WO2015033866A1 - Light guide plate - Google Patents

Light guide plate Download PDF

Info

Publication number
WO2015033866A1
WO2015033866A1 PCT/JP2014/072704 JP2014072704W WO2015033866A1 WO 2015033866 A1 WO2015033866 A1 WO 2015033866A1 JP 2014072704 W JP2014072704 W JP 2014072704W WO 2015033866 A1 WO2015033866 A1 WO 2015033866A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
light guide
guide plate
glass plate
less
Prior art date
Application number
PCT/JP2014/072704
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 嘉成
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013182132A external-priority patent/JP6368998B2/en
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201480032472.3A priority Critical patent/CN105264284B/en
Priority to KR1020157031539A priority patent/KR102138067B1/en
Publication of WO2015033866A1 publication Critical patent/WO2015033866A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects

Definitions

  • the present invention relates to a light guide plate, and more particularly to a light guide plate suitable for an edge light type surface light emitting device.
  • liquid crystal display devices are used for liquid crystal televisions and the like.
  • the liquid crystal display device includes a surface light emitting device and a liquid crystal panel arranged on the light emitting surface side of the surface light emitting device.
  • the surface light emitting device for example, a direct type and an edge light type are known.
  • the light source is disposed on the back surface opposite to the light emitting surface.
  • a point light source such as a light emitting diode (Light Emitting Diode) is used as the light source, a large number of LED chips are required to supplement the brightness, and the variation in luminance characteristics becomes very large.
  • the edge light type surface light emitting device includes a light source such as an LED, a light guide plate, a reflection plate (or reflection film), and the like.
  • a light source is arrange
  • the light guide plate is arranged to propagate light from the light source to the inside by total reflection and to emit the light in a planar shape.
  • a resin plate such as an acrylic resin is generally used as the light guide plate (see Patent Documents 1 to 4).
  • the reflecting plate is disposed on the light reflecting surface opposite to the light emitting surface, and is disposed to reflect light passing through the light reflecting surface to emit light on a display surface such as a liquid crystal panel.
  • a diffusion plate may be disposed on the light exit surface side of the light guide plate.
  • FIG. 1 is a conceptual cross-sectional view showing an example of an edge light type surface light emitting device 1.
  • the edge light type surface light emitting device 1 includes a light source 2 such as an LED, a light guide plate 3, a reflection plate 4, and a diffusion plate 5.
  • a light source 2 such as an LED
  • a light guide plate 3 a reflection plate 4
  • a diffusion plate 5 Light from the light source 2 enters from the end face of the light guide plate 3 and propagates into the light guide plate 3.
  • the light that reaches the light reflecting surface 6 is reflected by the reflecting plate 4, travels toward the light emitting surface 7, and is diffused by the diffusion plate 5.
  • a display surface such as a liquid crystal panel disposed above the diffusion plate 5 can emit light uniformly.
  • the edge light type surface emitting device when light is generated from the light source, heat is generated, and accordingly, the temperature of the light guide plate also increases.
  • the dimensional change due to heat of the light guide plate is larger than the dimensional change of the liquid crystal panel. This is due to the high thermal expansion coefficient of the resin plate.
  • the thermal expansion coefficient of the acrylic resin plate is about 700 ⁇ 10 ⁇ 7 / ° C.
  • the amount of light is reduced when light from the light source enters from the end face and exits to the light exit surface. As a result, the luminance characteristics of the display device are likely to deteriorate.
  • the first object of the present invention is to create a light guide plate that hardly undergoes a dimensional change with a rise in temperature and that does not easily deteriorate the luminance characteristics of the display device.
  • the liquid crystal panel uses polarized light. Further, the edge light type surface light emitting device has a different distance from the light source on the light emitting surface. Therefore, in recent years, with an increase in the size of the liquid crystal display device, the polarization state is different within the panel surface, and uneven luminance characteristics are likely to occur.
  • the second object of the present invention is to create a light guide plate that is less likely to undergo dimensional changes with increasing temperature and that can uniformize the luminance characteristics of the display device.
  • the present inventor has solved the first problem by adopting a glass plate having a small dimensional change due to temperature change as the light guide plate and restricting the transmittance of the glass plate to a predetermined range. It finds out and obtains and proposes as this invention (1st invention). That is, the light guide plate of the present invention (first invention) has at least a glass plate, and has an optical path length of 100 mm and a maximum transmittance of 50% or more in a wavelength range of 350 to 750 nm. To do.
  • the “maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm” can be measured by a commercially available transmittance measuring device, and can be measured by, for example, UV-3100PC manufactured by Shimadzu Corporation.
  • a display panel such as a liquid crystal panel has a structure in which a display element such as a liquid crystal element is sandwiched between a pair of glass plates. Therefore, when a glass plate is adopted as the light guide plate, a difference in dimensional change between the display panel and the light guide plate is reduced, and it is possible to appropriately cope with a narrow frame of a display device such as a liquid crystal display device.
  • the present inventor has found that the maximum transmittance in the optical path length of 100 mm and the wavelength range of 350 to 750 nm of the glass plate affects the luminance characteristics of the display device. Therefore, in the present invention (first invention), the maximum transmittance in the optical path length of 100 mm and the wavelength range of 350 to 750 nm of the glass plate is regulated to 50% or more to enhance the luminance characteristics of the display device.
  • the content of Fe 2 O 3 in the glass plate is preferably 0.1% by mass or less. By doing so, it is possible to increase the maximum transmittance of the glass plate in the optical path length of 100 mm and the wavelength range of 350 to 750 nm.
  • Fe 2 O 3 exists in the state of Fe 3+ or Fe 2+ in the glass.
  • Fe 3+ has an absorption peak in the vicinity of a wavelength of 380 nm, and lowers the transmittance in the visible region in the ultraviolet region and the short wavelength side.
  • Fe 2+ has an absorption peak in the vicinity of a wavelength of 1080 nm, and lowers the transmittance in the visible region on the long wavelength side.
  • Fe 2 O 3 when the content of Fe 2 O 3 increases, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease.
  • a large amount of Fe 2 O 3 is mixed in the glass plate from the glass raw material and the manufacturing process. Therefore, the conventional glass plate, because the content of Fe 2 O 3 is large, it is difficult to increase the luminance characteristics of the display device. Therefore, when the content of Fe 2 O 3 in the glass plate is regulated to 0.1% by mass or less, the luminance characteristics of the display device can be improved.
  • “Fe 2 O 3 ” referred to in the present invention includes divalent iron oxide and trivalent iron oxide, and the divalent iron oxide is handled in terms of Fe 2 O 3 . Similarly, other oxides are handled based on the indicated oxide.
  • the light guide plate of the present invention (first invention) preferably has a glass plate with a dimension of at least one side of 1000 mm or more. In this way, it is possible to satisfy the demand for an increase in the size of the display device.
  • the surface roughness Ra of the end surface of the glass plate is preferably 2 ⁇ m or less.
  • the glass plate of the present invention preferably has a thermal expansion coefficient of 120 ⁇ 10 ⁇ 7 / ° C. or less.
  • thermal expansion coefficient refers to a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. based on JIS R3102 using a dilatometer.
  • the light guide plate of the present invention (first invention), a glass plate, as a glass composition, in mass%, SiO 2 40 ⁇ 70% , Al 2 O 3 2 ⁇ 25%, B 2 O 3 0 ⁇ 20% , R 2 O (R is one or more of Li, Na and K) 0 to 25%, MgO 0 to 10%, CaO 0 to 15%, SrO 0 to 10%, BaO 0 to 15%, ZnO 0 It is preferable to contain ⁇ 10%, ZrO 2 0 ⁇ 10%, Fe 2 O 3 0.001 ⁇ 0.1%. This makes it possible to reduce the thermal expansion coefficient while increasing the maximum transmittance in the optical path length of 100 mm and the wavelength range of 350 to 750 nm.
  • the light guide plate of the present invention is preferably a glass plate formed by an overflow downdraw method.
  • the “overflow down-draw method” is a method in which molten glass overflows from both sides of a heat-resistant bowl-shaped molded body, and the molten glass overflows and joins at the lower end of the molded body to be stretched and formed downward. It is a method of manufacturing.
  • the light guide plate of the present invention (first invention) is characterized by being used for an edge light type surface light emitting device.
  • the edge light type surface light emitting device of the present invention includes the light guide plate described above.
  • the present inventor adopted a glass plate having a small dimensional change due to a temperature change as a light guide plate, and restricting the retardation of the glass plate to a predetermined range, thereby solving the second problem. It has been found that the problem can be solved, and is proposed as the present invention (second present invention). That is, the light guide plate of the present invention (second invention) has at least a glass plate and has a retardation of 30 nm or less at an optical path length of 50 mm.
  • the “retardation at an optical path length of 50 mm” can be measured by a commercially available birefringence measuring apparatus, and can be measured by, for example, an optical heterodyne method using PEL-3A-XR manufactured by UNIOPT.
  • a display panel such as a liquid crystal panel has a structure in which a display element such as a liquid crystal element is sandwiched between a pair of glass plates. Therefore, when a glass plate is adopted as the light guide plate, a difference in dimensional change between the display panel and the light guide plate is reduced, and it is possible to appropriately cope with a narrow frame of a display device such as a liquid crystal display device.
  • the present inventor has found that the retardation of the glass plate at an optical path length of 50 mm affects the luminance characteristics of the display device. Therefore, in the present invention (second present invention), the retardation of the glass plate in the optical path length of 50 mm is regulated to 30 nm or less to achieve uniform luminance characteristics of the display device.
  • the dimension of at least one side of the glass plate is 1000 mm or more. In this way, it is possible to satisfy the demand for an increase in the size of the display device.
  • the surface roughness Ra of the end face of the glass plate is preferably 2 ⁇ m or less. In this way, light from the light source can be uniformly incident on the light guide plate.
  • the glass plate of the present invention preferably has a thermal expansion coefficient of 120 ⁇ 10 ⁇ 7 / ° C. or less.
  • thermal expansion coefficient refers to a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. based on JIS R3102 using a dilatometer.
  • the strain point of the glass plate is preferably 550 ° C. or higher. If it does in this way, the heat resistance of a light-guide plate will improve.
  • strain point refers to a value measured based on JIS R3103.
  • the light guide plate of the present invention (second invention), a glass plate, as a glass composition, in mass%, SiO 2 40 ⁇ 70% , Al 2 O 3 2 ⁇ 25%, B 2 O 3 0 ⁇ 20% , R 2 O (R is one or more of Li, Na and K) 0 to 25%, MgO 0 to 10%, CaO 0 to 15%, SrO 0 to 10%, BaO 0 to 15%, ZnO 0
  • R is one or more of Li, Na and K
  • it contains up to 10% and 0 to 10% of ZrO 2 . In this way, it is possible to achieve both a low thermal expansion coefficient and a high strain point.
  • the light guide plate of the present invention is preferably a glass plate formed by the overflow down draw method.
  • the “overflow down-draw method” is a method in which molten glass overflows from both sides of a heat-resistant bowl-shaped molded body, and the molten glass overflows and joins at the lower end of the molded body to be stretched and formed downward. It is a method of manufacturing.
  • the light guide plate of the present invention (second invention) is used for an edge light type surface light emitting device.
  • An edge light type surface light emitting device includes the light guide plate described above.
  • the glass plate of the present invention (second invention) has a retardation at an optical path length of 50 mm of 20 nm or less, and is used for a light guide plate.
  • FIG. 6 shows transmittance measurement data of an optical path length of 100 mm and a wavelength range of 300 to 750 nm of a glass plate according to Example 4.
  • the maximum transmittance of the glass plate in the optical path length of 100 mm and the wavelength range of 350 to 750 nm is 50% or more, preferably 70% or more, 75% or more, 80% or more. 81% or more or 82% or more, particularly preferably 83% or more. If the maximum transmittance in the optical path length of 100 mm and the wavelength range of 350 to 750 nm is too low, the luminance characteristics of the display device are likely to deteriorate.
  • the light guide plate of the present invention it is preferable to reduce the content of the colored oxide in the glass plate as much as possible.
  • the colored oxide include Fe 2 O 3 , Cr 2 O 3 , V 2 O 5 , NiO, MnO 2 , Nd 2 O 3 , CeO 2 , Er 2 O 3 and the like.
  • the content of the transition metal oxide in the glass plate is preferably 0.1% by mass or less, 0.05% by mass or less, 0.03% by mass or less, 0.02 mass% or less, 0.015 mass% or less, 0.01 mass% or less, 0.009 mass% or less, 0.008 mass% or less, 0.007 mass% or less, 0.006 mass% or less, 0 0.005 mass% or less or 0.004 mass% or less, particularly preferably 0.001 to 0.01 mass%.
  • the content of the transition metal oxide is too large, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease.
  • content of a transition metal oxide will be less than 0.001 mass%, raw material cost and the manufacturing cost of a glass plate will rise.
  • the content of Fe 2 O 3 in the glass plate is preferably 0.1% by mass or less, 0.05% by mass or less, 0.03% by mass or less, 0.02% by mass or less, or 0.015% by mass or less, Particularly preferred is 0.001 to 0.01% by mass. If the content of Fe 2 O 3 is too large, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease. Incidentally, when the content of Fe 2 O 3 is less than 0.001 wt%, the raw material cost, the cost of manufacturing the glass sheet to rise.
  • the content of Cr 2 O 3 in the glass plate is preferably 0.03% by mass or less, 0.02% by mass or less, 0.015% by mass or less, 0.01% by mass or less, 0.005% by mass or less, 0.003 mass% or less, 0.001 mass% or less, 0.0005 mass% or less, 0.0004 mass% or less, 0.0003 mass% or less or 0.0002 mass% or less, particularly preferably 0.0001 mass% It is as follows. When the content of Cr 2 O 3 is too large, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease. Incidentally, when the content of Cr 2 O 3 is too small, the raw material cost, the cost of manufacturing the glass sheet to rise.
  • the preferred lower limit content is 0.00001% by mass or more, particularly 0.00005% by mass or more.
  • the content of V 2 O 5 in the glass plate is preferably 0.03% by mass or less, 0.02% by mass or less, 0.015% by mass or less, 0.01% by mass or less, or 0.005% by mass or less, Especially preferably, it is 0.003 mass% or less.
  • the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease.
  • the content of NiO in the glass plate is preferably 0.03% by mass or less, 0.02% by mass or less, 0.015% by mass or less, 0.01% by mass or less, or 0.005% by mass or less, particularly preferably 0.003 mass% or less.
  • the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease.
  • the content of MnO 2 in the glass plate is preferably 0.03% by mass or less, 0.02% by mass or less, 0.015% by mass or less, 0.01% by mass or less, or 0.005% by mass or less, particularly preferably. Is 0.003 mass% or less.
  • the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease.
  • the content of Nd 2 O 3 in the glass plate is preferably 0.03% by mass or less, 0.02% by mass or less, 0.015% by mass or less, 0.01% by mass or less, or 0.005% by mass or less, Especially preferably, it is 0.003 mass% or less.
  • the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease.
  • the CeO 2 content in the glass plate is preferably 0.03% by mass or less, 0.02% by mass or less, 0.015% by mass or less, 0.01% by mass or less, or 0.005% by mass or less, particularly preferably. Is 0.003 mass% or less.
  • the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease.
  • the content of Er 2 O 3 in the glass plate is preferably 0.03% by mass or less, 0.02% by mass or less, 0.015% by mass or less, 0.01% by mass or less, or 0.005% by mass or less, Especially preferably, it is 0.003 mass% or less.
  • the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease.
  • a high-purity glass raw material is used, or from a raw material preparation facility or the like to the raw material, Fe 2 O 3 and Cr 2 O 3 Manufacturing equipment designed so that colored oxides such as the above may not be mixed may be used.
  • the size of at least one side of the glass plate is preferably 1000 mm or more, 1500 mm or more, 2000 mm or more, or 2500 mm or more, and particularly preferably 3000 mm or more. In this way, it is possible to satisfy the demand for an increase in the size of the display device.
  • the surface roughness Ra of the end face of the glass plate is preferably 2 ⁇ m or less, 1.5 ⁇ m or less, 1 ⁇ m or less, or 0.7 ⁇ m or less, particularly preferably 0.5 ⁇ m or less. If it does in this way, it will become easy to scatter the light from a light source on the end surface of a glass plate, and it will become difficult to make the light from a light source inject into a light-guide plate uniformly.
  • the thermal expansion coefficient of the glass plate is preferably 120 ⁇ 10 ⁇ 7 / ° C. or lower, 90 ⁇ 10 ⁇ 7 / ° C. or lower, 60 ⁇ 10 ⁇ 7 / ° C. or lower, 55 ⁇ 10 ⁇ 7 / ° C. or lower, 50 ⁇ 10 ⁇ 7 / ° C. or lower or 45 ⁇ 10 ⁇ 7 / ° C. or lower, particularly preferably 25 ⁇ 10 ⁇ 7 to 40 ⁇ 10 ⁇ 7 / ° C. or lower. If the thermal expansion coefficient is too high, the difference in dimensional change due to heat between the display panel and the light guide plate becomes large.
  • the strain point of the glass plate is preferably 550 ° C. or higher, 580 ° C. or higher, 600 ° C. or higher, 615 ° C. or higher, 630 ° C. or higher, or 640 ° C. or higher, particularly preferably 650 ° C. or higher. If the strain point is too low, the heat resistance of the glass plate is likely to be lowered. For example, when a reflective film, a diffusion film, or the like is formed on the surface of the glass plate at a high temperature, the glass plate is likely to be thermally deformed.
  • the “strain point” is a value measured based on JIS R3103.
  • the glass plate has a glass composition of mass%, SiO 2 40 to 70%, Al 2 O 3 2 to 25%, B 2 O 3 0 to 20%, R 2 O (R is one of Li, Na and K) Or 2 or more types) 0 to 25%, MgO 0 to 10%, CaO 0 to 15%, SrO 0 to 10%, BaO 0 to 15%, ZnO 0 to 10%, ZrO 2 0 to 10%, Fe 2 O 3 It is preferable to contain 0.001 to 0.1%. The reason why the content of each component is regulated as described above will be described below. In addition, in description of the containing range of each component,% display means the mass%.
  • SiO 2 is a component that serves as a network former of glass, and is a component that reduces a thermal expansion coefficient and reduces a dimensional change due to heat. It is a component that increases acid resistance and strain point.
  • the content of SiO 2 is preferably 40 to 70% or 50 to 67%, particularly preferably 57 to 64%.
  • the content of SiO 2 is increased, the high temperature viscosity is increased, the meltability is lowered, and the devitrification blisters of cristobalite are liable to precipitate at the time of molding.
  • the content of SiO 2 decreases, the coefficient of thermal expansion increases and the dimensional change due to heat tends to increase. In addition, acid resistance and strain point are likely to be lowered.
  • Al 2 O 3 is a component that lowers the thermal expansion coefficient and reduces dimensional changes due to heat. It also has the effect of increasing the strain point and suppressing the precipitation of devitrified cristobalite during molding.
  • the content of Al 2 O 3 is preferably 2 to 25% or 10 to 20%, particularly preferably 14 to 17%.
  • the content of Al 2 O 3 increases, the liquidus temperature rises and it becomes difficult to form a glass plate.
  • the content of Al 2 O 3 decreases, the thermal expansion coefficient increases and the dimensional change due to heat tends to increase. In addition, the strain point tends to decrease.
  • B 2 O 3 is a component that acts as a flux, lowers the high temperature viscosity, and improves the meltability. Moreover, it is a component which reduces a thermal expansion coefficient and reduces the dimensional change by heat.
  • the content of B 2 O 3 is preferably 0 to 20% or 5 to 15%, particularly preferably 7.5 to 12%. When the content of B 2 O 3 is increased, the strain point and acid resistance are likely to be lowered. On the other hand, when the content of B 2 O 3 decreases, the thermal expansion coefficient increases and the dimensional change due to heat tends to increase. In addition, the meltability tends to be lowered.
  • R 2 O is a component that lowers the high temperature viscosity and improves the meltability.
  • the content of R 2 O is preferably 0 to 25% or 0 to 20%, particularly preferably 0 to 15%.
  • the content of R 2 O increases, the strain point tends to decrease, and the maximum transmittance around the wavelength of 550 nm tends to decrease. From the viewpoint of reducing the thermal expansion coefficient, it is preferable to reduce the content of R 2 O as much as possible, and the content is preferably 5% or less or 1% or less, particularly preferably 0.5% or less.
  • the contents of Li 2 O, Na 2 O, and K 2 O are also preferably 5% or less or 1% or less, particularly preferably 0.5% or less, respectively.
  • MgO is a component that improves the meltability by lowering only the high temperature viscosity without lowering the strain point.
  • the content of MgO is preferably 0 to 10% or 0 to 5%, particularly preferably 0 to 3.5%. When the content of MgO is increased, devitrification beads are likely to precipitate during molding.
  • CaO is a component that improves the meltability by lowering only the high temperature viscosity without lowering the strain point.
  • the content of CaO is preferably 0 to 15% or 2 to 12%, particularly preferably 3.5 to 10%. When there is too much content of CaO, devitrification will become easy to precipitate at the time of fabrication.
  • SrO is a component that improves chemical resistance and devitrification resistance.
  • the content of SrO is preferably 0 to 10% or more than 0.5 to 8%, particularly preferably 1 to 8%.
  • the thermal expansion coefficient is increased, and the dimensional change due to heat tends to increase.
  • BaO is a component that increases chemical resistance and devitrification resistance in the same manner as SrO.
  • the content of BaO is preferably 0 to 15% or 0 to 10%, particularly preferably 0.1 to 8%.
  • the content of BaO increases, the density increases or the thermal expansion coefficient increases, and the dimensional change due to heat tends to increase. In addition, the meltability tends to be lowered.
  • ZnO is a component that improves meltability.
  • the content of ZnO is preferably 0 to 10% or 0 to 5%, particularly preferably 0 to 1%. When the content of ZnO is increased, the devitrification resistance and the strain point are liable to be lowered.
  • ZrO 2 is a component that increases the strain point.
  • the content of ZrO 2 is preferably 0 to 10% or 0 to 7%, particularly preferably 0 to 5%.
  • the ZrO 2 content is increased, the density is remarkably increased, and devitrification spots caused by ZrO 2 are liable to precipitate during molding.
  • Colored oxide is a component that decreases the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm.
  • the preferred content and the like of the colored oxide are as described above.
  • Y 2 O 3 , La 2 O 3 , Nb 2 O 5 , P 2 O 5 are each up to 3%
  • As 2 O 3 , Sb 2 O 3 , SnO as refining agents 2 , SO 3 , F, Cl or the like may be introduced up to 2% in total.
  • As 2 O 3 and Sb 2 O 3 are environmentally hazardous substances, and when a glass plate is formed by the float process, it is reduced in the float bath to become a metal foreign object, so avoid substantial introduction. More specifically, the content is preferably less than 0.01%.
  • the glass plate of the present invention is preferably formed by an overflow down draw method.
  • an overflow down draw method it is difficult to produce a temperature difference and composition difference between the front and back surfaces of the glass ribbon during molding, and it becomes easy to form a glass plate that is unpolished and has good surface quality.
  • the manufacturing cost of the light guide plate is low.
  • uniform brightness characteristics The reason for this is that, in the case of the overflow downdraw method, the surface to be the surface does not come into contact with the bowl-like refractory and is molded in a free surface state.
  • the structure and material of the bowl-shaped structure are not particularly limited as long as desired dimensions and surface quality can be realized.
  • the method of applying force with respect to a glass ribbon will not be specifically limited if a desired dimension and surface quality are realizable.
  • a method may be adopted in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with the glass ribbon, or a plurality of pairs of heat-resistant rolls are only near the end face of the glass ribbon. You may employ
  • the glass plate can be formed by a slot downdraw method, a float method, a rollout method, a redraw method, or the like.
  • a temperature difference and a composition difference between the front and back surfaces of the glass ribbon are likely to occur during molding.
  • the temperature difference and the composition difference can be reduced.
  • the light guide plate of the present invention (first invention) preferably includes a reflective film on one surface (light reflecting surface) side, and includes a diffusion film on the other surface (light emitting surface) side. preferable. In this way, it becomes easy to make the luminance characteristics of the display device uniform.
  • the edge light type surface light emitting device of the present invention (the first present invention) includes the light guide plate described above.
  • the edge light type surface light emitting device of the present invention preferably includes a reflecting plate on one surface (light reflecting surface) side of the light guide plate, and diffuses on the other surface (light emitting surface) side of the light guiding plate. It is preferable to provide a plate. In this way, it becomes easy to make the luminance characteristics of the display device uniform.
  • the glass plate of the present invention (first invention) has an optical path length of 100 mm, a maximum transmittance of 50% or more in a wavelength range of 350 to 750 nm, and is characterized by being used for a light guide plate.
  • the technical features (preferable characteristics, effects, etc.) of the glass plate of the present invention are the same as the technical features of the light guide plate of the present invention. Therefore, detailed description is abbreviate
  • the glass plate of the present invention (first present invention) can also be applied to a glass plate used for a display panel to have the function of a light guide plate. In this way, the member configuration of the display device can be simplified.
  • the retardation of the glass plate at an optical path length of 50 mm is 30 nm or less, preferably 25 nm or less or 20 nm or less, particularly preferably 0.1 to 17.5 nm or less. . If the retardation is too large, it is difficult to make the luminance characteristics of the display device uniform.
  • the thickness of the end of the glass ribbon is substantially the same as the thickness of the central portion of the glass ribbon.
  • the glass ribbon may be cooled so that the temperature distribution in the width direction of the glass ribbon is as small as possible when the glass ribbon is slowly cooled (cooled) in a slow cooling furnace.
  • the reason for forming the glass ribbon so that the thickness of the end of the glass ribbon is substantially the same as the thickness of the center of the glass ribbon is that the thickness of the end of the glass ribbon is different from the thickness of the center of the glass ribbon.
  • the cooling rate is different between the end and the center of the glass ribbon, and as a result, the retardation increases. For example, when the rotational speed of a forming roll or the like for drawing molten glass into a glass ribbon is adjusted, the thickness of the end portion of the glass ribbon and the thickness of the center portion of the glass ribbon are easily made uniform.
  • the following method is mentioned as a method of making temperature distribution in the width direction of a glass ribbon as small as possible.
  • the number of heaters is increased so that the glass ribbon is uniformly heated, and the temperature difference between the heaters is reduced as much as possible.
  • the temperature difference between the heaters is regulated within ⁇ 1 ° C.
  • a soaking plate is installed between the heater and the glass ribbon so that the heat from the heater is uniformly transmitted to the glass ribbon.
  • An enclosure is installed at the end of the glass ribbon or a large number of heaters are arranged at the end so that the difference in the cooling rate between the center and the end of the glass ribbon is reduced. (4) Lower (slow) the drawing speed.
  • the overflow downdraw method always increases the low temperature air flow along the surface of the glass ribbon in the direction from the cutting process, which is a low temperature atmosphere, to the slow cooling furnace and the forming furnace, which is a high temperature atmosphere.
  • the air flow is heated inside a slow cooling furnace or the like, a part of the air leaks into the external atmosphere through a gap in the peripheral wall portion, so that the atmospheric temperature of the slow cooling furnace or the molding furnace is likely to fluctuate.
  • the glass plate formed by the overflow downdraw method tends to have a large retardation.
  • a slow cooling furnace It is preferable to suppress an increase in the low-temperature air flow in the molding furnace.
  • a convection prevention plate is provided in the slow cooling furnace or the air pressure in the external atmosphere of the forming furnace or the slow cooling furnace is adjusted using a blower or the like.
  • the air in the molding furnace or the slow cooling furnace may be made difficult to leak into the external atmosphere.
  • the size of at least one side of the glass plate is preferably 1000 mm or more, 1500 mm or more, 2000 mm or more, or 2500 mm or more, particularly preferably 3000 mm or more. In this way, it is possible to satisfy the demand for an increase in the size of the display device.
  • the surface roughness Ra of the end face of the glass plate is preferably 2 ⁇ m or less, 1.5 ⁇ m or less, 1 ⁇ m or less, or 0.7 ⁇ m or less, particularly preferably 0.5 ⁇ m or less. If it does in this way, it will become easy to scatter the light from a light source on the end surface of a glass plate, and it will become difficult to make the light from a light source inject into a light-guide plate uniformly.
  • the thermal expansion coefficient of the glass plate is preferably 120 ⁇ 10 ⁇ 7 / ° C. or lower, 90 ⁇ 10 ⁇ 7 / ° C. or lower, 60 ⁇ 10 ⁇ 7 / ° C. or lower, 55 ⁇ 10 ⁇ 7 / ° C. or lower, 50 ⁇ 10 ⁇ 7 / ° C. or lower or 45 ⁇ 10 ⁇ 7 / ° C. or lower, particularly preferably 25 ⁇ 10 ⁇ 7 to 40 ⁇ 10 ⁇ 7 / ° C. or lower. If the thermal expansion coefficient is too high, the difference in dimensional change due to heat between the display panel and the light guide plate becomes large.
  • the strain point of the glass plate is preferably 550 ° C. or higher, 580 ° C. or higher, 600 ° C. or higher, 615 ° C. or higher, 630 ° C. or higher, or 640 ° C. or higher, particularly preferably 650 ° C. or higher. If the strain point is too low, the heat resistance of the glass plate is likely to be lowered. For example, when a reflective film, a diffusion film, or the like is formed on the surface of the glass plate at a high temperature, the glass plate is likely to be thermally deformed.
  • the glass plate has a glass composition of mass%, SiO 2 40 to 70%, Al 2 O 3 2 to 25%, B 2 O 3 0 to 20%, R 2 O (R is one of Li, Na and K) (Or two or more) 0 to 25%, MgO 0 to 10%, CaO 0 to 15%, SrO 0 to 10%, BaO 0 to 15%, ZnO 0 to 10%, ZrO 2 0 to 10% Is preferred.
  • R 2 O R is one of Li, Na and K
  • MgO 0 to 10% MgO 0 to 10%, CaO 0 to 15%, SrO 0 to 10%, BaO 0 to 15%, ZnO 0 to 10%, ZrO 2 0 to 10%
  • % display means the mass%.
  • SiO 2 is a component that becomes a glass network former, and is a component that lowers the thermal expansion coefficient to reduce dimensional change and retardation due to heat. It is a component that increases acid resistance and strain point.
  • the content of SiO 2 is preferably 40 to 70% or 50 to 67%, particularly preferably 57 to 64%.
  • the content of SiO 2 is increased, the high temperature viscosity is increased, the meltability is lowered, and the devitrification blisters of cristobalite are liable to precipitate at the time of molding.
  • the content of SiO 2 decreases, the thermal expansion coefficient increases, and the dimensional change and retardation due to heat tend to increase. In addition, acid resistance and strain point are likely to be lowered.
  • Al 2 O 3 is a component that lowers the coefficient of thermal expansion and reduces dimensional changes and retardation due to heat. It also has the effect of increasing the strain point and suppressing the precipitation of devitrified cristobalite during molding.
  • the content of Al 2 O 3 is preferably 2 to 25% or 10 to 20%, particularly preferably 14 to 17%.
  • the content of Al 2 O 3 increases, the liquidus temperature rises and it becomes difficult to form a glass plate.
  • the content of Al 2 O 3 decreases, the thermal expansion coefficient increases, and the dimensional change and retardation due to heat tend to increase. In addition, the strain point tends to decrease.
  • B 2 O 3 is a component that acts as a flux, lowers the high temperature viscosity, and improves the meltability. Moreover, it is a component which reduces a thermal expansion coefficient and reduces the dimensional change and retardation by a heat
  • the content of B 2 O 3 is preferably 0 to 20% or 5 to 15%, particularly preferably 7.5 to 12%. When the content of B 2 O 3 is increased, the strain point and acid resistance are likely to be lowered. On the other hand, when the content of B 2 O 3 decreases, the thermal expansion coefficient increases, and the dimensional change and retardation due to heat tend to increase. In addition, the meltability tends to be lowered.
  • R 2 O is a component that lowers the high temperature viscosity and improves the meltability.
  • the content of R 2 O is preferably 0 to 25% or 0 to 20%, particularly preferably 0 to 15%. As the R 2 O content increases, the strain point tends to decrease. From the viewpoint of reducing the thermal expansion coefficient, it is preferable to reduce the content of R 2 O as much as possible, and the content is preferably 5% or less or 1% or less, particularly preferably 0.5% or less.
  • the contents of Li 2 O, Na 2 O, and K 2 O are also preferably 5% or less or 1% or less, particularly preferably 0.5% or less, respectively.
  • MgO is a component that improves the meltability by lowering only the high temperature viscosity without lowering the strain point. It is also a component that lowers the photoelastic constant.
  • the content of MgO is preferably 0 to 10% or 0 to 5%, particularly preferably 0 to 3.5%. When the content of MgO is increased, devitrification beads are likely to precipitate during molding.
  • CaO is a component that improves the meltability by lowering only the high temperature viscosity without lowering the strain point. It is also a component that lowers the photoelastic constant.
  • the content of CaO is preferably 0 to 15% or 2 to 12%, particularly preferably 3.5 to 10%. When there is too much content of CaO, devitrification will become easy to precipitate at the time of fabrication.
  • SrO is a component that improves chemical resistance and devitrification resistance. It is also a component that lowers the photoelastic constant.
  • the content of SrO is preferably 0 to 10% or more than 0.5 to 8%, particularly preferably 1 to 8%. When the SrO content is increased, the coefficient of thermal expansion is increased, and dimensional change and retardation due to heat are likely to increase.
  • BaO is a component that increases chemical resistance and devitrification resistance in the same manner as SrO. It is also a component that lowers the photoelastic constant.
  • the content of BaO is preferably 0 to 15% or 0 to 10%, particularly preferably 0.1 to 8%. When the content of BaO increases, the density increases and the thermal expansion coefficient increases, and the dimensional change and retardation due to heat tend to increase. In addition, the meltability tends to be lowered.
  • ZnO is a component that improves meltability.
  • the content of ZnO is preferably 0 to 10% or 0 to 5%, particularly preferably 0 to 1%. When the content of ZnO is increased, the devitrification resistance and the strain point are liable to be lowered.
  • ZrO 2 is a component that increases the strain point.
  • the content of ZrO 2 is preferably 0 to 10% or 0 to 7%, particularly preferably 0 to 5%.
  • the ZrO 2 content is increased, the density is remarkably increased, and devitrification spots caused by ZrO 2 are liable to precipitate during molding.
  • Y 2 O 3 , La 2 O 3 , Nb 2 O 5 , P 2 O 5 are each up to 3%
  • As 2 O 3 , Sb 2 O 3 , SnO as refining agents 2 , SO 3 , F, Cl or the like may be introduced up to 2% in total.
  • As 2 O 3 and Sb 2 O 3 are environmentally hazardous substances, and when a glass plate is formed by the float process, it is reduced in the float bath to become a metal foreign object, so avoid substantial introduction. More specifically, the content is preferably less than 0.01%.
  • the glass plate of the present invention is preferably formed by an overflow down draw method.
  • an overflow down draw method it is difficult to produce a temperature difference and composition difference between the front and back surfaces of the glass ribbon during molding, and it becomes easy to form a glass plate that is unpolished and has good surface quality.
  • the manufacturing cost of the light guide plate is low.
  • uniform brightness characteristics The reason for this is that, in the case of the overflow downdraw method, the surface to be the surface does not come into contact with the bowl-like refractory and is molded in a free surface state.
  • the structure and material of the bowl-shaped structure are not particularly limited as long as desired dimensions and surface quality can be realized.
  • the method of applying force with respect to a glass ribbon will not be specifically limited if a desired dimension and surface quality are realizable.
  • a method may be adopted in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with the glass ribbon, or a plurality of pairs of heat-resistant rolls are only near the end face of the glass ribbon. You may employ
  • the glass plate can be formed by a slot downdraw method, a float method, a rollout method, a redraw method, or the like.
  • a temperature difference and a composition difference between the front and back surfaces of the glass ribbon are likely to occur during molding.
  • the temperature difference and the composition difference can be reduced.
  • the light guide plate of the present invention (second invention) preferably includes a reflective film on one surface (light reflecting surface) side, and includes a diffusion film on the other surface (light emitting surface) side. preferable. In this way, it becomes easy to make the luminance characteristics of the display device uniform.
  • An edge light type surface light emitting device includes the light guide plate described above.
  • the edge light type surface light emitting device of the present invention preferably includes a reflecting plate on one surface (light reflecting surface) side of the light guide plate, and diffuses on the other surface (light emitting surface) side of the light guiding plate. It is preferable to provide a plate. In this way, it becomes easy to make the luminance characteristics of the display device uniform.
  • the glass plate of the present invention (second invention) has a retardation at an optical path length of 50 mm of 30 nm or less, and is used for a light guide plate.
  • the technical features (preferable characteristics, effects, etc.) of the glass plate of the present invention are the same as the technical features of the light guide plate of the present invention. Therefore, detailed description is abbreviate
  • the glass plate of the present invention (second present invention) can also be applied to a glass plate used for a display panel to have the function of a light guide plate. In this way, the member configuration of the display device can be simplified.
  • the glass composition is glass so that it contains 60% SiO 2 , 15% Al 2 O 3 , 10% B 2 O 3 , 1% MgO, 8% CaO, 5% SrO, and 1% BaO.
  • the raw glass was melted at a maximum temperature of 1650 ° C. in a continuous melting furnace to obtain molten glass.
  • the obtained molten glass was formed into a plate shape by the overflow down draw method, and then slowly cooled, then cut into dimensions of 2200 mm ⁇ 1950 mm ⁇ thickness 1.1 mm, and the surface roughness Ra of the end face was 0.5 ⁇ m.
  • the glass plate was obtained by polishing.
  • the use of high-purity glass material colored impurities is small, such as Fe 2 O 3, the glass plates A glass production facility designed so that coloring components such as Fe 2 O 3 were not mixed into the glass from the production facility was used.
  • the content of Cr 2 O 3 of the glass plate in it is 0.0005% by mass, as a glass raw material, the use of high-purity glass material colored impurities is small, such as Cr 2 O 3, the glass plates Glass manufacturing equipment designed so that coloring components such as Cr 2 O 3 were not mixed into the glass from the manufacturing equipment was used.
  • a sample for measuring the thermal expansion coefficient was prepared from the obtained glass plate, and the average thermal expansion coefficient at 30 to 380 ° C. was measured based on JIS R3102 using a dilatometer. As a result, the thermal expansion coefficient was 38 ⁇ 10 ⁇ 7 / ° C.
  • a glass block having a size of 25 mm ⁇ 25 mm ⁇ 100 mm was obtained by collecting glass dough from the saddle portion of the bowl-shaped refractory used in the overflow downdraw method and performing a predetermined slow cooling treatment and processing.
  • the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm was measured using UV-3100PC manufactured by Shimadzu Corporation. As a result, the maximum transmittance was 82% in an optical path length of 100 mm and a wavelength range of 350 to 750 nm.
  • FIG. 2 shows measurement data of the transmittance of the glass plate according to Example 1 in an optical path length of 100 mm and a wavelength range of 350 to 750 nm.
  • the light guide plate having this glass plate is less likely to undergo dimensional changes with increasing temperature and can improve the luminance characteristics of the display device.
  • glass contains 60% SiO 2 , 19% Al 2 O 3 , 7% B 2 O 3 , 3% MgO, 5% CaO, 1% SrO, and 5% BaO.
  • the raw glass was melted at a maximum temperature of 1650 ° C. in a continuous melting furnace to obtain molten glass.
  • the obtained molten glass was formed into a plate shape by the overflow down draw method, and then slowly cooled, then cut into dimensions of 2200 mm ⁇ 1950 mm ⁇ thickness 1.1 mm, and the surface roughness Ra of the end face was 0.5 ⁇ m.
  • the glass plate was obtained by polishing.
  • the use of high-purity glass material colored impurities is small, such as Fe 2 O 3, the glass plates A glass production facility designed so that coloring components such as Fe 2 O 3 were not mixed into the glass from the production facility was used.
  • the content of Cr 2 O 3 of the glass plate in is 0.0003 mass%, as a glass raw material, the use of high-purity glass material colored impurities is small, such as Cr 2 O 3, the glass plates Glass manufacturing equipment designed so that coloring components such as Cr 2 O 3 were not mixed into the glass from the manufacturing equipment was used.
  • a sample for measuring the thermal expansion coefficient was prepared from the obtained glass plate, and the average thermal expansion coefficient at 30 to 380 ° C. was measured based on JIS R3102 using a dilatometer. As a result, the thermal expansion coefficient was 38 ⁇ 10 ⁇ 7 / ° C.
  • a glass block having a size of 25 mm ⁇ 25 mm ⁇ 100 mm was obtained by collecting glass dough from the saddle portion of the bowl-shaped refractory used in the overflow downdraw method and performing a predetermined slow cooling treatment and processing.
  • the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm was measured using UV-3100PC manufactured by Shimadzu Corporation. As a result, the maximum transmittance was 84% in an optical path length of 100 mm and a wavelength range of 350 to 750 nm.
  • FIG. 2 shows measurement data of transmittance of the glass plate according to Example 2 in an optical path length of 100 mm and a wavelength range of 350 to 750 nm.
  • the light guide plate having this glass plate is less likely to undergo dimensional changes with increasing temperature and can improve the luminance characteristics of the display device.
  • Example 3 First, as a glass composition, it contains SiO 2 62%, Al 2 O 3 18%, B 2 O 3 0.5%, MgO 3%, Na 2 O 14.5%, K 2 O 2% by mass%. Thus, after glass material was prepared and mixed, it was melted at a maximum temperature of 1650 ° C. in a continuous melting furnace to obtain molten glass. Next, the obtained molten glass is formed into a plate shape by the overflow down draw method, and then slowly cooled, then cut into dimensions of 1800 mm ⁇ 1500 mm ⁇ thickness 1.1 mm, and the surface roughness Ra of the end face is 0.5 ⁇ m. The glass plate was obtained by polishing.
  • the use of high-purity glass material colored impurities is small, such as Fe 2 O 3, the glass plates A glass production facility designed so that coloring components such as Fe 2 O 3 were not mixed into the glass from the production facility was used.
  • the content of Cr 2 O 3 of the glass plate in it is 0.00015 wt%, as a glass raw material, the use of high-purity glass material colored impurities is small, such as Cr 2 O 3, the glass plates Glass manufacturing equipment designed so that coloring components such as Cr 2 O 3 were not mixed into the glass from the manufacturing equipment was used.
  • thermo expansion coefficient was 91 ⁇ 10 ⁇ 7 / ° C.
  • a glass block having a size of 25 mm ⁇ 25 mm ⁇ 100 mm was obtained by collecting glass dough from the saddle portion of the bowl-shaped refractory used in the overflow downdraw method and performing a predetermined slow cooling treatment and processing.
  • the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm was measured using UV-3100PC manufactured by Shimadzu Corporation.
  • the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm was 80%.
  • FIG. 2 shows measurement data of the transmittance of the glass plate according to Example 3 in an optical path length of 100 mm and a wavelength range of 350 to 750 nm. *
  • the light guide plate having this glass plate is less likely to undergo dimensional changes with increasing temperature and can improve the luminance characteristics of the display device.
  • the glass composition is glass so that it contains 60% SiO 2 , 15% Al 2 O 3 , 10% B 2 O 3 , 1% MgO, 8% CaO, 5% SrO, and 1% BaO.
  • the raw glass was melted at a maximum temperature of 1650 ° C. in a continuous melting furnace to obtain molten glass.
  • the obtained molten glass is formed into a plate shape by the overflow down draw method, and then slowly cooled, then cut into dimensions of 2200 mm ⁇ 1950 mm ⁇ thickness 1.8 mm, and the end surface roughness Ra is 0.5 ⁇ m.
  • the glass plate was obtained by polishing.
  • the use of high-purity glass material colored impurities is small, such as Fe 2 O 3, the glass plates A glass production facility designed so that coloring components such as Fe 2 O 3 were not mixed into the glass from the production facility was used.
  • the content of Cr 2 O 3 of the glass plate in is 0.0001 mass%, as a glass raw material, the use of high-purity glass material colored impurities is small, such as Cr 2 O 3, the glass plates Glass manufacturing equipment designed so that coloring components such as Cr 2 O 3 were not mixed into the glass from the manufacturing equipment was used.
  • a sample for measuring the thermal expansion coefficient was prepared from the obtained glass plate, and the average thermal expansion coefficient at 30 to 380 ° C. was measured based on JIS R3102 using a dilatometer. As a result, the thermal expansion coefficient was 38 ⁇ 10 ⁇ 7 / ° C.
  • FIG. 3 shows measurement data of transmittance of the glass plate according to Example 4 in an optical path length of 100 mm and a wavelength range of 350 to 750 nm.
  • the light guide plate having this glass plate is less likely to undergo dimensional changes with increasing temperature and can improve the luminance characteristics of the display device.
  • the glass composition is glass so that it contains 60% SiO 2 , 15% Al 2 O 3 , 10% B 2 O 3 , 1% MgO, 8% CaO, 5% SrO, and 1% BaO.
  • the raw glass was melted at a maximum temperature of 1650 ° C. in a continuous melting furnace to obtain molten glass.
  • the obtained molten glass was formed into a plate shape by the overflow down draw method, and then slowly cooled, then cut into dimensions of 2200 mm ⁇ 1950 mm ⁇ thickness 1.1 mm, and the surface roughness Ra of the end face was 0.5 ⁇ m.
  • the glass plate was obtained by polishing.
  • the temperature distribution between each heater is controlled within ⁇ 1 ° C, and the atmospheric pressure in the external atmosphere of the molding furnace and slow cooling furnace is controlled to suppress the generation of ascending airflow. did.
  • the thermal expansion coefficient is a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. based on JIS R3102 using a dilatometer.
  • the strain point is a value measured based on JIS R3103.
  • the obtained glass plate was further cut into dimensions of 50 mm ⁇ 50 mm ⁇ thickness 1.1 mm, and the opposite end surfaces were mirror-polished.
  • the retardation at an optical path length of 50 mm was measured by the optical heterodyne method using PEL-3A-XR manufactured by UNIOPT. During the measurement, laser light was irradiated perpendicularly to the optically polished end face. As a result, the retardation was 17.3 nm.
  • the light guide plate having this glass plate is less likely to undergo a dimensional change with increasing temperature and can make the luminance characteristics of the display device uniform.
  • Example 6 As a glass composition, it contains SiO 2 62%, Al 2 O 3 18%, B 2 O 3 0.5%, MgO 3%, Na 2 O 14.5%, K 2 O 2% by mass%. Thus, after glass material was prepared and mixed, it was melted at a maximum temperature of 1650 ° C. in a continuous melting furnace to obtain molten glass. Next, the obtained molten glass is formed into a plate shape by the overflow down draw method, and then slowly cooled, then cut into dimensions of 1800 mm ⁇ 1500 mm ⁇ thickness 1.1 mm, and the surface roughness Ra of the end face is 0.5 ⁇ m. The glass plate was obtained by polishing. During molding and slow cooling, the temperature distribution between each heater is controlled within ⁇ 1 ° C, and the atmospheric pressure in the external atmosphere of the molding furnace and slow cooling furnace is controlled to suppress the generation of ascending airflow. did.
  • the thermal expansion coefficient is a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. based on JIS R3102 using a dilatometer.
  • the strain point is a value measured based on JIS R3103.
  • the obtained glass plate was further cut into dimensions of 50 mm ⁇ 50 mm ⁇ thickness 1.1 mm, and the opposite end surfaces were mirror-polished.
  • the retardation at an optical path length of 50 mm was measured by the optical heterodyne method using PEL-3A-XR manufactured by UNIOPT. During the measurement, laser light was irradiated perpendicularly to the optically polished end face. As a result, the retardation was 18 nm.
  • the light guide plate having this glass plate is less likely to undergo a dimensional change with increasing temperature and can make the luminance characteristics of the display device uniform.
  • the glass composition is glass so that it contains 60% SiO 2 , 15% Al 2 O 3 , 10% B 2 O 3 , 1% MgO, 8% CaO, 5% SrO, and 1% BaO.
  • the raw glass was melted at a maximum temperature of 1650 ° C. in a continuous melting furnace to obtain molten glass.
  • the obtained molten glass was formed into a plate shape by the overflow down draw method, and then slowly cooled, then cut into dimensions of 2200 mm ⁇ 1950 mm ⁇ thickness 1.1 mm, and the surface roughness Ra of the end face was 0.5 ⁇ m.
  • the glass plate was obtained by polishing. During molding and slow cooling, the temperature distribution between the heaters was not strictly controlled, and the ascending air current was not suppressed.
  • the obtained glass plate was further cut into dimensions of 50 mm ⁇ 50 mm ⁇ thickness 1.1 mm, and the opposite end surfaces were mirror-polished.
  • the retardation at an optical path length of 50 mm was measured by the optical heterodyne method using PEL-3A-XR manufactured by UNIOPT. During the measurement, laser light was irradiated perpendicularly to the optically polished end face. As a result, the retardation was 39.4 nm.
  • the light guide plate having this glass plate is likely to undergo dimensional changes as the temperature rises and the luminance characteristics of the display device are likely to be non-uniform.

Abstract

Provided is a light guide plate characterized by having at least a glass plate, and in that the maximum transmittance of the glass plate is at least 50% at an optical path length of 100mm and in a wavelength range of 350-750nm.

Description

導光板Light guide plate
 本発明は、導光板に関し、特に、エッジライト型面発光装置に好適な導光板に関する。 The present invention relates to a light guide plate, and more particularly to a light guide plate suitable for an edge light type surface light emitting device.
 従来、液晶テレビ等に液晶表示装置が用いられている。液晶表示装置は、面発光装置と、この面発光装置の光出射面側に配置される液晶パネルとを備えている。面発光装置として、例えば、直下型、エッジライト型が知られている。 Conventionally, liquid crystal display devices are used for liquid crystal televisions and the like. The liquid crystal display device includes a surface light emitting device and a liquid crystal panel arranged on the light emitting surface side of the surface light emitting device. As the surface light emitting device, for example, a direct type and an edge light type are known.
 直下型面発光装置では、光源が、光出射面に対して反対側となる背面に配置される。光源として、発光ダイオード(Light Emitting Diode)等の点光源を用いる場合、明るさを補うために、多数のLEDチップが必要になり、輝度特性のばらつきが非常に大きくなる。 In the direct type surface light emitting device, the light source is disposed on the back surface opposite to the light emitting surface. When a point light source such as a light emitting diode (Light Emitting Diode) is used as the light source, a large number of LED chips are required to supplement the brightness, and the variation in luminance characteristics becomes very large.
 このため、現在では、エッジライト型面発光装置が主流になっている。エッジライト型面発光装置では、LED等の光源と、導光板と、反射板(又は反射膜)等とを備えている。光源は、光出射面に対して直交方向となる側面に配置される。導光板は、光源からの光を全反射により内部に伝播し、面状に出射させるために配置される。導光板として、アクリル樹脂等の樹脂板が一般的に使用されている(特許文献1~4参照)。反射板は、光出射面と反対側の光反射面に配置されると共に、光反射面に抜けた光を反射させて、液晶パネル等の表示面を発光させるために配置される。なお、液晶パネル等の表示面を均一に発光させるために、導光板の光出射面側に、拡散板(拡散膜)が配置される場合もある。 Therefore, at present, edge light type surface light emitting devices are mainly used. The edge light type surface light emitting device includes a light source such as an LED, a light guide plate, a reflection plate (or reflection film), and the like. A light source is arrange | positioned at the side surface which becomes a orthogonal direction with respect to a light-projection surface. The light guide plate is arranged to propagate light from the light source to the inside by total reflection and to emit the light in a planar shape. A resin plate such as an acrylic resin is generally used as the light guide plate (see Patent Documents 1 to 4). The reflecting plate is disposed on the light reflecting surface opposite to the light emitting surface, and is disposed to reflect light passing through the light reflecting surface to emit light on a display surface such as a liquid crystal panel. In addition, in order to emit light uniformly on a display surface such as a liquid crystal panel, a diffusion plate (diffusion film) may be disposed on the light exit surface side of the light guide plate.
 図1は、エッジライト型面発光装置1の一例を示す断面概念図である。エッジライト型面発光装置1は、LED等の光源2と、導光板3と、反射板4と、拡散板5とを備えている。光源2からの光は、導光板3の端面から入射し、導光板3の内部に伝搬する。光反射面6に達した光は、反射板4により反射し、光出射面7の方に進み、拡散板5により拡散する。結果として、拡散板5の上方に配置された液晶パネル等の表示面を均一に発光させることが可能になる。 FIG. 1 is a conceptual cross-sectional view showing an example of an edge light type surface light emitting device 1. The edge light type surface light emitting device 1 includes a light source 2 such as an LED, a light guide plate 3, a reflection plate 4, and a diffusion plate 5. Light from the light source 2 enters from the end face of the light guide plate 3 and propagates into the light guide plate 3. The light that reaches the light reflecting surface 6 is reflected by the reflecting plate 4, travels toward the light emitting surface 7, and is diffused by the diffusion plate 5. As a result, a display surface such as a liquid crystal panel disposed above the diffusion plate 5 can emit light uniformly.
特開2012-123933号公報JP 2012-123933 A 特開2012-138345号公報JP 2012-138345 A 特開2012-216523号公報JP 2012-216523 A 特開2012-216528号公報JP 2012-216528 A
 エッジライト型面発光装置では、光源から光が発生すると、熱が発生し、それに伴い、導光板の温度も上昇する。そして、導光板として樹脂板を用いる場合、導光板の熱による寸法変化は液晶パネルの寸法変化よりも大きくなる。この原因は、樹脂板の熱膨張係数が高いことによる。例えば、アクリル樹脂板の熱膨張係数は約700×10-7/℃である。そのため、従来までは、寸法変化の差に起因して不当な応力が発生しないように、液晶表示装置の額縁部分に空隙を設けて、導光板の寸法変化を補正していた。 In the edge light type surface emitting device, when light is generated from the light source, heat is generated, and accordingly, the temperature of the light guide plate also increases. When a resin plate is used as the light guide plate, the dimensional change due to heat of the light guide plate is larger than the dimensional change of the liquid crystal panel. This is due to the high thermal expansion coefficient of the resin plate. For example, the thermal expansion coefficient of the acrylic resin plate is about 700 × 10 −7 / ° C. For this reason, until now, a dimensional change of the light guide plate has been corrected by providing a gap in the frame portion of the liquid crystal display device so that an undue stress is not generated due to a difference in dimensional change.
 しかし、近年、液晶表示装置の狭額縁化により、導光板の寸法変化を液晶表示装置の額縁部分で補正し難くなっている。 However, in recent years, due to the narrow frame of the liquid crystal display device, it is difficult to correct the dimensional change of the light guide plate at the frame portion of the liquid crystal display device.
 また、導光板として樹脂板を用いる場合、光源からの光が端面から入射して光出射面に抜ける際に、光量が減殺される。結果として、表示装置の輝度特性が低下し易くなる。 Also, when a resin plate is used as the light guide plate, the amount of light is reduced when light from the light source enters from the end face and exits to the light exit surface. As a result, the luminance characteristics of the display device are likely to deteriorate.
 このような観点から、本発明の第一の課題は、温度上昇に伴い、寸法変化が生じ難く、且つ表示装置の輝度特性を低下させ難い導光板を創案することである。 From such a point of view, the first object of the present invention is to create a light guide plate that hardly undergoes a dimensional change with a rise in temperature and that does not easily deteriorate the luminance characteristics of the display device.
 また、液晶パネルは、偏光を用いている。更に、エッジライト型面発光装置は、光出射面において光源からの距離が相違する。よって、近年、液晶表示装置の大型化に伴い、偏光状態がパネル面内で異なり、輝度特性の不均一が発生し易くなっている。 Also, the liquid crystal panel uses polarized light. Further, the edge light type surface light emitting device has a different distance from the light source on the light emitting surface. Therefore, in recent years, with an increase in the size of the liquid crystal display device, the polarization state is different within the panel surface, and uneven luminance characteristics are likely to occur.
 このような観点から、本発明の第二の課題は、温度上昇に伴い、寸法変化が生じ難く、且つ表示装置の輝度特性を均一化し得る導光板を創案することである。 From this point of view, the second object of the present invention is to create a light guide plate that is less likely to undergo dimensional changes with increasing temperature and that can uniformize the luminance characteristics of the display device.
 本発明者は、鋭意検討の結果、導光板として、温度変化による寸法変化が小さいガラス板を採択すると共に、ガラス板の透過率を所定範囲に規制することにより、上記第一の課題を解決し得ることを見出し、本発明(第一の本発明)として提案するものである。すなわち、本発明(第一の本発明)の導光板は、少なくともガラス板を有すると共に、該ガラス板の光路長100mm、波長範囲350~750nmにおける最大透過率が50%以上であることを特徴とする。「光路長100mm、波長範囲350~750nmにおける最大透過率」は、市販の透過率測定装置で測定可能であり、例えば、島津製作所社製UV-3100PCにより測定可能である。 As a result of intensive studies, the present inventor has solved the first problem by adopting a glass plate having a small dimensional change due to temperature change as the light guide plate and restricting the transmittance of the glass plate to a predetermined range. It finds out and obtains and proposes as this invention (1st invention). That is, the light guide plate of the present invention (first invention) has at least a glass plate, and has an optical path length of 100 mm and a maximum transmittance of 50% or more in a wavelength range of 350 to 750 nm. To do. The “maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm” can be measured by a commercially available transmittance measuring device, and can be measured by, for example, UV-3100PC manufactured by Shimadzu Corporation.
 液晶パネル等の表示パネルは、一対のガラス板間に、液晶素子等の表示素子を挟み込んだ構造を有している。そこで、導光板としてガラス板を採択すると、表示パネルと導光板の寸法変化の差が小さくなり、液晶表示装置等の表示装置の狭額縁化に適正に対応することができる。 A display panel such as a liquid crystal panel has a structure in which a display element such as a liquid crystal element is sandwiched between a pair of glass plates. Therefore, when a glass plate is adopted as the light guide plate, a difference in dimensional change between the display panel and the light guide plate is reduced, and it is possible to appropriately cope with a narrow frame of a display device such as a liquid crystal display device.
 本発明者は、ガラス板の光路長100mm、波長範囲350~750nmにおける最大透過率が表示装置の輝度特性に影響を与えることを見出した。そこで、本発明(第一の本発明)では、ガラス板の光路長100mm、波長範囲350~750nmにおける最大透過率を50%以上に規制して、表示装置の輝度特性を高めている。 The present inventor has found that the maximum transmittance in the optical path length of 100 mm and the wavelength range of 350 to 750 nm of the glass plate affects the luminance characteristics of the display device. Therefore, in the present invention (first invention), the maximum transmittance in the optical path length of 100 mm and the wavelength range of 350 to 750 nm of the glass plate is regulated to 50% or more to enhance the luminance characteristics of the display device.
 本発明(第一の本発明)の導光板は、ガラス板中のFeの含有量が0.1質量%以下であることが好ましい。このようにすれば、ガラス板の光路長100mm、波長範囲350~750nmにおける最大透過率を高めることができる。Feは、ガラス中でFe3+又はFe2+の状態で存在する。Fe3+は、波長380nm付近に吸収ピークを持ち、紫外域、短波長側の可視域における透過率を低下させる。Fe2+は、波長1080nm付近に吸収ピークを持ち、長波長側の可視域における透過率を低下させる。よって、Feの含有量が多くなると、光路長100mm、波長範囲350~750nmにおける最大透過率が低下し易くなる。ガラス板は、一般的に、ガラス原料や製造工程中から多量のFeが混入している。よって、従来のガラス板は、Feの含有量が多いため、表示装置の輝度特性を高めることが困難である。そこで、ガラス板中のFeの含有量を0.1質量%以下に規制すると、表示装置の輝度特性を高めることができる。なお、本発明でいう「Fe」は、2価の酸化鉄と3価の酸化鉄を含み、2価の酸化鉄は、Feに換算して、取り扱うものとする。他の酸化物についても、同様にして、表記の酸化物を基準にして取り扱うものとする。 In the light guide plate of the present invention (first present invention), the content of Fe 2 O 3 in the glass plate is preferably 0.1% by mass or less. By doing so, it is possible to increase the maximum transmittance of the glass plate in the optical path length of 100 mm and the wavelength range of 350 to 750 nm. Fe 2 O 3 exists in the state of Fe 3+ or Fe 2+ in the glass. Fe 3+ has an absorption peak in the vicinity of a wavelength of 380 nm, and lowers the transmittance in the visible region in the ultraviolet region and the short wavelength side. Fe 2+ has an absorption peak in the vicinity of a wavelength of 1080 nm, and lowers the transmittance in the visible region on the long wavelength side. Therefore, when the content of Fe 2 O 3 increases, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease. In general, a large amount of Fe 2 O 3 is mixed in the glass plate from the glass raw material and the manufacturing process. Therefore, the conventional glass plate, because the content of Fe 2 O 3 is large, it is difficult to increase the luminance characteristics of the display device. Therefore, when the content of Fe 2 O 3 in the glass plate is regulated to 0.1% by mass or less, the luminance characteristics of the display device can be improved. Note that “Fe 2 O 3 ” referred to in the present invention includes divalent iron oxide and trivalent iron oxide, and the divalent iron oxide is handled in terms of Fe 2 O 3 . Similarly, other oxides are handled based on the indicated oxide.
 本発明(第一の本発明)の導光板は、ガラス板の少なくとも一辺の寸法が1000mm以上であることが好ましい。このようにすれば、表示装置の大型化の要請を満たすことができる。 The light guide plate of the present invention (first invention) preferably has a glass plate with a dimension of at least one side of 1000 mm or more. In this way, it is possible to satisfy the demand for an increase in the size of the display device.
 本発明(第一の本発明)の導光板は、ガラス板の端面の表面粗さRaが2μm以下であることが好ましい。ここで、「表面粗さRa」とは、JIS B0601:2001に準拠した方法により測定した値を指し、評価長さ8mm、カットオフ値λc=0.8mm、カットオフ比λc/λs=100の条件で測定した値を指す。 In the light guide plate of the present invention (first present invention), the surface roughness Ra of the end surface of the glass plate is preferably 2 μm or less. Here, “surface roughness Ra” refers to a value measured by a method in accordance with JIS B0601: 2001, with an evaluation length of 8 mm, a cutoff value λc = 0.8 mm, and a cutoff ratio λc / λs = 100. Refers to the value measured under conditions.
 本発明(第一の本発明)の導光板は、ガラス板の熱膨張係数が120×10-7/℃以下であることが好ましい。ここで、「熱膨張係数」は、ディラトメーターを用いて、JIS R3102に基づき、30~380℃における平均熱膨張係数を測定した値を指す。 In the light guide plate of the present invention (first invention), the glass plate preferably has a thermal expansion coefficient of 120 × 10 −7 / ° C. or less. Here, “thermal expansion coefficient” refers to a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. based on JIS R3102 using a dilatometer.
 本発明(第一の本発明)の導光板は、ガラス板が、ガラス組成として、質量%で、SiO 40~70%、Al 2~25%、B 0~20%、RO(RはLi、Na、Kの一種又は二種以上) 0~25%、MgO 0~10%、CaO 0~15%、SrO 0~10%、BaO 0~15%、ZnO 0~10%、ZrO 0~10%、Fe 0.001~0.1%を含有することが好ましい。このようにすれば、光路長100mm、波長範囲350~750nmにおける最大透過率を高めつつ、熱膨張係数を低下させることが可能になる。 The light guide plate of the present invention (first invention), a glass plate, as a glass composition, in mass%, SiO 2 40 ~ 70% , Al 2 O 3 2 ~ 25%, B 2 O 3 0 ~ 20% , R 2 O (R is one or more of Li, Na and K) 0 to 25%, MgO 0 to 10%, CaO 0 to 15%, SrO 0 to 10%, BaO 0 to 15%, ZnO 0 It is preferable to contain ˜10%, ZrO 2 0˜10%, Fe 2 O 3 0.001˜0.1%. This makes it possible to reduce the thermal expansion coefficient while increasing the maximum transmittance in the optical path length of 100 mm and the wavelength range of 350 to 750 nm.
 本発明(第一の本発明)の導光板は、ガラス板がオーバーフローダウンドロー法により成形されてなることが好ましい。ここで、「オーバーフローダウンドロー法」は、耐熱性の樋状成形体の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを成形体の下端で合流させながら、下方に延伸成形してガラス板を製造する方法である。 The light guide plate of the present invention (first present invention) is preferably a glass plate formed by an overflow downdraw method. Here, the “overflow down-draw method” is a method in which molten glass overflows from both sides of a heat-resistant bowl-shaped molded body, and the molten glass overflows and joins at the lower end of the molded body to be stretched and formed downward. It is a method of manufacturing.
 本発明(第一の本発明)の導光板は、エッジライト型面発光装置に用いることを特徴とする。 The light guide plate of the present invention (first invention) is characterized by being used for an edge light type surface light emitting device.
 本発明(第一の本発明)のエッジライト型面発光装置は、上記の導光板を備えることを特徴とする。 The edge light type surface light emitting device of the present invention (the first present invention) includes the light guide plate described above.
 また、本発明者は、鋭意検討の結果、導光板として、温度変化による寸法変化が小さいガラス板を採択すると共に、ガラス板のレターデーションを所定範囲に規制することにより、上記第二の課題を解決し得ることを見出し、本発明(第二の本発明)として提案するものである。すなわち、本発明(第二の本発明)の導光板は、少なくともガラス板を有すると共に、該ガラス板の光路長50mmにおけるレターデーションが30nm以下であることを特徴とする。「光路長50mmにおけるレターデーション」は、市販の複屈折測定装置で測定可能であり、例えば、ユニオプト社製PEL-3A-XRを用いて、光ヘテロダイン法により測定可能である。 In addition, as a result of intensive studies, the present inventor adopted a glass plate having a small dimensional change due to a temperature change as a light guide plate, and restricting the retardation of the glass plate to a predetermined range, thereby solving the second problem. It has been found that the problem can be solved, and is proposed as the present invention (second present invention). That is, the light guide plate of the present invention (second invention) has at least a glass plate and has a retardation of 30 nm or less at an optical path length of 50 mm. The “retardation at an optical path length of 50 mm” can be measured by a commercially available birefringence measuring apparatus, and can be measured by, for example, an optical heterodyne method using PEL-3A-XR manufactured by UNIOPT.
 液晶パネル等の表示パネルは、一対のガラス板間に、液晶素子等の表示素子を挟み込んだ構造を有している。そこで、導光板としてガラス板を採択すると、表示パネルと導光板の寸法変化の差が小さくなり、液晶表示装置等の表示装置の狭額縁化に適正に対応することができる。 A display panel such as a liquid crystal panel has a structure in which a display element such as a liquid crystal element is sandwiched between a pair of glass plates. Therefore, when a glass plate is adopted as the light guide plate, a difference in dimensional change between the display panel and the light guide plate is reduced, and it is possible to appropriately cope with a narrow frame of a display device such as a liquid crystal display device.
 本発明者は、ガラス板の光路長50mmにおけるレターデーションが表示装置の輝度特性に影響を与えることを見出した。そこで、本発明(第二の本発明)では、ガラス板の光路長50mmにおけるレターデーションを30nm以下に規制して、表示装置の輝度特性の均一化を図っている。 The present inventor has found that the retardation of the glass plate at an optical path length of 50 mm affects the luminance characteristics of the display device. Therefore, in the present invention (second present invention), the retardation of the glass plate in the optical path length of 50 mm is regulated to 30 nm or less to achieve uniform luminance characteristics of the display device.
 本発明(第二の本発明)の導光板は、ガラス板の少なくとも一辺の寸法が1000mm以上であることが好ましい。このようにすれば、表示装置の大型化の要請を満たすことができる。 In the light guide plate of the present invention (second invention), it is preferable that the dimension of at least one side of the glass plate is 1000 mm or more. In this way, it is possible to satisfy the demand for an increase in the size of the display device.
 本発明(第二の本発明)の導光板は、ガラス板の端面の表面粗さRaが2μm以下であることが好ましい。このようにすれば、光源からの光を均一に導光板に入射させることができる。ここで、「表面粗さRa」とは、JIS  B0601:2001に準拠した方法により測定した値を指し、評価長さ8mm、カットオフ値λc=0.8mm、カットオフ比λc/λs=100の条件で測定した値を指す。 In the light guide plate of the present invention (second present invention), the surface roughness Ra of the end face of the glass plate is preferably 2 μm or less. In this way, light from the light source can be uniformly incident on the light guide plate. Here, “surface roughness Ra” refers to a value measured by a method in accordance with JIS B0601: 2001, with an evaluation length of 8 mm, a cutoff value λc = 0.8 mm, and a cutoff ratio λc / λs = 100. Refers to the value measured under conditions.
 本発明(第二の本発明)の導光板は、ガラス板の熱膨張係数が120×10-7/℃以下であることが好ましい。ここで、「熱膨張係数」は、ディラトメーターを用いて、JIS  R3102に基づき、30~380℃における平均熱膨張係数を測定した値を指す。 In the light guide plate of the present invention (second invention), the glass plate preferably has a thermal expansion coefficient of 120 × 10 −7 / ° C. or less. Here, “thermal expansion coefficient” refers to a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. based on JIS R3102 using a dilatometer.
 本発明(第二の本発明)の導光板は、ガラス板の歪点が550℃以上であることが好ましい。このようにすれば、導光板の耐熱性が向上する。ここで、「歪点」は、JIS  R3103に基づいて測定した値を指す。 In the light guide plate of the present invention (second invention), the strain point of the glass plate is preferably 550 ° C. or higher. If it does in this way, the heat resistance of a light-guide plate will improve. Here, “strain point” refers to a value measured based on JIS R3103.
 本発明(第二の本発明)の導光板は、ガラス板が、ガラス組成として、質量%で、SiO 40~70%、Al 2~25%、B 0~20%、RO(RはLi、Na、Kの一種又は二種以上) 0~25%、MgO 0~10%、CaO 0~15%、SrO 0~10%、BaO 0~15%、ZnO 0~10%、ZrO 0~10%を含有することが好ましい。このようにすれば、低熱膨張係数と高歪点を両立することが可能になる。 The light guide plate of the present invention (second invention), a glass plate, as a glass composition, in mass%, SiO 2 40 ~ 70% , Al 2 O 3 2 ~ 25%, B 2 O 3 0 ~ 20% , R 2 O (R is one or more of Li, Na and K) 0 to 25%, MgO 0 to 10%, CaO 0 to 15%, SrO 0 to 10%, BaO 0 to 15%, ZnO 0 Preferably, it contains up to 10% and 0 to 10% of ZrO 2 . In this way, it is possible to achieve both a low thermal expansion coefficient and a high strain point.
 本発明(第二の本発明)の導光板は、ガラス板がオーバーフローダウンドロー法により成形されてなることが好ましい。ここで、「オーバーフローダウンドロー法」は、耐熱性の樋状成形体の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを成形体の下端で合流させながら、下方に延伸成形してガラス板を製造する方法である。 The light guide plate of the present invention (second invention) is preferably a glass plate formed by the overflow down draw method. Here, the “overflow down-draw method” is a method in which molten glass overflows from both sides of a heat-resistant bowl-shaped molded body, and the molten glass overflows and joins at the lower end of the molded body to be stretched and formed downward. It is a method of manufacturing.
 本発明(第二の本発明)の導光板は、エッジライト型面発光装置に用いることを特徴とする。 The light guide plate of the present invention (second invention) is used for an edge light type surface light emitting device.
 本発明(第二の本発明)のエッジライト型面発光装置は、上記の導光板を備えることを特徴とする。 An edge light type surface light emitting device according to the present invention (second present invention) includes the light guide plate described above.
 本発明(第二の本発明)のガラス板は、光路長50mmにおけるレターデーションが20nm以下であり、且つ導光板に用いることを特徴とする。 The glass plate of the present invention (second invention) has a retardation at an optical path length of 50 mm of 20 nm or less, and is used for a light guide plate.
エッジライト型面発光装置の一例を示す断面概念図である。It is a section conceptual diagram showing an example of an edge light type surface emitting device. 実施例1~3に係るガラス板の光路長100mm、波長範囲300~750nmにおける透過率の測定データである。It is the measurement data of the transmittance | permeability in the optical path length of 100 mm and the wavelength range of 300-750 nm of the glass plate which concerns on Examples 1-3. 実施例4に係るガラス板の光路長100mm、波長範囲300~750nmにおける透過率の測定データである。FIG. 6 shows transmittance measurement data of an optical path length of 100 mm and a wavelength range of 300 to 750 nm of a glass plate according to Example 4.
発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION
 本発明(第一の本発明)の導光板において、ガラス板の光路長100mm、波長範囲350~750nmにおける最大透過率は50%以上であり、好ましくは70%以上、75%以上、80%以上、81%以上または82%以上、特に好ましくは83%以上である。光路長100mm、波長範囲350~750nmにおける最大透過率が低過ぎると、表示装置の輝度特性が低下し易くなる。 In the light guide plate of the present invention (first invention), the maximum transmittance of the glass plate in the optical path length of 100 mm and the wavelength range of 350 to 750 nm is 50% or more, preferably 70% or more, 75% or more, 80% or more. 81% or more or 82% or more, particularly preferably 83% or more. If the maximum transmittance in the optical path length of 100 mm and the wavelength range of 350 to 750 nm is too low, the luminance characteristics of the display device are likely to deteriorate.
 本発明(第一の本発明)の導光板では、ガラス板中の着色酸化物の含有量を可及的に低減することが好ましい。着色酸化物として、例えば、Fe、Cr、V、NiO、MnO、Nd、CeO、Er等を例示することができる。 In the light guide plate of the present invention (first invention), it is preferable to reduce the content of the colored oxide in the glass plate as much as possible. Examples of the colored oxide include Fe 2 O 3 , Cr 2 O 3 , V 2 O 5 , NiO, MnO 2 , Nd 2 O 3 , CeO 2 , Er 2 O 3 and the like.
 本発明(第一の本発明)の導光板において、ガラス板中の遷移金属酸化物の含有量は、好ましくは0.1質量%以下、0.05質量%以下、0.03質量%以下、0.02質量%以下、0.015質量%以下、0.01質量%以下、0.009質量%以下、0.008質量%以下、0.007質量%以下、0.006質量%以下、0.005質量%以下または0.004質量%以下、特に好ましくは0.001~0.01質量%である。遷移金属酸化物の含有量が多過ぎると、光路長100mm、波長範囲350~750nmにおける最大透過率が低下し易くなる。なお、遷移金属酸化物の含有量が0.001質量%より少なくなると、原料コスト、ガラス板の製造コストが高騰する。 In the light guide plate of the present invention (first invention), the content of the transition metal oxide in the glass plate is preferably 0.1% by mass or less, 0.05% by mass or less, 0.03% by mass or less, 0.02 mass% or less, 0.015 mass% or less, 0.01 mass% or less, 0.009 mass% or less, 0.008 mass% or less, 0.007 mass% or less, 0.006 mass% or less, 0 0.005 mass% or less or 0.004 mass% or less, particularly preferably 0.001 to 0.01 mass%. When the content of the transition metal oxide is too large, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease. In addition, when content of a transition metal oxide will be less than 0.001 mass%, raw material cost and the manufacturing cost of a glass plate will rise.
 ガラス板中のFeの含有量は、好ましくは0.1質量%以下、0.05質量%以下、0.03質量%以下、0.02質量%以下または0.015質量%以下、特に好ましくは0.001~0.01質量%である。Feの含有量が多過ぎると、光路長100mm、波長範囲350~750nmにおける最大透過率が低下し易くなる。なお、Feの含有量が0.001質量%より少なくなると、原料コスト、ガラス板の製造コストが高騰する。 The content of Fe 2 O 3 in the glass plate is preferably 0.1% by mass or less, 0.05% by mass or less, 0.03% by mass or less, 0.02% by mass or less, or 0.015% by mass or less, Particularly preferred is 0.001 to 0.01% by mass. If the content of Fe 2 O 3 is too large, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease. Incidentally, when the content of Fe 2 O 3 is less than 0.001 wt%, the raw material cost, the cost of manufacturing the glass sheet to rise.
 ガラス板中のCrの含有量は、好ましくは0.03質量%以下、0.02質量%以下、0.015質量%以下、0.01質量%以下、0.005質量%以下、0.003質量%以下、0.001質量%以下、0.0005質量%以下、0.0004質量%以下、0.0003質量%以下または0.0002質量%以下、特に好ましくは0.0001質量%以下である。Crの含有量が多過ぎると、光路長100mm、波長範囲350~750nmにおける最大透過率が低下し易くなる。なお、Crの含有量が少な過ぎると、原料コスト、ガラス板の製造コストが高騰する。好適な下限含有量は0.00001質量%以上、特に0.00005質量%以上である。 The content of Cr 2 O 3 in the glass plate is preferably 0.03% by mass or less, 0.02% by mass or less, 0.015% by mass or less, 0.01% by mass or less, 0.005% by mass or less, 0.003 mass% or less, 0.001 mass% or less, 0.0005 mass% or less, 0.0004 mass% or less, 0.0003 mass% or less or 0.0002 mass% or less, particularly preferably 0.0001 mass% It is as follows. When the content of Cr 2 O 3 is too large, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease. Incidentally, when the content of Cr 2 O 3 is too small, the raw material cost, the cost of manufacturing the glass sheet to rise. The preferred lower limit content is 0.00001% by mass or more, particularly 0.00005% by mass or more.
 ガラス板中のVの含有量は、好ましくは0.03質量%以下、0.02質量%以下、0.015質量%以下、0.01質量%以下または0.005質量%以下、特に好ましくは0.003質量%以下である。Vの含有量が多過ぎると、光路長100mm、波長範囲350~750nmにおける最大透過率が低下し易くなる。 The content of V 2 O 5 in the glass plate is preferably 0.03% by mass or less, 0.02% by mass or less, 0.015% by mass or less, 0.01% by mass or less, or 0.005% by mass or less, Especially preferably, it is 0.003 mass% or less. When the content of V 2 O 5 is too large, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease.
 ガラス板中のNiOの含有量は、好ましくは0.03質量%以下、0.02質量%以下、0.015質量%以下、0.01質量%以下または0.005質量%以下、特に好ましくは0.003質量%以下である。NiOの含有量が多過ぎると、光路長100mm、波長範囲350~750nmにおける最大透過率が低下し易くなる。 The content of NiO in the glass plate is preferably 0.03% by mass or less, 0.02% by mass or less, 0.015% by mass or less, 0.01% by mass or less, or 0.005% by mass or less, particularly preferably 0.003 mass% or less. When the content of NiO is too large, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease.
 ガラス板中のMnOの含有量は、好ましくは0.03質量%以下、0.02質量%以下、0.015質量%以下、0.01質量%以下または0.005質量%以下、特に好ましくは0.003質量%以下である。MnOの含有量が多過ぎると、光路長100mm、波長範囲350~750nmにおける最大透過率が低下し易くなる。 The content of MnO 2 in the glass plate is preferably 0.03% by mass or less, 0.02% by mass or less, 0.015% by mass or less, 0.01% by mass or less, or 0.005% by mass or less, particularly preferably. Is 0.003 mass% or less. When the content of MnO 2 is too large, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease.
 ガラス板中のNdの含有量は、好ましくは0.03質量%以下、0.02質量%以下、0.015質量%以下、0.01質量%以下または0.005質量%以下、特に好ましくは0.003質量%以下である。Ndの含有量が多過ぎると、光路長100mm、波長範囲350~750nmにおける最大透過率が低下し易くなる。 The content of Nd 2 O 3 in the glass plate is preferably 0.03% by mass or less, 0.02% by mass or less, 0.015% by mass or less, 0.01% by mass or less, or 0.005% by mass or less, Especially preferably, it is 0.003 mass% or less. When the content of Nd 2 O 3 is too large, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease.
 ガラス板中のCeOの含有量は、好ましくは0.03質量%以下、0.02質量%以下、0.015質量%以下、0.01質量%以下または0.005質量%以下、特に好ましくは0.003質量%以下である。CeOの含有量が多過ぎると、光路長100mm、波長範囲350~750nmにおける最大透過率が低下し易くなる。 The CeO 2 content in the glass plate is preferably 0.03% by mass or less, 0.02% by mass or less, 0.015% by mass or less, 0.01% by mass or less, or 0.005% by mass or less, particularly preferably. Is 0.003 mass% or less. When the content of CeO 2 is too large, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease.
 ガラス板中のErの含有量は、好ましくは0.03質量%以下、0.02質量%以下、0.015質量%以下、0.01質量%以下または0.005質量%以下、特に好ましくは0.003質量%以下である。Erの含有量が多過ぎると、光路長100mm、波長範囲350~750nmにおける最大透過率が低下し易くなる。 The content of Er 2 O 3 in the glass plate is preferably 0.03% by mass or less, 0.02% by mass or less, 0.015% by mass or less, 0.01% by mass or less, or 0.005% by mass or less, Especially preferably, it is 0.003 mass% or less. When the content of Er 2 O 3 is too large, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm tends to decrease.
 Fe、Cr等の着色酸化物の混入を可及的に排除するには、高純度ガラス原料を用いたり、原料調合設備等から原料へFe、Cr等の着色酸化物が混入しないように設計された製造設備を使用すればよい。 In order to eliminate the contamination of colored oxides such as Fe 2 O 3 and Cr 2 O 3 as much as possible, a high-purity glass raw material is used, or from a raw material preparation facility or the like to the raw material, Fe 2 O 3 and Cr 2 O 3 Manufacturing equipment designed so that colored oxides such as the above may not be mixed may be used.
 本発明(第一の本発明)の導光板において、ガラス板の少なくとも一辺の寸法は、好ましくは1000mm以上、1500mm以上、2000mm以上または2500mm以上、特に好ましくは3000mm以上である。このようにすれば、表示装置の大型化の要請を満たすことができる。 In the light guide plate of the present invention (first present invention), the size of at least one side of the glass plate is preferably 1000 mm or more, 1500 mm or more, 2000 mm or more, or 2500 mm or more, and particularly preferably 3000 mm or more. In this way, it is possible to satisfy the demand for an increase in the size of the display device.
 ガラス板の端面の表面粗さRaは、好ましくは2μm以下、1.5μm以下、1μm以下または0.7μm以下、特に好ましくは0.5μm以下である。このようにすれば、光源からの光がガラス板の端面で散乱し易くなり、光源からの光を均一に導光板に入射させることが困難になる。 The surface roughness Ra of the end face of the glass plate is preferably 2 μm or less, 1.5 μm or less, 1 μm or less, or 0.7 μm or less, particularly preferably 0.5 μm or less. If it does in this way, it will become easy to scatter the light from a light source on the end surface of a glass plate, and it will become difficult to make the light from a light source inject into a light-guide plate uniformly.
 ガラス板の熱膨張係数は、好ましくは120×10-7/℃以下、90×10-7/℃以下、60×10-7/℃以下、55×10-7/℃以下、50×10-7/℃以下または45×10-7/℃以下、特に好ましくは25×10-7~40×10-7/℃以下である。熱膨張係数が高過ぎると、表示パネルと導光板の熱による寸法変化の差が大きくなる。 The thermal expansion coefficient of the glass plate is preferably 120 × 10 −7 / ° C. or lower, 90 × 10 −7 / ° C. or lower, 60 × 10 −7 / ° C. or lower, 55 × 10 −7 / ° C. or lower, 50 × 10 − 7 / ° C. or lower or 45 × 10 −7 / ° C. or lower, particularly preferably 25 × 10 −7 to 40 × 10 −7 / ° C. or lower. If the thermal expansion coefficient is too high, the difference in dimensional change due to heat between the display panel and the light guide plate becomes large.
 ガラス板の歪点は、好ましくは550℃以上、580℃以上、600℃以上、615℃以上、630℃以上または640℃以上、特に好ましくは650℃以上である。歪点が低過ぎると、ガラス板の耐熱性が低下し易くなり、例えば、ガラス板の表面に高温で反射膜、拡散膜等を成膜すると、ガラス板が熱変形し易くなる。ここで、「歪点」は、JIS R3103に基づいて測定した値である。 The strain point of the glass plate is preferably 550 ° C. or higher, 580 ° C. or higher, 600 ° C. or higher, 615 ° C. or higher, 630 ° C. or higher, or 640 ° C. or higher, particularly preferably 650 ° C. or higher. If the strain point is too low, the heat resistance of the glass plate is likely to be lowered. For example, when a reflective film, a diffusion film, or the like is formed on the surface of the glass plate at a high temperature, the glass plate is likely to be thermally deformed. Here, the “strain point” is a value measured based on JIS R3103.
 ガラス板は、ガラス組成として、質量%で、SiO 40~70%、Al 2~25%、B 0~20%、RO(RはLi、Na、Kの一種又は二種以上) 0~25%、MgO 0~10%、CaO 0~15%、SrO 0~10%、BaO 0~15%、ZnO 0~10%、ZrO 0~10%、Fe 0.001~0.1%を含有することが好ましい。上記のように各成分の含有量を規制した理由を下記に示す。なお、各成分の含有範囲の説明において、%表示は質量%を意味する。 The glass plate has a glass composition of mass%, SiO 2 40 to 70%, Al 2 O 3 2 to 25%, B 2 O 3 0 to 20%, R 2 O (R is one of Li, Na and K) Or 2 or more types) 0 to 25%, MgO 0 to 10%, CaO 0 to 15%, SrO 0 to 10%, BaO 0 to 15%, ZnO 0 to 10%, ZrO 2 0 to 10%, Fe 2 O 3 It is preferable to contain 0.001 to 0.1%. The reason why the content of each component is regulated as described above will be described below. In addition, in description of the containing range of each component,% display means the mass%.
 SiOは、ガラスのネットワークフォーマーとなる成分であり、熱膨張係数を低下させて、熱による寸法変化を低減する成分である。また耐酸性、歪点を高める成分である。SiOの含有量は、好ましくは40~70%または50~67%、特に好ましくは57~64%である。SiOの含有量が多くなると、高温粘性が高くなり、溶融性が低下すると共に、成形時にクリストバライトの失透ブツが析出し易くなる。一方、SiOの含有量が少なくなると、熱膨張係数が高くなって、熱による寸法変化が大きくなる傾向にある。また耐酸性、歪点が低下し易くなる。 SiO 2 is a component that serves as a network former of glass, and is a component that reduces a thermal expansion coefficient and reduces a dimensional change due to heat. It is a component that increases acid resistance and strain point. The content of SiO 2 is preferably 40 to 70% or 50 to 67%, particularly preferably 57 to 64%. When the content of SiO 2 is increased, the high temperature viscosity is increased, the meltability is lowered, and the devitrification blisters of cristobalite are liable to precipitate at the time of molding. On the other hand, when the content of SiO 2 decreases, the coefficient of thermal expansion increases and the dimensional change due to heat tends to increase. In addition, acid resistance and strain point are likely to be lowered.
 Alは、熱膨張係数を低下させて、熱による寸法変化を低減する成分である。また、歪点を高めたり、成形時にクリストバライトの失透ブツの析出を抑える効果もある。Alの含有量は、好ましくは2~25%または10~20%、特に好ましくは14~17%である。Alの含有量が多くなると、液相温度が上昇して、ガラス板に成形し難くなる。一方、Alの含有量が少なくなると、熱膨張係数が高くなって、熱による寸法変化が大きくなる傾向にある。また歪点が低下し易くなる。 Al 2 O 3 is a component that lowers the thermal expansion coefficient and reduces dimensional changes due to heat. It also has the effect of increasing the strain point and suppressing the precipitation of devitrified cristobalite during molding. The content of Al 2 O 3 is preferably 2 to 25% or 10 to 20%, particularly preferably 14 to 17%. When the content of Al 2 O 3 increases, the liquidus temperature rises and it becomes difficult to form a glass plate. On the other hand, when the content of Al 2 O 3 decreases, the thermal expansion coefficient increases and the dimensional change due to heat tends to increase. In addition, the strain point tends to decrease.
 Bは、融剤として作用し、高温粘性を下げて、溶融性を改善する成分である。また熱膨張係数を低下させて、熱による寸法変化を低減する成分である。Bの含有量は、好ましくは0~20%または5~15%、特に好ましくは7.5~12%である。Bの含有量が多くなると、歪点、耐酸性が低下し易くなる。一方、Bの含有量が少なくなると、熱膨張係数が高くなって、熱による寸法変化が大きくなる傾向にある。また溶融性が低下し易くなる。 B 2 O 3 is a component that acts as a flux, lowers the high temperature viscosity, and improves the meltability. Moreover, it is a component which reduces a thermal expansion coefficient and reduces the dimensional change by heat. The content of B 2 O 3 is preferably 0 to 20% or 5 to 15%, particularly preferably 7.5 to 12%. When the content of B 2 O 3 is increased, the strain point and acid resistance are likely to be lowered. On the other hand, when the content of B 2 O 3 decreases, the thermal expansion coefficient increases and the dimensional change due to heat tends to increase. In addition, the meltability tends to be lowered.
 ROは、高温粘性を低下させて、溶融性を改善する成分である。ROの含有量は、好ましくは0~25%または0~20%、特に好ましくは0~15%である。ROの含有量が多くなると、歪点が低下し易くなり、また波長550nm付近の最大透過率が低下する傾向が見られる。なお、熱膨張係数を低下させる観点では、ROの含有量を可及的に低減することが好ましく、その含有量は5%以下または1%以下、特に0.5%以下が好ましい。なお、LiO、NaO、KOの含有量もそれぞれ5%以下または1%以下、特に0.5%以下が好ましい。 R 2 O is a component that lowers the high temperature viscosity and improves the meltability. The content of R 2 O is preferably 0 to 25% or 0 to 20%, particularly preferably 0 to 15%. When the content of R 2 O increases, the strain point tends to decrease, and the maximum transmittance around the wavelength of 550 nm tends to decrease. From the viewpoint of reducing the thermal expansion coefficient, it is preferable to reduce the content of R 2 O as much as possible, and the content is preferably 5% or less or 1% or less, particularly preferably 0.5% or less. The contents of Li 2 O, Na 2 O, and K 2 O are also preferably 5% or less or 1% or less, particularly preferably 0.5% or less, respectively.
 MgOは、歪点を低下させずに高温粘性のみを低下させて、溶融性を改善する成分である。MgOの含有量は、好ましくは0~10%または0~5%、特に好ましくは0~3.5%である。MgOの含有量が多くなると、成形時に失透ブツが析出し易くなる。 MgO is a component that improves the meltability by lowering only the high temperature viscosity without lowering the strain point. The content of MgO is preferably 0 to 10% or 0 to 5%, particularly preferably 0 to 3.5%. When the content of MgO is increased, devitrification beads are likely to precipitate during molding.
 CaOは、歪点を低下させずに高温粘性のみを低下させて、溶融性を改善する成分である。CaOの含有量は、好ましくは0~15%または2~12%、特に好ましくは3.5~10%である。CaOの含有量が多過ぎると、成形時に失透ブツが析出し易くなる。 CaO is a component that improves the meltability by lowering only the high temperature viscosity without lowering the strain point. The content of CaO is preferably 0 to 15% or 2 to 12%, particularly preferably 3.5 to 10%. When there is too much content of CaO, devitrification will become easy to precipitate at the time of fabrication.
 SrOは、耐薬品性、耐失透性を高める成分である。SrOの含有量は、好ましくは0~10%または0.5超~8%、特に好ましくは1~8%である。SrOの含有量が多くなると、熱膨張係数が高くなって、熱による寸法変化が大きくなる傾向にある。 SrO is a component that improves chemical resistance and devitrification resistance. The content of SrO is preferably 0 to 10% or more than 0.5 to 8%, particularly preferably 1 to 8%. When the SrO content is increased, the thermal expansion coefficient is increased, and the dimensional change due to heat tends to increase.
 BaOは、SrOと同様にして、耐薬品性、耐失透性を高める成分である。BaOの含有量は、好ましくは0~15%または0~10%、特に好ましくは0.1~8%である。BaOの含有量が多くなると、密度が高くなったり、熱膨張係数が高くなって、熱による寸法変化が大きくなる傾向にある。また溶融性が低下し易くなる。 BaO is a component that increases chemical resistance and devitrification resistance in the same manner as SrO. The content of BaO is preferably 0 to 15% or 0 to 10%, particularly preferably 0.1 to 8%. When the content of BaO increases, the density increases or the thermal expansion coefficient increases, and the dimensional change due to heat tends to increase. In addition, the meltability tends to be lowered.
 ZnOは、溶融性を改善する成分である。ZnOの含有量は、好ましくは0~10%または0~5%、特に好ましくは0~1%である。ZnOの含有量が多くなると、耐失透性、歪点が低下し易くなる。 ZnO is a component that improves meltability. The content of ZnO is preferably 0 to 10% or 0 to 5%, particularly preferably 0 to 1%. When the content of ZnO is increased, the devitrification resistance and the strain point are liable to be lowered.
 ZrOは、歪点を高める成分である。ZrOの含有量は、好ましくは0~10%または0~7%、特に好ましくは0~5%である。ZrOの含有量が多くなると、密度が著しく上昇したり、成形時にZrOに起因する失透ブツが析出し易くなる。 ZrO 2 is a component that increases the strain point. The content of ZrO 2 is preferably 0 to 10% or 0 to 7%, particularly preferably 0 to 5%. When the ZrO 2 content is increased, the density is remarkably increased, and devitrification spots caused by ZrO 2 are liable to precipitate during molding.
 着色酸化物は、光路長100mm、波長範囲350~750nmにおける最大透過率を低下させる成分である。着色酸化物の好適な含有量等は、上記の通りである。 Colored oxide is a component that decreases the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm. The preferred content and the like of the colored oxide are as described above.
 上記成分以外にも、他の成分を導入してもよい。例えば、液相温度を低下させるために、Y、La、Nb、Pを各3%まで、清澄剤としてAs、Sb、SnO、SO、F、Cl等を合量で2%まで導入してもよい。但し、As、Sbは、環境負荷物質であり、またフロート法でガラス板を成形する場合、フロートバス中で還元されて金属異物となるため、実質的な導入を避けることが好ましく、具体的には、その含有量をそれぞれ0.01%未満とすることが好ましい。 In addition to the above components, other components may be introduced. For example, in order to lower the liquidus temperature, Y 2 O 3 , La 2 O 3 , Nb 2 O 5 , P 2 O 5 are each up to 3%, As 2 O 3 , Sb 2 O 3 , SnO as refining agents 2 , SO 3 , F, Cl or the like may be introduced up to 2% in total. However, As 2 O 3 and Sb 2 O 3 are environmentally hazardous substances, and when a glass plate is formed by the float process, it is reduced in the float bath to become a metal foreign object, so avoid substantial introduction. More specifically, the content is preferably less than 0.01%.
 本発明(第一の本発明)の導光板において、ガラス板は、オーバーフローダウンドロー法で成形されてなることが好ましい。このようにすれば、成形時にガラスリボンの表裏面の温度差、組成差が生じ難いと共に、未研磨で表面品位が良好なガラス板を成形し易くなり、結果として、導光板の製造コストの低廉化、輝度特性の均一化を図り易くなる。この理由は、オーバーフローダウンドロー法の場合、表面となるべき面が樋状耐火物に接触せず、自由表面の状態で成形されるからである。樋状構造物の構造や材質は、所望の寸法や表面品位を実現できるものであれば、特に限定されない。また、下方への延伸成形を行うために、ガラスリボンに対して力を印加する方法は、所望の寸法や表面品位を実現できるものであれば、特に限定されない。例えば、充分に大きい幅を有する耐熱性ロールをガラスリボンに接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラスリボンの端面近傍のみに接触させて延伸する方法を採用してもよい。 In the light guide plate of the present invention (first invention), the glass plate is preferably formed by an overflow down draw method. In this way, it is difficult to produce a temperature difference and composition difference between the front and back surfaces of the glass ribbon during molding, and it becomes easy to form a glass plate that is unpolished and has good surface quality. As a result, the manufacturing cost of the light guide plate is low. And uniform brightness characteristics. The reason for this is that, in the case of the overflow downdraw method, the surface to be the surface does not come into contact with the bowl-like refractory and is molded in a free surface state. The structure and material of the bowl-shaped structure are not particularly limited as long as desired dimensions and surface quality can be realized. Moreover, in order to perform the downward extending | stretching shaping | molding, the method of applying force with respect to a glass ribbon will not be specifically limited if a desired dimension and surface quality are realizable. For example, a method may be adopted in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with the glass ribbon, or a plurality of pairs of heat-resistant rolls are only near the end face of the glass ribbon. You may employ | adopt the method of making it contact and extending | stretching.
 なお、オーバーフローダウンドロー法以外にも、スロットダウンドロー法、フロート法、ロールアウト法、リドロー法等でガラス板を成形することもできる。なお、フロート法では、成形時にガラスリボンの表裏面の温度差、組成差が発生し易いが、成形時の温度制御を厳密に行うと、その温度差、組成差を低減することができる。 In addition to the overflow downdraw method, the glass plate can be formed by a slot downdraw method, a float method, a rollout method, a redraw method, or the like. In the float process, a temperature difference and a composition difference between the front and back surfaces of the glass ribbon are likely to occur during molding. However, if the temperature control during the molding is strictly performed, the temperature difference and the composition difference can be reduced.
 本発明(第一の本発明)の導光板は、一方の表面(光反射面)側に、反射膜を備えることが好ましく、他方の表面(光出射面)側に、拡散膜を備えることが好ましい。このようにすれば、表示装置の輝度特性を均一化し易くなる。 The light guide plate of the present invention (first invention) preferably includes a reflective film on one surface (light reflecting surface) side, and includes a diffusion film on the other surface (light emitting surface) side. preferable. In this way, it becomes easy to make the luminance characteristics of the display device uniform.
 本発明(第一の本発明)のエッジライト型面発光装置は、上記の導光板を備えることを特徴とする。また、本発明のエッジライト型面発光装置は、導光板の一方の表面(光反射面)側に、反射板を備えることが好ましく、導光板の他方の表面(光出射面)側に、拡散板を備えることが好ましい。このようにすれば、表示装置の輝度特性を均一化し易くなる。 The edge light type surface light emitting device of the present invention (the first present invention) includes the light guide plate described above. In addition, the edge light type surface light emitting device of the present invention preferably includes a reflecting plate on one surface (light reflecting surface) side of the light guide plate, and diffuses on the other surface (light emitting surface) side of the light guiding plate. It is preferable to provide a plate. In this way, it becomes easy to make the luminance characteristics of the display device uniform.
 本発明(第一の本発明)のガラス板は、光路長100mm、波長範囲350~750nmにおける最大透過率が50%以上であり、且つ導光板に用いることを特徴とする。ここで、本発明のガラス板の技術的特徴(好適な特性、効果等)は、本発明の導光板の技術的特徴と同様である。よって、本発明のガラス板について、詳細な説明を省略する。 The glass plate of the present invention (first invention) has an optical path length of 100 mm, a maximum transmittance of 50% or more in a wavelength range of 350 to 750 nm, and is characterized by being used for a light guide plate. Here, the technical features (preferable characteristics, effects, etc.) of the glass plate of the present invention are the same as the technical features of the light guide plate of the present invention. Therefore, detailed description is abbreviate | omitted about the glass plate of this invention.
 本発明(第一の本発明)のガラス板は、表示パネルに使用されるガラス板に適用して、導光板の機能を併有させることもできる。このようにすれば、表示装置の部材構成を簡略化することができる。 The glass plate of the present invention (first present invention) can also be applied to a glass plate used for a display panel to have the function of a light guide plate. In this way, the member configuration of the display device can be simplified.
 本発明(第二の本発明)の導光板において、ガラス板の光路長50mmにおけるレターデーションが30nm以下であり、好ましくは25nm以下または20nm以下、特に好ましくは0.1~17.5nm以下である。レターデーションが大き過ぎると、表示装置の輝度特性を均一化し難くなる。 In the light guide plate of the present invention (second invention), the retardation of the glass plate at an optical path length of 50 mm is 30 nm or less, preferably 25 nm or less or 20 nm or less, particularly preferably 0.1 to 17.5 nm or less. . If the retardation is too large, it is difficult to make the luminance characteristics of the display device uniform.
 ガラス板のレターデーションを低下させるには、例えば、溶融ガラスを成形炉(成形体)でガラスリボンに成形する際に、ガラスリボンの端部の厚みがガラスリボンの中央部の厚みとほぼ同じ厚みとなるように成形したり、ガラスリボンを徐冷炉で徐冷(冷却)する際に、ガラスリボンの幅方向における温度分布を可及的に小さくするように冷却すればよい。 In order to reduce the retardation of the glass plate, for example, when molten glass is formed into a glass ribbon in a molding furnace (molded body), the thickness of the end of the glass ribbon is substantially the same as the thickness of the central portion of the glass ribbon. The glass ribbon may be cooled so that the temperature distribution in the width direction of the glass ribbon is as small as possible when the glass ribbon is slowly cooled (cooled) in a slow cooling furnace.
 成形工程において、ガラスリボンの端部の厚みをガラスリボンの中央部の厚みとほぼ同じ厚みになるように成形する理由は、ガラスリボンの端部の厚みがガラスリボンの中央部の厚みと異なると、成形後の冷却工程において、ガラスリボンの端部と中央部とで冷却速度が異なり、その結果、レターデーションが大きくなるためである。例えば、溶融ガラスをガラスリボンに延伸成形するための成形ロール等の回転速度等を調整すると、ガラスリボンの端部の厚みとガラスリボンの中央部の厚みを均一化し易くなる。 In the molding process, the reason for forming the glass ribbon so that the thickness of the end of the glass ribbon is substantially the same as the thickness of the center of the glass ribbon is that the thickness of the end of the glass ribbon is different from the thickness of the center of the glass ribbon. In the cooling process after molding, the cooling rate is different between the end and the center of the glass ribbon, and as a result, the retardation increases. For example, when the rotational speed of a forming roll or the like for drawing molten glass into a glass ribbon is adjusted, the thickness of the end portion of the glass ribbon and the thickness of the center portion of the glass ribbon are easily made uniform.
 また、徐冷炉での冷却工程において、ガラスリボンの幅方向における温度分布を可及的に小さくする方法として、下記の方法が挙げられる。
(1)ガラスリボンが均一に加熱されるように、ヒーターの数を増やし、更にヒーター間の温度差を可及的に低減する。例えば、ヒーター間の温度差を±1℃以内に規制する。
(2)ヒーターからの熱がガラスリボンに均一に伝わるように、ヒーターとガラスリボンの間に均熱板を設置する。
(3)ガラスリボンの中央部と端部の冷却速度の差が小さくなるように、ガラスリボンの端部に囲いを設置したり、その部分にヒーターを多く配置する。
(4)板引き速度を低く(遅く)する。
Moreover, in the cooling process in a slow cooling furnace, the following method is mentioned as a method of making temperature distribution in the width direction of a glass ribbon as small as possible.
(1) The number of heaters is increased so that the glass ribbon is uniformly heated, and the temperature difference between the heaters is reduced as much as possible. For example, the temperature difference between the heaters is regulated within ± 1 ° C.
(2) A soaking plate is installed between the heater and the glass ribbon so that the heat from the heater is uniformly transmitted to the glass ribbon.
(3) An enclosure is installed at the end of the glass ribbon or a large number of heaters are arranged at the end so that the difference in the cooling rate between the center and the end of the glass ribbon is reduced.
(4) Lower (slow) the drawing speed.
 オーバーフローダウンドロー法は、フロート法と異なり、低温雰囲気である切断工程から高温雰囲気である徐冷炉及び成形炉の方向に、常にガラスリボンの表面に沿って低温の空気流が上昇し、上昇した低温の空気流は徐冷炉等の内部で加熱された後、その一部が周壁部の隙間を通して外部雰囲気に洩れ出すため、徐冷炉や成形炉の雰囲気温度が変動し易くなっている。その結果、オーバーフローダウンドロー法で成形されたガラス板は、レターデーションが大きくなり易い。そのため、オーバーフローダウンドロー法でガラス板を成形する場合は、ガラスリボンの端部と中央部の厚みをほぼ同じ厚みにすること、ガラスリボンの幅方向における温度分布を小さくすることに加えて、徐冷炉や成形炉における低温の空気流の上昇を抑えることが好ましい。 Unlike the float method, the overflow downdraw method always increases the low temperature air flow along the surface of the glass ribbon in the direction from the cutting process, which is a low temperature atmosphere, to the slow cooling furnace and the forming furnace, which is a high temperature atmosphere. After the air flow is heated inside a slow cooling furnace or the like, a part of the air leaks into the external atmosphere through a gap in the peripheral wall portion, so that the atmospheric temperature of the slow cooling furnace or the molding furnace is likely to fluctuate. As a result, the glass plate formed by the overflow downdraw method tends to have a large retardation. Therefore, when forming a glass plate by the overflow down draw method, in addition to making the end portions and the center portion of the glass ribbon substantially the same thickness, and reducing the temperature distribution in the width direction of the glass ribbon, a slow cooling furnace It is preferable to suppress an increase in the low-temperature air flow in the molding furnace.
 徐冷炉や成形炉における低温の空気流の上昇を抑えるには、例えば、徐冷炉内に対流防止板を設けたり、送風機等を用いて成形炉や徐冷炉の外部雰囲気の気圧が高くなるように調整して、成形炉や徐冷炉内の空気を外部雰囲気に洩れ出し難くすればよい。 In order to suppress the rise in the low-temperature air flow in the slow cooling furnace or the forming furnace, for example, a convection prevention plate is provided in the slow cooling furnace or the air pressure in the external atmosphere of the forming furnace or the slow cooling furnace is adjusted using a blower or the like. The air in the molding furnace or the slow cooling furnace may be made difficult to leak into the external atmosphere.
 上記の方法以外にも、ガラス組成中のSiO、Al、Bの含有量を増加させて、熱膨張係数を低下させたり、アルカリ土類金属酸化物の含有量を増加させて、光弾性定数を低下させると、ガラス板のレターデーションが低下し易くなる。 In addition to the above method, increase the content of SiO 2 , Al 2 O 3 , B 2 O 3 in the glass composition to decrease the thermal expansion coefficient or increase the content of alkaline earth metal oxides If the photoelastic constant is lowered, the retardation of the glass plate tends to be lowered.
 本発明(第二の本発明)の導光板において、ガラス板の少なくとも一辺の寸法は、好ましくは1000mm以上、1500mm以上、2000mm以上または2500mm以上、特に好ましくは3000mm以上である。このようにすれば、表示装置の大型化の要請を満たすことができる。 In the light guide plate of the present invention (second invention), the size of at least one side of the glass plate is preferably 1000 mm or more, 1500 mm or more, 2000 mm or more, or 2500 mm or more, particularly preferably 3000 mm or more. In this way, it is possible to satisfy the demand for an increase in the size of the display device.
 ガラス板の端面の表面粗さRaは、好ましくは2μm以下、1.5μm以下、1μm以下または0.7μm以下、特に好ましくは0.5μm以下である。このようにすれば、光源からの光がガラス板の端面で散乱し易くなり、光源からの光を均一に導光板に入射させることが困難になる。 The surface roughness Ra of the end face of the glass plate is preferably 2 μm or less, 1.5 μm or less, 1 μm or less, or 0.7 μm or less, particularly preferably 0.5 μm or less. If it does in this way, it will become easy to scatter the light from a light source on the end surface of a glass plate, and it will become difficult to make the light from a light source inject into a light-guide plate uniformly.
 ガラス板の熱膨張係数は、好ましくは120×10-7/℃以下、90×10-7/℃以下、60×10-7/℃以下、55×10-7/℃以下、50×10-7/℃以下または45×10-7/℃以下、特に好ましくは25×10-7~40×10-7/℃以下である。熱膨張係数が高過ぎると、表示パネルと導光板の熱による寸法変化の差が大きくなる。 The thermal expansion coefficient of the glass plate is preferably 120 × 10 −7 / ° C. or lower, 90 × 10 −7 / ° C. or lower, 60 × 10 −7 / ° C. or lower, 55 × 10 −7 / ° C. or lower, 50 × 10 − 7 / ° C. or lower or 45 × 10 −7 / ° C. or lower, particularly preferably 25 × 10 −7 to 40 × 10 −7 / ° C. or lower. If the thermal expansion coefficient is too high, the difference in dimensional change due to heat between the display panel and the light guide plate becomes large.
 ガラス板の歪点は、好ましくは550℃以上、580℃以上、600℃以上、615℃以上、630℃以上または640℃以上、特に好ましくは650℃以上である。歪点が低過ぎると、ガラス板の耐熱性が低下し易くなり、例えば、ガラス板の表面に高温で反射膜、拡散膜等を成膜すると、ガラス板が熱変形し易くなる。 The strain point of the glass plate is preferably 550 ° C. or higher, 580 ° C. or higher, 600 ° C. or higher, 615 ° C. or higher, 630 ° C. or higher, or 640 ° C. or higher, particularly preferably 650 ° C. or higher. If the strain point is too low, the heat resistance of the glass plate is likely to be lowered. For example, when a reflective film, a diffusion film, or the like is formed on the surface of the glass plate at a high temperature, the glass plate is likely to be thermally deformed.
 ガラス板は、ガラス組成として、質量%で、SiO 40~70%、Al 2~25%、B 0~20%、RO(RはLi、Na、Kの一種又は二種以上) 0~25%、MgO 0~10%、CaO 0~15%、SrO 0~10%、BaO 0~15%、ZnO 0~10%、ZrO 0~10%を含有することが好ましい。上記のように各成分の含有量を規制した理由を下記に示す。なお、各成分の含有範囲の説明において、%表示は質量%を意味する。 The glass plate has a glass composition of mass%, SiO 2 40 to 70%, Al 2 O 3 2 to 25%, B 2 O 3 0 to 20%, R 2 O (R is one of Li, Na and K) (Or two or more) 0 to 25%, MgO 0 to 10%, CaO 0 to 15%, SrO 0 to 10%, BaO 0 to 15%, ZnO 0 to 10%, ZrO 2 0 to 10% Is preferred. The reason why the content of each component is regulated as described above will be described below. In addition, in description of the containing range of each component,% display means the mass%.
 SiOは、ガラスのネットワークフォーマーとなる成分であり、熱膨張係数を低下させて、熱による寸法変化、レターデーションを低減する成分である。また耐酸性、歪点を高める成分である。SiOの含有量は、好ましくは40~70%または50~67%、特に好ましくは57~64%である。SiOの含有量が多くなると、高温粘性が高くなり、溶融性が低下すると共に、成形時にクリストバライトの失透ブツが析出し易くなる。一方、SiOの含有量が少なくなると、熱膨張係数が高くなって、熱による寸法変化、レターデーションが大きくなり易い。また耐酸性、歪点が低下し易くなる。 SiO 2 is a component that becomes a glass network former, and is a component that lowers the thermal expansion coefficient to reduce dimensional change and retardation due to heat. It is a component that increases acid resistance and strain point. The content of SiO 2 is preferably 40 to 70% or 50 to 67%, particularly preferably 57 to 64%. When the content of SiO 2 is increased, the high temperature viscosity is increased, the meltability is lowered, and the devitrification blisters of cristobalite are liable to precipitate at the time of molding. On the other hand, when the content of SiO 2 decreases, the thermal expansion coefficient increases, and the dimensional change and retardation due to heat tend to increase. In addition, acid resistance and strain point are likely to be lowered.
 Alは、熱膨張係数を低下させて、熱による寸法変化、レターデーションを低減する成分である。また、歪点を高めたり、成形時にクリストバライトの失透ブツの析出を抑える効果もある。Alの含有量は、好ましくは2~25%または10~20%、特に好ましくは14~17%である。Alの含有量が多くなると、液相温度が上昇して、ガラス板に成形し難くなる。一方、Alの含有量が少なくなると、熱膨張係数が高くなって、熱による寸法変化、レターデーションが大きくなり易い。また歪点が低下し易くなる。 Al 2 O 3 is a component that lowers the coefficient of thermal expansion and reduces dimensional changes and retardation due to heat. It also has the effect of increasing the strain point and suppressing the precipitation of devitrified cristobalite during molding. The content of Al 2 O 3 is preferably 2 to 25% or 10 to 20%, particularly preferably 14 to 17%. When the content of Al 2 O 3 increases, the liquidus temperature rises and it becomes difficult to form a glass plate. On the other hand, when the content of Al 2 O 3 decreases, the thermal expansion coefficient increases, and the dimensional change and retardation due to heat tend to increase. In addition, the strain point tends to decrease.
 Bは、融剤として作用し、高温粘性を下げて、溶融性を改善する成分である。また熱膨張係数を低下させて、熱による寸法変化、レターデーションを低減する成分である。Bの含有量は、好ましくは0~20%または5~15%、特に好ましくは7.5~12%である。Bの含有量が多くなると、歪点、耐酸性が低下し易くなる。一方、Bの含有量が少なくなると、熱膨張係数が高くなって、熱による寸法変化、レターデーションが大きくなり易い。また溶融性が低下し易くなる。 B 2 O 3 is a component that acts as a flux, lowers the high temperature viscosity, and improves the meltability. Moreover, it is a component which reduces a thermal expansion coefficient and reduces the dimensional change and retardation by a heat | fever. The content of B 2 O 3 is preferably 0 to 20% or 5 to 15%, particularly preferably 7.5 to 12%. When the content of B 2 O 3 is increased, the strain point and acid resistance are likely to be lowered. On the other hand, when the content of B 2 O 3 decreases, the thermal expansion coefficient increases, and the dimensional change and retardation due to heat tend to increase. In addition, the meltability tends to be lowered.
 ROは、高温粘性を低下させて、溶融性を改善する成分である。ROの含有量は、好ましくは0~25%または0~20%、特に好ましくは0~15%である。ROの含有量が多くなると、歪点が低下し易くなる。なお、熱膨張係数を低下させる観点では、ROの含有量を可及的に低減することが好ましく、その含有量は5%以下または1%以下、特に0.5%以下が好ましい。なお、LiO、NaO、KOの含有量もそれぞれ5%以下または1%以下、特に0.5%以下が好ましい。 R 2 O is a component that lowers the high temperature viscosity and improves the meltability. The content of R 2 O is preferably 0 to 25% or 0 to 20%, particularly preferably 0 to 15%. As the R 2 O content increases, the strain point tends to decrease. From the viewpoint of reducing the thermal expansion coefficient, it is preferable to reduce the content of R 2 O as much as possible, and the content is preferably 5% or less or 1% or less, particularly preferably 0.5% or less. The contents of Li 2 O, Na 2 O, and K 2 O are also preferably 5% or less or 1% or less, particularly preferably 0.5% or less, respectively.
 MgOは、歪点を低下させずに高温粘性のみを低下させて、溶融性を改善する成分である。また光弾性定数を低下させる成分である。MgOの含有量は、好ましくは0~10%または0~5%、特に好ましくは0~3.5%である。MgOの含有量が多くなると、成形時に失透ブツが析出し易くなる。 MgO is a component that improves the meltability by lowering only the high temperature viscosity without lowering the strain point. It is also a component that lowers the photoelastic constant. The content of MgO is preferably 0 to 10% or 0 to 5%, particularly preferably 0 to 3.5%. When the content of MgO is increased, devitrification beads are likely to precipitate during molding.
 CaOは、歪点を低下させずに高温粘性のみを低下させて、溶融性を改善する成分である。また光弾性定数を低下させる成分である。CaOの含有量は、好ましくは0~15%または2~12%、特に好ましくは3.5~10%である。CaOの含有量が多過ぎると、成形時に失透ブツが析出し易くなる。 CaO is a component that improves the meltability by lowering only the high temperature viscosity without lowering the strain point. It is also a component that lowers the photoelastic constant. The content of CaO is preferably 0 to 15% or 2 to 12%, particularly preferably 3.5 to 10%. When there is too much content of CaO, devitrification will become easy to precipitate at the time of fabrication.
 SrOは、耐薬品性、耐失透性を高める成分である。また光弾性定数を低下させる成分である。SrOの含有量は、好ましくは0~10%または0.5超~8%、特に好ましくは1~8%である。SrOの含有量が多くなると、熱膨張係数が高くなって、熱による寸法変化、レターデーションが大きくなり易い。 SrO is a component that improves chemical resistance and devitrification resistance. It is also a component that lowers the photoelastic constant. The content of SrO is preferably 0 to 10% or more than 0.5 to 8%, particularly preferably 1 to 8%. When the SrO content is increased, the coefficient of thermal expansion is increased, and dimensional change and retardation due to heat are likely to increase.
 BaOは、SrOと同様にして、耐薬品性、耐失透性を高める成分である。また光弾性定数を低下させる成分である。BaOの含有量は、好ましくは0~15%または0~10%、特に好ましくは0.1~8%である。BaOの含有量が多くなると、密度が高くなったり、熱膨張係数が高くなって、熱による寸法変化、レターデーションが大きくなり易い。また溶融性が低下し易くなる。 BaO is a component that increases chemical resistance and devitrification resistance in the same manner as SrO. It is also a component that lowers the photoelastic constant. The content of BaO is preferably 0 to 15% or 0 to 10%, particularly preferably 0.1 to 8%. When the content of BaO increases, the density increases and the thermal expansion coefficient increases, and the dimensional change and retardation due to heat tend to increase. In addition, the meltability tends to be lowered.
 ZnOは、溶融性を改善する成分である。ZnOの含有量は、好ましくは0~10%または0~5%、特に好ましくは0~1%である。ZnOの含有量が多くなると、耐失透性、歪点が低下し易くなる。 ZnO is a component that improves meltability. The content of ZnO is preferably 0 to 10% or 0 to 5%, particularly preferably 0 to 1%. When the content of ZnO is increased, the devitrification resistance and the strain point are liable to be lowered.
 ZrOは、歪点を高める成分である。ZrOの含有量は、好ましくは0~10%または0~7%、特に好ましくは0~5%である。ZrOの含有量が多くなると、密度が著しく上昇したり、成形時にZrOに起因する失透ブツが析出し易くなる。 ZrO 2 is a component that increases the strain point. The content of ZrO 2 is preferably 0 to 10% or 0 to 7%, particularly preferably 0 to 5%. When the ZrO 2 content is increased, the density is remarkably increased, and devitrification spots caused by ZrO 2 are liable to precipitate during molding.
 上記成分以外にも、他の成分を導入してもよい。例えば、液相温度を低下させるために、Y、La、Nb、Pを各3%まで、清澄剤としてAs、Sb、SnO、SO、F、Cl等を合量で2%まで導入してもよい。但し、As、Sbは、環境負荷物質であり、またフロート法でガラス板を成形する場合、フロートバス中で還元されて金属異物となるため、実質的な導入を避けることが好ましく、具体的には、その含有量をそれぞれ0.01%未満とすることが好ましい。 In addition to the above components, other components may be introduced. For example, in order to lower the liquidus temperature, Y 2 O 3 , La 2 O 3 , Nb 2 O 5 , P 2 O 5 are each up to 3%, As 2 O 3 , Sb 2 O 3 , SnO as refining agents 2 , SO 3 , F, Cl or the like may be introduced up to 2% in total. However, As 2 O 3 and Sb 2 O 3 are environmentally hazardous substances, and when a glass plate is formed by the float process, it is reduced in the float bath to become a metal foreign object, so avoid substantial introduction. More specifically, the content is preferably less than 0.01%.
 本発明(第二の本発明)の導光板において、ガラス板は、オーバーフローダウンドロー法で成形されてなることが好ましい。このようにすれば、成形時にガラスリボンの表裏面の温度差、組成差が生じ難いと共に、未研磨で表面品位が良好なガラス板を成形し易くなり、結果として、導光板の製造コストの低廉化、輝度特性の均一化を図り易くなる。この理由は、オーバーフローダウンドロー法の場合、表面となるべき面が樋状耐火物に接触せず、自由表面の状態で成形されるからである。樋状構造物の構造や材質は、所望の寸法や表面品位を実現できるものであれば、特に限定されない。また、下方への延伸成形を行うために、ガラスリボンに対して力を印加する方法は、所望の寸法や表面品位を実現できるものであれば、特に限定されない。例えば、充分に大きい幅を有する耐熱性ロールをガラスリボンに接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラスリボンの端面近傍のみに接触させて延伸する方法を採用してもよい。 In the light guide plate of the present invention (second invention), the glass plate is preferably formed by an overflow down draw method. In this way, it is difficult to produce a temperature difference and composition difference between the front and back surfaces of the glass ribbon during molding, and it becomes easy to form a glass plate that is unpolished and has good surface quality. As a result, the manufacturing cost of the light guide plate is low. And uniform brightness characteristics. The reason for this is that, in the case of the overflow downdraw method, the surface to be the surface does not come into contact with the bowl-like refractory and is molded in a free surface state. The structure and material of the bowl-shaped structure are not particularly limited as long as desired dimensions and surface quality can be realized. Moreover, in order to perform the downward extending | stretching shaping | molding, the method of applying force with respect to a glass ribbon will not be specifically limited if a desired dimension and surface quality are realizable. For example, a method may be adopted in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with the glass ribbon, or a plurality of pairs of heat-resistant rolls are only near the end face of the glass ribbon. You may employ | adopt the method of making it contact and extending | stretching.
 なお、オーバーフローダウンドロー法以外にも、スロットダウンドロー法、フロート法、ロールアウト法、リドロー法等でガラス板を成形することもできる。なお、フロート法では、成形時にガラスリボンの表裏面の温度差、組成差が発生し易いが、成形時の温度制御を厳密に行うと、その温度差、組成差を低減することができる。 In addition to the overflow downdraw method, the glass plate can be formed by a slot downdraw method, a float method, a rollout method, a redraw method, or the like. In the float process, a temperature difference and a composition difference between the front and back surfaces of the glass ribbon are likely to occur during molding. However, if the temperature control during the molding is strictly performed, the temperature difference and the composition difference can be reduced.
 本発明(第二の本発明)の導光板は、一方の表面(光反射面)側に、反射膜を備えることが好ましく、他方の表面(光出射面)側に、拡散膜を備えることが好ましい。このようにすれば、表示装置の輝度特性を均一化し易くなる。 The light guide plate of the present invention (second invention) preferably includes a reflective film on one surface (light reflecting surface) side, and includes a diffusion film on the other surface (light emitting surface) side. preferable. In this way, it becomes easy to make the luminance characteristics of the display device uniform.
 本発明(第二の本発明)のエッジライト型面発光装置は、上記の導光板を備えることを特徴とする。また、本発明のエッジライト型面発光装置は、導光板の一方の表面(光反射面)側に、反射板を備えることが好ましく、導光板の他方の表面(光出射面)側に、拡散板を備えることが好ましい。このようにすれば、表示装置の輝度特性を均一化し易くなる。 An edge light type surface light emitting device according to the present invention (second present invention) includes the light guide plate described above. In addition, the edge light type surface light emitting device of the present invention preferably includes a reflecting plate on one surface (light reflecting surface) side of the light guide plate, and diffuses on the other surface (light emitting surface) side of the light guiding plate. It is preferable to provide a plate. In this way, it becomes easy to make the luminance characteristics of the display device uniform.
 本発明(第二の本発明)のガラス板は、光路長50mmにおけるレターデーションが30nm以下であり、且つ導光板に用いることを特徴とする。ここで、本発明のガラス板の技術的特徴(好適な特性、効果等)は、本発明の導光板の技術的特徴と同様である。よって、本発明のガラス板につき、詳細な説明を省略する。 The glass plate of the present invention (second invention) has a retardation at an optical path length of 50 mm of 30 nm or less, and is used for a light guide plate. Here, the technical features (preferable characteristics, effects, etc.) of the glass plate of the present invention are the same as the technical features of the light guide plate of the present invention. Therefore, detailed description is abbreviate | omitted about the glass plate of this invention.
 本発明(第二の本発明)のガラス板は、表示パネルに使用されるガラス板に適用して、導光板の機能を併有させることもできる。このようにすれば、表示装置の部材構成を簡略化することができる。 The glass plate of the present invention (second present invention) can also be applied to a glass plate used for a display panel to have the function of a light guide plate. In this way, the member configuration of the display device can be simplified.
 以下、本発明(第一の本発明)を、実施例に基づいて詳細に説明する。なお、以下の実施例は、単なる例示である。本発明(第一の本発明)は、以下の実施例に何ら限定されない。 Hereinafter, the present invention (first invention) will be described in detail based on examples. The following examples are merely illustrative. The present invention (first invention) is not limited to the following examples.
 (実施例1)
 まずガラス組成として、質量%で、SiO 60%、Al 15%、B 10%、MgO 1%、CaO 8%、SrO 5%、BaO 1%を含有するように、ガラス原料を調合、混合した後、連続溶融炉にて、最高温度1650℃で溶融して、溶融ガラスを得た。次に、得られた溶融ガラスをオーバーフローダウンドロー法にて板状に成形、徐冷した後、2200mm×1950mm×厚み1.1mmの寸法に切断すると共に、端面の表面粗さRaを0.5μmに研磨することにより、ガラス板を得た。なお、ガラス板中のFeの含有量が0.013質量%になるように、ガラス原料として、Fe等の着色不純物が少ない高純度ガラス原料を使用すると共に、ガラス板の製造設備からガラス中にFe等の着色成分が混入しないように設計されたガラス製造設備を使用した。また、ガラス板中のCrの含有量が0.0005質量%になるように、ガラス原料として、Cr等の着色不純物が少ない高純度ガラス原料を使用すると共に、ガラス板の製造設備からガラス中にCr等の着色成分が混入しないように設計されたガラス製造設備を使用した。
Example 1
First, the glass composition is glass so that it contains 60% SiO 2 , 15% Al 2 O 3 , 10% B 2 O 3 , 1% MgO, 8% CaO, 5% SrO, and 1% BaO. After mixing and mixing the raw materials, the raw glass was melted at a maximum temperature of 1650 ° C. in a continuous melting furnace to obtain molten glass. Next, the obtained molten glass was formed into a plate shape by the overflow down draw method, and then slowly cooled, then cut into dimensions of 2200 mm × 1950 mm × thickness 1.1 mm, and the surface roughness Ra of the end face was 0.5 μm. The glass plate was obtained by polishing. As in the content of Fe 2 O 3 of the glass plate in is 0.013 mass%, as a glass raw material, the use of high-purity glass material colored impurities is small, such as Fe 2 O 3, the glass plates A glass production facility designed so that coloring components such as Fe 2 O 3 were not mixed into the glass from the production facility was used. Further, as the content of Cr 2 O 3 of the glass plate in it is 0.0005% by mass, as a glass raw material, the use of high-purity glass material colored impurities is small, such as Cr 2 O 3, the glass plates Glass manufacturing equipment designed so that coloring components such as Cr 2 O 3 were not mixed into the glass from the manufacturing equipment was used.
 得られたガラス板から、熱膨張係数の測定試料を作製し、ディラトメーターを用いて、JIS R3102に基づき、30~380℃における平均熱膨張係数を測定した。その結果、熱膨張係数は38×10-7/℃であった。 A sample for measuring the thermal expansion coefficient was prepared from the obtained glass plate, and the average thermal expansion coefficient at 30 to 380 ° C. was measured based on JIS R3102 using a dilatometer. As a result, the thermal expansion coefficient was 38 × 10 −7 / ° C.
 オーバーフローダウンドロー法で用いた樋状耐火物の樋部分からガラス生地を採取し、所定の徐冷処理、加工処理を行うことにより、25mm×25mm×100mmの寸法のガラスブロックを得た。次に、得られたガラスブロックの表面を光学研磨した後、島津製作所社製UV-3100PCを用いて、光路長100mm、波長範囲350~750nmにおける最大透過率を測定した。その結果、光路長100mm、波長範囲350~750nmにおける最大透過率は82%であった。なお、図2に実施例1に係るガラス板の光路長100mm、波長範囲350~750nmにおける透過率の測定データを示す。 A glass block having a size of 25 mm × 25 mm × 100 mm was obtained by collecting glass dough from the saddle portion of the bowl-shaped refractory used in the overflow downdraw method and performing a predetermined slow cooling treatment and processing. Next, after optically polishing the surface of the obtained glass block, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm was measured using UV-3100PC manufactured by Shimadzu Corporation. As a result, the maximum transmittance was 82% in an optical path length of 100 mm and a wavelength range of 350 to 750 nm. FIG. 2 shows measurement data of the transmittance of the glass plate according to Example 1 in an optical path length of 100 mm and a wavelength range of 350 to 750 nm.
 以上の結果から、このガラス板を有する導光板は、温度上昇に伴い、寸法変化が生じ難く、且つ表示装置の輝度特性を高めることができるものと考えられる。 From the above results, it is considered that the light guide plate having this glass plate is less likely to undergo dimensional changes with increasing temperature and can improve the luminance characteristics of the display device.
 (実施例2)
 まずガラス組成として、質量%で、SiO 60%、Al 19%、B 7%、MgO 3%、CaO 5%、SrO 1%、BaO 5%を含有するように、ガラス原料を調合、混合した後、連続溶融炉にて、最高温度1650℃で溶融して、溶融ガラスを得た。次に、得られた溶融ガラスをオーバーフローダウンドロー法にて板状に成形、徐冷した後、2200mm×1950mm×厚み1.1mmの寸法に切断すると共に、端面の表面粗さRaを0.5μmに研磨することにより、ガラス板を得た。なお、ガラス板中のFeの含有量が0.009質量%になるように、ガラス原料として、Fe等の着色不純物が少ない高純度ガラス原料を使用すると共に、ガラス板の製造設備からガラス中にFe等の着色成分が混入しないように設計されたガラス製造設備を使用した。また、ガラス板中のCrの含有量が0.0003質量%になるように、ガラス原料として、Cr等の着色不純物が少ない高純度ガラス原料を使用すると共に、ガラス板の製造設備からガラス中にCr等の着色成分が混入しないように設計されたガラス製造設備を使用した。
(Example 2)
First, as a glass composition, glass contains 60% SiO 2 , 19% Al 2 O 3 , 7% B 2 O 3 , 3% MgO, 5% CaO, 1% SrO, and 5% BaO. After mixing and mixing the raw materials, the raw glass was melted at a maximum temperature of 1650 ° C. in a continuous melting furnace to obtain molten glass. Next, the obtained molten glass was formed into a plate shape by the overflow down draw method, and then slowly cooled, then cut into dimensions of 2200 mm × 1950 mm × thickness 1.1 mm, and the surface roughness Ra of the end face was 0.5 μm. The glass plate was obtained by polishing. As in the content of Fe 2 O 3 of the glass plate in is 0.009 mass%, as a glass raw material, the use of high-purity glass material colored impurities is small, such as Fe 2 O 3, the glass plates A glass production facility designed so that coloring components such as Fe 2 O 3 were not mixed into the glass from the production facility was used. Further, as the content of Cr 2 O 3 of the glass plate in is 0.0003 mass%, as a glass raw material, the use of high-purity glass material colored impurities is small, such as Cr 2 O 3, the glass plates Glass manufacturing equipment designed so that coloring components such as Cr 2 O 3 were not mixed into the glass from the manufacturing equipment was used.
 得られたガラス板から、熱膨張係数の測定試料を作製し、ディラトメーターを用いて、JIS R3102に基づき、30~380℃における平均熱膨張係数を測定した。その結果、熱膨張係数は38×10-7/℃であった。 A sample for measuring the thermal expansion coefficient was prepared from the obtained glass plate, and the average thermal expansion coefficient at 30 to 380 ° C. was measured based on JIS R3102 using a dilatometer. As a result, the thermal expansion coefficient was 38 × 10 −7 / ° C.
 オーバーフローダウンドロー法で用いた樋状耐火物の樋部分からガラス生地を採取し、所定の徐冷処理、加工処理を行うことにより、25mm×25mm×100mmの寸法のガラスブロックを得た。次に、得られたガラスブロックの表面を光学研磨した後、島津製作所社製UV-3100PCを用いて、光路長100mm、波長範囲350~750nmにおける最大透過率を測定した。その結果、光路長100mm、波長範囲350~750nmにおける最大透過率は84%であった。なお、図2に実施例2に係るガラス板の光路長100mm、波長範囲350~750nmにおける透過率の測定データを示す。 A glass block having a size of 25 mm × 25 mm × 100 mm was obtained by collecting glass dough from the saddle portion of the bowl-shaped refractory used in the overflow downdraw method and performing a predetermined slow cooling treatment and processing. Next, after optically polishing the surface of the obtained glass block, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm was measured using UV-3100PC manufactured by Shimadzu Corporation. As a result, the maximum transmittance was 84% in an optical path length of 100 mm and a wavelength range of 350 to 750 nm. FIG. 2 shows measurement data of transmittance of the glass plate according to Example 2 in an optical path length of 100 mm and a wavelength range of 350 to 750 nm.
 以上の結果から、このガラス板を有する導光板は、温度上昇に伴い、寸法変化が生じ難く、且つ表示装置の輝度特性を高めることができるものと考えられる。 From the above results, it is considered that the light guide plate having this glass plate is less likely to undergo dimensional changes with increasing temperature and can improve the luminance characteristics of the display device.
 (実施例3)
 まずガラス組成として、質量%で、SiO 62%、Al 18%、B 0.5%、MgO 3%、NaO 14.5%、KO 2%を含有するように、ガラス原料を調合、混合した後、連続溶融炉にて、最高温度1650℃で溶融して、溶融ガラスを得た。次に、得られた溶融ガラスをオーバーフローダウンドロー法にて板状に成形、徐冷した後、1800mm×1500mm×厚み1.1mmの寸法に切断すると共に、端面の表面粗さRaを0.5μmに研磨することにより、ガラス板を得た。なお、ガラス板中のFeの含有量が0.006質量%になるように、ガラス原料として、Fe等の着色不純物が少ない高純度ガラス原料を使用すると共に、ガラス板の製造設備からガラス中にFe等の着色成分が混入しないように設計されたガラス製造設備を使用した。また、ガラス板中のCrの含有量が0.00015質量%になるように、ガラス原料として、Cr等の着色不純物が少ない高純度ガラス原料を使用すると共に、ガラス板の製造設備からガラス中にCr等の着色成分が混入しないように設計されたガラス製造設備を使用した。
Example 3
First, as a glass composition, it contains SiO 2 62%, Al 2 O 3 18%, B 2 O 3 0.5%, MgO 3%, Na 2 O 14.5%, K 2 O 2% by mass%. Thus, after glass material was prepared and mixed, it was melted at a maximum temperature of 1650 ° C. in a continuous melting furnace to obtain molten glass. Next, the obtained molten glass is formed into a plate shape by the overflow down draw method, and then slowly cooled, then cut into dimensions of 1800 mm × 1500 mm × thickness 1.1 mm, and the surface roughness Ra of the end face is 0.5 μm. The glass plate was obtained by polishing. As in the content of Fe 2 O 3 of the glass plate in is 0.006 mass%, as a glass raw material, the use of high-purity glass material colored impurities is small, such as Fe 2 O 3, the glass plates A glass production facility designed so that coloring components such as Fe 2 O 3 were not mixed into the glass from the production facility was used. Further, as the content of Cr 2 O 3 of the glass plate in it is 0.00015 wt%, as a glass raw material, the use of high-purity glass material colored impurities is small, such as Cr 2 O 3, the glass plates Glass manufacturing equipment designed so that coloring components such as Cr 2 O 3 were not mixed into the glass from the manufacturing equipment was used.
 得られたガラス板から、熱膨張係数の測定試料を作製し、ディラトメーターを用いて、JIS R3102に基づき、30~380℃における平均熱膨張係数を測定した。その結果、熱膨張係数は91×10-7/℃であった。 A sample for measuring the thermal expansion coefficient was prepared from the obtained glass plate, and the average thermal expansion coefficient at 30 to 380 ° C. was measured based on JIS R3102 using a dilatometer. As a result, the thermal expansion coefficient was 91 × 10 −7 / ° C.
 オーバーフローダウンドロー法で用いた樋状耐火物の樋部分からガラス生地を採取し、所定の徐冷処理、加工処理を行うことにより、25mm×25mm×100mmの寸法のガラスブロックを得た。次に、得られたガラスブロックの表面を光学研磨した後、島津製作所社製UV-3100PCを用いて、光路長100mm、波長範囲350~750nmにおける最大透過率を測定した。その結果、光路長100mm、波長範囲350~750nmにおける最大透過率は80%であった。なお、図2に実施例3に係るガラス板の光路長100mm、波長範囲350~750nmにおける透過率の測定データを示す。  A glass block having a size of 25 mm × 25 mm × 100 mm was obtained by collecting glass dough from the saddle portion of the bowl-shaped refractory used in the overflow downdraw method and performing a predetermined slow cooling treatment and processing. Next, after optically polishing the surface of the obtained glass block, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm was measured using UV-3100PC manufactured by Shimadzu Corporation. As a result, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm was 80%. FIG. 2 shows measurement data of the transmittance of the glass plate according to Example 3 in an optical path length of 100 mm and a wavelength range of 350 to 750 nm. *
 以上の結果から、このガラス板を有する導光板は、温度上昇に伴い、寸法変化が生じ難く、且つ表示装置の輝度特性を高めることができるものと考えられる。 From the above results, it is considered that the light guide plate having this glass plate is less likely to undergo dimensional changes with increasing temperature and can improve the luminance characteristics of the display device.
 (実施例4)
 まずガラス組成として、質量%で、SiO 60%、Al 15%、B 10%、MgO 1%、CaO 8%、SrO 5%、BaO 1%を含有するように、ガラス原料を調合、混合した後、連続溶融炉にて、最高温度1650℃で溶融して、溶融ガラスを得た。次に、得られた溶融ガラスをオーバーフローダウンドロー法にて板状に成形、徐冷した後、2200mm×1950mm×厚み1.8mmの寸法に切断すると共に、端面の表面粗さRaを0.5μmに研磨することにより、ガラス板を得た。なお、ガラス板中のFeの含有量が0.005質量%になるように、ガラス原料として、Fe等の着色不純物が少ない高純度ガラス原料を使用すると共に、ガラス板の製造設備からガラス中にFe等の着色成分が混入しないように設計されたガラス製造設備を使用した。また、ガラス板中のCrの含有量が0.0001質量%になるように、ガラス原料として、Cr等の着色不純物が少ない高純度ガラス原料を使用すると共に、ガラス板の製造設備からガラス中にCr等の着色成分が混入しないように設計されたガラス製造設備を使用した。
Example 4
First, the glass composition is glass so that it contains 60% SiO 2 , 15% Al 2 O 3 , 10% B 2 O 3 , 1% MgO, 8% CaO, 5% SrO, and 1% BaO. After mixing and mixing the raw materials, the raw glass was melted at a maximum temperature of 1650 ° C. in a continuous melting furnace to obtain molten glass. Next, the obtained molten glass is formed into a plate shape by the overflow down draw method, and then slowly cooled, then cut into dimensions of 2200 mm × 1950 mm × thickness 1.8 mm, and the end surface roughness Ra is 0.5 μm. The glass plate was obtained by polishing. As in the content of Fe 2 O 3 of the glass plate in becomes 0.005 mass%, as a glass raw material, the use of high-purity glass material colored impurities is small, such as Fe 2 O 3, the glass plates A glass production facility designed so that coloring components such as Fe 2 O 3 were not mixed into the glass from the production facility was used. Further, as the content of Cr 2 O 3 of the glass plate in is 0.0001 mass%, as a glass raw material, the use of high-purity glass material colored impurities is small, such as Cr 2 O 3, the glass plates Glass manufacturing equipment designed so that coloring components such as Cr 2 O 3 were not mixed into the glass from the manufacturing equipment was used.
 得られたガラス板から、熱膨張係数の測定試料を作製し、ディラトメーターを用いて、JIS R3102に基づき、30~380℃における平均熱膨張係数を測定した。その結果、熱膨張係数は38×10-7/℃であった。 A sample for measuring the thermal expansion coefficient was prepared from the obtained glass plate, and the average thermal expansion coefficient at 30 to 380 ° C. was measured based on JIS R3102 using a dilatometer. As a result, the thermal expansion coefficient was 38 × 10 −7 / ° C.
 得られたガラス板を1.8mm×40mm×100mmの寸法に8枚切り出した。次に、8枚のガラス板を14.4mm×40mm×100mmのブロック状に重ねた状態で、島津製作所社製UV-3100PCを用いて、14.4mm×40mmの面から光源の光を入射して光路長100mm、波長範囲350~750nmにおける最大透過率を測定した。その結果、光路長100mm、波長範囲350~750nmにおける最大透過率は85%であった。なお、図3に実施例4に係るガラス板の光路長100mm、波長範囲350~750nmにおける透過率の測定データを示す。 8 sheets of the obtained glass plate were cut out to a size of 1.8 mm × 40 mm × 100 mm. Next, light from a light source is incident from a surface of 14.4 mm × 40 mm using a UV-3100PC manufactured by Shimadzu Corporation with the 8 glass plates stacked in a block shape of 14.4 mm × 40 mm × 100 mm. The maximum transmittance was measured at an optical path length of 100 mm and a wavelength range of 350 to 750 nm. As a result, the maximum transmittance in an optical path length of 100 mm and a wavelength range of 350 to 750 nm was 85%. FIG. 3 shows measurement data of transmittance of the glass plate according to Example 4 in an optical path length of 100 mm and a wavelength range of 350 to 750 nm.
 以上の結果から、このガラス板を有する導光板は、温度上昇に伴い、寸法変化が生じ難く、且つ表示装置の輝度特性を高めることができるものと考えられる。 From the above results, it is considered that the light guide plate having this glass plate is less likely to undergo dimensional changes with increasing temperature and can improve the luminance characteristics of the display device.
 次に、本発明(第二の本発明)を、実施例に基づいて詳細に説明する。なお、以下の実施例は、単なる例示である。本発明(第二の本発明)は、以下の実施例に何ら限定されない。 Next, the present invention (second invention) will be described in detail based on examples. The following examples are merely illustrative. The present invention (second invention) is not limited to the following examples.
 (実施例5)
 まずガラス組成として、質量%で、SiO 60%、Al 15%、B 10%、MgO 1%、CaO 8%、SrO 5%、BaO 1%を含有するように、ガラス原料を調合、混合した後、連続溶融炉にて、最高温度1650℃で溶融して、溶融ガラスを得た。次に、得られた溶融ガラスをオーバーフローダウンドロー法にて板状に成形、徐冷した後、2200mm×1950mm×厚み1.1mmの寸法に切断すると共に、端面の表面粗さRaを0.5μmに研磨することにより、ガラス板を得た。なお、成形、徐冷の際に、各ヒーター間の温度分布を±1℃以内に制御すると共に、成形炉や徐冷炉の外部雰囲気の気圧が高くなるように制御して、上昇気流の発生を抑制した。
(Example 5)
First, the glass composition is glass so that it contains 60% SiO 2 , 15% Al 2 O 3 , 10% B 2 O 3 , 1% MgO, 8% CaO, 5% SrO, and 1% BaO. After mixing and mixing the raw materials, the raw glass was melted at a maximum temperature of 1650 ° C. in a continuous melting furnace to obtain molten glass. Next, the obtained molten glass was formed into a plate shape by the overflow down draw method, and then slowly cooled, then cut into dimensions of 2200 mm × 1950 mm × thickness 1.1 mm, and the surface roughness Ra of the end face was 0.5 μm. The glass plate was obtained by polishing. During molding and slow cooling, the temperature distribution between each heater is controlled within ± 1 ° C, and the atmospheric pressure in the external atmosphere of the molding furnace and slow cooling furnace is controlled to suppress the generation of ascending airflow. did.
 得られたガラス板から、熱膨張係数、歪点の測定試料を作製し、各測定を行った。その結果、歪点は650℃であり、熱膨張係数は38×10-7/℃であった。なお、熱膨張係数は、ディラトメーターを用いて、JIS  R3102に基づき、30~380℃における平均熱膨張係数を測定した値である。歪点は、JIS  R3103に基づいて測定した値である。 From the obtained glass plate, measurement samples of thermal expansion coefficient and strain point were prepared, and each measurement was performed. As a result, the strain point was 650 ° C. and the thermal expansion coefficient was 38 × 10 −7 / ° C. The thermal expansion coefficient is a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. based on JIS R3102 using a dilatometer. The strain point is a value measured based on JIS R3103.
 得られたガラス板を更に50mm×50mm×厚み1.1mmの寸法に切断し、相対する端面を鏡面研磨した。次に、ユニオプト社製PEL-3A-XRを用いて、光ヘテロダイン法により、光路長50mmにおけるレターデーションを測定した。測定の際に、レーザー光が光学研磨した端面に垂直に照射するようにした。その結果、レターデーションは17.3nmであった。 The obtained glass plate was further cut into dimensions of 50 mm × 50 mm × thickness 1.1 mm, and the opposite end surfaces were mirror-polished. Next, the retardation at an optical path length of 50 mm was measured by the optical heterodyne method using PEL-3A-XR manufactured by UNIOPT. During the measurement, laser light was irradiated perpendicularly to the optically polished end face. As a result, the retardation was 17.3 nm.
 以上の結果から、このガラス板を有する導光板は、温度上昇に伴い、寸法変化が生じ難く、且つ表示装置の輝度特性を均一化し得るものと考えられる。 From the above results, it is considered that the light guide plate having this glass plate is less likely to undergo a dimensional change with increasing temperature and can make the luminance characteristics of the display device uniform.
 (実施例6)
 まずガラス組成として、質量%で、SiO 62%、Al 18%、B 0.5%、MgO 3%、NaO 14.5%、KO 2%を含有するように、ガラス原料を調合、混合した後、連続溶融炉にて、最高温度1650℃で溶融して、溶融ガラスを得た。次に、得られた溶融ガラスをオーバーフローダウンドロー法にて板状に成形、徐冷した後、1800mm×1500mm×厚み1.1mmの寸法に切断すると共に、端面の表面粗さRaを0.5μmに研磨することにより、ガラス板を得た。なお、成形、徐冷の際に、各ヒーター間の温度分布を±1℃以内に制御すると共に、成形炉や徐冷炉の外部雰囲気の気圧が高くなるように制御して、上昇気流の発生を抑制した。
(Example 6)
First, as a glass composition, it contains SiO 2 62%, Al 2 O 3 18%, B 2 O 3 0.5%, MgO 3%, Na 2 O 14.5%, K 2 O 2% by mass%. Thus, after glass material was prepared and mixed, it was melted at a maximum temperature of 1650 ° C. in a continuous melting furnace to obtain molten glass. Next, the obtained molten glass is formed into a plate shape by the overflow down draw method, and then slowly cooled, then cut into dimensions of 1800 mm × 1500 mm × thickness 1.1 mm, and the surface roughness Ra of the end face is 0.5 μm. The glass plate was obtained by polishing. During molding and slow cooling, the temperature distribution between each heater is controlled within ± 1 ° C, and the atmospheric pressure in the external atmosphere of the molding furnace and slow cooling furnace is controlled to suppress the generation of ascending airflow. did.
 得られたガラス板から、熱膨張係数、歪点の測定試料を作製し、各測定を行った。その結果、歪点は560℃であり、熱膨張係数は91×10-7/℃であった。なお、熱膨張係数は、ディラトメーターを用いて、JIS  R3102に基づき、30~380℃における平均熱膨張係数を測定した値である。歪点は、JIS  R3103に基づいて測定した値である。 From the obtained glass plate, measurement samples of thermal expansion coefficient and strain point were prepared, and each measurement was performed. As a result, the strain point was 560 ° C. and the thermal expansion coefficient was 91 × 10 −7 / ° C. The thermal expansion coefficient is a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. based on JIS R3102 using a dilatometer. The strain point is a value measured based on JIS R3103.
 得られたガラス板を更に50mm×50mm×厚み1.1mmの寸法に切断し、相対する端面を鏡面研磨した。次に、ユニオプト社製PEL-3A-XRを用いて、光ヘテロダイン法により、光路長50mmにおけるレターデーションを測定した。測定の際に、レーザー光が光学研磨した端面に垂直に照射するようにした。その結果、レターデーションは18nmであった。 The obtained glass plate was further cut into dimensions of 50 mm × 50 mm × thickness 1.1 mm, and the opposite end surfaces were mirror-polished. Next, the retardation at an optical path length of 50 mm was measured by the optical heterodyne method using PEL-3A-XR manufactured by UNIOPT. During the measurement, laser light was irradiated perpendicularly to the optically polished end face. As a result, the retardation was 18 nm.
 以上の結果から、このガラス板を有する導光板は、温度上昇に伴い、寸法変化が生じ難く、且つ表示装置の輝度特性を均一化し得るものと考えられる。 From the above results, it is considered that the light guide plate having this glass plate is less likely to undergo a dimensional change with increasing temperature and can make the luminance characteristics of the display device uniform.
 (比較例)
 まずガラス組成として、質量%で、SiO 60%、Al 15%、B 10%、MgO 1%、CaO 8%、SrO 5%、BaO 1%を含有するように、ガラス原料を調合、混合した後、連続溶融炉にて、最高温度1650℃で溶融して、溶融ガラスを得た。次に、得られた溶融ガラスをオーバーフローダウンドロー法にて板状に成形、徐冷した後、2200mm×1950mm×厚み1.1mmの寸法に切断すると共に、端面の表面粗さRaを0.5μmに研磨することにより、ガラス板を得た。なお、成形、徐冷の際に、各ヒーター間の温度分布を厳密に制御せず、上昇気流の抑制も行わなかった。
(Comparative example)
First, the glass composition is glass so that it contains 60% SiO 2 , 15% Al 2 O 3 , 10% B 2 O 3 , 1% MgO, 8% CaO, 5% SrO, and 1% BaO. After mixing and mixing the raw materials, the raw glass was melted at a maximum temperature of 1650 ° C. in a continuous melting furnace to obtain molten glass. Next, the obtained molten glass was formed into a plate shape by the overflow down draw method, and then slowly cooled, then cut into dimensions of 2200 mm × 1950 mm × thickness 1.1 mm, and the surface roughness Ra of the end face was 0.5 μm. The glass plate was obtained by polishing. During molding and slow cooling, the temperature distribution between the heaters was not strictly controlled, and the ascending air current was not suppressed.
 得られたガラス板を更に50mm×50mm×厚み1.1mmの寸法に切断し、相対する端面を鏡面研磨した。次に、ユニオプト社製PEL-3A-XRを用いて、光ヘテロダイン法により、光路長50mmにおけるレターデーションを測定した。測定の際に、レーザー光が光学研磨した端面に垂直に照射するようにした。その結果、レターデーションは39.4nmであった。 The obtained glass plate was further cut into dimensions of 50 mm × 50 mm × thickness 1.1 mm, and the opposite end surfaces were mirror-polished. Next, the retardation at an optical path length of 50 mm was measured by the optical heterodyne method using PEL-3A-XR manufactured by UNIOPT. During the measurement, laser light was irradiated perpendicularly to the optically polished end face. As a result, the retardation was 39.4 nm.
 以上の結果から、このガラス板を有する導光板は、温度上昇に伴い、寸法変化が生じ易く、且つ表示装置の輝度特性が不均一化し易いものと考えられる。 From the above results, it is considered that the light guide plate having this glass plate is likely to undergo dimensional changes as the temperature rises and the luminance characteristics of the display device are likely to be non-uniform.
1 エッジライト型面発光装置
2 光源
3 導光板
4 反射板
5 拡散板
6 光反射面
7 光出射面
DESCRIPTION OF SYMBOLS 1 Edge light type surface emitting device 2 Light source 3 Light guide plate 4 Reflection plate 5 Diffusing plate 6 Light reflection surface 7 Light emission surface

Claims (20)

  1.  少なくともガラス板を有すると共に、該ガラス板の光路長100mm、波長範囲350~750nmにおける最大透過率が50%以上であることを特徴とする導光板。 A light guide plate having at least a glass plate, an optical path length of 100 mm, and a maximum transmittance of 50% or more in a wavelength range of 350 to 750 nm.
  2.  ガラス板中のFeの含有量が0.1質量%以下であることを特徴とする請求項1に記載の導光板。 The light guide plate according to claim 1, wherein the content of Fe 2 O 3 in the glass plate is 0.1% by mass or less.
  3.  ガラス板の少なくとも一辺の寸法が1000mm以上であることを特徴とする請求項1又は2に記載の導光板。 The light guide plate according to claim 1 or 2, wherein a dimension of at least one side of the glass plate is 1000 mm or more.
  4.  ガラス板の端面の表面粗さRaが2μm以下であることを特徴とする請求項1~3の何れかに記載の導光板。 The light guide plate according to any one of claims 1 to 3, wherein the surface roughness Ra of the end face of the glass plate is 2 µm or less.
  5.  ガラス板の熱膨張係数が120×10-7/℃以下であることを特徴とする請求項1~4の何れかに記載の導光板。 5. The light guide plate according to claim 1, wherein the glass plate has a thermal expansion coefficient of 120 × 10 −7 / ° C. or less.
  6.  ガラス板が、ガラス組成として、質量%で、SiO 40~70%、Al 2~25%、B 0~20%、RO(RはLi、Na、Kの一種又は二種以上) 0~25%、MgO 0~10%、CaO 0~15%、SrO 0~10%、BaO 0~15%、ZnO 0~10%、ZrO 0~10%、Fe 0.001~0.1%を含有することを特徴とする請求項1~5の何れかに記載の導光板。 The glass plate has a glass composition of 40% by mass to SiO 2 40 to 70%, Al 2 O 3 2 to 25%, B 2 O 3 0 to 20%, R 2 O (R is one of Li, Na, and K) Or 2 or more types) 0 to 25%, MgO 0 to 10%, CaO 0 to 15%, SrO 0 to 10%, BaO 0 to 15%, ZnO 0 to 10%, ZrO 2 0 to 10%, Fe 2 O 3 0.001 the light guide plate according to any one of claims 1 to 5, characterized in that it contains 0.1%.
  7.  ガラス板がオーバーフローダウンドロー法により成形されてなることを特徴とする請求項1~6の何れかに記載の導光板。 The light guide plate according to any one of claims 1 to 6, wherein the glass plate is formed by an overflow down draw method.
  8.  エッジライト型面発光装置に用いることを特徴とする請求項1~7の何れかに記載の導光板。 The light guide plate according to any one of claims 1 to 7, wherein the light guide plate is used for an edge light type surface light emitting device.
  9.  請求項1~7の何れかに記載の導光板を備えることを特徴とするエッジライト型面発光装置。 An edge light type surface light emitting device comprising the light guide plate according to any one of claims 1 to 7.
  10.  光路長100mm、波長範囲350~750nmにおける最大透過率が50%以上であり、且つ導光板に用いることを特徴とするガラス板。 A glass plate having an optical path length of 100 mm, a maximum transmittance of 50% or more in a wavelength range of 350 to 750 nm, and being used for a light guide plate.
  11.  少なくともガラス板を有すると共に、該ガラス板の光路長50mmにおけるレターデーションが30nm以下であることを特徴とする導光板。 A light guide plate having at least a glass plate and a retardation of the glass plate at an optical path length of 50 mm of 30 nm or less.
  12.  ガラス板の少なくとも一辺の寸法が1000mm以上であることを特徴とする請求項11に記載の導光板。 The light guide plate according to claim 11, wherein a dimension of at least one side of the glass plate is 1000 mm or more.
  13.  ガラス板の端面の表面粗さRaが2μm以下であることを特徴とする請求項11又は12に記載の導光板。 The light guide plate according to claim 11 or 12, wherein the surface roughness Ra of the end face of the glass plate is 2 µm or less.
  14.  ガラス板の熱膨張係数が120×10-7/℃以下であることを特徴とする請求項11~13の何れかに記載の導光板。 14. The light guide plate according to claim 11, wherein the glass plate has a thermal expansion coefficient of 120 × 10 −7 / ° C. or less.
  15.  ガラス板の歪点が550℃以上であることを特徴とする請求項11~14の何れかに記載の導光板。 The light guide plate according to any one of claims 11 to 14, wherein the strain point of the glass plate is 550 ° C or higher.
  16.  ガラス板が、ガラス組成として、質量%で、SiO 40~70%、Al 2~25%、B 0~20%、RO(RはLi、Na、Kの一種又は二種以上) 0~25%、MgO 0~10%、CaO 0~15%、SrO 0~10%、BaO 0~15%、ZnO 0~10%、ZrO 0~10%を含有することを特徴とする請求項11~15の何れかに記載の導光板。 The glass plate has a glass composition of 40% by mass to SiO 2 40 to 70%, Al 2 O 3 2 to 25%, B 2 O 3 0 to 20%, R 2 O (R is one of Li, Na, and K) (Or two or more) 0 to 25%, MgO 0 to 10%, CaO 0 to 15%, SrO 0 to 10%, BaO 0 to 15%, ZnO 0 to 10%, ZrO 2 0 to 10% The light guide plate according to any one of claims 11 to 15, wherein:
  17.  ガラス板がオーバーフローダウンドロー法により成形されてなることを特徴とする請求項11~16の何れかに記載の導光板。 The light guide plate according to any one of claims 11 to 16, wherein the glass plate is formed by an overflow downdraw method.
  18.  エッジライト型面発光装置に用いることを特徴とする請求項11~17の何れかに記載の導光板。 The light guide plate according to any one of claims 11 to 17, wherein the light guide plate is used in an edge light type surface light emitting device.
  19.  請求項11~17の何れかに記載の導光板を備えることを特徴とするエッジライト型面発光装置。 An edge light type surface light emitting device comprising the light guide plate according to any one of claims 11 to 17.
  20.  光路長50mmにおけるレターデーションが30nm以下であり、且つ導光板に用いることを特徴とするガラス板。 A glass plate having a retardation of 30 nm or less at an optical path length of 50 mm and being used for a light guide plate.
PCT/JP2014/072704 2013-09-03 2014-08-29 Light guide plate WO2015033866A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480032472.3A CN105264284B (en) 2013-09-03 2014-08-29 Light guide plate
KR1020157031539A KR102138067B1 (en) 2013-09-03 2014-08-29 Light guide plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013182132A JP6368998B2 (en) 2013-09-03 2013-09-03 Light guide plate
JP2013-182133 2013-09-03
JP2013-182132 2013-09-03
JP2013182133 2013-09-03

Publications (1)

Publication Number Publication Date
WO2015033866A1 true WO2015033866A1 (en) 2015-03-12

Family

ID=52628340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072704 WO2015033866A1 (en) 2013-09-03 2014-08-29 Light guide plate

Country Status (4)

Country Link
KR (1) KR102138067B1 (en)
CN (1) CN105264284B (en)
TW (1) TWI678563B (en)
WO (1) WO2015033866A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032673A (en) * 2015-07-30 2017-02-09 日本電気硝子株式会社 Light guide plate and laminated light guide plate prepared therewith
DE102015113558A1 (en) 2015-08-17 2017-02-23 Schott Ag Light guide plate and optical display with backlighting
CN107531554A (en) * 2015-05-13 2018-01-02 旭硝子株式会社 Glass plate
CN107531553A (en) * 2015-05-12 2018-01-02 旭硝子株式会社 Glass and glass component
CN107615120A (en) * 2015-06-24 2018-01-19 日本电气硝子株式会社 Light guide plate
CN107922245A (en) * 2015-09-25 2018-04-17 株式会社Lg化学 Glass light guide plate

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018108898A (en) * 2015-05-13 2018-07-12 旭硝子株式会社 Glass plate
TWI588512B (en) * 2015-09-11 2017-06-21 Chenfeng Optronics Corp Production method of glass light guide plate with high transmission efficiency
CN105837035B (en) * 2016-03-07 2019-05-03 东旭科技集团有限公司 A kind of glass composition and high-modulus glass and its preparation method and application
CN105923996B (en) * 2016-04-21 2019-08-02 金林墨 A kind of glass light guide plate and preparation method thereof
CN107337347A (en) * 2016-04-28 2017-11-10 中国南玻集团股份有限公司 Guide-lighting glass sheet
CN106082638B (en) * 2016-06-06 2018-12-04 中国洛阳浮法玻璃集团有限责任公司 A kind of side-light type LED television glass light guide plate and preparation method
KR102058195B1 (en) * 2016-06-13 2019-12-20 주식회사 엘지화학 Glass light guide plate and method for fabricating the same
CN106242270A (en) * 2016-08-11 2016-12-21 东旭科技集团有限公司 A kind of glass compositions, aluminium borosilicate glass and its preparation method and application and light guide plate
CN107777873B (en) * 2016-08-29 2020-09-08 深圳南玻应用技术有限公司 Light guide plate glass and preparation method thereof
JP7145147B2 (en) 2016-09-16 2022-09-30 コーニング インコーポレイテッド Highly transparent glasses containing alkaline earth oxides as modifiers
CN108947238B (en) * 2017-05-27 2021-10-01 中国南玻集团股份有限公司 Light guide plate glass, preparation method and application thereof
CN113264679B (en) * 2021-06-15 2022-07-12 深圳市正通仁禾科技有限公司 Material for preparing light guide plate, light guide plate and liquid crystal module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221942A (en) * 2005-02-10 2006-08-24 Nippon Electric Glass Co Ltd Glass set for manufacturing plasma display panel substrate
JP2009173524A (en) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd Process and apparatus for producing glass plate
JP2009199875A (en) * 2008-02-21 2009-09-03 Fujiwara Kogyo Kk Planar light emitting device
JP2013103846A (en) * 2011-11-11 2013-05-30 Nippon Electric Glass Co Ltd Glass used for optical element for concentrator photovoltaic system, optical element for the concentrator photovoltaic system using the same, and the concentrator photovoltaic system
JP2013170087A (en) * 2012-02-20 2013-09-02 Nippon Electric Glass Co Ltd Tempered glass

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4190205B2 (en) * 2002-05-16 2008-12-03 シャープ株式会社 Light guide, illumination device including the same, and display device
KR100646137B1 (en) * 2004-03-24 2006-11-15 토파즈엘시디 주식회사 Light guide plate for backlight unit
JP5224096B2 (en) * 2007-01-29 2013-07-03 日本電気硝子株式会社 Manufacturing method of glass substrate for display
WO2009078421A1 (en) * 2007-12-19 2009-06-25 Nippon Electric Glass Co., Ltd. Glass substrate
JP2012123933A (en) 2010-12-06 2012-06-28 Sumitomo Chemical Co Ltd Edge light type surface light-emitting device
JP2012138345A (en) 2010-12-06 2012-07-19 Sumitomo Chemical Co Ltd Edge-light type surface light-emitting device
JP2012216528A (en) 2011-03-30 2012-11-08 Sumitomo Chemical Co Ltd Edge-light type surface light-emitting device
JP2012216523A (en) 2011-03-30 2012-11-08 Sumitomo Chemical Co Ltd Edge-light type surface light-emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221942A (en) * 2005-02-10 2006-08-24 Nippon Electric Glass Co Ltd Glass set for manufacturing plasma display panel substrate
JP2009173524A (en) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd Process and apparatus for producing glass plate
JP2009199875A (en) * 2008-02-21 2009-09-03 Fujiwara Kogyo Kk Planar light emitting device
JP2013103846A (en) * 2011-11-11 2013-05-30 Nippon Electric Glass Co Ltd Glass used for optical element for concentrator photovoltaic system, optical element for the concentrator photovoltaic system using the same, and the concentrator photovoltaic system
JP2013170087A (en) * 2012-02-20 2013-09-02 Nippon Electric Glass Co Ltd Tempered glass

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107531553A (en) * 2015-05-12 2018-01-02 旭硝子株式会社 Glass and glass component
CN107531554A (en) * 2015-05-13 2018-01-02 旭硝子株式会社 Glass plate
US10788172B2 (en) 2015-05-13 2020-09-29 AGC Inc. Glass plate
CN107615120A (en) * 2015-06-24 2018-01-19 日本电气硝子株式会社 Light guide plate
CN107850725A (en) * 2015-07-30 2018-03-27 日本电气硝子株式会社 Light guide plate and the stacking light guide plate for having used it
JP2017032673A (en) * 2015-07-30 2017-02-09 日本電気硝子株式会社 Light guide plate and laminated light guide plate prepared therewith
KR20180033577A (en) * 2015-07-30 2018-04-03 니폰 덴키 가라스 가부시키가이샤 Light guide plate and laminated light guide plate using the same
KR102547043B1 (en) * 2015-07-30 2023-06-23 니폰 덴키 가라스 가부시키가이샤 Light guide plate and laminated light guide plate using the same
JP2017052687A (en) * 2015-08-17 2017-03-16 ショット アクチエンゲゼルシャフトSchott AG Light guide plate and optical display with backlight
CN106467360A (en) * 2015-08-17 2017-03-01 肖特股份有限公司 A kind of light guide plate and the optical display with backlight
KR20170021212A (en) * 2015-08-17 2017-02-27 쇼오트 아게 Light guide plate and optical display with backlighting
US9952378B2 (en) 2015-08-17 2018-04-24 Schott Ag Light guide plate and optical display with backlighting
DE102015113558A1 (en) 2015-08-17 2017-02-23 Schott Ag Light guide plate and optical display with backlighting
KR102533430B1 (en) 2015-08-17 2023-05-16 쇼오트 아게 Light guide plate and optical display with backlighting
KR20230069077A (en) * 2015-08-17 2023-05-18 쇼오트 아게 Light guide plate and optical display with backlighting
KR102554679B1 (en) 2015-08-17 2023-07-11 쇼오트 아게 Light guide plate and optical display with backlighting
CN107922245A (en) * 2015-09-25 2018-04-17 株式会社Lg化学 Glass light guide plate

Also Published As

Publication number Publication date
CN105264284A (en) 2016-01-20
KR20160051683A (en) 2016-05-11
TWI678563B (en) 2019-12-01
CN105264284B (en) 2018-04-06
TW201512719A (en) 2015-04-01
KR102138067B1 (en) 2020-07-27

Similar Documents

Publication Publication Date Title
WO2015033866A1 (en) Light guide plate
JP6516085B2 (en) Light guide plate
TWI698405B (en) Light guide plate and glass plate
TWI806821B (en) High transmission glasses
EP3366989B1 (en) Glass light-guide plate and manufacturing method thereof
CN108137382B (en) Borosilicate glass, light guide plate comprising borosilicate glass and manufacturing method of borosilicate glass
TW201802506A (en) Aluminosilicate glasses
JP2017052687A (en) Light guide plate and optical display with backlight
US20170066681A1 (en) Glass plate for light guide plate
WO2015178254A1 (en) Glass plate for light guide plate
JP6368998B2 (en) Light guide plate
JP2019517726A (en) Glass articles comprising light extraction features
JP7145147B2 (en) Highly transparent glasses containing alkaline earth oxides as modifiers
JP7429093B2 (en) Light guide plate
WO2018159385A1 (en) Light guide plate
WO2016208451A1 (en) Light guide plate
JP2017091940A (en) Glass lenticular structure
JP2017041302A (en) Light guide plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480032472.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157031539

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843071

Country of ref document: EP

Kind code of ref document: A1