily component that can be used in the cosmetic field.
  • the aqueous component and the oil component are not particularly limited, and examples thereof include oil agents, surfactants, humectants, higher alcohols, sequestering agents, natural and synthetic polymers, water-soluble and oil-soluble polymers, UV shielding agents, Various extracts, colorants such as organic dyes, preservatives, antioxidants, pigments, thickeners, pH adjusters, fragrances, cooling agents, antiperspirants, fungicides, skin activators, other agents, various It may contain components such as powder.
  • the oil agent is not particularly limited.
  • natural animal and vegetable oils and fats for example, olive oil, mink oil, castor oil, palm oil, beef tallow, evening primrose oil, coconut oil, cacao oil, macadamia nut oil and the like
  • wax for example, jojoba oil
  • Higher alcohols eg, lauryl alcohol, stearyl alcohol, cetyl alcohol, oleyl alcohol, etc.
  • higher fatty acids eg, lauric acid, palmitic acid, stearic acid, oleic acid, behenine
  • beeswax lanolin, carnauba wax, candelilla wax, etc.
  • synthetic ester oils eg, butyl stearate, hexyl laurate, diisoprop
  • the surfactant examples include a lipophilic nonionic surfactant and a hydrophilic nonionic surfactant.
  • the lipophilic nonionic surfactant is not particularly limited. For example, sorbitan monooleate, sorbitan monoisostearate, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan sesquioleate, sorbitan trioleate.
  • sorbitan fatty acid esters such as diglycerol sorbitan penta-2-ethylhexylate, diglycerol sorbitan tetra-2-ethylhexylate, mono-cotton oil fatty acid glycerin, glyceryl monoerucate, glyceryl sesquioleate, glyceryl monostearate, ⁇ , ⁇ '-Glycerol polyglycerin fatty acids such as pyroglutamate glyceryl oleate, glyceryl monostearate malate, propylene glycol monostearate Glycol fatty acid esters, hardened castor oil derivatives, glycerin alkyl ethers and the like.
  • sorbitan fatty acid esters such as diglycerol sorbitan penta-2-ethylhexylate, diglycerol sorbitan tetra-2-ethylhexylate, mono-cotton
  • the hydrophilic nonionic surfactant is not particularly limited.
  • POE sorbitan fatty acid esters such as POE sorbitan monooleate, POE sorbitan monostearate, POE sorbitan tetraoleate, POE sorbite monolaurate, and POE sorbite mono POE sorbite fatty acid esters such as oleate, POE sorbite pentaoleate, POE sorbite monostearate, POE glycerin fatty acid esters such as POE glycerol monostearate, POE glycerol monoisostearate, POE glycerol triisostearate, POE POE fatty acid esters such as monooleate, POE distearate, POE monodiolate, ethylene glycol stearate, POE lauryl ether, POE POE alkyl ethers such as yl ether, POE stearyl ether,
  • surfactants examples include anionic surfactants such as fatty acid soaps, higher alkyl sulfates, POE lauryl sulfate triethanolamine, alkyl ether sulfates, alkyltrimethylammonium salts, alkylpyridinium salts, alkyl quaternary salts. Stability and skin irritation of cationic surfactants such as ammonium salts, alkyldimethylbenzylammonium salts, alkylamine salts, polyamine fatty acid derivatives, and amphoteric surfactants such as imidazoline amphoteric surfactants and betaine surfactants You may mix
  • anionic surfactants such as fatty acid soaps, higher alkyl sulfates, POE lauryl sulfate triethanolamine, alkyl ether sulfates, alkyltrimethylammonium salts, alkylpyridinium salts, alkyl quaternary salts
  • the humectant is not particularly limited, and examples thereof include xylitol, sorbitol, maltitol, chondroitin sulfate, hyaluronic acid, mucoitin sulfate, caronic acid, atelocollagen, cholesteryl-12-hydroxystearate, sodium lactate, bile salt, dl- Examples include pyrrolidone carboxylate, short-chain soluble collagen, diglycerin (EO) PO adduct, Isaiyobara extract, yarrow extract, and merirot extract.
  • EO diglycerin
  • the higher alcohol is not particularly limited, and examples thereof include linear alcohols such as lauryl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, myristyl alcohol, oleyl alcohol, cetostearyl alcohol, monostearyl glycerin ether (batyl alcohol), 2-decyl.
  • linear alcohols such as lauryl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, myristyl alcohol, oleyl alcohol, cetostearyl alcohol, monostearyl glycerin ether (batyl alcohol), 2-decyl.
  • branched chain alcohols such as tetradecinol, lanolin alcohol, cholesterol, phytosterol, hexyldodecanol, isostearyl alcohol, octyldodecanol, and the like.
  • the sequestering agent is not particularly limited.
  • examples thereof include sodium, gluconic acid, phosphoric acid, citric acid, ascorbic acid, succinic acid, edetic acid and the like.
  • the natural water-soluble polymer is not particularly limited.
  • the semi-synthetic water-soluble polymer is not particularly limited.
  • starch-based polymers such as carboxymethyl starch and methylhydroxypropyl starch, methylcellulose, nitrocellulose, ethylcellulose, methylhydroxypropylcellulose, hydroxyethylcellulose, sodium cellulose sulfate, Examples thereof include cellulose polymers such as hydroxypropylcellulose, sodium carboxymethylcellulose (CMC), crystalline cellulose, and cellulose powder, and alginic acid polymers such as sodium alginate and propylene glycol alginate.
  • CMC carboxymethylcellulose
  • crystalline cellulose cellulose powder
  • alginic acid polymers such as sodium alginate and propylene glycol alginate.
  • the synthetic water-soluble polymer is not particularly limited, and examples thereof include vinyl polymers such as polyvinyl alcohol, polyvinyl methyl ether, and polyvinyl pyrrolidone, and polyoxyethylene polymers such as polyethylene glycol 20,000, 40,000, and 60,000.
  • Polymer polyoxyethylene polyoxypropylene copolymer copolymer polymer, acrylic polymer such as sodium polyacrylate, polyethyl acrylate, polyacrylamide, polyglycerin, polyethyleneimine, cationic polymer, carboxyvinyl polymer, alkyl Modified carboxyvinyl polymer, (hydroxyethyl acrylate / acryloyl dimethyl taurine Na) copolymer, (Na acrylate / acryloyl dimethyl taurine Na) copolymer, (acryloyl dimethyl tantalum) Phosphorus ammonium / vinylpyrrolidone) copolymer, and (ammonium acryloyldimethyltaurate methacrylate Beheneth-25) cross-polymer.
  • acrylic polymer such as sodium polyacrylate, polyethyl acrylate, polyacrylamide, polyglycerin, polyethyleneimine, cationic polymer, carboxyvinyl polymer, alkyl Modified carboxy
  • the inorganic water-soluble polymer is not particularly limited, and examples thereof include bentonite, silicate AlMg (beegum), laponite, hectorite, and silicic anhydride.
  • the UV screening agent is not particularly limited.
  • paraaminobenzoic acid hereinafter abbreviated as PABA
  • PABA paraaminobenzoic acid
  • PABA monoglycerin ester N, N-dipropoxy PABA ethyl ester, N, N-diethoxy PABA ethyl ester, N, N-dimethyl
  • Benzoic acid UV screening agents such as PABA ethyl ester and N, N-dimethyl PABA butyl ester
  • Anthranilic acid UV screening agents such as homomenthyl-N-acetylanthranylate
  • Amyl salicylate Menthyl salicylate, Homomentil salicylate, Octyl salicylate
  • Salicylic acid UV screening agents such as phenyl salicylate, benzyl salicylate, p-isopropanol phenyl salicylate; octylcinnamate, ethyl-4-isoprop
  • Other drug components are not particularly limited and include, for example, vitamin A oil, retinol, retinol palmitate, inosit, pyridoxine hydrochloride, benzyl nicotinate, nicotinamide, nicotinic acid DL- ⁇ -tocopherol, magnesium ascorbate phosphate, 2 Vitamins such as -O- ⁇ -D-glucopyranosyl-L-ascorbic acid, vitamin D2 (ergocaciferol), dl- ⁇ -tocopherol, dl- ⁇ -tocopherol acetate, pantothenic acid, biotin; estradiol, ethinylestradiol, etc.
  • Hormones such as arginine, aspartic acid, cystine, cysteine, methionine, serine, leucine and tryptophan; anti-inflammatory agents such as allantoin and azulene; whitening agents such as arbutin; astringents such as tannic acid; L Menthol, cooling agents and sulfur camphor such as, lysozyme chloride, can be mentioned pyridoxine chloride, and the like.
  • Examples of the various powders include bengara, yellow iron oxide, black iron oxide, titanium mica, iron oxide-coated mica titanium, titanium oxide-coated glass flakes and other bright colored pigments, mica, talc, kaolin, sericite, titanium dioxide,
  • examples thereof include inorganic powders such as silica and organic powders such as polyethylene powder, nylon powder, crosslinked polystyrene, cellulose powder, and silicone powder.
  • a part or all of the powder component is hydrophobized by a known method with a substance such as silicones, fluorine compounds, metal soaps, oils, acyl glutamates in order to improve sensory characteristics and cosmetic durability. Used. Moreover, you may mix and use the other composite powder which does not correspond to this invention.
  • titanium oxide Bengala, antimony red, cadmium yellow, cobalt blue, bitumen, ultramarine, carbon black, graphite and other colored pigments
  • extender pigments include calcium carbonate, kaolin, clay, barium sulfate, aluminum hydroxide and talc.
  • organic pigments pigment components such as soluble azo pigments, insoluble azo pigments, azo lake pigments, condensed azo pigments, copper phthalocyanine pigments, condensed polycyclic pigments; shellac resins, acrylic resins, styrene-acrylic resins, styrene-maleic acid resins It can be used in combination with a binder resin such as a binder resin such as a styrene-acrylic-maleic acid resin, a polyurethane resin, a polyester resin, or a polyamide resin; and a water-miscible organic solvent.
  • a binder resin such as a binder resin such as a styrene-acrylic-maleic acid resin, a polyurethane resin, a polyester resin, or a polyamide resin
  • a water-miscible organic solvent water-miscible organic solvent.
  • coating film forming resins such as acrylic resins, polyester resins, and epoxy resins; various types such as colored pigments, extender pigments, and bright pigments Pigment: Can be used in combination with a curing catalyst, a surface conditioner, an antifoaming agent, a pigment dispersant, a plasticizer, a film-forming aid, an ultraviolet absorber, an antioxidant, and the like.
  • the resin in the paint may be curable or non-curable.
  • Example 1 100 g of zinc oxide (1 type of zinc oxide manufactured by Sakai Chemical Industry Co., Ltd.) was added to a hydrochloric acid aqueous solution consisting of 259 g of 35 mass% hydrochloric acid (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) and 647 g of ion-exchanged water, and the zinc oxide was completely To obtain a zinc chloride aqueous solution. Further, 9.39 g of aluminum nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) dissolved in 90 ml of ion-exchanged water was added to the prepared aqueous zinc chloride solution and dissolved until completely transparent.
  • a hydrochloric acid aqueous solution consisting of 259 g of 35 mass% hydrochloric acid (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) and 647 g of ion-exchanged water, and the zinc oxide was completely To obtain a zinc chloride
  • the precursor before firing was fired in the atmosphere at 400 ° C. for 2 hours using an electric furnace to obtain fine raw material zinc oxide containing aluminum.
  • 96 g of the obtained raw material zinc oxide was repulped with 480 ml of pure water to obtain a slurry. Then, it heated up to 90 degreeC, stirring the slurry.
  • 428.38 g of zinc nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in ion-exchanged water to prepare 360 ml of an aqueous zinc nitrate solution. At this time, the weight of the aqueous zinc nitrate solution was 550.0 g.
  • the aqueous solution was added to the repulp slurry over 2 hours and aged at 90 ° C. for 1 hour with stirring. After aging, the produced slurry was washed by filtration. Then, the square cake zinc compound was obtained by drying the obtained cake at 130 degreeC for 12 hours. The obtained square plate zinc compound was air baked at 450 ° C. for 1 hour to obtain square plate zinc oxide particles. The size and form of the obtained square plate-like zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The ratio of the long side length to the short side length of the obtained rectangular plate-like zinc oxide particles was 1.09, and the long side length to thickness ratio was 9. The length of the long side was 24 ⁇ m. The obtained electron micrograph is shown in FIG. The zinc oxide content was 97.6% by weight, and no heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
  • Example 2 In the same manner as in Example 1, except that 16.48 g of a gallium chloride aqueous solution prepared in advance with gallium chloride (manufactured by Yamanaka Futec Co., Ltd.) was added instead of aluminum nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) Zinc oxide particles were obtained. At this time, gallium was 2 mol% with respect to the zinc element of the raw material zinc oxide. The gallium content concentration of the gallium chloride aqueous solution was 10.6 wt%, and the gallium content concentration was measured with an ICP emission spectroscopic analyzer (SPS1700 HVR type manufactured by Seiko Denshi Kogyo).
  • ICP emission spectroscopic analyzer SPS1700 HVR type manufactured by Seiko Denshi Kogyo
  • the particle size and morphology of the obtained square plate-like zinc oxide were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.).
  • SEM scanning electron microscope
  • the ratio of the length of the long side to the length of the short side of the obtained rectangular plate-like zinc oxide particles was 1.04, and the ratio of the length of the long side to the thickness was 31.
  • the length of the long side was 50 ⁇ m.
  • the zinc oxide content was 96.7% by weight, and no heterogeneous phase was observed from the XRD pattern.
  • Example 3 48 g of FINEX-50 (manufactured by Sakai Chemical Industry Co., Ltd., particle size: 0.02 ⁇ m) was repulped with 240 ml of pure water to obtain a slurry. An aqueous solution in which 4.51 g of aluminum nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 50 ml of ion-exchanged water was mixed in the slurry, and the temperature was raised to 90 ° C. while stirring the slurry. At this time, aluminum was 2 mol% with respect to the zinc element of the raw material zinc oxide.
  • FINEX-50 manufactured by Sakai Chemical Industry Co., Ltd., particle size: 0.02 ⁇ m
  • the size and form of the obtained square plate-like zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-840F, manufactured by JEOL Ltd.).
  • SEM scanning electron microscope
  • the ratio of the length of the long side to the length of the short side of the obtained square plate-like zinc oxide particles was 1.03, and the ratio of the length of the long side to the thickness was 14.
  • the length of the long side was 14 ⁇ m.
  • the obtained electron micrograph is shown in FIG.
  • the zinc oxide content was 98.0% by weight, and no heterogeneous phase was observed from the XRD pattern.
  • the XRD pattern is shown in FIG.
  • Example 4 Square plate-like zinc oxide particles were obtained in the same manner as in Example 1 except that the obtained square plate-like zinc compound was air-fired at 700 ° C. for 1 hour. The size and form of the obtained square plate-like zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The ratio of the length of the long side to the length of the short side of the obtained rectangular plate-like zinc oxide particles was 1.16, and the ratio of the length of the long side to the thickness was 11. The length of the long side was 22 ⁇ m. The obtained electron micrograph is shown in FIG. The zinc oxide content was 97.4% by weight, and no heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
  • Example 5 Square plate-like zinc oxide particles were obtained in the same manner as in Example 1 except that 4.695 g of aluminum nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added. At this time, aluminum was 1 mol% with respect to the zinc element of the raw material zinc oxide. The size and form of the obtained square plate-like zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The ratio of the length of the long side to the length of the short side of the obtained rectangular plate-like zinc oxide particles was 1.13, and the ratio of the length of the long side to the thickness was 8. The length of the long side was 18 ⁇ m. The obtained electron micrograph is shown in FIG. The zinc oxide content was 98.9% by weight, and no heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
  • Example 6 Square plate-like zinc oxide particles were obtained in the same manner as in Example 1 except that 18.78 g of aluminum nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added. At this time, aluminum was 4 mol% with respect to the zinc element of raw material zinc oxide. The size and form of the obtained square plate-like zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The ratio of the length of the long side to the length of the short side of the obtained rectangular plate-like zinc oxide particles was 1.11, and the ratio of the length of the long side to the thickness was 5. The length of the long side was 20 ⁇ m. The obtained electron micrograph is shown in FIG. The zinc oxide content was 96.3% by weight, and no heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
  • Example 7 The obtained square plate-like zinc compound was put in an alumina boat, and a tubular furnace was used to circulate a mixed gas of 0.285 liter / minute of nitrogen gas and 0.015 liter / minute of hydrogen gas at 200 ° C./hour.
  • Square plate-like zinc oxide particles were obtained in the same manner as in Example 1 except that the temperature was raised to 750 ° C. and maintained for 8 hours.
  • the size and form of the obtained square plate-like zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.).
  • the ratio of the length of the long side to the length of the short side of the obtained square plate-like zinc oxide particles was 1.20, and the ratio of the length of the long side to the thickness was 12.
  • the length of the long side was 17 ⁇ m.
  • the obtained electron micrograph is shown in FIG.
  • the zinc oxide content was 97.2% by weight, and no heterogeneous phase was observed from the XRD pattern.
  • Example 8 The obtained square plate-like zinc compound was put in an alumina boat, and a tubular furnace was used to circulate a mixed gas of 0.285 liter / minute of nitrogen gas and 0.015 liter / minute of hydrogen gas at 200 ° C./hour.
  • Square plate-like zinc oxide particles were obtained in the same manner as in Example 2 except that the temperature was raised to 750 ° C. and maintained for 8 hours.
  • the size and form of the obtained square plate-like zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.).
  • the ratio of the long side length to the short side length of the obtained rectangular plate-like zinc oxide particles was 1.08, and the ratio of the long side length to the thickness was 36.
  • the long side length was 58 ⁇ m.
  • the obtained electron micrograph is shown in FIG.
  • the zinc oxide content was 96.3% by weight, and no heterogeneous phase was observed from the XRD pattern.
  • the XRD pattern is shown in
  • Example 1 Zinc oxide particles were obtained in the same manner as in Example 6 except that 428.38 g of zinc nitrate hexahydrate was changed to 196.29 g of zinc chloride (manufactured by Wako Pure Chemical Industries, Ltd.). The size and form of the obtained zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The shape of the obtained zinc oxide particles was indefinite, and the ratio of the length of the long side to the length of the short side and the ratio of the length of the long side of the square plate to the thickness could not be measured. The obtained electron micrograph is shown in FIG. The zinc oxide content was 77.3% by weight, and a heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
  • Example 2 Zinc oxide particles were obtained in the same manner as in Example 5 except that 428.38 g of zinc nitrate hexahydrate was changed to 414.11 g of zinc sulfate heptahydrate (manufactured by Wako Pure Chemical Industries, Ltd.). The size and form of the obtained zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The shape of the obtained zinc oxide particles was indefinite, and the ratio of the length of the long side to the length of the short side and the ratio of the length of the long side of the square plate to the thickness could not be measured. The obtained electron micrograph is shown in FIG. The zinc oxide content was 79.9% by weight, and a heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
  • Example 3 Zinc oxide particles were obtained in the same manner as in Example 1 except that 428.38 g of zinc nitrate hexahydrate was changed to 316.09 g of zinc acetate dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.). The size and form of the obtained zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The shape of the obtained zinc oxide particles was indefinite, and the ratio of the length of the long side to the length of the short side and the ratio of the length of the long side of the square plate to the thickness could not be measured. The obtained electron micrograph is shown in FIG. The zinc oxide content was 97.2% by weight, and no heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
  • Example 4 Zinc oxide particles were obtained in the same manner as in Example 1 except that no aluminum nitrate nonahydrate was added. The size and form of the obtained zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The shape of the obtained zinc oxide particles was needle-like, and the ratio of the length of the long side to the length of the short side and the ratio of the length of the long side of the square plate shape to the thickness could not be measured. The obtained electron micrograph is shown in FIG. Further, no heterogeneous phase was observed from the XRD pattern.
  • Zinc oxide content The content of zinc oxide was analyzed with a wavelength dispersive X-ray fluorescence analyzer (Primus II manufactured by Rigaku Corporation).
  • the length of the long side / the length of the short side is a plate-like shape in a photograph taken with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.) at a magnification that allows 10 particles in one field of view. It is measured by a method of calculating the length of each long side / length of the short side of the particle and calculating the average value of 50 plate-like particles.
  • the ratio of the length of the long side to the thickness, that is, the length / thickness of the long side is the same as when measuring the length of the long side / the length of the short side.
  • the length / thickness is calculated, and the average value of 50 plate-like particles is calculated. Further, the length of the long side is the same as the case of measuring the length of the long side / the length of the short side, the length of the long side of the plate-like particles is measured, and the average value of 50 plate-like particles It is measured by the method of calculating.
  • the volume resistivity value of the square plate-like zinc oxide particles obtained in Example 7 and Example 8 was measured using the following method. Place 0.8 g of sample into a 20 mm ⁇ inner diameter vinyl chloride tube, sandwich the sample using a highly conductive jig that also serves as an electrode on both sides, and apply a load of 200 kgf / cm 2 to the sample. A load was applied with a press. And the resistance value of the electrode both ends was measured with the tester, maintaining the state. From the resistance value, the volume specific resistance value was determined by the following equation.
  • the rectangular plate-like zinc oxide particles of Example 1 and Example 4 are particles having good slipperiness with a small variation in average friction coefficient and friction coefficient as compared with other zinc oxides.
  • FINEX-50 average particle size 20 nm
  • zinc oxide type I average particle size 0.6 ⁇ m
  • large particle zinc oxide LPZINC average particle size 2 ⁇ m
  • the ultraviolet shielding property of the square plate-like zinc oxide particles obtained in Example 1 was measured using the following method. Reflectance was measured with an ultraviolet-visible infrared spectrophotometer (V-570 type spectrophotometer and ILN471 type integrating grade device manufactured by JASCO Corporation) while the obtained powder was compacted. Measurement was performed at a wavelength range of 300 to 800 nm and a measurement speed of 200 nm / min. The results are shown in FIG. It can be seen from FIG. 22 that the rectangular plate-like zinc oxide obtained in Example 1 has an excellent ultraviolet shielding effect.
  • the square plate-like zinc oxide particle particles of the present invention are particles having good sliding properties and can be suitably used as a cosmetic material.
  • the square plate-like zinc oxide particles of the present invention can be suitably used in various applications such as cosmetics, resin compositions, coating compositions, and ink compositions.

Abstract

[Problem] Provided are square-plate-shaped zinc oxide particles having a novel shape which was unknown until now, and a method for producing the same. [Solution] Square-plate-shaped zinc oxide particles which are characterized in that the ratio of the length of the long side to the length of the short side (long-side length/short-side length) is 1.00-1.30, and the ratio of the length of the long side to the thickness (long-side length/thickness) is 3-100.

Description

四角板状酸化亜鉛粒子及びその製造方法Square plate-like zinc oxide particles and method for producing the same
本発明は四角板状酸化亜鉛粒子及びその製造方法に関する。 The present invention relates to rectangular plate-like zinc oxide particles and a method for producing the same.
酸化亜鉛粒子は、紫外線遮蔽性能、導電性、可視光透明性、赤外線遮蔽効果等の性能を有するために、これらの性質が必要とされる化粧料、樹脂組成物、塗料、インキ等の各種用途において使用されている。このような各用途においてすぐれた性質となるよう、酸化亜鉛粒子の形状をコントロールすることが行われている。 Zinc oxide particles have various properties such as cosmetics, resin compositions, paints, and inks that require these properties because they have UV shielding performance, electrical conductivity, visible light transparency, and infrared shielding effectiveness. Used in Control of the shape of the zinc oxide particles is performed so as to have excellent properties in each of these applications.
例えば、特許文献1においては、紫外線吸収剤として使用できる薄片状酸化亜鉛粒子が記載されており、これを各種の用途に使用することが記載されている。更に、特許文献2においては、水熱合成によって、一次粒子が板状に凝集してなる酸化亜鉛粉末が記載されている。特許文献3においては、板状の酸化亜鉛粒子の製造が記載されている。しかしながら、公知の板状酸化亜鉛粒子は、通常、六角形をしているものであって、四角板状の酸化亜鉛粒子は知られておらず、その製造方法も知られていない。 For example, Patent Document 1 describes flaky zinc oxide particles that can be used as an ultraviolet absorber, and describes the use of these in various applications. Furthermore, Patent Document 2 describes a zinc oxide powder in which primary particles are aggregated in a plate shape by hydrothermal synthesis. Patent Document 3 describes the production of plate-like zinc oxide particles. However, the known plate-like zinc oxide particles are usually hexagonal, and the square plate-like zinc oxide particles are not known and the production method is not known.
特開平9-137152号公報JP-A-9-137152 特開2007-223874号公報JP 2007-223874 A 特開平7-187673号公報JP-A-7-187673
本発明は、これまで知られていない新規な形状である四角板状酸化亜鉛粒子及びその製造方法を提供することを目的とするものである。 An object of this invention is to provide the square plate-like zinc oxide particle which is a novel shape which is not known until now, and its manufacturing method.
本発明は、長辺の長さと短辺の長さの比(長辺の長さ/短辺の長さ)が1.00~1.30であり、長辺の長さと厚みの比(長辺の長さ/厚み)が3~100であることを特徴とする四角板状酸化亜鉛粒子である。 In the present invention, the ratio of the long side length to the short side length (long side length / short side length) is 1.00 to 1.30, and the long side length to thickness ratio (long side) The square plate-like zinc oxide particles are characterized in that the side length / thickness is 3 to 100.
上記長辺の長さは、5μm以上100μm以下であることが好ましい。
上記四角板状酸化亜鉛粒子は、酸化亜鉛の含有率が85重量%以上であり、XRDパターンから異相が認められないことが好ましい。
The length of the long side is preferably 5 μm or more and 100 μm or less.
The rectangular plate-like zinc oxide particles preferably have a zinc oxide content of 85% by weight or more, and no foreign phase is observed from the XRD pattern.
本発明は、原料酸化亜鉛、硝酸亜鉛、並びに、3価及び/又は4価の金属元素を溶媒中で混合する工程(1)を有することを特徴とする上記四角板状酸化亜鉛粒子の製造方法でもある。 The present invention has a step (1) of mixing raw material zinc oxide, zinc nitrate, and trivalent and / or tetravalent metal elements in a solvent, and the method for producing the rectangular plate-like zinc oxide particles as described above But there is.
上記製造方法は、3価及び/又は4価の金属元素の一部がまたは全部が原料酸化亜鉛中に存在することが好ましい。
上記製造方法は、3価及び/又は4価の金属元素の一部がまたは全部が溶媒中に溶解及び/又は分散していることが好ましい。
In the above production method, it is preferable that a part or all of the trivalent and / or tetravalent metal element is present in the raw material zinc oxide.
In the above production method, it is preferable that a part or all of the trivalent and / or tetravalent metal element is dissolved and / or dispersed in the solvent.
本発明は、上述した四角板状酸化亜鉛粒子を含有する化粧料でもある。
本発明は、上述した四角板状酸化亜鉛粒子を含有する樹脂組成物でもある。
本発明は、上述した四角板状酸化亜鉛粒子を含有する塗料組成物でもある。
本発明は、上述した四角板状酸化亜鉛粒子を含有するインキ組成物でもある。
This invention is also cosmetics containing the square plate-shaped zinc oxide particle mentioned above.
The present invention is also a resin composition containing the square plate-like zinc oxide particles described above.
The present invention is also a coating composition containing the square plate-like zinc oxide particles described above.
The present invention is also an ink composition containing the square plate-like zinc oxide particles described above.
本発明によって、紫外線遮蔽性能、導電性、すべり性においてすぐれた性能を有し、化粧料、樹脂組成物、塗料、インキ等の分野において好適に使用することができる四角板状酸化亜鉛粒子を提供することができる。 According to the present invention, there are provided square plate-like zinc oxide particles that have excellent ultraviolet shielding performance, conductivity, and slipperiness, and can be suitably used in the fields of cosmetics, resin compositions, paints, inks, and the like. can do.
実施例1によって得られた酸化亜鉛の電子顕微鏡写真を示す図である。1 is an electron micrograph of zinc oxide obtained in Example 1. FIG. 実施例3によって得られた酸化亜鉛の電子顕微鏡写真を示す図である。4 is a view showing an electron micrograph of zinc oxide obtained in Example 3. FIG. 実施例4によって得られた酸化亜鉛の電子顕微鏡写真を示す図である。4 is an electron micrograph of zinc oxide obtained in Example 4. FIG. 実施例5によって得られた酸化亜鉛の電子顕微鏡写真を示す図である。6 is a view showing an electron micrograph of zinc oxide obtained in Example 5. FIG. 実施例6によって得られた酸化亜鉛の電子顕微鏡写真を示す図である。6 is an electron micrograph of zinc oxide obtained in Example 6. FIG. 実施例7によって得られた酸化亜鉛の電子顕微鏡写真を示す図である。6 is an electron micrograph of zinc oxide obtained in Example 7. FIG. 実施例8によって得られた酸化亜鉛の電子顕微鏡写真を示す図である。6 is an electron micrograph of zinc oxide obtained in Example 8. FIG. 比較例1によって得られた酸化亜鉛の電子顕微鏡写真を示す図である。2 is an electron micrograph of zinc oxide obtained in Comparative Example 1. FIG. 比較例2によって得られた酸化亜鉛の電子顕微鏡写真を示す図である。6 is an electron micrograph of zinc oxide obtained in Comparative Example 2. FIG. 比較例3によって得られた酸化亜鉛の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the zinc oxide obtained by the comparative example 3. 比較例4によって得られた酸化亜鉛の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the zinc oxide obtained by the comparative example 4. 実施例1によって得られた酸化亜鉛のXRDパターンを示す図である。2 is a diagram showing an XRD pattern of zinc oxide obtained in Example 1. FIG. 実施例3によって得られた酸化亜鉛のXRDパターンを示す図である。4 is a diagram showing an XRD pattern of zinc oxide obtained in Example 3. FIG. 実施例4によって得られた酸化亜鉛のXRDパターンを示す図である。6 is a diagram showing an XRD pattern of zinc oxide obtained in Example 4. FIG. 実施例5によって得られた酸化亜鉛のXRDパターンを示す図である。6 is a diagram showing an XRD pattern of zinc oxide obtained in Example 5. FIG. 実施例6によって得られた酸化亜鉛のXRDパターンを示す図である。6 is a diagram showing an XRD pattern of zinc oxide obtained in Example 6. FIG. 実施例7によって得られた酸化亜鉛のXRDパターンを示す図である。6 is a diagram showing an XRD pattern of zinc oxide obtained in Example 7. FIG. 実施例8によって得られた酸化亜鉛のXRDパターンを示す図である。6 is a diagram showing an XRD pattern of zinc oxide obtained in Example 8. FIG. 比較例1によって得られた酸化亜鉛のXRDパターンを示す図である。6 is a diagram showing an XRD pattern of zinc oxide obtained in Comparative Example 1. FIG. 比較例2によって得られた酸化亜鉛のXRDパターンを示す図である。It is a figure which shows the XRD pattern of the zinc oxide obtained by the comparative example 2. 比較例3によって得られた酸化亜鉛のXRDパターンを示す図である。It is a figure which shows the XRD pattern of the zinc oxide obtained by the comparative example 3. 実施例1によって得られた酸化亜鉛のUV反射率スペクトルを示す図である。2 is a diagram showing a UV reflectance spectrum of zinc oxide obtained in Example 1. FIG.
本発明は、四角板状の形状を有する酸化亜鉛粒子である。四角板状とは、四角形の板状であり、好ましくは正方形板状、長方形板状、平行四辺形板状、菱形板状を指すものである。本発明の四角板状酸化亜鉛粒子は、長辺の長さと短辺の長さの比、すなわち長辺の長さ/短辺の長さが1.00~1.30であり、長辺の長さと厚さの比、すなわち長辺の長さ/厚みが3~100である四角板状酸化亜鉛粒子である。このような四角板状の形状を有する酸化亜鉛粒子は従来知られていないものであり、本発明によって完成されたものである。本発明の四角板状酸化亜鉛粒子は、板状であることから、すべり性がよく、特に、化粧料中の配合成分として使用した場合に、優れた使用感が期待される。更に、樹脂組成物、塗料、インキ等に配合することができる。なお、本発明において「長辺」とは、四角形状のうち最も長い辺の長さを指し、「短辺」とは、四角形状のうち最も短い辺の長さを指す。正方形板状、菱形板状の場合は、すべての辺の長さが同一となるが、この場合は、長辺の長さ/短辺の長さが1.00となる。 The present invention is zinc oxide particles having a square plate shape. The square plate shape is a quadrangular plate shape, preferably a square plate shape, a rectangular plate shape, a parallelogram plate shape, or a rhombus plate shape. The rectangular plate-like zinc oxide particles of the present invention have a ratio of the length of the long side to the length of the short side, that is, the length of the long side / the length of the short side is 1.00 to 1.30. Square plate-like zinc oxide particles having a ratio of length to thickness, that is, the length / thickness of the long side is 3 to 100. Zinc oxide particles having such a square plate shape have not been known so far and have been completed by the present invention. Since the square plate-like zinc oxide particles of the present invention are plate-like, they have good slip properties, and particularly when used as a blending component in cosmetics, excellent usability is expected. Furthermore, it can mix | blend with a resin composition, a coating material, ink, etc. In the present invention, “long side” refers to the length of the longest side of the quadrangular shape, and “short side” refers to the length of the shortest side of the quadrangular shape. In the case of a square plate shape or a rhombus plate shape, the lengths of all sides are the same. In this case, the length of the long side / the length of the short side is 1.00.
本発明の四角板状酸化亜鉛粒子は、長辺の長さ/短辺の長さが1.00~1.30である。
ここでの長辺の長さ/短辺の長さは、走査型電子顕微鏡(SEM、JSM-7000F、日本電子社製)で1視野中に粒子が10個入るような倍率で撮影した写真中の板状粒子のそれぞれの長辺の長さ/短辺の長さを算出し、板状粒子50個の平均値を算出するという方法によって測定したものである。
上記範囲のものとすることで、滑り性が向上するという点で好ましいものである。上記比は、1.00~1.25であることがより好ましい。
The square plate-like zinc oxide particles of the present invention have a long side length / short side length of 1.00 to 1.30.
Here, the length of the long side / the length of the short side is shown in a photograph taken with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.) at a magnification such that 10 particles can be contained in one field of view. The length of each long side / the length of the short side of each plate-like particle was calculated, and the average value of 50 plate-like particles was calculated.
By setting it as the said range, it is preferable at the point that slipperiness improves. The ratio is more preferably 1.00 to 1.25.
本発明の四角板状酸化亜鉛粒子は、長辺の長さ/厚みが3~100である。上記範囲内のものとすることで、良好な板状形状を有するものとなり、上述した本発明の目的を良好に達成することができる。上記比は、4~70であることがより好ましく、5~50であることが好ましい。なお、ここでの長辺の長さ/厚みは、長辺の長さ/短辺の長さを計測した場合と同様にして、板状の側面を厚みとして長辺の長さ/厚みを算出し、板状粒子50個の平均値を算出するという方法によって測定したものである。 The rectangular plate-like zinc oxide particles of the present invention have a long side length / thickness of 3 to 100. By setting it as the thing within the said range, it will have a favorable plate-shaped shape and the objective of this invention mentioned above can be achieved favorably. The ratio is more preferably 4 to 70, and preferably 5 to 50. Here, the length / thickness of the long side is the same as when measuring the length of the long side / the length of the short side, and the length / thickness of the long side is calculated with the plate-like side face as the thickness. The average value of 50 plate-like particles is measured by a method of calculating.
本発明の四角板状酸化亜鉛粒子は、長辺の長さが5μm以上100μm以下であることが好ましい。5μm未満であると、滑り性が悪くなるという点で問題を生じる場合があり、100μmを超えると樹脂への分散性が悪くなるという点で問題を生じる場合がある。上記長辺の長さの下限は、10μmであることがより好ましく、上記長辺の長さの上限は、70μmであることがより好ましい。なお、ここでの長辺の長さは、長辺の長さ/短辺の長さを計測した場合と同様にして、板状粒子の長辺の長さを測定し、板状粒子50個の平均値を算出するという方法によって測定したものである。 The square plate-like zinc oxide particles of the present invention preferably have a long side length of 5 μm or more and 100 μm or less. If the thickness is less than 5 μm, there may be a problem in that the slipperiness is deteriorated, and if it exceeds 100 μm, a problem may occur in that the dispersibility in the resin is deteriorated. The lower limit of the length of the long side is more preferably 10 μm, and the upper limit of the length of the long side is more preferably 70 μm. Here, the length of the long side is the same as the case of measuring the length of the long side / the length of the short side, and the length of the long side of the plate-like particles is measured to obtain 50 plate-like particles. It is measured by the method of calculating the average value of.
本発明の四角板状酸化亜鉛粒子は、酸化亜鉛の含有率が85重量%以上(金属元素の酸化物換算)であることが好ましい。すなわち、不純物として含まれる酸化亜鉛以外の成分が一定割合以下であるものであることによって、紫外線遮蔽効果低下が抑えられるという点で好ましい。なお、ここでいう酸化亜鉛の含有率は、波長分散型蛍光X線分析装置(リガク社製PrimusII)にて分析した。上記含有率は、90重量%以上がより好ましく、95重量%以上が更に好ましい。 The rectangular plate-like zinc oxide particles of the present invention preferably have a zinc oxide content of 85% by weight or more (in terms of metal element oxide). That is, it is preferable that the component other than zinc oxide contained as an impurity is a certain ratio or less, so that a decrease in the ultraviolet shielding effect can be suppressed. In addition, the content rate of zinc oxide here was analyzed with the wavelength dispersion type | mold fluorescence X-ray-analysis apparatus (PrimusII by Rigaku). The content is more preferably 90% by weight or more, and still more preferably 95% by weight or more.
本発明の四角板状酸化亜鉛粒子は、すべり性が良好であるため、化粧料に配合した場合に優れた性能を有するものである。具体的には、平均摩擦係数が0.85以下であることが好ましく、0.80以下であることが更に好ましい。このような数値範囲の粒子は化粧料に配合した場合の使用感において良好な性能を示すものである。また、摩擦係数の平均偏差は、0.015以下が好ましく、0.013以下が更に好ましい。摩擦係数の平均偏差が上記範囲内であると、なめらかな感触が得られるという点で好ましいものである。なお、上述した平均摩擦係数、摩擦係数の平均偏差は実施例において詳述した方法によって測定した値である。 Since the square plate-like zinc oxide particles of the present invention have good sliding properties, they have excellent performance when blended in cosmetics. Specifically, the average friction coefficient is preferably 0.85 or less, and more preferably 0.80 or less. Particles in such a numerical range show good performance in use feeling when blended in cosmetics. Further, the average deviation of the friction coefficient is preferably 0.015 or less, and more preferably 0.013 or less. When the average deviation of the friction coefficient is within the above range, it is preferable in that a smooth feel can be obtained. In addition, the average friction coefficient mentioned above and the average deviation of a friction coefficient are the values measured by the method explained in full detail in the Example.
以下に詳述する本発明の四角板状酸化亜鉛粒子の製造方法においては、一定量の3価及び/又は4価の金属元素存在下で原料酸化亜鉛と硝酸亜鉛との混合を行う。これらのうち一部の3価及び/又は4価の金属元素は、四角板状酸化亜鉛中に取り込まれているが、その存在量は、7.5mol%以下であることが好ましい。上記範囲を超えて他元素が存在した場合は、酸化亜鉛の結晶性が低下し、紫外線遮蔽性能が低下するという点で好ましくない。上限は、4.5mol%であることがより好ましく、3.6mol%であることが更に好ましく、2.5mol%であることが更に好ましい。下限は、0.004mol%であることが好ましく、0.04mol%であることが更に好ましく、0.25mol%であることが更に好ましい。 In the method for producing rectangular plate-like zinc oxide particles of the present invention described in detail below, raw material zinc oxide and zinc nitrate are mixed in the presence of a certain amount of trivalent and / or tetravalent metal elements. Among these, some of the trivalent and / or tetravalent metal elements are incorporated in the rectangular plate-like zinc oxide, and the abundance thereof is preferably 7.5 mol% or less. When other elements are present beyond the above range, the crystallinity of zinc oxide is lowered and the ultraviolet shielding performance is lowered, which is not preferable. The upper limit is more preferably 4.5 mol%, still more preferably 3.6 mol%, and even more preferably 2.5 mol%. The lower limit is preferably 0.004 mol%, more preferably 0.04 mol%, still more preferably 0.25 mol%.
本発明の四角板状酸化亜鉛粒子は、XRDパターンから異相が認められないことが好ましい。ここでいう「XRDパターンから異相が認められない」とは、X線回折装置RINT-TTRIII(リガク社製、X線源CuKα)により測定を行ったもので、2θ=31.4°~32.1°の範囲にピークトップがあるピークと2θ=34.0°~34.9°の範囲にピークトップがあるピークと2θ=35.8°~36.8°の範囲にピークトップがあるピークと2θ=47.1°~48.0°の範囲にピークトップがあるピークと2θ=56.2°~57.2°の範囲にピークトップがあるピークとで表されるものを酸化亜鉛とし、その5本のピークを除いた酸化亜鉛以外のピークのうち、酸化亜鉛メインピークに対する相対強度(cps)比が1/20以上のものを含まないことを意味する。すなわち、このような状態の酸化亜鉛は、結晶構造上、酸化物以外の状態となっている亜鉛元素が実質的に存在しないものとなる。 It is preferable that the heterogeneous phase is not recognized from the XRD pattern of the square plate-like zinc oxide particles of the present invention. “No heterogeneous phase is observed from the XRD pattern” here is measured with an X-ray diffractometer RINT-TTRIII (manufactured by Rigaku Corporation, X-ray source CuKα), and 2θ = 31.4 ° to 32.32. A peak with a peak top in the range of 1 °, a peak with a peak top in the range of 2θ = 34.0 ° to 34.9 °, and a peak with a peak top in the range of 2θ = 35.8 ° to 36.8 ° And zinc oxide is a peak having a peak top in the range of 2θ = 47.1 ° to 48.0 ° and a peak having a peak top in the range of 2θ = 56.2 ° to 57.2 °. This means that, among the peaks other than zinc oxide excluding the five peaks, those having a relative intensity (cps) ratio of 1/20 or more with respect to the zinc oxide main peak are not included. That is, the zinc oxide in such a state is substantially free of zinc element in a state other than the oxide due to the crystal structure.
上述したような本発明の四角板状酸化亜鉛粒子は、原料酸化亜鉛、硝酸亜鉛、並びに、3価及び/又は4価の金属元素を溶媒中で混合する工程(1)を有する板状酸化亜鉛粒子の製造方法によって得ることができる。このような製造方法も本発明の一つである。すなわち、硝酸亜鉛溶液中で原料酸化亜鉛の一部を溶解、再析出させることによる酸化亜鉛粒子の製造方法において、当該工程を3価及び/又は4価の金属元素の存在下で混合する点に特徴を有するものである。この時、原料酸化亜鉛は完全に溶解させず、スラリーの状態であることが好ましい。このような新規の製造方法によって酸化亜鉛粒子を製造することによって、上述した特徴的な形状を有する酸化亜鉛粒子を得ることができる。 The rectangular plate-like zinc oxide particles of the present invention as described above are a plate-like zinc oxide having a step (1) of mixing raw material zinc oxide, zinc nitrate, and trivalent and / or tetravalent metal elements in a solvent. It can be obtained by a method for producing particles. Such a manufacturing method is also one aspect of the present invention. That is, in the method for producing zinc oxide particles by dissolving and reprecipitating a part of the raw material zinc oxide in a zinc nitrate solution, the process is mixed in the presence of a trivalent and / or tetravalent metal element. It has characteristics. At this time, it is preferable that the raw material zinc oxide is not completely dissolved and is in a slurry state. By producing zinc oxide particles by such a novel production method, zinc oxide particles having the above-described characteristic shape can be obtained.
なお、本発明の製造方法の特徴は、上記工程(1)において、3価及び/又は4価の金属元素の存在下で原料酸化亜鉛と硝酸亜鉛を混合する点にあるが、当該3価及び/又は4価の金属元素は、スラリーの液体媒体中に溶解したものであってもよいし、原料酸化亜鉛中に酸化物、水酸化物等の状態で混在した状態であっても良いし、酸化物等の金属化合物又は金属粉末の状態でスラリー中に分散した状態であっても良い。すなわちいずれの形態であるを問わず、反応系であるスラリー中に、イオン、金属、酸化物、水酸化物等の状態で存在していればよい。 The production method of the present invention is characterized in that in the step (1), the raw material zinc oxide and zinc nitrate are mixed in the presence of a trivalent and / or tetravalent metal element. The tetravalent metal element may be dissolved in a slurry liquid medium, or may be mixed in the raw material zinc oxide in the state of oxide, hydroxide, etc. It may be in a state of being dispersed in the slurry in the form of a metal compound such as an oxide or a metal powder. That is, it may be present in any state such as ions, metals, oxides, hydroxides, etc., in the slurry as the reaction system regardless of the form.
上記工程(1)は、より好ましくは、3価及び/又は4価の金属元素がイオンの状態で、スラリー中の液体媒体中に溶解したもの(第一の態様)であるか、原料酸化亜鉛として3価及び/又は4価の金属元素を含有するものを使用して行う(第二の態様)ことが好ましい。 More preferably, the step (1) is a trivalent and / or tetravalent metal element dissolved in a liquid medium in a slurry in a ionic state (first aspect), or raw material zinc oxide It is preferable to use a material containing a trivalent and / or tetravalent metal element (second embodiment).
上記3価及び/又は4価の金属元素としては特に限定されず、例えば、アルミニウム、スズ、チタン、ガリウム、インジウム等を挙げることができる。なかでも、アルミニウムは安価であり、安全性が高い点から好ましい。また、導電性を付与する場合にはアルミニウム又はガリウムが好ましく、ガリウムがより好ましい。 The trivalent and / or tetravalent metal element is not particularly limited, and examples thereof include aluminum, tin, titanium, gallium, and indium. Among these, aluminum is preferable because it is inexpensive and has high safety. Moreover, when providing electroconductivity, aluminum or gallium is preferable and gallium is more preferable.
上記3価及び/又は4価の金属元素は、上記原料酸化亜鉛の亜鉛元素に対して、0.01mol%~10mol%の割合で使用することが好ましい。0.1mol%~8.0mol%の割合で使用することが好ましく、0.5mol%~5.0mol%の割合で使用することが更に好ましい。 The trivalent and / or tetravalent metal element is preferably used in a proportion of 0.01 mol% to 10 mol% with respect to the zinc element of the raw material zinc oxide. It is preferably used at a rate of 0.1 mol% to 8.0 mol%, more preferably at a rate of 0.5 mol% to 5.0 mol%.
上記工程(1)は、原料酸化亜鉛を含有するスラリー中で混合を行うものである。スラリーを構成する液体媒体は、水又は水と水性有機溶媒の混合液体であることが好ましく、水であることが最も好ましい。水と水性有機溶媒の混合液体を使用する場合は、水性有機溶媒として、メタノール、エタノール等の低級アルコール、アセトン、エチレングリコール、ジエチレングリコール、ポリエチレングリコール等の水と任意の割合で混合させることができる溶媒を使用することができ、水性有機溶媒の使用量は、混合溶媒全量に対して1~30重量%であることが好ましい。 In the step (1), mixing is performed in a slurry containing raw material zinc oxide. The liquid medium constituting the slurry is preferably water or a mixed liquid of water and an aqueous organic solvent, and most preferably water. When using a liquid mixture of water and an aqueous organic solvent, the aqueous organic solvent can be mixed with water such as lower alcohols such as methanol and ethanol, water such as acetone, ethylene glycol, diethylene glycol, and polyethylene glycol at an arbitrary ratio. The aqueous organic solvent is preferably used in an amount of 1 to 30% by weight based on the total amount of the mixed solvent.
上記原料酸化亜鉛としては、その粒子径、粒子形状などを特に限定するものではないが、例えば、球状、楕円状、花びら状、針状、テトラポット型、ウィスカー状、ロッド状であるものを使用することができる。 The raw material zinc oxide is not particularly limited in its particle diameter, particle shape, etc., but for example, those having a spherical shape, an elliptical shape, a petal shape, a needle shape, a tetrapot shape, a whisker shape, or a rod shape are used. can do.
上記原料酸化亜鉛は、市販のものを使用してもよいし、合成して使用してもよい。市販のものとしては例えば、FINEX-50(堺化学工業社製)、酸化亜鉛I種(堺化学工業社製)等を使用することができる。合成して使用する場合の合成法は特に限定されず、例えば焼成して酸化亜鉛となる前駆体化合物を焼成することによって得られた各種酸化亜鉛を使用することができる。
上記前駆体化合物としては、特に限定されず、例えば、水酸化亜鉛、炭酸亜鉛、塩基性炭酸亜鉛、硫酸亜鉛や硝酸亜鉛等を挙げることができる。
The raw material zinc oxide may be a commercially available one, or may be synthesized and used. Examples of commercially available products include FINEX-50 (manufactured by Sakai Chemical Industry Co., Ltd.), zinc oxide type I (manufactured by Sakai Chemical Industry Co., Ltd.), and the like. The synthesis method in the case of synthesizing and using is not specifically limited, For example, the various zinc oxides obtained by baking the precursor compound which baked and becomes zinc oxide can be used.
The precursor compound is not particularly limited, and examples thereof include zinc hydroxide, zinc carbonate, basic zinc carbonate, zinc sulfate, and zinc nitrate.
上記第二の態様によって四角板状酸化亜鉛粒子を製造する場合は、原料酸化亜鉛は3価及び/又は4価の金属元素を含有するものであることが必要である。3価及び/又は4価の金属元素を含有する酸化亜鉛の製造方法は特に限定されるものではないが、例えば、亜鉛塩水溶液と3価及び/又は4価の金属元素含有水溶液を混合し、混合溶液のpHを調整することによって、水酸化物沈殿を形成し、得られた沈殿を濾過した後焼成する方法、固相法、共沈法、スプレードライ法、液中表面処理法等を挙げることができる。 In the case of producing square plate-like zinc oxide particles according to the second aspect, the raw material zinc oxide needs to contain a trivalent and / or tetravalent metal element. The method for producing zinc oxide containing a trivalent and / or tetravalent metal element is not particularly limited. For example, a zinc salt aqueous solution and a trivalent and / or tetravalent metal element-containing aqueous solution are mixed, By adjusting the pH of the mixed solution, a hydroxide precipitate is formed, and the resulting precipitate is filtered and then baked, a solid phase method, a coprecipitation method, a spray drying method, an in-liquid surface treatment method, etc. be able to.
上述した方法による3価及び/又は4価の金属元素を含有する上記原料酸化亜鉛の製造方法の一例について、以下詳述する。
亜鉛塩水溶液として使用することができる亜鉛塩化合物としては特に限定されず、塩酸、硝酸、硫酸、酢酸、シュウ酸、脂肪酸等の亜鉛塩を使用することができる。これを水、アルコール、これらの混合溶媒等の溶媒に溶解し、亜鉛塩水溶液として使用することができる。また、原料として金属亜鉛や酸化亜鉛を使用して、これらを酸等で溶解して得られた亜鉛塩水溶液であってもよい。上記方法においては、これらの化合物を使用して、水和水を含まない金属塩として50~200g/kgの亜鉛塩水溶液とすることが好ましい。
An example of a method for producing the raw material zinc oxide containing trivalent and / or tetravalent metal elements by the above-described method will be described in detail below.
It does not specifically limit as a zinc salt compound which can be used as a zinc salt aqueous solution, Zinc salts, such as hydrochloric acid, nitric acid, a sulfuric acid, an acetic acid, an oxalic acid, a fatty acid, can be used. This can be dissolved in a solvent such as water, alcohol or a mixed solvent thereof and used as an aqueous zinc salt solution. Moreover, the zinc salt aqueous solution obtained by using metal zinc and zinc oxide as a raw material, and melt | dissolving these with an acid etc. may be sufficient. In the above method, it is preferable to use these compounds to form a 50 to 200 g / kg zinc salt aqueous solution as a metal salt containing no hydration water.
3価及び/又は4価の金属元素含有水溶液としては特に限定されず、原料として硝酸アルミニウム、硫酸アルミニウム、塩化アルミニウム、硝酸ガリウム、硫酸ガリウム、塩化ガリウム、酸化ガリウム、塩化インジウム、酸化インジウム、四塩化チタン、硫酸チタニル、チタンテトライソプロポキシド、チタン酸ナトリウム、硝酸スズ、塩化スズ、酸化スズ、塩化ジルコニウム、硝酸ジルコニウム、酸化ジルコニウム等を使用することができる。
上記方法においては、これらの化合物を使用して、水和水を含まない金属塩として10~300g/kgの3価及び/又は4価の金属元素を含有する水溶液とすることが好ましい。
The trivalent and / or tetravalent metal element-containing aqueous solution is not particularly limited, and the raw materials include aluminum nitrate, aluminum sulfate, aluminum chloride, gallium nitrate, gallium sulfate, gallium chloride, gallium oxide, indium chloride, indium oxide, and tetrachloride. Titanium, titanyl sulfate, titanium tetraisopropoxide, sodium titanate, tin nitrate, tin chloride, tin oxide, zirconium chloride, zirconium nitrate, zirconium oxide and the like can be used.
In the above method, these compounds are preferably used to form an aqueous solution containing 10 to 300 g / kg of a trivalent and / or tetravalent metal element as a metal salt containing no hydration water.
そして、これらを上記原料酸化亜鉛中に必要とされる所定量の3価及び/又は4価の金属元素量に合わせた比で混合する。その後、pHを7~8の範囲となるように調整することで、3価及び/又は4価の金属元素を一部に含有する水酸化亜鉛を沈降させ、これを濾過し、必要に応じて水洗、焼成することによって、3価及び/又は4価の金属元素を含む酸化亜鉛を得ることができる。 And these are mixed in the ratio according to the predetermined amount of trivalent and / or tetravalent metal elements required in the raw material zinc oxide. Thereafter, by adjusting the pH to be in the range of 7 to 8, zinc hydroxide partially containing a trivalent and / or tetravalent metal element is precipitated, filtered, and if necessary By washing with water and firing, zinc oxide containing a trivalent and / or tetravalent metal element can be obtained.
上記工程(1)において、原料酸化亜鉛及び硝酸亜鉛を含有するスラリーを調製するとき、上記原料酸化亜鉛は、混合スラリー全量に対して1~40重量%の濃度とすることが好ましい。1~20重量%の濃度とすることがより好ましく、5~10重量%とすることが更に好ましい。また、硝酸亜鉛は、上記混合スラリー全量に対して水和水を含まない金属塩として5~50重量%の濃度とすることが好ましい。10~40重量%の濃度とすることがより好ましく、15~30重量%とすることが更に好ましい。当該範囲内のものとすることで、良好に目的とする四角板状酸化亜鉛粒子を得ることができる。 In the step (1), when preparing a slurry containing raw material zinc oxide and zinc nitrate, the raw material zinc oxide is preferably in a concentration of 1 to 40% by weight based on the total amount of the mixed slurry. The concentration is more preferably 1 to 20% by weight, and further preferably 5 to 10% by weight. The zinc nitrate is preferably 5 to 50% by weight as a metal salt containing no hydration water with respect to the total amount of the above mixed slurry. The concentration is more preferably 10 to 40% by weight, and further preferably 15 to 30% by weight. By setting it within the above range, the desired square plate-like zinc oxide particles can be obtained satisfactorily.
上記工程(1)においては、硝酸亜鉛を使用することが必要である。塩化亜鉛、硫酸亜鉛等のその他の亜鉛塩化合物を使用した場合は、上述したような特定の形状を有する本発明の四角板状酸化亜鉛粒子を得ることができないためである。 In the step (1), it is necessary to use zinc nitrate. This is because when other zinc salt compounds such as zinc chloride and zinc sulfate are used, the square plate-like zinc oxide particles of the present invention having the specific shape as described above cannot be obtained.
上記第一の態様においては、当該工程(1)において、3価及び/又は4価の金属元素のイオン性の化合物をスラリーに添加し、3価及び/又は4価の金属イオンの存在下で混合を行う。
上記第二の態様においては、当該工程(1)において、3価及び/又は4価の金属元素を含有する原料酸化亜鉛を使用して混合を行う。
In the first aspect, in the step (1), an ionic compound of a trivalent and / or tetravalent metal element is added to the slurry, and in the presence of a trivalent and / or tetravalent metal ion. Mix.
In said 2nd aspect, in the said process (1), it mixes using the raw material zinc oxide containing a trivalent and / or tetravalent metal element.
上記第一の態様において使用することができる3価及び/又は4価の金属元素のイオン性の化合物としては特に限定されず、例えば、硝酸アルミニウム、硫酸アルミニウム、塩化アルミニウム、硝酸ガリウム、硫酸ガリウム、塩化ガリウム、塩化インジウム、四塩化チタン、硫酸チタニル、チタンテトライソプロポキシド、チタン酸ナトリウム、硝酸スズ、塩化スズ、塩化ジルコニウム、硝酸ジルコニウム等を挙げることができる。 The ionic compound of a trivalent and / or tetravalent metal element that can be used in the first aspect is not particularly limited. For example, aluminum nitrate, aluminum sulfate, aluminum chloride, gallium nitrate, gallium sulfate, Examples include gallium chloride, indium chloride, titanium tetrachloride, titanyl sulfate, titanium tetraisopropoxide, sodium titanate, tin nitrate, tin chloride, zirconium chloride, and zirconium nitrate.
なお、当該第一の態様において、原料酸化亜鉛として、上述した3価及び/又は4価の金属元素を含有する原料酸化亜鉛を使用して、第一の態様及び第二の態様の両方の条件を兼ね備えた条件下で混合を行うものであっても差し支えない。 In addition, in the said 1st aspect, using the raw material zinc oxide containing the trivalent and / or tetravalent metal element mentioned above as raw material zinc oxide, the conditions of both the first aspect and the second aspect There is no problem even if the mixing is performed under the condition of having both.
上記工程(1)における混合は、常圧もしくは水熱、ソルボサーマルにおけるスラリー温度が30℃~200℃においてスラリーを撹拌しながら行うことができる。スラリー温度は、45℃~180℃がより好ましく、45℃~110℃が更に好ましい。混合時間は混合温度にもよるが、0.5~5時間で行うことができる。 The mixing in the above step (1) can be carried out while stirring the slurry at a normal pressure, hydrothermal, or solvothermal slurry temperature of 30 ° C. to 200 ° C. The slurry temperature is more preferably 45 ° C. to 180 ° C., and further preferably 45 ° C. to 110 ° C. Although mixing time depends on the mixing temperature, it can be carried out in 0.5 to 5 hours.
スラリーは、液体媒体中に、原料酸化亜鉛及びその他必要な成分を混合することによって調製することができる。また、必要に応じて分散剤を使用しても良い。分散剤としては特に限定されず、使用量は、1~10重量%であることが好ましい。 The slurry can be prepared by mixing raw material zinc oxide and other necessary components in a liquid medium. Moreover, you may use a dispersing agent as needed. The dispersant is not particularly limited, and the amount used is preferably 1 to 10% by weight.
上記工程(1)を行ったスラリーに対して、その後、濾過を行い、必要に応じて水洗、乾燥、焼成を行うことで、目的の四角板状酸化亜鉛粒子を得ることができる。 The slurry having been subjected to the above step (1) is then filtered, and washed with water, dried and fired as necessary to obtain the desired rectangular plate-like zinc oxide particles.
焼成を行う場合、焼成温度は300~1000℃であることが好ましい。300℃以上であれば結晶性が高く、紫外線遮蔽効果が高くなる点で好ましい。上記工程(1)が終了した時点で四角板状は形成されており、焼成雰囲気は特に限定されず、大気、酸素、窒素、二酸化炭素、水素、アルゴン、メタンなどが挙げられる。導電性を付与する場合は、還元雰囲気で焼成することが好ましい。焼成時間は、焼成温度にもよるが、1~5時間であることが好ましい。このように焼成して得られた四角板状酸化亜鉛は、XRDパターンから異相が見られないものとすることが容易である点から、特に好ましい。 When firing, the firing temperature is preferably 300 to 1000 ° C. If it is 300 degreeC or more, it is preferable at the point which crystallinity is high and the ultraviolet-ray shielding effect becomes high. When the step (1) is completed, a square plate shape is formed, and the firing atmosphere is not particularly limited, and examples thereof include air, oxygen, nitrogen, carbon dioxide, hydrogen, argon, and methane. When imparting electrical conductivity, firing in a reducing atmosphere is preferred. Although the firing time depends on the firing temperature, it is preferably 1 to 5 hours. The square plate-like zinc oxide obtained by firing in this manner is particularly preferable because it is easy to prevent a heterogeneous phase from being seen from the XRD pattern.
上記工程(1)によって四角板状亜鉛化合物粒子を得た後、必要に応じて表面処理を行うものであってもよい。例えば、上記工程(1)による混合を終了した後の四角板状亜鉛化合物粒子を含有するスラリーに対してそのまま表面処理を施してもよいし、その後、濾過を行った四角板状亜鉛化合物を再度水中に分散して表面処理を施しても良いし、焼成を行った後で再度水中に分散して表面処理を施すものであってもよいし、焼成を行った後でそのまま表面処理を施してもよい。ここでいう、四角板状亜鉛化合物とは、四角板状酸化亜鉛及び/又は焼成して四角板状酸化亜鉛となる四角板状亜鉛化合物であり、一種の化合物であってもよいし、数種の化合物の混合物であってもよい。 After obtaining the square plate-like zinc compound particles by the step (1), surface treatment may be performed as necessary. For example, the slurry containing the square plate-like zinc compound particles after completion of the mixing in the step (1) may be subjected to surface treatment as it is, and then the filtered square plate-like zinc compound is again treated. The surface treatment may be performed by dispersing in water, the surface treatment may be performed by dispersing again in water after firing, or the surface treatment may be performed as it is after firing. Also good. The square plate-like zinc compound referred to here is a square plate-like zinc oxide and / or a square plate-like zinc compound that is fired to form a square plate-like zinc oxide, which may be a kind of compound or several types. A mixture of these compounds may also be used.
上記表面処理としては特に限定されず、ケイ素酸化物、ケイ素酸化物の水和物、アルミニウムの酸化物及びアルミニウムの水酸化物からなる群から選択される少なくとも1種の化合物による皮膜を形成させる表面処理、撥水性有機化合物による表面処理、シランカップリング剤、チタンカップリング剤等のカップリング剤による表面処理等を挙げることができる。これらの2種以上の表面処理を組み合わせて行うものであってもよい。 The surface treatment is not particularly limited, and the surface on which a film is formed with at least one compound selected from the group consisting of silicon oxide, hydrated silicon oxide, aluminum oxide, and aluminum hydroxide. Examples thereof include surface treatment with a water repellent organic compound, surface treatment with a coupling agent such as a silane coupling agent and a titanium coupling agent. A combination of these two or more surface treatments may be used.
上記ケイ素酸化物、ケイ素酸化物の水和物、アルミニウムの酸化物及びアルミニウムの水酸化物からなる群から選択される少なくとも1種の化合物による皮膜の形成は、Si源化合物及び/又はAl源化合物を、加水分解や加熱分解などにより粉体表面に析出させる等の方法で行うことができる。上記Si源化合物及び/又はAl源化合物としては、テトラアルコキシシランやその加水分解縮合物、ケイ酸ナトリウム、ケイ酸カリウム、アルミニウムアルコキシドやその加水分解縮合物、アルミン酸ナトリウム等、容易にSiOやAl(OH)、Alに変換する化合物等を使用することができる。 The formation of the film with at least one compound selected from the group consisting of silicon oxide, silicon oxide hydrate, aluminum oxide, and aluminum hydroxide is performed by using a Si source compound and / or an Al source compound. Can be performed by a method such as precipitation on the powder surface by hydrolysis, thermal decomposition, or the like. As the Si source compound and / or a Al source compound, tetraalkoxysilane or its hydrolytic condensate, sodium silicate, potassium silicate, aluminum alkoxide or its hydrolytic condensate, sodium aluminate and the like, readily SiO 2 Ya A compound that converts to Al (OH) 3 or Al 2 O 3 can be used.
上記加水分解としては特に限定されないが、硫酸、塩酸、酢酸、硝酸などの酸を使用した方法が挙げられる。この水分散体を用いたシリカの処理方法における中和方法は、分散体に酸を入れてからSi源化合物及び/又はAl源化合物を添加する方法、分散体にSi源化合物及び/又はAl源化合物を入れてから酸を添加する方法、分散体にSi源化合物及び/又はAl源化合物と酸を同時に添加する方法のいずれでも良い。 Although it does not specifically limit as said hydrolysis, The method using acids, such as a sulfuric acid, hydrochloric acid, acetic acid, nitric acid, is mentioned. The neutralization method in this silica treatment method using an aqueous dispersion is a method in which an acid is added to the dispersion and then an Si source compound and / or an Al source compound is added. An Si source compound and / or an Al source is added to the dispersion. Either a method of adding an acid after adding the compound, or a method of simultaneously adding an Si source compound and / or an Al source compound and an acid to the dispersion may be used.
上記撥水性有機化合物による処理としては、特に限定されるものではないが、例えば、シリコーンオイル、アルキルシラン、アルキルチタネート、アルキルアルミネート、ポリオレフィン、ポリエステル、金属石鹸、アミノ酸、アミノ酸塩などが挙げられる。なかでも、化学的な安定性からシリコーンオイルが好ましい。このシリコーンオイルの具体例としては、ジメチルポリシロキサン(例えば、信越化学工業製KF-96A-100cs、旭化成ワッカーシリコーン製DM10)、メチルハイドロジェンポリシロキサン(例えば、信越化学工業製KF-99P、東レ・ダウコーニング製SH1107C)、(ジメチコン/メチコン)コポリマー(例えば、信越化学工業製KF-9901)、メチルフェニルシリコーン(例えば、信越化学工業製KF-50-100cs)、アミノ変性シリコーン(例えば、信越化学工業製KF-8015、東レ・ダウコーニング製JP-8500 Conditioning Agent、旭化成ワッカーシリコーン製ADM6060)、トリエトキシシリルエチルポリジメチルシロキシエチルジメチコン(例えば、信越化学工業製KF-9908)、トリエトキシシリルエチルポリジメチルシロキシエチルヘキシルジメチコン(例えば、信越化学工業製KF-9909)による処理等を挙げることができる。 The treatment with the water repellent organic compound is not particularly limited, and examples thereof include silicone oil, alkyl silane, alkyl titanate, alkyl aluminate, polyolefin, polyester, metal soap, amino acid, amino acid salt and the like. Of these, silicone oil is preferred because of its chemical stability. Specific examples of this silicone oil include dimethylpolysiloxane (for example, KF-96A-100cs manufactured by Shin-Etsu Chemical Co., Ltd., DM10 manufactured by Asahi Kasei Wacker Silicone), methyl hydrogen polysiloxane (for example, KF-99P manufactured by Shin-Etsu Chemical Co., Ltd., Toray Industries, Inc.) SH1107C manufactured by Dow Corning), (dimethicone / methicone) copolymer (for example, KF-9901 manufactured by Shin-Etsu Chemical), methylphenyl silicone (for example, KF-50-100cs manufactured by Shin-Etsu Chemical), amino-modified silicone (for example, Shin-Etsu Chemical) KF-8015 manufactured by Toray Dow Corning, JP-8500 Conditioning Agent, ADM 6060 manufactured by Asahi Kasei Wacker Silicone, triethoxysilylethyl polydimethylsiloxyethyl dimethicone (for example, Shin-Etsu Chemical) Kogyo KF-9908), triethoxysilyl ethyl polydimethylsiloxy hexyl dimethicone (for example, a treatment by Shin-Etsu Chemical KF-9909).
上記シランカップリング剤による処理としては、ビニルトリス(2-メトキシエトキシ)シラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、ヘキシルトリメトキシシラン、デシルトリメトキシシランを挙げることができる。
上記チタンカップリング剤による処理としては、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2-エチルヘキシル)チタネート、テトラメチルチタネート、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンエチルアセトアセテート、チタンオクタンジオレート、チタンラクテート、チタントリエタノールアミネート、ポリヒドロキシチタンステアレートを挙げることができる。
Examples of the treatment with the silane coupling agent include vinyltris (2-methoxyethoxy) silane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 3-glycol. Sidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltri Methoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopro Rumethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminotriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxy Silane hydrochloride, 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanate B pills triethoxysilane, tetramethoxysilane, tetraethoxysilane, methyl trimethoxysilane, methyl triethoxysilane, phenyl triethoxy silane, hexamethyldisilazane, hexyltrimethoxysilane and decyltrimethoxysilane.
The treatment with the titanium coupling agent includes tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, tetramethyl titanate, titanium acetylacetonate, titanium tetraacetylacetonate, titanium ethylacetoacetate. , Titanium octanediolate, titanium lactate, titanium triethanolamate, and polyhydroxytitanium stearate.
上記表面処理を行う場合は、表面処理は、処理後の粉体の全量に対して1~10重量%となる割合で行うことが好ましい。当該範囲内のものとすることで、滑り性が向上し、かつ耐湿性が向上し、樹脂への分散性が向上するという点で好ましい。 When the surface treatment is performed, the surface treatment is preferably performed at a ratio of 1 to 10% by weight with respect to the total amount of the powder after the treatment. By setting it within the range, it is preferable in terms of improving slipperiness, improving moisture resistance, and improving dispersibility in the resin.
本発明の四角板状酸化亜鉛粒子は、その他の成分と混合して、化粧料、インキ、塗料等に配合することもできる。特に、上述の特性を有しているため、安定性及び紫外線遮蔽効果に優れた化粧料を得ることができる点で好ましいものである。 The square plate-like zinc oxide particles of the present invention can be mixed with other components and blended in cosmetics, inks, paints and the like. In particular, since it has the above-mentioned characteristics, it is preferable in that a cosmetic having excellent stability and ultraviolet shielding effect can be obtained.
上記化粧料としては特に限定されず、本発明の四角板状酸化亜鉛粒子に、必要に応じて化粧品原料を混合することによって、サンスクリーン剤等の紫外線防御用化粧料;ファンデーション等のベースメイク化粧料;口紅等のポイントメイク化粧料等を得ることができる。また、紫外線遮蔽能という特徴を有するものであることから、化粧品に使用した場合に優れた紫外線遮蔽性能を示す。 The cosmetic is not particularly limited, and by mixing the square plate-like zinc oxide particles of the present invention with cosmetic raw materials as necessary, UV protective cosmetics such as sunscreen agents; base makeup cosmetics such as foundations A point makeup cosmetic such as lipstick can be obtained. Moreover, since it has the characteristic of ultraviolet-ray shielding ability, when using for cosmetics, the outstanding ultraviolet-ray shielding performance is shown.
上記化粧料は、油性化粧料、水性化粧料、O/W型化粧料、W/O型化粧料の任意の形態とすることができる。なかでも、サンスクリーン剤において特に好適に使用することができる。 The cosmetics can be in any form of oily cosmetics, aqueous cosmetics, O / W cosmetics, and W / O cosmetics. Especially, it can use especially suitably in a sunscreen agent.
上記化粧料は、化粧品分野において使用することができる任意の水性成分、油性成分を併用するものであってもよい。上記水性成分及び油性成分としては特に限定されず、例えば、油剤、界面活性剤、保湿剤、高級アルコール、金属イオン封鎖剤、天然及び合成高分子、水溶性及び油溶性高分子、紫外線遮蔽剤、各種抽出液、有機染料等の色剤、防腐剤、酸化防止剤、色素、増粘剤、pH調整剤、香料、冷感剤、制汗剤、殺菌剤、皮膚賦活剤、その他の薬剤、各種粉体等の成分を含有するものであってもよい。 The cosmetic may be used in combination with any aqueous component or oily component that can be used in the cosmetic field. The aqueous component and the oil component are not particularly limited, and examples thereof include oil agents, surfactants, humectants, higher alcohols, sequestering agents, natural and synthetic polymers, water-soluble and oil-soluble polymers, UV shielding agents, Various extracts, colorants such as organic dyes, preservatives, antioxidants, pigments, thickeners, pH adjusters, fragrances, cooling agents, antiperspirants, fungicides, skin activators, other agents, various It may contain components such as powder.
上記油剤は特に限定はないが、例えば、天然動植物油脂(例えば、オリーブ油、ミンク油、ヒマシ油、パーム油、牛脂、月見草油、ヤシ油、カカオ油、マカデミアナッツ油等);蝋(例えば、ホホバ油、ミツロウ、ラノリン、カルナウバロウ、キャンデリラロウ等);高級アルコール(例えば、ラウリルアルコール、ステアリルアルコール、セチルアルコール、オレイルアルコール等);高級脂肪酸(例えば、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸、ベヘニン酸、ラノリン脂肪酸等;高級脂肪族炭化水素例えば、流動パラフィン、固形パラフィン、スクワラン、ワセリン、セレシン、マイクロクリスタリンワックス等);合成エステル油(例えば、ブチルステアレート、ヘキシルラウレート、ジイソプロピルアジペート、ジイソプロピルセバケート、ミリスチン酸オクチルドデシル、イソプロピルミリステート、イソプロピルパルミテートイソプロピルミリステート、セチルイソオクタノエート、ジカプリン酸ネオペンチルグリコール);シリコーン誘導体(例えば、メチルシリコーン、メチルフェニルシリコーン等のシリコーン油)などが例示できる。さらに、油溶性のビタミン、防腐剤、美白剤などを配合することもできる。 The oil agent is not particularly limited. For example, natural animal and vegetable oils and fats (for example, olive oil, mink oil, castor oil, palm oil, beef tallow, evening primrose oil, coconut oil, cacao oil, macadamia nut oil and the like); wax (for example, jojoba oil) Higher alcohols (eg, lauryl alcohol, stearyl alcohol, cetyl alcohol, oleyl alcohol, etc.); higher fatty acids (eg, lauric acid, palmitic acid, stearic acid, oleic acid, behenine), beeswax, lanolin, carnauba wax, candelilla wax, etc. Acids, lanolin fatty acids, etc .; higher aliphatic hydrocarbons such as liquid paraffin, solid paraffin, squalane, petrolatum, ceresin, microcrystalline wax, etc .; synthetic ester oils (eg, butyl stearate, hexyl laurate, diisopropyl adipate, di Sopropyl sebacate, octyldodecyl myristate, isopropyl myristate, isopropyl palmitate isopropyl myristate, cetyl isooctanoate, neopentyl glycol dicaprate); silicone derivatives (eg, silicone oils such as methyl silicone and methyl phenyl silicone) Etc. can be exemplified. Furthermore, oil-soluble vitamins, preservatives, whitening agents, and the like can be added.
上記界面活性剤としては、親油性非イオン界面活性剤、親水性非イオン界面活性剤等を挙げることができる。上記親油性非イオン界面活性剤としては特に限定されず、例えば、ソルビタンモノオレエート、ソルビタンモノイソステアレート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンセスキオレエート、ソルビタントリオレエート、ペンタ-2-エチルヘキシル酸ジグリセロールソルビタン、テトラ-2-エチルヘキシル酸ジグリセロールソルビタン等のソルビタン脂肪酸エステル類、モノ綿実油脂肪酸グリセリン、モノエルカ酸グリセリン、セスキオレイン酸グリセリン、モノステアリン酸グリセリン、α,α’-オレイン酸ピログルタミン酸グリセリン、モノステアリン酸グリセリンリンゴ酸等のグリセリンポリグリセリン脂肪酸類、モノステアリン酸プロピレングリコール等のプロピレングリコール脂肪酸エステル類、硬化ヒマシ油誘導体、グリセリンアルキルエーテル等を挙げることができる。 Examples of the surfactant include a lipophilic nonionic surfactant and a hydrophilic nonionic surfactant. The lipophilic nonionic surfactant is not particularly limited. For example, sorbitan monooleate, sorbitan monoisostearate, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan sesquioleate, sorbitan trioleate. Sorbate, sorbitan fatty acid esters such as diglycerol sorbitan penta-2-ethylhexylate, diglycerol sorbitan tetra-2-ethylhexylate, mono-cotton oil fatty acid glycerin, glyceryl monoerucate, glyceryl sesquioleate, glyceryl monostearate, α, α '-Glycerol polyglycerin fatty acids such as pyroglutamate glyceryl oleate, glyceryl monostearate malate, propylene glycol monostearate Glycol fatty acid esters, hardened castor oil derivatives, glycerin alkyl ethers and the like.
親水性非イオン界面活性剤としては特に限定されず、例えば、POEソルビタンモノオレエート、POEソルビタンモノステアレート、POEソルビタンテトラオレエート等のPOEソルビタン脂肪酸エステル類、POEソルビットモノラウレート、POEソルビットモノオレエート、POEソルビットペンタオレエート、POEソルビットモノステアレート等のPOEソルビット脂肪酸エステル類、POEグリセリンモノステアレート、POEグリセリンモノイソステアレート、POEグリセリントリイソステアレート等のPOEグリセリン脂肪酸エステル類、POEモノオレエート、POEジステアレート、POEモノジオレエート、システアリン酸エチレングリコール等のPOE脂肪酸エステル類、POEラウリルエーテル、POEオレイルエーテル、POEステアリルエーテル、POEベヘニルエーテル、POE2-オクチルドデシルエーテル、POEコレスタノールエーテル等のPOEアルキルエーテル類、POEオクチルフェニルエーテル、POEノニルフェニルエーテル、POEジノニルフェニルエーテル等のPOEアルキルフェニルエーテル類、ブルロニック等のプルアロニック型類、POE・POPセチルエーテル、POE・POP2-デシルテトラデシルエーテル、POE・POPモノブチルエーテル、POE・POP水添ラノリン、POE・POPグリセリンエーテル等のPOE・POPアルキルエーテル類、テトロニック等のテトラPOE・テトラPOPエチレンジアミン縮合物類、POEヒマシ油、POE硬化ヒマシ油、POE硬化ヒマシ油モノイソステアレート、POE硬化ヒマシ油トリイソステアレート、POE硬化ヒマシ油モノピログルタミン酸モノイソステアリン酸ジエステル、POE硬化ヒマシ油マレイン酸等のPOEヒマシ油硬化ヒマシ油誘導体、POEソルビットミツロウ等のPOEミツロウ・ラノリン誘導体、ヤシ油脂肪酸ジエタノールアミド、ラウリン酸モノエタノールアミド、脂肪酸イソプロパノールアミド等のアルカノールアミド、POEプロピレングリコール脂肪酸エステル、POEアルキルアミン、POE脂肪酸アミド、ショ糖脂肪酸エステル、POEノニルフェニルホルムアルデヒド縮合物、アルキルエトキシジメチルアミンオキシド、トリオレイルリン酸等を挙げることができる。 The hydrophilic nonionic surfactant is not particularly limited. For example, POE sorbitan fatty acid esters such as POE sorbitan monooleate, POE sorbitan monostearate, POE sorbitan tetraoleate, POE sorbite monolaurate, and POE sorbite mono POE sorbite fatty acid esters such as oleate, POE sorbite pentaoleate, POE sorbite monostearate, POE glycerin fatty acid esters such as POE glycerol monostearate, POE glycerol monoisostearate, POE glycerol triisostearate, POE POE fatty acid esters such as monooleate, POE distearate, POE monodiolate, ethylene glycol stearate, POE lauryl ether, POE POE alkyl ethers such as yl ether, POE stearyl ether, POE behenyl ether, POE 2-octyldodecyl ether, POE cholestanol ether, POE alkyl phenyl ethers such as POE octyl phenyl ether, POE nonyl phenyl ether, POE dinonyl phenyl ether Plu-alonic types such as brulonic, POE / POP cetyl ether, POE / POP2-decyltetradecyl ether, POE / POP monobutyl ether, POE / POP hydrogenated lanolin, POE / POP alkyl ethers such as POE / POP glycerin ether, Tetronic PEO / TetraPOP ethylenediamine condensates, POE castor oil, POE hydrogenated castor oil, POE hydrogenated castor oil monoisos POE castor oil triisostearate, POE cured castor oil monopyroglutamic acid monoisostearic acid diester, POE castor oil cured castor oil derivatives such as POE cured castor oil maleic acid, POE beeswax and lanolin derivatives such as POE sorbite beeswax, Alkanolamides such as coconut oil fatty acid diethanolamide, lauric acid monoethanolamide, fatty acid isopropanolamide, POE propylene glycol fatty acid ester, POE alkylamine, POE fatty acid amide, sucrose fatty acid ester, POE nonylphenyl formaldehyde condensate, alkylethoxydimethylamine Examples thereof include oxide and trioleyl phosphate.
その他の界面活性剤としては、例えば、脂肪酸セッケン、高級アルキル硫酸エステル塩、POEラウリル硫酸トリエタノールアミン、アルキルエーテル硫酸エステル塩等のアニオン界面活性剤、アルキルトリメチルアンモニウム塩、アルキルピリジニウム塩、アルキル四級アンモニウム塩、アルキルジメチルベンジルアンモニウム塩、アルキルアミン塩、ポリアミン脂肪酸誘導体等のカチオン界面活性剤、及び、イミダゾリン系両性界面活性剤、ベタイン系界面活性剤等の両性界面活性剤を安定性及び皮膚刺激性に問題のない範囲で配合してもよい。 Examples of other surfactants include anionic surfactants such as fatty acid soaps, higher alkyl sulfates, POE lauryl sulfate triethanolamine, alkyl ether sulfates, alkyltrimethylammonium salts, alkylpyridinium salts, alkyl quaternary salts. Stability and skin irritation of cationic surfactants such as ammonium salts, alkyldimethylbenzylammonium salts, alkylamine salts, polyamine fatty acid derivatives, and amphoteric surfactants such as imidazoline amphoteric surfactants and betaine surfactants You may mix | blend in the range without a problem.
上記保湿剤としては特に限定されず、例えば、キシリトール、ソルビトール、マルチトール、コンドロイチン硫酸、ヒアルロン酸、ムコイチン硫酸、カロニン酸、アテロコラーゲン、コレステリル-12-ヒドロキシステアレート、乳酸ナトリウム、胆汁酸塩、dl-ピロリドンカルボン酸塩、短鎖可溶性コラーゲン、ジグリセリン(EO)PO付加物、イサイヨバラ抽出物、セイヨウノコギリソウ抽出物、メリロート抽出物等を挙げることができる。 The humectant is not particularly limited, and examples thereof include xylitol, sorbitol, maltitol, chondroitin sulfate, hyaluronic acid, mucoitin sulfate, caronic acid, atelocollagen, cholesteryl-12-hydroxystearate, sodium lactate, bile salt, dl- Examples include pyrrolidone carboxylate, short-chain soluble collagen, diglycerin (EO) PO adduct, Isaiyobara extract, yarrow extract, and merirot extract.
上記高級アルコールとしては特に限定されず、例えば、ラウリルアルコール、セチルアルコール、ステアリルアルコール、ベヘニルアルコール、ミリスチルアルコール、オレイルアルコール、セトステアリルアルコール等の直鎖アルコール、モノステアリルグリセリンエーテル(バチルアルコール)、2-デシルテトラデシノール、ラノリンアルコール、コレステロール、フィトステロール、ヘキシルドデカノール、イソステアリルアルコール、オクチルドデカノール等の分枝鎖アルコール等を挙げることができる。 The higher alcohol is not particularly limited, and examples thereof include linear alcohols such as lauryl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, myristyl alcohol, oleyl alcohol, cetostearyl alcohol, monostearyl glycerin ether (batyl alcohol), 2-decyl. Examples thereof include branched chain alcohols such as tetradecinol, lanolin alcohol, cholesterol, phytosterol, hexyldodecanol, isostearyl alcohol, octyldodecanol, and the like.
金属イオン封鎖剤としては特に限定されず、例えば、1-ヒドロキシエタン-1,1-ジフォスホン酸、1-ヒドロキシエタン-1,1-ジフォスホン酸四ナトリウム塩、クエン酸ナトリウム、ポリリン酸ナトリウム、メタリン酸ナトリウム、グルコン酸、リン酸、クエン酸、アスコルビン酸、コハク酸、エデト酸等を挙げることができる。 The sequestering agent is not particularly limited. For example, 1-hydroxyethane-1,1-diphosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid tetrasodium salt, sodium citrate, sodium polyphosphate, metaphosphoric acid Examples thereof include sodium, gluconic acid, phosphoric acid, citric acid, ascorbic acid, succinic acid, edetic acid and the like.
上記天然の水溶性高分子としては特に限定されず、例えば、アラアビアガム、トラガカントガム、ガラクタン、グアガム、キャロブガム、カラヤガム、カラギーナン、ペクチン、カンテン、クインスシード(マルメロ)、アルゲコロイド(カッソウエキス)、デンプン(コメ、トウモロコシ、バレイショ、コムギ)、グリチルリチン酸等の植物系高分子、キサンタンガム、デキストラン、サクシノグルカン、プルラン等の微生物系高分子、コラーゲン、カゼイン、アルブミン、ゼラチン等の動物系高分子を挙げることができる。 The natural water-soluble polymer is not particularly limited. For example, arabia gum, tragacanth gum, galactan, guar gum, carob gum, caraya gum, carrageenan, pectin, agar, quince seed (malmello), alge colloid (guckweed extract), starch (rice, rice, Corn, potato, wheat), plant polymers such as glycyrrhizic acid, microbial polymers such as xanthan gum, dextran, succinoglucan and pullulan, and animal polymers such as collagen, casein, albumin and gelatin. .
半合成の水溶性高分子としては特に限定されず、例えば、カルボキシメチルデンプン、メチルヒドロキシプロピルデンプン等のデンプン系高分子、メチルセルロース、ニトロセルロース、エチルセルロース、メチルヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、セルロース硫酸ナトリウム、ヒドロキシプロピルセルロース、カルボキシメチルセルロースナトリウム(CMC)、結晶セルロース、セルロース末等のセルロース系高分子、アルギン酸ナトリウム、アルギン酸プロピレングリコールエステル等のアルギン酸系高分子等を挙げることができる。 The semi-synthetic water-soluble polymer is not particularly limited. For example, starch-based polymers such as carboxymethyl starch and methylhydroxypropyl starch, methylcellulose, nitrocellulose, ethylcellulose, methylhydroxypropylcellulose, hydroxyethylcellulose, sodium cellulose sulfate, Examples thereof include cellulose polymers such as hydroxypropylcellulose, sodium carboxymethylcellulose (CMC), crystalline cellulose, and cellulose powder, and alginic acid polymers such as sodium alginate and propylene glycol alginate.
合成の水溶性高分子としては特に限定されず、例えば、ポリビニルアルコール、ポリビニルメチルエーテル、ポリビニルピロリドン等のビニル系高分子、ポリエチレングリコール20,000、40,000、60,000等のポリオキシエチレン系高分子、ポリオキシエチレンポリオキシプロピレン共重合体共重合系高分子、ポリアクリル酸ナトリウム、ポリエチルアクリレート、ポリアクリルアミド等のアクリル系高分子、ポリグリセリン、ポリエチレンイミン、カチオンポリマー、カルボキシビニルポリマー、アルキル変性カルボキシビニルポリマー、(アクリル酸ヒドロキシエチル/アクリロイルジメチルタウリンNa)コポリマー、(アクリル酸Na/アクリロイルジメチルタウリンNa)コポリマー、(アクリロイルジメチルタウリンアンモニウム/ビニルピロリドン)コポリマー、(アクリロイルジメチルタウリンアンモニウムメタクリル酸ベヘネス-25)クロスポリマー等を挙げることができる。 The synthetic water-soluble polymer is not particularly limited, and examples thereof include vinyl polymers such as polyvinyl alcohol, polyvinyl methyl ether, and polyvinyl pyrrolidone, and polyoxyethylene polymers such as polyethylene glycol 20,000, 40,000, and 60,000. Polymer, polyoxyethylene polyoxypropylene copolymer copolymer polymer, acrylic polymer such as sodium polyacrylate, polyethyl acrylate, polyacrylamide, polyglycerin, polyethyleneimine, cationic polymer, carboxyvinyl polymer, alkyl Modified carboxyvinyl polymer, (hydroxyethyl acrylate / acryloyl dimethyl taurine Na) copolymer, (Na acrylate / acryloyl dimethyl taurine Na) copolymer, (acryloyl dimethyl tantalum) Phosphorus ammonium / vinylpyrrolidone) copolymer, and (ammonium acryloyldimethyltaurate methacrylate Beheneth-25) cross-polymer.
無機の水溶性高分子としては特に限定されず、例えば、ベントナイト、ケイ酸AlMg(ビーガム)、ラポナイト、ヘクトライト、無水ケイ酸等を挙げることができる。 The inorganic water-soluble polymer is not particularly limited, and examples thereof include bentonite, silicate AlMg (beegum), laponite, hectorite, and silicic anhydride.
紫外線遮蔽剤としては特に限定されず、例えば、パラアミノ安息香酸(以下PABAと略す)、PABAモノグリセリンエステル、N,N-ジプロポキシPABAエチルエステル、N,N-ジエトキシPABAエチルエステル、N,N-ジメチルPABAエチルエステル、N,N-ジメチルPABAブチルエステル等の安息香酸系紫外線遮蔽剤;ホモメンチル-N-アセチルアントラニレート等のアントラニル酸系紫外線遮蔽剤;アミルサリシレート、メンチルサリシレート、ホモメンチルサリシレート、オクチルサリシレート、フェニルサリシレート、ベンジルサリシレート、p-イソプロパノールフェニルサリシレート等のサリチル酸系紫外線遮蔽剤;オクチルシンナメート、エチル-4-イソプロピルシンナメート、メチル-2,5-ジイソプロピルシンナメート、エチル-2,4-ジイソプロピルシンナメート、メチル-2,4-ジイソプロピルシンナメート、プロピル-p-メトキシシンナメート、イソプロピル-p-メトキシシンナメート、イソアミル-p-メトキシシンナメート、2-エトキシエチル-p-メトキシシンナメート、シクロヘキシル-p-メトキシシンナメート、エチル-α-シアノ-β-フェニルシンナメート、2-エチルヘキシル-α-シアノ-β-フェニルシンナメート、グリセリルモノ-2-エチルヘキサノイル-ジパラメトキシシンナメート等のケイ皮酸系紫外線遮蔽剤;2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-メチルベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸塩、4-フェニルベンゾフェノン、2-エチルヘキシル-4’-フェニル-ベンゾフェノン-2-カルボキシレート、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、4-ヒドロキシ-3-カルボキシベンゾフェノン等のベンゾフェノン系紫外線遮蔽剤;3-(4’-メチルベンジリデン)-d,l-カンファー、3-ベンジリデン-d,l-カンファー、ウロカニン酸、ウロカニン酸エチルエステル、2-フェニル-5-メチルベンゾキサゾール、2,2’-ヒドロキシ-5-メチルフェニルベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニルベンゾトリアゾール、ジベンザラジン、ジアニソイルメタン、4-メトキシ-4’-t-ブチルジベンゾイルメタン、5-(3,3-ジメチル-2-ノルボルニリデン)-3-ペンタン-2-オン等を挙げることができる。 The UV screening agent is not particularly limited. For example, paraaminobenzoic acid (hereinafter abbreviated as PABA), PABA monoglycerin ester, N, N-dipropoxy PABA ethyl ester, N, N-diethoxy PABA ethyl ester, N, N-dimethyl Benzoic acid UV screening agents such as PABA ethyl ester and N, N-dimethyl PABA butyl ester; Anthranilic acid UV screening agents such as homomenthyl-N-acetylanthranylate; Amyl salicylate, Menthyl salicylate, Homomentil salicylate, Octyl salicylate , Salicylic acid UV screening agents such as phenyl salicylate, benzyl salicylate, p-isopropanol phenyl salicylate; octylcinnamate, ethyl-4-isopropylcinnamate, methyl-2,5- Isopropyl cinnamate, ethyl-2,4-diisopropyl cinnamate, methyl-2,4-diisopropyl cinnamate, propyl-p-methoxycinnamate, isopropyl-p-methoxycinnamate, isoamyl-p-methoxycinnamate, 2- Ethoxyethyl-p-methoxycinnamate, cyclohexyl-p-methoxycinnamate, ethyl-α-cyano-β-phenylcinnamate, 2-ethylhexyl-α-cyano-β-phenylcinnamate, glyceryl mono-2-ethylhexa Cinnamic acid-based UV screening agents such as noyl-diparamethoxycinnamate; 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone , 2, 2 ', 4,4'-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonate, 4 -Benzophenone-based UV shielding agents such as phenylbenzophenone, 2-ethylhexyl-4'-phenyl-benzophenone-2-carboxylate, 2-hydroxy-4-n-octoxybenzophenone, 4-hydroxy-3-carboxybenzophenone; (4'-methylbenzylidene) -d, l-camphor, 3-benzylidene-d, l-camphor, urocanic acid, urocanic acid ethyl ester, 2-phenyl-5-methylbenzoxazole, 2,2'-hydroxy- 5-methylphenylbenzotri Sol, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, 2- (2′-hydroxy-5′-methylphenylbenzotriazole), dibenzalazine, dianisoylmethane, 4-methoxy-4′- Examples thereof include t-butyldibenzoylmethane, 5- (3,3-dimethyl-2-norbornylidene) -3-pentan-2-one, and the like.
その他薬剤成分としては特に限定されず、例えば、ビタミンA油、レチノール、パルミチン酸レチノール、イノシット、塩酸ピリドキシン、ニコチン酸ベンジル、ニコチン酸アミド、ニコチン酸DL-α-トコフェロール、アルコルビン酸リン酸マグネシウム、2-O-α-D-グルコピラノシル-L-アスコルビン酸、ビタミンD2(エルゴカシフェロール)、dl-α-トコフェロール、酢酸dl-α-トコフェロール、パントテン酸、ビオチン等のビタミン類;エストラジオール、エチニルエストラジオール等のホルモン;アルギニン、アスパラギン酸、シスチン、システイン、メチオニン、セリン、ロイシン、トリプトファン等のアミノ酸;アラントイン、アズレン等の抗炎症剤、アルブチン等の美白剤、;タンニン酸等の収斂剤;L-メントール、カンフル等の清涼剤やイオウ、塩化リゾチーム、塩化ピリドキシン等を挙げることができる。 Other drug components are not particularly limited and include, for example, vitamin A oil, retinol, retinol palmitate, inosit, pyridoxine hydrochloride, benzyl nicotinate, nicotinamide, nicotinic acid DL-α-tocopherol, magnesium ascorbate phosphate, 2 Vitamins such as -O-α-D-glucopyranosyl-L-ascorbic acid, vitamin D2 (ergocaciferol), dl-α-tocopherol, dl-α-tocopherol acetate, pantothenic acid, biotin; estradiol, ethinylestradiol, etc. Hormones; amino acids such as arginine, aspartic acid, cystine, cysteine, methionine, serine, leucine and tryptophan; anti-inflammatory agents such as allantoin and azulene; whitening agents such as arbutin; astringents such as tannic acid; L Menthol, cooling agents and sulfur camphor such as, lysozyme chloride, can be mentioned pyridoxine chloride, and the like.
各種の抽出液としては特に限定されず、例えば、ドクダミエキス、オウバクエキス、メリロートエキス、オドリコソウエキス、カンゾウエキス、シャクヤクエキス、サボンソウエキス、ヘチマエキス、キナエキス、ユキノシタエキス、クララエキス、コウホネエキス、ウイキョウエキス、サクラソウエキス、バラエキス、ジオウエキス、レモンエキス、シコンエキス、アロエエキス、ショウブ根エキス、ユーカリエキス、スギナエキス、セージエキス、タイムエキス、茶エキス、海藻エキス、キューカンバーエキス、チョウジエキス、キイチゴエキス、メリッサエキス、ニンジンエキス、マロニエエキス、モモエキス、桃葉エキス、クワエキス、ヤグルマギクエキス、ハマメリスエキス、プラセンタエキス、胸腺抽出物、シルク抽出液、甘草エキス等を挙げることができる。 There are no particular limitations on the various extracts, for example, Dokudami extract, Oat extract, Merirot extract, Odorikosou extract, Licorice extract, Peonies extract, Soap extract, Loofah extract, Kina extract, Yukinoshita extract, Clara extract, Kouhone extract, Fennel Extract, Primrose Extract, Rose Extract, Giant Extract, Lemon Extract, Shikon Extract, Aloe Extract, Shobu Root Extract, Eucalyptus Extract, Horsetail Extract, Sage Extract, Thyme Extract, Tea Extract, Seaweed Extract, Cucumber Extract, Clove Extract, Raspberry Extract, Melissa Extract , Carrot extract, marronnier extract, peach extract, peach leaf extract, mulberry extract, cornflower extract, hamamelis extract, placenta extract, thymus extract, silk extract, licorice Mention may be made of the kiss and the like.
上記各種粉体としては、ベンガラ、黄酸化鉄、黒酸化鉄、雲母チタン、酸化鉄被覆雲母チタン、酸化チタン被覆ガラスフレーク等の光輝性着色顔料、マイカ、タルク、カオリン、セリサイト、二酸化チタン、シリカ等の無機粉末やポリエチレン末、ナイロン末、架橋ポリスチレン、セルロースパウダー、シリコーン末等の有機粉末等を挙げることができる。好ましくは、官能特性向上、化粧持続性向上のため、粉末成分の一部又は全部をシリコーン類、フッ素化合物、金属石鹸、油剤、アシルグルタミン酸塩等の物質にて、公知の方法で疎水化処理して使用される。また、本発明に該当しない他の複合粉体を混合して使用するものであってもよい。 Examples of the various powders include bengara, yellow iron oxide, black iron oxide, titanium mica, iron oxide-coated mica titanium, titanium oxide-coated glass flakes and other bright colored pigments, mica, talc, kaolin, sericite, titanium dioxide, Examples thereof include inorganic powders such as silica and organic powders such as polyethylene powder, nylon powder, crosslinked polystyrene, cellulose powder, and silicone powder. Preferably, a part or all of the powder component is hydrophobized by a known method with a substance such as silicones, fluorine compounds, metal soaps, oils, acyl glutamates in order to improve sensory characteristics and cosmetic durability. Used. Moreover, you may mix and use the other composite powder which does not correspond to this invention.
本発明の四角板状酸化亜鉛粒子をインキへの添加成分として使用する場合は、酸化チタン、ベンガラ、アンチモンレッド、カドミウムイエロー、コバルトブルー、紺青、群青、カーボンブラック、黒鉛などの有色顔料、及び、炭酸カルシウム、カオリン、クレー、硫酸バリウム、水酸化アルミニウム、タルク等の体質顔料を挙げることができる。さらに有機顔料としては、溶性アゾ顔料、不溶性アゾ顔料、アゾレーキ顔料、縮合アゾ顔料、銅フタロシアニン顔料、縮合多環顔料等の顔料成分;シェラック樹脂、アクリル樹脂、スチレン-アクリル樹脂、スチレン-マレイン酸樹脂、スチレン-アクリル-マレイン酸樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂等のバインダー樹脂等のバインダー樹脂;水混和性有機溶剤等と併用して使用することができる。 When using the rectangular plate-like zinc oxide particles of the present invention as an additive component to the ink, titanium oxide, Bengala, antimony red, cadmium yellow, cobalt blue, bitumen, ultramarine, carbon black, graphite and other colored pigments, and Examples of extender pigments include calcium carbonate, kaolin, clay, barium sulfate, aluminum hydroxide and talc. Further, as organic pigments, pigment components such as soluble azo pigments, insoluble azo pigments, azo lake pigments, condensed azo pigments, copper phthalocyanine pigments, condensed polycyclic pigments; shellac resins, acrylic resins, styrene-acrylic resins, styrene-maleic acid resins It can be used in combination with a binder resin such as a binder resin such as a styrene-acrylic-maleic acid resin, a polyurethane resin, a polyester resin, or a polyamide resin; and a water-miscible organic solvent.
本発明の四角板状酸化亜鉛粒子を塗料組成物への添加成分として使用する場合は、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂等の塗膜形成樹脂;着色顔料、体質顔料、光輝性顔料等の各種顔料;硬化触媒、表面調整剤、消泡剤、顔料分散剤、可塑剤、造膜助剤、紫外線吸収剤、酸化防止剤等と併用して使用することができる。また、塗料中の樹脂は、硬化性を有するものであっても、硬化性を有さないものであってもよい。 When the rectangular plate-like zinc oxide particles of the present invention are used as an additive component to a coating composition, coating film forming resins such as acrylic resins, polyester resins, and epoxy resins; various types such as colored pigments, extender pigments, and bright pigments Pigment: Can be used in combination with a curing catalyst, a surface conditioner, an antifoaming agent, a pigment dispersant, a plasticizer, a film-forming aid, an ultraviolet absorber, an antioxidant, and the like. The resin in the paint may be curable or non-curable.
以下、本発明を実施例によってより詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to a following example.
(実施例1)
酸化亜鉛100g(堺化学工業社製 酸化亜鉛1種)を、35質量%塩酸(和光純薬工業社製特級試薬)259gとイオン交換水647gからなる塩酸水溶液中へ添加して、酸化亜鉛を完全に溶解して、塩化亜鉛水溶液を調製した。さらに、調製した塩化亜鉛水溶液中へイオン交換水90mlに硝酸アルミニウム九水和物(和光純薬製)9.39gを溶解したものを添加し、完全に透明になるまで溶解させた。この時、酸化亜鉛の亜鉛元素に対して、アルミニウム2mol%であった。他方、炭酸ナトリウム(和光純薬工業社製特級試薬)300gをイオン交換水2000mlに溶解して、炭酸ナトリウム水溶液を別途調製した。上記硝酸アルミニウムを溶解させた塩化亜鉛水溶液と、炭酸ナトリウム水溶液をpH=8下において60分かけて同時中和し、沈殿物を生成させた。次いで30分熟成後、沈殿物を充分に洗浄した後ろ過し、130℃で12時間乾燥した。乾燥粉をメノウ乳鉢で解砕して、焼成前前駆体とした。焼成前前駆体を電気炉を用いて大気中400℃で2時間焼成を行い、アルミニウムを含有する微細な原料酸化亜鉛を得た。
得られた原料酸化亜鉛96gを480mlの純水でリパルプしスラリーとした。続いて、そのスラリーを攪拌しながら90℃まで昇温した。続いて硝酸亜鉛六水和物(和光純薬工業社製)428.38gをイオン交換水に溶解して硝酸亜鉛水溶液360mlを調製した。この時、硝酸亜鉛水溶液の重量は550.0gであった。その水溶液をリパルプスラリー中に2時間かけて添加し、攪拌しながら90℃で1時間熟成した。熟成後、生成したスラリーをろ過洗浄した。続いて、得られたケーキを130℃で12時間乾燥することにより、四角板状亜鉛化合物を得た。得られた四角板状亜鉛化合物を450℃で1時間大気焼成することにより、四角板状酸化亜鉛粒子を得た。得られた四角板状酸化亜鉛粒子のサイズ・形態を走査型電子顕微鏡(SEM、JSM-7000F、日本電子社製)で観察した。得られた四角板状酸化亜鉛粒子の長辺の長さと短辺の長さの比は1.09であり、長辺の長さと厚みの比は9であった。また長辺の長さは24μmであった。得られた電子顕微鏡写真を図1に示した。また酸化亜鉛含有率は97.6重量%であり、XRDパターンから異相は認められなかった。XRDパターンを図12に示した。
Example 1
100 g of zinc oxide (1 type of zinc oxide manufactured by Sakai Chemical Industry Co., Ltd.) was added to a hydrochloric acid aqueous solution consisting of 259 g of 35 mass% hydrochloric acid (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) and 647 g of ion-exchanged water, and the zinc oxide was completely To obtain a zinc chloride aqueous solution. Further, 9.39 g of aluminum nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) dissolved in 90 ml of ion-exchanged water was added to the prepared aqueous zinc chloride solution and dissolved until completely transparent. At this time, it was 2 mol% of aluminum with respect to the zinc element of zinc oxide. On the other hand, 300 g of sodium carbonate (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 2000 ml of ion-exchanged water to prepare a sodium carbonate aqueous solution separately. The zinc chloride aqueous solution in which the aluminum nitrate was dissolved and the sodium carbonate aqueous solution were simultaneously neutralized at pH = 8 over 60 minutes to form a precipitate. Next, after aging for 30 minutes, the precipitate was sufficiently washed, filtered, and dried at 130 ° C. for 12 hours. The dried powder was crushed in an agate mortar to obtain a precursor before firing. The precursor before firing was fired in the atmosphere at 400 ° C. for 2 hours using an electric furnace to obtain fine raw material zinc oxide containing aluminum.
96 g of the obtained raw material zinc oxide was repulped with 480 ml of pure water to obtain a slurry. Then, it heated up to 90 degreeC, stirring the slurry. Subsequently, 428.38 g of zinc nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in ion-exchanged water to prepare 360 ml of an aqueous zinc nitrate solution. At this time, the weight of the aqueous zinc nitrate solution was 550.0 g. The aqueous solution was added to the repulp slurry over 2 hours and aged at 90 ° C. for 1 hour with stirring. After aging, the produced slurry was washed by filtration. Then, the square cake zinc compound was obtained by drying the obtained cake at 130 degreeC for 12 hours. The obtained square plate zinc compound was air baked at 450 ° C. for 1 hour to obtain square plate zinc oxide particles. The size and form of the obtained square plate-like zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The ratio of the long side length to the short side length of the obtained rectangular plate-like zinc oxide particles was 1.09, and the long side length to thickness ratio was 9. The length of the long side was 24 μm. The obtained electron micrograph is shown in FIG. The zinc oxide content was 97.6% by weight, and no heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
(実施例2)
硝酸アルミニウム九水和物(和光純薬工業社製)の代わりに塩化ガリウム(ヤマナカヒューテック製)にてあらかじめ調製した塩化ガリウム水溶液を16.48g添加した以外は実施例1と同様にして四角板状酸化亜鉛粒子を得た。この時、原料酸化亜鉛の亜鉛元素に対して、ガリウムは2mol%であった。なお塩化ガリウム水溶液のガリウム含有濃度は10.6wt%であり、ICP発光分光分析装置(セイコー電子工業製SPS1700 HVR型)にてガリウム含有濃度を測定した。得られた四角板状酸化亜鉛の粒子サイズ・形態を走査型電子顕微鏡(SEM、JSM-7000F、日本電子社製)で観察した。得られた四角板状酸化亜鉛粒子の長辺の長さと短辺の長さの比は1.04であり、長辺の長さと厚みの比は31であった。また長辺の長さは50μmであった。また酸化亜鉛含有率は96.7重量%であり、XRDパターンから異相は認められなかった。
(Example 2)
In the same manner as in Example 1, except that 16.48 g of a gallium chloride aqueous solution prepared in advance with gallium chloride (manufactured by Yamanaka Futec Co., Ltd.) was added instead of aluminum nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) Zinc oxide particles were obtained. At this time, gallium was 2 mol% with respect to the zinc element of the raw material zinc oxide. The gallium content concentration of the gallium chloride aqueous solution was 10.6 wt%, and the gallium content concentration was measured with an ICP emission spectroscopic analyzer (SPS1700 HVR type manufactured by Seiko Denshi Kogyo). The particle size and morphology of the obtained square plate-like zinc oxide were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The ratio of the length of the long side to the length of the short side of the obtained rectangular plate-like zinc oxide particles was 1.04, and the ratio of the length of the long side to the thickness was 31. The length of the long side was 50 μm. The zinc oxide content was 96.7% by weight, and no heterogeneous phase was observed from the XRD pattern.
(実施例3)
FINEX-50(堺化学工業社製 粒子径0.02μm)48gを240mlの純水でリパルプしスラリーとした。そのスラリー中に硝酸アルミニウム九水和物(和光純薬工業社製)4.51gをイオン交換水50mlに溶解した水溶液を混合し、そのスラリーを攪拌しながら90℃まで昇温した。この時、原料酸化亜鉛の亜鉛元素に対して、アルミニウムは2mol%であった。そのスラリー中へ硝酸亜鉛六水和物(和光純薬工業社製)214.19gをイオン交換水に溶解した硝酸亜鉛水溶液180mlを2時間でかけて添加し、攪拌しながら90℃で1時間熟成した。この時、硝酸亜鉛水溶液の重量は275.0gであった。熟成後、生成したスラリーをろ過水洗した。続いて、得られたケーキを130℃で12時間乾燥することにより、四角板状亜鉛化合物を得た。得られた四角板状亜鉛化合物を450℃で1時間大気焼成することにより、四角板状酸化亜鉛粒子を得た。得られた四角板状酸化亜鉛粒子のサイズ・形態を走査型電子顕微鏡(SEM、JSM-840F、日本電子社製)で観察した。得られた四角板状酸化亜鉛粒子の長辺の長さと短辺の長さの比は1.03であり、長辺の長さと厚みの比は14であった。また長辺の長さは14μmであった。得られた電子顕微鏡写真を図2に示した。また酸化亜鉛含有率は98.0重量%であり、XRDパターンから異相は認められなかった。XRDパターンを図13に示した。
Example 3
48 g of FINEX-50 (manufactured by Sakai Chemical Industry Co., Ltd., particle size: 0.02 μm) was repulped with 240 ml of pure water to obtain a slurry. An aqueous solution in which 4.51 g of aluminum nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 50 ml of ion-exchanged water was mixed in the slurry, and the temperature was raised to 90 ° C. while stirring the slurry. At this time, aluminum was 2 mol% with respect to the zinc element of the raw material zinc oxide. To the slurry, 180 ml of an aqueous zinc nitrate solution in which 214.19 g of zinc nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in ion-exchanged water was added over 2 hours and aged at 90 ° C. for 1 hour with stirring. . At this time, the weight of the aqueous zinc nitrate solution was 275.0 g. After aging, the produced slurry was washed with filtered water. Then, the square cake zinc compound was obtained by drying the obtained cake at 130 degreeC for 12 hours. The obtained square plate zinc compound was air baked at 450 ° C. for 1 hour to obtain square plate zinc oxide particles. The size and form of the obtained square plate-like zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-840F, manufactured by JEOL Ltd.). The ratio of the length of the long side to the length of the short side of the obtained square plate-like zinc oxide particles was 1.03, and the ratio of the length of the long side to the thickness was 14. The length of the long side was 14 μm. The obtained electron micrograph is shown in FIG. The zinc oxide content was 98.0% by weight, and no heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
(実施例4)
得られた四角板状亜鉛化合物を700℃で1時間大気焼成した以外は実施例1と同様にして四角板状酸化亜鉛粒子を得た。得られた四角板状酸化亜鉛粒子のサイズ・形態を走査型電子顕微鏡(SEM、JSM-7000F、日本電子社製)で観察した。得られた四角板状酸化亜鉛粒子の長辺の長さと短辺の長さの比は1.16であり、長辺の長さと厚みの比は11であった。また長辺の長さは22μmであった。得られた電子顕微鏡写真を図3に示した。また酸化亜鉛含有率は97.4重量%であり、XRDパターンから異相は認められなかった。XRDパターンを図14に示した。
Example 4
Square plate-like zinc oxide particles were obtained in the same manner as in Example 1 except that the obtained square plate-like zinc compound was air-fired at 700 ° C. for 1 hour. The size and form of the obtained square plate-like zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The ratio of the length of the long side to the length of the short side of the obtained rectangular plate-like zinc oxide particles was 1.16, and the ratio of the length of the long side to the thickness was 11. The length of the long side was 22 μm. The obtained electron micrograph is shown in FIG. The zinc oxide content was 97.4% by weight, and no heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
(実施例5)
硝酸アルミニウム九水和物(和光純薬工業社製)を4.695g添加した以外は実施例1と同様にして四角板状酸化亜鉛粒子を得た。この時、原料酸化亜鉛の亜鉛元素に対して、アルミニウムは1mol%であった。得られた四角板状酸化亜鉛粒子のサイズ・形態を走査型電子顕微鏡(SEM、JSM-7000F、日本電子社製)で観察した。得られた四角板状酸化亜鉛粒子の長辺の長さと短辺の長さの比は1.13であり、長辺の長さと厚みの比は8であった。また長辺の長さは18μmであった。得られた電子顕微鏡写真を図4に示した。また酸化亜鉛含有率は98.9重量%であり、XRDパターンから異相は認められなかった。XRDパターンを図15に示した。
(Example 5)
Square plate-like zinc oxide particles were obtained in the same manner as in Example 1 except that 4.695 g of aluminum nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added. At this time, aluminum was 1 mol% with respect to the zinc element of the raw material zinc oxide. The size and form of the obtained square plate-like zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The ratio of the length of the long side to the length of the short side of the obtained rectangular plate-like zinc oxide particles was 1.13, and the ratio of the length of the long side to the thickness was 8. The length of the long side was 18 μm. The obtained electron micrograph is shown in FIG. The zinc oxide content was 98.9% by weight, and no heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
(実施例6)
硝酸アルミニウム九水和物(和光純薬工業社製)を18.78g添加した以外は実施例1と同様にして四角板状酸化亜鉛粒子を得た。この時、原料酸化亜鉛の亜鉛元素に対して、アルミニウムは4mol%であった。得られた四角板状酸化亜鉛粒子のサイズ・形態を走査型電子顕微鏡(SEM、JSM-7000F、日本電子社製)で観察した。得られた四角板状酸化亜鉛粒子の長辺の長さと短辺の長さの比は1.11であり、長辺の長さと厚みの比は5であった。また長辺の長さは20μmであった。得られた電子顕微鏡写真を図5に示した。また酸化亜鉛含有率は96.3重量%であり、XRDパターンから異相は認められなかった。XRDパターンを図16に示した。
(Example 6)
Square plate-like zinc oxide particles were obtained in the same manner as in Example 1 except that 18.78 g of aluminum nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added. At this time, aluminum was 4 mol% with respect to the zinc element of raw material zinc oxide. The size and form of the obtained square plate-like zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The ratio of the length of the long side to the length of the short side of the obtained rectangular plate-like zinc oxide particles was 1.11, and the ratio of the length of the long side to the thickness was 5. The length of the long side was 20 μm. The obtained electron micrograph is shown in FIG. The zinc oxide content was 96.3% by weight, and no heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
(実施例7)
得られた四角板状亜鉛化合物をアルミナボートにいれて、管状炉を用いて、窒素ガス0.285リットル/分、水素ガス0.015リットル/分の混合気体を流通しながら200℃/時で750℃まで昇温し、そのまま8時間保持した以外は、実施例1と同様にして四角板状酸化亜鉛粒子を得た。得られた四角板状酸化亜鉛粒子のサイズ・形態を走査型電子顕微鏡(SEM、JSM-7000F、日本電子社製)で観察した。得られた四角板状酸化亜鉛粒子の長辺の長さと短辺の長さの比は1.20であり、長辺の長さと厚みの比は12であった。また長辺の長さは17μmであった。得られた電子顕微鏡写真を図6に示した。また酸化亜鉛含有率は97.2重量%であり、XRDパターンから異相は認められなかった。XRDパターンを図17に示した。
(Example 7)
The obtained square plate-like zinc compound was put in an alumina boat, and a tubular furnace was used to circulate a mixed gas of 0.285 liter / minute of nitrogen gas and 0.015 liter / minute of hydrogen gas at 200 ° C./hour. Square plate-like zinc oxide particles were obtained in the same manner as in Example 1 except that the temperature was raised to 750 ° C. and maintained for 8 hours. The size and form of the obtained square plate-like zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The ratio of the length of the long side to the length of the short side of the obtained square plate-like zinc oxide particles was 1.20, and the ratio of the length of the long side to the thickness was 12. The length of the long side was 17 μm. The obtained electron micrograph is shown in FIG. The zinc oxide content was 97.2% by weight, and no heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
(実施例8)
得られた四角板状亜鉛化合物をアルミナボートにいれて、管状炉を用いて、窒素ガス0.285リットル/分、水素ガス0.015リットル/分の混合気体を流通しながら200℃/時で750℃まで昇温し、そのまま8時間保持した以外は、実施例2と同様にして四角板状酸化亜鉛粒子を得た。得られた四角板状酸化亜鉛粒子のサイズ・形態を走査型電子顕微鏡(SEM、JSM-7000F、日本電子社製)で観察した。得られた四角板状酸化亜鉛粒子の長辺の長さと短辺の長さの比は1.08であり、長辺の長さと厚みの比は36であった。また長辺の長さは58μmであった。得られた電子顕微鏡写真を図7に示した。また酸化亜鉛含有率は96.3重量%であり、XRDパターンから異相は認められなかった。XRDパターンを図18に示した。
(Example 8)
The obtained square plate-like zinc compound was put in an alumina boat, and a tubular furnace was used to circulate a mixed gas of 0.285 liter / minute of nitrogen gas and 0.015 liter / minute of hydrogen gas at 200 ° C./hour. Square plate-like zinc oxide particles were obtained in the same manner as in Example 2 except that the temperature was raised to 750 ° C. and maintained for 8 hours. The size and form of the obtained square plate-like zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The ratio of the long side length to the short side length of the obtained rectangular plate-like zinc oxide particles was 1.08, and the ratio of the long side length to the thickness was 36. The long side length was 58 μm. The obtained electron micrograph is shown in FIG. The zinc oxide content was 96.3% by weight, and no heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
(比較例1)
硝酸亜鉛六水和物428.38gを塩化亜鉛(和光純薬社製)196.29gに変えた以外は、実施例6と同様にして酸化亜鉛粒子を得た。得られた酸化亜鉛粒子のサイズ・形態を走査型電子顕微鏡(SEM、JSM-7000F、日本電子社製)で観察した。得られた酸化亜鉛粒子の形状は不定形であり、長辺の長さと短辺の長さの比と四角板状の長辺の長さと厚みの比を測量できなかった。得られた電子顕微鏡写真を図8に示した。また酸化亜鉛含有率は77.3重量%であり、XRDパターンから異相が認められた。XRDパターンを図19に示した。
(Comparative Example 1)
Zinc oxide particles were obtained in the same manner as in Example 6 except that 428.38 g of zinc nitrate hexahydrate was changed to 196.29 g of zinc chloride (manufactured by Wako Pure Chemical Industries, Ltd.). The size and form of the obtained zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The shape of the obtained zinc oxide particles was indefinite, and the ratio of the length of the long side to the length of the short side and the ratio of the length of the long side of the square plate to the thickness could not be measured. The obtained electron micrograph is shown in FIG. The zinc oxide content was 77.3% by weight, and a heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
(比較例2)
硝酸亜鉛六水和物428.38gを硫酸亜鉛7水和物(和光純薬社製)414.11gに変えた以外は、実施例5と同様にして酸化亜鉛粒子を得た。得られた酸化亜鉛粒子のサイズ・形態を走査型電子顕微鏡(SEM、JSM-7000F、日本電子社製)で観察した。得られた酸化亜鉛粒子の形状は不定形であり、長辺の長さと短辺の長さの比と四角板状の長辺の長さと厚みの比を測量できなかった。得られた電子顕微鏡写真を図9に示した。また酸化亜鉛含有率は79.9重量%であり、XRDパターンから異相が認められた。XRDパターンを図20に示した。
(Comparative Example 2)
Zinc oxide particles were obtained in the same manner as in Example 5 except that 428.38 g of zinc nitrate hexahydrate was changed to 414.11 g of zinc sulfate heptahydrate (manufactured by Wako Pure Chemical Industries, Ltd.). The size and form of the obtained zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The shape of the obtained zinc oxide particles was indefinite, and the ratio of the length of the long side to the length of the short side and the ratio of the length of the long side of the square plate to the thickness could not be measured. The obtained electron micrograph is shown in FIG. The zinc oxide content was 79.9% by weight, and a heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
(比較例3)
硝酸亜鉛六水和物428.38gを酢酸亜鉛2水和物(和光純薬社製)316.09gに変えた以外は、実施例1と同様にして酸化亜鉛粒子を得た。得られた酸化亜鉛粒子のサイズ・形態を走査型電子顕微鏡(SEM、JSM-7000F、日本電子社製)で観察した。得られた酸化亜鉛粒子の形状は不定形であり、長辺の長さと短辺の長さの比と四角板状の長辺の長さと厚みの比は測量できなかった。得られた電子顕微鏡写真を図10に示した。また酸化亜鉛含有率は97.2重量%であり、XRDパターンから異相は認められなかった。XRDパターンを図21に示した。
(Comparative Example 3)
Zinc oxide particles were obtained in the same manner as in Example 1 except that 428.38 g of zinc nitrate hexahydrate was changed to 316.09 g of zinc acetate dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.). The size and form of the obtained zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The shape of the obtained zinc oxide particles was indefinite, and the ratio of the length of the long side to the length of the short side and the ratio of the length of the long side of the square plate to the thickness could not be measured. The obtained electron micrograph is shown in FIG. The zinc oxide content was 97.2% by weight, and no heterogeneous phase was observed from the XRD pattern. The XRD pattern is shown in FIG.
(比較例4)
硝酸アルミニウム九水和物を添加しない以外は実施例1と同様にして酸化亜鉛粒子を得た。得られた酸化亜鉛粒子のサイズ・形態を走査型電子顕微鏡(SEM、JSM-7000F、日本電子社製)で観察した。得られた酸化亜鉛粒子の形状は針状であり、長辺の長さと短辺の長さの比と四角板状の長辺の長さと厚みの比は測量できなかった。得られた電子顕微鏡写真を図11に示した。またXRDパターンから異相は認められなかった。
(Comparative Example 4)
Zinc oxide particles were obtained in the same manner as in Example 1 except that no aluminum nitrate nonahydrate was added. The size and form of the obtained zinc oxide particles were observed with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.). The shape of the obtained zinc oxide particles was needle-like, and the ratio of the length of the long side to the length of the short side and the ratio of the length of the long side of the square plate shape to the thickness could not be measured. The obtained electron micrograph is shown in FIG. Further, no heterogeneous phase was observed from the XRD pattern.
(酸化亜鉛含有率)
酸化亜鉛の含有率は、波長分散型蛍光X線分析装置(リガク社製PrimusII)にて分析した。
(Zinc oxide content)
The content of zinc oxide was analyzed with a wavelength dispersive X-ray fluorescence analyzer (Primus II manufactured by Rigaku Corporation).
(粉末X線回折評価)
図12から図21に示すX線回折のスペクトルは、X線回折装置RINT-TTRIII(リガク社製)により分析した結果を示したものである。測定条件は、X線源CuKα、波長λ=1.5418Å、走査モードFT、走査範囲2θ=10.000°から2θ=60.000°、ステップ幅0.04°、計数時間0.2secにより測定を行った。
(Powder X-ray diffraction evaluation)
The X-ray diffraction spectra shown in FIG. 12 to FIG. 21 show the results of analysis using an X-ray diffractometer RINT-TTRIII (manufactured by Rigaku Corporation). Measurement conditions are X-ray source CuKα, wavelength λ = 1.54184, scanning mode FT, scanning range 2θ = 10.000 ° to 2θ = 60.000 °, step width 0.04 °, counting time 0.2 sec. Went.
(長辺の長さと短辺の長さの比及び長辺の長さと厚みの比及び長辺の長さ)
長辺の長さ/短辺の長さは、走査型電子顕微鏡(SEM、JSM-7000F、日本電子社製)で1視野中に粒子が10個入るような倍率で撮影した写真中の板状粒子のそれぞれの長辺の長さ/短辺の長さを算出し、板状粒子50個の平均値を算出するという方法によって測定したものである。
また、長辺の長さと厚みの比、すなわち長辺の長さ/厚みは、長辺の長さ/短辺の長さを計測した場合と同様にして、板状の側面を厚みとして長辺の長さ/厚みを算出し、板状粒子50個の平均値を算出するという方法によって測定したものである。また、長辺の長さは、長辺の長さ/短辺の長さを計測した場合と同様にして、板状粒子の長辺の長さを測定し、板状粒子50個の平均値を算出するという方法によって測定したものである。
(Long side length to short side length ratio, long side length to thickness ratio, and long side length)
The length of the long side / the length of the short side is a plate-like shape in a photograph taken with a scanning electron microscope (SEM, JSM-7000F, manufactured by JEOL Ltd.) at a magnification that allows 10 particles in one field of view. It is measured by a method of calculating the length of each long side / length of the short side of the particle and calculating the average value of 50 plate-like particles.
The ratio of the length of the long side to the thickness, that is, the length / thickness of the long side is the same as when measuring the length of the long side / the length of the short side. The length / thickness is calculated, and the average value of 50 plate-like particles is calculated. Further, the length of the long side is the same as the case of measuring the length of the long side / the length of the short side, the length of the long side of the plate-like particles is measured, and the average value of 50 plate-like particles It is measured by the method of calculating.
以上の実施例、比較例の酸化亜鉛について、その製造方法及び得られた酸化亜鉛粒子の形状を表1にまとめた。 About the zinc oxide of the above Example and the comparative example, the manufacturing method and the shape of the obtained zinc oxide particle were put together in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
〔粉末特性評価〕
(体積固有抵抗値)
実施例7及び実施例8によって得られた四角板状酸化亜鉛粒子の体積固有抵抗値を、次の方法を用いて測定した。
内径20mmφの塩化ビニル製の筒に、サンプル0.8gを入れて、両側に電極を兼ねた良導電性の治具を用いてサンプルを挟み込み、サンプルに200kgf/cmの荷重がかかる様にハンドプレスにて荷重をかけた。そして、その状態を維持しながら、電極両端の抵抗値をテスターで測定した。抵抗値より、次式により、体積固有抵抗値を求めた。
(式) 体積固有抵抗値(Ω・cm)
= 抵抗値(Ω)×サンプルのプレス面積(cm)/プレス時の厚み(cm)
実施例7の体積固有抵抗値は590Ω・cmであり、実施例8の体積固有抵抗値は15Ω・cmであった。以上より、本発明の四角板状酸化亜鉛粒子は、導電性に優れたものであることが明らかである。
(Powder property evaluation)
(Volume resistivity)
The volume resistivity value of the square plate-like zinc oxide particles obtained in Example 7 and Example 8 was measured using the following method.
Place 0.8 g of sample into a 20 mmφ inner diameter vinyl chloride tube, sandwich the sample using a highly conductive jig that also serves as an electrode on both sides, and apply a load of 200 kgf / cm 2 to the sample. A load was applied with a press. And the resistance value of the electrode both ends was measured with the tester, maintaining the state. From the resistance value, the volume specific resistance value was determined by the following equation.
(Formula) Volume resistivity (Ω · cm)
= Resistance value (Ω) × pressed area of sample (cm 2 ) / pressed thickness (cm)
The volume resistivity value of Example 7 was 590 Ω · cm, and the volume resistivity value of Example 8 was 15 Ω · cm. From the above, it is clear that the square plate-like zinc oxide particles of the present invention are excellent in conductivity.
(滑り性評価)
実施例1及び実施例4によって得られた四角板状酸化亜鉛粒子の滑り性を次の方法を用いて測定した。スライドガラスに25mm幅の両面テープを貼り、粒子を載せ、化粧用パフで展ばし、摩擦感テスターKES-SE(カトーテック社製)でシリコーンゴム製摩擦子を用いて摩擦係数を測定し、摩擦係数(μ)の20mm間の平均値から、平均摩擦係数MIU、及び摩擦係数の平均偏差MMDを算出し、滑り性を評価した。結果を表2に示す。
(Slip evaluation)
The slip properties of the square plate-like zinc oxide particles obtained in Example 1 and Example 4 were measured using the following method. A 25 mm wide double-sided tape is applied to the slide glass, the particles are placed on it, spread with a cosmetic puff, and the friction coefficient is measured with a friction tester KES-SE (manufactured by Kato Tech) using a silicone rubber friction element. The average friction coefficient MIU and the average deviation MMD of the friction coefficient were calculated from the average value of the friction coefficient (μ) for 20 mm, and the slipperiness was evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表2より実施例1及び実施例4の四角板状酸化亜鉛粒子は、他酸化亜鉛と比較して平均摩擦係数及び摩擦係数の変動が小さい、滑り性のよい粒子であることが明らかとなった。比較として堺化学製FINEX-50(平均粒子径20nm)、酸化亜鉛I種(平均粒子径0.6μm)、大粒子酸化亜鉛LPZINC(平均粒子径2μm)を用いた。 From Table 2, it was clarified that the rectangular plate-like zinc oxide particles of Example 1 and Example 4 are particles having good slipperiness with a small variation in average friction coefficient and friction coefficient as compared with other zinc oxides. . For comparison, FINEX-50 (average particle size 20 nm), zinc oxide type I (average particle size 0.6 μm), and large particle zinc oxide LPZINC (average particle size 2 μm) were used.
(紫外線遮蔽性評価)
実施例1によって得られた四角板状酸化亜鉛粒子の紫外線遮蔽性を次の方法を用いて測定した。
得られた粉末を圧粉した状態で紫外可視赤外分光光度計(日本分光製V-570型分光光度計及びILN471型積分級装置)にて反射率を測定した。波長範囲300~800nm、測定速度200nm/minにて測定した。結果を図22に示す。
図22より実施例1で得られた四角板状酸化亜鉛は優れた紫外線遮蔽効果を有することがわかる。
(Ultraviolet shielding evaluation)
The ultraviolet shielding property of the square plate-like zinc oxide particles obtained in Example 1 was measured using the following method.
Reflectance was measured with an ultraviolet-visible infrared spectrophotometer (V-570 type spectrophotometer and ILN471 type integrating grade device manufactured by JASCO Corporation) while the obtained powder was compacted. Measurement was performed at a wavelength range of 300 to 800 nm and a measurement speed of 200 nm / min. The results are shown in FIG.
It can be seen from FIG. 22 that the rectangular plate-like zinc oxide obtained in Example 1 has an excellent ultraviolet shielding effect.
以上の結果から、本発明の四角板状酸化亜鉛粒子粒子は、すべり性のよい粒子であり、化粧品用素材として好適に使用できることが明らかである。 From the above results, it is clear that the square plate-like zinc oxide particle particles of the present invention are particles having good sliding properties and can be suitably used as a cosmetic material.
本発明の四角板状酸化亜鉛粒子は、化粧料、樹脂組成物、塗料組成物、インキ組成物等の各用途において好適に使用することができる。 The square plate-like zinc oxide particles of the present invention can be suitably used in various applications such as cosmetics, resin compositions, coating compositions, and ink compositions.

Claims (10)

  1. 長辺の長さと短辺の長さの比(長辺の長さ/短辺の長さ)が1.00~1.30であり、長辺の長さと厚みの比(長辺の長さ/厚み)が3~100であることを特徴とする四角板状酸化亜鉛粒子。 The ratio of the long side length to the short side length (long side length / short side length) is 1.00 to 1.30, and the long side length to thickness ratio (long side length) Square plate-like zinc oxide particles, wherein the / thickness is 3 to 100.
  2. 長辺の長さが5μm以上100μm以下である請求項1記載の四角板状酸化亜鉛粒子。 The square plate-like zinc oxide particles according to claim 1, wherein the length of the long side is 5 μm or more and 100 μm or less.
  3. 酸化亜鉛の含有率が85重量%以上であり、XRDパターンから異相が認められない請求項1又は2記載の四角板状酸化亜鉛粒子。 The rectangular plate-like zinc oxide particles according to claim 1 or 2, wherein the zinc oxide content is 85% by weight or more, and no heterogeneous phase is observed from the XRD pattern.
  4. 原料酸化亜鉛、硝酸亜鉛、並びに、3価及び/又は4価の金属元素を溶媒中で混合する工程(1)を有することを特徴とする請求項1,2又は3記載の四角板状酸化亜鉛粒子の製造方法。 4. The rectangular plate-like zinc oxide according to claim 1, comprising a step (1) of mixing raw material zinc oxide, zinc nitrate, and trivalent and / or tetravalent metal elements in a solvent. Particle production method.
  5. 3価及び/又は4価の金属元素の一部がまたは全部が原料酸化亜鉛中に存在することを特徴とする請求項4記載の四角板状酸化亜鉛粒子の製造方法。 5. The method for producing rectangular plate-like zinc oxide particles according to claim 4, wherein a part or all of the trivalent and / or tetravalent metal element is present in the raw material zinc oxide.
  6. 3価及び/又は4価の金属元素の一部がまたは全部が溶媒中に溶解及び/又は分散していることを特徴とする請求項4又は5記載の四角板状酸化亜鉛粒子の製造方法。 The method for producing rectangular plate-like zinc oxide particles according to claim 4 or 5, wherein a part or all of the trivalent and / or tetravalent metal element is dissolved and / or dispersed in a solvent.
  7. 請求項1~3のいずれかに記載の四角板状酸化亜鉛粒子を含有する化粧料。 A cosmetic comprising the square plate-like zinc oxide particles according to any one of claims 1 to 3.
  8. 請求項1~3のいずれかに記載の四角板状酸化亜鉛粒子を含有する樹脂組成物。 A resin composition comprising the square plate-like zinc oxide particles according to any one of claims 1 to 3.
  9. 請求項1~3のいずれかに記載の四角板状酸化亜鉛粒子を含有する塗料組成物。 A coating composition containing the square plate-like zinc oxide particles according to any one of claims 1 to 3.
  10. 請求項1~3のいずれかに記載の四角板状酸化亜鉛粒子を含有するインキ組成物。 An ink composition comprising the square plate-like zinc oxide particles according to any one of claims 1 to 3.
PCT/JP2014/073294 2013-09-06 2014-09-04 Square-plate-shaped zinc oxide particles and method for producing same WO2015033990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015526783A JP5867658B2 (en) 2013-09-06 2014-09-04 Square plate zinc oxide particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-185753 2013-09-06
JP2013185753 2013-09-06

Publications (1)

Publication Number Publication Date
WO2015033990A1 true WO2015033990A1 (en) 2015-03-12

Family

ID=52628456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073294 WO2015033990A1 (en) 2013-09-06 2014-09-04 Square-plate-shaped zinc oxide particles and method for producing same

Country Status (3)

Country Link
JP (2) JP5867658B2 (en)
TW (1) TWI651274B (en)
WO (1) WO2015033990A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230472A1 (en) * 2017-06-12 2018-12-20 堺化学工業株式会社 Method for producing hexagonal plate-shaped zinc oxide
WO2018230473A1 (en) * 2017-06-12 2018-12-20 堺化学工業株式会社 Trivalent metal-doped hexagonal plate-shaped zinc oxide and method for producing same
WO2020138429A1 (en) * 2018-12-27 2020-07-02 花王株式会社 External skin preparation
CN113060755A (en) * 2021-03-09 2021-07-02 安徽景成新材料有限公司 Preparation method of zinc oxide particles
WO2023087056A1 (en) * 2021-11-16 2023-05-25 Advance ZincTek Limited Zinc oxide and aluminium oxide containing materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142039A1 (en) 2016-02-16 2017-08-24 株式会社マキタ Electric work machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360429A (en) * 1989-07-28 1991-03-15 Lion Corp Zinc oxide-based electrically-conductive powder
JPH08504163A (en) * 1992-12-04 1996-05-07 ザ ブリテイッシュ ピトローリアム コンパニー ピー.エル.シー. Zinc oxide composition used in catalyst
JP2008254990A (en) * 2007-04-09 2008-10-23 Ishihara Sangyo Kaisha Ltd Zinc oxide, method for producing the same, and cosmetic using the same
JP2008254991A (en) * 2007-04-09 2008-10-23 Ishihara Sangyo Kaisha Ltd Zinc oxide, method for producing the same, and cosmetic using the same
JP2008254989A (en) * 2007-04-09 2008-10-23 Ishihara Sangyo Kaisha Ltd Zinc oxide, method for producing the same, and cosmetic using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132104A (en) * 1989-07-21 1992-07-21 Lion Corporation Needle shaped monoamine complex of zinc carbonate and process for producing it
US5811365A (en) * 1992-12-04 1998-09-22 The British Petroleum Company, P.L.C. Zinc oxide composition for use in catalysts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360429A (en) * 1989-07-28 1991-03-15 Lion Corp Zinc oxide-based electrically-conductive powder
JPH08504163A (en) * 1992-12-04 1996-05-07 ザ ブリテイッシュ ピトローリアム コンパニー ピー.エル.シー. Zinc oxide composition used in catalyst
JP2008254990A (en) * 2007-04-09 2008-10-23 Ishihara Sangyo Kaisha Ltd Zinc oxide, method for producing the same, and cosmetic using the same
JP2008254991A (en) * 2007-04-09 2008-10-23 Ishihara Sangyo Kaisha Ltd Zinc oxide, method for producing the same, and cosmetic using the same
JP2008254989A (en) * 2007-04-09 2008-10-23 Ishihara Sangyo Kaisha Ltd Zinc oxide, method for producing the same, and cosmetic using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230472A1 (en) * 2017-06-12 2018-12-20 堺化学工業株式会社 Method for producing hexagonal plate-shaped zinc oxide
WO2018230473A1 (en) * 2017-06-12 2018-12-20 堺化学工業株式会社 Trivalent metal-doped hexagonal plate-shaped zinc oxide and method for producing same
JP6451912B1 (en) * 2017-06-12 2019-01-16 堺化学工業株式会社 Method for producing hexagonal plate-like zinc oxide
JP6451913B1 (en) * 2017-06-12 2019-01-16 堺化学工業株式会社 Trivalent metal-doped hexagonal plate-like zinc oxide and method for producing the same
EP3640213A4 (en) * 2017-06-12 2021-03-31 Sakai Chemical Industry Co., Ltd. Trivalent metal-doped hexagonal plate-shaped zinc oxide and method for producing same
US11203530B2 (en) 2017-06-12 2021-12-21 Sakai Chemical Industry Co., Ltd. Method for producing hexagonal plate-shaped zinc oxide
US11446221B2 (en) 2017-06-12 2022-09-20 Sakai Chemical Industry Co., Ltd. Trivalent metal-doped hexagonal plate-shaped zinc oxide and method for producing same
WO2020138429A1 (en) * 2018-12-27 2020-07-02 花王株式会社 External skin preparation
CN113226481A (en) * 2018-12-27 2021-08-06 花王株式会社 External preparation for skin
CN113060755A (en) * 2021-03-09 2021-07-02 安徽景成新材料有限公司 Preparation method of zinc oxide particles
WO2023087056A1 (en) * 2021-11-16 2023-05-25 Advance ZincTek Limited Zinc oxide and aluminium oxide containing materials

Also Published As

Publication number Publication date
TWI651274B (en) 2019-02-21
JPWO2015033990A1 (en) 2017-03-02
JP5867658B2 (en) 2016-02-24
TW201522235A (en) 2015-06-16
JP2016026997A (en) 2016-02-18
JP6314955B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6314955B2 (en) Method for producing rectangular plate-like zinc oxide particles
KR101913119B1 (en) Composite powder and method for producing same
JP5854176B2 (en) Zinc oxide particles, method for producing them, UV screening agent and cosmetics
JP6493227B2 (en) Hexagonal plate-like zinc oxide particles, method for producing the same, cosmetics, filler, resin composition, infrared reflector, and coating composition
US20180127591A1 (en) Cerium oxide-coated zinc oxide particle, method for producing the same, ultraviolet shielding agent, and cosmetic
JP2015010095A (en) Method for producing composite powder dispersion
KR102570736B1 (en) Granular complex containing keratin and hexagonal plate-shaped zinc oxide
JP5854175B2 (en) Zinc oxide particles, method for producing them, UV screening agent and cosmetics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526783

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841744

Country of ref document: EP

Kind code of ref document: A1