WO2015033864A1 - Method for manufacturing solar cell - Google Patents

Method for manufacturing solar cell Download PDF

Info

Publication number
WO2015033864A1
WO2015033864A1 PCT/JP2014/072695 JP2014072695W WO2015033864A1 WO 2015033864 A1 WO2015033864 A1 WO 2015033864A1 JP 2014072695 W JP2014072695 W JP 2014072695W WO 2015033864 A1 WO2015033864 A1 WO 2015033864A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon substrate
metal ions
aqueous solution
solar cell
porous layer
Prior art date
Application number
PCT/JP2014/072695
Other languages
French (fr)
Japanese (ja)
Inventor
熊谷 晃
Original Assignee
株式会社ジェイ・イー・ティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイ・イー・ティ filed Critical 株式会社ジェイ・イー・ティ
Priority to TW103130074A priority Critical patent/TW201523898A/en
Publication of WO2015033864A1 publication Critical patent/WO2015033864A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a solar cell, and more particularly to a method for forming a porous layer on the surface of a silicon substrate.
  • Textures An infinite number of fine irregularities (hereinafter referred to as “textures”) having a role of effectively taking in sunlight are formed on the surface of the solar cell.
  • the texture of the pyramid structure can be easily obtained by etching the Si (100) surface using an alkaline solution.
  • polycrystalline silicon since various crystal orientations appear on the surface of the silicon substrate, it is difficult to form a uniform texture on the entire surface of the silicon substrate like single crystal silicon.
  • a porous layer is formed on the surface of the silicon substrate by immersing the silicon substrate in a mixed aqueous solution of an oxidant and hydrofluoric acid containing metal ions.
  • a forming method (for example, Patent Document 1) is disclosed.
  • a second step of forming a texture by dipping in a mixed acid mainly composed of hydrofluoric acid and nitric acid to form a texture (for example, Patent Document 2) is disclosed.
  • the silicon substrate having a texture formed by the method of Patent Document 1 has a problem that the surface of the silicon substrate is discolored although the reflectance is low, and as a result, the characteristics of the solar cell are greatly deteriorated.
  • the surface of the silicon substrate that has undergone the same process as in Patent Document 1 is immersed in a mixed acid mainly composed of hydrofluoric acid and nitric acid to form a texture.
  • a clean silicon surface can be obtained while maintaining the effect of reducing the reflectance, and the metal at the bottom of the hole can be removed. It is described in Document 2.
  • Patent Documents 1 and 2 have a problem that it is difficult to form a texture having a uniform size and density on the surface of the silicon substrate.
  • an object of the present invention is to provide a method for manufacturing a solar cell capable of more uniformly forming a texture on the surface of a silicon substrate.
  • the method for manufacturing a solar cell according to the present invention is the method for manufacturing a solar cell in which a porous layer is formed on the surface of a silicon substrate by etching using metal ions, wherein the silicon is added to the first aqueous solution containing a strong acid and metal ions.
  • the dispersibility of metal ions is improved by immersing a silicon substrate in a first aqueous solution containing a strong acid and metal ions, and attaching the metal ions to the surface of the silicon substrate. Can be more uniformly attached to the surface of the silicon substrate.
  • FIG. 3A is a cross-sectional view showing a method for manufacturing a solar cell according to the present embodiment step by step
  • FIG. 3A is a state in which metal ions are attached
  • FIG. 3B is a state in which a porous layer is formed
  • FIG. 3D is a diagram illustrating a state where metal ions are removed.
  • 4A and 4B are SEM images of the surface of a silicon substrate manufactured by the manufacturing method according to the present embodiment, in which FIG. 4A shows a state in which a porous layer is formed, and FIG. 4B shows a state in which the porous layer is etched with a mixed acid mainly containing hydrofluoric acid.
  • FIG. 4A shows a state in which a porous layer is formed
  • FIG. 4B shows a state in which the porous layer is etched with a mixed acid mainly containing hydrofluoric acid.
  • a solar cell 1 shown in FIG. 1 includes a silicon substrate 2 that performs photoelectric conversion and a porous layer 3 in which the surface of the silicon substrate 2 is processed into a textured shape, and is incident from a light receiving surface on which the porous layer 3 is formed. Light is converted into electrical energy in the silicon substrate 2.
  • the porous layer 3 light incident on the surface of the silicon substrate 2 is repeatedly transmitted and reflected, and as a result, more light is guided into the silicon substrate 2 than on the flat silicon substrate surface. It is generally known that the fine texture formed in the porous layer 3 can efficiently confine incident light when the height and density are uniform rather than nonuniform.
  • the solar cell 1 according to the present embodiment is characterized in that a fine texture is uniformly formed in the porous layer 3 as compared with the conventional one, and the other configuration is the same as the conventional one.
  • the solar cell 1 has a diffusion layer, an antireflection film, and a grid electrode sequentially formed on the light receiving surface side where the porous layer 3 is formed with respect to the p-type silicon substrate. An electric field layer and a back electrode are formed in this order.
  • the antireflection film is formed on the surface of the porous layer 3 in order to suppress light reflection.
  • the antireflection film is composed of, for example, a single layer structure of a titanium oxide (TiO 2 ) film or a silicon nitride (SiN) film formed by a chemical vapor deposition (CVD) method or the like.
  • the concentration is mass%.
  • step SP1 the silicon substrate 2 is immersed in a first aqueous solution in which a strong acid and a metal are mixed, and the metal ions 5 are adhered to the surface of the silicon substrate 2 by electroless plating (FIG. 3A). Since the first aqueous solution contains a strong acid and is acidic, the metal easily becomes the metal ion 5. The metal ions 5 do not aggregate due to the repulsive force of the potential, and the dispersibility is improved.
  • the strong acid for example, hydrofluoric acid, hydrochloric acid, sulfuric acid and the like can be used.
  • Ag can be applied as the metal.
  • the first aqueous solution can be generated using AgNO 3 as the metal-containing agent.
  • the electroless plating conditions can be, for example, an immersion time of 300 seconds and a temperature of the first aqueous solution of 26 degrees.
  • the silicon substrate 2 has a natural oxide film removed beforehand.
  • the method for removing the natural oxide film on the silicon substrate 2 is not particularly limited, and for example, a sputtering method, a plasma method, or the like can be used.
  • the silicon substrate 2 is immersed in the first aqueous solution containing metal ions, and the silicon substrate 2 Metal ions were allowed to adhere to the surface.
  • the metal ions can be uniformly attached to the surface of the silicon substrate 2 as compared with the conventional case where the metal ions are attached and etched simultaneously.
  • the silicon substrate 2 is immersed in a first aqueous solution containing a strong acid and metal ions, and the metal ions 5 are attached to the surface of the silicon substrate 2. did. Thereby, the dispersibility of the metal ions 5 can be improved, and the metal ions 5 can be more uniformly attached to the surface of the silicon substrate 2.
  • the metal ions 5 are well dispersed in the first aqueous solution, the metal ions 5 adhere more reliably to the surface of the silicon substrate 2. Therefore, the metal ions 5 have a large bonding force with the surface of the silicon substrate 2 and can be prevented from being lost due to water washing or the like.
  • the amount of metal ions 5 attached can be controlled. Therefore, by managing the concentration of the metal ions 5 to be introduced into the first aqueous solution, the metal ions 5 can be uniformly attached within the surface of one silicon substrate 2.
  • step SP2 water washing is performed in step SP2, and in step SP3, the silicon substrate 2 is immersed in a second aqueous solution containing hydrofluoric acid and hydrogen peroxide water.
  • the hydrogen reduction reaction of the hydrogen peroxide solution by the catalytic action of the metal ions 5 attached to the surface proceeds.
  • electrons are extracted from the surface of the silicon substrate 2 in contact with the metal ions 5 in order to compensate for the increase in the amount of electron consumption.
  • holes are generated in the silicon substrate 2 and cause oxidative dissolution of the silicon substrate 2.
  • the porous layer 3 is formed by the holes 6 and portions where the holes 6 are not formed (convex) (FIG. 3B).
  • the second aqueous solution is only intended to form the porous layer 3 on the surface of the silicon substrate 2 by etching, and is not intended to attach the metal ions 5 to the surface of the silicon substrate 2. Does not contain.
  • the concentration of the hydrogen peroxide solution in the second aqueous solution is preferably suppressed to a concentration that does not suppress the etching of the metal ions 5 in order to form the porous layer 3 more reliably.
  • the concentration of the hydrogen peroxide solution is preferably 25 to 50% with respect to the concentration of hydrofluoric acid. Since the hydrogen peroxide solution has a stronger ability to take electrons from the silicon substrate than the metal ions, if the concentration of the hydrogen peroxide solution is higher than 50%, the etching rate by the hydrogen peroxide solution is higher than the etching rate by the catalytic action of the metal ions. As a result, the entire surface of the silicon substrate is oxidized and becomes a mirror surface, and the porous layer is not formed. Further, when the concentration with respect to hydrofluoric acid is outside the above range, that is, when the concentration with respect to hydrofluoric acid is higher than 50%, and when the concentration with respect to hydrofluoric acid is less than 25%, The reflectance cannot be reduced.
  • the silicon substrate 2 is immersed in a second aqueous solution containing hydrofluoric acid and hydrogen peroxide solution, and the catalytic reaction of the metal ions 5 is performed.
  • the porous layer 3 was formed on the surface of the silicon substrate 2.
  • the silicon substrate 2 is immersed in a second aqueous solution in which the concentrations of hydrofluoric acid and hydrogen peroxide water are controlled for a predetermined time, and porous on the surface of the silicon substrate 2. Since the layer 3 is formed, the texture can be more uniformly formed on the surface of the silicon substrate 2.
  • the second aqueous solution that forms the porous layer 3 deteriorates in proportion to the number of processed silicon substrates 2 and needs to be replaced.
  • the second aqueous solution contains metal ions 5. Since it is a separate body from the first aqueous solution, it is not necessary to discard the metal ions 5 as in the prior art, so that the management of the aqueous solution can be simplified.
  • step SP4 water washing is performed, and in step SP5, the silicon substrate 2 is immersed in a third aqueous solution containing hydrofluoric acid and nitric acid and etched (FIG. 3C).
  • a third aqueous solution containing hydrofluoric acid and nitric acid and etched FIGG. 3C
  • the silicon substrate 2 which has the porous membrane 3A which has a bigger hole can be obtained (FIG. 3D).
  • the immersion time can be 240 seconds to 360 seconds.
  • step SP6 the substrate is washed with water, and then the silicon substrate 2 is immersed in an alkaline chemical solution to remove the stain film (step SP7).
  • the stain film is a black-brown film formed on the surface of the silicon substrate 2 by etching.
  • the silicon substrate 2 provided with the porous layer 3A according to the present embodiment can be obtained by washing with water (step SP8).
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
  • an acid capable of removing the natural oxide film as the strong acid for example, hydrofluoric acid
  • the metal ions 5 can be attached while removing the natural oxide film.
  • a p-type silicon substrate is used as the silicon substrate 2.
  • Hydrofluoric acid as a strong acid and AgNO 3 as a metal-containing agent were mixed to prepare a first aqueous solution.
  • the silicon substrate 2 was immersed in a first aqueous solution, and the metal ions 5 were attached to the surface of the silicon substrate 2 by electroless plating.
  • the plating conditions in this case were an immersion time of 300 seconds and a temperature of the second aqueous solution of 26 degrees. Further, the second aqueous solution was allowed to flow around the silicon substrate 2 by the pump circulator.
  • FIG. 4A shows an SEM image (Scanning Electron Microscope) of the surface of the silicon substrate 2 on which the porous layer 3 is thus formed.
  • the porous layer 3 can be more uniformly formed on the surface of the silicon substrate 2.
  • the formed silicon substrate 2 was immersed and etched. An SEM image of the surface of the silicon substrate 2 etched in this manner is shown in FIG. 4B.
  • the porous layer 3A having larger pores on the surface of the silicon substrate 2 can be formed more uniformly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Weting (AREA)
  • Photovoltaic Devices (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

Provided is a method for manufacturing a solar cell, which is capable of providing the surface of a silicon substrate with more uniform texture. A method for producing a solar cell (1), wherein a porous layer (3) is formed on the surface of a silicon substrate (2) by etching using metal ions (5), is characterized by comprising: a step wherein the silicon substrate (2) is immersed in a first aqueous solution containing a strong acid and the metal ions (5), and the metal ions (5) are caused to adhere to the surface of the silicon substrate (2) by electroless plating; and a step wherein the silicon substrate (2), to the surface of which the metal ions (5) have been caused to adhere, is immersed in a second aqueous solution containing hydrofluoric acid and hydrogen peroxide solution, and the porous layer (3) is formed on the surface of the silicon substrate (2) by a catalytic reaction of the metal ions (5).

Description

太陽電池の製造方法Manufacturing method of solar cell
 本発明は、太陽電池の製造方法に関し、特にシリコン基板の表面に多孔質層を形成する方法に関するものである。 The present invention relates to a method for manufacturing a solar cell, and more particularly to a method for forming a porous layer on the surface of a silicon substrate.
 石炭や石油などの代替エネルギーとして、クリーン、かつ無尽蔵なエネルギー源として太陽光が注目されており、当該太陽光の光エネルギーを電気エネルギーに変換する太陽電池の普及が一層期待されている。 As an alternative energy source such as coal and oil, sunlight is attracting attention as a clean and inexhaustible energy source, and the spread of solar cells that convert the light energy of the sunlight into electrical energy is further expected.
 太陽電池の表面には、太陽光を効果的に取り込む役割を有する微細な凹凸(以下、「テクスチャ」という。)が無数に形成されている。単結晶シリコンの場合、アルカリ液を用いてSi(100)面をエッチングすることにより、容易にピラミッド構造のテクスチャを得ることができる。一方、多結晶シリコンの場合は、シリコン基板表面に種々の結晶方位が出現しているため、単結晶シリコンのようにシリコン基板表面全体に均一なテクスチャを形成することは難しい。 An infinite number of fine irregularities (hereinafter referred to as “textures”) having a role of effectively taking in sunlight are formed on the surface of the solar cell. In the case of single crystal silicon, the texture of the pyramid structure can be easily obtained by etching the Si (100) surface using an alkaline solution. On the other hand, in the case of polycrystalline silicon, since various crystal orientations appear on the surface of the silicon substrate, it is difficult to form a uniform texture on the entire surface of the silicon substrate like single crystal silicon.
 多結晶シリコンからなるシリコン基板表面にテクスチャを形成する方法として、金属イオンを含有する、酸化剤とフッ化水素酸の混合水溶液に、シリコン基板を浸すことにより、シリコン基板の表面に多孔質層を形成する方法(例えば、特許文献1)が開示されている。また、金属イオンを含有する酸化剤とフッ化水素酸の混合水溶液にシリコン基板を浸漬して当該シリコン基板表面に多孔質層を形成する第一工程と、前記第一工程を経たシリコン基板表面をフッ化水素酸及び硝酸を主とした混酸に浸漬してエッチングしてテクスチャを形成する第2工程とを備える方法(例えば、特許文献2)が開示されている。 As a method of forming a texture on the surface of a silicon substrate made of polycrystalline silicon, a porous layer is formed on the surface of the silicon substrate by immersing the silicon substrate in a mixed aqueous solution of an oxidant and hydrofluoric acid containing metal ions. A forming method (for example, Patent Document 1) is disclosed. A first step of immersing the silicon substrate in a mixed aqueous solution of an oxidant containing metal ions and hydrofluoric acid to form a porous layer on the surface of the silicon substrate; and the silicon substrate surface that has undergone the first step. And a second step of forming a texture by dipping in a mixed acid mainly composed of hydrofluoric acid and nitric acid to form a texture (for example, Patent Document 2) is disclosed.
 上記特許文献2によると、上記特許文献1の方法により形成したテクスチャを有するシリコン基板は、反射率が低いもののシリコン基板表面が変色し、結果として太陽電池の特性が大幅に劣化するという問題がある。これに対し、上記特許文献2の方法では、上記特許文献1と同様の工程を経たシリコン基板表面をフッ化水素酸及び硝酸を主とした混酸に浸漬してエッチングしてテクスチャを形成することにより、反射率の低減効果を残したまま清浄なシリコン面が得られるとともに、孔の底の金属をも除去できるので、特性の高い太陽電池を製造することができるという効果が得られると、上記特許文献2に記載されている。 According to Patent Document 2, the silicon substrate having a texture formed by the method of Patent Document 1 has a problem that the surface of the silicon substrate is discolored although the reflectance is low, and as a result, the characteristics of the solar cell are greatly deteriorated. . On the other hand, in the method of Patent Document 2, the surface of the silicon substrate that has undergone the same process as in Patent Document 1 is immersed in a mixed acid mainly composed of hydrofluoric acid and nitric acid to form a texture. In addition, a clean silicon surface can be obtained while maintaining the effect of reducing the reflectance, and the metal at the bottom of the hole can be removed. It is described in Document 2.
特許第3925867号公報Japanese Patent No. 3925867 特許第4610669号公報Japanese Patent No. 4610669
 しかしながら、上記特許文献1及び2では、いずれも金属イオンを含有する酸化剤とフッ化水素酸の混合水溶液にシリコン基板を浸すことにより、当該シリコン基板表面において金属イオンの付着とエッチングとが同時進行するので、金属イオンの付着量とエッチング量とを同時に管理することが困難である。金属イオンの付着量のバラツキは、エッチングにより形成される孔の密度のバラツキの原因となる。また、エッチング量のバラツキは、エッチングにより形成される孔の大きさのバラツキの原因となる。金属イオンの付着量とエッチング量のバラツキは、シリコン基板表面全体において生じるだけでなく、同じ混合水溶液を使用した複数のシリコン基板間でも、混合水溶液の劣化により生じてしまう。したがって、金属イオンの付着量とエッチング量のバラツキが生じることにより、上記特許文献1及び2では、シリコン基板表面に大きさや密度が均一なテクスチャを形成することが困難であるという問題があった。 However, in both of Patent Documents 1 and 2, by immersing a silicon substrate in a mixed aqueous solution of an oxidant containing metal ions and hydrofluoric acid, adhesion of metal ions and etching proceed simultaneously on the silicon substrate surface. Therefore, it is difficult to simultaneously manage the adhesion amount of metal ions and the etching amount. The variation in the adhesion amount of metal ions causes variation in the density of holes formed by etching. Moreover, the variation in the etching amount causes the variation in the size of the hole formed by the etching. Variations in the adhesion amount and etching amount of metal ions not only occur on the entire surface of the silicon substrate, but also occur between a plurality of silicon substrates using the same mixed aqueous solution due to deterioration of the mixed aqueous solution. Therefore, due to variations in the amount of metal ions attached and the amount of etching, Patent Documents 1 and 2 have a problem that it is difficult to form a texture having a uniform size and density on the surface of the silicon substrate.
 そこで、本発明は、シリコン基板表面にテクスチャをより均一に形成することができる太陽電池の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for manufacturing a solar cell capable of more uniformly forming a texture on the surface of a silicon substrate.
 本発明に係る太陽電池の製造方法は、金属イオンを用いたエッチングによりシリコン基板の表面に多孔質層を形成する太陽電池の製造方法において、強酸及び金属イオンを含有する第1の水溶液に前記シリコン基板を浸漬し、無電解めっきにより前記金属イオンを前記シリコン基板表面に付着させるステップと、フッ化水素酸と過酸化水素水とを含有する第2の水溶液に、前記金属イオンを表面に付着させた前記シリコン基板を浸漬し、前記金属イオンの触媒反応により前記シリコン基板表面に前記多孔質層を形成するステップと
を備えることを特徴とする。
The method for manufacturing a solar cell according to the present invention is the method for manufacturing a solar cell in which a porous layer is formed on the surface of a silicon substrate by etching using metal ions, wherein the silicon is added to the first aqueous solution containing a strong acid and metal ions. A step of immersing the substrate and attaching the metal ions to the surface of the silicon substrate by electroless plating; and attaching the metal ions to the surface in a second aqueous solution containing hydrofluoric acid and hydrogen peroxide. And dipping the silicon substrate and forming the porous layer on the surface of the silicon substrate by a catalytic reaction of the metal ions.
 本発明によれば、強酸と金属イオンとを含有する第1の水溶液にシリコン基板を浸漬し、前記金属イオンを前記シリコン基板表面に付着させることにより、金属イオンの分散性を向上し、金属イオンをシリコン基板表面により均一に付着させることができる。 According to the present invention, the dispersibility of metal ions is improved by immersing a silicon substrate in a first aqueous solution containing a strong acid and metal ions, and attaching the metal ions to the surface of the silicon substrate. Can be more uniformly attached to the surface of the silicon substrate.
本実施形態に係る太陽電池の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the solar cell which concerns on this embodiment. 本実施形態に係る太陽電池の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the solar cell which concerns on this embodiment. 本実施形態に係る太陽電池の製造方法を段階的に示す断面図であり、図3Aは金属イオンが付着した状態、図3Bは多孔質層を形成した状態、図3Cはエッチングをしている段階、図3Dは金属イオンが除去された状態を示す図である。FIG. 3A is a cross-sectional view showing a method for manufacturing a solar cell according to the present embodiment step by step, FIG. 3A is a state in which metal ions are attached, FIG. 3B is a state in which a porous layer is formed, and FIG. FIG. 3D is a diagram illustrating a state where metal ions are removed. 本実施形態に係る製造方法において製造したシリコン基板表面のSEM画像であり、図4Aは多孔質層を形成した状態、図4Bはフッ硝酸を主体とした混酸で多孔質層をエッチングした状態を示す図である。4A and 4B are SEM images of the surface of a silicon substrate manufactured by the manufacturing method according to the present embodiment, in which FIG. 4A shows a state in which a porous layer is formed, and FIG. 4B shows a state in which the porous layer is etched with a mixed acid mainly containing hydrofluoric acid. FIG.
 以下、図面を参照して本発明に係る実施形態について詳細に説明する。図1に示す太陽電池1は、光電変換を行うシリコン基板2と、当該シリコン基板2表面をテクスチャ形状に加工した多孔質層3とを備え、多孔質層3が形成された受光面から入射した光をシリコン基板2において電気エネルギーに変換する。多孔質層3は、シリコン基板2表面に入射した光が透過・反射を繰り返し、その結果、平坦なシリコン基板表面に比べより多くの光をシリコン基板2内に導く。多孔質層3に形成された微細なテクスチャは、高さや密度が均一である方が不均一であるよりも入射した光を効率的に閉じ込められることが一般に知られている。なお、テクスチャの高さとは凹凸の高低差をいい、密度は単位面積当たりの凹または凸の数をいう。本実施形態に係る太陽電池1は、多孔質層3に微細なテクスチャが従来に比べ均一に形成されている点が特徴的であって、その他は従来と同じ構成である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. A solar cell 1 shown in FIG. 1 includes a silicon substrate 2 that performs photoelectric conversion and a porous layer 3 in which the surface of the silicon substrate 2 is processed into a textured shape, and is incident from a light receiving surface on which the porous layer 3 is formed. Light is converted into electrical energy in the silicon substrate 2. In the porous layer 3, light incident on the surface of the silicon substrate 2 is repeatedly transmitted and reflected, and as a result, more light is guided into the silicon substrate 2 than on the flat silicon substrate surface. It is generally known that the fine texture formed in the porous layer 3 can efficiently confine incident light when the height and density are uniform rather than nonuniform. Note that the texture height refers to the difference in level of the unevenness, and the density refers to the number of concaves or convexes per unit area. The solar cell 1 according to the present embodiment is characterized in that a fine texture is uniformly formed in the porous layer 3 as compared with the conventional one, and the other configuration is the same as the conventional one.
 実際上、太陽電池1は、図示しないが、p型シリコン基板に対し、多孔質層3を形成する受光面側に拡散層、反射防止膜、グリッド電極が順に形成されており、裏面側に裏面電界層、裏面電極が順に形成されている。反射防止膜は、光の反射を抑制するために、多孔質層3の表面に形成されている。反射防止膜は、例えば、化学気相成長(CVD:Chemical Vapor Deposition)法などで形成される酸化チタン(TiO2)膜や窒化シリコン(SiN)膜の単層構造の膜で構成される。 Actually, although not shown, the solar cell 1 has a diffusion layer, an antireflection film, and a grid electrode sequentially formed on the light receiving surface side where the porous layer 3 is formed with respect to the p-type silicon substrate. An electric field layer and a back electrode are formed in this order. The antireflection film is formed on the surface of the porous layer 3 in order to suppress light reflection. The antireflection film is composed of, for example, a single layer structure of a titanium oxide (TiO 2 ) film or a silicon nitride (SiN) film formed by a chemical vapor deposition (CVD) method or the like.
 次に多孔質層3の形成方法について図2を参照して説明する。以下の記載において、濃度は質量%である。 Next, a method for forming the porous layer 3 will be described with reference to FIG. In the following description, the concentration is mass%.
 まず、ステップSP1において強酸と金属とを混合した第1の水溶液にシリコン基板2を浸漬し、無電解めっきにより前記金属イオン5を前記シリコン基板2表面に付着させる(図3A)。第1水溶液は、強酸を含有するので酸性であるため、金属が容易に金属イオン5になる。金属イオン5同士は、電位の反発力によって、凝集せず、分散性が向上する。 First, in step SP1, the silicon substrate 2 is immersed in a first aqueous solution in which a strong acid and a metal are mixed, and the metal ions 5 are adhered to the surface of the silicon substrate 2 by electroless plating (FIG. 3A). Since the first aqueous solution contains a strong acid and is acidic, the metal easily becomes the metal ion 5. The metal ions 5 do not aggregate due to the repulsive force of the potential, and the dispersibility is improved.
 強酸は、例えばフッ化水素酸、塩酸、硫酸などを用いることができる。金属は、例えば、Agを適用することができる。金属としてAgを適用する場合、金属含有剤としてAgNOを用いて第1の水溶液を生成することができる。この場合の容量比は、HF(濃度50%):AgNO(濃度3E-4M):HO=400ml~4000ml:10ml~40ml:10000ml~20000mlである。無電解めっきの条件は、例えば、浸漬時間を300秒、第1の水溶液の温度を26度とすることができる。 As the strong acid, for example, hydrofluoric acid, hydrochloric acid, sulfuric acid and the like can be used. For example, Ag can be applied as the metal. When Ag is applied as the metal, the first aqueous solution can be generated using AgNO 3 as the metal-containing agent. The volume ratio in this case is HF (concentration 50%): AgNO 3 (concentration 3E-4M): H 2 O = 400 ml to 4000 ml: 10 ml to 40 ml: 10000 ml to 20000 ml. The electroless plating conditions can be, for example, an immersion time of 300 seconds and a temperature of the first aqueous solution of 26 degrees.
 シリコン基板2は、予め自然酸化膜が除去されている。シリコン基板2の自然酸化膜を除去する方法は特に限定されず、例えば、スパッタ法、プラズマ法などを用いることができる。 The silicon substrate 2 has a natural oxide film removed beforehand. The method for removing the natural oxide film on the silicon substrate 2 is not particularly limited, and for example, a sputtering method, a plasma method, or the like can be used.
 上記したように、本実施形態に係る太陽電池1の製造方法では、エッチングによる多孔質層3の形成に先立ち、金属イオンを含有する第1の水溶液にシリコン基板2を浸漬し、当該シリコン基板2表面に金属イオンを付着させることとした。これにより、金属イオンの付着とエッチングとを同時に行う従来に比べ、金属イオンを均一にシリコン基板2表面に付着させることができる。 As described above, in the method for manufacturing the solar cell 1 according to this embodiment, prior to the formation of the porous layer 3 by etching, the silicon substrate 2 is immersed in the first aqueous solution containing metal ions, and the silicon substrate 2 Metal ions were allowed to adhere to the surface. As a result, the metal ions can be uniformly attached to the surface of the silicon substrate 2 as compared with the conventional case where the metal ions are attached and etched simultaneously.
 また、本実施形態に係る太陽電池1の製造方法では、強酸と金属イオンとを含有する第1の水溶液にシリコン基板2を浸漬し、前記金属イオン5を前記シリコン基板2表面に付着させることとした。これにより、金属イオン5の分散性を向上し、金属イオン5をシリコン基板2表面により均一に付着させることができる。 Moreover, in the manufacturing method of the solar cell 1 according to the present embodiment, the silicon substrate 2 is immersed in a first aqueous solution containing a strong acid and metal ions, and the metal ions 5 are attached to the surface of the silicon substrate 2. did. Thereby, the dispersibility of the metal ions 5 can be improved, and the metal ions 5 can be more uniformly attached to the surface of the silicon substrate 2.
 また金属イオン5は、第1の水溶液において良好に分散するので、より確実にシリコン基板2表面に付着する。したがって金属イオン5は、シリコン基板2表面との間の結合力が大きく、水洗浄などによる欠落を防止することができる。 Further, since the metal ions 5 are well dispersed in the first aqueous solution, the metal ions 5 adhere more reliably to the surface of the silicon substrate 2. Therefore, the metal ions 5 have a large bonding force with the surface of the silicon substrate 2 and can be prevented from being lost due to water washing or the like.
 また、金属イオン濃度と、シリコン基板2表面に対する金属イオン5の付着量との相関関係を予め把握しておくことで、金属イオン5の付着量を制御することができる。したがって、第1の水溶液に投入する金属イオン5の濃度を管理することにより、一つのシリコン基板2表面内に金属イオン5を均一に付着させることができる。 Further, by knowing in advance the correlation between the metal ion concentration and the amount of metal ions 5 attached to the surface of the silicon substrate 2, the amount of metal ions 5 attached can be controlled. Therefore, by managing the concentration of the metal ions 5 to be introduced into the first aqueous solution, the metal ions 5 can be uniformly attached within the surface of one silicon substrate 2.
 次いでステップSP2において水洗浄をし、ステップSP3において、フッ化水素酸と過酸化水素水を含有する第2の水溶液に前記シリコン基板2を浸漬する。シリコン基板2では、表面に付着した前記金属イオン5の触媒作用による過酸化水素水の水素還元反応が進む。そうすると、電子消費量の増加分を補うため金属イオン5に接するシリコン基板2表面から電子が引き抜かれる。この結果、シリコン基板2に正孔が生成され、シリコン基板2の酸化的溶解を引き起こすことになる。 Next, water washing is performed in step SP2, and in step SP3, the silicon substrate 2 is immersed in a second aqueous solution containing hydrofluoric acid and hydrogen peroxide water. In the silicon substrate 2, the hydrogen reduction reaction of the hydrogen peroxide solution by the catalytic action of the metal ions 5 attached to the surface proceeds. Then, electrons are extracted from the surface of the silicon substrate 2 in contact with the metal ions 5 in order to compensate for the increase in the amount of electron consumption. As a result, holes are generated in the silicon substrate 2 and cause oxidative dissolution of the silicon substrate 2.
 このようにして前記シリコン基板2表面に孔(凹)6が無数に形成され、孔6と孔6が形成されていない部分(凸)とで多孔質層3が形成される(図3B)。この場合の第2の水溶液の容量比はHF(濃度50%):H(濃度30%):HO=400ml~4000ml:400ml~2000ml:10000ml~20000mlである。シリコン基板2の浸漬時間を制御することにより、多孔質層3を構成する孔6の大きさを制御する。例えば、孔6が大きいと、孔6が形成されていない部分との高低差が大きくなるので、テクスチャの高さが大きくなる。なお、第2の水溶液は、エッチングによりシリコン基板2表面に多孔質層3を形成することのみを目的としており、シリコン基板2表面に金属イオン5を付着させることを目的としていないため、金属イオン5を含有しない。 In this way, an infinite number of holes (concaves) 6 are formed on the surface of the silicon substrate 2, and the porous layer 3 is formed by the holes 6 and portions where the holes 6 are not formed (convex) (FIG. 3B). In this case, the volume ratio of the second aqueous solution is HF (concentration 50%): H 2 O 2 (concentration 30%): H 2 O = 400 ml to 4000 ml: 400 ml to 2000 ml: 10000 ml to 20000 ml. By controlling the immersion time of the silicon substrate 2, the size of the holes 6 constituting the porous layer 3 is controlled. For example, if the hole 6 is large, the difference in height from the portion where the hole 6 is not formed becomes large, and thus the height of the texture becomes large. Note that the second aqueous solution is only intended to form the porous layer 3 on the surface of the silicon substrate 2 by etching, and is not intended to attach the metal ions 5 to the surface of the silicon substrate 2. Does not contain.
 第2の水溶液における過酸化水素水の濃度は、より確実に多孔質層3を形成するため、金属イオン5のエッチングを抑制しない程度の濃度に抑えることが好ましい。具体的には、過酸化水素水の濃度は、フッ化水素酸の濃度に対し、25~50%であるのが好ましい。過酸化水素水は、金属イオンよりシリコン基板から電子を奪う力が強いので、過酸化水素水の濃度が50%より高いと、金属イオンの触媒作用によるエッチング速度より過酸化水素水によるエッチング速度の方が早くなり、シリコン基板の表面全体が酸化されて鏡面になってしまい、多孔質層が形成されなくなってしまう。また、過酸化水素水は、フッ化水素酸に対する濃度が上記範囲外の場合、すなわちフッ化水素酸に対する濃度が50%より高い場合、及びフッ化水素酸に対する濃度が25%より小さい場合には、反射率を低下させることができない。 The concentration of the hydrogen peroxide solution in the second aqueous solution is preferably suppressed to a concentration that does not suppress the etching of the metal ions 5 in order to form the porous layer 3 more reliably. Specifically, the concentration of the hydrogen peroxide solution is preferably 25 to 50% with respect to the concentration of hydrofluoric acid. Since the hydrogen peroxide solution has a stronger ability to take electrons from the silicon substrate than the metal ions, if the concentration of the hydrogen peroxide solution is higher than 50%, the etching rate by the hydrogen peroxide solution is higher than the etching rate by the catalytic action of the metal ions. As a result, the entire surface of the silicon substrate is oxidized and becomes a mirror surface, and the porous layer is not formed. Further, when the concentration with respect to hydrofluoric acid is outside the above range, that is, when the concentration with respect to hydrofluoric acid is higher than 50%, and when the concentration with respect to hydrofluoric acid is less than 25%, The reflectance cannot be reduced.
 本実施形態では、シリコン基板2表面に金属イオン5を付着させた後、フッ化水素酸と過酸化水素水を含有する第2水溶液に前記シリコン基板2を浸漬し、前記金属イオン5の触媒反応により前記シリコン基板2表面に多孔質層3を形成することとした。このように、シリコン基板2の浸漬時間及びフッ化水素酸と過酸化水素水の比率を制御することにより、触媒反応により形成される孔の大きさを制御することができる。したがって、本実施形態では、シリコン基板2表面により均一な高さのテクスチャを形成することができる。 In this embodiment, after the metal ions 5 are attached to the surface of the silicon substrate 2, the silicon substrate 2 is immersed in a second aqueous solution containing hydrofluoric acid and hydrogen peroxide solution, and the catalytic reaction of the metal ions 5 is performed. Thus, the porous layer 3 was formed on the surface of the silicon substrate 2. In this way, by controlling the immersion time of the silicon substrate 2 and the ratio of hydrofluoric acid and hydrogen peroxide solution, the size of the holes formed by the catalytic reaction can be controlled. Therefore, in the present embodiment, a texture having a uniform height can be formed on the surface of the silicon substrate 2.
 金属イオン5をシリコン基板2表面に付着させた後、フッ化水素酸と過酸化水素水の濃度を管理した第2の水溶液に前記シリコン基板2を所定時間浸漬し、シリコン基板2表面に多孔質層3を形成することとしたから、シリコン基板2表面にテクスチャをより均一に形成することができる。 After the metal ions 5 are attached to the surface of the silicon substrate 2, the silicon substrate 2 is immersed in a second aqueous solution in which the concentrations of hydrofluoric acid and hydrogen peroxide water are controlled for a predetermined time, and porous on the surface of the silicon substrate 2. Since the layer 3 is formed, the texture can be more uniformly formed on the surface of the silicon substrate 2.
 多孔質層3を形成する第2の水溶液は、シリコン基板2の加工数に比例して劣化するので交換する必要があるが、本実施形態の場合、第2の水溶液が金属イオン5を含有する第1の水溶液と別体であるから、従来のように金属イオン5を廃棄する必要がないので、水溶液の管理を簡略化することができる。 The second aqueous solution that forms the porous layer 3 deteriorates in proportion to the number of processed silicon substrates 2 and needs to be replaced. However, in this embodiment, the second aqueous solution contains metal ions 5. Since it is a separate body from the first aqueous solution, it is not necessary to discard the metal ions 5 as in the prior art, so that the management of the aqueous solution can be simplified.
 なお、上記ステップSP3の後に下記のステップを追加することとしてもよい。すなわち、ステップSP4において、水洗浄をし、ステップSP5でフッ化水素酸と硝酸とを含有する第3の水溶液に前記シリコン基板2を浸漬し、エッチングする(図3C)。これにより、本実施形態では、金属イオン5を除去すると共に、より大きい孔を有する多孔質膜3Aを有するシリコン基板2を得ることができる(図3D)。この場合、第3の水溶液の容量比は、HF(濃度50%):HNO(濃度69%):HO=100ml~500ml:600ml~3000ml:10000ml~50000mlである。浸漬時間は、240秒~360秒とすることができる。 The following steps may be added after step SP3. That is, in step SP4, water washing is performed, and in step SP5, the silicon substrate 2 is immersed in a third aqueous solution containing hydrofluoric acid and nitric acid and etched (FIG. 3C). Thereby, in this embodiment, while removing the metal ion 5, the silicon substrate 2 which has the porous membrane 3A which has a bigger hole can be obtained (FIG. 3D). In this case, the volume ratio of the third aqueous solution is HF (concentration 50%): HNO 3 (concentration 69%): H 2 O = 100 ml to 500 ml: 600 ml to 3000 ml: 10000 ml to 50000 ml. The immersion time can be 240 seconds to 360 seconds.
 次にステップSP6において、水洗浄をし、次いでアルカリ薬液に前記シリコン基板2を浸漬し、ステイン膜を除去する(ステップSP7)。ステイン膜とは、エッチングによりシリコン基板2表面に形成される黒褐色の膜をいう。最後に水洗浄することにより、本実施形態に係る多孔質層3Aを備えたシリコン基板2を得ることができる(ステップSP8)。 Next, in step SP6, the substrate is washed with water, and then the silicon substrate 2 is immersed in an alkaline chemical solution to remove the stain film (step SP7). The stain film is a black-brown film formed on the surface of the silicon substrate 2 by etching. Finally, the silicon substrate 2 provided with the porous layer 3A according to the present embodiment can be obtained by washing with water (step SP8).
(変形例)
 本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。例えば、ステップSP1において強酸として自然酸化膜を除去可能な酸、例えばフッ化水素酸を用いることにより、自然酸化膜を除去しながら金属イオン5を付着させることができる。この場合、予め自然酸化膜が除去されたシリコン基板を用いる必要もなく、自然酸化膜を有するシリコン基板を用いることができる。
(Modification)
The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention. For example, by using an acid capable of removing the natural oxide film as the strong acid, for example, hydrofluoric acid, in step SP1, the metal ions 5 can be attached while removing the natural oxide film. In this case, it is not necessary to use a silicon substrate from which a natural oxide film has been removed in advance, and a silicon substrate having a natural oxide film can be used.
(実施例)
 次に、上記実施形態に係る太陽電池1の製造方法の実施例について説明する。本実施例ではシリコン基板2にp型シリコン基板を用いた。強酸としてフッ化水素酸と、金属含有剤としてAgNOとを混合して第1の水溶液を作製した。容量比は、HF(濃度50%):AgNO(濃度3E-4M):HO=1000ml:40ml:10000mlに調整した。第1の水溶液に前記シリコン基板2を立てた状態で浸漬し、無電解めっきにより前記金属イオン5を前記シリコン基板2表面に付着させた。この場合のめっき条件は、浸漬時間を300秒、第2の水溶液の温度を26度とした。また、ポンプ循環器によりシリコン基板2の周囲を第2の水溶液が流動するようにした。
(Example)
Next, examples of the method for manufacturing the solar cell 1 according to the above embodiment will be described. In this embodiment, a p-type silicon substrate is used as the silicon substrate 2. Hydrofluoric acid as a strong acid and AgNO 3 as a metal-containing agent were mixed to prepare a first aqueous solution. The volume ratio was adjusted to HF (concentration 50%): AgNO 3 (concentration 3E-4M): H 2 O = 1000 ml: 40 ml: 10000 ml. The silicon substrate 2 was immersed in a first aqueous solution, and the metal ions 5 were attached to the surface of the silicon substrate 2 by electroless plating. The plating conditions in this case were an immersion time of 300 seconds and a temperature of the second aqueous solution of 26 degrees. Further, the second aqueous solution was allowed to flow around the silicon substrate 2 by the pump circulator.
 次いで、フッ化水素酸と過酸化水素水の容量比をHF(濃度50%):H(濃度30%):HO=1200ml:600ml:10000mlに調整した第2の水溶液に前記シリコン基板2を浸漬し、前記金属イオン5の触媒反応により前記シリコン基板2表面に多孔質層3を形成した。このようにして多孔質層3が形成されたシリコン基板2表面のSEM画像(Scanning Electron Microscope)を図4Aに示す。本図から明らかなように、本実施例に係る太陽電池1の製造方法によれば、シリコン基板2表面に多孔質層3をより均一に形成することができる。 Subsequently, the second aqueous solution in which the volume ratio of hydrofluoric acid and hydrogen peroxide water was adjusted to HF (concentration 50%): H 2 O 2 (concentration 30%): H 2 O = 1200 ml: 600 ml: 10000 ml The silicon substrate 2 was immersed, and the porous layer 3 was formed on the surface of the silicon substrate 2 by the catalytic reaction of the metal ions 5. FIG. 4A shows an SEM image (Scanning Electron Microscope) of the surface of the silicon substrate 2 on which the porous layer 3 is thus formed. As is clear from this figure, according to the method for manufacturing the solar cell 1 according to this example, the porous layer 3 can be more uniformly formed on the surface of the silicon substrate 2.
 次いで、フッ化水素酸と硝酸の容量比を、HF(濃度50%):HNO(濃度69%):HO=400ml:3000ml:6000mlに調整した第3の水溶液に多孔質層3を形成したシリコン基板2を浸漬し、エッチングした。このようにしてエッチングされたシリコン基板2表面のSEM画像を図4Bに示す。本図からも明らかなように、本実施例に係る太陽電池1の製造方法によれば、シリコン基板2表面により大きい孔を有する多孔質層3Aをより均一に形成することができる。 Next, the porous layer 3 was added to a third aqueous solution in which the volume ratio of hydrofluoric acid and nitric acid was adjusted to HF (concentration 50%): HNO 3 (concentration 69%): H 2 O = 400 ml: 3000 ml: 6000 ml. The formed silicon substrate 2 was immersed and etched. An SEM image of the surface of the silicon substrate 2 etched in this manner is shown in FIG. 4B. As is clear from this figure, according to the method for manufacturing the solar cell 1 according to this example, the porous layer 3A having larger pores on the surface of the silicon substrate 2 can be formed more uniformly.
1 太陽電池
2 シリコン基板
3 多孔質層
5 金属イオン
6 孔
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Silicon substrate 3 Porous layer 5 Metal ion 6 Hole

Claims (8)

  1. 金属イオンを用いたエッチングによりシリコン基板の表面に多孔質層を形成する太陽電池の製造方法において、
    強酸及び金属イオンを含有する第1の水溶液に前記シリコン基板を浸漬し、無電解めっきにより前記金属イオンを前記シリコン基板表面に付着させるステップと、
    フッ化水素酸と過酸化水素水とを含有する第2の水溶液に、前記金属イオンを表面に付着させた前記シリコン基板を浸漬し、前記金属イオンの触媒反応により前記シリコン基板表面に前記多孔質層を形成するステップと
    を備えることを特徴とする太陽電池の製造方法。
    In a method for manufacturing a solar cell in which a porous layer is formed on the surface of a silicon substrate by etching using metal ions,
    Immersing the silicon substrate in a first aqueous solution containing a strong acid and metal ions, and attaching the metal ions to the silicon substrate surface by electroless plating;
    The silicon substrate having the metal ions attached to the surface thereof is immersed in a second aqueous solution containing hydrofluoric acid and hydrogen peroxide, and the porous surface is formed on the surface of the silicon substrate by a catalytic reaction of the metal ions. And a step of forming a layer.
  2. 前記金属イオンを前記シリコン基板表面に付着させるステップにおいて、前記第1の水溶液に投入する金属の濃度に基づき、前記金属イオンの付着量を制御することを特徴とする請求項1記載の太陽電池の製造方法。 2. The solar cell according to claim 1, wherein in the step of attaching the metal ions to the surface of the silicon substrate, the adhesion amount of the metal ions is controlled based on a concentration of the metal put into the first aqueous solution. Production method.
  3. 前記第2の水溶液は、過酸化水素水の濃度がフッ化水素酸に対し25%~50%であることを特徴とする請求項1又は2に記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 1 or 2, wherein the second aqueous solution has a hydrogen peroxide concentration of 25% to 50% with respect to hydrofluoric acid.
  4. フッ化水素酸と硝酸とを含有する第3の水溶液に、前記多孔質層を形成した前記シリコン基板を浸漬し、エッチングするステップを備えることを特徴とする請求項1~3のうちいずれか1項に記載の太陽電池の製造方法。 4. The method according to claim 1, further comprising the step of immersing and etching the silicon substrate on which the porous layer is formed in a third aqueous solution containing hydrofluoric acid and nitric acid. The manufacturing method of the solar cell of description.
  5. さらにアルカリ薬液に前記シリコン基板を浸漬し、エッチングするステップを備えることを特徴とする請求項1~4のうちいずれか1項に記載の太陽電池の製造方法。 5. The method for manufacturing a solar cell according to claim 1, further comprising a step of immersing and etching the silicon substrate in an alkaline chemical solution.
  6. 前記シリコン基板表面に前記多孔質層を形成するステップにおいて、
    前記シリコン基板の浸漬時間、及び
    前記フッ化水素酸と前記過酸化水素水の比率
    を制御することにより、前記多孔質層を構成する孔の大きさを制御することを特徴とする請求項1~5のうちいずれか1項に記載の太陽電池の製造方法。
    In the step of forming the porous layer on the silicon substrate surface,
    The size of the pores constituting the porous layer is controlled by controlling the immersion time of the silicon substrate and the ratio of the hydrofluoric acid and the hydrogen peroxide solution. 5. The method for producing a solar cell according to claim 1.
  7. 前記金属イオンを前記シリコン基板表面に付着させるステップにおいて、前記金属イオンを含有する前記第2の水溶液を流動させながら、無電解めっきを行うことを特徴とする請求項1~6のうちいずれか1項に記載の太陽電池の製造方法。 The electroless plating is performed while flowing the second aqueous solution containing the metal ions in the step of attaching the metal ions to the silicon substrate surface. The manufacturing method of the solar cell of description.
  8. 前記第1の水溶液において前記強酸がフッ化水素酸であることを特徴とする請求項1~7のうちいずれか1項に記載の太陽電池の製造方法。 The method for producing a solar cell according to any one of claims 1 to 7, wherein the strong acid in the first aqueous solution is hydrofluoric acid.
PCT/JP2014/072695 2013-09-06 2014-08-29 Method for manufacturing solar cell WO2015033864A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103130074A TW201523898A (en) 2013-09-06 2014-09-01 Method for manufacturing solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013185543A JP2015053398A (en) 2013-09-06 2013-09-06 Manufacturing method of solar cell
JP2013-185543 2013-09-06

Publications (1)

Publication Number Publication Date
WO2015033864A1 true WO2015033864A1 (en) 2015-03-12

Family

ID=52628338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072695 WO2015033864A1 (en) 2013-09-06 2014-08-29 Method for manufacturing solar cell

Country Status (3)

Country Link
JP (1) JP2015053398A (en)
TW (1) TW201523898A (en)
WO (1) WO2015033864A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431100B (en) * 2015-03-31 2019-05-10 松下知识产权经营株式会社 Solar cell device, solar cell module and manufacturing method
CN104993019A (en) * 2015-07-09 2015-10-21 苏州阿特斯阳光电力科技有限公司 Preparation method of localized back contact solar cell
TWI596788B (en) * 2015-11-10 2017-08-21 財團法人工業技術研究院 Bifacial photovoltaic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003105209A1 (en) * 2002-06-06 2003-12-18 関西ティー・エル・オー株式会社 Method for producing polycrystalline silicon substrate for solar cell
JP2013093537A (en) * 2011-10-07 2013-05-16 Jet Co Ltd Manufacturing method of solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003105209A1 (en) * 2002-06-06 2003-12-18 関西ティー・エル・オー株式会社 Method for producing polycrystalline silicon substrate for solar cell
JP2013093537A (en) * 2011-10-07 2013-05-16 Jet Co Ltd Manufacturing method of solar cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAZUYA TSUJINO: "Wet Etching for Fabricating Low Reflective Textured Surface on Crystalline Silicon Wafers for Solar Cells", THE JOURNAL OF THE SURFACE FINISHING SOCIETY OF JAPAN, vol. 56, no. 12, 2005, pages 843 - 846 *
S.K.SRIVASTAVA, SOLAR ENERGY MATERIALS AND SOLAR CELLS, vol. 100, 20 May 2011 (2011-05-20), pages 33 - 38 *

Also Published As

Publication number Publication date
JP2015053398A (en) 2015-03-19
TW201523898A (en) 2015-06-16

Similar Documents

Publication Publication Date Title
Toor et al. Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering
JP6033687B2 (en) Method for producing photovoltaic cell including pretreatment of the surface of a crystalline silicon substrate
JP6392866B2 (en) Surface texture structure of crystalline silicon solar cell and manufacturing method thereof
JP4610669B2 (en) Manufacturing method of solar cell
CN104037257B (en) Solaode and manufacture method, single-side polishing apparatus
TW201801338A (en) Method for producing a textured structure of a crystalline silicon solar cell
WO2012157179A1 (en) Method for manufacturing wafer for solar cell, method for manufacturing solar cell, and method for manufacturing solar cell module
JP5467697B2 (en) Manufacturing method of solar cell
JP2013503476A (en) Solar cell and method for producing such a solar cell
US8101522B2 (en) Silicon substrate having nanostructures and method for producing the same and application thereof
JP2013093537A5 (en)
WO2015033864A1 (en) Method for manufacturing solar cell
KR101212896B1 (en) Texturing of multicrystalline silicon for solar cell using an acidic solution
WO2017221710A1 (en) Solar cell manufacturing method
JP2000101111A (en) Manufacture of solar cell
KR20120036495A (en) Method for manufacturing solar cell and solar cell manufactured by the same method
JP2010245568A (en) Method of manufacturing solar cell
US20130291925A1 (en) Solar cell wafer and method of producing the same
KR20190082152A (en) Chemical polishing of solar cell surfaces and the resulting structures
Ji et al. Improvement of the surface structure for the surface passivation of black silicon
CN114551614A (en) Silicon wafer composite suede manufacturing method and silicon wafer manufactured by same
Fallahazad et al. Optimization of chemical texturing of silicon wafers using different concentrations of sodium hydroxide in etching solution
CN101901851B (en) Method for manufacturing selective emitter solar cell
Razak et al. High-Aspect-Ratio Silicon Nanostructures on N-type Silicon Wafer Using Metal-Assisted Chemical Etching (MACE) Technique
US20110212622A1 (en) Surface texturing using a low quality dielectric layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841956

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841956

Country of ref document: EP

Kind code of ref document: A1