WO2015033914A1 - Calibration module - Google Patents

Calibration module Download PDF

Info

Publication number
WO2015033914A1
WO2015033914A1 PCT/JP2014/073023 JP2014073023W WO2015033914A1 WO 2015033914 A1 WO2015033914 A1 WO 2015033914A1 JP 2014073023 W JP2014073023 W JP 2014073023W WO 2015033914 A1 WO2015033914 A1 WO 2015033914A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
measurement probe
measurement
calibration module
optical
Prior art date
Application number
PCT/JP2014/073023
Other languages
French (fr)
Japanese (ja)
Inventor
鳥山 誠記
後野 和弘
健二 上村
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Publication of WO2015033914A1 publication Critical patent/WO2015033914A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/278Constitution of standards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00057Operational features of endoscopes provided with means for testing or calibration

Definitions

  • the present invention relates to a calibration module for calibrating the optical characteristics of an optical measuring device that measures the optical characteristics of a living tissue.
  • an optical measurement device that irradiates a measurement object with light from a measurement probe and measures a characteristic value of the measurement object based on a measurement result of light reflected by the measurement object.
  • the optical measurement apparatus needs to perform a calibration process before starting measurement of the measurement object in order to guarantee the measurement accuracy of the measurement result.
  • a technique for performing calibration processing of an optical measurement device based on the measurement result is known (see, for example, Patent Document 1).
  • Patent Document 1 in order to perform an accurate calibration process, the tip of the measurement probe must be kept in contact with the calibration member or kept at a certain distance.
  • Patent Document 1 described above when the calibration process is performed, there is a problem that when the operator releases his hand from the measurement probe, the tip of the measurement probe is separated from the calibration member. .
  • the present invention has been made in view of the above, and can maintain the state in which the tip of the measurement probe is in contact with the calibration member even when the operator releases the hand from the measurement probe.
  • An object is to provide a calibration module.
  • the calibration module calibrates the optical characteristics of the optical measurement device by inserting a measurement probe of the optical measurement device that measures the optical characteristics of the measurement object.
  • a calibration module for performing calibration a calibration member to be irradiated with illumination light emitted from the tip of the measurement probe, and an insertion part into which the tip of the measurement probe can be inserted, An insertion portion having an inner diameter smaller than the outer diameter, and a fixing portion made of an elastic body; and a holding portion provided with the fixing portion and holding the calibration member movably along the insertion direction of the measurement probe; And a biasing member that biases the calibration member toward the fixed portion.
  • a spacer portion that maintains a constant distance between the distal end portion of the measurement probe and the calibration member is provided. It is further provided with a feature.
  • the calibration module according to the present invention is characterized in that, in the above invention, the fixing portion is detachable from the holding portion.
  • the calibration module according to the present invention is the calibration module according to the present invention, wherein the holding portion has a cylindrical shape with a base portion, one end portion is fixed to the base portion, and the calibration member and the biasing member are provided inside.
  • the calibration module according to the present invention is characterized in that, in the above invention, the calibration module is detachable from the main body of the optical measuring device.
  • the urging member urges the calibration member toward the fixed portion, so that even if the operator releases his hand from the measurement probe, the tip of the measurement probe is There exists an effect that the state which contacted the member for calibration can be maintained.
  • FIG. 1 is a block diagram schematically illustrating a functional configuration of the optical measurement system according to the first embodiment of the present invention.
  • FIG. 2 is an external view showing the configuration of the calibration module according to the first embodiment of the present invention.
  • 3 is a cross-sectional view taken along line AA in FIG.
  • FIG. 4 is a diagram illustrating a situation when the optical measurement system according to the first embodiment of the present invention is used in an endoscope system.
  • FIG. 5A is a cross-sectional view of the calibration module when the measurement probe is inserted into the calibration module according to the first embodiment of the present invention.
  • FIG. 5B is a cross-sectional view of the calibration module immediately after the measurement probe is inserted into the calibration module according to Embodiment 1 of the present invention.
  • FIG. 5C is a cross-sectional view of the calibration module when the operator releases his / her hand from the measurement probe after the measurement probe is inserted into the calibration module according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram partially showing a cross section of the configuration of the calibration module according to the second embodiment of the present invention.
  • FIG. 1 is a block diagram schematically illustrating a functional configuration of the optical measurement system according to the first embodiment of the present invention.
  • An optical measurement system 1 illustrated in FIG. 1 includes an optical measurement device 2 that performs optical measurement on a measurement object such as a biological tissue that is a scatterer, and detects a property (characteristic) of the measurement object, and an optical measurement device 2.
  • the measurement probe 3 is detachably attached to the subject, and the optical measurement device 2 and the calibration module 4 for calibrating the optical characteristics of the measurement probe 3 are provided.
  • the optical measuring device 2 includes a power source 21, a light source unit 22, a connection unit 23, a light receiving unit 24, an input unit 25, an output unit 26, a recording unit 27, and a control unit 28.
  • the power source 21 supplies power to each part of the optical measuring device 2.
  • the light source unit 22 emits illumination light to the measurement probe 3 through the connection unit 23.
  • the light source unit 22 is realized using an incoherent light source such as a white LED (Light Emitting Diode), a xenon lamp, a tungsten lamp, and a halogen lamp, and one or a plurality of lenses as necessary. Examples of such a lens include a condensing lens and a collimating lens.
  • connection unit 23 detachably connects the measurement probe 3 to the optical measurement device 2.
  • the connection unit 23 emits illumination light emitted from the light source unit 22 to the measurement probe 3 and emits return light of illumination light incident through the measurement probe 3 to the light receiving unit 24.
  • the connection unit 23 is realized by using, for example, an SMA (Sub-Miniature Type A) connector.
  • the light receiving unit 24 receives the return light of the illumination light incident from the measurement probe 3 through the connection unit 23, measures the spectral component of the received return light of the illumination light, and outputs it to the control unit 28.
  • the light receiving unit 24 is configured using a plurality of spectrometers.
  • the input unit 25 receives input of various information of the optical measuring device 2.
  • the input unit 25 is configured using a touch panel, a push button, or the like.
  • the output unit 26 outputs various information of the optical measurement device 2. Specifically, the output unit 26 outputs a measurement result of the measurement object or operation information related to the optical measurement device 2.
  • the output unit 26 is realized using a display panel such as liquid crystal or organic EL (Electro Luminescence), a speaker, and the like.
  • the recording unit 27 records various programs for operating the optical measuring device 2, various data used for the optical measuring device 2, calibration data used during calibration processing, and various parameters.
  • the recording unit 27 is realized using a volatile memory, a nonvolatile memory, or the like.
  • the recording unit 27 temporarily records information and data being processed by the optical measuring device 2. Further, the recording unit 27 records the measurement result of the optical measuring device 2.
  • the recording unit 27 may be configured using a memory card or the like mounted from the outside of the optical measurement device 2.
  • the control unit 28 comprehensively controls the processing operation of each unit of the optical measuring device 2.
  • the control unit 28 is configured using a CPU (Central Processing Unit) or the like, and controls the optical measurement device 2 by transferring instruction information and data to each unit of the optical measurement device 2.
  • the control unit 28 includes a calculation unit 281 and a calibration processing unit 282.
  • the calculation unit 281 calculates a characteristic value related to the property of the measurement object based on the spectral component of the return light of the illumination light input from the light receiving unit 24.
  • the calibration processing unit 282 records the spectral component of the return light of the illumination light reflected from the calibration module 4 input from the light receiving unit 24 and recorded by the recording unit 27. Based on the calibration data to be performed, a calibration process for calibrating the optical characteristics of the optical measurement device 2 and the measurement probe 3 is executed.
  • the measurement probe 3 is configured using at least a plurality of optical fibers.
  • the measurement probe 3 includes a plurality of illumination fibers (illumination channels) that emit illumination light to the measurement target and a plurality of incident light beams that are reflected and / or scattered by the measurement target at different angles.
  • a light receiving fiber light receiving channel.
  • the measurement probe 3 emits illumination light supplied from the light source unit 22 via the base end portion 31 detachably connected to the connection portion 23, a flexible portion 32 having flexibility, and the connection portion 23.
  • a tip portion 33 that receives the return light of the illumination light from the measurement object is provided.
  • a lot lens that keeps the distance between the measurement target and the tip portion 33 constant may be provided at the tip portion 33.
  • FIG. 2 is an external view showing the configuration of the calibration module 4.
  • 3 is a cross-sectional view taken along line AA in FIG.
  • first cylinder part 42 and the second cylinder part 43 function as a holding part.
  • the base portion 41 has a rectangular shape, and one end portion of the first tube portion 42 is fixed to the upper surface 411 with a screw 48. On the back surface 412 of the base portion 41, a concave portion 413 that is cut in a rectangular shape toward the upper surface 411 is formed.
  • the first tube part 42 has a cylindrical shape.
  • the first cylinder portion 42 includes an accommodating portion 421 that holds the calibration member 45 movably along the insertion direction (arrow B direction) of the measurement probe 3 inside.
  • An annular portion 423 that protrudes upward in the vertical direction is provided on the upper surface 422 of the first tube portion 42.
  • the accommodating part 421 and the annular part 423 are integrally formed.
  • the inner diameter D1 of the accommodating part 421 is formed smaller than the inner diameter D2 of the annular part 423 (D1 ⁇ D2).
  • a male threaded portion 423a that is threaded is formed on the outer peripheral side surface of the annular portion 423.
  • the second cylinder portion 43 has a cylindrical shape and is detachably provided on the annular portion 423 of the first cylinder portion 42.
  • An annular portion 432 protruding downward in the vertical direction is provided on the lower surface 431 of the second cylindrical portion 43.
  • a female screw portion 432a that is threaded is formed on the inner peripheral side of the annular portion 432.
  • the second cylinder portion 43 includes an accommodating portion 433 that accommodates the fixed portion 44 therein.
  • the accommodating portion 433 is formed with a ring-shaped concave portion 433 a that is recessed along the outer peripheral side and is provided along the inner periphery of the accommodating portion 433.
  • the fixing part 44 has an insertion part 441 having an inner diameter D4 smaller than the outer diameter D3 of the measurement probe 3.
  • the fixing portion 44 is formed using an elastic body such as rubber or silicon rubber.
  • the fixing portion 44 includes a distal end portion 442 having an outer diameter substantially the same as the inner diameter D1 of the accommodating portion 421, and a base end portion 443 having the same outer diameter as the second cylindrical portion 43.
  • the distal end portion 442 and the proximal end portion 443 are integrally formed.
  • the insertion portion 441 can insert the distal end portion 33 of the measurement probe 3.
  • the tip portion 442 is formed with a convex portion 442 a that protrudes toward the outer peripheral side and has a ring shape provided along the outer periphery of the tip portion 442. Accordingly, the fixing portion 44 is detachably fixed to the second cylindrical portion 43 by fitting the convex portion 442a of the tip end portion 442 to the concave portion 433a of the second cylindrical portion 43.
  • the calibration member 45 is realized by using a standard member having a disk shape.
  • the standard member is a member whose white plate or surface has a high reflectance with respect to illumination light.
  • the calibration member 45 is an irradiation target of illumination light emitted from the tip of the measurement probe 3 when the optical measurement device 2 and the measurement probe 3 are calibrated.
  • the urging member 46 urges the calibration member 45 toward the fixed portion 44. Specifically, the urging member 46 urges the calibration member 45 in the insertion direction (arrow B direction) of the measurement probe 3.
  • the urging member 46 is realized using a compression spring or the like.
  • the urging member 46 has one end connected to the base portion 41 and the other end connected to the calibration member 45.
  • the spacer portion 47 keeps the distance between the distal end portion 33 of the measurement probe 3 and the calibration member 45 constant when the measurement probe 3 is inserted into the insertion portion 441.
  • the spacer portion 47 has a hole portion 471 through which illumination light emitted from the illumination fiber of the measurement probe 3 can pass and through which return light of the illumination light reflected by the calibration member 45 can pass.
  • the spacer portion 47 is configured using a light shielding member.
  • the optical measurement system 1 configured as described above includes a measurement probe via a treatment instrument channel 111 provided in an endoscope apparatus 110 (endoscope scope) of the endoscope system 100. 3 is inserted, emits illumination light to the measurement object, receives the return light of the illumination light reflected and / or scattered by the measurement object from the tip 33 of the measurement probe 3, and emits it to the light receiving unit 24. Thereafter, the calculation unit 281 calculates the characteristic value of the measurement object based on the measurement result of the light receiving unit 24.
  • FIG. 5A is a cross-sectional view of the calibration module 4 when the measurement probe 3 is inserted into the calibration module 4.
  • FIG. 5B is a cross-sectional view of the calibration module 4 immediately after the measurement probe 3 is inserted into the calibration module 4.
  • FIG. 5C is a cross-sectional view of the calibration module 4 when the operator releases the hand from the measurement probe 3 after the measurement probe 3 is inserted into the calibration module 4.
  • the operator inserts the measurement probe 3 into the insertion portion 441 of the fixing portion 44 of the calibration module 4 and pushes in until the distal end portion 33 of the measurement probe 3 comes into contact with the spacer portion 47 ( FIG. 5A ⁇ FIG. 5B).
  • the insertion portion 441 of the fixing portion 44 is elastically deformed along the insertion direction (arrow B direction) of the measurement probe 3.
  • the operator releases the measurement probe 3 from the hand (FIG. 5B ⁇ FIG. 5C).
  • the fixing portion 44 returns to the original shape by the elastic force
  • the measuring probe 3 is pushed up in the direction opposite to the insertion direction of the measurement probe 3.
  • the urging member 46 urges the calibration member 45 toward the fixed portion 44
  • the spacer portion 47 and the calibration member 45 move toward the fixed portion 44.
  • the distance between the distal end portion 33 of the measurement probe 3 and the calibration member 45 can always be kept constant.
  • the operator operates the input unit 25 to emit the illumination light to the light source unit 22, thereby irradiating the illumination light toward the calibration member 45 from the distal end portion 33 of the measurement probe 3.
  • the calibration processing unit 282 executes calibration processing of the optical measurement device 2 and the measurement probe 3 based on the measurement result input from the light receiving unit 24.
  • the urging member 46 urges the calibration member 45 toward the fixed portion 44, so that the operator releases the hand from the measurement probe 3.
  • the state in which the tip 33 of the measurement probe 3 is in contact with the calibration member 45 can be maintained.
  • the spacer portion 47 keeps the distance between the distal end portion 33 of the measurement probe 3 and the calibration member 45 constant. Therefore, accurate calibration processing can be executed.
  • Embodiment 1 of the present invention even when the spacer portion 47 or the calibration member 45 is dirty, the fixing portion 44 can be easily detached from the second cylindrical portion 43, and other spacers Since the portion 47 or the calibration member 45 can be replaced, contamination can be prevented.
  • the second cylinder portion 43 can be easily detached from the first cylinder portion 42, and the spacer portion 47.
  • cleaning and disinfection including the calibration member 45 can be easily performed.
  • the urging member 46 urges the calibration member 45 toward the fixed portion 44, but an elastic member may be used instead of the urging member 46.
  • the elastic member biases the calibration member 45 toward the fixed portion 44, the tip 33 of the measurement probe 3 remains the calibration member even when the operator releases the hand from the measurement probe 3. The state in contact with 45 can be maintained.
  • FIG. 6 is a schematic diagram partially showing a cross section of the configuration of the calibration module according to the second embodiment of the present invention.
  • the calibration module 5 shown in FIG. 6 includes a second cylinder part 43, a fixing part 44, a base part 51, a first cylinder part 52, a light source part 53, an optical fiber 54, a ferrule 55, and a sleeve 56.
  • the adapter member 57, the moving body 58, the diffusion plate 59, and the urging member 60 are provided.
  • the base portion 51 has a rectangular shape, and the first tube portion 52 is fixed to the upper surface 511 with screws 48.
  • the base portion 51 has an annular shape and is provided to extend upward from the upper surface 511 in the vertical direction, and a housing portion 512 that can accommodate the biasing member 60 is formed.
  • the base portion 51 is provided with a ferrule 55 for connecting the optical fiber 54, a sleeve 56 for connecting the ferrule 55, and an adapter member 57 for connecting the sleeve 56 to the moving body 58.
  • the sleeve 56 is provided in the base portion 51 so as to be movable along the insertion direction of the measurement probe 3.
  • the first cylinder part 52 has a substantially cylindrical shape.
  • the first cylinder part 52 includes an accommodating part 521 that accommodates the spacer part 47, the moving body 58 and the diffusion plate 59 so as to be movable along the insertion direction (arrow B) of the measurement probe 3. Further, the first tube portion 52 is provided with an annular portion 423.
  • the light source unit 53 emits illumination light to the diffusion plate 59 via the optical fiber 54.
  • the light source unit 53 is configured using a white LED.
  • the adapter member 57 has a cylindrical shape and is provided with a main body portion 571 that holds the optical fiber 54 therein, an extension extending from the main body portion 571 toward the outer peripheral side, and abutting against the convex portion 582 of the moving body 58. A stop portion 572.
  • a female screw portion 582a of the convex portion 582 of the moving body 58 and a male screw portion 571a that is threaded so as to be screwable with the sleeve 56 are formed.
  • the adapter member 57, the moving body 58, and the sleeve 56 are accommodated in the accommodating part 521 so that it can move integrally along the insertion direction of the measurement probe 3.
  • the moving body 58 has a substantially cylindrical shape, and has an accommodating portion 581 that holds the spacer portion 47 and the diffusion plate 59 therein.
  • the accommodating portion 581 is provided with a convex portion 582 protruding toward the center.
  • the convex portion 582 is formed with a female screw portion 582 a that is threaded to be screwed with a part of the adapter member 57.
  • the diffuser plate 59 alleviates luminance unevenness of the light emitted from the light source unit 53 through the optical fiber 54 and transmits uniform light (uniform light).
  • the diffusion plate 59 functions as a calibration member.
  • the urging member 60 is accommodated in the accommodating portion 512 of the base portion 51 and urges the moving body 58 toward the fixed portion 44.
  • the biasing member 60 is realized using a coil spring or the like.
  • the calibration module 5 configured in this manner is pushed in until the measurement probe 3 is inserted into the insertion portion 441 of the fixing portion 44 and the tip portion 33 of the measurement probe 3 comes into contact with the spacer portion 47.
  • the fixing portion 44 returns to the original shape, the measuring probe 3 is pushed up in the direction opposite to the insertion direction.
  • the urging member 60 urges the moving body 58 toward the fixed portion 44. Thereby, the distance between the distal end portion 33 of the measurement probe 3 and the diffusion plate 59 is always kept constant.
  • the urging member 60 urges the moving body 58 that holds the diffusing plate 59 toward the fixed portion 44, so that the operator releases the hand from the measurement probe 3. Even in this case, the state where the tip 33 of the measurement probe 3 is in contact with the diffusion plate 59 can be maintained, and an accurate calibration process can be executed.
  • the calibration module is provided separately from the optical measurement device, but the calibration module may be provided detachably with respect to the optical measurement device.
  • the present invention can include various embodiments not described herein, and various design changes and the like can be made within the scope of the technical idea specified by the claims. Is possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A calibration module (4) comprising: a calibration member (45) that is the target for irradiation of illumination light irradiated from the tip of a measurement probe (3); a fixed section (44) comprising an elastic body and having an insertion section (441) that is capable of having a tip section (33) of the measurement probe (3) inserted therein and has an inner diameter (D4) that is smaller than the outer diameter (D3) of the measurement probe (3); a first tube section (42) having the fixed section (44) provided therein and holding the calibration member (45) such that same is movable along the insertion direction of the measurement probe (3); and an impelling member (46) that impels the calibration member (45) towards the fixed section (44).

Description

校正モジュールCalibration module
 本発明は、生体組織の光学特性を測定する光学測定装置の光学特性を校正する校正モジュールに関する。 The present invention relates to a calibration module for calibrating the optical characteristics of an optical measuring device that measures the optical characteristics of a living tissue.
 従来、測定対象物に測定プローブから光を照射し、測定対象物で反射した光の測定結果に基づいて、測定対象物の特性値を測定する光学測定装置が知られている。光学測定装置は、測定結果の測定精度を保証するため、測定対象物の測定を開始する前に、キャリブレーション処理を行う必要がある。このようなキャリブレーション処理を行う技術として、測定値が既知の校正用部材を収容したカートリッジに測定プローブを挿入した後に、測定プローブの先端部を校正用部材に接触または近接させて測定を行い、この測定結果に基づいて、光学測定装置のキャリブレーション処理を行う技術が知られている(たとえば特許文献1参照)。 2. Description of the Related Art Conventionally, an optical measurement device that irradiates a measurement object with light from a measurement probe and measures a characteristic value of the measurement object based on a measurement result of light reflected by the measurement object is known. The optical measurement apparatus needs to perform a calibration process before starting measurement of the measurement object in order to guarantee the measurement accuracy of the measurement result. As a technique for performing such a calibration process, after inserting a measurement probe into a cartridge containing a calibration member whose measurement value is known, perform measurement by bringing the tip of the measurement probe into contact with or close to the calibration member, A technique for performing calibration processing of an optical measurement device based on the measurement result is known (see, for example, Patent Document 1).
特表2005-539244号公報JP 2005-539244 A
 ところで、上述した特許文献1では、正確なキャリブレーション処理を行うため、測定プローブの先端部を校正用部材に接触または、一定距離を保持させ続けなければならない。しかしながら、上述した特許文献1では、キャリブレーション処理を行っている場合において、操作者が測定プローブから手を離したとき、測定プローブの先端部が校正用部材から離れてしまうという問題点があった。 By the way, in Patent Document 1 described above, in order to perform an accurate calibration process, the tip of the measurement probe must be kept in contact with the calibration member or kept at a certain distance. However, in Patent Document 1 described above, when the calibration process is performed, there is a problem that when the operator releases his hand from the measurement probe, the tip of the measurement probe is separated from the calibration member. .
 本発明は、上記に鑑みてなされたものであって、操作者が測定プローブから手を離した場合であっても、測定プローブの先端部が校正用部材と接触した状態を維持することができる校正モジュールを提供することを目的とする。 The present invention has been made in view of the above, and can maintain the state in which the tip of the measurement probe is in contact with the calibration member even when the operator releases the hand from the measurement probe. An object is to provide a calibration module.
 上述した課題を解決し、目的を達成するために、本発明にかかる校正モジュールは、測定対象物の光学特性を測定する光学測定装置の測定プローブを挿入して該光学測定装置の光学特性を校正するための校正モジュールであって、前記測定プローブの先端から照射される照明光の照射対象となる校正用部材と、前記測定プローブの先端部を挿入可能な挿入部であって、前記測定プローブの外径より小さい内径の挿入部を有し、弾性体からなる固定部と、前記固定部が設けられ、前記測定プローブの挿入方向に沿って前記校正用部材を移動可能に保持する保持部と、前記校正用部材を前記固定部に向けて付勢する付勢部材と、を備えたことを特徴とする。 In order to solve the above-described problems and achieve the object, the calibration module according to the present invention calibrates the optical characteristics of the optical measurement device by inserting a measurement probe of the optical measurement device that measures the optical characteristics of the measurement object. A calibration module for performing calibration, a calibration member to be irradiated with illumination light emitted from the tip of the measurement probe, and an insertion part into which the tip of the measurement probe can be inserted, An insertion portion having an inner diameter smaller than the outer diameter, and a fixing portion made of an elastic body; and a holding portion provided with the fixing portion and holding the calibration member movably along the insertion direction of the measurement probe; And a biasing member that biases the calibration member toward the fixed portion.
 また、本発明にかかる校正モジュールは、上記発明において、前記挿入部に前記測定プローブが挿入された際に、前記測定プローブの先端部と前記校正用部材との距離を一定に維持するスペーサー部をさらに備えたことを特徴とする。 In the calibration module according to the present invention, in the above invention, when the measurement probe is inserted into the insertion portion, a spacer portion that maintains a constant distance between the distal end portion of the measurement probe and the calibration member is provided. It is further provided with a feature.
 また、本発明にかかる校正モジュールは、上記発明において、前記固定部は、前記保持部に対して着脱自在であることを特徴とする。 The calibration module according to the present invention is characterized in that, in the above invention, the fixing portion is detachable from the holding portion.
 また、本発明にかかる校正モジュールは、上記発明において、前記保持部は、ベース部と、筒状をなし、一端部が前記ベース部に固定され、内部で前記校正用部材および前記付勢部材を保持する第1筒部と、筒状をなし、前記第1筒部の他端部に対して着脱自在に設けられ、前記固定部が設けられた第2筒部と、を有することを特徴とする。 The calibration module according to the present invention is the calibration module according to the present invention, wherein the holding portion has a cylindrical shape with a base portion, one end portion is fixed to the base portion, and the calibration member and the biasing member are provided inside. A first cylinder part to be held; and a second cylinder part having a cylindrical shape and detachably provided to the other end part of the first cylinder part and provided with the fixing part. To do.
 また、本発明にかかる校正モジュールは、上記発明において、当該校正モジュールは、前記光学測定装置の本体部に対して着脱自在であることを特徴とする。 Further, the calibration module according to the present invention is characterized in that, in the above invention, the calibration module is detachable from the main body of the optical measuring device.
 本発明にかかる校正モジュールによれば、付勢部材が固定部に向けて校正用部材を付勢するので、操作者が測定プローブから手を離した場合であっても、測定プローブの先端部が校正用部材と接触した状態を維持することができるという効果を奏する。 According to the calibration module of the present invention, the urging member urges the calibration member toward the fixed portion, so that even if the operator releases his hand from the measurement probe, the tip of the measurement probe is There exists an effect that the state which contacted the member for calibration can be maintained.
図1は、本発明の実施の形態1にかかる光学測定システムの機能構成を模式的に示すブロック図である。FIG. 1 is a block diagram schematically illustrating a functional configuration of the optical measurement system according to the first embodiment of the present invention. 図2は、本発明の実施の形態1にかかる校正モジュールの構成を示す外観図である。FIG. 2 is an external view showing the configuration of the calibration module according to the first embodiment of the present invention. 図3は、図2のA-A線断面図である。3 is a cross-sectional view taken along line AA in FIG. 図4は、本発明の実施の形態1にかかる光学測定システムを内視鏡システムで使用する際の状況を示す図である。FIG. 4 is a diagram illustrating a situation when the optical measurement system according to the first embodiment of the present invention is used in an endoscope system. 図5Aは、本発明の実施の形態1にかかる校正モジュールに測定プローブが挿入される際の校正モジュールの断面図である。FIG. 5A is a cross-sectional view of the calibration module when the measurement probe is inserted into the calibration module according to the first embodiment of the present invention. 図5Bは、本発明の実施の形態1にかかる校正モジュールに測定プローブが挿入された直後の校正モジュールの断面図である。FIG. 5B is a cross-sectional view of the calibration module immediately after the measurement probe is inserted into the calibration module according to Embodiment 1 of the present invention. 図5Cは、本発明の実施の形態1にかかる校正モジュールに測定プローブが挿入された後に操作者が測定プローブから手を離した際の校正モジュールの断面図である。FIG. 5C is a cross-sectional view of the calibration module when the operator releases his / her hand from the measurement probe after the measurement probe is inserted into the calibration module according to Embodiment 1 of the present invention. 図6は、本発明の実施の形態2にかかる校正モジュールの構成の断面を部分的に示す模式図である。FIG. 6 is a schematic diagram partially showing a cross section of the configuration of the calibration module according to the second embodiment of the present invention.
 以下、図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)について説明する。また、図面の記載において、同一の部分には同一の符号を付して説明する。また、図面は、模式的なものであり、各部材の厚みと幅との関係、各部材の比率等は、現実と異なることに留意する必要がある。また、図面の相互感においても、互いの寸法の関係や比率が異なる部分が含まれる。なお、本実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described with reference to the drawings. In the description of the drawings, the same portions are denoted by the same reference numerals for description. Further, the drawings are schematic, and it is necessary to note that the relationship between the thickness and width of each member, the ratio of each member, and the like are different from actual ones. In addition, the mutual feeling of the drawings also includes portions having different dimensional relationships and ratios. Note that the present invention is not limited to the present embodiment.
(実施の形態1)
 図1は、本発明の実施の形態1にかかる光学測定システムの機能構成を模式的に示すブロック図である。
(Embodiment 1)
FIG. 1 is a block diagram schematically illustrating a functional configuration of the optical measurement system according to the first embodiment of the present invention.
 図1に示す光学測定システム1は、散乱体である生体組織等の測定対象物に対して光学測定を行って測定対象物の性状(特性)を検出する光学測定装置2と、光学測定装置2に対して着脱自在であり、被検体内に挿入される測定プローブ3と、光学測定装置2および測定プローブ3の光学特性を校正する校正モジュール4と、を備える。 An optical measurement system 1 illustrated in FIG. 1 includes an optical measurement device 2 that performs optical measurement on a measurement object such as a biological tissue that is a scatterer, and detects a property (characteristic) of the measurement object, and an optical measurement device 2. The measurement probe 3 is detachably attached to the subject, and the optical measurement device 2 and the calibration module 4 for calibrating the optical characteristics of the measurement probe 3 are provided.
 まず、光学測定装置2の構成について説明する。光学測定装置2は、電源21と、光源部22と、接続部23と、受光部24と、入力部25と、出力部26と、記録部27と、制御部28と、を備える。電源21は、光学測定装置2の各部に電力を供給する。 First, the configuration of the optical measuring device 2 will be described. The optical measuring device 2 includes a power source 21, a light source unit 22, a connection unit 23, a light receiving unit 24, an input unit 25, an output unit 26, a recording unit 27, and a control unit 28. The power source 21 supplies power to each part of the optical measuring device 2.
 光源部22は、接続部23を介して測定プローブ3に照明光を出射する。光源部22は、白色LED(Light Emitting Diode)、キセノンランプ、タングステンランプおよびハロゲンランプのようなインコヒーレント光源と、必要に応じて一または複数のレンズとを用いて実現される。このようなレンズとしては、たとえば集光レンズやコリメートレンズ等をあげることができる。 The light source unit 22 emits illumination light to the measurement probe 3 through the connection unit 23. The light source unit 22 is realized using an incoherent light source such as a white LED (Light Emitting Diode), a xenon lamp, a tungsten lamp, and a halogen lamp, and one or a plurality of lenses as necessary. Examples of such a lens include a condensing lens and a collimating lens.
 接続部23は、測定プローブ3を光学測定装置2に着脱自在に接続する。接続部23は、光源部22から出射された照明光を測定プローブ3に出射するとともに、測定プローブ3を介して入射される照明光の戻り光を受光部24に出射する。接続部23は、たとえばSMA(Sub-Miniature Type A)コネクタを用いて実現される。 The connection unit 23 detachably connects the measurement probe 3 to the optical measurement device 2. The connection unit 23 emits illumination light emitted from the light source unit 22 to the measurement probe 3 and emits return light of illumination light incident through the measurement probe 3 to the light receiving unit 24. The connection unit 23 is realized by using, for example, an SMA (Sub-Miniature Type A) connector.
 受光部24は、接続部23を介して測定プローブ3から入射される照明光の戻り光を受光し、受光した照明光の戻り光のスペクトル成分を測定して制御部28へ出力する。受光部24は、複数の分光器を用いて構成される。 The light receiving unit 24 receives the return light of the illumination light incident from the measurement probe 3 through the connection unit 23, measures the spectral component of the received return light of the illumination light, and outputs it to the control unit 28. The light receiving unit 24 is configured using a plurality of spectrometers.
 入力部25は、光学測定装置2の各種情報の入力を受け付ける。入力部25は、タッチパネルやプッシュ式のボタン等を用いて構成される。 The input unit 25 receives input of various information of the optical measuring device 2. The input unit 25 is configured using a touch panel, a push button, or the like.
 出力部26は、光学測定装置2の各種情報を出力する。具体的には、出力部26は、測定対象物の測定結果または光学測定装置2に関する操作情報を出力する。出力部26は、液晶または有機EL(Electro Luminescence)等の表示パネルおよびスピーカ等を用いて実現される。 The output unit 26 outputs various information of the optical measurement device 2. Specifically, the output unit 26 outputs a measurement result of the measurement object or operation information related to the optical measurement device 2. The output unit 26 is realized using a display panel such as liquid crystal or organic EL (Electro Luminescence), a speaker, and the like.
 記録部27は、光学測定装置2を動作させるための各種プログラム、光学測定装置2に使用される各種データ、キャリブレーション処理時に使用されるキャリブレーションデータおよび各種パラメータを記録する。記録部27は、揮発性メモリおよび不揮発性メモリ等を用いて実現される。記録部27は、光学測定装置2の処理中の情報やデータを一時的に記録する。さらに、記録部27は、光学測定装置2の測定結果を記録する。なお、記録部27を、光学測定装置2の外部から装着されるメモリカード等を用いて構成してもよい。 The recording unit 27 records various programs for operating the optical measuring device 2, various data used for the optical measuring device 2, calibration data used during calibration processing, and various parameters. The recording unit 27 is realized using a volatile memory, a nonvolatile memory, or the like. The recording unit 27 temporarily records information and data being processed by the optical measuring device 2. Further, the recording unit 27 records the measurement result of the optical measuring device 2. Note that the recording unit 27 may be configured using a memory card or the like mounted from the outside of the optical measurement device 2.
 制御部28は、光学測定装置2の各部の処理動作を統括的に制御する。制御部28は、CPU(Central Processing Unit)等を用いて構成され、光学測定装置2の各部に対する指示情報やデータの転送等を行うことによって、光学測定装置2を制御する。また、制御部28は、演算部281と、校正処理部282と、を有する。 The control unit 28 comprehensively controls the processing operation of each unit of the optical measuring device 2. The control unit 28 is configured using a CPU (Central Processing Unit) or the like, and controls the optical measurement device 2 by transferring instruction information and data to each unit of the optical measurement device 2. In addition, the control unit 28 includes a calculation unit 281 and a calibration processing unit 282.
 演算部281は、受光部24から入力された照明光の戻り光のスペクトル成分に基づいて、測定対象物の性状に関する特性値を演算する。 The calculation unit 281 calculates a characteristic value related to the property of the measurement object based on the spectral component of the return light of the illumination light input from the light receiving unit 24.
 校正処理部282は、校正モジュール4に対して測定プローブ3が照明光を照射し、受光部24から入力される校正モジュール4内で反射した照明光の戻り光のスペクトル成分および記録部27が記録するキャリブレーションデータに基づいて、光学測定装置2および測定プローブ3の光学特性の校正を行うキャリブレーション処理を実行する。 The calibration processing unit 282 records the spectral component of the return light of the illumination light reflected from the calibration module 4 input from the light receiving unit 24 and recorded by the recording unit 27. Based on the calibration data to be performed, a calibration process for calibrating the optical characteristics of the optical measurement device 2 and the measurement probe 3 is executed.
 測定プローブ3は、少なくとも複数の光ファイバを用いて構成される。具体的には、測定プローブ3は、測定対象物に照明光を出射する照明ファイバ(照明チャンネル)と、測定対象物で反射および/または散乱した照明光の戻り光が異なる角度で入射する複数の受光ファイバ(受光チャンネル)と、を用いて構成される。測定プローブ3は、接続部23に着脱自在に接続される基端部31と、可撓性を有する可撓部32と、接続部23を介して光源部22から供給された照明光を出射するとともに、測定対象物からの照明光の戻り光を受光する先端部33と、を備える。また、先端部33に、測定対象物と先端部33との距離を一定に維持するロットレンズを設けてもよい。 The measurement probe 3 is configured using at least a plurality of optical fibers. Specifically, the measurement probe 3 includes a plurality of illumination fibers (illumination channels) that emit illumination light to the measurement target and a plurality of incident light beams that are reflected and / or scattered by the measurement target at different angles. And a light receiving fiber (light receiving channel). The measurement probe 3 emits illumination light supplied from the light source unit 22 via the base end portion 31 detachably connected to the connection portion 23, a flexible portion 32 having flexibility, and the connection portion 23. In addition, a tip portion 33 that receives the return light of the illumination light from the measurement object is provided. In addition, a lot lens that keeps the distance between the measurement target and the tip portion 33 constant may be provided at the tip portion 33.
 つぎに、校正モジュール4の構成について説明する。図2は、校正モジュール4の構成を示す外観図である。図3は、図2のA-A線断面図である。 Next, the configuration of the calibration module 4 will be described. FIG. 2 is an external view showing the configuration of the calibration module 4. 3 is a cross-sectional view taken along line AA in FIG.
 図2および図3に示す校正モジュール4は、ベース部41と、第1筒部42と、第2筒部43と、固定部44と、校正用部材45と、付勢部材46と、スペーサー部47と、を備える。なお、本実施の形態1では、第1筒部42と第2筒部43とが保持部として機能する。 2 and 3 includes a base portion 41, a first tube portion 42, a second tube portion 43, a fixing portion 44, a calibration member 45, a biasing member 46, and a spacer portion. 47. In the first embodiment, the first cylinder part 42 and the second cylinder part 43 function as a holding part.
 ベース部41は、矩形状をなし、上面411に第1筒部42の一端部がネジ48によって固定される。ベース部41の裏面412には、上面411に向けて矩形状に切りかかれた凹部413が形成されている。 The base portion 41 has a rectangular shape, and one end portion of the first tube portion 42 is fixed to the upper surface 411 with a screw 48. On the back surface 412 of the base portion 41, a concave portion 413 that is cut in a rectangular shape toward the upper surface 411 is formed.
 第1筒部42は、筒状をなす。第1筒部42は、内部で校正用部材45を測定プローブ3の挿入方向(矢印B方向)に沿って移動可能に保持する収容部421を有する。また、第1筒部42の上面422には、鉛直方向上向きに突起した円環部423が設けられている。収容部421および円環部423は、一体的に形成される。収容部421の内径D1は、円環部423の内径D2より小さく形成される(D1<D2)。また、円環部423の外周の側面には、ネジ切りが施された雄ネジ部423aが形成されている。 The first tube part 42 has a cylindrical shape. The first cylinder portion 42 includes an accommodating portion 421 that holds the calibration member 45 movably along the insertion direction (arrow B direction) of the measurement probe 3 inside. An annular portion 423 that protrudes upward in the vertical direction is provided on the upper surface 422 of the first tube portion 42. The accommodating part 421 and the annular part 423 are integrally formed. The inner diameter D1 of the accommodating part 421 is formed smaller than the inner diameter D2 of the annular part 423 (D1 <D2). Further, a male threaded portion 423a that is threaded is formed on the outer peripheral side surface of the annular portion 423.
 第2筒部43は、筒状をなし、第1筒部42の円環部423に着脱自在に設けられる。第2筒部43の下面431には、鉛直方向下向きに突起した円環部432が設けられている。円環部432の内周側には、ネジ切りが施された雌ネジ部432aが形成されている。また、第2筒部43は、内部で固定部44を収容する収容部433を有する。収容部433には、外周側に陥凹し、収容部433の内周に沿って設けられたリング状の凹部433aが形成されている。 The second cylinder portion 43 has a cylindrical shape and is detachably provided on the annular portion 423 of the first cylinder portion 42. An annular portion 432 protruding downward in the vertical direction is provided on the lower surface 431 of the second cylindrical portion 43. On the inner peripheral side of the annular portion 432, a female screw portion 432a that is threaded is formed. In addition, the second cylinder portion 43 includes an accommodating portion 433 that accommodates the fixed portion 44 therein. The accommodating portion 433 is formed with a ring-shaped concave portion 433 a that is recessed along the outer peripheral side and is provided along the inner periphery of the accommodating portion 433.
 固定部44は、測定プローブ3の外径D3より小さい内径D4を有する挿入部441を有する。固定部44は、弾性体、たとえばゴムやシリコンゴム等を用いて形成される。固定部44は、収容部421の内径D1と略同一の外径を有する先端部442と、第2筒部43の外径と同じ外径を有する基端部443と、を有する。先端部442および基端部443は、一体的に形成される。挿入部441は、測定プローブ3の先端部33を挿入可能である。また、先端部442には、外周側に向けて突起し、先端部442の外周に沿って設けられたリング状をなす凸部442aが形成されている。これにより、固定部44は、第2筒部43の凹部433aに先端部442の凸部442aが嵌合することで、第2筒部43に着脱可能に固定される。 The fixing part 44 has an insertion part 441 having an inner diameter D4 smaller than the outer diameter D3 of the measurement probe 3. The fixing portion 44 is formed using an elastic body such as rubber or silicon rubber. The fixing portion 44 includes a distal end portion 442 having an outer diameter substantially the same as the inner diameter D1 of the accommodating portion 421, and a base end portion 443 having the same outer diameter as the second cylindrical portion 43. The distal end portion 442 and the proximal end portion 443 are integrally formed. The insertion portion 441 can insert the distal end portion 33 of the measurement probe 3. Further, the tip portion 442 is formed with a convex portion 442 a that protrudes toward the outer peripheral side and has a ring shape provided along the outer periphery of the tip portion 442. Accordingly, the fixing portion 44 is detachably fixed to the second cylindrical portion 43 by fitting the convex portion 442a of the tip end portion 442 to the concave portion 433a of the second cylindrical portion 43.
 校正用部材45は、円盤状をなす標準部材を用いて実現される。ここで、標準部材とは、白色板または表面が照明光に対して高い反射率を有する部材である。校正用部材45は、光学測定装置2および測定プローブ3のキャリブレーション処理を行う際に測定プローブ3の先端から照射される照明光の照射対象となる。 The calibration member 45 is realized by using a standard member having a disk shape. Here, the standard member is a member whose white plate or surface has a high reflectance with respect to illumination light. The calibration member 45 is an irradiation target of illumination light emitted from the tip of the measurement probe 3 when the optical measurement device 2 and the measurement probe 3 are calibrated.
 付勢部材46は、校正用部材45を固定部44に向けて付勢する。具体的には、付勢部材46は、校正用部材45を測定プローブ3の挿入方向(矢印B方向)に向けて付勢する。付勢部材46は、圧縮バネ等を用いて実現される。付勢部材46は、一端がベース部41に接続され、他端が校正用部材45に接続される。 The urging member 46 urges the calibration member 45 toward the fixed portion 44. Specifically, the urging member 46 urges the calibration member 45 in the insertion direction (arrow B direction) of the measurement probe 3. The urging member 46 is realized using a compression spring or the like. The urging member 46 has one end connected to the base portion 41 and the other end connected to the calibration member 45.
 スペーサー部47は、測定プローブ3が挿入部441に挿入された際に、測定プローブ3の先端部33と校正用部材45との距離を一定に維持する。スペーサー部47は、測定プローブ3の照明ファイバから照射される照明光が通過可能であるとともに、校正用部材45で反射した照明光の戻り光が通過可能な孔部471を有する。スペーサー部47は、遮光部材を用いて構成される。 The spacer portion 47 keeps the distance between the distal end portion 33 of the measurement probe 3 and the calibration member 45 constant when the measurement probe 3 is inserted into the insertion portion 441. The spacer portion 47 has a hole portion 471 through which illumination light emitted from the illumination fiber of the measurement probe 3 can pass and through which return light of the illumination light reflected by the calibration member 45 can pass. The spacer portion 47 is configured using a light shielding member.
 上述のように構成された光学測定システム1は、図4に示すように、内視鏡システム100の内視鏡装置110(内視鏡スコープ)に設けられた処置具チャンネル111を介して測定プローブ3が挿入され、測定対象物に照明光を出射し、測定プローブ3の先端部33から測定対象物で反射および/または散乱した照明光の戻り光を受光して受光部24に出射する。その後、演算部281は、受光部24の測定結果に基づいて、測定対象物の特性値を演算する。 As shown in FIG. 4, the optical measurement system 1 configured as described above includes a measurement probe via a treatment instrument channel 111 provided in an endoscope apparatus 110 (endoscope scope) of the endoscope system 100. 3 is inserted, emits illumination light to the measurement object, receives the return light of the illumination light reflected and / or scattered by the measurement object from the tip 33 of the measurement probe 3, and emits it to the light receiving unit 24. Thereafter, the calculation unit 281 calculates the characteristic value of the measurement object based on the measurement result of the light receiving unit 24.
 つぎに、光学測定システム1が実行するキャリブレーション処理の操作手順について説明する。図5Aは、校正モジュール4に測定プローブ3が挿入される際の校正モジュール4の断面図である。図5Bは、校正モジュール4に測定プローブ3が挿入された直後の校正モジュール4の断面図である。図5Cは、校正モジュール4に測定プローブ3が挿入された後に操作者が測定プローブ3から手を離した際の校正モジュール4の断面図である。 Next, the operation procedure of the calibration process executed by the optical measurement system 1 will be described. FIG. 5A is a cross-sectional view of the calibration module 4 when the measurement probe 3 is inserted into the calibration module 4. FIG. 5B is a cross-sectional view of the calibration module 4 immediately after the measurement probe 3 is inserted into the calibration module 4. FIG. 5C is a cross-sectional view of the calibration module 4 when the operator releases the hand from the measurement probe 3 after the measurement probe 3 is inserted into the calibration module 4.
 図5Aに示すように、まず、操作者は、測定プローブ3を校正モジュール4の固定部44の挿入部441に挿入して、測定プローブ3の先端部33がスペーサー部47に接触するまで押し込む(図5A→図5B)。この際、固定部44の挿入部441は、測定プローブ3の挿入方向(矢印B方向)に沿って弾性変形する。 As shown in FIG. 5A, first, the operator inserts the measurement probe 3 into the insertion portion 441 of the fixing portion 44 of the calibration module 4 and pushes in until the distal end portion 33 of the measurement probe 3 comes into contact with the spacer portion 47 ( FIG. 5A → FIG. 5B). At this time, the insertion portion 441 of the fixing portion 44 is elastically deformed along the insertion direction (arrow B direction) of the measurement probe 3.
 続いて、操作者は、測定プローブ3を手から離す(図5B→図5C)。この場合、固定部44は、弾性力によって元の形状に戻るため、測定プローブ3を測定プローブ3の挿入方向と逆向きに押し上げる。このとき、付勢部材46は、校正用部材45を固定部44に向けて付勢しているので、スペーサー部47および校正用部材45が固定部44に向けて移動する。この結果、測定プローブ3の先端部33と校正用部材45との距離を常に一定の状態に維持することができる。 Subsequently, the operator releases the measurement probe 3 from the hand (FIG. 5B → FIG. 5C). In this case, since the fixing portion 44 returns to the original shape by the elastic force, the measuring probe 3 is pushed up in the direction opposite to the insertion direction of the measurement probe 3. At this time, since the urging member 46 urges the calibration member 45 toward the fixed portion 44, the spacer portion 47 and the calibration member 45 move toward the fixed portion 44. As a result, the distance between the distal end portion 33 of the measurement probe 3 and the calibration member 45 can always be kept constant.
 その後、操作者は、入力部25を操作することにより、光源部22に照明光を出射させることにより、測定プローブ3の先端部33から照明光を校正用部材45に向けて照射させる。この際、校正処理部282は、受光部24から入力される測定結果に基づいて、光学測定装置2および測定プローブ3のキャリブレーション処理を実行する。 Thereafter, the operator operates the input unit 25 to emit the illumination light to the light source unit 22, thereby irradiating the illumination light toward the calibration member 45 from the distal end portion 33 of the measurement probe 3. At this time, the calibration processing unit 282 executes calibration processing of the optical measurement device 2 and the measurement probe 3 based on the measurement result input from the light receiving unit 24.
 以上説明した本発明の実施の形態1によれば、付勢部材46が固定部44に向けて校正用部材45を付勢するので、操作者が測定プローブ3から手を離した場合であっても、測定プローブ3の先端部33が校正用部材45と接触した状態を維持することができる。 According to the first embodiment of the present invention described above, the urging member 46 urges the calibration member 45 toward the fixed portion 44, so that the operator releases the hand from the measurement probe 3. In addition, the state in which the tip 33 of the measurement probe 3 is in contact with the calibration member 45 can be maintained.
 また、本発明の実施の形態1によれば、測定プローブ3が挿入部441に挿入された際に、スペーサー部47が測定プローブ3の先端部33と校正用部材45との距離を一定に維持するので、正確なキャリブレーション処理を実行することができる。 Further, according to the first embodiment of the present invention, when the measurement probe 3 is inserted into the insertion portion 441, the spacer portion 47 keeps the distance between the distal end portion 33 of the measurement probe 3 and the calibration member 45 constant. Therefore, accurate calibration processing can be executed.
 また、本発明の実施の形態1によれば、スペーサー部47または校正用部材45が汚れた場合であっても、固定部44を第2筒部43から容易に取り外すことができ、他のスペーサー部47または校正用部材45に取り替えることができるので、コンタミネーションを防止することができる。 Further, according to Embodiment 1 of the present invention, even when the spacer portion 47 or the calibration member 45 is dirty, the fixing portion 44 can be easily detached from the second cylindrical portion 43, and other spacers Since the portion 47 or the calibration member 45 can be replaced, contamination can be prevented.
 また、本発明の実施の形態1によれば、校正モジュール4に液体等が浸入した場合であっても、第2筒部43を第1筒部42から容易に取り外すことができ、スペーサー部47および校正用部材45を含めて洗浄および消毒等を容易に行うことができる。 Further, according to the first embodiment of the present invention, even when a liquid or the like enters the calibration module 4, the second cylinder portion 43 can be easily detached from the first cylinder portion 42, and the spacer portion 47. In addition, cleaning and disinfection including the calibration member 45 can be easily performed.
 なお、本発明の実施の形態1では、付勢部材46が校正用部材45を固定部44に向けて付勢していたが、付勢部材46に換えて弾性部材を用いてよい。この場合、弾性部材が固定部44に向けて校正用部材45を付勢するので、操作者が測定プローブ3から手を離した場合であっても、測定プローブ3の先端部33が校正用部材45と接触した状態を維持することができる。 In the first embodiment of the present invention, the urging member 46 urges the calibration member 45 toward the fixed portion 44, but an elastic member may be used instead of the urging member 46. In this case, since the elastic member biases the calibration member 45 toward the fixed portion 44, the tip 33 of the measurement probe 3 remains the calibration member even when the operator releases the hand from the measurement probe 3. The state in contact with 45 can be maintained.
(実施の形態2)
 つぎに、本発明の実施の形態2について説明する。本実施の形態2にかかる光学測定システムは、上述した実施の形態1にかかる校正モジュールの構成が異なる。このため、以下においては、本実施の形態2にかかる校正モジュールの構成について説明する。なお、上述した実施の形態1と同一の構成には同一の符号を付して説明する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. The optical measurement system according to the second embodiment is different in the configuration of the calibration module according to the first embodiment described above. Therefore, the configuration of the calibration module according to the second embodiment will be described below. In addition, the same code | symbol is attached | subjected and demonstrated to the structure same as Embodiment 1 mentioned above.
 図6は、本発明の実施の形態2にかかる校正モジュールの構成の断面を部分的に示す模式図である。 FIG. 6 is a schematic diagram partially showing a cross section of the configuration of the calibration module according to the second embodiment of the present invention.
 図6に示す校正モジュール5は、第2筒部43と、固定部44と、ベース部51と、第1筒部52と、光源部53と、光ファイバ54と、フェルール55と、スリーブ56と、アダプタ部材57と、移動体58と、拡散板59と、付勢部材60と、を備える。 The calibration module 5 shown in FIG. 6 includes a second cylinder part 43, a fixing part 44, a base part 51, a first cylinder part 52, a light source part 53, an optical fiber 54, a ferrule 55, and a sleeve 56. The adapter member 57, the moving body 58, the diffusion plate 59, and the urging member 60 are provided.
 ベース部51は、矩形状をなし、上面511に第1筒部52がネジ48によって固定される。また、ベース部51は、円環状をなし、上面511から鉛直方向上向きに向けて延在して設けられ、付勢部材60を収容可能な収容部512が形成されている。また、ベース部51には、光ファイバ54を接続するフェルール55、フェルール55を接続するスリーブ56およびスリーブ56を移動体58に接続するためのアダプタ部材57が設けられている。また、スリーブ56は、ベース部51に測定プローブ3の挿入方向に沿って移動可能に設けられている。 The base portion 51 has a rectangular shape, and the first tube portion 52 is fixed to the upper surface 511 with screws 48. In addition, the base portion 51 has an annular shape and is provided to extend upward from the upper surface 511 in the vertical direction, and a housing portion 512 that can accommodate the biasing member 60 is formed. Further, the base portion 51 is provided with a ferrule 55 for connecting the optical fiber 54, a sleeve 56 for connecting the ferrule 55, and an adapter member 57 for connecting the sleeve 56 to the moving body 58. The sleeve 56 is provided in the base portion 51 so as to be movable along the insertion direction of the measurement probe 3.
 第1筒部52は、略筒状をなす。第1筒部52は、内部でスペーサー部47、移動体58および拡散板59を測定プローブ3の挿入方向(矢印B)に沿って移動可能に収容する収容部521を有する。また、第1筒部52は、円環部423が設けられている。 The first cylinder part 52 has a substantially cylindrical shape. The first cylinder part 52 includes an accommodating part 521 that accommodates the spacer part 47, the moving body 58 and the diffusion plate 59 so as to be movable along the insertion direction (arrow B) of the measurement probe 3. Further, the first tube portion 52 is provided with an annular portion 423.
 光源部53は、光ファイバ54を介して拡散板59に照明光を出射する。光源部53は、白色LEDを用いて構成される。 The light source unit 53 emits illumination light to the diffusion plate 59 via the optical fiber 54. The light source unit 53 is configured using a white LED.
 アダプタ部材57は、筒状をなし、内部で光ファイバ54を保持する本体部571と、本体部571から外周側に向けて延在して設けられ、移動体58の凸部582に当接する係止部572と、を有する。本体部571の外周側には、移動体58の凸部582の雌ネジ部582aおよびスリーブ56と螺合可能なネジ切りが施された雄ネジ部571aが形成されている。これにより、アダプタ部材57、移動体58およびスリーブ56は、一体的に測定プローブ3の挿入方向に沿って移動可能に収容部521に収容される。 The adapter member 57 has a cylindrical shape and is provided with a main body portion 571 that holds the optical fiber 54 therein, an extension extending from the main body portion 571 toward the outer peripheral side, and abutting against the convex portion 582 of the moving body 58. A stop portion 572. On the outer peripheral side of the main body portion 571, a female screw portion 582a of the convex portion 582 of the moving body 58 and a male screw portion 571a that is threaded so as to be screwable with the sleeve 56 are formed. Thereby, the adapter member 57, the moving body 58, and the sleeve 56 are accommodated in the accommodating part 521 so that it can move integrally along the insertion direction of the measurement probe 3.
 移動体58は、略筒状をなし、内部でスペーサー部47および拡散板59を保持する収容部581を有する。収容部581は、中心に向けて突起した凸部582が設けられている。凸部582には、アダプタ部材57の一部と螺合するためのネジ切りが施された雌ネジ部582aが形成されている。 The moving body 58 has a substantially cylindrical shape, and has an accommodating portion 581 that holds the spacer portion 47 and the diffusion plate 59 therein. The accommodating portion 581 is provided with a convex portion 582 protruding toward the center. The convex portion 582 is formed with a female screw portion 582 a that is threaded to be screwed with a part of the adapter member 57.
 拡散板59は、光ファイバ54を介して光源部53から出射された光の輝度ムラを緩和させて均一な光(一様な光)を透過させる。なお、本実施の形態2では、拡散板59が校正用部材として機能する。 The diffuser plate 59 alleviates luminance unevenness of the light emitted from the light source unit 53 through the optical fiber 54 and transmits uniform light (uniform light). In the second embodiment, the diffusion plate 59 functions as a calibration member.
 付勢部材60は、ベース部51の収容部512に収容され、移動体58を固定部44に向けて付勢する。付勢部材60は、コイルバネ等を用いて実現される。 The urging member 60 is accommodated in the accommodating portion 512 of the base portion 51 and urges the moving body 58 toward the fixed portion 44. The biasing member 60 is realized using a coil spring or the like.
 このように構成された校正モジュール5は、測定プローブ3が固定部44の挿入部441に挿入されて測定プローブ3の先端部33がスペーサー部47に接触するまで押し込まれる。この場合、固定部44は、元の形状に戻るため、測定プローブ3を挿入方向と逆向きに押し上げる。このとき、付勢部材60は、移動体58を固定部44に向けて付勢する。これにより、測定プローブ3の先端部33と拡散板59との距離は、常に一定を維持した状態になる。 The calibration module 5 configured in this manner is pushed in until the measurement probe 3 is inserted into the insertion portion 441 of the fixing portion 44 and the tip portion 33 of the measurement probe 3 comes into contact with the spacer portion 47. In this case, since the fixing portion 44 returns to the original shape, the measuring probe 3 is pushed up in the direction opposite to the insertion direction. At this time, the urging member 60 urges the moving body 58 toward the fixed portion 44. Thereby, the distance between the distal end portion 33 of the measurement probe 3 and the diffusion plate 59 is always kept constant.
 以上説明した本発明の実施の形態2によれば、付勢部材60が固定部44に向けて拡散板59を保持する移動体58を付勢するので、操作者が測定プローブ3から手を離した場合であっても、測定プローブ3の先端部33が拡散板59と接触した状態を維持することができ、正確なキャリブレーション処理を実行することができる。 According to the second embodiment of the present invention described above, the urging member 60 urges the moving body 58 that holds the diffusing plate 59 toward the fixed portion 44, so that the operator releases the hand from the measurement probe 3. Even in this case, the state where the tip 33 of the measurement probe 3 is in contact with the diffusion plate 59 can be maintained, and an accurate calibration process can be executed.
(その他の実施の形態)
 本発明では、校正モジュールが光学測定装置と別体に設けられていたが、校正モジュールを光学測定装置に対して着脱自在に設けてもよい。
(Other embodiments)
In the present invention, the calibration module is provided separately from the optical measurement device, but the calibration module may be provided detachably with respect to the optical measurement device.
 このように、本発明は、ここでは記載していない様々な実施の形態を含みうるものであり、特許請求の範囲によって特定される技術的思想の範囲内で種々の設計変更等を行うことが可能である。 As described above, the present invention can include various embodiments not described herein, and various design changes and the like can be made within the scope of the technical idea specified by the claims. Is possible.
 1 光学測定システム
 2 光学測定装置
 3 測定プローブ
 4,5 校正モジュール
 21 電源
 22,53 光源部
 23 接続部
 24 受光部
 25 入力部
 26 出力部
 27 記録部
 28 制御部
 31 基端部
 32 可撓部
 33 先端部
 41,51 ベース部
 42,52 第1筒部
 43 第2筒部
 44 固定部
 45 校正用部材
 46,60 付勢部材
 47 スペーサー部
 58 移動体
 59 拡散板
 100 内視鏡システム
 281 演算部
 282 校正処理部
 441 挿入部
DESCRIPTION OF SYMBOLS 1 Optical measuring system 2 Optical measuring apparatus 3 Measuring probe 4,5 Calibration module 21 Power supply 22,53 Light source part 23 Connection part 24 Light receiving part 25 Input part 26 Output part 27 Recording part 28 Control part 31 Base end part 32 Flexible part 33 Tip part 41, 51 Base part 42, 52 First cylinder part 43 Second cylinder part 44 Fixing part 45 Calibration member 46, 60 Biasing member 47 Spacer part 58 Moving body 59 Diffuser plate 100 Endoscope system 281 Calculation part 282 Calibration processing unit 441 Insertion unit

Claims (5)

  1.  測定対象物の光学特性を測定する光学測定装置の測定プローブを挿入して該光学測定装置の光学特性を校正するための校正モジュールであって、
     前記測定プローブの先端から照射される照明光の照射対象となる校正用部材と、
     前記測定プローブの先端部を挿入可能な挿入部であって、前記測定プローブの外径より小さい内径の挿入部を有し、弾性体からなる固定部と、
     前記固定部が設けられ、前記測定プローブの挿入方向に沿って前記校正用部材を移動可能に保持する保持部と、
     前記校正用部材を前記固定部に向けて付勢する付勢部材と、
     を備えたことを特徴とする校正モジュール。
    A calibration module for calibrating the optical characteristics of the optical measurement device by inserting a measurement probe of the optical measurement device for measuring the optical characteristics of the measurement object,
    A calibration member to be irradiated with illumination light emitted from the tip of the measurement probe;
    An insertion part into which the tip of the measurement probe can be inserted, the insertion part having an inner diameter smaller than the outer diameter of the measurement probe, and a fixing part made of an elastic body,
    A holding part provided with the fixing part, and holding the calibration member movably along the insertion direction of the measurement probe;
    A biasing member that biases the calibration member toward the fixed portion;
    A calibration module comprising:
  2.  前記挿入部に前記測定プローブが挿入された際に、前記測定プローブの先端部と前記校正用部材との距離を一定に維持するスペーサー部をさらに備えたことを特徴とする請求項1に記載の校正モジュール。 The spacer part which maintains the distance of the front-end | tip part of the said measurement probe and the said member for a calibration constant when the said measurement probe is inserted in the said insertion part is further provided. Calibration module.
  3.  前記固定部は、前記保持部に対して着脱自在であることを特徴とする請求項1に記載の校正モジュール。 The calibration module according to claim 1, wherein the fixing portion is detachable from the holding portion.
  4.  前記保持部は、
     ベース部と、
     筒状をなし、一端部が前記ベース部に固定され、内部で前記校正用部材および前記付勢部材を保持する第1筒部と、
     筒状をなし、前記第1筒部の他端部に対して着脱自在に設けられ、前記固定部が設けられた第2筒部と、
     を有することを特徴とする請求項1に記載の校正モジュール。
    The holding part is
    A base part;
    A first cylindrical portion having a cylindrical shape, one end portion fixed to the base portion, and holding the calibration member and the biasing member therein;
    A second cylindrical part having a cylindrical shape, provided detachably with respect to the other end of the first cylindrical part, and provided with the fixing part;
    The calibration module according to claim 1, comprising:
  5.  当該校正モジュールは、前記光学測定装置の本体部に対して着脱自在であることを特徴とする請求項1に記載の校正モジュール。 The calibration module according to claim 1, wherein the calibration module is detachable from a main body of the optical measuring device.
PCT/JP2014/073023 2013-09-06 2014-09-02 Calibration module WO2015033914A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361874564P 2013-09-06 2013-09-06
US61/874564 2013-09-06

Publications (1)

Publication Number Publication Date
WO2015033914A1 true WO2015033914A1 (en) 2015-03-12

Family

ID=52628388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073023 WO2015033914A1 (en) 2013-09-06 2014-09-02 Calibration module

Country Status (1)

Country Link
WO (1) WO2015033914A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029751A (en) * 2006-07-31 2008-02-14 Olympus Medical Systems Corp Endoscopic apparatus and video processor for endoscope
WO2012057149A1 (en) * 2010-10-29 2012-05-03 オリンパスメディカルシステムズ株式会社 Optical measurement device, optical measurement system, and module for correction
JP2013099497A (en) * 2011-10-18 2013-05-23 Konica Minolta Advanced Layers Inc Locking structure for probe or the like, connector, and package

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029751A (en) * 2006-07-31 2008-02-14 Olympus Medical Systems Corp Endoscopic apparatus and video processor for endoscope
WO2012057149A1 (en) * 2010-10-29 2012-05-03 オリンパスメディカルシステムズ株式会社 Optical measurement device, optical measurement system, and module for correction
JP2013099497A (en) * 2011-10-18 2013-05-23 Konica Minolta Advanced Layers Inc Locking structure for probe or the like, connector, and package

Similar Documents

Publication Publication Date Title
JP5390045B2 (en) probe
US7808639B2 (en) Color measurement instrument
JP2005323737A (en) Endoscope device
US20170184836A1 (en) Optical transmitter unit, method of connecting optical transmitter module and transmitter side optical connector, and endoscope system
JP5049415B2 (en) Optical measuring device, optical measuring system and calibration module
WO2013042690A1 (en) Optical measurement apparatus and calibration method
JP6017477B2 (en) Light source device for endoscope system
WO2015033914A1 (en) Calibration module
JP5988983B2 (en) Calibration apparatus and calibration method
JP5796002B2 (en) Endoscope system
JP5738645B2 (en) Endoscope
JP6237648B2 (en) Probe, spectroscopic measurement device, and diagnostic system
WO2016092885A1 (en) Measurement probe and living body optical measurement system
US11304591B2 (en) Optical connection module for endoscope, endoscope, and endoscope system
WO2012176720A1 (en) Illumination light guide holding structure and holder
JP5526292B1 (en) Bio-optical measurement device, measurement probe, and bio-optical measurement system
WO2014024614A1 (en) Optical measurement device and optical measurement system
WO2015033915A1 (en) Optical measurement device
KR102083063B1 (en) Tip for laser handpiece
US20140046135A1 (en) Measurement probe
US20160089032A1 (en) Probe assembly and end cover
JP5041898B2 (en) Adapter type endoscope
EP2813171A1 (en) Bio-optical measurement device and measurement probe
WO2013175879A1 (en) Measuring probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP